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Abstract

In this thesis we give a detailed analysis of the methode of the
slopes introduced by Bost in 1995 in a Bourbaki talk [3]. In partic-
ular we write down some proofs that are missing in his paper. In
the first part of our dissertation we show how to modify the proof of
the Subvariety Theorem by Bost in order to improve the bounds in a
quantitative respect and to extend the Theorem to subspaces instead
than hyperplanes. Given an abelian variety A defined over a num-
ber field K and a non-trivial period v in a subspace W C T4,, the
Subvariety Theorem (Theorem 2) shows the existence of an abelian
subvariety B of A defined over Q, whose degree is bounded in terms
of the height of W and of the norm of the period 7.

As a nice application of our Subvariety Theorem we deduce an up-
per bound for the degree of a minimal elliptic isogeny which improves
the result of Masser and Wiistholz [20].

Riassunto

In questa tesi presentiamo una dettagliata analisi del metodo delle
pendenze introdotto da Bost in un seminario Bourbaki nel 1995 [3]. In
particolare diamo alcune dimostrazioni che non appaiono nell’artico-
lo. Nella prima parte della dissertazione mostriamo come modificare
la dimostrazione del Teorema della Sottovarieta’ (Theorem 2) data da
Bost, al fine di ottenere un miglioramento dei limiti ed estendiamo il
risultato a sottospazi anziché considerare solamente iperpiani. Data
una varietd abeliana A definita su un campo di numeri K e un periodo
non nullo v appartenente a un sottospazio W C Ty,, il Teorema
assicura D'esistenza di una sottovarietd abeliana B di A definita su Q,
il cui grado €’ limitato in funzione dell’altezza di W e della norma del
periodo 7.

Come interessante applicazione del Teorema della Sottovarietd de-
duciamo un limite superiore per il grado di una isogenia minimale tra
curve ellittiche che migliora il risultato ottenuto da Masser e Wiistholz

[20].
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Introduction

In 1990 D. Masser and G. Wiistholz started a series of papers on period
relations for abelian varieties [20]-[26]. As an application they obtained a
new proof of the Tate Conjecture, which is very different from the proof
originally given by G. Faltings in 1983. The Tate Conjecture is a crucial step
in the proof of Faltings’ theorem on the Mordell Conjecture. In Masser’s and
Wiistholz’” work one of the central results states that, given an abelian variety
A defined over a number field K, there exists only a finite number of K-
isomorphism classes of abelian varieties defined over X which are isogenous
to A. Their approach consists in giving a bound for the degree of a minimal
abelian subvariety B of A whose tangent space at the origin contains a given
period of the lattice associated to A. The proof is a completely effective
version of the Analytic Subgroup Theorem by G. Wiistholz [39] in the special
case where the group is an abelian variety and where torsion points are
considered. No other known method gives such precise quantitative results.

As a test case, they started their research with elliptic curves rather than
with abelian varieties. In [20] they showed that, given two isogenous elliptic
curves E and E* defined over a number field K, there exists an isogeny from
E to E* with degree bounded by c(d)-max(1, h(E))*. Here c(d) is a constant
depending only on the degree d of the field K and h(E) is the height of the
Weierstrass equation defining the elliptic curve. The elliptic case turned out
to be a model for the general case of an arbitrary abelian variety.

In 1995 J.-B. Bost [3] gave a Bourbaki talk on the work of Masser and

Wiistholz. One of the interesting aspects of his approach is the intrinsic and
geometric version of the argument originally given by Masser and Wiistholz.
Several new tools were introduced. For example, the use of Arakelov geom-
etry which had meanwhile become available. Arithmetic intersection theory
allows, among others, to define the height of an algebraic variety in general.
This height has nice functorial properties.
Other geometric ingredients are hermitian vector bundles on the spectrum
of the ring of integers of a number field and the related concept of Arakelov
degree and slopes. An interesting aspect in his work is the use of semista-
bility in transcendence. This approach avoids theta functions, the study of
the moduli space of polarized abelian varieties and the construction of aux-
iliary functions as they appear in the work of Masser and Wiistholz. As a
consequence, proofs and effective calculations are more direct.

In this thesis we give a detailed analysis of Bost’s approach and in partic-
ular we write down some proofs that are missing in his paper. In the first




part of our dissertation we show how to modify the proof of the Subvariety
Theorem by Bost in order to improve the bounds in a quantitative respect
and to extend the theorem to subspaces instead than hyperplanes. Given an
abelian variety A defined over a number field K and a non-trivial period 7y
in a subspace W C Ta,, the Subvariety Theorem (Theorem 2) shows the
existence of an abelian subvariety B of A, whose degree is bounded in terms
of the height of W and of the norm of the period v. Our result gives a
bound which is linear in the height of W and polynomial of degree equal to
the dimension of the subvariety B in the norm of the period 7. In [3] the
bound is polynomial of degree equal to the dimension of A minus one in both
variables.

As a nice application of our Subvariety Theorem we deduce, in §6, an upper
bound for the degree of a minimal elliptic isogeny which improves the result of
Maser and Wiistholz. Moreover we make the constant effective in the degree
d of the field of definition of the elliptic curves £ and E*. We need some
geometric modifications of their method in order to improve the bound to
c-d* max(1, h(E),log d)? for elliptic curves with complex multiplication and to
c - d*max(1, h(E),logd)? for elliptic curves without complex multiplication.
Here h(E) is the Faltings height of the curve E. We want to emphasize
that the version of the Subvariety Theorem given by Bost, does not imply
directly the result of Masser and Wiistholz in the special case of elliptic
curves. Instead, it implies the existence of an isogeny with degree bounded
by ¢ - d® - max(1, h(A),logd)®.

This simplest case has been a test for the more general case of an abelian
variety. The modern techniques used here can possibly also be used to im-
prove the result of Masser and Wiistholz for abelian varieties in a quantitative
respect. However further technical difficulties are expected. For instance the
many different types of complex multiplication for an abelian variety of di-
mension larger than 2, or the bigger range for dimensions of a proper abelian
subvariety may cause problems.

A very ambitious conjecture is that the degree of the isogeny, at least in the
case of elliptic curves, does not depend on the elliptic curve at all, but just
on its field of definition. This would imply for instance that an elliptic curve
defined over a number field K has only finitely many subgroups defined over
K. This result was proven by Mazur in the case that the field of definition is
the field of rational numbers, and was later generalized by Merel for number
fields. However, how to extend the result to an arbitrary abelian variety
seems to be unknown. We are convinced that further ingenious ideas are
needed to prove this conjecture.
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We shall now give some more details on the structure of this dissertation.
The first two chapters are dedicated to Arakelov geometry, we introduce the
degree and the slope of hermitian vector bundles on the spectrum of the ring
of integers of a number field. We then explain how the degree behaves with
respect to operations on hermitian vector bundles, like direct sum, tensor
product, symmetric and exterior power. We determine the relation between
the degree of a bundle and the degree of its image under a morphism. An
important tool will be the slope inequality (7). This inequality relates the
degree of a hermitian bundle to the slopes of a filtration of its image under
an injective morphism. It will play a fundamental role in the proof of the
Subvariety Theorem.

In the third chapter we recall the basic notions related to abelian varieties
and we define their Moret-Bailly models.

The fourth chapter is dedicated to some properties of non-reduced sub-
schemes of arithmetic varieties. We also define a filtration of sheaves as-
sociated to such a non-reduced scheme.

In chapter 5 we give the proof of the Subvariety Theorem. First we shall deal
with an analytic problem, we have to bound the norm of operators associated
to the filtration. In lemmas 2 and 5 we estimate the norm of the derivative
of a trivialization of a section of a line bundle in some torsion points. As
expected by the Cauchy inequality, the bound is given in terms of the norm
of the section on a neighbourhood. The proofs are not difficult but involve
tedious computations.

To prove lemma 7 we apply the Phragmen - Lindelof Theorem to a certain
entire periodic function. We get an estimate finer than the ones above. We
consider a section s of a line bundle, with a zero of multiplicity 2gM at
the origin. We proof that the norm of a trivialization f of s, as well as
the norm of its derivatives up to order gM, are “very small” at a torsion
sub-scheme. This last estimate plays a central role in the whole game. A
good choice of the parameters combined with the slope inequality (7) and
the above estimates, show that there exists a section of a line bundle which
vanishes at a non reduced torsion sub-scheme of A. Our Subvariety Theorem
is then a consequence of the Multiplicity Estimate Theorem 4.

In chapter 6 we give all details for estimating the variables appearing in
the Subvariety Theorem, in the special case of a product of elliptic curves.
Finally we show how to use these tools to improve the bound given by Masser
and Wiistholz in [20].
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1 Metrics on Vector bundles

1.1 Notation

We want to fix notations about base change operations. Let A be a commu-
tative ring, with a homomorphism to a field K. Let E be an A-module and
B an A-algebra. We denote by Ex and By the tensor product £ ®4 K and
B ®4 K respectively.

If X is a scheme over Spec A, we denote by X the fiber product of X and
Spec K over Spec A.

If £ is a sheaf of Ox-modules on X we denote by £ the sheaf on X given
by pulling-back pi€ = &k, here p; is the canonical projection of the fiber
product X on X.

We will not deal with the general situation where A is any ring, indeed we
will only consider the ring of integers of a number field K. If L is a field
extension of K then we will denote by Xy an algebraic variety defined over
K and by X, the algebraic variety got by base change. If 0 : K — C is an
embedding we will write X, and &, instead of X¢ and &c.

1.2 Hermitian Vector Bundles

Definition 1 Let X be a complez variety and € a holomorphic vector bundle
on X. A hermitian metric h on £ is a hermitian inner product on each fiber
E. of £, varying smoothly with z € X, that is such that the functions locally
representing h are C*°.

The real part of a hermitian inner product gives a Riemannian metric called
the induced Riemannian metric. When we speak of distance, area or volume
on a complex manifold with hermitian metric, we always refer to the induced
Riemannian metric.

We remark that to construct hermitian inner products it is enough to define
them locally and then to glue the local definitions using a smooth partition
of unity ([38] thm 1.11).

Definition 2 A hermitian vector bundle € on X is a pair (€, h), where € is
a locally free sheaf of finite rank on X and h is a hermitian metric on .

We denote by £€ the complex conjugate vector bundle of £ whose C-structure
is given by the one of £ composed with the complex conjugation ¢ : C — C.
The dual vector bundle £V is the bundle of homorphisms from £ to the trivial
bundle.

We denote by A°(X, £) the space of the smooth global sections of €.

1




Remark :

the metric h is an element of A%(X,EY ® £€¢Y). Indeed h is a sesquilinear
form on each fiber, so we can see it as a linear form from the tensor product
E.®E°, to C. That gives an element of the dual space (€, ® £F)V.

The fiber &, is of finite dimension, therefore (£, ® £5)Y is equal to &) ® £°.
By definition h varies smoothly with z € X so h is a global smooth section
of &Y ® £, (see [13] p. 27).

One says that an element of h € A%(X,EY ® £°Y) is positive if the induced
quadratic form h, is positive definite for all z.

We are going to define, in a canonical way, dual, direct sum, tensor product,
n-th exterior power, n-th symmetric product and pull-back of a hermitian
vector bundle .

1.2.1 The Dual &’

Let £ = (€, h) be a hermitian vector bundle, we want to define the associated
dual hermitian vector bundle £ = (£¥,hY) where h is a hermitian metric
on &Y induced canonically by hA and h’. That is to define a positive element
RV e AX,E®E°).

The metric h induces the isomorphism @, : £ — &,/ given by

o, : &, — &)
a — hz('va)

where
h.(-,a) E, — C
b +—— hyba)
We now define
Y : EYx¢& — C (1)
(v,0') — (71 (v), @1 (v)).

All the previous maps are C*® thus h" is an element of A%(X, € ® £°).

Let us fix a point 2 € X, if we choose an orthogonal basis of £, we deduce
from (1) that the dual basis is orthogonal in £Y. This shows that A" is
positive.

1.2.2 The Direct Sum EEB?’

Let £ = (£,h) and € = (€', 1) be hermitian vector bundles on X. We shall
define a hermitian metric h ® b’ on £ ® £’ induced canonically by k, i.e. we




want to define a positive element h & b € A°(X,(E® &) @ (EDE)Y).
Since

EDEVREDE) =(EE)REYDEY) =

(5v ® gcv) D (5v ®glcV) o (5/\/ ® ch) D (8/V ® 810\/))

it follows that (§¥Y ® £°) and (£ ® &) are canonically embedded in
(E@E) ®(EDEN)Y, as well as their smooth global sections

A(X,EVQEV) B AX,EV @ EY) = AX,(EEN @ (EDE)Y).

By abuse of notation we still call h and A’ the image of h and k' under this
embedding and set h ® k' := h + h'. Of course h @ k' is positive.
We remark that:

(hoh), : EdE).x(E0E), — C
(v, v, w,w) —  hy(v,w) + B(V,w').

1.2.3 The Tensor Product & ® El

Let £ and € be as before, we want to define a hermitian metric on £ ® &',
i.e. a positive element in A%(X, (€ ® &)Y @ (€ ® £')?Y) canonically induced
by h and K.

Let us consider the natural embedding

P AX,EVREV)QA(X,EVREY) — AAX,(EREN R(EREN).

The image of A @ h' under the map ® is the section we are looking for, by
abuse of language we still call it h ® h'.
Let us fix a point z € X. We give (h ® h'), explicitly as follows

hK). : (ERE).x(ESE), — C
Cie®e!, X i F) > Xjhalen i) Roel fi)-

The map is bilinear and well defined. From this expression follows the posi-
tivity of h ® h/.

Remark:

a special case of the tensor product is the k-th power of a hermitian vector
bundle £%°. The k-symmetric group &; acts on this bundle. From the
explicit expression of the inner product it follows that A® is invariant under
this action. We will use this remark in section (1.2.7).




1.2.4 Exact Sequences

Let £ = (£,h) be a hermitian vector bundle. Given an exact sequence of
vector bundles

0 g 2, L, e 0

we want to induce canonically hermitian inner products A’ on & and A” on
E"”. The exact sequence above induces the injective map

aRa’:ERETHERES (2)
and the surjective map
BRIPF EQRE—E"®E™. (3)
Dualizing (2) we get a surjective map
(a®a)V : (ERE) — (£'® &Y.

We define i/ to be the image of h under the map (a ® o).

We know from section 1.2.1 how to construct canonically the positive element
hY, which is a smooth global section of £ ® £°.

The image of A" under the map 8® (3 is an element A"’ € A%(X, (" ® "))
whose dual 4" := (h"V)V € A%(X, (E"®@E")?) defines the quotient hermitian
inner product on &”.

It turns out that A’ is the natural restriction norm, and h” is the restriction
norm on the orthogonal complement of £ which is canonically isomorphic to
E/E’. From this the positivity of A’ and h” follows .

1.2.5 The Pull-back f*&

Let f : Y — X be a morphism of complex manifold and € a hermitian vector
bundle on X. We are going to define a hermitian metric f*h on the sheaf
f*€ on Y canonically induced by h.

We remark that

(f*5®f*gc)v — (f*g)v ® (f*g)cv — f*g\/ ®f*5cv — f*(gv ®£c\/).

From the definition of f*, the element f*h is positive and so defines a her-
mitian inner product on f*£.




1.2.6 The k-th Exterior Product A€

We want to define a hermitian metric A¥h on AFE, canonically induced by h.
The k-th exterior product A*E€ is a quotient bundle of tensor product E®k,
On £%* we induce the inner product h®* (see 1.2.3). We define A*h as the
quotient hermitian product (see 1.2.4) induced by h®*, and A*h is clearly
positive.

If we fix a point z € X and compute (A*h), explicitly, we get

(NkR), - ARE, x NkE, — C
(’Ul A ... N Vg, W1 A ... N wk) — det(hz(vi,wj)iyj.

