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Abstract

In this thesis we give a detailed analysis of the méthode of the

slopes introduced by Bost in 1995 in a Bourbaki talk [3]. In partic¬

ular we write down some proofs that are missing in his paper. In

the first part of our dissertation we show how to modify the proof of

the Subvariety Theorem by Bost in order to improve the bounds in a

quantitative respect and to extend the Theorem to subspaces instead

than hyperplanes. Given an abelian variety A denned over a num¬

ber field K and a non-trivial period 7 in a subspace W C Tak, the

Subvariety Theorem (Theorem 2) shows the existence of an abelian

subvariety B of A denned over Q, whose degree is bounded in terms

of the height of W and of the norm of the period 7.

As a nice application of our Subvariety Theorem we deduce an up¬

per bound for the degree of a minimal elliptic isogeny which improves

the result of Masser and Wüstholz [20].

Riassunto

In questa tesi presentiamo una dettagliata analisi del metodo delle

pendenze introdotto da Bost in un seminario Bourbaki nel 1995 [3]. In

particolare diamo alcune dimostrazioni che non appaiono nell'artico-

lo. Nella prima parte della dissertazione mostriamo come modificare

la dimostrazione del Teorema della Sottovarieta' (Theorem 2) data da

Bost, al fine di ottenere un miglioramento dei limiti ed estendiamo il

risultato a sottospazi anziehe considerare solamente iperpiani. Data

una varietâ abeliana A definita su un campo di numeri K e un periodo

non nullo 7 appartenente a un sottospazio W C T^K, il Teorema

assicura l'esistenza di una sottovarieta abeliana B di A definita su Q,

il cui grado e' limitato in funzione dell'altezza di W e della norma del

periodo 7.

Come interessante applicazione del Teorema della Sottovarieta de-

duciamo un limite superiore per il grado di una isogenia minimale tra

curve ellittiche che migliora il risultato ottenuto da Masser e Wüstholz

[20].
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Introduction

In 1990 D. Masser and G. Wüstholz started a series of papers on period

relations for abelian varieties [20]-[26]. As an application they obtained a

new proof of the Tate Conjecture, which is very different from the proof

originally given by G. Faltings in 1983. The Tate Conjecture is a crucial step

in the proof of Faltings' theorem on the Mordell Conjecture. In Masser's and

Wüstholz' work one of the central results states that, given an abelian variety

A defined over a number field K, there exists only a finite number of K-

isomorphism classes of abelian varieties defined over K which are isogenous

to A. Their approach consists in giving a bound for the degree of a minimal

abelian subvariety B of A whose tangent space at the origin contains a given

period of the lattice associated to A. The proof is a completely effective

version of the Analytic Subgroup Theorem by G. Wüstholz [39] in the special

case where the group is an abelian variety and where torsion points are

considered. No other known method gives such precise quantitative results.

As a test case, they started their research with elliptic curves rather than

with abelian varieties. In [20] they showed that, given two isogenous elliptic

curves E and E* defined over a number field K, there exists an isogeny from

E to E* with degree bounded by c(d) •max(l, h(E))4. Here c(d) is a constant

depending only on the degree d of the field K and h{E) is the height of the

Weierstrass equation defining the elliptic curve. The elliptic case turned out

to be a model for the general case of an arbitrary abelian variety.

In 1995 J.-B. Bost [3] gave a Bourbaki talk on the work of Masser and

Wüstholz. One of the interesting aspects of his approach is the intrinsic and

geometric version of the argument originally given by Masser and Wüstholz.

Several new tools were introduced. For example, the use of Arakelov geom¬

etry which had meanwhile become available. Arithmetic intersection theory

allows, among others, to define the height of an algebraic variety in general.
This height has nice functorial properties.
Other geometric ingredients are hermitian vector bundles on the spectrum

of the ring of integers of a number field and the related concept of Arakelov

degree and slopes. An interesting aspect in his work is the use of semista-

bility in transcendence. This approach avoids theta functions, the study of

the moduli space of polarized abelian varieties and the construction of aux¬

iliary functions as they appear in the work of Masser and Wüstholz. As a

consequence, proofs and effective calculations are more direct.

In this thesis we give a detailed analysis of Bost's approach and in partic¬

ular we write down some proofs that are missing in his paper. In the first

v



part of our dissertation we show how to modify the proof of the Subvariety

Theorem by Bost in order to improve the bounds in a quantitative respect

and to extend the theorem to subspaces instead than hyperplanes. Given an

abelian variety A defined over a number field K and a non-trivial period 7

in a subspace W C Tak, the Subvariety Theorem (Theorem 2) shows the

existence of an abelian subvariety B of A, whose degree is bounded in terms

of the height of W and of the norm of the period 7. Our result gives a

bound which is linear in the height of W and polynomial of degree equal to

the dimension of the subvariety B in the norm of the period 7. In [3] the

bound is polynomial of degree equal to the dimension of A minus one in both

variables.

As a nice application of our Subvariety Theorem we deduce, in §6, an upper

bound for the degree of a minimal elliptic isogeny which improves the result of

Maser and Wüstholz. Moreover we make the constant effective in the degree

d of the field of definition of the elliptic curves E and E*. We need some

geometric modifications of their method in order to improve the bound to

c-d2 max(l, h(E), log d)2 for elliptic curves with complex multiplication and to

c • d2 max(l, h(E), logd)3 for elliptic curves without complex multiplication.

Here h(E) is the Faltings height of the curve E. We want to emphasize

that the version of the Subvariety Theorem given by Bost, does not imply

directly the result of Masser and Wüstholz in the special case of elliptic

curves. Instead, it implies the existence of an isogeny with degree bounded

by c-d8 max(l,h(A),\ogd)8.

This simplest case has been a test for the more general case of an abelian

variety. The modern techniques used here can possibly also be used to im¬

prove the result of Masser and Wüstholz for abelian varieties in a quantitative

respect. However further technical difficulties are expected. For instance the

many different types of complex multiplication for an abelian variety of di¬

mension larger than 2, or the bigger range for dimensions of a proper abelian

subvariety may cause problems.
A very ambitious conjecture is that the degree of the isogeny, at least in the

case of elliptic curves, does not depend on the elliptic curve at all, but just

on its field of definition. This would imply for instance that an elliptic curve

defined over a number field K has only finitely many subgroups defined over

K. This result was proven by Mazur in the case that the field of definition is

the field of rational numbers, and was later generalized by Merel for number

fields. However, how to extend the result to an arbitrary abelian variety

seems to be unknown. We are convinced that further ingenious
ideasareneededtoprovethisconjecture.vi



We shall now give some more details on the structure of this dissertation.

The first two chapters are dedicated to Arakelov geometry, we introduce the

degree and the slope of hermitian vector bundles on the spectrum of the ring

of integers of a number field. We then explain how the degree behaves with

respect to operations on hermitian vector bundles, like direct sum, tensor

product, symmetric and exterior power. We determine the relation between

the degree of a bundle and the degree of its image under a morphism. An

important tool will be the slope inequality (7). This inequality relates the

degree of a hermitian bundle to the slopes of a filtration of its image under

an injective morphism. It will play a fundamental role in the proof of the

Subvariety Theorem.

In the third chapter we recall the basic notions related to abelian varieties

and we define their Moret-Bailly models.

The fourth chapter is dedicated to some properties of non-reduced sub-

schemes of arithmetic varieties. We also define a filtration of sheaves as¬

sociated to such a non-reduced scheme.

In chapter 5 we give the proof of the Subvariety Theorem. First we shall deal

with an analytic problem, we have to bound the norm of operators associated

to the filtration. In lemmas 2 and 5 we estimate the norm of the derivative

of a trivialization of a section of a line bundle in some torsion points. As

expected by the Cauchy inequality, the bound is given in terms of the norm

of the section on a neighbourhood. The proofs are not difficult but involve

tedious computations.

To prove lemma 7 we apply the Phragmen - Lindelöf Theorem to a certain

entire periodic function. We get an estimate finer than the ones above. We

consider a section s of a line bundle, with a zero of multiplicity 2gM at

the origin. We proof that the norm of a trivialization / of s, as well as

the norm of its derivatives up to order gM, are "very small" at a torsion

sub-scheme. This last estimate plays a central role in the whole game. A

good choice of the parameters combined with the slope inequality (7) and

the above estimates, show that there exists a section of a line bundle which

vanishes at a non reduced torsion sub-scheme of A. Our Subvariety Theorem

is then a consequence of the Multiplicity Estimate Theorem 4.

In chapter 6 we give all details for estimating the variables appearing in

the Subvariety Theorem, in the special case of a product of elliptic curves.

Finally we show how to use these tools to improve the bound given by Masser

and Wüstholz in [20].

vn



Acknowledgements: It is a pleasure for me to thank my advisor Prof. Gisbert

Wüstholz for giving me such an interesting and wide problem and leading

me through it by a lot of discussions and encouragement. I am grateful to

Prof. J.-B. Bost for the many details he explained to me. Deep thanks go

to Prof. H. Knörrer, Prof. R. Pink and Dr. P. Graftieaux for their helpful

suggestions. Special thanks go to all my friends and colleagues for their help

and the nice lunch and tee time. I deeply thank the ETH and the university

of Florence for financial support. I can't forget to thank my parents for the

freedom they always let me in any choice. Finally it is with deep feeling
that I thank Robert for being always present and for comforting me reading
German literature.

vm



1 Metrics on Vector bundles

1.1 Notation

We want to fix notations about base change operations. Let A be a commu¬

tative ring, with a homomorphism to a field K. Let E be an A-module and

B an yl-algebra. We denote by EK and Bk the tensor product E ®a K and

B ®A K respectively.
If X is a scheme over Spec A, we denote by Xk the fiber product of X and

Spec K over Spec A.

If £ is a sheaf of ox-modules on X we denote by Ek the sheaf on XK given

by pulling-back p\£ = EK, here p\ is the canonical projection of the fiber

product XK on X.

We will not deal with the general situation where A is any ring, indeed we

will only consider the ring of integers of a number field K. If L is a field

extension of K then we will denote by Xk an algebraic variety defined over

K and by Xl the algebraic variety got by base change. If a : K —> C is an

embedding we will write Xa and Ea instead of Xc and £c-

1.2 Hermitian Vector Bundles

Definition 1 Let X be a complex variety and E a holomorphic vector bundle

on X. A hermitian metric h on £ is a hermitian inner product on each fiber

£z of £, varying smoothly with z X, that is such that the functions locally

representing h are C°°.

The real part of a hermitian inner product gives a Riemannian metric called

the induced Riemannian metric. When we speak of distance, area or volume

on a complex manifold with hermitian metric, we always refer to the induced

Riemannian metric.

We remark that to construct hermitian inner products it is enough to define

them locally and then to glue the local definitions using a smooth partition

of unity ([38] thm 1.11).

Definition 2 A hermitian vector bundle £ on X is a pair (£, h), where £ is

a locally free sheaf of finite rank on X and h is a hermitian metric on E.

We denote by Ec the complex conjugate vector bundle of £ whose C-structure

is given by the one of £ composed with the complex conjugation c : C —> C

The dual vector bundle <?v is the bundle of homorphisms from £ to the trivial

bundle.

We denote by A°(X, £) the space of the smooth global sections of £.
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Remark :

the metric h is an element of A°(X,£V <g) £cV). Indeed h is a sesquilinear
form on each fiber, so we can see it as a linear form from the tensor product

Ez % Ecz to C That gives an element of the dual space [£z <g> £z)y'
The fiber £z is of finite dimension, therefore (£z <g) £f)y is equal to £z ® £°yz.
By definition h varies smoothly with z X so h is a global smooth section

of£v®£cV, (see [13] p. 27).
One says that an element of h G A°(X, £v (g> £cV) is positive if the induced

quadratic form hz is positive definite for all z.

We are going to define, in a canonical way, dual, direct sum, tensor product,

n-th exterior power, n-th symmetric product and pull-back of a hermitian

vector bundle £.

1.2.1 The Dual T

Let £ = (£, h) be a hermitian vector bundle, we want to define the associated

dual hermitian vector bundle £ = (£v,/ïv) where hy is a hermitian metric

on £v induced canonically by h and h!. That is to define a positive element

hy eA°(X,£®£c).
The metric h induces the isomorphism $2 : £z —* £z given by

v

where

We now define

$, : £% — £

a i— hz(-,a)

hz(-,a) : £z — C

b i—> hz(b,a).

hyz : £yz x£cVz — C

(v,V) hz(^(v'),^(v)).
(1)

All the previous maps are C°° thus hy is an element of A°(X, £ (g> ^c).
Let us fix a point 2 G X, if we choose an orthogonal basis of £z we deduce

from (1) that the dual basis is orthogonal in £z. This shows that hy is

positive.

1.2.2 The Direct Sum £ 0 £'

Let £ = (£, h) and £ = (£', h!) be hermitian vector bundles on X. We shall

define a hermitian metric h © h' on £ © £' induced canonically by /&, i.e. we

2



want to define a positive element h © h' e A°(X, (£ © £'Y ® (£ © £')cV)-
Since

(5 © £'Y ®(£® £T = (£v © £'v) ® (£cV © £'cV) =

(£v ® £cy) © (£v ®O © (£'v ® £cV) © (£'v ® £,cV),

it follows that (£v ® £cV) and (£/V ® £/cV) are canonically embedded in

(£ © £')v ® (£ (B £'YV i
as well as their smooth global sections

A°{X, £v ® £cV) © «A0(X, £'y ® £'cV) - A°{X, (£ © £')y ®{£® £')cW).

By abuse of notation we still call h and h! the image of h and h! under this

embedding and set h © h' := h + h'. Of course h® h' is positive.

We remark that:

{h@h')z : (£ (B £')zx (£&£')z — C

(v,v',w,w') i— hz(v,w) + h'z(v',w').

1.2.3 The Tensor Product S ®t

Let £ and £ be as before, we want to define a hermitian metric on £ ® £',

i.e. a positive element in A°(X, (£ ® £'Y ® (£ ® £'YV) canonically induced

by h and h'.

Let us consider the natural embedding

$ : A°(X, £v ® £cy) ® A°(X, £/V ® £/cV) — A°(X, (£ ® £'Y ® (£ <8> £')cV)-

The image of h ® h' under the map $ is the section we are looking for, by

abuse of language we still call it h® h'.

Let us fix a point z & X. We give (h ® h')z explicitly as follows

(h ® ti)z : {£ ® S')z x(£® £')z —> C

The map is bilinear and well defined. From this expression follows the posi-
tivityofh®h!.Remark:aspecialcaseofthetensorproductisthefc-thpowerofahermitianvectorbundle£.The^-symmetricgroup&kactsonthisbundle.Fromtheexplicitexpressionoftheinnerproductitfollowsthath®kisinvariantunderthisaction.Wewillusethisremarkinsection(1.2.7).3



1.2.4 Exact Sequences

Let 8 = (S, h) be a hermitian vector bundle. Given an exact sequence of

vector bundles

0 £' —^-> 8 -^ 8" 0

we want to induce canonically hermitian inner products h! on £' and h" on

8". The exact sequence above induces the injective map

a®ac:8'®£'c^8®8c (2)

and the surjective map

ß ® ßc : 8 <8> 8c - 8" <g> 8"c. (3)

Dualizing (2) we get a surjective map

{a ® a)cV : {8 ® 8C)V ^ {8'® 8')cV

We define /i' to be the image of h under the map (a <g> a)cV.
We know from section 1.2.1 how to construct canonically the positive element

hv, which is a smooth global section of 8 ® 8C.

The image of hy under the map ß <g> ß is an element h"v G A°(X, (8" ® 8"c))
whose dual h" := (/i"v)v G A°(X, {8"®8")cy) defines the quotient hermitian

inner product on 8".

It turns out that h! is the natural restriction norm, and h" is the restriction

norm on the orthogonal complement of 8' which is canonically isomorphic to

8/8'. From this the positivity of h! and h" follows
.

1.2.5 The Pull-back f*8

Let / : Y —> X be a morphism of complex manifold and 8 a hermitian vector

bundle on X. We are going to define a hermitian metric f*h on the sheaf

f*8 on Y canonically induced by h.

We remark that

(f*8 ® f*8cY = (f*8)v (8) (f*8)cV - f*8y (8> /*£cV = /*(é:v ® <fcV).

From the definition of /*, the element f*h is positive and so defines a her¬

mitian inner product on f*8.
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1.2.6 The k-th Exterior Product Ak£

We want to define a hermitian metric Akh on Ak£, canonically induced by h.

