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Abstract

This dissertation shows that it is possible to use the explicit Finite

Element Method in real-time for surgery simulation, achieving yet un¬

known levels of realism in the simulation of the mechanical behaviour

of human organs.

Only well trained surgeons can perform minimally invasive oper¬

ations. Current training methods, i.e. the inexpensive but ethically

questionable operations on pigs, are to be replaced by Virtual Real¬

ity based simulators. The surgeon moves manipulators that provide
force feedback and expects to feel the reaction of the organs and see

their movements on the display.
The modelling of the mechanical behaviour of organs has high com¬

putational requirements. To obtain a physically correct simulation, the

Finite Element Method (FEM) is used. Movements are calculated by

frequently determining new positions of the simulated organs. Stabil¬

ity criteria require a new calculation every 100/xs, in order to obtain a

simulation in real-time. At this rate, the fastest processors available in

mid 2000 are only able to process about 60 Elements. The performance

required to simulate models consisting of several hundred or thousand

Elements can be achieved with a parallel computer consisting of several

fast processors connected over a high speed network.

In this dissertation, methods are presented to adapt a custom-

developed FE program and a parallel computer to each other in order

to obtain maximum performance. As the calculations are distributed

to several processors, communication between, and synchronisation of,
different parts is required. These tasks should take the least possible
amount of time away from the FE calculation. In the system described,
we maximise the time available for computation by

• hiding the communication latency by overlapping computation
and communication,

• analysing the flow of data in order to reduce the amount of infor¬

mation that is communicated,

• optimising communication performance by using application-

specific protocols,

• integrating synchronisation into the communication, and
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• exploiting the abilities of the network to free the main processors

almost completely from work related to communication.

By integrating these methods, the problem can be efnciently distributed

to several processors, despite the closely coupled parallel calculation

and the short time-steps. Each of the processors accelerates the com¬

putation optimally. In this way, we obtain a cost effective solution for

the calculation of Finite Elements in real-time.



Zusammenfassung

Diese Dissertation zeigt, dass es möglich ist, die explizite Finite Elemen¬

te Methode in der Chirurgie-Simulation in Echtzeit einzusetzen und so

das mechanische Verhalten von menschlichen Organen mit einem bisher

nicht gekannten Realitätsgrad zu simulieren.

Minimal invasive Operationen unter Verwendung von Endoskopen
können nur von geübten Chirurgen durchgeführt werden. Die heute

üblichen Ausbildungsmethoden, vor allem das ethisch umstrittene Ope¬
rieren von Schweinen sollen ersetzt werden durch einen Simulator un¬

ter Verwendung von Methoden der Virtuellen Realität. Der Chirurg

bewegt Manipulatoren mit Kraftrückführung und erwartet, in Echtzeit

die Reaktion der Organe zu fühlen und auf dem Bildschirm zu sehen.

Die Modellierung der Bewegungen der Organe erfordert eine hohe

Rechenleistung. Um eine physikalisch korrekte Simulation zu erhalten,
wird die Methode der Finiten Elemente (FEM) verwendet. Bewegun¬

gen können berechnet werden, indem die Positionen der Organe immer

wieder neu ermittelt werden. Durch die Physik gegebene Stabilitätsbe¬

dingungen erfordern eine neue Berechnung dieser Positionen alle 100/xs,
damit die Simulation in Echtzeit durchgeführt werden kann. Bei dieser

Wiederholungsrate benötigt die Berechnung eines einzelnen Elementes

bereits eine hohe Rechenleistung. Der schnellste Prozessor, der Mitte

2000 erhältlich war, ist in der Lage, ca. 60 Elemente in Echtzeit zu

berechnen. Die Leistung, die benötigt wird, um Simulationen mit meh¬

reren hundert oder tausend Elementen zu berechnen, kann mit einem

Parallelrechner bestehend aus vernetzten schnellen Computern erreicht

werden.

In dieser Arbeit werden Methoden vorgestellt, wie ein Parallelrech¬

ner und das für den Simulator entwickelte FE Programm aneinander

angepasst werden können, um die maximale Rechenleistung zu erhal¬

ten. Die durch die Parallelisierung benötigte Kommunikation und Syn¬
chronisation der einzelnen Prozesse soll einen möglichst kleinen Verlust

an Rechenleistung bewirken. Im vorgestellten System maximieren wir

die zum Rechnen zur Verfügung stehende Zeit, indem wir

• die Kommunikation und die Berechnungen überlappen,

• durch Analyse des Datenflusses die zu kommunizierende Daten¬

menge reduzieren,
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• durch eigens entwickelte Protokolle die Kommunikationsleistung
für die auftretenden kleinen Datenpakete optimieren,

• die Synchronisation in den Datenaustausch integrieren und

• durch optimalen Einsatz des Netzwerks und durch das Nutzen

seiner Möglichkeiten den Prozessor praktisch vollständig von der

Kommunikation entlasten.

Durch diese Methoden kann die FE Berechnung trotz der engen Kop¬

pelung der Rechnung und der kurzen Zeitschritte auf viele Prozessoren

verteilt werden, wobei jeder die Rechnung optimal beschleunigt. Da¬

durch erreichen wir eine kosteneffektive Lösung zur Berechnung von

Finiten Elementen in Echtzeit.
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Introduction

This dissertation describes my contribution to an interdisciplinary

project with the goal of building an interactive simulator based on Vir¬

tual Reality (VR) for diagnostic laparoscopy, hence the name LASSO

(LAparoscopic Surgery Simulator).
It was my task to speed up the calculation of the mechanical be¬

haviour of the simulated human organs so that their reaction to me¬

chanical stimuli could be calculated in real-time as is needed for an

interactive simulation.

The project comprises many other tasks which I will describe later

in this introduction.

1.1. The LASSO project

Endoscopic operations, also termed keyhole surgery, have recently be¬

come a popular technique for the diagnosis and treatment of many

kinds of human diseases and injuries. The basic concept of endoscopic

surgery is to minimise damage to the surrounding healthy tissue that is

caused by surgery on internal organs. In traditional open surgery, rel¬

atively large cuts have to be made in the healthy skin and tissue that

blocks access to the operation site. These cuts take a long time to heal
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and present the danger of post-operative complications such as infec¬

tions By employing minimal invasive surgery techniques, the cuts can

be replaced by small perforation holes Trocar hulls inserted into these

holes serve as entry points for optical and surgical instruments into the

abdominal wall for laparoscopic interventions The small spatial extent

of the tissue injury and the careful selection of the entry points results

in a major reduction of complications and recovery time

The price for these benefits is paid by the surgeon, who loses direct

contact with the operation site The necessary visual information is pro¬

vided by a specialised camera (the endoscope) and presented on a screen

in only two dimensions, which is counter-mtuitive to normal hand-eye
coordination While preliminary systems that use stereo optics are al¬

ready available, today's surgery is usually performed under mono-scopic

conditions The external control of the surgical instruments reduces the

tactile feedback and limits the manipulative freedom usually available

in open surgery This way, even simple tasks such as cutting, suturing

or tying knots pose unusual challenges for the inexperienced surgeon

Performing operations under these conditions demands specific
skills which can only be obtained through extensive training The train¬

ing emphasis should be shifted from the traditional approach, where the

apprentice learns from the master and hones his skills on a real patient

under supervision, to simulator based training (Dawson & Kaufman

1998) The basic visio-spatial and manipulative skills can be learned by

using inexpensive, traditional training devices such as the Pelvi-tramer

(see Storz, GmbH) or the POP unit (see Optimist, Handelsgesellschaft

mbH) which utilise synthetic or animal tissue mounted in rigid cases

These inexpensive and effective units allow the trainee to learn how to

navigate under conditions of mono-scopic visual feedback, as well as

perform basic manipulative procedures of an intervention While the

surgeon develops competence in completing a particular task, the lack

of real-life effect limits training in dexterity and surgical problem solv¬

ing More importantly, as there is a lack of realistic tissue reactivity,

the trainee is unable to learn the techniques of haemostasis (as the

training tissue does not bleed realistically) and therefore cannot expe¬

rience the complexities of abnormal anatomy or pathological situations

While experiments on animals are sometimes used for testing new sur¬

gical techniques, practical as well as ethical reasons strongly restrict

their use for common surgery training

Virtual Reality technology has already made a significant impact

on medical education and training Early applications were exclusively
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based on simulated three-dimensional visualisation of the anatomy

Comprehensive volumetric visualisation systems, such as the VOXEL-

MAN program (Hohne et al 1995) allow the interactive exploration
of 3D virtual anatomical models coupled with a wide range of aux¬

iliary information about radiology, pathology or functional behaviour

The availability of high-resolution cryosectional data covering the whole

human body, the Visible Human dataset of the US National Library
of Medicine (Ackerman 1998), strongly accelerated the widespread de¬

velopment and use of virtual three dimensional anatomical models in

different applications in the field of medical education and simulation

Virtual Reality also holds an enormous potential for supporting

medical training using surgery simulator systems (Satava & Jones

1998) The development of a full-scale surgery simulator depends on

a much broader technological basis than just 3D organ visualisation

The following fields are also key issues in the development of a complete
Virtual Reality based surgery simulator

• construction of the underlying anatomical model,

• visualisation of the operation site,

• modelling of organ behaviour,

• force feedback for mediating haptic sensation

Ever increasing computational power, as well as current achieve¬

ments in the field of interactive computer graphics and virtual reality,
have already led to the rapid development of sophisticated surgery sim¬

ulators over the past years These systems offer an appealing way to

provide adequate training without direct patient involvement

Although some attempts for the simulation of open surgical pro¬

cedures have already been made (Reinig et al 1996, Suzuki et al

1998, Bro-Nielsen et al 1998), major problems1 m providing realis¬

tic interaction with organs in open surgery have prevented widespread

development and use of such systems until now

Interventions which do not require direct free-hand contact with

the operation site are much more suitable for available devices for

human-machine interaction Aside from micro-surgical procedures, such

as those applied to eye surgery (Sagar et al 1994, Schill et al 1999), in¬

terventional radiology (Hahn et al 1998) or epidural anaesthesia (Stred-
ney et al 1996), most successful applications have been developed in

1It is still impossible to provide a realistic force feedback, as the movements of

the hands are not constrained
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the field of endoscopic diagnosis and surgery A wide range of VR sim¬

ulator systems have been proposed and implemented during the past

few years Some of them are restricted to purely diagnostic endoscopic

investigations (Alyassm & Lorensen 1998, Vmmg 1996, Satava 1996)),
while others allow the training of surgical procedures for laparoscopic

(Cover et al 1993, Kuhnapfel et al 1995, Cotm et al 1996, Baur et al

1998, Downes et al 1998) or arthroscopic (Ziegler et al 1995, Gibson

et al 1997) interventions

While most of the developed systems require the use of relatively

powerful workstations or even small supercomputers, the possibility of

using low-end personal computers for surgery simulation has also been

investigated (Alyassm & Lorensen 1998, Tseng et al 1998, Daane et

al 1995) During the past years not only numerous academic research

projects have been reported, but the first industrial products have been

successfully launched (Delp et al 1996, Bro-Nielsen et al 1998, Sutton

et al 1997, O'Toole et al 1998)
The basic advantage of VR-based endoscopic simulators is their po¬

tential for providing a realistic and configurable training environment

that bridges the gap between basic training and performing the actual

interventions on patients, without restricting repetitive training They

potentially allow the simulated organs to behave in a bio-mechamcally
authentic manner where the tissues deform and react in a realistic

fashion Due to advances in image rendering hardware, nearly photo¬
realistic visualisation of the operation site will become possible in the

foreseeable future However, the simulator systems proposed to date do

not achieve the necessary levels of realism Therefore, it is of major im¬

portance to explore the current limits of realism in endoscopic surgery

simulation and to analyse the potential for further development These

limits show up in many areas

• No three dimensional anatomical models exist that are based on

a real anatomy, or even patient specific data

• The graphical appearance of organs in current simulators is far

from realistic

• The mechanical behaviour of organs is calculated with simplistic
methods due to limitations in available computational power

• The elastomechamcal properties of living tissue are largely un¬

known
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• Current force feedback manipulators do not support enough de¬

grees of freedom, cannot be arranged close together and are not

strong enough.

The LASSO project attempts to meet these long-term research ob¬

jectives in the following areas (Székely et al. 2000):

• Construction of a detailed geometric model of the anatomical site

to be simulated.

• Study of the visual appearance of internal organs based on syn¬

thetic organ textures resulting from the systematic analysis of

intra-operative images and from using different surface visualisa¬

tion techniques.

• Development of a framework for full-scale 3D FE Modelling tech¬

niques for a physically correct simulation of elastic abdominal

tissue deformation.

• Systematic study of the elastic material properties of living tissue.

• Speeding up the simulation of the mechanical behaviour to real¬

time performance by parallelisation.

• Integration of force feedback devices that provide the necessary

haptic feedback to the surgeon.

Prior to simulation \ During simulation

f 3D Information

^ (Visible Human) y

Measurements
\ Force

! feedback

Graphics j
^ output J

1 1 ! i t t

Segmentation
Mechanical ] !

^ properties ) !

1 !
Parallel FE

'
calculation

Graphics

generation

1 \ t

f 3D Model r—
FE

segmentation
-À FE Model Y\ \[ Surface j

\ data J

Figure 1.1: Flow of control information in the LASSO simulator

Figure 1.1 shows the flow of data in the LASSO simulator. Anatom¬

ical data, obtained from the Visible Human project, is analysed and
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three dimensional anatomical models of the simulated organs and sur¬

roundings are built The mechanical properties of living tissue are mea¬

sured with a special device The FE model is constructed from these

mechanical properties and the anatomical models which are segmented
into Elements (see figure 2 5 on page 31) During a simulation, a parallel
interactive FE calculation that runs in real-time simulates the mechan¬

ical behaviour of the organs The surgeon moves the organs with a

force-feedback device through which the reactions can also be felt, and

the new positions of the organs are used to generate photo-realistic

graphics in real-time

1.2. Anatomical model building

The research in this field was conducted mainly by Johannes Hug, more

details can be found in descriptions of his work (Hug et al 1999)
A realistic simulation of the elastic deformation of abdominal or¬

gans and the resulting forces is only possible if it is based on a detailed

anatomical model The motion and deformation of organs is, in many

cases, determined by morphological structures of small spatial extent,

such as ligaments, which are difficult to place correctly when generat¬

ing an anatomical model Customary radiological imaging procedures
cannot provide the necessary information due to serious constraints in

image contrast and resolution, as those small structures might not even

be visible on these images (Székely et al 1998) The Visible Human Fe¬

male dataset (Ackerman 1998), however, offers a consistent source of

anatomical and morphological information and provides a high resolu¬

tion dataset with excellent tissue contrast Consequently, this dataset

has been selected to form the basis of the anatomical model-making
The data obtained in three dimensional medical imaging and the Visi¬

ble Woman data are both just a collection of voxels (volumetric pixel)
with colour or intensity information, l e they list colour or intensity

data for points in the three dimensional space In order to obtain an

anatomical model, they have to be segmented, l e the voxels have to

be assigned to specific organs

Existing methods for segmenting images can be grouped into the

following three major methodical categories (Hug et al 1999)

• Fully automatic tools that are easy to operate, but lack precision

and completeness They have been used extensively for the seg¬

mentation of single objects, however their applicability to multi-

object systems is still an open question (Kelemen 1998, Kelemen
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et al 2000)

• Manual segmentation, which is highly insensitive to noise, can

tolerate missing information, and is sufficiently precise It is, how¬

ever, extremely time consuming and tedious, with limited repro¬

ducibility Nevertheless, in many ambiguous situations, it is ad¬

vantageous to use manual segmentation

• In between these two extremes, a whole family of semi-automatic

tools have been developed (Fischler et al 1981, Kass et al 1988)
that combine the advantages of computational support for precise

border detection with the benefits of manual manipulation

Organ definition is inherently a three-dimensional task For the

LASSO project, a slice-by-slice technique was employed, that utilises

the familiar two-dimensional outlining methodology and a simple and

well known interface for visualisation and manipulation
To evaluate segmentation techniques, preliminary studies with MRI

data from a female volunteer were conducted The results of these tests,

however, were unsatisfactory with respect to precision and consistency

To obtain the volumetric data, a powerful segmentation environ¬

ment was established by incorporating a multi-user segmentation sys¬

tem with an underlying anatomical database

All abdominal organs influencing the elasto-mechamcal behaviour

and visual appearance of the operation site during gynaecological la¬

paroscopic interventions were segmented The inner surface of the ab¬

dominal cavity was also included This multi-organ surface is of primary

importance during simulation as it delineates the maximum spatial ex¬

tent of the intervention It surrounds the potential space where the gas

is insufflated at the beginning of the surgery and wherein the surgeon

places the instruments

The Visible Human Female dataset proved to be suitable for the

detailed definition of the abdominal organ geometry (Székely et al

1998) The excellent visual fidelity and resolution provided by the colour

cryosections allowed the definition of anatomy in the required quality,
which no other source was able to provide Limitations arose primarily
from the post mortem anatomical changes Even though a high quality
anatomical dataset resulted from the work with the Visible Human

Female data, this is only one step towards the fast and efficient creation

of patient-specific digital anatomy datasets
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1.3. Determining mechanical properties

Realistic modelling of the deformation of tissues can be performed only
with the knowledge of the elastic properties of living tissue An an¬

alytical description of the mechanical behaviour can only be used if

its parameters are known The selection of the constitutive equation

describing the elastic behaviour of a specific organic material (the ma¬

terial law) should therefore be followed by the determination of the

actual numerical values of material parameters

Since significant differences are expected between the mechanical

properties of both dead and living, human and animal tissue, the mea¬

surements must be performed in vivo on patients In addition, accurate

data cannot be obtained from standard setups that require preparation

of tissue, which results in significantly different mechanical properties

A number of experiments have been performed on a variety of tissues

(Fung 1993), but there exists precious little data from m-vivo mea¬

surements (Moulton et al 1995, Kuhnapfel et al 1999, Carter et al

1999)

1.3.1. Measuring method

The measurement of mechanical properties of living human tissue

presents several problems Imaging methods, e g MRI elastography

(Muthupillai et al 1996) or sonoelastic imaging (Gao 1995) can only
be applied within a limited strain range, while classical methods of

bio-mechamcal testing (Fung 1967) are difficult to implement under m-

vivo conditions It must be ensured that no injuries are caused to the

patient The measurement device has to be safe, easy to use and ster-

llisable In addition, the instrument has to keep track of the boundary
conditions during measurements because the contact of the instrument

with the tissue to be measured can lead to global motion of the organ

under investigation

One technique that provides accurate data and overcomes the prob¬
lems mentioned above is tissue aspiration (Aoki et al 1997) in conjunc¬

tion with the inverse FE Method A tube is put against the target tissue

and the air pressure in this tube is lowered The ensuing vacuum fixes

the organ to the tube, resulting in well defined boundary conditions,
and causes some small deformation of the tissue inside the tube The

implemented measurement process is based on varying the pressure in

the tube and determining the functions z(r,t) and P(t), where t is

time, P(t) is pressure inside the tube and z(r,t) is the profile of the
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Pressure

Pit)

.

Profile

Figure 1.2: How the mechanical properties of tissue are measured

deformation, as illustrated in figure 1.2. Assuming there is both axisym-

metry and homogeneous material in the investigated area, a complete

description of the deformation is given by the measured profile z(r,t).
The inverse FE Method is then applied to find the material parameters

from these deformations.

1.3.2. Material law

The material law is one of the most critical points in the modelling
of tissue deformation. Living tissue is a nonlinear, inhomogeneous

anisotropic material with viscoelastic properties. For this project, we

do not try to account for all these properties in our material model,
but instead a method is developed which allows the identification of

material parameters once a material law has been chosen. The chosen

material law has a Neo-Hookean strain energy function W (Sussman &
Bathe 1987):

W = m( Ji - 3) + i«( J3 - l)2 (1.1)

Where /x is the material parameter to be determined, k is a known ma¬

terial parameter and J\ and J3 are the first and third Jacobi invariant,

respectively.

1.3.3. Numerical methods

The parameter identification is performed by a minimisation of squared
differences between measured and simulated load-displacement data.

An FE model, using the current estimate of the material parameters,



10 Chapter V Introduction

is constructed with the same profile as the undeformed surface of the

tissue under investigation. The aspiration tube is modelled as an un-

deformable object that touches the surface. The pressure function P(t)
that was measured during the experiment is then applied in the FE

model. The reaction of the model is calculated with the explicit method

as described in section 3.2 and the profile is compared to the measured

data. The difference between measurements and calculation is then used

to compute a new approximation of the material parameter using the

Levenberg-Marquardt algorithm as described in (Kauer et al. 1999).

1.3.4. The measuring instrument

A vision-based device was developed to perform the measurements.

This device permits controlled variation of the pressure and tracks the

profiles of the resulting deformation. A small mirror placed beside the

aspiration hole reflects the profile to a camera placed at the outer end

of the tube (fig. 1.3).
This method allows accurate and rapid measurement of the desired

profile. An optical fibre fixed in the tube illuminates the scene. The

Aspiration hole

Figure 1.3: The measurement device

profiles are extracted from the images in real-time at a rate of 25Hz with
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a resolution of 30 /jm Real-time extraction of the profiles avoids storage

problems and can lead to real-time material parameter estimation in

the future The measuring instrument and the applied image analysis

procedure are both described in more detail in (Vuskovic et al 1999)

1.4. Tissue deformation modelling

Realistic simulation of tissue behaviour during interventions is one of

the most challenging research areas in surgical simulation While there

are already first attempts in the literature for highly simplified mod¬

elling of complex interactions with organs, such as clipping, cutting or

suturing (Kuhnapfel et al 1999, Pfiesser et al 1998, Basdogan et al

1999, Baur et al 1998, Voß et al 1999), our project concentrated on

the problem of organ deformations

Real-time simulation of elastic tissue deformation is a major obsta¬

cle to developing systems for soft-tissue surgery Different methods in

use for deformation modelling include

• Free-form deformation techniques from computer graphics (Barr
1984, Sederberg & Parry 1986) use parametric mterpolative mod¬

els for deformation estimation of the primitives While the anal¬

ogy to physical deformation processes is not always obvious, such

techniques have become very popular in surgical simulators (Baur
et al 1998, Basdogan et al 1998) due to the resulting fast defor¬

mation calculation

• Different physically inspired approximations have also been used

for tissue deformation modelling Most popular are mass-spring

models (Kuhnapfel et al 1995, Downes et al 1998, Boux de

Casson & Laugier 1999) but other alternatives such as space filling

spheres (Suzuki et al 1998) or the ChamMail algorithm (Gibson
1997) have also been implemented

• Elastically deformable surface models used in computer graph¬
ics and computer vision (Terzopoulos et al 1987) calculate sur¬

face deformations by solving linear elasticity equations These

models allow simulation of tissue deformation based on physi¬
cal principles Full 3D extensions of these techniques (Cotin et

al 1996, Bro-Nielsen & Cotin 1996) represent the first attempts

for FE based tissue deformation modelling Since these are linear
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FE approaches, they are not feasible to applications where big
deformations and rotations appear

Today, the nonlinear FE Method has been implemented in simu¬

lators for very special cases (Sagar et al 1994) Due to its physical

background, we use this approach in our work even though it requires

high computational power The remaining chapters of this dissertation

concentrate on the calculation of the nonlinear FE method and how

the necessary computational power can be achieved to obtain real-time

performance

1.5. Graphical modelling of organ appearance

Providing correct visual information is indispensable in laparoscopic
simulation as a means of closing the gap between VR-based surgical

training and surgery on a real patient Even though visual feedback

is the most important information channel available to the surgeon,

current surgery simulation systems often use standard methods for vi¬

sualisation that do not provide realistic images Whereas visualisation

for laparoscopy simulation involves the treatment of a fairly wide range

of topics (Soferman et al 1998), our project concentrated on the com¬

putation of organ specific texture and the development of accurate il¬

lumination models

1.5.1. Organ specific textures

All organ surfaces are covered by some micro-structure, which provides
information about the type of the tissue and its relative smoothness

Methods to simulate such textures are available in almost all visuali¬

sation packages Texturing, however, does more than increase realism

Perceptual psychologists have recognised the importance of surface tex¬

ture as a cue to space perception (Gibson 1950, Haber & Henderson

1980) Texturing is also of fundamental relevance in representing patho¬

logical tissue Therefore, simulating textures is important because one

of the objectives of training with a laparoscopy simulator is to improve

diagnostic skills

Before this project, organ specific texturing was typically accom¬

plished by using interactive painting methods (Seilberg et al 1995),
by mapping real laparoscopic images (Kuhnapfel et al 1995), or by

interpolation based on the Visible Human data set (Reinig et al

1996, Knapp et al 1997) Even though all of these methods have been
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successfully applied, they have disadvantages that make them unsuit¬

able for sophisticated surgery training systems One specific virtual

patient is not sufficient for training What is needed is a system that

allows medical experts to define arbitrary anatomies including patholo¬

gies by overriding default attributes of a generic anatomical model

Therefore, texture generation is to be kept independent of a specific
data set A large texture database will be provided, grouped into organs

and pathologies, as well as a set of algorithms that allows automatic

generation of texture maps for specific needs in a reasonable amount

of time Geometry independent organ specific textures without blood

vessels can be generated with statistical methods from pictures taken

during an actual laparoscopic intervention This is described in more

detail in (Meier 1999)
To generate organ specific blood vessels on top of the textures, a

method was developed based on L-systems (Prusmkiewicz & Linden-

mayer 1990), which are widely used in computer graphics to generate ar¬

tificial plants Basically, in an L-system, simple structures become more

and more complex as their parts are recursively divided and modified

according to given stochastic rules While this is suitable for generat¬

ing trees, what we need is a simulation of the biological growth process

of vessels This procedure is based on simplified models of the angio-

genesis, the formation of new vessels directed by perfusion demand of

growing tissue as well as physical laws of blood circulation Aside from

the ability to naturally handle vascular networks, physiologically based

modelling of vessel growth can naturally adapt to organ-specific vessel

formation by varying the parameters

1.5.2. Illumination models

Ray-tracing is a technique that results in images of the highest qual¬

ity However, real-time ray-tracing cannot be implemented in the near

future due to its high demands on computational power, so some sim¬

plification is necessary

A wide range of rendering strategies currently exists that each use

different illumination models Experience has shown that artificial la¬

paroscopic images of high quality can be produced by means of a fairly

simplified ray-tracing approach Since in laparoscopy the position of the

camera and the light source are always identical, shadow computations

are not required The light source can be represented by an infinitely
small point that radially emits energy that does not attenuate with
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distance, simulating automatic regulation of light intensity Finally, the

computation of reflection and refraction on transparent surfaces can be

neglected without noticeable degradation of image quality Due to the

above simplifications, the resulting illumination models do not need

ray-tracing, but can also be evaluated in real-time by means of a scan-

lme based method In this project, the graphics were implemented on

an SGI Onyx2/InfimteReahty machine The scan-line methods were

approximated on the standard OpenGL interface that is provided by
this machine More detail can be found in (Meier 1999)

