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Human Detection using Multimodal and Multidimensional Features

Luciano Spinello and Roland Siegwart

ASL - Swiss Federal Institute of Technology Zurich, Switzerland
email: {luciano.spinello, roland.siegwart}@mavt.ethz.ch

Abstract— This paper presents a novel human detection
method based on a Bayesian fusion approach using laser range
data and camera images. Laser range data analysis groups
data points with a novel graph cutting method. Therefore, it
computes a belief to each cluster based on the evaluation of
multidimensional features that describe geometrical properties.
A person detection algorithm based on dense overlapping grid
of Histograms of Oriented Gradients (HOG) is processed on the
image area determined by each laser cluster. The selection of
HOG features and laser features is obtained through a learning
process based on a cascade of linear Support Vector Machines
(SVM). A technique to obtain conditional probabilities from a
cascade of SVMs is here proposed in order to combine the two
information together. The resulting human detection consists in
a rich information that takes into account the distance of the
cluster and the confidence level of both detection methods. We
demonstrate the performance of this work on real-world data
and different environments.

I. INTRODUCTION

According to National Highway Traffic Safety Administra-
tion (NHTSA) report [1] there were 4784 pedestrian fatalities
in United States during the year 2006, which accounted
for 11.6% of the total 42642 traffic related fatalities. In
countries of Asia and Europe, the percentage of pedestrian
deaths is even higher. Intelligent vehicle systems should
have the capability to reduce pedestrian injuries. Human
detection is the next logical step after the development of
a successful navigation and obstacle avoidance algorithm in
urban environment. However humans have been proved to be
a difficult object to detect because of the wide variability in
the appearance due to clothing, illumination and view point
variant shape characteristics. To be supportive to a navigation
module we want to detect pedestrians and localize them in
3D at any point in time and as fast as possible. Since we
cannot control the vehicle path, nor the environment it passes
through, the detector needs to be robust to a large range
of lightning variations, noise and partial occlusion. Sensor
characteristics reveal that each sensor can only perceive
certain characteristics of the environment, therefore a single
sensor is not sufficient enough to comprehensively represent
the driving environment. A multisensor approach has the
potential to yield a higher level of reliability and security.
In this paper we present a system which addresses human
detection using a laser rangefinder-camera Bayesian sensor
fusion approach.

Laser range data contain little information about people,
specially because it typically consists of two-dimensional

range information. However, range measurements that corre-
spond to humans have certain geometrical properties such
as size, convexity etc. This paper extends the key idea
of Arras [2] to determine a set of scalar features that
quantify pedestrian properties using an AdaBoost learning
approach, expanding the feature set and considering multiple
dimensional features learned through a boosted cascade of
Support Vector Machines (SVM). Neither the selection of
features nor their threshold are determined by manual design
or hand tuning but they are statistically learned.

Dalal & Triggs [3] and then Zhu & Avidan [4] presented
a image based human detection algorithm with excellent
detection results and very good performance in terms of
execution speed. This method is based on the classification
of Histogram of Oriented Gradients computed over blocks
of different sizes and scales in the detection window. A
classification method based on a rejector-based SVM cascade
is proposed to discriminate the presence of a human in the
detection window.

In this paper we compute classified geometrical features
on range data and HOG features in image data to give a
probability estimation of human detection. Namely, laser
data analysis (structure information) groups the data points
and computes a belief to each cluster based on geometrical
properties. An image detection (appearance information)
algorithm based on HOG [3] is then processed on the image
area determined by 3D planes, defined by laser clusters with
a given height projected on the current image frame. Both
range data features and HOG features are classified according
to an Adaboost cascade based on linear C-SVMs. In this
work it is proposed a strategy to obtain a probability to
formulate a Bayesian fusion model.

The novelty of this work consists in:

1) combining together, with a Bayesian sensor fusion
model, two of most recent and reliable human detection
methods using two different sensors: camera and laser.

2) increasing the feature set of the previous work of Arras
[2] for range based human detection, considering 2D
features and n-dimensional features (shape factors).

3) the implementation of a novel fast graph-cut based
segmentation for range data

4) the development of the method on a moving vehicle
considering real-world experiments.

The advantages of using camera and laser sensor fusion
principally are:



• direct, precise and instantaneous distance measurement
of the detection (due to laser).

• sensors complementary characteristics: a moving person
is a complex deformable object and for certain poses it
can be described with a high confidence by one sensor
or the other due to sensor peculiar characteristics.

II. PREVIOUS WORK

Several approaches exist in the literature in to detect a
person in range data including analysis of local minima [5],
geometric rules [6], or maximum-likelihood estimation [7].