The k-th exterior product Ak£ is a quotient bundle of tensor product £®k.

On £®k we induce the inner product h®k (see 1.2.3). We define Akh as the

quotient hermitian product (see 1.2.4) induced by /i®fc, and Akh is clearly

positive.
If we fix a point z E X and compute (Akh)z explicitly, we get

(Akh)z : Ak£z x Ak£z —> C

Ctfi A A^,WiA Awk) i—> det(/iz(^, Wj)i;j.

1.2.7 The k-th Symmetric Product Symfc £

We want to define a hermitian metric Symfc h of the vector bundle Sym £,

that means a positive element of

A°(X, (Symfc £ <g> Symfc £c)y) = A°(X, Symfc £w <g> Symfe £cV).

Let Tk£ be the sub-vector bundle of £®k fixed under the action of the k-

symmetric group &k- We are going to show that the bundle Symfc£ is iso¬

morphic to Fk£.

We consider the exact sequence

0 > K £®k —^-> Tk£ > 0

where S is the projector S(t) := jgj-r ^2r,ee ^W- Then the kernel /C can be

identified with (S - Id)£0/c.
Let us consider the exact sequence

0 > Uk > £®k —^ Symfc£ > 0

that defines Symfc £.

The projector S is trivial on 1Zk. In fact an element of /C is of the form

u :=
fc[ ICneSfc ^W ~ *• By definition of 1Zk we have that Tr(r)(t)) = ir(t) thus

7t(m) = 0. The projection tt is trivial on /C. In fact a generator of 7Zk is of

the form r](t) - r(t) with r?,?- <G 6fc. Thus S(r](t) - r(t)) = 0.

This implies that the map S : Symfc £—>Tk£givenbyS(t):=y^-rY^veek^W'where£isanyrepresentativeoft,isanisomorphism.Itfollowsthatthequo¬tienthermitianproductinducedbyh®kviattonSymfc£coincideswiththebull-backmetricS*hrk,wherehTkistherestrictionofh®ktoTk£.HencewesetSymfc/i:=S*hT*.5



We fix z 6 X and we compute ||e/||, where we use the following notations:

{el5 • •

-, en} is an orthogonal basis of 8Z; e/ = e^1 ® • • ® e^n is an element of

8; and / = (zi, • • -,zn); moreover |/| = J^Zfc and /! = n?=ib" ^° we nave

1 fc|
r;eefc

V '>
t,,t

Note that

/» MeT) r(er)) = I °
' ^ +^

If we set F = {(t, r?) . (r(e/) = r?(e/))}, it follows

,_ , ,_^1
|e/||symfc - (fcj)2 2^f1

"

(fci)^
~

(îfc!)2fc!i!
~

fc!'

This shows that Sym fo is positive.

1.3 Hermitian Vector Bundles on Arithmetic Varieties

Our next aim is to remove the hypothesis that X is a complex manifold and

to extend the definition of paragraph 1.2 to an arithmetic variety.

We donote by Ok the ring of integers of a number field K.

Definition 3 An arithmetic variety X over Ok is a scheme over Spec Ok

s.t. 7T : X —> Spec Oft: is a quasi-projective flat morphism of schemes. More¬

over we require that there exists a section e : Spec Ok —> X and that the

generic fibre is smooth and proper.

The fiber product Xc = X xSpecz SpecC is well defined.

The set of complex points X(C) :— {Hom(SpecC, X)} is the disjoint union

of complex varieties X(C) = \Ja K_^c ^(C). In fact if
p:SpecC—*•Xkisacomplexpoint,thenthecomposition11k°P'SpecC—>Specieinducesanembeddinga:=(irp)^fromKtoC.Definition4LetXbeanarithmeticvarietyoverSpeedy.Ahermitianvectorbundle8onXisapair(8,h)where8isalocallyfreesheafoffiniterankonX,and(8(C),h)isahermitianvectorbundleonX(C)invariantunder

conjugation.
Here 8(C) is the sheaf induced by 8 on X(C), as specified

in 1.1. If 8 has rank 1 one says that 8 is a hermitian line bundle.

6



Notice that the hermitian metric is given just on the holomorphic vector

bundle on the complex variety X(C).
Invariant under conjugation means that if a and a are conjugated embeddings
of K, then for every open set U of X the map id®c : £(U) ®aC —> £(U) (g^C

is an isometry.
In order to apply the work done in the paragraph (1.2) to arithmetic varieties

we have to check that the:

i) dual,

ii) direct sum,

ii) tensor product,

iv) exterior power,

v) symmetric product,

vi) pull — back

of locally free sheaves is still locally free. This follows from the general theory
of coherent sheaves on an algebraic variety, (see [14] chap. II, prop.5.5, 5.7,

ex. 5.1,5.16).
Finally we remark that given two hermitian vector bundles £, £' on X, the

following relations hold:

i) £V(C) = (5(C))V,

ii) £{C)®(£'(C)) = (£(B£')(C),

ii) £{C)®(£'(C)) = (£®£')(C,)

iv) Ar(£(C)) = (Ar£)(C),

v) Symr(£(C)) = (Symr5)(C),

vi) r£(C) = (f*£)(C).

1.4 An example: Spec Ok

In the special case of S :— Spec Ok, we have that «Sc = LL^./^c} SPec C. In

fact Sc = Spec(0K ®z C) = Spec(K <8>q C). Let f(x) be an element of Q[x]
such that K ^ Q[x]/(f(x)). Then (K ®Q C) is isomorphic to C[a;]/(/(a;)).
In the field C the polynomial f(x) splits in d = [K : Q] linear factors f(x) =

FJJ=1(x — al). By Galois theory there exists an isomorphism betwen the

embeddings {a : K — C} and the roots of f(x). Thus we can write f(x) =

Yl^x — Ota). By the Chinese Reminder Theorem we get the isomorphism

7



C[z]/(n> - <*„)) = EL C[x]/(x - aa). Therefore Sc = Spec Ua C[x]/(x -

a<j) = LICT.ft:^cSpec<^ and we ëet the following commutative diagram

5c = Spec(C[x]/(/(x))) > SpecC

«Sq = Spec K > Spec Q

S > SpecZ.

In an analogous way, if X is a iS-scheme then Xc = U? K->c^ai where Xa is

the fiber product of X and SpecC over Specie through the embedding a.

We remark that the invariance under conjugation of the inner product implies
in particular that on SpecOK we get \\s\\a- — \\s\\ä-
A sheaf on an affine variety is locally free if and only if its global sections are

a projective module, (see [14], chap. II, par. 5).
For a finitely generated module over a Dedekind-domain the notions of tor¬

sion free, flat and projective module coincide, (see [10], Thm. 13, p.95).
These strong properties simplify a lot the situation we are dealing with.

They tell us that there is an isomorphism of categories between the category

of locally free sheaves of finite rank over Spec ÖK and the category of finitely

generated torsion free C^-modules. For this reason we will often identify the

objects of the two categories. The module we consider are finitely genrated
module over a Dedekind-domain.

1.5 The push-forward of a Hermitian Vector Bundle

Let S be a hermitian vector bundle on an arithmetic variety it : X —»

Spec 0K.
The work of Moret-Bailly [30] lern. 1.4.2 shows that the push forward 7r*£ of

a locally free sheaf £ on X to Spec Ok is still locally free.

We want to induce a metric on the vector bundle E := H°(S,ir*£) =

H°(X,£) on Spec Ox- For each section
sEwedefinellSlla:=/\\Sx\\lad^a{x),(5)JX„(C)withd[iaameasureonXaand||•|||:=ha<x(-,-).Inthespecialcaseofanabelianvarietywewillchoosed^tobethenormalizedHaarmeasure.InthecaseofaprojectivespacewewillusetheFubini-Studymetric,(see2.2.2).8



2 The Arakelov Degree

2.1 The Arakelov Degree of a Hermitian Vector Bun¬

dle on Spec Ok

Definition 5 Let E be a hermitian line bundle over Spec Ok- For any sec¬

tion s in E we define

fegE:=logUE/söK)- J2 loglNI- (6)

If E is a hermitian vector bundle of rank r, we define

dêg£ :=dêg ArE~.

The real number deg E does not depend on the choice of the section, it is

called the Arakelov degree of E.

In order to prove that the definition does not depend on the choice of the

section s we will give in lemma 1 an equivalent definition of the Arakelov

degree. The independence will be an easy consequence.

Notations:

We denote by p a prime ideal of Ok and by vp the associated non-archimedean

valuation. Let E be a projective ö^-module of rank 1. The isomorphism

jp : Ep —> Okp between the localizations at p is unique up to a unit of Okp,
(see [2] II, 5.2 thm. 1). We extend the valuation at a prime ideal p of Ok to

E as follows Vp(s) := vp(jp(s)) for any element s G E.

The absolute value associated to p is ||(s)||„p := Np~vp where iVp := §(Ok/p)
is the absolute norm of an ideal.

We indicate by Mk the set of absolute valuations on K, by MK the set of

the non-archimedean ones and by M£? the archimedean ones.

Lemma 1 The following definition of Arakelov degree is equivalent to defi¬
nition 5

dei^:=- J2 loglKs)ll-- E l06 Ml- (?)

veM% vaeM%

This formula is independent of the choice of s E E.

Proof
We want to prove that log Jf (E/sOK) = - J2veM° loS ll(s)ll«-

9



From [2] II.2.4 thm. 1,11.3.3 prop. 8 and the corollary of prop. 9, we get

that for every projective C^-module of rank 1

(E/sOk) = H(E/sOK)p = H(Ep/sOKp). (8)
p p

Using the isomorphism jp : Ep —> öKp and (8) we deduce that (E/sOk) =

UP(0Kp/jp(s)0Kp) 9* Up(Ok/p)MMs)) And passing to the order we get

^E/söK) = U^Np)MMs)) = n^ ||a||-i_

To prove that degE does not depend on the choice of the section s, let t be

another global section, then t = ks for some k K*. We deduce

- e iogii(t)n„- E logiKiu =

veM%
K

E log11(mu,- E ^giNU

veM°K v£M%

= - E logii(*- E iosiMU- E losnfeii«

veM°K »eMf veMK

= - E log IK*- E loslNU
veM°°

the last equality because of the product formula rLeMK ll^lk = 1 f°r an

element in K* (see [10] III thm. 18).
*

2.1.1 Some Properties of the Arakelov Degree

We are going to prove several properties related to the Arakelov degree. The

final result, property 7, will play a crucial rule in the proof of lemma 8.

Property 1 Let E and F be hermitian vector bundles over Spec Ok of rank

n and m respectively. Let L be a hermitian line bundle over Spec Ok and

L its dual.

Then

1) deg (E <S> F) = mdeg E + ndeg F

2) deg{Ê®F) = dègË + dègF

3) dêgZv=-dêgI.

10



Proof of 1)
As a first step we prove it supposing that E and F are line bundles. Prom

the definition of induced metrics on the tensor product (see 1.2.3) it follows

that

(i) \\s®t\\a = \\s\\t,-\\t\\IJ.

The localization commutes with the tensor product, thus (E®F)P = Ep<g>Fp
for any prime ideal p. If jep ' Ep —> Oxp and jFp : Fp —> Oxp are the

isomorphisms between the localizations, then j(E®F)p ' (E <g> F)p —» Oxp is

given by j{E®F)p(s ®t)= jEp(s) JFP(t). Therefore

(ii) Vp(s®t) = Vp(s) + vp(t).

We finish the case of line bundles by substituting (i) and (ii) in the definition

(7) of the degree.
To reduce the general case to the case of line bundles we consider the isometric

isomorphism

Anm(E® F) ^ (AnE~)®m <g> (AmF)®n,

(see [1] chap. Ill 1 prop.6).
D

Proof of 2) Let k := vg(E © F) =n+ m. We get the result just using part

(1) and the isometric isomorphism:

k

Ak(E 0 F) = 0A^ ® Afc_iF = AnE <g> AmF

i=0

(see [1] chap III 5 ex. 7, or [28] thm. C2).

Proof of 3)
By the definition of the inverse sheaf we have a canonical isomorphism / :

Lv ®L = Ok- We endow Ok with the norms 1111 \a — 1 for every embedding

a. From the definition of the induced metric on the dual (see 1.2.1) it follows

that I is an isometry, and so deg (Lv (g) L) — 0.

Using point (1) we get degLv + degL = 0.

2.1.2 Normalized Degree and Slope

We want to determine the dependence of degE on extensions of scalars.

Let L be an extension of degree d of K, then i" : Spec Öl — Spec Ok is

finite, and by base change (see 1.1) we have Eql '•= E ®oK Ol- If s E we

11



still call s the global section of Eql given by s ® 1. The extension formula

(see [10] III, 1.15) says that

n iML=n*:Ä]-
wMl,w\v

Here w\v means that w equals v when restricted to K. Using the definition

(7) of degree it immediately follows that deg-E^ = [L : K]degE.
It is then natural to define the normalized Arakelov degree by

and the normalized slope of E by

We have proven that degn E and fi(E) are invariant under extensions of

scalars.

2.1.3 Saturated Submodules

Definition 6 A submodule F of a module E is saturated if F = (F®oKK)C\
E. If F is not saturated we define its saturation as Fs := (F ®oK K) ^ E-

Remark:

If E is a finitely generated projective module over a dedekind domain then

the saturation of a submodule F is torsion free and finitely generated_jthus it

is projective. If E is a hermitian vector bundle over Speed?«-, then degFs >

degF where we consider the induced inner products (see 1.2.4). Indeed,

by definition, ArF C ArFs. Using the definition (6) of Arakelov degree it

trivially follows that deg Fs > deg F.

Property 2 If F is a saturated submodule of E then E/F is torsion free,
and the exact sequence

0 F > E -^ E/F 0

splits.

12



Proof

Suppose that E/F has torsion T, then p~l{T) D F. Consider the exact

sequence

0 F p-\T) —^ T 0.

Since K is flat over Ok we get that F ®oK K = P-1(T) ®oK K which

contradicts the definition of a saturated module.

For the second claim just recall that torsion free means projective.

Property 3 Let E be an hermitian vector bundle on Spec Ok and F a sat¬

urated submodule of E. We endow F and E/F with the metrics canonically

induced by E (see 1.2.4), then the following relation holds

dègË = dêgF + dêgE/F

Proof From property (2) we know that F and E/F are direct summands

of E. We define the canonical isomorphism

I : AmF ® AnE/F —> Am+nE~

/i A • • A /m <g> el • • Aë^ '— /i A • • • A fm A ei • • • AeTO.

where rank F — m and rank E/F — n.

The isomorphism is canonical because for any representative of n classes

ëï, • • -,ë^ G E/F and any m elements /i,- • -,/m G F the exterior power

/i A • • • A fm A ei • Aem does not depend on the choice of the representative.

From definitions (1.2.4) and (1.2.6) it follows that / is an isometry. Now

apply property 1.

D

2.1.4 The Canonical Polygon

Let E be a hermitian vector bundle on Spec Ok- We consider on a sub-bundle

F the induced metric (see 1.2.4).

Definition 7 In the Cartesian product [0, rg E] x M. we consider the set

of points (rg F, degnF) where F is a sub-bundle of E. The convex hull of

these points is a set bounded from above, (see below). Its upper boundary is

a piecewise linear function Pe ' [0 , rg E] —> E called the canonical polygon

ofE.
We say that E is semi-stable if Pe is a linear function.

13



We remark that PE(0) — 0 and Pe(rg E) = degnE. For every i G [0,rg E]
we define

fil{E):=PE{ï)-PE{i~l).

and we also define

Amax(^) := ßl(E)

ßmin(E) :— ßIgE(E).

Since the function PE is convex, the (ßt)o<l<TgE is a decreasing sequence of

real numbers and Ylt ßl — degn E.

Sketch of proof:
We are going to give a sketch of the proof that the set of points which we

consider must be bounded from above. The trick is to use Grassmannians,

which are the geometric analogous of the exterior product; and heights that

turn out to be the analogue of the degree.
Let E be a hermitian vector bundle over Specö/f, and let Eq := E ®oK Q-

Let X = G(d, Eq) be the Grassmannian variety representing the subspaces

of dimension d in £W. We consider the natural projective Plucker embedding

i : G(d, Eq) — P(A"%)
V i—> /\dv.

On X = G(d, Eq) we consider the sheaf i*0(l) endowed with the Fubini-

Study metric (see 2.2.2), and we associate a model

iL:(G(d, i%),Z)^(P(Ad£),Ô(ï))
By base change, every submodule F of E of rank d gives a d-dimensional

subspace V of £W
,
V is a point P in G(d, Eq) defined over Ok, the point

P on the generic fiber can be closed in the model.

