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Abstract

Visibility problems appear in a variety of applicative backgrounds. While

the traditional "art gallery" problem, which consists of guarding a given
floor plan of an art gallery by a minimum number of guards seems to be

mainly of theoretical interest, a variation of this problem, where a 2.5 di¬

mensional terrain rather than a two dimensional polygonal floor plan needs

to be guarded, is of practical significance in the planning of wireless com¬

munication networks, where minimizing the numbers of antennas reduces

overall costs.

In a visibility problem, we are given an input polygon, which may or

may not contain holes, or a 2.5 dimensional triangulated terrain. We say

that two points in the polygon or on or above the terrain see each other, if

the straight line segment connecting the two points does not intersect the

exterior of the polygon or the space below the terrain.

A first category of visibility problems is the problem of "guarding". We
need to find a minimum number of guard positions, such that these guards
collectively see the whole polygon or the terrain. Since this problem is

iVP-hard in most variations, the search for approximability as well as inap¬

proximability results may prove helpful. We show that for input polygons
with holes, no polynomial time approximation algorithm can achieve an

approximation ratio that is logarithmic in the number of polygon vertices.

This result is tight up to constant factors, since there exists a polynomial
time algorithm that achieves a logarithmic approximation ratio. We obtain

this result by construction a gap-preserving reduction from the Minimum

Set Cover problem. This inapproximability result carries over to the

problem of guarding terrains. We also propose an approximation algorithm
for guarding terrains that achieves a logarithmic approximation ratio. The

situation is less clear for input polygons without holes: we are only able to

show APX-hardness (i.e. there exists a constant e, such that no approxima¬
tion algorithm can achieve an approximation ratio of 1 + e). We modify and

analyze an already known reduction to obtain this result. Thus, for poly-
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gon without holes, it is still open, whether there exists an approximation
algorithm with a constant approximation ratio.

A second category of visibility problems is "hiding". In a hiding problem,
we need to find a maximum number of positions in the input polygon or

on the input terrain, such that no two of these positions see each other.

We show that for input polygons with holes, as well as for terrains, no

approximation algorithm can achieve an approximation ratio of nt for some

constant e > 0. This result is obtained by a gap-preserving reduction from

Maximum Clique. For input polygons without holes, we again can only
show APX-hardness; thus a gap remains in this case.

A third category of visibility problems is "convex covering", where we

need to cover an input polygon with a minimum number of (possibly over¬

lapping) convex polygons that are inside the input polygon. We propose

a polynomial time algorithm for this problem that achieves a logarithmic
approximation ratio. The key ingredient in this algorithm is a successful dis¬

cretization of the plane. As for inapproximability, we show APX-hardness;
thus a gap remains.

In a fourth category of visibility problems, we only consider the corre¬

sponding visibility graphs as input structures. We show how to geometri¬
cally interpret some classic graph-theoretic problems, and show that some

of our results for general visibility problems carry over. In particular, we

show that for visibility graphs of polygons with holes, the clique problem is

almost as hard to approximate as in general graphs, while it is known that

clique can be solved in polynomial time if the poygons contain no holes.



Zusammenfassung

Sichtbarkeitsprobleme haben verschiedene praktische Anwendungen. Wäh¬

rend das klassische "Kunstgallerie"-Problem, bei dem der Grundriss einer

Kunstgallerie mit einer minimalen Anzahl Wächter bewacht werden soll,
mehr von theoretischem Interesse ist, hat ein verwandtes Problem, bei dem

ein 2.5 dimensionales Terrain anstelle einer Kunstgallerie überwacht werden

soll, eine praktische Bedeutung bei der Planung von Mobilfunknetzwerken,
wo möglichst wenige Antennen ein möglichst grosses Gebiet abdecken, oder

eben überwachen sollen.

Ein Sichtbarkeitsproblem bekommt als Eingabe entweder ein Polygon
mit oder ohne Löcher oder ein 2.5 dimensionales trianguliertes Terrain.

Zwei Punkte im Polygon oder auf oder oberhalb des Terrains sehen sich

gegenseitig, falls das Liniensegment, das die zwei Punkte verbindet, nicht

das Äussere des Polygons bzw. den Raum unterhalb des Terrains schneidet.

Eine erste Gruppe von Sichtbarkeitsproblemen sind Überwachungspro-
bleme. Gefragt wird dabei immer nach einer minimalen Anzahl von Wäch¬

tern, die zusammen das ganze Polygon oder Terrain sehen. Weil dieses Pro¬

blem in den meisten Varianten NP-schwer ist, ist es sinnvoll, Approximier-
barkeits- und Nichtapproximierbarkeitsresultate für diese Probleme zu fin¬

den. Für Eingabepolygone mit Löchern zeigen wir, dass kein polynomieller
Approximationsalgorithmus eine Approximationsgüte erreichen kann, wel¬

che logarithmisch in der Anzahl Polygonecken ist. Dieses Resultat ist opti¬
mal bis auf konstante Faktoren, da ein polynomieller Approximationsalgo¬
rithmus existiert, der eine logarithmische Approximationsgüte erreicht. Wir

erhalten dieses Resultat durch eine lückenerhaltende Reduktion vom Mini¬

mum Set Cover Problem. Dieses Nichtapproximierbarkeitsresultat lässt

sich leicht auf den Fall übertragen, in dem ein 2.5 dimensionales Terrain

überwacht werden soll. Für Eingabepolygone ohne Löcher haben wir noch

kein optimales Resultat: wir zeigen zwar, dass das entsprechende Problem

APX-schwer ist (d.h., dass eine Konstante e > 0 existiert, so dass kein po¬

lynomieller Approximationsalgorithmus eine Approximationsgüte von 1 + e
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erreichen kann), es ist jedoch kein Approximationsalgorithmus bekannt, der

eine konstante Approximationsgüte erreicht. Der beste Approximationsal¬
gorithmus erreicht eine logarithmische Approximationsgüte.

Eine zweite Gruppe von Sichtbarkeitsproblemen nennen wir "Verste¬

cken". In einem Versteckproblem müssen wir eine maximale Anzahl von

Positionen in einem Polygon oder einem Terrain finden, an denen wir Ge¬

genstände oder Personen verstecken können, so dass keine zwei dieser Posi¬

tionen sich gegenseitig sehen. Wir zeigen mittels einer lückenerhaltenden Re¬

duktion von Maximum Clique, dass für Eingabepolygone mit Löchern oder

Terrains kein polynomieller Approximationsalgorithmus eine Approximati¬

onsgüte von ne erreichen kann, für ein bestimmtes e > 0. Wiederum können

wir für Eingabepolygone ohne Löcher nur ein schwächeres Resultat zeigen,
nämlich APX-Schwere.

Eine dritte Gruppe von Sichtbarkeitsproblemen nennen wir "konvexes

Überdecken". Hier soll ein gegebenes Polygon mit einer minimalen Anzahl

von konvexen Polygonen, die alle innerhalb des gegebenen Polygons liegen,
überdeckt werden. Wir geben einen Approximationsalgorthmus, der eine lo¬

garithmische Approximationsgüte für dieses Problem erreicht. Der Schlüssel

dieses Algorithmus liegt im "Diskretisieren" der Ebene, ohne dabei zuviel

zu verlieren. Durch Modifizieren und genaues Analysieren einer bereits be¬

kannten Reduktion zeigen wir ausserdem, dass dieses Problem APX-schwer

ist.

In einer vierten Gruppe von Sichtbarkeitsproblemen betrachten wir nur

die Sichtbarkeitsgraphen als Eingabestrukturen und nicht die ganzen Po¬

lygone. Wir zeigen, wie einige klassische graphentheoretische Probleme auf

Sichtbarkeitsgraphen geometrisch interpretiert werden können. Wir zeigen
ausserdem, dass etliche unserer Resultate für allgemeine Sichtbarkeitspro¬
bleme auch für diesen eingeschränkten Bereich gelten. Als weiteres Resultat

zeigen wir, dass das Maximum Clique Problem auf Sichtbarkeitsgraphen
von Polygonen mit Löchern fast so schwer ist wie auf allgemeinen Graphen.
Dieses Resultat ist vor allem deshalb interessant, weil das entsprechende
Problem für Polygone ohne Löcher in polynomieller Zeit lösbar ist.



Chapter 1

Introduction

1.1 Motivation

At the dawning of the information age, modern societies face tremendous

challenges of social and technological nature. Communication and infor¬

mation are increasingly considered to be the crucial economic resources

of the future. Increasing demand for communication has led to intensive

research and, subconsequently, to the development of communication tech¬

nology that seemed beyond imagination only years ago. Undoubtedly, the

most promising approach in new communication technology is that of wire¬

less communication.

In this sector, deregulation - a political instrument - has its share of

responsibility for the mushrooming of new telecommunication companies
and the deployment of a large number of wireless networks. Despite the

current boom in wireless communication, basic economic intuition lets us

anticipate that only the "fittest" and economically soundest of these com¬

panies will survive in the long run. Setting up, maintaining, and running
wireless communication networks generates huge costs, but also prospects
for huge revenues. Reducing costs may thus be a way of staying in business

that is even more effective than in other markets.

Of course, the quality of a network largely depends on the quality of its

"nodes", which are transmission stations or antennas in our case. The cost

of a network, however, largely depends on the number of nodes. Typically,
a network for wireless communication consists of transmission stations (an¬
tennas) that receive and send signals. The set of antennas needs to cover a

specific geographic region in its entirety.

Setting up an antenna incurs:
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• the cost of the acquisition of the site, i.e., the rent or purchase of the

soil

• the cost of the antenna itself

• protests of the local population due to fears of overexposure to radia¬

tion

Thus, putting up antennas is very costly, and hence telecommunication

companies aim at placing a minimum number of antennas that cover a given
region.1 Since the traditional way of erecting antenna towers on the ground
suffers from a number of obvious disadvantages, a novel approach is to put
antennas up in the air: Balloons float at a certain fixed height and are held

in geo-stationary position.
This setting (as well as the traditional setting with antenna towers on

the ground) poses a lot of engineering problems:

• Developing suitable transmitter technology

• Developing a system to keep the balloon in geo-stationary position

While these problems are certainly interesting, an important combinatorial

problem that has a huge cost-cutting potential arises, too:

• Finding the positions of a minimum number of balloons such that

communication between any two points in a given region is possible

Communication between two points is possible, if a mobile transmitter

(such as a cellular phone) at each point can communicate with an antenna in

the network. Thus, in our abstract problem, each point in the region must

be covered by at least one antenna. Communication between antennas and

mobile transmitters is by means of electromagnetic wave propagation at high

frequencies. Current frequencies are 900 MHz and 1800 MHz and the trend

points towards frequencies even higher in the GHz-range. A straight line-

of-sight approach models reality with sufficient precision in these frequency

ranges, since the effects of reflection and refraction become negligible. Thus,
we require each point in the region to be visible from at least one antenna

in the network.

Since visibility between two points in a region is given or blocked by the

topology of the region to be covered, the geometric model used to model the

^This is of course an abstraction of the real-world problem of setting up an antenna

network. The real-world problem is more complex. For example, depending on the type
of network (mobile phones, paging, military, etc.), telecommunication companies have to

deal with the limited ressource of frequencies that are available to them — in addition to

the covering problem.
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region becomes important. In the geometric model, we call the region to be

covered a terrain, which is described as a finite set of points in the plane
together with a triangulation, and a height value associated with each point

(this is also called a triangulated irregular network (TIN), see e.g. [33]).
Visibility on a terrain is defined on the basis of straight lines-of-sight: Two

points above the terrain are mutually visible if their connecting straight line

segment runs entirely above (or on) the terrain.

Thus, our problem has engineering, combinatorial, and geometric as¬

pects. We will focus exclusively on the combinatorial and geometric aspects.

The terrain covering problem can be seen to belong to quite a large
family of geometric covering and guarding problems that have been studied

for more than two decades. Legend has it that during a conference in 1976,
Victor Klee started the study by posing the following problem, which today
is known as the original art gallery problem: How many guards are needed

to see every point in the interior of an art gallery? In the abstract version

of this problem, the input is a simple polygon in the plane, representing
the floor plan of the art gallery, and visibility is of course limited to the

interior of the polygon. The variations of this polygon guarding problem
that have been investigated can be classified as to where the guards may

be positioned (anywhere, or in any one of a few distinguished locations),
what kind of guards are to be used (single points versus sets of points, such

as line segments, and guards in stationary positions versus mobile guards),
whether only the boundary or all of the interior of the polygon must be

guarded, what the assumptions are on the input polygons (such as being
simple or orthogonal). Many upper and lower bounds on the number of

necessary guards are known for specific settings, while comparatively few

papers study the computational complexity of finding good positions for

guards, given a polygon. For more details, see any of several surveys on the

general topic of art galleries [39, 44, 48].

While guarding a polygon or a terrain has many straight-forward ap¬

plications, the "opposite" problem of hiding a maximum number of objects
from each other in a given polygon or terrain is intellectually appealing
as well with a less prominent applicative background. However, when we

let the problem instance be a terrain, we obtain the following background,
which is the practical motivation for the theoretical study of our problem:
A real estate agency owns a large, uninhabited piece of land in a beautiful

area. The agency plans to sell the land in individual pieces to people who

would like to have a cabin in the wilderness, which to them means that they
do not see any signs of human civilization from their cabins. Specifically,
they do not want to see any other cabins. The real estate agency, in order

to maximize profit, wants to sell as many pieces of land as possible.
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In an abstract version of the problem we are given a terrain which rep¬

resents the uninhabited piece of land that the real estate agency owns. The

problem now consists of finding a maximum number of lots (of compara¬

tively small size) in the terrain, upon which three-dimensional bounding
boxes can be positioned that represent the cabins such that no two points
of two different bounding boxes see each other. Since the bounding boxes

that represent the cabins are small compared to the overall size and eleva¬

tion changes in the terrain (assume that we have a mountainous terrain),
we may consider these bounding boxes to be zero-dimensional, i.e. to be

points on the terrain. This problem has other potential applications in ani¬

mated computer-games, where a player needs to find and collect or destroy
as many objects as possible. Not seeing the next object while collecting an

object makes the game more interesting.
Next to guarding and hiding, there are other problems that deal with

visibility in a graph. One of the best studied of these problems is the

problem of covering a given polygon by a minimum number of (possibly
overlapping) convex polygons inside the given polygon.

Since most visibility problems cannot be solved optimally unless NP =

P, it is also interesting to consider simplified versions of these problems,
where the problem is reduced to the visibility graph, which contains a ver¬

tex for each polygon vertex and an edge between two vertices, if the cor¬

responding polygon vertices see each other. In this setting, most classic

visibility problem turn into graph problems. To illustrate this, consider the

hiding problem, which turns into the independet set problem. The class of

visibility graphs has so far defied characterization. As a different aproach to

learn more about this graph class, we study how different graph problems
behave in visibility graphs.

In the remainder of this chapter, we first give in Sect. 1.2 the precise def¬

initions of all objects and problems that will be used throughout the thesis.

We then make a detour to give an introduction into approximability classes

as defined by [3] in Sect. 1.3, which is necessary in order to understand the

previous results given in Sect. 1.4 and - even more - to understand the

results of this thesis, which are summarized in Sect. 1.5

1.2 Definitions

1.2.1 Polygons, Terrains, and Visibility

Definition 1.2.1 A polygonal chain T is an ordered sequence of points

Pi,.. -,pn, n>2> in the plane, called the vertices ofT, together with the set

of line segments joining pt to p1+i, i — 1,.. .n — 1, called the edges of T.
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A polygonal chain is called closed if pi = pn; otherwise it is called open.

For a closed polygonal chain, we sometimes refrain from repeating the first

vertexp\, and we end the chain with pn-i-

Definition 1.2.2 A polygonal chain is called simple if the only intersec¬

tions of edges are those at common endpoints of consecutive edges. A sim¬

ple, closed polygonal chain T divides the plane into two regions, the interior

and the exterior of T, where the exterior is the unbounded region and the

interior is the bounded region (it does not contain a line or even a halfline).

Definition 1.2.3 The interior of a simple, closed polygonal chain T, to¬

gether with T, is called a simple polygon without holes. Its boundary ST is

just T. For simplicity, the polygon is denoted by T as well.

Definition 1.2.4 A polygon is the union of a finite number of simple poly¬

gons. A polygon T is called connected, if any two points ofT can be joined

by a polygonal chain that belongs to T. A connected polygon T is called

simply connected if every polygonal chain between two boundary points that

does not pass through any other boundary point divides T. A connected

polygon that is not simply connected is called a simple polygon with holes.

Note that a simple polygon with holes T can be represented by a fi¬

nite number k of polygonal chains Ti,..., T& that represent its boundary,
where T\ is the outer boundary of the polygon, and the TM for i — 2,..., k

are the boundaries of the holes. For this representation to work, we re¬

quire that Tt C Ti for i = 2,..., k and that T, C T,, = 0 for i ^ j and

i, j = 2,..., k. The interior of T is the set difference between T\ and the

interiors of T2,..., Tk viewed as simple polygons without holes. Note that

the boundaries of T2,..., Tk belong to T.

Since we only deal with connected polygons in the following, we will use

the term polygon for a connected polygon, with or without holes.

Among the multitude of notions for visibility between two points in a

polygon, we will use the following:

Definition 1.2.5 Let T be a polygon, and let a and b be points belonging
to T. Points A and B are mutually visible with respect to T, if the straight
line segment connecting a and b belongs to T. We also say that a and b see

each other, that a is visible from b, and that a sees b. For a set Q and a

set S of points ofT, we say that Q is visible from S if for each point q £ Q
there is a point s G S that sees q.

Note that visibility is symmetric for single points, but not for sets of

points: While a set Q may be visible from a set S of points with respect
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to a polygon T, it may not be true that S is visible from Q. We therefore

call Q the set of guarded points and S the set of guard points (or simply

guards).
We will define visibility problems not only on polygons as input struc¬

tures, but also on terrains.

Definition 1.2.6 A terrain T is a two-dimensional surface in three-dimen¬

sional space, represented as a finite set of vertices in the plane, together
with a triangulation of their planar convex hull, and a height value asso¬

ciated with each vertex. By a linear interpolation in between vertices, this

representation defines a bivariate, continuous function. The corresponding

surface in space is also called the 2.5-dimensional terrain. A terrain divides

three-dimensional space into two subspaces, i.e., a space above and a space

below the terrain, in the obvious way.

For simplicity, we will describe the terrain problems in the Cartesian

x — y — z-space, where the z-value denotes the height of terrain points.

Definition 1.2.7 Let T be a terrain, and let a and b be two points in space

above or on T. Point a is visible from point b with respect to T if the straight
line segment connecting a and b is entirely on or above T.

For antennas, this definition does not model all aspects of electromagnetic
wave propagation exactly, since e.g. the signal of an antenna gets weaker as

it propagates, and the signal is reflected on a rocky wall. However, for the

practical problem that motivates this study, the straight line of sight (LOS)
approach provides a satisfactory approximation of reality.

Definition 1.2.8 A 1.5 dimensional terrain T is a one-dimensional

surface in the two-dimensional plane, represented by a set of vertices on the

x-axis together with a height value for each vertex.

Visibility on 1.5 dimensional terrains is defined accordingly as for 2.5

dimensional terrains.

1.2.2 Visibility Problems

We now define the problems we are studying.

Definition 1.2.9 Let T be a simple polygon without holes. The problem
Minimum Vertex Guard without Holes is the problem of finding a

minimum subset S of (the set of) vertices ofT such that the boundary and

the interior of T is visible from S. The vertices in S are called vertex

guards.
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Note that as usual, a minimum subset of a set denotes a subset of small¬

est cardinality among all candidate subsets.

Definition 1.2.10 Let T be a simple polygon without holes. The problem
Minimum Edge Guard without Holes is the problem of finding a min¬

imum subset S of edges of T such that the boundary and the interior of T

is visible from the points in S. The edges in S are called edge guards.

Definition 1.2.11 Let T be a simple polygon without holes. The problem
Minimum Point Guard without Holes is the problem offinding a min¬

imum set S of points belonging to T such that the boundary and the interior

ofT is visible from S. The points in S are called point guards.

These problems can also be defined such that only the boundary (rather
than the boundary and the interior) of the input polygon T must be visible

from at least one guard. We call the corresponding problems Minimum

Boundary restricted Vertex Guard without Holes, Minimum

Boundary restricted Edge Guard without Holes, and Minimum

Boundary restricted Point Guard without Holes,

Finally, we can define these problems for input polygons with (instead of

without) holes. This yields the problems Minimum Vertex Guard with

Holes, Minimum Boundary restricted Vertex Guard with Holes,
Minimum Edge Guard with Holes, Minimum Boundary restricted

Edge Guard with Holes, Minimum Point Guard with Holes, and

Minimum Boundary restricted Point Guard with Holes.

For a terrain, let us consider the following problems:

Definition 1.2.12 Let T be a terrain. The problem MINIMUM VERTEX

Guard on Terrain is the problem of finding a minimum subset S of
vertices of T such that T is visible from S.

Definition 1.2.13 Let T be a terrain. The problem Minimum Point

Guard on Terrain is the problem of finding a minimum set S of points
on T such that T is visible from S.

Definition 1.2.14 Let T be a terrain, and let h be a height value, such

that the plane z = h lies entirely above (or partially on) T. The problem
Minimum Fixed Height Guard on Terrain is the problem of finding a

minimum set S of points in space at height h such that T is visible from S.

Of course, we can define this problem on a 1.5 dimensional terrain and

thus get the problem Minimum Fixed Height Guard on 1.5 D Terrain.
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We now define three additional terrain guarding problems. The reason

is that our inapproximability results for guarding terrains will be formu¬

lated for terrain problem versions with the additional restriction that each

triangle in the triangulation of T must be visible from a single point in the

guard set S; that is, guards are not allowed to cooperatively see a triangle
in T's triangulation, contrary to the problem versions above. We denote

these problem version by Minimum Vertex Guard on Terrain with

Triangle Restriction, Minimum Point Guard on Terrain with

Triangle Restriction, Minimum Fixed Height Guard on Terrain

with Triangle Restriction

We now define the hiding problems.

Definition 1.2.15 The problem Maximum Hidden Set on Terrain asks

for a set S of maximum cardinality of points on a given terrain T, such that

no two points in S see each other.

In a variant of the problem, we introduce the additional restriction that

these points on the terrain must be vertices of the terrain.

Definition 1.2.16 The problem MAXIMUM Hidden Vertex Set ON TER¬

RAIN asks for a set S of maximum cardinality of vertices of a given terrain

T, such that no two vertices in S see each other.

In a more abstract variant of the same problem, we are given a simple

polygon with or without holes instead of a terrain. This yields the following
four problems.

Definition 1.2.17 The problem Maximum Hidden Set on Polygon

With(out) Holes asks for a set S of maximum cardinality of points in

the interior or on the boundary of a given polygon P, such that no two

points in S see each other.

Definition 1.2.18 The problem Maximum Hidden Vertex Set on Poly¬

gon WITh(out) Holes asks for a set S of maximum cardinality of vertices

of a given polygon P, such that no two vertices in S see each other.

Another problem that we will study with respect to its approximation

properties is Minimum Convex Cover.

Definition 1.2.19 Let T be a simple polygon with or without holes. The

problem Minimum Convex Cover is the problem of covering a given poly¬

gon T with a minimum number of (possibly overlapping) convex polygons
that lie in T.
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1.2.3 Other Problems

We prove our inapproximability results by proposing reductions from the

following problems.

Definition 1.2.20 Let $ be a boolean formula given in conjunctive nor¬

mal form, with each clause consisting of at most 3 (2) literals and with

each variable appearing in at most 5 clauses. The problem MAXIMUM 5-

Occurrence-3 (2)-Satisfiability consists of finding a truth assignment

for the variables o/$ that satisfies as many clauses as possible.

Definition 1.2.21 Let E = {ei,...,e„} be a finite set (called universe)
of elements, and let S — {si,...,sm} be a collection of subsets of E, i.e.,

Sj C E for 1 < j < m. The problem Set Cover is the problem of finding a

minimum subset S' C S such that every element et £ E, 1 < i < n belongs
to at least one subset in S'. For ease of discussion, let the elements in E

and the subsets in S have an arbitrary, but fixed order, denoted by the index.

Definition 1.2.22 Let G — (V, E) be an undirected graph with n vertices

V — {vi,.. .,v„} and edges E. The problem Dominating Set consists of

finding a minimum set S1 of vertices such that each vertex v% £ V has at

least one neighboring vertex m S', i.e., for each vertex v, V, there exists

a vertex Vj £ S' with (vt,Vj) £ E.

1.3 Approximation Classes and Gap-Preserv¬

ing Reductions

1.3.1 Approximation Algorithms and Approximation
Ratios

In this section, we give an introductory overview of the notions of approx-

imability, approximation ratio, gap-preserving reduction, and approxima¬
tion classes. These are all well-known concepts that can be found in any

textbook on approximation algorithms, in particular in [31] and [3].
Let n be a combinatorial optimization problem, such as MAXIMUM

Clique, and let / be an instance of n; this would be a graph G = (V, E)
for Maximum Clique. Let E(7) be the set of all feasible solutions of

/; in our example of MAXIMUM CLIQUE, £(/) would be the set of all

subsets SOL of the vertex set V, where the elements (vertices) in SOL

form a clique. Let OPT(I) denote the size of an optimum solution of

/, i.e. OPT[I) = max50igs(i) \SOL\, if n is a maximization problem,



24 Introduction

and OPT(I) — minsoies(i) \SOL\, if n is a minimization problem, where

\SOL\ denotes the cardinality of the set SOL.

Let A be an approximation algorithm for problem n. By definition, an

approximation algorithm runs in time polynomial in its input. The output
of algorithm A on input of instance / is a feasible solution SOL(A(I)),
which is an element of £(/).

An approximation algorithm A for problem n is said to achieve an ap¬

proximation ratio of Ra {I), if for all instances / of problem n:

b m > ma*f-^^L
\sohmm,

Ra{I)
-

max{\SOL(A(I))\> OPT(I)
}"

Note that the approximation ratio is thus defined to always be a number

greater or equal to one, no matter whether the optimization problem n is

a maximization or minimization problem.
We say that an optimization problem n cannot be approximated with an

approximation ratio of R(I), if for every (polynomial time) approximation

algorithm A for H, there exists an instance I of n with:

R{I) < RA(I).

In this case, we speak of an inapproximability result. Of course, such in¬

approximability results are always under the assumption that NP ^ P. In

some cases, the strongest inapproximability results only hold under some¬

what stronger assumptions (such as coR ^ NP or NP ^ TIME(n°(lo^losn)))
that are generally assumed to be true.2

1.3.2 Promise Problems

Promise problems are used to create a connection between optimization
problems and decision problems. In a promise problem, we are given an

instance / of a maximization problem n, and we are promised (i.e., some

oracle that we trust says) that the size OPT(I) of the optimum solution of

/ is either at least U(I) or strictly smaller than L(I), but no value between

L(L) and U{L), i.e.:

OPT(I) > U(I)

or

OPT(I) < L(I)

The two bounds U(I) and L{I) depend on instance /, and obviously, L{L) <

U(I). The promise problem consists of determining, which of the two cases

2 This notion is also called "quasi JVP-hardness''. Alternatively, the notation P ^ NP

(read "soft P does not equal jVP") is also used in the literature [3].
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is true. Thus, a promise problem is given as a pair of functions (£(/), U(I)).
The definition can be extended canonical^ to minimization problems.