Most similar to our work is the approach of [2] which
clusters the laser data and learns an AdaBoost classifier from
a set of monodimensional geometrical features extracted
from the clusters.

In the area of image-based people detection, there mainly
exist two kinds of approaches (see [8] for a survey). One
uses the analysis of a detection window or templates [9],
[10], the other performs a parts-based detection [11]

Combined camera and laser rangefinder pedestrian detec-
tion methods use hard constrained approaches or hand tuned
thresholding. Cui [12] uses multiple laser scanners at foot
height and a monocular camera to obtain people tracking by
extracting feet and step candidates. Zivkovic [13] proposes
a probabilistic part based approach using camera and laser,
principally relying on detection methods suitable for indoor
environments.

III. OVERVIEW OF THE METHOD

This sections gives an overview of our pedestrian detection
method. The work described in this paper is divided in
two phases: training and detection. In the training phase
a supervised learning technique, based on cascades of n-
dimensional Support Vector Machines, is developed in order
to discriminate features that are characteristic of pedestrians
in laser rangefinder data and camera images. Then two
cascades of SVMs are built: one to classify laser data and
the other to classify image data.

In the detection phase, laser data (structure information)
is clustered according to a novel segmentation method here
proposed (Sec IV). A prior probability is assigned to each
cluster; each cluster is then projected as 3D plane in the
image and evaluated using the trained laser data classifier
to obtain a belief. Parallelly, the Histogram of Oriented
Gradients (HOG) detector is run on the image-projected
laser clusters in order to obtain an image based human
detection probability (Sec V). The following boosted support
vector machine cascade is explained in Sec VI. A Bayesian
sensor fusion approach addresses the problem of fusing the
information between the laser detection and image detection
conditional probability (Sec VII). Experimental results are
shown in Sec VIII.

IV. STRUCTURE INFORMATION FROM
LASER DATA ANALYSIS

We assume that the robot is equipped with a laser range
sensor that provides 2D scan points (x1, ...,xN ) in the laser

plane. We detect a person in a range scan by first clustering
the data and then applying a boosted classifier on the clusters,
which we describe as follows.

A. Clustering

Jump distance clustering is a widely used method for
2D laser range data in mobile robotics (see [14] for an
overview). It is fast and simple to implement: if the Euclidean
distance between two adjacent data points exceeds a given
threshold, a new cluster is generated. Although this approach
performs well in indoor scenarios, it gives poor results for
outdoor data, because the environment is geometrically more
complex and bigger distances, reflections and direct sunlight
effects usually occur. This often leads to over-segmented data
with many small clusters. To address this problem, we use a
simple and effective technique that extends the classic jump
distance method. It consists in the following steps:

1) Perform jump distance clustering with threshold ϑ.
Each cluster Si is defined by its left border xli, its
central point xci , and its right border xri :

Si =
{
xli,x

c
i ,x

r
i

}
(1)

2) Compute a Delaunay triangulation on the cluster cen-
ters xci .

3) Annotate each edge eij := (xci ,x
c
j) of the Delaunay

graph with the Euclidean distance between Si and Sj .
4) Remove edges with a distance greater than ϑ and

merge each remaining connected component of the
graph into a new cluster.

Note that the same threshold ϑ is used twice: first to
define the minimum jump distance between the end points
of adjacent clusters and then to define the Euclidean dis-
tance between clusters. Experimental results showed that this
reduces the cluster quantity of 25% − 60%, significantly
reducing overclustering. The additional computational cost
due to the Delaunay triangulation and distance computation
is lower compared to a full 2D agglomerative clustering
approach.

B. Features description

We define a feature as a function fj : Si → <n that
takes a cluster S as an argument and returns a n-dimensional
value. Multidimensional features and shape descriptors that
describe geometrical and statistical properties of the cluster
are here considered:

Number of points Standard deviation
Mean average deviation Width
Height Linearity
Circularity Radius
Boundary length Mean curvature
Mean angular difference Kurtosis
PCA based shape factors N-binned histogram
PHG Boundary regularity

The distance between clusters is not considered as a feature
because we aim to achieve a detection just based on the
characteristics of the cluster. 2D features are created adding



Fig. 1. An overview of the proposed pedestrian detection method.

cluster-observer distance to 1D features as another dimension
in order to learn how the feature value changes with respect
to the distance. The feature set is composed in total by 50
features.