Bost, Gillet and Soulé proved (see [5] prop.4.1.2) that %(P) = —degF,
where hj;(P) is the height of %l{P) in the projective space (see [5] 3.1.6).

By Northcott's theorem (see [19]
IIthm2.2),thenumberofpointsinP^ofheightboundedfromaboveisfinite,sothenumberofsubmodulesofdegreeboundedfrombelowisfinite.Stuhler[37]andGrayson[12]defineacanonicalfiltrationprovingthatifÎrisanypointofdiscontinuityofP'Ethenthereexistsauniquesub-moduleERofEofrankiRsuchthatPe^r)—degnEft.Thechain0CE\CERC...CEisthecanonicalfiltration.Fromtheremarkin2.1.3itfollowsthatthemodulesERaresaturated.TheexistencefollowsfromthestrictconvexityofPE.AnothercharacterizationofthecanonicalfiltrationistorequirethattheEraresemi-stableandtheirslopesarestrictlydecreasing.
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2.1.5 Some Properties of Slopes of Hermitian Vector Bundles

Property 4 Let Ei,...., EN be hermitian vector bundles over Spec Ok then

Amax(©ill£z) = maxLax(£,).

Proof
Of course ßma.^{®^=iEl) > maxi<t<N ßmax(Et), so it is sufficient to prove

ßmax(®'i=lEt) < maXl<i<N ßmax(Ej)
It is enough to prove it for E]_ © F2, then use induction.

There exists a saturated submodule F of E\ © E2 of rank r such that

ßm&x(Ei © E2) — ^degnF. Note that r is the first point of discontinuity

of the first derivative of Pß-

Consider the commutative diagram

0 Fi :=FnË1 > F > F2 := F/Fl > 0

0 Ei El © E2 E2 > 0

Let 7*1 and r2 be the rank of Fi and F2 respectively. The metrics are the

induced ones, so we get

degnF
=

degn F: + degn F2

r r

<
nßm^Ex) + r2ßmax(E2)

n + r2

< max(/}max(Fi),/jmax(F2)).

D

Property 5 Let E be a hermitian vector bundle and L a hermitian line

bundle over Spec Ok, then

/w(£ ®L) = Amax(-B) + deg„ L.

Proof First we prove that ßmax(E <8> L) < ßma.x(E) + degn L. Let F be a

submodule of E ® L of rank r such that /imax(F <S> I/) = ^deg„ F.

Consider the submodule Fx := F <g> L-1 C F <g> L <g> L"1 = F. We have

15



From property 1 we get

deg^
=

deg„F1+rdeg„L
+
-

r r

It remains to prove ßmax{E <g> L) > ßma^E + degn L. For this just consider

a submodule Fr of F of rank r such that ßma,xE = ^degnFr. The module

Fr g) L is a submodule of E <g L and degn (Fr (g L) = degn Fr + rdegn L hence

Amax(-E ®L)> /i(Fr <g L) = /w-E + degn L.

D

2.2 The Arakelov Degree and Morphisms

Let <j) : E —» F be a morphism of hermitian vector bundles over SpecC^.

We define the norm of <fi to be the operator norm

m,,, II0O)IU
||0||CT := SUP —rr-r .

o^seE \\s\\(t

Property 6 Let (ft : E —> F be a non trivial injective morphism of hermitian

vector bundles over spec Ok- Then

rg£

degn£ < 5>(F) + j-r—^logW Ar^0||,
i=i

[K:

Proof
We first consider the case of a line bundle E, in this case deg (f>(E) :=

iogö(^)/0(5)^)-E..^ciogll^)IU
Since 0 is injective, (J {<f>{E)/<f>{s)öK) = jj (E/sOK).
Moreover log ||0(s)||CT = log fAti + log | |(s) | j^ and therefore

IW*)IU
degn E = degn (ß(E) + J^ log

[tf:Q]4^ IK*)

5
"

(9)
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Now we pass to the case rgE > 1. Since 4> is injective rg(f)(E) = rgE. We

consider the injective map ArgE0 : ATgEE —>• ArgE4>(E). From the formula

(9) we get

^(A^-^A^+^E^'li^wi"'- (10)

We remark that ßt(cf)(E)) < fit(F) for every i < rg E. This implies

rg E rg E

degn0(£) = j>Gp)) < E^(p)-

Therefore

D

Remark: Since || Ar $|| < ||$||r, we deduce from Property 6 that

rgE
_

degn £ < $>(F) + j]^_ ^ log IHI..

Corollary 1 If <fi : E ^ F is injective and non trivial then

£max(£) < Amax(^) +
T^TqI ^ l0§ 1M1<"

Proof Let _Er be a sub-vector bundle of £7 of rank r such that degn Er/r =

ßma,x(E). The restriction map 4>\et ' Er —» «^(E1,.) is still injective and 0(-Br)
is a submodule of F of rank r.

We apply property 6 to <j)\Er : £",. —> 4>(Er). It follows

Mmaxl-C/J = S 1

[X : Q]r

and so

£max(£) < Amax(^) +
rR , ^

^ l0§ 11^1^ 11'

D
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2.2.1 A Key Property of the Arakelov Degree

We give a generalization of the property 6 where we replace F by a filtration.

Let E be a hermitian vector bundle over Spec Ok and let F be a vector

bundle over SpecC^. Let

F = FND Fjv-i D .... D Fi D F0 = 0

be a filtration of F such that the quotients G% = FljFl-\ are torsion free

for every i. Let <f> ' E —» F be a map of Ok modules. We endow the

vector bundles Gt with hermitian metrics. The map (f>t : <f>~1(Fl) —> G% is

the composition of 0 and the projection. On (p~1(Fl) we consider the metric

induced by E, so the norms \\(ßi\\ are defined.

Property 7 We use the notations above. If (j) : E —> F is mjective and non

trivial then

d^„F<^(rg(r1(^/0-H^-i)))[Amax(GO + ^^ J2 l°&\\h\\*

Proof From the injectivity of (f> and the "3-lemma" we get the commutative

diagram

o—-0-H^- L— 1 ' — *
7TE'

Ft)—vrH^/rH^-i)—-o

fi

0 *F,_! -F, ^ *G, -0

Notice that the norms on 0_1(Fj) and 0~1(Fî)/</>-1(Fj_i) are the ones canon-

ically induced by E on sub-vector bundles and quotient bundles. However

G% has its own norm, independent of any other.

Since FJF%_i is torsion free and (pt is an inclusion then also 0_1(Fj)/0_1(F,_i)
is torsion free. This means that 0_1(F,_i) is a direct summand of (ß~1(Ft) .

We can apply property 3 to get

degn(0-1(Fî)/0-1(Fî_1)) = degn0-1(Fî)-deg0-1(-Pî-i).

Recall that J2Zi degn 0-i(Ft) - degn ^(^-i) = degn E.

It follows

TV

degn E = J2 degn (^(^/^(^-i))

N

< 5^rg(0-1(Fî)/0-1(Fî_1))/imaX(0-1(^)/</'-1(^-i))-

(H)

i=i
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If $j = 0 then rg(0 l(F%)/4) 1(FÎ_1)) = 0 and so there is no contribution to

the right-hand side of (11). If $4 =fi 0 then we apply corollary 1 and we find

N
_

i

degnJE;<5](rg(0-1(Fî)/0-1(Fî_1)))(/imax(Gî) + ——- £ log||^|U).
î=1

L Vj
a.K^c

From the above diagram we have ke^i = <fii with (f>t := 4>ttf%, and so

II^EjIIH^II = ||0i||- Since the norms on the first line are the induced ones,

||7reJ| = 1. Therefore \\ipt\\ — \\<pt\\ and we get the result.

D
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2.2.2 An Example: the Arakelov Degree of Cpi(l)

The arithmetic n-projective space over Ok is defined to be

FbK:=-ProiOK[x0,...,xn].

Let a be any embedding of K in C, then P = Proj S (Va-) with Va :— (OkXq®
... © OkXu) ®<t C and S(-) the simmetric algebra. To avoid heavy notations

we leave out the index a. A point of Pn is an embedding ii : Proj <S(Vi) —>

Proj S(V) with V\ a 1-dimensional vector space. Equivalently, a point is a

quotient given by a surjection i\ : <S(V) — S(Vi) up to a multiplication for

an element of C*. The surjection i\ is completely determined by a surjection

i\ : V —> Vi, thus a point of P" is just a 1-dimensional quotient Vi of V.

We denote by V x Pn the trivial bundle of rank n on Pn. Let H be the

sub-bundle of V x Pn such that the stalk at a point V\ is kerr1; and the

transition functions related to the standard affine open sets Uz := {xz j^ 0}
are given by gtJ :— x]/xl. We denote V ® CV> and H the sheaves associated

to V x Pn and i7 respectively. We define 0(1) to be the cokernel sheaf of

the exact sequence 0 —»• 7i —* V <g> Opn.

Let /iy be a hermitian inner product on the vector space V, this defines

naturally a hermitian metric on the sheaf V ®ö^n. We call Fubini-Study the

induced quotient metric /ifOnC(l). We recall that the induced Riemannianmetricistherealpartofhp.NowweconsiderthespecialcaseofP^,.LetubetheChernformofthelinebundle0(1).ArepresentativeoftheChernclassisa(1,1)-formandthefollowingrelationholdsu=\.InfactthisistheintegralofthePoincarédualofalineonP1,thatmeanstheintersectionnumberofahyperplaneandaline(see[13]p.122).OnecanprovethatthisisequivalenttosaythatuistheonlynormalizedmeasureonP1invariantundertheactionofPGL2.Weendow7r*0(1)withthenormINIö(l),CT=/\\S(P)\\2SFW(p)JP1(C)whereöisarealnumberandFtheFubini-Studymetric.Thecurvatureformof0(1)isgivenby6=—\dd\ogh[z](s,s)foranyher¬mitianinnerproducth[z](see[13]p.77)andtheChernformistu=^6(see[13]p.141)./20



We recall that /^(P1, 0(1)) = V. If we choose a orthonormal basis x0, xx

for the global sections of 0(1), the matrix representation of the Fubini-Study

metric takes the form hp,[z] = 777
=

x ^-\x %-
on 0(1)z <S> 0(l)z .

We want to determine 5 so that the sections xq and x\ have norm 1.

Since the affine open sets U are dense in the Riemannian topology of P1, the

above integral can be restricted to any open set. The curvature form on the

open set U0 = {p G P* : x0 7^ 0} becomes 0 = \i1+\t pp
dw\ A dOJ{ where

uj, = fo, (see [13] p.30).
It follows that

m ||2 _ f M?)!'
,._

* 1
1 1—

^TTTTi—12T3 ^ A dU^-

u0,a
2vr

(1 + M2)3

If we change the variable of integration

ui = p cos 9 +ip sin 9

ÛJÏ — p cos 9 — ip sin 9

we get
1 f2n f°° 2p 1

1 1 ,, ox,
dp hd9 =

.

2Wo 7o (1 + P2)3
^

2

The same we get for the section %\ integrating on U\ — {p G P* : X\ ^ 0}.
Hence in order to normalize the two sections xo and xi it is enough to set

5 := 2. That means to define on 0(1) the hermitian inner product given by

the function h2F '— 2 hp. Let g be a non zero holomorphic function, then

any hermitian inner product h' := g hf, induces the same curvature and

Chern-form. In fact ddlogg hp = d(^- + d log hp) and d of a holomorphic

function is zero.

Now we show that the sections x0 and X\ are orthogonal.

Re(x0(p) -xi(p))f Re(x0(p)-x1(
<X0,X1>0(1)= VlT.f7)ï|2

Ju0nUi l^\x3\P)\

f i Re(üJ[)

Mm/! 27r(l + |£Ji|2)3

Using the same change of variable as above we get

1 f°° 2 c? /"27r
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Property 8 The hermitian vector bundle (7r* 0(1), || ||2F,o(i)) is semi-stable

of Arakelov degree zero.

Proof

Using [14] ex.5.16.3v we know that tt*0(1) = H°(f>lÖK, 0{l)) = 0Kx0@

OkXi- From the computation above the two sections x0, x\ are orthogonal
and so

deg 71-*0(1) = deg(0Kx0®0KXi) = degOxx0 + degöKxl.

Since the sections x0 and x\ have norm 1 deg Ok %o '= log (J (Ok x0/x0Ok) —

~^2a log ||xo||<t = 0 and in the same way deg Ok %i — 0, thus deg 7r*(9(l) = 0.

The semi-stability follows from the fact that 7r*(D(l) is the direct sum of line

bundles of the same slope.
D
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3 Abelian Varieties and MB-Models

3.1 Recall about Abelian Varieties

Let A be a complex abelian variety and £ an ample line bundle on A. The

Euler-Poincaré characteristic x(A £) is defined as the alternating sum of the

Hl(A,£) dimensions. The degree of A with respect to £ is defined as the

intersection number of the first Chern class C\(£) with itself g-times. The

Riemann-Roch theorem gives the relation

x(A,C) = -degcA. (12)

(see [18] thm 3.10).
If £ is an ample line bundle then the i-th cohomology group vanishes for

every i ^ 0, so x(A, £) = dim H°(A,£), (see [18] cor. 3.11). One says that

£ is a principal polarization for A if x(A,£) — 1. We denote the tangent

bundle of the variety A by Ta and its stalk at zero by Ta- We indicate the

sheaf of differential by Qa and its stalk at zero by Ta-

We denote the tangent bundle of the variety A by Ta and its stalk at zero by

Ta- We indicate the sheaf of differentials by £Ia and its stalk at zero by Ta-

On an abelian variety the global forms are translation invariant, this is a

consequence of the fact that the translation maps are isomorphisms. ([31]

par. 11 prop. p98.)
Let exp : Lie(A) = TA —»• A be the exponential map of A, we denote by A^

its kernel.

The first Chern class ci(£) of £ is an element of H2(A,Z) = #2(AA,Z).
There esists a unique translation invariant representative of C\{£). It defines

an alternating 2-form #(71,72) on A^ with values in Z such that E(ix,
iy)=E(x,y)andE—ImHwhereifisahermitianformonTaxTa([18]Lern.3.1,3.4,[31]1.4).Since£isampleHturnsouttobepositivedefined,thusitcanbeseenasapositiveelementujhinfi1'1^^),wedefinedX:=u>hA...Auh,Vg—times([18]3.3).ThedeterminantofamatrixrepresentationofEdoesnotdependsonthechoiceofthebasis,wedenoteitbydetE.WehavethefollowingrelationVdetE=x(A,£)=fd\(13)J'Sa(see[18]thm.2.3).TheradiusofinjectivityofAwithrespecttothemetriconTainducedby£isthelargestrealnumberpi(A,£)suchthattherestrictionofthe23



exponential map to the open ball with center in zero and radius pz(A,C) is

a homeomorphism. By definition

Pl(A,£) = lmm\\\\\TA. (14)

Minkowski's theorem ( see [6] VIII.4.3.) yields

pt{A,£)<n-*(degAC)*5. (15)

An important estimate for the radius of injectivity is given in [21] lem. 8.6.

If A is an abelian variety of dimension g defined over K, for every line bundle

£ on A one has

j^j Yl pl(A„Ca)-2<C(g)max^h(A) + ^\ogX(A,C)^ (16)

where C(g) is a constant depending only on g.

The radius of surjectivity of A is the smallest real number ps(A, C) such that

the restriction of the exponential map to the closed ball with center in zero

and radius ps(A,C) is surjective. If d is the degree of the number field K

and A has principal polarization with respect to C then from Minkowski's

theorem and (16) it follows that

ps(Aa,jCa) < C'(g)(dmax(l,h(A)y-1V (17)

where C'(g) is a constant depending only on g.

3.2 Semiabelian Schemes and Moret-Bailly Models

Definition 8 A semiabelian scheme tt : A —> Spec Ok is a smooth group

scheme (separated and of finite type), such that the components of its fibers

are extensions of abelian varieties by tori (semiabelian group), and its generic

fiber is an abelian variety.

A semiabelian scheme A is in particular an arithmetic variety, thus for any

line bundle £ on A the direct image 7T*£ is locally free sheaf on Specö^,

(par. 1.3).
If £

isahermitianamplelinebundle,wecanendowthevectorbundle7r*£withtheZ/2-metricS\\\,a=IIISxHidpa(x)24



where dixa(x) is the Haar-measure on Aa, i.e. the only normalized mea¬

sure, invariant under the group law. The bundle 7r*£ := (7r*£, ||s|||) is an

hermitian vector bundle on Spec Ok of rank equal to dimH°(A, £).
We denote by Q^/s the sheaf of relative differentials of A with respect to

S = Spec Ok and by Vt9A ,s
= f\9 flA/s the sheaf of relative g-forms.

