
Diss. ETH No. 14324

Extending length and time scales

of ab initio molecular dynamics simulations

A dissertation submitted to the

Swiss Federal Institute of Technology

Zurich

for the degree of

Doctor of Natural Sciences

presented by

Joost VandeVondele

Engineer in Physics, Ghent University

born 28.05.1975

Ghent, Belgium

accepted on the recommendation of

Prof. Dr. U. Röthlisberger, examiner

Prof. Dr. M. Parrinello, co-examiner

August, 2001



© 2001

Joost VandeVondele

All Rights Reserved



To Stephanie

Seite Leer /

Blank leaf



Selle Lepr /
^^ Boom \&$ \^f S g



ACKNOWLEDGEMENTS

Many people have been a part of my graduate education, as friends and colleagues. This

thesis would not appear in its present form without their kind assistance and support.

My sincere gratitude goes to my supervisor Ursula Röthlisberger for her support and

encouragement. I enjoyed the freedom she gave me to explore different approaches to this

inspiring subject. The many discussions we had were invaluable to develop the ideas that

are presented in this thesis. Additionally, she provided the resources that were needed to

perform the computations and which allowed me to go to several conferences. Going to

conferences was a great way to present my results, broadened my view of the field, and

provided new ideas.

Special thanks go to Alessandro Laio. Working together with him on the QM/MM code

was a joyful and unique experience. The skillful ways in which he derived, integrated, and

coded incredible expressions impressed me and contributed significantly to the success of

the project. That he failed to serve me a real 'bagnacauda' should not be mentioned.

I would like to thank Tom Woo and Alessandra Magistrato, colleagues of 'the early days'.

They taught me many tricks of the trade. The prion project started with the experiments

of Sabine Vandoorslaer, Grazia Cereghetti, Rudi Glockshuber, and Arthur Schweiger, and

I acknowledge their initiative to contact us. I thank all my other colleagues - Maria Carola

Colombo, Karel Doclo, Leonardo Guidoni, Martin Luggen, Patrick Maurer, Stefano Piana,

Ute Röhrig, Katrin Spiegel, Andrea Tasso, Otto Anatole von Lilienfeld-Toal, and Martin

Zumstein - for the pleasant time we spent both at and after work. Furthermore, I thank

Wilfred van Gunsteren, his group and the visitors of our group for the interactions, and

Michèle Parrinello for accepting to be co-examiner of this thesis.

Most importantly, I'm very grateful to my parents and brother for their continuing en¬

couragement, and to Stephanie Finken for her love and support that makes every day

something special and enjoyable.



Seite Leer /
Blank leaf



Contents

1 Introduction 19

1.1 Ab initio molecular dynamics simulations 20

1.2 Limitations of current MD simulations 21

1.3 Assuming locality to extend length and time scales 24

1.3.1 Extending the length scales of ab initio MD simulations 24

1.3.2 Extending the time scales of ab initio MD simulations 25

Bibliography 26

2 Hybrid QM/MM Car-Parrinello simulations 31

2.1 Introduction 33

2.2 The QM/MM potential energy and the equations of motion 35

2.2.1 The partitioning of the system 36

2.2.2 The MM potential 38

2.2.3 The QM potential 40

2.2.4 Non-bonded QM/MM interactions 42

2.2.5 The bonded QM-MM interactions 46

2.2.6 Dynamics using the Car-Parrinello method 49

2.3 Implementation 50

2.4 Copper binding to the structured part of the mouse prion protein 51

2.4.1 Prion proteins 52

7



8 Contents

2.4.2 The need for QM/MM MD simulations 53

2.4.3 A statistical approach to copper binding in proteins 54

2.4.4 The computational setup 56

2.4.5 Simulation results 57

Bibliography 68

3 A Hamiltonian electrostatic coupling scheme for hybrid Car-Parrinello

molecular dynamics simulations 73

3.1 Introduction 75

3.2 Short range electrostatic interactions 79

3.3 Long range electrostatic interactions 83

3.4 Potential and forces on the atoms 87

Bibliography 90

4 Efficient multidimensional free energy calculations for ab initio molecular

dynamics using classical bias potentials 95

4.1 Introduction 97

4.2 Bias potentials to increase sampling efficiency 99

4.3 Construction of the bias potential 100

4.4 A simple example : Methylgroup rotation in ethane 102

4.5 The two dimensional free energy surface of peroxynitrous acid 104

4.5.1 Computational details 106

4.5.2 Calculation of the free energy surface from the simulation data
. . .

107

4.5.3 Results 108

4.6 Conclusions Ill

Bibliography 112

5 Accelerating rare reactive events by means of a finite electronic temper¬
ature 117

5.1 Introduction 119



Contents 9

5.2 Finite electronic temperature as a chemical driving force 123

5.3 Results for reactions in gas and in liquid phase 126

5.3.1 Homolytic bond dissociation of H2 129

5.3.2 Rotation around the C-C bond in C2H4 131

5.3.3 Dissociation of the Lewis acid-base complex of sulfurdioxide and am¬

monia 134

5.3.4 Intramolecular proton transfer between 2-hydroxypyridine and 2-

pyridone 136

5.3.5 Conrotatory ring opening in cyclobutene 138

5.3.6 Peroxynitrous acid 140

5.4 Conclusions 147

5.5 Acknowledgements 148

Bibliography 149

6 Estimating equilibrium properties from non-Hamiltonian dynamics 153

6.1 Introduction 155

6.2 Evaluating phase space integrals using ensembles subject to compressible
dynamics 156

6.3 From ensemble averages to a time average 160

6.4 Numerical studies of two model systems 162

6.4.1 Estimating free energy differences 162

6.4.2 Spatial probability distributions 165

6.5 Conclusions 169

6.6 Acknowledgements 169

Bibliography 170

7 Canonical adiabatic free energy sampling (CAFES): a novel method for
the exploration of free energy surfaces 173

7.1 Introduction 175

7.2 Formulation of the method 178



10 Contents

7.3 Determination of the mass ratio 180

7.4 The formation of a bromonium ion intermediate and anchimeric assistance

in 2-bromoethanol 184

7.5 Summary and conclusions 187

7.6 Acknowledgements 189

Bibliography 189

8 Summary and outlook 193

8.1 Summary 194

8.2 Outlook 195



Contents 11

ABSTRACT

A central goal of ab initio molecular dynamics (MD) simulations is the study of com¬

plex molecular systems based on parameter-free, quantum mechanical calculations. This

method can in principle generate a realistic movie (trajectory) at an atomistic level of the

physical and chemical processes that are taking place in e.g. biological systems. In this

way, unexpected novel mechanisms can be discovered, and quantitative predictions can be

made. Using current supercomputers, the dynamics of systems that contain 10-1000 atoms

can be calculated for 1-100 picoseconds using the density functional based Car-Parrinello

method. This opens a wide range of processes that can be studied, but many systems are

still significantly larger, and show e.g. catalytic activity in a time scale of milliseconds to

hours. In order to reach the goal of observing reactive events in e.g. enzymes, I developed

methods to extend the length and the time scale of ab initio molecular dynamics (MD)

simulations.

The length scales are extended significantly by implementing the idea of a mixed quantum-

classical (QM/MM) description of the system. This approach allows to concentrate the

computational effort on the reactive part, while the environment, which can contain ten

thousands of atoms, is taken into account with a more expedient classical description based

on empirically parametrized force fields. Here, I describe in detail how the interactions be¬

tween the QM and MM systems have been treated in the hybrid Car-Parrinello/classical

MD code that has been developed during my thesis. In particular, a novel scheme that

treats the electrostatic interactions in an efficient and accurate manner within a Hamilto¬

nian framework is discussed. Additionally, I present one of the first applications of this

QM/MM scheme to a biological problem, namely to a characterisation of possible binding

sites of copper ions in the structured part of the mouse prion protein.

In order to overcome the limitations of the short time scales that are typical for ab initio

MD simulations, I also developed and tested various enhanced sampling methods. These

methods provide efficient means to compute thermodynamic information such as relative
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stabilities and free energy barriers. Two methods that use bias potentials, a key ingredient

of many enhanced sampling techniques, are introduced. I show how the knowledge that

has been condensed in a force field can be exploited to enhance the efficiency in sampling

an ab initio potential energy surface, while maintaining ab initio accuracy. In a second ap¬

proach, the intrinsic information about chemical reactivity that is present in the electronic

structure is used explicitly. Chemical reactions are enhanced specifically with the elec¬

tronic temperature as a driving force as is demonstrated for several systems in gas phase

and in solution. In order to increase the flexibility of current sampling algorithms that

rely on bias potentials, novel methods that use instead non-Hamiltonian (non-equilibrium)

dynamics have also been developed. A statistical theory that can be used to estimate

equilibrium properties from a single trajectory of non-Hamiltonian dynamics is presented

and tested. Using this theory, biasing forces that do not derive from a (bias) potential can

be used to enhance sampling. Finally, a novel method (CAFES) is described that enables

the efficient exploration of the free energy surface of a reactive subsystem embedded in

an inert environment. The method is based on a combined dynamical, Car-Parrinello-like

scheme and uses the temperature of the subsystem as a sampling device. With the new

schemes presented here, the sampling efficiency can often be increased by a factor up to

108 for representative systems.

In this thesis, I have presented a QM/MM Car-Parrinello method and enhanced sampling

techniques that can be combined to form a powerful tool to treat reactive events in complex

systems that were previously not accessible by ab initio molecular dynamics simulations.

As an outlook, I present possible future extensions and new developments that might

enlarge the range of problems that can be studied even further.
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ZUSAMMENFASSUNG

Ein zentrales Ziel von ab initio molekulardynamischen (MD) Simulationen ist die Unter¬

suchung komplexer Systeme mittels parameterfreier quantenmechanischer Berechnungen.

Diese Methode kann prinzipiell einen realistischen Film von den Bewegungsabläufen einzel¬

ner Atome erzeugen. Dadurch lassen sich physikalische oder chemische Prozesse, die z.B.

in biologischen Systemen stattfinden, veranschaulichen. So können unerwartete und neue

Mechanismen entdeckt und quantitative Vorhersagen gemacht werden. Mit den heutigen

Supercomputern kann mit der auf der Dichtefunktionaltheorie basierenden Car-Parinello

Methode die Dynamik von Systemen, die 10 bis 1000 Atome umfassen, für einen Zeit¬

bereich von 1 bis 100 Picosekunden berechnet werden. Dies ermöglicht die Untersuchung

einer grossen Klasse von Prozessen. Jedoch sind viele Systeme noch immer bedeutend

grösser, und entfalten z.B. ihre katalytische Aktivität im Rahmen von Millisekunden bis

Stunden. Um z.B. Enzymreaktionen während einer ab initio moleculardynamischen Sim¬

ulation beobachten zu können, habe ich Methoden entwickelt, die die Systemgrösse und

den berechenbaren Zeitraum erweitern. Die Systemgrösse wird signifikant ausgedehnt,

indem das System gemischt quantenmechanisch-klassisch (QM/MM) beschrieben wird.

Dieser Ansatz ermöglicht die Konzentration der Rechenleistung auf den reaktiven Teil,

während die Umgebung, die zehntausende von Atomen enthalten kann, zweckmässig mit

empirisch parametrisierten, klassischen Kraftfeldern beschrieben wird. Hier erläutere ich

im Detail, wie die Wechselwirkungen zwischen den QM und den MM Systemen im hybri¬

den Car-Parinello/klassischen MD Code, der während meiner Dissertation entstanden ist,

behandelt werden. Insbesondere wird ein neuer Ansatz diskutiert, der die elektrostatis¬

chen Wechselwirkungen in einer effizienten und genauen Weise innerhalb eines Hamilto-

nianischen Rahmens behandelt. Weiterhin präsentiere ich eine der ersten Anwendungen

dieses QM/MM Schemas auf ein biologisches Problem, nämlich die Charakterisierung von

möglichen Kupferbindungsstellen im strukturierten Teil des Prionenproteins der Maus.

Um den kleinen Zeitrahmen, der typisch für ab initio MD Simulationen ist, zu vergrössern,
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habe ich ausserdem verschiedene verbesserte Absuchmethoden entwickelt und geprüft.

Diese Methoden sind effiziente Mittel, um thermodynamische Informationen wie relative

Stabilitäten und freie Energiebarrieren zu berechnen. Zwei Methoden, die Verzerrungspo¬

tentiale - ein wesentliches Element von verbesserten Absuchmethoden - benutzen, werden

vorgestellt. Ich zeige, wie das Wissen, das konzentriert in einem Kraftfeld vorliegt, benutzt

werden kann, um die Effizienz beim Abtasten einer ab initio Potentialfläche zu steigern, und

trotzdem die ab initio Präzision beizubehalten. In einem zweiten Ansatz wird die Infor¬

mation über die chemische Reaktivität, die der elektronischen Struktur innewohnt, direkt

genutzt, indem chemische Reaktionen durch die treibende Kraft der elektronischen Temper¬

atur spezifisch beschleunigt werden. Dies wird an verschiedenen Beispielen in der Gasphase

und in Lösung demonstriert. Weiterhin werden neue Abtastmethoden präsentiert, die

sich nicht wie die herkömmlichen auf Verzerrungspotentiale stützen, sondern stattdessen

eine flexiblere, nicht-Hamiltoniansche (nicht-Gleichgewichts-) Dynamik benutzen. Es wird

eine statistische Theorie vorgestellt und getestet, die auf einer einzigen Bewegungsbahn

aus nicht-Hamiltonianischer Dynamik basiert, und zum Abschätzen von Gleichgewicht¬

seigenschaften genutzt werden kann. Diese Theorie ermöglicht es, Verzerrungskräfte zu

benutzen, die nicht von einem (Verzerrungs-) Potential hergeleitet werden, um die Abtast¬

effizienz zu erhöhen. Zum Schluss wird eine neue Methode (CAFES) beschrieben, die die

effiziente Untersuchung der freien Energieoberfläche eines reaktiven Subsystems innerhalb

einer inerten Umgebung erlaubt. Diese Methode basiert auf einem kombiniert dynamis¬

chen, Car-Parrinello-ähnlichen Schema und nutzt die Temperatur als Mittel zur Erhöhung

der Absucheffizienz. Mit Hilfe der hier vorgestellten Methoden kann für repräsentative

Systeme die Abtasteffizienz um einen Faktor von bis zu 108 erhöht werden.

In dieser Dissertation habe ich eine QM/MM Car-Parrinello Methode und verbesserte Ab¬

suchtechniken beschrieben, die zu einem kraftvollen Werkzeug kombiniert werden können,

um reaktive Ereignisse in komplexen Systemen zu behandeln, die vorher ab initio MD

Simulationen unzugänglich waren. In einem Ausblick zeige ich mögliche zukünftige Er¬

weiterungen und neue Entwicklungen, die das Anwendungsgebiet noch vergrössern können.
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1.1 Ab initio molecular dynamics simulations

The term 'molecular dynamics' (MD) is generally used to describe the computer-aided solu¬

tion of the classical equations of motion for a collection of atoms with the aim of recreating

a physical system and its dynamics on a computer. The method is a powerful theoretical

approach to study the properties of atoms and molecules. A trajectory generated by a

MD simulation provides an atomistic picture (or movie) of all events that occur during the

simulation, and hence gives insight in dynamic and thermodynamic properties. Among the

properties that can be calculated are e.g. free energy differences, reaction rates, and vari¬

ous space and time correlation functions. The technique was first used in the 50-60s, [1,2]

and is now well established. [3,4] Molecular dynamics simulations are especially useful in

complex systems where an unguided exploration of phase space is important. The fact

that a broad range of events can in principle occur during a simulation makes MD a truly

predictive tool.

'Ab initio molecular dynamics' refers to MD simulations, where no empirical parameters

have been introduced to describe the interaction between the atoms. This implies that the

potential and forces are calculated solving the quantum mechanical Schrödinger equation

at every time step. This strategy, which is computationally more demanding than empirical

approaches, is particularly appropriate for complex and reactive systems, i.e. for systems

where the bonding pattern or the electronic structure changes during the evolution or where

interactions that are difficult to parametrize are present. This is for instance the case for

many of the systems that play a central role in enzymatic or organometallic catalysis. A

particularly successful ab initio MD scheme is the Car-Parrinello (CP) method [5, 6] in

which the potential and forces on the atoms are calculated using density functional theory

(DFT) [9-11] as the underlying quantum theory.

Currently, the CP method allows for the simulation of a few hundred atoms, for tens

of picoseconds with an accuracy in the milliHartree range, and the method has found
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widespread applications in material science, chemistry and biology. [7,8] In principle, the

method holds special potential for the study of e.g. enzymatic reactions. However, ab

initio MD simulations are seriously hampered by the large size of the systems (10,000s

of atoms are typical), and by the limited time scale that is accessible. In order to fully

exploit the potential of this approach, new methodologies have to be developed that allow

to bridge the length and time scale gaps.

1.2 Limitations of current MD simulations

The limitations of MD methods are to a large extend determined by the following three

factors [12] :

• The accuracy of the potential : How well does the potential describe the interactions

between the atoms? Are interactions such as bond breaking and polarisation well

described, or is a more precise description necessary?

• The size of the model : Are the system and the environment described sufficiently

well with the given number of particles? Has e.g. the effect of the protein, solvent,

or membrane environment to be taken into account explicitly?

• The length of the simulation : Will the chosen simulation method be able to evolve

the system to its equilibrium configuration and yield information about chemical

reactions or conformational changes that can happen on the millisecond to hour time

scale? Are the observed events statistically meaningful, and the averages converged?

In principle, these problems could easily be solved by using the most accurate quantum

chemical methods, for very large systems, and propagate them for very long times. How¬

ever, the computational cost that is associated with this solution is prohibitive, and typical

experimental length, time, and accuracy scales can usually not be reached using a brute
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accuracy

CPU

C

time

Figure 1.1: The figure shows schematically the three main directions (accuracy, size and

time) that can be followed to improve the predictive power of a MD simulation. The CPU

time increases along all the three axes, but a plane of constant CPU time is shown to

indicate that for a given amount, several different combinations are possible, and the user

has to choose the option that yields a simulation that is as realistic as possible. The points

A, B, and C indicate the extreme choices.

force simulation technique. 'Improving' the accuracy at one point will usually lead to a

compromise for one or both of the other issues. The current limits for these three factors

are approximatively given by :

• The accuracy of quantum chemical calculations, such as full configuration interaction

(CI) with large basis sets [13]. This method describes all molecular interactions

almost perfectly (microHartree errors), but is limited to very small systems such as

diatomics of the first row elements. This approach is represented by the point A in

Fig. 1.1

• Mesoscopic systems (106 atoms) are at the limit of what can be simulated using

an explicit atomistic simulation. [14] Moreover, such a study is only feasible with
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empirical models and for short (picoseconds) simulation times. This approach is

represented by the point B in Fig. 1.1

• Microsecond simulation times can exceptionally be reached for protein simulations

based on an atomistic model [15], but for most systems, this is still orders of mag¬

nitude lower than what would be needed for obtaining a statistically meaningful

sampling of folding and unfolding events. This approach is represented by the point

C in Fig. 1.1

The ab initio molecular dynamics method that takes a central place in this thesis is one of

the possible compromises between these three extremes. The accuracy of the underlying

quantum mechanical (QM) method, DFT, is such that basically all elements of the periodic

table can be treated on equal footing with relatively reliable energetics. Additionally,

DFT is a QM theory that undergoes steady improvements and is expected to become

more and more accurate as novel density functionals are being developed. [16-18] The

computational cost of a typical DFT calculation scales as 0(N3) (with N being the number

of atoms) which is relatively moderate in comparison to other quantum chemical approaches

(e.g CCSD(T) 0(N7) or MP2 0(N5)). The largest system sizes that can be treated

are therefore in the range of hundreds to a few thousands of atoms. [19] The maximum

simulation times that can be reached for small systems (e.g. 10 atoms) are of the order

of hundreds of picoseconds. [20] These length and time scales are still many orders of

magnitude different from what would be needed for a Car-Parrinello MD study in which all

enzymatic reaction steps can be observed spontaneously. The steady increase in computer

power due to improvements in chip design and parallelisation is certainly advancing the

field of molecular dynamics simulations, but a conservative estimate shows that for a

study of such problems twenty orders of magnitude are approximately needed. With the

current growth rate, such an increase in computer performance will only be reached in

ca. the year 2070. [21] Therefore, novel methods that gain several orders of magnitude by

using physically motivated or problem oriented extensions of the standard MD scheme are



24 1 Introduction

needed.

1.3 Assuming locality to extend length and time scales

The assumption that underlies most of the methods in this thesis is the locality of the

'interesting events'. For instance, enzymatic reactions often take place in a well defined

part of the entire system, i.e. the active site of a solvated protein, and involve only a

relatively small, localised subspace that is chemically active. This basic feature is exploited

in various ways in the different methods that are presented in this thesis and that are aimed

at an extension of the length and time scales of ab initio MD simulations.

1.3.1 Extending the length scales of ab initio MD simulations

The approach we have adopted to extend the system size is a mixed quantum mechani¬

cal/classical (QM/MM) one. In a QM/MM approach, the computationally elaborate QM

part is limited to the subsystem that is expected to perform the chemical reactions (e.g.

the active site of a protein), and an empirical force field is used to describe the environment

(e.g. the protein and the solvent). [22,23] Note that the environment remains in a state in

which the electronic structure undergoes only minor changes and can thus be parametrized

with simple analytic models that describe it with good accuracy. The method, which dates

back to the 70-80s [24,25], holds great promise since (for all practical purposes) the com¬

putational cost of simulating a localized chemical event in a large system is essentially

independent of the size of the surroundings. Here, a new QM/MM code based on the

Car-Parrinello algorithm and the GR0M0S96 [26] force field is described in detail in the

Chapters 2 and 3. The challenge in designing a hybrid Car-Parrinello MD code lies in

an accurate and consistent description of the interaction between the QM and the MM

regions. Very satisfying results for test systems have been obtained with the QM/MM
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approach that we have developed, and two of the applications are presented in this thesis.

The first deals with the problem of copper binding to the prion protein (Chapter 2) and

the second is a QM/MM study of the anchimeric assistance in 2-bromoethanol in aqueous

solution (Chapter 7).

1.3.2 Extending the time scales of ab initio MD simulations

Extending the time scale and increasing the sampling efficiency of molecular dynamics sim¬

ulations has been a major field of research for the past decades, and a selection of the many

methods that have been proposed can be found in the references [28-50]. Among these

methods are e.g. mass reweighting [32], multiple timestep algorithms [31], constrained

dynamics [29,30], umbrella sampling [28], path sampling [33,43], essential dynamics [40],

subspace integration [41], and bias potential techniques [34-39]. To enhance the sampling

of possible reactive events in a system by several orders of magnitude, we decided to refrain

from pure dynamic properties and to concentrate instead on an improved statistical de¬

scription of thermodynamic properties such as free energy differences, reaction paths and

rates within transition state theory approximation [27]. This allowed us to develop the new

methods presented in Chapters 4, 5, 6, and 7. They are all based on modifications of the

dynamics designed in such a way that activated events that are a major bottleneck for most

MD simulations occur more frequently. Two methods that are described in this thesis use

bias potentials that artificially, but in a well controlled way, modify the potential energy

surface. Methods of similar type found their application in classical MD simulations in

the 90s [34-36] and are based on principles from statistical mechanics that have been well

established. [27,28] Indeed, as described in Chapter 4, dynamics performed on a biased sur¬

face can be directly used to calculate thermodynamics properties of the unbiased ensemble.

In this way, rare events that are naturally e.g. in the millisecond range can be observed

and characterised during a few tens of picoseconds of dynamics. Especially the method in

Chapter 5 is aimed at selectively enhancing the sampling of reactive regions of phase space,
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making the method a good candidate for accelerating rare reactive events in complicated

systems. A different approach is followed in the Chapters 6 and 7 where the possibilities

of non-Hamiltonian (non-equilibrium) dynamics are explored. Non-Hamiltonian dynam¬

ics covers a broader class of dynamics than Hamiltonian dynamics, and this freedom can

be exploited to devise new algorithms that sample phase space efficiently. In Chapter 6,

I show how to connect averages over a single non-Hamiltonian trajectory to equilibrium

properties. In Chapter 7, the QM/MM concept of a reactive system in an inert environ¬

ment is exploited with a scheme that uses the local temperature of a decoupled subsystem

to accelerate the reactive dynamics. These last two schemes have a single parameter that

can be tuned in order to achieve an accurate description of the equilibrium properties. All

the sampling schemes that are presented in this thesis have shown very impressive gains

in sampling efficiency (e.g. by a factor of 108) for chemically and biologically relevant

systems.
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Abstract

Ab initio molecular dynamics (Car-Parrinello) simulations based on density functional the¬

ory have become a valuable tool in the investigation of physical, chemical and biological

systems. Here, we describe an extension of the Car-Parrinello method into a mixed quan¬

tum mechanical/molecular mechanical (QM/MM) scheme in which (i) the electrostatic

coupling with the classical environment is based on a fully Hamiltonian approach; (ii)

the occurrence of electron-spill out from the QM system onto neighboring classical point

charges is impeded by the use of a suitable modification of the Coulomb interactions at

short range; (iii) boundary atoms involved in chemical bonds between QM and MM part

of the system are treated with empirical monovalent pseudopotentials; and (iv) the exclu¬

sion rules of standard (bio)molecular force fields are incorporated in a consistent manner.