1.2.7 The k-th Symmetric Product Sym* &

We want to define a hermitian metric Sym* h of the vector bundle Sym* &,
that means a positive element of

A%(X, (Sym* € ® Sym* £9)V) = A%(X, Sym* £V ® Sym* £°Y).

Let T*E be the sub-vector bundle of £%* fixed under the action of the k-
symmetric group &;. We are going to show that the bundle Sym* £ is iso-
morphic to '*E.

We consider the exact sequence

0 K gk S, Tke 0

where S is the projector S(t) := |—é—k| > nee, N(t). Then the kernel K can be
identified with (S — Id)E®*.
Let us consider the exact sequence

0 Rk , €8 2, SymFE —— 0

that defines Sym* £.

The projector S is trivial on R*. In fact an element of K is of the form
U= 5 > nee, N(t) — t. By definition of RF we have that w(n(t)) = n(t) thus
m(u) = 0. The projection 7 is trivial on K. In fact a generator of R is of
the form n(t) — 7(t) with n,7 € &;. Thus S(n(t) — 7(t)) = 0.

This implies that the map S : Sym* & — I'*& given by S(%) := |€1k—| > nee, M(t),
where t is any representative of ¢, is an isomorphism. It follows that the quo-
tient hermitian product induced by A®* via 7 on Sym"® £ coincides with the
bull-back metric S*hpx, where hre is the restriction of h®* to I*E. Hence we

set Sym® h := S*hp«.




We fix z € X and we compute ||e||, where we use the following notations:

{ey,- -, e,} is an orthogonal basis of £,; e; = €/} ® - - - ® el is an element of
E¥ and I = (i1, - - -, i,); moreover |I| = 3" i, and I! = []7_, 4;!. So we have
T3t = 7, |2|| > nlen)lE = k, = Zh (ex). 7(er)-
nESE
Note that

e rien = { § 1T 20

If we set F = {(7,n): (r(er) =nler))}, it follows
I!

1 1 1 !
2 - = - _ .
il = 2 = = @

This shows that Sym" h is positive.

1.3 Hermitian Vector Bundles on Arithmetic Varieties

Our next aim is to remove the hypothesis that X is a complex manifold and
to extend the definition of paragraph 1.2 to an arithmetic variety.
We donote by O the ring of integers of a number field K.

Definition 3 An arithmetic variety X over Ok is a scheme over Spec Ok
s.t. m: X — Spec Ok is a quasi-projective flat morphism of schemes. More-
over we require that there exists a section € : Spec O — X and that the
generic fibre is smooth and proper.

The fiber product X¢ = X Xgpecz Spec C is well defined.

The set of complex points X'(C) := {Hom(SpecC, X)} is the disjoint union
of complex varieties X (C) = [[,.x_c &-(C). In fact if p : SpecC — Xk is a
complex point, then the composition 7x o p : SpecC — Spec K induces an
embedding o := (mp)? from K to C.

Definition 4 Let X be an arithmetic variety over Spec Og. A hermitian
vector bundle € on X is a pair (€, h) where € is a locally free sheaf of finite
rank on X, and (E(C),h) is a hermitian vector bundle on X(C) invariant
under conjugation. Here £(C) is the sheaf induced by € on X(C), as specified
in 1.1. If € has rank 1 one says that € is a hermitian line bundle.




Notice that the hermitian metric is given just on the holomorphic vector
bundle on the complex variety X'(C).

Invariant under conjugation means that if o and @ are conjugated embeddings
of K, then for every open set U of X the map id®c: E(U)®,C — E(U)®@7C
is an isometry.

In order to apply the work done in the paragraph (1.2) to arithmetic varieties
we have to check that the:

i) dual,
i1) direct sum,
i1) tensor product,

o~

v) exterior power,

)
v) symmetric product,
vi) pull — back

of locally free sheaves is still locally free. This follows from the general theory
of coherent sheaves on an algebraic variety. (see [14] chap. II, prop.5.5, 5.7,
ex. 5.1,5.16).

Finally we remark that given two hermitian vector bundles £, £ on X, the
following relations hold:

i) €'(C)=(£(C))",

ii) £(C)e (£'(C)) = (£ ®E)T),
W) E(C)® (E'(C) =(ExE)C,)
w) A(E(C)) = (ANE)C),

v) Sym"(£(C)) = (Sym"&)(C),
vi) fTE(C) = (f7€)(C)

1.4 An example: Spec Og

In the special case of S := Spec Ok, we have that S¢ = ]_[{a:K_,C} SpecC. In
fact S¢ = Spec(Ok ®z C) = Spec(K ®g C). Let f(z) be an element of Q[z]
such that K = Q[z]/(f(z)). Then (K ®g C) is isomorphic to C[z]/(f(x)).

In the field C the polynomial f(z) splits in d = [K : Q] linear factors f(z) =
Hle(x — ;). By Galois theory there exists an isomorphism betwen the
embeddings {o : K — C} and the roots of f(z). Thus we can write f(z) =
[I,(z — a,). By the Chinese Reminder Theorem we get the isomorphism




Clz])/(I1,(z — ar)) = I1, Clz]/(z — as). Therefore S¢ = Spec ][, Clz]/(z —
ay) = [1,.x_cSpecC and we get the following commutative diagram

Sc = Spec(Clz}/ (f(z))) —— SpecC

| l

Sg = Spec K —— Spec@Q
S —— SpecZ.

In an analogous way, if X is a S-scheme then Xz =[], x_ A, where & is
the fiber product of X and Spec C over Spec K through the embedding o.
We remark that the invariance under conjugation of the inner product implies
in particular that on Spec Ok we get ||s||c = ||s||7

A sheaf on an affine variety is locally free if and only if its global sections are
a projective module, (see [14], chap. II, par. 5).

For a finitely generated module over a Dedekind-domain the notions of tor-
sion free, flat and projective module coincide, (see [10], Thm. 13, p.95).
These strong properties simplify a lot the situation we are dealing with.
They tell us that there is an isomorphism of categories between the category
of locally free sheaves of finite rank over Spec Ok and the category of finitely
generated torsion free Ox-modules. For this reason we will often identify the
objects of the two categories. The module we consider are finitely genrated
module over a Dedekind-domain.

1.5 The push-forward of a Hermitian Vector Bundle

Let £ be a hermitian vector bundle on an arithmetic variety 7 : X —
Spec Ok.

The work of Moret-Bailly [30] lem. 1.4.2 shows that the push forward =& of
a locally free sheaf £ on X to Spec O is still locally free.

We want to induce a metric on the vector bundle E := H°(S,m.£) =
H°(X, &) on Spec Ok. For each section s € E we define

82 = / 52l 2, dpo (), (5)
X-(C)

with dy, a measure on X, and || - ||z := heo(:,-). In the special case of
an abelian variety we will choose dyu, to be the normalized Haar measure.
In the case of a projective space we will use the Fubini-Study metric, (see
2.2.2).




2 The Arakelov Degree

2.1 The Arakelov Degree of a Hermitian Vector Bun-
dle on Spec Ok

Definition 5 Let E be a hermitian line bundle over Spec Og. For any sec-
tion s in E we define

deg E = log £ (B/s0x) = Y Log ls]- (6)

o:K—C

If E is a hermitian vector bundle of rank v, we define
degE := deg A" E.

The real number d/éEE does not depend on the choice of the section, it is
called the Arakelov degree of E.

In order to prove that the definition does not depend on the choice of the
section s we will give in lemma 1 an equivalent definition of the Arakelov
degree. The independence will be an easy consequence.

Notations:

We denote by p a prime ideal of Ok and by v, the associated non-archimedean
valuation. Let E be a projective Og-module of rank 1. The isomorphism
Jp : By = Ok, between the localizations at p is unique up to a unit of Ok,
(see [2] II, 5.2 thm. 1). We extend the valuation at a prime ideal p of Ok to
E as follows vy(s) := vp(jp(s)) for any element s € E.

The absolute value associated to p is ||(s)||v, := Np_v"(s) where Ny, := §(Ok/p)
is the absolute norm of an ideal.

We indicate by My the set of absolute valuations on K, by M} the set of
the non-archimedean ones and by Mg the archimedean ones.

Lemma 1 The following definition of Arakelov degree is equivalent to defi-
nition 5

degBi=— 3 logll()ll,— 3 log|lsll,- (7)

veEMY veEME

This formula is independent of the choice of s € E.

Proof
We want to prove that logf (E/sOk) = — ZveM% log [|(8)]]o-




From [2] 11.2.4 thm. 1,I1.3.3 prop. 8 and the corollary of prop. 9, we get
that for every projective Ox-module of rank 1

(B/s0x) = [ [(E/50k)s = [ (Es/5Oxs). (8)
p p
Using the isomorphism j, : B, — Ok, and (8) we deduce that (E/sOx) =
[1,(Okyp/dp(s)Oxp) = HP(OK/p)“P(jP(S)) And passing to the order we get
8(E/sOk) = va(Np)v”(]”(s)) = HveM?( lIsl5
To prove that deg E does not depend on the choice of the section s, let ¢ be
another global section, then ¢ = ks for some k£ € K*. We deduce

=Y logl|®lly— > log]ltll, =

veMY veMgp
== > logl|(ks)llu — »_ logllkslls
veEMY vEME
==Y loglis)lle = Y logllslle — Y log|lkll
UEMO €M°° vEMK
== Z log [|(s)]lo — Z log ||s]]o,
'UEM0 veEME

the last equality because of the product formula [],cas ||kll, = 1 for an
element in K* (see [10] III thm. 18). 0

2.1.1 Some Properties of the Arakelov Degree

We are going to prove several properties related to the Arakelov degree. The
final result, property 7, will play a crucial rule in the proof of lemma 8.

Property 1 Let E and F' be hermitian vector bundles over Spec Ok of rank
Qvand m respectively. Let L be a hermitian line bundle over Spec Ok and
L its dual.

Then
1) @(E@F}zm@ﬁ—#nd/egf
2) d/e\g(‘E@F) EéEEJrEe\gF

10




Proof of 1)

As a first step we prove it supposing that £ and F' are line bundles. From
the definition of induced metrics on the tensor product (see 1.2.3) it follows
that

(@) ls®tlle = llsllo - |It]lo-

The localization commutes with the tensor product, thus (EQ F), = E,® F,
for any prime ideal p. If jg, : B, — Ogp and jpp : F, — Ok, are the
isomorphisms between the localizations, then jiggr)p : (E ® F), — Okyp is
given by jemp(s @ t) = jep(s) - jrp(t). Therefore

(i) vp(s ®t) = vp(s) + vp(2).

We finish the case of line bundles by substituting (¢) and (¢7) in the definition
(7) of the degree.
To reduce the general case to the case of line bundles we consider the isometric
isomorphism L B B
Am(E @ F) 2 (WE)E™ @ (NF)°,

(see [1] chap. III 1 prop.6).

0
Proof of 2)  Let k :=rg(E® F) =n+m. We get the result just using part
(1) and the isometric isomorphism:

k
NESF) 2 PNERNTF=ANEQA"F
=0

(see [1] chap III 5 ex. 7, or [28] thm. C2). O

Proof of 3)

By the definition of the inverse sheaf we have a canonical isomorphism [ :
LV ® L= Og. We endow Ok with the norms ||1||, = 1 for every embedding
o. From the definition of the induced metric on the dual (see 1.2.1) it follows
that I is an isometry, and so Ee% (LY ® L) =0.

Using point (1) we get d/e\gﬁ+ &%f =0. a

2.1.2 Normalized Degree and Slope

We want to determine the dependence of g(e\gf on extensions of scalars.
Let L be an extension of degree d of K, then ¥ : Spec O, — Spec Ok is
finite, and by base change (see 1.1) we have Ep, := E Qo Or. If s € E we

11




still call s the global section of Eo, given by s ® 1. The extension formula
(see [10] III, 1.15) says that

IT sl = [Js]ft=50.
weMp wlv

Here w|v means that w equals v when restricted to K. Using the definition
(7) of degree it immediately follows that deg Eo, = [L : K]deg E.
It is then natural to define the normalized Arakelov degree by

—_— 1 ———
deg, F := deg E,
TR QT
and the normalized slope of E by
W(E) ;= ——deg, E.
AB) = - o

We have proven that deg, E and A(E) are invariant under extensions of
scalars.

2.1.3 Saturated Submodules

Definition 6 A submodule F of a module E is saturated if F = (F Qp, K)N
E. If F is not saturated we define its saturation as Fs := (F ®o, K)NE.

Remark:

If E is a finitely generated projective module over a dedekind domain then
the saturation of a submodule F is torsion free and finitely generated thus it
is projective. If E is a hermitian vector bundle over Spec Ok, then deg F'y >
degF where we consider the induced inner products (see 1.2.4). Indeed,
by definition, A"F' C A"F,. Using the definition (6) of Arakelov degree it

trivially follows that deg F,> deg F.

Property 2 If F is a saturated submodule of E then E/F is torsion free,
and the ezract sequence

0 F E 25 E/F — 0

splits.
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Proof
Suppose that E/F has torsion T, then p~'(T) D> F. Consider the exact
sequence

0 F p YTy L= T 0.

Since K is flat over Og we get that F ®p, K = p™'(T) ®o, K which
contradicts the definition of a saturated module.
For the second claim just recall that torsion free means projective. a

Property 3 Let E be an hermitian vector bundle on Spec Ok and F a sat-
urated submodule of E. We endow F and E/F with the metrics canonically
induced by E (see 1.2.4), then the following relation holds

degE = deg F + deg E/F

Proof  From property (2) we know that F' and E/F are direct summands
of E. We define the canonical isomorphism

I : N""F®A"E/F — ATE
fl/\.../\fm@)a.../\a — fl/\.../\fm/\el.../\em.

where rank F' = m and rank E/F =n.

The isomorphism is canonical because for any representative of n classes
e, - ,&, € E/F and any m elements fi,- -, f,, € F the exterior power
fiN---A fn Nej--- Ne,, does not depend on the choice of the representative.
From definitions (1.2.4) and (1.2.6) it follows that I is an isometry. Now

apply property 1.
O

2.1.4 The Canonical Polygon

Let E be a hermitian vector bundle on Spec O . We consider on a sub-bundle
F the induced metric (see 1.2.4).

Definition 7 In the Cartesian product [0, rg E] x R we consider the set
of points (rg F, ae%n F) where F is a sub-bundle of E. The convex hull of
these points is a set bounded from above, (see below). Its upper boundary is
a piecewise linear function Pg : [0, rg E] — R called the canonical polygon
of E.

We say that E is semi-stable if Pg is a linear function.

13




We remark that Pg(0) = 0 and Pg(rg E) = Ee%n E. For every i € [0,1g E]
we define

and we also define

)G'max(E) = /ll(E)
fimin (B) = fieg 5(B).

Since the function Pg is convex, the (fi;)o<i<rg & i & decreasing sequence of
real numbers and >, f; = E(%n E.
Sketch of proof:
We are going to give a sketch of the proof that the set of points which we
consider must be bounded from above. The trick is to use Grassmannians,
which are the geometric analogous of the exterior product; and heights that
turn out to be the analogue of the degree.
Let E be a hermitian vector bundle over Spec Ok, and let Eg := E ®oy Q.
Let X = G(d, Eg) be the Grassmannian variety representing the subspaces
of dimension d in Eg. We consider the natural projective Plucker embedding

i : G(d, Bg) — P(\"Eg)
1% — AV

On X = G(d, Eg) we consider the sheaf 7*O(1) endowed with the Fubini-
Study metric (see 2.2.2), and we associate a model

ir: (G(d, Eg),L) — (P(\E),0(1))

By base change, every submodule F' of E of rank d gives a d-dimensional
subspace V of Eg , V is a point P in G(d, Eg) defined over Ok, the point
P on the generic fiber can be closed in the model. /\
Bost, Gillet and Soulé proved (see [5] prop.4.1.2) that hp(P) = —degF,
where hz(P) is the height of i, (P) in the projective space (see [5] 3.1.6).
By Northcott’s theorem (see [19] II thm 2.2), the number of points in P% of
height bounded from above is finite, so the number of submodules of degree
bounded from below is finite.