The sheaf fl9A/s admits a natural hermitian structure 11 11 defined by

\\a\\l =
TTT^T

/ OLa Naa"

(2tt)* Ja

for any embedding a : K —> C.

Since the global forms are translation invariant, it follows that

wa/s=*m°a/s - °Ä/S

with O.4 the neutral element of A.

The normalized Arakelov degree of (u^/s, INI) does not depend on the choice

of A and K and is called the Faltings height of A

h(A):=tegnüA/s. (18)

We are going to recall the definition of MB-models given in [4] 4.3.1.

Let A be an abelian variety over Q, C an ample symmetric line bundle over

A, and £ a finite subset of A(Q). A MB-model of (A,£, E) over a number

field K is defined as the data

• a semiabelian scheme 7r : A —* Spec Ok,

• an isomorphism i : A = A® of abelian varieties over Q,

• a hermitian line bundle £ on A that satisfies the theorem of the cube,

• an isomorphism C = £q,

• for each point P E a section ep : Spec Ok —* A of it such that the

geometric point ePQ coincides with i(P),

which satisfy the following condition: there exists a subscheme /C of A flat

and finite over SpecC^- such that z_1(/Cq) coinciding with the Mumford

group K{C2) (see [18] 4.1).
The properties of MB-model we are going to use are summarized in the

following theorem (see [4] thm 4.10 and [3] 4.2. for the
semistabilityin(iii)).25



Theorem 1 i) Existence. There exists a MB-model for the data {A, C, E)

defined over a finite number field extension of the field of definition ofA and

E, whose relative degree depends only on the dimension g of A.

n) Néron- Tate height. For any MB-model and any P G E the Arakelov degree

degne*-p£ coincides with the normalized Néron-Tate height ofp associated to

C.

in) The vector bundle 7r„,£ is semi-stable and its slope is

w) Compatibility of a MB-model with scalar extension. If we have a MB-

model of (A, £, E) over some number field K and L is a finite extension of

K, then the model got by extension of scalar from Ok to Ol is a MB-model

of (A, £,, E) over the number field L.
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4 Non-Reduced Subschem.es and Filtrations

4.1 Statement of the Subvariety Theorem

The aim of the two chapters 4 and 5 is to prove the Subvariety Theorem.

Theorem 2 Let A be an abelian variety defined over K and C a symmetric

ample line bundle on A. Let W be a subspace of Tak, defined over a finite

extension K' of K. Let o"o : K' —>• C be an embedding and 7 a non-trivial

period of Aao (C) such that 7 G Wao. Then there exists a proper abelian

subvariety B of Aao defined over Q such that

7 e TB c Wao

and

deg£ff B < C(g)max(degcA,dhr, drlog(dr)) (19)

where

d=[K:Q],

h = max(l, h(A),\ogdeg£ A, h(W)),

r = max(l,||7|ffmB)

and C(g) a constant depending only on g.

A Zero Lemma 4 ensures the existence of a subvariety B any times we can

produce a section s of an invertible sheaf C of A with good order of zero at

a torsion subscheme E of A.

In Lemma 8 we determine the relations that the parameters of the problem

must satisfy in order to deduce that such a section exists.

The parameters of the problem are the dimension of the space of global
sections of a D tensor power of C (parameter D), the number of points in

S (parameter N), the multiplicity of the section at the subscheme S along a

sub-space W of Tak, (parameter M).
The existence of the section s is equivalent to the non injectivity of the

restriction map </> : E —> F between vector bundles on Specö^, where E is

the push-forward of £D to Spec Ok and F the push-forward of the restriction

of £D to EWtgM, (see 4.3).
The idea of the proof of lemma 8 is to suppose that <f> is injective and to deduce

the slope inequality (46) from property 7. On one side we use theorem 1 to

find a lower bound for the left-hand side of (46). On the other side we use an

analitic method (lemmas 2 and 7) to give an upper bound for the right-hand
side of (46). We then choose the parameters N, M and D so that lower and
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upper bound are sharp enough to contradict the slope inequality (46). We

can conclude that <f> is non injective.
To choose the parameters so that the operator norm estimates ( see will

contradict the slope inequality. This implies that, under this choice of pa¬

rameters, the map 4> ' E —> F can not be injective and we are done.

In order to apply property 7 we must endow E with a hermitian inner product

(see 1.5) Moreover we have to define a filtration of the vector bundle F

(see (24)) and hermitian inner products on the corresponding quotients (see

(5.1.1)).

4.2 Non-reduced Subschemes of Abelian Varieties and

their MB-models

4.2.1 General Notions and Notations

If X is a scheme we denote by Xtop its underlying topological space and by

Ox its structural sheaf.

Definition 9 Let j : Y —>• X be a closed immersion. We denote by Xy '—

ker j" the ideal sheaf ofY.
The t-th power ofly is a sheaf of ideals, we indicate it by ly. The cokernel

Oytt of the natural mclusionTy —> Ox defines a scheme Yt := (Ytop,j~lOy^),
(see [14] ex 3.2.5). We call Yt the subscheme of X of multiplicity t at Y.

The exact sequence

0 ly/Ty > Ox/Ty Ox/1y 0.

induce a closed immersion it : Y —> Yt.

We recall the notion of schematic image and closure of a scheme, (see [14] ex

3.11.d).

Definition 10 Let f : Z —> X be a morphism of schemes. Then there is a

unique closed subscheme Y of X with the following property the morphism

f factors trough Y, and if Y' is any other closed subscheme of X trough
which f factors, then Y —> X factors trough Y' too. The scheme Y is called

the schematic image of Z m X. If f is an immersion then the scheme Y is

called the schematic closure of Z m X.

If Z is a reduced subscheme then Y is the topological closure of the image

f(Z) with the restricted structural sheaf. Equivalently we can say that Y is

the projective limit of all closed subschemes Y' that contains f(Z).

28



Notations:

In the following paragraphs we denote by A an abelian variety of dimension g

defined over a number field, by C an ample symmetric hermitian line bundle

over A, by T,K a finite subset of A(K) and by S the scheme Spec K. We

denote by Ta the tangent space at zero of A(C) and by Ta its dual the space

of differential at zero.

Finally we denote by S the arithmetic variety Spec Ok and by (n : A —>

S, £, E) a MB-model of (A, C, E*), (see 3.2).

4.2.2 An Example: Non-Reduced Points on a Semiabelian Scheme

This example will be of fundamental importance. We consider the case of a

point V on the semiabelian scheme A over S.

A point V of A with value in Ok is defined as a morphism of schemes

V : S -> A.

Since A is a scheme over S, the morphism V is a closed immersion.

We denote by Vt, meaning Vt St —* A, the subscheme of A of multiplicity

t at V, (see def. 9).
The scheme A is smooth over S thus the push forward via 7r o Vt of the

structural sheaf Optt °f *Pt is a locally free sheaf over O-p.
Remark:

If we would have worked with an abelian variety over S = Spec K and a point

P : S —> ^4 defined over K
,
we would have gotten the subscheme Pt : St —> A

of multiplicity t at P. If A is a MB-model of A then the subscheme "Pt is the

schematic closure in A of the subscheme Pt.

4.2.3 Non Reduced Subschemes of Dimension Zero

We consider an immersion T,K : (\JS) —> A with values in A(K), i.e. a

disjoint union of points P : S —> ^4 defined over if. We can extend the

definitions of multiplicity in the following way.

Let t : £#top —> N+ be a map that associates to any P G T,K an integer
number t(P) that we call multiplicity at P.

For each point P G E# we consider the subscheme Pt(p) of multiplicity t(P)
at P. We call the scheme T,K,t '= Upes Pt(P) subscheme of multiplicity t

at Y>k

Remark:

the ideals Ip are pairwise
coprime,i.e.Xp+XPJ=Oa-Thereforethestructuralsheafö^Ktt:=©PeSOpit(p)isisomorphictoE^^Oa/HXp)(see[2]II.1prop.6).'
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Now we extend the definition to the semi-abelian scheme A.

We have seen in the example 4.2.2 that the scheme Vt is the schematic

closure of the scheme Pt. We define the scheme associated to E#it as Et :=

Remark:

The scheme Et is not always a subscheme of A. We recall that, from the

definition of MB-model (§3.2), for every point P G E# there exists a section

ep : Spec Ok —> A. Therefore there is a natural epimorphism from £4 to the

schematic closure of E^)t. It is an isomorphism only if the ideals (Z-p)-pes are

pairwise coprime.

4.2.4 Subschemes of Multiplicity t along a Sub-Bundle of the Tan¬

gent Bundle

We denote by 0^ : Spec K —* A the origin of the abelian variety A. Let W

be a sub-space of the tangent space TA defined over K. Since A is smooth

we have the isomorphism Oa/Xqa = K © Xqa/XIa = K ®fA. We denote by

Sw,i the spectrum of K © W. The inclusion W ^-> TA induces a surjection
of algebras Oa0/11a —* K © W and hence a closed embedding of schemes

Qa,w,i ' Sw,i ^ A.

We consider the schematic image Sw,t of the scheme Sw,i x • • • x Sw,i under

the addition morphism

+t : A x x A —> A.

t—times

We define QA,w,t ' Sw,t ~^ A to be the subscheme of A of multiplicity t at CU

along W.

Let us consider the semi-abelian scheme A.

We denote by S\y,t the schematic closure of Sw,t m A and we call

0yi,vy,t : Sw,t —* A

the subscheme of A of multiplicity t at 0^ along W.

Since A is smooth, the scheme 0^tw,t is a flat finite subscheme of A hence

affine.

If P
isanypointofAdifferentfromtheoriginweconsiderthetranslationisomorphismt-p:A—>A.WedefinethesubschemePw,tofmultiplicitytatPalongWasthepull-backviatpofthescheme0Atw,t-
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Finally we define the scheme Vw,t of multiplicity i at ? along W as the

schematic closure of PWtt in A or equivalently as the pull-back via the trans¬

lation map t--p of the immersion §A,w,t-

4.2.5 Ideals Sheaves Associated to a Non-Reduced Subscheme

Let A; be a positive integer. Let 0A,w,k be the subscheme of A of multiplicity k

at Oa along W and let 0A,w,k be the scheme associated to ÖA,w,k, (see 4.2.4).

The schemes 0A,w,k and Oa,w,Ic are affine schemes, hence we identify a sheaf

on 0A,w,k or 0A,w,k with the module of its global sections.

From the definition of push-forward the module of global sections of a sheaf

on 0A,w,k is an C^-module that coincides with the module of global sections

of the push-forward of the sheaf on Specö^-. Thus we will identify locally

free sheaves on QA,w,k and their push-forward to SpecO^-.

By definition 0A,w,k is the generic fiber of ÜA,w,k thus O0Atw,k = OoA,w,k®oKK
and since K is flat over Ok we have an embedding of algebras OoA,w,k ^>

OoA,W,k-
Let's choose any positive integer M and let g be the dimension of the abelian

variety A. We want to define a filtration of C^-modules associated to the

subscheme 0a,w,29m- Let Y,K be a reduced non-connected subscheme of A

containing 0A. Let ^K,w,gM := ®A,w,2gM UoAJtp^-£K P\v,gM be the associated

non-reduced subscheme. Then there exist closed immersions 0^ = Oa,w,o ^>

0a,w,i ^ 0a,w,2 • • ^ ^K,w,gM- For any integer 1 < k < 2gM let us denote

by TqAtw,k the sheaf of ideals of 0A,w,k-i in 0A,w,2gM-
We define C^-modules associated to the above ideals as follows

ZoA,W,k '= ^0A,W,k H OoAtw,2gM-

The ascending chain

0 = 1üA,W,2gM C • • • C XoA)W,fc C • • • C IoA,W,l C ÖY,K,W,gM

defines the filtration

0 = 1oA,W,2gM C • • • C ToAtW,k C • • C IoA,W,l C 0<£,W,gM

of saturated submodules of ö^,w,gM-, hence the quotients lOA!w,k/^oA,w,k+^
are torsion free.

There exists a natural map

/ : Symk(W) -+ loA,w,kßoA,wMi- (20)
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Since any formal group over a field of characteristic zero is an additive formal

group the map / is an isomorphism, (see [15] thm. 1).
We recall that TA = TA ®oK K. We define the saturated submodule W :—

Wf]TAoî TA.

Intersecting with fA the exact sequence

0 -* Ker -» fA -» W -»• 0

we deduce that W = Wn(fA/(KerntA)). We have that W = IoA,w,ißoA,w,2,
hence W = (IoA,w,i/^oA,w,2) H (7U/(KerDTU) = IoA,w,i/^oA,w,2- Moreover

ZoA,w,k/ZoA,w,k+i = (ZoA,w,i/ZoA,w,2)
It follows that the map / restricts to a morphism of Ox-modules

J : Symfe(W) - IoA,w,k/ZoA,w,k+i- (21)

Both modules are torsion free hence this map is injective. Prom [11] lern. 2.4

it follows that the cokernel of the morphism J is a torsion module annihilated

by A;!.

If T,K is a disjoint union of points of A, we reproduce the previous con¬

struction for each P G £#• and we define (9#--modules I-p,w,k for which the

quotients (Iv,w,k/^v,w,k+i) are torsion free. Then there is a natural isomor¬

phism

Symk(W) - lP^k/lP}WM1 (22)

and there exists an injection of modules

Symk(W) - lv,w,kPv,WMi (23)

whose cokernel is annihilated by A;!.

4.3 Filtration of a Locally free Sheaf on Spec Ok

Let K be the field of definition of the abelian variety A of dimension g.

Let W be a subspace of TAl ,
defined over a finite extension K' of K. Let

cr0 : K' —> C be an embedding and let 7 G Wao be a non zero period of Aao.
For any given integer M and N we do the following construction.

Let Pj : S —> ^4 be the reduced iV-torsion point of >1 such that P^ =

expCTo ^. We suppose that the points Pt are defined over the field K'.

Definition 11 We call ^-linear N-torsion subscheme of multiplicity gM

along W, the subscheme of A defined by the disjoint union Y>K',w,gM '=

®A,W,2gM LL=i Pi,W,gM-
We also define the Ox-scheme associated to T<K>,w,gM as the disjoint union

^W,gM = 0a,W,29M LL=1 {P%}W,gM-
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We want to emphasize that these two schemes have multiplicity 2gM at zero

but multiplicity gM at the all other points.

We consider a symmetric ample line bundle C on A. Let (A, £, S) be a MB-

model of (A, £, E^/). For any integer D we consider the D tensor power £D

of the invertible sheaf £ on A.

We denote the push forward via it of the line bundle £D by

E := 7T*£D

and the the pull-back via T,WgM of the line bundle £D by

t .— 2->W,gM ^

Since it : .4 —> 5 is an arithmetic variety E is a locally free sheaf on Spec Ok

of rank equal to the dimension of H°(A,CD), (see 1.5). From the definition

F is also a locally free sheaves over Spec ox (see 1.3).
We denote the restriction map that sends a global section s G £D to its

pull-back via T,w,gM by

(j>:E-^F.

We remark that the precise definition of F is F := (irT,ic,w,gM)*^w,gM^'D
but we identify the C^-nrodule 0f the global sections of the push-forward

{-kUk1,w,gM)*^w,gM^'D w^tri the C^-module of the global section of T,^gMSlD.
We have E <g> K' = H°(A, CD) and F <g> K' = H°{EK/>W!gM, T.*K,^gMLD).
By flatness of K over Ok the restriction map <\> : E — F is injective if and

only if $ : H°C(A,CD) - ^(Ek^m, £^,5mO is injective.

In order to apply property 7 we define

*b,fc := loA,w,29M-k ® E*£D forO<fc<2^M-l,
= (^,m/,2Sm ©o^^es lv,w,9M-k) ® £*£D for 0 < fc < </M - 1,

— Eo,o
(24)

and

GofigM-k '— Fo,2gM-k/Fo,2gM-k-l
= (IoA,w,k/IoA,w,k+i) ® S*£D for 0 < k < 2gM,

GgM-k '= FïgM-klF'igM-k-l
= (®oA?-pezZp,w,k/Z7>,w,k+i) ® E*£D for 0 < A; < #.

