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CONTENTS 1

Abstract

A tree of rings is a network that is obtained by interconnecting rings in a tree structure such that
any two rings share at most one node. A connection request (call) in a tree of rings is given by its
two endpoints and, in the case of prespecified paths, a path connecting these two endpoints. We
study undirected trees of rings as well as bidirected trees of rings. In both cases, we show that the
path packing problem (assigning paths to calls so as to minimize the maximum load) can be solved
in polynomial time, that the path coloring problem with prespecified paths can be approximated
within a constant factor, and that the maximum (weight) edge-disjoint paths problem is APX-hard
and can be approximated within a constant factor (no matter whether the paths are prespecified
or can be determined by the algorithms). We also consider fault-tolerance in trees of rings: If a set
of calls has been established along edge-disjoint paths and if an arbitrary link fails in every ring
of the tree of rings, we show that at least one third of the calls can be recovered if rerouting is
allowed. Furthermore, computing the optimal number of calls that can be recovered is shown to
be polynomial in undirected trees of rings and APX-hard in bidirected trees of rings.
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2 Introduction

1 Introduction

A ring is a graph that consists of a single cycle of length at least three. The trees of rings are the
class of graphs that can be defined inductively as follows:

1. A single ring is a tree of rings.

2. If T is a tree of rings, then the graph obtained by adding a node-disjoint ring R to T and
then identifying one node of R with one node of T is also a tree of rings.

3. No other graphs are trees of rings.

Equivalently, a tree of rings is a connected graph T whose edges can be partitioned into rings such
that any two rings have at most one node in common and such that, for all pairs (u, v) of nodes in
T , all simple paths from u to v touch precisely the same rings. (We say that a path touches a ring
if it contains at least one edge of that ring. Furthermore, a path touches a node if it starts at that
node, ends at that node, or passes through that node. Two paths intersect if they share an edge.)
A third equivalent definition is that a tree of rings is a connected graph in which all biconnected
components are rings.

Trees of rings are an interesting topology for the construction of communication networks. On
the one hand, they are not expensive to build and require few additional links as compared to a
tree topology. On the other hand, a tree of rings remains connected even if an arbitrary link fails
in each ring, thus achieving much better fault tolerance than a tree network. Trees of rings are also
a natural topology for all-optical networks: fiber rings have been employed for a long time (e.g.,
SONET rings), and it is natural to interconnect different rings in a tree structure.

In modern communication networks, establishing a connection between two nodes often requires
allocating resources on all links along a path between the two nodes. For example, this is the case
in ATM networks (where bandwidth is reserved along the path from sender to receiver) or in all-
optical networks with wavelength-division multiplexing (where a wavelength is reserved along the
path from sender to receiver). Resource allocation and call admission control in such networks lead
to optimization problems involving edge-disjoint paths. (See [15] for more about the background of
such problems.) In this paper, we investigate the complexity and approximability of these problems
in networks with tree-of-rings topology.

1.1 Preliminaries and Problem Definitions

Each of the following problems can be studied for undirected paths in undirected graphs and for
directed paths in bidirected graphs. (A bidirected graph is the graph obtained from an undirected
graph by replacing each undirected edge by two directed edges with opposite directions. We use
the term “link” to refer to an undirected edge in an undirected graph or to a pair of directed edges
with opposite directions in a bidirected graph.) In the undirected case, a connection request (call)
is given by its two endpoints, and the call is established along an undirected path between these
two endpoints. In the bidirected case, a call specifies sender and receiver, and it is established
along a directed path from sender to receiver.

Given a set of paths in a graph, the load L(e) of a (directed or undirected) edge e is the number
of paths containing that edge. The maximum load is the maximum of the values L(e), taken over
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Introduction 3

all edges e of the graph. In this paper, the maximum load is denoted by L. The set of paths that
creates this maximum load will always be clear from the context.

Now we define the relevant optimization problems.

Path Coloring (PC): Given a set of calls, assign paths and colors to the calls such that calls
receive different colors if their paths intersect. Minimize the number of colors. (Application:
Minimize the number of wavelengths in an all-optical WDM network.)

PC with Prespecified Paths (PCwPP): Same as path coloring, but the paths are specified as
part of the input.

Path Packing (PP): Given a set of calls, assign paths to the calls such that the maximum load
is minimized. (Application: Minimize the required link capacity if all calls request the same
bandwidth.)

Maximum Edge-Disjoint Paths (MEDP): Given a set of calls, select a subset of the calls and
assign edge-disjoint paths to the calls in that subset. Maximize the cardinality of the subset.
(Application: Maximize the number of established calls.)

Maximum Weight Edge-Disjoint Paths (MWEDP): Given a set of calls that are assigned
positive weights, select a subset of the calls and assign edge-disjoint paths to the calls in that
subset. Maximize the total weight of the subset.

MEDP with Prespecified Paths (MEDPwPP): Same as MEDP, but the paths are specified
as part of the input.