Let us consider an example. Let Ü be Maximum Clique, let instance

/ be a graph G = (V, E) with n := \V\, let k be an integer with k < n, and

let e > 0 be a small constant. Then, we let U(I) := k and L(I) :— 1j!2_e.
Thus, we have the promise problem of Maximum Clique, where we are

promised that either

OPT{I) > k

or

omi) < J^-
Now, the following holds:

Theorem 1.3.1 [29] The promise problem of MAXIMUM CLIQUE with pa¬

rameters U(I) := k and L(I) := 1/12_t is NP-hard to decide.

The connection of promise problems to inapproximability result is now

evident: Since no polynomial time algorithm can decide the promise prob¬
lem with parameters U(I) := k and L(I) := 1/fc2_e, no polynomial time

approximation algorithm can guarantee an approximation ratio R(I) of

because such an approximation algorithm could be used to decide the promise

problem.
Let us state two additional iVP-hardness results for promise problems.

Theorem 1.3.2 [24] The promise problem of Minimum Set Cover with

parameters U(I) := k(l — e)lnn and L(I) := k for any e > 0, where n

denotes the number of elements in instance I, and where k depends on L, is

NP-hard to decide.

Theorem 1.3.3 [3] The promise problem of Maximum Satisfiablity

with parameters U(I) := m and L(I) := (1 — e)m for some e > 0, where m

denotes the number of clauses in instance I, is NP-hard to decide.

Theorems 1.3.1, 1.3.2, and 1.3.3 are proved by constructing special Prob¬

abilistically Checkable Proof Systems (PCP systems) for an ArP-complete

(decision) problem. All possible random computation paths of such a PCP

system are encoded into an instance of Maximum Clique, Minimum Set

Cover, or Maximum Satisfiability, respectively. The gaps, i.e., the dif¬

ferences between the upper bounds U(I) and the lower bounds L(I), are
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basically obtained by counting the number of computation paths of the PCP

system that lead to an affirmative answer to the input decision problem. For

additional information on the very complex issue of PCP systems and in

particular on the PCP theorem, which has made these results possible, see

[2] and [3].

1.3.3 Gap-Preserving Reductions

A gap-preserving reduction (as proposed in [3]) is a polynomial time algo¬
rithm / that transforms an instance / of a promise problem n with upper

bound U(I) and lower bound L{I) into an instance I' := /(/) of another

promise problem n' with upper bound U'(I') and lower bound L'(I'). Thus,
the gap between the upper and lower bound is "preserved". Note, however,
that the functions U(I) and L(I) may be very different from U'(I') and

L'(I'): the gap may be shrunk or expanded by the reduction, but there

always remains a gap.

We can illustrate the effect of a gap-preserving reduction by two impli¬
cations that need to be satisfied by the reduction:

OPT(I) > U(I) => OPT{I') > U'(I')

OPT{I) < L{I) =} OPT{I') < L'(J')

If the promise problem n with parameters U(I) and L(I) is NP-hard

to decide, then the promise problem n' with parameters U'(I') and L'(I')
is AT-hard to decide as well.

To see this, assume by contradiction that there exists a polynomial time

algorithm that decides the promise problem n'. This would directly allow

us to decide the promise problem II: Suppose w.l.o.g that our algorithm
tells us that OPT(I') < F'(I') holds. This implies that OPT(I') > [/'(/')
is false, which implies that OPT(L) > U(I) is false, too. This, however,
implies OPT(I) < L{I). So we have decided the promise problem n.

Thus the existence of such a gap-preserving reduction implies that prob¬
lem n' cannot be approximated with an approximation R'{I') of

r{i)-l7(F)'

1.3.4 Approximation Classes

Optimization problems can be classified with respect to the approximation
ratios that can be achieved for them by polynomial approximation algo¬
rithms. This classification is of course somewhat arbitrary and may reflect

more the limitations of our current proof methods than reality.
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OPTIMIZATION

ne

"log n"

APX

PTAS

P

Figure 1.1: Approximation Classes

Nevertheless, a generally accepted classification is illustrated in Fig.
1.1: OPTIMIZATION denotes the class of all combinatorial optimiza¬
tion problems.

We define the class "ne" as a subclass of OPTIMIZATION. An opti¬
mization problem lies in "ne", if there exists an e > 0 such that the problem
can be approximated by a polynomial time algorithm with an approxima¬
tion ratio of 0(n£), where n is the size of the problem instance. We call an

optimization problem "?ie"-hard, if there exists an e > 0 such that no poly¬
nomial time approximation algorithm can achieve an approximation ratio

of R(I), where R(I) £ Q(ne). An optimization problem is "«"'-complete,
if it is in "nf" and "n"'-hard. An example of an "ne"-complete problem is

Maximum Clique.

An optimization problem lies in the class "logn" (which is a subclass of

"ne"), if there exists a polynomial approximation algorithm that achieves

an approximation ratio of O (logn), where n denotes the size of the problem
instance. We call an optimization problem "log?i"-hard, if no polynomial
time approximation algorithm can achieve an approximation ratio of R(I),
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where R(I) £ 0(logn). An optimization problem is "logri"-complete, if it

is in "logn" and "logn"-hard. An example of a "log «"-complete problem
is Minimum Set Cover.

An optimization problem lies in the class APX (which is a subclass of

"log n" ), if there exists a polynomial approximation algorithm that achieves

an approximation ratio of 1 + e for some e > 0. We call an optimization

problem APX-h&vd, if there exists an e > 0 such that no polynomial time

approximation algorithm can achieve an approximation ratio of 1 + e. An

optimization problem is APX-complete, if it is in APX and APX-hard.

An example of an ^PA'-complete problem is MAXIMUM SATISFIABILITY.

An optimization problem lies in the class PTAS (which is a subclass

of APX), if there exists a polynomial time approximation algorithm that

achieves an approximation ratio of 1+e for any constant e > 0. The running
time of the algorithm may be exponential in

j.

Finally, a problem lies in the class P, if it can be solved in polynomial
time.3

An important subclass of APX is called MAXSNP, which is defined

as the class of all optimization problems that are i-reducible to Maximum

Satisfiability. See [41] for an introduction to MAXSNP and the notion

of an ^-reduction. An optimization problem is MAX5WP-complete, if all

problems in MAXSNP can be i-reduced to it. Most variations of satisfi¬

ability including Maximum 5-Occurrence-3-Satisfiability and Maxi¬

mum 5-OccuRRENCE-2-SATiSFlABlLlTYare M^lXSTVP-complete [41]. This

means that there exist I-reductions from Maximum Satisfiability to

these problems. Since every i-reduction is also a gap-preserving reduc¬

tion, the corresponding promise problems of Maximum 5-Occurrence-

3-Satisfiability and Maximum 5-Occurrence-2-Satisfiability are

A^P-hard to decide.

A major motivation for introducing such a classification of approxima-

bility is the desire to rate the quality of an approximation algorithm and of

inapproximability results. For our purposes, we will call an inapproximabil¬

ity result or an approximation algorithm for an optimization problem tight,
optimum, or matching, if it lets us classify the problem to be complete for

one of the approximation classes.

Note that we could strengthen the notion of optimality of results in such

a way, that also low-order terms must match. Research on such strongly
optimum result is primarily done on important basic problems. Maximum

Clique, for example, is inapproximable with an approximation ratio of n1_e

for any e > 0 [29], while a trivial algorithm achieves a matching approxi-

3 The class "ne" is equivalent to class IV as introduced in [3]. Class "log n" is equivalent
to class II and APX corresponds to class I
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mation ratio of n. For APAT-complete problems, stronger optimality means

finding a constant e > 0 such that an approximation algorithm achieves an

approximation ratio of 1 + e, but no polynomial time algorithm can achieve

an approximation ratio of 1 + e — 7 for any 7 > 0. An example of an

APX-complete problem, for which such strongly optimum results exist is

Maximum Exact-3-Satisfiability, which is a satisfiability variant with

exactly three literals in each clause [28]. See the next section for additional

strongly optimum results.

1.4 Previous Work

Traditionally, the art gallery community has studied upper and lower bounds

of visibility problems with respect to descriptional complexity. The original
art gallery theorem is also of this type. It says that [ÇJ guards always suffice

and are sometimes necessary to guard a given polygon with n vertices. In

this thesis, we are more interested in computational complexity results.

Guarding a given polygon is NP-hard in all versions as defined in 1.2,

i.e., Minimum (Boundary restricted) Vertex/Edge/Point guard

with (out) Holes is NP-hard [35].
Approximation algorithms for Minimum Vertex/Edge Guard with-

(-out) Holes, which achieve approximation ratios of O(logn), are also

known [26]. These algorithms can be easily modified to work for the bound¬

ary restricted versions of these guarding problems as well.

Hiding in all versions, i.e., Maximum Hidden (Vertex) Set with(out)
Holes is NP-hard as well [45].

Minimum Convex Cover is NP-hard [12], too. Interestingly, the re¬

lated problem of partitioning a given polygon without holes into a minimum

number of (non-overlapping) convex polygons is solvable in polynomial time

[9]. The problem becomes NP-hard only if the input polygons have holes

[36]. The related problem Minimum Rectangle Cover of covering a

given orthogonal polygon with a minimum number of rectangles can be ap¬

proximated with a constant ratio for polygons without holes [25] and with

an approximation ratio of O(^logn) for polygons with holes [34].
The technique of using dynamic programming to find maximum convex

structures has been used before to solve the problem of finding a maximum

(with respect to the number of vertices) empty convex polygon, given a

set of vertices in the plane [14]. We will use a similar approach to find

approximation algorithms for Minimum Convex Cover.

There are several excellent surveys on visibility results [39, 44, 48].
There are various problems that deal with terrains. Quite often, these

problems have applications in the field of telecommunications, namely in set-
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ting up communications networks. There are some upper and lower bound

results on the number of guards needed for several kinds of guards to col¬

lectively cover all of a given terrain [6]. Very few results on the computa¬
tional complexity of terrain problems are known. The shortest watchtower

(from where a terrain can be seen in its entirety) can be computed in time

0(n log n) [49].
Most results in this thesis are inapproximability results, which are ob¬

tained from gap-preserving reductions [3] from classic NP-hard problems.

Therefore, we summarize the (in-)approximability results for these problems
as well.

Maximum 5-OccuRRENCE-3-SATispiABiLiTYand Maximum 5-Occur-

rence-2-Satisfiability are APX-complete [41].
Minimum Set Cover and Minimum Dominating Set can be ap¬

proximated in polynomial time with a ratio of In n + 1 by a simple greedy

algorithm [10, 32], but cannot be approximated by any polynomial time

algorithm with a ratio of (1 — e) Inn, for any e > 0 unless

NP C TIME{n°^osios^),

where n is the number of elements for Minimum Set Cover and the num¬

ber of vertices in the graph for Minimum Dominating Set [10, 24]. There

are also logarithmic inapproximability results for these problems under the

weaker assumption that NP ^ P [4], i.e., an approximation ratio of clog n
is hard to achieve for some constant c > 0.

Maximum Clique and Maximum Independent Set cannot be ap¬

proximated with an approximation ratio of «1_e for any e > 0 unless

NP — coR, and with an approximation ratio of nî-£ for any e unless

NP = P [29], where n is the number of vertices in the input graph.

1.5 Summary of Results

In Chapt. 2, we present algorithms, approximation algorithms, and inap¬

proximability results for guarding problems.
We start with the apparently easiest problem: Minimum Fixed Height

Guards on 1.5 D Terrain. In Sect. 2.1, we propose a linear time al¬

gorithm to find the optimum solution of any Minimum Fixed Height

GUARDS ON 1.5 D Terrain instance. Moreover, we characterize the solu¬

tion space of all optimum solutions of an instance.4 The algorithm proposed

4 There actually is already a linear time algorithm known for this problem, even though
it comes from a quite different background [37]; however, the characterization of the

solution space is a new result.
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constructs the solution incrementally and the characterization of the solu¬

tion space is obtained by letting the algorithm run from left to right and

from right to left.

In Sect. 2.2, we show that Minimum (Boundary restricted) Ver¬

tex/Edge/Point Guard without Holes is APX-haxd. To this end, we

construct a reduction from Maximum 5-Occurrence-3-Satisfiability

to Minimum Boundary restricted Point Guard without Holes

that is gap-preserving and thus establishes the ^4PA-hardness of Minimum

Boundary restricted Point Guard without Holes. The same re¬

duction with minor modifications can also be used to show APX-hardness

for the other guarding problems for polygons without holes. The reduction

is based on an already known reduction [35] that was originally used to

prove NP-hardness for these problems. The results in Sect. 2.2 have been

reported previously [22].
We continue with inapproximability results for guarding problems for

polygons with holes in Sect. 2.3. We propose a gap-preserving reduc¬

tion from Restricted Minimum Set Cover to Minimum Boundary

restricted Point Guard with Holes that establishes a logarithmic
inapproximability result. More precisely, we show that no polynomial time

approximation algorithm can guarantee an approximation ratio of *^ In n

for any e > 0, unless NP Ç TJM£(n0(losloS")), where n is the number

of vertices of the input polygon. Again, minor modifications of the con¬

struction of the reduction establish the same logarithmic inapproximabil¬
ity results for Minimum (Boundary restricted) Vertex/Edge/Point
Guard without Holes. The results in this section have been published

previously [20].
Our inapproximability results for Minimum (Boundary restricted)

Vertex/Edge Guard with Holes are optimum upto a constant factor

because there exist approximation algorithms with logarithmic approxima¬
tion ratios for these problems [26]. Thus, these problems are all "logn"-
complete. The inapproximability results for Minimum (Boundary re¬

stricted) Vertex/Edge Guard without Holes are not tight: there

still exists a gap between the best inapproximability result, which says that

these problems are APX-haxd, and the best approximation algorithms,
which achieve logarithmic approximation ratios for these problems. The

situation is even worse for Minimum (Boundary restricted) point

Guard with(out) Holes, where the best approximation algorithm achieves

an approximation ratio of Q(n).
In Sect. 2.4, we show how our inapproximability result for Minimum

Point Guard with Holes translates into logarithmic inapproximability
results for Minimum Fixed Height/Vertex/Point Guard on Ter-
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rain (with Triangle Restriction) by constructing a very simple terrain

from a polygon with holes. The results in this section have been reported
previously [21].

We proceed by proposing approximation algorithms for Minimum Fixed

Height/Vertex Guard on Terrain (with Triangle Restriction)
and for Minimum Point Guard on Terrain with Triangle Restric¬

tion, which achieve logarithmic approximation ratios in Sect. 2.5. These

approximation algorithms are thus optimal upto a constant factor. The re¬

sults from Sect. 2.5 have been reported previously together with the results

from Sect. 2.2, Sect. 2.3, and Sect. 2.4 [18].
Chapter 3 deals with the problem of hiding in polygons with and without

holes and in terrains. We present inapproximability results that have been

reported previously [19].
We prove the APA'-hardness of Maximum Hidden (Vertex) Set

without Holes in Sect. 3.1 by proposing a gap-preserving reduction from

Maximum 5-Occurrence-2-Satisfiability to Maximum Hidden Set

without Holes, which also works for Maximum Hidden Vertex Set

without Holes with minor modifications. The reduction that we propose

is simpler than the one used originally to show NP-hardness [45]. However,
this inapproximability result is far from tight, since the best approximation

algorithm achieves only an approximation ratio of 0(n).
In Sect. 3.2, we propose a gap-preserving reduction from Maximum

Clique to Maximum Hidden (Vertex) Set with Holes, which implies
that Maximum Hidden (Vertex) Set with Holes cannot be approxi-

mated with an approximation ratio of ^— for any 7 > 0, unless NP = P,
where n is the number of vertices in the input polygon. This inapprox¬
imability result clearly places these hiding problems on polygons with holes

into the same inapproximability class as Maximum Clique, i.e. they are

"«"'-complete.
We show in Sect. 3.3 that the inapproximability results for Maximum

Hidden Vertex Set with Holes carries over to Maximum Hidden

(Vertex) Set on Terrain.

In Chapt. 4, we attack the problem of covering a polygon with a mini¬

mum number of convex polygons. The results from this chapter have been

reported previously [17].
After a short introduction in Sect. 4.1, we propose a polynomial time

approximation algorithm for Minimum Convex Cover that achieves a

logarithmic approximation ratio in Sect. 4.2. To get this result, we first

show that any solution of an instance of Minimum Convex Cover can

be transformed into a solution, where the vertices of the convex polygons
that cover the input polygon, may only lie on a certain grid, in such a
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way that the transformed solution contains at most three times as many

convex polygons as the original solution. Our algorithm then uses dynamic

programming to find the convex polygon with vertices only on the grid that

contains a maximum number of basic units of the input polygon that are not

yet covered by a convex polygon in the solution. If we apply this algorithm
iteratively, we obtain the result.

Sect. 4.3 contains a proof for the APX-hardness of Minimum Convex

Cover, which is by a gap-preserving reduction from Maximum 5-Occ-

3-Sat. The reduction relies on the reduction that was used to show NP-

hardness of the problem [12].
Chapter 5 deals with visibility graphs. We show that a a variety of

visibility problems have a graph-theoretic nature, when we restrict the input
to visibility graphs. The problem of guarding, for example, corresponds to

the problem of Minimum Dominating Set. We investigate several graph

problems on visibility graphs with respect to differences between visibility

graphs for polygons with and polygons without holes. The results of this

chapter have been reported previously [16].
In Sect. 5.1, we give an introduction. In Sect. 5.2, we show that our in¬

approximability results for guarding polygons with and without holes carry

over to the problem Minimum Dominating Set on Visibility Graphs.

Hiding problems correspond to the MAXIMUM INDEPENDENT SET prob¬
lem. In Sect. 5.3, we show that the inapproximability results for finding
hidden sets in polygons with and without holes carry over to MAXIMUM

Independent Set on Visibility Graphs.

Finding maximum cliques in visibility graphs corresponds to finding
largest (with respect to number of vertices) convex polygons in a given

polygon. In Sect. 5.4, we show that the problem Maximum Clique on

Visibility Graph without Holes can be solved in polynomial time us¬

ing dynamic programming.5 However, Maximum Clique on Visibility

Graph with Holes cannot be approximated by any polynomial time algo-
L--i

rithm with an approximation ratio of s-^— for any 7 > 0, unless NP = P,
where n is the number of vertices in the input polygon. We prove this result

by modifing the reduction from Sect. 3.2. Thus, we have found a classic

graph problem (i.e.Maximum Clique) that is solvable in polynomial time

for visibility graphs for polygons without holes and that is almost as hard to

approximate as MAXIMUM CLIQUE on general graphs on visibility graphs
for polygons with holes.

We use our algorithm for finding maximum cliques in visibility graphs for

polygons without holes to build an approximation algorithm for Minimum

''There are algorithms known for finding the largest emtpy convex polygon in a point
set that also solve this problem [14].
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Clique Partition on Visibility Graphs without Holes that achieves

a logarithmic approximation ratio in Sect. 5.5. We also show that Minimum

Clique Partition on Visibility Graphs without Holes is APX-

hard and that Minimum Clique Partition on Visibility Graphs with

Holes cannot be approximated with an approximation ratio of Oin") for

some constant e > 0. The results from Sect. 5.4 and Sect. 5.5 have been

reported previously [16]. In Sect. 5.6, we show that not all visibility graphs
for polygons with holes have Hamilton circles, while - trivially- all visibility
graphs for polygons without holes have Hamilton circles.

Chapter 6 contains summarizing and concluding remarks.



Chapter 2

Guarding

2.1 A Linear Time Algorithm for Minimum

Fixed Height Guard on 1.5D Terrain

2.1.1 Introduction

Before we attack the problems of guarding polygons or 2.5 dimensional

terrains, we study the problem of guarding a 1.5 dimensional terrain with

guards at fixed height above the terrain. This will turn out to be the only

guarding problem among the ones we study that is solvable in polynomial
time. The same problem in a very different setting has already been studied

and a linear time algorithm has been proposed [37]. However, in Sect. 2.1.4,
we present a characterization of the set of all optimum solutions, which

yields a much deeper insight into the structure of the problem.
An instance I of Minimum Fixed Height Guard on 1.5D Terrain

consists of a 1.5 dimensional terrain T given by its n vertices {vi,..., vn}
in the x-y-plane that are ordered (w.l.o.g. ascendingly) according to their

«-coordinates, and a height value h that is larger than the maximum y-value
of all vertices. A solution C = {ci, •

, Ck] of 7 consists of points (guards)
on the horizontal line y = h. In the algorithm that we are going to propose,

pairs of points on the terrain T and on the horizontal line y = h will be

compared as to their «-coordinate. We therefore say a point p is to the right
of a point p and write p > p', if the x-coordinate of p is strictly greater than

the x-coordinate of p'.
In Sect. 2.1.2, we propose a basic construction of the solution. We

prove that this construction finds an optimum solution if it terminates. By

refining the construction, we propose in Sect. 2.1.3 an algorithm that is easy
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to implement and easy to analyze. It turns out that the algorithm runs in

linear time and space and is therefore asymptotically optimal. In addition,
the algorithm leads to a characterization of the set of all optimum solutions,

presented in Sect. 2.1.4. This characterization should help in choosing

among all possible optimum placements the best one with respect to other

criteria that have not been formulated in the objective of the optimization

problem.

2.1.2 An Incremental Construction

Before proposing an incremental construction of an optimum solution, let

us discuss a few properties of the structure of the solution.

Lemma 2.1.1 For any fixed point p on the terrain T, the set of all points c

on the line y = h that are visible from p forms a single interval [l(p), u(p)].

Proof: Let l(p) (u(p)) be the leftmost (rightmost) point on the horizontal

line y = h that sees p. Assume by contradiction, that there is an point c on

the line y = h that does not see p in between the two points l(p) and u(p)
that are both visible from p, i.e., with l(p) < c < u(p). Since c is invisible

from p, the line segment connecting c with p must intersect the terrain T at

least once. Fix any such intersection point p', and with no loss of generality
let p' > p. The terrain connects p1 and p. Since u(p) is to the right of c,

the line segment from u(p) to p will either cross the terrain at some point
between p and p' or reach p from underneath the terrain. In both cases u{p)
is invisible from p, a contradiction.

We call the interval [l(p),u(p)] for a given point p £ T the visibility
interval of p. In our construction, we only need the right (or upper) end

u(p) of the visibility interval.

Let £/min(0) be the minimum of all u(p). As a first step in our construc¬

tion, it seems reasonable to position the first guard at c\ = t/m;1,(0). Given

a partial solution C, i.e. a set of guards that does not cover all of T, let

^min(C) be the minimum of all upper ends u(p) of the visibility intervals

of all points p on the terrain T that are not visible from any guard in C.

Our first proposal is to simply add the point Lrm;n(C) as a guard to the

solution C, thereby changing G, and to do so repeatedly until all points on

the terrain T are visible from a guard in C. We call this construction the

incremental construction.

Let c, be the point added to C in the i-th iteration, and let k be the

number of iterations. Obviously, k is equal to |C|. The incremental con¬

struction will always find the minimum u(p) and add it to C, starting with
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the empty set. Therefore, the elements in G will be ordered according to

their «-coordinates: c\ < c2 < • • • < c/..

At this point it is not clear whether this incremental construction ter¬

minates. The argument that the number of points in T invisible from G

decreases by definition of Um-m(C) with every iteration does not imply ter¬

mination, because the number of points in T is infinitely large, since T

is defined over IR. The next section will show that only a finite number

of points in T, actually only 0(n) of them, need to be considered in the

construction. The next theorem analyzes the optimality of the solution

produced by the incremental construction. In preparing to do so, we state

the following elementary fact:

Lemma 2.1.2 Let c,c' be guards on the line y = h and let p £ T with

p > c > c'. Then, if p sees d, then p also sees c.

Proof: Consider the visibility interval [l(p),u(p)] of p. Since T is a terrain,
we get l(p) < p <u(p). If p sees c', then c' > l(p). The lemma follows since

l(p) <c' <c<p< u(p). n

Theorem 2.1.3 If the incremental construction terminates, it finds an op¬

timum solution G.

Proof: Assume there is a solution C" to an instance of the problem that

needs fewer guards than the solution C produced by the incremental con¬

struction, i.e., |C| > |C"|. Let C and C" be ordered according to the x-

coordinates of their elements. Let j be the index of the leftmost guard where

the solutions disagree. Let C% = {ci, c2, • •

•, c,} and C[ :— {c'v c'2, • •

•, c'} be

the partial solution of the first i guards in G and C', respectively. Let M be

the set of all points p in T with u(p) = E/min((7j_i) that are not visible from

Cj-i, i.e. all points in T invisible from C3-\ with minimum upper end of

the visibility interval. The points in M are exactly the ones that determine

the value of C/min(C,_i). M contains at least one point, by definition of

^min(Cj-i)- M may contain more than one point, it may even contain a

subsegment of T. To prove the theorem, we distinguish two cases.

Case 1: c3 < c'.

None of the points in M are visible from c', since c' is to the right of

the visibility intervals of all these points. Since C3~\ = G\_x and since no

guard from C3-\ sees any of the points in M, no guard from C'
1
can see

any of the points on M either. Therefore no guard in C'- sees the points
in M. Since C' is ordered, none of the guards in C" sees the points in M.



38 Guarding

Therefore, C" is not a correct solution, a contradiction.

Case 2: Cj > c'y
We distinguish two subcases. The first case is where all points in M

are visible from c'-. With this assumption one can argue that C" cannot

be better than C. By definition, the guards in Cj see all points on T with

«-value smaller than Umin(Cj-i). Therefore, to the left of c1, the guards in

Cj see at least as much as the guards in C'a .
To the right of cj ,

on the other

hand, the guards of Cj also see at least as much as the guards of Cj, since

the «-monotonicity of the terrain implies that every point to the right of c3
that is visible from cj is also visible from Cj (see lemma 2.1.2). Since the

guards in C, see at least all the points that the guards in Cj see, cj might
as well be replaced by Cj and thus, \C'\ cannot (by induction) be smaller

than \C\.
The second subcase is where not all points in M are visible from cj. In

this case one can argue exactly the same way as before, but here it is clear

that the guards in Cj see strictly fewer points than the guards in Cj. To

see a corresponding point p in M, C will have to have another guard no

further to the right than the upper end of the visibility interval of p, which

is u(p) = Um\n{Gj-i), and therefore, C will have more guards than G in

order to be a correct solution.

2.1.3 A Linear Time Algorithm

It remains to be shown that the incremental construction can be imple¬
mented efficiently. To do so, we will show how to efficiently compute

Kmn(C,_i) and also how to determine whether the guards of Cj see all

of the terrain T. This is done by showing that only a finite number of

points in T need to be considered. This number will be 0(n), and the

runtime of the algorithm will be O(n) as well.