V. APPEARANCE INFORMATION: IMAGE DATA ANALYSIS

The image based human detection is based on a method
that relies on the classification Histogram of Oriented Gradi-
ents (HOG) features in a detection window (Dalal [3]). This
section gives an overview of the feature extraction method.
Local object appearance and shape can often be characterized
rather well by the distribution of local intensity gradients
or edge directions, even without precise knowledge of the
corresponding gradient or edge positions. The image window
is divided into cells. For each cell a local histogram of
gradient directions over the pixels of the cell is accumulated.
For better invariance to illumination, it is also useful to
contrast-normalize the local responses before using them.
This can be done by grouping the cells in blocks and nor-
malizing the included cells histograms. The Dalal & Triggs
algorithm uses an overlapping fixed scale block tessellation
with the use of fairly small block size (16 pixels) which
might miss the ”big picture” of the entire detection window.
To overcome this limitation and to accelerate the detection
process, we implemented the method proposed by Zhu &
Avidan [15]. Multiple scales blocks, in different locations
and aspect ratios, are added to enlarge the feature set and
capture more information in the detection window. The ratio
between block width and block height can be any of the
following ratios (1 : 1), (1 : 2) and (2 : 1) and we consider
all blocks whose size ranges from 12×12 to 64×128 using
an increasing step of {4, 6, 8}. Each histogram is a vector
of 36D that is the concatenation of 9 orientation bins in the
included 2× 2 cells. 5245 HOG features are present in each
window.

To support a fast evaluation of specific blocks we use the
integral image representation to efficiently compute HOG
of each block. Porikli [9] suggested the Integral Histogram
to efficiently compute histograms over arbitrary rectangular
image regions. Inspired by the work of Porikli [16] and Viola
[17], it is possible to quickly compute an HOG feature. We
discretize each pixels orientation into 9 histogram bins and
store an integral image for each bin of the HOG (resulting
in 9 images in our case) and use them to compute efficiently
the HOG for any rectangular image region. A L1 (Manhattan

distance) histogram normalization is executed in each HOG
feature block.

VI. BOOSTED SUPPORT VECTOR MACHINE CASCADE

Boosting is a general method for creating an accurate
strong classifier by combining a set of weak classifiers. The
requirement to each weak classifier is that its accuracy is
better than a random guessing. The adaboost algorithm intro-
duced by Freund and Schapire [18] was extended by Viola
[17] who introduced the attentional cascade. This method
radically reduces the computation time: the key insight is that
smaller, and therefore more efficient, boosted classifiers can
be constructed, which reject many of the negative samples
while detecting almost all positive instances. The overall
form of the detection process is that of a degenerate decision
tree (or cascade). A positive result from the first classifier
triggers the evaluation of a second classifier which is adjusted
to yield very high detection rates and so on. A negative
outcome at any point leads to the immediate rejection. It is
important to note that stages in the cascade are constructed
by training classifiers and adjusting the threshold to minimize
false positives.

Because most of laser features and HOG features lie in
a <1 − <36 space, we implemented as weak classifier the
separating hyperplane computed using a C-SVM with linear
kernel [19].

The training set is constituted by a set of n-samples of
m-kind of features fi. A sampling method is used in the
case of classification of HOG features to reduce the training
time: 5% of the features is randomly sampled and evaluated
each round. All the features of the set are considered in the
laser feature classification case.

A. Parameters selection
SVM parameter selection is an important issue to consider.

In C-SVM only parameter C has to be chosen:

min
w,b,ξ

=
1
2
wTw + C

l∑
i=1

ξi

subject to:

yi(wTφ(xi) + b) ≥ 1− ξi (2)
ξi ≥ 0, i = 1, . . . , l. (3)

The parameter C is chosen using the value of C that
minimizes the cost function in the v-fold cross validation:

Γ = a1εp + a2εn (4)



where εp and εn in equation 4 express respectively the false
positive rate and the false negative rate. This cost function
differs from the classic approach to maximize an accuracy
based cost function. Due the structure of the boosted cascade
it is important to have many hard examples in order to have
sufficient negative samples each time a stage is completed
and a new one is trained. If we run the parameter selection on
accuracy, the resulting SVM will be naturally biased towards
a high occurrence of false negatives.

B. Cascade Probability Estimation

We denote the detection of a person using a binary random
variable π that is true whenever a person is detected. Each of
the L cascaded SVM-classifiers hi yields either 1 or 0 for a
given input feature vector f . The overall detection probability
can then be formulated as

p(π | f) =
L∑
i=1

wihi(f) (5)

In the learning phase, the weights wi and the hyperplanes
are computed for each SVM classifier hi. The probability is
evaluated when all the stages of the cascade are successfully
passed.

VII. INFORMATION FUSION

This section explains the method used to estimate a
pedestrian detection using the structure and appearance in-
formation.

Camera is intrinsically and then extrinsically calibrated
with respect to laser rangefinder using the method described
by Pless [20].