Our approach enables efficient and robust hybrid Car-Parrinello simulations of extended

systems in which the chemically relevant part is treated at an ab initio quantum mechan¬

ical level while the effects of the surroundings are explicitly taken into account through

the embedding in the classical environment. The method is presented in a general way,

aimed at the application-oriented reader, and is illustrated with a QM/MM investigation

of copper binding to the structured part of the mouse prion protein.
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2.1 Introduction

The study of chemical processes that take place in large biological systems is a challenging

task for which current simulation methodology clearly reaches its limits. Indeed, in order to

provide an adequate description of the forming and breaking of chemical bonds, these sys¬

tems have to be treated within the framework of an electronic structure method. Moreover,

the fact that dynamical finite temperature effects can be crucial for enzymatic function

necessitates an approach that can take the motion of protein and solvent explicitly into

account and allows for a direct determination of the reaction free energy. The long charac¬

teristic time scales that are involved demand an efficient calculation of both energies and

forces, and the ability to capture at least several tens of picoseconds of molecular dynamics.

In fact, for many systems this limited time scale is by far not sufficient, and appropriately

designed enhanced sampling techniques have to be applied for an adequate treatment [1].

The first-principles molecular dynamics method introduced by Car and Parrinello [2] is an

efficient way to combine an electronic structure method with a molecular dynamics scheme.

This combined approach enables the incorporation of finite temperature effects and the di¬

rect simulation of chemical events. It has found widespread use over the last decade and

has proven to be a powerful tool in the investigation of complex physical, chemical and

biological problems. Nowadays, using massively parallel computer architectures, systems

of a few hundred to thousand atoms can be simulated with the Car-Parrinello method for

typical time periods of 1-10 picoseconds. Even though the system sizes that can currently

be treated are rather impressive, they are still not sufficient for a full quantum mechanical

treatment of most biological systems that typically contain few 10,000-100,000 particles.

In this article, we present an extension of the Car-Parrinello method into a mixed quan¬

tum/classical (QM/MM) scheme. In such a hierarchical hybrid approach, the part of the

system that is directly involved in the major rearrangements of the electronic structure is

treated at the quantum mechanical level whereas the effects of the environment are taken

into account within a classical force field description. In this way, large systems can be
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Figure 2.1: Approximate number of publications that use or introduce QM/MM methods

for the years 1983-2000 according to a Web of Science search.

studied in their full complexity and the computational effort can be concentrated where it

is needed. The computer time gained by treating only a smaller subsystem at the quan¬

tum mechanical level can in turn be invested for an improved sampling of the entire system

over an extended time scale. QM/MM approaches are thus intuitively appealing, but their

accuracy and reliability depends crucially on a rigorous and consistent treatment of the

interface between QM and MM parts. Several pitfalls exist in interfacing two methods at

such disparate levels as e.g. a first-principles quantum-mechanical approach and a classical

force field. We will discuss in detail how our QM/MM method is addressing the various

delicate issues inherent to the QM/MM technique in order to generate a reliable and robust

hybrid Car-Parrinello scheme that can be applied to a large range of problems in biology

and material science.

The original idea of mixing quantum mechanical and classical molecular mechanics ap¬

proaches dates back to the seventies of last century. [3-5] This appealing idea has found

intense renewed interest during the last decade (see Fig. 2.1); and there is currently a

highly active research going on to develop novel methods and computer codes that com-



2.2 The QM/MM potential energy and the equations of motion 35

bine various quantum chemical methods and classical force fields using different coupling

schemes. [6] [7] The central quantum chemical core of the approach we present here is

the Car-Parrinello (CP) method [2] [8] in its standard implementation based on Density

Functional Theory (DFT) [9] [10] [11], pseudopotentials, periodic boundary conditions and

a basis set of plane waves. We are convinced that DFT, using the current exchange and

correlation functionals, provides an excellent compromise between accuracy and computa¬

tional cost. Furthermore, due to the inclusion of approximate electron correlation effects,

DFT also offers a fairly reliable treatment of transition states and is one of the few meth¬

ods capable of providing an adequate picture of transition metal centers. Additionally, the

combination of this theory with the computational efficiency and robustness of the Car-

Parrinello algorithm for molecular dynamics simulations constitutes an efficient tool for

the study of chemical reactions. DFT and the Car-Parrinello method are now well estab¬

lished, [12] and DFT or CP based QM/MM codes have been implemented. [13] [14] [15] [16]

In choosing the combination of a hybrid Car-Parrinello/classical code, we expect to benefit

both from the accuracy of the underlying DFT, and the efficiency of the CP method. To

this end, the physical soundness of the interaction terms of the QM/MM interface and

their computational efficiency have to be considered carefully. In particular, as one of our

main objectives is to perform QM/MM dynamics, our approach is fully consistent and en¬

ergy conserving dynamics can be performed. In this article, we give a general but detailed

introduction to our QM/MM method. Its power and performance will be illustrated for a

biological application.

2.2 The QM/MM potential energy and the equations

of motion

In this Section, we describe in detail the potential energy function that is used in our hybrid

Car-Parrinello/classical molecular dynamics simulations, and address various general issues
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that are of great practical importance for the success of a QM/MM scheme.

2.2.1 The partitioning of the system

A central decision in the modelling of any system within a QM/MM approach is the

partitioning into QM subsystem and MM environment. A larger QM model increases the

accuracy and predictive power of the simulation, however, the computational cost of a

QM/MM simulation is almost completely determined by the size of the QM subsystem

which, for a typical plane wave based DFT implementation, scales in general with roughly

the third power of the system size. An appropriate partitioning strongly depends on

the system under study, and on the quality of both the MM model and the quantum

mechanical interaction potential. With increasing accuracy of either of the two facets,

more challenging problems can be studied with eventually smaller sizes of the QM system.

An adequate QM method will be needed to describe all the chemical and physical aspects of

molecular interactions that are not taken into account by the MM model. Given the current

limitations of classical force fields in describing reactive events such as bond breaking,

charge transfer or polarisation, a minimal QM model should at least contain the parts

of the system that undergo significant changes in their electronic structure. One of the

simplest examples for a possible choice of QM/MM partitioning is a typical solute/solvent

system in which the former is treated quantum mechanically and the latter classical. In

this specific case, the interactions between the two subsystems do not involve any chemical

bonds and can be taken into account as described in Section 2.2.4. The simulation of

e.g. enzymatic reactions on the other hand, involves almost invariably a quantum system

that is a fraction of a larger, covalently bonded molecule. We will describe in detail in

Section 2.2.5 how a covalent bond can be 'cut' and 'terminated', so that the influence of

the QM/MM boundary can be kept minimal. As an example of such a more intricate

subdivision, we show in Fig. 2.2 a QM/MM model that has been designed with the aim

of describing transition metal binding in proteins. Due to their highly complex electronic
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Figure 2.2: Example of a typical QM/MM model. The gray part is the MM system that is

treated with a force field, whereas the subsystem that is represented with the black lines is

the QM system. In this system, the QM method is mainly used to accurately describe the

Cu-0 bonding. PP represents a pseudopotential that is needed to describe the boundary

atoms as discussed in Section 2.2.5.
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properties and their directional nature of bonding, transition metal ions are difficult to

parameterize in terms of simple analytic force field models, and hence the metal ion and

its direct ligands are more conveniently described at the quantum mechanical (DFT) level.

The surrounding protein structure can impose mechanical constraints on the metal binding

site or generate an external electrostatic field that can influence the binding properties.

Both of these effects can however be modelled accurately with a classical force field.

2.2.2 The MM potential

The MM system is in our case described with a simple pairwise-additive potential as used

in most biomolecular force fields. A number of such force fields are available that have been

carefully parametrized, and their accuracy for standard systems can be remarkable. [17]

The MM part of our code is based on the GROMOS96 software [18], but can also run with

AMBER 1995 force fields parameters. [19]

EMM= E Kr(r-req)2+ E Ke(9 - 9eq)2 + E ^[1+ cos(n«^ - 7)]
bonds angles dihedrals

+ E
'<>

-ij E>ij ÇiQj

I
ij ' ij cl

i]

(2.1)

.jgexcl

A typical form for these force fields is shown in Eq. 2.1 and contains short-range bonded

interaction terms for bond stretching, bond angle bending, and torsional angle twisting,

involving respectively the distance between two atoms, the angle between three atoms

and the dihedral angle between four atoms. Additionally, all particles in the force field are

assigned a point charge and two van der Waals parameters (e.g. a and e of a 12-6 Lennard-

Jones potential) in order to take into account the non-bonded electrostatic (Coulomb) and

steric interactions (van der Waals). Van der Waals and Coulomb interactions between

atoms that are involved in direct (1-2) or indirect (1-3, 1-4) bonded interactions might be

scaled or excluded from the potential. These exclusions allow in turn for a more accurate

parametrisation of the bonded interactions. The functional form and the parameters of
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different force fields usually differ only slightly for the bonded interactions, the non-bonded

interaction parameters (the assigned point charges and van der Waals parameters) on the

other hand can vary considerably.

The GROMOS96 force field in particular, uses an united atom and a charge group concept.

In an united atom model, apolar -CHx groups are represented as single interaction sites

with enlarged van der Waals radii. In this way, non-polar hydrogens can be removed

from the model resulting in a reduction of the computational cost. Charge groups are

introduced by choosing a point charge assignment that preserves integer charges for local

groups (e.g. —CH3 or —CO—). This allows the use of a molecular (charge group) cutoff

for the calculation of the long-range electrostatic interactions and facilitates, as we will

show later on, the QM/MM partitioning of the system.

In spite of the fact that the specific choice of parameters can vary distinctly for different

force fields, the overall description of e.g. the electrostatic field is often surprisingly similar.

For instance, for the prototype system of a Gly-Ala dipeptide in aqueous solution, the

classical electrostatic potential generated by the all-atom force field of AMBER (1995)

and the united atom force field with charge groups from GROMOS96 is comparable in

accuracy, as measured by the RMSD from the quantum electrostatic potential (9 and 13

percent respectively). [20]

Another important issue is the way the long-range interactions are calculated in different

classical MD programs. Various schemes exist e.g. atom based/charge group based cutoffs

with and without reaction field, Ewald summation and its particle mesh implementations:

PME, SPME and P3M. In our QM/MM code, both cutoff based methods with reaction

field [18] and a P3M implementation [21] are available.

The most obvious limitation of force fields that are of the common form given in Eq. 2.1

is that they are not able to describe reactive events, since bonds and angles have fixed

parameters that cannot adapt to different electronic situations. Additionally, most of the
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Standard force fields do not contain terms that allow for an explicit polarisation of the

MM system. If these aspects are important for the study of certain chemical reactions,

a typical QM model would include at least the atoms and functional groups that are

covalently bonded to the reactive species, and additionally, one should consider to treat

groups that might be strongly polarised (e.g. hydrogen bonding to a charged QM group)

at the quantum level.

We would like to point out that it is often necessary to start a QM/MM simulation with an

initial classical equilibration run for several hundred picoseconds to nanoseconds. It can be

convenient to keep the QM subsystem, for which there might be no good parametrisation,

fixed during this initial equilibration phase.

2.2.3 The QM potential

The quantum system can be described at various levels of theory, and both semi-empirical

[3,5,22] (e.g. MNDO, AMI, PM3), and ab initio [4,13-16,23] (e.g. HF, DFT) methods

have been incoorporated in QM/MM codes. A discussion of advantages and disadvantages

of different QM methods is clearly beyond the scope of this review. Our implementation

is based on DFT, [9] [10] [11] since it represents a good compromise between the accuracy

needed to describe the structure and energetics of complicated systems such as metallo-

proteins, and a modest scaling of its cost with the size of the system. The total QM energy

for a set of atomic coordinates {r7} is given by the minimum value, with respect to the

orthonormal Kohn-Sham Orbitals {ipi}, of the density functional

EQM[{rj}, {ipi}] = Ts[{iPi}} + J drVext(r)n(r)

+ \ f drVH(r)n(r) + Exc[n] + E —• (2-2)
l<3 %J
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The electronic charge density (n(r)) is given by n(r) = Y,t lV^(r)|2> and the various terms

are defined as

W*}] = E<^|-^A|^> (2.3)

j
\r r3\

VH{r)=fdr'^\ (2.5)
J \r — r \

and represent the kinetic energy of the non-interacting reference system, the external po¬

tential due to the QM nuclei, and the Hartree potential respectively. The term ^cfn]

in Eq. 2.2 represents the exchange and correlation energy of the electronic system. The

success of DFT is based on the fact that good approximations exist for this term even

though the exact form of Exc[n] is unknown. In our calculations, the generalised gradient

corrected functionals BLYP and BP are used almost exclusively, since they have proven to

be reliable for hydrogen bonding and metallic centers, respectively. [24] [25] [26] Our DFT

calculations are based on pseudopotentials and the Kohn-Sham orbitals are expanded in

a basis set of plane waves. Plane waves are rather different from e.g. Gaussian orbitals

or Slater orbitals, since they are not localised, and hence have different advantages and

disadvantages. Among the advantages of plane waves are that they do not suffer from ba¬

sis set superposition errors; forces can be calculated directly from the Hellman-Feynmann

theorem and do not involve Pulay terms; and finally, given their non-localised or diffuse

character, allow for any type of polarisation. Additionally, all expensive computational

kernels can be coded efficiently with library routines if one exploits the real space and

Fourier space representations of the wave functions, and hence, can run with a very high

FLOPS (floating point operations per second) rate. Plane wave codes are also easily made

parallel if a high communication bandwidth is available for the parallel Fast Fourier Trans¬

form (FFT). [8] However, the number of basis functions that is needed can be very large,

and hence the computations can be memory-intensive. In order to drastically reduce the

number of plane waves that is needed to represent the wave functions, the bare Coulomb

potentials of the nuclei in Vext are replaced by pseudopotentials [27] in order to elimi-
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nate the chemically inert and localised core electrons, leading to pseudo wave functions

that are identical to the exact ones outside of the core radius of the pseudopotential, and

smooth inside. These Kohn-Sham pseudo wave functions can thus be accurately expanded

in plane waves with low kinetic energy cutoffs depending on the type of species (typically

one uses 70 Ry for a system containing oxygen, carbon, nitrogen and hydrogen). The use

of plane waves implies that the shape of the quantum cell is such that it can be repeated

periodically. In our implementation, a simple cubic or orthorombic simulation cell can be

employed for the quantum system. We remark that this cell is proportional to the size

of the quantum system, and is therefore not related to the size of the full (QM + MM)

system. The effect of the periodicity can be removed by decoupling the periodic images

using either the scheme by Hockney [28] or Martyna et al. [29] to solve the Poisson equation

for the Hartree potential. The use of Hockney's method requires that the density is zero

at the edges of the box, and hence a QM system that is a few Angstrom away from the

edges, whereas Martyna's method requires a box that is double the size of the QM system.

For small systems, the method by Martyna et al. is faster, however, in the limit of large

systems Hockney's approach becomes more efficient. [8]

2.2.4 Non-bonded QM/MM interactions

So far we have described the form of the separate MM and QM potentials. Here, we present

the detailed interaction between the QM and the MM system, focusing on the non-bonded

interaction terms. These non-bonded interactions are of primary importance since they can

impose additional steric constraints on the QM subsystems, and can significantly stabilise

certain states by electrostatic interactions. Furthermore, even the long-range interactions

can be directional. We first discuss a simple, computationally inexpensive scheme usually

described as 'mechanical coupling', and point out some limitations before we discuss more

elaborate electrostatic coupling schemes as implemented in our code.

In the mechanincal coupling model, the interaction between QM and MM systems is treated
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at the classical level. In the spirit of a force field, every quantum atom is assigned a point

charge, and van der Waals parameters. Energies and forces due to this interaction are

calculated in a straightforward way based on the Hamiltonian:
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We remark that only interactions between the MM and QM system are added, since the

internal QM interactions are already treated at the QM level. Effectively, compared to

a classical description of the full system, the QM simulation replaces mainly the bonded

interaction terms of the force field whereas the electrostatic and van der Waals interactions

are still based on an empirical force field description. Van der Waals parameters are to some

extend transferable and charges can be assigned to reasonable values for a fixed geometry.

There are however serious limitations to this model. They are related to the fact that

there is no direct interaction between the electrons of the QM system and the electrostatic

field of the MM system. This means that a polar MM environment will not polarise the

electron density. Certain systems might be very sensitive to this, and have electrons that

are localised on different functional groups depending on the solvent-electron interaction,

or it might be the effect of polarisation that turns a specific enzyme into an efficient

catalyst. Additionally, a QM/MM simulation will often be used to describe reactive events

corresponding to changes in the electron density distribution, and hence assigning a fixed

charge to an atom might be a crude approximation that forces the system to remain in the

state that resembles most closely the one of the assigned parameters.

In the following, we discuss an approach that overcomes, at least partially, these limita¬

tions. Conceptually, instead of treating the QM - MM interaction at a classical level, this

interaction will be treated at the QM level, i.e. the MM atoms will explicitly provide an

external potential for the QM electrons and nuclei. Ideally, the full interaction between

these systems would be described by this potential, i.e. each of the MM atoms would be

assigned a pseudopotential that fully describes its interaction with the QM atoms. Our
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method is a first step in this direction, explicitly treating the electrostatic interaction at a

QM level, while the van der Waals interactions are treated at the classical level. [30] At the

lowest level, present in many QM/MM approaches, the electrostatic interaction potential

is directly written as the Coulomb potential due to the point charge of the classical atoms.

This will directly polarise the electron density, and correctly take into account that the

charges on the QM atoms can change during the dynamics, either by polarisation or due to

chemical rearrangement. Hence, the main disadvantages of the mechanical coupling model

are overcome, and charges for the QM subsystem do not have to be parametrized anymore.

However, this method suffers from the well known problem that the electron density of the

QM system is typically overpolarised, and might even localise on the MM atoms (i.e. the

so called 'spill-out problem'). This problem becomes apparent when a plane wave basis

set is employed, since a plane wave basis set allows the density to localise everywhere in

space, but might become relevant also when a high quality, flexible, localised basis set is

used. The spill-out problem can be attributed to the fact that a bare Coulomb potential

is not a good pseudopotential to represent the classical atom since it does not take into

account that the partial charge of the classical atom is effectively the result of an electron

density distribution. In our approach, as described in Ref. [30], this bare Coulomb poten¬

tial is modified at short range so that the unphysical singularity is replaced with a smooth

potential. The energy can be written as :

Enon-bonded-Coulomb = E Qj / drpQM{r)Vj{r - Vj) (2.8)

with Vj(r) = lz£ (2.9)
i
cj

'

Here pQM(r) is the full QM density, including core density and nucleus, whereas Vj(r) is a

potential that depends on the MM atom j through rCj. The latter is a parameter that we

have chosen to be the covalent radius of the MM atom. This effectively solves the spill-out

and overpolarisation problem. Satisfying results for the radial distribution function of a

water solute in a MM solvent have been obtained, without the need to change the classical

description such as e.g. the van der Waals parameters. It should be noted that the QM
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density can significantly extend into a polar environment, and hence the QM box should

be sufficiently large, e.g. strong hydrogen bond acceptors should lie well within the QM

box.

The cost of describing the electrostatic interactions with Eq. 2.8 is not small in a plane wave

code, since the integral has to be evaluated over a large real space grid, and additionally,

the sum includes all classical atoms. Therefore, a more cost effective solution has to be

devised. In our approach, the electrostatic interaction is not truncated and neglected after

a certain distance, but is taken into account by a long range electrostatic scheme. This

might be of importance in enzymes where e.g. the dipole moment of a long a-helix leads

to a sizeable long range electrostatic interaction. This long range electrostatic scheme is

based on a multipole expansion of the QM density and effectively couples the monopole

(C), dipole (Da) and quadrupole (Qa@) of the quantum system with the far MM atoms

(LR) by the term

KZ'-bZTd-couiomb = c E qi + E Da E qirf +1 e Qaß E %^f (2-10)
jELR T3 a 3eLR T3 Z

aß ]ELR T3

where rf = r° - fa, and f is the geometric centre of the QM atoms. Enh<^^^_Coulomb is

still given by Eq. 2.8 but the sum runs only over the close-by MM atoms (i.e. not in the

LR list). As shown in ref. [30] the polarisation of the QM density due to remote charges is

efficiently taken into account if the atoms that are within 8-12 a.u. of the quantum system

are described explicitly by Eq. 2.8 and the ones that are further away by Eq. 2.10. We note

that the charge group concept in GROMOS96 increases the efficiency of the computation

of Eq. 2.8 significantly for hydrophobic active sites, since e.g. united atoms have zero

charge and do not appear explicitly in the sum.

One limitation of our method is that it still needs a fixed van der Waals parameter for

the QM-MM interactions. QM atoms that undergo a significant change in van der Waals

radius cannot be described with a time-independent, classical van der Waals radius. In

principle, a pseudopotential that takes into account the van der Waals repulsion could

be parametrized for all the MM atom types, as was done in ref. [31] for water. If the
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pseudopotential is local, and has a simple analytical form, this could be included in the

code without a significant increase of computational cost.

2.2.5 The bonded QM-MM interactions

In this Section, we describe the treatment of bonded QM-MM interactions, i.e. how a

chemical bond through the QM-MM interface is treated in our approach. This is an

important question, and several approaches exist in the literature. A good strategy is

to design the cut in such a way that the MM and QM system have, as computed based

on the force field charges, an integer charge, since otherwise artifacts in the electrostatic

interactions will be introduced. When using the AMBER force field a careful redestribution

of the charge might be necessary, since, for example, amino acid side chains do not have

an integer charge. Within the charge group concept used in GROMOS96, consistent cuts

can be defined more easily since charge neutrality is guaranteed as long as complete charge

groups are included in the QM system. We will address how the valence of the quantum

system can be saturated, and how the local geometry across the QM-MM interface is kept.

Saturating the valence

An unsaturated bond of the QM system is a strong perturbation of the electronic structure.

Therefore the valence has to be saturated in such a way as to make this perturbation as

small as possible. The simplest solution is to cap this bond with an atom or a group that

makes a single covalent bond, e.g. a hydrogen, a fluorine or a methyl group. If a cut

through a single, non-polar bond that is far away from the reactive center can be made

the effect of those different substituents will be small and the effect of the capping can be

understood. If the cut is close to the reactive center, through a conjugated system or a

highly polar bond, the effect will be larger. In that case, a careful consideration of the

minimum number of unpertubed bonds between the reactive center and the cut will be
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necessary.

Although capping with an atom is often performed, the method becomes less attractive in

a full QM/MM scheme. Indeed, the capping atom (also called link atom) is an additional

atom that is not present in the real system, and that is located in an unphysical location,

e.g. a hydrogen between a Ca and Cß. The correct treatment of this additional atom is

not problematic in a mechanical coupling scheme, but might be so in a full electrostatic

coupling approach. In our method, one of the boundary atoms of the system is assigned

a monovalent pseudopotential. [32-34] The boundary atom is thus a single atom that

replaces one of the physical atoms in the system. The pseudopotential is empirical and

has only one valence electron. The parametrisation is such that it reproduces binding

properties typically found in a generic C-C apolar bond. In the example given above,

and shown in Fig 2.2, the Ca is a boundary atom, whereas the Cß is a physical carbon

atom. We remark that from the partitioning point of view, this boundary atom should be

considered a quantum atom, and hence is described by Eq. 2.2. The advantages of this

approach are that no additional degrees of freedom are introduced and that more accurate

pseudopotentials can be parametrized for specific situations. E.g. a boundary Ca can

be parametrized to have electronic properties that resemble more those of the backbone

than those of a methyl group. It can be checked that the HOMO, LUMO, electronic gap,

proton affinities of the QM/MM system reproduce as good as possible these properties of

a reference full QM system. We remark that we have decided to leave a classical van der

Waals interaction of the boundary atom with the quantum system (respecting the classical

exclusion rules), since this boundary atom is typically an united atom (i.e. representing

implicitly the hydrogens) in the GROMOS96 force field, and has an effective size that

cannot be accounted for otherwise within a simple pseudopotential scheme.
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Keeping the local geometry

In the boundary pseudopotential approach, the binding geometry over the interface can

be kept by the standard bonded terms of the force field. These terms, i.e. bonds, angles,

dihedrals, and exclusions are introduced, as soon as one of the atoms involved in these

terms belongs to the classical partition. Note that these classical terms have not been

parametrized to describe chemical reactions and might have limited accuracy in cases

where this boundary is strongly distorted. Rearrangements of the QM system should

not be hindered by these boundary terms that might, as in the case of dihedral (1-4)

interactions, extend quite far into the quantum region.

