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IV Zusammenfassung

Zusammenfassung

Genetische Analyse von Merkmalen mit wiederholten,

zeitabhängigen Beobachtungen (Longitudinaldaten), angewandt

auf den Futterverzehr wachsender Schweine

Das Ziel der vorliegenden Dissertation war die Entwicklung emes Random

Regression Modells für die genetische Analyse täglich erhobener

Futterverzehrsdaten wachsender Schweine. Es sollte die Frage geklärt werden, ob

die Futterverzehrskurve wachsender Schweine durch gezielte Selektion derart

verändert werden kann, dass dadurch die Effizienz des Fleischansatzes verbessert

wird. Als Regressionsfunktion für die Analyse des täglichen Futterverzehrs

wurde ein quadratisches Polynom in Abhängigkeit des Testtages verwendet. Für

die Parameterschätzung (Varianzkomponenten) wurde ein Bayes 'scher Ansatz

unter Verwendung von Gibbs Sampling gewählt.

In einer Simulationsstudie wurde der Einfluss von Unterschieden in der

individuellen Mastdauer auf die Schätzung der Varianzkomponenten eines

Random Regression Modells untersucht. Da keine Hinweise auf eine Verzerrung

der Parameterschätzwerte gefunden wurden, wurden anschliessend reale

Futterverzehrsdaten mit ähnlichen Modellen untersucht. Dazu standen uns Daten

von Schweinen der Rassen Large White (LW) und Französische Landrasse (FL)

zur Verfügung, welche mit Hilfe elektronischer Fütterungsautomaten in drei

verschiedenen Mastleistungsprüfstationen in Frankreich erhoben wurden. Die

Testperiode begann für alle Tiere bei einem Lebendgewicht von 30 kg und

endete für die Eber bei 95 kg Lebendgewicht, während die Kastraten bis 100 kg

im Test verblieben und anschliessend geschlachtet wurden. In einer ersten

Analyse wurden für zwei Datensätze (je einer pro Rasse: LW und FL) bestehend

aus Wochenmittelwerten des täglichen Futterverzehrs (hauptsächlich von Ebern)

die Varianzkomponenten für ein Einmerkmals Random Regression Modell

geschätzt. Auf Grund der geschätzten Kovarianzmatrizen wurden Heritabilitäten,
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genetische und phänotypische Korrelationen von Regressionsparametern, sowie

genetische Eigenwerte und Eigenfunktionen berechnet. Anhand genetischer

Eigenfunktionen und der dazugehörigen Eigenwerte lässt sich für die untersuchte

Population eine Aussage über die genetische Variation des Futterverzehrs im

Verlauf der Wachstumsperiode machen. In einer zweiten Analyse wurden

sowohl Wochenmittelwerte des täglichen Futterverzehrs, als auch die vier

einzeln gemessenen Merkmale durchschnittliche Tageszunahme,

Futterverwertung, Magerfleischanteil und Fleischqualitätsindex von Kastraten

der Rasse Large White einbezogen. Das Random Regression Modell für den

täglichen Futterverzehr wurde mit einem konventionellen Mehrmerkmals

Tiermodell kombiniert, um einfach und wiederholt gemessene Merkmale

gememsam auszuwerten. Mit dieser Methode erhielten wir Schätzwerte für

genetische und phänotypische Korrelationen zwischen einfach gemessenen

Leistungsmerkmalen und Random Regression Parametern SOWIe

Wochenmittelwerten des täglichen Futterverzehrs.

Die geschätzten Heritabilitäten der Regressionsparameter sowie die genetischen

Eigenfunktionen weisen darauf hin, dass es sehr schwierig sein wird, den Verlauf

der Futterverzehrskurven durch Selektion zu verändern. Dieser Eindruck wird

durch die während der gesamten Wachstumsperiode annähernd konstanten

Korrelationen zwischen dem täglichen Futterverzehr und den einzeln

gemessenen Leistungsmerkmalen zusätzlich verstärkt. Die beste Möglichkeit zur

Steigerung des Futterverzehrs zu Beginn der Wachstumsperiode scheint die

Selektion für einen höheren y-Achsenabschnitt (erster Term des quadratischen

Polynoms) der Futterverzehrskurve zu bieten. Die Vorteile eines solchen

Selektionsschemas gegenüber der Selektion für durchschnittlichen Futterverzehr

sind wegen der unvorteilhaften Korrelation zwischen y-Achsenabschnitt und

Magerfleischanteil jedoch gering.
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Aus der vorliegenden Arbeit können folgende Schlussfolgerungen gezogen

werden:

Random Regression Modelle in Form quadratischer Polynome sind

kombiniert mit der Berechnung genetischer Eigenfunktionen und der

dazugehörigen Eigenwerte em geeignetes Werkzeug zur Analyse

longitudinaler Daten und zur Abschätzung der in einer Population entlang

eines (Zeit-)Verlaufes vorhandenen genetischen Variation.

Gibbs Sampling für Random Regression Modelle ist wegen der hohen

Autokorrelationen zwischen aufeinanderfolgenden Gibbs SampIes und der

dadurch bedingten hohen Anzahl Iterationsrunden sehr rechenintensiv.

Es wird sehr schwierig sein, die Futterverzehrskurve wachsender Schweine

durch gezielte Selektion derart zu verändern, dass dadurch die Effizienz des

Fleischansatzes verbessert wird.
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Summary

Genetic evaluation for traits with repeated time-dependent

observations (longitudinal data), with an application to feed

intake of pigs

The purpose of this thesis was to develop a random regression model for the

genetic evaluation of daily feed intake data of growing pigs. The objective was to

investigate whether it is possible to change the average feed intake curve by

selection to improve efficiency of lean growth. A quadratic polynomial in days

on test was chosen as a regression function for the analysis of weekly means of

daily feed intake. Bayesian methodology using Gibbs sampling was applied for

the estimation of (co)variance components.

In a simulation study, concerns about the validity of a random regression model

using quadratic polynomials in days on test in a situation with different length of

testing periods were investigated. As no evidence of bias in estimates of

(co)variance components was found, similar models were then used to analyse

real feed intake data. Daily feed intake data recorded in French central testing

stations by means of electronic feed dispensers on group housed French Landrace

(FL) and Large White (LW) growing pigs was available for this study. Boars

were performance tested between 30 and 95 kg live body weight, while castrated

males were on test until they were slaughtered at a live body weight of 100 kg. In

a first analysis (co)variance components of a single trait random regression

model were estimated for two data sets (one per breed: FL and LW) containing

weekly means of daily feed intake (mainly from boars). Heritabilities, genetic

and phenotypic correlations of regression parameters were ca1culated from

estimated covariance matrices, as weIl as genetic eigenvalues and -functions.

Genetic eigenfunctions together with their associated eigenvalues give an

indication of the amount of genetic variation of feed intake available in a

population during the growing period. In a second analysis weekly means of
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daily feed intake and the four single measured traits average daily gain on test,

feed conversion ratio, carcass lean content and meat quality index of

performance tested castrated male Large White pigs were analysed jointly. For

this purpose the random regression model for weekly means of daily feed intake

was combined with a conventional multiple trait animal model for a joint

analysis. This resulted in estimates of genetic and phenotypic correlations

between single measured performance traits and random regression parameters as

weIl as weekly means of daily feed intake.

Heritabilities of regression parameters for daily feed intake and genetic

eigenfunctions indicate that it will be very difficult to change the shape of

average feed intake curves by selection. This impression is supported by

correlations between daily feed intake and single measured performance traits,

which are almost constant throughout the entire testing period. The best way to

improve daily feed intake in the beginning of the testing period might be to select

for a higher intercept parameter of feed intake curves. But advantages of such a

selection scheme compared to selection für average daily feed intake are limited

due to the unfavourable genetic correlation of the intercept parameter with

carcass lean content.

The foIlowing conclusions can be drawn from this thesis:

Polynomial random regression models in combination with calculation of

eigenfunctions and their associated eigenvalues are a useful tool to analyse

longitudinal data and to assess the amount of (genetic) variation available in a

population along such a trajectory (e.g. feed intake curve).

Gibbs sampling for random regression models is very computer intensive

because a high number of rounds is needed for reliable estimates, due to high

autocorrelations between Gibbs sampies.

Changing the shape of feed intake curves by selection to Improve the

efficiency of lean growth will be very difficult.
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Chapter 1

1. Background

3

Selection of pigs concentrated for many years on improved leanness and feed

efficiency. This was achieved by reducing backfat thickness and by selection for

a lower feed conversion ratio, which is the ratio of total feed intake and live

weight gain during the fattening period. From 1960 to 1990, this selection regime

reduced the percentage of fat in the carcass from 40 % to 20 % and in turn

increased the percentage of lean meat in the carcass from about 40 % to 60 %

[20]. Rather than just redirecting resources from fat deposition into lean

deposition and thus resulting in a higher growth rate, selection for increased

leanness and improved feed conversion under ad libitum feeding has lead to a

decrease of the feed intake capacity (FIC) [18]. This is confirmed by Cole and

Chadd [3], who show that "modern" genotypes of pigs have a lower mean

voluntary feed intake and feed intake increases at a lower rate with body weight

compared to "older" genotypes. The reason for this reduction is the negative

genetic correlation of average daily feed intake with the leanness of the carcass

and feed conversion ratio, as shown by Cameron and Curran [2] in arecent

selection experiment with British Large White and Landrace pigs under an ad

libitum feeding regimen.

In the long run, FIC might become a limiting factor for a further improvement of

the efficiency of lean growth. As optimum levels of backfat thickness are or will

soon be reached, further improvement of feed conversion by reduction of the rate

of fat deposition is limited and thus other routes to improve feed efficiency have

to be found [9, 11, 17].

Based on the relationship between FIC and optimum level of feed intake, which

is realised when lean deposition rate is at its maximum and fat deposition rate at

its minimum for the given lean deposition rate [6], de Vries and Kanis [7]

suggested to divide the growing period of pigs into 3 phases:
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1) early fattening period where FIC of pigs IS determined by mechanical

constraints and FIC is less than the optimum level offeed intake (FI(opt)),

2) intermediate fattening period where FIC is still determined by mechanical

constraints but FIC > FI(opt),

3) late fattening period where FIC is determined by metabolic constraints with

FIC > FI(opt).

Increasing FIC in period 1 to its optimum level should increase growth rate

without affecting the leanness of the carcass, while increasing FIC in periods 2 or

3 would lead to fatter carcasses. Increasing FIC in period 1 while keeping FIC in

periods 2 and 3 constant should lead to animals growing more efficiently. Webb

[18, 19] supports this view and stresses the need of further research on genetic

and environmental effects on the shape of feed intake curves.

Electronic feeders installed in central testing stations allow for the measurement

of individual daily feed intake of performance tested growing pigs housed in

group pens. This form of performance testing presumably reflects the situation in

commercial housing systems for growing fattening pigs better than previously

used individual penning of pigs in performance testing stations. Data from such

electronic feeding stations were first described in a Dutch study [4, 5] and a little

later in French [12, 13] and German [15, 16] studies. In these studies, individual

daily feed intake records were averaged over parts of the testing period and the

resulting traits were evaluated in a multivariate analysis. This approach was also

used in arecent study by Hall et al. [10]. Alternatively, appropriate functions can

be fitted to individual daily feed intake records, and the resulting feed intake

curve parameters for each tested animal can be put in a multivariate analysis, as

recently shown by Eissen [8]. Instead of this two step approach, inferences on

feed intake curve parameters can be drawn directly from daily feed intake records

by means of a random regression model [14]. Andersen and Pedersen [1] used a

random regression model to show differences in feed intake and growth curves

between two sexual types of growing fattening pigs.
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2. Purpose and outline of the thesis
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The purpose of this study is the development of a random regression model for

the genetic evaluation of daily feed intake data of growing pigs (or other traits

with repeated time-dependent observations). Genetic variation in feed intake

curves and the relationship between feed intake curve parameters or feed intake

in different growing periods and carcass traits will be analysed to investigate

possible routes for future improvement of the efficiency of high quality pork

production.

After the general introduction in this first chapter, chapter 2 gives an introduction

to the methodology used in this thesis. The history of the development of random

regressIOn models and covariance functions is reviewed. Development and

principles of Markov chain Monte Carlo methods (Metropolis-Hastings

algorithm, Gibbs sampier) are outlined and the necessary steps to implement the

Gibbs sampier for a random regression model are presented. In chapter 3, a

simulation study investigates the impact of variation of length of individual

testing periods on estimates of (co)variance components of a random regression

model for feed intake of growing pigs. Chapter 4 presents an analysis of feed

intake data from performance tested French Landrace and Large White growing

pigs, focusing on variation in feed intake curves. Chapter 5 gives a multivariate

extension of the model used in chapter 4 and evaluates the relationship between

feed intake curve parameters and other performance traits. Finally, the findings

of the above chapters are summed and discussed in chapter 6.
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Chapter 2

1. Introduction

11

In recent years, random regression models have become very popular among

animal breeders and classical quantitative geneticists for the analysis of

longitudinal data. Possible traits include test day records for milk yield, as weIl as

growth and feed intake of farm animals. Likelihood based inference using

restricted maximum likelihood (REML) has been considered the method of

choice for estimating (co)variance components in mixed linear models [21].

Recently, Bayesian methods of inference on model parameters gained popularity

among quantitative geneticists. They have become feasible even for complicated

models through the availability of numerical integration techniques such as the

Metropolis-Hastings algorithm [19, 35] and its special case, the Gibbs sampIer

[10], two Markov chain Monte Carlo (MCMC) methods.

This chapter reviews the development of random regressIOn models and

covariance functions, as weIl as Bayesian inference using MCMC methods.

Bayesian inference for a random regression model using Gibbs sampling is

discussed in detail.

2. Random regression models and covariance functions

2.1. Analysis of longitudinal data in animal breeding

Random regression models and covariance functions are two independently

developed approaches to analyse longitudinal data, i.e. traits repeatedly measured

along some trajectory, e.g. time. Before covariance functions and random

regression models were introduced into animal breeding, less adequate methods

were used for the analysis of longitudinal data. Repeated measurements of a trait

at different points in time were often aggregated (e.g. sums, averages) within

time periods (or other categories of a continuous covariable) and then analysed

fitting a multivariate model assuming that aggregated measurements of different

time periods are different traits. This results in the need for estimating covariance
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matrices of dimension equal to the number of time periods considered, which

might contain more parameters than necessary to adequately describe the

covariance structure. On the other hand, if very long time periods are chosen (e.g.

a whole lactation), nothing can be said on the development of the trait in time,

i.e. the covariance structure is not reproduced accurately. Simple repeatability

models assurne that differences between repeated measurements on the same

subject (at different points in time) are only due to measurement errors, which

are often assumed independent. A test day model using fixed regressions only

[39], is basically just an extension of this model, as differences between

measurements on a given subject at different points in time are assumed to be

levelled out by the (same) fixed regression function for all measured subjects.

Other (possibly more appropriate) models have been used for the analysis of

repeated measurements in other fields of applied statistics (see e.g. [32]). LitteIl

et al. [33] give a tutorial introduction to parametric modelling of covariance

structure for repeated measures data in a generalised linear mixed model context.

2.2. Random regression models

In 1962, Elston and Grizzle [5] first distinguished population (fixed) and

individual (random) regression coefficients, assuming that each individual

regression coefficient is an independently normally distributed random variable.

In 1982, Henderson Jr. [20] described the concept of random regression

coefficients in a linear mixed model context, mentioning the possibility for non­

null covariances between random regression coefficients. Three months later,

Laird and Ware [31] independently described a general formulation of the linear

model based on Harville [18], which includes growth models as weIl as repeated

measures models as special cases.

In 1994, Schaeffer and Dekkers [42] used the concept of Henderson Jr. [20] to

extend the fixed regression test day model (TDM) previously developed by Ptak

and Schaeffer [39] into a random regression model for the evaluation of test day

production of dairy cows. Andersen and Pedersen [1] used a polynomial random
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regression model to describe cumulated feed intake and weight gain of growing

pigs. They estimated sex-differences in feed intake and growth curves between

gilts and castrated male pigs, as weIl as phenotypic (co)variances among random

regression parameters. In 1997, Jamrozik and Schaeffer [23] and Jamrozik et al.

[24] presented parameter estimates obtained by Gibbs sampling and a genetic

evaluation using a random regression TDM for production traits of dairy cows.

They showed how solutions of their random regression model can be used for

selection by calculating 305-day equivalents or different measures of persistency

from random regression coefficients.

Random regression models are also called random coefficient models and have

found applications in other fields of applied statistics, e.g. in econometrics.

Longford [34] describes random coefficient models and gives various examples

of their application.

2.3. Covariance functions

Covariance functions were introduced in 1989 by Kirkpatrick and Heckman [27]

together with the concept of infinite dimensional characters and their

eigenfunctions. Infinite dimensional characters are traits where the phenotype

and genotype of an individual is described by a function of a continuous

(co)variable (e.g. time, age or environmental conditions), rather than by a finite

set of measurements. Examples of such infinite dimensional characters are

growth, morphological shape and reaction norms [27]. Eigenfunctions of

covariance functions are the infinite dimensional equivalent to eigenvectors of

covariance matrices. Together with their associated eigenvalues they describe the

kind and amount of variation of a trait along some trajectory. In 1990,

Kirkpatrick et al. [29] applied the methods described by Kirkpatrick and

Heckman [27] to growth of mice, using orthogonal Legendre-polynomials to

describe the shape of growth curves. They fitted full and reduced order

covariance functions to the previously estimated additive genetic covariance

matrix between measurements of body weight at different ages. Subsequent
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papers by Gomulkiewiez and Kirkpatrick [16] and Kirkpatrick and Lofsvold [28]

dealt with reaction norms [16] and constraints imposed by missing additive

genetie variation on possible selection responses in the evolution of growth

trajectories [28]. In 1994, Kirkpatrick et al. [30] presented an alternative method

to fit covariance functions to phenotypic and additive genetie covariance

matriees using asymmetrie coeffieients. They applied this method to daily

lactation records of dairy cows and showed how to correct for inflation of

estimates of phenotypic variances due to measurement errors by extrapolating

from covariances to the diagonal. In 1997, Meyer and Hill [37] showed how

covariance functions can be fitted to any source of variation, genetie or

permanent environmental, directly from the data by REML.

Covariance functions are also used in other fields of applied statistics, e.g. spatial

statisties (geostatistics), astrophysies and electrical engineering.

2.4. Recent developments

The equivalence of random regression models and covarlance functions was

shown by Meyer [36] in 1998, when she estimated full and reduced rank

covariance functions directly from the data using REML and a random regression

model. Van der Werf et al. [46] also showed this equivalence, when they

compared the two step approach of Kirkpatrick et al. [29] to fitting covariance

functions directly from the data by REML using a random regression model

transformed to canonieal scale. Since then, many other applications of random

regression models were presented, many of them for test day records of

production traits of dairy cows.

In recent years other approaches were suggested for the analysis of longitudinal

data in animal breeding. White et al. [49] fitted cubic smoothing splines to

lactation curves of dairy cows, whieh is a semiparametric approach as opposed to

the parametrie modelling of the trait in a random regression model. Pletcher and

Geyer [38] developed the so called character process model for the analysis of
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function-valued traits, which uses parametric functions to model the covariance

structure, while the approach of Kirkpatrick and Heckman [27] is nonparametric

(linear combinations of orthogonal polynomials). By the term "function-valued

traits" (or characters) Pletcher and Geyer [38] mean the same as Kirkpatrick and

Heckman [27] with "infinite dimensional traits". Jaffrezic and Pletcher [22]

included a residual variance in the character process model and compared this

approach with orthogonal polynomial covariance functions and random

regression models in their ability to fit different covariance structures.

Which method will be used in future practical animal breeding applications for

the analysis of longitudinal data, williargely depend on the type of data at hand

(covariance structure) and the capability of each method to handle large data sets

and multiple traits [22]. Such practical difficulties Ce.g. limited computing

resources) mayaiso have been one main reason for using simpler but less

appropriate methods for the analysis of repeated measures data in the past.