Recall that we need to compute Um-m(Cj-x) given a partial solution

Cj-i, where f7min(Cj_i) is defined to be the leftmost upper end of the

visibility intervals on the horizontal line y = h of all points on the terrain T

that are invisible from all guards in the partial solution Cj-\. We now make

a series of five observations that simplify the computation of Umin{Cj-i),
which leads to an efficient algorithm

A first simplification of the computation of C/m;n(Cj_i) comes from the

observation that the guards in Cj see all points on terrain T with «-value

smaller than Umin(Cj-i), because the upper end of the visibility interval of

a point p on the terrain is always to the right of p. Since it is known that

the guards in the partial solution Cj-\ see all points in T to the left of c,-_i,
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it is sufficient to consider only those points on the terrain T that are to the

right of Cj_i (and that are invisible from all guards in Cj_i).
A second simplification comes from Lemma 2.1.2: If a point on the

terrain T to the right of Cj is invisible from c,, then it is invisible from all

other guards in Cj, because Cj is the rightmost guard in Cj.
A third, somewhat more involved observation will limit the points p on

the terrain T, of which we have to compute the upper end of the visibility
interval, to a number of points on T.

Lemma 2.1A Let p,p' be two points on the segment of terrain T between

the two vertices «,• and v,+i with V{ < p < p' < 'Uj+i. Then:

u{p) > u(p')

Proof: Let v; be the vertex of terrain T that lies on the line segment
that connects p with u(p). There always must exist at least one such vertex

by the definition of the visibility interval. If there are more than one such

vertices just take the first.

The terrain T connects i;,-+i with vi. (Note that I > i + 1.) Assume

by contradiction that u(p') > u(p). Consider the line segment from p' to

u{p'). This line segment must intersect the terrain or reach point p' from

underneath the terrain, since it is clearly to the right of the line segment
from p to u(p). In both cases, u(p') is invisible from p', a contradiction.

Lemma 2.1.5 Let p,p' be two points on the segment of terrain T between

the two vertices V{ and «j+i with V{ < p < p' < Uj+i. Furthermore, let p

and p' be to the right of guard Cj_i, i.e., Cj_i < p < p'. If guard Cj-i sees

point p, then it must also see point p'.

Proof: Assume by contradiction that point p' is invisible from Cj_i. Let

p" denote a point on the terrain blocking the view of p', i.e., an intersection

point of the line segment from p' to Cj_i with the terrain T.

The terrain T, again, connects p with p". Recall that Cj-\ lies to the

left of p. The line segment from p to Cj-i lies entirely to the left of the line

segment from p' to cj_i. Therefore, the line segment from p to c,_i must

intersect the terrain, which makes p invisible from Cj_i, a contradiction, ü

Lemma 2.1.6 // vertex n; and a point p on the terrain T with «,- < p < Vi+±

are both visible from guard c,_i that is to the right of v,-, then all points p'
on terrain T with V{ <p'<p are visible from c,_i
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Proof: Assume by contradiction that there exists a point p' on the ter¬

rain with vt < p' < p that is invisible from c3-\. Since vt is visible, the

line segment connecting p' with c3-\ must reach p' from underneath the

terrain. This, however, implies that a line segment connecting any point on

the terrain between vertices v% and v%^i to c?_i reaches the point on the

terrain from underneath. Therefore, point p is also invisible from Cj_i, a

contradiction. D

Let v~ be a conceptual point on the terrain to the left of vertex vt, but

arbitrarily close to vt, or the vertex itself if T describes a concave function

at vt. Lemma 2.1.4 implies that for each line segment of T to the right of

the guard Cj_i, it is sufficient to compute the upper end of the visibility
interval only of v~ or the rightmost point that is invisible from c3 _ i on the

line segment in T. There are four possibilities:

• If v%-\ and Vi are both visible from Cj_i, then Lemmas 2.1.5 and

2.1.6 say that all points on the line segment between u,_i and vl are

visible from Cj_i, and therefore they do not need to be considered

when computing the minimum upper end C/roin(Cj_i) of all visibility
intervals of points not seen by any guard in C3-\.

• If Uj_i and vt are both invisible from Cj_i, then it is clear by Lemma

2.1.5 that all points on the line segment between vt-i and vt are

invisible from c3_1. Because of Lemma 2.1.4, however, it is sufficient

to consider the upper end u(v~) of the visibility interval of v~ only.

• If v%-i is visible and vt is invisible from c3_\ then, because of Lemmas

2.1.4 and 2.1.5, it is sufficient to consider u(v~).

• If v,-i is invisible and v% is visible from c3-\, then it is sufficient to

consider the rightmost point on the segment that is invisible from

c,_i, according to Lemma 2.1.4. We call this point a split-point.

If Uj_i is invisible and vt is visible from Cj_i, then there exists a split-
point on the segment between the two points. Note that the line segment
from a split-point to the guard c3-i contains at least one vertex of the

terrain T. The leftmost upper end of the visibility intervals Umm(C3-i) can

be computed by computing the upper ends of the visibility intervals of all

points v~ that are invisible from Cj_i and all split-points produced by c3-i,
such that these points are to the right of c3-\.

For a fourth simplification of the computation of Umin(C3^\), let p be

a point on the terrain T with vt < p < vt+\. Let f(p) be the intersection

point of the line y = h and the line through vertex v,. Figure 2.1 illustrates



2.1 A Linear Time Algorithm for Minimum Fixed Height Guard

on 1.5D Terrain 41

f(p). Since f(p) will be an approximation for u(p), we are only interested

in f(p), if it lies to the left of p, otherwise we let f(p) := oo. With these

definitions, obviously u(p) < f(p). If this holds with equality, then u(p) is

very easy to compute.

Lemma 2.1.7 For all points v~ on the terrain T for which u(v~) < f(v~),
the following holds:

«(vi) <u(«r)-

Proof: If u(v~) < f(v~) and u(v~) ^ oo, the line segment connecting v~

and u(p~) must contain at least one vertex Vi of the terrain T. Otherwise,
since this line segment obviously intersects T, it would intersect T in a non-

vertex-point, and a guard at u(v~) would not be visible from v~, contrary
to the definition of u(v~). Let c' be the intersection point of the line going
through v~+1 and v/ and the line y = h. Since v~+1 < vi, u(v~+1) < c'. Since

v7
— v7+v c' < uiv7)- The lemma follows.

Because of Lemma 2.1.7, it is sufficient to approximate the upper end

u(v~) with f(v%). For, if vl+i is visible from Cj_x, then there must be a

split-point si on the segment in T between vt and vlJrx, for which the exact

upper end u{sj) is computed, and because of Lemma 2.1.4 w(s;) < u{v%). If

vl+i is invisible from c3_\, then either u(v~+1) = /(u8+j) or the lemma can

be applied to vl+\.

The definition of f(p) resolves the problem of having to deal with v~

instead of vt and therefore we can compute Umin(C3-i) by computing the

upper ends of the visibility intervals for the split-points produced by the

guard Cj_i and the points f(vt) for all vertices vt invisible from and to the

right of guard Cj_i.

For a fifth and final simplification of the computation of Umin(C3-i), let

v.? with p,p' £T and p < p' be the intersection point of the line y — h and

the line containing both p and p'. Note that uvv > u(p) for all p'.

Lemma 2.1.8 Let s, be the i-th split-point to the right ofc3-i produced by

c3-i. Then for all i the following holds: If'u(s,) < m(sj_|_i), then there exists

a terrain vertex vi with vi < Sj+i and uvsl = u(st).

Proof: Figure 2.1 illustrates uvs'. The same argument as used in the first

part of the proof of Lemma 2.1.7 shows that the value of u(sz) is determined

by a terrain vertex. Therefore, it is sufficient to consider points vertices

only, when computing uvs<. Let vy be a terrain vertex on the line from ss to

w(sj). Let V}n be a terrain vertex on the line from s8+i to u(s1+(i). Also let

u(st) < u(sl+i). Then v^ < ss+i, since otherwise vi» < Dp (by the argument
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Figure 2.1: Illustration of f(vi) and uvs'

in the second part of the proof of Lemma 2.1.7), and then u(st) > u(sl+i).
The point vi* satisfies the conditions of the point vi in the lemma.

Note how the values «^ > ups* > ups\ in Figure 2.1 continuously decrease

and how the upper end of the approximation upss = u(p$) is reached before

the next split-point s2 is reached.

The lemma says that if uvsl is computed for every terrain vertex vi with

st < vi < s,+i, then either u(st) is obtained or u(sî+i) is smaller than u(s%)
and, therefore, it is sufficient to compute that value.

A combination of Lemma 2.1.7 and Lemma 2.1.8 leads to a simpler
computation of Umin(C3-i), which summarizes all of our efforts thus far:

Cmin (C-3-D
uvs^ : with s, < vi < sl+±, Vi

f(vt) : withwj > Cj_iand v% invisible from Cj_i

where s% and Sj+i is the i-th and (i+ l)-st split-point produced by the guard

Cj_i to the right of Cj_i, respectively.
This suggests a sweepline algorithm for the computation of C/m;n(Cj_i)

with stops at each terrain vertex v% to the right of the guard Cj_i. It works

as follows:

At each stop, the visibility of the vertex v, from guard c,_i is determined,
which can be done in constant time by maintaining a pointer to the most
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recent vertex that was visible while its successor was invisible.

If V{ is invisible, then f(vi) is computed in constant time, and f(vj) is

compared with the minimum (approximate) upper end C/m;n found so far.

If the first split-point has already been found, then uvs' of the most recent

split-point s; found is computed and compared with Umin. This is also done

in constant time.

If V{ is visible but V{-i (from the previous stop) was invisible, then the

next split-point s; is computed in constant time (by using the previously
mentioned pointer).

At the first stop, where «,- is to the right of the minimum (approximate)
upper end [7min found so far, the minimum has been found and the next

guard Cj can be positioned at Um-m.

This leads to a sweepline algorithm for the computation of an optimum
solution C:

First, E/mi„(0) is computed and the first guard is positioned at I7min(0).
Then, starting at the first terrain vertex that is to the right of C/mi„(0), the

position L^min(Ci) of the second guard is computed; this iteration continues

until there are no more terrain vertices left.

The algorithm stops at every terrain vertex only once and takes only
constant time at each stop. Let us summarize the results of this section.

Theorem 2.1.9 Minimum Fixed Height Guard on 1.5 D Terrain

can be solved in linear time.

Of course, a linear time algorithm has an asymptotically optimum run¬

ning time.

2.1.4 The Set of all Optimum Solutions

For placing communication satellites into the sky, it is certainly interesting
to see what flexibility an optimum placement contains. What is the choice

of satellite positions, while the number of satellites remains minimum? This

choice can be exploited so as to take other factors into account that have

not made their way into the objective function.

In particular, it is interesting to see the solution of the symmetric variant

of the guarding algorithm that runs "from right to left" instead of "from left

to right1'. That is, instead of computing the leftmost right end Um-m(Ci-i)
of the visibility intervals of all points not yet covered by the partial solution

Cj_i, for a given partial solution 7?j_i the rightmost left end 7max(P^~i) of

the visibility intervals of all points not yet covered by P2_i is computed. The

solution B obtained this way is also optimal, and it gives some insight into

the set of all optimum solutions. C is the "right-most" optimum solution
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and B is the "left-most" optimum solution, since the guards c, (b3) are

positioned as far right (left) as possible. Let k := |C| = |B|, and let

C = {ci <c2 <--'<ck}

B = {61 >62 > -- > 6Ä}.

Lemma 2.1.10 In an optimum solution C produced by the guarding algo¬

rithm, all points on the terrain T with x-values between the x-values of two

consecutive guards c,,cs+i £ C are covered by those two guards ct and Cj+i.

Proof: This follows directly from Lemma 2.1.2: All points in T are covered

by C, and if a guard c' to the right of a point p £ T covers p, then a guard c

to the right of p and closer to p than c' covers p as well. The same argument

can be used accordingly for guards to the left of p. For all points on the

terrain between the guards ct and c,+i, either a or c8+i is the closest guard.
D

Lemma 2.1.11 Let c,, cl+i be two consecutive guards in a solution G pro¬

duced by the guarding algorithm. If cl+\ is moved to the right, then not all

points on the terrain T between the guards ct and cl+i are covered by those

two guards.

Proof: This follows from the definition of (7min(C8).

Lemma 2.1.12 Consider the union of the two sets of guards G and B. Let

the guards in this union be ordered ascendingly according to their x-values.

Then this order is:

bk < c\ < bk-i < c2 < < frfc+l-» < c, < • <&!< Ck

Proof: Let bk+i-h+i) lie between cl and c,_|_i. According to Lemma

2.1.10, all points on the terrain between ct and cJ+1 are covered by those

two guards. Since bk+i-^+x) is to the left of cs+i, all points in T between c%

and &/._|_i_(j_|_i) are covered by c% and b/.+i-(i+i)- Since bk+i-t is defined to

be the point as far left as possible that together with &/-+i_(,+1) still covers

all points in T inbetween, bk+i-t must be at least as far left as c,. Therefore

the order of the four points must be

&fc+i-! < Cj < 6fc+i_(,+i) < c4+1.

Consider Ck- Definitely, b\ < ck, since otherwise C would not cover the

points that cause the positioning of 61. Also, Ck-i < 61, otherwise ck would
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not be necessary, since all points covered by ck would also be covered by
Ck-i- Therefore, the three guards on the very right of the terrain can be

used as an anchor. The lemma follows by induction.

To study the set of all optimum solutions, consider the set of guards
containing all guards in C from ci up to c3 and all guards in B from b± up to

bk+i-j-i- This set contains k guards, and it is an optimum solution. To see

this, observe that C3 covers all points to the left of c, and Bk+i-j-i covers

all points to the right of bk+i-j-i. The points between c3 and b^+i-j-i are

covered, since bk+i~j-i < Cj+i (see Lemma 2.1.10).
Every bk+i-i £ B has a partner C; £ C which is the one element next

to bk+i-i on the right, for i = l,...,fe. Partner guards form intervals

[bk+i-i,Ci], i = l,...,k that help to characterize the set of all optimum
solutions.

Lemma 2.1.13 Every optimum solution has exactly one guard in each in¬

terval [bk+i-i, et], i = 1,..., k.

Proof: For the sake of contradiction, let A be an optimum solution con¬

taining a guard a between the two non-partner guards c4-_i and bk+i-t-
Applying Lemma 2.1.11 inductively starting with ci, it is easy to see that

Cj_i is the rightmost point such that the partial solution Cj_i covers all

points on the terrain T to the left of c,-_i using i — 1 guards. Similarly,
bk+i-i is the leftmost point such that the partial solution Bk+i-t covers all

points to the right of bk+i~i using k + 1 — i guards.
Because of Lemma 2.1.2, the partial solution of A with all guards to

the left of a including a must cover all points on the terrain to the left of

a in order to be a correct solution. This cannot be done with less than i

guards. Similarly, the partial solution of A with all guards to the right of

a including a must cover all points on the terrain to the right of a in order

to be a correct solution. This cannot be done with less than k + 1 — i + 1

guards. Therefore A must contain at least (considering that a is counted

twice): i + (k + 1 — i + 1) — 1 — k + 1 guards, which is not optimal, a

contradiction.

Note that the converse of Lemma 2.1.13 is not true: There are of course

placements of one guard per interval [bk+i-i,Ci] that do not cover the ter¬

rain. For a correct partial solution that covers one end of the terrain, how¬

ever, a completion can be computed in linear time, as the following lemma
shows. Here, a partial solution A% = [a\ < a\ < • • • < a,} is called a correct

partial solution iff Ai covers all points on the terrain T to the left of a8-.
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Lemma 2.1.14 Let At be a correct partial solution, with guard a3 £ A%
in the interval \bkjr\~3,c3]. If the guarding algorithm is used accordingly to

complete the solution Al, the produced solution A is optimal.

Proof: To find the guard at+x, the guarding algorithm computes Umin(At)
and sets the «-value of a,+1 to Umm(At). Note that Oj+i lies in the interval

[&fe-)_i_(j-l-i),c,+i]. To see this, consider that all points on T between ^--i-i-î
and &fc_|_i_(j_)_i) are covered by these two guards (see Lemma 2.1.10). Since

6fe_l_i_j < a,, all points on T between a, and 6^+i_(!+i) are covered by these

two guards (see Lemma 2.1.2). This means that bxk+1_,+1-, < Um-m(A%) —

af+i- On the other hand, the guards c% and cî+1 cover all points from T

in their interval and according to Lemma 2.1.11 Cj+i cannot move to the

right. Since a% < ct, a, covers fewer points on T in the interval [cj,Cj+i]
(see Lemma 2.1.2). Therefore, af+1 = Umin(At) < cf+1. This means that

a correct partial solution Aj+i with each guard a3 £ Aj+i in the interval

[bk+i-3,c3] is obtained. The same argument can be used inductively to

obtain a complete optimum solution.

Note that of course the situation is symmetric for a partial solution that

is correct from the right end of the terrain. Figure 2.2 shows in an example

partner guards; the intervals in which the guards have to be placed in any

optimum solution are marked by a thick line.

y

b3 c, b, c, b, c,
h i—• «-• ii.

Figure 2.2: Partner intervals



2.2 Guarding Polygons without Holes 47

2.2 Guarding Polygons without Holes

In this section, we propose a reduction from Maximum 5-0ccurrence-

3-Satisfiability to Minimum Boundary restricted Point Guard

WITHOUT Holes, analyze it and show that it is gap-preserving. This implies
that Minimum Boundary restricted Point Guard without Holes

is APX-havd. We also show that APX-hardness follows for the prob¬
lems Minimum Boundary restricted Vertex/Edge Guard without

Holes and Minimum Vertex/Edge/Point Guard without Holes.

2.2.1 Construction of the Reduction

We present the construction for Minimum Boundary restricted Point

Guard without Holes. Suppose we are given an instance I of Maximum

5-Occurrence-3-Satisfiability. Let I consist of n variables «i, • •

•, xn

and of m < |n clauses c1; •

•, cm. Taking instance I as input, we construct

a polygon T, which is an instance I1 of MINIMUM BOUNDARY RESTRICTED

Point Guard without Holes.

Overview

The polygon T contains six different kinds of basic units, called patterns.

These are called literal, clause, variable, ear, body, and spike patterns. Each

pattern is a polygon, which will be part of the final polygon T. We obtain

the final polygon by taking the union of all patterns. Each pattern (except
for the body pattern) contains a distinguished tuple.

Definition 2.2.1 A distinguished tuple {p%,p3,Pk,Pi) of a pattern is formed

by the four vertices pt,p3,Pk,Pi of the pattern with the following properties:

• p, and p3 are neighboring vertices (i.e., j = i + 1 or j = i — 1)

• Any guard that sees an arbitrarily small part of the edge from p% to

p3, which includes vertex pt, must lie inside or on the boundary of the

pattern, even if we consider the edges of the pattern, which form the

path between the vertices pk and pi (not taking the route that includes

vertex pt), to be transparent.

As an example, consider the polygon in Fig. 2.4, in which (g6, <7s, as, ?i) is a

distinguished tuple. That fact that the edge from q\ to q% is transparent is

indicated through a dashed line. Polygon components will be composed by

attaching them to each other at transparent edges; these edges will, hence,

disappear in the composition, and their transparency indicates just this.
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Definition 2.2.2 Let (p,,p3,Pk,Pi) be a distinguished tuple of a pattern.
Then, an arbitrarily small part of the edge from pt to p3 starting at pl and

going towards p3 is called distinguished arrow.

Distinguished tuples and distinguished arrows will help us define an

algorithm that obtains a truth assignment for the variables of I, if it is

given a solution (i.e. a set of guards) of 7'.

The reduction works as follows: For each literal, we construct a literal

pattern, each of which contains a vertex Tht and a vertex Fht, which cor¬

responds to the truth value of the literal, if a guard sits there. Three literal

patterns form a clause pattern in such a way that the clause pattern can

only be guarded by a minimum number of guards, if at least one literal in

the clause is true. We construct a variable pattern for each variable, which

contains a vertex Tvar and a vertex Fvar, which corresponds to the truth

value of the variable. Finally, spike patterns are used to connect variable

and literal patterns in such a way that a minimum number of guards is only

possible, if the truth values are assigned consistently.

We first introduce the literal, clause, variable, ear, and body patterns.
We then show how these patterns are put together, and finally we define

spike patterns.

Literal Pattern

Let l3 (cj), for j = 1,..., 3 and i = 1,..., m denote the j-th literal of the

i-th clause. Note that l3 (cz) = Xk or l3 (c,) = ->Xk for some k = 1,..., n. For

each literal (j(cj), we construct a literal pattern as shown in Fig. 2.3. The

literal pattern is the polygon defined by the points Pi(l3 (ct)),... ,pe(l3(ct)),
given in counterclockwise order as shown in Fig. 2.3. Whenever it is clear

which literal we are talking about, we will denote vertex pk(l3(ct)) simply
by pk, omitting the argument, as done in Fig. 2.3. The edge from pe to p\

is not part of the final polygon, but serves as an interface to the outside of

the literal pattern. We will lose this edge when we form the union of the

literal pattern with a clause pattern. As before, the transparent edge from

P\ to pe is drawn as a dashed line. All other edges in the literal pattern are

part of the final polygon. The points Pi,ps,pi are collinear. Note that a

guard at point p\ or point ps sees all of the interior of the literal pattern.
The final construction will be such that a guard at point p\ implies that

the literal is true and a guard at point p<s implies that the literal is false.

We, therefore, call point pi(l3(ct)) simply Tht(l3(ct)); similarly, Pr,{lj{ct))
is called F (lj(ct)). Note that (p4,P3,Pi,P6) is a distinguished tuple. The

distinguished arrow (pi,pz) is marked by an arrow in Fig. 2.3.
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Figure 2.3: Literal Pattern

Figure 2.4: Clause Pattern

Clause Pattern

For every clause ct, we construct a clause pattern as shown in Fig. 2.4. The

clause pattern for c, is the polygon defined by the vertices qi(ct), • •

•, gg(cj).
Vertices qe, q?, g2 and g3 are collinear. The tuple (qg, gs, q\, qg) is a distin¬

guished tuple.

We form the union of the clause pattern of clause ct and the three literal

patterns l\(ct), /2(cj), and li(ct) as indicated in Fig. 2.5. Note that this is

done in such a way that a guard at vertex T of any of the three literals

sees the distinguished arrow of the clause pattern, while a guard at a vertex

Fht of any literal pattern cannot see the distinguished arrow of the clause

pattern.
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l3(Ci) l2(c;) ll(Ci)

% (c,> q^i)

Figure 2.5: Union of clause pattern and literal patterns

r4
r _ Tvar

Figure 2.6: Variable Pattern

Variable Pattern

For every variable xk, we construct a variable pattern as shown in Fig. 2.6.

The variable pattern is the polygon defined by the vertices

ri(xk),---,ru(xk)

.
We call the polygon defined by the vertices r±, r2, r^,, r^ the TRUE leg of

the variable pattern and the polygon defined by r$, re, r-j, r\\ the FALSE leg
of the variable pattern. The vertices rg, r±o, r± are collinear, and so are ver¬

tices rr, r$, rio, rn, and also vertices r±, r^, ?'5, rg. The shape of the variable

pattern can be changed slightly (as will be done in the final construction),
as long as the collinearities are maintained. The tuple (rg, rs, »*i, rn) is a

distinguished tuple.
In the final polygon it will turn out that a guard sits at point r\, if the
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"- J\ ^^WV^ _JWWL, _wwwu
W 2

Figure 2.7: Putting the pieces together

variable is assigned the value true, and it sits at point ?*s, if the variable is

false. Therefore, we define: Tvar(xk) :— ri(xk) and Fvar(xk) := r<ö(xk).

Ear Pattern

The ear pattern is necessary for technical reasons. Its use will become

evident in the analysis of the reduction. An ear pattern is the same as a

literal pattern. However, it is not associated with any literal. We use the

same numbering as for the literal pattern and denote the vertices of the ear

pattern by wk for k = 1,..., 6.

Body Pattern

The body pattern is a rectangle with vertices b\, , 64. These vertices are

shown in Fig. 2.7.

Forming the Union of the Components

We put all pieces together as shown in Fig. 2.7. The legs of the variable

patterns are such that a guard at point w\ sees all the legs of the variable

patterns. We call the polygon obtained at this stage T'.

Spike Patterns

A spike pattern s is a triangle shaped polygon with some additional vertices

on the edges. In the final polygon, there will be one spike pattern for each

vertex Tht and Fht, which are of slightly different types. Figure 2.8 (a)
shows the type of spike patterns for vertices Tht, which we call TRUE spike
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S2 S2

(a) (b)

Figure 2.8: (a) TRUE Spike Pattern; (b) FALSE Spike Pattern

pattern; Figure 2.8 (b) shows the type of spike patterns for vertices Fht,
which we call FALSE spike pattern. The spike pattern s is the polygon with

vertices s\, , s$, (se). We have the following collinearities:

• Vertices s2,S3,S4 are collinear.

• Vertices s2,si, (se),ss are collinear.

The tuple (s2, S3, si, S3) is a distinguished tuple, if we change the definition

in such a way that the edge from S4 to S5 is not transparent, as indicated

in Figs. 2.8 (a) and (b) and in such a way that the view of a guard that

is located on the extension of the line from s2 through S4 is blocked by the

vertex S4.

Adding Spikes to the Construction

We form the union of the spikes with the polygon T" as follows: We construct

for each literal l3(ct) in each clause two spike patterns (one TRUE and one
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FALSE spike pattern) as shown in Figs. 2.9 and 2.10.

Figure 2.9 is for the case, when literal l3(ct) is positive (i.e. l3(ct) = xk,

for some k). In this case, we have a TRUE spike pattern

s(Tht(l3(ct)),F (xk)),

which connects vertex Tht of the literal pattern l3(ct) with vertex Fvar of

the variable pattern xk, and a FALSE spike pattern

S(Fht(l3(Cl)),Tvar(xk)),

which connects vertex Fht of the literal pattern l3{ct) with vertex Tvar of

the variable pattern xk.

Figure 2.10 is for the case, when literal l3(ct) is negative (i.e. l3(ct) —

->xk, for some k). In this case, we have a TRUE spike pattern

s(Tht(l3(Ci)),Tvar(xk)),

which connects vertex Tht of the literal pattern l3(ct) with vertex Tvar of

the variable pattern xk, and a FALSE spike pattern

s(Fhi(l3(Cl)),F^(xk)),

which connects vertex Fht of the literal pattern l3(ct) with vertex Fvar of

the variable pattern «/,.

For each TRUE spike pattern s, we have the following, where pg and

Tht are vertices of the corresponding literal pattern:

• s4 = Tht

• S4, S5, and pe are collinear.

For each FALSE spike pattern s, we have the following, where p$ and

Tltt are vertices of the corresponding literal pattern:

• s5 = Fht

• «4 = P6

• S4,se, and Tht are collinear.

For each spike pattern s(Tht, Fvar) or s(Fht,Fvar) we have the follow¬

ing collinearities, where q-j, q8 and Fvar are vertices of the corresponding
variable pattern:

• si, Fvar,s$ are collinear.
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s(Fht,Tvar)

s(TIU,Fvai)

Figure 2.9: Spike patterns for positive literal

• qi, S\, S3, qg are collinear.

For each spike pattern s(Tht,Tvar) or s{Fht,Tvar) we have the following
collinearities, where g3,<?4 and Tvar are vertices of the corresponding vari¬

able pattern:

• s1,Tuar,S5 are collinear.

<?3i si) s3,14 are collinear.