Stuhler [37] and Grayson [12] define a canonical filtration proving that if ig
is any point of discontinuity of P'r then there exists a unique sub-module
Eg of E of rank ig such that Pg(igr) = deg, Er. The chain 0 C Ej..... C
Er C ... C E is the canonical filtration. From the remark in 2.1.3 it follows
that the modules Ej are saturated. The existence follows from the strict
convexity of Pg.

Another characterization of the canonical filtration is to require that the Ep
are semi-stable and their slopes are strictly decreasing.
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2.1.5 Some Properties of Slopes of Hermitian Vector Bundles

Property 4 Let E,...., Ex be hermitian vector bundles over Spec Ok then
ﬂmaX(@iIilﬁi) = 1211&3}}\! ﬂmaX(Ei)-

Proof

Of course [imax(®N,E;) > maxi<i<n dmax(Ei), so it is sufficient to prove
frnax (B Es) < maxi<i<n fimax (£)-

It is enough to prove it for F| @ E,, then use induction.

There exists a saturated submodule F of E; & E,5 of rank r such that
fimax(E1 @ E») = tdeg, F. Note that r is the first point of discontinuity

of the first derivative of Pg.
Consider the commutative diagram

— Fy:= F/_Fl —_

! !

—"’—E_I@E2 _ E2 —_—

— Fy: E, —

O — O

=Fn

E,
Let r; and 75 be the rank of F} and F, respectively. The metrics are the
induced ones, so we get

O — O

—

ge\gn F gf%n F,+ gf%n F,
T - T
< T1 ,amax (El ) + TZﬂmax (—E—2 )
- 1+ 72
< max (ﬂmax (El ) s rmax (E2 ) ) .

O

Property 5 Let E be a hermitian vector bundle and L a hermitian line
bundle over Spec Ok, then

/lmaX(E ® E) = /lmaX(E) + Ee\gn L.

Proof  First we prove that fimax(E @ L) < fimax(E) + ge\gn L. Let F be a
submodule of E ® L of rank r such that fime(E ® L) = 1deg, F
Consider the submodule F; .= FQ L' CE®QL® L' = E. We have

B!

. _deg,F _deg,(F,®L
el Ee T) = 46 (L EF)

T T
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From property 1 we get

aégnf _ ge\gn—pl-i_rd/egnz
T T

< ,ﬁ'maxF + ge\gn Z

It remains to prove [Lmax(E ® I) > ﬂmaxF + EeEn L. For this just consider
a submodule F, of E of rank r such that fim.E = ldeg, F,. The module
F,® L is a submodule of E® L and deg,, (F, ® L) = deg,, F', +rdeg, L hence

froax(E® L) > U(Fr @ L) = fiman E + deg,, L.
O

2.2 The Arakelov Degree and Morphisms
Let ¢ : E — F be a morphism of hermitian vector bundles over Spec Ok.

We define the norm of ¢ to be the operator norm

otsee |8llo

Property 6 Let ¢ : E — F be a non trivial injective morphism of hermitian
vector bundles over spec Ok . Then

. A 1 .
deg, F < ZMz‘(F)erZ:IOgH NEF g,

Proof

We first consider the case of a line bundle E, in this case EeE;qb(E) =
log # ((E)/d(s)O0k) = 2_5.xc l0g|4(s)llo

Since ¢ is injective, £ (¢(E)/d(s)Ok) = §(E/sOk).

Moreover log ||¢(s)||, = log 1&llz 4t 1og||(5)]|, and therefore

()l
- oo g el

A ! lo(s)l
< P F) 4 1) 2 () @)
< in(F) + gy 2 losldllo
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Now we pass to the case rg £ > 1. Since ¢ is injective rg ¢(F) = rg E. We
consider the injective map A% : AN8FE — AE@(E). From the formula
(9) we get

e (\ B) = Ty, \ BT + gy o Lm0

We remark that [;(¢(E)) < f;(F) for every i < rg E. This implies

)
g B rgF

Therefore

— = 1 r
deg, £ < ZM(F)JFleOgH/\gEMb-

Remark: Since || A” ®|| < ||®||", we deduce from Property 6 that

rg B

— = rgE
deg, B <Y iu(F) + Zlog [E

Corollary 1 If ¢ : E — F is injective and non trivial then

Mmax(E) < /Lmax F

Proof Let E, be a sub-vector bundle of E of rank r such that Ee%n E./r=
fimax(E). The restriction map ¢|g, : B, — ¢(E,) is still injective and ¢(E,)
is a submodule of F' of rank r.

We apply property 6 to ¢|g. : E, — ¢(E,). It follows

deg, B, _ deg, 8(E,) | Yo, log || A" |, [lo
ro - T (K :Qr

ﬂmaX(—E—) =
and so

/vLmaX(E) < fhmax(F) |-
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2.2.1 A Key Property of the Arakelov Degree

We give a generalization of the property 6 where we replace F' by a filtration.
Let E be a hermitian vector bundle over Spec Ok and let F' be a vector
bundle over Spec Ok. Let

F=FyD>Fy_1D..DFFDFk=0

be a filtration of F' such that the quotients G; = F;/F;_; are torsion free
for every i. Let ¢ : E — F be a map of O modules. We endow the
vector bundles G; with hermitian metrics. The map ¢; : ¢~ (F;) — G; is
the composition of ¢ and the projection. On ¢~!(F;) we consider the metric
induced by F, so the norms ||¢;|| are defined.

Property 7 We use the notations above. If ¢ : E — F' is injective and non
trivial then

N
agénE S Z (rg(gb_l(ﬂ)/qbul(Fi—l))) (ﬁ’max(az) [K Q

Proof From the injectivity of ¢ and the “3-lemma” we get the commutative
diagram

Z log ||¢Z||a> .

o:K—C

0—> ¢~} (Fimy) — ¢ ﬁﬂ)ﬂaﬁ‘l(ﬂ)/cb‘l(ﬂ—l)——w

é ¢ [:Pi
TE,

0 Fiy F; - G 0

Notice that the norms on ¢~!(F;) and ¢~*(F;)/¢~*(Fi_1) are the ones canon-
ically induced by E on sub-vector bundles and quotient bundles. However
G; has its own norm, independent of any other.

Since F;/F;_, is torsion free and ¢; is an inclusion then also ¢! (F}) /¢~ (Fi-1)
is torsion free. This means that ¢~!(F;_;) is a direct summand of ¢~!(F}) .
We can apply property 3 to get

deg,, (3~ () /¢~ (Fi_1)) = deg,, ¢~ 1(Fy) — deg ¢~ (Fr—1).

Recall that S deg, ¢~ 1(F;) — deg, ¢~ (Fi_1) = deg, E.
It follows

deg, E = Zdegn ~L(F)/é(Fic1))
(11)

< ng F)/6™ (Fit))itmax(6 (F) [ (Fi1))-
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If ®; =0 then rg(¢~(F;)/¢~*(F;_1)) = 0 and so there is no contribution to
the right-hand side of (11). If ®; # 0 then we apply corollary 1 and we find

B8, < Y (18067 (F)/67 (Fo) (peus(@) + g 3 logllilo).

[K ; Q] o:K—C
From the above diagram we have 7gp; = ¢; with ¢; := ¢mg, and so
l|7e,|||le:s]] = |l¢:]|. Since the norms on the first line are the induced ones,
l|mg,|| = 1. Therefore ||p;|| = ||¢:}| and we get the result.
O
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2.2.2 An Example: the Arakelov Degree of Op:(1)

The arithmetic n-projective space over Ok is defined to be
P, := Proj Ok|xg, ..., Zn).

Let o be any embedding of K in C, then P? = ProjS(V,) with V, := (Ogzo®
.. ® Ogx,) ®, C and S(-) the simmetric algebra. To avoid heavy notations
we leave out the index o. A point of P" is an embedding ¢; : Proj S(V;) —
ProjS(V) with V; a 1-dimensional vector space. Equivalently, a point is a
quotient given by a surjection # : S(V) — S(V4) up to a multiplication for
an element of C*. The surjection zg is completely determined by a surjection
zﬁ : 'V — V;, thus a point of P" is just a 1-dimensional quotient V; of V.
We denote by V' x P" the trivial bundle of rank n on P*. Let H be the
sub-bundle of V' x P" such that the stalk at a point V; is ker ii{, and the
transition functions related to the standard affine open sets U; := {z; # 0}
are given by g;; := z;/z;. We denote V ® Opn and H the sheaves associated
to V x P* and H respectively. We define O(1) to be the cokernel sheaf of
the exact sequence 0 — H — V & Opn.

Let hy be a hermitian inner product on the vector space V, this defines
naturally a hermitian metric on the sheaf V ® Op». We call Fubini-Study the
induced quotient metric A on O(1). We recall that the induced Riemannian
metric is the real part of hp.

Now we consider the special case of Pg, .
Let w be the Chern form of the line bundle O(1). A representative of the
Chern class is a (1, 1)- form and the following relation holds

/wzl.
]p:l

In fact this is the integral of the Poincaré dual of a line on P!, that means
the intersection number of a hyperplane and a line (see [13] p. 122). One can
prove that this is equivalent to say that w is the only normalized measure on
P! invariant under the action of PG L.

We endow 7, O(1) with the norm

sl = / 52 w(p)
PL(C)

where 0 is a real number and F the Fubini-Study metric..

The curvature form of O(1) is given by © = —199log hy;)(s, s) for any her-
mitian inner product hy, (see [13] p.77) and the Chern form is w = 5-© (see
[13] p.141).

20




We recall that H°(P', O(1)) = V. If we choose a orthonormal basis zo, 71
for the global sections of O(1), the matrix representation of the Fubini-Study
metric takes the form hg, = (;z> = mix—m_ on O(1), ® O(1), .

We want to determine ¢ so that the sections zy and x; have norm 1.

Since the affine open sets U; are dense in the Riemannian topology of P!, the
above integral can be restricted to any open set. The curvature form on the
open set Uy = {p € P : 25 # 0} becomes © = %OTI:EW dw; A dwy where
wy = 2, (see [13] p.30).

It follows that

Jzo(p) 2
[N w=
ollowe = J o Sz,
7 1
—— dwq A dwy.
/Uo,azw<1+|w1\2>3 L

If we change the variable of integration

wp = pcosh +ipsind
w; = pcosf —ipsinf

we get

1 2w 00 2p 1
= — T dpAdf ==,
21 Jo /0 (14 p?)3 ? 2

The same we get for the section z; integrating on U; = {p € P : z; # 0}.

Hence in order to normalize the two sections xg and z; it is enough to set
§ := 2. That means to define on (1) the hermitian inner product given by
the function hop := 2 - hp. Let g be a non zero holomorphic function, then
any hermitian inner product A’ := g - hy, induces the same curvature and

Chern-form. In fact ddlogg - hr = 3(% + dlog hy) and 0 of a holomorphic
function is zero.
Now we show that the sections zg and x; are orthogonal.

B Re(xo(p) m)
< Zo, T1 >on)= /UOmU1 > lzi(p)?

i  Re(wy)
= — Uy A day =
/Uomul o (L+ |23 00

Using the same change of variable as above we get

1 o0 ) p2 2n

"oy Wy J, Relcostisind)dddp =0
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Property 8 The hermitian vector bundle (m, O(1),|| ||2r0(1)) s semi-stable
of Arakelov degree zero.

Proof

Using [14] ex.5.16.3v we know that 7,.0(1) = H*(Pp,., O(1)) = Ok z, ®
Ok 1. From the computation above the two sections zy, x; are orthogonal
andso B

deg m,0(1) = deg (Ok z, ® Ok x1) = deg Ok z, + deg Ok 7.

Since the sections zy and z; have norm 1 a(% Ok o = log} (Ok xo/200K) —
>, log|lzol|e = 0 and in the same way deg O z; = 0, thus deg mO(1) = 0.
The semi-stability follows from the fact that 7,O(1) is the direct sum of line
bundles of the same slope.

O
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3 Abelian Varieties and MB-Models

3.1 Recall about Abelian Varieties

Let A be a complex abelian variety and £ an ample line bundle on A. The
Euler-Poincaré characteristic (A4, £) is defined as the alternating sum of the
H'(A, L) dimensions. The degree of A with respect to £ is defined as the
intersection number of the first Chern class ¢;(£) with itself g-times. The
Riemann-Roch theorem gives the relation

1
x(A, L) = P deg, A. (12)

(see [18] thm 3.10).
If £ is an ample line bundle then the i-th cohomology group vanishes for
every i # 0, so x(A, £) = dim H°(A, L), (see [18] cor. 3.11). One says that
L is a principal polarization for A if x(A,£) = 1. We denote the tangent
bundle of the variety A by 74 and its stalk at zero by T4. We indicate the
sheaf of differential by €4 and its stalk at zero by T)4.
We denote the tangent bundle of the variety A by 74 and its stalk at zero by
T4. We indicate the sheaf of differentials by €24 and its stalk at zero by Ty
On an abelian variety the global forms are translation invariant, this is a
consequence of the fact that the translation maps are isomorphisms. ([31]
par. 11 prop. p98.)
Let exp : Lie(A) = T4 — A be the exponential map of A, we denote by Ay
its kernel.
The first Chern class ¢;(£) of £ is an element of H*(A,Z) = H*(Aa,Z).
There esists a unique translation invariant representative of ¢;(£). It defines
an alternating 2-form E(v;, ;) on A4 with values in Z such that E(iz,iy) =
E(z,y) and E = ImH where H is a hermitian form on T4 X T4 ([18] Lem. 3.1,
3.4, [31] 1.4). Since L is ample H turns out to be positive defined, thus it can
be seen as a positive element wy in QY1 (Ty), we define d)\ = wy A ... Awp,
g—times
([18] 3.3). The determinant of a matrix representation of E does not depends
on the choice of the basis, we denote it by det £. We have the following

relation
Vdet E = x(A, L) = / dX (13)

Fa

(see [18] thm. 2.3).
The radius of injectivity of A with respect to the metric on 74 induced
by L is the largest real number p;(A, L) such that the restriction of the
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exponential map to the open ball with center in zero and radius p;(A, £) is
a homeomorphism. By definition

1 .
pi(4, L) = 5 min |||z, (14)
Minkowski’s theorem ( see [6] VIII.4.3.) yields

pi(A, L) < 775 (deg s L)% (15)

An important estimate for the radius of injectivity is given in [21] lem. 8.6.
If A is an abelian variety of dimension g defined over K, for every line bundle
L on A one has

1
(K : Q]

5 Ao L) < Clopmax (LA(A) + Flogx(4,.0)) (16

o K—C

where C(g) is a constant depending only on g.

The radius of surjectivity of A is the smallest real number p,(A4, £) such that
the restriction of the exponential map to the closed ball with center in zero
and radius ps(A, £) is surjective. If d is the degree of the number field K
and A has principal polarization with respect to £ then from Minkowski’s
theorem and (16) it follows that

ps(Aq, L£5) < C'(g)(dmax(1, h(A))*~/* (17)

where C'(g) is a constant depending only on g.

3.2 Semiabelian Schemes and Moret-Bailly Models

Definition 8 A semiabelian scheme w : A — Spec Ok is a smooth group
scheme (separated and of finite type), such that the components of its fibers
are extensions of abelian varieties by tori (semiabelian group), and its generic
fiber is an abelian variety.

A semiabelian scheme A is in particular an arithmetic variety, thus for any
line bundle £ on A the direct image 7, £ is locally free sheaf on Spec Ok,
(par. 1.3).

If £ is a hermitian ample line bundle, we can endow the vector bundle 7, £
with the L?-metric

Isl2, = / 52l % dto (@)
As(C)
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where du,(z) is the Haar-measure on A,, i.e. the only normalized mea-
sure, invariant under the group law. The bundle 7,£ := (m.£L,]|s||2) is an
hermitian vector bundle on Spec Ok of rank equal to dim H°( A4, £).