3. Bayesian inference uSlng Markov chain Monte Carlo

methods

3.1. Bayesian inference

Consider the observed data y and some parameter B of the statistical model

chosen to describe this data. From a Bayesian perspective, there is no

fundamental distinction between observable data and model parameters, both are

considered random variables [15]. The process of Bayesian data analysis starts

by setting up a full probability model, which means specifying the joint

distribution of observed data and unknown model parameters [9]. This joint

distribution p(y, B) can be written in terms of the prior distribution of the

parameter p(B) and the likelihood p(YIB), or equivalently in terms of the posterior

distribution of the parameter given the data p(Bly) and the prior distribution of the

datap(y):
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p(y,8) =p(8)p(y I 8) =p(y)p(8 I y).

Chapter 2

(1)

This is known as Bayes' theorem and yields the formula for the posterior

distribution of the parameter given the data, which is the object of all Bayesian

inference:

p(8 I y) = p(8)p(y I 8) = p(8)p(y I 8)

p(y) fp(8)p(y I8)d8
(2)

Any characteristic of the posterior distribution can be used for Bayesian

inference on the model parameters B. All these characteristics can be expressed in

terms of posterior expectations of functionsj{B) of the parameters [15]:

r.. ] fj(8)p(8)p(y I8)d8
Eu (8) I y =~,.------fp(8)p(y I8)d8

(3)

For most applications, the integrals in (3) can not be evaluated analytically. One

possible alternative is Monte Carlo integration, including Markov chain Monte

Carlo.

The integral in the denominator of (2) and (3) needs not to be known, as the

factor p(y) in (2), which does not depend on B, can be considered a constant if the

data y is fixed, yielding the unnormalised posterior density, which is the right

hand side of (4):

p(8 I y) oe p(8)p(y I 8) (4)

Inferences on the model parameters Bcan also be drawn if the posterior density is

only known up to the normalising constant.

3.2. Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods combine Monte Carlo integration

with cleverly constructed Markov chains to sampie fram the required distribution

7l{.) [15]. Monte Carlo integration evaluates EIfiX)] by drawing sampies {~, t =

1,... , n} fram 7l{.) and then appraximating
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E[jeX)] z! ijext)'
n t=1
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(5)

If the sampies {~} are independent, by laws of large numbers, any desired

accuracy of this approximation can be reached by increasing the sampie size n.

As 7l{.) is often non-standard, drawing independent sampies may not be possible.

In this case, (dependent) sampies can be drawn using a Markov chain with 7l{.) as

its stationary distribution, which is Markov chain Monte Carlo. A Markov chain

is a sequence of random variables {Xo, X], X2, ... }, where at each time t ~ 0, the

next state ~+] only depends on the current state~ and is reached with transition

probability p(~+]1 ~). If the chain is run long enough, it will gradually forget its

initial state and eventually converge to a unique stationary or invariant

distribution. The time required to converge is called the burn-in period. After the

burn-in, the chain will yield dependent sampies from its stationary distribution,

on which inference will be based. The main issue of MCMC is how to construct

a Markov chain (and its transition kerne!) such that its stationary distribution is

precisely our distribution of interest [15].

MCMC is based on the Metropolis-Hastings algorithm [19, 35] and all other

possible ways of constructing these chains, including the Gibbs sampier [10], are

special cases of this algorithm [15]. The Metropolis-Hastings algorithm, as its

name suggests, has been developed by Metropolis et al. [35] in 1953, and was

originally applied to equations of (energy) state of interacting individual

molecules such as liquids. Subsequently, it has been extensively used in

statistical mechanics [19]. In 1970, Hastings [19] presented a generalisation of

the original Metropolis algorithm and showed its potential for applications to

numerical problems arising in statistics. Despite of this, it lasted another twenty

years until it was used in a broader range of statistical applications. Without

reference to Hastings' [19] results, Geman and Geman [10] presented the Gibbs

sampier, an algorithm based on the method of Metropolis et al. [35] for sampling

of Gibbs distributions in Bayesian image restoration. In 1990, Gelfand and Smith
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[6] showed the relationship between the Gibbs sampier and the method of data

augmentation for the calculation of posterior distributions [45] and revealed the

potential of the Gibbs sampier for applications in a wide variety of statistical

models. In the same year, Gelfand et al. [7] illustrated Bayesian inference in

normal data models using Gibbs sampling. These papers generated interest in

Gibbs sampling among many statisticians and helped to spread MCMC methods.

Gelman [8] later showed, that the Gibbs sampier is a special case of the

Metropolis-Hastings algorithm.

In the Metropolis-Hastings algorithm, at time t, the next state )4+1 is chosen by

first sampling a candidate point Y from a proposal distribution q(.IJ4), which is

then accepted with probability a()4, Y) where

a(X Y) = min(l ;r(Y)q(X IY) J
' , ;r(X)q(Y I X)

(6)

If the candidate point is accepted, it becomes the next state of the chain ()4+1= Y),

otherwise the chain does not move ()4+1=)4). The Gibbs sampier is a special case

of the Metropolis-Hastings algorithm where sampies are drawn from full

conditional distributions, which result in an acceptance probability (6) of a=l,

i.e. candidate points are always accepted.

Casella and George [2] give a simple exposition of the Gibbs sampier. A tutorial

introduction to the Metropolis-Hastings algorithm is given by Chib and

Greenberg [3].

3.3. Bayesian inference and MCMC in animal breeding

Bayesian inference in animal breeding theory has been discussed in 1986 by

Gianola and Fernando [12]. In 1990, Gianola and Foulley [13] presented a

method to estimate variance components in a univariate mixed linear model

based on exact or approximate posterior distributions. In 1991, Guo and

Thompson [17] used the Gibbs sampier jointly with the EM-algorithm für

estimating variance component models for large complex pedigrees in human
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genetics. Gilks et al. [14] describe how to use the Gibbs sampier with a random­

effects model for longitudinal data in medicine (long term response to hepatitis B

vaccination). But only after the first applications of the Gibbs sampier in an

animal breeding context were presented in 1993 and 1994 by Wang et al. [47,

48], who estimated variance components for a univariate mixed linear model,

Bayesian inference was considered an alternative to REML for practical

applications. Subsequently, Bayesian inference on variance components using

Gibbs sampling was described by Jensen et al. [25], for a model with direct and

maternal genetic effects, and Sorensen et al. [43], for a threshold model.

Jamrozik and Schaeffer [23] adapted the Gibbs sampling algorithms for the

maternal and direct genetic effects model of Jensen et al. [25] to a random

regression test day model for yield traits of dairy cows. Rekaya et al. [41] use

Bayesian inference and Gibbs sampling to compare different models (multitrait,

repeatability and random regression) for the genetic evaluation of test day

production of dairy cows.

4. Gibbs sampling for a random regression model

4.1. Random regression model

In Matrix notation, a simple random regression model can be written as:

y =Xb+Za+ Wp+E (7)

where y is a vector of n observations along a trajectory (e.g. time); b is a vector

of fixed effects for regression parameters; a and p are vectors containing random

additive genetic and permanent environmental regression coefficients,

respectively; E is a vector of n residuals and X, Z and W are incidence matrices

containing regression covariables for each observation.

Expected value and variance of y are given by:

E(y) =Xb

Var(y) = Z(A (8) Go)Z' + W(I, (8) Po)W' + IoD";
(8)



~---~- ----------------------------------------

20 Chapter 2

where Go and Po are covariance matrices for random additive genetic and

permanent environmental regression coefficients; A is the numerator relationship

matrix between the m animals in the pedigree; I. and In are identity matrices of

dimensions equal to the number of permanent environmental effects (l animals

with records) and total number of records (n), respectively; (5/ is the residual

variance and ® denotes the Kronecker- or direct matrix product (see e.g. Searle

[44]).

The mixed model equations (MME) for this model can be written as:

X'R-1Z

Z'R-1Z + A -1 ®G~l

W'R-1z

where: (9)

Coefficient matrix and right hand side of the MME can be multiplied by the

residual variance and written as:

[

X'x
z'x
W'X

or shorter:

X'z

z'z+ (A-1 ®G~l)o-;

W'Z

x'w 1[6] [X'Y]z'w ä - Z'y
W'w + (11 ® p~l )0-; p W'y

A

CO=r (10)

This works only with a single trait random regression model assuming the same

residual variance for all records throughout the trajectory (independent of time).

4.2. Gibbs sampling

For the implementation of the Gibbs sampier we begin with the specifications of

the distributional assumptions about the data and the model parameters. For

convenience and simplicity of notation we assume in the following derivation

that the same k regressions are fitted for all fixed and random effects.

The conditional distribution of the data is assumed to be normal:
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(11)

As there are no fixed effects in a Bayesian analysis, the prior distribution for

classical "fixed" effects is usually assumed to be proportional to a constant,

reflecting the lack of prior knowledge about their distribution:

b - constant

Conditional distributions of additive genetic and permanent environmental

effects are assumed to be multivariate normal:

al A,G o - N(O,(A ® Go))

p IPo - N(O,(I. ® Po))

Variance parameters in univariate normal models follow scaled inverted chi­

square (Inv-;() distributions [9], which is therefore a natural choice of a (proper)

prior distribution for the residual variance:

where hyperparameters ve and S; denote the prior degrees of freedom and scale

parameter of the scaled inverted chi-square distribution, respectively.

Similarly, k-dimensional inverse Wishart (lW) distributions are assumed for the

(k by k) covariance matrices Go and Po:

Goi VG ' VG - IWk (VG ' VG )

Po IVp,vp - IWk(Vp,vp)

where k is the number of regression covariables (inclusive intercept), VG and Vp

are prior scale matrices and vG and vp are prior degrees of freedom of inverse

Wishart distributions of covariance matrices Go and Po, respectively.

Degrees of freedom chosen for scaled inverted chi-square and inverse Wishart

prior distributions reflect the degree of belief in the prior knowledge about the

true values of (co)variance components. If the true value of a (co)variance

component is known almost certainly (e.g. based on many previous experiments),
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a high number of prior degrees of freedom is chosen. If only litde is known about

the true value apriori, the prior degrees of freedom should be low. Prior

distributions of (co)variance components presented here are proper if the degrees

of freedom are chosen appropriately (i.e. such that the expectation of the density

function is defined and the density integrates to 1). Alternatively, uninformative

(flat) priors could be chosen, which usually are improper. One has to be cautious

when using improper prior distributions and check carefully whether the

resulting posterior distributions are proper, as inferences drawn from improper

posterior distributions are not valid.

Now we can specify the joint posterior distribution of the parameters (omitting

the conditioning on hyperparameters of prior distributions of (co)variance

components and the known numerator relationship matrix):

p(b,a,p,Go'Po,a; Iy)

oe p(y Ib,a,p,Go'Po,a;)p(b,a,p,Go'Po,a;)

oe p(y Ib,a,p,a;)p(a IGo)p(p IPo)p(Go)p(Po)p(a;)

(12)

If we plug in the formulae for normal, inverse Wishart and scaled inverted chi­

square distributions, respectively (one line per factor in the last line of (12), same

order), this yields:

(13)
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where l(a) is the Gamma function:

=

l(a)= ftU-le-tdt, a>O

°
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The Gamma function is found in the formulae of scaled inverted chi-square and

inverse Wishart densities, because the chi-square distribution is a special case of

the Gamma distribution and the Wishart distribution is a multivariate extension

of the chi-square distribution [9].

From here, fully conditional probability densities can be derived for each

parameter by including all terms from (13) that involve the parameter of interest

(all others are assumed known and thus constant with respect to the parameter of

interest).

Using the form of the mixed model equations from (10), the posterior distribution

of the location parameters 9 ("fixed" and random effects), given (co)variance

components and data is given by (e.g. [12,25,48]):

(14)

where {} = e-1r and C and rare given in (10).

Select elements of interest from 9, denote them 91 and reorder (for convenience):

9 = [::] ; r = [::j
As shown e.g. by Wang et al. [48] and Jensen et al. [25], standard multivariate

normal theory yields for the conditional expectation and variance of 91:

E[91192GO'PO,a;,y]=E[91IGo,Po,a;,y]+CI2(C22t'(92 -E[92 IGo,po,a;,y])

- eHr + C12r + C12 (C 22 )-1 (9 _ C21 r _ C22 r )- 1 2 2 1 2

- eHr + C12r + C12 (C 22 )-1 9 _ C12 (e22 )-1 C21 r _ e12r- 1 2 2 1 2 (15)

= (C H- C12 (C 22 t' e 21 )rl + e 12 (e 22 t' 92

= e~:r, - C~:C1292

= e~: (rl - C1292 )
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(16)

From (15) and (16) we get for the full conditional distributions of "fixed" and

random effects:

(17)

The computations involved in (14) correspond to those used für obtaining

solutions of linear systems of equations by the Gauss-Seidel algorithm [25].

Based on this result, we can write the full conditional distributions of "fixed" and

random regression coefficients. The k regressions on each level of "fixed" and

random effects are processed jointly, slightly modifying the calculations of the

(scalar) Gauss-Seidel algorithm. Vectors b, a and P were split into sub-vectors

(bi, ai and Pi) of length k containing the k regression coefficients pertaining to

one particular level of the respective effects.

For the "fixed" effects this yields:

(18)

where Xi is a submatrix of X consisting of the k columns pertaining to the k

regressions on level i of the fixed effect in bi, X-i is the complement of Xi to X

and b_i contains all the elements of b except the k regression coefficients in bio

For random additive genetic regression coefficients, the full conditional

distribution becomes:
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a j Ib,a_pp,Go'Po,a;,y - N(ap(Z;R-1Z j+A~:G~lt)

a j =(Z;R-1Z; + A~:G~1 t

X(Z~R-l -Z~R-IXb-[Z~R-IZ. +A~l. 0G-1Ja . -Z~R-IW J
I Y I I -I I -I 0 -I I P

'------v-----' '
o

a; = (Z;R-1Z j +A~;IG~lt(Z;R-l(y-Xb-Wp)-(A~~j 0G~I)a_J
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(19)

where Zi is a submatrix of Z consisting of the k columns pertaining to the k

regressions of animal i Ci = 1,... , m) in ai, Z_i is the complement of Zi to Z and a-i

contains all the elements of a except the k regression coefficients in ai. A~: is the

diagonal element of the inverse of the numerator relationship matrix A-1

corresponding to animal i, and A~~; is a (row) vector containing all elements of

row i of the inverse of the numerator relationship matrix A-1
, except the diagonal

element.

The last line in (19) holds if the term Z;R-1Z_j equals zero, which is correct if a

contains just direct (and no maternal) additive genetic effects.

For permanent environmental regression coefficients, the full conditional

distribution becomes:

pj Ib,a,p_pGo'Po,a;,y - N~p(WtR-IWj + Po-
1t )

A. = (W:R-1 W. p-1 )-1P, I 1+ 0

x(WtR-1y- W;'R-1Xb- W;'R-1za-[wtR -1W_; +I;,_j 0P;1 Jp_j J
'---v---------' '-v-'

o 0

pj = (Wj'R-1Wj + Po-
1t (Wj'R-1 (y - Xb - Za))

(20)

where W i is a submatrix of W consisting of the k columns pertaining to the k

regressions of permanent environment i Ci = 1,... , I) in Pi> W-i is the complement

of W i to Wand P-i contains all the elements of P except the k regression

coefficients in Pi. Ii,-i is a (row) vector containing all the elements of row i of I

except the diagonal element, and thus a vector of zeros.
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The full conditional distributions of the (co)variance components are derived by

selecting the terms from the joint posterior distribution (13), that involve this

(co)variance component.

The full conditional distribution of the residual variance involves the distribution

of the data conditional on location parameters and the residual variance, as well

as the prior for the residual variance:

p(a; I b,a,p,Go,Po,Y)

oe p(y Ib,a,p,a;)p(a;)

= (2n") -Ji!Ina;l-li exp[- ~ (y - Xb-Za - Wp)' (Ina; t (y - Xb - Za - Wp)]

x(v;{)'iI (r(V;{)J'S;' (<7; ){'7I+I)exp[ - ;:J]
pulling together similar expressions and omitting terms that are constant with

respect to the residual variance, this is proportional to:

which has the form of a scaled inverted chi-square distribution:

(21)

with:

ve=n+ve

Se2 =((y - Xb - Za - Wp)' (y - Xb - Za - Wp) +VeS; )jcn +Ve)

where n is the total number of records.

The full conditional distribution of the additive genetic covariance matrix Go

involves the distribution of additive genetic effects conditional on Go and the

prior for Go:
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p(G o I b,a,p,Po,a; ,y)

oe p(a IGo)p(G o)

-':1i -lS [1 1 ]= (2Jr) 2IA®Gol 2exp -"2a'(A®Got a

(

vGk/ k(k-l)/ rrk (V +1- i JJ-1

VG/ 1-(VG+k+l)/ [1 ( )]x 2 12 Jr 14 r G IV 1 /2 1G 12 exp --tr V-IG-I
. 2 G 0 2 GO
1=1
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pulling together similar expressions and omitting terms that are constant with

respect to the additive genetic covariance matrix, this is proportional to:

(22)

with:

'A-
I

]
... a a

I k. .. .. .
... a' A -la

k k

for covariables i, j = 1, ... ,k, where aj is a sub-vector of a containing breeding

values corresponding to covariable j für the m animals in the pedigree. Note that

this definition of a sub-vector is different from the one presented in equation

(19).

The second line in equation (22) has the form of a inverse Wishart distribution of

dimension k with m +V G degrees offreedom and scale matrix (U + V~I t .Thus

the full conditional distribution of the additive genetic covariance matrix Go of

regression parameters can be written as:

(23)

Analogously, the full conditional distribution of the covariance matrix Po of

permanent environmental regression coefficients involves the distribution of

permanent environmental effects conditional on Po and the prior für Po:
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pulling together similar expressions and omitting terms that are constant with

respect to the permanent environmental covariance matrix, this is proportional to:

(24)

with:

for covariables i, j = 1, ... ,k, where Pj is a sub-vector of P containing permanent

environmental effects corresponding to covariable j for the I animals with

records. Note that this definition of a sub-vector is different from the one

presented in equation (20).

The second line in (24) has the form of a inverse Wishart distribution of

dimension k with I + vp degrees of freedom and scale matrix (p + V;lt .Thus

the fun conditional distribution of the covariance matrix Po for permanent

environmental regression coefficients can be written as:

(25)

We have now derived an the fun conditional distributions needed to implement

the Gibbs sampier. The Gibbs sampling algorithm consists of sequentiany

sampling (many times) from (18), (19), (20), (21), (23) and (25). After a high
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enough number of rounds, called the bum-in period, the Gibbs chain will yield

dependent sampies from its stationary distribution, on which inference will be

based.

4.3. Post-Gibbs analysis

An important issue of post-Gibbs analysis is the question whether a Gibbs

sampling sequence has converged to its stationary distribution and how many

initial rounds (bum-in) should be discarded. According to Cowles and Carlin [4],

who compared 13 methods of MCMC convergence diagnostics, it is not possible

to say with certainty that a finite sampie from an MCMC algorithm is

representative of an underlying stationary distribution. All the methods they

reviewed can fail to detect convergence failure, thus one needs to be cautious

when utilising these methods to determine the length of the bum-in period.

Nevertheless, convergence diagnostics should be an integral part of inference

based on MCMC methods. In this thesis two different methods were used to

determine bum-in: the coupling chain method of Johnson [26] and the method of

Raftery and Lewis [40]. For the method of Johnson [26], two or more Gibbs

sampling chains are created using the same stream of uniform random deviates,

but different starting values for location and variance parameters. He showed,

that such coupled or parallel chains must all eventually converge to a single

sampie path. The length of the bum-in period is determined when the sampies of

all these chains agree to some small tolerance, as the chains then have

"forgotten" their initial values. Typically, the coupling chain method is

inapplicable to Metropolis-Hastings sampiers, as differences in the number of

uniform random deviates used per round of sampling can occur and thus

coupling of the chains is not guaranteed. In these situations the method of

Raftery and Lewis [40] was used, which is available as a Fortran program

(Gibbsit) from Statlib (URL: http://lib.stat.cmu.edu). Their approach is based on

two-state Markov chain theory, as weIl as standard sampie size formulae

involving binomial variance. Based on the sampies of a single Gibbs chain, the
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program estimates how many initial rounds should be disearded and für how

many rounds the sampIer should be run to estimate a quantile of interest to the

desired aeeuraey. Both methods used for burn-in analysis were eombined with

graphically eheeking the behaviour of several independent Gibbs ehains.