MWEDP with Prespecified Paths (MWEDPwPP): Same as MWEDP, but the paths are
specified as part of the input.

Optimal Recovery (OR): Given a set C of calls that are assigned edge-disjoint paths in a graph
T = (V, E), and a set F ⊆ E of faulty links, select a subset C ′ ⊆ C and assign edge-disjoint
paths in T \ F to the calls in C ′. Maximize the cardinality of C ′. (Application: Maximize
the number of calls that can remain active in spite of the link failures.)

Optimal Weighted Recovery (OWR): Same as OR, but the calls are assigned positive weights
and the goal is to maximize the total weight of the calls in C ′.

For maximization problems, an algorithm is a ρ-approximation algorithm if it runs in polynomial
time and always computes a solution whose objective value is at least a 1

ρ
-fraction of the optimum.

For minimization problems, an algorithm is a ρ-approximation algorithm if it runs in polynomial
time and always computes a solution whose objective value is at most ρ times the optimum. APX
is the class of all optimization problems in NPO (i.e., problems whose instances and solutions
can be recognized in polynomial time, which have solutions of polynomial size, and for which the
objective value of a given solution can be computed in polynomial time) that admit constant-factor
approximation algorithms. A problem can be proved APX-hard by giving an approximation-
preserving reduction (usually an L-reduction [18] or an AP-reduction [1]) from a known APX-hard
problem. A problem is APX-complete if it is APX-hard and contained in APX. We refer to
[1] for further background information concerning complexity classes for optimization problems,
approximation-preserving reductions, and a discussion of the relationship of APX-hardness to the
earlier concept of MAXSNP-hardness.
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4 Introduction

MEDP and OR as well as their variants can also be studied for the case that the network is an
all-optical network with W wavelengths. In the case of MEDP, for example, this means that the
goal is to compute a subset of the given calls and an assignment of paths and at most W different
colors to the calls in that subset such that calls with the same color are routed along edge-disjoint
paths. Approximation algorithms for MEDP and its variants in the case of W wavelengths can be
obtained by calling an algorithm for one wavelength W times. The resulting approximation ratio is
only slightly worse than for one wavelength, i.e., at most 1/(1−e−1/ρ) ≤ ρ+1 if the approximation
ratio for one wavelength is ρ [20, 2].

1.2 Previous Work on Rings and Trees

Most of the problems defined in the previous section have been studied intensively for rings and
for trees (and, of course, for many other topologies). For undirected and bidirected ring networks,
it is known that PC is NP-hard no matter whether the paths are prespecified [12] or not [9, 21],
and that PP can be solved optimally in polynomial time [21]. MEDP, MWEDP, MEDPwPP, and
MWEDPwPP are polynomial for undirected and bidirected rings.

In undirected and bidirected tree networks, PC is also NP-hard [9, 16]. A given set of paths
with maximum load L can be efficiently colored using at most 3L/2 colors in the undirected
case [19] and at most min{2L− 1, d5L/3e} colors in the bidirected case [11]. MEDP and MWEDP
are polynomial in undirected trees of arbitrary degree and in bidirected trees of constant degree,
but MAXSNP-hard and APX-hard in bidirected trees of arbitrary degree [10]. For every positive
constant ε, there is a (5

3
+ ε)-approximation algorithm for MEDP and MWEDP in bidirected trees

of arbitrary degree [10, 8].

1.3 Previous Work on Trees of Rings

It is known that an algorithm for PC in trees that uses at most αL colors can be used to obtain
a 2α-approximation algorithm for PC in trees of rings, both in the undirected [19] and in the
bidirected case [17]: It is sufficient to remove an arbitrary link from each ring in the tree of rings
(the “cut-one-link” heuristic) and to use the tree algorithm in the resulting tree; the maximum
load of the obtained paths is at most twice the load of the paths in the optimal solution, which in
turn is a lower bound on the optimal number of colors. In this way, a 3-approximation algorithm
is obtained in the undirected case and a 10

3
-approximation algorithm in the bidirected case. For

undirected trees of rings, a 2-approximation algorithm for PCwPP was given in [6] for the special
case in which each node is contained in at most two rings (i.e., in trees of rings with maximum
vertex degree equal to four).

The all-to-all instance (the set of calls containing one call for every ordered pair of nodes)
in bidirected trees of rings was studied in [4]. It was shown that a routing that minimizes the
maximum load L can be computed in polynomial time, and that the resulting paths can be colored
optimally with L colors.

1.4 Summary of Results

In this paper, we consider the path problems defined in Section 1.1 for networks with tree-of-
rings topology. We show that PP is polynomial for trees of rings (Section 2) and give a practical
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Path Coloring with Prespecified Paths 5

approximation algorithm with constant approximation ratio for PCwPP (Section 3). In Section 4,
we show that at least one third of the active calls in a tree of rings can be recovered after an
arbitrary link fails in every ring of the tree of rings, provided that rerouting is allowed. OR and
OWR are proved to be polynomial for undirected trees of rings, while OR is shown to be APX-hard
for bidirected trees of rings even if T \ F is a tree. In Section 5, we consider MEDP, MWEDP,
MEDPwPP, and MWEDPwPP. We prove that all these problems are APX-hard for trees of rings
and give constant-factor approximation algorithms.