As a result, we obtain the polygon T, which is the instance I' of Minimum

Boundary restricted Point Guard without Holes.
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' ;\lir

s(FUt,Fvar)

s(TUt,Tvar)

Figure 2.10: Spike patterns for negative literal

Feasibility of the Construction

Remember that, in order to see an arbitrarily small part of the edge from

s2 to S3 including s2 of each spike pattern s, a guard must lie in the interior

or on the boundary of s, because (s2, S3) is a distinguished arrow.

In order to prove our inapproximability result for Minimum Boundary

RESTRICTED Point Guard WITHOUT Holes, we must ensure that the

following holds:

Lemma 2.2.3 Instance I' of Minimum Boundary restricted Point

Guard WITHOUT Holes (i.e. the polygon T) can be constructed from the

Maximum 5-0ccurrence-3-Satisfiability instance I in such a way that

no three spike patterns that connect literal patterns to three different legs (of
the variable patterns) intersect in a common point.
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Figure 2.11: Detailed construction

Proof: We prove the lemma by giving a detailed description of how this

can be achieved. An overview of the construction is given in Fig. 2.11.

We start with the first literal pattern h(ci). Fix vertex S5(Tht(Ii(ci)), •)
of the TRUE spike pattern on a horizontal line h. Then set vertex Tht {l\{c{))
at a distance a (I) to the left of ss(Tht(li(ci)), •) on the horizontal line h. Fix

vertex se{Fht{h{ci)), ) of the FALSE spike pattern at a constant distance

to the left of T'!*(li(ci)) on h, then set vertex Si{Fht{h{ci)), •) at distance

a{L) to the left of s6(7,h*(/1(c1)), •) on h. Then fix vertex s5(Th*(/2(ci)), )
of the TRUE spike pattern of the second literal pattern at constant distance

to the left oïSi(Fht(li(c{)), •) on h and repeat the procedure for all literals.

Note that a(I) depends on the instance (i.e. a = a{I)). Choose wi (of
the ear pattern) at a constant distance to the left of point S5(Fht(l3(cm)), )

(of the leftmost literal) and at distance a'(I) below the line h.

Assume that the variable patterns for the variables x\, , xk-i have

already been constructed, that the vertices Tvar of all of these variable

patterns lie an the same horizontal line h', which is at constant distance

from h, and that the vertices r2, r3, re, r-j all lie on the same horizontal line

h", which is at distance a"{I) from h'. We show how to construct the
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next variable pattern for variable xk. We determine point Tvar(xk) of the

variable pattern as follows:

Determine the rightmost of the (at most five) literal patterns that is a

literal of xk. Let us assume that it is a negative literal (j(c8). (The case,

where it is a positive literal can be treated similarly.)
Set vertex Tvar(xk) on the horizontal line h' to the left of all the vari¬

able patterns already constructed in such a way that there exist no ar¬

eas, where two spike patterns connecting literals with two different legs
of variable patterns, intersect, to the left or on the line from Tvar(xk) to

s5(Tlit(l3(ci)),Tvar(xk)).
The intersection of the line h" with the line from w\ through Tvar yields

vertex r2. Fix r3 at constant distance to the left of r2 on h" and fix some

(auxiliary) point paUx at constant distance to the left of r3 on h". The

intersection of the line from S5 through Tvar with the line from w\ to paux

yields vertex s2; it yields vertex s± if intersected with the line from w\ to

r3 . Intersecting the line from w\ to paux with the line from Tht to s2

gives vertex S3. Thus, we have constructed the TRUE leg with the first

spike pattern. Now, construct all remaining spike patterns for the leg. Note

that their vertices s2 are strictly below vertex s2 of the first spike pattern
constructed. Also note that the distance a(I) must be chosen small enough,
such that no two spike patterns intersect to the left of the line from r$ to

We construct the FALSE leg in a similar way, however, we need an

auxiliary point p'aux, which is set on the horizontal line h' in such a way

that there exist no areas, where two spike patterns connecting literals with

two different legs of variable patterns intersect, to the left or on the line

from p'aux to the vertex S5 (or se) of the spike pattern that connects the

rightmost literal pattern that represents a literal of the variable. Let v be

a vertical line at some constant distance to the left of p'aux. Vertex Fvar is

the intersection point of v with either the line from S5 (or se) through p'aux
or the line from Tvar through vertex S3 of the top-most spike pattern in

the TRUE leg, whichever is closer to the horizontal line h'. The remaining
vertices of the leg and the spike patterns are then constructed as in the

TRUE leg.

The variable pattern can now be completed by just observing the re¬

quired collinearities.

Once we have constructed all variable patterns, we need to construct the

literal patterns. For each literal, proceed as follows:

Let v' be a vertical line at some constant distance to the right of vertex

Se of the FALSE spike pattern of the literal. Vertex Fht is the intersection of

v' with the line from si through Se of the FALSE literal pattern. Construct
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the remaining vertices of the literal pattern straight-forward by observing
the required collinearities.

We complete the clause pattern in a straight-forward manner observing
all collinearities and the requirement that a guard at a A^ertex Fht of some

literal pattern may not see the distinguished arrow of the corresponding
clause pattern. Vertices gi and q$ of each clause pattern are on the same

horizontal line as u>i, which is at distance a'(I) from line h. Note that a'(I),
therefore, must be chosen small enough such that the polygonal chains from

gi to Ç4 and from q$ to qg do not intersect any spike patterns.
We complete the construction as indicated in Fig. 2.7.

An analysis reveals that the coordinates of all points can be computed
in polynomial time; some coordinates require a polynomial number of bits.

The analysis is similar to the analysis for Minimum Boundary restricted

Point Guard with Holes, which is given in full detail in Sect. 2.3.

Therefore, the construction is polynomial in the size of the input.

2.2.2 Transformation of a Feasible Solution

We describe how to obtain an assignment of the variables of the satisfiability
instance (i.e. a solution of 7), given a feasible solution of the correspond¬

ing Minimum Boundary restricted Point Guard without Holes

instance I'. We move guards in such a way that the set of distinguished ar¬

rows that a guard sees changes in only one of two ways: The first possibility
is that the set remains the same or contains some additional distinguished
arrows. The second possibility is that some distinguished arrows are re¬

moved from the set, but then it is ensured that some other guards see the

distinguished arrows that were removed. The guards are moved as follows,
where we have illustrated some of these movements in Fig. 2.12:

• Determine which guard is inside the ear pattern wi,- ,w6 (see Fig.
2.7) and move this guard to w1 as indicated at (Ï) in Fig. 2.12.

• For each literal pattern, determine which guard sees the distinguished
arrow (such a guard must be inside the literal pattern). If this guard
is at vertex Fht, then leave it there, otherwise, move it to vertex Tht

as indicated at @ in Fig. 2.12.

• If there is a guard at both vertices Tht and Fht of the literal pattern,

move the guard at Fht along the edge of the FALSE spike pattern
towards vertex s2 to the vertex Fvar or Tvar of the corresponding
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Figure 2.12: Different types of guard moves

variable pattern as indicated at (3) in Fig. 2.12; note that the guard
at Tht does not move.

• If there is more than one guaid at some vertex Tht (Fht), move all

but one guard along the edge of the TRUE (FALSE) spike pattern
towards vertex s2 to the vertex Fvar or Tvar of the corresponding
variable pattern.

• For each clause pattern, move any guard that sees the distinguished
airow of the clause pattern and lies in a TRUE spike pattern to the

vertex Tht that is on the boundary of the spike pattern.

• For each clause pattern, consider a guard g that sees the distinguished
arrow of the clause pattern and lies in a FALSE spike pattern. If there

already is a guard g' at vertex Fht of the spike pattern, then move

the guard g to vertex Tht, otherwise, move the guaid g to veitex Fht.

• For each variable pattern, move the guard that sees the distinguished
arrow of the variable pattern to vertex Tvar, if it also lies in a spike

pattern that contains vertex Tvar, and move it to point Fvar, other¬

wise, as indicated at ® in Fig. 2.12.

• Move all guards that lie in a spike pattern but do not see the distin¬

guished arrows of any literal or clause pattern to vertex Tvar or Fvar

that is contained in the spike pattern.
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• If a guard sees the distinguished arrows of two spike patterns that

connect literals to two different legs of variable patterns, add a guard
and move one guard each to the two vertices Tvar or Fvar of the

variable patterns that lie on the boundary of the two spike patterns
as indicated at @ in Fig. 2.12. (Note that because of Lemma 2.2.3,
no guard can see the distinguished arrows of three spike patterns that

belong to three different legs.)

• Guards that do not see any distinguished arrows are moved to any

point Tvar or Fvar of any variable pattern, if there is no guard there

already.

This procedure is iterated until all guards are at their final position.
The solution obtained after moving and adding guards as indicated is still

feasible. To see this, note that after this procedure there is exactly one

guard in each literal pattern at either point Fht or Tht. In each clause

pattern c,- there is at least one guard at either Tht(li(ci)), Tht(l2(ci)), or

T'**(/3(c,-)). Therefore, all literal and clause patterns are guarded. The

remaining polygon (except for parts of the spike patterns) is guarded by
the guard at point Wi of the ear. Finally, the spike patterns are guarded,
since all guards that saw the distinguished arrow of a spike pattern have

been moved only within the spike pattern. Where such a guard saw two

distinguished arrows of two spike patterns, we have added a guard.
We are now ready to set the truth values of the variables. For each

variable pattern xk, if there is a guard at point Fvar(xk) and no guard at

point Tvar(xk), let xk he false. If there is a guard at point Tvar(xk) and no

guard at point Fvar(xk). let xk be true. If there is a guard at both Tvar(xk)
and FvaT(xk), then set xk in such a way that a majority of the literals of

Xk become true.

2.2.3 Analysis of the Reduction

We first prove two lemmas that will help us prove the APX-hardness of

Minimum Boundary restricted Point Guard without Holes.

Lemma 2.2.4 If an instance of Maximum 5-Occurrence-3-Satispiabi-

LITY with n variables and m < ~n clauses is satisfiable (i.e., all m clauses

are satisfied), then there exists a feasible solution of the corresponding in¬

stance of Minimum Boundary restricted Point Guard without

Holes with dm + n + 1 guards.

Proof: Fix any truth assignment of the variables that satisfies the Max¬

imum 5-Occurrence-3-Satisfiability instance. Place one guard at wt.
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For each variable xk, place a guard at point Fvar(xk) of the variable pattern
if Xk is false. Place a guard at Tvar(xk), if «a- is true. For each literal lj(ci)
in each clause, place a guard at point Tht(l3{ci)) of the literal pattern, if

the literal is true. Place a guard at point Fht(lj(ci)), if the literal is false.

This solution is feasible and consists of 3m + n -f 1 guards.
D

Lemma 2.2.5 7/ there exists an e > 0 and a feasible solution of the MIN¬

IMUM Boundary restricted Point Guard without Holes instance

I' with 3m + n + 1 + em guards, then there exists an assignment of the vari¬

ables of the corresponding Maximum 5-0ccurrence-3-Satisfiability

instance I that satisfies at least m(l — 4e) clauses.

Proof: In the feasible solution of Minimum Boundary restricted

Point Guard without Holes, there must be at least one guard inside

each literal pattern. There also must be at least one guard inside each

variable pattern. Finally, one additional guard is needed at w\.

Now, move the guards according to the transformation given in Section

2.2.2. At most em guards see the distinguished pairs of two spike patterns

belonging to different legs, since 3m guards are inside literal patterns, n

guards are inside variable patterns and one guard is at w\. Therefore, we

have at most em additional guards.
We now set the truth values of the variables according to the transfor¬

mation. For at least n — 2em variable patterns, there is only one guard at

either Tvar(xk) or Fvar(xk). For at most lern variable patterns, there is a

guard at both points Tvar(xk) and Fvar(xk). When we set the truth value

of each of these 2em variables, at most 2 clauses will be unsatisfied for each

variable. Therefore, we have at most 4era unsatisfied clauses.

D

Now, consider the promise problem of Maximum 5-OCCURRENCE-3-

Satisfiability, where we are given an instance of Maximum 5-Occurr-

ence-3-Satisfiability, and we are promised that the instance is either

satisfiable or at most m(l — 4e) clauses are satisfiable by any assignment of

the variables. This problem is NP-h&vd for small enough values of e (see
Sect. 1.3).

By Lemma 2.2.4 and by the contraposition of Lemma 2.2.5, we obtain

the following theorem.

Theorem 2.2.6 Let I be an instance of the promise problem of Maximum

5-Occurrence-3-Satisfiability, let n be the number of variables in I
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and let m < |n be the number of clauses in I. Let OPT(L) denote the

maximum number of satisfiable clauses (for any assignment). Furthermore,
let V be the corresponding instance of Minimum Boundary restricted

Point Guard without Holes and let OPT(I') denote the minimum

number of guards needed to cover V. Then, the following hold:

• IfOPT(I) = m, then OPT(I') < 3m + n + 1.

• IfOPT(I) <m(l-4e), then OPT(I') > 3m + n+l + em.

Theorem 2.2.6 shows that oui reduction is gap-preserving (see [3]). It

shows that the promise problem of Minimum Boundary restricted

Point Guard without Holes with parameters 3m + n + 1 and 3m +

n + 1 + em is NP-haid. Note that m > 2.
;
since each variable appears as a

literal at least once. Therefore, unless NP = P, no polynomial time approx¬

imation algorithm for Minimum Boundary restricted Point Guard

without Holes can achieve an approximation ratio of:

Zm + n + 1 + em e e e

3m + n + 1
= +

3+a±l -1+3 ,
3(n+i)'> +j

Thus, we have the following result:

Theorem 2.2.7 Minimum Boundary restricted Point Guard with¬

out Holes is APX-hard.

Our proof works as well for Minimum Point Guard without Holes.

To see this note that, if we are given a solution of the satisfiability instance

and set the guards as indicated in Lemma 2.2.4, the guards see all of the

interior and the boundary of the polygon. If we are given a solution of

the Minimum Point Guard without Holes instance and perform the

transformation as given in Sect. 2.2.2, the guards still see all oi the interior

and the boundary of the polygon. Therefore, we have:

Theorem 2.2.8 Minimum Point Guard without Holes is APX-hard.

2.2.4 Inapproximability Results for MINIMUM (BOUND¬
ary restricted) vertex/edge guard without

Holes

The proof for the APX-hardness of Minimum Boundary restricted

Vertex Guard without Holes can be copied from the correspond¬

ing proof for Minimum Boundary restricted Point Guard without
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(a) (b)

Figure 2.13: (a): Literal Pattern for Minimum Boundary restricted

Edge Guard without Holes; (b): Variable Pattern for Minimum

Boundary restricted Edge Guard without Holes

Holes. Actually, we do not even need the property in the constructed poly¬

gon that no three spike pattern of three different legs intersect (see Lemma
2.2.3). Since there are no guards added in the transformation for MINIMUM

Boundary restricted Vertex Guard without Holes, we would get
a slightly bigger constant for the inapproximability of Minimum Bound¬

ary restricted Vertex Guard without Holes than the constant for

Minimum Boundary restricted Point Guard without Holes, if we

were interested in giving explicit constants.

Thus, we obtain:

Theorem 2.2.9 Minimum Boundary restricted Vertex Guard with¬

out Holes is APX-hard.

Our proof carries over to Minimum Vertex Guard without Holes

using the same arguments as for Minimum Point Guard without Holes.

Therefore, we have:

Theorem 2.2.10 Minimum Vertex Guard without Holes is APX-

hard.

The proof for the APX-hardness of Minimum Boundary restricted

Edge Guard without Holes follows the lines of the corresponding proof
for Minimum Boundary restricted Point Guard without Holes

with some modifications. The literal pattern and the variable pattern are

slightly different as shown in Figure 2.13. Note that Flit, Tht, Fvar, and

Tvar are edges in the literal pattern.



64 Guarding

The ideas of the proof for Minimum Boundary restricted Point

Guard without Holes can now be applied here. Any solution of the

Minimum Boundary restricted Edge Guard without Holes in¬

stance contains at least 3m + n + 1 guards. If we are given a solution of

the Minimum Boundary restricted Edge Guard without Holes in¬

stance we can adopt the transformation procedure described in Sect. 2.2.2.

Therefore, we obtain:

Theorem 2.2.11 Minimum Boundary restricted Edge Guard with¬

out Holes is APX-hard.

The proof works as well for Minimum Edge Guard without Holes.

Therefore, we have:

Theorem 2.2.12 Minimum Edge Guard without Holes is APX-hard.

2.3 Guarding Polygons with Holes

In this section, we propose a reduction from Minimum Set Cover to

Minimum Boundary restricted Point Guard with Holes, analyze
it and show that it is gap-preserving. We also show that our result carries

over to the problems Minimum Boundary restricted Vertex/Edge
Guard with Holes and Minimum Vertex/Edge/Point Guard with

Holes.

2.3.1 Construction of the Reduction

As a first step towards our inapproximability result for Minimum Bound¬

ary restricted Point Guard with Holes, we show how to construct

an instance of Minimum Boundary restricted Point Guard with

Holes for every instance of Minimum Set Cover. The construction con¬

tains a triangle-shaped pattern, called spike, for each element of the Min¬

imum Set Cover instance. All spikes lie on the lower segment of a large

rectangle, which is "cut" into an upper and a lower part by a barrier that

contains trapezoidal holes, through which a guard in the upper part, which

corresponds to a set in the Minimum Set Cover instance, can see the

spikes in the lower part, which correspond exactly to those elements that

are in the set.

We construct a polygon in the x — y-plane; Figure 2.14 shows this con¬

struction. For each set Si,i = 1,..., m, place on the horizontal line y = yo

the point ((« — l)d', yo). This places a sequence of points from left to right,
one point per set s, for i = 1,..., m, with d! a constant distance between
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two adjacent points. For ease of description, call the i-th point st. For each

element e; £ E, place on the horizontal line y
— 0 two points (A;0) and

(D[, 0), with D[ = A + d for a positive constant d and A > 0. Arrange
the points from left to right for i = 1,..., n, with distances dx = A+i — A'
to be defined later. Call the points also D, and D\, for i = 1,..., n.

For every element ej, draw a line </ through s^ and Du where s3 is the

first set of which e8 is a member. Also draw a line g' through s; and A';
where s; is the last set of which e% is a member x. For simplicity, let et also

denote the intersection point of g and g'. Then draw line segments from

every sk that has et as a member to A and to D[.
Two lines connecting points A and A with points s3 form a cone-like

feature; the area between these two lines will therefore be called a cone.

Call the triangle AeiA' a spike. The point ej of each spike plays a special
role and is therefore called the distinguished point of the spike.

We have only constructed one part of the polygon thus far: Among all

the lines described, only the spikes and the line segments of the horizontal

line y — 0 that are between adjacent spikes are part of the polygon boundary,
all other lines merely help in the construction.

In our construction the guards of an optimum solution will have to be

placed at or near the points s3, therefore we need to make sure that a guard
at s3 only sees the distinguished point et, if the element e, is a member of

the set s3. This is achieved by introducing a "barrier"-hne at y = b, see

Fig. 2.14. Only line segments on the horizontal line y — b that are outside

the cones are part of the polygon boundary. We draw another barrier-line

with distance b' from the first barrier at y = b + b'. Define holes of the

polygon by connecting endpoints of line segments of the two barrier lines

that belong to the same cone-defining line. We call the area between the

two lines at y = b and y = b+b' (including all holes) the barrier. Thus, the

barrier contains a small part of all cones.

As a next step in the construction of the polygon, draw a vertical line

segment at « = —d", where d" is a positive constant, from y = 0 to y = yo.

This line segment is part of the polygon boundary except for the segment
between the two barrier lines.

Choose the coordinates (to be shown later) such that the rightmost spike
is farther right than the rightmost set, i.e. D'n > sm (for reasons of space,

we violated this condition in Fig. 2.14), and draw another vertical line

segment from y = 0 to y = yo at x — D'n + d", again taking a detour at the

barrier. The boundary lines of the polygon defined so far are shown as solid

lines in Fig. 2.14. It is important to note that the cones, drawn as dashed

lines in the figures, are not part of the polygon boundary.

We assume w. 1. o. g. that each element is a member of at least two sets.
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Figure 2.14: Basic construction

The thickness V of the barrier is defined such that all segments of all

holes except for those on the line y = b -f- b' can be seen from two guards
at Pi = (-d", 0) and P2 = {D'n + d", 0). To achieve this, the thickness b'

is determined by intersecting (for each pair of adjacent holes) a line from

Pi through the lower right corner (point G\ in Fig. 2.15) of the left hole

(of the pair of adjacent holes) with a line from P2 through the lower left

corner (point G2) of the right hole as shown in Fig. 2.15. Now, the barrier

line y = b + b' is defined to go through the lowest of all these intersection

points (point j/i in Fig. 2.15). (They are indeed all at the same height, by
arguments with similar triangles.)

We set the parameters of the reduction as follows: Let d' and yo be

arbitrary positive constants. Let d and b be positive constants as well,

where d — ^- and b yo. We let b' =
'ihVo

A = -4(-1

4(-im(-i+2Yjl
ml-1d-d + 2dJ2[Z10¥mi for / = 1,.. .,n.

4'm'+2^
and
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Figure 2.15: Thickness of the barrier

2.3.2 Properties of the Reduction

In order for the reduction to work, it is necessary that at no point a guard
sees three or more distinguished points e, unless there is a set s3 or a pair
of sets s3,S[ that (together) contain(s) all of the corresponding elements.

A guard that is placed at some point with y-value between 0 and b + b',
i.e., between the barrier and the spikes, sees at most one such distinguished
point, provided the barrier is placed such that no cones of two different

elements intersect in the area below the barrier and in the barrier.

In order to ensure that a guard that is placed at some point with y-

value between b + b' and yo does not see three or more distinguished points
unless there is a set s1 or a pair of sets s3, s; that (together) contain(s) all

of the corresponding elements, we introduce the notion of extended cones

as shown in Fig. 2.16. The extended cone is the area in the rectangle
D%,D[,s3 +a,s3 —a. Point s3

— a is defined as the intersection point of the

line y = yo with the line from D[ thiough the lower right corner of the left

of the two holes which contain a part of the cone from set s^ and element

el. Point Sj -f a is defined accordingly. It will be easy to see that points

Sj
— a and s3 -f a are both at a constant distance a from point s3 (see proof

of Lemma 2.3.1).
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Figure 2.16: Extended cones

For a guard between the two horizontal lines y — b + b' and y = y0, in

order to see the distinguished point el, it must lie in the area of the triangle
defined by the points /ii,/i2 and ez (or, of course, in the corresponding
triangle of any other point sy with et £ s3i). In order to keep the analysis
simple, we will argue with the extended cones rather than the triangles. If

no three extended cones from three different elements and three different

sets intersect in this area, then it is ensured that there exists a pair of

setpoints such that each distinguished point that a guard in this area sees

can also be seen from at least one of the setpoints of the pair. (It is, of

course also possible that a single setpoint sees all the distinguished points
that a guard in this area sees).

A guard that is placed at some point with y-value less than 0, sees at

most one distinguished point, if it is ensured that no two spikes intersect.

Thus, we need to prove the following:

• No three extended cones from different elements and sets intersect.

The barrier is such that all intersections of cones from the same ele¬

ment et are below b (to ensure that the view of the points s3 is blocked

appropriately) and such that all intersections of cones from different
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elements are above b+b' and such that all of the barrier except for

the line segments at y = b + b' can be seen from at least one of two

guards at Pi and P2.

• No two spikes intersect.

No Three Extended Cones from Different Elements and Sets In¬

tersect

Lemma 2.3.1 For e\ £ s/<, let:

A > max ( Si' ~ *''

^
(A + d - A) + A + d )

~~

\Si* — sji
— 2a j

where the maximum is taken over all ei £ sti and e3 £ Sji, for which

i < j < / and I' < j' < i' holds. Then the three extended cones from e\ to

sii, from ei to s,-/ and from Cj to s3i, with i < j < / do not have a common

intersection point.

Proof: Assume that the positions of the elements, i.e., the values A,

have been set for all v < I such that no three extended cones (connecting
three different sets with three different elements) intersect. We show how

to set A such that no three extended cones intersect; see Fig. 2.17. Let

S be an intersection point with maximum (/-value among the two extended

cones connecting the elements ej and e3 with the (different) points Sji and

Si'.

In order to ensure that our construction is feasible, S must lie in the area

between j/o and the barrier. Let Sy be the j/-value of S. Then, Sy < yo-

To see this, note that this is equivalent to saying that sji + a < s,-/ — a (see
Figs. 2.16 and 2.17), which is a weaker condition than sji + a < Sj'+i

— a.

Now, Sji +a < Sji+i —a is equivalent to 2a < d'. We express a as a function

of yo, b and d using the similarity of triangles. Note that ^- =
y"~ and

— = ^-. Thus, we get a = ^-^-d. Using this result in 2a < d', we obtain:

2
b > lL^iyo>

which is equivalent to b > j^yo, since d =
-j.

This inequality for b is satisfied,

since b = ^y0 > \yo-
For each set s\i of which e\ is a member, draw a line through S, de¬

termine where it intersects the line y = 0 and let Dfv be the «-value of

this intersection point. Let Df — max;/ Dfv be the maximum «-value of



70 Guarding

d, d; dj dj di

Figure 2.17: Intersection of three extended cones

all intersection points defined this way. For any pair of extended cones in

"inverse position" to the left of e;, with which an extended cone at e; forms

a "triple inversion", compute the corresponding Df and let D;max be the

maximum Df. Finally, we let A = Amax + d to ensure that no three ex¬

tended cones have one common intersection point at some point S. Figure
2.17 shows the situation for an intersection and explains the notation.

The point S is the intersection point of the lines gi from sti — a to A
and g% from s3i + a to D'y

These two lines can be expressed with parameter t £ IR:

9\ (f -t) [ yo

i sj'+a
92 : (1 - t) ( y0

The intersection is characterized by parameters t\ and i2 f°r ffi and g2-

{i-ti)yo = (i-h)yo

(l-ii)(v-o)+<iA = (l-t2)(s3i+a)+t2D':i

The first equation leads to t\ = t2 and one obtains for t\:

We express S as:

U =

S

S%i Si

D'} - A + sti — bji -2a

'(l-Jl)(s,;-<»)+*l£.

îfo(l-tl)
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Let g3 be the line from Sf — a to S with t £ TEL as parameter:

g3 : 1-t Vo )+t\ yo 1-ti)

The intersection of #3 and j/ = 0 is characterized by parameter t3 :

(1-^3)2/0+^(1--h)vo = 0

1
t3 = -

ii

s V,
,

Df,v = {l--){si--a) + hl-t1){sl,-a)+Tt1Dt
ii ii il

= (1 __)(«,, _«,,) + £,
ii

= Sif~s''9 (^-A) + A
Sj/ — Sji

— la J

Sî'~S''

'Dj+d-Dj + D,
s,/ — Sj'

— 2a

The lemma follows.

Lemma 2.3.1 implies for all j < I:

max(
8,'~8''

(D3+d-D,) + D,+d) < max(-^—- (D3 + d) + d)
Si> S

>j
1 ZiCL (X Jj(X

< 4m(A-i + d) + d,

where we have used a — ^-d = |d and d' = Ad in the last step. Now, let

A — 4m(A-i + d) + d. It is easy to see that this is consistent with our

definition of A f
since:

/-1

4m((-4'-2m'-2d - d + 2rf^4!mJ) + d) + d

i=0

(-2

i=0
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The Barrier is in Good Position

Lemma 2.3.2 Any two cones that belong to the same element e% intersect

only at points with y-values at most yo dfd,

Proof: Let e% be a member of s3 and s\ and s3 < s;. The intersection

point of the lines gi from s3 to D[ and g2 from si to A is the point in

the intersection aiea of the two cones that has the largest y-value. Let this

value be yc.