After eonvergenee of the Gibbs ehain to its stationary distribution, (dependent)

sampIes are used for inferenee on model parameters. Based on the ergodic

theorem, posterior means of parameters ean be estimated from the n sampIes

after burn-in using equation (5) as:

A 1 n

f1n·=- LX/
n /=1

(24)

Similarly, other funetions of the posterior distribution ean be estimated from

Gibbs sampIes, e.g. varianees or marginal posterior densities. All these

estimators are subjeet to Monte Carlo sampling error, whieh is redueed by

prolongation of the Gibbs ehain. Monte Carlo varianees ean be estimated running

several independent ehains and ealculating the empirieal varianee of the

estimates of eaeh ehain. Alternatively, Monte Carlo varianees ean be estimated

from the Gibbs ehain itself. Geyer [11] gives a survey of the eurrent methods

used for this purpose. In this thesis, the initial monotone sequenee estimator [11]

was used to estimate the Monte Carlo varianee, i.e. the varianee of the sampIe

mean. As proposed by Sorensen et al. [43], an effeetive number of independent

sampIes was ealculated as the ratio of the sampIe varianee and the varianee of the

sampIe mean. This "effeetive sampIe size" ean help to assess the effeet of the

eorrelation of sampIes on the estimate of the Monte Carlo varianee [43] and is

thus useful for the interpretation of parameter estimates based on MCMC

methods.
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Abstract

Chapter 3

A simulation study was conducted to assess the influence of differences in length

of individual testing periods on estimates of (co)variance components of a

random regression model for daily feed intake of growing pigs performance

tested from 30 to 100 kg live weight. A quadratic polynomial in days on test with

fixed regressions for sex, random regressions for additive genetic and permanent

environmental effects and a constant residual variance was used for a bivariate

simulation of feed intake and daily gain. (Co)variance components were

estimated for feed intake only by means of a Bayesian analysis using Gibbs

sampling and REML. A single trait random regression model analogous to the

one used for data simulation was used to analyse two versions of the data: fun

data sets with 18 weekly means of feed intake per animal and reduced data sets

with individuallength of testing periods determined when tested animals reached

100 kg live weight. Only one significant difference between estimates from fun

and reduced data (REML estimate' of genetic covariance between linear and

quadratic regression parameters) and two significant differences from expected

values (Gibbs estimates of permanent environmental variance of quadratic

regression parameters) occurred. These differences are believed to be negligible,

as their number lies within the expected range of the type-I-error when testing at

the five percent level. The course of test day variances calculated from estimates

of additive genetic and permanent environmental covariance matrices also

supports the conclusion that no bias in estimates of (co)variance components

occurs due to individuallength of testing periods of performance tested growing

pigs. Lower number of records per tested animal only results in more variation

among estimates of (co)variance components from reduced compared to fun data

sets. Compared to fun data, effective sampie size of Gibbs sampies from reduced

data has decreased to 18 % for residual variance and increased up to five times

for other (co)variances. Data structure seems to influence mixing of Gibbs

chains.
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Typically, random regression models are applied to traits measured over a

constant period of time, such as 305 days for test day records of dairy cows [10].

In growing pigs performance tested in central testing stations, the testing periods

of individual pigs are defined between 30 and 100 kg live body weight and thus

vary between tested animals according to their average live weight gain. If we

apply a random regression model to feed intake of pigs performance tested from

30 to 100 kg live body weight, not all animals have the same number of feed

intake records available. Consider a reference situation with a constant length of

the testing period, such that even the slowest growing animals reach the desired

slaughter weight. In the real life situation data is missing for the faster growing

pigs towards the end of this constant testing period. These data can not be

regarded as missing at random, because feed intake and individual length of

testing (age at slaughtering) are correlated.

One implication of this situation is that feed intake curves of faster growing

animals are estimated with less precision than feed intake curves of animals that

grow more slowly. Consequently, (co)variance components for a random

regression model estimated from such data are expected to be less precise than if

all the animals had the same number of records available as the slowest growing

pigs. If a quadratic polynomial is used as regression function, the quadratic term

is expected to be most affected, as it describes the inflexion of feed intake curves.

The question now was, if this would be the only implication of this missing data

situation, or whether it might result in biased estimates of (co)variance

components. Rubin [9] postulated that 1) data have to be missing at random and

2) the process that leads to missing data has to be independent of the trait

analysed in order to be able to ignore the selection process for inferences on

model parameters. These conditions do not hold for our situation, which implies

that the process that leads to missing data should be accounted for in genetic

evaluation. The only way the selection process is accounted for in a single trait
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random regression model is indirectly over the length of the testing period. It is

not possible to use a two trait random regression model for daily feed intake and

live weight gain, as live weight is only recorded at the beginning and towards the

end of the testing period. A possibility would be to include average daily gain on

test as a trait correlated with regression parameters for feed intake, if necessary.

However, the missing data problem may be less important for a random

regression model, as the influence of missing records on (co)variance

components is only indirect. (Co)variance components are estimated for curve

parameters, not for single measurements on a given day on test. For these

artificial traits no records are missing, as feed intake curves can be estimated for

all tested animals, given a minimum number of daily feed intake records.

The objective of this study was to gain some experience with random regression

models by simulating daily feed intake and live weight gain. By analysing the

simulated feed intake data, we wanted to check our Gibbs sampling programs for

variance components estimation, before applying them to real data. Another goal

was to examine the influence of differences in individual length of testing

periods on the estimation of (co)variance components for a random regression

model for daily feed intake of growing pigs, when the process that leads to

missing data is ignored.
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Daily feed intake (kg) and daily weight gain (kg) were simulated simultaneously

from the following multivariate random regression model, which is a second

order polynomial in days on test dm :

Yijkm = sexOij + sex1ij *dm + *d
2

sex2ij m

+ a Oik + a1ik*dm + *d
2

a 2ik m

+ POik + Plik *dm + *d
2

P2ik m

+ cijkm

(1)

where Yijkm is the record of trait i für animal k of gender j on day d m, sexhij are

fixed regressions for the gender of the animals, ahik are random regressions for

animal additive genetic effects, Phik are random regressions for animal permanent

environmental effects and cijkm is a random residual error which accounts for

daily deviations of feed intake and daily gain from the expected trajectory (error

around curves). Random regression parameters for feed intake and daily gain

were simulated multivariate normally distributed with covariance matrices G for

animal additive genetic regression parameters ahik and P for permanent

environmental effects Phik.

Fixed effects and (co)variance components of regression parameters for the

simulation of feed intake were derived from results of Andersen and Pedersen

[1]. Their phenotypic covariance matrix of the regression parameters was divided

into additive genetic and permanent environmental variance with a ratio of 3:2.

(Co)variance components of regression parameters for daily gain and their

covariances with regression parameters for feed intake were chosen arbitrarily.

Residuals were assumed bivariate normally distributed with a constant residual

variance over the whoie testing period and low positive correlation between

residuals of feed intake and daily gain. These assumptions resulted in

heritabilities and correlations for the traditional traits average daily feed intake,
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average daily gain and feed conversion ratio calculated from the simulated data,

that were similar to values found in literature (e.g. [5, 14]).

Twenty replicates with 80 sows and eight boars per generation and three

offspring generations were simulated. Each boar was randomly mated to ten

sows producing one litter each with one male and one female offspring for the

performance test and one female as a parent for the next generation.

AdditionaHy, each boar had one male offspring chosen randomly from one of the

ten matings as a parent for the next generation. This lead to 480 animals with

measurements and a total of 832 animals in the pedigree. Due to random mating,

the additive genetic relationship matrix varied at random over the 20 replicates.

For each tested animal, additive genetic and permanent environmental random

regression parameters for daily feed intake and daily gain were generated, as weH

as residuals for the two traits for 126 test days. From these parameters

phenotypic values for daily feed intake and daily weight gain were calculated für

126 test days according to equation (1). In order to reduce the amount of data and

to save computing time for the evaluations, daily feed intake values of seven

consecutive days were combined into weekly averages and written to the file as

the value for the middle day of the week. This reduces the residual variance to

1/7 of the simulated value, as the variance of an arithmetic mean of n

independent values is equal to the original variance of these values divided by n

(see e.g. [13]). This rule holds, as residuals of consecutive test days were

generated independently of each other from identical normal distributions. Daily

gain served to calculate the actual live weight of tested animals on each day on

test and thus as a criterion to determine individuallength of testing periods. This

was done by cumulating daily weight gains over the whole testing period of 126

days, starting on test day one with a live body weight of 30 kg. The end of test

was defined at the end of the week when tested animals reached 100 kg live body

weight. Daily weight gain was not included in the evaluations otherwise.
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Table I: Average distribution of number of records per animal in reduced data

sets.

records 8 9

% of animals < 0.1 3.9

10 11 12 13

24.6 36.2 23.0 8.5

14

2.7

15

0.5

16 17 18

0.2 < 0.1 0.3

Two versions of the data were evaluated (20 replicates each):

1) full data sets with a constant length of the testing period, 18 weekly means of

feed intake per tested animal and a total of 8 640 measurements per data set.

2) reduced data sets with individual length of the testing period, slaughtering at

the end of the week when 100 kg live weight were reached and an average of

5 380 measurements per data set. All animals had eight or more records.

Table I shows the average distribution of the number of records per animal.

The number of replicates was chosen in order to attain maximum power and yet

to keep the evaluations computationally feasible within a reasonable period of

time. In order to leam about the extent of variation produced by the simulation

process, realised values of (co)variance components for feed intake were

calculated from simulated effects of all data sets as [8]:

G = a' A-1 a / # animals

p = p' p / # tested animals

a; = E'E / # records

(2)

where a and p are matrices of dimension three by number of animals and number

of tested animals respectively, containing additive genetic and permanent

environmental effects of random regression coefficients. A-1 is the inverse of the

additive genetic relationship matrix and E is a vector containing residual effects

for each record. While G and P are the same for full and reduced data sets, there

may be differences in the realised value calculated for cr/ , as it depends on the

number of records used. Mean squared errors of these realised values were

calculated as an indicator of variation between replicates. Table 11 shows the
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values of (co)variance components used for data simulation (expected values),

mean realised values calculated from simulated random effects, as weH as mean

squared errors of these realised values.

2.2. Estimation of (co)variance components

The model for the evaluation of simulated feed intake data was identical with the

one used for simulation, except that it was a single trait random regression model

for daily feed intake only, as daily gain was not evaluated.

For the estimation of (co)variance components two different methods were used:

1) Bayesian methodology using Oibbs sampling

2) REML

Table 11: Values of (co)variance components used for data simulation (expected

values) together with realised values and their mean squared errors (MSE)

covariance expected value realised value MSE
component

0(1,1) 7.380e-02 7.215e-02 9.411e-06

0(2,1) -1.176e-03 -1.14ge-03 2.32Ie-09

0(2,2) 3.456e-05 3.444e-05 1.110e-12

0(3,1) O.OOOe+OO 6.15ge-08 4.627e-13

0(3,2) O.OOOe+OO -3.043e-l0 1.831e-16

0(3,3) 6.000e-09 6.072e-09 9.340e-20

P(1,I) 4.920e-02 4.883e-02 I.020e-05

P(2,1) -7.840e-04 -7.873e-04 3.I4Ie-09

P(2,2) 2.304e-05 2.343e-05 2.325e-12

P(3,1) O.OOOe+OO -1.308e-07 3.507e-13

P(3,2) O.OOOe+OO 5.53ge-09 1.991e-16

P(3,3) 4.000e-09 4.06Ie-09 7. 11ge-20

(Jr-
2 fuH 3.57Ie-02 3.546e-02 2.397e-07

reduced 3.57Ie-02 3.54Ie-02 3.8I4e-07
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For (co)variance components estimation with Gibbs sampling, our own programs

were used. Solutions of the mixed model equations with expected values for the

(co)variance components obtained by Gauss-Seidel iteration served as starting

values for fixed and random effects. MME were processed block wise by means

of Cholesky decomposition and backsubstitution during Gauss-Seidel iteration

and when generating new solutions in the Gibbs sampier. Informative priors with

low numbers of degrees of freedom were used for the (co)variance components,

such that their expectations corresponded to the expected values and propriety of

priors is guaranteed. Priors for the covariance matrices of regression parameters

G and P were inverse Wishart distributions with five degrees of freedom. For the

residual variance aE
2 a scaled inverse Chi-square distribution also with five

degrees of freedom was assumed apriori. Fixed regression parameters for each

sex were assumed constant and random regression parameters were assumed

normally distributed with zero mean and variance I®P for permanent

environmental and A®G for additive genetic regression parameters, respectively.

Each data set was analysed with 100 000 rounds of Gibbs sampling. The first

30 000 sampies were discarded from the burn in period, determined by the

coupling chain method [4]. Gibbs sampies averaged over the remaining 70000

rounds served as estimates of posterior means of the covariance matrices G and P

and the residual variance a/. Effective sampie size [12] was calculated using

estimates of Monte Carlo variance obtained by the method of initial monotone

sequence estimator [2] from the 70000 sampies after burn-in. This estimator was

preferred by Geyer [2] over the initial positive sequence estimator, because of

making large reductions in the worst overestimates while doing little to

underestimates.

After analysing Gibbs sampling results, the influence of the priors used was

questioned. Restricted maximum likelihood (REML) was used as a reference

method for (co)variance component estimation instead of rerunning the Gibbs

sampier with completely flat priors. REML estimates correspond to the mode of
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the joint posterior distribution of the desired parameters, marginalized with

respect to unknown location parameters in a Bayesian analysis with flat priors for

fixed effects and (co)variance components [3]. REML estimates of the

(co)variance components were obtained with the program REMLF90, which uses

the EM-algorithm with acceleration [7]. Expected values were provided as

starting values for the (co)variance components. The influence of starting values

on the REML-analysis was tested on three full and the corresponding three

reduced data sets. Expected values provided as starting values for (co)variance

components reduced the number of iterations required for convergence on

average by 19 %, compared to an evaluation with starting values that were far

from expectation. Both sets of starting values lead to the same estimates.

Estimated covariance matrices were analysed in two ways. Variances and

covariances of random regression coefficients were compared element by

element, and test day variances were calculated from covariance matrices for the

middle day of all 18 weeks of the testing period. The main focus of the study was

on differences between estimates from full and reduced data sets. For both

methods, Gibbs sampling and REML, these differences were tested at the five

percent level by means of a two-sided paired t-test. The second question was

whether estimates of (co)variance components from full and reduced data sets

were equal to their expected values. Gibbs sampling and REML results were

analysed separately. A comparison of the two methods would not be very

meaningful, as they do not use the same prior distributions and because mean

(Gibbs) and mode (REML) of respective marginal distributions need not be the

same. Each method yielded two sampie means, which are not independent of

each other. The Bonferroni-method was used to account for multiple testing and

to control the overall type-I-error of the experiment at the five percent level.

Thus differences between estimates and expected values were tested at the 2.5 %

level by means of a one-sample t-test. For all tests function ttest of the statistical

software package S-Plus version 3.4 was used [6].
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3.1. Estimates of (co)variance components

Table III shows the values of (co)variance components used for data simulation

(expected values) and estimates of posterior means of (co)variance components

obtained by Gibbs sampling from full and reduced data sets, averaged over 20

replicates. Two significant differences of (co)variance components from

expected values were found with Gibbs sampling, one for full and one for

reduced data. Both of them concerned the permanent environmental variance of

quadratic regression parameters, which describe the inflexion of feed intake

curves. None of the differences between estimates from full and reduced data

proved to be significant.

Table 111: Gibbs sampling estimates of posterior means of (co)variance

components (average over 20 replicates)

covariance expected estimates of posterior mean

component value full data reduced data

G(l,l) 7.380e-02 7.100e-02 6.968e-02

G(2,1) -1.176e-03 -1.147e-03 -1.12ge-03

G(2,2) 3.456e-05 3.542e-05 3.515e-05

G(3,1) O.OOOe+OO -8.006e-07 -1.58ge-07

G(3,2) O.OOOe+OO 3.984e-09 2.005e-08

G(3,3) 6.000e-09 7.1 lle-09 6.600e-09

P(l,!) 4.920e-02 4.973e-02 5.025e-02

P(2,1) -7.840e-04 -7.914e-04 -7.842e-04

P(2,2) 2.304e-05 2.273e-05 2.216e-05

P(3,1) O.OOOe+OO 1.805e-07 -6.494e-07

P(3,2) O.OOOe+OO 1.640e-08 2.517e-08

P(3,3) 4.000e-09 3.174e-09 3.16ge-09

crf
2 3.571e-02 3.556e-02 3.552e-02

bold: significant differences from expected values
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No significant differences from expected values were found with REML, but

contrary to the Oibbs sampling estimates, one difference between estimates from

fuH and reduced data appeared significant (Table IV). This was the genetic

covariance between the linear and the quadratic regression parameter (0(3,2)),

which has been simulated to be zero and thus very smaH values were estimated.

Table IV: REML estimates of (co)variance components (average over 20

replicates)

covariance expected REML estimates

component value fuH data reduced data

0(1,1) 7.380e-02 6.332e-02 6.408e-02

0(2,1) -1.176e-03 -9.980e-04 -1.073e-03

0(2,2) 3.456e-05 3.108e-05 3.524e-05

0(3,1) O.OOOe+OO -3.44ge-07 7.777e-07

0(3,2) § O.OOOe+OO -5.42ge-10 -4.410e-08

0(3,3) 6.000e-09 6.294e-09 6.716e-09

P(l,l) 4.920e-02 5.508e-02 5.518e-02

P(2,1) -7.840e-04 -9.084e-04 -9.08ge-04

P(2,2) 2.304e-05 2.645e-05 2.806e-05

P(3,!) O.OOOe+OO 4.34ge-08 -2.231e-07

P(3,2) O.OOOe+OO 1.164e-08 -3.938e-09

P(3,3) 4.000e-09 3.737e-09 3.910e-09

(JE
2 3.571e-02 3.551e-02 3.528e-02

§ significant difference between estimates from fuH and reduced data sets

A total of 78 differences were tested, 26 at the five percent level and 52 at the

2.5 %-level, from which 2.6 significant results can be expected to occur by

chance. We found a total of three significant results, from which we believe that

they only appeared by chance, as their number lies within the expected range of

the type-I-error. These tests indicate that there is no bias in estimates of
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(co)variance components due to the reduction of available data associated with

individuallength of testing periods.
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environment

additive
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expected value

estimate trom tull data
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Figure 1: Expected values and Gibbs sampling estimates from full and reduced

data sets of genetic, permanent environmental and phenotypic test day variances

of weekly means of daily feed intake(kg).

Variances for weekly means of daily feed intake calculated from estimates of

(co)variance components (Tables III, IV) as well as expected values are shown in

Figures 1 (Gibbs sampling) and 2 (REML). Curves of estimates from full and

reduced data sets were almost identical with both REML and Gibbs sampling.

This supports the view that there was no bias in (co)variance component

estimation due to the reduction in available data. With Gibbs sampling, additive

genetic variance has been overestimated in the second half of the testing period,

while permanent environmental variance has been underestimated (Figure 1).

This is due to overestimation of additive genetic and underestimation of

permanent environmental vanance of quadratic regression parameters,

respectively (Table III). Overestimation of additive genetic variance was
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compensated by underestimation of permanent environmental variance, resulting

in only a slight overestimation of the phenotypic variance (Figure 1). Test day

variances calculated from REML estimates were closer to expected values in this

second part of the testing period. With both methods, Gibbs sampling and

REML, none of the differences from expected values of additive genetic and

permanent environmental test day variances proved to be significant.
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t1l 1.5
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estimate trom tull data
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week

additive

genetic

permanent

environment

Figure 2: Expected values and REML estimates from full and reduced data sets

of genetic, permanent environmental and phenotypic test day variances of weekly

means of daily feed intake (kg).