2 Path Packing

Path packing in trees of rings can be reduced to path packing in rings. Let c be a call and let p
be a path connecting the endpoints of c. For each ring r in the given tree of rings that is touched
by p, the node in(r, c) at which p enters the ring (or begins) and the node out(r, c) at which p
leaves the ring (or terminates) are uniquely determined by the endpoints of c. Therefore, PP can
be tackled by considering each ring separately. For a ring r, simply view each call c that touches r
as a call from in(r, c) to out(r, c) and compute a routing that minimizes the maximum load using
the known polynomial algorithms for PP in ring networks. The resulting routings can be combined
to obtain an optimal routing for the tree of rings.

Theorem 1 PP can be solved optimally in polynomial time for undirected and bidirected trees of
rings.

Note that Theorem 1 implies that one can decide in polynomial time whether all given calls
can be established along edge-disjoint paths. Hence, this decision version of the edge-disjoint paths
problem is polynomial for trees of rings.

3 Path Coloring with Prespecified Paths

As PCwPP is NP-hard in rings, PCwPP is also NP-hard in trees of rings. Given a set P of paths
in a tree of rings T = (V, E), we propose the following greedy approximation algorithm. It is a
generalization of the simple greedy algorithm that uses at most 2L − 1 colors for PC in trees.

algorithm GreedyColoring(T, P ):

1. Initially, all paths are uncolored.

2. Choose an arbitrary node s ∈ V and perform a depth-first search (DFS) of T starting at s.
When the DFS reaches a node v, consider all uncolored paths p ∈ P that touch v, in arbitrary
order, and assign to each of them the smallest available color (i.e., the color with smallest
index such that no path intersecting p has already been assigned that color).

In order to derive an upper bound on the number of colors used by GreedyColoring, we consider an
arbitrary path p at the time it is assigned its color and show that it can intersect only a bounded
number of paths that have already been assigned a color prior to p.

See Fig. 1. Assume that the dark nodes have been visited by the DFS already, and that the
DFS now reaches v for the first time. Let r denote the ring containing v and a node adjacent to
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6 Path Coloring with Prespecified Paths

a

b

c

1 2v

3 4
5

6

Figure 1: Illustration of the argument used to prove Theorem 2.

v that has been visited already (there is only one such ring). The uncolored paths touching v do
not touch any dark node. They can be classified into two basic types. The first type does not use
any edge in r; for the arguments given below, take a path connecting nodes a and b in the figure
as a representative path for the first type. The second type uses at least one edge in r; take a path
connecting b and c as a representative path.

First, consider the case of undirected paths. If p belongs to the first type, all previously colored
paths that intersect p must also touch v and touch a ring containing v that is touched by p. But
there are at most four edges incident to v that belong to rings touched by p (in the figure, these
are the edges labeled 1, 2, 3, 4), and each conflicting path must use one of these edges. As the
maximum load is L, there are less than 4L colored paths intersecting p. If p belongs to the second
type, the number of colored paths that can intersect p is also less than 4L: if we denote the edges
as shown in Fig. 1, there can be at most L− 1 colored paths using edge 5, at most L colored paths
using edge 6, and at most 2L− 1 colored paths using edges 3 and 4. Thus, GreedyColoring uses at
most 4L colors in the undirected case.

The same argument allows us to bound the number of conflicting paths by 8L − 1 in the
bidirected case. We lose a factor of two because now there can be 2L paths using the link between
two adjacent nodes, L in each direction.

Theorem 2 For PCwPP in trees of rings, GreedyColoring is a polynomial-time algorithm that
uses at most 4L colors in the undirected case and at most 8L colors in the bidirected case.

Note that a PC algorithm can be derived from a PCwPP algorithm as follows. First, compute a
routing that minimizes the maximum load L (Theorem 1); then, use a PCwPP algorithm to assign
colors to the resulting paths. If the PCwPP algorithm uses at most αL colors, an α-approximation
algorithm for PC is obtained in this way. Using Theorem 2, we obtain a PC algorithm with
approximation ratio at most 4 in the undirected case and at most 8 in the bidirected case. These
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Recovery after Link Failures 7

ratios are worse than the ratios achieved by the “cut-one-link” heuristic (see Section 1.3), but it
is not clear whether our upper bounds are tight, and it is conceivable that our new algorithms
perform better in practice.

4 Recovery after Link Failures

In this section we study the problems OR and OWR in trees of rings. For bidirected trees of
rings, we assume that a failure always affects both edges in a pair of directed edges with opposite
directions between two adjacent nodes.