We denote by €4/s the sheaf of relative differentials of A with respect to
S = Spec Ok and by 0, s = N Qs the sheaf of relative g-forms.

The sheaf (2 ¢ admits a natural hermitian structure | - || defined by

9"

2 —
= AR
ol = G5 [, 20 A®

for any embedding ¢ : K — C.
Since the global forms are translation invariant, it follows that

~ 0% Q7
WA/S=m ;s = OAQA/S

with 04 the neutral element of A.
The normalized Arakelov degree of (wa/s, ||+||) does not depend on the choice
of A and K and is called the Faltings height of A

h(A) = deg, Tas. (18)

We are going to recall the definition of MB-models given in [4] 4.3.1.
Let A be an abelian variety over Q, £ an ample symmetric line bundle over

A, and ¥ a finite subset of A(Q). A MB-model of (4, L, X) over a number
field K is defined as the data

e a semiabelian scheme 7 : A — Spec Ok,

e an isomorphism i : A = Ag of abelian varieties over Q,

a hermitian line bundle £ on A that satisfies the theorem of the cube,

e an isomorphism £ & £g,

for each point P € ¥ a section e¢p : Spec O — A of m such that the
geometric point €pg coincides with i(P),

which satisfy the following condition: there exists a subscheme K of A flat
and finite over Spec Ok such that i~'(Kg) coinciding with the Mumford
group K(L?) (see [18] 4.1).

The properties of MB-model we are going to use are summarized in the
following theorem (see [4] thm 4.10 and [3] 4.2. for the semistability in (iii)).
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Theorem 1 i) Erxistence. There exists a MB-model for the data (A,L,X)
defined over a finite number field extension of the field of definition of A and
¥, whose relative degree depends only on the dimension g of A.
ii) Néron-Tate height. For any MB-model and any P € ¥ the Arakelov degree
deg,, e*p L coincides with the normalized Néron-Tate height of p associated to
L.
i11) The vector bundle 7.L is semi-stable and its slope is

o 1 1. x(A4 L)

L) =—=h(A)+ =1 .

(m.B) = —5h(4) + 7108 {25
iv) Compatibility of a MB-model with scalar extension. If we have a MB-
model of (A, L,¥) over some number field K and L is a finite extension of
K, then the model got by extension of scalar from Ok to Oy is a MB-model
of (A, L,X) over the number field L.
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4 Non-Reduced Subschemes and Filtrations

4.1 Statement of the Subvariety Theorem

The aim of the two chapters 4 and 5 is to prove the Subvariety Theorem.

Theorem 2 Let A be an abelian variety defined over K and L a symmetric
ample line bundle on A. Let W be a subspace of T4, defined over a finite
extension K' of K. Let og : K/ — C be an embedding and v a non-trivial
period of Ayo(C) such that v € W,,. Then there ezists a proper abelian
subvariety B of Ay, defined over Q such that

vy e Tg C W,
and
deg., B < C(g)max(deg, A, dhr, drlog(dr)) (19)
where
d=[K:Q),
h = max(1, h(A),logdeg, A, h(W)),

2dimB)

r = max(L, [l

and C(g) a constant depending only on g.

A Zero Lemma, 4 ensures the existence of a subvariety B any times we can
produce a section s of an invertible sheaf £ of A with good order of zero at
a torsion subscheme X of A.

In Lemma 8 we determine the relations that the parameters of the problem
must satisfy in order to deduce that such a section exists.

The parameters of the problem are the dimension of the space of global
sections of a D tensor power of £ (parameter D), the number of points in
¥ (parameter V), the multiplicity of the section at the subscheme ¥ along a
sub-space W of Ty,, (parameter M).

The existence of the section s is equivalent to the non injectivity of the
restriction map ¢ : E — F between vector bundles on Spec Ok, where F is
the push-forward of £° to Spec Ok and F the push-forward of the restriction
of £P to Bwym, (see 4.3).

The idea of the proof of lemma 8 is to suppose that ¢ is injective and to deduce
the slope inequality (46) from property 7. On one side we use theorem 1 to
find a lower bound for the left-hand side of (46). On the other side we use an
analitic method (lemmas 2 and 7) to give an upper bound for the right-hand
side of (46). We then choose the parameters N, M and D so that lower and
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upper bound are sharp enough to contradict the slope inequality (46). We
can conclude that ¢ is non injective.

To choose the parameters so that the operator norm estimates ( see will
contradict the slope inequality. This implies that, under this choice of pa-
rameters, the map ¢ : E — F' can not be injective and we are done.

In order to apply property 7 we must endow E with a hermitian inner product
(see 1.5). Moreover we have to define a filtration of the vector bundle F
(see (24)) and hermitian inner products on the corresponding quotients (see
(5.1.1)).

4.2 Non-reduced Subschemes of Abelian Varieties and
their MB-models

4.2.1 General Notions and Notations

If X is a scheme we denote by X*°P its underlying topological space and by
Ox its structural sheaf.

Definition 9 Let j : Y — X be a closed immersion. We denote by Iy =
ker j* the ideal sheaf of Y.

The t-th power of Iy is a sheaf of ideals, we indicate it by 3. The cokernel
Oy of the natural inclusion I8, — Ox defines a schemeY; = (Ytor 710y,),
(see [14] ex 8.2.5). We call Y; the subscheme of X of multiplicityt at'Y.

The exact sequence
0 — Iy/I}t/ —_— Ox/Ig/ — Ox/Iy — 0.
induce a closed immersion i; : Y — Y;.

We recall the notion of schematic image and closure of a scheme, (see [14] ex
3.11.d).

Definition 10 Let f : Z — X be a morphism of schemes. Then there is a
unique closed subscheme Y of X with the following property: the morphism
f factors trough Y, and if Y' is any other closed subscheme of X trough
which f factors, then' Y — X factors trough Y’ too. The schemeY is called
the schematic image of Z in X. If f is an immersion then the scheme Y is
called the schematic closure of Z in X.

If Z is a reduced subscheme then Y is the topological closure of the image
f(Z) with the restricted structural sheaf. Equivalently we can say that Y is
the projective limit of all closed subschemes Y’ that contains f(Z).
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Notations:

In the following paragraphs we denote by A an abelian variety of dimension g
defined over a number field, by £ an ample symmetric hermitian line bundle
over A, by Yk a finite subset of A(K) and by S the scheme Spec K. We
denote by T4 the tangent space at zero of A(C) and by T4 its dual the space
of differential at zero.

Finally we denote by S the arithmetic variety Spec Og and by (7 : A —
S, L,%) a MB-model of (4, £, Xk), (see 3.2).

4.2.2 An Example: Non-Reduced Points on a Semiabelian Scheme

This example will be of fundamental importance. We consider the case of a
point P on the semiabelian scheme A over S.
A point P of A with value in Ok is defined as a morphism of schemes

P.S— A

Since A is a scheme over S, the morphism P is a closed immersion.

We denote by P;, meaning P; : S; — A, the subscheme of A of multiplicity
t at P, (see def. 9).

The scheme A is smooth over S thus the push forward via 7 o P, of the
structural sheaf Op; of P; is a locally free sheaf over Op.

Remark:

If we would have worked with an abelian variety over S = Spec K and a point
P : S — A defined over K , we would have gotten the subscheme P, : S; — A
of multiplicity ¢ at P. If A is a MB-model of A then the subscheme P; is the
schematic closure in A of the subscheme F;.

4.2.3 Non Reduced Subschemes of Dimension Zero

We consider an immersion Yk : (][ S) — A with values in A(K), i.e. a
disjoint union of points P : S — A defined over K. We can extend the
definitions of multiplicity in the following way.

Let t : '™ — N* be a map that associates to any P € Y an integer
number ¢(P) that we call multiplicity at P.

For each point P € i we consider the subscheme P;py of multiplicity t(P)
at P. We call the scheme Yg,; = [] Pesx P, (py subscheme of multiplicity ¢
at = K -

Remark:

the ideals I;D(ipi) are pairwise coprime, i.e. Iltj(ip") -I—Ilt,(jpj ) — ©,4. Therefore the

structural sheaf Oy, ; == @ pes, OPu(p) 1s isomorphic to X k H(O4/ ﬂIfD(P))
(see [2] II.1 prop.6).
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Now we extend the definition to the semi-abelian scheme A.

We have seen in the example 4.2.2 that the scheme P, is the schematic
closure of the scheme P,. We define the scheme associated to X as X =
Upes, Pip)-

Remark:

The scheme ¥, is not always a subscheme of A. We recall that, from the
definition of MB-model (§3.2), for every point P € ¥k there exists a section
ep : Spec O — A. Therefore there is a natural epimorphism from 3J; to the
schematic closure of ¥k ;. It is an isomorphism only if the ideals (Zp)pex, are
pairwise coprime.

4.2.4 Subschemes of Multiplicity ¢t along a Sub-Bundle of the Tan-
gent Bundle

We denote by 04 : Spec K — A the origin of the abelian variety A. Let W
be a sub-space of the tangent space T4 defined over K. Since A is smooth
we have the isomorphism O4/T3, = K & Ty, /I3, = K & Tx. We denote by
Sw,1 the spectrum of K & W. The inclusion W — T4 induces a surjection
of algebras 04, /I3, — K & W and hence a closed embedding of schemes

OA,W,l . SW,l — A.

We consider the schematic image Sy, of the scheme Sy X - -+ X Sw;; under
the addition morphism

We define 04w : Swi — A to be the subscheme of A of multiplicity ¢ at 04
along W.

Let us consider the semi-abelian scheme A.
We denote by Sy; the schematic closure of Sy, in A and we call

OA,W,t . SVV,t — .A

the subscheme of A of multiplicity ¢ at 04 along W.
Since .4 is smooth, the scheme 04w, is a flat finite subscheme of A hence
affine.

If P is any point of A different from the origin we consider the translation
isomorphism ¢t_p : A — A. We define the subscheme Py of multiplicity ¢ at
P along W as the pull-back via tp of the scheme 04 ;.
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Finally we define the scheme Py of multiplicity ¢ at P along W as the
schematic closure of Py, in A or equivalently as the pull-back via the trans-
lation map ¢_p of the immersion 04 w;.

4.2.5 Ideals Sheaves Associated to a Non-Reduced Subscheme

Let k be a positive integer. Let 04w, be the subscheme of A of multiplicity &
at 04 along W and let 04w be the scheme associated to 04w, (see 4.2.4).

The schemes 04w and 04wy are affine schemes, hence we identify a sheaf
on 04wk or 04wy with the module of its global sections.
From the definition of push-forward the module of global sections of a sheaf
on 04w is an Og-module that coincides with the module of global sections
of the push-forward of the sheaf on Spec Ox. Thus we will identify locally
free sheaves on 04w and their push-forward to Spec O.

By definition 04w is the generic fiber of 04w thus Op, wi = Oo Wk ®0x K
and since K is flat over Og we have an embedding of algebras Op, wi —
Oo 4, Wik-

Let’s choose any positive integer M and let g be the dimension of the abelian
variety A. We want to define a filtration of Ox-modules associated to the
subscheme 04 w2 n. Let X be a reduced non-connected subscheme of A
containing 04. Let g wonm 1= 04 w2gm ]_[OA spesy PwgM be the associated
non-reduced subscheme. Then there exist closed immersions 04 = 04,w,0 —
Oawa — Oawa- - — Zgwgm. For any integer 1 < k < 2gM let us denote
by Zy, wx the sheaf of ideals of 04w k-1 in 04 w29m-

We define Og-modules associated to the above ideals as follows

Lo wik = Zouwir N Oo,w2gM-
The ascending chain
0= IOA’I/V,QQM CcC--- C IOA,VV,IC c---C IOA,W,l C OEK,W,gM
defines the filtration
0= IOA,VV,2gM c---C IOA’W,k c---C IOA,W,I C OZ,W,gM

of saturated submodules of Og w 4u, hence the quotients Zo . wik/Zo 4w k+1
are torsion free.
There exists a natural map

I: Sym* (W) — Zo, wi/Zos w1 (20)
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Since any formal group over a field of characteristic zero is an additive formal
group the map I is an isomorphism, (see [15] thm. 1).

We recall that Ty = T4 ®o, K. We define the saturated submodule W :=
WNTy of Ty.

Intersecting with T4 the exact sequence

0—-Ker>T4y —>W—0

we deduce that W= Wﬂ(TA/(quﬂTA)). We have that W =Ty, wi/To,wa,
hence W = (Zo, w1/Zo,wz) N (Ta/Ker N T4) = Lo, w1 /To,,w,2- Moreover

Lo awk/Zoawre1 = (Lo w1/Toqwa)".
It follows that the map I restricts to a morphism of Ox-modules

J : Sym* (W) — To, wik/Touwik+1- (21)

Both modules are torsion free hence this map is injective. From [11] lem. 2.4
it follows that the cokernel of the morphism J is a torsion module annihilated
by k!.

If ¥k is a disjoint union of points of A, we reproduce the previous con-
struction for each P € Yk and we define Og-modules Zp w, for which the
quotients (Zp wi/Zp wi+1) are torsion free. Then there is a natural isomor-
phism

Symk(W) - IP,W,k/IP,W,k-{—l (22)
and there exists an injection of modules
Sym*(W) — Tpwyk/Zp,wk+1 (23)

whose cokernel is annihilated by k!.

4.3 Filtration of a Locally free Sheaf on Spec O

Let K be the field of definition of the abelian variety A of dimension g.
Let W be a subspace of Ty, , defined over a finite extension K’ of K. Let
oo : K’ — C be an embedding and let v € W,, be a non zero period of A,,.
For any given integer M and N we do the following construction.

Let P, : S — A be the reduced N-torsion point of A such that P/%° =

1,00

€XPy, % We suppose that the points P; are defined over the field K'.
Definition 11 We call ~v-linear N-torsion subscheme of multiplicity gM
along W, the subscheme of A defined by the disjoint union X' wem =

N-1
Oawagm Lisy Piwgnr-
We also define the Ok-scheme associated to X g wom as the disjoint union

Swan = 0awzenm Ly {Pitwonr-
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We want to emphasize that these two schemes have multiplicity 2gM at zero
but multiplicity gM at the all other points.

We consider a symmetric ample line bundle £ on A. Let (A4, £,X) be a MB-
model of (A, £, X g). For any integer D we consider the D tensor power £°
of the invertible sheaf £ on A.

We denote the push forward via 7 of the line bundle £° by

E =8P
and the the pull-back via Yy, s of the line bundle £° by
F .= Ewng*SD.

Since 7 : A — S is an arithmetic variety E is a locally free sheaf on Spec Ok
of rank equal to the dimension of H°(A, £P), (see 1.5). From the definition
F is also a locally free sheaves over Spec Ok (see 1.3).
We denote the restriction map that sends a global section s € £P to its
pull-back via Yw g by

¢:E— F.

We remark that the precise definition of F'is F' := (WZK:ng)*Z*W’gMSD
but we identify the Ox-module of the global sections of the push-forward
(TS wignt )« By o £° with the Ox-module of the global section of X, el
We have B ® K' = H°(A, LP) and F ® K’ = H(Sxr wignts Skorw g £7)-
By flatness of K over Ok the restriction map ¢ : E — F is injective if and
only if ® : HX(A, LP) — H(Zx wgm, E}{,’W’QMED) is injective.

In order to apply property 7 we define

For =To,wagm-r ® X" LP for 0 < k <2gM — 1,
Fr = (To, wagm Porres Ipwom—k) ® T*LP for 0 <k < gM -1,
FgM = FQ,O
(24)
and
Googm—k = Foogm—k/Fo2gm—k—1
= (Zo,wi/To, wrs1) @ T*LP for 0 <k < 2gM,
Gom—r = Fogr—i/Fogn—k—1
= (®o,zresTpwp/Ipwii) @ B*LP  for 0 <k < 9M~( )
25

We denote by IE,W,k = IOA’VV,29M @’PEE Ip’u/’k‘
The descending chain of Ox-modules
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induces the filtration of the sheaf F' on Spec Ok
O0=F CF C... C FgM = F()’o C ... C FO72gM_1 C FO,QQM = F.