Each segmented cluster in laser data is projected into
image frame as a 3D plane: the enlarged cluster width (1.5m)
is used to define the width of a plane surface with constant
height of 3m, the projection of the extremal points of this
surface create a region of interest in the image frame, and
namely define the prior of a pedestrian at that image location:

p (π) ≈ p (π|r) (6)

Equation 6 modulates the uncertainty relating it to the
distance r from the observer. This is a reasonable assump-
tion because the quantity of information decreases with the
distance: a far away pedestrian is described by few points in
the range data and few pixel in the image data.

Each cluster Si is evaluated using the classifier trained on
laser data that describes p (π|θl), that is the probability of
human detection given laser data analysis.

The image data classifier is run on the regions of interest
defined by each laser cluster. The HOG image detector
detects classified features at multiple scales and locations
inside that image space. This significantly reduces the image
detection process due to a reduced research space. The HOG
classifier describes the probability of pedestrian detection
given image data analysis: p (π|θc)

Structure and appearance information are considered cues
of same importance, thus the same confidence level of detec-
tion should be given in the fusion information process. The

information fusion is addressed using a Bayesian modeling
approach.

Starting from the joint distribution and applying recur-
sively the conjunction rule we obtain the decomposition:

p(π ∧ θl ∧ θc) = p(π) p(θl|π) p(θc|π) (7)

In equation 7, the phenomenon φ is considered to be the main
reason for the contingency of the structure and appearance
information, thus knowing the cause φ of the readings
the variables θl and θc are independent. In general, this
hypothesis is not always satisfied, but it is often used in
literature and it has the main advantage of considerably
reducing the complexity of the computation.

The conditional probability defining the information fusion
is:

p(π|θl ∧ θc) =
p(π) p(θl|π) p(θc|π)∑
π(p(π) p(θl|π) p(θc|π))

(8)

VIII. EXPERIMENTAL RESULTS

A. Training datasets

We trained our HOG features classifier using the well-
established MIT pedestrian image database and the signif-
icantly more challenging INRIA person database [21]. To
build the negative set a software has been developed to
randomly crop part of images containing street and urban
background from the INRIA negative dataset. The set contain
in total 3123 64x128 positive images and 12313 64x128
negative images of people. The people are usually standing
but appear in any orientation, against a wide variety of back-
ground including crowds. The cascade consists in 26 levels
and the first three levels contains just 4 to 6 SVM classifiers
each and reject circa 81% of the detection windows; this
permits a fast execution time and good performances.

Laser datasets have been taken in two different outdoor
scenarios: a parking lot and the university campus. The
parking lot dataset consists of a staged ”road like” scenario:
some people pass in front of the car, a person is ”shape
changing” wearing a hat and eventually the car is run in an
internal road with parked cars and crossing pedestrians. The
university campus dataset presents a very challenging and
cluttered environment with a lot of passing pedestrians with
different shapes, speed and distribution in the space.

The range scan data is segmented using the algorithm
explained in Sec. IV and the entire featureset is computed.
Thus the clusters are manually labeled. The parking lot data
set is composed by 1070 positive and 7054 negative clusters.
The campus dataset is composed by by 497 positive and 3499
negative clusters

B. Experiments

The mobile platform Smartter, used to acquire the datasets,
is based on a Daimler-Chrysler Smart vehicle equipped with
several active and passive sensors, a camera with a wide field
of view lens and a frontal laser rangefinder. An accurate
camera-laser synchronization has been developed for this
work. Each dataset is divided in a training set and a test set.
The campus training set is composed by a random choice



Fig. 2. Smartter platform. A camera has been placed behind the windscreen
and the AlascaXT laserscanner has been mounted on the front of the car.

of 248 positive samples and 1700 negative samples from
the original dataset (50%), the same method is applied to
the parking lot dataset. The testing sets are composed by
the remaining clusters. The range features classifier training
dataset is the union of both training datasets (750 positive
samples and 5250 negative samples). The resulting cascade
is composed by 4 stages with a total of 8 features. The
resulting selected features of the cascade that describe a
human in range data are the following: [Standard deviation,
cluster distance] (2D feature), [Width], [Kurtosis], [Radius,
cluster distance] (2D feature), [Histogram] (24D feature),
[Boundary regularity], [Boundary Length, cluster distance]
(2D feature). The resulting selected features are a balanced
combination of shape description and points distribution
statistics often related to the distance of the cluster from the
observer. In order to study the importance of the distance
between two clusters in an outdoor scenario, we added
this component as another feature to the featureset. The
automatic process of building the boosted cascade excluded
this features due to a smaller accuracy with respect to
the others. This results differ from the work of Arras [2]
mainly due to a very different training set and a different
segmentation method.