3.2. Mean squared errors

Table V shows mean squared errors (MSE) of estimates of (co)variance

components, obtained by Gibbs sampling and REML from full and reduced data

sets, relative to MSE of values realised with data simulation. With both methods,

MSE of estimates were very large compared to realised values (Table V). The

exception was the residual variance, whose estimates showed a much smaller



Chapter 3 51

variation than other parameters. The variation among estimates of (co)variance

components resulted in standard deviations of estimates of daily variance that

were two to five times bigger than standard deviations of daily variances

calculated from realised values of (co)variance components (data not shown).

This shows that estimates from single data sets were not very precise. Only

averaging estimates over the 20 replicates gave good estimates for (co)variance

components. For good estimates from single data sets, much more animals per

data set are needed.

Table V: Mean squared errors (MSE) of estimates of (co)variance components

divided by MSE of values realised with simulation

covariance Gibbs sampling REML

component full data reduced data full data reduced data

G(l,I) 47.2 39.4 57.0 53.3

G(2,1) 76.6 70.2 83.8 88.2

G(2,2) 106.7 168.6 116.7 202.2

G(3,1) 37.0 36.7 30.5 40.3

G(3,2) 47.7 71.3 29.3 88.4

G(3,3) 57.5 42.7 34.3 45.1

P(l,I) 24.2 21.2 28.4 28.4

P(2,1) 34.7 40.2 38.6 56.5

P(2,2) 31.5 44.9 39.1 81.7

P(3,1) 17.4 39.2 17.7 45.7

P(3,2) 19.7 41.0 15.6 72.5

P(3,3) 27.5 32.0 14.8 41.3

(JE
2 1.2 1.7 1.2 2.0

For most parameters, MSE of estimates from full data sets are smaller than those

of reduced data sets (Table V). Exceptions are G(l,I) for both REML and Gibbs

sampling, as well as G(2,1), G(3,3) and P(l,I) for Gibbs sampling only. Together
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with insignificant differences between estimates from fun and reduced data sets,

this shows that the influence of the amount of data available is rather on

precision (variance) than accuracy (bias) of estimates. While precision of

estimated covariance matrices of additive genetic and permanent environmental

regression parameters mainly depends on the number of animals with records, if

the number of measurements per animal is sufficiently high, estimation of

residual variance depends on the total number of measurements containing this

residual. Reduced data sets contain 5 380 measurements on average compared to

8640 in fun data sets, which is a reduction of over 37 %. This reduction of

information for the estimation of the residual variance in reduced compared to

fun data sets results in less precise estimates for residual variance. Information

for estimation of covariance matrices of regression parameters should not differ

too much, as both data sets contained the same number of tested animals with at

least eight measurements. Precision of estimates from reduced data sets was

reduced because of less precise estimation of regression parameters due to fewer

measurements per animal.

3.3. Effective sampie size

Effective sampie size was estimated for an parameters from an Gibbs chains.

Averages over the 20 replicates and standard deviations of estimates of effective

sampie size are presented in Table VI. Except for the residual variance, estimates

of effective sampie size of parameters were rather sman compared to the 70 000

sampies used to estimate posterior means of parameters. A reliable estimation of

the marginal posterior density would only have been possible for the residual

variance, as numbers of effective sampies of other parameters were insufficient.

The large standard deviations showed that estimates of effective sampie size

varied a lot between replicates. For fun data sets, estimates of effective sampie

size for variances and covariance of intercept and linear regression parameters

were clearly higher than for variances of quadratic regression parameters and

their covariances. This suggests, that variances of intercept and linear regression
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Table VI: Effective sampie size estimated from Gibbs sampies of (co)variance

components by the method of initial monotone sequence estimator

full data reduced data

covarlance mean of standard mean of standard
component estimates deviation estimates deviation

G(l,l) 91.4 40.6 145.3 52.8

G(2,1) 81.4 43.6 145.3 52.7

G(2,2) 80.6 33.0 150.8 59.0

G(3,!) 32.7 17.6 121.5 41.5

G(3,2) 36.3 21.8 121.0 85.2

G(3,3) 29.4 16.9 151.6 89.8

P(l,l) 93.2 38.8 146.5 55.0

P(2,1) 87.6 51.7 143.8 45.3

P(2,2) 81.6 34.2 147.1 51.5

P(3,1) 33.7 22.0 126.3 34.9

P(3,2) 40.3 34.6 118.3 60.3

P(3,3) 31.3 27.6 128.5 55.1

(Je
2 39574.9 3567.1 6587.4 2947.7

parameters were eaSler to estimate than quadratic regressIOn parameters.

Surprisingly, estimates of effective sampie size from Gibbs chains of reduced

data sets showed a different pattern. Effective sampie size of the residual

variance was reduced to about 18 % of its value from full data sets, while

estimates of effective sampie size of other parameters increased up to five times.

Still the same parameters had most· effective sampies, but differences between

parameters became much smaller. The amount of information in the data set and

especially the number of records per tested animal seemed to influence the

mixing of the Gibbs chain. With longer testing periods and thus more records per

animal in full data sets, regression parameters that describe feed intake curves of

tested animals are determined more restrictively than in reduced data sets. This

restriction might reduce the Gibbs sampiers ability to explore the parameter
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space and thus result in slower mixing of the Gibbs chains for covariance

matrices G and P for full compared to reduced data sets. Effective sampie size of

the residual variance (JE
2 seems to be influenced by the mixing of Gibbs chains

for covariance matrices G and P. If G and P move around slowly, (JE
2 can

explore its parameter space relatively free. If G and P move around faster, (JE
2

has to react more to their movements and to adapt to the new situation. This

restricts its freedom to explore the parameter space and results in slower mixing

and smaller effective sampie size for the residual variance with reduced

compared to full data sets.

3.4. General Discussion

The model assumptions used for generating the data may be too simple to reflect

the real life situation correctly. Non-zero covariances with quadratic regression

parameters and a residual variance that changes with age would have been more

realistic. However, this would not change our conclusions when the same model

is used for simulation and analysis of the data, as the true values are very likely

to lie within the range of values realised by the simulation process (Table Ir).

Zero covariances with quadratic regression parameters were chosen because of

lack of knowledge about their true values, and the residual variance was assumed

constant for simplicity. A random regression model incorporating a residual

variance that changes with age was used for the analysis of real feed intake data

in a different study [11].

Regressing feed intake on body weight instead of on days on test would remedy

the problem of different lengths of testing periods, as all animals would have the

same range of values for regression covariables on the weight scale. However,

live weights of performance tested growing pigs are not measured regularly

throughout the testing period in most testing schemes, but only at the beginning

and towards the end. Therefore, the necessary live weight measures for

regressing feed intake on live weight are usually not available in real data sets.
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4. Conclusions
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Both methods used for estimation of (co)variance components, REML and Gibbs

sampling, showed that there was no systematic bias in (co)variance components

estimates due to reduction in available data towards the end of a constant testing

period. Therefore, it seems not to be necessary to include daily gain into the

evaluations, which is the process that causes the missing data in this situation.

For evaluations of real data, larger data sets than in this study should be used, in

order to obtain good estimates of parameter matrices.

Gibbs chains should be much longer than the 100000 sampies run in this study,

if marginal posterior densities of parameters were to be estimated. Effective

sampie size and mixing of the Gibbs chains can be infIuenced by the data

structure. Optimising the number of records per tested animal might be used to

improve mixing of the Gibbs chain in random regression analysis. To verify this

hypothesis further research is needed.
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Abstract

Chapter 4

Daily feed intake data of 1 279 French Landrace (FL, 1 039 boars and 240

castrates) and 2417 Large White (LW, 2032 boars and 385 castrates) growing

pigs was recorded with electronic feed dispensers in three French central testing

stations in years 1992-94. Group housed pigs fed ad libitum were performance

tested from 35 to 95 (males) or 100 kg (castrates) live body weight. A quadratic

polynomial in days on test with fixed regressions for sex and batch, random

regressions for additive genetic, pen, litter and individual permanent

environmental effects was used, with two different models for the residual

variance: constant in modell and modelIed with a quadratic polynomial

depending on the day on test dm as follows In model 2:

a;m =exp(yo + Yl *dm +Yz *d;'). Variance components were estimated from weekly

means of daily feed intake by means of a Bayesian analysis using Gibbs

sampling. Posterior means of (co)variances were calculated using 800 000

sampies from four chains (200 000 each). Heritability estimates of regression

coefficients were 0.30 (FL modell), 0.21 (FL model 2), 0.14 (LW1) and 0.14

(LW2) for intercept, 0.04 (FL1), 0.04 (FL2), 0.11 (LW1) and 0.06 (LW2) for

linear, 0.03 (FL1), 0.04 (FL2) 0.11 (LW1) and 0.06 (LW2) for quadratic term.

Heritability estimates for weekly means of daily feed intake were lowest in week

4 (FL1: 0.11, FL2: 0.11) and week 1 (LW1: 0.09, LW2: 0.10), and highest in

week 11 (FL1: 0.25, FL2: 0.24) and week 8 (LW1: 0.19, LW2: 0.18),

respectively. Genetic eigenfunctions reveal that altering the shape of the feed

intake curve by selection is difficult.
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Today, selection of pigs for growth performance considers average daily feed

intake and average daily live weight gain over the whole growing period and/or

the ratio of the two, i.e. feed conversion. Average daily feed intake is negatively

correlated with the leanness of the carcass. Selection for increased leanness and

improved feed conversion has lead to a decrease of the feed intake capacity (FIC)

[27]. "Modern" genotypes of pigs have a lower mean voluntary feed intake and

feed intake increases at a lower rate with body weight compared to "older"

genotypes [2]. In the long run, FIC might become a limiting factor for a further

improvement of the efficiency of lean growth. In the past, improvement of feed

conversion was mainly achieved by a reduction of the rate of fat deposition. But

according to several authors, optimum levels of backfat thickness are or will soon

be reached and other routes to improve feed efficiency have to be found [7, 14,

26]. De Vries and Kanis [5] suggested to divide the growing period into 3 phases:

1) early fattening period where FIC of pigs is determined by mechanical

constraints and FIC is less than the optimum level of feed intake (FI(opt»,

where lean deposition rate is at its maximum and fat deposition rate at its

minimum for the given lean deposition rate [4],

2) intermediate fattening period where FIC is still determined by mechanical

constraints but FIC > FI(opt),

3) late fattening period where FIC is determined by metabolic constraints with

FIC > FI(opt).

Increasing FIC in period 1 to its optimum level should increase growth rate

without affecting the leanness of the carcass, while increasing FIC in periods 2 or

3 would lead to fatter carcasses. Increasing FIC in period 1 while keeping FIC in

periods 2 and 3 constant should lead to animals growing more efficiently. Webb

[27] supports this view and stresses the need of further research on genetic and

environmental effects on the shape of feed intake curves.
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Electronic feeders installed in central testing stations allow for the measurement

of individual daily feed intake of performance tested growing pigs. Analyses of

feed intake curves might lead to new interesting traits for pig breeders, e.g. curve

parameters or feed intake capacity at different ages. One possibility to analyse

feed intake curves is by means of polynomials [1] using a random regression

model [22].

The objective of this study was to estimate genetic variation in feed intake curves

of growing pigs and to assess possibilities to change the feed intake curve by

selection.

2. Material and methods

2.1. Data

1 279 French Landrace (FL, 1 039 boars and 240 castrates) pigs from 697 litters

and 2417 Large White (LW, 2032 boars and 385 castrates) pigs from 1 259

litters were performance tested in three French central testing stations in years

1992-94. For each tested animal, pedigree information of three generations of

ancestors was available, which resulted in 3826 (FL) and 7784 (LW) animals in

the pedigree, respectively. Growing pigs were housed in groups of 6 to 15

animals in 316 (FL) and 370 (LW) pens, respectively. Pens were equipped with

one electronic feed dispenser each (Acema-48, Acemo, Pontivy, Morbihan,

France), where ad libitum daily feed intake was recorded. Groups that were on

test during the same period of time on the same testing station form a batch.

There was a total of 35 batches with French Landrace and 36 batches with Large

White pigs. After about one week of adaptation to the automatic feed dispensers,

boars were tested from 35 to 95 kg and castrated males from 35 to 100 kg live

body weight. Raw data contained daily feed intake records for the whole period

during which the animals were on the testing station, but records from the

adaptation period were discarded. Test day one was defined as the day when

animals reached 35 kg live body weight. Starting from there, weekly means of
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feed intake per day were calculated and saved as the record for the middle day of

the week, in order to reduce the amount of data for the evaluations. This resulted

in records for days 4, 11, 18, ... , 74, 81, 88 (Table I). The last record of an animal

represents feed intake of the last week before leaving the testing station after

reaching 95 kg (entire males, candidates to selection) or 100 kg live body weight

(castrates, slaughtered contemporaries).

Table I: Number of animals with records of weekly means of feed intake per day

(LW =Large White; FL =French Landrace; % =proportion oftested animals).

week 1 2 3 4 5 6 7 8 9 10 11 12 13

day 4 11 18 25 32 39 46 53 60 67 74 81 88

LW 2312 2263 2229 2173 2292 2255 2213 2137 1907 1227 509 131 14

% 95.7 93.6 92.2 89.9 94.8 93.3 91.6 88.4 78.9 50.8 21.1 5.4 0.6

FL 1214 1192 1163 1156 1224 1183 1178 1160 1042 752 323 103 19

% 94.9 93.2 90.9 90.4 95.7 92.5 92.1 90.7 81.5 58.8 25.3 8.1 1.5

The variance of an arithmetic mean of n independent values is equal to the

original variance of these values divided by n (see e.g. [24]). Averaging daily

records into weekly means therefore results in a reduction of the residual

variance proportional to the number of records included in this average.

Whenever records of more than one day per week were missing, all the records

of this week were discarded and the weekly mean was set to missing, to avoid a

major influence of missing records on the estimate of residual variance. Animals

with less than five records of weekly means for the estimation of feed intake

curves were deleted from the data set. This was also necessary if no records were

available in the first three weeks of the testing period, as this might lead to poor

estimates for polynomials, especially negative values for the intercept, which is

not plausible.



2.2. Model

The following random regression model, which is a quadratic polynomial in days

on test dm was fitted to weekly means of daily feed intake records:

Yghijkm = sexOg + sex1g *dm + *d2sex2g m

+ batchoh + batc~h *dm + batch2h *d;

+ a Oi + a li *dm + *d2
a 2i m

+ POj+ Pu *dm + *d2 (1)P2j m

+ lOk + llk *dm + 12k *d;

+ eOi + eli *dm + *d2
e2i m

+ Eghijkm

where sexng and batchnh are fixed regressions for the gender of the animals, and

the period and station of their test, respectively; ani are random regressions for

animal additive genetic effects; Pnj, lnk and eni are random regressions for

permanent environmental effects of pen, litter and the tested individual,

respectively; Cghijkm is a random residual error which accounts for daily deviations

of feed intake from the expected trajectory of animal i on day dm.

Model (1) can also be presented in hierarchical form, using a quadratic

polynomial as a regression function and fitting fixed (sex, bateh) and random (a,

p, I, e) effects to regression coefficients, which can be regarded as artificial traits.

What is called "permanent environmental effect of the tested individual" above,

is nothing else than a residual for regression coefficients. The quadratic

polynomial was chosen as a regression function for (weekly means of) daily feed

intake based on results of Anderson and Pedersen [1], who showed that a cubic

polynomial is sufficient to fit cumulated feed intake of growing pigs. A cubic

polynomial for cumulated feed intake corresponds to a quadratic polynomial for

daily feed intake, as daily feed intake can be written as the first derivative of

cumulated feed intake. A higher order polynomial would fit the data better

(reduce the residual variance), but would also substantially increase the number

of covariances to be estimated. This additional effort seems not to be justified, as
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feed intake is expected to evolve smoothly (almost linear) within the growing

period considered.

Fixed and random effects for regression coefficients were chosen based on

results of Labroue [16, 17], who analysed daily feed intake averaged within three

growing periods (based on the same raw data) using a multivariate model.

Instead of fitting a fixed effect for group size (number of pigs in a pen), a random

permanent environmental effect for each pen (group of pigs housed together) was

included in the model. The same fixed and random effects were applied to all

three regression coefficients to guarantee a proper definition of heritability for

these artificial traits (see section 2.4).

Normal distribution of feed intake data is assumed:

YIb,a,p,I,e,crL - N{Xb+Za+ Up+ VI + We,Icr;m} (2)

y IS a vector containing feed intake data; b is a vector containing fixed

regressions for sex and batch of dimension three times total number of levels of

fixed effects; a, p, land e are vectors containing random regressions for additive

genetic and permanent environmental effects of dimension three times number of

animals in the pedigree, number of pens, number of litters and number of animals

on test, respectively; crL is the residual variance of day on test dm and X, Z, U, V

and W are incidence matrices containing regression covariables for each record.

The residuals are assumed to be independent. Two different models were applied

for the residual variance. In the first model it was assumed constant over the

whole testing period for all animals and in the second model all the animals were

assumed to have the same residual variance on a given day on test dm , but the

course of the residual variance was modelled as follows:

(3)

This second model is expected to fit the data better, because the residual variance

is likely to change during the testing period due to scale effects.
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The following assumptions were used for the distributions of fixed and random

effects (regressions):

b - constant

al A,Go - N{O,(A®Gon

p IPo - N{O,(I®Po)}

II L o - N {O, (I ® L o)}

elEo -N{O,(I®Eo)}

(4)

A is the numerator relationship matrix, Go is the (co)variance matrix of random

regressions of additive genetic effects and Po, Lo and Eo are (co)variance

matrices for random regressions of permanent environmental effects. All these

(co)variance matrices are of dimension 3 x 3.

Informative priors with low numbers of degrees of freedom were used for the

variance components. For the 3 x 3 (co)variance matrices of regression

coefficients Go, Po, Lo and Eo, inverse Wishart distributions with five degrees of

freedom were used. Prior scale matrices were equal for all four covariance

matrices. Elements of scale matrices corresponding to intercept and linear

regression coefficients were chosen such that their expected value corresponded

to one fourth of the phenotypic (co)variances derived from Andersen and

Pedersen [l]. Expected values for phenotypic (co)variances of the quadratic

regression coefficient were arbitrarily set to 1.0e-8 (variance) and zero

(covariances), as Andersen and Pedersen [1] included random effects for

intercept, linear and quadratic regression coefficients only, when fitting a cubic

polynomial in days on test for cumulated feed intake. The resulting elements of

scale matrices for covariance matrices of random regression coefficients are

shown in Table 11. For the constant residual variance (J~ a scaled inverse Chi-

square distribution with five degrees of freedom and scale parameter s; =0.015

was used. Priors for parameters IV, 'YJ and 'Y2, that describe the course of the

residual variance (J~m in the second model, were assumed independent of each
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other and normally distributed with standard deviations of 1.5 (']V), 0.1 (n) and

0.01 (')2).

Table 11: Lower diagonal elements of symmetrie scale matrix S for inverse

Wishart prior distributions of additive genetic (Go) and permanent environmental

(Po, Lo, Eo) covariance matrices of random regression coefficients.

Element

Value

S(l,I) S(2,1)

3.075e-2 -4.900e-4

S(2,2)

1.440e-5

S(3,1)

0.0

S(3,2)

0.0

S(3,3)

2.500e-9

2.3. Variance components estimation

For the estimation of (co)variance components our own programs were used,

applying Bayesian methodology using Gibbs sampling [9]. The joint posterior

distribution of the parameters given the data is the product of the likelihood and

the prior distributions of all parameters [8]. From there marginal distributions are

derived easily, as they only have to be known up to proportionality. This results

in normal distributions for fixed and random regressions and in inverse Wishart

distributions for the (co)variance matrices for additive genetic and permanent

environmental effects. For modell, with a constant residual variance, the

marginal distribution of a; is a scaled inverted Chi-square distribution. The

parameters ']V, n and ')2, that describe the course of the residual variance a; in
"'

the second model, had to be sampled via a Metropolis-Hastings algorithm [12,

19], as their distribution is not a standard one. In each round of Gibbs sampling a

new set of parameters ?1 was sampled with a random-walk Metropolis algorithm

[21]. Deviations from the current parameter values were generated from

independent normal proposal densities with zero mean and fixed standard

deviations (0.04, 0.002 and 0.00002 for ']V, n and ')2, respectively). The

acceptance probability for this set of candidate points depends only on the ratio

of the product of the likelihood and the prior densities of the parameters to be
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sampled, evaluated at the candidate points and the current parameter values. In

each round of Gibbs sampling, this in-built Metropolis-Hastings algorithm was

run until a new set of parameters IV, YJ and Y2 was accepted.