(25)
We denote by ln,w,k = Zoa,w,29m ®vez lv,w,k-
The descending chain of (9^-modules

%oA 3 3 1oa,w,29m D 2s D 2S)Wji D D 2S;wi9m
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induces the filtration of the sheaf F on Spec Ok

0 = F0 C Fi C C FgM = F0;o C C FQ^gM-i C F0)2Sm ;— F.

Remark

We kept the case of the point zero separated from the case of the non-trivial

iV-torsion points because the first case will represent the construction part

and the second the extrapolation for the proof of Lemma 8.
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5 The Proof of the Subvariety Theorem

5.1 Estimates for Operators Norms

5.1.1 Hermitian Metrics and Morphisms on a Filtration

We want to define a metric on the quotients Fk/Fk-i and F0ik/F0,k-i- We

emphasize that we do not define a metric on F to induce then the quotient

metric on Fk/Fk-i, but we keep the freedom to give a local definition on the

quotients of the filtration.

From the isomorphism (20), (22) and the definition of Gk and Gq^ we deduce

that for all 1 < k < gM there exist isomorphisms

GgM-k,a= 0 SymkWa®P*£°. (26)
cuAPeEx

For all 1 < k < 2gM there exist isomorphisms

Go,2gM-k,a = SymkWff ® 0A*£?. (27)

We assumed to have an hermitian line bundle £ on A and we endowed the

tangent bundle Ta with the hermitian inner product defined by the first

Chern-class of C, (see 3.1). We consider on fA the dual hermitian product

of TA (see 1.2.1) and on W its restriction (see 1.2.4). We endow P*CD with

the pull-back metric given by C , (see 1.2.1).
We define on GgM-k and Go^gM-k a hermitian inner product using the iso¬

morphisms ( 26 ) and (27) and the hermitian product canonically induced on

the symmetric product, tensor product and direct sum as explained in 1.2.7,

1.2.3 and 1.2.2..

Definition 12 We define morphisms 4>k ' (p~1{Fk) —> Gk to be the composi¬

tion of the restriction map 4> and the natural projection Fk —-> Gk = Fk/Fk-i;
and morphisms </>o,fc : </>_1(-^b,fc) —»• Go,fc to be the composition of the restric¬

tion mapcf)andthenaturalprojectionsF0tk—>Go,fc=-fo,fc/-^o,fc-i5.1.2TrivializationontheTangentSpaceLetexp:Lie(A)—>AbetheexponentialmapofanabelianvarietyAofdimensiongandletCbeanamplesymmetriclinebundleonA.WeconsideronTa,thetangentspaceatzero,thehermitianmetricinducedbythefirstChernclassofC.Wedenotetherelatednorm||•||.Wedenoteby|•|thestandardEuclideannormonCWeendowthetrivialbundleOtaonTawiththenorm||/(*)||,.£:=|/(*)|emW35



with / any section of Ota and m(z) := — |\\z\\2.
The line bundle exp* C is trivial on Ta- We can choose a trivialization such

that the isomorphism £ : exp* £ — Ota is an isometry, (see [3] 5.3.3).
In particular if f2 is an open set of Ta on which exp is an homeomorphism
and s is a section of £D(exp(fi)) then for every zGOwe have

\\s(expz)\\co = \f(z)\em^ (28)

with / := C(exP* s) and m(z) :— — ^D\\z\\2.
Let 3U be a fundamental domain for the lattice A^ := ker(exp). Then (13)

gives x(A, £.) — L dX with dX := loh A ... Auh and ujh the translation
V

g—times

invariant representative of Ci(jß).
By definition the normalized Haar-measure on A satisfies

1 = f dfi= J exp* dfi. (29)
Ja Jsa

Then we can write
dX

X(A,C)- (30)
exp* d/i

5.1.3 Bound for the Norm of the Operators 0o,fe

We are now ready to give an estimate for the norm of the operator 0O)fc,
see def. 12. We recall that we choose the norm of a morphism between

hermitian vector bundles over Spec Ok to be the operator norm. We denote

by ea = min (1, p(Aa, Ca)) where p(Aa, Ca) is the radius of injectivity of £a,

(see 15).

Lemma 2 For any integer 1 < k < 2gM and any embedding a : K' —> C

the operator norm of the restriction map 4>o,k satisfies the inequality

\\M\l < D°X(A^)ir-°e^V^e^.

Proof We have to estimate | \(ßo,2gM-k\ \l = sups#0 ———||s||^0,2gM'fc"T. The

proof will be the same for any embedding a, for a matter of easier notation

we forget the index a.

As first step we find a lower bound for ||s||^D.
We recall that the norm of a section of a line bundle onanabelianvarietyisbydefinition36



m ||2
_

/ Il ||2 j

Ja

with d\xa the normalized Haar-measure. From the relations (29) and (30) we

get

\\s\\cD := / \\sz\\cd exp* dß > / II^II^dX^,^)"1^
JSa Jn

where Ü is an open of Ta on which exp is a homeomorphism. In particular
we can chose Q to be the open ball 5(0, e) with center in zero and radius

e = mm(l, p(A,£)).
Replacing formula 28 in the integral above we get

||a|ßD > x(A^)"1 / \f(z)fe-"D^2d\. (31)
JB(0,e)

We choose an orthonormal basis ei: ...eg of Ta with respect to the inner prod¬

uct induced by ci(CD). Let z\,...zg denote the corresponding coordinates.

The holomorphic function f(z) can be developed in Taylor expansion

i

where / is a multi-index (z1; ...ig), z1 is the monomial zlj ..
• zgg G Sym' ' (Ta)

and aj E C

Substituting this development in the last integral we get

JB(0,e) j

\s\\2co > yfA^r1 / I > "arz'fe-^^dX.
3(0,6)

Parseval's Formula yields

/ | V a^fe-^W^dX = V \aj\2 f |/|V^H2cU.
JB(0,e) j j JB(Q,e)

Lemma 4 below gives the relation

/ |/|2e-^ll2dA = C(^|/|,6)||/|||fe
JB(O.e)
'B(0,e)

with
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Therefore

||S||^>x(AO-1E^|2C'^l/l'e)ll/l^- (32)
i

As second step we compute the norm of the image of the section s

Y^ ai®z'\\:.rDl*Rvmk,

\\^0,2gM-k(s)\\2Go2gM_k
I\\2

\I\=k,tg=0

—
\^ II II2 II -fll2

—

2_j \\al\\e*£D
"

\\z \\Sk

\I\=k,tg=0

= Y, M2e-^II°H2 -11/111,.
|/|=fc,*e=0

As third step we estimate the norm of the operator 4>Q,29M-k using step 1 and

step 2.

2 \\<h,2gM-k{s)\\G0 i2gM_k
114>0,2gM-k || = SUp ij-j^

s^o IpII^o

,D.
i E|/|=fc \ai

12 || I\12
I II I là«

<supx(A£ ) 2

s^o C(g,k,e) }2\i\ \aA • \\z lis*

<x(A,£D)C(^,fc,e)-1.

Recall that x(A£D) = £>9x(A£) and so the result follows.

D

We now recall a classical lemma on metrics that we are going to use in lemma

4.

Lemma 3 Let (p : G —> GL (W) be an irreducible representation of a group

G on a vector space W. Let W be endowed with the two G-invariant scalar

products (, )i and (, )2. Suppose moreover that (-,-)i = 0 if and only if

{'>')2 =0- Then there exist a constant A £ R such that

IHl2 = A|H|i.

Proof
We define Ai := mfwew IHj1, the set E :— {w G W : \\w\\2 = Ai||«;||i}
is a sub-space of W. The two norms are G-invariant hence the space E is

G-invariant. The irreducibility of the representation implies E = W.

It remains to prove the following

38



Lemma 4 Let z\,...,zg be an orthonormal basis of the space of differential

Ta with respect to the hermitian inner product hß defined by the Riemann-

form of the line bundle CP. Let I, J be two multiindeces of norm k and let

z1, zJ be the related monomial o/Sym (Ta)-
We consider on Symfc (Ta) two different inner products. The first one is

defined by

{^,zj)cd:= [ z^e-^^dX.
Jb(o,c)

The second one is the induced quotient metric as we have described in 1.2.7

{zI,zJ)sk:=SkhE{zI,zJ).

Then

i) there exists a constant C (g, k, e) such that

II
. ||2 _

fi I u \ || .

||2

II \\cD
— ° \y>K'e) II llsfc-

%%) The following estimate holds

^e-iröe»
*!

e2{k+9) <C(g,k,e) < TT«—*!_e2(*+»).
(k + g)\

- vy' ;-
(k + g)\

Proof i) Prom Parseval's formula it follows that (•, -)cd = 0 if and only

if {-,-)sk = 0- Moreover the action of the unitary group is irreducible on

Symfc (Ta) (see [16] 1.4). Applying lemma 3 we deduce i).

ii)From the choice of the basis e; of Ta we have that the Riemann form of CD

has a diagonal representation, thus ||,2||2 = Y2 \zi\2- From i) we know that

C (g, k, e) is the same for any element in Symfc (Q,a), it is enough to compute

it for the element

k

12» r I —r~fy^ i~ 12 v 2k

First we estimate the integral

/ (Tlz^Ye-^^dX.
JB(0,e)

V '

Passing to polar coordinates we get

/ (T^te-^^dX
Jb^K

e
(33)

= vol(^-1) \\2k^-le-«Br2dr
Jo
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where S2g x is the unitary sphere and vol indicates its volume. The minimum

of the function e_7rör for r G (0, e) is attained in r = e thus

/ (T,\zt\2)ke-*DZMad\
JB(Q,e)

^ '
me)

(34)

> vol
(S29~l) e

l\ „-ttD .2 6

2(k + g)'

The maximum of the function e~wDr for r E (0, e) is attained in r = 0 thus

/ (Tlz^Ye-^l^dX
JB(0,e)

V '

From (4) we know that

J\
\\zi\\sk = 77 (where I\ = ij • -ig\).

k\

<35>

Moreover from the generalized Binomial formula we have (^ |^|2)
=Y1''^\Z±ei iiuiii til« geneianz;t:u umuuiicti luimuia wc uave \/__, \^i\ )
—

Z_/
—

and so

/ (T\z>\2)ke-*D^\2d\

= E*/ We-'^'dX (36)
\I\=k

g + k-l
= C(g,h,e)i

We recall that the volume of the (2g — l)-dimensional sphere is

Comparing (34) and (36) we deduce

vr3e-^2-^-e2^)<C(^fc,e).
(k + g)\

Comparing (35) and (36) we deduce

r,(nkf\< ?rq r2(fc+fl)
C(î,*,£)-

(k + g)\e
D
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5.1.4 Bound for the Norm of the Operators 4>k

First we are going to state the analogous of lemma 2 for the operators </>&.

Lemma 5 For any integer 1 < k < gM and any embedding a : K —> C the

operator norm of the restriction map \\4>gM-k\\a satisfies the inequality

\\<P9M-k\\l < (N -l)D^X(A,C)^e^{^±^e-2^\
Proof The proof follows the proof of lemma 2. We recall that the function

|/ (z) |2e_7rDHzll is periodic with respect to £4. From formula (31) we deduce

that for each point P,

\\s\\lD>X(A,CDr f \f(z)fe-*D^2d\.

Let / (z) = ^2j cjz1 be the Taylor expansion of the function / (z) centered

in px with P% — exp]v

From Parseval's Formula and lemma 4 we deduce

Therefore

iiS|i^>x(A>cDr1E^i2c,^i/i'e)ii/ii^- (37)

Now we compute the norm of the image of the section s

\\fagM-k(s)\\2Go2gM_k
— \\ 2_^ CI® Z Wp;CD®SymkW

|/|=fc,.B=0

Ell II2 II ^ll2
\\CI\\plCD

'

WZ Wsk

|/|=fc,»9=0

= £ \Cl\2e-*D^.\\z%k.
\I\=h,lg=0

Finally we estimate the norm of the operator 4>2gM-k using (37) and (38).

(38)

... ||2
\\<hqM-k{s)\\G3

\\<hgM-k\\ =SUp r—r-2
s^O \\S\ \cd

<SUpX(AC )
(

.

T |cJ2.|Uf||2

<X(A,CD)C{gM-1.

41



This conclude the proof.
D

We want to find a better bound for the norm of the operators \\fa\\. The

idea is to use the fact that every section in the domain of fa has a zero of

multiplicity at least 2gM in zero and to apply a special form of the Schwarz

lemma.

Let consider the spaces

Qz := {/ : C - C holomorphic : 3 C eR \f (z)\ < Cë*0^}

VLy := {/ : C -h. C holomorphic : 3 C R \f (z) | < Ce27rZV}

with z = x + ly.

We endow ttz with the norm ||/||nz := supzeC \f (z) \e~nD^ and fly with the

norm ||/||n!/:= sup,eC|/(^)|e-2^2.

Lemma 6 The map

I : (ft,, ||-|k) — (îVIHInJ
: f(z) ^ /(^e-^2

zs an isometric isomorphism.

Proof
We first proof that the norm of / is 1. This follows from the fact that

I f (z) e~7rDz2|e~27r-D2/2 = | f (z) \\e-KD{x'2-y2+2lxy)\e-27rDy2 —

Finally / is an isomorphism because e7rDz ^ 0. Q

We will need to apply the Phragmen-Lindelöf Theorem that we write for

simplicity. This theorem gives conditions under which the theorem of the

maximum for bounded domains can be extended to unbounded domains.

Theorem 3 (see [34] 12.9) Suppose

A ={z = x + iy \y\ < R} and A := {z = x + ly : \y\ = R}.

Let f be continues on A and holomorphic on A. Suppose that there are

constants a < 1 and A < oo such that

|/ (z) | < exp{Aexp (a|a;|)} z = x + ly e A,

then

\f {z) I < sup |/ (w) | for all z A.

wedÄ
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We are going to give here a special form of the Schwarz Lemma, that we will

need in order to get the "good" bound of lemma 7.

Property 9 (Schwarz Lemma) Let f (z) be a function m the space Qy. We

suppose that f (z) is L Z-periodic with L K+ and that has a zero of order

at lest T at zero. Let us consider the strip

A:={z = x + iy : \y\ < ^—}.
If 2nDL2 > T then for every z A we have

(sin7T2:)
< ||/||nBei^ï*.

Proof The function

f(L-z)
9\z) =— Zf

(simrz)

is entire because of the zero multiplicity of / (z) at L Z. Let z — x + ly, we

recall that | sin (x + zy) |2 = | sin x cosh y + i cos x sinh y |2 — (sin x cosh y)2 +

(cos x sinh y)2. Since (coshy)2 > (sinhy)2 we have that | sinh y \ < | sin (z) \ <

cosh y.

We defined above the norm on the space Q,y as 11/| \qv := sup^gc \f (z) \e-2nE>y }

thus
2nDL2y2

|<7 0z)l<||/lk, , ,T
for all z = x + iy. (39)

y

| smh7ry|J

We want to verify that g (z) satisfies the hypothesis of the Phragmen-Lindelöf
Theorem above. We have to control that the function g(z) does not grow too

fast when \x\ goes to oo. Since both f(L • z) and sin(-Kz) are 2Z-periodic on

the x-axis also g(z) is. Moreover g(z) is entire so it is bounded on a compact

set, thus

\g{z)\ <C for ze A

with C a constant.

By the Phragmen-Lindelöf Theorem we conclude that the maximum of the

entire function g(z) on the strip A is attained on its boundary <9A, i.e.

\g (z) | < sup \g (w) \ for all z A. (40)

Now we want to estimate g (z) on this boundary dA. Because of (39) it is

enough to estimate iesl^h7r
]tfor\y\=T/27TDL2.Thefunctionissymmetric43



hence we shall study it only for positive values of y. Since e_1 < |e then,

for any y > 1, we have that sinh7n/ = \{e?y — e~wy) > \e*y which in turn is

estimate by \e^y > e2y. For this last estimate just remark that \e^v > e*y~x1.

It follows that for y > 1 the relation iesl^h7r \t < e ^n/ holds. In particular

if we set y = ^^ > 1 we have e2*DL2y2-2Ty = e-T2/2*DL\ Now by (39) we

deduce

\g(z)\<\\f\\ave^s for z G 9Ä,

and from (40) follows the desired inequality.
D

Remark 1 Since | sinh 7rj/| < ewy the real function R(y) := ,esl^h !T is

bounded from below by e2nDL2y2-nTy. Thus min,, ^^V-^ < mi^^y).

The minimum of e27rDL y ~nTy is attained for y = -^ß and its value is e^öU.

This means that another choice of the strip A or a better approximation
of \sinImy\T would not have essentially given any better result but just a

slightly better constant.