These two lines can be expressed with parametei t £ JR.:

D1.

Si : (l-t)(yo)+üf O'

52 = (l-t)(m>)+t(DQ

The intersection is characterized by parameteis t\ and t2 for g% and g2:

{l-ti)yo = (1-^2)2/0

(1-t^Sj+tDl = (l-i2)8i + Wt

The first equation leads to ii = t2 and one obtains for t^:

1

A' -D,+6l-83

Since D[ - D, — d and since s; — s3 > d', we get:

d

Vc = 2/0
u + Sl - S3

d

^ y°d+-J
D

Lemma 2.3.3 Any two cones that belong to elements et. e7, respectively,
with 1 < j, intersect only at points with y-values at least yod , lmd,.

Proof: Let e, be a member of sti and let e3 be a member of s3<, also let

A < A and Sj< < st<. Exactly then, the corresponding two cones intersect.

The intersection point of the lines g\ from s3< to D3 and g2 from s,>

to A is the point in the intersection area of the two cones with minimum

y-value. Let this value be yc.
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These two lines can be expressed with parameter t £ IR:

27i : (1-i) (jto) +t(D0

92 : (l-t)(îto)+* (o
The intersection is characterized by parameters t± and t2 for g\ and g2:

(l-t±)yo = (l-t2)y0

(l-t1)sy+tD3 = {l-t2)st, +t2 D[

The first equation leads to ^i = t2 and one obtains for t±:

S.I Sq>
h

Dj - D[ + s,< - s3i

Since D3 — D[ > dt and since sti — sy < md', we get:

2/c = 2/0-

> 2/0-

'A
- A' + s»' _sj'

rfj + md'

D

Lemma 2.3.4 Let

y _

6d(yo - 6)
_

2/o(P2~Pi) -^(2/0 -6)'

where p\ and p2 are the x-values of the points Pi and P2. Aen a// o/
the barrier including the segments of the cones except for the segments at

y = b + b' can be seen from the two guards at Pi and P2.

Proof: Let et £ s3 and let G'i and G2 be the two points wheie this cone

intersects with the barrier line y = b (see Figure 2.15). We need to find an

expression for y\, which is the y-value of the intersection point of the two

lines from Pi to G\ and from P2 to G2.

We find an expression for the point G\ by calculating the intersection of

the lines from s3 to A and y = b and obtain:

Gi =

%(;-d.)+d.
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We find an expression for the point G2 by calculating the intersection of the

lines from Sj to A + d and y = b and obtain:

(^(>3-o,-à)+Dt+d\
G2 = I b j

Now, we find the intersection point of the lines from Pi to Gi and from P2

to G2:

(l-*i) 0 +ti

„ /P2\ / Ï0

(l-*2) 0 +12

i-(Sj-r»,-d)+J3,+<i>

Again, t\ = f2 and we obtain:

ti =

Pi -P2

rf-^+Pl-p2

Therefore:

2/1 = &i

j/i does not depend on Ai therefore we let b' = yi — b = b(ti — 1):

&/=
M(yo - b)

2/0(P2 -Pi) -d(2/o- b)

D

If we substitute 6 = ^y0 andp2-Pl = -4n-1mn-1d-d+2dJ2"=01 4'mî+

d" - {-d") = _4«-1mn-1d - d+ 2d£":T014!m'' + 2d" in the equation for

b', we obtain:

35
„

V
_

12^°

_4n-lra„-l2E«-l4îmi+2^_l|

A simple calculation shows that b' < ||, if m > 2 and n > 2, which must

be the case since there were no intersections otherwise.

Because of d — ^- and because of Lemma 2.3.2, any two cones from the

same element intersect only at points with y-value at most gj/o which is less

than b. Because of d, > md' for all d, and because of Lemma 2.3.3, any two

cones from different elements intersect only at points with y-value at least

5J/0, which is at most b + b'.
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Spikes of Two Elements do not Intersect

Lemma 2.3.5 The spikes of any two elements do not intersect.

Proof: Let s; be the first and let s3 be the last set that ej is a member of.

Obviously, s» < Sj. The intersection point of the lines g\ from ss- through
A and g2 from s3 through D[ is the point 7;. Let the «-value of this point
be X}. Note that x\ > A-

These two lines can be expressed with parameter t £ JR.:

(7i : {l-t)(j/o)+t(DQ

2/2 : (l-0(2/o) + no'

The intersection is characterized by parameters ti and t2 for g\ and g2:

(l-^i)2/o = (1-^2)2/0

(l-ti)si-KiA = (l-<2)Sj+*2A'

The first equation leads to t% = t2 and with A' = Di+d one obtains for <i:

,
Si — Sj

il -

' 1 &i Sj

Thus, we obtain:

, n
Si S3

'

d + Si — Sj d + Si — s

< A
S,' S

7

d + Sj - Sj

< A""'
d-d'

- Dld^4d

where the second but last step is due to d = ^-. Since A+i = 4m(A +d) +d
and since we can assume that m > 1, the lemma follows.
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2.3.3 Transformation of the Solution

Given a solution of the Minimum Boundary restricted Point Guard

WITH HoLES-instance, i.e. the coordinates of r guards gi,.. .,gr, proceed
as follows to obtain a solution for the Minimum Set CovER-instance:

For each guard gt, determine the set ht of elements e3 of which the guard
g% sees the corresponding distinguished point e3.

Since no three extended cones from three different elements and three

different sets intersect in the area above y = b + b' by our construction,
there exists a pair of sets (sk, si) for each guard g, such that ht C sk U s;.

Determine such a pair of sets for each guard gt and add the sets to the

solution of the Minimum Set CovER-instance.

2.3.4 The Reduction is Polynomial

Note that d, dl, y0, h, b are all constants in our reduction. The values for

b' and for all A are computable in polynomial time and can be expressed
with O(nlogm) bits.

Therefore, the construction of the polygon can be done in time poly¬
nomial in the size of the input Minimum Set CovER-instance, since it

only produces a polynomial number of points that each can be computed
in polynomial time and each take at most O(nlogm) bits to be expressed.

It is obvious that the transformation of the solution runs in polynomial
time, since it only involves determining whether two points see each other

and finding pairs of sets for a polynomial number of guards. (Note that if

the number of guards exceeds n, the solution is trivial.)

2.3.5 An Inapproximability Result for MINIMUM BOUND¬

ARY RESTRICTED POINT GUARD WITH HOLES

In order to prove a strong inapproximability result, we need the following:

Definition 2.3.6 The Restricted Minimum Set Cover problem con¬

sist of all Minimum Set Cover instances that have the property that the

number of sets m is less or equal to the number of elements n, i.e., m <.n.

Lemma 2.3.7 Restricted Set Cover cannot be approximated by any

polynomial time algorithm with an approximation ratio of (1 — e) In n for

any e > 0, unless NP C TIME(n0(-losloS")).

Proof: Dominating Set cannot be approximated with an approximation
ratio of ( 1 - e) In ?î for any e> 0, unless NP C TIME{n°^°^°^), where n

is the number of vertices in the graph [10]. Consider the following reduction
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from Dominating Set to Restricted Set Cover: Given a graph G =

(V, E) with n := \V\, which is an instance of Dominating Set, we construct

a Restricted Set Cover instance by letting the vertices of G be elements

and by forming a set for each vertex that contains the vertex itself as well

as its neighbors. The Restricted Set Cover instance thus obtained

contains n elements and n sets. This is clearly a gap-preserving reduction,
since each feasible solution of the Restricted Set Cover instance directly

corresponds to a feasible solution (of the same size) of the Dominating Set

instance.

We will now consider the reduction to be from Restricted Minimum

Set Cover to Minimum Boundary restricted Point Guard with

Holes (rather than from Minimum Set Cover to Minimum Boundary

restricted Point Guard with Holes).

Lemma 2.3.8 Consider the promise problem of RESTRICTED MINIMUM

Set Cover (for any e > Q), where it is promised that the optimum solu¬

tion OPT is either less or equal to c or greater than c(l — e) In n with c,

n and OPT depending on the instance I. This problem is NP-hard unless

NP C T7MP(?î°<loslos")) (see the notion of quasi-NP-hardness in [3]).
Then, we have for the optimum value OPT' of the corresponding Mini¬

mum Boundary restricted Point Guard with Roles-instance I',
that OPT' is either less or equal to c + 2 or greater than £^(1 — e) In |7'|.
More formally:

OPT<c => OPT'<c + 2 (2.1)

OPT >c(l-c) Inn =» OPT' > ^—-(1 - e) In \I'\ (2.2)

Proof: The implication in (2.1) is trivial, since, given a solution of the

Restricted Minimum Set CovER-instance 7 of size c, we position a guard
at each point s3 in the corresponding Minimum Boundary restricted

Point Guard with HoLES-instance V, if the set s3 is in the solution of

7, and we position two additional guards at points Pi and P2 in I', which

see the barrier from below.

We prove the contraposition of (2.2), i.e.:

OPT' <C-^{l-e)\n\I'\ =» OPr<c(l-e)lnn

Observe that, if we are given a solution of I' with k guards, we can obtain

a solution of 7 with at most 2k sets by performing the procedure described



78 Guarding

in Section 2.3.3. Therefore:

OPT < 2^y-^(l-e)ln|7'| (2.3)

< 2^(1 -e) Inn3 (2.4)

- 2'3ïf(1_e)lnn (2>5)

< c(l-e)lnrc (2.6)

where we used |7'| < n3 to get (2.4), which is true because the polygon
of I' consists of n spikes and less than nm < n2 holes (see definition of

Restricted Minimum Set Cover). Therefore, the polygon consists of

less than k(n2 +n) points, where k is a small constant. Therefore, |7'| < n3

for n large enough. We used 2c > c + 2 to get to (2.5).
D

Lemma 2.3.8 completes the proof of Theorem 2.3.9.

Theorem 2.3.9 Minimum Boundary restricted Point Guard with

Holes cannot be approximated by a polynomial time algorithm with an ap¬

proximation ratio of i^ In n for any e > 0, where n is the number of the

polygon vertices, unless NP C T7MP(n°(loslos")).

2.3.6 Inapproximability Results for MINIMUM BOUND¬

ARY RESTRICTED VERTEX/EDGE GUARD WITH HOLES

A slight modification of the polygon as indicated in Fig. 2.18, where

b" = 2/o + b', allows us to prove the corresponding theorems for Mini¬

mum Boundary restricted Vertex Guard with Holes and Mini¬

mum Boundary restricted Edge Guard with Holes.

Theorem 2.3.10 Minimum Boundary restricted Vertex Guard

with Holes cannot be approximated by a polynomial time algorithm with

an approximation ratio of ^p^ In n for any e > 0, where n is the number of

polygon vertices, unless NP Ç T7MP(n°(loslos")).

Proof: The proof is almost identical to the proof for Minimum Bound¬

ary restricted Point Guard with Holes, except that instead of two

additional guards at Pi and P2 we have a third additional guard at P3 (see
Fig. 2.18). This additional guard means that we need to replace c + 2 by
c + 3 in the proof of Lemma 2.3.8. In addition, we get a slightly stronger
condition, namely 2c > c + 3, to obtain the inequality at (2.5).
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Figure 2.18: Polygon for Minimum Boundary restricted Ver¬

tex/Edge Guard with Holes

D

Theorem 2.3.11 Minimum Boundary restricted Edge Guard with

Holes cannot be approximated by a polynomial time algorithm with an ap¬

proximation ratio of Aj^ In n for any e > 0, where n is the number of polygon

vertices, unless NP C T7MP(n°(loslos«)).

Proof: The proof is almost identical to the proof for Minimum Boundary

restricted Point Guard with Holes with the additional information

from the proof of Theorem 2.3.10. Note that in the case of Minimum

Boundary restricted Edge Guard with Holes all guards are edges.
The proofs carry over effortlessly.

D

2.3.7 Inapproximability Results for MINIMUM VERTEX

/Edge/Point Guard with Holes

Theorem 2.3.12 Minimum Vertex/Edge/Point Guard with Holes

cannot be approximated by a polynomial time algorithm with an approxima¬
tion ratio of ^~-\nn for any e > 0, where n is the number of polygon

vertices, unless NP C TIME(n°^°^°s^).

Proof: All proofs, which lead to Theorems 2.3.9, 2.3.10 and 2.3.11 carry

over. Note that for a lemma corresponding to Lemma 2.3.8, which is the

most crucial part in the proof, we can still, virtually without change, prove

Eq. 2.1 and Eq. 2.2.

D
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2.3.8 Inapproximability Results under the Assumption
that NP ^ P

All our logarithmic inapproximablity results can actually also be proved un¬

der the weaker assumption that NP ^ P, however, with a slightly smaller

factor than 1 — e, since Minimum Dominating Set and therefore also

Restricted Minimum Set Cover cannot be approximated with an ap¬

proximation ratio of clnn for some c > 0 [4, 10, 43]. As the constant c is

still being improved in current research (it will probably ultimately reach

1 — e), we have chosen to present our results under the stronger assumption
that NP ^ TIME(n0(-l0%l°Snï), which allows us to use the stronger inap¬

proximability results for Minimum Set Cover and Minimum Restricted

Set Cover [10, 24].

2.4 Guarding 2.5 Dimensional Terrains

We prove inapproximability results for several terrain guarding problems by

proposing reductions from Restricted Set Cover, all of which are based

on the reduction proposed for Minimum Boundary restricted Point

Guard with Holes.

Theorem 2.4.1 Minimum Point Guard on Terrain cannot be ap¬

proximated by a polynomial time algorithm with an approximation ratio of

ij^ In n for any e > 0, where n is the number of terrain vertices, unless

NPCTIME{n°(lo^°sn)).

Proof: We reduce Restricted Set Cover to Minimum Point Guard

on Terrain. In a first step, we construct the same polygon with holes as

constructed in the corresponding reduction for Minimum Boundary re¬

stricted Point Guard with Holes. We then triangulate this polygon
arbitrarily, and construct a terrain, by letting the interior of the polygon
have height 0 and the exterior (including the holes in the barrier) have

height h', for a positive constant h'. To make the terrain finite, we cut

off the exterior of the polygon with a generous bounding box that is trian¬

gulated as well. Point Guard on The terrain we obtain has vertical walls,
which is for reasons of simplicity only. The terrain can easily be modified

to have steep, but not vertical walls.

The proof then carries on just as for Minimum Boundary restricted

Point Guard with Holes. The setpoints s3 are assumed to be at height
h', as are points Pi and P2; the distinguished points et, however are at

height 0.
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D

Theorem 2.4.2 Minimum Vertex Guard on Terrain cannot be ap¬

proximated by a polynomial time algorithm with an approximation ratio of

Aj^lnn for any e > 0. where n is the number of terrain vertices, unless

NP ÇT7MP(n°(losIos")).

Proof: Adopt the proof of Theorem 2.4.1 for Minimum Point Guard

on Terrain with the modifications of the constructed polygon as indicated

in Theorem 2.3.10 for Minimum Boundary restricted Vertex Guard

with Holes.

d

Theorem 2.4.3 Minimum Fixed Height Guard on Terrain cannot be

approximated by a polynomial time algorithm with an approximation ratio

of ^j^lnn for any e > 0, where n is the number of terrain vertices, unless

NP C T7MP(n°(loslos")).

Proof: Proceed as in the proof for Theorem 2.4.1, and let h, the fixed

height, where the guards can be placed, be equal to h', the height of the

exterior of the polygon.
D

Theorem 2.4.4 The problems Minimum Vertex/Point/Fixed Height

Guard on Terrain with Triangle Restriction cannot be approxi¬
mated by a polynomial time algorithm with an approximation ratio of^+lf- In n

for any e > 0, where n is the number of terrain vertices, unless NP C

T7M£(n°(losloS")).

Proof: Proceed as in the proofs for Theorems 2.4.2, 2.4.2 and 2.4.3. How¬

ever, triangulate the polygon in such a way that each spike is triangulated
into a single triangle. Note that the spikes take over the role of the distin¬

guished points. A solution for Restricted Minimum Set Cover with k

sets can still be easily transformed into a solution of the terrain guarding
instance with k guards. Furthermore, a solution of the terrain guarding
instance with k guards can still be transformed into a solution of the Re¬

stricted Minimum Set Cover instance with at most 2k sets, because

three different cones from three different elements and three different sets

do not intersect in the area above the barrier, because this is a weaker

condition than the corresponding condition with extended cones.
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D

These logarithmic inapproximablity results can also be proved under the

weaker assumption that NP ^ P with a slightly smaller factor than 1 — e,

as mentioned in Sect. 2.3.8

2.5 Approximation Algorithms

2.5.1 Introduction

Despite the success of approximation algorithms in other fields, there has

not been much research on approximation algorithms for visibility problems.
There are only very few results.

2.5.2 Approximating Polygon Guarding Problems

It is known that the four problems Minimum Vertex/Edge Guard

with(out) Holes are approximable with a ratio of O(logn), where n is

the number of polygon vertices [26]. For the sake of completeness we briefly
outline these algorithms.

The approximation algorithms partition the interior of the input poly¬

gon into "basic" convex components that are either completely visible or

invisible from any vertex- or edge-guard. These basic convex components
are obtained by drawing lines through all pairs of vertices of the polygon.
Each of the 0{n2) lines intersects at most 0(n2) lines, which gives a total of

0(n4) intersection points. Each intersection point is the vertex of a convex

component that is minimum (in the convex component) with respect to the

y-axis (where the y-axis is arbitrary but fixed). Therefore, we have 0(n4)
basic convex components.

The problem is then transformed into an instance of Minimum Set

Cover with an element for each convex component and a set for each

polygon vertex (or polygon edge). The sets contain as elements exactly the

convex components that are visible from the vertex.

Minimum Set Cover can be approximated with an approximation
ratio that is logarithmic in the number of elements of the Minimum Set

Cover instance. The greedy algorithm that achieves this ratio consists of

recursively adding to the solution the set that contains a maximum number

of elements not yet contained in the solution obtained thus far [32]. Since

we have a polynomial number of elements, the approximation ratio that the

greedy algorithm achieves remains logarithmic.
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These algorithms can easily be modified to work for Minimum Bound¬

ary restricted Vertex/Edge Guard with(out) Holes by simply
considering only those basic components that contain a part of a line seg¬

ment of the boundary of the input polygon.
The situation is far worse for point guard problems. No sophisticated ap¬

proximation algorithms are known for Minimum (Boundary restricted)
Point Guard with(out) Holes, except for an even more restricted ver¬

sion of Minimum Point Guard without Holes [1]. In fact, it is not

even known, if the corresponding decision problems are in NP.

A trivial approximation algorithm for Minimum (Boundary restrict¬

ed) Point Guard with(out) Holes simply returns all n vertices of the

polygon as a (feasible) solution. This algorithm achieves an approximation
ratio of n, because there is at least one guard needed in any feasible solution.

Note that this ratio might be improved slightly for Minimum Point Guard

without Holes by applying an algorithm that places |_fJ guards that

together see all of the interior of the polygon (see [48] for details); this could

be done similarly for Minimum Point Guard with Holes with another

algorithm (see [48] for details), but the approximation ratio remains 0(n).
A more sensible algorithm for point guard problems returns the (subop-

timum) solution found for the corresponding vertex guard problem on the

same input polygon. However, the approximation ratio remains 0(n).
Another approach for solving point guard problems works as follows:

Lay a grid of polynomial density over the polygon and then compute the

area of visibility (i.e. the part of the polygon that is visible from a guard at

this point) for each grid point. This can be done in polynomial time, since it

corresponds to constructing convex components. Here, however, we obtain

the convex components by drawing lines from each grid point through each

polygon vertex. We then obtain a Minimum Set Cover instance with sets

for each grid point and elements for each convex component. Despite of all

this extra effort, the approximation ratio remains 0(n), to the best of oui

knowledge.

2.5.3 Approximating Terrain Guarding Problems

We generalize the notion of basic convex components introduced in the pre¬

vious section to terrains. This will help us obtain approximation algorithms
for several terrain guarding problems. We obtain convex components by

constructing planes through vertices and line segments of the terrain. More

precisely, let vt,v3 and vk be vertices in a terrain T, where the vertices v%

and v3 are neighbors, i.e., the two vertices are connected by a line segment
in the triangulation of the terrain. For each line segment vx, v3 and each
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vertex vk on the terrain, we construct a plane that contains the line segment
from vt to v3 and the vertex vk. Since there are only 0(n) line segments
in the triangulation of T, this gives a total of 0(n2) planes. These planes

partition space into three dimensional cells, which in turn contain two di¬

mensional faces that are defined by (one dimensional) points, which are the

intersection points of three planes. We call this partition the arrangement

ofT. The arrangement consists of 0(n6) intersection points, faces, and cells

that can be computed in time 0(nG).2

Lemma 2.5.1 Let C be a cell in the arrangement of a terrain T. Then,

every point in the interior of cell C (i.e. any point not on the faces or

intersection points that also belong to C) sees exactly the same vertices of
terrain T as any other point in the interior of C.

Proof: Let a, b be two points in the interior of C and let vt be a vertex

on the terrain T. Assume by contradiction that b sees v,, while a does not

see vt. Then, let a' be the intersection point of the terrain T and the line

segment from point a to vertex vt that is closest to point a. Since a does

not see vu there always must be such a point a' that blocks the view. Let

b' be the intersection point of the line segment from b to v% and the plane
defined by the triangle of the terrain, on which point a' lies. Since b sees

t),, b' cannot lie on the terrain, and in particular it cannot lie on the same

triangle as a'. Consider the plane through vertex v% and the line segment of

the terrain that intersects with the line segment from a! to b'. This plane
is a part of the arrangement, but it cuts cell G apart, as it separates points
a and b from each other. Therefore, cell C is not a cell of the arrangement.
D

Lemma 2.5.2 Let C be a cell in the arrangement of a terrain T. Then,

every point in the interior of cell C sees exactly the same line segments of
the triangulation of terrain T completely as any other point in the interior

ofC.

Proof: Let a, b be two points in the interior of C and let c be the line

segment in the triangulation of T with vertices vt and v3 as endpoints.
Assume by contradiction that b sees c, while a does not see c completely.
Since a and b aie both in cell G we can assume by Lemma 2.5.1 that they
both see the two vertices vt and Vj. Consider the points on the line segment
from point a to point b as we move from a towards b. Since a does not see

2 These numbers are obtained easily using standard analysis of properties of arrange¬

ments that can be found in any textbook on computational geometry.
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segment c completely, but b does, there must be a point p from where c

is completely visible for the first time (as we move along the line segment
from a to b). Remember that by Lemma 2.5.1 vertices vt and v1 are always
visible as we move. Therefore, by definition of point p, there must be a

teirain vertex vk (other that vt and v3) on the plane defined by vt, v3 and

p. Otherwise, p would not be the first point to completely see segment c,

or not all points would see vertices vt and v3. The plane defined by v%, v3
and p is equal to the plane defined by vt, v3 and vk. This plane, however, is

part of the arrangment, since vt and v3 are neighbors in the triangulation
of terrain T; it separates points a and b, and therefore, G is not a cell of

the arrangement. D

Lemma 2.5.3 Let F be a face m the arrangement of a terrain T. Then,

every point m the interior of face F (i.e. points not on the boundary of F)
sees exactly the same vertices and the same complete line segments of the

triangulation of terrain T as any other point in the interior of F.

Proof: The proofs for the vertices and the line segments are the same as

the proois for Lemmas 2.5.1 and 2.5.2 respectively. D

Before we propose a first approximation algorithm, let us mention a few

elementary facts:

• For each cell or face of the arrangement of a terrain T, the intersection

points that are on the boundary of the cell or face see all the vertices

and line segments in the triangulation of T that any other point in the

interior of the cell or face sees. The intersection points may, however,
see a few additional vertices and line segments.

• For any point p in space and any vertex vt on terrain T, we determine if

p sees vz as follows: Compute all line segments in the triangulation ofT
that intersect the line from p to vt in the orthogonal, two dimensional

projection onto the x — y plane. Then, check for each such segment
whether the line from p to v% is above or below the segment (with
lespect to the z-axis). Point p sees vertex vt, exactly if each segment
is below the line from p to u,. This can be computed in time 0(n).

• For any point p in space and any line segment in the triangulation of

T with endpoints vt and v3, we determine if p completely sees the line

segment as follows: We fust determine whether p sees the two vertices

vt and v3. If this is affirmative, we check foi each vertex on the terrain,
which lies in the triangle vt,v3,p in its orthogonal projection onto the
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x — y plane, whether the vertex lies above or below the triangle vt,v3,p

(with respect to the z-axis). Point p completely sees the segment from

v, to v3, exactly if each such vertex lies below the triangle. This can

be computed in time 0(n).

• We can determine if a point in space completely sees a triangle on

the terrain by determining if it completely sees all three sides of the

triangle. This takes 0{n) time.

We are now ready to prove approximation results.

Theorem 2.5.4 Minimum Fixed Height Guard on Terrain with

Triangle Restriction can be approximated by a polynomial time algo¬
rithm with a ratio ofO(logn), where n is the number of terrain vertices.

Proof: Consider the intersection of the arrangment of terrain T with the

plane at z = h. This intersection is itself a two dimensional arrangement.
Since we know from Lemmas 2.5.2 and 2.5.3 that all interior points in a

cell or in a face see the same line segments in the triangulation of T and

the boundary points may see a few additional line segments, it suffices to

determine at each of the 0(n6) intersection points (i.e. points in the two

dimensional arrangement at height h, where two lines cross), which triangles
it sees completely. This can be done in 0(n6 n n) = 0(n8) time.

We can now interpret this information as a Minimum Set Cover in¬

stance, where each triangle in the terrain is an element and each intersection

point defines a set, namely the set of triangles that it sees completely. This

instance consists of 0(n) elements and 0(n6) different sets. We now solve

the Minimum Set Cover instance approximately, by applying the greedy
algorithm for Minimum Set Cover. The greedy algorithm runs in time

0(n8) as does the whole approximation algorithm. It achieves an approxi¬
mation ratio of O(logn).

Theorem 2.5.5 MINIMUM VERTEX GUARD ON TERRAIN WITH TRIAN¬

GLE Restriction can be approximated by a polynomial time algorithm with

a ratio of O(logn), where n is the number of terrain vertices.

Proof: We again build a Minimum Set Cover instance, where each

triangle in the terrain is an element and each vertex defines a set, i.e., the set

of triangles that it sees completely. In order to do this, we have to compute
n sets, each of which takes time 0(n2). This gives a total construction time

of 0{n3).



2.5 Approximation Algorithms 87

Solving the Minimum Set Cover instance by applying the greedy al¬

gorithm takes time 0(n3) and achieves an approximation ratio of O(logn).
a

Theorem 2.5.6 Minimum Vertex Guard on Terrain can be approx¬

imated by a polynomial time algorithm with a ratio of O(\ogn), where n is

the number of terrain vertices.