Range data features classifier for the parking lot dataset
obtains TP:517(91.1%) FN:51(8.9%) FP:351(10.0%)
TN:3153(90.0%); HOG image features cascade classifier
obtains TP:197(91.53%) FN:26(8.57%) FP:137(7.62%)
TN:1648(92.38%). The overall classification rate for both
sensors is very high (over 90%) and false positive rate/false
negative rate is low and comparable (under 10% for both).
Even though the environment resembles a road scenario,
from a ranged and a visual point of view, the persons
silhouette and their range data remain well defined. It’s
noticeable that in some hard examples one sensor gives
better results than the other. A pedestrian can receive a high
confidence using range data features but can be rejected
using the image feature classifier and viceversa. This
condition occours mainly when a pedestrian is defined with
few range data points or with an occluded or unconventional
silhouette pose.

The confusion matrix of ranged features for the uni-

Fig. 3. Two images from parking lot dataset. Brighter rectangles indicate a
high detection proability. On the left: multiple pedestrian detection is shown
with different level of detection probability. On the right: a car is detected
as a pedestrian with very low confidence due to a false positive in one of
the detectors. Pedestrian distances are written in red.

Fig. 4. Two images from parking lot dataset. Brighter rectangles indicate
a high detection proability. On the left: the far away pedestrian receive a
smaller vote with respect to the foreground person. On the right: a classic
pedestrian crossing in simulated. Pedestrian distances are written in red.

versity campus dataset is composed by TP:161(64.7%)
FN: 88(35.3%) FP:536(30.0%) TN:1273(70.0%); HOG
cascade classifier obtains TP:119(72.6%) FN: 45(27.4%)
FP:173(21.9%) TN:613(78.1%). The overall classification
rate is 65% for the first and 73% for the other. This result
can be explained by the complexity of the environment and,
moreover, by the clutter present in this scenario: multiple
pedestrians in a small space ”distort” the cluster shape and
point distribution; visually cluttered pedestrian contain less
informative gradient information for the HOG detector. If we
anyway take the maximum of the output probability of both
cascade the detection rate is increased of 16%. Instead of
having a ”hard” method of combining the results of both

Fig. 5. Two images from university campus dataset. Brighter rectangles
indicate a high detection proability. The visual and geometrical complexity
of the environment decreases the overall performance of the detector. On
the left: two persons are detected and the others discarded due to poor light
conditions, shadows, glass reflections and generally visual and range data
occlusions in the laser line of sight. On the right: foreground persons are
equally well detected; the cluttered group of people on the right is ignored.



Fig. 6. The figure shows the probability progress of a pedestrian walking
in front of the car. The left figure traces the path: brighter green circles
depict a high probability value. On the right figure the probability value
(axis Y) of the left figure is explicitly plotted with respect to the samples
(axis X).

classifiers we present the method based on the Bayesian
sensor fusion approach. In fig. 3, fig. 4, 5 each detection
(in the range data and in the image) is labeled with its
fused probability, far away clusters have a lower probability
due the modulation factor of the prior present in eq. 8.
This creates a reasonable dynamic traversability map for an
autonomous car, taking into account the confidence of each
sensor and acting consequently. If one sensor detection fails
to detect a person (false negative) the result is a confidence
decreasing but the affected cluster will still receive another
probability measure from the other sensor. In order to show
the validity of the method we depict in fig. 6 the progress
of the probability estimate in time when a pedestrian is
walking in front of the car. The brightness of the cluster
is proportional to the detection level. It’s important to notice
that the detection works also when the person is not present
in the image but it is estimated only using range data.

The computation time required to obtain a detection de-
pends on the number of clusters found in the laser range data
scan; considering both datasets a frame rate between 3fps
to 15fps is obtained. A video of the experiments is available
at http://www.asl.ethz.ch/people/sluciano/videoICRA08.mpg

IX. CONCLUSIONS

We presented in this paper a novel human detection
method that combines camera and laserscan information.
A Bayesian fusion is used to fuse together two of the
most recent and reliable human detection methods. One
of the key points of this paper is the convergence of two
different methods with different sensors to obtain a more
informative detector. Even though person detection is far
from being solved individually by each sensor, we have
shown that the proposed sensor fusion can increase the
overall detection confidence especially in hard examples. The
obtained information from sensor fusion is a rich detection
that takes in account the distance and the confidence level
of each detector. In future work we plan to expand this
work including tracking of people using dynamic models
and extending the image detection part to better handle
occlusions and clutters.
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