Whereas bond, angle and dihedral terms are generally added in the same way also in other

approaches, exclusions have received little attention in the literature. We remark that van

der Waals exclusions are easy to handle, since this interaction is treated at the classical

level. Electrostatic exclusions are only added in a straigtforward way in the mechanical

coupling case, i.e. when the electrostatic interactions are treated at the classical level. For

the electrostatic coupling case, the effect of the nearby charges is significantly more difficult

to exclude, since the classical exclusions, that are two-body terms, cannot be univoquely

defined in the QM case since the interaction of the classical point charge is with the full

QM density. We remark that setting the classical charges to zero is not a good solution,

since this is equivalent to neglecting their interaction with the full (quantum) system [32],

and this might be to crude an approximation. In our approach, the exclusions can be

introduced by having an additional term

4cF-E^ (2-11)
excl

The charge qESP is determined by a variational RESP fit at every time step [20], and since

it depends explicitly on the density, the forces due to this term also act on the density in

the form of a compensating field. [35] In the total energy, these boundary bonds, angles,

dihedrals and van der Waals exclusions are taken into account by specifying them in Eq.

2.1, the electrostatic exclusion is given by Eq. 2.11.
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2.2.6 Dynamics using the Car-Parrinello method

In order to calculate the dynamics of the system the Car-Parrinello method [2] is employed.

The Car-Parrinello method has been reviewed extensively [8] [12], and here we present only

the essence of the method, indicating the small changes that are necessary for performing

QM/MM dynamics. The efficiency and robustness of the CP method is related to the

fact that electronic structure calculation is done using a dynamical scheme where both

the electronic degrees of freedom (the wave function coefficients) and the ionic degrees of

freedom (the classical and the quantum atoms) are propagated simultaneously, in such a

way that the density remains close to the minimum of the density functional and that

the dynamics of the ions is an accurate approximation to the exact Born-Oppenheimer

dynamics. This combined evolution is based on the following Lagrangian

1 1 r

£>cp[{ri}, {^,}] = E 2m%i'% + Y^2^ J dr^tVt - emm - EqM ~

rp
rpshort—range rplong—range

^non-bonded-vdw
~

^non-bonded-Coulomb
~

^non-bonded-Coulomb

Eezd + Kj(/ drtfiftj - <y (2.12)

As can be noted, this Lagrangian does not only contain the ionic coordinates, but also the

wave functions are propagated in a classical, fictitious dynamics. The last term in the equa¬

tion contains the Lagrangian multipliers A.l} that are introduced to fulfil the orthonormality

constraint of the Kohn-Sham orbitals. The resulting dynamics has the property that, if

one starts from the optimised wave functions and if the dynamics of the wave functions is

adiabatically separated from the ionic motion, the ions will perform an approximate but

accurate microcanonical dynamics on the Born-Oppenheimer surface since the wave func¬

tions remain at all times close to the minimum of Eqm- The adiabatic separation between

the electronic degrees of freedom and the ionic degrees of freedom is guaranteed if there is

a large gap between the highest ionic frequency (e.g. an O-H bond stretch), and the lowest

electronic frequency (oc J-32*-). This can be obtained by making the fictituous electronic

mass n small. The high frequency motion of the wave functions requires a smaller time

step than is typical for classical MD. Typically, ß = 200 — 1200 a.u., and At = 4 — 8 a.u.
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(0.1 - 0.2 fs). The dynamics based on Eq. 2.12 samples the microcanonical ensemble if the

wave function degrees of freedom are adiabatically separated, and if the ionic system is

ergodic. Additionally, the canonical ensemble can be sampled employing the Nosé-Hoover

method [36-38]. It is also possible to efficiently obtain free energy differences by performing

various types of constrained molecular dynamics. [39] [40]

2.3 Implementation

Our implementation of the QM/MM dynamics is based on the programs CPMD [41] and

GROMOS96 [18]. Both codes are highly complex constructs, with a long development

history, written currently in FORTRAN 77. The complexity of a classical code lies, to

a large extent, in features that are not obvious from the inspection of Eq. 2.1, such as

the construction and parsing of the topology file (i.e. the description of all the terms in

Eq. 2.1), the construction of a neighboring list (i.e. to calculate the short range van der

Waals interactions), and the use of P3M for the long range electrostatics. The complexity

of the quantum code is not only related to the complexity of Eq. 2.2, but also to the

large amount of data (i.e. the plane wave expansion of the wave functions), and the

parallelisation. In our implementation we decided to use CPMD as the central driver for

the molecular dynamics, and call GROMOS96 routines to calculate the classical energies

and forces, and to perform the initialisation of the classical part of the code, i.e. parse the

topology. There are several reasons for this: a) CPMD is able to calculate ionic dynamics

and needs relatively few modifications to accomodate the classical atoms although a few

changes are needed since the number of atoms (typically 0(10,000)) is large, b) The wave

function dynamics is implemented in CPMD, and must be done in parallel given the large

number of degrees of freedom (typically 0(1,000,000)). c) Apart from the calculation of

forces and energies, system properties such as NMR spectra, Wannier orbitals, and atomic

charges are directly accessible through CPMD. d) The interface is integrated in CPMD, and

hence evolves with the code. We have decided to have a tightly coupled interface between
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CPMD and GROMOS96, i.e. there is a single executable, for reasons of efficiency and ease

of use. In particular, the communication is through function calls or by directly using the

GROMOS96 data structures, avoiding disk I/O. The implementation is thus more efficient,

but more programming effort is required upon change of the classical code. An advantage

from the user point of view is that changes to the quantum model can be made rapidly,

since the code will, at runtime, automatically perform the changes needed to the classical

topology, based on a list of quantum atoms that are assigned a pseudopotential. Given

(equilibrated) initial coordinates and the corresponding topology, a QM/MM simulation

can be set up within minutes.

The calculations for the QM forces and the QM/MM interaction are performed in parallel,

whereas the classical force calculation is done serially. The user can decide to have the

classical calculation performed by a separate node, or on a node that also does part of the

QM force calculation. Depending on the size of the QM system, and on the number of

nodes that is available, one of the strategies may be more efficient from a timing or memory

point of view. Since the cost of even a small QM system dominates by a sufficient factor

(e.g 100) the total cost of the calculation, it is in practise sufficient not to parallellise

the MM calculation. The electrostatic QM/MM interaction as given by Eq. 2.8 is the

computationally most expensive term of the interaction, but can be well parallellised since

the field has to be calculated on the real space grid, that can be distributed.

2.4 Copper binding to the structured part of the mouse

prion protein

We illustrate the performance of our QM/MM method with an application to a represen¬

tative biological problem, namely copper binding in the structured part of the mouse prion

protein.
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2.4.1 Prion proteins

Prions are infectious agents that consist of a single protein, and are thus devoid of any

nucleic acid information. [42] [43] They play a central role in a group of invariably fatal,

neurodegenerative diseases affecting animals such as sheep (scrapie) or cattle (BSE), and

humans (e.g. variants of the Creutzfeldt-Jacob disease). It is now widely established that

these diseases are caused by an abnormal isoform PrPSc of the normal cellular prion protein

PrPc. The formation of PrPSc leads to an aggregation into insoluble amyloid fibrils in the

brain, which accompagnies neuronal damage and eventual loss of neuronal function. [44] [45]

The detailed mechanisms involved in prion diseases are still poorly understood, but a first

fundamental basis for an understanding at the molecular level has been established in 1996

when the first NMR structure of the mouse prion protein was determined. [46] Comparable

structural data for the abnormal isoform has not yet been measured, but this form is

characterized by a high ß-sheet content. [47] The biological function of the normal cellular

form, present in animals and humans, is largely unknown. However, recent experiments,

both in vivo and in vitro, indicate that prions are able to bind Cu2+, and that they have an

antioxidant activity. [48] [49] It has been suggested that Cu2+ could bind in the histidine-

rich unstructered part and that copper binding could influence the stability of the prion

protein. [50] [51] Interestingly, recent pulse EPR and ENDOR experiments suggest [52] [53]

that copper binds with higher affinity in the structured part (amino acids residues 125-

228). Three copper binding sites have been found in this part, and they change relative

population as a function of pH. Although it is not known which residues bind to the

copper ion for any of the binding sites, the EPR data shows that there is dominant oxygen

ligation for the low pH (pH < 7) complex, that the intermediate pH (pH 3-8) complex,

for which the most detailed experimental data is available, involves binding of one of the

three histidines present in the structured part, and that the high pH (pH 7-8) complex has

the highest nitrogen content. Given the importance of the prion protein, the interest in its

stability and its biological function, the availability of an accurate structure, and detailed

experimental data on copper binding, we decided to model potential copper binding sites
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in the structured part of the prion protein. This work, in collaboration with the authors

of ref. [52,53], is still in progress, and the results presented here are an illustration of the

performance of the hybrid Car-Parrinello / Classical code that we have developed.

2.4.2 The need for QM/MM MD simulations

Locating copper ions in the prion protein structure is a particularly challenging problem.

Not only because the system is complex, and requires advanced modeling techniques, but

more importantly it is a priori not known what ligands are involved in binding, i.e. what

the active site is. Both solvent and protein need to be modeled in order to take into account

e.g. the nonhomogenous electrostatic field of the protein and the fact that the solvent can

even act as a potential ligand of the copper ion. The large system size of more than 10,000

atoms, implies that part of the system has to be described classically. On the other hand,

a high level of quantum theory is mandatory to describe the binding of the copper ion

to the protein. Indeed, we can't make an a priori assumption about the possible ligands

or their binding geometry, and thus we can't easily parametrize an empirical method for

this purpose. The use of DFT has the advantage that a much larger part of the potential

energy surface can be exploited with good accuracy, since the system can form bonds and

change, in a reactive way, its conformation around the binding site. It turns out to be

crucial to perform molecular dynamics simulations in the course of this local relaxation.

Indeed, local geometry optimisations did not relax the system sufficiently, and chemically

much more sound configurations were only obtained after a few picoseconds of molecular

dynamics simulations. However, with simulation times of a few ps, the configurational

space can be exploited only partially. In particular, it is not clear if the relaxation times of

the coordination sphere are sufficiently short so that the local geometry can be considered

as converged. The final states represent chemically reasonable and stable geometries, and

hence we believe that the QM/MM method employed here, combined with a short-time

dynamical relaxation, is indeed able to find relevant minima on the free energy surface.
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Figure 2.3: Relative abundance of the amino acids bound to copper in proteins (dark

shading for each amino acid), compared with their natural abundance (gray shaing). There

is a clear preference for Histidine, Cysteine, and Methionine

2.4.3 A statistical approach to copper binding in proteins

A global search for binding sites by molecular dynamics simulations cannot be performed

with current supercomputing power. An additional tool needs to be employed in order

to perform a global and unbiased search for reasonable binding sites. We have combined

the experimental data in Ref. [52] and [53] with a statistical analysis of known copper

proteins in order to find the residues in the prion structure that are most likely to bind a

copper ion. For this purpose, 111 PDB structures of copper proteins that are known at

relatively high resolution (< 2.0 Â) have been analysed, yielding information about 216

copper binding sites and involving bonding to 928 donor atoms. These numbers indicate

that some of the copper sites are undercoordinated in the PDB structures, and that some

of the e.g. water molecules that bind to copper ions might not be have been resolved

in the x-ray structures. The relative probability of the amino acids that are involved in
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Figure 2.4: Ribbon diagram of the mouse prion protein, the binding site that is discussed

in the text is shown with cylinders. This site is located in the top of the first «-helix of

the structure, and involves Met 138, His 140, and Asp 147.

copper binding is shown in Fig. 2.3, together with their natural abundance. This statistical

analysis clearly shows that histidine is the most probable copper ligand, and provides in

this way a confirmation of the experimental suggestion that one of the copper complexes

probably involves a histidine ligand. Additionally, this analysis shows that the two sulfur

containing amino acids cysteine and methionine are more likely than any of the residues

with oxygen donors. These three residues together are providing about 80 percent of

the copper ligands, whereas their natural abundance on the other hand is less than 7 %.

Additionally, it should be noted that aspartic acid and glutamic acid are only as likely as

the somewhat more abundant glycine and tyrosine. This can be attributed to the fact that

copper is relatively 'soft'.

Using this data, the structured part of the mouse prion protein, was scanned, and a number
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of candidate binding sites were found. Every site involves, by construction, one of the three

histidine residues of the structured part of the prion. Additional ligands were included if

their distance to the histidine or to any of the other potential ligands was less than 8

Angstrom, this large distance is used in order to take into account the flexibility of the

protein structure and possible structural relaxation upon copper coordination. A ranking

of the sites found in this way has been made, based on the likelihood of the involved

residues. Two of the highly ranked sites, both located in the first a-helix, and a closeby

site that involves only aspartic acid residues have been simulated so far. The location

of these sites in the first a-helix is interesting, since the stability of this helix, which is

supposed to be involved in the early stages of the conversion of the cellular form of the prion

protein to the scrapie form, could be changed significantly by the presence of the copper

ion. In the following, we describe the computational setup and the simulation results for

one binding site that involves the residues methionine 138, histidine 140, and aspartic acid

147 as shown in Fig. 2.4 together with a ribbon diagram of the protein backbone.

2.4.4 The computational setup

The average NMR structure of the structured part of the protein, residues 124 to 226, has

been solvated using 4087 SPC water molecules at normal density, and the water has been

equilibrated with a fixed protein structure, including one copper ion, for 150 ps at 300

K, with a box of 4.5x5.9x5.2 nm3. We used the GROMOS96 force field to represent the

protein structure, using all flexible bonds, and P3M with a 643 grid for the electrostatics.

The neighboring list, with a 0.9 nm cutoff, was updated every 2.5 fs. The quantum system

was described with the local spin density approximation, using the BLYP functional. The

pseudopotentials were of the Martins-Trouillers type and in particular, for the copper ion

a previously tested copper pseudopotential [55] was employed with an 80 Ry plane wave

cutoff. The charged QM system was decoupled from the images using the method due

to Tuckerman and Martyna. The fictitious electron mass was 800 a.u. and the time step
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Figure 2.5: Frame from the QM/MM dynamics. The QM system is represented with balls

and sticks, the visible part of the protein structure with cylinders, the solvent with lines.

See the text for a description.

5 a.u The electrostatic coupling used the modified potential and the long-range scheme as

described above, with a distance cutoff of 10 a.u. The interacting residues were updated

every 200 steps.

2.4.5 Simulation results

The simulation of this site has been performed for a total of about 5 ps, and some interesting

snapshots are shown in Fig. 2.5-2.10. The first four frames are described with a relatively

small QM model (23 atoms), where the boundary pseudopotentials are located on the Cß

of the involved residues. The first frame (Fig. 2.5) shows the initial configuration, where
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Figure 2.6: Frame from the QM/MM dynamics. The QM system is represented with balls

and sticks, the visible part of the protein structure with cylinders, the solvent with lines.

See the text for a description.
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Figure 2.7: Frame from the QM/MM dynamics. The QM system is represented with balls

and sticks, the visible part of the protein structure with cylinders, the solvent with lines.

See the text for a description.
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Figure 2.8: Frame from the QM/MM dynamics. The QM system is represented with balls

and sticks, the visible part of the protein structure with cylinders, the solvent with lines.

See the text for a description.
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Figure 2.9: Frame from the QM/MM dynamics. The QM system is represented with balls

and sticks, the visible part of the protein structure with cylinders, the solvent with lines.

See the text for a description.
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Figure 2.10: Frame from the QM/MM dynamics. The QM system is represented with balls

and sticks, the visible part of the protein structure with cylinders, the solvent with lines.

See the text for a description.
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the residues are not yet relaxed. In particular, the methionine residue is in an unfavourable

orientation when considering the lone pairs of the sulfur atom and their overlap with the

copper orbitals. The second frame (Fig. 2.6) shows the configuration that results from

2500 steps of geometry optimisation. An initial geometry optimisation is necessary to

optimise the bonded interactions within the QM system, and to relax the hydrogens that

have to be added to the united atoms. Interestingly, the geometry of the sulfur atom

is almost unchanged with respect to the initial configuration. In the third frame (Fig.

2.7) we show the configuration after only 250 steps of dynamics. Significant changes have

taken place, including a favourable orientation of the sulfur atom, made possible by a

torsional transition involving Cysteine C7. This indicates that the geometry optimisation

was trapped in an unfavourable local minimum, and also points to the relatively high

efficiency of the dynamical scheme in relaxing the structure. During 1.4 ps of equilibration,

it was observed that two classical oxygen atoms, one belonging to a solvent molecule, and

one to the backbone of He 139 (colored differently in the fourth frame, Fig. 2.8), came

into an axial position, in bonding distance to the copper ion. The quantum system was

increased to allow the system to select either of the two ligands. The extended system,

which has 36 QM atoms, is shown in the fifth frame (Fig. 2.9), and involves the solvent

molecule, and a part of the backbone, starting at the Ca of He 139, and ending with the

backbone carbon of His 140. The time evolution of the distances of the two potential

oxygen ligands is shown Fig. 2.11. The upper panel of the figure shows clearly that the

classical description cannot provide information about which of the two ligands is preferred

for copper binding, since their distance fluctuates around approximately the same average

value. This is not surprising, since the QM/MM interface cannot describe a chemical

interaction of copper with the ligands. During the dynamics where these ligands are

described quantum mechanically, a rapid binding and equilibration of the water molecule

takes place, whereas the backbone oxygen drifts away from the copper ion, and stabilizes

around 5 Â away from the copper ion. The dynamics was continued for 2.5 ps, and a stable

configuration was observed. The sixth frame (Fig. 2.10) shows a typical configuration of

the system, and one can clearly see the square planar geometry of the aspartic acid, the
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Ligand bond length (Â) width (Â)

Met 138 2.37 0.10

His 140 1.93 0.04

Asp 147a 1.98 0.05

Asp 147b 2.27 0.03

Sol 2.26 0.05

Table 2.1: Average bond lengths for each of the copper ligands based on the final 2 ps of

the dynamics, and the width (1 a) of the thermal distribution of this bond.

histidine, and the methionine, and the water molecule in an axial position. From the

dynamics run, detailed structural information about the binding site can be extracted.

In Fig. 2.12 we show the copper-ligand bond lengths. This data not only provides

precise geometrical information of the binding site, but in principle also allows for the

parametrisation of a force field that can be used for a long time, classical, simulation of

the prion protein in the copper binding state. In Tab. 2.1, average bond lengths, and

the Gaussian width of the distribution of this length, which is directly related to the force

constant of the bond, is provided. Note that the aspartic acid, that has both oxygen atoms

involved in binding, has the shortest bond for the oxygen that is trans to the histidine.

A clear advantage of a quantum mechanical simulation is that the electronic properties are

directly accessible. As an example we show in Fig. 2.13 the spin density of the copper

site. This quantity is directly related to the experimental EPR measurements. Already at

a qualitative level, the experimental observation of an unexchangeable proton signal could,

if our binding site corresponds with the experimental one, be explained by the significant

amount of spin density on the sulfur atom. [54] The binding site is in agreement with the

experimental data of ref. [52] [53], and hence demonstrates that a combined statistical and

ab initio approach can be used to suggest possible binding sites and their geometry, and

provide a feedback for further experimental work.
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Figure 2.11: Distance of the water oxygen (circles) and the isoleucine backbone oxygen

(squares) to the copper ion during the dynamics. The upper panel shows the data for the

small QM model, where the oxygen atoms are treated classically. The lower panel shows

the data for the larger QM model that includes these atoms as well.
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Figure 2.12: Copper - ligand binding distance during the last 2.5 ps of the simulation. The

lower two lines represent the histidine (thick dashed) and the aspartate oxygen (thin dotted)

distances, whereas the upper three lines represent the water (thin solid), the methionine

(thick dash-dotted) and the second aspartate oxygen (dashed).
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Figure 2.13: Spin density (contour at 0.012 a.u.) of the equilibrated copper complex. Note

that this density is visible on all ligands in the plane, and in particular on the sulfur atom.
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Abstract

We present a fully Hamiltonian and computationally efficient scheme to include the elec¬

trostatic effects due to the classical environment in a Car-Parrinello mixed Quantum Me¬

chanics/ Molecular Mechanics (QM/MM) method. The polarization due to the MM atoms

close to the quantum system is described by a Coulombic potential modified at short range.

We show that the functional form of this potential has to be chosen carefully in order to

obtain the correct interaction properties and to prevent an unphysical escape of the elec¬

tronic density to the MM atoms (the so-called spill-out effect). The interaction between

the QM system and the more distant MM atoms is included by a Hamiltonian term explic¬

itly coupling the multipole moments of the quantum charge distribution with the classical

point charges. Our approach remedies some of the well known deficiencies of current elec¬

trostatic coupling schemes in QM/MM methods, allowing molecular dynamics simulations

of mixed systems within a fully consistent and energy conserving approach.



3.1 Introduction 75

3.1 Introduction

Atomistic simulations of chemical reactions in extended complex systems such as biomolecules

are one of the major challenges of computational chemistry. The description of chemical

reactions requires highly accurate methods for electronic structure determination, which

are also able to describe unstable intermediate states, such as transition states. More¬

over, since the majority of chemical processes are activated and the relaxation in struc¬

tured molecular systems is usually slow, simulations over long periods of time are needed.

Density functional (DFT) based ab initio molecular dynamics techniques, such as the

Car-Parrinello (CP) method [1,2], provide us with accurate computational tools to study

chemical reactions in liquids and solids [3]. However, bio-relevant molecular environments,

such as proteins, are usually too large and complex for a straightforward application of this

method, and the requirements on system size, accuracy and duration of a run are difficult

to reconcile.

This has led, already some time ago [4-6], to the idea of partitioning the system into a

chemically active part, that is treated by quantum chemical methods (QM) and a larger

environment, assumed to be chemically inert, that is modelled by a classical force field

(MM) [7]. This approach is particularly appealing since the computational effort can be

concentrated on the region where the chemical reaction is expected to happen (e.g. the

active site of an enzyme), while taking advantage of the computational efficiency of classical

force fields, that provide a more expedient description of the biomolecule far from the active

site.

The QM subsystem can be described at different levels of quantum mechanical approxi¬

mation applying semi-empirical or ab initio methods. The generalization to a hybrid cal¬

culation is most natural for semi-empirical methods and already considerable experience

exists in this field [4-6,8-11]. A similar development of fusing and adapting electronic

structure methods and classical modelling techniques has been initiated in the ab initio
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world, using HF or DFT [12-20]. Although similar to the problems encountered when

using semi-empirical methods, the compatibility problems in ab initio implementations are

more critical as a consequence of the increased complexity and flexibility of the basis sets

and of the larger difference in the level of approximation between the MM and the QM

subsystems.

The central question in hybrid methods concerns the way in which the quantum and the

classical subsystems are interfaced. As a consequence of the form of standard biomolecular

force fields, the interactions coupling QM and MM degrees of freedom can be grouped

in bonded and non-bonded. Bonded interactions arise when the QM/MM boundary cuts

through a chemical bond of a molecule. In that case, one or more QM atoms are joined

to MM atoms by incomplete covalent bonds which leave the QM atoms with unsatu¬

rated valence orbitals. The problem of interfacing across bonds has received special atten¬

tion [21-25]. The common solution is to "cap" the QM site with a link atom (frequently an

hydrogen atom) or an empirically parametrized boundary atom, e.g. described by a suit¬

able pseudopotential. An alternative is provided by the so-called frozen orbital approach,

consisting in saturating the valence with suitable orbitals located on the MM atoms. These

orbitals are included in the KS (or HF) Hamiltonian, but are not evolved during the simu¬

lation [26-28]. However, such an approach, though physically sound, implies a significant

increase in computational cost within a plane-wave (PW) based scheme. The remaining

bonded interactions, in particular angular and dihedral terms involving MM and QM atoms

are taken into account by the classical force field.

Following the classification used in biomolecular force fields, the non-bonded interactions

between the QM system and the MM atoms can be divided into steric and electrostatic

environment effects. The steric interactions due to the Pauli repulsion and the dispersion

interactions are usually taken into account in a straight forward way by retaining the van

der Waals interaction as described by the classical force field [7]. The electrostatic inter¬

action between the QM density and the point charges representing the charge distribution
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in the MM system often constitutes the main environmental effect on the QM system and

is technically more subtle.

Here, we will discuss a novel scheme to include electrostatic interactions between MM and

QM subsystems in a PW-based CP molecular dynamics code. A natural choice for the

non-bonded interaction Hamiltonian, extensively used in most of the advanced QM/MM

approaches, is of the type

dr——-—r + Yl vvdw (rij) (3.1)
V^MIVI

\r ri\ i£MM

}eQM

where ?~j is the position of the MM atom i, with charge qi, p is the total (electronic plus

ionic) charge of the quantum system and vvdw (fij) is the van der Waals interaction between

atom i and atom j. The core charge of the QM atom j is represented, in our approach,

by a Gaussian charge distribution of magnitude Zj (the valence of the quantum atom j)

and radius rg. Since the ionic charge distribution is explicitly coupled with the external

field through (3.1), rg has to be chosen carefully in order to recover as close as possible the

physical core charge distribution.