Proof: Consider the intersection of the arrangement of T with the terrain

T itself. This intersection partitions all triangles of the terrain into two

dimensional cells. Within such a cell, all points see the same set of vertices

according to Lemma 2.5.3. The "inverse" holds as well: Any vertex in the

terrain either sees such cell completely or not at all (except for points on

the boundary of the cell). There are 0(n6) such cells that can be computed
in time 0(n6). Note that we can determine in time 0(n), whether a vertex

sees a cell, by testing whether it sees an interior point of the cell.3

We construct a Minimum Set Cover instance, where each cell in the

terrain, which results from intersecting the arrangement of T with T itself,
is an element and each vertex defines a set, i.e., the set of all cells that it sees

completely. We have to compute n sets, each of which takes time 0(n7).
This gives a total construction time of 0(ns).

We again solve the Minimum Set Cover instance by applying the

greedy algorithm. This takes time 0(n ) and achieves an approximation
ratio of O(logn).

Theorem 2.5.7 Minimum Point Guard on Terrain with Triangle

Restriction can be approximated by a polynomial time algorithm with a

ratio of O(logn). where n is the number of terrain vertices.

Proof: Consider once again the intersection of the arrangement of T

with the terrain T itself that partitions all triangles of the terrain into two

dimensional cells. Within such a cell, all points see the same set of line

segments of the triangulation of T according to Lemma 2.5.3; they also all

see the same set of triangles on the terrain. Therefore, it suffices to place
point guards at intersection points (i.e. points in on the terrain, where two

lines of the arrangement cross).
We construct a MINIMUM Set COVER instance, where each triangle in

the triangulation of the terrain is an element and each intersection point

3 We can find an interior point by drawing two arbitrary diagonals and taking the

intersection or — in the case of a triangle — by computing its center of gravity.
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on the terrain defines a set, namely the set of all triangles that it sees

completely. We have to compute 0(n6) sets, each of which takes time

0(n2). This gives a total construction time of 0(na).
We again solve the Minimum Set Cover instance by applying the

greedy algorithm. This takes time 0(n8) and achieves an approximation
ratio of 0(logn). G

In all the approximation algorithms proposed for terrain guarding prob¬
lems in the proofs of the previous lemmas, we have focused on the poly-

nomiality of these algorithms. The running times are truly upper bounds,
since there exist algorithms, particularly for computing the horizon from a

point in the terrain [13], that might be adopted to work for our problems
as well with somewhat improved running times.

No sophisticated approximation algorithms are known for Minimum

Point Guard on Terrain and Minimum Fixed Height Guard on

Terrain. These problems seem to defy all attempts to somehow discretize

the space of all possible guard positions. Again, we can come up with several

approaches to find good solutions for these two problems:
A trivial approximation algorithm for MINIMUM POINT GUARD ON

Terrain simply puts a guard at each vertex of the terrain, thus achiev¬

ing an approximation ratio of n, since at least one guard is always needed.

A trivial approximation algorithm for Minimum Fixed Height Guard

on Terrain with approximation ratio n places a guard above each vertex of

the terrain at height h. Again, the approximation ratios could be improved

by a constant factor, since there exists an algorithm [6] that always places

L^J (vertex-)guards on a terrain that together see all of the terrain. For

Minimum Fixed Height Guard on Terrain, we could also reduce the

approximation ratio to ^ by determining whether height h is large enough
such that the whole terrain can be seen from one single guard at some point
at height h. The position of such a guard can be computed in linear time

using linear programming (mentioned in [49] as the problem of computing
the lowest watchtower). An approximation algorithm for MINIMUM FIXED

Height Guard on Terrain could return the position of such a guard
and if no such guard exists, it would proceed as in the trivial algorithm.
However, the approximation ratios remain 0(n) for all problems.

A better approach, even if the approximation ratio remains 0(n), would

be to solve the corresponding problems with triangle restriction, for which

we have given approximation algorithms above.

Finally, the last approach from Sect. 2.5.2, which consists of laying a grid
over the polygon, can be used here as well: We just lay a regular polynomial
density grid onto the plane z = h or the terrain itself and construct a MlN-
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Chapter 3

Hiding

3.1 Hiding in Polygons without Holes

3.1.1 Introduction

We propose a gap-preserving reduction from Maximum 5-Occurrence-2-

Satisfiability to Maximum Hidden Set on Polygon without Holes,
which allows us to prove the APA"-hardness of Maximum HIDDEN Set on

Polygon without Holes. The same reduction will also work for Max¬

imum Hidden Vertex Set on Polygon without Holes with minor

modifications.

3.1.2 Construction of the Reduction

Suppose we are given an instance L of Maximum 5-Occurrence-2-Satis-

fiability, which consists of n variables xo, .., xn-i and m clauses

Co, ...,cm_i. We construct a polygon without holes, i.e. an instance /'

of Maximum Hidden Set on Polygon without Holes, which consists

of clause patterns and variable patterns, as shown schematically in Fig.
3.1. The construction looks somewhat similar to the construction from

Sect. 2.2, where we reduced Minimum 5-Occurrence-3-Satisfiability

to Minimum Boundary Restricted Point Guard without Holes;
in fact, the main building blocks are alike: we have a variable pattern for

each variable that consists of a TRUE- and a FALSE-leg. We have a clause

pattern for each clause that is a simple zig-zag line forming 3 dents. The

variable patterns contain a small dent, which we will call "cone", for each

occurrence of the variable in the input satisfiability formula. These cones

"connect" the variable patterns with the clause patterns.
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Figure 3.1: Schematic construction

We construct a variable pattern for each variable xl as indicated in Fig.
3.2. Each variable pattern consists of a TRUE- and a FALSE-leg. Each

leg has on its left boundary a maximum of five triangle-shaped dents with

vertices fk for k — 1,..., 5. Each of these dents represents the lower part
of a cone that connects the variable pattern to a clause pattern, in which

the variable appears as a literal, as indicated in Fig. 3.3. Since these dents

are triangle-shaped, we call the whole dent the triangle of fk. All these

triangles are attached to a single line as indicated in Fig. 3.2 on their right

side, i.e.the "right" line segments of each triangle in a leg are collinear.

Each variable pattern contains at its right side exactly four dents with

vertices v\, v2, v3, and w. The construction is such that a point that is hiding
in the triangle of any fk sees the triangles of v±,v2, and v3 completely, but

it does not see the triangle of w. Therefore, we can hide in each leg a point
at vertex w and additional points either in the triangles of fk on the left

side or in the triangles of Vk on the right side, but not in both. The idea is

the following: if the variable is TRUE, then we hide points in the TRUE-leg
of the variable pattern at vertices fk, for k

— 1,..., 5 and at vertex w. In

the FALSE leg, we hide points at vertices vi,v2,v3, and w-

For each clause ct we construct a clause pattern as indicated in Fig.
3.3. A clause pattern contsists of three dents, where the left and the right
dent represent the literals of the clause. The middle dent represents the
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TRUE-leg FALSE-leg

Figure 3.2: Variable pattern

truth value of the clause. The construction is such that we can hide three

points in the clausepattern (i.e. one in each dent), exactly if the clause is

satisfied. We can hide only two points (one in the left and one the right

dent), otherwise. To achieve this we connect the variable patterns to the

clause patterns with cones as illustrated in Fig. 3.3 for two variables x% and

x3 and a clause {x%, —>x3). This works accordingly for other types of clauses.

3.1.3 Analysis of the Reduction

We will show that this reduction is gap-preserving, i.e., it maps an NP-

hard promise problem of Maximum 5-Occurrence-2-Satisfiability to

an A^P-hard promise problem of MAXIMUM HIDDEN Set ON POLYGON

without Holes. The reduction has the following properties:

Lemma 3.1.1 // there exists a truth assignment S to the variables of the

Maximum 5-Occurrence-2-Satisfiability instance I that satisfies at

least (1 — e)m clauses, then there exists a solution S' of the Maximum
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Literal x
{

Literal "i x •

Variable pattern x1 Variable pattern x

Figure 3.3: Clause pattern with cones

Hidden Set without Holes instance I' with \S'\ > 10n + 2m+(l-e)m.

Proof: If variable x% is TRUE in S, then we let the vertices /i,...,/s
and w of the TRUE-leg of xt, as well as the vertices v\,v2,v3 and w of the

FALSE-leg of xz be in the solution S"; vice-versa if x% is FALSE in S. This

gives us lOn points in S'.

The remaining points for S' are in the clause patterns. Figure 3.3 shows

the clause pattern for a clause [xl,^x3)1, together with the cones that link

the clause pattern to the corresponding variable patterns. Remember that

these cones are not part of the polygon boundary. To understand Fig. 3.3,
assume xt is assigned the value FALSE and x3 is assigned the value TRUE,
i.e., the clause [x%, ^x3) is not satisfied. Then there is a point in the solution

that sits at vertex fk (for some k) in the FALSE-leg of x% and a point that

The proofs work accordingly for other types of clauses, such as (xt, x3).
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sits at vertex f'k (for some k') in the TRUE-leg of x3. In this case, we can

have only two additional points in the solution 5" at points Q) , @ •
In

the remaining three cases, where the variables xl and x3 are assigned truth

values such that the clause is satisfied, we can have three additional points
in S' at Q> - (6) : If x% and x} are both FALSE in the solution S, then we

hide points in the clause pattern at point (Î), @, and (5). If xt and x3 are

both TRUE, then we hide points in the clause pattern at point (2), @, and

©. If x, is TRUE and x3 is FALSE, then we can hide points in the clause

pattern at point (2) and ©, and one additional point, at either (3) or (4).

Therefore, we have 2 points from all unsatisfied clauses and 3 points
from all satisfied clauses, i.e. 2em + 3(1 — e)m points that are hidden in the

clause patterns. Thus, l^'j > 10?î + 2m + (1 — e)m, as claimed. D

Lemma 3.1.2 If there exists a solution S' of I' with \S'\ > lOn + 3m— (e +
~f)m, then there exists a variable assignment S of I that satisfies at least

(1 — e — 7)m clauses.

Proof: For any solution S', we can assume that in each leg of each variable

pattern, all points in S' are either in the triangles of vertices fi,...,fs and

w, or in the triangles of vertices vi, v2.v3, and w. To see this, note that

there can be at most one point in each leg outside the triangles. This point

completely sees at least one triangle, and we can move the point to the

triangle, which results again in a feasible solution. Furthermore, any point
in any triangle of f\,..., f$ sees the triangles of v\,v2, v3 completely (and
vice-versa).2

As a first step in transforming the solution S', we move the points that

are hiding in the triangles to the vertices fk, v\,v2,v3, and w respectively.
This transformation is obviously no problem for the triangles of vi, v2, v3,

and w. Moving the points in the triangles of vertices fk will sligthly change
the cones that they see as indicated in Fig. 3.3 through dashed lines. How¬

ever, we can still position at least the same number of points in the clause

patterns. Thus, this transformation yields a feasible hidden set of points
that consists of at least as many points as the original solution.

We now describe how to transform the solution S' (with |S"| > lOn +

3ra — (e + 7)772) in such a way that it remains feasible, that its size (i.e.
the number of hidden points) does not decrease, and that we will be able

to assign truth values to the variables. This is done with an enumeration

of all possible cases, i.e. we show how to transform the solution if there is

a point hidden in 3, 4, or 5 of the triangles of the points /i, •
, /s in the

2We need the triangle of w to ensure that, if there are points hiding in the triangles
of the fk's, there can be no additional point hiding outside the triangles in the leg.
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TRUE-leg and the FALSE-leg of a variable pattern. Our goal is that at

the end, we have for each variable pattern the six points at /i,..., /s, and

w from one leg in the solution and the 4 points v%,v2, «3, and w from the

other leg. Thus, we can easily obtain a truth assignment for the variables

by letting variable x% be TRUE iff the six points at /1,..., /s, and w from

the TRUE-leg are in the solution.

For each variable xt, we argue as follows:

• If there are 5 points hidden at vertices fk of the TRUE leg of x% and

3 points at vertices vi of the FALSE leg (or vice-versa), then we are

already at the position that we want to get to.

• If there are 5 points hidden at vertices fk of the TRUE leg of x% and

5,4,3,2, or 1 point(s) at vertices fk of the FALSE leg, then we delete

the points in the FALSE leg and set 3 hidden points at vertices vi of

the FALSE leg. This yields a better solution, since the difference of

guards in the variable pattern is -2,-1,0,-1-1,-1-2 and we can position

5,4,3,2.1 additional guards in the dents of the clause patterns that

correspond to literals of x%. These additional guards could not have

been placed in the original solution, since the whole area of the dents

was seen by the points at vertices fk of both the TRUE and the FALSE

leg. This works accordingly, if we switch the FALSE and the TRUE

leg in the argument.

• If there are 4 points hidden at vertices fk of the TRUE leg of x% and

4,3,2, or 1 point(s) at vertices fk of the FALSE leg, then we delete

the points in the FALSE leg and set 3 hidden points at vertices vi

of the FALSE leg. Moreover, we place an additional point at the

one vertex fk in the TRUE leg, where there is not already a point

hiding. Again, this yields a better solution, since the difference of

guards in the variable pattern is 0,+l,+2,+3 and we can position at

least 3,2,1,0 additional guards in the dents of the clause patterns that

correspond to literals of xt, which was impossible before. Because of

the additional guard at fk in the TRUE leg, we might lose at most

one hidden point in a middle dent of a clause pattern. Again, this

works accordingly, if we switch the FALSE and the TRUE leg in the

argument.

• If there are 3 points hidden at vertices fk of the TRUE leg of x% and 3,2,
or 1 point(s) at vertices fk of the FALSE leg, then we delete the points
in the FALSE leg and set 3 hidden points at vertices v\ of the FALSE

leg. Moreover, we place two additional points at the two vertices fk
and fk' in the TRUE leg, where there is not already a point hiding.
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Again, this yields a better solution, since the difference of guards in

the variable pattern is -(-2,4-3,+4 and we can position at least 1,0,0
additional guards in the dents of the clause patterns that correspond
to literals of xt. Because of the additional guards TRUE leg, we lose

at most two hidden points in middle dents of clause patterns. Again,
this works accordingly, if we switch the FALSE and the TRUE leg in

the argument. We can argue in the same manner, if we have only two

or one point hidden at the vertices fk of the TRUE leg.

• If we have 3 hiding points in the vi vertices of both legs, then we

delete these points in the FALSE leg and place 5 additional points at

the vertices fk of the FALSE leg, if variable x, appears as a negative
literal more (or equally) often as as a positive literal. Again, we argue

symmetrically, if there are more positive than negative literals. This

yields a better or equally good solution, since we have 2 additional

guards in the variable pattern and we lose at most 2 guards in the

middle dents of clause patterns as we falsify at most 2 clauses.

• If we have 4,3 points hidden at vertices fk of the TRUE leg of xt and

3 points at vertices vi of the FALSE leg, then we place 1, 2 additional

guard(s) at the one vertex, the two vertices fk in the TRUE leg,
where there is not already a point hidden. This yields an equally good
solution, since we have 1,2 additional points in the variable pattern

and at most 1,2 fewer points in the middle dents of clause patterns.

Again, this works accordingly, if we switch the FALSE and the TRUE

leg.

As a last step in the transformation, we add points at each vertex w in

each leg, if there are no points hiding there already.

Thus, the transformed solution S' consists of at least 10n + 3m— (e+j)m
points, lOn of which lie in the variable patterns. At most 3 points can lie

in each clause pattern. If 3 points lie in a clause pattern, then this clause is

satisfied. Therefore, if 2 points lie in each clause pattern, there are still at

least (1 — e — y)m additional points in S'. These must lie in clause patterns

as well. Therefore, at least (1 — e — 7)m clauses are satisfied. G

Lemmas 3.1.1 and 3.1.2 transform the promise problem of Maximum

5-Occurrence-3-Satisfiability into a promise problem of Maximum

Hidden Set Without Holes. In the promise problem of Maximum

5-Occurrence-2-Satisfiability, we are promised that an optimum so¬

lution either satisfies at least (l — e)m clauses or strictly less than (1—e —7)
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clauses for some constant e, 7 > 0. For small enough values3 of e, 7 > 0, it

is A^P-hard to decide, which of the two cases is true. This follows from the

fact that Maximum 5-Occurrence-3-Satisfiability is APX-complete.
In the promise problem of Maximum Hidden Set on Polygon without

Holes, we are promised that either at least lOn + 3m — em points can be

hidden from each other, or strictly less than 10n + 3m— (e + j)m points can

be hidden from each other. Again, it is A^P-hard to decide, what is true.

Thus, Maximum Hidden Set on Polygon without Holes cannot be

approximated with an approximation ratio of:

IQn + 3m — em lOn + 3m — em —

jm jm

lOn + 3m — (e + 7)m lOn + 3m — em — 7m lOn + 3m — em — 7m

7m
= 1 +

> 1 +

IQn + 3m — em —

jm

jm

m(33 — e — 7)

> 1 +
^
33

We have used that m > n/3. Thus:

Theorem 3.1.3 Maximum Hidden Set on Polygon without Holes

is APX-hard.

If we restrict the hidden set to consist of only vertices, we can use the

same reduction and the same analysis with the modification that we intro¬

duce additional vertices in each clause pattern. More specifically, we replace
each edge of all dents of the clause patterns by two, slightly convex edges
that have their common endpoint right where the corresponding point (j) -

(6) from Fig. 3.3 is. Thus, the result carries over.

Theorem 3.1.4 Maximum Hidden Vertex Set on Polygon without

Holes is APX-hard.

3.2 Hiding in Polygons with Holes

We can prove better hardness results for hiding in polygons with holes

than for hiding in polygons without holes, as we propose a reduction from

Maximum Clique that constructs a polygons with holes that very naturally
corresponds to the graph.

3We need e as a second parameter, since we can find out in polynomial time,
whether all clauses of a MAXIMUM 5-OCCURRENCE-2-SATISFIABILITY instance are sat¬

isfiable [41];only the optimization version of MAXIMUM 5-Occurrence-2-SatispiaB!LITY

is iVP-hard.
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Figure 3.4: A graph with five vertices

Suppose we are given an instance / of Maximum Clique, i.e. an undi¬

rected graph G = [V,E), where V = vo,...,vn-i. Let m := \E\. Figure
3.4 shows an exapmle. We construct an instance I' of Maximum Hidden

Set on Polygon with Holes as follows. I' consists of a polygon with

holes. The polygon is basically a regular 2n-gon with holes, but we replace

every other vertex by a comb-like structure. Each hole is a small triangle
designed to block the view of two combs from each other, whenever the two

vertices, to which the combs correspond, are connected by an edge in the

graph. Figure 3.5 shows as an example the polygon with holes constructed

from the graph in Fig. 3.4. (Note that only the solid lines are lines of the

polygon and also note that the combs are not shown in Fig. 3.5.)
Let the regular 2?i-gon consist of vertices vo, v'0,..., «n-i, v'n-\ m coun¬

terclockwise order, to indicate that we map each vertex v% £V in the graph
to a vertex v% in the polygon.

We need some notation, first. Let eli3 denote the intersection point of

the line segment from v't-1 to v[ with the line segment from vt to v3, as

indicated in Fig. 3.6. (Note that we make liberal use of the notation index

for the vertices, i.e. vt+i is strictly speaking t)1+imolj„, accordingly for
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Figure 3.5: Polygon constructed from the graph in Fig. 3.4

i>j_i.) Let d denote the minimum of the distances of elj3 from e,iJ+i, where

the minimum is taken over all i, j — 1...., n. Let e~ (e^~ ) denote the point

at distance | from eh3 on the line from v'l_1 to v[ that is closer to v[_x (v't).
Let ms be the midpoint of the line segment from vertex vt to i;,+i and let

m[ be the intersection point of the line from v[ to m, and from e+î+1 to

ej+i i (see Fig- 3.6). Finally, let e, denote the intersection point of the line

from e~ to m[ and the line from ej to mj_j. The detailed construction of

these points is shown in Fig. 3.6.

We let the triangle formed by the three vertices e.+'„, e~„, and eT, be a

hole in the polygon iff there exists an edge in G from vt to «j. Recall Fig.

3.5, which gives an example.We now refine the polygon obtained so far by
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Figure 3.6: Points et>J, e^, and e^

cutting off a small portion at each vertex vt. Foi each i £ {0,..., n), we

introduce two new vertices u, n and w»,n3+i as indicated in Fig. 3.6. Vertex

vt)o is defined as the intersection point of the line that is parallel to the line

from Vj_i to vt and goes through point e*
x
and of the line from vt to v't.

Symmetrically, vertex vhni+1 is defined as the intersection point of the line

that is parallel to the line from v,+i to v, and that goes through point e~i+1
and of the line from v, to v'l_1.

We fix n2 — 1 additional vertices vhX,..., u, „2 on the line segment from

vho to Dj „2+i for each i as shown in Fig. 3.7. For a fixed i, the two vertices

vhi and i>j,f+i have equal distance for all I £ {0,..., n2}. Finally, we fix n2

additional vertices whi for / £ {0,..., n2} for each z. Vertex w%ti is defined

as the intersection point of the line from vertex v't_1 through vl}i with the

line from vertex vertex v[ through flj,/+i. The polygon between two vertices

v'l_i and v[ is now given by the following ordered sequence of vertices:

«8-1, «j,0t Wj,o, V,,l, W,,!, . .

., ^„2, W8,„2, Dj)n2+1, V,'

as indicated in Fig. 3.7. We call the set of all triangles vlti,wtj,vuj+i for a

fixed i and all / £ {0,..., n2} the cornt o/v,.

We have the following property of the construction.
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Figure 3.7: Construction of the comb of vt

Lemma 3.2.1 In any feasible solution S' of the Maximum Hidden Set

on Polygon with Holes instance I', at most 2n points in S can be placed
outside the combs.

Proof: In each of the n trapezoids {v[_l, v[, ^,„2+1, vho] (see Figs. 3.5 and

3.6), there can be at most one point, which gives n points in total. Moreover,

by our construction any point p in the trapezoid {v[_1, v[, m[, raj.j} (not in

the holes) can see every point p' in the ra-gon {v'0,.. .,v'n} except for points

p' in any of the holes and (possibly) except for points p' in the triangles

{K-vm't-i^ei-i,t} and K'»m(>er+i,J (see FiS- 3-6)- Therefore, all points
in S' that lie in the n-gon {v'0,..., v'n} must lie in only one of the n polygons

{e~l_x j, m'%_1, m[,e~+1,, v[, v'l_1}. Obviously, at most n points can be hidden

in any one of these polygons.
D

We have the following observation, which follows directly from the con¬

struction:

Observation 3.2.2 Any point in the comb of' v% completely sees the comb

of vertex v1, if(v,,v3) is not an edge m the graph. If(v,,v3) is an edge in

the graph, then no point in the comb of v% sees any point in the comb of v3

Given a feasible solution S' of the Maximum Hidden Set on Polygon

with Holes instance I', we obtain a feasible solution S of the Maximum

Clique instance / as follows: A vertex vt £ V is in the solution S, iff at least

one point from S' lies in the comb of vt. To see that 5 is a feasible solution,
assume by contradiction that it is not a feasible solution. Then, there exists

a pair of vertices v,,v3 £ S with no edge between them. But then, there is

by construction no hole in the polygon to block the view between the comb

of vt and the comb of vt .We need to show that the construction of I' can

be done in polynomial time and that a feasible solution can be transformed
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in polynomial time. There are 2n2 + 1 vertices in each of the n combs.

We have additional n vertices v'j. There are 2 holes for each edge in the

graph and each hole consists of 3 vertices. Therefore, the polygon consists

of 6m + 2n3 + 2n vertices. It is known in computational geometry that the

coordinates of intersection points of lines with rational coefficients can be

expressed with polynomial length. All of the points in our construction are

of this type. Therefore, the construction is polynomial. The transformation

of a feasible solution can obviously be done in polynomial time.

We obtain our inapproximability result, again, by using the technique of

gap-preserving reductions, which consists of transforming a promise problem
into another promise problem. Let OPT denote the size of an optimum
solution of the MAXIMUM CLIQUE instance /, let OPT' denote the size of

an optimum solution of the Maximum Hidden Set on Polygon with

Holes instance I', let k < n, and let e > 0.

Lemma 3.2.3 OPT > k => OPT' > n2k

Proof: If OPT > k, then there exists a clique in / of size k. We obtain

a solution for I' of size n2k by simply letting the n2 vertices W{ti for I £

{0,..., n2} be in the solution if and only if vertex vt £ V is in the clique.
The solution thus obtained for I' is feasible (see Observation 3.2.2).

Lemma 3.2.4 OPT < -^Âr- => OPT' < -^ + 2n
n1'2-* n1/2-£

Proof: We prove the contraposition: OPT' > ^ti + 2n => OPT >

1f2-e -Suppose we have a solution of I' with ?2k_e + 2n points. At most 2n

of the points in the solution can be outside the combs, because of Lemma

3.2.1. Therefore, at least "y2_8 points must be in the combs. From the

construction of the combs, it is clear that at most n2 points can hide in each

comb. Therefore, the number of combs that contain at least one point from

the solution is at least nl/2~'
=

.
ft

..
The transformation of a solution

as described above yields a solution of / with at least 1/ft2_e vertices.

Lemmas 3.2.3 and 3.2.4 transform the NP-haid promise problem of

Maximum Clique, where we are promised that the optimum solution con¬

sists of either at least k or strictly less than 1jf2_e vertices, into the A^P-hard

promise problem of Maximum Hidden Set on Polygon with Holes,
where we are promised that an optimum solution consists of either at least

n2k or strictly less than n"/2_« +2n hidden points. Thus, MAXIMUM HIDDEN
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Set on Polygon with Holes cannot be approximated with an approxi¬
mation ratio of:

2; i-e
n k 772

^+~2~n>^2~
where we have assumed that k > 2. We need to express the number of

graph vertices n by the number of polygon vertices |7'| of the polygon of
I r'l 1_

instance I'. Note that |P| < 10n3 and therefore n > ^—3 •
Thus:

n2 3i-£ \1 \6 3

>
—t >

2-24

This yields the main result of this section.

Theorem 3.2.5 Maximum Hidden Vertex Set on Polygon with

Holes cannot be approximated by any polynomial time algorithm with an

jr/ll/6—7
approximation ratio of '—^ ,

where \I'\ is the number of vertices in the

polygon, and where 7 > 0, unless NP = P.

If we restrict the hidden set to contain only vertices, we can use the

same construction. Actually, we do not need the combs, as our construc¬

tion guarantees that in any solution there can be at most 2 points hiding at

vertices other than vt. This leads to a different promise problem of Max¬

imum Hidden Vertex Set of Polygon with Holes that the promise

problem of Maximum Clique is mapped to, namely the promise problem,
where we are promised that an optimum solution consists of either at least

k vertices or strictly less than —r (- 2 vertices. Straight-forward analysis,
«2

'

using the fact that \I'\ < 5n2, leads to the follwing result.

Theorem 3.2.6 Maximum Hidden Vertex Set on Polygon with

Holes cannot be approximated by any polynomial time algorithm with an

I r/jl/4— 7

approximation ratio of ——^ ,
where \I'\ is the number of vertices in the

polygon, and where 7 > 0, unless NP — P.