1.6. Force feedback manipulator

Although the tactile information mediated by the surgical instruments

during laparoscopic surgery is limited, force feedback is an indispens¬
able component of any realistic simulation environment (Chen & Mar¬

cus 1998) as it also helps to replace the missing depth information At

the start of this project, no really satisfactory technical solutions were

available for providing tactile and force feedback in the simulation of

open surgery However, during minimally invasive operations, haptic
information is provided by mechanical manipulators, making the im¬

plementation of simulated surgical instruments with similar properties

an important part of the simulator project

Many different force feedback manipulators are available today Be¬

sides general purpose devices, specialised instruments for laparoscopic

surgery simulators have been developed and some of them are even com¬

mercially available (Immersion 1995) During laparoscopy, the following
four degrees of freedom of the manipulators are required (fig 1 4)

• The pivoting of the trocar, which is the entry point of the instru¬

ment into the body Two angles of tilt can be measured (a and

ß)

• Translation of the surgical instrument through the trocar into the

body (d)

• Rotation of the instrument along its longitudinal axis (7)

A specific instrument may add additional degrees of freedom, such

as the opening and closing of scissor blades A more detailed analysis of

the force feedback requirements in laparoscopic surgery can be found

in (Baumann 1997)
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Figure 1.4: The degrees of freedom of the manipulator

In our system, we built the simulated surgical instruments on the

basis of the commercially available PHANToM device (Massie & Salis¬

bury 1994) of Sensable Devices (SensAble Devices 1996) In this case

the manipulative degrees of freedom provided do not match our needs

and can only be converted into a subset of those listed above In the first

version of the simulator, no force feedback is provided for rotation of

the instrument A physical phantom of the female abdomen which pro¬

vides realistic geometry and external control of the endoscope, based on

simple position tracking without force feedback, as well as specialised

manipulators (Baumann 1997), will be added in the next version

1.7. Structure of the dissertation

In chapter 2, the simulation of the mechanical behaviour of human

organs is analysed and the resulting equations of the FE Method are

outlined Chapter 3 describes methods to speed up the FE calcula¬

tions It concentrates on the parallelisation of the calculation and on

the reduction of additional tasks required due to the distribution of

the calculation to a parallel computer Chapter 4 analyses the require¬

ments to communication and computation of different versions of the

FE Method

In Chapter 5, different hardware solutions for both computation and

communication are compared and the selected hardware is described

Chapter 6 explains the implementation of the software, how the over-
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head of the parallehsation is minimised and how communication, syn¬

chronisation of the different parts and computation is scheduled con¬

currently Chapter 7 contains a description of the communication sys¬

tem, l e the layer between the communication calls of the parallel FE

program and the network hardware Chapter 8 shows speed measure¬

ments and performance comparisons of different computers and other

FE programs, followed by the conclusions and an outlook
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1.8. Images

17

Figure 1.5: The segmentation tool used to derive three-dimensional

models of the organs of the visible human female An overview of seg¬

mentation can be found in section 1 2
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Figure 1.6: The corpus uteri photographed during an operation

Figure 1.7: A picture of the corpus uteri rendered by the graphics

front-end An overview of the generation of graphics can be found in

section 1 5



1 8 Images 19

Figure 1.8: A surgeon m front of the simulator In his left hand, he

holds the force-feedback manipulator, with his right hand he can change
the position of the virtual endoscope
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Figure 1.9: The "intestines" of the virtual patient The diagnostic
stick at the top moves the PHANToM force-feedback device on the left
More information about force-feedback can be found in section 1 6
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Figure 1.10: The unmodified PHANToM force feedback device
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Figure 1.11: The parallel com¬

puter with 12 dual Alpha moth¬

erboards in a standard 19" rack

This computer is described in de¬

tail in chapter 5

Chapter 1 Introduction

Figure 1.12: The back of the

parallel computer The Myrinet
switch is standing on the floor
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Figure 1.13: The ONYX II parallel computer used to generate the

photo realistic graphics The FE parallel computer can be seen on the

right
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2

Simulation of

Mechanical Behaviour

At the core of the surgery simulator is the calculation of the mechan¬

ical behaviour of the organs in reaction to physical stimuli. This task

requires expertise in different fields:

• The simulation of the mechanical behaviour of soft tissue is an

issue of ongoing research in mechanics.

• The resulting algorithms are computationally intensive and must

be optimised to allow efficient calculation.

• Even after minimising the workload with improved algorithms,

knowledge in high performance computing is needed to obtain a

real-time implementation.

In this chapter, I will take a look at different methods and list the

calculations that have to be performed for the chosen method. At the

beginning of the project, we had not chosen any particular method, but

rather a set of criteria that were used to compare different simulation

methods:



26 Chapter 2 Simulation of Mechanical Behaviour

• The calculation of the mechanics must be fast enough to enable

interactive manipulation of the model by the surgeon

• The mechanical properties should closely match those of the real

organ The surgeon should not feel or see a difference in behaviour

between the simulated and real tissue

• Avenues for future improvements have to be kept open These

include using different models, (e g specific to the anatomy and

pathologies of a patient), and simulating surgery instead of only

allowing diagnostic laparoscopy This means that the applied
method must not make cutting a priori impossible Any method

that only simulates a surface (not a full body) is therefore not

applicable

2.1. Different methods

There are different methods to simulate the mechanical behaviour of

the organs Some methods are based on imitation and training, such

as neural networks, other methods are based on physics such as mass-

spring models or the FE Method

2.1.1. Neural networks

Inputs

Hidden layers

'Output neurons

Figure 2.1: Neural network
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Neural networks consist of several interconnected layers of neurons

(fig 2 1) An input layer is fed data, that propagates through hidden

layers of neurons Each neuron calculates a response to its inputs and

feeds this response to the next layer of neurons The output neurons

finally calculate the final reaction of the network to the inputs The

network is trained to react correctly to a series of known stimuli by

testing its reaction to a stimulus and then correcting the internal pa¬

rameters according to the error in the output (Mehra & Wah 1992)
Given unknown stimuli, the network can then extrapolate or interpolate
the reactions

In the case of surgical simulation, the inputs would be the position

of the force feedback device and the old positions of the simulated or¬

gans, and the network would compute the new positions of the organs

and the forces applied to the force feedback device One of the chal¬

lenges is the acquisition of sufficient training data, as thousands of sets

would be required This is difficult at best and it would also require

a different method of mechanical modelling, such as the FE Method,
to generate simulated behaviour The major drawback, however, is the

inability of a neural network to extrapolate beyond a certain point It

is impossible to perform any surgery in a neural network not trained

for that case In the same way, the network must be trained anew for

changes in the anatomy As neural networks do not provide an open

path for future enhancements as required in our simulator prototype,

we did not investigate them further

2.1.2. Mass-spring models

The demand for real-time performance has forced most researchers to

develop or adapt simplistic models of elastic deformation to the needs

of surgery simulators Mass-spring models have frequently been used

as a method with relatively low performance requirements

In a mass-spring model, the mass is concentrated in a number of

nodes which are connected with springs, hence the name of the method

Mechanical reactions are computed by applying forces to the nodes,
which cause them to move and pass the forces on to other nodes con¬

nected by springs This method was first applied to real-time surgery

simulation by Cover et al (1993)
A mam advantage of the mass-spring model is the possibility of

unevenly distributing the nodes, l e the nodes are concentrated in areas

of interest The number of nodes and connecting springs can be adapted
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Figure 2.2: Mass-spring model: The external force Fe causes a node

with mass m to move. After a time At, the node will pick up a speed

of v = —-—-,
which will cause a displacement d = vAt. This in turn

produces a reaction force F = dk by the spring with constant k, passing

the movement on and countering the external force.

to the available computational power. The first such models were used

to simulate only the surface of organs. For surgery simulation, such

models are unusable because they do not show volumetric behaviour,
i.e. if one side of an organ is pushed, the other side does not react. In

addition, the interior of a surface model is not defined. It is not possible
to make incisions for simulating surgical procedures since the models

are just hollow shells. The desired volumetric behaviour can only be

achieved with a full-body model that models the interior of an organ

and thereby connects the opposite sides of the organ. Kühnapfel et al.

(1995) use a surface/volumetric mass-spring model in their KISMET

simulation system.

It is difficult to obtain all the parameters, i.e. spring constants

and masses, for arbitrarily interconnected nodes. Springs can be traced

through the body of an organ in an irregular fashion, i.e. a node can

be connected with many others in the interior or on the other side of

the body and springs can also cross each other. This allows for efficient

transfer of forces but complicates the calculation of the parameters. If

a regular structure of nodes and springs is used, the parameters are

simple to derive from the physical properties, but a regular model re¬

quires more nodes and springs and therefore more computational power

than an irregular model. In order to simulate cutting, the interior of

an organ must be modelled with a similar precision as the exterior. In

(Deussen et al. 1995), a method for determining the optimal positions
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of the nodes and the distribution of the masses is presented. This paper

shows how the authors were forced to use stochastic methods to find

an optimal configuration of the spring network.

The mass-spring method can lead to simple models with low compu¬

tational requirements, but such models do not show realistic behaviour

and they do not allow cutting. The calculation of models with realistic

behaviour requires a power similar to the FE Method, which is widely
used in physical simulation.

2.2. Finite Element Method

2.2.1. Overview

The Finite Element Method is widely used to simulate complex prob¬
lems in physics (Bathe 1996). In principle, a problem with a complexity
too high to find a closed solution is divided into many small problems
which can be solved individually. By combining individual solutions,
an approximative solution to the original problem can be found. In me¬

chanical simulation, a model with arbitrary shape is modelled by many
small Elements. An Element is a body with one or more dimensions

whose mechanical properties are known. Its corners are called nodes.

The deformation of the Element is an invertible function of the forces

applied to its nodes.

Figure 2.3: A truss bridge: Basic FE application

2.2.2. Static and linear FE calculation

The early implementations of Finite Elements used a linear relationship
between deformation and forces. They were mainly used to calculate

static problems. An example of such a problem is a bridge constructed
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of trusses (fig. 2.3). If a force is applied to the bridge, the FE Method

finds the deformations and inner forces of the resulting stable state. In

a static linear system, this information can be calculated by solving a

set of thousands or millions of sparse linear equations.

Figure 2.4: A FE model. The circles are the nodes, the numbered

quadrangles are the Elements

The Elements of an FE model are connected by nodes. The positions
of all nodes are stored in a vector x. The calculation is performed using
the displacements from the original position xrj in the displacement
vector u = x — xn. For each Element E, the vector of the displacements
of its nodes uE are gathered from the global vector u. Given uE, we

can calculate the strains e at any point in the Element by multiplying
uE with the transformation matrix B for that point.

e = Bufi (2.1)

The stress vector a is related to the strain vector through Hooke's law:

a = Ce (2.2)

where C is the material matrix. The forces fE that Element E acts on

the nodes can be found by transforming the stresses back and integrat¬

ing over the volume of the Element.

fE = f BTadV = ( f BTCBdVjuE (2.3)

The integral can be computed numerically and stored in the Element

stiffness matrix ~KE. All Element matrices can be assembled to obtain
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the global stiffness matrix K, that is the elements of the Element-

matrices are scattered and then added to the global matrix. We then

derive the central equation (2.6), from which we can compute the dis¬

placements u of all nodes given a vector of external forces fext:

KE = [ BTCBdV (2.4)
Jv

K = ^scatter(KB) (2.5)
E

Ku = fext (2.6)

2.2.3. Dynamic calculations

Figure 2.5: Our FE model: Three dimensional uterus

Static calculation cannot be used to model the movements of organs

during an operation, dynamic calculation is needed. Mass and attenua¬

tion are added to the static equation (2.6) to simulate time dependent
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behaviour The equation for attenuated harmonic motion is

MÜ + DÙ + Ku = fext (2 7)

where M is the mass matrix containing the masses of all Elements, D

is the attenuation matrix with the attenuation factors between pairs

of nodes and K is the global stiffness matrix constructed in the last

section Standard integration methods such as Central Differences or

Newark are used to obtain ü and ù

2.2.4. Implicit integration

For implicit calculation, a suitable integration method such as Newark

is implemented to obtain an implicit discrete time version of equation

(2 7) The equation is solved for the next time-step t + At

Mt+Atu + Dt+Atù + Kt+Atu = t+Atîext (2 8)

For Newark integration, t+Atu and t+Atu are substituted as follows

,+i'» = è('+4'"-'")-(i-
-A( (|L - l) •„. (2 9)

'«'«• = ^<'+a'«-'«>-^i'.-(i-l)'..<S10)
where a and ß are constant parameters of the integration An equation

of the sort

K *+A*u = f (*u, *u, *ii) (2 11)

follows, where K and f () can be determined from (2 8 - 2 10) To find

*+A*u, this set of linear equations has to be solved If K is constant, it

could be inverted to obtain new values for *+A*u quickly

*+Atu = K-1f(\i,tù,tii) (2 12)

If only the movements and reactions of the surface of an object are

needed, the inverted global stiffness matrix K_1 could be condensed so

that reaction forces for nodes in the interior of the organ are not calcu¬

lated (Bro-Nielsen 1998) These simplifications work only for problems
where the global stiffness matrix K remains constant This is the case
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as long as movements are small, material behaves in a linear way and

no changes, as for example caused by cutting, are made to the con¬

nectivity of the Elements None of these restrictions are true for our

problem Organs can be moved large distances Further, we want to be

able to simulate the behaviour of non-linear material To do this, the

stiffness matrix has to be recalculated often, so the shortcuts, which

are themselves computationally intensive, result in no gam

Implicit integration is unconditionally stable, independent of the

size of the time-step At Unconditionally stable does not mean exact

To obtain realistic behaviour, At still has to be reasonably small

A set of linear equations is not necessarily solvable Singularities
and the lack of numerical precision can cause the solver to fail When

simulating the mechanical behaviour of human organs, large deforma¬

tions and displacements occur, which cannot be represented in linear

calculations There are also collisions which change connectivity and a

possibility that some tissue moves freely, resulting in a set of equations

that cannot be solved, because the boundary conditions are not suffi¬

ciently well defined A method that involves solving a set of equations

to find a stable state will fail in these cases A different method must

be chosen, which is more robust in such circumstances

2.2.5. Explicit integration

By simply integrating forward in time, badly behaved problems which

cause the failure of implicit methods can still be simulated With im¬

plicit integration, the new displacements t+At\i are found by getting a

stable solution from equations (2 8-2 11) In explicit integration, the

new displacements are found directly from previous displacements and

movements (eq 2 18) Table 2 1 lists the differences between explicit
and implicit calculation
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Implicit Explicit
New positions
found

by solving equations
by direct

calculation

Stability
Unconditionally

stable

Conditionally
stable

Solvability
Only some problems

solvable
Always solvable

Computational

power required
Moderate High

Table 2.1: Differences between implicit and explicit integration

In explicit integration, the main requirement is the rate at which

the calculations are repeated, as defined by the time-step At. If an or¬

gan is touched, the resulting shock wave is propagated at the speed of

sound. This speed depends on the properties of the simulated materials

and reaches about ten meters per second in the human tissue. In ex¬

plicit integration, deformations are propagated from an Element to its

neighbours only. Therefore, the shock wave may not skip an Element

between two time-steps. The explicit integration method is therefore

only stable if small enough time-steps At are chosen (Flanagan & Be-

lytschko 1984). An estimation for the critical time-step Atmax is given
as:

AU (2.13)

where c is the speed of sound in the medium and ALmm is the shortest

distance that can be traced through material between two not directly
connected Elements.

By substituting *w and t;à in the dynamic equation (2.16) using the

Central Differences equations (2.14,2.15), we can determine the explicit

equation (2.18) for the new displacement t+Atu.
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t+Atu_t-Atu
u = t 2 14

2At
v '

t
t-Atu-2tn+t+Atu

, s

u =

Â72 (2 15)

Mtü+-Dtü + Khi = %xt (216)

(^ + ^~) t+At- = %xt
+ ^ (2«u-«-*u)

VAt2 2Aty
ext

At2
y '

2At

t+Aiu = M-1^t + ^ (2\i-*-Atu)

-^- * Atu+K*u
2At

(2 17)

(2 18)

where M = -— + —— (2 19)
At2 2At

K '

2.2.6. Solvers for linear equations

An exploration of the FE Method must include a look at numerical

solvers Static FE problems result in equations such as (2 6), while

dynamic problems lead to (2 11) u is the unknown vector of displace¬
ments The problem is to find a solution to the set of linear equations

The K and K matrices are sparse, with most of their values being zero

The reason for this is that only Elements that are connected interact

with each other, so only values of K representing these interactions are

nonzero This is an important property that should be exploited when

storing matrices and solving equations

There are two general methods to find a solution for large sets of

linear equations The matrices K and K in equations (2 6) and (2 11),
respectively, can be wholly or partly inverted, normally by using Gaus¬

sian Elimination, or an iterative scheme can be applied The most

widely used iterative method is the Conjugated Gradient algorithm

(Pommerell 1992)
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1.1.1. Solving explicit integration

For explicit calculations, the equations to be solved are shown in (2 18)
The mass of an Element can be concentrated in the nodes instead of

being distributed throughout the Element, resulting in a diagonal mass

matrix M Likewise, the physical attenuation can be substituted by a

mere numerical attenuation1, resulting in a diagonal attenuation ma¬

trix Thus, the matrix M becomes diagonal and can easily be inverted

As it is also constant, the inversion of M can be calculated when the

data is loaded The multiplication of the diagonal matrices M, D and

M_1 with u needs just one multiplication per value of u During each

time-step, the new displacements can therefore be calculated for each

node i individually with this much simpler equation

t+Atut = at (*ft + ßt V + 7î *-AV + {K fu}] (2 20)

where at, ßt, and -ft are constants which can be extracted from equation

(2 18) at start-up time, and {K *u}j is the part of the resulting vector

of the multiplication related to the node i For this multiplication, we

can also take advantage of the fact that only a few of the elements of

K are nonzero

The resulting equations are similar to those calculated in mass-

spring models The mass has been concentrated at the nodes and ev¬

ery pair of nodes of an Element is connected by a spring There are,

however, fundamental differences to the commonly used mass-spring

methods such as those described in (Terzopoulos et al 1987) The pa¬

rameters of the material matrix C can be easily determined when we

know the physical properties of the material Explicit FE is volumetric

and much more realistic due to the fine gram Further, the computa¬

tional power needed is orders of magnitude higher for the FE Method

than for the simple mass-spring models

Speed of explicit integration As explained in section 2 2 5, a shock

wave may not skip any Element between two time-steps The maximum

time-step is given by equation (2 13) As our mechanical simulation is

used in an interactive environment, and therefore has to be calculated

in real-time, we try to keep the rate of integration requirements as low

1An attenuation without physical base that attenuates the absolute speed of a

node, rather than the speed relative to its neighbours This attenuation only helps
to stabilise the system by absorbing energy
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as possible. However, the laws of physics do not permit arbitrarily low

rates. The tradeoff between good spatial resolution and an acceptable

time-step led to a minimal feature size of ALmj„ = 10mm. Given that

the speed of sound in the modelled human tissue material is 10m/s,
this results in a minimum time-step of 100/xs.

2.2.8. Collisions

When unconnected parts of the FE model move, collisions can occur.

These collisions are not predictable and have to be detected and han¬

dled specially. A collision occurs when a node is immersed in an organ

(figs. 2.6(a) & 2.6(b)). An immersion is found when a node is located

below a surface. This is checked by testing if the node is inside a virtual

body below that surface (fig. 2.6(c)).

(a) No collision (b) Immersion (c) Virtual bodies

below surfaces

Figure 2.6: Collision detection

The reaction to a collision is modelled by applying a force to both

the nodes of the surface and to the immersed node. The forces are

normal to the surface, in opposite directions. The forces are distributed

to the nodes of the surface involved according to their distance from

the immersion point, as is seen in figure 2.7(a), where Fa + Ft, = F and

AxaFa = AxbFf,. Friction forces are not considered, as human tissue

has low friction.

This collision handling results in a residual immersion when objects

constantly touch, e.g. when one lies on top of the other (fig. 2.7(b).
This immersion of objects has to be taken into account when a scene

is rendered. The ratio of immersion depth to repelling force must be

chosen with care. A small repelling force results in a large immersion

of touching object. If the repelling force is too strong, energy could be

added to the system. This is illustrated in figure 2.7(c), where an object
moves towards a surface (t\ - £3). In discrete-time calculation, the col-
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n

(a) Reaction forces (b) Residual Immer- (c) Added Energy
sion

Figure 2.7: Collision handling

lision is only detected when a considerable immersion has occurred and

a large repelling force is applied (£4). This force can cause the object
to move away at a greater speed than at the beginning (£5).

2.3. Summary

We have chosen the FE Method as it is a well known volumetric sim¬

ulation method. The properties of the material enter the calculation

in a straightforward way in the form of the material equation; there

is no need for heuristical or manual determination of parameters. The

possibility to use measured parameters leads to a highly realistic be¬

haviour of the simulated organs. The fully volumetric calculation with

its regular structure can be used to calculate the effects of cutting and

thus to simulate interactive operations in the future.

The explicit integration in time has been chosen over implicit cal¬

culation as it can better handle changing and missing boundary condi¬

tions, which happen when objects collide or parts of objects fall freely.
In contrast to the implicit integration, there is no danger that the sim¬

ulation stops because no solution for new positions is found. However,

explicit calculation needs time-steps that are much smaller than needed

for smoothly animated graphics to remain stable.
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Fast Finite Elements

The small time-steps needed for explicit FE calculation lead to a large
amount of operations that have to be performed. After outlining exist¬

ing work to speed up FE calculations, I will briefly explain the meth¬

ods we developed to reduce the amount of work in every time-step.
Since the resulting demand in computational power is too high for a

standard workstation, we developed a distributed implementation on

a parallel computer. A goal of this distribution is scalability, meaning
that the size of the problem that can be handled should grow linearly
with the number of processors. In our application, the major challenge
is the large amount of data that has to be exchanged between proces¬

sors. I will describe a communication topology which handles locality
of the data well, and then go on to identify the parameters of both the

communication system and the FE calculations that can be tuned to

minimise communication and, with it, reduce the processing time lost

to communication.

3.1. Existing approaches to fast FE calculation

The many methods developed to accelerate the calculation of the FE

Method can be divided into two different approaches; the specialist
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in continuum mechanics reduces the complexity of the calculation and

finds simpler algorithms, whilst the computer scientist adapts the given

problems to the fastest computers available In the literature, we can

see the changes in supercomputer architecture, following the transition

from the vector-computer of the 80 's to the parallel computers of the

90 's The FE problems described in the literature encompass many

fields such as magnetics, fluid dynamics, heat transfer or structural

mechanics The methods applied to one field can often be adapted to

an other one

A major field of FE research concentrates on fast calculation with

sparse matrices (Manzim 1994) and solving sets of linear equations

(Zhang & Lei 1991) on fast computers Some researchers built com¬

puters targeted at fast FE calculation Many different approaches were

taken, such as specialised vector computers (Taylor et al 1995), paral¬
lel machines (Loendorf 1985, Storaasli & Ransom 1987, Amano et al

1990), and systolic arrays (Hammond & Law 1988, Evans 1994) Re¬

searchers have investigated problems related to FE calculation such as

Domain Decomposition (Al-Nasra & Nguyen 1991) or Mesh Generation

(Saxena & Perucchio 1992, Le-Tallec et al 1996) to see if they can be

set up with parallel computers The highest interest, however, lies in

solving the problem at hand in the fastest possible manner While a

few researchers use specialised parallel solvers to find solutions to their

equation systems (Zois 1988, Baddourah & Nguyen 1994), the major¬

ity implements some variant of the Conjugated Gradient (CG) method,

parallelised with domain decomposition This means that the FE model

is divided into several sub-models, at least one per processor

A wide variety of experimental and commercial parallel and vec¬

tor supercomputers was used, such as the MARK III (Nour-Omid
et al 1987), clusters of VAX computers (Hajjar & Abel 1988), the

FPS-T20 (Yalamanchih et al 1992), the Cray Y-MP (Yagawa & Shioya

1993, Chatterjee et al 1994), the nCUBE2 system (Yagawa & Shioya

1993, Barragy et al 1994), the IBM SP-2 (Wyrzykowski et al 1999),
or the Cray T3E (Carey et al 1999) More recently, parallel portable
environments such as PVM or MPI (Annamalai et al 1999), are being
used Other work can be found on Element-by-Element (EBE) calcula¬

tion (Hayes 1989, Davis & Carey 1995), where some of the calculation

is done on a per-Element basis EBE calculation can naturally be par¬

allelised efficiently, given that the number of Elements is normally some

orders of magnitude larger than the number of processors

The field of research most pertinent to our project, however, is the
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explicit integration in time of dynamic Finite Elements (Belytschko
& Gilbertsen 1987, Malone 1990). This method has been applied suc¬

cessfully to the massively parallel connection machine (Farhat et al.

1990, Carey & Shen 1995), demonstrating that explicit FE calculation

scales well with large numbers of processors.

Once we narrow the field to research on soft tissue simulation in real¬

time, the literature becomes much more sparse. In (Hansen & Larsen

1998), the simulation of brain tissue by mixing static and implicit dy¬
namic calculation is described. One of the best references that I could

find is (Bro-Nielsen 1998), which describes real-time FE calculation of

soft tissue for surgery simulation. However, the described method can¬

not be applied to our problem. While Bro-Nielsen uses linear Finite

Elements with pre-inverted global stiffness matrices and pseudo-static

approaches or implicit integration, we require nonlinear calculation due

to large geometric movements and nonlinear material, which excludes

tampering with the stiffness matrix, and explicit integration because

of the much higher probability of finding a solution for situations with

badly defined boundary conditions.

The reason for the lack of literature on simulation of soft tissue de¬

formation in real-time is simple; the explicit FE calculation in real-time

has only recently made the transition from impossible to very interest¬

ing in the eyes of a parallel computer specialist. To someone not willing
or not able to implement custom methods and communication proto¬

cols, the problem will stay in the impossible area for some time to come.

The reason for this is the amount of calculation and communication

that has to be performed within the 100/xs time-step. Standard meth¬

ods of data exchange between and synchronisation of parallel processors

are not fast enough, as measurements show in later chapters. This is

caused by the granularity of the data that is transferred. A processor

sends some 10 MByte/s through the network, divided into packets of

only a few hundred bytes. The communication networks available to¬

day at a reasonable price cannot deliver data with small enough latency,
and small packets cause significant drops in available bandwidth, as can

be seen on page 128. Additionally, standard methods need significant

processing time per packet.

3.2. Fast algorithms

There are two ways to speed up FE calculation. By parallelising the

calculation and distributing it to a parallel computer, we accelerate
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the execution of a given algorithm. Choosing and optimising the right

algorithm reduces the total power required.
To decrease the amount of work to be performed per time-step, we

have to take a close look at the formulas that need to be calculated.