Mixed model equations (MME) were processed block Wlse by means of

Cholesky decomposition and backsubstitution when generating new solutions in

the Gibbs sampier. For each combination of data sets (French Landrace and

Large White) and models (constant and variable residual variance), four Gibbs

chains were run, with 250 000 sampies each.

2.4. Post-Gibbs analysis

Burn-in for the first chain of modell was determined by the coupling chain

method [13]. For this, a shorter chain (100000 sampies) was run with different

starting values for (co)variance components and fixed and random effects, but

identical pseudo random number sequence. Une plots of sampies of (co)variance

components from every 100th round of Gibbs sampling were used to monitor

convergence of the chains to identical sampie values. For the other three chains

of modell and the four chains of model 2 the same burn-in period was adopted

and checked graphically on the single chains only. The coupling chain method

could not be used for model 2, because in each round of Gibbs sampling the in­

built Metropolis-Hastings sampier for parameters IV, YJ and Y2 may cause a shift

in the pseudo random number sequence relative to coupled chains. For all

graphical analysis of Gibbs chains the statistical software package S-Plus [18]

was used.

Effective sampie size [23] of sampies after burn-in was estimated for each chain

using estimates of Monte Carlo variance obtained by the method of initial

monotone sequence estimator [10]. This estimator was preferred by Geyer [10]

over the initial positive sequence estimator, because of making large reductions

in the worst overestimates while doing little to underestimates.
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Sampies from the burn-in period were discarded and posterior means calculated

from the remaining sampies of each chain served as estimates of (co)variance

components. Heritabilities and genetic and phenotypic correlations of regression

coefficients were calculated from estimates of posterior means of (co)variance

components as weIl as from sampies from every 100th round of Gibbs sampling

after burn-in. Density plots of calculated sampies of heritabilities and correlations

were made in S-Plus [18] to illustrate their distributions.

The concept of heritability for regression coefficients lS comparable to the

heritability of a trait averaged over the whole testing period (e.g. average daily

feed intake), it should clearly be distinguished from the heritability of a single

measurement as defined in a simple repeatability model. The phenotypic

covariance matrix used for calculating heritabilities and phenotypic correlations

of regression coefficients is defined as the sum of additive genetic (Go) and

permanent environmental (Po, Lo, Eo) covariance matrices. Residuals Cghijkm

(daily deviations from the fitted curve) in model (1) are expected to sum to zero

within each animal, as any overall deviation from zero should be incorporated

into the intercept of the fitted polynomial. The variance of these residuals

depends on the length of the (time) interval which is specified rather arbitrarily

(one day, one week, entire growing period) when recording feed intake.

Residuals are not part of regression coefficients and therefore the residual

variance is excluded from the phenotypic covariance matrix of these artificial

traits. It must be included in the definition of the phenotypic variance (and thus

influence the heritability) of a single record of the trait evaluated with a random

regression model, though.

For the whole testing period, additive genetic and permanent environmental

variances of weekly means of daily feed intake were computed from posterior

means of (co)variance components as (shown for additive genetic variance):

(5)
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where a~ is the additive genetic variance for the day on test dm ; Go is the
m

estimate of posterior mean for the additive genetic covariance matrix of

regression coefficients and <p~ =(1 dm d;) is a row vector containing

regression covariables for the day on test dm .

Daily variances calculated based on estimates of (co)variance matrices of

additive genetic and the three permanent environmental effects as weH as the

residual variance were summed to get model estimates of phenotypic daily

variances. These estimates of genetic and phenotypic daily variance were used to

calculate heritabilities for weekly means of daily feed intake. Estimates of

variances and heritability for weekly means of daily feed intake were plotted for

the whole testing period.

The fit of the two models with different modelling of the residual variance was

judged based on phenotypic daily variances. Model estimates calculated as

shown above were compared to phenotypic daily variances calculated from data

corrected for fixed effects included in the model. Two different methods were

used to correct data for fixed effects. On the one hand estimates of fixed

regression curves obtained with the respective models were used, and on the

other hand fixed effects were estimated for each test day separately with analysis

of variance function "aov" in S-Plus [18] using a fixed effects model.

2.5. Eigenfunctions and eigenvalues

In order to assess the potential for genetic changes of the feed intake curve,

genetic eigenfunctions and eigenvalues were calculated from additive genetic

(co)variance matrices Go. In order to aHow for meaningful comparisons between

the eigenvalues, eigenfunctions have to be adjusted to a norm of unity [15].

Therefore, estimates of genetic (co)variance matrices Go of regressIOn

coefficients were transformed into (co)variance matrices of regressIOn

coefficients based on normalised orthogonal polynomials. For this purpose

normalised Legendre polynomials were used [15]:
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K =(<1>'<1> )-1 <1>'<l>G <1>'<1> (<1>'<1> )-1
1 1 1 0 1 1 1
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(6)

C is a matrix containing genetic (co)variances between daily measurements of

feed intake of dimension n x n, where n is the number of days with

measurements; Go is the genetic (co)variance matrix between random regression

coefficients using quadratic polynomials; K is the genetic (co)variance matrix

between random regression coefficients using normalised second order Legendre

polynomials; <P is a matrix of n rows by three columns containing covariables for

quadratic polynomials and <PI is a matrix of n rows by three columns containing

covariables for normalised second order Legendre polynomials.

After transformation of Go into K, eigenvalues and eigenvectors were calculated

from K with S-Plus [18]. The three resulting eigenvectors were multiplied with

<PI in order to obtain the three eigenfunctions evaluated für the n corresponding

days with measurements. The corresponding eigenvalues indicate how much of

the genetic variance of a population is explained by a given eigenfunction [15].

Therefore, eigenvalues were transformed to apercent scale, with their sum equal

to 100 %.
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3. Results and discussion

3.1. Behaviour of Gibbs chains

The coupled chains with identical pseudo random number sequence [13], to

determine burn-in with modell, resulted for both data sets in identical sampies

within 40000 rounds of Gibbs sampling. In order to be on the save side for

model 2, another 10 000 sampies were discarded.
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Figure 1: Gibbs sampies of additive genetic, litter and individual permanent

environmental covariance between linear and quadratic regression coefficients

from every 100th round of the Gibbs chain with irregular behaviour under

modell for Large White (left panel) and French Landrace (right panel) data.

When graphically checking whether Gibbs chains had converged to a stationary

distribution within the 50000 rounds of burn-in chosen, an irregular pattern was

discovered for both breeds in one of the four chains run under modell.

Especially (co)variance components of additive genetic, litter and individual

permanent environmental effects of linear and quadratic regression coefficients

were affected. This is illustrated in Figure 1 with sampies of covariances between

linear and quadratic regression coefficients. For Large White, the affected chain

behaves "normal" for somewhat more than 50 000 rounds, before the additive
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genetic effect absorbs most of the covariance of litter and individual permanent

environmental effects. Towards the end of the chain, partition of covariance

among effects is again about the same as in round 50000 (Figure 1). Other

(co)variances show a similar pattern. Only the variance of the intercept

regression coefficient (for all effects) and permanent environmental effects of the

pen (for all (co)variances) were not affected. For French Landrace the change in

partition of (co)variances occurred after 150000 rounds, as shown in Figure 1 for

the covariance between linear and quadratic regression coefficients. For the

remaining rounds fluctuations of sampies were rather large compared to earlier

rounds and not as stable as in the affected period of the Large White chain. For

French Landrace the variance of the intercept regression coefficient was also

affected, but no changes in pen and litter (co)variances were found. For both

breeds none of the other Gibbs chains showed a similar pattern, neither the three

other chains run with modell, nor the four chains run with model 2. For these

chains a burn-in period of 50000 rounds of Gibbs sampling seems to be

sufficient by far. They seem to have reached their stationary distribution already

after a few thousand rounds. The reasons for this strange behaviour discovered in

two Gibbs chains are not entirely dear. With the proper prior distributions

chosen for random effects and (co)variance components, property of the posterior

distribution should be guaranteed. Gibbs sampling programs were carefully

checked for errors, and were found to work correctly. Pseudo random number

sequences used were different for the affected chains of the two breeds, and

showed no problems when used for the other model-breed combinations. We

therefore believe, that the Gibbs sampier reached this different configuration of

(co)variance distribution among additive genetic and permanent environmental

effects for regression coefficients in the affected chains just by chance. This

configuration may be supported by the data with some low probability, but is not

likely to represent the true state of nature. Slow mixing of Gibbs chains may be

the reason why the sampier got stuck in this configuration for so many rounds of

Gibbs sampling. Because sampies of (co)variances left what is believed to be the
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true highest density region of the stationary distribution for a substantial number

of rounds, we decided not to use the affected chains for inferences on model

parameters. Increase in additive genetic and decrease in permanent

environmental (co)variance of regression coefficients would have had a major

impact on estimates of heritabilities. To guarantee a fair comparison of results

between the two models, one additional Gibbs chain was run for both breeds with

modell, which behaved completely normal for both breeds. Thus, inferences on

model parameters are based on four chains with a total of 800 000 sampies (after

burn-in) for a11 four model-breed combinations.

Table III: Sums of estimates of effective sampie size for elements of covariance

matrices of intercept, linear and quadratic regression coefficients for daily feed

intake (both models), the constant residual variance (modell) and parameters Yi

describing the course of the residual variance under model 2, based on sampies

after burn-in of four Gibbs chains (800000 sampies total). Large White data.

Model effect I element (1,1)

additive genetic 250

perm. env. pen 20451

Modell perm. env. litter 1983

ind. perm. env. 800

residual variance 199702

additive genetic 216

perm. env. pen 20102

Model 2 perm. env. litter 1527

ind. perm. env. 505

Yo, Yl, Y2 38025

(2,1) (2,2) (3,1) (3,2) (3,3)

265 58 241 52 52

18198 20113 18523 21703 23717

254 90 243 88 87

692 493 594 431 396

128 51 106 53 61

19180 21121 20277 22475 25498

282 105 291 109 115

329 484 253 443 414

33130 34576

Sums of estimates of effective sampie size of the four chains run for each model­

breed combination are shown in Table III (Large White) and IV (French

Landrace). For a11 model-breed combinations lowest estimates of effective
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sampie Slze were found for estimates of additive genetic (co)variance

components. Low estimates of effective sampie size indicate slow mixing of

Gibbs chains, which is considered the main reason for the long burn-in period

that was chosen. Within effects, estimates are lowest for variances of linear and

quadratic regression coefficients and their covariance, with the exceptions of

permanent environmental effect of pens for Large White (both models) and

individual permanent environmental effects under model 2 for both breeds.

Table IV: Sums of estimates of effective sampie size for elements of covariance

matrices of intercept, linear and quadratic regression coefficients for daily feed

intake (both models), the constant residual variance (modell) and parameters

describing the course of the residual variance under model 2, based on sampies

after burn-in of four Gibbs chains (800 000 sampies total). French Landrace data.

Model effect / element (1,1)

additive genetic 635

perm. env. pen 18064

Modell perm. env. litter 3506

ind. perm. env. 1028

residual variance 189164

additive genetic 636

perm. env. pen 17138

Model 2 perm. env. litter 3558

ind. perm. env. 1235

Yo, Yl, Y2 24512

(2,1) (2,2) (3,1) (3,2) (3,3)

259 196 222 205 245

9874 2910 8846 2651 2781

1147 546 931 529 554

996 1260 1071 1394 1446

275 140 267 199 207

10380 2656 9568 2414 2523

1683 358 1507 347 366

1370 850 1162 764 715

10598 10954

Highest estimates of effective sampie size were found for parameters describing

the residual variance and for (co)variances of permanent environmental effects of

pens. On average, permanent environmental effects of pens were estimated based

on records of 6.5 animals for Large White and 4.1 animals for French Landrace,

respectively. For all other random effects of regression coefficients the average
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number of animals with records per level of effect is much lower. The number of

animals with records was 1.9 per litter for Large White and 1.8 per litter for

French Landrace, respectively, one per level of individual permanent

environmental effect and considerably less than one per level of additive genetic

effect (0.31 for Large White and 0.33 for French Landrace, respectively,

including ancestors in the pedigree). Mixing of Gibbs chains for (co)variance

components of random regression coefficients thus seems to depend on the

amount of information available in the data to estimate each level of the random

effect considered. For most parameters estimates of effective sampie size are not

high enough to allow for accurate density estimates. For this purpose at least a

few thousand independent sampies from the posterior distribution are required

[20]. Therefore only estimates of posterior means will be given and density plots

of every 100th sampie can only give an indication of distributions.

3.2. Heritabilities and correlations

Estimates of heritabilities and correlations of regression coefficients for daily

feed intake are shown in Table V. French Landrace pigs show a quite high

heritability for the scalar regression coefficient with modell, which is reduced

substantially under model 2, but still remains higher than for Large White pigs.

Heritabilities for linear and quadratic regression coefficients are higher for Large

White pigs than for French Landrace, but also reduced under model 2 compared

to modell (Table V). These heritabilities already show, that it is easier to change

the overall level (associated with the intercept regression coefficient) than the

shape of feed intake curves (associated with linear and quadratic regression

coefficients).

Phenotypic correlations are very similar for both breeds and also between

models, whereas genetic correlations differ substantially between breeds

(Table V). For French Landrace genetic correlations between the intercept and

linear as weIl as quadratic regression coefficients are more in line with

phenotypic correlations than for Large White. Differences between genetic and
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phenotypic correlations between linear and quadratic regression coefficients are

smaller in Large White than in French Landrace. The reason for these differences

may be found in (co)variance components of individual permanent

environmental regression coefficients, as pen and litter explain only a small part

of permanent environmental variation (data not shown).

Table V: Heritabilities (bold), genetic (above diagonals) and phenotypic (below

diagonals) correlations of intercept, linear and quadratic regression coefficients

for daily feed intake.

Model \ Breed Large White French Landrace

intercept 0.14 0.01 0.02 0.30 -0.62 0.36

Modell linear -0.47 0.11 -0.84 -0.48 0.04 -0.27

quadratic 0.29 -0.89 0.11 0.31 -0.91 0.03

intercept 0.14 -0.04 0.10 0.21 -0.51 0.26

Model 2 linear -0.52 0.06 -0.73 -0.53 0.04 -0.36

quadratic 0.33 -0.89 0.06 0.36 -0.92 0.04

Eissen [6] estimated heritabilities and correlations of feed intake curve

parameters in a two step approach. First he fitted linear polynomials depending

on days on test to daily feed intake records of growing Duroc pigs. Afterwards he

used intercept, linear regression coefficient and residual standard deviation of the

fit for individual pigs in a multivariate analysis. For both intercept and linear

regression coefficient he found a heritability estimate of 0.32, which is except for

intercept of French Landrace much higher than our estimates for the

corresponding parameters (Table V). His estimates of genetic and phenotypic

correlations between intercept and linear regression coefficient are -0.38 and

-0.62, which is in the same range as our estimates, except for genetic correlations

of Large Whites (Table V).
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Figure 2: Density plots of heritabilities, genetic and phenotypic correlations of

intercept, linear and quadratic regression coefficients far Large White, calculated

fram every 100th Gibbs sampie of covariance matrices used for inferences under

modell and model 2 (8 000 sampies each).
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Figure 3: Density plots of heritabilities, genetic and phenotypic correlations of

intercept, linear and quadratic regression coefficients for French Landrace,

calculated from every 100th Gibbs sampie of covariance matrices used for

inferences under modell and model 2 (8 000 sampies each).
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Density plots (Figures 2 and 3) of heritabilities and correlations calculated fram

every IOOth sampie of (co)variances indicate how accurate these parameters can

be estimated fram our data. Phenotypic correlations are very weIl estimated for

all model-breed combinations, as can be seen fram their high and narraw density

plots. Quite contrary, density plots of genetic correlations (note the different

scales) are flat over almost the whole parameter space. This indicates, that

information on genetic parameters is very limited in both data sets, which may

also be the reason for the slow mixing of genetic parameters. Differences

between models in the shape of density plots of correlations are small and must

be interpreted carefuIly, as estimates of effective sampie size were very low für

additive genetic (co)variances (Tables III and IV). A little difference can be

found in Large Whites für the genetic correlation between linear and quadratic

regression coefficients (Figure 2), which shows a little peak dose to the lower

end of the parameter space in modelland not in model 2. For phenotypic

correlations only positions of means differ slightly. Density plots of heritabilities

are intermediate in height and width compared to genetic and phenotypic

correlations. Heritabilities show more accentuated peaks for linear and quadratic

regression coefficients than for the intercept regression coefficient. This may be

due to the fact that these low heritabilities are situated dose to the lower limit of

the parameter space.

3.3. Course of variances and heritabilities

Figures 4 and 5 show the course of the additive genetic variance, the sum of the

three permanent enviranmental variances and the residual variance für weekly

means of daily feed intake estimated with models 1 and 2 for Large White and

French Landrace growing pigs. As litter and pen explain only a very small part of

the total variation, permanent enviranmental variances were summed to reduce

the number of lines in the figures. Variances were plotted for the first eleven

weeks on test only, as there are substantially less animals with records in weeks

12 and 13 (Table I). Course of variances is quite similar for both models, except
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for the residual variance, which is constant in modell, while it starts low in

model 2 and gets quite high towards the end of the testing period. For both

breeds, the sum of permanent environmental variances for model I is smaller in

the beginning and larger towards the end of the testing period than for model 2.
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Figure 4: Course of variances for daily feed intake (kg) of Large White growing

pigs for models land 2.

Under model 2, lower residual variance in early test weeks is partly compensated

by higher permanent environmental variance, and vice versa for late test weeks.

While the course of genetic variance is similar for Large White and French

Landrace pigs, the pattern shown for the permanent environmental variance is

different and less regular than for the genetic variance. This has also an influence

on the course of heritabilities for weekly means of feed intake per day (Figure 6),

which shows a different pattern for French Landrace than for Large White pigs.

The general rise of variance during the testing period may partly be due to the

fact that the feed intake capacity of animals increases with age and size, but it

mayaiso be influenced by variable length of testing periods, as less (slower

growing) animals have records in the last two or three weeks (Table I). Because
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length of testing periods of individual pigs depends on body weight gain, fit of

polynomials for faster growing pigs is based on less records than for slower

growing pigs. As accuracy of polynomial fit can only be guaranteed between the

first and last record of an individual pig, daily variance may be overestimated for

late weeks because polynomials of fast growing pigs are not accurate any more.
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Figure 5: Course of variances for daily feed intake (kg) of French Landrace

growing pigs for models 1 and 2.

Heritabilities found in this study are substantially lower than the estimate of 0.42

for average daily feed intake found by Labroue et al. [17] for the same data. Most

of this difference may be explained by the difference in methodology, as the

residual variance (around curves) is reduced by averaging daily feed intake over

the whole testing period. Compared to the model with weekly means of daily

feed intake that was used here, the residual variance is reduced by a factor equal

to the average number of weeks that animals were on test. In her PhD-thesis,

Labroue [16] also estimated heritabilities for weekly means of feed intake in

weeks 2, 6 and 10 of the testing period based on the same data. These estimates

are lower than the estimate for average daily feed intake, but on average still 0.1
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higher than our results (Figure 6), except for the slightly Iower estimate of

heritability in week 6 for French Landrace. These differences can not be

explained by reduction of residual variance, as weekly means of daily feed intake

were used in both studies. One possible reason are differences in effects included

in the models. Labroue [16] used a fixed effect for group size, while group

effects were included as random permanent environmental effect of pen in this

study. But as variance of permanent environmental effect of pens is small

compared to additive genetic variance, this explains only about ten percent of

differences in heritability estimates.
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Figure 6: Course of heritabilities for daily feed intake (kg) of Large White and

French Landrace growing pigs for models 1 and 2.