3.3 Hiding in Terrains

Theorem 3.3.1 The problems Maximum Hidden Set on Terrain (Max¬
imum Hidden Vertex Set on Terrain,) cannot be approximated by

any polynomial time algorithm with an approximation ratio of J—4j
I 7-//11/4 — 7

(-—Lj ), where \I"\ is the number of vertices in the terrain, and where

7 > 0, unless NP = P.
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Proof: The proof very closely follows the lines of the proof for the in¬

approximability of Maximum Hidden (Vertex) Set on Polygon with

Holes. We use the same construction, but given the polygon with holes of

instance I' we create a terrain (i.e. instance I") by simply letting all the

area outside the polygon (including the holes) have height h and by letting
the area in the interior have height 0. This transformation from a polygon
with holes to a terrain is actually the same as described in the chapter on

guarding Chapt. 2.

We add four vertices to the terrain by introducing a rectangular bound¬

ing box around the regular 2n-gon. This yields a terrain with vertical walls,
which can be easily modified to have steep but not vertical walls, as required

by the definition of a terrain. Finally, we triangulate the terrain. The ter¬

rain thus obtained looks like a canyon of a type that can be found in the

south-west of the United States. D

3.4 Inapproximability Results under Stronger

Assumptions

All inapproximability results obtained for hiding in polygons with holes and

in terrains rely on the inapproximability result for Maximum Clique that

says [29] that this problem cannot be approximated with an approximation
ratio of nî"£, unless NP = P. There is a stronger inapproximability result

for Maximum Clique (also from [29]) that says that this problem cannot

be approximated with an approximation ratio of ?î1_e, unless NP — coR.

We could base our inapproximability results for hiding on this stronger in¬

approximability result, and thus also get slightly stronger inapproximability
results. However, we chose to omit this tedious exercise and encourage the

reader to extend our inapproximability results.
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Chapter 4

Convex Covering

4.1 Introduction

Minimum Convex Cover shares with Minimum Point Guard with-

(-out) Holes the property that its corresponding decision version is not

known to be in NP. Despite of this, we are able to propose a non-trivial

approximation algorithm for Minimum Convex Cover that achieves an

approximation ratio that is logarithmic in the number of vertices of the in¬

put polygon; no comparable algorithm is known for point guard problems.
The secret to the approximation algorithm lies in the fact that we can "dis-

cretize" the plane successfully by partitioning the interior of a given polygon
into basic components. This step could be applied iteratively, but it suffices

to do this for only two iterations for our purpose. Since each iteration pro¬

duces a partition of only polynomial size, we could iterate for any constant

number of steps. However, the degree of the polynomial describing the size

of the partition grows exponentially in the number of iterations. There¬

fore, even our approximation algorithm, which uses only two iterations, will

hardly be of practical importance, unless a way is discovered of significantly

reducing running time.

In a second part of this chapter, we show APX-hardness for Minimum

Convex Cover by modifying and interpreting an already known reduction

[12] in the context of gap-preserving reductions.
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\ /

Figure 4.1: Construction of first-order basic triangles

4.2 A Logarithmic Approximation Algorithm

4.2.1 From the Continuous to the Discrete

In this section, we consider simple input polygons with and without holes.

Let Vt denote the set of vertices (including the vertices of holes, if any)
of a given polygon T. While, in the general Minimum Convex Cover

problem, the vertices of the convex polygons that cover the input polygon
can be positioned anywhere in the interior or on the boundary of the input

polygon, we restrict their positions in an intermediate step: They may

only be positioned on a quasi-grid in the Restricted Minimum Convex

Cover problem.
In order to define the RESTRICTED MINIMUM CONVEX COVER prob¬

lem more precisely, we partition the interior of a polygon T into convex

components (as proposed in [26] and already mentioned and generalized
in the different context of guarding problems in Sect. 2.5) by drawing a

line through each pair of vertices of T. We then triangulate each convex

component arbitrarily. We call the triangles thus obtained first-order ba¬

sic triangles. Figure 4.1 shows in an example the first-order basic triangles
of a polygon (thick solid lines) with an arbitrary triangulation (fine solid

lines and dashed lines). If a polygon T consists of n vertices, drawing a

line through each pair of vertices ofT will yield less than (j) • (") £ 0(n4)
intersection points. Let V1 be the set of these intersection points that lie in

T (in the interior or on the boundary). Note that Vt C Vf1. The first-order

basic triangles are a triangulation of Vf~ inside T, therefore the number of

first-order basic triangles is also 0(n4). The RESTRICTED MINIMUM Con¬

vex Cover problem asks for a minimum number of convex polygons, with

vertices restricted to Vji, that together cover the input polygon T. We call

Vy a quasi-grid that is imposed on T. For solving the Restricted Mini¬

mum CONVEX Cover problem, we make use of a finer quasi-grid: Simply
partition T by drawing lines through each pair of points from Vf1. This
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yields again convex components, and we triangulate them again arbitrar¬

ily. This higher resolution partition yields 0(n16) intersection points, which

define the set V£. We call the resulting triangles second-order basic trian¬

gles. Obviously, there are 0(n16) second-order basic triangles. Note that

Vr Ç Vf1 Ç Vf2.

4.2.2 Optimum Solution of MINIMUM CONVEX COVER

vs. Optimum Solution of RESTRICTED MINIMUM

Convex Cover

The quasi-grids Vf1 and Vf2 serve the purpose of making a convex cover com¬

putationally efficient while at the same time guaranteeing that the cover on

the discrete quasi-grid is not much worse than the desired cover in contin¬

uous space. The following theorem proves the latter.

Theorem 4.2.1 Let T be an arbitrary simple input polygon with n vertices.

Let OPT denote the size of an optimum solution of Minimum Convex

Cover with input polygon T and let OPT' denote the size of an optimum
solution of Restricted Minimum Convex Cover with input polygon T.

Then:

OPT' < 3 OPT

Proof: We proceed as follows: We show how to expand a given, arbitrary
convex polygon C to another convex polygon C with C C G" by iteratively

expanding edges. We then replace the vertices in C by vertices from Vf1,
which results in a (possibly) non-convex polygon C" with C C C". Finally,
we describe how to obtain three convex polygons C'{, C'2, C3 with C" —

C'-[ U C'2 U C3 that only contain vertices from Vy. This will complete the

proof, since each convex polygon from an optimum solution of Minimum

Convex Cover can be replaced by at most 3 convex polygons that are

in a solution of Restricted Minimum Convex Cover. Following this

outline, let us present the proof details.

Let G be an arbitrary convex polygon inside polygon T. Let the vertices

of G be given in in clockwise order. We obtain a series of convex polygons
C1, C2,..., C with G = C° C C1 Ç C2 Ç ... Ç C", where Cî+1 is obtained

from C% as follows (see Fig. 4.2):
Let a, b, c, d be consecutive vertices (in clockwise order) in the convex

polygon C that lies inside polygon T. Let vertices b, c £ Vt, with b and

c not on the same edge of T. Then, the edge (b, c) is called expandable. If

there exists no expandable edge in C1, then C = C, which means we have

found the end of the series of convex polygons. If (b, c) is an expandable

edge, we expand the edge from vertex b to vertex c as follows:
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(a) (b) (c)

(d) (e) (f)

Figure 4.2: Expansion of edge (b,c)

• If b does not lie on the boundary of T, then we let a point p start on

b and move on the halfline through a and b away from b until either

one of two events happens: p lies on the line through c and d, or the

triangle p, c, b touches the boundary of T. Fix p as soon as the first of

these events happens.

Figure 4.2 shows a list of all possible cases, where the edges from poly¬

gon T are drawn as thick edges: Point p either lies on the intersection

point of the lines from a through b and from c through d as in case

(a), or there is a vertex vi on the line segment from p to c as in case

(b), or p lies on an edge of T as in case (c).

• If b lies on the boundary of T, i.e. on some edge of T, say from Vk to

Vk+i, then let p move as before, except that the direction of the move

is now on the way from Vk through b up until Vk+i at most (instead
of the ray from a through b).

Figure 4.2 shows a list of all possible cases: Point p either lies at vertex

Vk+i as in case (d), or on the intersection point of the lines from b to

Vk+i and from d through c as in case (e), or there is a vertex vi on

the line segment from p to c as in case (f).

A new convex polygon C%p is obtained by simply adding point p as a

vertex in the ordered set of vertices of C between the two vertices b and c.
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Furthermore, eliminate all vertices in Cp that have collinear neighbors and

that are not vertices in Vf.

Note that an edge from two consecutive vertices b and c with b,c £ Vr
can always be expanded in such a way that the triangle b, p, c that is added

to the convex polygon is non-degenerate, i.e., has non-zero area, unless b

and c both lie on the same edge of polygon T. This follows from the cases

(a) - (f) of Fig. 4.2.

Now, let C'+1 = CL, if either a new vertex of T has been added to Cp
in the expansion of the edge, which is true in cases (b), (d), and (f), or the

number of vertices of CL that are not vertices of T has decreased, which

is true in case (a). If p is as in case (c), we expand the edge (p,c), which

will result in either case (d), (e), or (f). Note that in cases (d) and (f), we
have found C1+1. If p is as in case (e), we expand the edge (p,d), which

will result in either case (d), (e), or (f). If it is case (e) again, we repeat

the procedure by expanding the edge from p and the successor (clockwise)
of d. This needs to be done at most \Cl\ times, since the procedure will

definitely stop once it gets to vertex a. Therefore, we obtain Cî+1 from Cl

in a finite number of steps. Let t, denote the number of vertices in C% that

are also vertices in T and let f,- be the number of vertices in Cl that are not

vertices in T. Now note that <f>(i) = f; — 2r,- + 2n is a function that bounds

the number of remaining steps, i.e., it strictly decreases with every increase

in i and cannot become negative. The existence of this bounding function

implies the finiteness of the series CX,G2,.. .,C of convex polygons.

By definition, there are no expandable edges left in C. Call a vertex

of C a T-vertex, if it is a vertex in T. From the definition of expandable

edges, it is clear that there can be at most two non-T-vertices between

any two consecutive T-vertices in C, and if there are two non-T-vertices

between two consecutive T-vertices, they must both lie on the same edge
in T. Let the T-vertices in C' be t\, . . .,ti in clockwise order, and let the

non-T-vertices between t{ and tj+i be f^i and th2 if they exist. We now

replace each non-T-vertex tij in C by one or two vertices t\ • and tf • that

are both elements of Vj,. This will transform the convex polygon C" into a

non-convex polygon C" (we will show later how C" can be covered by at

most three convex polygons C'{, C'2, C3).
To this end, let a, b, c be the first-order basic triangle in which non-T-

vertex t{tJ lies, as illustrated in Fig. 4.3. Points a, b, c are all visible from

both vertices ti and fj+i- To see this, assume by contradiction that the

view from, say, t{ to a is blocked by an edge e of T. Since tjj must see

ti, the edge e must contain a vertex e' in the triangle i,-,a,i,-j, but then a

cannot be a vertex of the first-order basic triangle in which t{ j lies, since

the line from vertex tt through vertex e' would cut through the first-order
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(a) (b)

(c)

Figure 4.3: Replacing non-T-vertices

basic triangle, an impossibility. Now, let dt be the intersection point of the

line from t,_i through t% and the line from t%+\ through tl+2- With similar

arguments, the triangle tt,dt,tt+i completely contains triangle a,b,c.

Assume that only one non-T-vertex tl:i exists between tt and t%+i. If the

triangle formed by tt,tl+i and a completely contains the triangle tt, i8li,i,+i,
we let t\ 1

= a, likewise for b and c (see Fig. 4.3 (b)). Otherwise, we let

C^i'^i) ne {aT^)i (a;c)) or (^>c) as m Fig- 4.3 (a), such that the polygon

tt,tj 1,t21:tt+i is convex and completely contains the triangle t,,thi,tt+i.
This is always possible by the definition of points a, b, c.

Now, assume that two non-T-vertices t%:\ and tlt2 exist between t% and

tt+i- From the definition of C", we know that ttii and tlt2 must lie on the

same edge e ofT. Therefore, the basic triangle in which thi lies must contain

a vertex a either at th± or preceeding thi on edge e along T in clockwise

order.

Let tj1 = a. The basic triangle in which th2 lies must contain a vertex

b either at ttj2 or succeeding tty2 on edge e. Let t\2 = b. See Fig. 4.3

(c). Note that the convex polygon t,,t]x,tj2,tt+i completely contains the
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Figure 4.4: Covering C" with three convex polygons

polygon ti,titi,tit2,ti+i.
After applying this change to all non-T-vertices in C", we obtain a (possi¬

bly) non-convex polygon G". First, assume that C" contains an odd number

/ of T-vertices. We let C'{ be the polygon defined by vertices ti, tk and

ti+i for all j, k and for all odd i, but i ^ /. By construction, C'[ is convex.

Let G'{ be the polygon defined by vertices U,tk and ti+\ for all j,k and

for all even i. Finally, let C3 be the polygon defined by vertices tj,tk, and

ti for all j, k. Figure 4.4 shows an example. Obviously, C'{, C2, and C3
are convex and together cover all of C". Second, assume that C" contains

an even number of T-vertices, and cover it with only two convex polygons

using the same concept. This completes the proof. D

4.2.3 Finding Maximum Convex Polygons

Assume that each second-order basic triangle from a polygon T is assigned a

weight value of either 1 or 0. In this section, we present an algorithm using
dynamic programming that computes the convex polygon M in a polygon
T that contains a maximum number of second-order basic triangles with

weight 1 and that only has vertices from Vf1. For simplicity, we call such a

polygon a maximum convex polygon. The weight of a polygon M is defined

as the sum of the weights of the second-order basic triangles in the polygon
and is denoted by \M\. We will later use the algorithm described below to

iteratively compute a maximumconvex polygon with respect to the triangles
that are not yet covered, to eventually obtain a convex cover for T.

Let a,b,c £ Vf1. Let Pa,b,c denote the maximum convex polygon that:
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Figure 4.5: Dynamic Programming

• contains only vertices from Vf1, and

• contains vertices a, b, c in counterclockwise order, and

• has a as its left-most vertex, and

• contains additional vertices only between vertices a and b.

Given three vertices a, b, c £ Vf1, let A be the (possibly infinite) area of

points that are:

• to the right of vertex a, and

• to the left of the line oriented from b through a, and

• to the left of the line oriented from b through c.

For an illustration, see Fig. 4.5. Let

P'abc= max PaAb U Aa, b, c,
deV^nA

where max is defined as follows (to simplify notation) :

max{Pi, P2}
Pi if |Pi| > |P2|
P2 otherwise

Lemma 4.2.2 P„,b,c = P'

in the polygon T.
a,b,c> if the triangle a,b,c is completely contained

Proof: Consider Pa,b,c, which is maximum by definition. Pa,b,c must

contain additional vertices between a and b (otherwise the lemma is trivially
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true). Let d' be the predecessor of b in the counterclockwise order of Pa,b,c-
Vertex d' must lie in area A as defined above, otherwise the polygon a, d', b, c

would either be non-convex, not have a as its left-most vertex, or not be in

the required counterclockwise order. Now consider P" = Pa,b,c — Aa, b, c.

From the definition of area A it is clear the P" can only contain vertices

that lie in A. Now Pa,d',b is maximum by definition, and it is considered

when computing P'a b c.
ü

Let M be a maximum convex polygon for a polygon T with weights

assigned to the second-order basic triangles. Let a be the left-most vertex

of M, let c be the predecessor of a in M in counterclockwise order, and let

b be the predecessor of c. Then |Pa,t>,c| = \M\ by definition.

We will now use Lemma 4.2.2 to construct an algorithm, which takes as

input a polygon T and an assignment of weight 0 or 1 to each second-order

basic triangle of T and computes the maximum convex polygon. To this

end, we fix vertex a £ Vf1. Let a' be a point with the same x-coordinate

and smaller j/-coordinate than a. Now, order all other vertices b £ Vf1 to the

right of a according to the angle formed by b, a, a'. Let the resulting ordered

set be B and let B' be the empty set. Take the smallest element b from B,
remove it from B and add it to set B', then for all c £ V^\B' and to the

right of a, compute weight | Aa, b, c\ of the triangle a, b, c and compute Pa,b,c
according to Lemma 4.2.2. Compute weight |Pa,6,c[ by adding \Aa,b, c\ to

|-Fa,d,fr|) where d is the maximizing argument. Note that the computation of

Pa,b,c according to Lemma 4.2.2 is always possible, since all possible vertices

d in Pa,d,b lie to the left of the line from & to a (see also definition of area

A) and have therefore smaller angles d, a, a' than b, a, a', and have therefore

already been computed. The algorithm is executed for every a £ Vf1, and

the maximum convex polygon found is returned.

Note that \T\ = n, \V^\ = 0{n4), and \VS\ = 0(nle). Ordering 0{n4)
vertices takes (9(n4logn) time. Computing the weight of a triangle takes

0(n16) time. Computing Pa,b,a takes 0(n4) time. We have to compute the

weight of 0(n8) triangles, which gives a total time of 0(n24). Finally, we

have to execute our algorithm for each a £ Vf1, which gives a total running
time of 0(n28). Space requirements are 0(tj12) by using pointers.

4.2.4 An Approximation Algorithm for Minimum Con¬

vex Cover

Given a polygon T, we obtain a convex cover by iteratively applying the

algorithm for computing a maximum convex polygon from Sect. 4.2.3. It

works as follows for an input polygon T.
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1. Let all second-order basic triangles have weight 1. Let 5 = 0.

2. Find the maximum convex polygon M of polygon T using the algo¬
rithm from Sect. 4.2.3, and add M to the solution S. Decrease the

weight of all second-order basic triangles that are contained in M to

0.1

3. Repeat step 2 until there are no second-order basic units with weight
1 left. Return S.

To obtain a performance guarantee for this algorithm, consider the MIN¬

IMUM Set Cover instance /, which has all second-order basic triangles as

elements and where the second-order basic triangles with weight 1 of each

convex polygon in T, which only contains vertices from Vp, form a set in

/. The greedy heuristic for Minimum Set Cover achieves an approxima¬
tion ratio of 1 + Inn', where n! is the number of elements in I [31] and

it works in exactly the same way as our algorithm. However, we do not

have to (and could not afford to) compute all the sets of the MINIMUM Set

Cover instance I (which would be a number exponential in n'): It suffices

to always compute a set, which contains a maximum number of elements

not yet covered by the solution thus far. This is achieved by reducing the

weights of the second-order basic triangles already in the solution to 0; i.e.

a convex polygon with maximum weight is such a set.

Note that n' = 0(n16). Therefore, our algorithm achieves an approx¬

imation ratio of O(logn) for Restricted Minimum Convex Cover on

input polygon T. Because of Theorem 4.2.1, we know that the solution

found for Restricted Minimum Convex Cover is also a solution for the

unrestricted Minimum Convex Cover that is at most a factor of O(logn)
off the optimum solution.

As for the running time of this algorithm, observe that the algorithm
adds to the solution in each round a convex polygon with non-zero weight.
Therefore, there can be at most 0(n16) rounds, which yields a total running
time of 0(n44). This completes the proof of the main theorem of this section:

Theorem 4.2.3 Minimum Convex Cover for input polygons with or

without holes can be approximated by a polynomial time algorithm with an

approximation ratio of 0(logn), where n is the number of polygon vertices.

1 Note that by the definition of second-order basic triangles, a second-order basic tri¬

angle is either completely contained in M or completely outside M.
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4.3 An Inapproximability Result

The upper bound of O(logn) on the approximation ratio for Minimum Con¬

vex Cover is not tight: We will now prove that there is a constant lower

bound on the approximation ratio, and hence a gap remains. More precisely,
we show that Minimum Convex Cover is APX-hard. Our proof of the

APX-hardness of Minimum Convex Cover for input polygons with or

without holes uses the construction that is used to prove the ArP-hardness of

this problem for input polygons without holes" [12]. However, we reduce the

problem Maximum 5-Occurrence-3-Satisfiability rather than Maxi¬

mum SATISFIABILITY (as done in the original reduction [12]) to MINIMUM

Convex Cover, and we design the reduction to be gap-preserving [3].
Maximum 5-Occurrence-3-Satisfiability is APX-complete [3].

The reduction is constructed as follows: For a given instance I of Maxi¬

mum 5-Occurrence-3-Satisfiability with n variables x\,...,xn and m

clauses c\,..., cm we construct an instance I' of Minimum Convex Cover.

To stick to the notation of [12], let /, < 5 denote the number of literals of

variable x% in the clauses, and let I — Y2"=i ^ De the total number of literals.

For each literal in I, we construct a literal pattern, which we call a

"beam machine", as illustrated in Fig. 4.6. A beam machine allows us to

send a beam, i.e., a slim convex polygon in one of two possible directions

out of the beam machine towards a structure that represents a clause. The

beam machines of all literals of a variable are then combined into a vari¬

able structureas illustrated in Fig. 4.7. All these variable structures are

then arranged in a half circle such that the beams emitted from the beam

machines reach the appropriate clause checkers, which are are simple dents.

An overview of the whole structure is given in an example in Fig. 4.8. After

this overview, let us give a more detailed description.

The beam machine that is constructed for each literal is shown in Fig.
4.6. Since no two of the four vertices a, a', b, and b' see each other, at least

four convex polygons are needed to cover the beam machine. Two of these

are the maximal convex polygons a,c,d and a',c',d. The remaining areas

around the mouth and the ear (the triangle) at b or b' can be covered by
a large convex polygon shown in light-gray in Fig. 4.6. Finally, a fourth

convex polygon is needed to cover the other ear (at b' in Fig. 4.6). This

polygon, which we call a beam, is very slim and can be extended indefinitely

beyond the mouth outside the beam machine. The large light-gray convex

polygon thus acts as a switch: depending on whether we let it cover the

ear at b or b', we can turn on the indefinite beam polygon at the other ear.

2 APX-hardness for MINIMUM CONVEX COVER for input polygons without holes implies
APA'-hardness for the same problem for input polygons with holes.
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Figure 4.6: The beam machine

However, we cannot turn on both beams and still only use four polygons to

cover the beam machine. Note that we can "focus" and "aim" the beam by
slightly bending the whole beam machine or by making the ears smaller.

The variable structure is illustrated in Fig. 4.7. Its basic shape is

butterfly-like. The beam machines for each occurrence of the variable in

a literal in a clause are set on top of the butterfly with the positive literals

on the right wing and the negative literals on the left wing of the butterfly.
For each literal we have a dent on the bottom line of the wing. If we cover

each dent of the left or right wing with a maximal convex polygon, i.e., with

a polygon that covers the whole dent and then extends canonically, then we

have covered almost all of the left or right wing except for the area around

the mouth of the variable structure and except for a small triangular region
for each literal that lies between two dents. These triangles are called beam

locks. We can cover the beam locks either by beams emanating from the

beam machines or by a single large convex polygon which also covers the

region around the mouth of the variable structure. Such a polygon is drawn

in light-gray in Fig. 4.7. In a similar way as in the beam machine, this large
convex polygon acts as a switch: in order to cover the whole variable struc¬

ture with a minimum number of convex polygons, we can have the beam

locks of only one wing covered with such a single polygon; the beam locks

of the other wing must be covered by the beams of the beam machines. In

Fig. 4.7, beams that are turned on are drawn in dark-gray, while beams

that are turned off are medium-gray. Thus, in Fig. 4.7, all beam machines
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mouth

Figure 4.7: The variable structure

of positive literals are turned off and all beam machines of negative literals

are turned on and can shine infinitely far beyond the mouth of the variable

structure.

We need four convex polygons to cover each beam machine, thus we need

4/,- convex polygons to cover the beam machines in the variable structure for

variable Xj. For each literal we need an additional polygon to cover the dent,
and we need one additional large switcher polygon to cover the mouth and

the beam locks of either the positive or negative literals. Thus, a minimum

number of 5/,--|-l convex polygons are required to cover the variable structure

of variable Xi. Note that if the beams of only one negative and one positive
literal that are both aimed towards and beyond the mouth of the variable

structure are turned on, then 5U + 2 convex polygons are needed to cover

the variable structure. On the other hand, if the beams of all (positive and

negative) literals that cover the beam locks are turned on, there are still

5/j + 1 convex polygons needed to cover the variable structure, since we also

need to cover the area around the mouth.

We arrange all variable structures in a half-circle-like shape above a base

line, which contains triangular dents that represent the clauses as illustrated

in Fig. 4.8. This is done in such a way that a beam emanating from a beam

machine of a literal that appears in a clause reaches the corresponding dent

(the clause checker) that represents that clause and thus covers it. Note
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Figure 4.8: Overview of the construction

that we can arrange the variable structures in such a way that they cannot

interfere with each other, i.e., no convex polygon can cover any beam locks

or areas around the mouth of two different variable structures. We can

achieve this by making the angles at the mouth of each variable structure

very small.

Theorem 4.3.1 Let I be an instance of Maximum 5-Occurrence-3-

SATISFIABILITY consisting ofn variables, m clauses with a total of I literals,
and let I' be the corresponding instance of Minimum Convex Cover. Let

OPT be the maximum number of satisfied clauses of I by any assignment of
the variables. Let OPT' be the minimum number of convex polygons needed

to cover the polygon of I'. Then:

OPT = m => OPT' = bl+n + l

OPT < (1 - 15e)m =>• OPT' > 51 + n + 1 + en

Proof: The first implication is trivial: If we have a variable assignment
that satsfies all variables, we turn on the beams that are aimed towards the

clause checkers of all beam machines that represent literals that are satisfied

by the assignment. We turn on the beams that are aimed towards the beam

locks for all other beam machines. Thus, we need 5/s- + 1 convex polygons to
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cover variable structure ic2. If we sum this up over all n variables we obtain

bl + n convex polygons, we need one additional polygon to cover the space

between the base line and the variable structures.

Since each clause is satisfied, we must have for each clause checker at

least one beam turned on that covers it. Thus, the convex polygons as just
described cover all of P.

We prove the second implication by proving its contraposition, i.e.,
OPT <bl + n+l+en^ OPT > (1 - 15e)m. To this end, we show

how to transform the convex polygons of any solution S' of the MINIMUM

Convex Cover instance I' in such a way that their total number does

not increase and in such a way that a truth assignment of the variables can

be "inferred" from the convex polygons that satisfies the desired number of

clauses.

Suppose we are given a solution S' of the CONVEX COVER instance with

\S'\ < 51 + n + 1 + en.

By construction, the variable generator for variable xt must be covered

by at least blt + 1 convex polygons. Moreover, by construction, there is no

convex polygon, which covers a part of a beam lock in any variable generator
and a part of a clause checker. There is not even a convex polygon which

covers a part of a beam lock and touches the horizontal line, on which the

clause checkers lie. Similarly, note that there is no convex polygon which

can cover a part of an ear of a beam machine and a part of any clause

checker, except for the clause checker associated with the beam machine.

Proceed in the following order:

1. Determine which convex polygon in S' covers the midpoint on the line

segment between the clause checkers of clause ci and C2- Transform

this polygon in such a way that it covers all of the area between

the clause checkers and the variable generators. Note that no convex

polygon that covers this midpoint can also cover any beam lock, ear

of a beam machine or clause checker. Therefore, this transformation

is not "dangerous".

2. For each clause checker proceed as follows: For each convex polygon in

S' that covers part of the clause checker and that is not a regular beam,
which leads to a beam machine associated with the clause checker, turn

the polygon into a beam to anyone of the associated beam machines.

3. If there exists a convex polygon in S' that covers parts of the interior

of at least two different variable structure, then choose any variable

structure in which it lies and cut off all other parts. This operation
is "safe", since, by construction, such a polygon cannot cover the
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beam locks or the area around the mouths of two different variable

structures.