The differential equation that must be solved to perform the dynamic
FE calculation is shown in eq. (2.7). The result, if central differences are

used for integration, is shown in (2.20). These equations can be calcu¬

lated by Element and by node, respectively. The most time consuming
task is the calculation of the internal Element forces Ku, in particular
the construction of the global stiffness matrix K. However we do not

even require a global matrix K. Looking back to equation (2.5), we see

that K is assembled from the individual Element stiffness matrices ~KE.

Instead of multiplying the global displacement vector with the global
stiffness matrix, we can do this multiplication for each Element and ac¬

cumulate the resulting vector, eliminating the need for a global matrix:

{Ku},= ]T{KBuB}4 (3.1)
E£EZ

where E4 is the set of Elements that are connected to node i. For all

other Elements, the corresponding lines in the Element stiffness matrix

pertaining to node i contain only zeroes. With equation (3.1), we not

only eliminated a lot of work, we also removed the last global part

of equation (2.20), which is important as we are aiming for parallel

processing.
In explicit FE calculations, incremental formulations are normally

used. In an incremental formulation, only the current position, velocity
and acceleration are known, and no direct relation exists between the

actual stresses and the initial configuration. This means that a body
does not remember its stress free position and residual deformations ap¬

pear after forces have been applied and released in a closed load path,
even if the material is assumed to be elastic. This leads to the accu¬

mulation of errors during long simulations, which drastically decreases

the realism and stability of a calculation. To avoid the accumulation

of such errors, an absolute formulation (Hutter et al. 2000) is needed

which avoids residual deformation for a closed load path.
As we use nonlinear material and need to be able to work with large

displacements of parts of our FE model, we have to recalculate the Ele¬

ment stiffness matrices frequently, which is an expensive operation. We

can avoid the necessary matrix-matrix multiplication by calculating
the stresses and strains for every integration point, instead of deter-
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for all Elements E do

uE = «(gather the positions)
calcule the deformation gradient
calcule the hourglass modal displacements
calcule the invariants of the deformation Tensor

calculate the pressure

calculate the nominal stress tensor

calculate the generalised hourglass forces

project the stresses and the hourglass forces onto the

internal forces fE
Scatter the internal forces: / = / — fE

Algorithm 1: Recovery of Elements

mining the Element stiffness matrix ~KE. This way, we can directly
recover an Element, i.e. determine the reaction forces as a function of

the Element's deformation. The volume integral (2.3) must be evalu¬

ated, which is usually performed by a numerical 8-point quadrature.
This calculation is time-consuming and can be replaced by a reduced

volume integration. If the volume integration is simply reduced to a sin¬

gle point, information is lost and Elements can be deformed in bizarre

ways (Maenchen & Sack 1964), thus requiring so called hourglass control

(Belytschko & Ong 1984). The classical methods are based on incre¬

mental schemes with the same drawbacks as discussed above. Therefore,
reduced volume integration based on absolute strain formulation has

been developed (Hutter et al. 2000). Algorithm 1 shows the recovery of

all Elements in a time-step.

3.3. Parallelisation of the problem

As will be shown in chapter 4, the performance requirements of the

FE calculation are too high for standard computers. In section 3.2, I

wrote that the resulting equations can be calculated by Element and

by node and therefore no global representation is needed. This makes

it easy to parallelise the problem by simply distributing the Elements

and the nodes among processors.

In a parallel computer, communication is necessary, as processors

do not have access to all information. First, we have to determine what

data has to be communicated. As shown in equations (2.1) to (2.3), to
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recover an Element, the current positions of all its nodes have to be

known To find the new position of a node with eq (2 20), the forces

that are applied to this node by the surrounding Elements (3 1) and by
the collision handling have to be added together

To obtain correct results, data has to be exchanged during every

time-step This makes the explicit FE calculation a challenge for par¬

allelisation, as it has low complexity1 If we compare the length of a

time-step (100/zs) with the latencies (>40/zs, cf p 129) of standard

communication methods, such as MPI or TCP/IP, we realise that spe¬

cial measures have to be taken In addition, communication should use

as little computational power as possible
On a parallel computer it might be advantageous to duplicate a

simple calculation, if a reduction of the communication requirements

can be achieved In order to find such cases, the equations have to be

examined The most time consuming part is the recovery of Elements

shown in algorithm 1 The calculation of the position updates requires

only a multiplication per vector element (eq 2 20) It takes less time

to perform this operation (requiring some 10 ns) on several processors,

than on just one processor and distribute the new position to other

processors, which takes some microseconds to finish

3.4. Topology of the parallel computer

Figure 3.1: A two dimensional example distributed to six processors

The numbers indicate the processor coordinates (x,y) Dashed and dot¬

ted lines show the borders between processors

1The complexity rating is a measure of the number of operations executed be¬

tween exchanges of data High complexity means many operations
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The three dimensional problem domain is divided into disjunctive

sub-domains, each associated with a processor While every Element is

assigned to only one processor, the nodes the Elements are connected

to can reside on more than one processor Processors that keep track of

the same node have to be able to exchange data The division into sub-

domains adds surfaces in the interior of the FE model (the dashed and

dotted lines m fig 3 1) All nodes on these additional surfaces reside

on more than one processor, so minimising these surfaces also reduces

the load on communication caused by parallelisation
We divide the three dimensional object into cubes, which divide the

three dimensional space almost optimally, and distribute them to the

processors The processors have to be able to communicate along the

surfaces, edges and corners of these cubes By connecting the surfaces,
we obtain a three dimensional mesh of processors (fig 3 2) The local

channels connecting neighbours of this mesh handle communication

between the surfaces and, as is shown later, also the edges and corners

without additional overhead For other irregular communication2, an

interconnection structure between arbitrary processors is required This

is called the global bus This way, we get a partitioning of the problem,
that is close to optimal with respect to communication requirements,

while maintaining a regular and easy to use topology
We define an mvertible placement function cp i—> (x,y, z) that pro¬

vides the coordinates of every processor in the three dimensional mesh

The functions cx, cy, and cz determine the individual coordinates in

the x, y, and z direction, respectively The set of possible values for

cx(p) is X = {x G N|l < x < xmax}, the definitions of Y and Z are

similar The mesh is fully populated if, for every coordinate triplet

(x,y,z) G X x Y x Z, there is exactly one processor p such that

c(p) = (x, y, z) We will only work with fully populated meshes

A distance function d (pi,p2) >— <5 helps us work with this mesh

This distance function and its one dimensional equivalents, dx, dy, and

dz, are described as

dx(pi,p2) = \cx(pi) - cx(p2)\ (3 2)

dy{pi,Pi) = \cy(pi) -Cy{p2)\ (3 3)

dz{pi,P2) = \cz(pi) - cz(p2)\ (3 4)

d(pi,P2) = dx(p1,p2) + dy(p1,p2) + dz(p1,p2) (3 5)
2 collision detection and handling, haptic and optic display
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Global Bus

Local Channel
-* >

Parallel node (PE)

External Interface

~^*

Figure 3.2: 12 processors in a three dimensional mesh with global
and local communication

The function D:V i—> ö finds the maximum distance between the pro¬

cessors in a set. It is also exists in a version for each dimension:

D(¥) = max d{pi,p2) pi,p2 G F

(î>l,î>2)

DX(F) = max dx(p1,p2) pi,p2 G

(Pl,P2)

Dy(V) = max dy(p1,p2) pi,p2 G

(î>l,î>2)

DZ(F) = max dz(p1,p2) pi,p2 G :

(Pl,P2)

(3.6)

(3.7)

(3.8)

(3.9)

We now define a neighbour operator ^ which is true if two pro¬

cessors are neighbours in the mesh. This operator also exists in one

dimensional versions:

Pi ^P2

Pi ^ P2

Pi ^P2

Pi ^ P2

d(jPi,P2) == 1

d{pi,P2) == dx(pup2) == 1

d{pi,P2) == dy(p1,p2) == 1

d{pi,P2) == dz{pi,p2) == 1

(3.10)

(3.11)

(3.12)

(3.13)

Any two neighbours are connected by a direct communication channel.
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3.5. Distribution of the FE model

Figure 3.3: The FE model from page 30 divided into six sub-domains,
with dashed lines indicating where communication becomes necessary

The complete FE problem consists of a set of nodes IK and a set of

Elements E that have to be distributed to a set of processors P. Every
Element E G E is connected with a set of nodes IK^ Ç IK. From this, we

can find a subset of Elements E^ = {E\k G Kg} for every node k. We

define an assignment function ap i—> Ep that assigns a set of Elements

Ep Ç E to every processor peP such that

|jEp=E and E^ n EPj = 0 {jn+Pj) (3.14)
per

To determine the inner forces of its Elements, a processor p needs to

know the positions of the associated nodes in the set Kp = U_ege ^-E-

The set P^ = {p\k G IKp} contains all processors that need the infor¬

mation for node k.

There are two major aspects to an optimised distribution. On one

hand, we have to distribute the computation evenly among the proces¬

sors, and on the other hand, the communication requirements should be

minimised. In the parallel FE program, we expect to overlap commu¬

nication and computation to completely hide communication latency.

First, the number of Elements assigned to a processor is determined

such that the load is balanced. Next, the Elements are distributed in a

way that minimises communication. As an approximation, the amount

of data that has to be exchanged corresponds to the average number of
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processors that require the information of a node J2k |Pfc| / |K| Divid¬

ing the FE model into sub-domains assigned to processors, with cuts

where there are communication channels, is a good approximation of

an optimal distribution

3.6. Sensitive parameters in communication

When an application runs on a parallel computer, time is lost when

data is exchanged and the parallel processors are synchronised To be

able to reduce this loss of time, we have to identify the parameters this

time is sensitive to

When data is sent from one processor to another, three components

are involved, l e the sending processor, the receiving processor and

the communication network Accordingly, these three components can

cause loss of processing time It takes time for a processor to send data

When the receiver needs the data to be able to continue its work, it

has to wait until the data arrives The receiver also has to identify and

process received data correctly, as that data might come from different

senders

The speed of and the load on the communication network deter¬

mines how much time passes until data arrives at a receiver The longer
this latency, the longer the receiver has to wait for data it needs While

we can influence the raw speed of a network only by choosing fast hard¬

ware, measurements show that the granularity of the transferred data

influences the bandwidth that can actually be reached (cf page 128)
For small packets, the bandwidth grows almost linearly with the size

of the packet until the maximum bandwidth is asymptotically reached

This is due to the constant processing time each packet requires when it

is sent, forwarded and received Some of this time is spent by processors

that reside on the network cards, some is used by the mam processor,

time which is no longer available for FE calculation

We can now identify parameters that contribute to the parallelisa¬
tion overhead and should be optimised

• The total amount of data communicated contributes to the load

of the network

• The number of packets should be minimised as each requires con¬

stant processing time

• Communication and computation should run concurrently in or¬

der to reduce the time a processor is idle, waiting for data
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• The communication should be spread evenly over the time-step

to avoid performance losses due to peak loads

• The time a processor spends sending data and identifying and

processing received data should be minimised

• The latency and per-packet overhead of the communication net¬

work should be minimised

The first two points are addressed in this chapter, the scheduling of

communication and computation is discussed in chapter 6, and the

optimisation of the network is described in chapter 7

3.7. Reducing communication requirements

Each processor p of the parallel computer is assigned a certain set of

Finite Elements Ep In every time-step, the current positions of the

nodes in the FE model are used to determine the forces an Element

exerts on its nodes For every node k G IKp, the resulting force fj. has

to be determined by adding the force vectors from each Element BgEj

that contributes to that node

îE = recover(uB) (3 15)

h = E f* (316)
-EeEfc

t+AtUk = fifkSkS-^Uk) (3 17)

Elements in E^ might be assigned to different processors, so communi¬

cation might be needed to get the terms of the sum in eq (3 16) Once

the resulting force acting on a node is known, we can directly calculate

its new position

For a given topology and distribution of Elements, we can calculate

the necessary communication bandwidth Looking at processor p, we

can determine what data it has to send to other processors By adding

up the amount of data every processor sends, we can determine the

necessary aggregate bandwidth of the network A node k requires com¬

munication if it is assigned to more than one processor, as all of the

processors in Pfc need the resulting force Therefore, we determine the

number of vectors that have to be sent by one processor as

<= £(|p*i-i) (318)
fceKp
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If processor pa sends data to processor pi,, we know that the same

amount is sent from pu, to pa due to the symmetrical nature of commu¬

nication:

nPa^Pb = nPb^Pa = lKÎV nKîJ (3.19)

where nPa^Pb is the amount of data that is sent from processor pa to

processor pu,. We can therefore conclude that each processor receives

exactly the same amount of data as it sends.

Numerical Example As an example, a processor with six direct

neighbours is assigned a regular cube of n x n x n Elements. Each node

in a corner of the cube resides on eight processors and must therefore

be sent to seven other processors. The nodes on the edges of the cube

have to be sent three times and those on the surface have to be sent

once. In this case npv = 7-8 + 3 • 12(n-1)+ 6(n-l)2 =6n2 + 24n + 26.

For 125 Elements (n = 5), riy becomes 296, i.e. 296 vectors are sent by
that processor in each time-step.

3.7.1. Using local communication

Of course the distribution is not random, but optimally adapted to the

topology, as described in section 3.4. To determine the communication

requirements in that case, we take a closer look at the requirements of

every node. We can separate the nodes into different sets, depending
on where their information is needed. Internal nodes are those that are

only used on one processor: Kp = {k G KpI |Pfc| = 1}. The rest of the

nodes are classified depending on the directions in the 3D mesh in which

their data has to be exchanged. K.£, Kj, and ~Kp are the set of nodes

that have to be communicated in x, y, and z direction, respectively.
The nodes in ~KXZ have to be sent in both y and z directions:

Kf = {keKp\Dx(Fk) = D(Fk) = l} (3.20)

K = {keKp\Dy(Vk) = Dz(Vk) = lADx(Vk)=0} (3.21)

Other sets can be derived in a similar way.

The last set consists of the remaining nodes that cannot be handled

by direct communication, because the distance in at least one direction

is greater than one:

WIr = {ke Kp| max Ddlr(Vk) > l) (3.22)
L dir=x,y,z )
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Figure 3.4: Working principle of a communication using only local

channels. The Elements on different processors are moved apart.

(a): At the beginning of a time-step, the Elements on the x borders are

recovered (dark shade means ongoing computation).
(b): Some forces of computed Elements on their nodes are now known,
indicated by a light shade in the respective corners. Now the processors

exchange results of the x border nodes; dashed arcs show communica¬

tion. Concurrently, the Elements on the y border are recovered.

(c): Finally, the "inner" Elements are recovered, while the last com¬

munication (y, shown as arcs) is m progress. The communicated forces
include components received during step (b).
(d): After the last group of Elements is computed and all incoming

forces have been added, all nodes have the correct resulting force.
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Whenever a node is represented on more than two processors, or on

two which are not connected by a direct channel, the local communi¬

cation is not directly sufficient to exchange data. The information can

either be sent on global channels, or it can be routed through processors

which are connected directly with each other.

The number of communications stays the same as in (3.18), as long
as packets are only routed through processors that need to know about

the data themselves. Data is routed through a number of channels equal
to the distance of the associated set of processors. The advantage of

using local communication channels rather than global channels is that

most of the data can be sent through the faster local channels. This is,

however, paid for by additional overhead in processors that not only
read data but also have to send it on.

To reduce the amount of data exchanged, we have to look at the FE

calculation more closely. To determine the new positions of a node k in

equation (3.17), a processor does not need all partial forces fE, knowing
the resulting vector fk is sufficient. That is, instead of forwarding partial

forces, a processor calculates and forwards the partial sum of forces.

Let us look at a node k G KjP'. It resides on four processors, pi to

P4, where p\ ±k p2 (pi and p2 are neighbours in x direction), ps, ±=k P4,

Pi ^ P3, and p2 ^ pa- Each processor pt calculates those parts of

the total force it knows about (/£*) and sends them to the neighbour
in x direction. By convention, all processors first send in x direction,
then in y direction and, if necessary, in z direction. In this example, pi

now has both fPl and fP2 and forwards the sum in y direction to p%.

ps, received fP4 before, calculated fP3 itself and can determine fk as

(fk1 + /fc2) + /fc3 + /fc4) as can the others. At the end of just two local

communication steps, all four involved processors have the complete
sum fk. This is illustrated in figure 3.4. This way, the communication

is reduced to:

npv = |K* U Kj U Kz\ + 2 |Kf U K*z U K^z\

+ 3|Kf^| + ]T|PWl (3-23)

Numerical Example For our processor with n x n x n Elements,
the communication amounts to nv = 3 • 8 + 2 • 12(n — 1) + 6(n — l)2 =
6n2 + 12n + 6. For the 125 Elements, this amounts to 216 vectors that

have to be sent, a reduction of 27% compared to the example on page 50.

We also get the additional advantage, that only local communication
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(a) All to All (b) Local only

(c) One point (d) Two points

Figure 3.5: Different communication schemes in 2D illustrations. Ar¬

rows show communication directions, lightly striped Elements are re¬

covered just before data is exchanged, darker shaded Elements were re¬

covered earlier.

is used without the need for routing data through a processor.

3.7.2. Mixing local and global communication

The previous section showed the communication structure using only
local communication. If both local and global communication are avail¬

able, different communication methods can be considered. Instead of

sending data through neighbours, processors not directly connected by
local channels can exchange data over the global bus. Envision a node

) = 1

ZXYZ

k in IK?YZ where P^ consists of eight processors such that Ddtr (
for all directions. On these processors, the node is an element of L»

,

so every processor has to send the information pertaining to the node

three times. The total number of messages sent over local channels is

24, and three times the latency A^ of a local channel is required until

all processors have received all data (fig. 3.5(b)). If only one processor

collects the data, calculates the result and sends it out to all others,
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the necessary communication is reduced to six local and eight global

messages. The partial forces of four nodes are sent over the global bus,
the forces of three nodes are sent over local channels, while one is cal¬

culated on processor p. The results are determined by processor p and

are sent with another four global and three local messages to the other

processors. With this method, the maximum latency is twice that for

global communication (2AS), assuming that global latency is larger than

local latency (As > A^) (fig. 3.5(c)). Several methods requiring differ¬

ent numbers of local and global messages and different latencies can be

envisioned (fig. 3.5 (a&d)). In order to compare them, we again envis¬

age a processor which is assigned n x n x n Elements. This processor

p, holds a total of n3 Elements and (n + l)3 nodes. The sizes of the

different subsets are as follows:

K\
rXYZl

= (n

= 8

1) K\ = K = \kp
XY\
P \ \Kf\ = Kz

= 2(n-

= 4(n

Depending on the method used, we get different amounts of packets
sent over the local and global communication paths for different nodes.

All methods have in common that the calculation of internal nodes in

Kp does not require any communication and that exactly one vector is

sent over local channels for every node in rx U. U. ^

Method
Vectors on

local bus

Vectors on

global bus

maximal

latency
All to all (fig. 3.5(a)) 6(n + l)2 12n+20 \
Local only (fig. 3.5(b)) 6(n + l)2 0 3A,

One point (fig. 3.5(c)) 6n2 6n + 2 2AS
Two points (fig. 3.5(d)) 6(n2+2n-l) 8 As + Xi

Table 3.1: Latency and bandwidth comparison of different communi¬

cation schemes for a processor with n3 Elements

A suitable method can be chosen when the properties of the network

and the relative latencies of global and local channels are known. In our

case, it proved to be optimal to use the all to all method, as the latency
of the network was high and enough bandwidth was available.
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3.8. Dynamic collision detection

The detection of collisions is a major task, as every node of the model

attached to an outer surface has to be checked against every surface

of the model. This task can consume a significant fraction of the total

computation time. By using special properties of the dynamic calcula¬

tion, a significant amount of time can be saved.

3.8.1. Coarse grain/fine grain method

To reduce the amount of operations as well as the communication band¬

width required to perform collision detection, a two level operation is

performed. The FE model is divided into sub-domains by the paralleli¬

sation, one sub-domain is assigned to each node of the parallel com¬

puter. The first step is to compare the bounding boxes of these sub-

domains. If they are disjunctive, no further checking must be carried

out. Only if they overlap does additional information have to be ex¬

changed and tests that become more and more accurate are performed
in subsequent steps.

If additional properties of the model are known, e.g. that node/sur¬
face pairs cannot collide or sub-domains cannot collide with each other,
the checking can be further reduced.

(a) ~~~-—-~.y (b) ~~-~~~—-y

Figure 3.6: Bounding Boxes of the uterus' surface. The whole model

is about 12cm from left to right

(a): The bounding boxes of the model split into twelve sub-domains

(b) : The bounding boxes of all surfaces
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3.8.2. Prediction

While the method of using different levels of granularity reduces the

workload, the predictive method increases the average time between

checks When a node does not collide with a surface, in the same step

an approximate distance between node and surface is calculated This

distance, together with other known properties of the model such as

current velocity and maximum acceleration, can be used to determine

a minimum time frame in which no collision can occur In our model,
the lOO/iS time-step is short, while the speeds at which parts move are

comparatively slow We can safely assume that vertical acceleration is

less than one g, l e the acceleration of a freely dropping object The

horizontal speed is constrained by the movements of the surgeon, which

reach at most a speed of lm/s So, even for small distances between

possible contact partners, we might find that hundreds of time-steps

have to go by before a collision can occur A horizontal distance of

10mm between two possible collision partners ensures 100 time-steps

without contact During this time, these contact partners can be safely

ignored This prediction reduces the workload considerably



4

Computation and

Communication

Requirements

To determine whether the mechanic simulation can be done within our

limits of execution time and implementation costs, we first had to assess

the performance requirements, with respect to computation and com¬

munication. The performance estimation was made both for implicit

integration with Conjugated Gradients and for explicit integration. At

the end of this chapter, we can reexamine the estimated requirements

by looking at the model that is actually used in the simulator.

Our FE model consists of ne£ = 1840 hexaeder Elements, each with

eight nodes or dfe£ = 24 degrees of freedom. Each node is, on aver¬

age, connected to neav = 5.6 Elements. These Elements together have

dfeav = 61.4 degrees of freedom. All in all, there are rik = 2528 nodes.

The location of each node is specified by three dimensional coordinates,

giving the complete model dfg = 3«-^ = 7584 degrees of freedom. With
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full integration, an Element has nmt = 8 integration points, which can

be reduced by known integration schemes.

The time-step Atlm for implicit integration may be, at most, as large
as the time between displaying two frames, i.e. Atlm < Atgr^-^^g =

20ms. While implicit integration is always stable, large time-steps re¬

duce the precision of the result. Another possible value for the time-step
is the rate at which force feedback data has to be calculated to provide
a smooth interface to the surgeon; a reasonable value is Athaptic = 1ms.

The time-step for explicit integration is easier to choose, as it depends
on physical properties of the model. In our case, it is Atex = 100/xs.

The Conjugated Gradient (CG) method is an iterative solver which

takes nlt iterations to arrive at a result with a reasonably small error.

nlt differs in every time-step depending on the input data. Since the

result of the previous time-step is used as an initial position for the

next one, nlt will be large if many parts of the model move.

4.1. Implicit integration

Implicit integration based on the CG solver, consists of two time con¬

suming parts: constructing the global stiffness matrix and finding a

solution. The number of operations per second Ncg and the required
communication bandwidth Cca can be calculated as follows:

N
neiNK + nttNe

Nca =

t-, (4.1)
At.

vm

Cca =

C*+"*C«
(4-2)

Nk Operations for constructing the Element stiffness matrix Kb

Ne Operations per iteration step

Ck Data that is transferred to redistribute the global stiffness matrix

Ce Communicated data for calculating the error g

The basis for calculating of the Element stiffness matrix is equation

(2.4). Expanded by the Piola-Kirchhoff stress matrix S (Bathe 1996)
we obtain:

KE = [ BlCBLdV+ f BlrSBNdV (4.3)
Jv Jv

The calculation of the individual matrices of equation 4.3 can be

found in a more elaborate documentation of the FE Method (Bathe
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1996). Here I only list the number of operations required. In table 4.1

AOPs stand for the number of additions and MOPs for the number of

multiplications.

Calculation AOPs MOPs

Bl, Bat, S

BlCBL
B^SBat
KE

miscellaneous

254frf

5dfee(dfee + 6)

2dfe£(dfe£/3 + 3)

dfle
5dfe£

ildfee

6dfee(dfee + 6)

dfee(dfee + 9)

Tdfei
total 6.6df2e + 66dfe£ idfl, + s:idfee

8 Node

Hexaeder
5424 6024

Table 4.1: Operations needed to determine the Element stiffness matrix

K.E for an Element with dfe£ degrees of freedom

These operations have to be executed for every integration point.

Thus, the total number of floating point operations (additions and mul¬

tiplications) is:

NK = nmt(\2,Mfli + 1494frf) (4-4)

Nk amounts to 90,000 floating point operations for an eight-node hex-

aeder Element with eight volume integration points.
One iteration of the BiCGSTAB (Pommerell 1992) version of the

CG method requires two matrix-vector multiplications and 16 vector-

vector operations. The matrix-vector multiplications constitute the

most time consuming part. Generally, the vectors are of size dfg and the

matrix has the dimensions dfg x dfg. The matrix is only sparsely pop¬

ulated. On average, only dfeav values of a row are populated. Thus the

two matrix-vector multiplications require 2(2dfeav — l)dfg operations.
The calculation of the correction vectors amounts to another 20dfg op¬

erations. The total number of operations per iteration step are:

Ng = 2dfg(2dfeav+9) (4.5)

Since the amount of communication bandwidth required depends
on the distribution of the Elements among the processors, I can only
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make an approximation here There are two approaches to the parallel
CG calculation We can work with sub-domains in which case no global
stiffness matrix is assembled As a result, Ck is zero and all the commu¬

nication load is moved to Ce, such that the amount of data exchanged

per iteration approximately equals the communication bandwidth re¬

quired by the explicit integration discussed later Alternatively, we can

assemble the global stiffness matrix and assign a number of rows to each

processor This requires a considerable amount of data to be transferred

when setting up the iterations, but no data exchange is required during
an iteration The amount of data communicated for each value of the

global stiffness matrix depends on the partitioning of the model We

will assume that for each nonzero value, there is one data transfer, so

that

Cr « dfeavdfg (4 6)

For each iteration, all processors need to know the current error

This error is determined from the partial errors calculated by the pro¬

cessors There are two ways to make sure that all processors know the

total error All partial errors can be sent to one processor, which cal¬

culated the resulting error and sends it back to the others, requiring

2(np — 1) values to be transferred However, the latency can be reduced

if all processors accumulate the partial errors, which requires that every

partial result is sent to every other processor, so that

Ce = (np - l)2 (4 7)

4.2. Explicit integration

The computation of a time-step takes fewer operations with explicit

integration than with implicit integration However, the time-steps are

much smaller for explicit integration, resulting in higher overall require¬

ments, as I will show in this chapter
The communication bandwidth needed in explicit integration is the

same regardless of the method used to obtain the force resulting from

the deformation of an Element — it was discussed in section 3 7 In

the optimised implementation, shown in section 3 7 2, the data of ev¬

ery node is communicated 2(|Pfc| — 1) times A statistical analysis of a

distribution of the FE model among 12 processors shows that the po¬

sition of a node is on average needed by npav = 1 36 processors Thus,
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communication bandwidth Cex is

-)(n____ _ iWf.