Our heritability estimates for weekly means of daily feed intake are slightly

lower than the values found by Von Felde et al. [25]. Heritability estimates of

Hall et al. [11] for four biweekly means of daily feed intake lay in between the

ones found here and those of Von Felde et al. [25]. They are comparable to our

results for Large White pigs, if the reduction of the residual variance due to

biweekly means (compared to weekly means) is accounted for. The estimate of
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de Haer and de Vries [3] for heritability of average daily feed intake lies in the

middle range of our estimates for weekly means of daily feed intake, while

estimates from other studies are higher [6, 11, 17,25].
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Figure 7: Course of weekly means of daily feed intake (kg) for males and

castrates of Large White (left panel) and French Landrace (right panel) growing

pigs estimated with models 1 and 2, as wen as from data of each test week

separate!y.

3.4. Model fit

Estimates of feed intake curves for fixed effects of sex (Figure 7) are almost

identical for both models. For males, fit of polynomials with estimates from

single test weeks is very good for the first eight test weeks, while differences get

more pronounced as number of animals with records decreases. For castrates, fit

of polynomials is better in late test weeks than for males. As castrates grow

slower on average than males, a higher proportion of castrates has records in late

test weeks, which leads to a better fit of polynomials in late test weeks.

Phenotypic variances of weekly means of daily feed intake (Figure 8) are very

similar for both methods of correcting data for fixed effects. Therefore only

results of the analysis of variance are shown, using a fixed effects model for each

test week separately. As expected from the model, estimates from model 2 are

closer to estimates from data corrected for fixed effects (sex and bateh) für the
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first eight weeks of the testing period than estimates from modell. Für the

remaining five weeks estimates from modell are better, except for the last week

of French Landrace. Differences between breeds in phenotypic variance

estimated from corrected data for last test weeks occurred only by chance, as a

few castrated French Landrace pigs with big differences in weekly means of

daily feed intake happened to be paired in two batches. Generally, model

estimates of phenotypic variance are too high for later test weeks, where the

number of animals with records is reduced (Table I). This supports that

polynomials fitted to feed intake records of fast growing pigs may be inaccurate

after they finished the test and therefore cause overestimated daily variances for

late weeks (see section 3.3 and Figures 4 and 5).
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Figure 8: Course of phenotypic variance for weekly means of daily feed intake

(kg) of Large White (left panel) and French Landrace (right panel) growing pigs

estimated with models 1 and 2, as weIl as from data corrected for fixed effects

(sex and batch) of each test week separately.

For both breeds curves of residual variances of models 1 and 2 intersect between

weeks 6 and 7 (Figures 4 and 5). The constant residual variance in modell is

likely to overestimate the true residual variance in the first and to underestimate

it in the second half of the testing period. The quadratic polynomial used to fit

the natural logarithm of the residual variance of each test day in model 2
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(equation (3)), results in an almost perfect fit of phenotypic test day variance for

the first eight weeks of the testing period (Figure 8). Afterwards, the phenotypic

test day variance estimated with modell fits estimates from data of single test

days corrected for fixed effects better. This is just because in late test weeks the

underestimated residual variance of modell partly compensates for the

overestimated daily variance due to random regression coefficients, which is

even higher with modell than with model 2 (Figures 4 and 5). Therefore

model 2 is preferred over modell.

3.5. Genetic eigenfunctions and eigenvalues

Any conceivable evolutionary change in a populations mean feed intake curve

can be written in terms of a weighted sum of the eigenfunctions. The rate at

which a population will evolve from its current mean feed intake curve to some

new curve favoured by selection is determined by the eigenvalues associated

with eigenfunctions responsible for that change. A large eigenvalue indicates that

a change corresponding to that eigenfunction will happen rapidly, while a small

eigenvalue indicates that the change will be slow [15].

Eigenfunctions ca1culated from estimates of genetic (co)variance matrices of

random regression coefficients do not differ much between models and are also

very similar for the two breeds (Figure 9). Between 83 and 90 % of the genetic

variance for the course of daily feed intake is explained by the first

eigenfunction, without change of signs but increasing difference from zero

during the testing period. This means that selection in one direction at any time

during the testing period will cause a response into the same direction over the

whole period, which would be bigger for last than for first weeks of the testing

period. The second eigenfunction changes signs shortly after nine weeks of the

testing period, which is when fastest growing pigs already reached the desired

slaughter weight. Its response to selection would be bigger in the beginning than

towards the end of the testing period, while the opposite applied to the first

eigenfunction. The third eigenfunction changes signs earlier in the testing period,
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but explains less than one percent of the variance in feed intake curves, which is

negligible. Selection für higher feed intake in the beginning of the testing period,

and constant or lower feed intake towards the end, would involve the second (for

increasing feed intake in the beginning), as weIl as the first eigenfunction (for

decreasing feed intake towards the end of the testing period). Much more weight

would have to be placed on the second eigenfunction, as its associated eigenvalue

is much smaller than the one of the first eigenfunction. Changing feed intake

curves by selection in the desired way thus seems to be difficult, although not

impossible.
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Figure 9: Eigenfunctions for daily feed intake (kg) of Large White (left panels)

and French Landrace (right panels) growing pigs for models 1 (upper panels) and

2 (lower panels). Eigenvalues transformed to apercent scale (legend) indicate

relative importance of corresponding eigenfunctions.
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4. Conclusions

Random regression coefficients provide more information on daily feed intake of

growing fattening pigs than a simple mean over the whole testing period. The

amount of information is comparable to a multivariate analysis of weekly means

of feed intake per day, taken over the whole testing period. The advantage of the

random regression model is, that fewer parameters (traits) are needed to describe

this information. But it is not sure, whether this additional information can be

used to improve efficiency of lean growth. Flat posterior distributions of genetic

correlations indicate, that information on genetic regression coefficients

(especially linear and quadratic) seems to be limited in the data. This may be

because the number of animals with records was quite low compared to the high

number of levels of genetic effects to be estimated. This lack of information and

the complexity of the random regression model seem to be the main reasons for

the slow mixing of Gibbs chains of genetic (co)variances. From heritabilities of

random regression coefficients of feed intake curves we conclude, that changes

of the overall level are easier to achieve than changes of slope or inflexion of

feed intake curves. Genetic eigenfunctions also reveal that an improvement of

feed efficiency by selection on the shape of feed intake curves seems difficult.

For a final assessment of possible routes of improvement of efficiency of lean

growth by means of selection on feed intake curve parameters, correlations with

other traits might be helpful, such as daily gain, feed conversion ratio and carcass

traits. For this further research is needed.
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Abstract

Chapter 5

A random regression model for daily feed intake and a conventional multiple

trait animal model for the four traits average daily gain on test (ADG), feed

conversion ratio (FCR), carcass lean content and meat quality index were

combined to analyse data from 1449 castrated male Large White pigs

performance tested in two French central testing stations in 1997. Group housed

pigs fed ad libitum with electronic feed dispensers were tested from 35 to 100 kg

live body weight. A quadratic polynomial in days on test was used as a

regression function for weekly means of daily feed intake and to describe its

residual variance. The same fixed (batch) and random (additive genetic, pen and

individual permanent environmental) effects were used for regression

coefficients of feed intake and single measured traits. Variance components were

estimated by means of a Bayesian analysis using Gibbs sampling. Four Gibbs

chains were run for 550 000 rounds each, from which 50 000 rounds were

discarded from the burn-in period. Estimates of posterior means of covariance

matrices were calculated from the remaining two million sampies. Low

heritabilities of linear and quadratic regression coefficients and their

unfavourable genetic correlations with other performance traits reveal that

altering the shape of the feed intake curve by direct or indirect selection is

difficult.
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1. Introduction
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Electronic feeders installed in central testing stations allow for the measurement

of individual daily feed intake of performance tested growing pigs. Today' s pig

selection programs only make use of these data by calculating average daily feed

intake as a simple mean of daily feed intake records over the whole testing

period. We have shown in a previous study that more information can be retained

from these data with a random regression model, using a quadratic polynomial to

describe the course of daily feed intake of growing fattening pigs [11]. Genetic

eigenfunctions and low heritabilities of linear and quadratic random regression

coefficients of daily feed intake indicate that changes of the overall level are

easier to achieve than changes of slope or inflexion of feed intake curves. It

therefore seems difficult to improve the efficiency of lean growth by selecting for

a higher feed intake in the beginning of the fattening period while leaving the

feed intake capacity at its present level towards the end [11]. Such an advantage

over the use of traditional traits (average daily feed intake, average daily gain

and/or the ratio of the two, i.e. feed conversion) for selection of pigs for growth

performance would be necessary to justify the use of a random regression model

for routine evaluations.

Correlations of random regression coefficients for feed intake with traditional

single measured performance traits of growing pigs might help to judge the

potential of random regression models for future pig breeding programs. To our

knowledge, no attempt has been published to combine a random regression

model for a trait with repeated measurements with a conventional multiple trait

model far single measured traits in a joint analysis.

The objective of this study was to combine the random regreSSIOn model

previously used for the analysis of daily feed intake data [11] with a multiple trait

model for single measured performance traits of growing pigs and to assess
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possible routes of improvement of the efficiency of lean growth based on

estimates of genetic and phenotypie correlations obtained from this joint analysis.

2. Material and methods

2.1. Data

1 449 castrated Large White pigs were performance tested in two French central

testing stations in 1997. Growing pigs were housed in group pens equipped with

one electronic feed dispenser each (Acema-48, Acemo, Pontivy, Morbihan,

France), where ad libitum daily feed intake was recorded. Groups that were on

test during the same period of time on the same testing station form a batch.

There was a total of 155 groups in 13 batches. After one week of adaptation to

the automatie feed dispensers, pigs were put on test with about 35 kg live body

weight and slaughtered after end of test with 100 kg live body weight on average.

Weekly means of feed intake per day were calculated and saved as the record of

the middle day of the test week, in order to reduce the amount of data for the

evaluations. Whenever records of more than one day per week were missing, an

the records of this week were discarded and the weekly mean was set to missing.

This resulted in records for days 4, 11, 18, ... , 81, 88, 95 (Table I). Other traits

included in this evaluation were average daily gain and feed conversion ratio

calculated for the period between start and end of test, as wen as carcass lean

content and meat quality index determined after slaughtering of tested animals.

Table I: Number (n) and proportion (%) of tested animals with records for

weekly means of daily feed intake by test week (or corresponding test day).

Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Day 4 11 18 25 32 39 46 53 60 67 74 81 88 95

n 1423 1444 1443 1441 1442 1435 1423 1407 1378 1213 713 225 51 3

% 98.2 99.7 99.6 99.4 99.5 99.0 98.2 97.1 95.1 83.7 49.2 17.6 3.5 0.2
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2.2. Model
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The following random regression model, which is a quadratic polynomial in days

on test dm was fitted to weekly means of daily feed intake records:

Yijkm = batchok + batchlk *dm+ batch2k *d;

+ aOi + ali *dm+ *d2
a2i m

+ PO) + Pl)*dm+ *d2 (1)P2) m

+ eOi + e1i *dm+ *d2
e2i m

+ cijkm

where batchnk are fixed regressions for the period and station of test; ani are

random regressions for animal additive genetic effects; Pnj and eni are random

regressions for permanent environmental effects of pen and the tested individual,

respectively; Eijkm is a random residual error which accounts for daily deviations

of feed intake from the expected trajectory of animal i on day dm. What is called

"permanent environmental effect of the tested individual", is a residual for

regression coefficients. This random regression model corresponds to the one

used in a previous analysis of daily feed intake records of performance tested

growing pigs [11]. Fixed regression coefficients due to the gender of the animals

as weIl as random regression coefficients due to litter permanent environmental

effects were dropped from the model, since only castrated males were tested,

which usually had no litter mates on test.

Daily deviations from the estimated feed intake curve of an animal (residuals

Eijkm) were assumed to be independent of each other. All the animals were

assumed to have the same residual variance for feed intake on a given day on test

dm, which was modelled as follows:

2 - ( *d *d2)(jE
m

- exp Yo + Yl m + Y2 m (2)

In a previous analysis, this model for the residual variance proved to be better

than a constant residual variance over the whole testing period [11]. Changes in

the magnitude of the residual variance are mainly due to scale effects, since daily
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feed intake of pigs mcreases with stornach and gut size during the growmg

period.

The model for single measured performance traits average daily gam, feed

conversion ratio, carcass lean content and meat quality index contains the same

fixed and random effects as for regression coefficients for weekly means of daily

feed intake. Additionally, live weight at the end of test (before slaughtering) was

included as a covariable for average daily gain and feed conversion ratio:

Ynijk =ßn *weight; + batchnk + an; + Pnj + en; + cnijk (3)

where Ynijk is the record for trait n of animal i in pen j and batch k. ßn is the

regression of trait n on the covariable weight at end of test. For the combination

of the two models, additive genetic (anD and permanent environmental effects of

pen (Pnj) of single measured traits (n) are assumed to be correlated with the

corresponding effects for random regression coefficients for daily feed intake.

Since residuals for regression coefficients are fitted explicitly as individual

permanent environmental effects in the random regression model for daily feed

intake, such individual permanent environmental effects (enD were also fitted for

single measured traits. Individual permanent environmental effects are assumed

to be correlated among single measured traits and regression coefficients for feed

intake. The residuals Gnijk of single measured traits correspond to the residuals

Gijkm in equation (l), which account for deviations of daily feed intake from the

expected trajectory. Residuals Gnijk of single measured traits are assumed to be

normally distributed and independent of each other as well as from residuals of

daily feed intake. The two residual terms in model (3) for single measured traits

(eni and Gnijk) were included to reach compatibility with the random regression

model (l) for daily feed intake. Explicitly fitting individual permanent

environmental effects eni in a random regression model is necessary for a proper

definition of heritabilities of regression coefficients, since they play the role of

residuals for these artificial traits [11]. If one desires to allow for correlations

between these explicitly fitted residuals of regression coefficients and residuals
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of single measured traits in a joint analysis, the only possibility is to fit individual

permanent environmental effects explicitly for single measured traits also.

Normal distribution of feed intake data and single measured performance traits is

assumed:

y Ib,a,p,e,aL, - N{Xb+Za+ Vp+ We,IaLJ (4)

y is a vector containing data for all traits; b is a vector containing fixed effects for

batch and regressions ßn on the covariable weight at end of test; a is the vector of

additive genetic effects; p and e are vectors containing permanent environmental

effects; X, Z, V and Ware incidence matrices; I is the identity matrix and aL, is

the residual variance around feed intake curves for day on test dm , or the variance

of uncorrelated residuals for single measured traits, respectively.

The following assumptions were used for the distributions of fixed and random

effects:

b - constant

alA,Go -N{O,(A®Go)}

plPo - N{O,(I ® po)}

elEo - N{O,(I®Eo)}

(5)

A is the numerator relationship matrix, Go is the (co)variance matrix of random

additive genetic effects and Po and Eo are (co)variance matrices for random

permanent environmental effects. All these (co)variance matrices are of

dimension 7 x 7 (three regression coefficients plus four single measured traits).

Informative priors with low numbers of degrees of freedom were used for the

variance components. For the 7 x 7 (co)variance matrices Go, Po and Eo, inverse

Wishart distributions with nine degrees of freedom were used. Scale parameters

for inverse Wishart prior distributions (Tables II and III) were chosen such that

resulting expected values of covariance matrices corresponded to our

expectation. Expected values for (co)variances of feed intake regression

coefficients were taken from our results of an earlier study [11], while genetic
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Table 11: Lower diagonal elements of the symmetrie scale matrix SG for the

inverse Wishart prior distribution of the additive genetic covariance matrix (Go)

between intercept, linear and quadratie regression coefficients for daily feed

intake and single measured performance traits average daily gain (ADG), feed

converSlOn ratio (FCR), carcass lean content (CLC) and meat quality index

(MQI).

1.40e-5 symmetrie

-7.00e-8 1.90e-9

0.0 0.0 3386.0

0.0 0.0 -2.186 0.0080

0.0 0.0 0.0 -0.0990 7.620

0.0 0.0 0.0 0.0141 -0.1451 1.105

Trait Intercept

Intercept 2.23e-2

Linear -3.60e-4

Quadratic 2.90e-6

ADG 4.90

FCR 1.90e-3

CLC -1.562e-l

MQI 1.486e-2

Linear Quadratic ADG FCR CLC MQI

and permanent environmental (co)variances for single measured performance

traits were derived from Labroue et al [7]. Their results for average daily feed

intake were used for genetic correlations between single measured traits and the

intercept of feed intake curves. Priors for genetie covariances of single measured

performance traits with linear and quadratic regression coefficients of daily feed

intake were set to zero (Table 11), since no prior information about their true

value was available. For simplicity, prior values of all permanent environmental

covariances of single measured traits were also set to zero (Table 111). Total

permanent environmental (co)variance (Table 111) was divided into its

components pen (Po) and individual (Eo) permanent environmental (co)variance

with a ratio of 1 to 9. Priors for parameters J1J, YJ and Y2, that describe the course

of the residual variance aL for weekly means of daily feed intake, were assumed

independent of each other and normally distributed with standard deviations of

1.5 (J1J), 0.1 (YJ) and 0.01 (Y2). These standard deviations represent a relatively
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wide range of values, that parameters ')1), 'YJ and 'Y2 might reasonably take. The

same values were used in an earlier study [11], where they were chosen to

express the low level of knowledge about distributions of these parameters. As

the Metropolis-Hastings algorithm performed weIl with these values, they were

not changed for the present study.

Table 111: Lower diagonal elements of the symmetrie scale matrix SPE for the

inverse Wishart prior distribution of the total permanent environmental

covariance matrix (sum of Po and Eo) between intercept, linear and quadratic

regression coefficients for daily feed intake and single measured performance

traits average daily gain (ADG), feed conversion ratio (FCR), carcass lean

content (CLC) and meat quality index (MQI).

1.96e-4 symmetrie

-2.62e-6 3.97e-8

0.0 0.0 5079.0

0.0 0.0 0.0 0.032

0.0 0.0 0.0 0.0 3.267

0.0 0.0 0.0 0.0 0.0 4.418

Trait Intercept

Intercept 3.06e-2

Linear -1.14e-3

Quadratic 1. l1e-5

ADG 0.0

FCR 0.0

CLC 0.0

MQI 0.0

Linear Quadratic ADG FCR CLC MQI

Unlike residuals for daily feed intake in a random regression model, uncorrelated

residuals for single measured traits can not be distinguished from individual

permanent environmental effects. To avoid difficulties of distribution of variance

between the two environmental effects of single measured traits, the residual

variance a;n was not estimated, but fixed to a value 10000 times smaller than

the expected phenotypic variance of the trait. This computational trick forced the

residual variance of single measured traits to be attributed to the individual

permanent environmental (co)variance matrix Eo. This is illustrated below for

two traits with repeated and single measurements, respectively. Suppose, the true
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permanent environmental and residual (co)variance structures for these two traits

are given by:

(6)

If the residual variance can be estimated for the trait with repeated measurements

(trait 1) and is fixed to a small value l (smaller than the true value) for the single

measured trait (trait 2), above components will be estimated as:

s~ ]
(7)

The major part of residuals of the single measured trait will thus be included in

explicitly fitted permanent environmental effects, if the mixed model equations

are built with these (co)variance components. As long as the value chosen for l
is smaller than the (unknown) true residual variance of the single measured traits,

estimates of covariances in (7) will certainly be unbiased. As long as the

permanent environmental correlation calculated from Eo in equation (7) does not

reach the limits of the parameter space, even higher values than the true residual

variance can be chosen for l. The following conditions must always hold:

(8)

The value zero is not allowed for l because R in (7) has to be positive definite.