Remark

We kept the case of the point zero separated from the case of the non-trivial
N-torsion points because the first case will represent the construction part
and the second the extrapolation for the proof of Lemma 8.
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5 The Proof of the Subvariety Theorem

5.1 Estimates for Operators Norms
5.1.1 Hermitian Metrics and Morphisms on a Filtration

We want to define a metric on the quotients Fj/Fy_1 and Fox/For-1. We
emphasize that we do not define a metric on F to induce then the quotient
metric on F},/Fj_1, but we keep the freedom to give a local definition on the
quotients of the filtration.

From the isomorphism (20), (22) and the definition of G and G, we deduce
that for all 1 < k < gM there exist isomorphisms

GoM—ko = @ Sym*W, ® P*ﬁf. (26)
04#P€Xk

For all 1 < k < 2gM there exist isomorphisms
Go2gr—ko = Sym*W, @ 0,°LD. (27)

We assumed to have an hermitian line bundle £ on A and we endowed the
tangent bundle 74 with the hermitian inner product defined by the first
Chern-class of £, (see 3.1). We consider on T4 the dual hermitian product
of Ty (see 1.2.1) and on W its restriction (see 1.2.4). We endow P*LP with

the pull-back metric given by £, (see 1.2.1).

We define on Gyp—x and Go2gn—k @ hermitian inner product using the iso-
morphisms ( 26 ) and (27) and the hermitian product canonically induced on
the symmetric product, tensor product and direct sum as explained in 1.2.7,
1.2.3 and 1.2.2..

Definition 12 We define morphisms ¢ : ¢~ (Fy) — Gy to be the composi-
tion of the restriction map ¢ and the natural projection Fy, — Gy = Fi,/Fy_y;
and morphisms ¢oy : ¢~ (Fox) — Gog to be the composition of the restric-
tion map ¢ and the natural projections Fyr, — Gox = Fox/For-1

5.1.2 Trivialization on the Tangent Space

Let exp : Lie(A) — A be the exponential map of an abelian variety A of
dimension ¢ and let £ be an ample symmetric line bundle on A.

We consider on T4, the tangent space at zero, the hermitian metric induced
by the first Chern class of £L. We denote the related norm || - ||. We denote
by | - | the standard Euclidean norm on C. We endow the trivial bundle Oz,
on T4 with the norm

1F(2)leer = | F(2)]e™E)
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with f any section of Or, and m(z) := —Z||z||*.

The line bundle exp* £ is trivial on T4. We can choose a trivialization such
that the isomorphism ( : exp* £ — Og, is an isometry, (see [3] 5.3.3).

In particular if € is an open set of T4 on which exp is an homeomorphism
and s is a section of £ (exp(f2)) then for every z € 2 we have

Is(exp 2)lleo = |f(2)]e™® (28)

with f := ((exp*s) and m(z) := —ZD||z||%.

Let §4 be a fundamental domain for the lattice A4 := ker(exp). Then (13)

gives x(A,L) = fSA d\ with d\ := wyg A ... Awg and wy the translation
e —

g—times
invariant representative of ¢;(L).
By definition the normalized Haar-measure on A satisfies

1=/d,u=/ exp” du. (29)
A Sa

X
exp* du

Then we can write

= x(4, ). (30)

5.1.3 Bound for the Norm of the Operators ¢g

We are now ready to give an estimate for the norm of the operator ¢,
see def. 12. We recall that we choose the norm of a morphism between
hermitian vector bundles over Spec Ok to be the operator norm. We denote
by €, = min (1, p(A,, L,)) where p(A,, L,) is the radius of injectivity of L,,
(see 15).

Lemma 2 For any integer 1 < k < 2gM and any embedding o : K' — C
the operator norm of the restriction map ¢o satisfies the inequality
k !
looall2 < Dox(4, Lm0t EE D ot
”¢0,2gM—k:(S)|’é0,29M__k,g
llsll7p

proof will be the same for any embedding o, for a matter of easier notation
we forget the index o.

Proof We have to estimate ||@o 2gn—k|[2 = SUP,£0 . The

As first step we find a lower bound for ||s||%5.
We recall that the norm of a section of a line bundle on an abelian variety is
by definition
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Is]20 = / 5By

with du, the normalized Haar-measure. From the relations (29) and (30) we
get

[Ell 1=/3 IISzIIiDeXp*duZ/QIISzHiDX(A,ﬁD)_ldf\
A

where 2 is an open of T4 on which exp is a homeomorphism. In particular
we can chose 2 to be the open ball B(0,¢€) with center in zero and radius
e =min (1, p(4, L)).

Replacing formula 28 in the integral above we get

Isl2o > x(4, £)! / F(2)Pe PPy, (31)

B(0,¢)

We choose an orthonormal basis ey, ...e, of T4 with respect to the inner prod-
uct induced by ¢;(LP). Let z,...z, denote the corresponding coordinates.
The holomorphic function f(z) can be developed in Taylor expansion

f2) =) ar!

where [ is a multi-index (i1, ...4,), 2 is the monomial 2% -..- 2z € Sym!’! (TA)
and ay € C.
Substituting this development in the last integral we get

lslEzs > x(a,22)" [ IS e,
0,e I

Parseval’s Formula yields

1> arzPermPERaN = |a1|2/ |27 |2~ PIFIE g,
~/B(O,e) Z[: 2]: B(0,¢

)

Lemma 4 below gives the relation

[ ety = g, 1,9 1
B(0,¢)
with

|
C(g,k,e)"! < 79 (k+9)! 'I;g)'e—?(“g).
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Therefore

lIslZzo = x(A4, L) Zlazl C (9. 111, €) 12" II5- (32)

As second step we compute the norm of the image of the section s

||0,200—k (5) &5 200

=H Z a]®213

S[,D@Symk 174

|I|=k,ig=0
= 3 larlfgo - 127115
[I|=k,ig=0
= Y a2,
|I|=k,ig=0

As third step we estimate the norm of the operator ¢o aga—r using step 1 and
step 2.

|| o,2gn—k (5) I
l|¢0,2 M—k”2 = sup 0,2gM—k
’ 0 EE

8

1 Dyl 112"
< sup x(4, L"
5£0 ( >C(9,k,€) > larl - 1127115
< X(A,LP)C (g,k, )"

Recall that x (A, £”) = D9x(A, L) and so the result follows.
O

We now recall a classical lemma on metrics that we are going to use in lemma
4.

Lemma 3 Let ¢ : G — GL (W) be an irreducible representation of a group
G on a vector space W. Let W be endowed with the two G-invariant scalar
products (, )1 and {, )a. Suppose moreover that (-,-)1 = 0 if and only if
(,-)2 = 0. Then there exist a constant A € R such that

1Ml = All - [l
Proof
We define \; := infyep L2 T || , :|wlle = Adlwl|a}
is a sub-space of W. The two norms are G-lnvarlant hence the space F is
G-invariant. The irreducibility of the representation implies £ = W. O

It remains to prove the following
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Lemma 4 Let 21, ...,2, be an orthonormal basis of the space of differential
Tx with respect to the hermitian inner product hp defined by the Riemann-
form of the line bundle LP. Let I,J be two multiindeces of norm k and let
21, 27 be the related monomial of Sym* (T4).

We consider on Sym* (TA) two different inner products. The first one is
defined by

(", 27) o ::/ 2177 mPIFIR g,
B(0,¢)
The second one is the induced quotient metric as we have described in 1.2.7
(2!, 27 gr := S*hp (zl,zJ) .

Then
i) there exists a constant C (g, k,€) such that

1120 = C g, k) Il - []5.
i1) The following estimate holds

k!
(k+ g)!

g,—nDe? 2(k+9) < Clg,k,e) <n? k! 2k+g)

(k+g)!

Proof i) From Parseval’s formula it follows that (-,-).» = 0 if and only
if (-,-)g« = 0. Moreover the action of the unitary group is irreducible on
Sym"* (T4) (see [16] 1.4). Applying lemma 3 we deduce i).

ii)From the choice of the basis e; of Ty we have that the Riemann form of £”
has a diagonal representation, thus ||z||2 = >_ |z;|*>. From i) we know that
C (g, k,€) is the same for any element in Sym* (Q4), it is enough to compute
it for the element

(k) =

First we estimate the integral

[ (e
B(0,¢)

Passing to polar coordinates we get

‘ (33)
0
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where S29-1 is the unitary sphere and vol indicates its volume. The minimum
of the function e=™P"* for r € (0, €) is attained in r = ¢ thus

> 1 2g—1 —aDe? € )
> vo (S )e ——_2(k+g)

(34)

2(k+g)

The maximum of the function e~™"* for 7 € (0, €) is attained in r = 0 thus

k — zi|?
/B(O’G) (Z lzi|2) DT I5 gy

< vol (529_1) _.62(k_+g_)_ (35)
B 2(k+g)
From (4) we know that
I!
||2r]|sx = g (where I' =il -i,!).

Moreover from the generalized Binomial formula we have (3 |z?)* = 3 & 2/|?

and so
k
[, (S)eomra
B(0,¢)
_ k! 112 _—7||z||?
_Zﬁ/B(()e)|z|e dA (36)

|T|=k
k-1
=C(g,k¢) <g+ )
k
We recall that the volume of the (2¢g — 1)-dimensional sphere is
29
vol (§%71) = .
(577 ==

Comparing (34) and (36) we deduce
k!
(k+9)!
Comparing (35) and (36) we deduce

ge—-ﬂ'DE2 62(k+g) S C (g’ k.’ 6) .

k!

(k — )'62(k+g).
q):

C(g,k,e) <m?
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5.1.4 Bound for the Norm of the Operators ¢

First we are going to state the analogous of lemma 2 for the operators ¢.

Lemma 5 For any integer 1 < k < gM and any embedding o : K — C the
operator norm of the restriction map ||pgm—k||s satisfies the inequality

7rDe (k + g)!6—2(k+g)
ktC '

Proof  The proof follows the proof of lemma 2. We recall that the function
|f (2) |2e=PlI=IP is periodic with respect to §a. From formula (31) we deduce
that for each point P,

lldgrr—rllz < (N = 1) Dx (A, L) 7~

Isllzo > x(A,ED)—l/B( )|f(z) 2emPIEIP A,
Pis€

Let f(z) = 5, crz! be the Taylor expansion of the function f(z) centered
in p; with P, = exp p;.

From Parseval’s Formula and lemma 4 we deduce

Therefore

Isllzo > x(A, £)” ZIC[I C (g, 11, €) 2" Il5x- (37)

Now we compute the norm of the image of the section s

I|¢29M_k (S) “2G0,29M-]C

= > ae}

P*[,D®Sym
{I|=k,ig=0
= 3 lerlPego - N2 (38)
|I|=k,ig=0
= 3 eI |12t 2,
|T|=k,ig=0

Finally we estimate the norm of the operator ¢q4y— using (37) and (38).

2
||¢29M—k“2 = sup ||¢29M—k (8) ”GQQM—k
570 lIsl1Zo
1 Dl 15
< sup x(4, L”
> s;%)x( )C(ng,e) Z|1| |CI|2' ||Z1||§k
< x(4,£P)C (g,k, )"
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This conclude the proof.
O

We want to find a better bound for the norm of the operators |[|¢x||. The
idea is to use the fact that every section in the domain of ¢ has a zero of
multiplicity at least 2gM in zero and to apply a special form of the Schwarz
lemma.

Let consider the spaces

Q, := {f : C > C holomorphic : 3C € R |f (2)| < Ce P}

Qy, :={f :C — C holomorphic : 3C eR |f(2)] < Ce?™Pv’)

with z =z + 1y.

We endow €2, with the norm || f||a, := sup,cc |f (2) |e"™P" and Q, with the
2

norm ||f|la, := sup.cc |f (2) e,

Lemma 6 The map

I (@l lle) — (- lla,)
f(2) — f(z)e "

s an isometric isomorphism.

Proof
We first proof that the norm of I is 1. This follows from the fact that

|f (Z) e—TrDzZ|e—27rDy2 _ |f (Z) |Ie_7rD(z2—y2+2iwy)I€_2rDy2 _
= |f (2) |e”™ P V) =DV | () e D1,

Finally I is an isomorphism because e™? 2 #0. g

We will need to apply the Phragmen-Lindeléf Theorem that we write for
simplicity. This theorem gives conditions under which the theorem of the
maximum for bounded domains can be extended to unbounded domains.

Theorem 3 (see [34] 12.9) Suppose
A={z=zx+iy : |yf<R} and A:={z=z+iy : |y =R}

Let f be continues on A and holomorphic on A. Suppose that there are
constants a < 1 and A < oo such that

|f (2)| < exp{Aexp (al|z])} z=x+1iy € A,
then
|f(2)| < sup |f(w)] for all z € A.
weHA

42




We are going to give here a special form of the Schwarz Lemma, that we will
need in order to get the “good” bound of lemma 7.

Property 9 (Schwarz Lemma) Let f (z) be a function in the space Q,. We
suppose that f (z) is L - Z-periodic with L € Rt and that has a zero of order
at lest T at zero. Let us consider the strip

T
A—lo—xtiv: [y < —1
{z=z+iy : |yl < 27rDL2}

If2nDL? > T then for every z € A we have

f(z)

_T72
T < [ fllo, €02

(sinmz

Proof  The function
f(L-2)

(sinmz)”

is entire because of the zero multiplicity of f (2) at L-Z. Let z = x + iy, we
recall that |sin (z +iy) |> = |sinz coshy + icos zsinhy|? = (sinzcoshy)? +
(cos zsinh )2, Since (coshy)? > (sinhy)? we have that |sinhy| < [sin(z) | <
cosh y.

We defined above the norm on the space Q, as || f||o, = sup,ec |f (2
thus

) Ie—2ery2’

e21rDL2y2

lg ()| <||flla for all z =z + iy. (39)

Y| sinh wy|T
We want to verify that g (2) satisfies the hypothesis of the Phragmen-Lindelof
Theorem above. We have to control that the function g(z) does not grow too
fast when |z| goes to co. Since both f(L - z) and sin(wz) are 2Z-periodic on
the x-axis also g(z) is. Moreover g(z) is entire so it is bounded on a compact
set, thus

lg(z)| < C for z€ A

with C' a constant.
By the Phragmen-Lindelof Theorem we conclude that the maximum of the
entire function g(z) on the strip A is attained on its boundary 0A, i.e.

lg(2)| < sup |g(w) ]| for all z € A. (40)
wEHA

Now we want to estimate g (z) on this boundary OA. Because of (39) it is
e27rDL2y2

enough to estimate for |y| = T/2rDL?. The function is symmetric

| sinh wy|T
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hence we shall study it only for positive values of y. Since e™ < %e then,
for any y > 1, we have that sinh Ty = ( ™ em™) > e“y which in turn is
estimate by 3 1e’ry > e, For this last estlmate just remark that €™ > ™11,

It follows that for y > 1 the relation fsmh -

2rDL? 21rDL
7T < € GZTyy holds. In particular

if we set y = 52 > 1 we have e2"PLV' =21y = e~T?/27DL* Now by (39) we
deduce )
9(2)| < 1Iflla, 377 for = € 04,
and from (40) follows the desired inequality.
O
Remark 1 Since |sinh7y| < €™ the real function R(y) := l:;—ﬁ];;'; is
bounded from below by e2"PL*¥*~7Ty  Thus min, >*P2*¥*~"T¥ < min, R(yQ)
—TrT

The minimum of e?"P*v*~"TV ig attained for y = ;7> and its value is e3pr?
This means that another choice of the strip A or a better approx1mat10n
of |sinhmy|? would not have essentially given any better result but just a
slightly better constant.