Let T = (V, E) be a tree of rings and let F ⊂ E be the set of faulty links. The worst case
among all failure patterns that leave the remaining network connected is the case that T \ F is a
tree.

Assume that a set C of calls has been active at the time of the failure, i.e., the calls in C are
assigned edge-disjoint paths in T . In the worst case, every call in C used a link in F , and all calls
are affected by the link failures. Therefore, it is important to allow rerouting, i.e., changing the
paths assigned to the calls.

If T \ F is a tree, there is only one possible routing in T \ F for each call c ∈ C. Let P be the
set of paths obtained from C by routing each call in T \ F . The maximum load L created by the
paths in P is at most two. (For any edge e ∈ E \F , the paths in P that contain e either contained
e already before the link failures, or they contained the faulty link in the ring to which e belongs.)
In this case, solving the OR (OWR) problem reduces to solving the MEDP (MWEDP) problem
for the set of paths P in the tree T \ F . As MWEDP is polynomial in undirected trees, this shows
that OR and OWR are polynomial for undirected trees of rings (under the assumption that T \ F
is a tree). For bidirected trees of arbitrary degree, it was not known previously whether MEDP is
already NP-hard if the input is a set of paths with maximum load two. However, we have obtained
the following theorem.

Theorem 3 MEDP in bidirected trees is APX-hard even if the given set of paths has maximum
load L = 2.

The proof of Theorem 3 is given in Appendix A.
For any set P of paths in a bidirected tree T1 with maximum load L = 2, one can construct a

set C of calls that can be routed along edge-disjoint paths in a bidirected tree of rings T2 and a set
F of faulty links in T2 such that the conflict graph of the paths obtained by routing the calls in C
in T2 \ F is identical to the conflict graph of P in T1. Therefore, Theorem 3 implies that OR and
OWR are APX-hard for bidirected trees of rings T even if T \ F is a tree.

The (5
3
+ε)-approximation for MWEDP in bidirected trees from [8] gives a ( 5

3
+ε)-approximation

for OR and OWR in bidirected trees of rings provided that T \ F is a tree. Furthermore, we can
extend this approach to arbitrary sets F of faulty links (i.e., T \ F could be disconnected or still
contain some complete rings). In general, T \F consists of several connected components. All calls
in C whose endpoints are in different components cannot be recovered. Consider one particular
connected component H of T \ F . Intuitively, only the “tree part” of H is relevant for OR and
OWR. Each ring in H that does not contain a faulty link can be shrunk into a single node. The
resulting network is a tree T ′. Then the MWEDP algorithm for trees is applied to T ′. The resulting
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8 Recovery after Link Failures

set of edge-disjoint paths in T ′ gives a set of edge-disjoint paths in H by using the original routing
in the non-faulty rings. Calls that touch only non-faulty rings are always recovered. Thus, we
obtain the following theorem.

Theorem 4 For undirected trees of rings, OR and OWR can be solved optimally in polynomial
time. For bidirected trees of rings, OR and OWR are APX-hard even if T \ F is a tree, and there
is a (5

3
+ ε)-approximation for arbitrary sets F of faulty links.

A set P of paths in a tree with L = 2 can always be colored (efficiently and optimally) with
at most 3 colors, both in the undirected case and in the bidirected case. The paths assigned the
same color (a color class) are edge-disjoint. Therefore, there is a set S ⊆ P of edge-disjoint paths
such that |S| ≥ |P |/3. In the weighted case we can also infer that there is a set S ′ ⊆ P of edge-
disjoint paths whose total weight is at least one third of the total weight of P . The set S resp.
S ′ can be computed efficiently by coloring P and taking the best of the color classes. If T \ F
still contains some rings, we can again shrink the rings into single nodes before applying the path
coloring algorithm.

Theorem 5 Assume that a set C of calls has been established along edge-disjoint paths in an
undirected or bidirected tree of rings T = (V, E). For any set F of faulty links such that F contains
at most one link from every ring in T , it is possible to recover (efficiently) at least |C|/3 calls (or
calls whose total weight is at least one third of the total weight of C), provided that rerouting is
allowed.

Figure 2: Examples of bad link failures.

For undirected trees of rings, the bound given in Theorem 5 is tight, i.e., there exists a set of
edge-disjoint paths in a tree of rings and a set of link failures such that only one third of the paths
can be recovered. See the left-hand side of Fig. 2 for an example. For bidirected trees of rings,
we can construct an example where at most 2|C|/5 calls can be recovered after failure, even if an
optimal rerouting is used (right-hand side of Fig. 2). So we know that the fraction of calls that can
be recovered after such link failures (where T \ F is a tree) in the worst case is at least 1

3
and at

most 2
5

for bidirected trees of rings.