2.3. Variance components estimation

For the estimation of (co)variance components our own programs were used,

applying Bayesian methodology using Gibbs sampling. The joint posterior
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distribution of the parameters given the data is the product of the likelihood and

the prior distributions of all parameters. From there marginal distributions are

derived easily, as they only have to be known up to proportionality. This results

in normal distributions for solutions of covariables, fixed and random effects and

in inverse Wishart distributions for the (co)variance matrices for additive genetic

and permanent environmental effects. The parameters IV, YJ and YJ, that describe

the course of the residual variance er; , had to be sampled via a Metropolis-
m

Hastings algorithm, as their distribution is not a standard one. A detailed

description of the procedure used can be found in Schnyder et al. [11]. Mixed

model equations (MME) were processed block wise by means of Cholesky

decomposition and backsubstitution when generating new solutions in the Gibbs

sampier. The data was analysed including (modell) and excluding (model 2)

"weight at end of test" as a covariable for single measured traits average daily

gain and feed conversion ratio, to investigate the influence of this covariable on

heritability estimates. For both models four Gibbs chains were run, with 550 000

sampies each.

2.4. Post-Gibbs analysis

Burn-in was determined for all (co)variances by the method of Raftery and Lewis

[10], using their Fortran program "gibbsit". Additionally, line plots of sampies of

(co)variance components from every 100th round of Gibbs sampling were used to

check convergence of parameters to their stationary distributions. For graphical

analysis of Gibbs chains the statistical software package S-Plus [8] was used.

Sampies from the burn-in period of each chain were discarded, and posterior

means calculated from the remaining sampies served as estimates of (co)variance

components.

Heritabilities, genetic and phenotypic correlations were calculated from sampies

of (co)variance components. For regression coefficients for feed intake, the

phenotypic covariance matrix is defined as the sum of additive genetic (Go) and
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permanent environmental (Po, Eo) covariance matrices [11]. For single measured

traits, the residual variance is also included, i.e. the fixed value i from equation

(7) is added to the sum of estimated additive genetic and permanent

environmental variances. For heritabilities, genetic and phenotypic correlations,

effective sampie size [12] and standard errors of posterior means (Monte Carlo

errors) were estimated using estimates of Monte Carlo variance obtained by the

method of initial monotone sequence estimator [3]. This estimator was preferred

by Geyer [3] over the initial positive sequence estimator, because of making

large reductions in the worst overestimates while doing little to underestimates.

Each Gibbs chain was processed separately, using sampies after burn-in only.

Estimates of effective sampie size were summed over the four Gibbs chains. The

variance of an arithmetic mean of n independent values is equal to the original

variance of these values divided by n (see e.g. [13]). Therefore, estimates of

standard errors of overall estimates of posterior means of (co)variance

components, are obtained by averaging estimates of standard errors of posterior

means of the four individual chains, dividing this average by two.

(Co)variances between daily feed intake records and single measured

performance traits were calculated from posterior means of (co)variance matrices

of random regression coefficients for feed intake and single measured

performance traits as shown in equation (9) below for additive genetic

(co)variances:

(9)

CG is a matrix containing genetic (co)variances between daily measurements of

feed intake and single measured performance traits of dimension (m + n) rows by

(m + n) columns, where m is the number of days (weeks) with measurements of

feed intake and n is the number of single measured traits; Go is the genetic

(co)variance matrix between the 3 random regression coefficients for daily feed
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intake and the n single measured traits; <I> is a matrix of (m + n) rows by (3 + n)

columns consisting of (m by 3) matrix <l>m containing covariables for quadratic

polynomials (1, day, dal) for each day with feed intake records in the upper left

corner and the (n by n) identity matrix In in the lower right corner, with zeros

everywhere else. If Go is split into its submatrices corresponding to (co)variances

of regression coefficients for feed intake (Gt,t), (co)variances of single measured

traits (Gz,z) and covariances between regression coefficients and single measured

traits (Gt,z), CG can be written as follows:

c =[~mGl'l~~ ~mGl'2]
G G2,1~~ G 2,2

(10)

Residual variances around feed intake curves were calculated for the same m

days with measurements of feed intake according to equation (2), using posterior

means of parameters 71J, YI and 'Y2. The sum of calculated additive genetic (CG)

and permanent environmental (Cp and CE) (co)variance matrices, with residual

variances around feed intake curves (a; ) added to variances of daily feed intake
m

and fixed residual variances (a;n) added to variances of single measured traits,

yields the phenotypic (co)variance matrix C between weekly means of daily feed

intake and single measured performance traits:

(11)

From additive genetic and phenotypic (co)variance matrices, heritabilities,

genetic and phenotypic correlations were calculated. Course of variances and

heritability for weekly means of daily feed intake, genetic and phenotypic

correlations between weekly means of daily feed intake, as weIl as their

correlations to single measured traits, were plotted for the whole testing period.
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3. Results and discussion

3.1. Behaviour of the Gibbs sampier

Burn-in periods estimated with the fortran program "gibbsit" by Raftery and

Lewis [10] differed substantially between parameters, chains and specified

quantiles of interest. Highest estimates were found for estimation of 50 %­

quantiles of genetic variances of single measured traits carcass lean content and

meat quality index. Based on these estimates and after graphically checking

whether Gibbs chains had converged to a stationary distribution, 50 000 munds

of burn-in were chosen for all parameters of all chains.

Table IV: Estimates of effective sampie size (sum over four Gibbs chains) for

heritabilities (bold), genetic (above diagonal) and phenotypic (below diagonal)

correlations of intercept, linear and quadratic regression coefficients for daily

feed intake, and for single measured performance traits average daily gain

(ADG), feed conversion ratio (FCR), carcass lean content (CLC) and meat

quality index (MQI). Modell with covariable "weight at end of test" for ADG

andFCR.

Trait Intercept Linear Quadratic ADG FCR CLC MQI

Intercept 88 78 95 104 30 60 63

Linear 2280 70 84 71 49 62 75

Quadratic 1520 2532 59 67 33 50 45

ADG 513 605 433 29 20 34 47

FCR 1273 1388 2376 15 21 34 42

CLC 814 355 280 246 179 29 24

MQI 1645 1140 994 405 717 147 21

Sums of estimates of effective sampie size per Gibbs chain (Tables IV and V)

were very low compared to the 500 000 munds of Gibbs sampling ron after burn­

in for each chain (2 000 000 sampies total). Especially surprising was the



Chapter 5 105

estimate of effective sampie size for the phenotypic correlation between average

daily gain (ADG) and feed conversion ratio (FCR) in modell with covariable

"weight at end of test" for ADG and FCR (Table IV), which was much lower

than for model 2 without covariable for ADG and FCR (Table V). A possible

reason for this low estimate of effective sampie size for the phenotypic

correlation between ADG and FCR may be found in the special interrelations

between these traits. FCR is average daily feed intake divided by ADG and ADG

is weight at end of test minus weight at start, divided by the number of days on

test, i.e. both traits are ratios and the covariable specified for both traits is

involved too.

Table V: Estimates of effective sampie size (sum over four Gibbs chains) for

heritabilities (bold), genetic (above diagonal) and phenotypic (below diagonal)

correlations of intercept, linear and quadratic regression coefficients for daily

feed intake, and for single measured performance traits average daily gain

(ADG), feed conversion ratio (FCR), carcass lean content (CLC) and meat

quality index (MQI). Model 2 without covariable for ADG and FCR.

Trait Intercept Linear Quadratic ADG FCR CLC MQI

Intercept 39 22 34 79 35 39 40

Linear 2602 76 46 20 39 68 75

Quadratic 3142 2418 30 56 26 44 63

ADG 772 835 686 28 22 39 17

FCR 1277 1074 1033 197 21 33 26

CLC 629 471 352 106 209 29 33

MQI 598 978 735 213 415 138 26

The reason for the generally slow mixing of Gibbs chains can be found in fixing

the residual variance to a small value and explicitly fitting individual permanent

environmental effects for single measured traits. With such a model, traits are

fitted almost perfectly by the specified effects, which reduces the freedom of the
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sampier to change a single effect. This was confirmed by the convergence of a

Gauss-Seidel algorithm with a simulated data set. The calculations involved in

Gibbs sampling of fixed and random effects are almost identical with

calculations used in the Gauss-Seidel algorithm for solving the mixed model

equations. Convergence of a Gauss-Seidel algorithm and mixing of the Gibbs

sampier for a given model are therefore closely related. A data set was generated

according to a model similar to our model for single measured traits (3),

assigning relative values of 70 to the individual permanent environmental

variance and 30 to the residual variance. The mixed model equations for this data

were then set up using values 99.9 and 0.1 for individual p.e. and residual

variances, respectively, and solved using the Gauss-Seidel algorithm. The

solutions were the same as for the mixed model equations set up using the true

values for variance components, but it took many more rounds to reach the

convergence criteria. On the contrary, convergence was much faster if individual

permanent environmental effects were not fitted explicitly, but only taken

account of by assigning a value of 100 to the residual variance, i.e. the sum of the

true individual p.e. and residual variances. Such a parameterisation was used by

Meyer et al. [9] for a joint analysis of two traits with single and repeated

measurements, respectively. This would certainly also improve the mixing of the

Gibbs sampier for our single measured traits, but does not allow for residual

correlations between random regression coefficients and single measured

performance traits, as explicitly fitting individual permanent environmental

effects for regression coefficients is necessary for a proper definition of

heritability for these artificial traits [11]. Fixing residual variances to higher

values than the ones used in this study would already improve mixing of the

Gibbs sampier. One needs to make sure, though, that estimates of individual

permanent environmental covariances are not affected by the choice of fixed

residual variances (see equation (8».

The following strategy is recommended for the analysis of a random regression

model combined with single measured traits:
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1) run a short Gibbs chain with the residual variance of single measured traits

fixed to a small value (i ~ 1-10°% of phenotypic variance) to get an

indication of the distribution of variance among effects;

2) if necessary, adjust i based on individual permanent environmental

correlations (equation (8), new i higher if correlation dose to zero and lower

if dose to (-1) or 1);

3) then run the Gibbs sampier for as many rounds as needed for the desired

accuracy of estimates.

Table VI: Averages (!J-) and standard deviations (s.d.) over all tested animals for

intercept, linear and quadratic regression coefficients of daily feed intake

(coefficients fitted to records of each animal separately) and for single measured

performance traits average daily gain (ADG), feed conversion ratio (FCR),

carcass lean content (CLC) and meat quality index (MQI), together with

estimates of posterior mean of phenotypic standard deviations from the two

models with (aph 1) and without (aph 2) covariable "weight at end of test" for

ADGandFCR.

Trait Intercept Linear Quadratic ADG FCR CLC MQI

Unit kg kg/day kg/dal g kg/kg %

!J- 1.344 3.60e-02 -1.47e-04 851.74 2.918 56.67 10.734

s.d. 0.364 2.32e-02 3.33e-04 87.85 0.234 3.37 2.565

(Jph 1 0.250 I.48e-02 I.94e-04 67.82 0.274 2.64 2.449

(Jph 2 0.256 I.4ge-02 1.96e-04 83.56 0.217 2.64 2.447

Table VI compares model estimates of phenotypic standard deviations (Gibbs

posterior means) with a simple estimate of standard deviation from the raw data

(not corrected for fixed effects). For regression coefficients of daily feed intake

raw data estimates were obtained by first fitting a quadratic polynomial to feed

intake records of each animal separately and then treating the resulting regression
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coefficients like single measured traits. Mean values (Table VI) of intercept and

linear regression coefficients for daily feed intake are positive, while it is

negative for the quadratic regression coefficient. Values for the linear and

especially the quadratic regression coefficient are small, because they are

multiplied with the day of test and squared day of test, respectively, to yield

kilograms of daily feed intake. When comparing estimates of phenotypic

standard deviations in Table VI, another problem in the analysis with covariable

weight at end of test included in the model was discovered. Like fixed effects,

covariables are expected to reduce the variance of random effects. Therefore,

estimates of phenotypic standard deviation of ADG and FCR were expected to be

smaller for modell than for model 2. This was the case for ADG, but the

estimate of phenotypic standard deviation of FCR obtained with modell was

higher than estimates from both, model 2 and raw data. Instead of reducing

variances of random effects, fitting "weight at end of test" as a covariable for

FCR seemed to introduce additional variance. The reason for this erratic

behaviour of the Gibbs sampier was found in fixing residual variances of single

measured traits to a very small value and explicitly fitting residuals as individual

permanent environmental effects. Apparently, the Gibbs sampling algorithm was

not able to react appropriately if too high values were sampled for the solution ßn

of the covariable "weight at end of test" for FCR. Explicitly fitted individual

permanent environmental effects must have incorporated the changes of residuals

caused by the sampie for ßn. Since this had no influence on the fixed residual

variance used to set up the mixed model equations, the value for ßn was not

forced to be reduced in the next round of Gibbs sampling. For model 2 without

covariable "weight at end of test" for ADG and FCR, no such erratic effects

occurred. Cross-classified fixed and random effects seem to be less affected by

the missing feedback from the fixed residual variance, since the impact of a

change in the solution for one effect on the resulting "phenotypic fit" is much

smaller than for covariables. However, fixing the residual variance of single

measured traits to a very small value had an impact on the mixing of the Gibbs
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chain for this model too. In the following, only results from model 2 (without

covariable "weight at end of test" for ADG and FCR) will be reported, since

estimates of heritabilities and correlations were influenced by the erratic

behaviour of the Gibbs sampier with modell.

Table VII: Estimates of posterior means of heritabilities (bold), genetic (above

diagonal) and phenotypic (below diagonal) correlations of intercept, linear and

quadratic regression coefficients for daily feed intake, and für single measured

performance traits average daily gain (ADG), feed conversion ratio (FCR),

carcass lean content (CLC) and meat quality index (MQI).

Trait Intercept Linear Quadratic ADG FCR CLC MQI

Intercept 0.32 -0.02 0.83 0.82 0.50 -0.33 -0.04

Linear -0.40 0.06 -0.35 0.38 0.48 -0.55 0.57

Quadratic 0.28 -0.91 0.03 0.63 0.16 0.13 -0.24

ADG 0.30 0.29 -0.08 0.45 0.33 -0.28 0.29

FCR 0.25 0.11 -0.10 -0.34 0.21 -0.65 0.04

CLC -0.13 -0.24 0.13 -0.09 -0.44 0.79 -0.27

MQI 0.01 0.03 0.01 0.02 0.08 -0.11 0.25

3.2. Heritabilities and correlations

3.2.1 Feed intake curve parameters

The estimate of 0.32 for the heritability of the intercept regression coefficient of

daily feed intake (Table VII) is higher than what we have found in an earlier

study [11], and is identical with the estimate found by Eissen [2] in a two step

approach. Heritabilities for linear and quadratic regression coefficients are in the

same range as reported earlier. Phenotypic correlations are very similar to the

ones found earlier, but genetic correlations are different (Table VII). The genetic

correlation between the intercept and the quadratic regression coefficient is

higher than reported earlier for another set of Large White data [11], while the
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genetic correlation between linear and quadratic regression coefficients is lower.

Genetic correlations among regression coefficients (Table VII) indicate that

selection for a higher intercept might lead to flatter feed intake curves. But as

heritabilities of linear and quadratic regression coefficients are low, indirect

selection responses are expected to be small. This confirms that it is easier to

change the overall level than the shape of feed intake curves.
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Figure 1: Course of variances and heritability for weekly means of daily feed

intake (kg) of Large White growing pigs.

3.2.2 Weekly means of daily feed intake

Figure 1 shows the course of heritability, additive genetic, permanent

environmental and residual variances for weekly means of daily feed intake.

Week 14 is not shown, as only three animals had records in this last week of test

(Table I). Course of variances is similar to what we found earlier for Large White

and French Landrace pigs [11], but with increased additive genetic and reduced

permanent environmental variance. Consequently, heritability estimates are also

higher (Figure 1) than in our previous study [11]. Heritability for weekly means

of daily feed intake increases from 0.20 in the first week of the testing period to
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0.38 in week 10 (Figure 1), which is in the range of values reported by other

authors [4, 5, 6, 14]. Because of the relatively high variation around feed intake

curves, the heritability for weekly means of daily feed intake is lower in the first

seven weeks of the testing period (Figure 1) than the heritability of the intercept

regression coefficient (Table VII), which should represent a very similar

information. Selection for higher feed intake in the beginning of the testing

period should thus rather be based on the intercept regression coefficient than on

weekly means of daily feed intake ofearly test weeks.

Figure 2: Genetic correlations between weekly means of daily feed intake (kg)

of Large White growing pigs.

Genetic correlations between weekly means of daily feed intake (Figure 2) are

very high. Lowest estimates were found for genetic correlations between feed

intake in week 1 and feed intake in the second half of the testing period, which

were still higher than 0.8. These values are higher than estimates of Hall et al.

[5], who found values between 0.61 and 0.99 using a covariance function model

for weekly means of daily feed intake of pigs tested between 45 and 95 kg live
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body weight. Estimates of genetic correlations of weekly means of daily feed

intake from other studies [6, 14], using conventional multiple trait models, are

also lower than our estimates from a random regression model. These high

genetic correlations indicate that selection on daily feed intake at any point

during the testing period will result in a similar response over the whole period.

Phenotypic correlations between weekly means of daily feed intake (Figure 3)

are substantially lower than genetic correlations. Because of the influence of the

residual variance around feed intake curves, (hypothetical) repeated measures of

feed intake for the same test week and the same animal need not be the same.

Figure 3: Phenotypic correlations and repeatability (on the diagonal) for weekly

means of daily feed intake (kg) of Large White growing pigs.

The "phenotypic correlations" between records of weekly means of daily feed

intake of the same test week, shown on the diagonal in Figure 3, thus represent

the repeatability for weekly means of daily feed intake (variance explained by

random regression coefficients divided by the total variance). Compared to

estimates from regression coefficients alone (based on upper left part of

(CG+Cp+CE) in equation (11) only, without residual variances), phenotypic
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correlations between feed intake records of different test weeks are also reduced

due to residual variances. For consecutive test weeks, our estimates are in the

same range as those of Hall et al. [5], while they are lower for test weeks further

apart. Labroue [6] found similar estimates of phenotypic correlations between

weekly means of daily feed intake with a multiple trait model, while Von Felde

et al. [14] estimated higher phenotypic correlations between records in the

second part of the testing period.

3.2.3 Single measured performance traits

Heritability estimates (Table VII) for single measured performance traits are very

similar to those found by Labroue et al. [7] for Large White pigs. Far model 1

with "weight at end of test" included as a covariable for ADG and FCR, lower

heritabilities were estimated for ADG (0.33) and FCR (0.09).

Phenotypic correlations between single measured performance traits (Table VII)

lie in the range of values found in literature [1, 2, 4, 7, 14]. Estimates of genetic

correlations (Table VII) between CLC and other traits are similar to those found

by Labroue et al. [7], while substantial differences (opposite signs) were found

for genetic correlations between ADG, FCR and MQI. Eissen [2] estimated

genetic correlations between ADG, FCR and CLC, which are similar to our result

(Table VII). Estimates of Hall et al. [4] (ADG-FCR) and Von Felde et. al [14]

(ADG-FCR, ADG-CLC) are in the same range as those of Labroue et al. [7].

Genetic correlations between MQI and other traits were closer to those reported

by Labroue et al. [7] for French Landrace pigs than for Large Whites.

3.2.4 Correlations between feed intake parameters and single measured

performance traits

Estimates of phenotypic correlations between regression coefficients for daily

feed intake and single measured performance traits varied between -0.24 and

0.30 (Table VII). Intercept and linear regression coefficients show positive

phenotypic correlations with ADG and FCR and negative phenotypic correlations
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with CLC, which are similar to those found by Eissen [2]. Phenotypic

correlations of the quadratic regression coefficient with these traits have opposite

signs and for MQI phenotypic correlations to regression coefficients for daily

feed intake are essentially zero. Genetic correlations of all three regression

coefficients with ADG and FCR were positive, while genetic correlations of CLC

with intercept and linear regression coefficients were found to be negative.