Remark 2 The points of minimum of R (y) are the same of r (y) := log R (y).
The first derivative of r (y) is

' (y) := 4n DL*y — T coth 7y. (41)

The function /' (y) has just one zero given by the intersection of the line
4D L 222y and the function cothmy. This zero is a point of minimum because

(y) goes to infinity for y that goes to zero or to infinity. If 2% L> < 1 then
the line * T y intersects coth my for a value 4 such that coth yo is ’about’ 1.
By the relation (41) it follows that y, approaches ;7 L2 This explains why
we shall suppose T > 4D L?, moreover it gives an approximation of the value
of y for which R(y) attains its minimum.

We denote by €, = min ((1, ps(4,0)7Y, pi(Ay, L,)) where p;(As, L) is the
radius of injectivity (see 15) and ps(A,, L,) is the radius of surjectivity of
L, (see 17) .

Lemma 7 If gM > 2D||y||? then for any 0 < k < gM and any embedding
o : K' — C that coincide with oy on the field of definition of P, € X, the
operator norm of the non-trivial restriction map ¢gp—i satisfies the inequality

-1 D — (gM)? _
-4l < (N = DD (4, )2g?og 3y (T4 )
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Proof

We define p; = %'y and we recall that exp, p; = ;.

Let s € ¢~*(F,u) be a global section of £ in the domain of ¢gs, then
exp* s = f(t) is an entire function. From (28) it follows that the restriction
f(z) == f(zv/||7l]) belongs to Q,. The function f(z) has a zero of order
2gM in zero and it is thus Z||y||-periodic. We are in the hypothesis of the

lemma 9, where
_ _fEIhD
9(z) = (sinwz)29M
It follows that if gM > 2D then

_ﬂ.(gM)2
19(2)] < 3|1f]]e, € 22T

for any z in the strip A := {z=z+iy : |yl £ @%}

) : —rgng .
In particular we get that |f(p;)| < [|f|la,e P, where p; = %7.
From Cauchy’s estimate ([17] cor. 4.3) we deduce that the function  f(¢)
belongs to §,. Moreover, by assumption, this function has a zero of order at
least 2gM — |I| at Z. Applying lemma 9, If 2gM — |I| > 27 D||7||* then

2

fl(pA) —(2gM—k)2
L@ < s, o 51

We get the worst bound when |I| = gM, namely for gM > 2rD||v||* and

—(gM)?
15 ) < [|f]&, emPM®, where |I] = gM.

Now we are ready to estimate ||¢gn—x(s)]|* as follows:

2

N-1
1
bom—r(egon = 1|2 D 7' ®

i=1 |I|=k,ig=0

®P} LP@SymFW
N 1 2
D S L LI
[I|=k,ig=0'"" pyLP (42)
N~-1 2
1 _ 2 1!
=Y T || e -
i=1 |I|=kig=0
k -1 liv||? ~(20M k)
<= (FHT e R

We still need to relate || f||3 and |[s||Zp. Since f(¢) is the pull-back of a global
section of £P on A there exists ¢, in the fundamental domain §4 such that
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SUPeco lf( )[e‘“’DHt||2 |/ (to)|e~™Pll® . From the Cauchy formula we have
ft) =+ fT m C —ry )dgl/\ A(,, where T is the torus T = S*(61) x ... x §(J,)

with S1(6;) 1s a circle of center ¢; and radius ;. We denote by R the real

interval | 45 , 4 . We remark that the Cauchy formula is true for any radius

d; so we can 1ntegrate over RY and we deduce

_ L (Y O g . |

f@)_2m'< > /Rg/T(a)HCz'—t')dCI/\ AdCg A doy A - N dd,
29

(o) (7) Lmeagsannoenasnenas

where % is the annullls given by the Cartesian product T" x R9. Since ,d(; A

If(z)|2S(217r) () ([irolE=5u)"

From the Cauchy-Schwarz inequality we deduce

If@) < <—2—1;)2g <2?g>2g/2[|f(4)|2d/\/mm<il_—ti|2d)\

Computing the integral [, HI—C-I—t_ilfd)‘ = (2m)9(log 3)¢ we find the bound

7P < (2) (2)” g0y [ Irtpan (43)

We remark that from the definition of ¢ the exponential map is injective on
the annulus 2. From the periodicity of f we have

/lf(C)!26_”D”C”2d/\:/ F(C)Pe Pl g
A AmodF 4

|£(Q)Pe Pl )

Since € is smaller than the inverse of the surjectivity radius we see that
e < 1/||t|| and so

/ F(Q)Pe I g > emmPUdf e+ / FQOPx. (44)
A A

Moreover from (43) and (44) we deduce
2 —aD(e+1) (TYI [ € 0 -9 9 2, —nD||(|[? 2
1£113,e (3) (5) Gos3yr <D | 17©OFePIFdr = islz
A
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and from the definition of ||s||%, we have

29
—mD(e - T\ €
1l (4, L2 Doy () (£) < il (a9
Comparing the upper bound (42) for ||®,s-x(s)||* with the lower bound (45)

for ||s||? we get the result.
O

5.2 Choice of the Parameters and Slope inequality

If we suppose that the restriction map ¢ : E — F is injective then we are
in the hypothesis of property 7 for the map ¢ : E — F and the filtration
{Fv,, F;}, where the corresponding quotients Gy ;, G; are hermitian vector
bundles as specified in 4.3 and 5.1.1. Property 7 gives the inequality

gM

d/CEnE SZ (rg ¢ (F;/Fic1)) (fimax(Gi) + ﬁ Z log ||#:]|0)+
ng—;l B 10:K —C
Z (rg ¢ (Foi/Foi-1)) (Amax(Goy) + ) Z log || ¢o,illx)-

i=1 o:K'—=C

(46)

The idea of this proof is the following. On one side we use Theorem 1 to
find a lower bound for deg,, E, (49). On the other side we use an analytic
method to give an upper bound for the norm of the operators appearing in
(46). We then choose the parameters N, M and D so that the lower and
upper bounds are sharp enough to contradict the slope inequality (46). In
this way we can conclude that ¢ is non injective.

Lemma 8 Let A be an abelian variety of dimension g defined over a number
field K. Let W be a subspace of Ta,, with K' a finite extension of K. Let
0o : K' — C be an embedding and v € W,, be a non trivial period of A,,.
Let ¥ be the reduced y-linear N -torsion subscheme of A defined over K', (see
definition 11).

There exist integers M, N and D satisfying

D9 > Cy(g)(deg, A)"-M*hd
M > Cy(g)Dr (47)
M?*hd > C3(g)N*Drd(D + Mh + Mlog M +1log N)
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such that

o . HO(A,£®D) - HO(EVC%,DVV,QM)

is not injective. Here h := max(1, h(A),logdeg, A, h(W)), r := max(L,|7|[2,),
d = [K :Q), s is the codimension of W and C;(g) are constants depending
only on g.

Proof By contradiction we assume that @ is injective. Then we prove that

gM+1

8, B> Y (186~ (F/Fit)) | fiman@) + oo 3 logl6lls ) +
i=1 [K ) Q] o:K'—C
29M 1
Z (rg ¢~ (Foi/Fo-1)) | fimax(Goi) + mo——=5 Z log [|¢ollo | -
i=1 [K ) Q] o:K'—C

(48)

This contradict property 7 for an injective map. Thus ¢ can not be injective.
We will denote the right hand-side of the above inequality by RHS and the
left hand-side by LHS.

Using Theorem 1, we get

— 1 1 DIx(A, L)
— DY ZAVS ™
deg, E = DIx(A, L) ( 2h(A) + 1 log Gy >

whence

LHS > —%hDgx(A, L) (49)

Now we estimate the right hand-side. We use the isomorphisms (26) and
(27) to bound fimax(Goagrr—k) and fmax(Ggar—k). Since P; are torsion points
deg, Py L®P = 0.

From [11] prop. 4.1 we get the estimates

[Lmax(ao,ggM_k) < c1(9)kh + klogk for 1<k <29M

and

frmax(Ggm—k) < c2(9)kh + klogk for 1<k<gM,

where
h = max(1, h(A),logdeg, A, h(W)).

We supposed that ¢ is injective thus

(rg ™ (Fox) — 180 (Fox-1)) < 18Gopk for k <2gM
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and

(rg o Y (Fy) —rg ¢ H(Fr_1)) <1gGy for k < gM.
Using the isomorphisms (20) and (22) we can compute
k —s—1
18 Go2gM—k = ( tg—s ) for k <2gM
g—s—1
k+g—s—1
1g Gop—k = (N — 1) g—s—1 for k< gM.

Since the logarithm is a convex function, relations (16) and (17) imply

1
(K" : Q)

Z loge;? < c(g)logh (50)

o:K'—-C
Lemma 2 and relation (50) yield

1
[K': Q]

> logllgosem—klle < Calg)(D +k + klog h).

o:K'—C

We recall that the degree of the field of definition of a N-torsion point of A
is at most N29d with d = [K : Q] and K the field of definition of A. We
suppose that gM > 2D||v||?. Using lemma 5 and lemma 7 we deduce

Cﬁ(g) M?
2N%d D|ly|>

1
K -Q > logllggrr—klle < Cs(9)(D+k+klog htlog N)—
) o:K'—C

We can give a first bound for RHS

faid k+g—s—1
RHSS@(g)Z( 933—1

k=0
+C5(g)(N = 1)

Al <k+g—s—1

) (D + kh + klog h + klog(k + 1))

) (D + kh + klogh + klog(k + 1) + log N)

k=0 g=5= 1
gM+1 M?
+Co(g)(N = 1) Y (xg™ (Fi/Fina) (‘m)
k=1
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and so
RHS

29M(k+g—s—1

< Cilg)> 51 )(D+(k+1)h+klog(k+1))
k=0

+ Cs(g)(N — 1) Z

k=0

- Gs(g)(N = 1) Z (g ™" (Fi/ Fi-a) (W%W)

k=1

M lhktg—s—1
g—s—1

) (D + (k + 1)k + klog(k + 1) + log N)

The negative term does not depend on & so it remains to find a lower bound
for 9 (rg ¢V (F;/Fi—1)) = 18 Fyu. By definition Fyp = To,wem ®
v*¢P ie. it is the module of sections of £ with a zero of multiplicity at
least 2gM along W at 04, therefore from (22) we have

29M—|~g—s>

rg Fypr > DIx(A, L) — ( g

We deduce the bound
RHS

29M
k+g—s—1
§C7(g)kz:%< S )(D+(k:+1)h—|—k:log(k+1))

raow -y ("0

k=0

- Gl =Y [ Dx(A4,L) - (

ad k+g—s—1
( g )(D+(k+1)h+klog(k+1)+logN)

2gM +g—s M?
g-—s N29dD||[[?

that implies

RHS < Co(g)NM*(D + Mh + Mlog M + log N)
M? (51)

= Cuo(o) (N~ DIDX(A, £) = Cul0)M* | 3

We suppose that N > 2 and that the following inequalities hold

DI%(A, L) > 2C11(9)M°hd
M?hd > C15(g)N*Dd||v||*(D + Mh + M log M +log N).
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Under these conditions we deduce from (51)
RHS < —hDx(A, L).

This contradicts (49) and proves (48). O

5.3 The Multiplicity Estimate and Conclusion

Let A be an abelian variety of dimension g defined over a number field K" and
L a symmetric ample line bundle on A. Let 0 : K — Q be an embedding.
We consider the addition morphism

+  AX... XA — A
—_—
g—times

(p1,.-0g)  +— p1+.. +Dpg

Let S be a subscheme of A of dimension zero. We denote by ¥ : S; — A the
schematic image of S x ... x S under the addition morphism.
N —

g—times
If B is an abelian subvariety of Ag we denote by 7 : A — Ag/B the natural
projection.

Theorem 4 (Multiplicity Estimate) If the restriction map
®: HY(A L) —— H°A, 5,05, L)

is mon injective then there exists an abelian subvariety B of Ag, different
Jrom Ag, such that

length(r(S)) - deg, B < degr A
with length(r(S)) the length of the scheme r(S).

We recall that the length of a module M is the length of a chain 0 = M, C
-+« C M, = M with M;/M;_, simple (see [28] p. 12). And the length of an
affine scheme is the length of the module of global sections of its structural
sheaf.

Wiistholz has proven as first results of this type (see [40]). One can find
other formulations and refinement of his result, where the effective constants
are improved, see for example [33], [32] or [7].
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5.3.1 The Proof of The Subvariety Theorem

Let us consider a power £8P of a line bundle £ on A. We choose the scheme
S := ¥ wum to be the y-linear N-torsion subscheme of A of multiplicity M
along W, where M is an integer, W the subspace of Ty, , of codimension s
and 7 a non trivial period (see 4.2.3). Note that [L : K] < N* with L the
minimal field of definition of S. We denote by d := [K : Q] the degree of
the field K of definition of A. Let K’ be a field of definition for W and S.
The schematic image of X1, w s X .... X X war under the addition morphism
turns out to be X wgnr.

Lemma 8 tell us that if we choose N, D and M satisfying the conditions
(47) then the hypothesis of the Zero Lemma are satisfied for the subscheme
S and the sheaf £2P. It follows that there exists a abelian subvariety B of
Ag different from A, such that

length(r(S)) deg o0 B < deg en A
Le.
length(r(S)) deg, B < D°deg, A (52)

with ¢ the codimension of B in A.
Using (22) we compute the length of the subscheme 7(S). If B = 0 then

(9 st M M=
length(r(S)) = N< g—s ) > N—-——(g 3 (53)

If Tg ¢ W, then r(S) contains 04,5 and so
c—s+1

(c—s+ 1)1

(54)
Finally if Tg C W, then 7(S) contains 04,5w'n» Where W' is a subspace of
T4/ of codimension s, and so

c—s+1+M

length(r(S)) > #(S + B/B)( c—s+1

) > 4(S + B/B)

c—s+M Mes
If N, D and M satisfy the conditions
NM?9™* > C1(g)D° deg, A (56)

M = Ci(9)D

then, from (53) and (54), we exclude the cases B = 0 and T ¢ W,. It
follows that T C W,. Moreover we can suppose §(S + B/B) = 1, this
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implies that S is a subgroup of B therefore the period -y is an element of the
tangent space T. In this case by (55) and (52) we deduce

c

Mc——s

deg, B < C(Q) deg, A, (57)

The conditions (47), (56) are compatible. They are satisfied if we choose IV
depending only on g, and D and M to be the integer parts of

D* = Cp(g)(deg, A) 'max 1, hdr®=", d(r log(rd =
c

M* = Cr(g)(dege A)'max (1, hdr?, d(rlog(rd))* ).

where d = [K : Q)], h := max(1, h(A),logdeg; A, h(W)), r := max(1, []7]|Z,),
s the codimension of W and Cp(g) and Cj(g) constants depending only on
g. Substituting those values in (57) we deduce the Subvariety Theorem 2.
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6 Bounded Degree for Elliptic Isogenies

6.1 Preliminaries

Masser and Wiistholz proved in [20] that, given two isogenous elliptic curves
E and E* defined over a number field K, there exists an isogeny from E to E*
with degree bounded by ¢(d)-max(1, h(E))* Here ¢(d) is a constant depend-
ing only on the degree d of the field K and h(FE) is the “naive” height, i.e. the
height of the Weierstrass equation defining the elliptic curve. In this chapter
we use the Subvariety Theorem 2 in order to improve this results in a quan-
titative respect and to make explicit in d the constant c¢(d). We need some
geometric trick in order to improve the bound to c-d? max(1, h(E), log d)? for
elliptic curves with complex multiplication and to ¢ - d?> max(1, h(E),logd)?
for elliptic curves without complex multiplication. Here h(E) is the Faltings
height of E. Faltings and néive height are equivalent (see (64)).

Since now on we fix an embedding ¢ : K — C and we identify E (resp. E*)
with E, (resp. E¥).

6.1.1 The Isogeny Lemma

From the “Isogeny Lemma” we learn how a non-split abelian subvariety of a
product variety gives rise to an isogeny. The degree of this isogeny is bounded
in terms of the degree of the subvariety. This theorem is the link between
the Subvariety Theorem and Theorems 6 and 7.