(4 8)
2(npav -l)dfg

At
<—*°ex

The calculation of the forces required to determine the new posi¬

tion of a node can be refined Instead of multiplying the displacements
with the stiffness matrix, direct vector calculation or reduced integra¬

tion with hourglass control can be applied These refinements will be

discussed next

4.2.1. Using stiffness matrices

If we calculate the stiffness matrix for every Element in each time-step,

we can multiply the displacements with the stiffness matrix to deter¬

mine the resulting force This requires dfe£(dfe£ — 1) operations The

number of operations required to obtain the Element stiffness matrix

is the same as for implicit integration shown in equation (4 4) To de¬

termine the force, we add the Element force vectors to the global force

vector, which requires dfg(neav — 1) operations Finally we can calcu¬

late the new positions with an addition and a multiplication for each

of the dfg degrees of freedom The number of operations amounts to

N
=

nei{NK + dfl£ - dfet) + dfg(neav + 1)
exl

Atex
[ '

4.1.1. Direct vector calculation

Rather than calculating a stiffness matrix we can calculate the stresses,

strains and forces directly, as described in section 3 2 Table 4 2 shows

how this reduces the number of operations
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Calculation AOPs MOPs

Bl, Bat, S

B£(C(BLu))
B^(S(Bwu))
KBu

miscellaneous

2hdfel

lldfe£ + 24

5dfe£ + 9

dfel

5dfe£

31 dfe£

12dfe£ + 36

&dfe£ + 27

7dfe£
total 47dfe£ + 33 56dfe£ + 63

8 Node

Hexaeder
1161 1407

Table 4.2: Operations needed per integration point for direct vector

calculation

The total number of operations executed for all integration points

NKu=nmt(103dfee + 96)

,r
_

ne£NKu + dfg(neal
AtP

(4.10)

(4.11)

4.2.3. Single point integration with hourglass control

The work described in (Hutter 1999) concentrates on further reducing
the amount of operations required to obtain the forces from the dis¬

placements. The procedure we finally used is his total hourglass control

which integrates at a single point (nint = 1). By analysing every part of

the calculation, and removing parts which do not change from time-step
to time-step, he could reduce the number of operations considerably.
The implemented program requires 816 floating point operations in¬

stead of more than 20'000 operations required by equation (4.11) to

calculate the forces. The number of operations required for explicit in¬

tegration with total hourglass control is:

Nex3 =
816 ne£ + dfg{neav + 1)

(4.12)
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4.3. Estimated numbers

To estimate the required computing performance, we have to make

some assumptions for the parameters of the implicit integration. We

are assuming that the global stiffness matrix is recalculated once every

graphics frame (Atim = 20ms) and that nlt = 100 iterations are exe¬

cuted every frame. This allows for calculating several linear solutions

with the same global stiffness matrix. The computational requirements
for our 1840 Element model are shown in table 4.3.

Method (explained in section) Ops/time-step Ops/s

Implicit/CG (4.1) 339 M 17 GFLOPS

Explicit/matrix (4.2.1) 167 M 1.7 TFLOPS

Explicit/vector (4.2.2) 38 M 379 GFLOPS

Explicit/hourglass (4.2.3) 1.6 M 16 GFLOPS

Table 4.3: Operations required for implicit and several explicit inte¬

gration methods

Table 4.4 shows the estimated communication requirements for dif¬

ferent methods running on our parallel computer consisting of 12 dual

processor nodes. The requirements for all explicit methods are similar.

Method values/time-step Bytes/s
Implicit 477 k 191 MByte/s
Explicit 5.5 k 437 MByte/s

Table 4.4: Communication requirements for explicit and implicit in¬

tegration

As explained in chapter 2, we cannot use the Conjugated Gradi¬

ent method with implicit integration, we have to use real-time explicit

integration instead. From the numbers in table 4.3 we can conclude

that only with total hourglass control the performance requirements
for explicit integration were brought down to a manageable level.
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To determine the number of processors required to deliver the re¬

quired computational power, we assume that a highly tuned program

can utilise a third of the theoretical peak floating point performance of a

processor For the RISC processors we use, this amounts to two floating

point operations every three clock cycles As our Alpha 21264A pro¬

cessors run at 666 MHz, we can expect a performance of 444 MFLOPS

per processor At this speed, we would require 36 processors to achieve

our goal With the 24 processors at our disposal, we can come close to

achieving the original target

An examination of a distribution of our FE model to the 12 nodes

of our parallel computer shows that 40 kByte of data have to be ex¬

changed in every time-step, or 400 MByte per second This amounts

to an average of 34 MByte/s per node that is sent and received As we

cannot expect to reach the maximum performance, the network needs

a raw performance of at least a Gigabit per second per node
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Parallel Hardware

The parallel hardware consists of processing elements connected by
a communication network. Numerous different hardware architectures

are possible. In the first part of this chapter, we will take a look at

how well different architectures are suited for real-time FE calculation.

The second part of the chapter contains a description of the processing
elements and the communication network that make up the LASSO

hardware.

Commercially available communication networks are based on open

standards such as Ethernet, HIPPI, or SCI, or custom implementations
such as Myrinet. We could also build a custom communication network

optimised for the requirements of the parallel FE computation.
We can also see several options for the processing elements. Stan¬

dard components produced in large quantities, such as workstation pro¬

cessors and DSPs, deliver a lot of raw computational power. There are

also less widely used or experimental designs such as the Intelligent
RAM (IRAM), vector processors, or multi-threaded processors.
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5.1. Processing elements

As found in chapter 4, the processing elements must be able to perform
several billion floating point operations per second This performance
is achieved by running an adequate number of processing elements in

parallel The FE calculation must be performed with 64 bit arithmetic

in order to avoid stability problems induced by a lack of numerical

precision

The information that must be stored for a node is contained in four

three dimensional vectors and two scalars, a total of 112 byte The

total model with 2528 nodes needs 283 kByte for the floating point

data plus at most the same amount for administrative information As

a processing element p does only need the information for the nodes

in Kp, we can be sure that no processing element needs to store more

than 500 kByte of data

Additional requirements were price, power consumption and space

The LASSO computer is located next to the ONYX II computer that

renders the graphics, in a room with limited space and cooling capacity

The LASSO computer must fit in at most two 19" racks and it must

not emit more than 10 kW of excess heat We could spend 250 kCHF

for the processing elements and the communication network to come

as close to the original performance goals as possible

5.1.1. Digital signal processor

DSPs are optimised for signal processing tasks such as Filters or Fast

Fourier Transformations Most are only capable of Fix-Pomt arithmetic,
while a subset can also perform Floating-Point computations A typical
DSP has fast on-chip memory with a high bandwidth bus between the

internal memory and the arithmetic unit, while the off-chip memory

interface provides only a moderate bandwidth The clock speed of the

fastest signal processor has, for the last few years, been about a third

of the clock speed of the fastest workstation CPU

In the highly parallel parts of the FE computation, such as the re¬

covery of Elements, several DSPs could carry out the task of a high-end
workstation processor at a comparable price, power consumption and

space However, for sequential and data dependent parts, the DSPs

would be much slower At the time of evaluation, no DSP was capable
of the required 64 bit floating point arithmetic The necessity of con¬

structing hardware and a suitable programming environment kept us

from verifying the necessity of 64 bit precision in detail



5 1 Processing elements 67

5.1.2. Multi-threaded processor

The multi-threaded processor (Tsai et al 1999) is an experimental de¬

sign, but it is shortly evaluated here because the technology is likely to

be used in mainstream processors in a few years Currently, the high-end

general purpose processors use heavily pipelined designs with several

parallel (super-scalar) execution units with high clock speeds It takes

several clock cycles until a computation is finished and the result is

written back If this result is needed in one of the next instructions, the

execution is stalled until the computation is finished, thereby degrad¬

ing performance and leaving several pipeline stages empty This effect

is countered with techniques such as optimising compilers that try to

keep pipelines filled, and out of order instruction execution, where the

processor postpones instructions for which operands are not ready and

issues others which operate on different data

An additional problem are conditional branches in the code As the

direction the branch must take is usually not known until immediately
before the branch, the pipelines might become completely empty Pro¬

cessors try to circumvent this with branch prediction, where the most

likely branch is executed Correctly predicted branches can then be

processed at full speed, while mispredictions incur a penalty of several

cycles
The multi-threaded processor provides a way to eliminate these

problems It can work on multiple threads at the same time Each

thread has its own set of registers The processor switches threads ev¬

ery time an instruction is issued When a new instruction of a thread is

issued, the last one has had enough time to complete, so pipeline stalls

are avoided, and the available computation units on the processor are

rarely idle

In FE calculation, different Elements could be assigned to different

threads, so that the time consuming recovery is calculated for several

Elements simultaneously, with maximum performance Other parts of

the calculation are executed for each node or for each surface Groups
of nodes or surfaces can be assigned to different threads All in all, the

multi-threaded processor seems to be an interesting design for explicit
FE computation once it becomes widely available

5.1.3. General purpose processors

General purpose processors, which make up the core of personal com¬

puters and workstations, are designed to handle arbitrary tasks at high
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speed At present they exceed 1 GHz clock speed, leaving other compu¬

tation devices far behind Being in a field of strong competition, they
are in the centre of technological innovation, yielding ever higher per¬

formance They also have fast high precision floating point units, which

are needed for the task at hand Altogether, general purpose processors

deliver high performance at low cost

A general purpose processor is not able to perform any computation

without memory and I/O subsystems The computational performance
needed for the LASSO project can be reached by running several gen¬

eral purpose processors in parallel This can be achieved by embedding
each processor in a system and connecting the systems with a com¬

munication network As a small number of processors (typically two

or four) can share the memory and I/O subsystem without significant

performance loss for each processor, we can connect symmetrical multi¬

processing (SMP) workstations containing two or four processors with a

communication network Finally, the simplest programming model and

the fastest communication is reached when all processors are connected

to one virtual shared memory in a parallel super computer

5.1.4. Cluster of workstations

A cluster of workstations is a parallel computer where several stan¬

dard workstations with one or more processors are interconnected with

a high speed network such as Myrinet or Fast Ethernet In the last

few years, Beowulf clusters that run the free GNU/Linux operating

system (Sterling et al 1995) have become popular The key-acronym
is COTS Commodity Off The Shelf components provide the buyer
with the good price-performance ratio of the commodity market Using

widely available tools, these systems are easy to set up, leaving time

for the development of the parallel program

As the LASSO hardware was bought near the end of the project,

we were able to capitalise on the fast improvements in processor tech¬

nology, enabling us to buy high performance workstations for a moder¬

ate price Using a Beowulf cluster has additional advantages Available

standard message passing libraries, such as the message passing inter¬

face (MPI), make it simple to port software to the cluster, turning it

into a powerful machine for different parallel computing needs Even in

our project, the use of MPI makes it simple to run the same program

on a development computer and on the target Beowulf cluster

In a cluster of workstations, information is exchanged with message
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passing, a processor sends a message to a peer that has to issue a receive

call before it can use the received data If a workstation contains more

than one processor, the communication is no longer uniform, depending
on the location of the communication partners, the shared memory or

the communication network is used to exchange data This additional

complexity can either be hidden by the message passing layer in order

to get a uniform programming model for the parallel program, or it

can be passed on to the higher levels in order to obtain maximum

performance

5.1.5. Parallel super-computer

Similar to a Beowulf cluster, a parallel super-computer contains fast

general purpose processors connected with a communication network

This communication network tightly couples the processors by provid¬

ing high bandwidth and low latency The memory in such a computer

can often be accessed uniformly as shared memory, providing a method

to exchange data between processors that is simpler to use than mes¬

sage passing Because additional hardware must be built specifically
for such a parallel computer, it is significantly more expensive than a

cluster of workstations with the same amount of processor Such com¬

puters are often shared by several users running batch processes The

interactive nature of our simulation makes such sharing rather difficult

We therefore decided against such a computer

5.1.6. Vector super-computer

Vector super-computers comprise one or several custom-designed vec¬

tor processors that are able to process vectors containing thousands of

elements at great speed Vector super-computers were widely used in

the eighties but have since been replaced by computers with many stan¬

dard processors running in parallel The vectors appearing in explicit
FE calculation contain at most 24 numbers, a size at which vector com¬

puters do not excel Additionally, the cost and size requirements cannot

be met by such a computer, which kept us from further evaluation

5.1.7. The case for fast processors

To get the required performance, we can chose from different processors

with different price-performance ratios For fast processors, the prices

increase more than linearly with speed The nonlinear relationship of
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prices and processor speed is illustrated in figure 5.1 with the example
of AMD processors. The cost of a complete system is made up of much
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Figure 5.1: Processor speed vs. price

more than just the price of a processor, however the nonlinear price-

speed ratio holds for most components. We therefore had to make a

tradeoff between many slow and a few fast systems to reach the desired

performance.
An examination of the partitioned model shows that the communi¬

cation load for slow systems remains high and requires the same kind

of performance as the fast systems. Thus the cost of the communica¬

tion system per node stays the same and defines a lower bound for the

price per node. A parallel computer constructed of many inexpensive

systems has several drawbacks, such as increased consumption of power

and space, increased probability of failure of a component and the lack

of wide PCI buses with an ensuing negative impact on communication

bandwidth. The main problem, however, is that the slower the systems

are, the lower the overall performance that can be reached, despite
constant peak performance.

In a simulation, I compared virtual parallel computers with proces¬

sors of different speeds to find out the impact of the speed differences

of processors. Three different processor models are used: The "fast"

processor, the "moderate" processor, and the "slow" processor. In the

first system (fig. 5.2), 24 fast processors are used. The moderate pro¬

cessor delivers half the performance of the fast processor, we therefore

would have to use 48 moderate processors to get the same raw per¬

formance. The slow processor has a quarter of the speed of the fast

processor, so 96 slow processor deliver the same peak performance as
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Figure 5.2: Network occupation for 12 fast two-way SMP systems
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Figure 5.3: Network occupation for 2^ fast single processor nodes

and 2^ moderate two-way SMP nodes
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Figure 5.4: Network occupation for ^8 nodes consisting of moderate

single processor systems or slow SMP systems
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24 fast processors do The fast and moderate processors were simulated

in single processor and two-way SMP systems, the slow processor was

only simulated in a two-way SMP configuration All systems have the

same communication system, with the performance characteristics of

an existing network

For the comparison, I generated distributions of the FE model for

the given number of processors The distributions were used to extract

communication information, for every processor, a list was generated

showing the sequence of Elements that are recovered and data that is

sent This sequence was used to predict occupation of the communi¬

cation network In this prediction, the recovery of Elements causes a

delay depending on the speed of the processors, and the transfer of a

packet occupies the network A packet starts occupying the network

when it is sent, and the duration of the occupation is determined by
the bandwidth of the network and the size of the packet

Figures 5 2 to 5 4 show the predicted occupation of the network dur¬

ing a time-step We can see that with slower processors, the exchange
of data delays the end of the time-step significantly There are several

reasons for this the slower processors need more time until results are

ready and can be communicated, so the peak load is moved towards the

end of a time-step The smaller sub-domain processed by a node has

a bigger percentage of surface nodes, so the number of Elements not

needed for communication decreases, no work remains once all data

transfers are started Finally, the time needed for data transfer does

not decrease despite a lower load per processor, because packets just

become smaller and the available bandwidth decreases accordingly We

can conclude, that it is best to use the fastest components available

when building a parallel computer

5.2. Communication

As determined in chapter 4, the communication network must have

a bandwidth of at least one Gbit/s Latency should be only a few

microseconds, and sending and receiving data should consume only
minimal processing time Ideally, a processor should be able to directly
store data in the memory of a remote processor

Processing time can be lost at different points during communica¬

tion when data is prepared to be sent, when a processor waits for data

before it can go on with its work, and when a processor needs to inter¬

pret received data The first and the last reason depend mainly on the
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communication software and are discussed in chapter 7 How much of

the work needed for sending and receiving is taken off the mam pro¬

cessor depends on the abilities and flexibility of the network hardware

The middle part depends on the networking hardware and the schedul¬

ing of corresponding send and receive calls The faster the individual

components are, the smaller the latency becomes, and the higher the

bandwidth, the lower the occupation of the lines

5.2.1. Dedicated point to point links

Any pair of processors must be able to exchange data We can use ded¬

icated point to point links between neighbours in the three dimensional

mesh, or we can use a switched network

Dedicated point to point links require a cable for every local chan¬

nel To implement this in hardware, we would require a maximum of

seven cables out of a processor, l e one to each neighbour and one for

global communication One major drawback is the amount of cabling

required, eg a4x4x4 processor machine would require 144 cables

for local communication A second problem is the connection of the

computers to the network We could put six network cards into ev¬

ery workstation, each of which is only active a fraction of the time

The price of six network cards that individually fulfil the specifications
would be prohibitive

Instead of using six network cards, we could use some that have

more than one connection One suggestion is shown in (Rhomberg et

al 1998), î e a card with a single network interface followed by a switch

that routes the traffic to one of six neighbours The receiver has to select

one of the incoming channels to determine the neighbour from which

data can be received Such a network interface card would have to be

custom made, and it would therefore be useless for anything else

With dedicated lines for local communication, it is possible to sim¬

ply send the data as noted in section 6 3 If data is received over a line,
the sender is known If the sequence in which data is sent is fixed, the

data can be identified without additional information This minimises

the amount of data that is sent and eliminates the need to send data

in packets

5.2.2. Switched network

While dedicated links provide the means to exchange raw data, a

switched network is used to send data with attached information
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through a network of wires and switches Data with different meanings

and destinations can be sent simultaneously over the same network

On one hand, this introduces additional overhead for the generation of

a packet to be sent and for the detection of the purpose of a received

packet, as well as latency when the packet is moved through switches

On the other hand, this method reduces the amount of cabling and net¬

work cards required and provides the means to handle global and local

communication in almost the same way By optimising the topology
of the network, the total bandwidth also increases with the amount of

processors in the system In the same way, the number of switches on

the path between any two processors can be kept to a minimum, when

the 3D structure is kept in mind Furthermore, if a single card with the

attached network is not enough to handle all the local and global com¬

munication, the load could be split between more cards, which ideally
reside on separate PCI buses, connected to different networks

5.2.3. Available hardware

A number of vendors sell hardware adhering to different standards, with

widely varying features Many of the cards can be used both with ded¬

icated links, although with the mentioned high requirements to hard¬

ware and cabling, and as switched networks

HIPPI is an abbreviation for High Performance Parallel Interface

It was originally intended as a fast point to point link connecting su¬

percomputers It sports a parallel line that transfers 100 MByte/s or

200 MByte/s over point to point links, which can be connected to larger
networks with crossbar switches A number of ANSI standards specify
different parts of the network While the parallel cable spans distances

of up to 25 m, there is also a serial specification, which allows dis¬

tances of up to 10 km over optical fibres A newer projects aims to

develop HIPPI-6400, a network with a bandwidth of 6 4 GBit/s Al¬

though HIPPI aimed to expand into the commodity Gigabit market, it

was never widely used as a cluster interconnect

Gigabit Ethernet is an extension of the popular Ethernet and Fast

Ethernet, which are the most widely used standards for LANs Gigabit
Ethernet is an IEEE standard (802 3z/802 3ab) and runs at a speed
of 1 GBit/s It is mainly used to connect Fast Ethernet networks with

servers and as a backbone
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SCI is short for Scalable Coherent Interface, a standard for a fast

network for clusters It was designed to model a computer bus in a

distributed environment It has point to point links with a bandwidth

of up to 1 GByte/s The basic communication function implemented in

SCI is a remote memory access, î e a part of the user space memory is

mapped to the SCI card, and any stores to that memory are automat¬

ically recognised, sent over the network and stored at the appropriate

place in the user space of a different processing node This sounds ex¬

actly like what we need However, at the time the first network was

bought for our project, the existing SCI implementations were expen¬

sive and, according to other users at the ETH, were not yet mature

enough for commercial applications

Myrinet is a Gigabit LAN/SAN network developed by a spm-off

company from Caltech It features full duplex links with 1 28 GBit/s
bandwidth in each direction that connect to switches and flexible NICs

While the design of the switches is fast and simple, with wormhole rout¬

ing, the interface cards are unusual (Boden et al 1995) Next to the

network and PCI interface, Myrinet network cards have a specialised
RISC processor that handles outgoing and incoming data Full develop¬
ment tools are available for this processor, allowing the owner of such

a card to develop custom low-level protocols In the time until the final

cluster was purchased, Myrinet not only proved to be able to deliver

high performance communication in our application, it also was about

to become the standard high-speed cluster interconnect network

5.3. Final hardware implementation

In the end, we decided to buy and construct a Beowulf cluster con¬

sisting of Alpha-processor nodes, connected by a Myrinet network We

chose the Alpha processors, because they deliver the highest floating

point performance of all available microprocessors High single proces¬

sor performance has many advantages

• It reduces the number of nodes necessary and the space they take

up

• Consequently, the overall communication requirements are re¬

duced

• Serial parts of the computation are completed more quickly
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• The lag from the beginning of a time-step until the first data is

exchanged is reduced, and thus the communication load can be

more evenly spread over the time of a time-step.

The choice of Myrinet networks was also based on several reasons:

• It fit the specifications in respect to speed, price, availability,

power and reliability.

• The design with the special processor allows the implementation
of the envisaged fast user level protocol.

5.3.1. Overall system design

The complete software system for the LASSO surgery simulator con¬

sists of a number of asynchronous processes (cf. fig. 5.5). Every set of

two processes can exchange data, via shared memory if they reside on

the same computer, via messages sent over an external network other¬

wise. As we use a modular concept, the processes can be distributed

on different computers and replaced by dummy programs for test pur¬

poses.

„-- controller --..

Figure 5.5: Concurrent processes in the LASSO system

At the core of the simulator is the FE simulation. It consists of a

master which is close to the controlling process and the slaves which
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compute the mechanical behaviour of the organs in parallel. The mas¬

ter gets position information from the input devices and forwards the

positions of the organ surfaces to the graphics device and information

about reaction forces to the haptic display. The haptic display either

connects to a program providing a pre-programmed sequence of inputs
for development, to a mouse which is used for position input, or to a

haptic display designed to provide the surgeon with tactile feedback.

The graphics device uses the positions of the organ surfaces to calculate

a photo-realistic image of the operation scene. Whenever a new image
is to be calculated, the graphics device sends a request for the current

positions to the FE master that answers with up to date information,
so latency between manual input and visual feedback is minimised. The

controller starts all other processes and sends them the appropriate con¬

figuration files, and then waits for any exceptions or for the command

to terminate the simulation.
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Figure 5.6: System hardware

All the parts of the surgery simulator except the FE engine run on

an eight processor SMP Onyx2/InfiniteReality computer by SGI, Inc

(cf. fig. 5.6). It has specialised render pipes for accelerated graphics cal¬

culation, needed to render the visual feedback. Despite improvements
in 3D graphics accelerators for personal computers (mainly for games),
the methods used for generation of the graphics are far beyond the ca-
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pabilities of graphics cards and use half of the processing power of the

SGI computer The other half controls the data transfer to and from

the LASSO hardware and the haptic display During development of

the surgery simulator, these four processors were used to calculate a

small FE model

5.3.2. Finite Element hardware

The hardware used for FE calculation is a Beowulf cluster (Sterling
et al 1995) The cluster comprises 12 workstations in 3U rack-mount

cases, all together in a 19" rack An image can be seen on page 22 Every
workstation contains an UP2000 dual processor motherboard with two

Alpha 21264 processors by Alpha-Processor, Inc
, running at 667 MHz,

256 MByte of RAM, and a 9 GByte harddisk This adds up to a total

of 3 GByte of RAM and over 100 GByte of harddisk space, with a

theoretical aggregate peak performance of 32 GFLOPS The boards are

connected with a standard switched 100 Mbit/s Fast Ethernet network

and with a Myrinet network which provides 1280 Mbit/s full duplex
bandwidth per link (fig 5 7) The Myrinet switch is a full crossbar 16-

port switch, with a maximum bisection bandwidth of 16 x 1280 Mbit/s
The Ethernet is used for standard services such as booting via the

network, network file system (NFS), remote procedure calls (RPC) and

other administrative tasks Parallel programs running on the system

can use the Myrinet network for data exchange between computers A

terminal server allows to control the consoles of headless nodes over the

Ethernet network

5.3.3. Alpha processor nodes

The individual nodes are built with UP2000 Dual Alpha motherboards

by Alpha-Processor, Inc (cf fig 5 8) In such a system, two Alpha

processors of the third generation (21264A) are connected to the mam

memory and the I/O subsystem via the 21272 chip-set The chip-set
consists of a C-chip, two P-chips and four D-chips The D-chips provide
access to the mam memory, each controlling a 64 bit wide portion for a

total memory bus width of 256 bit The C-chip interfaces with the pro¬

cessors, while the P-chips each control an individual 33 MHz PCI bus

The chip-set is running at a speed of 83 MHz, so that the mam memory

can be accessed with a bandwidth of over 2 6 GByte/s Of the two PCI-

buses, one is 32 bits wide and is used for the Fast Ethernet connection

and for other cards, if any The 64 bit bus, with its peak bandwidth
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of 264 MByte/s, is exclusively used for the Myrinet card. The moth¬

erboard also features IDE and SCSI hard-disk controllers next to the

standard I/O interfaces such as parallel, serial, mouse and keyboard.
The two Alpha processors are on a daughter-card with 4 MByte

of second-level cache. The processing core is connected with 64 kByte
of 64 bit wide first level cache. The second level cache is connected

with a separate 128 bit wide bus, while a third bus which is 64 bit

wide, provides the connection to the chip-set. This bus is kept narrow

to reduce pin count, but it runs at speeds of up to 333 MHz, so the

high memory bandwidth can be used effectively. The main processing

core contains a floating point ALU with a multiplication and addition

pipeline. The execution unit can issue four instructions in every cycle,
i.e. two floating point and two integer instructions. An out-of-order

instruction execution unit and sophisticated branch prediction help to

keep those pipelines filled.