Remark 2 The points of minimum of R (y) are the same of r (y) := log R (y).
The first derivative of r (y) is

r' (y) := 4irDL2y - Ttt cothiry. (41)

The function r' (y) has just one zero given by the intersection of the line

^f-y and the function coth-7ry. This zero is a point of minimum because

r (y) goes to infinity for y that goes to zero or to infinity. If ^h < 1 then

the line ^r-y intersects coth7ry for a value y0 such that cothyo is 'about' 1.

By the relation (41) it follows that y0 approaches 4^2- This explains why

we shall suppose T > 4DL2, moreover it gives an approximation of the value

of y for which R(y) attains its minimum.

We denote by ea = mm((l,ps(A,a)~1,pl(Al7,C(r)) where pl(Acr,jC<T) is the

radius of injectivity (see 15) and ps(Aa,Ca) is the radius of surjectivity of

Ca (see 17) .

Lemma 7 If gM > 2D||7||2 then for any 0 < k < gM and any embedding
a : K' — C that coincide with œq on the field of definition of P% G E, the

operator norm of the non-trivial restriction map 4>gM-k satisfies the inequality

U9M-k\\l < (N-l)D°x(A,£)(2g2log3y7r-^
+ *

Je^^iFe^.
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Proof
We define p% = -^7 and we recall that expaopt = Pt.

Let s 4)~l(FgM) be a global section of £D in the domain of (f>gM, then

exp* s = f(t) is an entire function. From (28) it follows that the restriction

f(z) := /(27/II7II) belongs to Qy. The function f(z) has a zero of order

2gM in zero and it is thus Z||7||-periodic. We are in the hypothesis of the

lemma 9, where

*>:=
/<Z|

(sm7rz)29M

It follows that if gM > 2D then

-7r(gM)2

|^)|<3||/||nweW^-

for any z in the strip A :— {z = x + iy : \y\ < ^ßrfjp}-
-7r(aM)2

In particular we get that \f(pz)\ < ||/lta„e 2DiMi2
,
where pt = ^7.

From Cauchy's estimate ([17] cor. 4.3) we deduce that the function jif1^)
belongs to Çly. Moreover, by assumption, this function has a zero of order at

least 2gM - \I\ at Z. Applying lemma 9, If 2gM - \I\ > 2vr£)||7||2 then

f&)
I\

-(2gM-kY

< \\f\\Le~^^

We get the worst bound when |/| = gM, namely for gM > 2nD

l£/'(P. <

-(9my

q e^iiTii2, where |/| = gM.

Now we are ready to estimate ||</>SM-fc(s)|| as follows:

and

\\<f>gM-k(s)\\G,
gM— k

N-l

E E n?®
i=l |7|=fe,i9=0

N

E-i- E
\I\=k,lg=0

N-l

E E
i=l |J|=fc,Ifl=0

'k + g

k

®P*CD®SymkW

2

j/{Pi) llr \\sk

j/(Pi k\

<(N-1)
l\ -nD^

-(2gM-fc)2
T-DIMI2

(42)

We still need to relate 11/| |q and | \s\ \2cD Since f(t) is the pull-back of a global

section of LP on A there exists to in the fundamental domain 3U such that
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supteo \f(t)\e-*D\W2 = |/(*0)|e_,rI,|N|2. From the Cauchy formula we have

/(*) = A. JT nm_^1 a-ACS, where T is the torus T = S1 fa) x
...

x S1(Sg)
with S1(Sl) is a circle of center tl and radius 5t. We denote by R the real

interval [j-, f1]. We remark that the Cauchy formula is true for any radius

5t so we can integrate over R9 and we deduce

'<*> = ai (tJL jmrÄ* A • AMA • A^

iTiiJ \e J J*
/(C)

-dCi A • A dÇg A d<5i A • A dôg,

where 21 is the annulus given by the Cartesian product T x R9. Since Ô^Q A

d8t = (Cj — U)dQ A d£j we have

2S /o„\ 9 / r TMt +\ \ 2

From the Cauchy-Schwarz inequality we deduce

Computing the integral Ja rric-t l2^ = (27r)9(log3)s we find the bound

|/(t)|2< 0)9 (f)29(log3)^|/(C)|2rfA. (43)

We remark that from the definition of e the exponential map is injective on

the annulus 21. From the periodicity of / we have

[\f(Q\2e-*DM2d\= [ |/(C)|2e-^IKIIadA

< / |/(C)|2e-^liClf2rfA

Since e is smaller than the inverse of the surjectivity radius we see that

e < 1/||<|| and so

/ \f(0\2e-nDm]2d\ > e-^(Hill2+^2+i) f \f(Ç)\2d\. (44)

Moreover from (43) and (44) we deduce

im|2n/-^(e+1) (Iy {^j9 (log3)- < B°J \f{Q?e-^d\ = ||s||^
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and from the definition of ||s||^.D we have

yX(A,£D)e-*D^(\og3)-° (|)S (£)
9

< \\a\\lD (45)

Comparing the upper bound (42) for ||<E>9M-fc(s)||2 with the lower bound (45)
for ||s||2 we get the result.

D

5.2 Choice of the Parameters and Slope inequality

If we suppose that the restriction map 0 : E —> F is injective then we are

in the hypothesis of property 7 for the map cfi : E —> F and the filtration

{F0it, Fi}, where the corresponding quotients G0,i, G% are hermitian vector

bundles as specified in 4.3 and 5.1.1. Property 7 gives the inequality

gM
_

degnE<J2{rg<p-1(Fl/Fl.1)){ßmax(Gz) +
T]—w £ log||0,lW +

29M
_

5](rg0-1(Fo,/Fo,_1))(Amax(G'o,) + T^rröT J] log||0o,IU).

(46)

The idea of this proof is the following. On one side we use Theorem 1 to

find a lower bound for degn£', (49). On the other side we use an analytic

method to give an upper bound for the norm of the operators appearing in

(46). We then choose the parameters N, M and D so that the lower and

upper bounds are sharp enough to contradict the slope inequality (46). In

this way we can conclude that </> is non injective.

Lemma 8 Let A be an abelian variety of dimension g defined over a number

field K. Let W be a subspace ofTAK, with K' a finite extension of K. Let

a0 : K' — C be an embedding and 7 G WCT0 be a non trivial period of Aao.
Let S be the reduced 7-linear N-torsion subscheme of A defined over K', (see

definition 11).
There exist integers M, N and D satisfying

D9 > Ci(5)(deg£A)-1Mfl-s/id
M > C2(g)Dr (47)

M2hd > C3(g)N29Drd(D + Mh + M
logM+logN)47



such that

$:H°(A,£®D)^H°(^£®Dw,gM)
is not injective. Here h := max(l, h(A),log degc A, h(W)), r := max(l, M ,M(To/,

d = [K : Q], s is the codimension of W and Cl{g) are constants depending

only on g.

Proof By contradiction we assume that $ is injective. Then we prove that

_

gM+i /
_ i \

degnË>J2{^r1(Fl/F^1))Umajc(Gz) +
j^7T^] Ç log||&|U +

2gM /
_ 1

Y^ (ig^iFoJFo^i)) /imax(Go,l) +
rK, . o1 Yl log H^lk

(48)

This contradict property 7 for an injective map. Thus 0 can not be injective.

We will denote the right hand-side of the above inequality by RHS and the

left hand-side by LHS.

Using Theorem 1, we get

delË = D°x(A, C) (-\h{A)
+ \ log

D'x(A £)

s
2

v '
4

ö

(2tt)9

whence

L#S>-^X(A£) (49)

Now we estimate the right hand-side. We use the isomorphisms (26) and

(27) to bound ßma,x(G0t2gM-k) and ßmax(GgM-k)- Since P% are torsion points

degn p;c®d = 0.

From [11] prop. 4.1 we get the estimates

ßm^Go^gM-k) < ci(g)kh + klogk for 1 < k < 2gM

and

ßmax(GgM-k) < c2(g)kh + klogk for 1 < k < gM,

where

h := mnx(l, h(A), log degc A, h(W)).

We supposed that 4> is injective thus

(rg^CFo,*) - rg^-^Fcfc-O) < rgG0,fc for k < 2gM

48



and

(rg^Ffc) - vgr^Fk-i)) < rgGfc for k < gM.

Using the isomorphisms (20) and (22) we can compute

rgG0,29M-k =(k+g9_~S_~1) for k<2gM

ïëG9M-k = (N-l)(k+g9_~~sS_~l) for k<gM.

Since the logarithm is a convex function, relations (16) and (17) imply

t^t £ iog6;2<cG/)iog/i (so)

Lemma 2 and relation (50) yield

y——r £ loe\\<ß0,29M-k\\a<C4(g)(D + k + k\ogh).

We recall that the degree of the field of definition of a TV-torsion point of A

is at most N2ad with d = [K : Q] and K the field of definition of A. We

suppose that gM > 2D||7||2. Using lemma 5 and lemma 7 we deduce

-1- £ log||^_fc||g < CM(D+k+k\ogh+\ogN)-°^ ^
We can give a first bound for RHS

2gM /h _i_
_ _

i \

RHS < C4(g) £ (
*

)(£> + fc/H-fclog/i + fclog(fc + l))
fc=o

V ^ " s ~ 1 /

+ C5(g)(N-l)
gM

J2[ _~-i ) (D + kh + klogh+ k\og{k+l) +logN)
k=0

\ 9 '

gM+l ,

+ C6(g)(N-l) £ (rgr^Fi/Fi.,) (-
fc=i

^ 2N29dD\h\\2
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and so

RHS

2gM

fc=0

k + g
— s — 1

g-s-1

gM

<C7(g)J2["^ l* _\ ~)(D + (k + l)h + klog(k+l))

k + g
— s — 1

9-s- 1
+ C8(g)(N - 1)^ (

gMM

-C6(g)(N-l) J2 (rgrHFi/Fi^))

(D + (k + l)h + k log(Jfc + 1) + log N)

M2

k=\
2N2adD\\i\\

The negative term does not depend on k so it remains to find a lower bound

for Sfcfi+1(rg0_1(^/^-i)) = rgFffM- By definition FgM = 10a,w,29m ®

£*£D, i.e. it is the module of sections of Sp with a zero of multiplicity at

least 2gM along W at O.4, therefore from (22) we have

rg FgM>D9x(A,£)
2gM + g-s

9-s

We deduce the bound

RHS

2gM

<C7(g)Y,["' IW ^)(D + (k + l)h + k\og(k + l))
fc=0

k + g
— s — 1

g-s-1

gM

yivi ,

+ Cs(g)(N - 1)J2 [
fc=0

^

gM

- C6(g)(N - l)Y,

k + g — s — 1

g-s-1
(D + {k + l)h + k \og{k + 1) + log N)

fc=0 L

D9x(A,£)-
2gM + g-s

9-s

M2

N29dD\\~f\\2

that implies

RHS < C9(g)NMg-s(D + Mh + MlogM + logN)

- C10(g)(N - l)[D9x(A, C) - Cn(g)M°-
M2 (51)

'iV2»d£)||7||2'

We suppose that N > 2 and that the following inequalities hold

D°x(A,C)>2Cu(9)M°-"hd
M2hd > Cl2{g)N29Dd\\1\\2{D + Mh + M log M + log N).
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Under these conditions we deduce from (51)

RHS< -hD9x(A,C).

This contradicts (49) and proves (48).

5.3 The Multiplicity Estimate and Conclusion

Let A be an abelian variety of dimension g defined over a number field K and

C a symmetric ample line bundle on A. Let a : K —> Q be an embedding.

We consider the addition morphism

+ : A x x A —> A
"

v
'

g—times

! (pi,...,pg) I > Pl + -+Pg-

Let S be a subscheme of A of dimension zero. We denote by E : Sg —> A the

schematic image of S x
...

x Sy under the addition morphism.

g—times

If B is an abelian subvariety of Aq we denote by r : Aq —> Aq/B the natural

projection.

Theorem 4 (Multiplicity Estimate) // the restriction map

<S>:H°(A,£) > H°(A,KOSg®C)

is non mjecüve then there exists an abelian subvariety B of Aq, different

from Aq, such that

length(r(S)) • degCaB < degcA

with length(r(S')) the length of the scheme r(S).

We recall that the length of a module M is the length of a chain 0 — M0 C

• • • C Mr = M with MJM^i simple (see [28] p. 12). And the length of an

affine scheme is the length of the module of global sections of its structural

sheaf.

Wüstholz has proven as first results of this type (see [40]) One can find

other formulations and refinement of his result, where the effective constants

are improved, see for example [33], [32] or [7].
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5.3.1 The Proof of The Subvariety Theorem

Let us consider a power C®D of a line bundle C on A. We choose the scheme

S :— T,l,w,m to be the 7-linear iV-torsion subscheme of A of multiplicity M

along W, where M is an integer, W the subspace of Tak, of codimension s

and 7 a non trivial period (see 4.2.3). Note that [L : K] < N29 with L the

minimal field of definition of S. We denote by d :— [K : Q] the degree of

the field K of definition of A. Let K' be a field of definition for W and S.

The schematic image of T,l^w,m x
••••

x Sl)H/,m under the addition morphism
turns out to be ^L,w,gM-
Lemma 8 tell us that if we choose N, D and M satisfying the conditions

(47) then the hypothesis of the Zero Lemma are satisfied for the subscheme

S and the sheaf £®D. It follows that there exists a abelian subvariety B of

Aq different from A, such that

length(r(5)) deg£®o B < deg£®D A

i.e.

length(r(S)) deg£(7 B < Dc deg£ A (52)

with c the codimension of B in A.

Using (22) we compute the length of the subscheme r(S). If B = 0 then

fa - s + M\ M9~s

length(r(i?)) = iV^ ^J
>

N^-^. (53)

If Tb ^ Wa then r(S') contains O^/^m and so

\ength(r(S))>%(S + B/B)(C
S+

,V > «(5 + fl/B)-
c-s + i y-HV ^(c_s +1)!'

(54)

Finally if TB C WCT then r(S') contains Qa/b,w,m where W is a subspace of

Ta/b of codimension s, and so

/c _ s + Af\ mc~s

length(r(S)) > tf(S + B/B) [ ^ jj J > 0(5 + B/£)^-_ (55)

If iV, D and M satisfy the conditions

NM'-'^dfàD'degcA

M>Cl{g)D
[ '

then, from (53) and (54), we exclude the cases B = 0 and TB (jL Wa. It

follows that TB C Wa. Moreover we can suppose §(S + B/B) — 1, this
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implies that S is a subgroup of B therefore the period 7 is an element of the

tangent space TB- In this case by (55) and (52) we deduce

degcB<C(g)j^sdegcA, (57)

The conditions (47), (56) are compatible. They are satisfied if we choose N

depending only on g, and D and M to be the integer parts of

D* = CD(g)(degcA)-1mâx (l, hdr^,d(r \og(rd)Y

M* = CM(g)(degcA)'1m&x(l,hdr!i,d(r\og(rd)Y

where d = [K : Q], h := max(l, h(A),logdegc A, h(W)), r := max(l, ||7||^0),
s the codimension of W and Cß(g) and Cm{q) constants depending only on

g. Substituting those values in (57) we deduce the Subvariety Theorem 2.
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6 Bounded Degree for Elliptic Isogenies

6.1 Preliminaries

Masser and Wüstholz proved in [20] that, given two isogenous elliptic curves

E and E* defined over a number field K, there exists an isogeny from E to E*

with degree bounded by c(d) -max(l, h(E))4. Here c(d) is a constant depend¬

ing only on the degree d of the field K and h(E) is the "naive" height, i.e. the

height of the Weierstrass equation defining the elliptic curve. In this chapter

we use the Subvariety Theorem 2 in order to improve this results in a quan¬

titative respect and to make explicit in d the constant c(d). We need some

geometric trick in order to improve the bound to c- d2 max(l, h(E), log d)2 for

elliptic curves with complex multiplication and to c • d2 max(l, h(E), logd)3
for elliptic curves without complex multiplication. Here h(E) is the Faltings

height of E. Faltings and naive height are equivalent (see (64)).
Since now on we fix an embedding a : K —» C and we identify E (resp. E*)
with Ea (resp. E*).

6.1.1 The Isogeny Lemma

From the "Isogeny Lemma" we learn how a non-split abelian subvariety of a

product variety gives rise to an isogeny. The degree of this isogeny is bounded

in terms of the degree of the subvariety. This theorem is the link between

the Subvariety Theorem and Theorems 6 and 7.

One says that a connected algebraic subgroup H of a product group Eni x

E*n2 is split if it has the form H = H\ x H2 for algebraic subgroup Hi of

Eni and H2 of E*n2.