Now we consider the effect of link failures in an all-optical network with wavelength-division
multiplexing (WDM). If W wavelengths (colors) are available, a set C of calls can be established
simultaneously if the calls are assigned paths and colors such that intersecting paths receive different
colors and such that at most W different colors are used altogether. Corollary 1 follows from
Theorem 5 by considering the calls with each wavelength separately.
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Maximum (Weight) Edge-Disjoint Paths 9

Corollary 1 Assume that a set C of calls has been established in an undirected or bidirected tree
of rings T = (V, E) using W wavelengths. For any set F of faulty links such that F contains at
most one link from every ring in T , it is possible to recover at least |C|/3 calls (or calls whose
total weight is at least one third of the total weight of C) without changing the wavelength of a call,
provided that rerouting is allowed.

5 Maximum (Weight) Edge-Disjoint Paths

While MEDP and MWEDP are polynomial for rings and for undirected trees, we can show that
MEDP and its variants are all NP-hard in undirected and bidirected trees of rings. In fact, we can
prove that these problems are MAXSNP-hard and APX-hard, implying that there is a constant
r > 1 such that approximating any of these problems with approximation ratio at most r is NP-
hard.

Theorem 6 MEDP, MWEDP, MEDPwPP, and MWEDPwPP are all APX-hard for trees of rings,
both in the undirected case and in the bidirected case.

The proof of Theorem 6 is given in Appendix B. We remark that these problems can be solved
optimally in polynomial time for trees of rings whose degree is bounded by a constant (i.e., where
each node can be only in a bounded number of different rings), because the dynamic programming
approach from [7] that works for bidirected trees of bounded degree can be generalized to graphs
of bounded treewidth and bounded degree. Note that trees of rings have treewidth 2.

In view of the hardness results for trees of rings with arbitrary degree, we are interested in
obtaining efficient approximation algorithms.

5.1 Arbitrary Paths

Consider the “cut-one-link” heuristic for MEDP and MWEDP: remove an arbitrary link from each
ring and then use an algorithm for MEDP or MWEDP in trees. Theorem 5 implies that the optimal
solution in the resulting tree has an objective value that is at least one third of the optimal solution
in the full tree of rings.

Theorem 7 Using the “cut-one-link” heuristic and an α-approximation algorithm for MEDP (for
MWEDP) in trees gives a 3α-approximation algorithm for MEDP (for MWEDP) in trees of rings,
both in the undirected case and in the bidirected case.

Noting that MWEDP is polynomial (i.e., admits a 1-approximation algorithm) in undirected
trees and that there is a (5

3
+ ε)-approximation for MWEDP in bidirected trees, we obtain the

following corollary.

Corollary 2 There is a 3-approximation algorithm for MWEDP in undirected trees of rings and
a (5 + ε)-approximation algorithm for MWEDP in bidirected trees of rings, where ε is an arbitrary
positive constant.
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10 Maximum (Weight) Edge-Disjoint Paths

5.2 Prespecified Paths

Next, we consider MEDPwPP and MWEDPwPP in trees of rings. Given a set P of paths in a tree
of rings T = (V, E), we propose the following greedy algorithm for MEDPwPP.

algorithm GreedySelection(T, P ):

1. Maintain a set S ⊆ P of selected paths. Initially, S = ∅.
2. Choose an arbitrary node s ∈ V and perform a DFS of T starting at s. When the DFS is

about to retreat from a node v (i.e., when all neighbors of v have been visited and the DFS
goes back to the parent of v in the DFS tree), consider all paths p ∈ P that touch v and that
do not touch any node from which the DFS has not yet retreated, in arbitrary order. If p is
edge-disjoint from all paths in S, insert p into S, otherwise discard p.

3. Output S.

Intuitively, the algorithm processes the DFS-tree of T in a bottom-up fashion and greedily selects
paths that touch only nodes in subtrees that have already been processed. For the analysis of the
approximation ratio of GreedySelection, please refer again to Fig. 1. Now the dark nodes represent
nodes from which the DFS has not yet retreated. If the DFS is about to retreat from v, the paths
that are considered can be classified into the same two types as in Section 3. If GreedySelection
selects a path p that is not in the optimal solution, we can bound the number of later paths (paths
that are considered after p by GreedySelection) that are in the optimal solution and that are
intersected by p using the same arguments as in Section 3. In this way we obtain that there can be
at most 4 such paths in the undirected case and at most 8 such paths in the bidirected case. (For
example, in the undirected case, all later paths that are blocked by a path p from a to b in Fig. 1
must use one of the four edges labeled 1 to 4.) Therefore, each path selected by GreedySelection
blocks at most 4 resp. 8 later paths that could be selected in an optimal solution instead. This
reasoning can easily be turned into a formal proof that establishes the following theorem.

Theorem 8 GreedySelection has approximation ratio at most 4 for MEDPwPP in undirected trees
of rings and approximation ratio at most 8 for MEDPwPP in bidirected trees of rings.