5.3.4. The Myrinet network

«H-»>

PCI-lnterface

64 Bit

66 MHz capable

PCI-DMA

controller

Local Memory
2MB SSRAM

Local Bus

64 Bit
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RISC

processor
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Network

interface

1 28 GBit/s

1 28 GBit/s

Figure 5.9: Myrinet network card

In each node of the parallel computer, there is one PCI64A Myrinet
card (cf. fig. 5.9). A 64 bit 66 MHz capable PCI interface connects the

card to the computer, automatically adapting to the size and speed of

the actual PCI bus. In our case, it runs in 64 bit 33 MHz mode. A

PCI DMA controller can transfer data directly between the computer's
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mam memory and the fast local memory on the network card It can

autonomously process a chain of DMA transfers in both directions

The memory on the card can also be accessed directly from the PCI

bus On the network side, there is another DMA controller which can

transfer data between the local memory and the network interface, and

the Lanai, a special purpose RISC processor running at 66 MHz The

local memory, 2 MByte of synchronous SRAM clocked at 132 MHz, is

used to exchange data between the two ends The high clock speed of

the SRAM allows access from both the Lanai and the PCI bus at full

speed, so the memory can effectively be used like dual ported RAM

The lifetime of a communication packet begins when a processor en¬

counters a command to send data The data is collected and transferred

to the Myrinet card Once a packet is assembled in the local memory,

complete with headers, the Lanai initiates a DMA which copies the

packet to the outgoing network interface The headers required by the

Myrinet include a routing header, followed by two bytes of type in¬

formation Once the DMA transfer is finished, a so called tail flit is

automatically added, indicating the end of a packet
When the packet arrives at a switch, the first byte of the routing

header is stripped off and examined and the rest is transferred to the

outgoing port that is indicated by that first byte with wormhole routing

In this way, each switch encountered on the way strips off one byte, until

the packet arrives at the destination network card After all routing

bytes are stripped, the type field becomes the head of the packet and is

transferred by DMA to the local memory, along with the payload Flow

control on the links uses backpressure, a simple stop and go protocol
When the short slack buffer of a receiver is full, a stop signal is sent

back, which is followed by a go signal once the slack buffer becomes

sufficiently empty The Lanai receives a signal indicating that a packet
was transferred to the local memory and starts to process it It will

first examine the packet type, reject unknown packet types and initiate

some sort of reaction for known types It can either inform the mam

processor of the arrival of data with an interrupt, or it can first start a

DMA to move the packet to mam memory and tell the processor about

it later, or allow it to find out by polling that location
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6

Parallel Program

When a program is distributed among the processors of a parallel com¬

puter, overhead occurs since data must be exchanged and the proces¬

sors must be synchronised. This causes a loss of time, that can be

minimised by adapting the program to the parallel computer. For the

FE program, the communication provides an implicit synchronisation.
Communication and computation are executed concurrently, hiding the

communication latency and minimising the time spent waiting for data.

Figure 6.1 shows the flow of control information for the parallel

program. The control information is generated offline, and is used to

control the data flow of the parallel program. Given the FE model

and the structure of the parallel computer, an optimised assignment
function is found (cf. section 3.5). The partition program then creates

a schedule file for each processor. This schedule describes the order in

which data is to be computed, sent and received during every time-step.
In this chapter, we will first examine the parallel FE program: the

topology simulator used to run the program on different platforms, the

communication interface, the way data transfer and synchronisation
is handled, and the schedule information. I will then explain how the

partition program generates the schedule files and how an optimised
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Figure 6.1: Flow of control information of the parallel FE calculation

distribution of the FE model is found. At the end of this chapter, there

is a description of the method used to verify the schedule files and the

parallel FE program, and a section about the importance of optimising

compilers.

6.1. Overview

Figure 6.2 shows the control flow of the parallel FE program. First,
the prepared schedule file is read and data structures are initialised

accordingly. Administrative data, such as pointers and communication

headers, that stays the same during the execution of the program is

pre-calculated. During the simulation, one time-step after the other is

computed. In a time-step, requests for graphics data and positions of

the manipulators are read, if available. Data is sent back if necessary.

Then the batches listed in the schedule file are processed. A batch

consists of commands to recover Elements, to send and receive data,
and to calculate the new positions of nodes.

Figure 6.3 shows the different layers of communication and synchro¬
nisation in the parallel FE computer. The communication interface de¬

scribed in section 6.3 is simple and efficient; the time needed to send
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Figure 6.2: Data flow of the parallel FE program

and receive data is minimised. Since the processors may need different

amounts of time to process their data, they have to be synchronised in

order to ensure the correct interpretation of received data. Finally, the

parallel computer has to exchange data with the display computer that

controls the input and output devices. Again, synchronisation ensures

correct interpretation of exchanged data.

6.2. Topology simulator

I first wrote a parallel simulator that was used for the development
of the parallel FE software. This simulator makes the testing of the

parallel FE software possible, and it speeds up calculations of FE mod¬

els, because the computation can be executed in parallel on a cluster

of workstations or on a parallel computer (fig. 6.4). The early imple¬
mentations of the laparoscopy simulator, running on the 8 processor

Onyx II computer, used this simulator. The same program was then

compiled and linked with a different communication library to run on

the target parallel computer described in chapter 5.

The simulator consists of an initialisation procedure and a commu¬

nication layer and works in a master-slave principle. The master helps
to set up communication channels, provides input and handles output,

while the slaves do the number crunching. At startup, the master sends

initialisation information to the slaves and helps to set up local com-
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ample with three processors

munication channels between neighbours in a virtual three dimensional

mesh.

While a simulation runs, the slaves exchange data through local

and global communication. The communication layer sends this data

to other slaves over the available hardware, such as Ethernet or shared

memory. The master handles data transfer to other parts of the la¬

paroscopy simulator, such as force feedback and display, and it can

collect debugging information.

6.3. Communication interface

The communication interface is a consistent API that provides the same

functions to the FE program, regardless whether the simulator or the

parallel FE computer is used to run the program. To transfer data

between processors, local and global communication is provided. Local

communication is used to transfer data between neighbours in the three

dimensional mesh, while global communication provides the means to

transfer data between any two processors (cf. fig. 3.2 on page 46). Data

transfer on local channels adheres to a fixed schedule, a property that

can be exploited when optimising local communication, while the global
communication must be able to handle arbitrary unscheduled data ex¬

changes.
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Figure 6.4: The topology simulator provides the means to run the same

parallel program on different platforms. The simulator provides local

and global communication over the available communication networks.

6.3.1. Local communication

A local communication channel provides a direct communication link

between two neighbours in the three dimensional mesh of the parallel

computer. In every time-step, a processor calculates the same Elements

and sends the same data. By sending this data over a direct link, the

order is preserved and data can be identified by the order in which it

is received. The interface of local communication consists of four calls:

Queue(), SendO, Reset(), and Receive().

When data is sent, it has to be gathered and copied to the network

interface card (NIC), either by the processor or by direct memory access

(DMA). For the small packet sizes involved, the average packet contains

less than 500 Bytes, the overhead to set up a DMA transfer does not

pay off (cf. section 7.6). Therefore, the Queue () call writes data directly
to the NIC, combining this copy operation with the gathering of data.

The SendO call is used to add a header to the packet and start the

transfer of data over the network. On the receiving side, data is directly
written into a buffer in user space. For each time-step, data with the

same meaning is written to the same location. The Receive () call polls
this location until the data arrives. The Reset () function, called by the

sender at the end of every time-step, prompts the distribution of a reset

Simulated
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computer
Cluster of Workstations

on

Ethernet
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packet to all neighbours. The neighbours react by resetting their input

buffers, thus getting ready for the data of a new time-step.
When dedicated links are used for local communication, the data

need not be sent in packets. In this case, the Queue () call directly
causes the sending of data, and the SendO call becomes a no-op.

Figure 6.5 illustrates the data flow in local communication. A tail

containing the number of the current time-step is added to the data,

providing end-to-end synchronisation. The receiver checks for the ar¬

rival of data by polling until the correct tail arrives.

6.3.2. Global communication

Global communication provides a method to send data from one pro¬

cessor to any other processor. Several processors might send packets

simultaneously to the same receiver, causing the packets to arrive in

arbitrary order at their destination. To ensure that the data is pro¬

cessed correctly, packets need identification information. In the imple¬
mentation used for the FE simulation, this information consists of the

packet's length and of an address in the receiving processor's memory.

The StartPacketO call is used to initialise a packet and to provide
a destination address. Data is then queued and the packet is sent as

in local communication, with a Queue 0 call and a SendPacketO call.

In the receiving NIC, the packet is analysed and stored at the given
address in the receiving buffer (fig. 6.6). For every piece of data sent

on the global bus, space is allocated in this receiving buffer when the

parallel computation is initialised. Although packets arrive in varying
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orders, they are sorted without processor interference and the receiver

finds the data at the expected location, after using the Receive 0 call

to poll until the correct tail is read.

6.4. Data transfer

The communication interface provides methods to store data in the

memory of remote processors. The buffers used for communication are

statically allocated, and constantly overwritten with new information.

We must ensure that no data is destroyed before it was read by the

receiving processor, i.e. we must send some kind of acknowledge back

to free a buffer. An additional message just for this acknowledge would

consume processor time and network bandwidth and should be avoided.

Instead, we can profit from our knowledge about the symmetric nature

of communication; if node a sends to node 6, we know that node b sends

data to node a in the same time-step. Thus if a receives data from b in

time-step n+1, it knows that b has finished step n and therefore read

the data received in that step.

As shown in figure 6.7, we can simply use two alternate receive

buffers for each message. Buffer 0 is used in even time-steps, buffer 1

is used in odd time-steps. Let us assume that n is even and that we

are at the start of step n + 2. In order to arrive here, we had to finish

step n+1. Thus, we can be sure that all communication partners did

at least reach step n+1, meaning that all of them did finish step n. We

are now free to write information to the buffer 0 of a communication

partner, as this buffer was last used in step n.
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Figure 6.7: Double buffering and symmetric communication is used to

assure data integrity. Dark arrows show communication, light arrows

indicate that the buffer pointed to is known to be free at that time.

6.5. Synchronisation

In our parallel computer, many components run at different speeds.
Even the parts of the parallel computer that perform the FE compu¬

tation spend different amounts of time for their tasks, because no two

tasks are exactly the same. Figure 6.8 shows the different components
that are of interest here. The synchronisation between processors and

NICs is the task of the communication interface and is therefore dis¬

cussed in chapter 7.

6.5.1. Synchronising the FE computer with I/O

During a simulation, the FE computer has to be synchronised with I/O,
that is the force feedback device and the display computer. The FE

computation runs at the rate of lO'OOO steps per second. The graphics

engine should produce 24 images per second for smooth animation and

the force feedback device needs to update the forces fed back to the

user at least 500 times per second. To produce a new image, the display

computer needs the current positions of the surface nodes. Since the

time it takes the display computer to generate a single image varies,
the display computer rather than the parallel computer has to decide

when new position information is required. When the display computer
encounters a need for new surface data, it sends a corresponding request

to the FE computer. To render an image correctly, the display engine
needs consistent information. That is, all positions must be taken from

the same time-step. The nodes of the parallel FE computer might work
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Through the network, the processor is connected to the other nodes of
the parallel computer and to the display computer that provides input

and output.

on different time-steps, so a snapshot of the current positions on all

nodes might be inconsistent. To get a complete set of surface positions,
the display engine sends a request for the positions at a time-step in the

near future, d steps after the current time-step k. This message is sent

to the one node of the parallel computer responsible for coordination

with the display computer. It notes its own current time-step as having
number k and sends a request for the surface data of time-step k + d

to all others. As one node after the other reaches the end of time-

step k + d, it sends off the corresponding surface data to the display

computer. This in turn waits until all data has arrived before starting
to render the new image.

Compared to graphics output, the method used for handling force

feedback has two minor differences. First, the data flows in both di¬

rections; forces are sent to the manipulator and positions are returned.

Second, the exchange of manipulator data occurs more often but uses

less bandwidth than graphics data, as packets consist only of three

numbers, either a three dimensional position or a force vector. Again,
all processors must use the new positions in the same time-step or the

calculation becomes unstable. As with display data, one node receives

the new positions for time-step k + d at time-step k and sends them on
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parallel computer. The new input is sent to processor 0 at time-step
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k + d, it uses the new input and sends back the resulting force. The

master waits until all answers have arrived and calculates the resulting

force for the manipulator. Display information is handled similarly,
with the difference that only a request is sent instead of input.

(fig. 6.9). When the nodes reach time-step k + d, the processors start

using the new position and send back their reaction forces. The number

d corresponds to the longest distance of any node from the coordination

node, as explained in the next section.

6.5.2. Synchronising components of the FE engine

The processors of the parallel computer have to be synchronised to

ensure that the communicated data is always processed in the cor¬

rect time-step. The simplest way is barrier synchronisation; every node

computes a time-step, waits until all others are done as well, and then

proceeds to the next time-step. However, barrier synchronisation is a

time consuming operation, as shown in figure 6.10. For a barrier syn¬

chronisation, all nodes have to report their readiness either to all others

or to a central node that in turn allows the nodes to continue once all

are ready. In standard implementations, this procedure alone takes a

large part of the total time allowed for a time-step.
We use a loose form of synchronisation, that is more difficult to

control but which uses less overhead than barrier synchronisation. By

examining the communication, we can see that the same pattern is

repeated in every time-step, and that the amount of data exchanged
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Figure 6.10: Speed of MPI Barrier synchronisation for different num¬

bers of processors. Two MPI implementations, with their implemen¬
tation dependent differences, were measured on our parallel computer,

MPI-LAM over Ethernet and MPI-GM, an MPI implementation that

uses the GM low level layer on Myrinet. Chapter 7 contains more in¬

formation about these MPI implementations.

between any pair of nodes is the same for both directions. When two

nodes exchange data, either both send partial forces or one sends a

force and the other answers with a new position. In the second case,

the synchronisation is automatically provided within a time-step, but

in the first case, some analysis is necessary. In time-step n — 1, data

is sent by node a to node b, as illustrated in figure 6.11. a then waits

until data arrives from b and proceeds to time-step n where it sends

new data. As soon as the new values from b arrive, node a is sure that b

has completed time-step n — 1 and is computing step n. The difference

in simulation time between a and b is therefore guaranteed to be less

than one time-step.
With this knowledge, we can calculate the maximum difference in

simulation time in the parallel computer as illustrated in figure 6.12.

Any two nodes that exchange data during normal FE calculation are

always less than a time-step away from synchronous operation. The

maximum difference between a pair of processors can thus be found

by determining the smallest distance in communication steps between

them. For example in a computer with 12 nodes in a 2 x 2 x 3 ar¬

rangement using only local communication, the maximum difference in

simulation time is four time-steps.
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node a

node b

node c

step n-1 step n step n+1

Figure 6.11: Synchronisation method. Arrows denote data exchanges.
Node a can only complete step n once the data from node b has arrived,

b can only send that data during time-step n, so the difference in sim¬

ulation time between a and b cannot become more than one time-step.

node

communication

Figure 6.12: The maximum difference in simulation time in this eight
node parallel system is three time-steps between nodes a and b, as there

is at most a difference of one between each of the pairs (a,,x), (x,y)
and (y, b).

6.5.3. Using SMP systems

The hardware we use consists of 12 SMP boards, each containing two

processors (cf. section 5.3). The parallel computer that is formed by

connecting these systems with a high speed communication network

does not provide a homogeneous communication infrastructure. The

bandwidth, latency, and communication method for two processors de¬

pends on whether they reside on the same board or not. This can be

handled in several ways; for example, we can have the communication

API handle the differences and treat all processors equally, getting a

parallel computer with 24 nodes, or we can run two threads on each

board and treat it as just one node of the parallel computer.
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6.5.3.1. Homogeneous programming model

If all processors are treated equally, the computer is simple to program,

because only one method of communication is used Any two processors

exchange data through the communication layer with one set of func¬

tions, whether the processors reside on the same board or not With

respect to performance, this approach has several drawbacks that are

described in more detail below

• The communication library needs additional complexity to decide

whether off-board or on-board communication is used

• Small sub-models are needed, resulting in decreased overall per¬

formance

• The high bandwidth between the two processors on a board is

not used

Communication library The processes running on a node treat all

communication in the same way The difference between on-board and

off-board communication is shielded from the implementation by the

communication library This adds complexity to the library, but with

only marginal loss of performance The bigger problem is the sharing
of network resources In a zero-copy environment that avoids context

switches, the communication library runs in user space If there is only
one NIC per system, it is shared by the processors, and access to its re¬

sources has to be controlled The problem of sharing resources between

processors persists for non-homogeneous methods, but if we attack it

at a higher level, we can use additional knowledge about the usage of

network resources

Sub-model size The FE problem is parallelised by cutting the model

into sub-models, one per node of the parallel processor The commu¬

nication requirements are proportional to the surface area of the sub¬

models If twice the number of sub-models is used, the distribution will

be different and more off-board communication will be needed Figure
5 3, if compared to figure 5 2, shows how smaller sub-models have a

negative impact on performance

Bandwidth usage If all communication channels are treated the

same way, the differences in bandwidth are ignored On the worksta-
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tions we use, the memory bandwidth is 2 6 GByte/s and memory laten¬

cies are less than a microsecond The network has a bandwidth of up to

120 MByte/s, and latencies of a few microseconds The performance of

memory is thus higher by more than an order of magnitude Both the

memory and the NIC are shared by the two processors, but the arbitra¬

tion for memory access is controlled by hardware, and cache coherence

protocols can bring the bandwidth between the two processors to more

than half of the memory bandwidth When accessing the NIC, the pro¬

cessors have to compete for bandwidth, and the arbitration executed

in software takes additional time

6.5.3.2. Multi-threaded programming model

We can treat each SMP board as one node of the parallel computer

In order to take optimal advantage of all processors, we have to make

sure that the workload of a node is well distributed between its two

processors We can run either a process or a thread per node Processes

run in their own memory space, independent of each other, and they

require special means, such as explicitly allocated shared memory, to

exchange data with each other Threads use the same memory space,

with only the stack being local to a thread If one thread modifies a

global variable, all of the others see the modification immediately We

can depend on the operating system to assign the threads or processes

to run on different processors

I chose to use threads since they automatically share data To make

sure different threads do not accidentally try to modify data at the

same time, we have to keep track of the shared resources All memory

locations that are modified by one thread and read by another are

shared resources, and so is the NIC They must be managed in order

to avoid inconsistent data The shared resources are

• the forces in each node that are accumulated during a time-step,

• the positions of the nodes that are updated when all forces are

known,

• the counter that is incremented every time-step, and

• the communication network

The communication network is a special case, as the low level im¬

plementation determines whether a call must be treated as a shared
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resource. Standard communication APIs are generally not thread-safe,
so each call to send or receive a message has to be protected from

other simultaneous accesses. This protection will cause a loss of time

when multiple threads try to access the communication interface con¬

currently.
The communication library designed for the FE calculation has the

advantage that all local channels and the global channel operate al¬

most independently of each other. Multiple threads can use different

outgoing channels simultaneously. The channels are processed by the

same NIC, but they use different memory spaces within the card. The

outgoing packets are serialised by the processor on the network card.

Because an independent global channel is provided to every thread,

global communication is no shared resource that has to be controlled.

Since receiving data is completely free from interaction with the NIC

in that the receiver just reads from memory, it is automatically thread

safe.

Figure 6.13: Methods to control access to shared resources.

(a): An access control method keeps track of what shared resource is

assigned to which thread and delays accesses by other threads to an as¬

signed resource until it is freed.

(b): Shared resources are assigned to a thread in fixed order. If a re¬

source changes owners, as marked by arrows, the new owner must wait

until the current owner frees the resource.

Shared resources are managed by assigning them to a thread until

it no longer needs them and then passing them on to some other thread
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(fig 6 13b) When the schedule file for a node of the parallel computer

is written, each thread is assigned a sequence of batches to be calculated

in every time-step If a batch a needs data that is computed by a batch

6 m a different thread, a depends on 6 A batch can only access the

desired shared resources once the batches it depends on are completed
When a batch starts running, it first performs calculations that do

not write to shared resources, namely the time consuming recovery of

the Elements, and thereby delays the need to access shared resources

as long as possible The batch then waits for the batches it depends
on Each batch has a number that notes the time-step in which it was

last completely finished, so the completion of a batch can be checked

by examining this number

Batches are scheduled in a way that minimises the waiting time for

dependencies, the shared resources will normally be freed long before

their availability is checked After the dependency check, a batch is

free to modify the shared resources it may add the recovered forces

to the forces vector, calculate the updated positions of the nodes, and

send data over local channels When all remaining work of the batch is

completed, the number of the current time-step is written into a field,

marking this batch as finished and thus freeing the shared resources

By using the knowledge of the model during the partition stage, we can

determine a strict order of access and avoid the need for arbitration of

simultaneous accesses

6.6. Scheduling

During a time-step, each node of the parallel computer recovers the

Elements assigned to it and exchanges data with other processors As

these tasks remain the same in every time-step, the order in which Ele¬

ments are recovered and data is exchanged is given in a fixed schedule

The mam task of scheduling communication and computation is to hide

the communication latency This is illustrated in figure 6 14

6.6.1. The schedule files

The list of tasks that must be processed in each time-step is written

by the partitioning program to a schedule file This file contains a se¬

quence of commands that is parsed when the FE simulation is started

The commands are grouped in batches A batch consists of five parts,

all of them optional, as illustrated in figure 6 15 A processor first has
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Node a Compute Send Compute Receive

Node b Compute Send Compute Receive

Figure 6.14: The aim of scheduling: concurrent communication and

computation.

Figure 6.15: The time-step loop of each thread

to recover Elements, to get the force information required for subse¬

quent steps. If any of the shared resources needed by that batch are

currently assigned to another thread, it waits until these dependencies
are resolved. It then receives data from its peers and adds received

forces to the accumulated force vector. Once all forces of a node are

accumulated, the new positions can be determined, along with the ini¬

tial forces needed for the next time-step. Data is then sent to other

processors.

6.6.2. Scheduling for local communication

Scheduling has to take the difference in performance of global and lo¬

cal communication into account. If we use primarily local channels, as

described in section 3.7.1, the need for routing through processors can

be avoided by summing up continuously and sending intermediate re¬

sulting forces. The schedule for local communication tries to optimally

place data transfers and data forwarding within a time-step, in order

to use the communication channels evenly during a time-step, and to

lose only a minimal amount of time when waiting to receive data.
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6.6.2.1. Using local channels sequentially

The first approach of scheduling is designed for a system where the

NIC handles the local channels one after the other, l e sequentially,
not concurrently As a result, the communication on the local channels

is also scheduled sequentially, which gives the basis for scheduling the

Elements

In a time-step, first all data exchanges in both x-directions are com¬

pleted, then the data exchanges in the y-directions, before communica¬

tion in the z-directions is started To obtain all the data that must be

sent to the neighbour in the positive x direction (X+), all Elements at

the X+ border of the sub-model must be recovered The set of these

Elements is E?-+, where

Kf+ = {k e Kp I Dx(Vk) = 1

A (ypk G Pfc cx(p) < cx(pk)) }

E^ = {eeEp|^+nKe/fl}

After the Elements in E^+ are calculated, the force of the nodes

in K?+ are sent in positive x direction Next, the negative x direction

X— is processed in a similar way, with the difference that the pool of

Elements is reduced by those already recovered in this time-step

Kf~ = {k e Kp | Dx(Vk) = 1

A (ypk G Pfc cx(p) > cx(pk)) }

Epool = Ep \ Ef+

E^- = {eGEpool |K^-nKe^0}

The y border is processed next, starting with the recovery of the

Elements in Ej+ and Ej~ The calculation of these sets is similar to

that of E?-~~ in equations (6 3) - (6 5) Before the communication in

the y directions can start, all values from neighbours in the x direc¬

tions must be received With the received data, the partial forces for

nodes in K^r and K.pYZ, that is the nodes at the corners and edges
of the sub-model, can be computed and included in the Y+ and Y—

communication as described in section 3 7 1

After the last data is sent in the z directions, the remaining Ele¬

ments are computed Then, the data coming from neighbours in the z

directions is received, and the complete forces and the new positions

of the nodes are calculated This leads to algorithm 2, that is executed

(6 1)

(6 2)

(6 3)

(6 4)

(6 5)
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while the simulator is running

initialise force vector

determine and add collision forces

recover Elements in E*H

send forces for the nodes in IK*H in X+ direction

recover Elements in Ei¬
send forces for the nodes in Kp in X— direction

recover Elements on Y border ee~ËJ^
receive data from both x directions

y^n

add received forces to force vector

send forces for the nodes in Kp+ and IK*

recover Elements on Z border (e G E^
receive data from both y direction

UEf^

add received forces to force vector

send forces for the nodes in Kp"1 and Kp~
recover remaining Elements (E G Ep \ [jdlr Eptr)
receive data from both z directions

compute resulting forces

compute new positions

Algorithm 2: Algorithm for local communication usage

during every time-step. All the sets in this section are computed in

advance and stored in the schedule files.

The described method has the disadvantage that the communication

is not evenly distributed during a time-step. Consider 64 Elements, a

cube of 4 x 4 x 4 Elements, on a processor with six neighbours. Of the

125 nodes, 50 are on the x border. 32 Elements must be recovered to

make all data for x communication available. 16 more Elements are

needed for communication in the y directions. Of the remaining ones,

eight Elements are needed for z communication. Only the last eight
Elements do not contribute to any node on the surface of the cube. At

the beginning of a time-step, communication is idle, while in the last

quarter of the time-step, two thirds of the data must be transferred.

6.6.2.2. Using local channels concurrently

We can schedule with a much finer granularity to get a more evenly
distributed usage of local channels. The nodes are given a priority ac-
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cording to the number of times their data is sent over the network The

nodes in WLp^YZ get the highest priority as they have to be sent three

times, while nodes in KX are only transferred once and therefore get a

lower priority The nodes in a set are put into a batch and scheduled

according to their priority Each Element e is then assigned to the first

batch that contains a node in Ke Intermediate processors have to re¬

ceive, add, and send the partial forces of the nodes that are sent more

than once This can either be scheduled between the processing of two

batches, or those nodes can be attached to a batch with lower priority
after their forces were sent once

With this method, the load on the communication network is more

evenly spread over a time-step than with the method described in the

last section

6.6.3. Scheduling for general communication

As shown in section 3 7 2, the communication load can be reduced if

global channels are used for data that is needed on more than two

processors First, one of the schemes illustrated in figure 3 5 is chosen

As in the last section, the nodes are assigned a priority according to

the number of times their data must be transferred during a time-step
Nodes that are sent to the same destinations are grouped together in

batches Batches of the same priority are arranged to get an optimal

usage of communication hardware Each Element is assigned to the

batch that needs the results of the Element's recovery first

6.7. The partition tool

The partition tool uses the description of the FE model, a distribution

of Elements to processors, and the topology of the parallel computer

to generate a schedule file for every processor When determining a

schedule, the program tries to spread the communication evenly over

the time-step, with sends scheduled early and receives scheduled late If

the schedule files are to be generated for multiple threads, the partition

program also minimises the expected time the threads spend waiting
for shared resources

The partition tool starts by reading the FE model given in a stan¬

dard FE file format and an additional file that provides the distribution

of Elements to processors (fig 6 16) This distribution file can be writ¬

ten by hand or generated by an optimising algorithm as described in



6.7. The partition tool 103

Read FE model

and distribution

Distribute

nodes

Group nodes

by communication
Write schedule files

Figure 6.16: Control flow of the partition tool

section 6.8.3. The information of the FE model file is used to deter¬

mine the relations between Elements and nodes. The sets described in

section 3.5 are constructed, namely IKp, Ep, Efc, and Pfc for all p G P

and A; G IK. For each processor, a sequence of batches, containing Ele¬

ments to be recovered and data to be sent and received, is then found.