Theorem 5 (Isogeny Lemma [20]) For positive integers ni and n2 suppose

Eni x E*m has a non-split connected algebraic subgroup of dimension d and

degree A. Then there is an isogeny between E and E* of degree at most

3MA2.

Using the Subvariety Theorem we construct an abelian subvariety B of A :=

Eni x E*712. The degree of B is bounded in terms of the height of A, of the

height of a given subspace WCTak,andofthenormofanontrivialperiod7WofA.Ifwecangivegoodboundsforh(W)and||7||thenwecanobtaininterestingresultsonthedegreeofaminimalisogenybetweentheellipticcurvesEandE*.54



6.1.2 The Successive Minima

Let E be an elliptic curve defined over a number field K. Let £ be a sym¬

metric ample line bundle on E that gives principal polarization, for example

£(0E).
The exponential map of the elliptic curve E defines the exact sequence

0 > A > TE ^^ E > 0

where TE is the tangent space of E at zero and A the kernel of exp.

We endow the tangent space Te with the metric induced by £, (see 3.1). We

denote the successive minima of the Euclidean lattice (A, || • \\te) by Al5 X2.

We fix elements wi, w2 G Ai such that

A, = |k||TB i = l,2. (58)

We call Ui and u2 the minimal periods of E\. We remark that in dimension

two the minimal periods are an integral basis for the lattice A. Indeed if

a; G A then uj = qiuj\ + 52^2 with q% G Q, without loss of generality we

can assume that —1/2 < qt < 1/2 and that (ui,u2) < 0. If #2 = 0 we

have |k| < l/2|k|| contradicting the minimality of u)\. If g2 7^ 0 Then

|k| < 1/2(||cji||2 + H^ll2)1^2 < Ik 11 contradicting the minimality of w2-

6.1.3 The Injectivity Radius

The radius of injectivity of E with respect to the metric on Te induced by a

symmetric ample line bundle C (see 3.1) is the largest real number p{E,C)
such that the restriction of the exponential map to the open ball with center

in zero and radius p(E, C) is a homeomorphism. Then

p(£,£) = i|kll-

Indeed it is clear that p(E, £) < \ \ k 11. Let's now prove that the exponential

map
isahomeomorphismwhenrestrictedtotheopenballB(0,§|k||).Sup¬posethatthereexistz\andz2GB(0,||kll)sucn^na^exP(2ri)=exP(-22),i.e.suchthatz\—z2isanelementujofthelatticeAi.Recallthatu\istheminimalperiodofEand|k—z2\\<||^i||;thisgivesacontradiction.BydefinitionB(Q,p(E,£))<x{E,C)andtherefore|k||<7r-5x(£,£)è-(59)Inthecaseofaprincipalpolarizationwegetlk||<7T~2.(60)
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6.1.4 The Product Variety and its Model

Let E and E* be elliptic curves defined over a number field K. We choose

symmetric ample line bundles £1 on E and £2 on E* that give principal

polarizations. We denote by p, the natural projection on the i-th factor. We

consider on E x E* the symmetric ample line bundle £ := p\C\ <S>P2^2- From

the Künneth formula, £ is a principal polarization for E x E*.

We denote by TExE* the tangent space of E x E* at zero and we recall that

Texe* —Te~k Te*. We define on TExe* the metric induced by £. Since the

first Chern class of the tensor product is the sum of the first Chern-classes

we have that for any 7 = (71,72) with 71 6 Te and 72 G Te* the following

relation holds

IMIiHWlL + INlL- (61)

We denote by (£,tt,£i) (respectively (£*,7r,£2) ) a MB-model for (E,C\)

(respectively (_E,*,£2)), (see 3.2). We indicate by Tg ( respectively T£* ) the

corresponding tangent bundles and since the MB-model commutes with the

product we have Ts-ks* — T~e x Is*.

6.1.5 The Height of a Subspace

Any subspaces W of the Lie-algebra Lie(A) of an abelian variety defines a

hermitian O^-module W := 7^ H W endowed with the norm induced by £.

We define the height of the subspace W as

h(W):=-tegnW.

6.1.6 The Faltings Height WerecallthattheFaltingsheightisdefinedash(E):—degnSls/swhereVt£/Sisthesheafofrelativedifferentialsof£withrespecttoS=SpecOk(see18).Fromthedefinitionwededucethath(ExE*)=-degn/\2(TEJBTE*)=-degn(TE<8>TE*)andfromproperty1wehaveh(ExE*)=-degnT£;-degnTE*.SinceEisacurveitscanonicalbundleisthedualofTE*,thesameholdsforE*andsoh(ExE*)=h(E)+h(E*).In[36]prop2.1wecanreadhowtheFaltingsheightofanellipticcurveisrelatedtotheimaginarypartofr:=u^/wi,namelyIm(r)<c-max(l,h(E))(62)56



with c an absolute constant. This constant can be explicitly computed after

using the estimates Im(r) < (27t)-1 log(|j(r)| + 1193) (see [8] p.187) and the

estimates in [36] prop. 1.1, ex. p. 256 and 2.(11). We deduce

Im(r) <7r-1(120 + 24.3max(l,/i(E))

< 72max(l,/i(£)).
2. „ ,

(63)

We denote by hN(E) the naive height of the curve E. From [36] proposition

2.1 we have

hN(E) = 6h(E) + 0(1 + log(l + h(E))). (64)

6.2 Technical Results

We now report [20] lem. 4.1 because we need the relation appearing in the

proof in order to prove lemma 10. We will use lemma 10 to estimate the

height of a sub-bundle, (see 6.3).
Let E and E* be elliptic curves defined over K and ip : E —> E* an isogeny.

The corresponding differential map on the tangent spaces satisfies dipA C A*.

Let uii, u>2, (respectively ui\, u>2) minimal basis of A (respectively A*), (see

6.1.2). Then there are integers mv such that

d<p(u>i) = muul + m^ui^, d(p(ui2) = r^itu* + ^22^2 (65)

and

deg(p = det{ml3) = N.

We set the following notations r := tc^/wi and r* := ui^/ui^; y := Im(r) and

y* := Im(r*).

Lemma 9 [20] lem. 4.1 With the above notations, we have

\m%3\ < 20-N* (yy*)kK

Proof The differential map on the tangent spaces is the multiplication by

a number a. The above relations yield

r =
m21 + m22T*

(66)
"ïii + mi2T*

and by taking imaginary parts we deduce

y = (miim22 - mi2m2i)y*\mii + m12r*|"2.

Hence

\mu+m12T*\2 = Ny*/y (67)
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where r = x + iy and r* = x* + iy*.

Using this last relation we get

\mn + ml2r*\2 = {m12x* + mn)2 + {m12y*)2 = Ny*/y

which implies

\m12\ < (N/yy*)1* (68)

and

l^iil < |mi2a;*| + (\m12y*\2 + Ny*/y)*.

This two inequalities, together with \s\ < |, give

\mn\<3{Ny*/y)k- (69)

From (66) we get

|m2i + 7n22T*|2 = |r|2|mn + mi2r*|2.

Since \x\ < | and \y\ > ^, we see that \r\ < 2y* and it follows by (67)

|m2i+m22T*|2 <4Nyy*.

We play the same game as before to get

|m22|<4(AW)i (70)

and

\m21\<20(Nyy*)1ï. (71)

D

Lemma 10 In the above notations we have

\m%3\<21N. (72)

Proof First we give the proof in the case mtJ ^ 0 for every i, j. We know

that TV = 777n77i22 — 7711277121. Since any \ml3\ is bigger or equal than 1 it

follows that

I win I < N + |mi2m2i|

|7n22| < N + |mi277l2i|

|m2i| < N + \mnm22\.

From relations (68), (69), (70) and (71) we deduce the claim.
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We remark that dtpu)\, dpu>2 are a minimal basis for dtpA, in fact the differ¬

ential is a linear transformation between 1-dimensional vector spaces.

Let us now suppose that one of m%3 is zero.

If 77i2i = 0 then mnm22 — N and so \mu\, J777.22I < Af. We already know

from (68) that

|m12| < ^Nï. (73)

If m22 = 0 then iV = ro12m2i thus |mi2|, |ra2i| < N. Since dtpui, dtpu>2 are a

minimal basis, we have that Iran^ï + ra^u^l < |ra2iCJ*|. Dividing by \ul\ we

deduce (m^x*+ ran)2 + (ra12?/*)2 < (7n2i)2, which implies y* < |m2i|/|mi2|.
Using (69) we get |ran| < 3N.

If mn = 0 then \rri2i\ < N. From relation (67) we deduce (-^)5 < N*.

Using (70) we get |ra22| < 4iV.

IÎ1TI12 = 0 then |mu|, |m22| < N. We shall prove that |ra2i| < ||ran| + \rri22\-
We consider the element u> := dtp(u>2 + j^i) with j = ±1. The norm of u> is

given by

|cj|2 = \ux |2((m2i + jmn + m22X*)2 + (m222/*)2).

On the other hand we have

\dtpuj2\2 < |wi|2((m2i + m22X*)2 + (ra22?/)2)-

We have already remarked that dtp preserves the inequality of norms, the

fact that |co>2 + jcoi\ > \u>2\ implies that

\dpu)2\2 < |o;|2

or

(m2i + m22X*)2 < (m2i + jmn + m22X*)2.

choosing j so that jm\ 1 (777-21 -\-rri22x*) is negative, we deduce that the relation

|m2i| < (|mn| + |m22|)/2 must hold.

6.3 The Height of a Sub-Bundle of the Tangent Bundle

The main idea to compute the height of a subspace W of the tangent space

T^1 x T^l is to define W as the image of T^'1 x T^,2 under an injective

morphism of bounded norm and to apply property 6. The next property will

be useful to bound the norm of a linear operator. However this property

implies that the metric induced by Ca is controlled by C independently of a.
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Proposition 1 Let E be an elliptic curve defined over K and C an ample

symmetric line bundle. Then for every embedding a : K —> C we have

\\n II2 >
X(E'£)

\\Ul,*\\C,a- 72 max(1;/,(£;))

with o>ii<7 the minimal period of Ea.

Proof The translation invariant representative of the first Chern class of

C„ is an alternating form #(7(71,72) which takes integer values on Aa x A„.

Let Ha(zi,z2) := Ra(izi, z2) + iRa(zi, z2) be the associated hermitian metric

on Te,it, which is by definition the metric induced by £CT, (see 3.1).
Let Ui, u2 be a Z-basis for ACT such that Ra(u>2,u>i) > 0. If we take a matrix

representation of #,7(71,72) with respect to this basis we get

d ,
0 #,7(^2, ui)

n° l -R^,^) 0

and

We want to calculate

X{E„,C„) = Ra(üj2,u1). (74)

IMIz> := R„(iuJi,uJi).

Let uj\ = Xi+iyi and ui2 — x2 + iy2. In order to use the matrix representation

#CT we must express iu)\ as a linear combination of the basis u\, u>2, i.e.

iuj\ = X\Ui + X2ui2. This gives the relations

which imply

xi = Xm + X2y2

-V\ = XiXx + A2x2

xj + yl
M —

x\y2 - y\x2

Since Ra is alternating Ra{Xu\ + X2uj2,uji) = X2Ra(u2,u)\).
Choose the isomorphism of TE with C such that u)\ = 1 and ui2 belongs to

the upper half plane. We deduce

IMIico- = —R<r(v2,Vl)-
V2

Using the relations (74) and (62) we conclude the proof.
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Corollary 2 Let E be an elliptic curve defined over K and C an ample

symmetric line bundle. Then for every embedding a : K —> C we have

\M\lr <U2X{E,£)max(l,h(E))

with ui2a the biggest period of a minimal basis of Ea.

Proof
We have proven in paragraph 6.1 that ||a>i||£;(T = Aij(T and Hu^Hao- = ^2,<t
with Àî;0. the minimal successive of A^..

From Minkowski's second Theorem ( see [6] VIII.4.3.) we deduce

IMIzvlMka < 4x(E,C).

Using the lower bound of proposition 1 we deduce the corollary.

Now we are going to estimate the height of a subspace W of a tangent space

E?1 x E%2.

Lemma 11 Let I : T^1 — T^l be a linear map defined over K and let Yi be

the graph of I. Then

h(Yl)<n1{h(E) + jR^] J2 log(l + ||/|W). (75)

Proof
The metric on TEnlxE*n2 is the one induced by C = (p*£i)ni <g> (p^)712 and

on the subspaces we consider the restriction metric, (see 1.2.4). The height
of a subspace W (see 6.1.5) is defined as

h(W) :=-à^W.

The linear map L:=id@l : T^1 —>• Tg1 x T^l is injective because it is the

identity on the first factor and L{ T^1) — Yi.

Applying property 6 we get

de^1 < à^nL{Tf) + p^ £log II A" (L)H- <76)

We recall that || Ar L\\ < \\L\\r. By the definition of L we deduce that

iiA-Lii^a + ii/iD^u + ii^r.

Since E is a curve, its canonical bundle is the dual of TE. Thus h(E) =

—degnTE. Moreover deg^^1 = nidegnTE (see property 1) and the propo¬

sition follows.

D

We deduce two corollaries that we need in the proof of Theorems 6 and 7.
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Corollary 3 Let ip : E —» E* be an isogeny between elliptic curves defined

over K. Let dip : Te —> Te* be the differential map on the tangent spaces.

For any integer m let m : Te —> Te be the multiplication by m. We consider

the subspace image Im(m © dip). Then

h(Im(m © dip)) < h(E) + log (142 max(m, fr(£)1/2 deg ip)). (77)

Proof The map m is injective hence the map m (B dip is injective, too.

From lemma 11 relation (76) we deduce

h(Im(m® dip)) <h(E)+ --}—- J2 log(||me d^lU). (78)
L ' ^

<7:tf—C

Since ||m © d</?||CT = (m2 + \\d(p\\l)1^2 < m + \\dip\\a it remains to estimate

||rf<^||CT. First we want to find a lower bound for ||<i^||cr with ip the dual

isogeny of ip. Since dip is a linear operator on a 1 dimensional vector space

its norm is given by '

,,
f)"" for any x E TE. We recall that from (60) we get

!MI°

\uilk < 7T 2 and from proposition 1 we have H^iH2 > l/72max(l, h(E)).
We have chosen minimal bases and dipA* C A hence

ll<MI. = ^#^ > Mr >
„

"'..-„ (79)
wriio- ii^ilk 72max(l,h(E)Y-

Let A'' be the degree of ip, we know that ||cî<^?j|o-||<i^>||o- = N. Using the lower

bound (79) for ||^||cr we get

\\dip\\a < 72max(l, h(E))?N. (80)

We can conclude that

n(m + H<Mk) ^ (14)dmax(m, h* (E) deg ipf.

Substituting this in the formula (78), we deduce the result.

D

Let ip : E —> E* be an isogeny between elliptic curves defined over K. Let

dip : Te — Te* be the corresponding differential map and let dip(ui) —

mnujl + TO12W2 and d(p(u>2) = ra2iü;* + m22<^2 (see (65)).
Let M := (mlJ)hJ==i!2 be the associated matrix. We consider M as a linear

map M : TE* x TE* —> TE* x TE* .
We consider the composition map

/ = dip'1 x dip'1 o M : TE* x Te. - TE x T£ (81)
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Corollary 4 Let (p : E —> E* be an isogeny between elliptic curves defined

over K Let I be the composition map defined in (81) and Tt its graph. Then

HTt) < 2 (h(E) + log (2 3273m&x(l,h(E*))^ degp)Y (82)

Proof
From lemma 11 we deduce

h(W) < 2{h(E) + —i— Yl lQg(l + II1IU)). (83)

Then it is enough to estimate (1 + ||/||<t).
We remark that \\l\\a = 2||d(p||~1||M||(T. By the estimate (79) for ip we get

\\M\71 <7r-272max(l,/i(£*))i (84)

Since Hz? + zt\\l < 31 bîII2 + \\zXII2 it follows
II J. £1 \ \(J II 1 I lw II £1 I IU

llMH^Smaxflmyl).
u

By lemma 10 we deduce

Holler < 63deg<^ i = l,2.

We conclude that

H(l + \\l\\rT)<(2-3273degp)dmax(l,h(E*))i

that implies (82). D

6.4 Bounded Degree for the Minimal Isogeny

We want to see how to estimates the degree of a minimal isogeny between

elliptic curves using our Subvariety Theorem. We consider separately the

complex multiplication case and the non complex multiplication case.