GreedySelection can be converted into an approximation algorithm for MWEDPwPP by adopt-
ing a two-phase approach similar to the one used by Berman et al. for an interval selection prob-
lem [5]. (This can also be seen as an application of the local ratio technique, see [3].) The algorithm
maintains a stack S of paths. When a path is pushed on the stack, it is assigned a value that may
be different from its weight. In the end, the paths are popped from the stack and selected in a
greedy way.

algorithm TwoPhaseSelection(T, P ):

1. Maintain a stack S of paths with values. Initially, S is the empty stack.

2. Phase One: Choose an arbitrary node s ∈ V and perform a DFS of T starting at s. When
the DFS is about to retreat from a node v, consider all paths p ∈ P that touch v and that do
not touch any node from which the DFS has not yet retreated, in arbitrary order. Compute
total(p, S), the sum of the values of the paths in S that intersect p. If the weight w(p)
of p is strictly larger than total(p, S), then push p onto the stack and assign it the value
w(p) − total(p, S).
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3. Phase Two: After the DFS is complete, pop the paths from the stack and select each path if
it does not intersect any previously selected path.

4. Output the set of selected paths.

We can prove the same upper bound on the approximation ratio of TwoPhaseSelection for the
problem MWEDPwPP as for GreedySelection for MEDPwPP.

Theorem 9 TwoPhaseSelection is a 4-approximation algorithm for MWEDPwPP in undirected
trees of rings and an 8-approximation algorithm for MWEDPwPP in bidirected trees of rings.

Proof. Let S denote the contents of the stack at the end of Phase One, and let t denote the sum
of the values of the paths in S. Fix an arbitrary optimal solution P ∗. The proof consists of two
parts.

First, one can show that the total weight of the paths in P ∗ is at most 4t (at most 8t) for
undirected (bidirected) trees of rings. To see this, let val(p, S) denote the sum of the values of
paths in S that intersect p and that were processed in Phase One not after p. (If p ∈ S, then the
value of p also contributes to val(p, S).) By the definition of the algorithm, val(p, S) ≥ w(p) for
all paths p. Now the key observation is that the value of every path q ∈ S is counted at most four
(eight) times in the sum

∑
p∈P ∗ val(p, S) ≥ w(P ∗). This can again be seen by referring to Fig. 1

and considering the path q to be either of the first type (from a to b) or of the second type (from
b to c). In the undirected case, there can be at most four paths in P ∗ that are processed after q
in Phase One and that intersect q. In the bidirected case, there can be at most eight such paths.
Therefore, w(P ∗) ≤ 4t in the undirected case (resp. w(P ∗) ≤ 8t in the bidirected case).

Second, the solution output by the algorithm has weight at least t: when a path p is selected in
Phase Two, the weight of the solution increases by w(p), while the sum of the values of the paths
that are still on the stack and that are not intersected by p decreases by at most w(p). 2
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A MEDP for Paths in Trees with Load Two

In this appendix, we give a proof of Theorem 3. For convenience, we repeat the theorem here.

Theorem 3 MEDP in bidirected trees is APX-hard even if the given set of paths has maximum
load L = 2.

In order to prove Theorem 3, we use an approximation-preserving reduction from the maximum
bounded 3-dimensional matching problem where each element occurs in at most two triples. First,
we present a hardness result for the latter problem. Then, we give the approximation-preserving
reduction.

Let us define the 3-dimensional matching problem formally.

MAX-3DM–B (Maximum bounded 3-dimensional matching). An instance is given by a set
M ⊆ X × Y × Z of ordered triples, where X, Y and Z are disjoint sets. The number of
occurrences in M of an element in X, Y or Z is bounded by the constant B. A feasible
solution is a matching, i.e., a subset M ′ ⊆ M such that no two triples in M ′ agree in any
coordinate. The goal is to maximize the cardinality of the matching.

Kann proved that MAX-3DM–B is MAXSNP-hard for any B ≥ 3 by giving an approximation-
preserving reduction from MAX-3SAT–B (Maximum bounded 3-satisfiability) to MAX-3DM–3
[14]. However, we are interested in the case B = 2. To our knowledge, no hardness results for
MAX-3DM–2 have been known previously. Nevertheless, we can derive such a result easily by
applying the reduction in [14] to MAX-2SAT–B instead of MAX-3SAT–B.

The reduction in [14] takes an instance of MAX-3SAT–B and constructs an instance of MAX-
3DM–3. In the resulting instance, most of the elements of X, Y or Z occur in at most two
triples. The only elements that appear in three triples are the two elements created for each
clause containing three literals. If we reduce from MAX-2SAT–B instead of MAX-3SAT–B, each
clause contains at most two literals, so each element of X, Y or Z will occur in at most two
triples, and the resulting instance of MAX-3DM is actually an instance of MAX-3DM–2. Fur-
thermore, it is known that MAX-2SAT–B is APX-complete for any B ≥ 3 [1, p. 280]. So we
obtain an approximation-preserving reduction from the APX-complete problem MAX-2SAT–B to
MAX-3DM–2. Since MAX-3DM–2 is easily seen to be contained in APX, we obtain the following
result.