For a processor p, the program divides the nodes into different priority

groups depending on the number of times they have to be forwarded. A

node that will be forwarded by another processor gets a higher priority
than a node that is just needed by one neighbour. Within a priority

group IK* sets of nodes IK* are created that have to be sent to the

same communication peer p} :

p,P] ÇniKp, (6.6)

The sets IK* build the basis for the batches. In each priority group,

a sequence of batches is determined. If a schedule for multi-threaded

computation is needed, the main criterion for finding a sequence of

batches is the usage of shared resources; the expected time that passes

between accesses to a shared resource by different threads must not

exceed a certain minimum. A second criterion is the load balancing; all

threads should be assigned the same number of Elements. Out of the

n! 2n~1 possible ways to assign n batches to two threads, the program

finds the best solution with an exhaustive search. As the number of pos-
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Thread 0
Thread 1

Recover 5 Elements

Send to proc 7

Recover 7 Elements

Send to proc 9

Recover 20 Elements

Check dependency
Send to proc 6

Recover 44 Elements

Check dependency
Receive from procs 3 & !

No Elements

Check dependency

Update positions

Recover 8 Elements

Send to proc 8

Recover 18 Elements

Check dependency
Send to proc 1

Recover 23 Elements

Check dependency
Send to proc 3

Recover 28 Elements

Check dependency
Receive from procs 1,6,7 & I

No Elements

check Dependency

Update positions

Figure 6.17: An example schedule for two threads on one node of the

parallel computer. Fat arrows show dependencies. A batch can only be

finished once the batch it depends on is finished. The two columns in

the centre show the Elements recovered in each batch. This recovery is

the most time consuming part, therefore the number of Elements in a

batch is taken as an estimate of the time a batch needs.
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sibilities grows very quickly for larger n, this search can be terminated

after finding a sequence that is good enough
At this point, the sequence of send operations is known The pro¬

gram adds to each batch all the Elements and receive commands that

are needed to collect the data for the batch's send operation Access

to shared resources is tracked, and dependency information is added

to the batches Then the remaining Elements and receive commands

are distributed evenly among the threads, so all threads recover the

same number of Elements during a time-step A last batch is added to

each thread, containing commands to calculate the new positions of the

nodes and the initial forces needed for the next time-step An example
schedule is seen m figure 6 17

When the sequence of all data transfers is known, the buffers for

global communication can be assigned For each receive command, an

offset m the receive buffer is calculated where the received data is to

be found The send commands get the same offset so the data will be

written to the correct address

In a final step, the information is written to the schedule files

6.8. Distributing Elements

The first FE model we used contained 21 Elements We distributed

it by hand to four processors The distribution of a larger model to

more processors is not so simple With optimal load balancing, there

are more than 101960 ways to assign the 1840 Elements of our model to

12 parallel nodes A method must be found to get a good distribution

We regard an assignment function opi-^E,, as good if

• the amount of data that is transfered is minimised, and

• the load is optimally balanced

Partitioning the mode consisting of 1840 Element by hand is not feasible

for several reasons

• The model is three dimensional and thus difficult to display on

two dimensional media Special tools would have to be used to

make the results of a partition visible to a human

• A division into eight or more sub-models requires cuts m three

dimensions m order to minimise communication These divisions

are hard to visualise
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• It is difficult for a human to see whether one partition is better

than another

• A lot of work is required to find one distribution If a different

anatomy is used or the number of processors changes, the work

must be done again

In order to allow a human to find an effective assignment function, a

lot of effort would have to be put into tools to help him This effort is

better spent writing a program that finds an optimised solution

6.8.1. Optimising criteria

To optimise a problem with a computer, one must be able to determine

the value of a possible solution The qualitative criteria were described

above, but a computer needs a quantitative measurement of how well

the criteria are met

Load balancing A parallel computer can only be as fast as its slow¬

est node Load balancing tries to equalise the time the processors spend
in a time-step Many tasks contribute to that time, some of them an un¬

predictable amount However, more than half of the time-step is spent

recovering the Elements, a time that is proportional to the number of

Elements recovered Moreover, the time spent with other tasks, such

as collision detection or communication, is also roughly proportional to

the number of Elements Thus, we can take the number of Elements

assigned to a processor as a measurement of load and balance it by

assigning an equal number of Elements to every processor

The number of Elements is not necessarily divisible by the number

of processors, some will have more Elements, some less The node that

is assigned the largest number of Elements determines the speed of the

parallel computation We conclude that a distribution has good load

balancing if no processor is assigned more Elements than necessary

Vp \EP\ <
|E|

(6 7)

A distribution should be rejected unless it meets this load balancing
condition

Communication The bandwidth a distribution requires is equal to

the sum of the bandwidths of the nodes The bandwidth of a node k
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is determined by the number of processors |Pfc| that process the node

A node that resides on only one processor causes no data transfer and

needs no bandwidth If three or more processors are involved, the node

gets an additional bandwidth penalty I computed the bandwidth a

processor p needs as

|7(i) = o

fceKp [f(n)=4 + n (n > 2)

This function gives a number that can be used to estimate the commu¬

nication requirements of a distribution Lower numbers are better As

processors exchange data in parallel, only the processor with the highest
bandwidth requirements determines the communication requirements

of a distribution

6.8.2. Obtaining a distribution

We need a method to derive a reasonable distribution from the FE

model that can be used as a starting point for optimisation The dis¬

tribution must meet the load balancing criterion of eq 6 7 and should

have low communication cost Assigning Elements connected by nodes

to different processors meurs a communication cost Because connec¬

tions between Elements and their geometric distance is closely related,
we can derive a distribution from the geometric positions of the Ele¬

ments

For each Element, we calculate the arithmetic mean of the positions

of its corners, thereby obtaining the position of the Element's centre

(fig 6 18(a))

Posel =
^^

(6 9)
^nodes

We can now group Elements that are close together (Algorithm 3)
This is done by making cuts in separate coordinate directions, as shown

in figure 6 18 For an nx x ny x nz mesh of processors, we first sort all

the Elements by their z coordinates Then they are divided into nz

equal blocks (fig 6 18(d)) Each of these blocks is sorted by their y

coordinates and subdivided by ny (fig 6 18(e)) The procedure is then

repeated for the x direction (fig 6 18(f)) As a result, we obtain a

distribution with an equal number of Elements per processor and with

low communication cost
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Figure 6.18: The steps from the geometric positions of the Elements

to a distribution

(a): The centres of all Elements

(b): The logical positions obtained from (a) by normalising all coordi¬

nates.

(c): The logical positions from (b) modified with additional knowledge
to obtain a better distribution.

(d): The Elements are sorted with respect to their logic coordinate in z

direction and divided into three groups.

(e): Each of the three groups is divided along the y coordinate.

(f): After another division in x direction, we get twelve sub-models that

are assigned to the twelve nodes of the parallel computer.
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By normalising the coordinates, we can work within known ranges

(fig. 6.18(b)). We can also apply additional knowledge about the form

of the FE model to obtain a better distribution (fig. 6.18(c)).

sort z coordinates of all Elements E

cut into nz sets (Ef,..., E* )
of at most \nei/nz~\ Elements

for all sets Ef
sort y coordinates of E^
cut into ny sets (E^,..., E^ )
of at most |~|E^|/nj,] Elements

for all sets E^
cut into nx sets (Ef,..., E^ )
of at most [|E^|/nj;] Elements

assign these sets to the processors with

(x, y, z) coordinates of (l,j, i) to (nx,j, i)

Algorithm 3: Obtaining a distribution from positions

6.8.3. Optimisation

To optimise a problem with a computer, we need an evaluation function,
an optimisable representation of the solution, and an optimiser. The

evaluation function is a method to compare possible solutions, either

by giving an absolute value representing the solution's worth or by

finding the better of two solutions. A good representation can always
be transformed to a possible solution despite any modifications of the

representation's values.

For us, possible solutions are those that distribute an equal number

of Elements to every processor, such that each Element is assigned

exactly once, fulfilling eqs. (3.14) and (6.7). As an example of a bad

representation, we keep a list of processor numbers that shows to which

processor each Element is assigned. If this list is modified freely, the

load balancing condition can be violated. Likewise, if each processor is

assigned a list of Elements, unconstrained modification could result in

Elements that are assigned exactly once.

A good representation is described in section 6.8.2. The positions
of the Elements can not only be used to determine a good starting

point for optimisation. Once the relationships between nodes and El¬

ements are extracted from the FE model, the physical properties are
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Figure 6.19: The uterus partitioned for twelve processors

no longer important for the optimisation. As we have seen in section

6.8.2, the positions can still be helpful in obtaining a reasonably good
distribution. We can now optimise this distribution by moving around

Elements. As the positions of the Elements change, we call them logical

positions. The logical positions are derived from the physical positions

(figs. 6.18(a-c)) and then modified during optimisation. No matter how

the logical positions are modified, algorithm 3 will still find a distribu¬

tion that fulfils the load balancing condition.

We use the bandwidth described in section 6.8.1 to compare the

value of different solutions.

6.8.4. Genetic adaptation

Once we know an evaluation function and a modifiable representation,

we need an optimiser. I chose to use genetic adaptation (Lawrence
1991). The logical position of an Element, consisting of three logical

coordinates, forms a gene. The logical positions of all Elements consti¬

tute the genome of an individual.

The steps in genetic adaptation are shown in figure 6.20. Starting
with a large pool of individuals, some of them are randomly modified
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by mutation. Then random pairs of individuals are selected and their

genomes are mixed in a cross-over step, resembling the way bacteria

exchange their genes. Finally, the fitness of each individual is calculated,
and the fittest reproduce, replacing the weaker ones. I applied this

method to determine an optimal distribution by finding the best logical

position for each Element.
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Figure 6.20: Control flow of the genetic adaptation program

During mutation, random coordinates are chosen. Each coordinate

is modified with a random number with Gaussian distribution. The

probability that a certain coordinate is modified, and the parameters
of the Gaussian random number generators can be changed to modify
the behaviour of the optimisation.

For cross-over, all individuals are paired. For each pair of individ¬

uals, a random cross-over point between two genes is determined. The

genomes of these individuals are then cut and swapped at the cross-over

point.
The method used for reproduction is called "binary tournament

selection". The fitness of all individuals is calculated. Algorithm 3 is

used to find a distribution from the logical positions, and equation 6.8 is

used to calculate the communication cost used as the fitness function.

Pairs of individuals are pitted against each other, and a copy of the

fitter individual takes the place of the weaker.

With genetic adaptation, I was able to find a distribution for the FE
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model with 21 Elements that was better than the distribution found

by hand Applied to the model with 1840 Elements, the optimisation

reduced the communication cost of the already good starting position

by 18% As no step in the generation of distribution requires interaction,

I could easily generate optimised distributions for different numbers of

processors

6.9. Verification

After programming the parallel FE simulation and generating a sched¬

ule file for each processor, we are ready to start the calculation Yet, we

cannot know if there are any errors in the program or in the schedule

file When data is transferred, we cannot be sure that it is interpreted
and processed correctly As the forces sent and received are floating

point numbers, they are difficult to distinguish if something goes wrong

I therefore implemented a method to verify the correctness of the

parallel FE program and the scheduling files The additional code for

the verification is kept to a minimum, because new code adds new bugs,
and code that is replaced by the verification code cannot be tested this

way It was also important to add no delay to the run time system This

is accomplished by switching the verification on or off at compile-time
If the verification is switched off, no delay is added to the compiled

program At only two vital places in the time-step loop was verification

code added whenever two forces are added together, and when the new

positions are calculated from the resulting forces

The smallest entity transferred by the FE program contains either

the position or the force of a node It consists of three floating point val¬

ues with a total size of 24 bytes For verification, we use those 24 bytes
for a different purpose Instead of adding up the forces provided by the

Elements, we store the global indices of the Elements that contribute

to that node We divide the vector into 12 two-byte fields, the first field

counting how many of the other fields are filled, and the remaining

fields listing the global indices of the Elements that contribute forces

to be added to the force vector in the real calculation This works with

up to 11 Elements contributing to a node and with up to 216 Elements

contributing to a force in the complete model This is more than we

need

The send routines are not modified They take data out of the global
force vector and send it, unaware that they are sending lists of Elements

instead of floating point values Normally, the local vectors and the re-
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ceived vectors are added when the data is received During verification,
the lists are joined instead

When a new position is to be calculated, the list of Elements is

copied to the position vector At the end of a time-step, the list of Ele¬

ments in the position vector of every node on every processor is stored

to a file A Perl program compares this list to the original FE model

with which we began our work If the correct Elements are listed for

every node, we know that

• the schedule files are correct,

• there were no communication errors,

• all forces were properly initialised, and

• all nodes had their positions updated

By adding random delays in the computation, we can also stress proper

operation of synchronisation and control of shared resources for multi¬

threading

6.10. The importance of optimising compilers and

optimised data layouts

Near the end of the project, I decided to try and improve the execution

speed of the recovery of an Element The algorithm was already pro¬

vided and well optimised with respect to the number of floating point

operations At the beginning of this task, a time of 15/xs was needed to

process one Element1 on the first test system, an Alpha 21164A running

at 500 MHz The early estimations projected a time of 3/xs per Element

with a 500 MHz processor I was looking for an improvement by a fac¬

tor of five through more efficient processing of the same algorithms
The original program was written in C++, and Compaq had just made

available a C compiler that produces vastly faster code First, I built

a measurement platform and ported the critical sections of the code to

C The original program, taking 15/xs per Element, was compiled with

the standard compiler (g++) and ran at a pitiful 66 MFLOPS, less

than 7% of the peak performance The first run through the improved

compiler (ccc), with options set for maximal speed, cut the time down

to 8/xs

1The calulation of one Element comprises the calculation of the inner forces from

the current displacement and the addition of these forces to the global force vector
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Code Runtime per Element

Original code, compiled with g++,

running on 21164A @ 500 MHz
15/xs

Original code, compiled with ccc,

running on 21164A @ 500 MHz
8/xs

Optimised code, compiled with

ccc, running on

21164A @ 500 MHz

3/xs

Optimised code, compiled with

ccc, running on

21264A @ 666 MHz

2/xs

Optimised code, compiled with

g++, running on

21264A @ 666 MHz

5.5/xs

Table 6.1: Execution speeds with different compilers and the effect of

optimised code

I then started to examine the generated assembler code using a

simple self-written tool to find inefficient code. The inefficient code is

produced when the compiler does not optimally schedule vector op¬

erations due to possible aliasing. More information about the aliasing

problem can be found in (Aho et al. 1986).
I identified passages in the C code that resulted in inefficient code

and changed them by adding temporary variables and arrays and by

inlining a subroutine that was only called once. In the end, a single
Element was calculated in 3/xs on the 500 MHz 21164A. The test on

a node of the parallel computer with its 666 MHz 21264A processor

yielded a time of only 2/xs per Element, attaining 500 MFLOPS, more

than a third of the theoretical peak performance.
The difference between the two systems is slightly bigger than the

difference in main processor clock speed, because the newer processor

also features a higher average number of instructions per second. The

last comparison of table 6.1 shows that the improvement is mainly
due to the compiler that produces efficient code as long as it does not

encounter potential aliasing.



7

The Communication

System

In order to keep the FE program portable, layers of abstraction are in¬

serted between the application programs and the communication hard¬

ware. In this chapter, we examine the events started off by the FE

program when it calls a function to exchange data between processors.

Libraries and protocols, which we will call "communication systems",
exist in many variations, each with different design goals.

A communication system ensures the correct delivery of data, cor¬

recting possible errors induced by deficiencies of the underlying net¬

work. Several things could happen to the data exchanged in a parallel

computer:

• Some bits could be delivered incorrectly.

• An intermediate station (router) or the designated receiver could

be unable to receive data due to a failure or too high a load.

• Data could be lost.



116 Chapter 7: The Communication System

• Data could arrive in a different order than it was sent.

• In a multitasking system, the network resources must be pro¬

tected from simultaneous access by multiple tasks.

There are ways to work around these problems. Error detec¬

tion/correction takes care of incorrectly received bits. Dynamic routing

is used to bypass failing or overloaded routers, and flow control ensures

that no part drowns in data. Lost data is detected by the receiver,

causing a retransmission. If necessary, the data is then reordered and

delivered to the receiving program in the same order it was sent. Fail¬

ure of a receiving computer can not be handled by the communication

system alone. In a parallel computer, the tasks assigned to a failing
node have to be reassigned to the rest of the computer, requiring fault
tolerant parallel computing. The parallel program has to provide for

this in some way, unless redundant nodes can take over. In order to

handle simultaneous access to the communication system by different

tasks, some sort of access control is required.
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Figure 7.1: Required communication bandwidth for each processor

The more errors and undesired behaviour a communication system

can handle, the more complex it becomes, often at the expense of per¬

formance. By analysing the needs of our system, we can determine the

amount of flexibility and performance required, and thus choose the

tradeoffs for a suitable communication system.

In the following sections, we will first determine how much flexibility
and performance the communication system needs. A short description
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of different communication methods follows. The protocols that were

used in the simulators are listed, along with a performance comparison.

Finally, I will explain the protocol that was designed for the FE com¬

puter, along with a description of the implementation.

7.1. Communication requirements

Figure 7.1 shows the communication bandwidth required by the traf¬

fic generated by each processor, and figure 7.2 shows the sizes of the

packets that are transferred during the FE simulation. The numbers

were obtained from the schedule files of the distribution used in the

simulation. In figure 7.1, processors number three and twelve need sig¬

nificantly less bandwidth than the others; those processors calculate the

ovaries that can be seen to the extreme left and right in figure 6.19 on

page 110. These packet sizes are rather small when compared to conven¬

tional communication systems and yield less than optimal behaviour.

This is illustrated by the bandwidth measurements of figure 7.4 on

page 128.

In the following paragraphs, we will examine the requirements of

the FE simulation with respect to the above mentioned tasks of a com¬

munication system.
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Dynamic routing and fault tolerance The LASSO system is not

mission critical, we can accept an unexpected failure of the program

or downtime to repair a component, as long as it only happens rarely
Because the computers and networks we use are reliable, the expected
rate of failure is low enough and no redundant components are needed

If we look a the system overview in figure 5 7 on page 79, we can

see that there are no redundant resources that could replace a failing

component automatically There are two separate communication net¬

works connecting all the nodes of the computer, but they serve different

purposes Neither could take over for the other in case of a failure The

Ethernet is not fast enough to handle the data generated by the FE

computation It is used to boot the nodes and to handle administrative

requests The Myrinet can move the necessary amount of data, but it

can only be initialised once the computer is booted, and it cannot han¬

dle traffic other than FE data as long as the simulation is running If a

part fails, it must be repaired or replaced before the simulation can be

restarted

Error detection/correction The short links provide a high signal
to noise ratio at the receiver The Myrinet links use forward error cor¬

rection to detect and correct simple errors Overall, the bit error rate

(BER) is lower than 10~15, according to the manufacturer We transfer

less than 40 MByte/s per node, resulting in a total of about 4 Gbit/s,
so an error is expected at most every 70 hours We can choose to ignore

the possibility of errors and take the risk that the simulator might have

to be restarted, should an error occur If we do implement error detec¬

tion/correction at a higher network layer, it must not have a noticeable

impact on performance as long as no error occurs Once an error is

detected, correcting the error can take a comparatively long time, even

causing a noticeable delay, as transmission errors are rare

Retransmission/reordering The assumption that there are no

transmission errors together with the link level flow control ensure that

no packets are lost When all data between two nodes is transmitted

over the same wires and no data is lost, the data arrives at the desti¬

nation in order Neither retransmission nor reordering is required

Flow control Flow control is required to prevent the links from being
overloaded and the receivers from being overflown The link level flow

control is needed if two nodes try to send data over the same link Only
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one packet at a time can be routed through the output part of a switch

The other packet is stopped by the switch The Myrinet hardware uses

backpressure to control the flow of data at the link level

When determining the requirements for end-to-end flow control in

the parallel FE system, we can once more profit from the fact that

the data flow is known completely before the program is started The

nodes of the parallel computer are synchronised as described in section

6 5, and we can calculate the maximum amount of data exchanged
in a time-step If the receive buffers are large enough, which they are

in our program, no explicit flow control is needed The communication

pattern itself provides the synchronisation of, and flow control between,
the nodes of the parallel computer

Fault tolerance In the improbable event that a node of the paral¬
lel computer fails, our system will stop If fault tolerance is built into

a parallel computer, the remaining nodes are able to take over from

the failing one This can be accomplished either by activating a redun¬

dant node reserved for such an event, or by distributing the workload

among the remaining nodes If a node fails, it must be repaired or

replaced The computation could be adapted to run on fewer nodes,

however, this increases the workload per node, reducing the speed of

the computation This is not acceptable since the FE simulation must

be calculated in real-time Additionally, this adaptation would need

the intervention of an operator to generate a new distribution and the

corresponding schedule files In any case, the running program would

fail and therefore would not benefit from any code that handles such

a problem gracefully If a redundant node was available, the simula¬

tion could simply be restarted using that node The low probability of

a failure, given the small number of components, does not justify the

cost of such a redundant node If there is a failure, it must be repaired
before normal operation can be resumed

Access control We distinguish between two types of tasks1 running

concurrently processes running in their own memory spaces and threads

running in shared memory

Multiple processes might try to access the same system resources

simultaneously Those processes could execute completely different pro¬

grams We will therefore assume that the simultaneous access is not

1We will assume that these tasks are either threads or processes running under

UNIX
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coordinated Processes run in different memory spaces, so user level

libraries are not affected In the layers between user space and network

hardware, the requests must be serialised, as the network card will not

be able to handle simultaneous requests

A process can consist of several threads, which run in the same mem¬

ory space and thus share all global variables For the sake of simplicity,
we will assume that the operation of these threads, and their accesses

to the communication resources, are somehow coordinated Due to the

shared memory space, user level libraries are directly affected and might
not be able to handle multiple simultaneous requests In those cases,

some access control has to be implemented by the calling program or

an additional intermediate layer
We know that only one process accesses the network resources dur¬

ing the FE simulation, but this process consists of multiple threads

Requirements Let us summarise how the communication system

can meet the discussed requirements

• Bandwidth of 30 MByte/s

• Latency of a few microseconds

• Must handle small packets efficiently

• Requires no dynamic routing

• Requires no additional error detection due to highly reliable net¬

work

• Network preserves order of data, no reordering is necessary

• Requires no fault tolerance

• Is only accessed by one process, and must handle multiple con¬

current threads of that process

• Should use only minimal processor time

7.2. Different communication systems

There are many different network technologies, protocols and program¬

ming interfaces used for communication between computers We use

the seven layer Open System Interconnection (OSI) reference model
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described in (Koelmans 1981) to see where different protocols and in¬

terfaces fit in and how they can be compared

Name Description Example

Physical

Layer 1

Provides the electrical, mechanical, func¬

tional and procedural characteristics re¬

quired to move data bits between each

end of the communication channel De¬

scribes the actual hardware connectors,

wires, patch panels and other intercon¬

nect devices Includes parameters such

as voltage levels, number of pins on a

connector, baud rates, etc

HIPPI-PH,
RS-232

Data

Link

Layer 2

Ensures the reliability of the transmis¬

sion medium by providing error check¬

ing and retransmission when required, as

well as flow control, and sequencing ca¬

pabilities used by the Network Layer

Ethernet,

SLIP/PPP

Network

Layer 3

Describes the way data is directed from

node to node, based on prevailing condi¬

tions Provides the means to establish,

maintain, and terminate the switched

connections between the end users' sys¬

tems Responsible for splitting the data

into packets and the efficient routing

of information Routers and Gateways
are examples of equipment used by this

layer

IP part of

TCP/IP

Trans¬

port

Layer 4

Provides end-to-end control and infor¬

mation interchange with the level of re¬

liability requested by the user Often

called the host-to-host layer This layer
insulates the higher levels from the lower

levels, thereby allowing communication

equipment to change without requiring

modifications in upper layers and the

applications using those layers At this

layer, several streams of messages can be

multiplexed into a single channel

TCP part of

TCP/IP
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Session

Layer 5

Manages the dialogue between the two

cooperating applications by providing
the services needed to establish the com¬

munication, synchronise the data flow,
and terminate the connection in an or¬

derly fashion. Sometimes called the Data

Flow Control layer because it is responsi¬
ble for establishing connections between

two applications or processes, reestab¬

lishing connections in case of failure, and

maintaining data flow.

Sockets and

related

functions

Presen¬

tation

Layer 6

Allows the application to interpret the

meaning of the exchange of information.

Format conversions that allow otherwise

incompatible devices to communicate.

(E.g. big-endian/little-endian)

SMTP/POP,
HTTP,

FTP, SNMP

etc.

Appli¬
cation

Layer 7

Serves the end user directly by provid¬

ing the distributed information services

to support the applications and manage

the communications.

E-Mail,
WWW

Table 7.1: The seven OSI layers

The requirements of our system with respect to the high level layers
are quite small, as we define both the sending and the receiving side

of a data transfer ourselves and therefore do not have to adhere to a

standard protocol such as HTTP. Table 7.2 shows how the high level

layers relate to the FE program and the LASSO system.

Layer FE program LASSO system

Session
Initialisation of chan¬

nels at startup

Initialisation of

communication

Presentation None

Format conversions between

different computers

(byte order)

Table 7.2: Requirements to the higher level layers

The physical layer was discussed in chapter 5. The Myrinet network

defines not only the physical properties, it also defines the data link



7.2. Different communication systems 123

layer, that is, data encoding, flow control, and error correction and

detection on the link layer. In our environment consisting completely
of Myrinet hardware, the Myrinet network also provides end-to-end

routing. In addition, the NIC can also calculate a checksum that can

be used for error checking in the implementation of the transport layer.
On the Myrinet hardware, different protocols and programming in¬

terfaces can be used. We will compare the most widely used protocols
with our own protocol and library.

TCP/IP TCP/IP is the protocol at the heart of the Internet. The In¬

ternet Protocol (IP) implements the network layer of the OSI model. It

is a connectionless protocol, that performs the task of routing messages

or packets between nodes on a network. The Transaction Control Pro¬

tocol (TCP), implements the transport layer. It is a connection-oriented

protocol that ensures that data is delivered error-free, by providing flow

control, error correction and acknowledgement of received data. As a

unit, TCP/IP takes a message to be transmitted, breaks the informa¬

tion into packets, and sends the packets to the remote computer where

they are re-assembled into the original message. Each packet contains

a piece of the message plus an ID tag, containing the addresses of the

sending and receiving computers, as well as a sequence number describ¬

ing the place of the packet within the message. Since each packet has its

own addressing information, it can travel independently in a network.

The packets may travel on different paths and arrive out of order. They

may even be damaged or lost, requiring retransmission. The sequencing
information allows the receiving computer to reconstruct the original

message.

For our application, the features of TCP/IP are not required. The

back-end extracts the routing information from the IP packets and

delivers them reliably to the target computer, in order and without

dropping a packet or changing a bit. The TCP/IP stack of the receiv¬

ing computer only has to check that everything went perfectly and put

the original message back together. TCP/IP has the major advantage
of portability. It is built into every contemporary network-enabled op¬

erating system.