Remark 3 If (p is an isogeny between two elliptic curves both defined over

a number field K, then the isogeny p is defined over an extension of K of
relative degree at most 12, (see [20] lern. 6.1).

First we want to relate the height of two
isogenousellipticcurves.Thisisaresultwhichwewilluseinbothcases.
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Lemma 12 Let E and E* be elliptic curves defined over a number field K.

Let <p : E —> E* be an isogeny. Then

h(E*)<2h(E) + logN (85)

with N the degree of ip.

Proof
Let L be the field of definition of ip and let d its degree. We know from

remark 3 that L is an extension of K of relative degree at most 12 Moreover

riCTL-*c II^IU ll^llo- — Nd. Thus one of the following relations holds:

Y[\\M\*<N* (86)

or

H\mu<N^. (s?)

We consider the restriction of the injective map dip : Te1 —> Tß2 of hermitian

C^-modules, (see 6.1.5). From 2.1.2 we know that the normalized degree is

invariant under finite extensions of scalars. We apply property 6, relation

(10) to get

dein TE < de^n TE. +
-d log n I \M \a (88)

a

If (86) holds then we deduce

h{E*) <h{E) + ])\ogN.
If (87) holds, from relation (79) we get ]\a \\dip\\a > (7r/74max(l,/*(£)))d/2.
This implies immediately rjff \\d<p\U ^ (72A^)dmax(l, h(E))d/2. Substituting
in (88) we have

h{E*) < (1 + e)h(E) + log N.

D

For a more precise estimate see [9] 4.3.1, one has

h(E*) <h{E) + ^-log N. (89)

We gave here this easy proof to show how the Arakelov theory can simplify

things.

64



6.4.1 The Complex Multiplication Case

We say that an isogeny is cyclic if its kernel is a cyclic group.

Lemma 13 Let <p : E —> E* be an isogeny. We consider the corresponding

differential map dip on the tangent spaces whose Betti-representation on the

lattices gives

dip(ui) = mnul + m12uJ2, d(p(u2) = m2\(J{ + m22uf2. (90)

The greatest common divisor of all ray for i, j = 1,2 is one if and only if the

isogeny ip is cyclic. Moreover if ip is minimal then it is cyclic.

Proof If we suppose that ker uo is non cyclic then it must contain a product

of two cyclic groups of order p, for a certain prime p. In particular ker</?
contains the kernel of the multiplication by p. Therefore all mtJ are divisible

by p. This contradicts the assumption and proves that ip is cyclic. Vice versa

if p\mlJ for all i,j = 1,2 then ip factors trough the multiplication by p thus

its kernel contains a copy of Zp x Zp which is not cyclic.

Suppose now that cp is minimal. If it is not cyclic then, as we have just seen,

there exists a positive number p such that p\mtJ for all i,j = l, 2. Therefore

<p/p is also an isogeny This contradicts the minimality of <p and proves the

lemma.

Definition 13 We say that the isogeny ip : E —> E* is lower triangular if

the corresponding Betti-representation has the following form:

dip(ui) — mi\Lü\

d<p(iü2) — m2\0J*x + m2<2U*2

Theorem 6 Let E and E* be isogenous elliptic curves defined over a number

field K.WesupposethatEorE*havecomplexmultiplication.Thenthereexistanisogenyip:E—>E*suchthatdeg(^<Cd2ma,x(l,h(E),\ogd)2withd:=[K:Q]thedegreeofthefieldK,Canabsoluteconstantandh(E)theFaltmgsheightofE.ProofSinceEandE*havecomplexmultiplicationthemoduleHom(.E,£"*)=Z+aLisafreeZ-moduleofrank2.Let</?:E—>E*beaminimalisogeny,65



the isogenies <p and <p' := a<p are Q-linear independent. The corresponding
differential maps dip and dip' on the tangent spaces satisfy

dip(A) c A*

and

dip'{A) C A*.

These inclusions can be expressed in the form

d<p(ui) = mncul + m^Wj, d(p(co2) = to2i<x>* + "^22^2 (91)

and

dip'(u>i) = m'nul + m'l2uj2, d(p'(u2) — to21u;* + m'22u>2. (92)

We want to proof that there exists a lower triangular isogeny cf) G Hom(£r, E*).
If m12

= 0, then ip is lower triangular thus we can set 4> = <p>.

If fni2 7^ 0, we consider the linear combination

4> := m'12(p + mi2(p'.

From the relations (91) and (92) it follows

d(j){uji) = MUüül

d(j)(üü2) = M2iüj\ + M22o;2

where Mn := (to'12TOh — to12to'u). Since <p and <p' are Q-linear independent
and TO12 7^ 0, then 4> is non-trivial. If p\Ml3 for i,j = 1,2 then <j)/p is an

isogeny as well, we can then suppose that the M%3 have no common factors.

We consider the linear map

where Mn : Te —> TE is the multiplication by Mn.

We define the subspace W to be the image of Mn x d(j). The differential map

d(f) and so W are defined over K', with K' the field of definition of 0. From

remark 3 we have \K' : K]
<12.Notethat7:=(u>i,u>l)isanelementofthevectorspaceW.Infact(MnxG^XMn^cJi)=(uji,d(j)(Mii~lu\))={ui,ul)isanelementofW.WeconsiderontheproductvarietyA—ExE*thelinebundle£:=p\C\®p*2C2andonthetangentspaceatzerothemetricinducedbyC(see6.1.4).WearenowintheconditiontoapplytheSubvarietyTheoremwheretheabelianvarietyA,thelinebundleC,thespaceWandtheperiod7:—(lui,a;*)aretheonesdescribedabove.TheTheoremensurestheexistenceofan
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abelian subvariety B non-trivial and different from A (i.e. dimB — 1), such

that TBCW (in this case TB = W) and

deg£ B < C\ max(deg£ A, hrd, rdlog(rd))) (93)

with h := ma,x(l, h(A), log degc A, h(W)) and r := max(l, ||7||2). We have

assumed principal polarizations so the Riemann-Roch formula (12) gives

degcA = 2. We want to bound the height of W and the norm of 7 in

order to estimate the maximum appearing in (93) with the height of E.

Corollary 3 gives

h(W) < h(E) + log (u2 max (mu, h* (E) deg </>)) .

Since Ar := deg 4> = Mn M22 we see that

h(W) < h(E)+log (u2Nmax(l, hiE))1^) . (94)

Now we have to bound the norm of the period 7. From (60) we know that

H^illr < 7r_1 and 11^* 11£2 < Ti"-1- The norm induced by C (see 61) gives

ll7lli = lki||2:1 + IK||ia<27r-1. (95)

Substituting the estimates (94) and (95) in (93) and using h(A) = h(E) +

h(E*) we get

degcB < C2dmax(l,h{E) + h(E*) + logNAogd). (96)

From lemma 12 we deduce

degcB < C3dma,x(l, h(E) + logN,logd).

We remark that B is non-split because Tg = (^1,^1) C.

If 4> = tp we apply the "Isogenies Lemma" of Masser-Wüstholz (see 6.1-1)
and we find an isogeny of degree N\ < Cd2 max(l, h(E) + log N, log d)2.

Weassumedthat(pisminimalthendegy?<C4d2max(l,h(E),logd)2.If07^ipweconsidertheintersectionsBn0^xE*andBC]EiX0^».SinceBisnon-splittheseintersectionsarefinite.Bylemma13weknowthat4>iscyclic.Thusthereexistsanelementu*GA*whoseclassgeneratesA*/d(f)A.ThenP=exp(d(ß~1MnLLi*,u*)isapointofBDExx0E.ofexactorderAf22-Ontheotherhand,anyelement7*GA*isequivalenttotu*67



modulo d<j)A thus the point P generates the whole intersection. It follows

that $(B n E x 0E*) = M22. Since degE x 0E* = 3, by Bézout Theorem and

relation (96) we have

M22 < C5dmax(l, h(E) +log N,log d).

The dual isogeny cf> is cyclic as well. Thus the group d(j)A/NA* is generated

by an element ui of exact order N. By isomorphism the group (d<f>A/N)/A*
is generated by uj/N. It follows that Q — exp(u>, d<pu/Mn) is a point of

BP\0e x E* and has exact order Mn. On the other hand, for any 7 G A, the

element d<jry is equivalent to tuj modulo A^A*. Thus the point Q generates

the whole intersection. We conclude that jj(JB nOEx E*) — Mn. Then, by
Bézout Theorem and relation (96), we have

Mn < C5dmax{l,h{E) + logN,logd).

Since the isogeny cf) is lower triangular we have N = deg0 = Mn • M22, we

deduce

AT < C6d2 max(l, h(E) + log N, log df

whence

A^ < C7d2max(l,/i(£;),logd)2.

By the minimality of if we deduce

degv? < C7d2 max(l, h(E), log df

which conclude the proof.
D

Remark:

The proof of Theorem 6 works also in the case of two elliptic curves without

complex multiplication related by a lower triangular isogeny.

6.4.2 The Non-Complex Multiplication Case

Let E and E* be isogenous elliptic curves defined over a number field K.

Let (p : E —> E* be a minimal isogeny of degree N. Let exp
betheusualexponentialmapfromTE2xTE*2—»E2xE*2.Weconsiderindependentcomplexvariableszi,z2,z\,z2anddefinethesubspacew=fdtpZi=ranz]"+m12^2/97\\d(pz2=m2iz{+m22z2correspondingto(65).
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Lemma 14 The intersection o/exp(W) with 0^2 x E*2 is a cyclic group of

cardinality N = deg ip.

Proof Let J be the intersection. Since ip is a minimal isogeny, by lemma

13, it follows that ip is cyclic. This means that the quotient group A*/dipA is

isomorphic to Z/NZ. Let u>* G A* be any representative of a class generating
A* jdipA. Then J is the set of points

exp ((muai + mit2a2)dip~1cü*, (mnai + mi:2a2)dip~1u)*, a\u*, a2to*)

where a\ and a2 varies in Z. Since u* has exact order N the group Zdip~lui* x

ZtfyrVmodA x A is isomorphic to Z/NZ x Z/NZ.
We consider the following commutative diagram

0 -*Z xZ

Z x Z-

M

M

+Z x Z-

N

>Zx Z-

TN

-»- cokerM » 0

cokerM *- 0

M

kerMc Z/NZ x Z/NZ -^* Z/NZ x Z/A'Z >- cokerM * 0

where M is the linear map induced by the matrix (mix mi2), N is the multi-

plication by N = detM and rows and columns are exact. In this notations we

have J = 7TatoM(ZxZ). Since ip is cyclic cokerM = Z/NZ, so the multiplica¬
tion by N is the zero map. In view of the Snake-Lemma we have a long exact

sequence of kernels and cokernels. It follows at once that ker M = Z/NZ and

cokerM = Z/NZ. Therefore J = (Z/NZ x Z/NZ) Iz/NZ which in turn is

isomorphic to Z/NZ.
For this last isomorphism let I : Z/NZ -» Z/NZ x Z/NZ, 1 -> (Ai, A2) be the

inclusion
ofkerM.SincekerMiscyclicoforderNthenAiandA2mustbecoprimenumbersthusthereexistintegersl\andl2suchthat\\l\+\2l2—1-Weconsiderthecommutativediagram0ldxOZ/NZ^^Z/NZxZ/NZ—-^Z/NZ0id0*Z/NZ—U-Z/NZxZ/NZ»-coker/»0whereL=(*xj2).SincedetL=1themapLisanisomorphism.Bythe5-LemmaweconcludethatJ=coker/=Z/NZ.D
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Remark 4 Let X C Pn x Pm be an irreducible variety and ix the natural

projection on one of the factors Pn or Pm. If X and tt(X) have the same

dimension then deg7r(X) < degX. ([20] lemma 2.1).

Theorem 7 Let E and E* be isogenous elliptic curves defined over K. Then

there exists an isogeny ip : E —>• E* such that

deg<^ < Cd2 max(l,/i(£), log df

where d := [K : Q] is the degree of K, C is an absolute constant and h(E) is

the Faltings height of E.

Proof We consider the linear map / : TE* x TE* —> Te x Te given by

l(zl,Z2) — (G^>_1(mnz* + mi2Z2),d(p~1(m22Zi — mi2Z2)) and the abelian va¬

riety A = ExExE*xE*. Let W be the graph of I in Ta, by remark 3,

W is defined over a field extension of K of degree at most 12. Note that the

period 7 := (a>i, u>2, col, co\) ls an element of the vector space W.

On the product variety A we consider the line bundle C := p\C\ <g) P2A ®

p\C.2 ®p\C-2 and on the tangent bundle the metric induced by £, (see 6.1.4).
We are now in the condition to apply the Subvariety Theorem 2 where the

abelian variety A, the line bundle £, the space W and the period 7 are

defined above. The Theorem ensures the existence of an abelian subvariety

B non-trivial and different from A, such that 7 G TB C W and

deg£ B < C(g) max(deg£ A, dhr, dr log(rfr)) (98)

with h := max(l,/i(A),logdeg£ A, h(Wl)), r := max(l, ||7i||25) and 5 the

dimension of B. We have assumed principal polarizations, so the Riemann-

Roch formula (12) gives deg£ A = 4!.

We want to bound the height of W and the norm of 7 in order to estimate

the maximum appearing in (98) with the height of E.

Corollary 4 gives

h{W) < 2 (h(E) +log (2 • 3273iVmax(l,/i(E*))2^ (99)

where iV = degy? and from lemma 12 we deduce

h(W) < 3 max. (l,h{E)+log N) (100)

Now we have to bound the norm of the period 7. From the principal po¬

larization assumption and relation (60) we know that ll^iH^ < 7r_1 and

H^ill^ < Ti"-1- Using corollary 2 we have ll^ll2;^ < 72max(l, h(E)) and

ll^lll.cr ^ 72max(l, h(E*)). The norm induced by C (see 61) gives \\^\\2C =
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IKIIa + IWIa + \H\\c2 + 11^2lli2 < 2(tt + 72)max(l,fc(£*) + /*(£)), and

so by lemma 12 we have

||7,||| <3-72max(l,/z(£) + logA0. (101)

Substituting the estimates (100) and (101) in (98) and using h(A) = 2h(E) +

2h{E*) we get

deg£ß < Cid max (l, (h(E) + log N)1+s, (h(E) + log N))5 log d). (102)

In relation to the dimension 8 of B we have to consider two cases.

First case: the dimension of B is 1.

From relation (102) we deduce

deg£ B < C2d max (l, h(E) + log N, log df.

We consider the projection map i\ : A-+ ExE* defined by (Pi, P2, Pf, P2*) |—>

(Pi,P*). We remark that the tangent space of B := n(B) is defined over

a finite extension of K. Note that the period 7 = dn^) = (wi,^) is an

element of Tß thus the dimension of Tß is one. By Lemma 4 we deduce

deg£ B < C2dmax (l, h(E) + log N, log df.

In view of the decomposition Theorem [31] cor 19.1 there exists an isogeny

<fi : E — B of degree at most deg£ B. From Lemma 12 we deduce

h(B) < 2h(E) + log(deg£ B)

whence

h{Tß) < C3dmax (I, h(E)+log NAogd)2. (103)

Moreover, by relation (60), we have that

||7j|2 = ||K,^)H2<27r-1. (104)

Now we can apply, once more, the Subvariety Theorem 2 to the abelian

variety A = E x E*, the subspace Tg and the period 7. Since the dimension

of Tß is one we deduce

deg£ B < C4max (deg£ A, hrd, rd\og(rd)) (105)

with h :— max(l, h(A), logdegc A, h(Tß)) and r :— max(l, ||7||2). The

Riemann-Roch formula gives degcA = 2. Substituting the estimates (103)
and(104)in(105)wededucethatdegcB<C5dmax(l,h(E)+logNAogd).(106)
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Clearly B is non-split because (o>i,u;*) G Tg. Applying the "Isogenies

Lemma" of Masser and Wüstholz (see 6.1-1) we get the existence of an

isogeny of degree Ni < Cd2 max(l, h(E) + log TV, logd)2. If we suppose that

<p is minimal then

deg(f < C6d2max(l,h(E),\ogd)2.

Case II: If B has dimension 2.

By relation (102) we deduce

degrB < C7d ma,x (I, h(E) + log TV, logd)3.
In this case 75 = exp(W). By Lemma 14 we know that j(Bf]QxOxE* xE*) —

N — degy?. The abelian variety 0 x 0 x E* x E* has degree 9, by Bézout

Theorem we deduce that

TV < Cgdmax (l, h(E) + log N, log d)3.

Which implies
N < C8dmax (l,/i(£),logd)3.

This conclude the proof.
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