Except for his estimate of 0.25 for the genetic correlation between CLC and the

intercept regression coefficient of a linear fit to daily feed intake records, Eissen

[2] estimated similar genetic correlations for intercept and linear regression

coefficients with these performance traits. Because of this difference (negative

correlation with CLC) we are not as optimistic as Eissen [2] about possible

benefits of the intercept regression coefficient for selection. The estimate of

genetic correlation between MQI and the linear regression coefficient was high

and positive, while low negative values were found for other regression

coefficients. Labroue et al. [7] estimated genetic correlations for average daily

feed intake and MQI of 0.00 for Large White pigs and 0.21 for French Landrace.

Genetic and phenotypic correlations between single measured performance traits

and feed intake regression coefficients result in almost constant genetic

(Figure 4) and phenotypic (Figure 5) correlations between performance traits and

weekly means of daily feed intake over the whole testing period. Phenotypic and

genetic correlations are comparable to values reported in the literature for

phenotypic and genetic correlations between average daily feed intake and other

performance traits [1, 2, 4, 7, 14]. While phenotypic correlations are situated at

the lower end of the range of values reported, genetic correlations tend to be

slightly higher. Eissen [2] and Hall et al. [4] reported genetic correlations

between average daily feed intake and feed conversion ratio similar to our

results, while Labroue et al. [7] and Von Felde et al. [14] estimated genetic

correlations dose to zero.
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Figure 4: Course of genetic correlations of single measured performance traits

with weekly means of daily feed intake (kg) of Large White growing pigs.
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Figure 5: Course of phenotypic correlations of single measured performance

traits with weekly means of daily feed intake (kg) of Large White growing pigs.
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Selection for higher average daily gain and improved meat quality is expected to

result in a higher feed intake over the whole testing period, while selection for

improved feed conversion (lower FCR) and leaner carcasses is expected to

reduce feed intake over the whole testing period. No big differences in the

magnitude of these changes were found during the testing period.

Table VIII: Estimates of standard errors of posterior means (Monte Carlo errors)

for heritabilities (bold), genetic (above diagonal) and phenotypic (below

diagonal) correlations of intercept, linear and quadratic regression coefficients for

daily feed intake, and for single measured performance traits average daily gain

(ADG), feed conversion ratio (FCR), carcass lean content (CLC) and meat

quality index (MQI).

Trait Intercept Linear Quadratic ADG FCR CLC MQI

Intercept 0.039 0.047 0.036 0.047 0.102 0.052 0.030

Linear 0.001 0.002 0.033 0.083 0.033 0.025 0.009

Quadratic 0.003 0.000 0.004 0.105 0.084 0.040 0.052

ADG 0.008 0.006 0.007 0.073 0.103 0.065 0.048

FCR 0.004 0.001 0.002 0.004 0.011 0.017 0.024

CLC 0.002 0.001 0.000 0.005 0.001 0.046 0.025

MQI 0.002 0.001 0.001 0.001 0.002 0.003 0.011

3.3. Monte Carlo errors

Estimates of Monte Carlo errors, l.e. standard errors of posterior means

(Table VIII) were quite low compared to low estimates of effective sampIe size

(Table V). This is due to the high number of sampIes (2 000 000) included in

these posterior means. Generally, estimates of standard error of posterior means

are lower for phenotypic than for genetic correlations. This is partly due to higher

estimates of effective sampIe size (better mixing of the Gibbs chain), but also

because the interval of values visited by the sampIer was quite narrow for

phenotypic correlations compared to genetic correlations. Despite the fact that
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estimates of Monte Carlo error (standard deviation of posterior mean) are very

low, estimates of heritabilities and correlations should be taken carefully due to

high autocorrelations between consecutive sampies, which result in low estimates

of effective sampie size (Table V).

4. Conclusions

Explicitly fitting individual permanent environmental effects together with fixing

residual variances for single measured traits is a possibility to allow for residual

correlations between random regression coefficients and single measured traits in

a joint analysis. Estimates of (co)variance components from such models have to

be analysed carefully, though, especially if covariables for single measured traits

are involved. If no residual correlations between the two types of traits are

required, explicitly fitting individual permanent environmental effects for

regression coefficients only and allowing für residual correlations between single

measured traits should be preferred.

Heritabilities of random regression coefficients of feed intake curves show that

reasonable selection responses can only be expected from the intercept regression

coefficient. Changes of slope or inflexion of feed intake curves by direct

selection are difficult to achieve. Genetic correlations of feed intake curve

parameters with other performance traits are very similar to genetic correlations

of average daily feed intake with these traits. Therefore no big advantage is

expected from using feed intake regression coefficients instead of average daily

feed intake in selection programmes.
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The purpose of this study was to develop a random regression model for the

genetic evaluation of daily feed intake data of growing pigs (or other traits with

repeated time-dependent observations). After an introductory review of the

relevant literature, first experience with feed intake (curves) and random

regression models was gained with the analysis of simulated data (chapter 3)

before analysing real feed intake data from growing pigs performance tested in

French central testing stations (chapter 4). Finally, the random regression model

for daily feed intake was combined with a multiple trait model for single

measured performance traits (chapter 5). This final chapter discusses some

problems and/or features of the model and methodology used in this study for the

analysis of daily feed intake data, and presents some final conclusions drawn

from the results of the above mentioned chapters.

2. Choice of data

Originally, it was planned to analyse feed intake records from Swiss Landrace

and Large White pigs performance tested in the Swiss central testing station for

pigs (MLP Sempach). During 1997,96 electronic feeders were installed in group

pens for 10 pigs each, and since November of that year all pigs were performance

tested with the new feeding system. Since not enough pigs would have had daily

feed intake records available when needed for this project in mid 1998, analyses

were started using feed intake data from French Landrace and Large White pigs,

performance tested between 1992 and 1994 in three French central testing

stations (chapter 4). This data was provided by Florence Labroue (Institut

technique du porc, Le Rheu, France) who previously analysed it for her Ph.D.­

thesis [8]. When enough feed intake data from pigs tested in Switzerland was

available in 1999, a problem caused by a change of diet during the test was

discovered in the data. The diet was changed for all pigs in a pen after they had
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eaten 80 kg of the first feed (with higher nutrient content) on average. This

caused a kink in the average feed intake curve where the change of feeds

occurred (after 46 days on test on average). Daily feed intake increased almost

linearly before the change and showed a much higher daily increase of feed

intake afterwards [9]. Immediately before the change, feed intake was most

probably limited by metabolic constraints (nutrient content vs. demand), while

mechanical constraints (stornach and gut size) must have been limiting

afterwards. This resulted in two parts of the feed intake curve, for which separate

curves should have been estimated. Alternatively, some kind of correction for

nutrient content could have been applied to feed intake records from one of the

two parts. The usefulness of such a correction was doubted, since limiting factors

for daily feed intake were most probably different before and after the change of

diet. Therefore only French data was analysed in this study. For a routine

analysis using a random regression model for feed intake data of pigs

performance tested in the Swiss testing station, either the feeding regimen should

be changed to one feed only for the whole testing period, or only records from

one of the two parts should be included.

3. Polynomial random regression model

3.1. Why ordinary quadratic polynomials?

The quadratic polynomial used in this thesis as a regression function for the

description of daily feed intake of growing pigs was chosen based on results of

Anderson and Pedersen [1], who showed that a cubic polynomial in days on test

is sufficient for fitting cumulated feed intake. This corresponds to a quadratic

polynomial for daily feed intake, as the function for daily feed intake can be

written as the first derivative of the function describing cumulated feed intake.

By increasing the order of polynomial fit, the residual variance could be reduced

until a perfect fit is reached. Increasing the order of polynomial fit would also

substantially increase the number of covariances to be estimated for each random
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effect. Since daily feed intake is expected to evolve smoothly with age (almost

linear) within the growing period considered, this additional effort seems not to

be justified.

The reasons mentioned by Anderson and Pedersen [1] for the choice of

polynomials instead of non-linear functions such as Gompertz or logistic

functions also apply to our situation. It is much easier to introduce random

effects and (co)variance components into linear models than into non-linear

models. Furthermore, asymptotic properties of these non-linear models are not

needed in oUf situation, where growing pigs are performance tested between 30

and 100 kg live body weight. Since animals are not taken to adult weight,

maximum feed intake will probably not be reached either, and asymptotic values

of non-linear models would thus be poorly estimated from the available data [1].

AdditionaIly, usage of polynomials for random regression coefficients allows for

the comparison of the resulting covariance matrices to covariance function

models of Kirkpatrick et al. [7] and the calculation of eigenvalues and

eigenfunctions to assess the possibilities for changing the feed intake CUfve by

selection. For this purpose, covariance matrices were transformed to orthogonal

polynomial scale (see chapter 4 of this thesis).

Alternatively, orthogonal polynomials could have been used directly as

regression functions. An advantage of normalised orthogonal polynomials (e.g.

Legendre polynomials) compared to ordinary polynomials is the faster

convergence of a classical Gauss-Seidel algorithm for solving mixed model

equations and potentially also better mixing of the Gibbs sampier. Since we

modified the Gauss-Seidel algorithm as weIl as the Gibbs sampier to process all

equations (intercept, linear and quadratic regression parameters) on each level of

a given effect at once (blocking), using Cholesky decomposition and

backsubstitution, no difference in convergence was encountered between the two

types of quadratic polynomials. Nothing can be said about the convergence of

higher order polynomial models, since this was not tested. Since orthogonal
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polynomials showed no advantage in terms of convergence in oUf situation, we

continued to use ordinary polynomials, as we think that they are more

straightforward to understand.

3.2. Polynomials in days on test

Concerns about the validity of a random regression model usmg quadratic

polynomials in days on test in a situation with different length of testing periods

were investigated in a simulation study (chapter 3 of this thesis). As no evidence

of bias in estimates of (co)variance components was found, similar models were

then used to analyse real feed intake data. With real data, some differences were

encountered between model estimates of phenotypic test day variances of late

test weeks and phenotypic variances calculated directly from records of the

corresponding test days (chapter 4). These differences are due to the reduced

number of feed intake records for late test days, pertaining to slower growing

pigs. Feed intake in late test weeks is probably less variable if only slower

growing animals have records, than it would be if all animals had records for

these test days. Another possible reason is, that polynomials fitted to daily feed

intake of fast growing pigs, recorded between 30 and 100 kg live weight, are not

appropriate for later test weeks, when slower growing pigs are still on test. This

might lead to an overestimation of the phenotypic variance due to the model,

which could not be encountered in our simulation study (chapter 3), as we used

the same model for (co)variance component estimation as for generating the data.

Modelling feed intake as a polynomial in weight instead of days on test would

remedy the problem of different length of testing periods, as the testing period is

defined between 30 and 100 kg live body weight. Unfortunately, this was not

possible with the available data, since live weight was not recorded at regularly

interspersed intervals, but only in the beginning and towards the end of the

testing period.
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3.3. Problems in feed intake records

A certain limitation of quadratic polynomials may be their susceptibility to

outliers, especially if an animal has only few records (e.g. missing data due to

malfunction of the feeders or loss of transponders for identification in the

feeders). A possible reason for outliers in feed intake records is illness of tested

animals, which may result in drastically reduced feed intake for several days and

consequently also in low records of weekly means of daily feed intake. Together

with missing records in the beginning of the testing period, very low records of

weekly means of daily feed intake due to illness may result in atypical estimates

of feed intake curve parameters, e.g. very high intercepts, negative values for

linear and positive values for quadratic regression coefficients. If such problems

are not recognised and corresponding records are not deleted from the data,

resulting estimates of feed intake curves (quadratic polynomials) might thus be

implausible. Such inaccurate estimates of feed intake curves also influence

estimates of (co)variance components of regression coefficients, therefore feed

intake data should be carefully checked for problems before it is used for the

estimation of (co)variance components. Alternatively, a regression function with

an intercept and a linear term only (first degree polynomial), as proposed by

Eissen [3], may be more robust to such outliers and missing data.

For routine evaluations, the problem of missing records may be less severe, as

estimating breeding values is computationally feasible without combining daily

feed intake records into weekly means. Only the residual variance has to be

adapted for an evaluation using records of daily feed intake directly compared to

one usmg weekly means of daily feed intake, if these weekly means were

associated with the middle day of the week when estimating (co)variance

components as in this study. If an animal had less than six daily records available

in a test week, the weekly mean of daily feed intake was set to missing. Animals

with missing records of weekly means of daily feed intake might thus have up to

five records available in the corresponding week, which could be used for
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estimating breeding values in a routine evaluation. If this results in records

spread over the whole testing period where records of weekly means were

missing, outliers due to illness might have less impact on estimates of regression

coefficients.

4. Gibbs sampling for random regression models

One main problem of the present study was the slow mixing of the Gibbs

sampling algorithm used for estimation of (co)variance components. This

resulted in the need für very long Gibbs chains and consequently a very high

amount of CPD-time used. A possible reason for this problem may be the high

degree of dependence between the parameters of a model where the same

regression function is used for all fixed and random effects. New realisations of

solutions for regression coefficients were sampled separately for each level of

each effect, conditionally on all other model parameters. Dependence between

model parameters limits the freedom of parameters updated in each round of the

Gibbs sampier to explore their parameter space. This means that parameters

make only very small moves in one round of Gibbs sampling, which

consequently results in high autocorrelations between sampies from consecutive

rounds. In spite of the very large number of Gibbs sampies drawn for each

model, effective sampie size was too small to allow for the estimation of

posterior densities. As already mentioned in paragraph 3.1 of this general

discussion chapter, using normalised orthogonal polynomials instead of ordinary

polynomials in days on test as regression functions would not remedy the

problem of slow mixing in oUf situation. Simultaneous sampling of different

effects would probably result in better mixing, but is usually not feasible in high­

dimensional parameter spaces [4]. One possibility to improve mixing of MCMC

algorithms for normal linear mixed models may be by applying hierarchical

centring reparametrisations, as suggested by Gelfand et al. [4]. This option was
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not incorporated in the present study and further investigations are needed to

properly assess its effectiveness.

Jamrozik and Schaeffer [6] and Rekaya et al. [10] used considerably shorter

Gibbs chains for the estimation of (co)variance components for random

regression models for test day yields of dairy cows than we used for our analyses

of daily feed intake of growing pigs (chapters 4 and 5). Jakobsen [5] estimated

(co)variance components for a model which combined random regressions for a

continuous trait (test day yields of dairy cows) and a binary trait (disease

liability). Although she used shorter Gibbs chains, her estimates of effective

sampie size were higher than the ones found in this study. These differences in

the mixing of Gibbs chains for different random regression models may be due to

differences in the complexity of the models and the structure of the data.

Jamrozik and Schaeffer [6] only fitted a regression function for fixed and random

animal additive genetic effects, Rekaya et al. [10] also for random permanent

environmental effects. Both of them probably had better data structures for the

estimation of additive genetic regression coefficients, as they used first lactation

data from eight and thirteen consecutive years, respectively. This means, that the

oldest animals with records already had daughters and granddaughters with

records in the data set, which is advantageous for estimating additive genetic

effects in an animal model. This was certainly not the case in the data set used for

the multivariate analysis in chapter 5, since aIl animals were performance tested

in the same year and slaughtered after the end of test, and only to a much lesser

extent in chapter 4. Jakobsen [5] used a sire model, for which estimation of

additive genetic effects is easier than for a comparable animal model, since more

information is available per level of estimated effect. The amount of information

available per level of estimated effect thus seems to influence the mixing of the

Gibbs sampier as weIl as it influences the convergence of a Gauss-Seidel

algorithm for solving the mixed model equations.
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5. Feed intake and efficiency of lean growth

The reason for applying a random regression model to daily feed intake data was

the question whether it is possible to change the average feed intake curve by

selection to improve efficiency of lean growth. For this purpose it would be

desirable to have measurements of live body weight at regularly interspersed

intervals (e.g. weekly weightings) throughout the entire testing period. This

would allow for modelling feed intake or time on test as a function of body

weight, with the advantage of a fixed range of values for the explanatory variable

(e.g. 30 to 100 kg live body weight). With such a model the relationship between

body weight, feed intake and time on test could be quantified throughout the

growing period, which was not possible based on the data available for this

study. We therefore had to concentrate on daily feed intake records, measured by

means of electronic feed dispensers on group housed growing pigs, performance

tested between 30 and 100 kg live body weight in French central testing stations.

Cameron [2] suggested to improve the efficiency of lean growth by selection for

improved lean tissue growth rate instead of for feed efficiency or its inverse feed

conversion ratio. The advantage of such a selection strategy is, that the efficiency

of lean growth is improved by increasing lean deposition rather than by reducing

fat deposition and feed intake capacity. Furthermore, recording of feed intake is

not needed to get lean tissue growth rate. According to Eissen [3], feed intake

capacity of end product gilts is already limiting for reaching the full potential for

lean growth and should therefore be increased. He also states that a higher feed

intake capacity of lactating sows will be necessary if selection in dam lines for

litter size results in more piglets to be nursed by a sow. Indirect selection in dam

lines to increase feed intake of lactating sows via correlated traits (e.g. feed

intake and weight gain during the growing period), would also result in a higher

feed intake capacity of growing end product pigs [3]. Whether this is desirable

depends on the relationship between feed intake capacity and optimum level of
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feed intake of end product pigs, which is determined by the growth potential of

these usually crossbred animals.

For improving the efficiency of lean growth, daily feed intake should be

increased in the beginning of the testing period, while it should remain

unchanged towards the end. Possible selection strategies to achieve this goal

include direct selection on regression coefficients or selection on feed intake

capacity at predefined points during the growing period. Both strategies could be

based on results of a polynomial random regression model applied to daily feed

intake. Heritabilities of regression coefficients for daily feed intake and genetic

eigenfunctions presented in chapter 4 indicate that it will be very difficult to

change the shape of average feed intake curves by selection. This impression is

supported by correlations between daily feed intake and single measured

performance traits presented in chapter 5, which are almost constant throughout

the entire testing period. The best way to improve daily feed intake in the

beginning of the testing period might be to select for a higher intercept parameter

of feed intake curves. But advantages of such a selection scheme compared to

selection for average daily feed intake are limited due to the unfavourable genetic

correlation of the intercept parameter with carcass lean content. Since parameter

estimates were very unfavourable for changing the feed intake curve of growing

pigs, we decided not to compare the above mentioned selection strategies in more

detail.

The models used for analysis of daily feed intake in this thesis could certainly

still be refined. Instead of the fixed regressions on days on test for each batch, a

scalar environmental effect could be fitted for each test date within station or

batch. The importance of such an effect would mainly depend on the range of

start dates within each batch, since environmental conditions are less variable for

station tested pigs than e.g. for dairy cows on different farms. In this thesis, the

same order of polynomial fit was used for fixed and all random effects to

guarantee a proper definition of heritability for regression coefficients. This
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corresponds to a hierarchical model, where the same fixed and random effects are

fitted for all parameters of the quadratic polynomial production function for daily

feed intake. Given the relatively low heritabilities for linear and especially

quadratic regression coefficients, a reduction of polynomial fit for random effects

might be appropriate. This has the disadvantage, that some information about the

variability of feed intake curves is lost with a linear compared to a quadratic

polynomial. Taking this reduction of the order of polynomial fit one step further

would mean to go back to a fixed regression model or even a simple repeatability

model. Retrieving information on the variability of feed intake curves was the

reason for applying a random regression model in the first place, without this

possibility the advantage over the conventional method of averaging daily feed

intake over the whole testing period is small. To decide whether a random

regression model should be used for routine evaluations of daily feed intake

records in a specific population, (co)variance components specific to this

population are necessary. If the potential for changing the shape of feed intake

curves of growing pigs is not more encouraging than found in this study, the

additional effort for using a random regression model for routine evaluations of

daily feed intake is not justified.
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6. Final conclusions
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The following conclusions can be drawn from this thesis:

Polynomial random regression models in combination with calculation of

eigenfunctions and their assoeiated eigenvalues are a useful tool to analyse

longitudinal data and to assess the amount of (genetic) variation available in a

population along such a trajectory (e.g. feed intake curve).

Gibbs sampling for random regression models is very computer intensive

because a high number of rounds is needed for reliable estimates, due to high

autocorrelations between Gibbs sampies.

Changing the shape of feed intake curves by selection to improve the

efficiency of lean growth will be very difficult.
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