MPI The Message Passing Interface (MPI) is a standard that was

published in April 1994 (MPI: a message-passing interface standard

1994). It was the outcome of a community effort to try to define both

the syntax and semantics of a library of message-passing routines that
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would be useful to a wide range of users and of which efficient imple¬
mentations could be realised on a wide range of parallel computers

The mam advantage of such a standard is portability MPI provides
vendors with a clearly defined set of routines that allows them to run

existing MPI-based software

With MPI, a pool of computers participate in executing a parallel

program and each of them can exchange data with any other without

explicitly opening a channel first With regard to our problem, MPI

provides efficient and reliable communication between any pair of nodes

in a portable way We have used MPI on all of our test platforms, since it

allows us to simply recompile the program for new platforms and to iron

out any quirks before we attack the efficiency of the communication

Sockets Sockets are the standard method of communication between

computers on the Internet Two computers that want to exchange data

both open a socket and then establish a reliable communication channel

between them To use that channel, the socket is used like a file, that

is read from and written to Sockets are designed for communication

between pairs of computers that are part of a much larger system, e g

all computers that are connected to the Internet They only allow the

exchange of data along channels that were set up prior to communi¬

cation In a parallel system where each node can talk to every other,
either a central master node would have to relay the data, or channels

between every pair of nodes that exchange data would have to be set

up, which amounts to 2~ channels for n nodes

Our first implementation of a parallel framework for FE computa¬

tion used sockets on the Sun workstations of the Electronics Laboratory

However, the implementation of sockets in the SGI flavour of UNIX,

IRIX, proved to be so slow as to be unusable Therefore this method,
and the maximum portability it provided, was replaced by MPI

GM The GM Message Passing System is the standard low-level inter¬

face for Myrinet networks, replacing the earlier MyriAPI It provides a

number of communication commands which can be used directly or as

a base for TCP/IP or MPI implementations GM was designed to have

low latency, low CPU overhead and high bandwidth It can provide
simultaneous memory-protected user-level access to several user-level

applications It provides reliable ordered communication and can route

around network faults automatically A mapper determines the network

structure and the changes to it, e g due to the failure of a host We use
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this mapper to obtain a static network map and the routing headers

for our protocol GM is a light-weight communication layer that lacks

some of the features of a complete communication protocol It can only
transfer messages between DMA-able memory, which might be quite

limited, depending on the operating system Accordingly, it does not

support direct gather and scatter operations This can be overcome by

layering another protocol (such as MPI) on top of GM

FE computer protocol The protocol we have implemented fulfils

the requirements described in section 7 1 The system spans OSI lay¬
ers 3 to 6, whereby all of the layers are more or less reduced In our

communication system, data is directly stored into the memory of the

receiving computer, that does not need to process the data until it is re¬

quired for the next computation At that time, the schedule determines

where the data can be found

7.3. Protocols used

Figure 7 3 shows the different combinations of communication protocols
and hardware that can be used with our parallel FE program The FE

program uses a communication layer that implements the simple API

described in section 6 3 It interfaces different lower level protocols

MPI Several different implementations of MPI were used in this

project On the Onyx II with its shared memory, a proprietary
MPI implementation is used, while the MPI-LAM implementa¬
tion (Nevin 1996) is on top of TCP/IP on Ethernet networks The

MPI-CH implementation (Gropp et al 1996) sends data over the

Myrinet with the help of the GM low level interface All MPI

implementations adhere to the same standard, the same commu¬

nication layer can therefore be used for all of them

Sockets Sockets can be used as an ubiquitous communication method

The performance of sockets is usually poorer than that of MPI,

yet it remains an universal communication method for lnhomo-

geneous systems

GM The GM low level interface can be used directly without MPI-CH

Doing so, the portability of MPI is lost, since the GM interface

is restricted to Myrinet networks As there are no intermediate

layers, the direct GM implementation is slightly faster than MPI
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Figure 7.3: Communication methods in relation to the OSI model
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FE protocol As the API of the communication layer was designed
for the FE protocol, this implementation is the fastest, with only
a light-weight layer between the application and the hardware

The communication layer consists of a minimal set of functions

that allow the application to talk almost directly to the network

hardware

7.3.1. Communication speed

The figures 7 4 through 7 8 show performance measurements on the

target parallel computer with three different communication systems

the FE lines show the speed of the special light-weight protocol used

for the FE simulation Of the two MPI implementations I tested, MPI-

LAM uses the Fast Ethernet, and MPI-CH transfers data over the

Myrinet network All measurements were made between two processors

with packet sizes that are typical for our parallel FE computation

Figure 7 4 shows the bandwidth in half duplex mode, where one

processor sends a block of data split into packets to the other proces¬

sor, that starts sending the packets back after it has received all of

them Figure 7 5 shows the bandwidth in full duplex mode, with both

processors sending and receiving simultaneously Figure 7 6 shows the

latency, that is the time from the start of a packet transfer until the

packet has completely arrived at the receiver The MPI-LAM latency
is 80/xs to several hundred microseconds and was not included in order

to keep the differences between the faster protocols visible Figures 7 7

and 7 8 show the time spent in the SendO and the Receive0 calls

For the receive time, it is assumed that the data has arrived at the

receiving processor before the receive command is called Note that the

FE protocol spends a constant time in the receive call, as it only checks

one memory address and does no further data dependent processing

The data in figures 7 4 through 7 8 show the comparatively high

performance of the FE communication protocol running on Myrinet
The focus on small packets and the knowledge about the data flow al¬

lowed us to implement a communication layer that handles the data

transfers for the FE computation significantly better than standard

methods The packet size required to reach half of the peak bandwidth

is only 196 bytes, compared to 1963 bytes required with MPI For the

packets that appear in the actual FE simulation as shown in figure 7 2,
the average bandwidth with MPI is 20 MByte/s, while the FE proto¬

col reaches an average bandwidth of 111 MByte/s This improvement
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manifests itself in the overall throughput of the FE simulation that is

shown in chapter 8.

7.4. FE protocol

There are two slightly different versions of the protocol, one for local

and one for global communication. On the old version of the Myrinet
card (PCI32), the local version was more efficient, while the new

Myrinet version (PCI64A) processes global communication so quickly
that everything can now be handled this way. A global packet con¬

sists of a routing header (mandated by Myrinet), the data header with

two bytes indicating the type, two bytes indicating the length of the

payload and four bytes for the target offset, followed by the payload

(fig. 7.9(a)). The local packet consists of the routing header, the type,

and a two byte length, followed by the payload (fig. 7.9(b)).
The routing header is consumed by the Myrinet switches along the

way. The type is the first information that arrives at the destination

NIC. The type can contain six different values for local communica¬

tion, corresponding to the six possible senders or directions, plus one
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Figure 7.9: Global and local packets

value indicating global communication. If the receiver recognises a local

packet, it is appended to the buffer assigned to the indicated direction.

If a global packet is read from the network interface, the target ad¬

dress is computed by adding the given offset to the base address of the

global receive space in main memory, and a DMA transfer is started

accordingly in order to forward the data.

Figure 7.10: Flow of information through the network. The mam pro¬

gram gathers the data to be sent and writes it to the NIC. The send call

adds the header and routing information. The NIC then forwards the

packet to the network, which consumes the routing information. The re¬

mainder is written into the receiving NIC's memory, where the header

is read to find out where the data is to be stored in the mam memory

of the receiver. The tail is read by the receiver to check for new data.

As the receive buffers for local communication are refilled every

time-step, an additional command is needed that resets the write
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pointer to the start of the buffer The receive buffers are controlled

by the sending processor, by issuing a reset command A reset is im¬

plemented by sending a packet with length zero and no payload If a

network card receives such a packet, it resets the receive pointer of the

corresponding local channel, in order to get ready to receive data for

a new time-step Whenever a processor starts a new time-step, a reset

message is sent over all the local channels of that processor

The target address for global communication is explicitly controlled

by the sender, as opposed to local communication, where addresses are

implicit Therefore, no such reset method is required on global commu¬

nication The sender just reuses addresses to overwrite memory loca¬

tions used in earlier time-steps

7.5. Implementation

In this section, I will describe the implementation of the FE commu¬

nication interface At the heart of this interface is the Myrinet con¬

trol program (MCP), that runs on the processor of the Myrinet card

The implementation described here runs on the newer Myrinet cards

(PCI64A), that we use in the cluster An earlier test implementation
used network cards (PCI32) with much slower processors, which were

also more complicated to program due to unavoidable bit-twiddlmg

7.5.1. Sending from the host

To reduce latency, the host writes data directly to the memory on the

NIC, transferring 8 bytes per PIO operation We could also use DMA

to move data to the NIC, but the PIO operations reduce latency and

avoid consuming the limited memory that can be used for DMA

There are four buffers for the outgoing data in the memory of the

NIC, l e two per thread A thread uses one of the two buffers during
a time-step and switches to the unused buffer when a new time-step

begins
When a thread needs to send data, it writes the pre-processed data

header to the second field of the current buffer and leaves the first

field empty The data is then written to the next consecutive fields and

the eight bytes that immediately follow are cleared (fig 7 11(a)) By

writing the prepared routing header to the first field, the sending of

the packet is triggered (fig 7 11(b)) Additional packets in the same

time-step are written to consecutive fields in the NIC's memory (figs
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Figure 7.11: The send buffers for outgoing data on the NIC, as pack¬
ets are sent.

7.11(c), 7.11(d)). The first packet of the next time-step is written to

the first fields of the formerly unused buffer (fig 7.11(e)).
During time-step n, the buffer that was used in time-step n — 2 is

reused. This could cause failure if unsent data from time-step n — 2 was

overwritten. The symmetrical nature of communication in our system

makes this impossible. Figure 7.12 shows how we can reuse the same

buffer without the need to check the status of send buffers with time-

consuming PCI read operations.
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, any communication
node a .

, , .

partner b of node a

data received
~^

nb > n-1

I
buffer used in

_-
n-2 finished

n-2 empty all data received

Figure 7.12: When node a enters time-step n (na = n), we know

that all communication partners have entered time-step n—1 and have

therefore finished step n — 2, as explained m section 6.5.2 on page 92.

To finish step n — 2, they had to receive all the data sent m that step,

including the information sent by node a. It follows that all data m the

buffer used during step n — 2 was sent, and that the buffer can be reused.

7.5.2. Main loop of the NIC program

The processor on the NIC runs a program, the MCP, that processes

outgoing and incoming packets. The main loop of this program checks

memory locations and status bits to determine whether a packet was

received or if a packet can be sent, and the corresponding subroutine

can be called (fig. 7.13). Everything runs sequentially, no interrupts are

used to react to status changes.

Check

receive DMA

Check send

buffers
• Reset buffers

Figure 7.13: The mam loop of the MCP

7.5.3. Sending by the NIC

The NIC constantly monitors the first field of the two active send

buffers. If one of them becomes non-zero and no packet is currently

being transferred, the packet in that buffer is forwarded to the net¬

work; the length field is read and the send DMA transfer is set up

accordingly (fig. 7.14). As a single processor on the NIC services both

host processors, the packets are serialised automatically and there is no
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potential for access conflicts. If several packets are ready to be sent, a

non-zero header will be recognised in the next round of the main loop.

Check if

DMA is available

Set up

send DMA

Figure 7.14: The MCP sends data

7.5.4. Receiving by the NIC

Whenever a packet arrives at the NIC, a DMA transfer has already
been set up that writes it to the receive buffer on the card. When a

packet is completely transferred, the DMA transfer is stopped and a

flag signals the completion of the transfer. After recognising the active

status of this flag, the program enters receive mode. In receive mode,
a new DMA transfer is set up that allows the next packet to be stored

directly behind the current one while it is being processed. Then the

type is examined; unknown packets are skipped. If the type is correct,

the target address in the main memory is calculated from the offset

provided in the packet, and the corresponding information is stored in

the next DMA header of the PCI DMA descriptor chain. If the PCI

DMA controller is idle at that moment, it will start to copy the packet
to main memory, otherwise it will automatically do so after finishing
the transfer of the packets that were already on the chain (fig. 7.15).

Examine

received header

Add received offset

to buffer base

Select local pointer

Reset local pointer

tiSet up DMA _J^ Add length
to main memory to local pointer

Figure 7.15: The response to a received packet depends on its type
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7.5.5. Receiving by the host

The receiving processor does not need to do anything in order to re¬

ceive data The data is directly stored in user memory space and is

accessible to the program The schedule informs the program where to

find the data at the appropriate time As no data is changed by the

processor, there is no possibility for collisions when multiple threads

call the receive function simultaneously

7.5.6. End to end coordination

When a program encounters a command to receive data, it may only

process the newly received data after the complete packet was received

To ensure this, I implemented a simple end-to-end protocol, the sender

appends an eight byte sequence number to every packet This is the

number of the current time-step The receiver checks the buffer of the

packet it currently needs to process and polls this location until the

correct number appears

7.5.7. Initialisation

The initialisation procedure was kept simple, and no overhead was

added to normal operation The NIC initialises the buffers, informs

the host that it is ready and then starts the mam loop The nodes use

the normal communication functions in order to coordinate startup A

program can be started on any subset of the cluster On each node, a

program is started that needs as parameters the total number of nodes

involved, as well as its own ID The list of cluster nodes and the route

between every pair of nodes is extracted from a network map file au¬

tomatically generated at compile time The node numbered zero takes

over and starts to send out initialisation packets to all other nodes

Every initialisation packet contains a magic number indicating initial¬

isation, an address where the answer is to be sent, and the cluster-ID

of node zero The other nodes, that are supposed to participate in the

simulation that is currently being started, wait for this packet and then

answer with a packet containing their cluster-ID and their ID in the

program that is being started Once enough answers arrive at node

zero, a complete list of participants and their names is constructed

This list is sent to the other nodes At the end of this procedure, every

node knows the address of every other node involved in the current

computation
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7.5.8. Deadlocks

Deadlocks can occur when more entities try to use a resource than can

be handled, and some of these entities are blocked until the resource is

freed. A deadlock occurs, if this freeing of the resource depends upon

one of the blocked entities to free its resource. The three types of dead¬

locks discussed here are the routing deadlock, where multiple packets
sent simultaneously through some routers block each other, the buffer

deadlock, where full receive buffers of two communication peers cause

a stall to propagate back to the senders, and the dependency deadlock,
where two peers wait for each other to send data.

Figure 7.16: Routing deadlock

The routing deadlock as shown in figure 7.16 can not occur in our

system as we only have a single crossbar switch and full duplex lines.

Blocked

packets
( \

CPU

blocked

in send

CPU

full receive bufferblocked

in send

^7 -* \
/ o \
Î
"CD

\ z /
full receive buffer

Figure 7.17: Buffer deadlock

The buffer deadlock shown in figure 7.17 will not happen because
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neither the send nor the receive functions block at any stage. The main

processor and the NIC start a transaction without waiting for it to

finish. This works because the packets are small and the amount of

data sent never exceeds the amount of receive buffer space available.

In a dependency deadlock, both participants wait for each other to

release the control over a shared resource, or both participants wait

for each other to send data. This can not occur, because the order in

which shared resources are assigned to threads and the order in which

data is sent and received is strictly defined in the schedule files prior
to the start of the program. A dependency deadlock cannot be caused

or prohibited by the network components, the high level program must

take care of such possibilities.

7.6. PCI speed

To make sure that the method of PIO writes to PCI memory (instead
of using DMA) did not have a negative impact on overall performance,
I made some measurements of PCI performance. If we take a look at

the results in table 7.3, we can see that the old Myrinet card (PCI32)
already showed good write performance, and the newer 64 bit card

(PCI64A) almost reaches the theoretical peak of 264 MByte/s when

writing 8-byte words to consecutive memory locations on the PCI cards.

PCI32 NIC in

32/33 PCI Bus

PCI64A NIC in

64/33 PCI Bus

Write 82.8 MByte/s 241.1 MByte/s
Read 4.7 MByte/s 5.8 MByte/s

Read/Write 3.9 MByte/s 3.9 MByte/s

Table 7.3: Measured PCI Bandwidth

It also becomes evident that the performance for read and alternat¬

ing read and write operations is poor. They should be avoided. Reading
a single value appears to take more than a microsecond.

In the second measurement, we overlapped computation and writ¬

ing data to the PCI card to see whether sending packets slows down

the processor. As can be seen in figure 7.18, packets of up to one kilo¬

byte can be written this way without significant impact on calculation

performance. Only the transfer of the longest packets appearing in our
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FE computation reduce computational performance by a noticeable

amount.

1000

Packet size [Byte]

Figure 7.18: Delay for writing to PCI bus during computation
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8

Results and Outlook

8.1. Overall performance and speedup

Figure 8.1 shows the overall throughput of different systems with a

varying number of processors. The systems used were the SGI ONYX

II running the standard MPI, and the Alpha cluster using three differ¬

ent communication systems: MPI-LAM over Fast Ethernet, MPI-GM

over Myrinet and the custom FE protocol. The Alpha cluster was mea¬

sured with two configurations; single threaded or with two threads per

node (the graphs with the SMP attribute). The uterus FE model with

1840 Elements was used, and the time to finish a time-step was mea¬

sured. Figure 8.2 shows the speedup of the parallel program, with the

time measured for a single processor as reference. Figure 8.3 shows the

fraction of the theoretical peak performance that was reached, demon¬

strating the validity of the optimistic numbers assumed in chapter 4;
that a third of the peak performance could be reached.

In these measurements, the fastest node sends and receives

54 MByte/s; the total bandwidth used in that configuration is

225 MByte/s. It is obvious that MPI-LAM using the Fast-Ethernet can¬

not deliver that amount of data. The MPI-GM shows good performance
for a small number of processors, but as the packets get smaller and
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the times allowed for delivery get shorter, the performance decreases.

For 12 parallel nodes, the improvements in communication performance
reached by the custom protocol manifest themselves in an improvement
in overall throughput of almost 150%. The multi-threaded configura¬
tions show lower performance than the single threaded versions, due to

the higher load on the network and the time lost by the synchronisation
of the two threads. One measurement shows that the choice of SMP

boards was correct. In figure 8.1, four measurements were taken with

24 processors. For three of those measurements, a 12 x 2 SMP con¬

figuration was used. Only the MPI-GM data point was measured in a

24 x 1 configuration. While the SMP configurations use 12 sub-domains,
the model was divided into 24 sub-domains for the MPI-GM measure¬

ment. Consequently, the sub-domains of a parallel node are smaller and

performance degrades.
Table 8.1 shows a rough price-performance comparison of different

systems. Exform is a program for explicit FE calculation developed

System Elements / s / CHF

Origin running Exform 0.015

ONYX II with the LASSO program 2.1

Alpha Cluster 38.3

Table 8.1: Hardware price -performance ratio of different systems

at the ETH Zürich (Berg 1997). The comparison with the eight node

ONYX II, with an architecture similar to that of the Origin, shows the

improvements due to the specialised FE program and the optimised par¬

allelisation. The Cluster of workstations again shows a significant im¬

provement over the traditional shared memory supercomputer, because

the commodity components deliver higher computational performance
at a lower price. This comes at the cost of slower communication and

increased programming overhead. The programming overhead for the

cluster is higher because no simple shared memory model can be used

and the processes have to use explicit communication calls to exchange
data. While the supercomputer has direct high-bandwidth channels be¬

tween its processors, the cluster must exchange data through NICs con¬

nected through PCI buses. By optimising the data exchange through
these network cards and by scheduling communication and computa¬

tion concurrently, near optimal performance was obtained despite these

drawbacks, yielding an improvement in price-performance of three or-
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ders of magnitude over traditional methods

8.2. Conclusions

The goal of the LASSO project was the construction of a working
simulator for diagnostic laparoscopy with studies of feasibility in asso¬

ciated fields We now have a working prototype with a force feedback

manipulator with which a virtual corpus uteri can be deformed The

uterus can be felt through the manipulator and the deformations can

be seen on a display The mam question that was open at the start of

this project could be answered

It is feasible to use the explicit Finite Element Method for real-time

interactive surgery simulation

The goal of the FE simulator was the design of a machine able

to calculate the explicit FE Method in real-time Although I did not

quite reach the original goal of a 100/xs time-step, I came very close,
with the fastest configuration taking just under 200/xs for a time-step

This amounts to a performance of 9 6 GFLOPS at the user's fingertips
I did not expect to reach a 100/xs time-step, because I did not have

enough processors according to the estimates in chapter 4 The three

tasks that were necessary to reach this performance were

• The analysis of the FE program and the generated code in order

to optimise the single processor performance

• The careful parallelisation that allows performance to scale al¬

most linearly with the number of processors, given a communica¬

tion network that is fast enough

• The implementation of a communication system that delivers the

necessary performance on a cluster of workstations, which is the

most cost effective hardware solution that can provide the re¬

quired computational performance

8.3. Outlook

8.3.1. Scalability

Now that we have the measurements from a working prototype, we

would like to apply the knowledge gained to make estimates for future
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hardware implementations. How does the parallel FE program scale

in speed and in size. If the problem scales in speed, adding processors

proportionally reduces the time it takes to calculate a single time-step,

probably reaching the desired 100 microseconds. If the problem scales

in size, we can use more processors to calculate a bigger model with a

constant time-step.
A useful tool to analyse scalability is the critical sub-domain size.

We know that when the sub-domains become smaller, the requirements
to the communication system increase. Communication starts to be¬

come a dominant factor and less and less can be gained by adding

processors. If sub-domains have less than critical size, the computation
becomes inefficient; the actual speedup misses the ideal speedup by too

high a margin. If we require 90% of the ideal speedup, we can see that

with the custom communication system, we can barely reach this goal
with 24 processors; the critical sub-domain size is 150 Elements.

The critical sub-domain size is constant as long as the ratio between

the computational speed and the performance of the communication

system is constant. If computational performance increases relatively,
the critical size also increases. We can now use this critical size for

scalability estimations.

Scalability in speed The measurements show that the critical sub-

domain size is already reached. Adding more processors decreases sub-

domain size and is therefore not an effective way to increase speed.

Consequently we cannot reach the 100/xs time-step with more proces¬

sors; all we can do is wait for faster processor and networks. Fortunately,
the technological progress will close this gap. In 4Q01, a year from now,

components that are fast enough should be available, making it possible
to build a computer that calculates a time-step within 100/xs.

Scalability in size Only the size of the sub-domain and the exchange
of data with the neighbours determines the speed of the computation.
The size of the total model is irrelevant. Different parts of a big model

are simulated independently by different groups of processors. Thus, the

calculation should scale perfectly in size, if the critical sub-domain size

is observed. In the model used, critical size was reached with 12 parallel

nodes, with a node having at most four neighbours. In a larger system,
nodes have up to six neighbours and need to transfer more data. I

expect the critical size to triple because of this effect.

When the performance of available hardware increases by a fac-
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tor of six compared to the LASSO hardware, a factor that should be

reached within four years, it should be possible to build a computer

that simulates an arbitrarily big model with lO'OOO steps per second

8.3.2. The future of the simulator

We now have a prototype that can already be used to get a first impres¬

sion of the look and feel of laparoscopic surgery In a few years, more

computational performance will be available, allowing the addition of

more features Because of the flexibility of the FE Method, complexity
is almost only limited by the available computational performance Fur¬

ther development of laparoscopic surgery simulators will concentrate on

four mam fields

• The generation of more detailed models,

• more accurate simulation of materials,

• improved graphics, and

• simulation of different tasks during surgery, such as cutting or

using multiple manipulators

In the not too distant future, a patient will be scanned thoroughly

prior to surgery An anatomical database and prior knowledge of the

patients pathologies will be used to automatically segment the three di¬

mensional data With the help of a tissue database, models of the organs

and the connecting ligaments will be created, with accurate material

properties including amsotropy, visco-elasticity, or active parts such as

muscles This model will then be used in a simulation to tram the sur¬

gical team prior to the actual operation During this simulation, the

surgeon will be able to cut tissue, suture severed blood vessels, remove

material, and sew the repaired organ back together The laparoscopic
simulator will help to reduce costs, simplify training, and improve the

chances of success of an operation
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Glossary

Sealars

dfel

U'Jeav

dfg
At

t-^max

nPa—*-pb

T^eav

nk

rr,P

Degrees of freedom of an Element

Average degrees of freedom that directly influence a

node

Global degrees of freedom

Size of a time-step

Maximal time-step

The amount of data that is sent from processor pa to

processor p^

Average number of Elements connected to a node

Number of Elements in the model

Integration points per Element

Number of nodes in the model

Number of 3D vectors that have to be sent and re¬

ceived by processor p

Vectors

e

{E

i-ext

fk
fE
Jk

a

u

ù

u

u

Strains in an Element

The Forces an Element exerts on its nodes due to

deformation

External forces applied to the model

Resulting force in node k

Contribution to fk by Element E

Stresses in an Element

Global vector of displacements, the difference between

current and original nodal positions

Speed of u (du/dt)

Acceleration of u (du/dt2)

Speed at time t

Acceleration at time t
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u Displacements of the nodes of one Element E

uk Displacement of node k

x Global vector of current nodal positions

xo Global vector of original nodal positions

Matrices

B Transformation matrix

C Material matrix

D Attenuation matrix

K Global stiffness matrix

~KE Element stiffness matrix

M Mass matrix

M Diagonal matrix composed of the attenuation and

mass matrices

Sets

E All Finite Elements

Ek The Elements node k is connected to

Ep The Elements calculated on processor p

K The nodes in the FE model

Kb The nodes attached to Element E

Kp The nodes the positions of which processor p must

know

P Set of processors in the parallel computer

Pfc The processors that contribute to node k

X Possible x coordinates of processors

Y Possible y coordinates of processors

Z Possible z coordinates of processors

Functions

D(V) Maximum distance between any pair of processors in P

Dx (P) Maximum distance in x between any pair of processors

inP
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Dy(V)

DZ(V)

a(p)

c(p)

cx(p)

cv(p)

cz(p)

d(pi,P2)

dx(pi,P2)

dv(pi,P2)

dz(pi,P2)

Maximum distance m y between any pair of processors

inP

Maximum distance m z between any pair of processors

inP

Assigns a set of Elements to processor p

Placement function which provides the coordinates of

processor p m the three dimensional mesh

Determines the x coordinate of processor p

Provides the y coordinate of processor p

Gives the z coordinate of processor p

Cartesian distance between processors p\ and f>2

Distance m x between processors p\ and f>2

Distance m y between processors p\ and f>2

Distance m z between processors p\ and f>2

Abbreviations

API

CG

DMA

EBE

FE

FEM

GFLOPS

LASSO

MCP

MFLOPS

MPI

MRI

NIC

SMP

TFLOPS

VR

Application Programming Interface

Conjugate Gradients, an iterative solver for systems
of linear equations

Direct Memory Access

Element by Element

Finite Element

Finite Element Method

109 Floating point operations per second

LAparoscopic Surgery Simulator

Myrinet Control Program

106 Floating point operations per second

Message Passing Interface

Magnetic Resonance Imaging

Network Interface Card

Symmetric Multiprocessing

1012 Floating point operations per second

Virtual Reality



152 GLOSSARY



Bibliography

Ackerman, M. (1998), 'The Visible Human Project', Proceedings of the

IEEE 86(3), 504-511.

Aho, A., Sethi, R. & Ullman, J. (1986), Compilers; Principles, Tech¬

niques, and Tools, Addison-Wesley, chapter 10.8, pp. 648-660.