Lemma 1 MAX-3DM–2 is APX-complete.

Now we show how to reduce MAX-3DM-B, for any B ≥ 2, to MEDP in bidirected trees. The
reduction is similar to the reduction used by Garg, Vazirani and Yannakakis to prove MAXSNP-
hardness of integral multicommodity flow in undirected trees with edge capacities one and two [13].

Lemma 2 For any B ≥ 2, there is a polynomial-time reduction from MAX-3DM-B to MEDP in
bidirected trees such that the set of paths in the constructed instance of MEDP has maximum load
at most B.

Proof. Let an instance I of MAX-3DM-B be given by three disjoint sets X, Y, Z and a set of
triples M ⊆ X × Y × Z.
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xi,1 xi,2 xi,3

xi,3,1 xi,3,2xi,2,1xi,1,1 xi,2,2xi,1,2

zkyjxi

Figure 3: Tree constructed from the MAX-3DM-B instance.

We create a bidirected tree T of depth three as follows. The root of T has |X| + |Y | + |Z|
children: one for each xi ∈ X, one for each yj ∈ Y , and one for each zk ∈ Z. Each node xi ∈ X
has pi children xi,1,. . . ,xi,pi

, where pi ≤ B is the number of occurrences of xi in M . Each xi,j has
two children xi,j,1 and xi,j,2. See Fig. 3 for a sketch of this construction; note that only a small
subset of the nodes of the tree is actually shown there, and that pairs of oppositely directed edges
are depicted as undirected edges for the sake of simplicity.

Now, we create a set P of paths in T . Number the occurrences of xi in the triples of M from 1
to pi arbitrarily. For every triple in M we add three paths to P . Let triple (xi, yj, zk) contain the
l-th occurrence of xi in M . Then we add a path from xi,l,1 to yj, a path from zk to xi,l,2, and a
path from xi,l,1 to xi,l,2. The set P of paths has maximum load at most B, since each of the xi, yj

and zk occurs in at most B triples in M .

We claim that M contains d disjoint triples if and only if P contains a subset P ′ of at least
|M | + d edge-disjoint paths, and that d disjoint triples in M can be computed efficiently from a
given subset P ′ ⊆ P of at least |M | + d edge-disjoint paths.

Assume that M contains d disjoint triples (xi1 , yj1, zk1),. . . ,(xid , yjd
, zkd

). Let triple (xit , yjt, zkt)
contain the lt-th occurrence of xit . Then the following |M |+ d paths form a set P ′ of edge-disjoint
paths: for each t, 1 ≤ t ≤ d, choose the path from xit,lt,1 to yjt, the path from zkt to xit,lt,2, and
pit − 1 paths from xit,l,1 to xit,l,2 for l ∈ {1, . . . , pit} \ {lt}; for each xi that does not occur in the d
disjoint triples, choose the pi paths from xi,l,1 to xi,l,2 for 1 ≤ l ≤ pi.

Conversely, assume that there is a subset P ′ of P containing |M |+ d edge-disjoint paths. Note
that P ′ can contain at most one path entering the subtree rooted at xi from above and at most one
path leaving the subtree rooted at xi. The only possibility for P ′ to contain more than pi paths
using edges of the subtree rooted at xi is to contain one path from xi,li,1 to some yj, one path from
some zk to xi,li,2, and pi − 1 paths from xi,l,1 to xi,l,2 for l ∈ {1, 2, . . . , pi} \ {li}. In that case, P ′

contains pi + 1 paths using edges of the subtree rooted at xi. The only way for P ′ to contain at
least |M |+ d paths is that P ′ contains exactly pi + 1 paths using edges of the subtree rooted at xi

for at least d values of i. Then a set of d disjoint triples is obtained by taking, for each of the d
values of i, the triple containing the li-th occurrence of xi. 2

For any set M of triples such that each element of X ∪Y ∪Z occurs in at most B triples, there
is always a matching that contains at least |M |/(3B − 2) triples, because each triple is in conflict
with at most 3B − 3 other triples. Using this fact, it is not difficult to show that the reduction
presented in the proof of Lemma 2 is approximation preserving for any constant B, in the sense
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that it is an L-reduction [18] and an AP-reduction [1]. For the details of the calculation, see [13]
or [10].

Since MAX-3DM-B is APX-hard for B ≥ 2 by Lemma 1, this shows that MEDP in bidirected
trees is APX-hard even if the maximum load of the given paths is bounded by 2. This establishes
Theorem 3.

B Hardness of MEDP and MEDPwPP in Trees of Rings

In this appendix, we prove Theorem 6. For convenience, we repeat the theorem here.

Theorem 6 MEDP, MWEDP, MEDPwPP, and MWEDPwPP are all APX-hard for trees of rings,
both in the undirected case and in the bidirected case.