The form (3.1) for the electrostatic interaction Hamiltonian poses serious theoretical and

technical problems, related to both its short range and its long range behavior. A first issue

is related to the fact that positively charged classical atoms can act as traps for the electron

if the basis set is flexible enough to allow for this. In fact, the Pauli repulsion from the

electron cloud that would surround the classical atoms is absent, and the electron density

is therefore overpolarized at short range by an incorrect purely attractive potential, giving

rise to the so-called electron spill-out problem. This effect is particularly pronounced in a

plane-wave basis-set approach, in which the electrons are fully free to delocalize, but can

be of relevance also in schemes using localized basis sets, especially if extended basis sets

with diffuse functions are used.

A second problem is related to the computational cost to compute the first term of the

interaction Hamiltonian (3.1) within a plane-wave scheme. The number of operations that
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would be required for a direct evaluation of (3.1) is of the order of NtNmm, where Nr

is the number of real space grid points (of the order of 1003) and Nmm is the number

of classical atoms (usually of the order of 10000 or more in systems of biochemical rele¬

vance). In a real system, a straightforward computation of (3.1) would therefore increase

the computational cost by several orders of magnitude. This serious bottleneck can be

avoided employing techniques like the hierarchical multipole (HMP) method, an approach

that has been developed in the framework of classical molecular dynamics simulations [29].

A suitable extension of the HMP allows for the calculation of the electrostatic potential

on the grid at an affordable computational cost [17]. This technique is accurate when used

to compute the potential for a given configuration of MM atoms. However, in the current

QM/MM implementation [17], the forces on the MM atoms due to the electron charge dis¬

tribution are estimated as ordinary Coulomb forces from auxiliary charges located on the

QM atoms (electrostatic potential derived charges), and this leads to a non-Hamiltonian

description.

Here, we present a method to include the electrostatic interactions in PW-based QM/MM

calculations that does not suffer from any of the problems outlined above. In particular,

within our scheme (i) the short range interactions are accurately described without any

spill-out of the electron density onto the MM atoms and without any need to reparametrize

the classical force-field; (ii) the long range electrostatic interaction can be taken into ac¬

count within a fully Hamiltonian scheme; (iii) the inclusion of the electrostatic coupling

to the environment does not significantly change the computational cost of the simulation

(for a straightforward implementation, the computational overhead is only of the order of

10% to 50%, and could be reduced further by employing multiple time step techniques in

which the electrostatic interaction is updated on an ionic time scale).

The method we present here has been developed as a part of an interface between the Car-

Parrinello code CPMD [31] and the classical molecular dynamics package GROMOS96 [30].

A suitable decoupling technique [32] is used to eliminate the effect of the periodic images of
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the QM charge density generated as a consequence of using a PW basis. The electrostatic

interaction between classical atoms is taken into account by the P3M method [33].

3.2 Short range electrostatic interactions

In this Section, we will discuss a method to treat non-bonded short-range interactions

between QM and MM atoms within a fully Hamiltonian scheme. A consistent description

of the electrostatic interaction between the QM subsystem and the nearest classical atoms is

crucial in order to obtain an accurate prediction of the electronic and structural properties

at the QM/MM interface. The MM atoms in the immediate vicinity of the quantum system

are responsible for a large part of the polarization. For instance, the incorrect description of

the energetics of a hydrogen bond between a QM and a MM atoms can lead to large errors

that might frustrate any attempt to accurately treat the relevant but weaker longer range

interactions. This problem has repeatedly been pointed out in the literature as a possible

source of errors in QM/MM simulations [34]. A direct inclusion of the Coulomb potential in

the Kohn-Sham (or the Hartree-Fock) Hamiltonian as in (3.1) is widely applied in schemes

based on localized basis sets. However, this leads to a model that is intrinsically unphysical

since part of the electron density can artificially localize on positively charged MM atoms.

In a localized basis set approach this problem might be less severe, but the unphysical

nature of the interaction is present at any level of description, and is doomed to get worse

if the basis set is extended. The severe shifts in the radial distribution functions and the

large errors in the hydration enthalpies observed in QM/MM simulations of liquid water in

which a single water is treated as a quantum fragment [34,35] are possible manifestations

of this effect. One suggested remedy to this problem is a reparametrization of the van der

Waals radii of the classical atoms in order to compensate for this effect, but this ad hoc

procedure does not eliminate the overpolarization of the electron cloud or the incorrect

localization behavior of the electrons. Moreover, this approach does not always succeed, as

demonstrated by Tu et al [34], who have reparametrized the force field in order to reproduce
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the structural properties of a QM/MM water dimer with no apparent improvement for the

pair correlation functions of liquid water.

Here, we employ a computationally more expedient and physically sound alternative, in the

spirit of an empirical pseudopotential-like approach. The Coulomb potential is replaced

with a suitable function Vj (r) (depending on the MM atom j) such that Vj (r) goes to 1/r

for large r and to a finite value for small r. The first term in the interaction Hamiltonian

(3.1) is thus replaced by

Hei= £ qi[drp(r)vj(\r-rj\). (3.2)
jMM

J

For a given functional form Vj (r), the forces on the MM atoms are obtained by a straight¬

forward differentiation with respect to atomic coordinates (see eqn. (3.11)). The forces can

be computed together with the potential for the QM system in a single loop over the real

space grid, without a significant computational overhead, leading to a fully Hamiltonian

description.

The electronic and mechanical properties of the mixed QM/MM system critically depend

on the choice of the function Vj (r). The most sensitive interactions are, in general, the

direct contact interactions between QM and MM atoms, in particular the hydrogen bonds.

In our approach, like in most of the other QM/MM approaches [7], we have chosen to

retain a steric (van der Waals) interaction between the nuclei of the quantum and classical

atoms described by the classical force field. Given this choice, an accurate description of

hydrogen bond distances and energetics can be obtained choosing a Vj (r) saturating to

1/r at a distance rcj from the MM atom j, and smoothly going to a constant for small r.

In particular, we take

„n
_

„n

cj
'

where n=4 and Cj is the covalent radius of the atom j. This functional form is resembling

the form obtained by smearing the MM point charges into Gaussians charge distributions

with finite width [17,36]. Among other alternative choices for Vj (r), we tested functions
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with a repulsive core for small radius and functions going to zero for r —> 0. In all these

cases, we obtained unsatisfying results. The influence of rc on the pair correlation functions

between QM and MM atoms has been probed by performing a QM/MM simulation of a

quantum water molecule in a box of classical water.

The radial distribution functions for various choices of the cutoff radii rCj are summarized

in Figure 3.1a and 3.1b for the oxygen-hydrogen and in Figure 3.1c for the oxygen-oxygen

pair correlation functions. All simulations were performed starting from a thermalized

box of 256 classical SPC water molecules at normal density and at a temperature of 300

K. Data have been collected for 10 ps after 5 ps of QM/MM thermalization. The QM

water molecule is modelled with a cutoff of 70 Ry and the BLYP approximation [37,

38] for exchange and correlation. The influence of the functional form of Vj(r) on the

bonding properties of the system can be dramatic. If, e.g., rc of 0.8 A is chosen for all the

classical atoms the first peak in the oxygen-hydrogen pair correlation function disappears,

indicating that the hydrogen bond between the quantum oxygen and the classical hydrogen

is essentially lost and the solvation structure has almost entirely disappeared. If rc is chosen

to be equal to the van der Waals radius (~ 0.8 A for hydrogen and ~ 1.4 A for oxygen)

also the oxygen-oxygen peak is strongly shifted and smeared out, showing that with this

choice, the quantum water molecule interacts too weakly with the classical water. The

correlation functions computed without modification of the Coulombic interactions cannot

be consistently defined within our approach, since, if this functional form is chosen a

fraction of the electron density localizes on the classical hydrogens. Additionally, if no

smearing is applied to the Coulombic interaction, the electrons heat up significantly during

the simulation (see Fig. 3.2 ), showing that the system is unstable with a typical choice

for the fictitious mass of the electrons. Pair correlation functions consistent with the full

quantum [39] and the full classical (SPC) results could instead be obtained by choosing rc

sufficiently close to the covalent radius (i.e.~ 0.4 A for hydrogen and ~ 0.7 A for oxygen),

as shown in Fig. 3.1. With this choice, the position and the size of the peaks predicted

by the QM/MM model is in close agreement with the classical and the full QM results.
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3
A

Figure 3.1: Pair correlation functions for a quantum water in a box of classical (SPC) waters

compared with full classical SPC water (continuous line with circles) and full quantum [39]

(continuous line with diamonds) results. Continuous line: rc in equation (3.3) for oxygen

and hydrogen are 0.8 and 0.4 Ä respectively; dashed line: rc for oxygen and hydrogen are 0.8

and 0.8 A ; dotted line: rc for oxygen and hydrogen are 1.4 and 0.8 A. (a): quantum oxygen-

classical hydrogen pair correlation function, (b): quantum hydrogen-classical oxygen pair

correlation function, (c): quantum oxygen-classical oxygen pair correlation function
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Figure 3.2: Fictitious electronic kinetic energy [1] as a function of time for a simulation

of a quantum water in a box of classical (SPC) waters at 300K and normal density. The

time step is 6. a.u. Continuous line: no modification of the Coulomb potential of classical

point charges is applied. Dotted line: the Coulomb potential is modified according to Eq.

(3.3) with rc = 0.8 A for oxygen and rc = 0.4 Ä for hydrogen.

Moreover, we have checked that the pair correlation functions are unchanged (within the

noise of a limited simulation of 10 ps) if rc is changed throughout a range between a factor

of 0.6 to 1.2 of the covalent radius.

In conclusion, our choice (3.3) for the modified Coulombic interaction provides accurate

results for the structural properties of a quantum water molecule in a box of classical water

without any ad hoc reparametrization of the force-field.

3.3 Long range electrostatic interactions

A direct computation of the interaction Hamiltonian (3.2) with the summation running

over all the charges of the MM system would be too expensive within a plane-wave based

approach. In this Section, we introduce a method that allows, within a fully Hamiltonian
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scheme, an accurate and computationally efficient computation of (3.2). In the coupling

scheme we present in this article, the Coulombic electrostatic field is included exactly only

for a set of MM atoms in the vicinity of the QM system. This set of atoms (NN atoms)

is defined in such a way as to include all (non-neutral) atoms belonging to charge groups

( [30]) with at least an atom inside a shell of thickness Rc around any quantum atom.

Hence, care is taken that charge groups are included (or excluded) as a whole from the

direct interaction with the quantum system.

The electrostatic field on the MM atoms that do not belong to the NN set is calculated by

a multipolar expansion of the full interaction given in Eq. (3.2). In fact, since the charge

density of the quantum system is localized (e.g., inside a sphere of radius Rq around the

geometrical center of the quantum system), up to quadrupolar order, the electrostatic field

due to p at the position r3 of the MM atom j is given by

/ \r-r}\ \rj-r\ ^ |r, - F|*

2t? |r,-r|B \\<;-r\)

where r is the origin of the multipolar expansion ( in our implementation the geometrical

center of the quantum system) and C, Da and Qaß are the total charge, the dipole and the

quadrupole of the quantum charge distribution p. C, Da and Qaß are respectively given

by

C = jdrp{r)
Da = j drp^^-r") (3.5)

Qaß = j drp (r) [3 (ra - r") (rß - fß) - Saß \r - ff

where greek indices are assumed to run from 1 to 3. Since for \r — r3\ ^> rc, v (r — r/) ~

r^r-r ( 1 + Ö (rc/ \r — r3\) J for all atoms j outside the NN set, using (3.4) the electrostatic

interaction (3.2) can be expressed, neglecting terms of the order of Ö (Rq/ min?6jV./v \r3 — f\)4,
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as

Hei = E % I drPe (r) Vj(\r-rj\) + Hlr (3.6)
jeNN

J

where Hir is given by

Hir = cj: ^ + £zr E %r? + WQaß E %rt (3-7)
]<£NN 3 a j<£NN 3 aß ]£NN 3

with

J 3

Since the MM atoms are divided, except for physically charged groups, into globally neutral

clusters [30], the error can be reduced further using two different cutoffs for uncharged and

charged units. If a sufficiently large cutoff is used for the comparably few charged groups,

the first term neglected in the multipolar expansion is an octupole-dipole term with the

neutral groups at Rc, hence the error is of the order Ö (R R*
j .

The convergence of H\r

to the Hamiltonian (3.2) can be systematically improved by including multipoles of higher

order with very small additional computational cost.

The only free parameter in the present approach is the thickness Rc of the shell of MM

atoms explicitly coupled to the quantum system. The convergence of the results with

respect to Rc can be checked directly comparing the results obtained for finite Rc with the

values obtained with the full interaction Hamiltonian(3.2). As test case we have considered

a QM/MM calculation of the mouse prion protein [40] in solution with a single peptide unit

(Glyl26) as the QM part. The system is terminated by three dummy carbons represented

by monovalent pseudopotentials [25], as shown in Fig. 3.3 (one located on the Cß of the

side chain, an aspartate in the particular case, and the other two located respectively on a

CQ and on the backbone carbonyl carbon atom of the following peptide unit).

The prion protein is a good test system to probe the performance of an electrostatics

coupling scheme, since it has a strongly dipolar charge distribution and hence long range

electrostatic effects have a sensitive influence on the properties of the system [41]. For an

arbitrarily chosen snapshot configuration of a MD run, we have computed, as a function
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Figure 3.3: The quantum atoms for the system used to test the behaviour of the interaction

Hamiltonian (3.6). Black circles: quantum atoms described by ordinary pseudopotentials.

Gray circles: carbon atoms described by a monovalent pseudopotential [25] to compensate

the valence of the quantum atoms. Empty circles: classical atoms.

of Rc, the total energy Ey, and the dipole Dir of the system. In particular, the values at

finite Rc are compared with the ones obtained for very large Rc, for which the full protein

is explicitly coupled to the quantum system by (3.2). Moreover, denoting by Prc=00 and by

pRc the density for the finite and very large Rc, we have computed the charge polarization

V = J dr \p - pRc=QO\ (3.8)

The differences in energy, dipole moments and polarization are a measure of the approx¬

imation that is done when using Hamiltonian (3.6) instead of Hamiltonian (3.2). The

results are reported in Table 3.1. As it is apparent, E\r and Dir converge quickly, as a

function of Rc, to the value obtained using the full Hamiltonian(3.2) and V\T converges

rapidly to zero. For a comparison, we calculate the total energy Emc, the dipole Dmc and

the charge polarization Vmc in the case in which the long range interaction is taken into

account by a classic Coulomb interaction. In this case H\r in (3.6) is replaced by

Hmc = E — (3-9)

}QM

i.e. the long range electrostatic interaction is treated within a "mechanical coupling"

scheme [7,8] (qj is the force field charge of the QM atom j). As it is apparent in Table

3.1, using a mechanical coupling scheme for the interaction between the QM atoms and
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Rc Elr E Dlr Umc Vir V

5 0.33875 17.4755 4.666 4.428 0.0203 0.0306

10 2.70004 23.7623 4.587 3.926 0.0097 0.0214

14 0.109596 15.9611 4.625 4.573 0.0063 0.0171

20 0.478235 -10.7304 4.586 4.601 0.0042 0.0059

25 0.259044 3.47717 4.587 4.728 0.0030 0.0050

60 0. 0. 4.592 4.592 0. 0.

Table 3.1: Total energies E, dipole D and polarization V (as given by Eq. (3.8)) as a

function of the cut-off radius for the explicit electrostatic interaction Rc for the system

of Fig. 3.3. Values labelled "lr" and "mc" are respectively obtained if the long range

interaction is described by (3.7) and by (3.9). Energies are in a.u. 10-3. The zero of the

energy and the reference value for the density are defined by the value of the total energy

and of the density obtained if an interaction Hamiltonian of the form (3.2) is used. Rc is

in a.u. Dipoles are in Debye. V in elementary charge units is calculated as given by (3.8)

the MM atoms not included in the NN set implies a significant error on the total energy,

dipole moment and charge polarization of the system even for rather large values of the

cut-off radius Rc.

3.4 Potential and forces on the atoms

In our approach, the non-bonded interaction between the QM and the MM system is

described by an Hamiltonian of the form

** non—bonded — tlel / ,
r / _,

Vvdw vt])
i£MM 1*13 i£MM

jeQM }GQM

with Hei given by (3.6). Energy conserving dynamics can be performed if the potential and

the forces are calculated consistently. The potential is obtained by taking the functional
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0.01 0.02 0.03 0.04 0.
ps

Figure 3.4: Total energy (thick lines) and potential energy (thin lines) as a function of

time for the simulation of a quantum water in a box of classical water molecules at 300

K (continuos lines) and for the QM/MM simulation at 300 K of the system described

in Figure 3 (dashed lines). The energy are divided by the square root of the number of

particles (648 and 11279 respectively for the two systems). Moreover, the value of the

initial energy is subtracted.
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derivative of (3.6) with respect to p :

5Hel
V(r)

8p
E a3V3(\r-r3\) + Vlr 0)
jeNN

(3.10)

with

Vir (r)
6H,

lr %
E ? + Y.(r°-T°) E %rf +

j(£NN T3SP
jtNN T3

aß j£NN '3

Since this potential is explicitly included in the Kohn-Sham Hamiltonian, the electron

density is polarized up to any multipolar order by the atoms in the NN set and up to

quadrupolar order by the rest of the MM atoms.

The forces on the atoms are obtained by taking the derivative of (3.6) with respect to the

atomic positions. For _;' in the NN set the forces are given by

F? = q,fdrp(r)g,(\r-r,\)
rOL „a

3 (3.11)

where g3 (r) = dv/dr. The forces on a MM atom not belonging to the set NN is

C
„

1
^

5 1 „_„ _
A

„
m 1

1
3 -°3 T3 3T5

'

J 3 a

E D"t? - I-, £ Q«ßr?Tß
r] + ^ +

^ EQO-lj-O- (3.12)jaß^a^ß
'3 aß I '3 '3 a

Finally, the forces on the quantum atoms deriving from (3.7) are (independently of the

atom)

F1 = —
3 Nc

<lk nß-1EQaß E ^f^7 + EQQ7 E
aß k£NN Tk k$NN Tfc

9* «

(3.13)

where Nq is the number of quantum atoms. Moreover, the quantum ions are subject to the

forces due to the potential (3.10). If pQ (\r — r3\) is the Gaussian density used to represent

the core charge distribution of the quantum atom j, we have

Ff = -fdrV{r)df^G
dr

i i ' ' i

r—\r—r3\
• J>

The computation of the forces on the atoms and of the potential due to (3.6) is compu¬

tationally relatively inexpensive. The computational bottleneck is the evaluation of the
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first term in (3.6), requiring the calculation of the distances between every grid point and

all the NN atoms. The evaluation of the potential and the forces derived from the second

term in (3.6) is instead inexpensive, since it requires only the calculation of the distances

between all MM atoms and all grid points from a single point (the geometrical center of

the quantum system). The correctness of the implementation can be directly verified by

monitoring the conservation of energy for a MD simulation. Some typical examples are

shown in Fig. 3.4. In these cases the drift is only 10~6 a.u. per picosecond and per particle.
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Abstract

We present a method for calculating multidimensional free energy surfaces within the

limited time scale of a first-principles molecular dynamics scheme. The sampling efficiency

is enhanced using selected terms of a classical force field as a bias potential. This simple

procedure yields a very substantial increase in sampling accuracy while retaining the high

quality of the underlying ab initio potential surface and can thus be used for a parameter

free calculation of free energy surfaces. The success of the method is demonstrated by

the applications to two gas phase molecules, ethane and peroxynitrous acid, as test case

systems. A statistical analysis of the results shows that the entire free energy landscape is

well converged within a 40 picosecond simulation at 500 K, even for a system with barriers

as high as 15 kcal/mol.
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4.1 Introduction

Ab initio molecular dynamics (AIMD) [1] is gradually becoming a well established tool for

the study of physical [2], chemical [3] and biochemical [4] systems. With density functional

theory (DFT) [5, 6] as the underlying electronic structure method, an accurate potential

energy surface can be obtained at a correlated level for systems up to few hundreds of

atoms. A particular advantage is that, in contrast to conventional electronic structure

calculations, AIMD allows for a direct study of dynamic and thermodynamic properties at

finite temperature. Thus, in principle, it is possible to use ab initio molecular dynamics

for a parameter free calculation of free energy differences, or more general, of free energy

surfaces. Clearly, the calculation of the relative free energy is of primary importance

because it is the quantity that contains all the fundamental information for the prediction

of the stability of different forms, the most likely reaction pathways, and, in the transition

state theory approximation, the corresponding rate constants [7]. Since the free energy of a

specific configuration is directly related to the probability of observing it in an ensemble, its

relative free energy can be calculated from the fraction of time it has been observed during

a molecular dynamics run [7]. It is however necessary that the phase space trajectory is

sufficiently long so that it samples all relevant configurations in a statistically meaningful

way. This implies that for a system with large barriers and, consequently, small rate

constants for the transitions between different minima, long simulation times will be needed

before free energy estimates can be made. Typical activation barriers in (bio)chemical

reactions, for example, can be of the order of 10 - 30 kcal/mol, corresponding to reaction

times in the range of ms to hours. These time scales undoubtedly exceed the length of

typical AIMD simulations that currently span at most 100 ps. Clearly, a technique that

enhances sampling by several orders of magnitude is compulsory.

Here, we present and test a method that is designed for enhancing the AIMD sampling of

multidimensional free energy surfaces by several orders of magnitude. This enhancement

results from the application of a bias potential derived from selected terms of a classical
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force field. It is important to point out that this approach differs from methods that are

based on classical force fields for the estimation of the free energy. The method presented

here has the advantage that the converged values for the free energies do not depend on

the classical force field, and are thus of ab initio quality. Only the rate of convergence

depends on the quality of the force field, or more precisely, on the fact of how closely the

classical force field matches the ab initio results.

We tested such a biased sampling approach on two systems. As a first test case, we

calculated the one dimensional free energy profile for rotation of the methyl groups in

ethane. As an illustration of the severe time scale barrier inherent to ab initio MD, we show

that, even at 500 K, where ethane can often be regarded as a free rotator, direct ab initio

molecular dynamics fails to sample the three symmetry equivalent minima homogeneously.

Through the application of the classical bias method presented here these shortcomings can

be fully overcome. The second test system is more demanding and involves the calculation

of the free energy surface in the two dimensional torsional space of peroxynitrous acid

(ONOOH). ONOOH is an interesting test system for our purpose as it is small, but at

the same time fairly complex. The potential energy surface of this molecule has three

different minima and six transition states. The minima are all within few kcal/mol and

are thus all significantly occupied even at a temperature of 500K. The different forms

can be interconverted through rotation around the two central bonds. Rotation around

the oxygen-oxygen bond has a low barrier of « 2 kcal/mol. Rotation around the central

nitrogen-oxygen bond on the other hand, implies a partial breaking of the conjugated

system and involves a barrier of « 15 kcal/mol. Thus cis-trans isomerisation can be

expected to occur approximately in the ms time range. In view of the typical time scale

implied by ab initio MD, this system is therefore a challenging test case.
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4.2 Bias potentials to increase sampling efficiency

Many different methods for enhanced sampling have been suggested in the context of

classical MD simulations. The most dramatic speedup is achieved by methods that modify

the Hamiltonian of the system in some way [8-22] although other approaches exist [23-27].