Al-Nasra, M. & Nguyen, D. (1991), 'An Algorithm for Domain De¬

composition in Finite Element Analysis', Computers & Structures

39(4), 277-289.

Alyassin, A. & Lorensen, W. (1998), Virtual Endoscopy Software Ap¬

plication on a PC, m 'Proc. MMVR'98', IOS Press, pp. 84-89.

Amano, H., Boku, T. & Kudoh, T. (1990), '(SM)2-II: A Large-Scale

Multiprocessor for Sparse Matrix Calculations', IEEE Trans, on

Computers 39(7), 889-905.

Annamalai, V., Krishnamoorthy, C. & Kamakoti, V. (1999), 'High¬

speed applications in the automotive industry: adaptive finite ele¬

ment analysis on a parallel and distributed environment', Parallel

Computing 25(12), 1413-1434.

Aoki, T. et al. (1997), 'The Pipette Aspiration Applied to the Local

Stiffness Measurement of Soft Tissues', Annals of Biomedical En¬

gineering 25, 581-587.

Baddourah, M. & Nguyen, D. (1994), 'Parallel-Vector Computations
for Geometrically Nonlinear Finite Element Analysis', Computers
& Structures 51(6), 785-789.

Barr, A. (1984), 'Global and Local Deformations of Solid Primitives',

Computer Graphics 18(3), 21-30.

Barragy, E., Carey, G. & van Geijn, R. (1994), 'Performance and Sacal-

bility of Finite Element Analysis for Distributed Parallel Compu¬

tation', J. of Par. and Distr. Computing 21, 202-212.

Basdogan, C, Ho, C.-H. & Srinivasan, A. (1999), Simulation of Tissue

Cutting and Bleeding for Laparoscopic Surgery Using Auxiliary

Surfaces, m 'Proc. MMVR'99', IOS Press, pp. 38-44.



154 Bibliography

Basdogan, C, Ho, C.-H., Srinivasan, M., Small, S. & Dawson, S. (1998),
Force interactions in Laparoscopic Simulations: Haptic Rendering
of Soft Tissues, m 'Proc. MMVR'98:', IOS Press, pp. 385-391.

Bathe, K. (1996), Finite Element Procedures, Prentice Hall, Englewood

Cliffs, New Jersey.

Baumann, R. (1997), Haptic Interface for Virtual Reality Based La¬

paroscopic Surgery Training Environment, PhD thesis No. 1734,
Swiss Federal Institute of Technology, Lausanne.

Baur, C, Guzzoni, D. & Georg, O. (1998), Virgy: A Virtual Reality
and Force Feedback Based Endoscopy Surgery Simulator, in 'Proc.

MMVR'98', IOS Press, pp. 110-116.

Belytschko, T. & Gilbertsen, N. (1987), Concurrent and Vectorized

Mixed Time, Explicit Nonlinear Structural Dynamics Algorithms,
in A. Noor, ed., 'Parallel computations and their impact on me¬

chanics', The American Society of Mechanical Engineers, pp. 279-

289.

Belytschko, T. & Ong, S. (1984), 'Hourglass Control in Linear and Non¬

linear Problems', Computer Methods in Applied Mechanics and

Engineering 43, 251-276.

Berg, H. (1997), Prozeßoptimierte numberische Verfahren zur Ausle¬

gung von wirkmedienunterstützten Umformvorgängen, PhD thesis

No. 12394, ETH Zürich.

Boden, N., Cohen, D., Felderman, R., Kulawik, A., Seitz, C, Seizovic,
J. & Wen-King, S. (1995), 'Myrinet: a gigabit-per-second local area

network', IEEE Micro 15(1), 29-36.

Boux de Casson, F. & Laugier, C. (1999), Modelling the Dynamics
of a Human Liver for a Minimally Invasive Surgery Simulator, m

C. Taylor & A. Colchester, eds, 'Second International Conference

on Medical Image Computing and Computer-Assisted Interven¬

tion MICCAI'99', number 1679 in 'Lecture Notes in Computer

Science', Springer Verlag, pp. 1156-1165.

Bro-Nielsen, M. (1998), 'Finite Element Modeling in Surgery Simula¬

tion', Proceedings of the IEEE 86(3), 490-503.



Bibliography 155

Bro-Nielsen, M. & Cotin, S. (1996), 'Real-time volumetric deformable

models for surgery simulation using Finite Elements and conden¬

sation', Comp. Graphics Forum 15(3), 57-66.

Bro-Nielsen, M., Helfrick, D., Glass, B., Zeng, X. & Connacher, H.

(1998), VR Simulation of Abdominal Trauma Surgery, m 'Proc.

MMVR'98', IOS Press, pp. 117-123.

Carey, G. & Shen, Y. (1995), 'Simulation of fluid mixing using least-

squares finite elements and particle tracing', International Journal

of Numerical Methods for Heat and Fluid Flow 5(6), 549-573.

Carey, G., McLay, R., Bicken, G., Barth, B., Swift, S. & Ardelea,
A. (1999), 'Parallel finite element solution of three-dimensional

Rayleigh-Benard-Marangoni flows', International Journal for Nu¬

merical Methods in Fluids 31(1), 37-52.

Carter, F., Frank, T., Davies, P., McLean, D. & Cuschieri, A. (1999),
'Biomechanical Testing of Intra-abdominal Soft Tissues', Medical

Image Analysis, submitted.

Chatterjee, A., Volakis, J. & Windheiser, D. (1994), 'Parallel compu¬

tation of 3D electromagnetic scattering using finite elements and

conformai ABCs', IEEE Transactions on Magnetics 30(5), 3606-

3609.

Chen, E. & Marcus, B. (1998), 'Force Feedback for Surgical Simulation',

Proceedings of the IEEE 86(3), 524-530.

Cotin, S., Delingette, H., Clément, J., Bro-Nielsen, M., Ayache, N.

& Marescaux, J. (1996), Geometrical and Physical Representa¬
tions for a Simulator of Hepatic Surgery, in 'Proc. MMVR'96',
IOS Press, pp. 139-151.

Cover, A., Ezquerra, N., O'Brien, J., Rowe, R., Gadacz, T. & Palm, E.

(1993), 'Interactively Deformable Models for Surgery Simulation',
IEEE Computer Graphics and Applications 13, 68-75.

Daane, P., Constantinou, P. & Hesselroth, G. (1995), A $100 Surgi¬
cal Simulator for the IBM PC, m 'Proc. MMVR'95', IOS Press,

pp. 79-80.

Davis, M. & Carey, G. (1995), Parallel element-by-element spectral
multilevel techniques for finite elements, in D. Bailey, P. Bjorstad,



156 Bibliography

J. Gilbert, M. Mascagni, R. Schreiber, H. Simon, V. Torczon &

L. Watson, eds, 'Proceedings of the Seventh SIAM Conference on

Parallel Processing for Scientific Computing', pp. 393-394.

Dawson, S. & Kaufman, A. (1998), 'The Imperative for Medical Simu¬

lation', Proceedings of the IEEE 86(3), 479-483.

Delp, S., Loan, J., Basdogan, C, Buchanan, T. & Rosen, J. (1996),
Surgical simulation: an emerging technology for military medical

training, m R. Zajtchuk, F. Goeringer & S. Mun, eds, 'Proceed¬

ings of the National Forum: Military Telemedicine On Line Today

Research, Practice, and Opportunities', pp. 29-34.

Deussen, O., Kobbelt, L. & Tucke, P. (1995), Using simulated anneal¬

ing to obtain good nodal approximations of deformable bodies, m

D. Terzopoulos & D. Thalmann, eds, 'Computer Animation and

Simulation '95', pp. 30-43.

Downes, M., Cavusoglu, M., Gantert, W., Way, L. & Tendick, F. (1998),
Virtual Environments for Training Critical Skills in Laparoscopic

Surgery, m 'Proc. MMVR'98', IOS Press, pp. 316-322.

Evans, D. (1994), 'Systolic array for finite elements (SAFE)', Elek-

trotehniski Vestnik 61(4), 222-225.

Farhat, C, Sobh, N. & Park, K. (1990), "Transient Finite Element

Computations on 65536 Prozessors: The Connection Machine', Int.

J. for Numerical Methods in Eng. 30, 27-55.

Fischler, M., Tenenbaum, J. & Wolf, H. (1981), 'Detection of Roads

and Linear Structures in Low-Resolution Aerial Imagery Using a

Multisource Knowledge Integration Technique', Comp. Graphics

Image Proc. 15, 201-223.

Flanagan, D. & Belytschko, T. (1984), 'Eigenvalues and Stable Time

Steps for the Uniform Strain Hexahedron and quadrilateral', Jour¬

nal of Applied Mechanics, March 51, 35-40.

Fung, Y. (1967), 'Elasticity of soft tissues in simple elongation', Am. J.

Physiol. 213(6), 1532-1544.

Fung, Y. (1993), Biomechanics: Mechanical Properties of Living Tis¬

sues, Springer-Verlag, New York.



Bibliography 157

Gao, L. (1995), 'Sonoelasticity Imaging: Theory and experimental ver¬

ification', J. Acoust. Soc. Am. 97(6), 3875-3886.

Gibson, J. (1950), The Perception of the Visual World, The Riverside

Press, Cambridge, Mass.

Gibson, S. (1997), 3D ChainMail: A Fast Algorithm for Deforming Vol¬

umetric Objects, m 'Proc. Symp. on Interactive 3D Graphics',

Providence, RI, USA, pp. 149-154.

Gibson, S., Samosky, J., Mor, A., Fyock, C, Grimson, E., Kanade, T.,

Kikinis, R., Lauer, H., McKenzie, N., Nakajima, S., Ohkami, H.,

Osborne, R. & Sawada, A. (1997), Simulating Arthroscopic Knee

Surgery using Volumetric Object Representations, Real-Time Vol¬

ume Rendering and Haptic Feedback, in 'Proc. CVRMed'97',

Springer-Verlag, pp. 369-378.

Gropp, W., Lusk, E., Doss, N. & Skjellum, A. (1996), 'A high-

performance, portable implementation of the MPI message passing
interface standard', Parallel Computing 22(6), 789-828.

Haber, R. & Henderson, M. (1980), The Psychology of Visual Percep¬

tion, 2nd edn, Holt, Rhinehart and Winston, New York.

Hahn, J., Kaufman, R., Winick, A., Carleton, T., Park, Y., Lindeman,

R., Oh, K.-M., Al-Ghreimil, N., Walsh, R., Loew, M., Gerber, J. &

Sankar, S. (1998), Training Environment for Inferior Vena Caval

Filter Placement, m 'Proc. MMVR'98', IOS Press, pp. 291-297.

Hajjar, J. & Abel, J. (1988), 'Parallel Processing for Transient Non¬

linear Structural Dynamics of Three-Dimensional Framed Struc¬

tures Using Domain Decomposition', Computers & Structures

30(6), 1237-1254.

Hammond, S. & Law, K. (1988), 'Architecture and Operation of a

Systolic Engine for Finite Element Computations', Computers &

Structures 30(1), 365-374.

Hansen, K. & Larsen, O. (1998), Using region-of-interest based fi¬

nite element modelling for brain-surgery simulation, m W. Wells,
A. Colchester & S. Delp, eds, 'Medical Image Computing and Com¬

puter Assisted Intervention MICCAF98', pp. 305-316.



158 Bibliography

Hayes, L. (1989), Advances and Trends in Element-by-Element Tech¬

niques, in A. Noor, ed., 'State-of-the-art surveys on computa¬

tional mechanics', The American Society of Mechanical Engineers,

pp. 219-236.

Höhne, K., Pflesser, B., Pommert, A., Riemer, M., Schubert, R. &

Tiède, U. (1995), 'A new representation of knowledge concerning
human anatomy and function', Nature Med. 1(6), 506-511.

Hug, J., Brechbiihler, C. & Székely, G. (1999), Tamed Snake: A Parti¬

cle System for Robust Semi-automatic Segmentation, in C. Taylor
& A. Colchester, eds, 'Second International Conference on Medi¬

cal Image Computing and Computer-Assisted Intervention MIC-

CAI'99', number 1679 in 'Lecture Notes in Computer Science',

Springer Verlag, pp. 106-115.

Hutter, R. (1999), Total hourglass control - eine robuste FE Meth¬

ode zur Simulation von weichen Geweben, PhD thesis No. 13238,

Department of Mechanical Engineering, ETH Zürich.

Hutter, R., Hora, P. & Niederer, P. (2000), 'Total Hourglass Control for

Hyperelastic Materials', Computer methods in applied mechanical

engineering. In press.

Immersion, I. (1995), 'Laparoscopic Impulse Engine', Company

brochure, Santa Clara, CA.

Kass, M., Witkin, A. & Terzopoulos, D. (1988), 'Snakes: Active Contour

Models', Int. J. Comp. Vision 1(4), 321-331.

Kauer, M., Vuskovic, V. & Dual, J. (1999), In vivo measurements of

elastomechanical properties of organic tissue, in 'European Med¬

ical and Biological Engineering Conference, EMBEC'99', Vienna,
Austria.

Kelemen, A. (1998), Elastic Model-Based Segmentation of 2-D and 3-D

Neuroradiological Data Sets, PhD thesis No. 12907, Department
of Electrical Engineering, ETH Zürich.

Kelemen, A., Székely, G. & Gerig, G. (2000), 'Elastic Model-Based

Segmentation of 3-D Neuroradiological Data Sets', IEEE Trans.

Medical Imaging. In press.



Bibliography 159

Knapp, D., Kerr, J. & Seilberg, M. (1997), Patient Specific Color

Texture Mapping of CT-based Anatomical Surface Models Utiliz¬

ing Cryosectional Data, in 'Medicine Meets Virtual Reality', IOS

Press, pp. 608-617.

Koelmans, A. (1981), The Open Systems Interconnection Reference

Model, Rijksuniversiteit Groningern.

Kühnapfel, U., Cakrnak, H. & Maaß, H. (1999), Modelling for Endo¬

scopic Surgery, in 'Proceedings of the IEEE Symposium on Simu¬

lation', Delft, The Netherlands.

Kühnapfel, U., Krumm, H., Kuhn, C, Hübner, M. & Neisius, B. (1995),
Endosurgery Simulations with KISMET: A flexible tool for Surgi-
cal Instrument Design, Operation Room Planning and VR Tech¬

nology based Abdominal Surgery Training, m B. Gröttrup, ed.,
'Proc. Virtual reality World'95, Stuttgart', Computerwoche Ver¬

lag, München, pp. 165-171.

Lawrence, D., éd. (1991), Handbook of genetic algorithms, van Nostrand

Reinhold, New York.

Le-Tallec, P., Mohammadi, B., Sabourin, T. & Saltel, E. (1996), Dis¬

tributed CFD on cluster of workstations involving parallel unstruc¬

tured mesh adaption, finite-volume-Galerkin approach and finite-

elements, m A. Ecer, J. Periaux, N. Satofuka & S. Taylor, eds,
'Parallel Computational Fluid Dynamics', pp. 521-526.

Loendorf, D. (1985), Development and Use of an Asynchronous MIMD

Coputer for Finite Element Analysis, in 'Algorithmically special¬
ized parallel computers', pp. 213-222.

Maenchen, G. & Sack, S. (1964), 'The TENSOR Code', Methods m

Computational Physics 3, 181-210.

Malone, J. (1990), 'Parallel Nonlinear Dynamic Finite Element Analysis
of Three-Dimensional Shell Structures', Computers & Structures

35(5), 523-539.

Manzini, G. (1994), 'Sparse Matrix Computations on the Hypercube
and Related Networks', J. of Par. and Distr. Computing 21, 169-

183.



160 Bibliography

Massie, T. & Salisbury, J. (1994), The PHANToM Haptic Interface: A

Device for Probing Virtual Objects, m C. Radcliffe, ed., 'Dynamic

Systems and Control', Vol. 1, ASME, pp. 295-301.

Mehra, P. & Wah, B. (1992), Artificial Neural Networks: Concepts and

Theory, IEEE Computer Society Press, Los Alamitos.

Meier, V. (1999), Realistic Visualization of Abdominal Organs and

its Application in Laparoscopic Surgery Simulation, PhD thesis

No. 13215, Department of Electrical Engineering, ETH Zürich.

Moulton, M. et al. (1995), 'An Inverse Approach to Determining My¬
ocardial Material Properties', J. Biomechanics 28, 935-948.

MPI: a message-passing interface standard (1994), International Jour¬

nal of Supercomputer Applications and High Performance Com¬

puting 8(3), 169-416.

Muthupillai, R., Rossman, P., Lomas, D., Greanleaf, J., Riederer, S.

& Ehman, R. (1996), 'Magnetic Resonance Imaging of Transverse

Acoustic Strain Waves', Magnetic Rasonance in Medicine 36, 266-

274.

Nevin, N. J. (1996), The Performance of LAM 6.0 and MPICH 1.0.12

on a Workstation Cluster, Technical Report OSC-TR-1996-4, Ohio

Supercomputing Center, Columbus, Ohio.

Nour-Omid, B., Raefsky, A. & Lyzenga, G. (1987), Solving Finite Ele¬

ment Equations on Concurrent Computers, in A. Noor, ed., 'Par¬

allel computations and their impact on mechanics', The American

Society of Mechanical Engineers, pp. 209-227.

O'Toole, O., Playter, R., Krummel, T., Blank, W., Cornelius, N.,

Roberts, W., Bell, W. & Raibert, M. (1998), Assessing skill and

learning in surgeons and medical students using a force feedback

surgical simulator, in W. Wells, A. Colchester & S. Delp, eds,
'Medical Image Computing and Computer Assisted Intervention

MICCAI'98', pp. 899-909.

Pflesser, B., Tiede, U. & Höhne, K. (1998), Specification, Modelling and

Visualization of Arbitrarily Shaped Cut Surfaces in the Volume



Bibliography 161

Model, m W. M. Wells, A. Colchester & S. Delp, eds, 'First Inter¬

national Conference on Medical Image Computing and Computer-
Assisted Intervention MICCAI'98', number 1496 m 'Lecture Notes

in Computer Science', Springer Verlag, pp. 853-860.

Pommerell, C. (1992), Solution of large unsymmetric systems of linear

equations, PhD thesis No. 9838, Department of Electrical Engi¬

neering, ETH Zürich.

Prusinkiewicz, P. & Lindenmayer, A. (1990), The algorithmic beauty of

plants, Springer-Verlag, New York.

Reinig, K., Rush, C, Pelster, H., Spitzer, V. & Heath, J. (1996), Real-

Time Visually and Haptically Accurate Surgical Simulation, m

'Health Care in the Information Age', IOS Press and Ohmsha,

pp. 542-545.

Rhomberg, A., Enzler, R., Thaler, M. & Tröster, G. (1998), Design
of a FEM computation engine for real-time laparoscopic surgery

simulation, m 'Proceedings of the First Merged International Par¬

allel Processing Symposium and Symposium on Parallel and Dis¬

tributed Processing', IEEE Comput. Soc, Los Alamitos, CA, USA,

pp. 711-715.

Sagar, M., Bullivant, D., Mallinson, G., Hunter, P. & Hunter, I. (1994),
'A Virtual Environment and Model of the Eye for Surgical Simu¬

lation', Comp. Graphics 28, 205-212.

Satava, R. (1996), 'Virtual Endoscopy: Diagnosis using 3-D Visualisa¬

tion and Virtual Representation', Surgical Endoscopy 10, 173-174.

Satava, R. & Jones, S. (1998), 'Current and Future Applications of

Virtual Reality in Medicine', Proceedings of the IEEE 86(3), 484-

489.

Saxena, M. & Perucchio, R. (1992), 'Parallel FEM Algorithms Based

on Recursive Spatial Decomposition—I. Automatic Mesh Genera¬

tion', Computers & Structures 45(5), 817-831.

Schill, M., Wagner, C, Hennen, M., Bender, H.-J. & Männer, R. (1999),
EyeSi - A Simulator for Intra-ocular Surgery, in C. Taylor &



162 Bibliography

A. Colchester, eds, 'Second International Conference on Medi¬

cal Image Computing and Computer-Assisted Intervention MIC-

CAI'99', number 1679 in 'Lecture Notes in Computer Science',

Springer Verlag, pp. 1166-1174.

Sederberg, T. & Parry, S. (1986), 'Free-Form Deformation of Solid Ge¬

ometric Models', Computer Graphics 20(4), 151-160.

Sellberg, M., Murray, D., Knapp, D., Teske, T., Lattie, K. & Vander-

ploeg, M. (1995), Virtual Human: An Automated Virtual Environ¬

ment for Computer-Aided Instruction and Biomechanical Analy¬

sis, in 'Interactive Technology and the New Paradigm for Health¬

care', IOS Press and Ohmsha, pp. 340-348.

SensAble Devices, I. (1996), 'PHANToM', Company brochure, Cam¬

bridge, MA.

Soferman, Z., Blythe, D. & Nugel, J. (1998), 'Advanced Graphics Be¬

hind Medical Virtual Reality:Evolution of Algorithms, Hardware,
and Software Interfaces', Proceedings of the IEEE 86(3), 531-553.

Sterling, T., Savarese, D., Becker, D., Fryxell, B. & Olson, K. (1995),
Communication overhead for space science applications on the Be¬

owulf parallel workstation, m 'Proceedings of the Fourth IEEE

International Symposium on High Performance Distributed Com¬

puting', pp. 23-30.

Storaasli, O. & Ransom, J. (1987), 'Structural Dynamic Analysis on

a Parallel Computer: the Finite Element Machine', Computers &

Structures 26(4), 551-559.

Stredney, D., Sessana, D., McDonald, J., Hiemenz, L. & Rosenberg, L.

(1996), A Virtual Simulation Environment for LEarning Epidural

Anesthesia, m 'Proc. MMVR'96', IOS Press, pp. 164-175.

Sussman, T. & Bathe, K. (1987), 'A Finite Element Formulation for

Nonlinear Incompressible Elastic and Inelastic Analysis', Comput¬
ers & Structures 26(1/2), 357-409.

Sutton, C, Mccloy, R., Middlebrook, A., Chater, P., Wilson, M. &

Stone, R. (1997), MIST VR-a laparoscopic surgery procedures
trainer and evaluator, in K. Morgan, H. Hoffman, D. Stredney &

S. Weghorst, eds, 'Medicine Meets Virtual Reality', pp. 598-607.



Bibliography 163

Suzuki, N., Hattori, A., Ezumi, T., Uchiyama, A., Kumano, T.,

Ikamoto, A., Adachi, Y. & Takatsu, A. (1998), Simulator for vir¬

tual surgery using deformable organ models and force feedback

system, m 'Proc. MMVR'98', IOS Press, pp. 227-233.

Székely, G., Bajka, M., Hug, J., Manestar, M., Groscurth, P. & Haller,
U. (1998), Anatomical model generation for laparoscopic surgery

simulation, in 'Proc. 2nd Visible Human Project Conf., Bethesda,

MA', National Library of Medicine, pp. 45-46.

Székely, G., Brechbühler, C, Dual, J., Enzler, R., Hug, J., Hutter, R.,

Ironmonger, N., Kauer, M., Meier, V., Niederer, P., Rhomberg, A.,

Schmid, P., Schweitzer, G., Thaler, M., Vuskovic, V., Tröster, G.,

Haller, U. & Bajka, M. (2000), 'Virtual reality-based simulation

of endoscopic surgery', Presence 9(3), 310-333.

Taylor, V., Ranade, A. & Messerschmitt, D. (1995), 'SPAR: A New Ar¬

chitecture for Large Finite Element Computations', IEEE Trans,

on Computers 44(4), 531-545.

Terzopoulos, D., Piatt, J., Barr, A. & Fleischer, K. (1987), 'Elastically
Deformable Models', Computer Graphics 21(4), 205-214.

Tsai, J.-Y., Huang, J., Amlo, C, Lilja, D. & Yew, P.-C. (1999), 'The Su-

perthreaded Processor Architecture', IEEE Transactions on Com¬

puters 48(9), 881-902.

Tseng, T., Lee, Y., Chan, Y., Wu, S. & Chiu, A. (1998), A PC-Based

Surgical Simulator for Laparoscopic Surgery, in 'Proc. MMVR'98',
IOS Press, pp. 155-160.

Vining, D. (1996), 'Virtual Endoscopy: Is It Really?', Radiology

200, 30-31.

Voß, G., Hahn, J., Müller, W. & Lindeman, R. (1999), Virtual Cut¬

ting of Anatomical Structures, m 'Proc. MMVR'99', IOS Press,

pp. 381-383.

Vuskovic, V., Blaser, R. & Spiga, A. (1999), A vision-based device for

in vivo measurements of elastomechanical properties of soft tissue,

in 'Proc. Workshop on Image Processing in Applied Mechanics',

Warshaw, Poland.



164 Bibliography

Wyrzykowski, R., Sczygiol, N., Olas, T. & Kanevski, J. (1999), Parallel

finite element modeling of solidification processes, in P. Zinterhof,
M. Vajtersic & A. Uhl, eds, 'Parallel Computation. Proceedings of

the 4th International ACPC Conference', pp. 183-195.

Yagawa, G. & Shioya, R. (1993), 'Parallel finite elements on a mas¬

sively parallel computer with domain decomposition', Computing

Systems in Engineering 4(4), 495-503.

Yalamanchili, K., Anand, S. & Warner, D. (1992), 'Three-Dimensional

Finite Element Analysis on a Hypercube Computer', Computers
& Structures 41(1), 11-20.

Zhang, W. & Lei, E. (1991), 'A Parallel Frontal Solver on the Alliant

FX/80', Computers & Structures 38(2), 203-215.

Ziegler, R., Mueller, W., Fischer, G. & Goebel, M. (1995), A Virtual Re¬

ality Medical Training System, m 'Proc. Is* In. Conf. on Comp. Vi¬

sion, Virtual Reality and Robotics in Medicine, CVRMed'95, Nice,
Lecture Notes in Comp. Sei., Springer-Verlag', Vol. 905, Springer,
Berlin (etc.), pp. 282-286.

Zois, D. (1988), 'Parallel Processing Techniques for FE Analysis: Stiff¬

ness, Loads and Stresses Evaluation', Computers & Structures

28(2), 247-260.



Curriculum Vitae

Personal Information

Alexander Clemens Rhomberg
Born 27. March 1971

Citizen of Hausen am Albis, ZH, Switzerland

Education

1977-1983: Primary school in Wollerau, SZ and Hausen, ZH

1983-1989: Grammar school in Zürich Wiedikon, ZH

1989-1995: M. Sc. in Electronic Engineering at the Swiss

Federal Institute of Technology (ETH) in Zürich

1995-2000: Ph. D. at the Swiss Federal Institute of

Technology

Work

1991: Internship at Crypto AG, Cham, CH:

Cryptographic algorithms

1991-1992: Internship at Alcatel STR AG, Zürich, CH:

Measuring a GHz PLL

1993: Internship at ENST Brest, France: Programming
in Fortran

1995-2000: Teaching and Research Assistant at the

Electronics Laboratory of the ETH Zürich