One says that a connected algebraic subgroup H of a product group E™ x
E*™2 is split if it has the form H = H; x H, for algebraic subgroup H; of
E™ and H, of E*™2.

Theorem 5 (Isogeny Lemma [20]) For positive integers ny and ny suppose
E™ x E*™ has a non-split connected algebraic subgroup of dimension d and
degree A. Then there is an isogeny between E and E* of degree at most
324A2,

Using the Subvariety Theorem we construct an abelian subvariety B of A :=
E™ x E*™2 The degree of B is bounded in terms of the height of A, of the
height of a given subspace W C T}, , and of the norm of a non trivial period
v € W of A. If we can give good bounds for A(W) and ||y|| then we can
obtain interesting results on the degree of a minimal isogeny between the
elliptic curves E and E*.
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6.1.2 The Successive Minima

Let E be an elliptic curve defined over a number field K. Let £ be a sym-
metric ample line bundle on E that gives principal polarization, for example
L(0g).

The exponential map of the elliptic curve E defines the exact sequence

0 A Ty —25 F 0

where Tg is the tangent space of E at zero and A the kernel of exp.

We endow the tangent space T with the metric induced by £, (see 3.1). We
denote the successive minima of the Euclidean lattice (A, || - ||75) by A1, Ae.
We fix elements w;, wy € A; such that

We call w; and wy the minimal periods of E;. We remark that in dimension
two the minimal periods are an integral basis for the lattice A. Indeed if
w € A then w = qu; + quwo with ¢; € Q, without loss of generality we
can assume that —1/2 < ¢; < 1/2 and that (wi,ws) < 0. If g2 = 0 we
have ||w|| < 1/2||w;|| contradicting the minimality of w;. If g2 # 0 Then
llwl|] < 1/2(]Jwr]|* + |wa|[*)*/? < ||wz]| contradicting the minimality of w,.

6.1.3 The Injectivity Radius

The radius of injectivity of £ with respect to the metric on T induced by a
symmetric ample line bundle £ (see 3.1) is the largest real number p(E, L)
such that the restriction of the exponential map to the open ball with center
in zero and radius p(F, £) is a homeomorphism. Then

p(B,£) = S el

Indeed it is clear that p(E, £) < 3||wi||. Let’s now prove that the exponential
map is a homeomorphism when restricted to the open ball B(0, 3||w:]|). Sup-
pose that there exist z; and zy € B(0, 1||wi]]) such that exp(z1) = exp(z2),
i.e. such that z; — 2o is an element w of the lattice A;. Recall that w, is the
minimal period of E and ||z; — 22| < ||w:]|; this gives a contradiction. By
definition B(0, p(E, L)) < x(E, L) and therefore

ln]| < 772 X(E, £)7. (59)
In the case of a principal polarization we get

llwr || < 72 (60)

%)




6.1.4 The Product Variety and its Model
Let E and E* be elliptic curves defined over a number field K. We choose
symmetric ample line bundles £; on F and £, on E* that give principal
polarizations. We denote by p; the natural projection on the i-th factor. We
consider on E x E* the symmetric ample line bundle £ := pj £, ®p5L,. From
the Kiinneth formula, £ is a principal polarization for ' x E*.
We denote by Ty g~ the tangent space of E x E* at zero and we recall that
Texp = Tg %X Tg«. We define on Tgyg- the metric induced by L. Since the
first Chern class of the tensor product is the sum of the first Chern-classes
we have that for any v = (v1,7) with v € Tr and 7, € T+ the following
relation holds

M2 = 1nllZ, + llellz,- (61)

We denote by (£,,£1) (respectively (£*,m,£2) ) a MB-model for (E, L)
(respectively (E*, L;)), (see 3.2). We indicate by T¢ ( respectively Zg« ) the
corresponding tangent bundles and since the MB-model commutes with the
product we have Tgygr = Tg X Tgx.

6.1.5 The Height of a Subspace

Any subspaces W of the Lie-algebra Lie(A) of an abelian variety defines a
hermitian Og-module W := T4 N W endowed with the norm induced by L.
We define the height of the subspace W as

h(W) := —deg, W.

6.1.6 The Faltings Height

We recall that the Faltings height is defined as h(E) := &En Qg/s where Qg/s
is the sheaf of relative differentials of £ with respect to S = Spec Ok (see

18). From the definition we deduce that h(Ex E*) = —E{%n N (T & Te) =
—Ee\gn (Tg ® Tg+) and from property 1 we have h(E x E*) = —Ee%n Tg —
aégn T g+ Since F is a curve its canonical bundle is the dual of 7+, the same
holds for E* and so

h(E x E*) = h(E) + h(E®).

In [36] prop 2.1 we can read how the Faltings height of an elliptic curve is
related to the imaginary part of 7 := wy /w1, namely

Im(7) < ¢-max(1, h(E)) (62)
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with ¢ an absolute constant. This constant can be explicitly computed after
using the estimates Im(7) < (27)~!log(|5(7)| + 1193) (see [8] p.187) and the
estimates in [36] prop. 1.1, ex. p. 256 and 2.(11). We deduce

Im(7) < 771(120 + 24.3 max(1, h(E))

< 7*max(1, h(E)). (63)

We denote by hy(E) the niive height of the curve E. From [36] proposition

2.1 we have
hn(E) = 6h(E) + O(1 + log(1 + h(E))). (64)

6.2 Technical Results

We now report [20] lem. 4.1 because we need the relation appearing in the
proof in order to prove lemma 10. We will use lemma 10 to estimate the
height of a sub-bundle, (see 6.3).

Let E and E* be elliptic curves defined over K and ¢ : E — E* an isogeny.
The corresponding differential map on the tangent spaces satisfies dpA C A*.
Let wi, wy, (respectively w}, w}) minimal basis of A (respectively A*), (see
6.1.2). Then there are integers m;; such that

dp(wr) = mywi + mpws, dp(ws) = mawi + maogws (65)

and
deg ¢ = det(m;;) = N.

We set the following notations 7 := wq/wy and 7 := w} /wi; y := Im(7) and
y* = Im(7%).
Lemma 9 [20] lem. 4.1 With the above notations, we have

fmij] <20 N3 (yy")2.
Proof  The differential map on the tangent spaces is the multiplication by
a number a. The above relations yield

;= Mo1 + MooT (66)

mip + myaT*

and by taking imaginary parts we deduce
y = (Mmumaz — miamar)y*may + mua7*| 2.

Hence
Imiy + myr** = Ny* [y (67)
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where 7 = x 4+ iy and 7" = z* 4 wy*.
Using this last relation we get

|may + 771127"*,2 = (mpx* + mn)2 + (m12y*)2 = Ny*/y

which implies .
Imaz| < (N/yy")? (68)

and .
Imai| < fmiz®| + (jmaay*|* + Ny*/y)2.

This two inequalities, together with |s| < %, give

fmar] < 3(Ny" /)% (69)
From (66) we get

ot + maam*|? = |72 |may + mu7™ .
Since |z| < § and |y| > ‘—2@, we see that |7| < 2y* and it follows by (67)
Imar + mao*|? < ANyy*.

We play the same game as before to get

mas| < 4(Ny/y)? (70)

and

[SIE
—~
-
—_
~—

Lemma 10 In the above notations we have
Imi;| < 21N. (72)

Proof  First we give the proof in the case m;; # 0 for every i, j. We know
that N = my1may — myame;. Since any |m;;| is bigger or equal than 1 it
follows that

Ima| < N+ |[migma |

Imaz| < N + |miama |
Ima1| < N + |myimaal.

From relations (68), (69), (70) and (71) we deduce the claim.
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We remark that dyw;, dpw, are a minimal basis for dpA, in fact the differ-
ential is a linear transformation between 1-dimensional vector spaces.

Let us now suppose that one of m;; is zero.

If mo; = 0 then myimgae = N and so |mqy|, |mo| < N. We already know

from (68) that
4

mia| < SV, (73)
If mgy = 0 then N = myomo; thus |misl, |mai| < N. Since dyw:, dpw; are a
minimal basis, we have that |my w} +miaw}| < |mowi|. Dividing by |w]| we
deduce (miox* +my1)? + (M12y*)? < (ma1)?, which implies y* < |mar]/|mial.
Using (69) we get |mq;| < 3N.
If m;; = 0 then |mg| < N. From relation (67) we deduce (;"—,)% < Ns.
Using (70) we get |mos| < 4N.
If mys = 0 then |myq], |mae| < N. Weshall prove that |mg;| < %|m11| + M.
We consider the element w := dp(ws + jw;) with j = £1. The norm of w is
given by

|wI* = Jwi*((ma1 + jmas + magz™)? + (maay™)?).

On the other hand we have
|dipuwn|? < fwi [*((ma1 + maoz*)? + (maay™)?).

We have already remarked that dp preserves the inequality of norms, the
fact that |ws + jwi| > |ws| implies that

|dpws|? < |w|?
or
(mo1 + Maex*)? < (Magy + jmyy + Maax*)?.

choosing j so that jmyi(ma; +maoex*) is negative, we deduce that the relation
|m21| < (lmlll + lmggl)/Z must hold. [l

6.3 The Height of a Sub-Bundle of the Tangent Bundle

The main idea to compute the height of a subspace W of the tangent space
Tyt x Ti2 is to define W as the image of o x Tg/f under an injective
morphism of bounded norm and to apply property 6. The next property will
be useful to bound the norm of a linear operator. However this property
implies that the metric induced by L, is controlled by £ independently of o.
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Proposition 1 Let E be an elliptic curve defined over K and L an ample
symmetric line bundle. Then for every embedding o : K — C we have

: o XEL
||w1,a||£,a ~ 7?max(1,h(E))

with wy, the minimal period of E,.

Proof  The translation invariant representative of the first Chern class of
L, is an alternating form R, (71,72) which takes integer values on A, x A,.
Let H,(z1,22) := R,(iz1, 22) + 1R, (21, 22) be the associated hermitian metric
on Tk, which is by definition the metric induced by L., (see 3.1).

Let wy, wo be a Z-basis for A, such that R,(wq,w;) > 0. If we take a matrix
representation of R, (7y1,7y2) with respect to this basis we get

R _ 0 Rd(w2)w1)
7\ =R, (wa,wy) 0

and
X(anca) = Ra(w2awl)- (74)

We want to calculate
le”%,a = R, (iwr,wr).
Let wy = z1+iy; and wy = x9+1iy,. In order to use the matrix representation

R, we must express iw; as a linear combination of the basis w;, ws, 1.e.
iw; = AMwi + Agws. This gives the relations

1 = Ay + Ay
—y1 = \Z1 + A

which imply
PV et
L1Y2 — Y122

Since R, is alternating R,(Aw; + Aowa, wy) = ARy (w2, wr).
Choose the isomorphism of Tr with C such that w; = 1 and w, belongs to
the upper half plane. We deduce
2 1
||W1||c,a = — Ry (wy, w1).
Y2

Using the relations (74) and (62) we conclude the proof. O
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Corollary 2 Let E be an elliptic curve defined over K and L an ample
symmetric line bundle. Then for every embedding o : K — C we have

lwaol[Z,e < 14*x(E, L)max(1, h(E))
with we , the biggest period of a minimal basis of E,.

Proof

We have proven in paragraph 6.1 that ||wi|lz. = A and |jwal|lze = Ao
with X; , the minimal successive of A,.

From Minkowski’s second Theorem ( see [6] VIII.4.3.) we deduce

”leﬁ,GHU‘)?HE,U < 4X(E7 ‘C)

Using the lower bound of proposition 1 we deduce the corollary. O

Now we are going to estimate the height of a subspace W of a tangent space
ET x E5*.

Lemma 11 Letl: Tg' — Tg? be a linear map defined over K and let 'y be
the graph of [. Then

h(Iy) < ni(h(E) +

> log(1 + [[I]l,))- (75)

o:K—C

1
(K : Q]

Proof

The metric on Tgn x g2 is the one induced by £ = (piL)™ ® (p5L2)™ and
on the subspaces we consider the restriction metric, (see 1.2.4). The height
of a subspace W (see 6.1.5) is defined as

WW) = —deg, W.

The linear map L :=id®!: Tp' — Tg' x Tg: is injective because it is the
identity on the first factor and L( Tj"') =I.
Applying property 6 we get

Too M o T Fmny 1 n
deg, Ty < deg, L(TF) + g 2 Jos 1 A™ (Dllo- - (76)

We recall that || A" L|| < ||L]|". By the definition of L we deduce that
I A™ Lily < (L [12) 7 < (L4 [1Ul)™.

Since E is a curve, its canonical bundle is the dual of 7. Thus h(E) =
—deg,, T. Moreover d/e\gn Ty = nld/egn T (see property 1) and the propo-
sition follows.

O

We deduce two corollaries that we need in the proof of Theorems 6 and 7.
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Corollary 3 Let ¢ : E — E* be an isogeny between elliptic curves defined
over K. Let dp : Tp — Tg+ be the differential map on the tangent spaces.
For any integer m let m : Ty — Tg be the multiplication by m. We consider
the subspace image Im(m @ dy). Then

h(Im(m & dy)) < h(E) +log (142 max(m, h(E)/* degp)) . (77)

Proof  The map m is injective hence the map m @ dyp is injective, too.
From lemma 11 relation (76) we deduce

h(Im(m & di)) < h(E) + > log(llm @ dell,)- (78)

1
[K : Q] g K—-C
Since ||m @ dy|l, = (m? + ||de||>)"/? < m + ||dy||, it remains to estimate
[ldo||,. First we want to find a lower bound for ||d¢||, with ¢ the dual
isogeny of ¢. Since di is a linear operator on a 1 dimensional vector space
its norm is given by 122@lle for any 2 € T We recall that from (60) we get

lllo
||lwt||lo < 72 and from proposition 1 we have [|wi||2 > 1/7?max(1, h(E)).
We have chosen minimal bases and dpA* C A hence

. L
_ |ldd(wi)llo > wr ||o > T2 (79)

1|, = 1e@Dllo  Tlnlls 5
o=l 2 il = 72 ma(L h(E))}

Let N be the degree of ¢, we know that ||dp||,||dé||s = N. Using the lower
bound (79) for ||dp||, we get

D=

l|d||s < T*max(1,h(E))2N. (80)

We can conclude that

[T(m + lldells) < (14) max(m, h2 (E) deg @)

(o4

d

Substituting this in the formula (78), we deduce the result.
O

Let ¢ : E — E* be an isogeny between elliptic curves defined over K. Let
dp : Ty — Tg- be the corresponding differential map and let dy(w;) =
muwi + miws and dp(wy) = ma1wi + moaws (see (65)).

Let M := (my;); =12 be the associated matrix. We consider M as a linear
map M : Tgs X T« — Tp» X Tpx. We consider the composition map

l=dp ' xdp oM :Tg xTge — Tg x Tg (81)
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Corollary 4 Let ¢ : E — E* be an isogeny between elliptic curves defined
over K. Let 1 be the composition map defined in (81) and I'y its graph. Then

h(I) < 2 (h(E) +log (2 3273 max(1, h(E*))? deg cp)) . (82)
Proof
From lemma 11 we deduce
hW) < 2(h(E) + g 3 loa(L+ L)) (83)
’ o K—C

Then it is enough to estimate (1 + ||I||,).
We remark that ||l||, = 2||de||;!||M]||,. By the estimate (79) for ¢ we get

el < ™27 max(1, h(E"))*. (84)
Since ||27 + 23]|2 < 3||27][% + ||23]]2 it follows
1Ml < Bmax(jmy)).
By lemma 10 we deduce

M|, < 63deg e i=1,2
We conclude that

[1G+ 1) < (2- 377 deg )" max(1, h(E*))*

(o4

that implies (82). O

6.4 Bounded Degree for the Minimal Isogeny

We want to see how to estimates the degree of a minimal isogeny between
elliptic curves using our Subvariety Theorem. We consider separately the
complex multiplication case and the non complex multiplication case.

Remark 3 If ¢ is an isogeny between two elliptic curves both defined over
a number field K, then the isogeny ¢ is defined over an extension of K of
relative degree at most 12, (see [20] lem. 6.1).