A modification of the Hamiltonian is possible because thermodynamic properties can be

evaluated as a phase-space integral of a time independent function and the dynamics of

the system serves only as a sampling device of the relevant phase-space. The challenge

lies in how to modify the Hamiltonian, and in defining a consistent way to correct back

for the properties of the original system. The changes made to the Hamiltonian should

be such that the computed averages converge much faster for the modified system than

for the original one. One of the simplest versions of such an approach is the rescaling

of the particle masses. Rescaling the masses might help in sampling phase space more

efficiently, and since free energy differences in a classical system do not depend on the

masses of the particles, no correction is necessary. Another well established technique

is umbrella sampling [8], that introduces a bias potential, i.e. an attractive potential V

near the barrier of the system, to enhance the sampling of a region where statistics would

otherwise be very poor. Recently, it was suggested that it is also possible to modify the

potential energy surface near the minimum [17-22], that is, decreasing the depth of the

minimum by adding a repulsive potential. This has the advantage that only the location

of the minimum has to be known, and that it gives additional freedom to the system to

cross different barriers and choose several reactive pathways. If transition state theory can

be applied, one can estimate that for a decrease in depth of the potential by Vbias the rate

constant increases exponentially by « eßVb"">. The same exponential acceleration can be

expected in the convergence of the free energy. The application of a biasing potential is

not restricted to the regions of minima or transition states. In the most general case, the

full potential energy surface, or an arbitrary part of it, can be biased. Furthermore, we

note, that it is always possible to obtain the corrected results for the original system if one
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changes the Hamiltonian (H) and inverse temperature (ß) of a system to H' and ß'. The

thermodynamic average of a function f(p, q) can be manipulated as follows:

1 rAt

f(p,q)>ßH = lim -r- / f(p(t),q(t))dt where p(t), q(t) derive from H
At->oo 1st JO

Jff(p,q)e-ßH^dpdq
f f e-ßH(P>i)dpdq

Jj[f{p,q)eß'H'-ßH]e-ß'H'dpdq 1

<

/ / e~ß'H' dpdq f f[e0'»'-0H]e-ß'«'dPdq
f fe-ß'H'dpdq

= < ftp,q)eß'»'-ßH >ß,H,
< eßlw}ßH

>ßHi

(4.1)

The last equality shows that the average of the function / of the system with Hamiltonian

H (< f(p, q) >ßü) can be obtained as a function of the averages of two different functions,

f(p, q)eß'H'~~ßH and eß'H'~ßH, of a system based on the Hamiltonian H'. If H' is chosen in an

appropriate way the new averages < f(p,q)eß'H'~ßH >ß>H> and < eß'H'-ßH >ß,H, converge

faster than the original one. The technique will work efficiently as long as sufficiently

many configurations sampled with the Hamiltonian H' are also significant for the system

with Hamiltonian H, so that the reweighting factor eß H ~ßH is non-vanishing during a

considerable part of the trajectory.

4.3 Construction of the bias potential

A variety of applications in classical MD have demonstrated convincingly (see e.g. refer¬

ences [8], [14], and [19]) that the use of a bias potential can accelerate the convergence

of the thermodynamic averages in an impressive manner. However, the efficiency of the

approach depends on the appropriate choice of the bias potential. Here, we construct bias

potentials that, although general in nature, are especially useful for applications in the

context of ab initio MD.

The properties of an efficient bias potential will certainly be system dependent, however,
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some general ideas apply:

(i) An ideal bias potential should be sufficiently strong (at least larger than kT) as to

be effective. Optimally, the height of the bias potential should be of the order of Ea,

the activation energy for escaping from a minimum configuration. However, if the bias

potential is too strong and thus changes the potential energy surface too drastically, the

sampled ensemble becomes irrelevant since there is no overlap with the unbiased ensemble

anymore.

(ii) The bias potential should also not introduce new barriers or increase existing barriers

by more than kT. The latter can be avoided if not only the height, but also the shape adapts

to the underlying potential, being more narrow for stiff degrees (such as bond vibrations),

and more extended for flexible degrees of freedom (such as torsional motions).

(iii) Optimally, the bias should be adapted to the free energy surface. This might be

particularly important for systems with a very rugged energy landscape, with many small

barriers, as e.g. for molecules in solution. In such a case, local information of the potential

energy surface, such as the gradient, Hessian and higher order derivatives might no longer

be a good base for the construction of a bias potential. In this case preliminary sampling

[18] and an iterative construction [13] can be necessary.

(iv) The sampling time required grows exponentially with the dimensionality of the bias

potential. Therefore, only those degrees of freedom for which a homogeneous sampling is

needed in order to construct the free energy surface should be biased strongly [28].

(v) The calculation of the potential and the corresponding forces should be computationally

inexpensive. We remark that 'inexpensive' should be compared to the possible exponential

savings in sampling convergence. Still, for a quantum mechanically calculated surface it

may be too expensive to calculate third derivatives at every time step as needed in some

schemes [19].
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In the present work, we propose to use selected terms of a classical force field, in order to

construct efficient bias potentials for AIMD simulations. This simple approach satisfies all

of the five criteria (i)-(v) mentioned above: Clearly, if the force field is sufficiently close to

the ab initio results then the resulting potential (V = V + Vbias) will be nearly flat, and the

trajectory can visit all points in space without having to cross potential energy barriers.

Since only a few terms of a force field are needed, the parameterization effort can be kept

to a minimum. Furthermore, for many systems, adequate classical force fields are already

available and some of them have been constructed with a special emphasis on reproducing

free energy differences [29]. The configurational space can be restricted by including only

specific terms of a force field (such as e.g. torsional potentials). Finally, the bias potential

presented here is inexpensive in both computational time, and implementation effort. All

the ab initio MD simulations have been performed with the program CPMD [30] that has

been modified to account for the classical bias.

4.4 A simple example : Methylgroup rotation in ethane

An illustration of the severe time scale barrier inherent to current AIMD simulations, is

provided by a calculation of the torsional free energy profile of ethane. For this system, the

barrier for rotation, that is the energy difference between the eclipsed and the staggered

conformation, is « 2.6 kcal/mol [31]. At a temperature of 500K, the system is often

considered to rotate almost freely. However, the free energy profile calculated from our

AIMD simulation of about 30 ps (Figure 4.1) fails to represent the symmetry equivalence of

the three rotational minima. In order to improve sampling a bias potential was constructed.

The easiest approach, and the one adopted here, is to take an estimate for the rotational

barrier, and construct explicitly a torsional potential of the form |Vo(l — cos(3(f>)) [28,32].

This bias potential, the original potential and the resulting total potential are shown in

Figure 4.2. For this biased system we performed a simulation of 30 ps. The distribution of

the torsional angles sampled during the simulation is shown in Figure 4.3, together with
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Figure 4.1: Free energy profile for methyl group rotation in ethane, as obtained from an

unbiased AIMD run at 500K (full line). The dashed curve is the potential energy calculated

on a grid of 10° and is given for comparison.

the corrected distribution as obtained using Eq. 4.1. Clearly, the three equivalent minima

are now sampled almost equally. Additionally, the sampling is sufficiently homogeneous,

so that also the region near the barrier is well sampled. The free energy F is obtained from

F(x) = —kTln(P(x)), where P is the sampled probability distribution. This free energy

profile is shown in Figure 4.4 together with the potential energy profile. By inspecting

the deviation from three-fold symmetry we can estimate that the sampling accuracy is

better than 0.5 kcal/mol over the whole profile. Extending the simulation length to 100 ps

reduces the error to less than 0.3 kcal/mol. Thus, the statistical error is certainly smaller

than the error due to the approximations currently made to the exchange and correlation

functional in DFT, and the neglect of the quantum nature of the hydrogens. For many

systems it would be already very gratifying to have an accuracy in the free energy of the
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Figure 4.2: Potential energy (full line), bias potential (dashed line) and resulting potential

(dashed-dotted line) for methyl group rotation in ethane.

order of <& 1 kcal/mol.

4.5 The two dimensional free energy surface of per¬

oxynitrous acid

Our second test case, peroxynitrous acid (ONOOH), is more challenging. Several different

conformers, characterized by the two torsional angles ONOO (<f>i) and NOOH ((f>2), exist

for this molecule [33]. A contour plot of the potential energy surface obtained at the

gradient corrected DFT level using the BLYP [34] functional is shown in Figure 4.5. The

locations of the minima and transition states (indicated with labels) is in good agreement

with high level ab initio calculations at the QCISD(T) level [35]. Note that the surface has
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Figure 4.3: Probability density (grey) and corrected probability density (black) distribution

for the torsional angle from the biased run.

an inversion center at (180°,180°) due to the symmetry of the molecule. The three minima

(M) and six transition states (TS) that are not symmetry equivalent, can be described by

values of the angles near 0° (eis), 180° (trans), 90° (perp) and 270° (-perp). The global

minimum, the cis-cis form (Ml), is stabilized by an intramolecular hydrogen bond. The

relative energies for the other minima are cis-perp (M2) 0.8 kcal/mol and trans-perp (M3)

3.0 kcal/mol [33]. The two barriers for cis-trans isomerization near (j>i = 90° and 270°

(TS2 and TS1) are high (« 15 kcal/mol) since rotation around the central oxygen-nitrogen

bond involves a partial break of the conjugated system. The barriers for rotation around

4>2 (TS3 and TS4 for the eis, and TS5 and TS6 for the trans isomer) on the other hand

are much smaller (« 2.0 kcal/mol). Given the rather complex nature of the surface, an

identification of a simple reaction coordinate for the interconversion reactions between the

different forms, as required for example in a thermodynamic integration approach to the
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Figure 4.4: Free energy profile from the biased run (full line) in comparison with the

potential energy (dashed line).

free energy, can be non-trivial. Through the calculation of the full multidimensional free

energy surface such a problem can be avoided.

4.5.1 Computational details

For the electronic structure calculation we used the same computational scheme as de¬

scribed previously [33]. The results obtained by this setup compare favorably with MP2

and QCISD(T) [35] calculations and are converged with respect to box and basis set size

for the energy differences considered. MD runs were done with a time step of 5.0 a.u.

and all masses were rescaled to 3.0 a.u. The system was equilibrated and afterwards let

to evolve for 43 ps. The temperature of the system was controlled with the Nosé-Hoover

chain thermostatting method [36,37] at T=500K, using a chain of four thermostats with



4.5 The two dimensional free energy surface of peroxynitrous acid 107

150 I 200

(|)2
350

Figure 4.5: Contour plot of the potential energy surface of ONOOH as a function of the

two torsional angles 0i and 02. A definition of the labels is given in the text.

a frequency of 500 cm-1 for every degree of freedom. The underlying classical model for

the bias potential was constructed using a 2D Fourier expansion, up to terms of 40, of

the quantum mechanically calculated potential energy surface. The latter was obtained by

optimizing the geometry at fixed torsional angles 0i and 02 on a grid with a spacing of

15°. The classical model reproduced the calculated potential within a maximum deviation

of 0.8 kcal/mol.

4.5.2 Calculation of the free energy surface from the simulation

data

The fundamental quantity for the calculation of the free energy is the probability P(0i, 02)

of finding the system in a given state. In principle the probability can be calculated as

1 rAt
P(01;02) = lim — / 8(Mt) ~ <h)*{fa(t) ~ <h)dt, (4.2)

At->oo /St JO

however, in practice the probability has to be evaluated in a more coarse-grained way. We

replace the delta functions S(x'—x) in Eq. 4.2 by Gaussians of the form -/=^exp(—\(^^-)2)-
27TCT
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In this way we have defined the smoothed probability P(T(x). The advantage is that for a

larger a the smooth Po-{x) can be evaluated with higher statistical accuracy. However the

systematic error P^x) — P(x) grows for increasing a. It is straightforward to show that

for a harmonic potential V = \otx2 the systematic error is negligible if we choose o so that

\olu2 -C kT. In this case, it can be shown that the error for the free energy estimate is

also ~ \cxa2.

For certain choices of V^as it is possible to calculate the free energy directly from Pbiased(x),

that is the probability density on the biased potential energy surface, which allows for

better statistics. It is straightforward to show that this is the case if the bias potential

is only a function of those coordinates that have been chosen to span the free energy

surface F, in our system 0i and 02. The free energy can then be calculated as F(x) =

-kTln(Pbia3ed(x)) - Vbias(x). The term -kTln{PHased{x)) gives the entropie part of the

free energy if the bias potential is designed to be the exact negative of the potential energy

of the molecule when all other degrees of freedom have been optimized. The fact that the

sampling is only needed to determine the more slowly varying, entropie quantity, PWa*ed(:c)

can be exploited, in view of the previous analysis on smoothing, by using a much larger a

than would be possible when sampling directly P(x). This guarantees faster convergence.

4.5.3 Results

The negative value of the model potential shown in Figure 4.5 has been used as a bias

potential for our AIMD simulation. The trajectory on the biased potential energy surface

is represented in torsional space in Figure 4.6. The trajectory visits the surface everywhere

in a rather homogeneous way, an indication that there are no strong entropie effects,

as otherwise a more inhomogeneous sampling would be expected. In order to obtain an

estimate of the free energy surface we have to find the optimal smoothing parameter a, and

thus have to estimate the statistical uncertainty and systematic error introduced. Estimates

for the error for different values of a are given in Table 4.1. The systematic error (SE)
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Figure 4 6 A 43 ps trajectory in torsional space

has been estimated using SE « \a.o2, where a has been estimated from the maximum

curvature of —kTln(P^Qiased(x)), whereas the statistical error has been determined using the

symmetry properties of the surface Based on this analysis, an optimal value of a = 20°

has been determined For this value the estimated maximum error in the total free energy

surface is <« 1 kcal/mol, with an average deviation of only 0 4 kcal/mol The entropie

part (—kTln(P2Qased(x))) of the free energy is shown in Figure 4 7 We note that part

of the fine structure is of the order of our error estimate One can see that the compact

cis-cis (with the intramolecular hydrogen bond) and the totally extended trans-trans state

are entropically destabilized On the other hand, intermediate conformations, especially

near the transition states, are stabilized with respect to the potential energy Based on

the two dimensional free energy surface, one dimensional profiles can be constructed by

integrating out the other variable The profiles for cis-trans isomerisation and for hydrogen

rotation, together with an estimate of the statistical error of at most 0 3 kcal/mol, are
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a ST SE

10

20

30

1.6

0.9

0.6

0.1

0.4

0.8

Table 4.1: Estimated statistical (ST) and systematic errors (SE) in the free energy surface

(kcal/mol) for different smoothing factors sigma (degrees).

Figure 4.7: The surface represents the entropie part of the free energy {—kTln{P^*d{x))).

Energies are in kcal/mol, the contour lines are 0.5 kcal/mol apart. The profile has been

shifted so that the minimum has zero energy.

shown in Figure 4.8. The free energy barrier for cis-trans isomerisation is lowered by only

« 0.8 kcal/mol, although the minimum energy configuration (cis-cis) is entropically rather

strongly destabilized. This can be explained if we note that the eis state as a whole is

not destabilized so much since the cis-perp state is entropically stabilized. Indeed, the free

energy profile for hydrogen rotation shows that the most abundant form at 500K is likely

to be the perp conformer in contrast to the OK results.
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Figure 4.8: Upper panel : Free energy profile for cis-trans isomerisation. Lower panel :

Free energy profile for hydrogen rotation. The vertical lines indicate the deviation from

symmetry around 180° and are an indication of the statistical accuracy. For the upper

curve they are smaller than the line thickness, and not visible.

4.6 Conclusions

In this paper we tested the feasibility of ab initio free energy calculations. We propose

to use a bias potential to enhance sampling since in this way, the most severe bottleneck,

the long equilibration time between different minima, can be overcome. This approach has

the advantage that the accuracy is not limited by using a method that could introduce

systematic errors such classical MD simulations based on empirical force fields or free

energy estimates based on the assumption of a quasi-harmonic potential. A simple, cost

effective, and efficient method for the construction of a bias potential, based on selected

terms of classical force fields, has been proposed. We demonstrate that, for the small
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systems tested here, it is possible to evaluate the full free energy surfaces with a precision

of <« 1 kcal/mol within the timescale accessible to ab initio MD. The ab initio calculation

of multidimensional free energy surfaces for larger systems will still be on the limit of what

is currently feasible. However, the method presented here can always be used to explore

phase space more efficiently. Work is now in progress on an application of the same method

for systems in aqueous solution.
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Abstract

The range of chemical problems that are directly accessible to first-principles molecular

dynamics simulations based on density functional theory is extended with a novel method

apt to accelerate rare reactive events. The introduction of a finite electronic temperature

within the Mermin formalism leads to a lowering of chemical activation barriers and thus

to an exponential enhancement of the rate at which these reactions are observed during a

first-principles molecular dynamics simulation. The method presented here makes direct

use of the intrinsic chemical information encoded in the electronic structure, and is there¬

fore able to lower selectively chemically relevant activation energies even in systems where

many competing low-energy pathways for conformational transitions or diffusive motions

are present. The performance of this new approach is demonstrated for a series of pro¬

totypical chemical reactions in gas and in condensed phase. These tests show that the

activation barriers can be lowered substantially while the locations of the stationary points

remain essentially unchanged with respect to the zero Kelvin potential energy surface. A

typical acceleration that can be achieved is e.g. a factor of 105 for the cis-trans isomer-

ization of peroxynitrous acid in aqueous solution. The electronic temperature is the only

tunable parameter of this electronic bias potential, and the thermodynamic properties of

the original ground state system can be recalculated on-the-fly from the trajectory of an

accelerated molecular dynamics simulation.
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5.1 Introduction

Electronic structure calculations have become an important tool for a detailed understand¬

ing of chemical reaction mechanisms. A particular versatile approach in this respect is the

recently developed first-principles molecular dynamics (Car-Parrinello) method. [1,2] This

technique allows for the evaluation of finite temperature properties and thus for the in

situ study of chemical reactions in gas phase and in solution [3] within the framework

of density functional theory (DFT) [4,5] or other quantum chemical electronic structure

methods. [6] First-principles molecular dynamics simulations are especially valuable for

complex systems in which a reaction coordinate is not known a priori and may involve a

nontrivial combination of multiple degrees of freedom. A few snapshots of the dynamics

of such a system can often guide chemical intuition into previously unexpected directions.

Indeed, for systems with relatively low activation barriers, chemical reactions can occur

spontaneously during a molecular dynamics (MD) run, and hence reveal direct atomistic

information about the reactive process. Unfortunately, the observation of spontaneous re¬

actions is currently only possible for fast processes with low activation barriers, since only

relatively short time periods, typically 10-100 ps, can be simulated. Simulation times that

are many orders of magnitude longer would be needed in order to observe chemical reac¬

tions with activation barriers of the order of 10 - 30 kcal/mol, with rates in the millisecond

to hours range.

At present, slow reactions in complicated systems can only be studied efficiently if some

information about a possible reaction pathway is known so that it is possible to constrain

the system along an a priori chosen coordinate in order to guide it over the activation

barrier. [7,8] Since this information is not always available, and an inappropriately chosen

coordinate can even be misleading, it is of primary importance to develop methods that

are able to explore possible reaction pathways and potentially reactive configurations in an

efficient and unprejudiced way. It is the aim of this paper to describe a novel method that

is capable to enhance specifically the sampling of rare reactive events in chemical systems.
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One efficient way to increase the number of rare events during a simulation is biased

sampling [9-16]. In this approach, an additional (bias) potential is added to the total

Hamiltonian that guides the system through the region of interest, or helps it to explore

previously unvisited regions of phase space and to overcome barriers between them. An

enhanced sampling of barrier crossing events can in principle be achieved in a straight¬

forward manner by choosing the bias potential in such a way that it lowers the height of

the barriers, or equivalently, increases the energy of the respective minima configurations.

Since the rates for barrier crossing depend exponentially on the barrier height, the use of

bias potentials leads to dramatically improved statistics. As a result, the required com¬

puter time for a statistically meaningful sampling of the system, and accordingly, for a

comprehensive understanding of its chemical reactivity, is orders of magnitude lower than

in the original unbiased ensemble.

All thermodynamic averages, including free energies and rate constants within transition

state theory, can be obtained exactly, since the following equation relates the thermody¬

namic average of a function / in the biased with the one in the unbiased system [17]:

<f(p,q)>ßH = <f(P,q)eß'H'-ßH>ß,H>
^ ß,H,

\H
^

(5.1)

where ß and H refer to the original ensemble and ß' and H' to the biased system. The

performance of such a method depends crucially on the choice of an adequate biasing po¬

tential. Several approaches have been suggested to this purpose [9-16] but their efficiency

depends strongly on the type of system under study. Most of the existing methods use

properties of the potential energy surface, such as the Hessian and its derivatives, for the

construction of an appropriate bias potential, and occasionally impressive gains in com¬

putational efficiency of up to ten orders of magnitude can be achieved. [13] However, for

many reactive systems, the information that is locally contained in the potential energy

surface near a minimum configuration is not representative for the properties of the reac¬

tive transition state and thus not sufficient for the design of a successful bias potential.

The low frequency modes of the Hessian near the minimum often do not yield specific

information about the possible chemical reactions of the system since these events can
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involve the breaking of bonds that are initially much suffer than the typical soft modes

such as e.g. torsional modes. In realistic chemical systems many low barriers exist related

to solvent motion or to the overall rotation of ligands, that only lead to new conformers.

The barrier for the actual reactive process lies at much higher energy, and is therefore

hard to locate. Nevertheless, if the reaction proceeds via a relatively simple, well-defined

geometric pathway, it is occasionally possible to carefully design a bias potential that is

optimally adapted to a particular reactive situation [9,16]. However, this is not always

possible, since a reaction pathway may be complex, and involve many degrees of freedom

that are not known beforehand, or that are difficult to express in a simple geometrical way.

In general, methods that are only based on the local information of the potential energy

surface cannot discriminate between events of high or low chemical priority. Therefore,

their efficiency for the acceleration of rare reactive events is often greatly reduced and it

would be advantageous to design enhanced sampling methods that are directly based on

chemical properties of the system.

A lot of information about the intrinsic chemical reactivity of a system is directly encoded

in its electronic structure. This simple fact has been used by chemists for decades and

lies at the roots of the overwhelming success of frontier orbital theory. [18] Within DFT,

this intimate link between electronic structure and chemical properties can be formalized

in the concepts of reactivity indices such as chemical hardness and softness and Fukui

functions. [19, 20] For example, within a frozen orbital picture, the highest occupied or¬

bitals) (HOMO(s)) determine the electron-donor properties of a reactive system, whereas

the lowest occupied orbital(s) (LUMO(s)) are relevant for its electron-acceptor behavior

and a linear combination of HOMOs and LUMOs is relevant in the context of radical

reactions. [19,20]

This suggests that a method that uses the electronic structure to construct a bias potential

could be especially efficient in exploring chemically relevant regions of phase space without

having to resort to a priori assumptions about likely reaction pathways based on atomic
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coordinates. In a similar spirit, the empirical valence bond (EVB) method introduced

by Warshel uses reaction coordinates that depend on the diagonal matrix elements of

the (EVB) Hamiltonian, and hence, in an empirical way, on the electronic structure. [21]

However, the EVB method limits the reactive rearrangement to variations between few

preselected electronic configurations. The relevant electronic states have to be chosen and

parameterized manually and there is no guarantee that an important configuration does

not remain unconsidered. A first-principles approach in which the system reacts in an

unbiased way and chooses itself the relevant configurations would clearly be preferable.

The simple electronic bias potential we present here in the context of first-principles molec¬

ular dynamics simulations exploits the electronic structure in a straightforward way by

simulating the system at an increased electronic temperature. Through the introduction

of a finite electronic temperature, electron density is transferred from the highest lying

donor orbitals of the entire reactive system to its lowest lying acceptor orbitals, i.e. its

lowest-energy virtual states, thus enhancing its intrinsic reactivity. This particular choice

of electronic bias potential can be further rationalized using concepts from chemical reac¬

tivity theory, such as the maximum hardness principle [22-26] which states that the ground

state of any system has a maximal hardness. [27] This implies, that through the admix¬

ture of virtual excited states the system becomes softer, i.e. more reactive towards soft,

orbital-driven reactions. This enhanced reactivity is exploited by the finite temperature

bias potential we present here, which drives the system towards soft reactions. Typical

hard reactions on the other hand are electrostatically driven and can often be accelerated

in more obvious ways. In the next Section, we will first discuss the effect of a finite elec¬

tronic temperature for a two state (HOMO-LUMO) system and proceed with the study

of a series of more realistic chemical reactions. In order to examine the efficiency of this

finite temperature assisted acceleraction (FTAA) approach in a quantitative manner, en¬

ergy profiles along simple reaction coordinates have been calculated for a set of prototypical

chemical reactions in gas and condensed phase and the barrier heights at finite electronic

temperature have been compared with the 0 K results.
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Figure 5.1: Schematic energy level diagram of a class of chemical reactions in which the

smallest gap occurs near the transition state.

5.2 Finite electronic temperature as a chemical driv¬

ing force

As a first example, we discuss the case of a simple two-level system where the chemically

active orbitals are HOMO and LUMO, for example the bonding and antibonding molecular

orbitals of H2. The only possible reaction channels that are open to this system are

homolytic or heterolytic breakage of the H-H bond, the former being the energetically

favoured reaction path in gas phase. With increasing H-H distance, HOMO and LUMO

become increasingly closer in energy until they reach complete degeneracy in the two

equivalent free hydrogen radicals. A similar lowering of the HOMO-LUMO gap at the

transition state can be observed more generally also for other reactions [28] leading to

a characteristic energy level diagram of the type shown in Fig. 5.1. This effect can be

rationalized by the qualitative argument that during a chemical reaction electron density

is transferred from donor to acceptor states of the system, i.e. as discussed above, within

a frozen orbital picture, from the HOMO to the LUMO. This electronic redistribution

induces a destabilization of the former and a stabilization of the latter and thus a lowering

of the gap. Additionally, using a finite difference and frozen orbital approximation, the

hardness 77 of a system can be approximated as 2n ^ eLUMo — £homo [23], if the system

c

LU
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is softer near the activation barrier, then the gap near the transition state will be smaller

than the one at the equilibrium structure. By constructing a bias potential that lowers the

energy of the system whenever the HOMO-LUMO gap is reduced, one can sample these

regions of phase space more efficiently. A straightforward way of obtaining such a bias

potential is a simulation with a finite electronic temperature.