It is enough to prove the theorem for the unweighted versions of the problems, i.e., for MEDP
and MEDPwPP. The proofs for the individual cases are given in the following subsections. Some of
our arguments use the reduction from MAX-3DM-B to MEDP given in Lemma 2 in Appendix A.

Note that any given tree can be turned into a tree of rings by adding a new vertex ve for every
edge e of the tree and making ve adjacent to the two endpoints of e. We call the resulting tree of
rings the tor-extension of the given tree.

B.1 MEDPwPP in Bidirected Trees of Rings

MEDPwPP for bidirected trees of rings is obviously APX-hard, because MEDP is APX-hard for
bidirected trees and any set of paths in a tree can be viewed as a set of paths in the tor-extension
of the tree.

B.2 MEDPwPP in Undirected Trees of Rings

We claim that we can transform any instance of MEDP in bidirected trees (which is APX-hard)
into an instance of MEDPwPP in undirected trees of rings such that the paths have the same
conflict structure. Start with the given bidirected tree. Replace each pair of directed edges (u, v)
and (v, u) of the bidirected tree by an undirected ring {u, x}, {x, v}, {v, y}, {y, u}, where x and y
are two new nodes. On each path using the directed edge (u, v) (the directed edge (v, u)), replace
that edge by the two undirected edges {u, x} and {x, v} (by the two undirected edges {v, y} and
{y, u}). In this way we obtain a set of undirected paths in an undirected tree of rings such that
two paths intersect if and only if the corresponding paths in the original bidirected tree intersect.
Therefore, MEDPwPP in undirected trees of rings is at least as hard to approximate as MEDP in
bidirected trees. This shows APX-hardness of MEDPwPP in undirected trees of rings.

B.3 MEDP in Bidirected Trees of Rings

We adapt the reduction used in the proof of Lemma 2. From a given instance of MAX-3DM-B
we obtain a set of calls as in the proof of Lemma 2, but now these calls are not in a tree but in
a tree of rings. The tree of rings is obtained form the tree constructed in the proof of Lemma 2
as follows: the links between the root and its children are replaced by rings of length 3, the nodes
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xi,1 xi,2 xi,3

xi,3,1 xi,3,2xi,2,1xi,1,1 xi,2,2xi,1,2

zkyjxi

Figure 4: Tree of rings constructed from a MAX-3DM-B instance.

xi and xi,1, xi,2, . . . , xi,pi
form a ring, and an edge is added between xi,l,1 and xi,l,2 for 1 ≤ l ≤ pi.

See Fig. 4. Finally, we add 2(|X| + |Y | + |Z| + |M |) calls between certain pairs of adjacent nodes
as follows. For two adjacent nodes u and v, we add a call from u to v and a call from v to u. We
add such calls on one link of every ring containing the root and on all links connecting some xi,l,1

with xi,l,2. These additional calls are called short calls. They are indicated by the short lines with
arrows at both ends in Fig. 4.

The purpose of adding the short calls is made clear by the following claim.

Claim 1 Let an instance of MEDP in any graph be given. Let S be a set of edge-disjoint paths
for a subset of the calls in the instance. Then S can be transformed into a new solution S ′ with
|S ′| ≥ |S| such that S ′ contains, for every directed edge (u, v) of the graph for which one call from
u to v is part of the instance, at least one path from u to v consisting only of the edge (u, v).

The claim is easy to prove: If the solution S does not satisfy the condition, we can either add
a call or reroute some calls in order to bring the solution closer to the desired form.

Claim 1 implies that we can assume without loss of generality that any solution to the con-
structed instance of MEDP in a bidirected tree of rings accepts all short calls and routes them along
the direct edge. Then the situation for the remaining calls is just the same as it was in the tree case:
a solution containing |M |+d of the remaining calls can be converted into a matching of cardinality
at least d for the original instance of MAX-3DM-B, and vice versa. Taking into account the short
calls, we have that the resulting instance of MEDP has a solution with 2(|X|+ |Y |+ |Z|)+3|M |+d
edge-disjoint paths if and only if there exists a matching with d triples. The reduction is still
approximation preserving (since |X|+ |Y |+ |Z| ≤ 3|M |), and we get that MEDP is APX-hard for
bidirected trees of rings.

B.4 MEDP in Undirected Trees of Rings

In order to prove APX-hardness for MEDP in undirected trees of rings, we can essentially use the
same reduction as for MEDP in bidirected trees of rings. The only differences are: we view the
tree of rings (shown in Fig. 4) as an undirected graph and all constructed calls as undirected calls,
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we do not add short calls in the rings containing any of the xi, and we replace each remaining
pair of short calls from u to v and from v to u by a single undirected call between u and v. The
resulting instance of MEDP in undirected trees of rings has a solution with |Y | + |Z| + 2|M | + d
edge-disjoint paths if and only if there exists a matching with d triples. Again, it is easy to show
that the reduction is approximation-preserving.
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