First we want to relate the height of two isogenous elliptic curves. This is a
result which we will use in both cases.
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Lemma 12 Let E and E* be elliptic curves defined over a number field K.
Let ¢ : E — E* be an isogeny. Then

h(E*) < 2h(E) +log N (85)
with N the degree of .

Proof

Let L be the field of definition of ¢ and let d its degree. We know from
remark 3 that L is an extension of K of relative degree at most 12. Moreover
[L.._clldells - |ldd]ls = N Thus one of the following relations holds:

[T l1delle < N% (86)

or

[T 1dll. < N2 (87)

We consider the restriction of the injective map dy : 7, — g, of hermitian
Or-modules, (see 6.1.5). From 2.1.2 we know that the normalized degree is
invariant under finite extensions of scalars. We apply property 6, relation
(10) to get

—_— —_— 1
deg, T < deg, T~ + - log H llde|lo (88)
If (86) holds then we deduce

1
h(E*) < W(E) + 5 log N.

If (87) holds, from relation (79) we get [], [|d@|l, > (7/7* max(1, h(E)))¥/2.
This implies immediately ], ||d¢||, < (72N)%max(1, h(E))¥2. Substituting
in (88) we have

h(E*) < (1+¢)h(E) +log N.

For a more precise estimate see [9] 4.3.1, one has
1
h(E™) < h(E) + 3 log N. (89)
We gave here this easy proof to show how the Arakelov theory can simplify

things.
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6.4.1 The Complex Multiplication Case

We say that an isogeny is cyclic if its kernel is a cyclic group.

Lemma 13 Let ¢ : E — E* be an isogeny. We consider the corresponding
differential map dp on the tangent spaces whose Betti-representation on the
lattices gives

d(p(wl) = mnwi‘ -+ mlgw;’, d(p((x)g) = mmw}‘ + mggw;. (90)

The greatest common divisor of all my; fori,j = 1,2 is one if and only if the
1sogeny ¢ 1s cyclic. Moreover if ¢ is minimal then it is cyclic.

Proof If we suppose that ker ¢ is non cyclic then it must contain a product
of two cyclic groups of order p, for a certain prime p. In particular ker ¢
contains the kernel of the multiplication by p. Therefore all m;; are divisible
by p. This contradicts the assumption and proves that ¢ is cyclic. Vice versa
if p|m; for all 4,7 = 1,2 then ¢ factors trough the multiplication by p thus
its kernel contains a copy of Z, x Z, which is not cyclic.

Suppose now that ¢ is minimal. If it is not cyclic then, as we have just seen,
there exists a positive number p such that p|m;; for all 4, j = 1, 2. Therefore
©/p is also an isogeny. This contradicts the minimality of ¢ and proves the
lemma. |

Definition 13 We say that the isogeny ¢ : E — E* is lower triangular if
the corresponding Betti-representation has the following form:

dgo(wl) = muwf

dp(wy) = mawy + Magws
Theorem 6 Let E and E* be isogenous elliptic curves defined over a number

field K. We suppose that E or E* have complex multiplication.
Then there exist an isogeny ¢ : E — E* such that

deg p < Cd? max(1, h(E),logd)?

with d := [K : Q] the degree of the field K, C an absolute constant and h(E)
the Faltings height of E.

Proof

Since E and E* have complex multiplication the module Hom(E, E*) =
Z + o is a free Z-module of rank 2. Let ¢ : E — E* be a minimal isogeny,

65




the isogenies ¢ and ¢’ := ay are Q-linear independent. The corresponding
differential maps dp and d¢’ on the tangent spaces satisfy

dp(A) C A”
and
dy'(A) C A
These inclusions can be expressed in the form
dp(wy) = mywi + miawy, dp(we) = Mogw] + Maows (91)
and
dg'(wn) = mywi + mppws,  de'(ws) = mywi + moyw;. (92)

We want to proof that there exists a lower triangular isogeny ¢ € Hom(E, E*).
If my3 = 0, then ¢ is lower triangular thus we can set ¢ = ¢.
If mip # 0, we consider the linear combination

¢ 1= mypp + miay.
From the relations (91) and (92) it follows

do(wy) = Mywj
dp(wz) = Myw] + Maw;

where My, := (m/ymq; — miamf,). Since ¢ and ¢’ are Q-linear independent
and mis # 0, then ¢ is non-trivial. If p|M;; for 4,7 = 1,2 then ¢/p is an
isogeny as well, we can then suppose that the M,; have no common factors.
We consider the linear map

My xdo
—_— 5

TE TE X TE*

where M, : Tg — Tg is the multiplication by M;;.

We define the subspace W to be the image of M;; X d¢. The differential map
d¢ and so W are defined over K’, with K’ the field of definition of ¢. From
remark 3 we have [K': K| < 12.

Note that v := (w;,w}) is an element of the vector space W. In fact (My; x
dp) (M twy) = (wr, dp(M1, 7 wy)) = (w1, w?) is an element of W.

We consider on the product variety A = E x E* the line bundle £ := pi£; ®
p3Ls and on the tangent space at zero the metric induced by £ (see 6.1.4).

We are now in the condition to apply the Subvariety Theorem where the
abelian variety A, the line bundle £, the space W and the period v := (wy,w})
are the ones described above. The Theorem ensures the existence of an
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abelian subvariety B non-trivial and different from A (i.e. dimB = 1), such
that Ts C W (in this case Tp = W) and

deg, B < C) max(deg, A, hrd, rdlog(rd))) (93)

with A := max(1, h(A),logdeg, A, h(W)) and r := max(1,]|]y||*). We have
assumed principal polarizations so the Riemann-Roch formula (12) gives
deg, A = 2. We want to bound the height of W and the norm of v in
order to estimate the maximum appearing in (93) with the height of E.
Corollary 3 gives

h(W) < h(E) + log (142 max (Mll, h3(E) deg ¢)) .
Since N := deg ¢ = Mj; - Moy we see that
h(W) < h(E) + log (142N max(1, h(E))%) . (94)

Now we have to bound the norm of the period 7. From (60) we know that
lwi||2, < 77! and |jwf|Z, < 7. The norm induced by L (see 61) gives

Mz = llwrllz, + Nwillz, <2777 (95)

Substituting the estimates (94) and (95) in (93) and using h(A) = h(E) +
h(E*) we get

deg, B < Codmax(1,h(E) + h(E*) +log N,logd). (96)
From lemma 12 we deduce
deg, B < Cidmax(1, h(E) + log N,log d).

We remark that B is non-split because T = (wy,w;) - C.

If $ = ¢ we apply the “Isogenies Lemma” of Masser-Wiistholz (see 6.1-1)
and we find an isogeny of degree N; < Cd? max(1, h(E) + log N,logd)?. We
assumed that ¢ is minimal then

deg p < Cyd? max(1, h(E),logd)*.

If ¢ # ¢ we consider the intersections BN 0g x E* and BN E; x 0p«. Since
B is non-split these intersections are finite. By lemma 13 we know that
¢ is cyclic. Thus there exists an element w* € A* whose class generates
A*/dpA. Then P = exp(ddp~! My w*,w*) is a point of BN Ey x 0~ of exact
order Ms;. On the other hand, any element v* € A* is equivalent to fw*
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modulo dgA thus the point P generates the whole intersection. It follows
that (BN E X 0+ ) = My, Since deg E X 0g- = 3, by Bézout Theorem and
relation (96) we have

My, < Csdmax(1, h(E) + log N, log d).

The dual isogeny & is cyclic as well. Thus the group dopA/NA* is generated
by an element w of exact order N. By isomorphism the group (d¢A/N)/A*
is generated by w/N. It follows that @ = exp(w,d¢w/Mi1) is a point of
BNO0g x E* and has exact order M;;. On the other hand, for any v € A, the
element d¢y is equivalent to tw modulo NA*. Thus the point () generates
the whole intersection. We conclude that §(B N0g x E*) = M;;. Then, by
Bézout Theorem and relation (96), we have

My < Csdmax(1,h(E) +log N,logd).

Since the isogeny ¢ is lower triangular we have N = deg¢ = My - May, we
deduce
N < Ced? max(1, h(E) + log N, log d)*

whence
N < Crd* max(1, h(E),log d)*.

By the minimality of ¢ we deduce
deg ¢ < Crd? max(1, h(E),logd)?

which conclude the proof.
0

Remark:
The proof of Theorem 6 works also in the case of two elliptic curves without
complex multiplication related by a lower triangular isogeny.

6.4.2 The Non-Complex Multiplication Case

Let E and E* be isogenous elliptic curves defined over a number field K.
Let ¢ : E — E* be a minimal isogeny of degree N. Let exp be the usual
exponential map from Tz x The — E? x E*?. We consider independent
complex variables z;, 29, 2], 25 and define the subspace

W= dpz; = m11zi+m1225; (97)
dpzy = mg12] + Maz;

corresponding to (65).
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Lemma 14 The intersection of exp(W) with 0g2 x E*? is a cyclic group of
cardinality N = deg ¢.

Proof  Let J be the intersection. Since ¢ is a minimal isogeny, by lemma
13, it follows that ¢ is cyclic. This means that the quotient group A*/dpA is
isomorphic to Z/NZ. Let w* € A* be any representative of a class generating
A*/dpA. Then J is the set of points

exp ((mllal + m1,2a2)d<p_1w*, (my1a1 + ml,zag)dgo—lw*, alw*,agw*)

where a; and a, varies in Z. Since w* has exact order N the group Zdp~w* x
Zdp~'w*modA x A is isomorphic to Z/NZ x Z/NZ.
We consider the following commutative diagram

M

0 Z X Z Z X 7 cokerM — 0
[N [N lN

0 7x 7. M ZxZ coker M — 0
- N

kerM—Z/NZ x Z/NZ -2~ Z/NZ x Z/NZ — cokerM — 0

where M is the linear map induced by the matrix (Z;i zg), N is the multi-
plication by N = det M and rows and columns are exact. In this notations we
have J =2 myoM(ZxZ). Since ¢ is cyclic cokerM = Z/NZ, so the multiplica-
tion by N is the zero map. In view of the Snake-Lemma we have a long exact

sequence of kernels and cokernels. It follows at once that ker M = Z/NZ and
cokerM = 7,/NZ. Therefore J & (Z/NZ x Z/NZ) /Z/NZ which in turn is
isomorphic to Z/NZ.

For this last isomorphism let | : Z/NZ — Z/NZXZ/NZ,1 — (A1, Az) be the
inclusion of ker M. Since ker M is cyclic of order N then A;and Ay must be
coprime numbers thus there exist integers /; and [ such that A\jl; + Agly = 1.
We consider the commutative diagram

0 —>Z/NZ % 7/NZ x Z/NZ "> Z/NZ —

L)

0 —>Z/NZ —>7/NZ x Z/NZ — cokerl —= 0

where L = (:\\; ﬁf) Since det L = 1 the map L is an isomorphism. By the
5-Lemma we conclude that J = coker! = Z/NZ.

O
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Remark 4 Let X C P™ x P™ be an irreducible variety and m the natural
projection on one of the factors P* or P™. If X and w(X) have the same
dimension then degm(X) < deg X. ([20] lemma 2.1).

Theorem 7 Let E and E* be isogenous elliptic curves defined over K. Then
there exists an isogeny ¢ : E — E* such that

deg ¢ < Cd* max(1, h(E),logd)?

where d := [K : Q] is the degree of K, C is an absolute constant and h(E) is
the Faltings height of E.

Proof  We consider the linear map [ : Ty« X Tp« — Tg x Tk given by
(2}, 23) = (dp™ Y (m112] + my223), dp~ (ma2z1 — Ma2ze)) and the abelian va-
riety A= E x E X E* x E*. Let W be the graph of [ in T4, by remark 3,
W is defined over a field extension of K of degree at most 12. Note that the
period 7y := (wy,wq,w;,ws) is an element of the vector space W.

On the product variety A we consider the line bundle £ := piL; @ p2L1 ®
piLo @ piLy and on the tangent bundle the metric induced by L (see 6.1.4).
We are now in the condition to apply the Subvariety Theorem 2 where the
abelian variety A, the line bundle £, the space W and the period 7 are
defined above. The Theorem ensures the existence of an abelian subvariety
B non-trivial and different from A, such that v € Tg C W and

deg, B < C(g) max(deg, A, dhr,drlog(dr)) (98)

with h := max (1, h(A),logdeg, A, h(W;)), r := max(1,]||v||**) and 6 the
dimension of B. We have assumed principal polarizations, so the Riemann-
Roch formula (12) gives deg, A = 4!.

We want to bound the height of W and the norm of 7 in order to estimate
the maximum appearing in (98) with the height of E.

Corollary 4 gives

h(W) < 2 (h(E) +log (2 . 3273 N max(1, h(E*))%)) (99)
where N = deg ¢ and from lemma 12 we deduce
R(W) < 3max (1,h(E) + log N) (100)

Now we have to bound the norm of the period . From the principal po-
larization assumption and relation (60) we know that ||wi||2, < #7! and
|llwil|Z, < m~. Using corollary 2 we have |lws|[%, < 7’max(1,h(E)) and
lw3l|Z, < 7max(1,h(E*)). The norm induced by L (see 61) gives ||v||7 =
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llwnl1Z, + llwal 2, + lwilZ, + llwsl[Z, < 2(r + 7*)max(1, h(E*) + h(E)), and
so by lemma 12 we have

Iil1% < 3 72max(1, h(E) + log N). (101)
Substituting the estimates (100) and (101) in (98) and using h(A) = 2h(E)+
2h(E*) we get
deg, B < Cydmax (1, (W(E) + log N)'*°, (W(E) + log N))’logd). (102)
In relation to the dimension ¢ of B we have to consider two cases.

First case: the dimension of B is 1.
From relation (102) we deduce

deg; B < Cydmax (1, h(E) + log N, logd)”.

We consider the projection map 7 : A — E x E* defined by (P, Py, P}, Py) —
(P, Pt). We remark that the tangent space of B := m(B) is defined over
a finite extension of K. Note that the period ¥ = dn(y) = (w;,w}) is an
element of T thus the dimension of T3 is one. By Lemma 4 we deduce

deg, B < Cydmax (1, h(E) +log N, log d)”.

In view o_f the decomposition Theorem [31] cor 19.1 there exists an isogeny
¢ : E — B of degree at most deg, B. From Lemma 12 we deduce

h(B) < 2h(E) + log(deg, B)

whence 9
h(Tg) < Csdmax (1, h(E) +log N,log d)”. (103)
Moreover, by relation (60), we have that
17:]17 = ll{wr, W) < 277 (104)

Now we can apply, once more, the Subvariety Theorem 2 to the abelian
variety A = E x E*, the subspace T and the period 7. Since the dimension
of T is one we deduce

deg, B < Cymax (deg, A, hrd,rdlog(rd)) (105)

with h := max(1,h(A),logdeg, A, h(T5)) and r := max(1,||v|[*). The
Riemann-Roch formula gives deg, A = 2. Substituting the estimates (103)
and (104) in (105) we deduce that

deg, B < Csdmax(1, h(E) + log N, log d). (106)
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Clearly B is non-split because (wy,w;) € Ts. Applying the “Isogenies
Lemma” of Masser and Wistholz (see 6.1-1) we get the existence of an
isogeny of degree N; < Cd? max(1, h(E) + log N,logd)?. If we suppose that
 is minimal then

deg ¢ < Cgd? max(1, h(E),logd)>.

Case II: If B has dimension 2.
By relation (102) we deduce

deg, B < Crdmax (1, h(E) +log N, logd)".

In this case B = exp(W). By Lemma 14 we know that §(BNOX0x E*xX E*) =
N = deg . The abelian variety 0 x 0 x E* x E* has degree 9, by Bézout
Theorem we deduce that

N < Csdmax (1, h(E) +log N, log d)°.

Which implies
N < Csdmax (1,h(E),logd)".

This conclude the proof. g
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