DFT was generalized to finite electronic temperatures by Mermin [29] using a free energy

functional. A simple form is given by [30]

F[{Ä,}, T] = min £ / /^*(f + V^fydr + EHxc[n,T] - TS[{fij}}. (5.2)
{V>»},{/.j}

i3
J

Here ip are the orthonormal Kohn-Sham wave functions, n is the electron density, T is the

electronic temperature, / is the occupation matrix, T is the kinetic energy operator, Vext

is the external potential, EhXc is the Hartree and the exchange and correlation functional,

and S is the entropy term given by —tr(/ln(/) + (1 — /) ln(l — /)). The solution of Eq.

5.2 implies an iterative, self-consistent computation of the wave functions and occupation

numbers. The latter are calculated using the Fermi-Dirac distribution i.e. fi = l/(eß(-e,~^ +

1), where e, is the eigenvalue of the wave function ipi and // is the chemical potential,

which is determined by the number of electrons in the system. The free energy can be

used as a potential energy surface for the dynamics of the ions, and recent advances in

computational methodology made it possible to use the free energy functional for MD. [30-

32] We remark that due to the entropy part of the free energy functional, the free energy of

a system at a finite temperature is always lower than its (free) energy at zero temperature.

However, only if the occupation numbers are significantly different from zero and one, the

entropy term is non-zero. Hence, for a fixed electronic temperature the free energy will

be more strongly lowered for a system with a small gap than for systems with a large

gap. We can thus consider the difference between the finite temperature (FT) potential

(Vft) and the zero temperature (ZT) potential (Vzt) to be a bias potential {Vuas =

Vft — Vzt) that enhances, often by many orders of magnitude, the exploration of regions

with small electronic gaps. Thermodynamic averages, such as free energy differences and
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rate constants in the transition state theory approximation, can be computed during a

molecular dynamics run performed on the FT potential, using Eq. 5.1, where ß'H' — ßH is

replaced by ßVbias. This requires an additional electronic structure calculation to compute

the ZT energy, which can normally be done with small additional cost since the FT wave

functions are a very good initial guess for the self-consistent minimization at ZT. Note that

the electronic temperature can be chosen independently of the ionic temperature. In our

systems, the temperature of the electrons will typically be a few thousand degrees, whereas

the ions are at room temperature.

Within a frozen orbital approximation and at low temperatures (i.e. only the HOMO and

LUMO are fractionally occupied), the force due to the bias potential is given by :

dR
'

homo,lumo 9R\r-R\

This force is largest on the atoms where the HOMO and LUMO have a non-negligible mag¬

nitude. From a sampling point of view this is a clear advantage since only the chemically

reactive part, and not the remainder of the system, is affected. We note that the driving

force is an approximation to the sum of the nuclear Fukui functions ($ = (§jj)v, where

F is the force on the nuclei) of the system. It can indeed be shown that within a frozen

orbital approximation, their sum is proportional to the right hand side of equation 5.3. [33]

As for all bias potential techniques a good choice of the biasing parameters is essential. It

is an advantage of FTAA that the extent in which the bias potential lowers the barrier is

related to a single bias parameter, namely the electronic temperature. More importantly,

a good estimate about the optimal value of this temperature can be made based on the

gap of the stable system. In order to be effective, the temperature should be such that

near the transition state the HOMO and LUMO are fractionally occupied. Since the

gap near the transition state is generally not known, it is useful to establish an upper

limit for the temperature, that will still guarantee an efficient sampling. Although the

barriers are lowered with increasing temperature, a temperature that is too high will yield

a too distorted potential energy surface, and configurations that are not relevant for the
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ground state ensemble. As demonstrated in the next Section, we found that setting the

temperature such that fLUMO ~ 0-05 at the equilibrium configuration gave a significant

lowering of the barriers, leaving the overall positions of the minima unchanged. The given

value is an empirical estimate and depends on the system under investigation, but is a

useful initial guess for tuning the electronic bias.

5.3 Results for reactions in gas and in liquid phase

In order to probe the efficiency of a finite electronic temperature in lowering chemical

activation barriers, we have applied this approach to a series of prototypical reactions in

gas and condensed phase:

• (5.3.1) Homolytic bond dissociation of H2 (shown schematically in Figure 5.2a)

• (5.3.2) Cis-trans isomerization of ethene (shown schematically in Figure 5.2b)

• (5.3.3) Lewis acid-base reaction of sulfur dioxide and ammonia (shown schematically

in Figure 5.2c)

• (5.3.4) Intramolecular proton transfer between the two tautomeric forms 2-hydroxypyridine

and 2-pyridone (shown schematically in Figure 5.2d)

• (5.3.5) Conrotatory ring opening of cyclobutene to butadiene (shown schematically

in Figure 5.2e)

• (5.3.6) Different reaction channels of peroxy nitrous acid :

— (5.3.6) Dissociation of the peroxy bond (shown schematically in Figure 5.2f

— (5.3.6) Dissociation of the N-0 single bond (shown schematically in Figure 5.2g)

— (5.3.6-5.3.6) Cis-trans isomerization around the central N-0 bond (in gas phase

and in aqueous solution) (shown schematically in Figure 5.2h)
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Figure 5.2: The prototypical reactions described in the text: (a) H2 dissociation; (b) cis-

trans isomerisation in C2H4, (c) S02 — NH3 dissociation; (d) proton transfer between

2-hydroxypyridine and 2-pyridone.; (e) Ring opening in cyclobutene; (f) N-0 dissocia¬

tion in peroxynitrous acid; (g) 0-0 dissociation in peroxynitrous acid; (h) eis to trans

isomerisation in peroxynitrous acid.



128 5 Accelerating rare reactive events ...

The main objective of these tests was to establish if a finite electronic temperature can

be used to lower significantly chemical activation barriers, or equivalently, to enhance the

sampling efficiency by many orders of magnitude without changing the potential energy

surface to much. For the reactions 5.3.1-5.3.6, we have therefore examined the energy pro¬

files along appropriately chosen reaction coordinates for different electronic temperatures

and compared them with the 0 Kelvin results (upper panels of Figs. 5.4-5.11). In parallel,

we monitored the evolution of the eigenvalues (middle panels of Figs. 5.4-5.11) and the

occupation (lower panels of Figs. 5.4-5.11) of the Kohn-Sham one-particle states along the

reaction path. We would like to stress that we have chosen to follow predefined reaction

pathways for these simple prototype reactions in order to facilitate the comparison of the

potential energy surfaces. Such an a priori information however is not mandatory for gen¬

eral applications of FTAA that is designed to accelerate rare reactive events without any

knowledge about possible atomic reaction coordinates.

The energy profiles shown in Figs. 5.4-5.11 allow an inspection of the distortions of the

potential energy surfaces at different temperatures. Preserving the essential features of

the potentially energy surface is important for all biasing schemes, even though Eq. 5.1

guarantees that biased sampling gives exact results. Indeed, the sampling effort increases

if new minima configurations or additional channels appear on the biased potential energy

surface, since the sampling probes region of phase space that are not representative for

the original ground state ensemble. That the locations of the minima and transition states

are basically unchanged with FTAA can be inferred for the reactions in Sec. 5.3.1-5.3.5

from the energy profiles at various electronic temperatures, calculated using the optimised

zero temperature structures. A more elaborate test was performed for the systems in Sec.

5.3.6, for which the geometry along the reaction coordinate was reoptimised at every elec¬

tronic temperature. It was observed that the distortions of the geometry were throughout

small. In particular, the root mean square deviation (RMSD) between the low and high

temperature (5000K) structures of both the stable eis and trans configurations where less

than 0.02 A. The maximum RMSD (0.07 Â) was observed at the transition state for eis to
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Figure 5.3: Symbols and the corresponding electronic temperature used in the Figures

5.4-5.11.

trans isomerisation, most of it was due to an elongation of 10 % of the N-0 bond. Given

that the finite temperature bias potential accelerates the eis to trans isomerisation by five

orders of magnitude (vide infra), this change is remarkably small, and guarantees that the

sampling of the modified surface and the averaging using Eq. 5.1 can be performed with

high efficiency.

All the calculations were performed with the first principles molecular dynamics program

CPMD [34], using finite temperature DFT [29] in the implementation of Alavi et al. [31]

in the framework of pseudo potential theory, periodic boundary conditions a plane wave

basis set.

5.3.1 Homolytic bond dissociation of H2

As discussed in the previous Section, H2 can be considered as a prototypical two level

(HOMO-LUMO) system with one bonding and the corresponding antibonding molecular

orbital. The equilibrium structure has a large gap that gradually disappears when ap¬

proaching the dissociation limit. As a consequence, even relatively high electronic temper-
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Figure 5.4: Reaction coordinate profiles for the dissociation of H2. The reaction coordinate

is the distance between the two hydrogen atoms. The upper panel shows the total energy

for several values of the electronic temperature, the middel panel the evolution of the

eigenvalues of the HOMO and LUMO for the zero temperature case, and the lower panel

the occupation of HOMO and LUMO for several values of the electronic temperature. The

different symbols correspond to different electronic temperatures as defined in Fig. 5.3.
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Temperature (K) AE (kcal/mol) Enhancement

1000 0 1

2000 0 1

4000 2 70

8000 15 6 • 1012

16000 48 1 • 1042

Table 5.1: Homolytic bond dissociation of H2 at different electronic temperatures. AE is

the lowering of the dissociation energy in kcal/mol, and Enhancement is an estimate of

the corresponding increase in sampling efficiency for a simulation at room temperature, or,

equivalently, the increase in the rate constant at room temperature (« exp(j^)).

atures leave the equilibrium occupation almost unaffected whereas at the same temperature

the dissociated state is distinctly stabilized by a significant population of the virtual or¬

bital. Therefore, this system constitutes a model reaction for which the enhanced sampling

approach presented here can be expected to work ideally. The total energy, the eigenvalue

spectrum, and the occupations during the dissociation are shown in Fig. 5.4 for different

electronic temperatures. Due to the large gap in the ground state structure, we can use

temperatures up to 16000K without inducing any significant changes in the equilibrium

geometry. As shown in Table 5.1, the dissociation energy on the other hand is greatly

reduced at finite electronic temperature, e.g. by ca. 50 kcal/mol at 16000K, leading to a

drastic enhancement of sampling efficiency by a factor 1042 at room temperature.

5.3.2 Rotation around the C-C bond in C2H4

The rotational barrier around the C-C bond in ethene requires an activation energy of

88 kcal/mol at the BLYP level of theory. The cis-trans isomerization of ethene is thus

another example of a reactive rare event that is clearly beyond the time scale accessible
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Temperature (K) AE (kcal/mol) Enhancement

250 0 1

500 0 2

1000 2 100

2000 7 2-106

4000 18 5 • 1015

8000 39 6 • 1033

Table 5.2: Cis-trans isomerization of ethene at different electronic temperatures. AE is the

lowering of the activation barrier for cis-trans isomerization, Enhancement is an estimate

of the corresponding increase in sampling efficiency for a simulation at room temperature,

or, equivalently, the increase in the rate constant at room temperature (~ exp(j^)).

to first-principles molecular dynamics simulations. Considering only 7r-electrons, also this

system can be regarded as another example of a typical 2 level (HOMO-LUMO) system,

in this case involving ir and ir* molecular orbitals. Similar to the situation encountered for

the dissociation of H2, these two orbitals become degenerate at the top of the rotational

barrier at an H-C-C-H dihedral angle of 90°, i.e. also this system has a finite gap at

equilibrium which vanishes at the transition state. Hence, the introduction of a finite

electronic temperature has a pronounced effect on the rotational barrier (Fig. 5.5 and Table

5.2) while the location of the stationary points remains essentially untouched. Even at an

electronic temperature of 8000K the population of the one-particle Kohn-Sham orbitals

of the equilibrium structure is close to zero and one, i.e. the 0 Kelvin values. At the

transition state on the other hand, HOMO and LUMO are equally populated and the

rotational barrier is reduced by 39 kcal/mol. This lowering of the activation barrier for

cis-trans isomerization corresponds to an impressive enhancement of the reaction rate at

room temperature by roughly 34 orders of magnitude.
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Temperature (K) AE (kcal/mol) Enhancement

1000 0 1

2000 0 1

4000 1 9

8000 5 3-104

Table 5.3: Dissociation of the complex SO2-NH3 for different electronic temperatures. AE

is the lowering of the dissociation energy in kcal/mol, Enhancement is an estimate of the

corresponding increase in sampling efficiency for a simulation at room temperature, or,

equivalently, the increase in the rate constant at room temperature (~ exp(AM)).

5.3.3 Dissociation of the Lewis acid-base complex of sulfurdiox-

ide and ammonia

The reaction of SO2 and NH3, is a typical example for a Lewis acid-base reaction, where the

electron pair of the NH3 group is donated to the acceptor S02. One can therefore expect,

that also this reaction is largely HOMO-LUMO dominated. As the reaction is barrierless

in gas phase, we monitor here the effect on the reverse reaction, i.e. the dissociation

of the Lewis acid-base complex. As in the previous examples, a considerable lowering

of the dissociation barrier can be observed upon increasing the electronic temperature

(Fig. 5.6 and Table 5.3). At an electronic temperature of 8000K it is basically halfed.

Again the HOMO-LUMO gap is reduced near the dissociation limit with respect to the

value at equilibrium (Figure 5.6, middle panel) leading to a preferential lowering of the

dissociated state while for all the electronic temperatures used the equilibrium distance

itself is basically unaffected, i.e. the overall topology of the potential energy surface is

maintained.
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Temperature (K) A#i (kcal/mol) Enhancement^ AE2 (kcal/mol) Enhancement2

1000 0 1 0 1

2000 0 1 0 1

4000 0 1 -0 0.9

8000 2 30 -1 0.1

16000 2 100 -3 2•10~3

Table 5.4: Intramolecular proton transfer between 2-hydroxypyridine and 2-pyridone. Aü^

and AE2 are the lowering of the barrier for proton transfer from O to N and N to O,

respectively. The corresponding Enhancements one adn two are an estimate of the change

in rate constant for the reactions at room temperature.

5.3.4 Intramolecular proton transfer between 2-hydroxypyridine

and 2-pyridone

As a next example, we have considered the intramolecular proton transfer between the two

tautomeric forms 2-hydroxypyridine and 2-pyridone in gas phase. This test system is of

more complex nature, as there is no obvious direct connection between the HOMO and

LUMO (ir and ir* orbitals of the aromatic ring) and the proton transfer reaction which

involves the breaking of the O-H <r-bond and the formation of an N-H bond. This is also

apparent from the middle panel of Figure 5.7 that shows the evolution of the eigenvalue

spectrum along an appropriately chosen reaction coordinate. There are several states near

the HOMO-LUMO gap that are sensitive to changes in the reaction coordinate, the HOMO

and LUMO themselves however do not experience large changes. The gap is smallest for

the configuration in which the nitrogen atom is protonated, and there is no clear correlation

between the magnitude of the gap, and the location of the transition state. For this system,

finite electronic temperatures do not lead to a significant lowering of the reaction barrier

(Figure 5.7 upper panel and Table 5.4). The largest decrease in activation energy (AE =

2 kcal/mol) is reached at a temperature of 8000K and a further raise does not lead to any
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Temperature (K) AEi (kcal/mol) Enhancement AE2 (kcal/mol) Enhancement2

1000 0 1 0 1

2000 1 6 1 6

4000 1 6 1 5

8000 2 90 -1 0.3

Table 5.5: Conrotatory ring opening of cyclobutene. Aü^ and AE2 are the lowering of the

barrier for for ring opening and ring closing, respectively. The corresponding Enhancements

one and two are an estimate of the change in rate constant for the reactions at room

temperature.

significant improvement. As is shown in Table 5.4, the net result is a marginal enhancement

of the forward reaction (proton transfer from oxygen to nitrogen) and a slight slowing down

of the backwards reaction (proton transfer from nitrogen to oxygen).

5.3.5 Conrotatory ring opening in cyclobutene

A second test case reaction of more complex nature that we have investigated is the ring

opening of cyclobutene to butadiene, one of the classic examples of a symmetry controlled

reaction. We have followed the symmetry-allowed, conrotatory pathway as the lowest

energy reaction channel by choosing the distance of the two terminal carbon atoms as

reaction coordinate. The orbital picture for the symmetry-allowed conrotatory ring opening

differs distinctly from the one of the symmetry-forbidden, disrotatory reaction. Whereas

for the latter, the reactive properties are dominated by the HOMO, this is not the case

for the former. In the conrotatory case, the HOMO is rather insensitive to changes in the

reaction coordinates but a lower lying state, namely the HOMO-1 can instead be considered

as the effective frontier orbital (Figure 5.8, middle panel). As can be seen in Fig. 5.8,

also the LUMO shows relatively little correlation with the reaction coordinate, resulting

in a situation in which the gap is lowest for the butadiene product. As expected, no
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dramatic lowering of the activation barrier is observed when a finite electronic temperature

is introduced. We note that the occupation numbers are assigned using the Fermi-Dirac

distribution, and hence the finite temperature mainly affects HOMO and LUMO. However,

due to the fact that also the occupation of the HOMO-l,LUMO+l and LUMO+2, are

influenced by the finite temperature bias though to a lesser extent than the HOMO and

LUMO themselves, a small reduction of the barrier can be detected (Table 5.5) but the

overall finite temperature behaviour is generally more complex.

5.3.6 Peroxynitrous acid

Peroxynitrous acid is an example of a small molecule for which different reactive pathways

with competitive barriers exist. It constitutes therefore an interesting test system to probe

the relative efficiency of an enhanced sampling method for multiple reaction channels.

Starting from the global minimum configuration (the eis-eis isomer), the molecule can

undergo homolytic bond breakage of either the central N-0 bond or the 0-0 peroxy bond

and dissociate into N-0» and »0-0-H or 0-N-O» and »0-H, respectively. In addition, the

molecule can also isomerize around the central N-0 bond to a trans-perp form. We have

determined the gas phase energy profiles at different electronic temperatures for all of the

three reactions mentioned. As an important test of our method, we have also investigated

the corresponding effects for the isomerisation reaction in an explicit solvent.

N-O bond cleavage

The first reaction channel we studied was the N-0 bond cleavage of peroxynitrous acid in

which the NO» and »OOH radicals are produced. As can be seen in the Fig. 5.9 (middle

panel), this reaction has a strong HOMO-LUMO dependence, and accordingly, the method

is able to lower the barrier significantly (Table 5.6). At the same time, the equilibrium
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Temperature (K) AE (kcal/mol) Enhancement

1000 0 1

2000 2 50

4000 9 2-108

5000 14 9 • 1011

Table 5.6: N-0 bond dissociation in ONOOH. AE is the lowering of the dissociation

energy in kcal/mol, Enhancement is an estimate of the corresponding increase in sampling

efficiency for a simulation at room temperature, or, equivalently, the increase in the rate

constant at room temperature (« exp(^)).

geometry is basically unchanged (RMSD of 0.014A) with respect to the zero Kelvin results.

At the highest electronic temperature, only a small barrier for dissociation remains, and

we verified that during a molecular dynamics simulation the system is able to overcome

the barrier and dissociate spontaneously on a subpicosecond time scale.

O-O bond cleavage

A further reaction reaction that can take place in this system is the breakage of the per¬

oxy bond to form »OH and »ONO radicals. This dissociation shows an almost equally

strong HOMO-LUMO dependence (Figure 5.10, middle panel). Accordingly, also for this

channel the activation energy is lowered drastically upon introduction of a finite electronic

temperature (Table 5.7), and the rate is enhanced by as much as nine orders of magnitude.

Cis-trans isomerization

As for the homolytic bond breakage reactions, we find a strong dependence on the electronic

temperature also in the case of the cis-trans isomerization of peroxynitrous acid (Table

5.8). The characteristic evolution of the gap along the reaction coordinate (i.e. the ONOO
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Temperature (K) AE (kcal/mol) Enhancement

1000 0 1

2000 1 10

4000 8 5-106

5000 11 8-109

Table 5.7: 0-0 bond dissociation in ONOOH. AE is the lowering of the dissociation

energy in kcal/mol, Enhancement is an estimate of the corresponding increase in sampling

efficiency for a simulation at room temperature, or, equivalently, the increase in the rate

constant at room temperature (~ exp(^)).

Temperature (K) AEi (kcal/mol) Enhancement AE2 (kcal/mol) Enhancement2

1000 0 1 0 1

2000 0 1 0 1

4000 4 1-103 3 400

5000 6 2-105 5 5-104

Table 5.8: Cis-trans isomerisation of peroxynitrous acid in gas phase. AEi and AE2

are the lowering of the barrier for the rotation from eis to trans and from trans to eis

respectively. The corresponding Enhancements one and two are an estimate of the change

in rate constant for the reactions at room temperature.
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distance between the O atoms is the reaction coordinate. The data is organised and labeled

as in Fig. 5.4.
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Figure 5.11: Cis to trans isomerisation in ONOOH where the dihedral angle O-N-O-0 is

the reaction coordinate. The data is organised and labeled as in Fig. 5.4.
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dihedral angle), shown in Fig. 5.11, renders this system an almost ideal case for FTAA.

Indeed, FTAA leads to a maximal lowering of 6 kcal/mol at 5000 K and therefore to

an acceleration factor of approximately 105. Moreover, this study on peroxynitrous acid

also illustrates the power of FTAA in the sense that three different competitive chemical

reactions can be easily accelerated significantly by a single and straightforward electronic

bias. This is in contrast to a typical geometrical bias that forces the system in a priori

selected direction.

Cis-trans isomerization in solution

The acceleration of chemical events in complex systems with a rugged potential energy

landscapes in which the barriers of the effective chemical events coexist with a multitude

of low conformational barriers is especially challenging. Most of the existing methods lack

the ability of finding relevant high lying activation barriers in a sea of less important tran¬

sition states. A method that is able to enhance the sampling in a selective way for the

chemical event only is therefore highly desirable. The cis-trans isomerisation of perox¬

ynitrous acid in an explicit solvent of 52 water molecules at normal density, both treated

at the gradient corrected DFT level constitutes thus a challenging test. We probe if the

method presented here is able to lower selectively chemically relevant reactions in the pres¬

ence of many chemically less relevant nearby transition states. Since the calculation of a

complete free energy profile for this reaction is computationally very demanding, we de¬

cided to study the influence of the electronic temperature for selected configurations only.

These configurations where obtained from a previous first principles molecular dynamics

study [35] that used constrained MD to calculate the free energy profile for isomerization

in aqueous solution. We used three independent configurations for several values of the

reaction coordinate to calculate the average lowering of the total energy as a function of the

electronic temperature. Clearly, this does not provide sufficient statistics to obtain quan-

titavely converged results but can give a first qualitative indication on the performance of
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Temperature (K) AE (kcal/mol) Enhancement

1000 0 1

2000 0 2

4000 4 2-103

5000 6 2-105

Table 5.9: Cis-trans isomerization of peroxnitrous acid in aqueous solution. AE is the

lowering in activation energy in kcal/mol for conversion from the eis to the trans form,

Enhancement is an estimate of the corresponding increase in sampling efficiency for a

simulation at room temperature, or, equivalently, the increase in the rate constant at room

temperature (« exp(j^)).

the enhanced sampling approach. As shown in Fig. 5.12, the fluctuations in the observed

barrier lowering are quite significant indicating the strong dynamical solvent effect on the

gap of the system. The introduction of a finite electronic temperature leads to a significant

lowering of the activation barrier (Table 5.9). Note, that the achieved enhancement in

sampling efficiency is comparable to the values obtained for the corresponding gas phase

reaction. These results indicate that the finite temperature approach is equally effective

for gas phase as well as for condensed phase systems.

5.4 Conclusions

We have presented a novel method (finite temperature assisted acceleration, FTAA) to en¬

hance the sampling of rare chemical events. Our approach makes direct use of the intrinsic

electronic structure of the reactive system by exploiting the simple concept of a finite elec¬

tronic temperature. Applying FTAA, it is possible to lower the barriers for a number of

typical chemical reactions significantly. At the same time the overall topology of the po¬

tential energy surface is maintained, so that the difference between the zero temperature
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Figure 5.12: The lowering of the total energy as compared to the value at zero tempera¬

ture, for selected configurations of peroxynitrous acid in solution during the eis to trans
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atures; Circles: 2000 K, squares: 4000K, diamonds: 5000K. The lines are drawn through

the average values for the respective temperatures.

and the finite temperature potential can be used efficiently as a bias potential. Moreover, a

similar reduction of activation barriers can also be achieved for solution reactions for which

the barrier of the actual chemical event is competing with a large number of energetically

low-lying barriers for configurational transitions. The simple method presented here works

surprisingly well in the case of orbital-driven chemical reactions that are dominated by the

HOMO and LUMO orbitals for which impressive acceleration factors of several orders of

magnitude, often more than five, can be achieved in a straightforward manner. Advantages

of the current scheme are its easy implementation, and for many electronic structure codes,

its low computational cost.
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Abstract

We derive an expression that enables the accurate estimation of equilibrium properties

using non-Hamiltonian dynamics. The major advantage of our scheme is that a time

average over a single non-Hamiltonian trajectory can be employed instead of an ensemble

average. Hence, it can directly be used in standard molecular dynamics simulations. The

connection between non-Hamiltonian dynamics and equilibrium properties is established

by assigning to the individual frames of the trajectory a weight that is based on the

fluctuations of the phase space compression factor. Additionally, a simple scheme that

takes into account only fluctuation of a given maximum duration is introduced to reduce

the statistical error. By systematically extending the duration of the allowed fluctuations,

increasingly accurate results can be obtained. Non-Hamiltonian dynamics schemes that

are capable to enhance sampling efficiency are applied to two model systems in order to

demonstrate the practical performance of our approach for the calculation of equilibrium

free energy differences and probability density profiles.
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6.1 Introduction

In a standard molecular dynamics scheme, particles are propagated using Newtons equa¬

tions of motion, where the forces on the particles are derived from a potential energy

function. This type of dynamics is Hamiltonian and energy conserving. Therefore, assum¬

ing ergodicity, properties of the system in the microcanonical ensemble can be extracted by

averaging the quantity of interest over a single trajectory. In order to calculate properties

in other ensembles with the same scheme, a more involved approach is needed. Indeed,

an ensemble of systems with consistent initial conditions has to be used for the averaging

process. In order to sample e.g. the canonical ensemble the initial configurations have

to be Boltzmann distributed. However, current molecular dynamics simulation techniques

circumvent this complexity and sample e.g. the canonical ensemble directly using a single

trajectory. This is achieved by modifying the equations of motion, and adding additional

forces on the particles. Methods that are e.g. aimed at sampling the canonical ensemble

add friction-like forces to the equations of motion in order to ensure a given average value

for the kinetic energy of the system that is consistent with the temperature of the ensem¬

ble. [1] [2] [3] [4] The freedom to add auxiliary forces to the dynamics can be exploited more

generally for an efficient study of a wider range of problems with new types of molecular

dynamics schemes that are designed for specific purposes. However, if additional forces

are added the resulting dynamics is usually neither energy conserving nor Hamiltonian.

As we will show below, the formal properties of the system change significantly in such a

case, since, at variance with Hamiltonian dynamics, the phase space compression factor

typically becomes non-zero. If the average phase space compression factor is negative, it

is generally not known how to relate the time average over a single trajectory to averages

over a physical ensemble.

In this paper, we want to explore the limitations and possibilities that arise whenever

non-conservative or time-dependent forces, in addition to thermostats, are added to the

dynamics. In particular, we are interested in this type of non-Hamiltonian molecular dy-
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namics as a device for enhanced sampling aimed at bridging the time scale gap in molecular

dynamics simulations. We are therefore not interested in the nonequilibrium properties of

the system per se, but want to connect to the equilibrium properties at any instance dur¬

ing the non-Hamiltonian dynamics. Hence, we derive a practical relation that establishes

a general connection between the average over a single non-Hamiltonian trajectory and

an average in a physical ensemble. In Section 6.4, we validate our approach with numer¬

ical studies of model systems whose non-Hamiltonian dynamics has been designed with

enhanced sampling applications in mind.

6.2 Evaluating phase space integrals using ensembles

subject to compressible dynamics

In this Section, we discuss briefly how a property that is defined as the phase space average

of an observable can be evaluated using an ensemble of systems subject to general dynamics.

For the time independent case, if A(T) is an observable, depending on the phase space

vector T, and f(T) is a probability distribution, the average value of A ((A)f) is defined

as [5]

(A)f = JA(T)f(T)dT. (6.1)

Equivalently, (A)f can be written as an average over an ensemble {Ti} of N systems, if

these are distributed as f(T) and N is large.

[A{T)f(r)dr = ±'£A(ri). (6.2)

If the systems evolve in time, i.e. the ensemble {Ti(t)} and the distribution f(T, t) are time-

dependent, the equations of motion have to be specified, and they define the time-derivative

of the phase space vector T. An important characteristic quantity for the dynamics is the

phase space compression factor that is defined as A(r) = Vr • I\ e.g. for Hamiltonian
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dynamics :

IX*) = (Qi(t),q2{t),---,q3N(t),Pi(t),P2(t),---,P3N(t))

f - (— —
dH

— -—

dH

dpi
'

dP2
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dq3N
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Since A(T) = 0, Hamiltonian dynamics is incompressible. Generally, as e.g. in the case of

Nosé-Hoover dynamics [1] [2], A(r) ^ 0 and the dynamics is compressible. As illustrated

in Fig. 6.1, a non-zero phase space compression factor has a pronounced effect on the

evolution of an ensemble. Starting from an ensemble of systems that are homogeneously

distributed, it is apparent that for the incompressible case the number of systems within a

finite phase space volume remains constant, whereas in the compressible case this number

is free to change during the dynamics (of course, the total number of systems remains

constant).

A weight W(T,(t),t) can be assigned to every member of the ensemble so that the average

over the evolved ensemble, at any time during the non-Hamiltonian evolution, equals the

average over the initial (equilibrium) ensemble, i.e.

A(r)/(r)dr = i £ A(r,(o)) = -j- £ A(rt(t))w(rt(t),t). (6.4)
{r,(o)> {r,(t)}

There are two alternative ways [6] to derive the quantity W(Tt(t),t) in Eq. 6.4. The

first approach is based on the observation that the local density of systems in phase space

changes as a function of time (as illustrated in Fig. 6.1). The time dependent density

(f(T,t)) satisfies a generalised Liouville equation, and is given by &
= —/A(T). [7] This

equation can easily be solved for the case that A is not explicitly time dependent and yields

f(T(t),t) = /(r(0),0)exp(-/0' A(T(t'))dt'). The correct weight W(Tt(t),t) for the system

Tj at time t is given by the ratio between the initial density of systems in the current point

(r,(£)), that is f(Tt(t),0), and the actual density of system in the current point, that is

f(Tt(t),t). This can be written explicitly as :

W(T,(t),t) = exp(^A(r8(^0^0^H))'o)v (6-5)

/
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"^—T—"""

Figure 6.1: Schematic illustration of the effect of a non-zero phase space compression factor.

In this representation, each point in the three panels represents the positions (p,q) in phase

space of an individual system, and each panel shows the same fraction of phase space, but

after different types of dynamics. Upper panel, the initial coordinates, notice that the

systems are homogeneously distributed. Middle panel, coordinates after incompressible

dynamics, notice that the density of points equals the density in the upper panel. Lower

panel, after compressible dynamics.
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In this expression, which can easily be calculated during the evolution of the system, the

first factor of the integrand takes the compressibility into account, and the last factor

is different from one only for non-homogeneous initial densities. The second approach

to obtain W(Fi(t),t) is equivalent to assigning a phase space volume element to every

member of the ensemble, and taking its size as the weight. The size of this volume element

is given by the Jacobian J(T, t) of the transformation of phase space that results from

the dynamics. The Jacobian J(T,t) obeys the equation ^ = JA(r(i)). [8] Proceeding as

above, this leads to the same definition of the weight as given in Eq. 6.5.

An example of a very interesting equation that can be derived using the approach outlined

here, was recently published by Jarzynski [9] [10]. Jarzynski's equation relates the work

(W) done in switching a Hamiltonian in a finite time, thus not adiabatically, from H\-o

to H\=i to the free energy difference between the initial and final states (AF) and is given

by

(exp(-ßW)) = exp(-ßAF), (6.6)

where (• • •) denotes averaging over canonically distributed initial configurations.

For a direct, numerical, application of Eq. 6.4, it is in most cases necessary that the

initial ensemble {Ti} is very dense to enable an accurate evaluation of the integral. This

is due to the behaviour of the term exp(/0' A(t')dt'). It can be shown that for systems

that are kept in a nonequilibrium steady state the phase space compression factor A is on

average less than zero. [11] The effect of (A) < 0 is that the weight of a typical member

of the ensemble decreases exponentially fast to zero as a function of time. Members of the

ensemble that have /0* A(t')dt' > 0 are exponentially less probable for increasing t. [12] [13]

This suggests that it is unavoidable to have a dense and extended initial ensemble, since

many systems with a very low weight and very rare trajectories with a large weight have to

be sampled, and hence a large amount of independent simulations have to be performed.

This limits practical use of the equations in the form given above, and is the motivation

for the derivation of a more practical expression in the next Section.
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6.3 From ensemble averages to a time average

In this Section, we will propose a modified form for the weight W(T, t), that ensures that it

does not decay to zero. We will demonstrate that in this case no average over a dense initial

ensemble is necessary, but that a time average over a single non-Hamiltonian trajectory

can be used instead.

In the following, we employ an homogeneous initial ensemble {T^O)} for all averages,

which implies that f(T, 0) factors out of Eq. 6.5. We introduce instead a phase space

function D(T) so that e.g. a canonical average of an observable A(T) can be obtained as

the ratio of two phase space averages y\p(r \ ^ ^(T) is chosen to be exp(—ßH(T)).

More importantly, we also introduce a function j(t), depending on time only, to arrive at

the mathematically equivalent form

JA(T)D(T)dr
=

E{rt(o)} A(ri(0))D(Ti(0))

fD(T)dT £{r,(0)} 1)^(0))

E{r,W}^(ri(0)^(r,(^))exp(/0tA(r,(^)^))
£{r,(t)} D(Ti(t)) exptfo* A(r,-(f )df)

E{r,(T)} !oT AjrmDjTiit)) exp(7(Q + /0f A(r,(f))df)<ft

E{r,(T)} fo D(Ti(t)) exp(7(t) + J* A(Fi(f))dt')dt

In the last equation, we sum integrals over the trajectories of the systems, and we obtain

this form by multiplying the effectively time-independent nominator and denominator by

/0 exp(^(t))dt. This expression is correct for every choice of y(t), but is particulary inter¬

esting for -y(t) = —(A)t + c, where c is a constant, since for this choice, the apparent weight

(exp(7(i) + /0* A(T(t')dt')) of a given system is not exponentially decreasing, but fluctuating

around a finite value. The weight is thus related to the integral of the fluctuations around

the average value of the phase space compression, i.e. to A(t) — (A), rather than to the

value A(t) itself.

At this point we replace the ensemble average in Eq. 6.7 by a time average over the



6.3 From ensemble averages to a time average 161

trajectory of a single system and write

fA(T)D{T)dT
=

/0T A(T(t))D(T(t)) exp(7(*) + fj A(T(t'))dt')dt

fD(T)dv T-oo /0rD(r(t))exp(7(t) + /0tA(r(f))^)^
' (->

Eq. 6.8 is a practical, ad hoc, assumption, and we show in the next Section that it yields

very accurate results for the model systems we studied as long as a natural condition holds;

there must be a finite probability to find the system near every phase space point that is

needed to evaluate the integral in the left hand side of Eq. 6.8. [14] Although certain

classes of non-Hamiltonian dynamics violate this condition, a negative average phase space

compression factor alone seems not to imply that this assumption is not valid. This fact

is illustrated with the examples in the next Section.

As already mentioned, a functional form such as 7(£) « — (A)t + c is mandatory to take into

account all configurations in a non-Hamiltonian run. However, an attempt of using directly

the form 7(£) = —(A)t + c failed for the systems we studied, because of the extremely slow

convergence behaviour of Eq. 6.8. This can possibly be attributed to fluctuations in A(t)

that cause /0' A(t')dt' > 0 for all t. These fluctuations are exponentially less likely for longer

t, but are on the other hand contributing with an exponentially increasing weight to the

average. We require therefore an approximate form for 7(i) that can be made arbitrarily

close to the target form 7(i) = —{A)t + c, but that can be tuned in such a way as to have

smaller fluctuations in the term exp(ln(D(r(£))) + /0* A(t')dt' + j(t)) so that Eq. 6.8 can

be sampled with high accuracy in a finite time. The following differential equation for 7(t)

leads to the desired properties of 7(£)

Q7(t) = - HD(T(t))) ~ f Ht')dt' - 7(t) - aQy(t). (6.9)
Jo

Here Q and a are constants that play the role of a generalised mass and friction coefficient,

respectively. By construction, the solution 7(t) of this equation follows closely the value of

— \n(D(T(t))) — /g A(t')dt'. However, the characteristic frequency (u2 = ^) of Eq. 6.9 will

determine the allowed temporal length of the fluctuations in — ln(D(T(t))) — /0* A(t')dt' —

j(t). The characteristic time window can be tuned through the adjustable parameter Q.
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Since limQ_HX,7(£) = —(A)t + c, the target functional form of 7(t) can be reached in a

continuous way. Only in this limit 7(t) as defined by Eq. 6.9 is independent of T, as

assumed in the derivation of Eq. 6.7. We note that inclusion of the term \n(D(T(t))) is not

absolutely necessary for obtaining the target functional form in the limit of large Q, and

in fact any phase space function could be used instead. However, for intermediate values

of Q a lower systematic error is obtained if this term is included. We demonstrate this

feature by means of numerical examples in the next Section for dynamics where (A) / 0.

The importance of this term can also be shown straigtforwardly for standard Nosé-Hoover

dynamics. [1] [2] In this case — ln(D(T(t))) — /0* A(t')dt' is a constant, and Eq. 6.9 yields

7(£) = c for all values of Q, so that Eq. 6.8 is exact.

It is of practical importance that the weight of a configuration can be calculated indepen¬

dently and at no additional cost for several values of Q. Given a trajectory of a certain

length, the value of Q that minimises both the statistical and the systematic error can be

determined a posteriori. The evaluation of the weight is straighforward since it involves

solving a single differential equation, independent of the system size. Eq. 6.8 together with

Eq. 6.9 form the central results of this article, and will be illustrated numerically with two

applications on model systems in the following Section.

6.4 Numerical studies of two model systems

6.4.1 Estimating free energy differences

In the first application, we calculate the free energy difference between two single particle

Hamiltonians, Hmin = J~ + \kminq2 and Hmax = ]~ + \kmaxq2, where kmin and kmax

are arbitrary force constants of a harmonic potential. We introduce non-Hamiltonian

conditions for this system by deriving forces from a time-dependent potential that varies

continuously between two harmonic wells. This type of dynamics could be of use for the
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calculation of relative binding affinities for a large set of ligands, since a single trajectory

based on a Hamiltonian that is designed to vary between prototypical ligands in the set

might contain a broader range of configurations and thus enhance the sampling efficiency.

Since the time dependence is continuous, rapid and thus non-adiabatic, we introduce a

thermostat to keep the energy of the system bounded. We have adopted the following set

of equations for an extended system (x1} •

, x^).

X\ = x\ — K — X\X2

x2 = x\ — K — x2x3

x3 = x\ — K — X3X4

X4 = x\ — K

x5 = x6

X6 = -{ki + k2{l + cos(u)kt)))x$ - X&Xi (6.10)

The variables X\, , X4 are thermostating variables as in the Nosé-Hoover chain method

[15], x5 is the position and x§ is the momentum of a particle, K determines the temperature,

and ki,k2 and u>k are constants that describe a time dependent harmonic force. All masses

are of unit value. The associated phase space compression factor is given by A = —X2 —

x3 — X4 — X1. Since, for a non-zero switching frequency u^, work is continuously performed

on the system, A is on average negative.

Within the extended system, it is possible to calculate the free energy difference between

the two original Hamiltonians in the canonical ensemble as

« ass ^

_

/exp(-|(xj + x\ + x\ + x\ + kminxl + xl))dxi dx6

/exp(-f (x\ + x\ + x\ + x\ + kmaxx\ + xj))dxi •••dx6

/0T exp(-f Qr? + x\ + x\ + x\ + kminx2 + x\) + y(t) + fQ A(t')dt')dt

/0T exp(-f {x\ + x\ + x\ + x\ + kmaxx\ + xl) + 7(i) + /„* A(t')dt')dt

where j(t) is calculated using Eq. 6.9, with additional parameters Q and a. The latter

was choosen as to have an almost critical damping of the system for all values of Q.
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Figure 6.2: Model system A (see text): absolute value of the difference between the exact

and the estimated free energy difference. Squares : without the term ln(D(r)); diamonds

: with the term ln(D(r)). The latter does not converge monotonically, hence some results

are accidentally closer to the exact result.

The equations of motion were solved numerically using a Runge-Kutta fourth order inte¬

grator [16] [17] [18]. After equilibration, we performed the averaging over the trajectory as

given by Eq. 6.11 until the statistical error was negligible. For a fixed set of parameters

{kmin = 6,/cmai = 14,ß = l,K = l,ki = 10, A;2 = 4, u>k = 0.1) we performed a series of

simulations with different values of Q and compared the estimated free energy differences

with the analytic result. Furthermore we have also run simulations with and without the

term \n(D(F)) in Eq. 6.9, in order to judge its effect on the convergence behaviour. Fig.

6.2 shows the difference between the exact result and our estimate. Considering the fact

that an accuracy of 10~3 kT in a free energy difference is extremely small for all practical

purposes, we can see that the error that might be introduced by Eq. 6.8 and Eq. 6.9 is
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negligible in both cases. It is also clear that inclusion of the term ln(D(r)) improves the

error for a given value of Q by approximately an order of magnitude. We would like to

point out that the data suggests that the error decreases roughly exponentially with Q.

6.4.2 Spatial probability distributions

In the second example, we calculate the spatial probability distribution of a system that

is subject to a non-conservative force, in particular, we scale the force on one of the two

particles. Since interparticle forces are present, this introduces a non-conservative force.

Preliminary tests showed that this approach might be a powerful scheme for enhanced

sampling simulations, since the mobility of the particles that are subject to this scaled

force can be greatly improved. We define the following equations of motion:

xi = x\ + x\ — IK — x\x2

X2 = x\ — K

x3 = x4

X4 = —x3 — a(x3 — x5 — 1) — X1X4

x5 = x6

x& — —x5 + l(x3 - x5 - 1) - xixe (6-12)

where the variables Xi,x2 are thermostating variables of a Nosé-Hoover chain, x3,x4 and

x5,x6 are position and momenta of the first and second particle, and the constant K

determines the temperature. The parameter a can be used to change the force acting

on the particles from conservative (a = 1) to non-conservative (a ^ 1). In Fig. 6.3, we

show the distribution 6(x3 — x)8(x5) for various values of a, both before and after applying

the weighting procedure. It is clear that the non-Hamiltonian dynamics influences the

uncorrected distribution functions significantly, especially if a deviates strongly from one.

Instead, the curves of the weighted approach reproduce the target distribution closely for

values of a that are above 0.4, but the curve with a = 0.3 clearly deviates from the target
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Figure 6.3: Model system B (see text): the distribution functions 6(x3 — x)6(x5) for sev¬

eral values of the parameter a. The lower panel shows the uncorrected distributions, the

upper panel shows the results after weighting. The solid line represents the equilibrium

distribution function, whereas the dotted, the dashed, and the dashed-dotted line where

obtained with 0=0.8,0.5,0.3 respectively. Notice that in the upper panel the dotted line is

almost indistinguishable from the solid line.
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Figure 6.4: The trajectory in phase space of the second model discussed in the text. The

points represent the coordinates of the particles (x3,x^). Each panel shows a trajectory of

equal length, but for different values of the parameter a. From left to right, from top to

bottom a = 0.3, a = 0.5, a = 0.8, a = 1.0.

distribution. In Fig. 6.4 independent points of the trajectory are shown for several values

of a, and it can be seen that this trajectory is confined to a limiting cycle for a — 0.3,

whereas for the other values the distribution is clearly inhomogeneous, but there is a non¬

zero probability to find the system everywhere in phase space. With this example, we want

to demonstrate that, for certain choices of the parameters of a non-Hamiltonian dynamics

run, the system can get trapped on a limiting cycle. Such a behaviour would invalidate

the use of Eq. 6.8, but can be considered less likely for larger systems. [19]

For the same system, and for an intermediate value of a (a=0.8), we show in Fig. 6.5 the

convergence to the target distribution, as measured by the root mean square difference

between the distribution functions. Also in this case, the convergence with respect to Q

seems roughly exponential. The difference between the obtained distribution function and
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Figure 6.5: Model system B with a — 0.8 : the upper panel shows the rmsd between

the equilibrium distribution function and the non-Hamiltonian distribution function after

weighting for several values of the parameter Q. The lower panel shows how closely the

equilibrium distribution (circles) is matched by the corrected non-Hamiltonian distribution

(squares), as compared to the uncorrected non-Hamiltonian distribution (diamonds).
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the target function can hardly be discerned.

6.5 Conclusions

We have established a connection between the average over a single non-Hamiltonian tra¬

jectory and equilibrium properties. This has been achieved by weighting each of the config¬

urations of the non-Hamiltonian run with a simple weight that is based on the fluctuations

of the phase-space-compression factor. This weight can be calculated a posteriori without

a significant computational cost and contains a single parameter that has to be adjusted

in order to obtain statistically converged results. The assumption underlying our approach

should be considered as a practical one, but the model systems we have studied show

that very accurate estimates can be made with this scheme, and thus provide an indirect

confirmation of the simple picture we have presented.

We are therefore confident that this scheme opens the way to applications that extend

beyond the chosen model systems. We are currently developing non-Hamiltonian enhanced

sampling techniques where forces that do not derive from a potential are introduced to

provoke transitions between stable states, and to increase the statistics for the sampling of

rare events.
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Abstract

We present a novel method, canonical adiabatic free energy sampling (CAFES), that al¬

lows for the efficient exploration of the free energy surface of a subsystem (S) embedded

in an environment (E) using molecular dynamics simulations. The dynamics of S is de¬

coupled from the environment by introducing fictitious masses that ensure that S evolves

slowly and adiabatically on the potential of mean force generated by E. In addition, the

decoupling enables the use of different temperatures for the two parts of the system with¬

out introducing an irreversible heat flow. Using a higher temperature for the subsystem,

a high efficiency for the sampling of rare events is obtained. The scheme is tested for a

conformational analysis of a Gly-Ala dipeptide in aqueous solution, and enables the obser¬

vation of rare conformational transitions that naturally occur on a millisecond time scale

within few nanoseconds of simulation. The same method has also been applied in a hybrid

Car-Parrinello/classical molecular dynamics simulation of the proton-catalyzed conversion

of 2-bromoethanol to dibromoethane in water. Applying the CAFES method, anchimeric

assistance and the occurrence of a bromonium ion intermediate could be observed repeat¬

edly.
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7.1 Introduction

A central goal of chemical research is the elucidation of chemical reactions on the atomistic

level. Molecular dynamics (MD) simulations are a promising theoretical tool for this.

Indeed, the introduction of Density Functional Theory [1] (DFT) in molecular dynamics

by Car and Parrinello, [2] combined with the novel hybrid quantum mechanical/molecular

mechanical (QMMM) approaches, [3] made it possible to have accurate dynamics of large

systems for tens of picoseconds. If these large systems could be simulated for times that

are comparable to experimental ones, a richness of chemical reactions could be observed

directly, with atomistic detail and without introducing prior knowledge, using computer

experiments. However, a simulation length of tens of picoseconds is at the limit of what

is routinely feasible for ab initio MD at this moment, and this is still many orders of

magnitude away from the millisecond to hour timescale that is typical for many chemical

reactions. Hence, chemical reactions are seldomly observed spontanously during MD.

To overcome this limitation and to get closer to the goal of observing rare, unknown

reactions during MD simulations, there has been an intensive search for methods that can

significantly extend the time scale, or enhance the sampling efficiency of MD simulations. [4]

These methods typically try to increase the rate constant for possible reactions (activated

events) in the system by modifying the potential energy surface (PES) in a well controlled

way so that the free energy of activation is lowered. Since the rate depends exponentially

on the activation energy, the probability that a reaction happens spontaneously during

an MD simulation on the modified PES can be orders of magnitude larger. Efficient and

general recipes to modify the PES exsist for small systems, or for systems where a precise

geometrical reaction coordinate is known, but these recipes often fail for (bio)chemical

systems. These difficult systems typically contain a large number of degrees of freedom,

for example the solvent, that are subject to anharmonic motion and have low barriers,

whereas the chemically interesting degrees of freedom might be rather stiff and have a high

free energy of activation. General methods usually fail for this kind of system because the
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effort is not focussed on, for example, the active site, but is equally distributed over the

full system. This reduces significantly the efficiency of the sampling, since a phase space

with many degrees of freedom has to be explored. At the same time, such a large phase

space is often not necessary for many interesting problems, since the chemical events are

limited to a small subsystem, such as the solute in solution, or the active site in a protein.

The method presented here focusses the sampling effort and differentiates between a reac¬

tive subsystem (S, f.e. the solute or the active site), and an environment (E, f.e. the solvent

or a protein). We do this by decoupling adiabatically the dynamics of the subsystem and

the environment in such a way that the subsystem performs a dynamics on its free energy

surface (FES), thereby taking in a precise way the effect of the environment into account.

This decoupling allows us to use a temperature Ts for the reactive system that is different

from the temperature of the enviromenment (TE). By significantly increasing the tem¬

perature of the reactive system, it samples more efficiently its free energy surface. Since

increasing the temperature can be done without using prior information, CAFES can be

used for the exploration of an unknown free energy surface, ideally providing sufficiently

many transitions so that the previously unknown reaction mechanism can be understood.

Notice that for a standard MD simulation a significant increase of the temperature is nor¬

mally not possible for a complex system, since e.g. a solvent would evaporate or a protein

would unfold, leading to an unphysical system. It is crucial that the environment remains,

as in the CAFES method, at the physical temperature. The increase in the rate for reactive

events can than be estimated by ^w-ag/3b) '
^e va^° °f *ne ra^e constants at the respec¬

tive temperatures, where AG is a typical activation free energy and ßx ~ j^x. E.g. for a

reaction with an activation energy of 20 kcal/mol and TjE=300K using T5=1200K yields

an increase of efficiency of 1010. This is sufficient to bridge the gap between the nanosecond

timescale of simulation, and the second timescale of experiment. Even higher efficiencies

can be obtained if the system has a larger activation energy or if the temperature Ts is

increased further. We remark that these apparantly high temperatures Ts are in the same

energetic range as the spontaneous local fluctuations that make these rare events happen
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Figure 7.1: The reaction of 2-bromoethanol (a) with bromine to yield dibromoethane (d),

involving as a key intermediate, after dissociation of the H2O group from the protonated

2-bromoethanol (b), the bromonium ion (c).

in reality, and must be compared to the activation energy.

As we show in the next Section, the strength of our method lies in its formulation as a

combined dynamical scheme where both the subsystem and the environment are propa¬

gated simultaneously, but are adiabatically decoupled, leading to a computationally effi¬

cient method. The performance of this scheme is demonstrated by conformational sam¬

pling, and the acceleration of reactive events. The complex nature of reactive, solvated

systems, which involve high activation barriers within a sea of low barriers, makes them

especially challenging for any sampling method. The first test involved the calculation of

the free energy surface of a dipeptide in solution, where free energy profiles can be com¬

pared with those from standard simulation methods. The results on this system clearly

indicate that new conformations can be found efficiently and accurately, even though nat¬

urally the interconversion would occur on time scales that are orders of magnitude beyond

what is achievable by standard molecular dynamics simulations. Furthermore, we succes-

fully applied our method, within a QM/MM framework, to the study of the reaction of

2-bromoethanol with bromine in solution which yields dibromoethane as shown in Fig. 7.1.

In particular, we focussed on the second elementary step that involves H2O as a leaving

group, and a bromonium ion as a key intermediate. The suggestion of the existence of

a bromonium intermediate dates back from the 30s. This intermediate accounts for the



178 7 Canonical adiabatic free energy sampling (CAFES) ...

stereochemistry of bromine additions to olefins and explained why substitution with re¬

tention of configuration is possible. [5] [6] [7] Furthermore, the described reaction is the

textbook example of neighboring group participation or anchimeric assistance, [8] [9] and

this provides an additional reason for its study. Using the CAFES method and over 200

ps of mixed classical/Car-Parrinello molecular dynamics, we were able to observe several

times the formation of the bromonium ion, and hence confirmed its role as an intermediate

and the mechanism of this fundamental reaction.

7.2 Formulation of the method

Central to our method is the partitioning into two subsystems, the reactive subsystem and

the environment, that are kept at different temperatures. In the following, we superscript

quantities that belong to the reactive subsystem and the environment with R and E respec¬

tively. In particular, we denote the momenta with ({pf ,pf}), the positions with ({qf ,qf})

and the mass of all atoms with ({mf ,mf}), where i and j run over the atoms (NS,NE)

of each system. In order to achieve canonical sampling for each system, we use Nosé-

Hoover thermostats, [10] [11] implying thermostating variables ({p^,r)s,QS,pE,nE,QE}),

and temperatures ({TS,TE}). For a given potential energy V({qf,qf}) we define the

following dynamics where X stands for both R and E :

Pi
dqf

Pi
Qx

Nx ( X\2

px = Y ^i±-
_ 3NxkTx with i : 1... Nx

i mi

V
x

=
eI_
Qx
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These equations are a straightforward generalisation, of the Nosé-Hoover equations, with

two independent thermostats, and conserve the quantity

Ns i S\2 NE t E\2 (VS\2 t E\2

Vita? nE}) + V ^- + V
[Pi) + ^- + *"'

V"q*'qJ
^ +

^ 2m? +^2mf
+

2Q*
+

2QE

+ 3Nsr]SkTs + 3NEr)EkTE.

The use of two thermostats introduces additional freedom that can be exploited to enhance

sampling efficiency. In our approach, TE is set to the physical temperature, whereas Ts

is tuned to optimize the sampling. Two thermostats have been used in an MD based

docking strategy before, but without an adiabatic decoupling, and hence with a continuous

heat flow, and without a well defined sampling probability distribution. [12] The crucial

step, which is needed to obtain the dynamics of the reactive system on its free energy

E

surface at the specified temperature, is the rescaling of the masses so that ^V < 1. In

this way, a clear difference between the frequency spectrum of the reactive system and

the environment is introduced, and in particular, the reactive system has become slowly

varying, as compared to the fast motion of the environment. This has two important

consequences that we address in detail below : (1) The systems are decoupled and can be

in equilibrium although they have different temperatures; (2) The slowly moving system

feels an average force, and its dynamics is on its free energy surface (FES) as determined

by the environment.

We would like to point out the close analogy between this approach, which treats the re¬

active system in the average field of the decoupled environment, and the Car-Parrinello

method [2] [13], which considers the ions in the average field of the decoupled electronic

degrees of freedom, hence the arguments to validate the Car-Parrinello method can be

adapted to the current method. As shown in Ref. [14] for the CP method, the follow¬

ing intuitive statements, which are exact in the limit of perfectly decoupled systems, hold

accurately in case the systems have well separated frequencies: (1) There exist adiabatic

invariants and this implies that the irreversible energy flow between the two systems is

close to zero. Therefore, the systems are in equilibrium, and since we use Nosé-Hoover
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thermostats, equilibrate at the specified temperatures. This implies that the fast degrees

of freedom (pE, qE) sample the canonical distribution at temperature TE for every configu¬

ration ({ps, qs}) of the reactive system. (2) The dynamics of the slow degrees approximates

the one resulting from a Hamiltonian with an effectively averaged potential. This potential,

which we denote by V^F{qs), is, for a full decoupling, given by

exp(-/^ (Vs)) ~

feM-ßEV(qS,qE))dqE
exp( p VMF{q ))-

hM_ßEV{qs^qE))dqEdqs-

This potential of mean force equals the physical free energy surface of the reactive system.

An enhanced canonical sampling of this free energy surface can be obtained by taking

rps > rpE gmce we assume adiabatic evolution and hence equilibrium sampling, the

probability distribution of the full system in configuration space is given by

exp(-(ßs - ß^V&tf))
„ptf,q*) =

x

Jexp(-/WjK.(«5))d?5
exp(-ßEV(qs,qE))

Jexp(-ßEV(qs, qE))dqsdqE

This explicit form allows us to calculate thermodynamic properties from a trajectory gen¬

erated with CAFES. In the next Section, we discuss how the ratio of the masses ^g- can

be tuned in order to achieve an efficient and accurate sampling.

7.3 Determination of the mass ratio

E

The ratio of the masses ^ determines the degree of decoupling between the subsystems,

and hence the accuracy of the method. Rescaling the masses of the reactive system by

a factor a ^> 1 increases the cost of the simulation because the total time (t) needed for

averaging over the trajectory grows as t oc y/a. [15] Accuracy has therefore to be traded

for efficiency, and we show below that a = 100 is a reasonable choice for the system we

studied, but the appropriate choice of the masses might depend on the desired accuracy,

and on the system and property that is being studied. Our choice of mass ratio brings the
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overall efficiency down by about a factor often, which is little compared to the exponential

gain implied by our method, and still produces qualitatively accurate free energy profiles

for both the minima and the transition states in the system. A precise number for the

free energy barrier might afterwards be generated more efficiently with techniques that use

this reaction coordinate [4] and, starting from a reactive trajectory as generated by our

method, a study of the dynamical effects of the crossing could be undertaken using the

transition path sampling method. [16]

A reasonable setting for the masses of the CAFES system can only be determined by study¬

ing a realistic molecular system. We address this question with classical molecular dynam¬

ics simulations of a zwitterionic Gly-Ala dipeptide solvated in water. Our computational

setup is based on the GROMOS96 force field [17], using SPC water (1720 molecules), flexi¬

ble bonds, and P3M with a 323 mesh to compute the electrostatic interactions [18]. We used

the hybrid classical/quantum interface to the program CPMD [19] [20] in the fully classical

mode, extended to incorporate the CAFES equations, in a generalised form where every

atom is coupled to a chain of Nosé-Hoover thermostats. [21] We performed CAFES simula¬

tions where the full peptide was treated as the 'reactive' system and was thermostated at

1200 K, whereas the solvent was kept at 300 K. We did not optimise the frequency of the

Nosé-Hoover thermostats and kept all chains at a frequency of 1000 cm-1. We multiplied

the masses of the peptide by a factor of 1, 3, 10, and 100 and ran those systems for 1.4, 2.3,

3.1, and 10.7 ns respectively. As mentioned before, the simulation time should increase with

the square root of the mass factor to obtain comparable statistics. The reference calculation

was a standard molecular dynamics simulation of 3.1 ns. For these systems, we compared

the free energy profiles (given by FE(9) = —kTln(p(9)) for the torsional angle (6). The

probability density p(9) for the torsional angle can be computed exactly from the proba¬

bility density of the CAFES subsystem (ps(qs)) as p(9) = af S(6'(qs) - 9) [ps{qs)\ W dqs,

where a is a normalisation constant. We used instead the more convenient, approximate

expression p(9) « a(f 5(9' (qs) — 9)ps (qs)dqs)Tw, that neglects contributions of cross terms

within the reactive system to the free energy. The advantage of this expression is that it
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Figure 7.2: In the figure, we compare the peptide torsional (NT-Ca-C-N) free energy

profiles calculated with the CAFES method, for several scaling factors of the peptide

masses. The solid, dotted, dash-dotted, and dashed line represent the results for scaled

masses by a factor of 100, 10, 3, and 1 respectively. The thick solid line is based on the

MD reference trajectory that is well reproduced by the heaviest system. Notice that the

MD trajectory did not cross the barrier.

can be computed directly as an average over the trajectory. In Fig. 7.2 the calculated

free energy profiles are shown. Notice that a straightforward MD simulation of 3.1 ns

sampled the free energy surface up to energies of about 5 kcal/mol only. The fact that

the relatively small barrier of approximately 6 kcal/mol has never been crossed clearly

indicates the limitations of standard MD simulations for the exploration of rare events.

At variance with this, all CAFES simulations sample the complete torsional angle profile.

Most importantly, it can be seen that the free energy profile of the MD simulation is better

reproduced with increasing mass. Using a factor of 100 for the masse ratio, the difference

between the MD profile and the CAFES profile is small compared to typical errors due

to the empirical force field (or even DFT) description of the system. We remark that the

convergence is such that the barrier appears higher for the lighter systems. This can prob¬

ably be attributed to the energy flow between the reactive system and the environment
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Figure 7.3: The figure shows the time evolution of the torsional angle over the peptide bond

(CQ-C-N-Ca) during CAFES dynamics (mass factor 100). Torsional transitions, which are

naturally in the millisecond time range, happen several times within the few nanoseconds

shown.

that effectively cools the lighter, more coupled systems more, reducing the probability to

find them near the barrier. In Fig. 7.3, we show the time evolution of the torsional angle

over the peptide bond (Ca — N — C — Ca), and several eis to trans torsional transitions can

be observed within a few nanoseconds of simulation. This result underlines the sampling

efficiency of our method, since this transition can be estimated to be in the millisecond

range, and hence inaccessible with standard molecular dynamics techniques. Indeed, using

a bias potential approach, we found a barrier of 15 ± 0.1 kcal/mol for this transition, which

agrees with the CAFES results within the statistical error (±3 kcal/mol). Unexpectedly,

the unusual eis conformer was found to be lower in energy by about 0.6 kcal/mol. The

latter can be explained by the strong charge-charge interaction of the end groups that are

at closer distance in the eis conformation. The fact that an unexpected transition can lead

to an unexpected global minimum illustrates the usefulness of a sampling approach that

leaves, contrary to e.g. constrained dynamics, considerable freedom in the sampling.
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7.4 The formation of a bromonium ion intermediate

and anchimeric assistance in 2-bromoethanol

In this section, we use the CAFES method to explore the reactivity of a solute in solution.

In particular, we address the question of whether the bromonium ion is formed as an in¬

termediate in the conversion of 2-bromoethanol to dibromoethane as described in Fig. 7.1.

We performed an exploration of the free energy surface using the CAFES method, starting

from the protonated form of the reactant (Fig. 7.1b) to arrive at a bromonium ion interme¬

diate (Fig. 7.1c). The computational setup is based on the hybrid Car-Parrinello/Classical

code, [19] [20] where the protonated 2-Bromoethanol is described quantum mechanically,

and the solvent classically, using 218 SPC water molecules in periodic boundary conditions,

and one counter ion. The van der Waals interaction between the QM and MM atoms is

based on the GROMOS96 force field, [17] and the Coulomb interaction between the QM

and MM part is explicitly taken into account with the scheme described in ref. [22]. The

quantum system is treated at the DFT [1] level with the Becke-Perdew exchange [23] and

correlation functionals, [24] Martin-Trouillers pseudopotentials, [25] a plane wave basis set

with a 70 Ry cutoff, a cubic quantum box with an edge of 16 a.u., decoupled from its

images, [26] a timestep of 5 a.u. and a fictituous electron mass of 600 a.u. [19] Notice

that it is not possible for the classical solvent to bind covalently with the solute. However,

this limitation becomes important only after the H20 group has left, and is therefore of

minor importance for the part of the reaction under study. The heavy atoms of the bro-

moethanol molecule are taken as the reactive subsystem, with the masses scaled by a factor

of 100, coupled to a Nosé-Hoover chain thermostat with a frequency of 1000 cm-1 and a

temperature of 2000 K. The solvent molecules and the hydrogens of the solute were at

300K. Keeping the hydrogens of the solute at room temperature allows us to concentrate

on the forward step of the reaction, since the backwards step, which is the deprotonation,

is not accelerated. We verified using a standard MD simulation that the distribution of

the O-H distance in the solute was unaffected by this setup, even though there is a bonded
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Figure 7.4: The figure shows three consequtive snapshots of the dynamics taken during

the reaction. From left to right : 1) Initial configuration, the protonated 2-bromoethanol

molecule (ball and sticks) is treated quantum mechanically, whereas the water solvent

(lines) is treated classically. 2) A typical configuration just before the water molecule

leaves the solute, notice that the C-O bond is elongated, and that both the Br-C-C and

the C-C-O angle are close to 90 degrees. 3) The final state of the reaction, where the

bromonium ion intermediate is formed.

interaction between the CAFES system and the environment. Independent frames of the

reference trajectory were used to start CAFES simulations for a total time of 203 ps of

QM/MM Car-Parrinello molecular dynamics simulations.

During these simulations, four reactive events where observed in which the water molecule

leaves the solute and a bromonium ion intermediate is formed. One of the reactive events

is shown in Fig. 7.4. Based on these four events, a qualitative understanding of how the

reaction proceeds can be gained. In particular, we did not observe any dissociation without

the formation of the bromonium ion, pointing at the importance of this structure for an

energetic stabilisation of the reaction. In addition, we were also able to observe several

torsional transitions around the C-C bond, resulting from the fact that the dynamics
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Figure 7.5: Average value of the Br-C-C angle (squares), and the C-C-0 angle (circles) as

a function of the C-0 distance. When the water dissociates, the system ends up in the

bromonium state, as indicated by the small Br-C-C angle (60 degrees). Interestingly, both

angles are strongly correlated with the distance, and in particular, become acute. Notice

that for longer distances, the average of the C-C-0 angle is not well defined, since the

water molecule diffuses away.

samples freely the CAFES subsystem. We estimate that the relative free energy of the

trans and gauche conformation, as well as the torsional barriers, can be determined with

a statistical accuracy of about 1 kcal/mol. The trans conformer was observed slightly

more than either of the two gauche conformers, however, the energy difference between

trans and gauche is very small, and presumably statistically unsignificant. The barrier for

isomerisation from trans to gauche is estimated to be about 5 kcal/mol, whereas the eis

configuration is at the top of a barrier of about 9 kcal/mol. This implies that crossing it

with direct molecular dynamics would require a microsecond simulation. We notice that

although the system spends the majority of the time in the gauche states, the dissociation

reaction happens only when the system is in the trans state, which is consistent with the fact

that it is more difficult to form the bromonium ion starting from the gauche configuration.

In order to address the extend of the cooperativity between the leaving of the H20 group

ni r
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and the formation of the bromonium ion, we show in Fig. 7.5 a correlation plot between

the C-0 distance and the average Br-C-C and C-C-0 angles. This figure clearly indicates

that the dissociation happens in a concerted way with the bending of both angles and

thus that an appropriate reaction coordinate for this reaction should include all of them.

The second snapshot of Fig. 7.4 shows a typical configuration during the dissociation, and

the bending of both angles can be clearly seen. The anchimeric assistance of the bromine

follows from the fact that a bromonium ion is formed upon dissociation and that the Br-

C-C bend is clearly correlated with the C-0 distance during the dissociation. This strong

coupling indicates that the rate at which the H20 group leaves the solute depends on the

properties of the neighboring group. We notice that the average value of the C-C-0 bond

is 80° to 90° when the water molecule leaves the solute, indicating that the water molecule

leaves in such a way as to maximize the overlap of one of its lone pairs with the p-orbital

of the carbon atom. Despite the multidimensional character of the reaction coordinate,

the simplest way to present the energetics of the reaction is still to use an approximate

one dimensional reaction coordinate, and to calculate a free energy profile for this degree

of freedom. We calculated, based on our CAFES trajectory, the free energy profile for

the dissociation using the C-0 distance as an approximate reaction coordinate, and the

binned data, together with a Morse potential fitted to this data, are shown in Fig. 7.6.

The Morse potential fits very well the shape of the free energy profile up to the more or

less flat dissociation region, and can be used to estimate the free energy of dissociation as

23±2 kcal/mol.

7.5 Summary and conclusions

CAFES, a novel method for the efficient exploration of free energy surfaces has been pre¬

sented. In this method, the system is partitioned in a reactive subsystem and an envi¬

ronment, and analogy to the Car-Parrinello method, a fictituous mass is used to decouple

adiabatically the two systems. In this way, the dynamics of the slowly moving, reactive
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Figure 7.6: The free energy profile for the water dissociation, using the C-0 distance as

an approximate one dimensional reaction coordinate. The solid curve is a Morse potential

fitted to the binned data.

system is on its potential of mean force due to the environment, and additionally, two dif¬

ferent temperatures can be introduced without introducing a irreversible heat flow between

the systems. The freedom to assign different temperatures can be used to enhance specif¬

ically the sampling of the reactive subsystem by increasing its temperature, and hence to

accelerate transitions on its free energy surface. If the subsystems are decoupled by using

a sufficiently large fictituous mass, a well defined canonical distribution is sampled. We

notice that the CAFES method can also be used in a simulated annealing approach, and in

particular, for Ts close to zero, the 'reactive' system goes to a minimum on its free energy

surface. If a sufficiently slow cooling is used, the system might find its global free energy

minimum. The method can be applied in various MD schemes and here we presented

applications using classical molecular dynamics and hybrid Car-Parrinello molecular dy¬

namics. In the first study, the conformation flexibility of a small peptide in solution was

enhanced significantly, and transitions that are naturally in the millisecond range were

observed during a few nanoseconds of simulation. At the same time, we verified that the

free energy profiles generated by the CAFES method were equivalent to those generated
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by standard molecular dynamics simulations. For the second application we used 200 ps of

Car-Parrinello/classical molecular dynamics simulation, one of the longest ab initio simula¬

tions performed so far, to probe the reactivity of a protonated 2-bromoethanol molecule in

solution. During this simulation, the water molecule dissociates and surpasses a barrier of

approximately 23 kcal/mol. During these events, the anchimeric assistance of the bromine

was observed several times, and the bromonium ion intermediate was found to be the key

intermediate for all the observed dissociations. Previously, such events were inaccessible

to straightforward molecular dynamics simulations. These studies demonstrate therefore

that the CAFES method is a general and efficient scheme that can reveal unknown reaction

pathways and intermediates in complex systems.
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Chapter 8

Summary and outlook
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8.1 Summary

In this thesis, novel methods have been presented that can significantly extend the length

and time scales of ab initio molecular dynamics.

The length scales have been extended by introducing a QM/MM scheme that combines the

Car-Parrinello method with a classical molecular dynamics approach based on empirical

potentials. This technique effectively allows the simulation of reactive events in large

systems, with a cost that is related only to the size of the reactive part and this allows

an efficient treatment of the effect of e.g. protein and solvent environment. The interface

between the QM and the MM part of the system has been constructed carefully so that

a balanced interaction has been obtained. The computational efficiency of the underlying

Car-Parrinello and classical methods has been maintained. Using this method, copper

binding to the prion protein has been investigated and a possible binding site has been

presented.

Various sampling methods have been introduced in order to bridge the time scale gap in

MD simulations. These methods significantly extend the range of events that can be ob¬

served in molecular dynamics simulations. The classical bias potential technique can be

used to efficiently generate free energy surfaces of ab initio quality, provided that a good

(classical) estimate of the dominant interactions is available. The finite electronic temper¬

ature scheme is most promising for the study of systems where an unknown, electronically

driven rearrangement, might take place. Non-Hamiltonian dynamics was linked to equilib¬

rium properties as an essential step towards novel schemes that employ general forces to

enhance sampling efficiency. Finally, the CAFES method can be used quite generally to

explore the reactivity and the conformational flexibility of a given subsystem in an envi¬

ronment. We note that these schemes, with exception of the finite electronic temperature

scheme, can also be applied in classical molecular dynamics simulations. All the meth¬

ods that have been presented here have shown to yield increases in sampling efficiency by



8.2 Outlook 195

several orders of magnitude.

We can therefore conclude that the combination of the QM/MM scheme and the sam¬

pling methods presented here, makes ab initio molecular dynamics an even more powerful

approach to study the reactivity of complex systems.

8.2 Outlook

The subject of this thesis allows for, and requires, experimenting with methods and sys¬

tems. The result of this experimenting is presented here in the form of several novel

schemes. Some of these methods are already in practical use, and thus new ideas about

how to apply and extend the schemes have appeared meanwhile. Other methods might

still require additional applications before an in depth understanding of their merits and

limitations can be obtained. Ultimately, I would like to suggest some directions that could

be explored in future work :

• The QM/MM approach in its current form requires van der Waals parameters for

the atoms of the QM system. QM species with van der Waals properties that change

during the course of a reaction, e.g. change their ionic state, have to be sufficiently

far from the QM/MM border. This is a limitation that could be removed from the

scheme, but requires additional parameters for the classical system. It would be

interesting to see if these parameters could be determined in an ab initio way.

• For QM/MM simulations of solutes in solution, an automatic scheme to deal with

the diffusion of QM solvent molecules would be very valuable.

• Enhanced sampling simulations can be significantly more efficient, and hence should

become part of the standard repertoire of simulation tools. However, in order to

achieve this, a larger number of illustrative applications to complex systems has to

be performed.
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• The enhanced sampling schemes in this thesis are mainly focused on accelerating

activated events. It would be interesting to see if similar ideas could be used to

improve the conformational dynamics of systems that have slow and low-frequency

modes, that are not necessarily activated.

• The introduction of a finite electronic temperature is an interesting first step towards

a novel class of sampling methods that can use as much chemical information as can

be deduced directly from the electronic structure of the reactive system. Using other

reactivity indicators such as e.g. the vibronic coupling constants could be valuable

as well.

• The use of non-Hamiltonian dynamics for the evaluation of equilibrium properties

might require additional investigation in order to judge the practical applicability.

However, the question of whether dynamical properties could be estimated from non-

Hamiltonian dynamics is appealing and challenging as well.

• The CAFES method seems promising since it is easily applicable and well tested.

Additionally, the combined dynamical scheme with the adiabatic separation can also

be seen as a general method to reduce a complex, highly dimensional system to a

lower dimensional one in an efficient way. Other ways of exploring this simplification

could yield several useful molecular dynamics schemes.
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