4. For each variable structure proceed as follows:

• If the variable structure for Xi is covered by 5/,-+ 2 or more convex

polygons, then rearrange the convex polygons in such a way that

all beams that point, to clause checkers are turned on for positive
and negative literals. By construction, this is always possible
with 5/i + 2 convex polygons.

• If the variable structure for a;,- is covered by 5/j + 1 convex poly¬

gons and one beam from a beam machine for literal Xj (—iajt-) that

is aimed at its associated clause checker is turned on, then rear¬

range all convex polygons in the variable generator in such a way

that all beams from beam machines for literal x% (->a;,-) that are

aimed at the associated clause checkers are turned on.

The convex cover obtained this way is still a feasible solution. After this

transformation, we have for each variable structure X{ that either for all

negative and positive literals, the beams that are aimed towards the clause

checkers are turned on, or only for all positive or negative literals, the beams

that are aimed towards the clause checkers are turned on, or for negative
and positive literals, the beams that are aimed towards the beam locks are

turned on.

We set the truth values for the variables as follows: If all beams of literal

xt (^X{) that are aimed at clause checkers, and no beams of literal ->Xi (xt)
that are aimed at clause checkers are turned on, then let the variable Xi have

truth value TRUE (FALSE). If either all or no beams (of both literals X{

and -iXi) that are aimed at clause checkers are turned on, then let variable

Xi be TRUE.

By construction, every solution of V must consist of at least bl + n+1

convex polygons. If we transform a solution of I1 with bl + n + 1 + en convex

polygons as indicated above, we get at most en variable structures in which

the beams of all literals (positive and negative) that are aimed at the clause

checkers are turned on. By assigning all this variables the value TRUE, we

falsify at most 5 clauses for each variable, since each variable appears at

most 5 times as a literal.

Therefore, we get a solution of / with at least m — ben clauses satisfied.

Since 3m > n, the solution has at least rn(l — Ibe) satisfied clauses. D

In the promise problem of Maximum 5-Occurrence-3-Satisfiability

as described above, we are promised that either all clauses are satisfiable
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or at most a fraction of 1 — 15e of the clauses is satisfiable, and we are to

find out, which of the two possibilities is true. This problem is A^P-hard

for small enough values of e > 0 (see Chapt. 1). Therefore, Theorem 4.3.1

implies that the promise problem for Minimum Convex Cover, where we

are promised that the minimum solution contains either 5/ + n + 1 convex

polygons or at least bl + n + 1 + en convex polygons, is A^P-hard as well,
for small enough values of e > 0. Therefore, Minimum Convex Cover

cannot be approximated with a ratio of: 5'+"i"*"1i"t£" > 1 +
..

£,"
, -,
> 1 + 4=,

^l 5(+n+ i —

'

25n+n+ i —
' 27'

where we have used that I < bn and n > 1. This establishes the following:

Theorem 4.3.2 Minimum Convex Cover on input polygons with or

without holes is APX-hard.
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Chapter 5

Visibility Graphs

5.1 Introduction

In this chapter, we study the class of visibility graphs.

Definition 5.1.1 A graph G = (V, E) with vertices v\,...,vn is a visibility

graph, iff there exists a simple polygon T (with or without holes) consisting

of vertices pi,..., pn such that the polygon vertices pi and pj see each other,

*ff{vi,v3) £ E.

The visibility graph characterization problem consists of finding a set of

graph-theoretic properties that exactly define visibility graphs. It is closely
related to the visibility graph recognition problem, which consists of deter¬

mining if a given graph is a visibility graph. A lot of work has been done

on the visibility graph characterization problem (see [27, 23, 42] or [44] for

a survey), but it still is not satisfactorily solved.

A different approach to "characterizing" the class of visibility graphs
is to determine the computational complexity (and in case of ArP-hardness

the approximability) of classic graph-theoretic problems on visibility graphs.
This is what is usually done after a new graph class has been discovered

or defined. In our particular case, the fact that we cannot reconstruct

a polygon, if we are given a visibility graph forces us to distinguish two

variations of our approach. We can either assume that we are only given a

graph and we know from an oracle that we trust that it is a visibility graph,
and we then try to solve some graph-theoretic problem (such as Maximum

Clique) for the graph. In a second variation, we are given a graph and

a proof that the given graph is a visibility graph, which we can verify in

polynomial time. Obviously, this proof should be a polygon. Since we can
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easily compute the visibility graph of a given polygon (in time 0(|£|) [30]),
we might as well assume that we are only given the polygon, and we are to

solve some graph-theoretic problem on the visibility graph of this polygon.
In what follows, we will always assume the second variation, i.e., we are

given a polygon, rather than a graph.1
A considerable amount of work has been done that falls in the realm of

this approach, because many classic graph-theoretic problems have a geo¬

metric interpretation in the context of visibility graphs. We will show in

this chapter that most of our results for guarding and hiding problems from

previous chapters translate into results for problems on visibility graphs.
This even holds to a lesser extent for Minimum Convex Cover. Another

indicator for the interest in this approach is the fact that the problem Min¬

imum Coloring on Visibility Graph is mentioned as an open problem

(with respect to its computational complexity) in an open problems list [40].

5.2 Guarding or Minimum Dominating Set

The problem Minimum Dominating Set on Visibility Graph corre¬

sponds to finding a minimum set G of polygon vertices such that each

polygon vertex can be seen from at least one vertex in C. This problem
is obviously a variation of guarding. We can interpret Minimum Dom¬

inating Set on Visibility Graph as Minimum Vertex restricted

Vertex Guard for polygons with or without holes as opposed to Mini¬

mum Boundary restricted Vertex Guard.

Minimum Dominating Set on Visibility Graph is a special case of

the general Minimum Dominating Set problem and therefore, it can be

approximated by the greedy heuristic that is also used for Minimum Set

Cover with a logarithmic approximation ratio [32].
It is easy to see that the inapproximability result for Minimum Ver¬

tex Guard without Holes from Sect. 2.2 carries over to Minimum

Dominating Set on Visbility Graph, as we have not used the bound¬

ary of the input polygon2, except for the vertices, in order to obtain the

1 It does matter, which of the two variations we use. There exists, for example, a

polynomial time algorithm for MAXIMUM CLIQUE on visibility graphs, but it only works

for the second variation (see also [8]).
2This is of course only true for Minimum Boundary restricted Vertex Guard

WITHOUT HOLES. In the corresponding proof for MINIMUM BOUNDARY RESTRICTED POINT

Guard WITHOUT Holes, which is the only proof presented in detail, we have made use

of distinguished arrows, which of course are part of the boundary. This, however, is

not necessary for the corresponding vertex guard problem: since guards can only be

positioned at vertices, the role of the distinguished arrows can be taken by the vertices

that they are connected to.
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APX-hardness result. Therefore, we can still prove Theorem 2.2.6. Thus:

Corollary 5.2.1 Minimum Dominating Set on Visibility Graph for

Polygons without Holes is APX-hard.

It is also easy to see that the inapproximability results for MINIMUM

Vertex Guard with Holes from Sect. 2.3 carries over to Minimum

Dominating Set on Visbility Graph for input polygons with holes.

We can prove Lemma 2.3.8 without any significant changes. Thus:

Corollary 5.2.2 Minimum Dominating Set on Visibility Graph for

Polygons with Holes cannot be approximated by a polynomial time al¬

gorithm with an approximation ratio of ij^lnn for any e > 0, where n is

the number of the polygon vertices, unless NP C TIME(nof-l°sl°sn^).

5.3 Hiding or Maximum Independent Set

We consider the problem Maximum Independent Set on Visibility

Graph, in which we are given a simple polygon with n vertices and we

are to find the maximum independent set in the corresponding visibility

graph. This problem corresponds to finding a maximum set of polygon
vertices that are hidden from each other. Thus this problem is exactly
the problem Maximum Hidden Vertex Set, for which we have shown

inapproximability results in Chapter 3. Thus, we can copy the results from

that chapter:
Maximum Independent Set on Visibility Graph is APX-hard for

polygons without holes and NP-hard to approximate with an approximation

ratio of ^— for all 7 > 0 for polygons with holes.

5.4 Maximum Clique

5.4.1 Introduction

In this section we study the problem Maximum Clique on Visibility

Graph with(out) Holes, in which we are given a simple polygon with (out)
holes with n vertices and we are to find the largest clique in the correspond¬

ing visibility graph. Note that in the case of polygons without holes, this

problem corresponds to finding a largest (with respect to number of ver¬

tices) convex subpolygon of a given polygon. The geometric interpretation
in the case of polygons with holes is unclear. This problem has poten¬
tial applications in the setting up of antenna networks in terrains (see the
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previous chapters on guarding and hiding for the relationship of polygons
with terrains), where all antennas must see each other in order to guarantee

optimum connectivity.

We will show that Maximum Clique on Visibility Graph with

Holes cannot be approximated by any polynomial time algorithm with

an approximation ratio of !L-j— for any e > 0, unless NP = P. Thus,
Maximum Clique on Visibility Graph with Holes is almost as hard

to approximate as clique on general graphs. As usual, we propose a gap-

preserving reduction from Maximum Clique on general graphs to get this

result.

The problem Maximum Clique on Visibility Graph without Holes

is known to be solvable in time 0(n3) by slightly adopting algorithms

[5, 14, 15] that were developed to solve different problems (such as finding

empty convex polygons that are maximum with respect to the number of

vertices by connecting some of the input points). We propose an additional

0(n3) algorithm for this problem for polygons without holes in Sect. 2.3.4,
which uses dynamic programming. Our method also solves the weighted
version of this problem, in which each vertex is assigned a weight value

and the total weight of all vertices in the clique is to be maximized. We

will use this weighted version (only with weights 0 and 1) to obtain an ap¬

proximation algorithm for another visibility graph problem (see Sect. 5.5).
Our polynomial algorithm for Maximum Clique on Visibility Graph

without Holes bears some ressemblance to the dynamic programming
approach to find a maximum convex polygon in the interior of a given poly¬

gon as proposed in Chapter 4. However, we are much more concerned about

running time in this chapter than in Chapter 4, which is why we present

the algorithm in detail.

This gap of "solvable in cubic time" vs. "almost as hard to approximate
as clique" is the most extreme gap ever discovered between the two versions

of a visibility problem on polygons with vs. without holes.

5.4.2 Finding Cliques in Polygons without Holes

Our polynomial time algorithm for Maximum Clique on Visibility Graph

without Holes uses dynamic programming.

Suppose we are given a simple polygon T without holes, which consists

of n vertices v\,...,vn in counterclockwise order. We first compute the

visibility graph G = G(T) of this polygon, which can be done in time 0(|P|),
where E is the set of edges in 67 [30]. This allows us to answer queries of

the form "Does vertex vt see vertex v3 ?" in time 0(1). As we will use

a weighted version of this problem to find an approximation algorithm for
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Minimum Clique partition on Visibility Graph without Holes,
we introduce a non-negative weight wt foi each vertex vt. We are now to

find a clique in G that has a maximum total weight. In the following, all

operations are modulo n, wheie applicable.
Let At 3 k with i < j < k be the maximum clique (with respect to

its weight) among all cliques, which consist of vertices vt, v3 and Vk and

additional vertices v3* with i < / < j. Let |A,!i7)fe| denote the weight of

-4i,j,fc- The optimum solution OPT is:

OPT = At33 where i, j are such that \Ah3^3 | = max |ASlJ)j|
l<î<j<n

Given all At>3i3, OPT can be computed in 0(n2) time. A can be con¬

sidered to be a three-dimensional table. It is initialized as follows:

A,i+i3 = {vt, vt+i, v3}, Ve, j, where vertices vt, vt+i, v3 all see each other

This initialization can be done in time 0(n3). The remaining entries of

the table A are initialized with empty sets and then computed according to

Lemma 5.4.1.

Lemma 5.4.1 Assume vertices vt, v3, and Vk see each other. Then,A,t3jk =

At 3i 3ÖVk, where j' is such that \A,i3ii3\ = rnax|-i4.j,y j|, where the maximum

is taken over all j" with i < j" < j and where v3" sees v%, v3, and vk.

Proof: The proof is inductive. Suppose we know that the lemma holds

for Ait3tk> with k' < k. To show that it also holds for Alj3tk, we assume

by contradiction that there exists a clique P', which consists of vertices vt,

v3 and vk and additional vertices vii with i < I' < j and which is strictly
heavier than At,3,k (as computed in the Lemma). Let vi be the vertex in

P' that is the neighbor of v3 in P' in clockwise order, when we interpret
the clique P' as a convex polygon. Now, consider the clique Altil3, which is

maximum by assumption. Because v3 is the neighboring vertex of vi in P',
we have \P'\ < jA!;;i7| + wk.

We will now argue that veitex vk can be added to the clique At i 3
and

the resulting set of vertices (i.e. Al:it3 Uwt) is still a clique. Consider Fig.
5.1. First, note that vertex v3 must lie to the right of the line from vt to

Vk, because vertices vt, v3 and vk all see each other and because t < j < k.

Since vt,vi, v3, Vk £ P' and i < / < j < k and since P' is a clique, vertex vj

must lie to the right of the line from vertex vt to Vk and to the left of the line

from v3 to Vk- Now, consider all vertices /" £ Attit3 that lie between i and

/ (i.e. i < I" < I). By definition of Atiit3, all these vertices see vt, vi and v3.

This implies that all vertices v;" also see vk, because any polygon segment
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Figure 5.1: Proof of Lemma 5.4.1

blocking the view of some vertex vy to Vk would imply the existence of a

polygon segment that would block the view oft)/// to either v, or v\. We have

shown that all vertices in Aij.j also see vk, therefore Ay,j Uvfc is a clique as

well. The polygon A,-^^ is among those polygons over which the maximum

is taken in the Lemma to compute Aij:k- Therefore, [A-j^l > P', which is

a contradiction to the assumption that P' is strictly heavier than Aitj,k- n

A trivial implementation of the algorithm thus suggested would have a

running time of 0(n) for each of the 0(n3) table entries, which results in

an overall running time of 0(n4). It is, however, possible to implement the

algorithm with a total running time of 0(n3). To achieve this, we show how

to compute A'J,fc with i, j fixed and Aj'.j already computed for i < j' < j,
in time 0(n) (for all k with j < k < i). This directly leads to an 0(n3)
algorithm, since there are only 0(n2) pairs i,j.

To speed up the algorithm, fix i,j. Then compute all Vk with j < k < i

that are visible from v% and Vj. Let K denote the counterclockwise ordered

set of all these vertices vk Let L denote the clockwise ordered set of vertices

vi with i < I < j that are visible to both V{ and v3.

For each vertex ui £ L (working from v3 towards V{): Determine, which

vertices Vk £ K are visible from Vj. Let k' < k". Note that if vj sees

Vk' £ K, then it also sees vk" £ K. Let i>kml„ denote the first vk- £ K

that sees vi. It suffices to just "link" vkmin ^ -^ to Aitit3 (depending on

the implementation, a "link" could be an entry in some record field or a

pointer). Note that as we work our way through L from v3 to Vi, the vjtmm's
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get smaller, i.e. proceed towards v3. Thus, determining vkmm can be done

in total time 0(\K\) for all vt £ L (if (|A"| > \L\, otherwise it is 0(\L\)). We

now scan through A". If vk £ K is "linked" to some Aijj, we compare the

weight of A,t3ii with the weight of the currently optimum solution. If \At<3ti\
is greater than the weight of the currently optimum solution, we update
the currently optimum solution to A;j7y. If vk is not "linked", we link it to

the currently optimum solution. Now, set At,j)k to the currently optimum
solution with Vk added. We also store [A; jfc|. This scanning through K
can be done in time 0(|A"|). Thus, the total running time to compute Aji?ifc
for all k is 0(max{|£|, |A|}), which is 0{n).

Let us summarize the result of this section:

Theorem 5.4.2 The weighted version of Maximum Clique on Visibil¬

ity Graph without Holes, where non-negative weights are assigned to

the vertices, can be solved in time 0(n3) using dynamic programming.

5.4.3 Finding Cliques in Polygons with Holes

We propose a gap-preserving reduction from the Maximum Clique prob¬
lem to the Maximum Clique on Visibility Graph with Holes prob¬
lem. Our reduction maps the promise problem of MAXIMUM CLIQUE to the

promise problem Maximum Clique ON Polygons WITH Holes. Suppose
we are given an instance / of the promise problem Maximum Clique, i.e.,
a graph G = (V, E) with n := \V\ and an integer k with 2 < k < n, where

e > 0 is arbitrarily small, but fixed. We are promised that the size of a

maximum clique in the graph G is either at least k or strictly less than

k2_t. It is NP-hard to decide which of these two cases is true (see Sect.

1.3).
The polygon with holes that we construct is virtually the same as the

one that we used to show an inapproximability result for Maximum Hid¬

den Set on Polygons with Holes in Sect. 3.2. The basic idea of the

reduction is shown in Figs. 3.4 and 3.5. For each instance / of Maximum

Clique, i.e., for each graph G = (V, E) with n := \V\ (as shown in an

example in Fig. 3.4), we construct an instance I' of Maximum Clique on

Visibility Graph With Holes, i.e., a polygon with holes (as shown in

an example in Fig. 3.5). We shortly repeat the main steps of the construc¬

tion: The main polygon is in the shape of a regular 2n-gon with vertices

named «,- and v[ for i £ {l,...,n}. For each vertex pair (vi,Vj) ^ E, we

construct two small triangular holes, one around the intersection point of

the line segment from Vj to v3 and the line segment from v[ to v'i+1, and

one around the intersection point of the line segment from v, to Vj and the

line segment from v1- to v'j+1. These triangular holes are designed to block
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Figure 5.2: Chain of vertex v.

the view of vertices vt and v3 that are not supposed to see each other, since

they are not connected by an edge in the input graph. See Sect. 3.2 for

more details.

In order to make the reduction work, we refine the polygon with holes

obtained thus far as follows:

For each i, let v\ :— u,?o and vf- :— vl}n2+1. See Sect. 3.2 for the defi¬

nition of these points. For each vertex vt, we replace the two line segments
from vf to vt to vf- by a convex chain of of n3 — 1 line segments (called
the chain of vt). This is illustrated in Fig. 5.2. By the way that we chose

points v^ and v^t it is ensured that any two vertices from chains of vt and

v7 see each other, iff (u,, v3) £ E .

The following two lemmas allow us to prove the main result of this

section. Let OPT denote the size of an optimum solution of the Maximum

Clique instance / and let OPT' denote the size of an optimum solution

of the Maximum Clique on Visibility Graph with Holes instance I'.

Let e > 0.

Lemma 5.4.3 OPT > fc =^ OPT' > n3k

Proof: If OPT > k, then there exists a clique of size k in /. We obtain a

clique in I' of size n3k by simply letting all the n3 vertices of the chain of

v, be in the solution, if vertex vt £ V is in the clique.

Lemma 5.4.4 OPT < -£=; => OPT' < -^ + 3n2
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Proof: We prove the contraposition: OPT' > 1^b7 + 3n2 =$ OPT >

--— Suppose we have a solution of I' with
—yjt^t + 3n2 points. Since

^T72
there are at most n(n—l) holes with 3 vertices each and n additional vertices

v'i, there can be at most 3n(n — 1) + n < 3n2 vertices in the clique that

are not part of the chain of some i>;. Therefore, at least /k_ vertices of

the clique must be in chains. Since a chain consists of only n3 vertices,
each chain can contribute at most n3 vertices to the clique. Therefore, the

number of chains that contain at least one point from the solution is at least

"

3
=

—rpr—. Since no two vertices of two different chains Vi and Vj see

each other unless (vj, Vj) £ E, we immediately have a solution for / with at

least
^n=7

vertices by letting v.-t be in the clique if at least one point of the

chain of V{ is in the solution.

D

Lemmas 5.4.3 and 5.4.4 transform the promise problem of Maximum

Clique as mentioned above into a promise problem of Maximum Clique

on Visibility Graph with Holes, where we are promised that an op¬

timum solution contains either at least n3k vertices or strictly less than

"/k_t + 3n2 vertices. It is also iVP-hard to decide, which of the two cases is

true, since otherwise, we could solve the ArP-hard promise problem of Max¬

imum Clique. Maximum Clique on Visibility Graph with Holes

can therefore not be approximated by any polynomial time approximation

algorithm with an approximation ratio of:

n3k n3k n3k n1'2-'
>

n3fc i q„2 n'Qk+Sn1-2' — 2n3fe 9

„1/2-e t
on

nl/2-e n1/2-«

We now need to express the size |7'| of the Maximum Clique on Vis¬

ibility Graph with Holes instance I' by the size n of the Maximum

Clique instance /. According to the construction, |P| > 2ra4. We proceed:

|/'|^-e)

> -Â±^ >
2-2-4

This completes the proof of our main theorem of this section:

Theorem 5.4.5 Maximum Clique on Visibility Graphs with Holes

cannot be approximated by any polynomial time algorithm with an approxi-

motion ratio of -—L_
1
where \I'\ is the number of vertices in the polygon

and where 7 > 0, unless NP = P.



134 Visibility Graphs

5.5 Minimum Clique Partition

5.5.1 Introduction

The problem Minimum Clique Partition consists of finding a partition¬

ing of the vertices of a given graph into a minimum number of disjoint
vertex sets, each of which must be a clique in the graph. Again, we can

define this problem on visibility graphs of polygons with or without holes.

In the case of polygon without holes, this problem is closely related to Min¬

imum Convex Cover without Holes. Minimum Clique Partition

on Visibility Graphs without Holes is a variant of Minimum Con¬

vex Cover WITHOUT Holes, where only the vertices are of interest (not
the edges or the interior area of the polygon).

Again, it is easy to see that the APA"-hardness result for Minimum

Convex Cover presented in Chapter 5 carries over to Minimum Clique

Partition on Visibility Graphs without Holes.

In this chapter, we propose an approximation algorithm for MINIMUM

Clique Partition on Visibility Graphs without Holes that itera-

tively applies the algorithm for the weighted version of Maximum Clique

on Visibility Graph without Holes and show that it achieves a log¬
arithmic approximation ratio. Of course, this approach is very similar to

the approximation algorithm for Minimum Convex Cover presented in

Chapter 4. This result sheds some light on the approximability of Mini¬

mum Clique Partition on Visibility Graphs without Holes, but it

still is not known whether a constant approximation ratio can be achieved

or whether the logarithmic approximation algorithm presented is optimum.
There seems to be no straight-forward geometric interpretation of Max¬

imum Clique Partition on Visibility Graph with Holes, but the

problem is certainly of theoretic interest, as we propose a gap-preserving
reduction in this section from Maximum Clique Partition on general
graphs that shows that Maximum Clique Partition on Visibility Graph

1/14—7
WITH Holes cannot be approximated with an approximation ratio of

-—^—

for any 7 > 0.

This is the first result for a visibility problem that is NP-hard no mat¬

ter whether holes are allowed or not, where we are able to show that the

approximation properties are clearly different for the cases of polygons with

vs. without holes: While Maximum Clique Partition on Visibility

Graph WITH Holes cannot be approximated with an approximation ratio
1/14 — 7

of
-—j—

for any 7 > 0, we have a logarithmic approximation algorithm for

Minimum Clique Partition on Visibility Graphs without Holes.
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5.5.2 Finding Clique Partitions in Polygons without

Holes

Our approximation algorithm for Minimum Clique Partition on Vis-

bility Graph without Holes iteratively applies the polynomial time

algorithm for the weighted version of MAXIMUM CLIQUE ON Visibility

Graph without Holes. It works as follows for a given polygon T:

1. Compute the visibility graph G(T) of the polygon T. Let all vertices

have weight 1.

2. Find the maximum weighted clique C in G(T) using the algorithm

proposed in Sect. 2.3.4. Let all vertices vi £ C have weight 0. Add G

to the solution S.

3. Repeat step 2 until there are no vertices with weight 1 left. Return S.

To obtain a performance guarantee of this algorithm, consider the Minimum

Set Cover instance I, which has all polygon vertices V{ as elements and

the vertices of each clique in the visibility graph of the polygon are a set

in I. The greedy heuristic for Minimum Set Cover, which consists of

recursively adding to the solution a set, which contains a maximum number

of elements not yet covered by the solution, achieves an approximation ratio

of 1 + Inn, where n is the number of elements in / [31].
Our algorithm works in exactly this way. Note that we do not have to

compute all the sets of the Minimum Set Cover instance I (which would

possibly be a number exponential in n), since it suffices to always compute

a set (or clique), which contains a maximum number of vertices not yet

covered by the solution, which is achieved by reducing the weights of the

vertices already in the solution to 0. Thus, our algorithm is polynomial.

Theorem 5.5.1 Minimum Clique Partition on Visibility Graph

without Holes can be approximated with an approximation ratio ofO(\ogn),
where n is the number of polygon vertices, by a greedy heuristic.

5.5.3 Finding Clique Partitions in Polygons with Holes

Minimum Clique Partition on general graphs is equivalent to Minimum

Graph Coloring [10]. It cannot be approximated by any polynomial time

algorithm with an approximation ratio of n1' 7_e, where e > 0 and n is the

number of vertices in the graph [10]. We propose a gap-preserving reduction

from Minimum Clique Partition on general graphs to Minimum Clique
Partition on Visibility Graph with Holes. Again, we map the NP-

hard promise problem of Minimum Clique Partition on general graphs,
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where we are promised that an optimum solution consists of either at most

k or strictly more than nll7~ek cliques, to a promise problem of MINIMUM

Clique Partition on Visibility Graph with Holes, where we are

promised that an optimum solution consists of either at most k + 3 or

strictly more than n1l7~k cliques.
We use the same construction as used in Sect. 5.4.3. However, we

do not need to use the "chains" as introduced in Sect. 5.4.3. Let OPT

(OPT) denote the size of an optimum solution of the Maximum Clique

Partition (Maximum Clique Partition on Visibility Graph with

Holes) instance / (I'). Let e > 0.

Lemma 5.5.2 OPT < k =ï OPT < k + 3 and OPT > nx>7-ek =>

OPT > n1!7-^

Proof: For the first implication: If OPT < k, then there exists a solution

of size k in I. We obtain a solution in P of size k + 3 by simply letting
all cliques from the solution in / be cliques in /' and by adding three more

cliques. One of these consists of all the "bottom" vertices of all holes (i.e.
those vertices that lie on line segments between points v[_l and v\ for all i).
The holes are constructed in such a way that these vertices actually form

a clique (see Chapter 3). The second clique consists of the "top" vertices

of all holes. The third clique consists of all vertices v[. The construction of

the reduction ensures that these additional cliques actually are cliques. We

prove the contraposition of the second implication: A solution for I' can

be interpreted as a solution for I, where the additional vertices of I' are

ignored.

We now proceed as in Sect. 5.4.3 using the same concepts. Lemma 5.5.2

and the fact that |/'| > 3n2 allow us to prove:

Theorem 5.5.3 Maximum Clique Partition on Visibility Graph

WITH HOLES cannot be approximated by any polynomial time algorithm with
I r/l 1/14-7

an approximation ratio of '—^ ,
where \I'\ is the number of vertices in

the polygon and where j > 0, unless NP = P.

5.6 Hamilton Circles in Visibility Graphs

A graph G = (V, E) with V = {vi,..., vn} is said to contain a Hamilton

circle, if there exists a circle in G starting and ending w.l.o.g. at vertex vi

and visiting each vertex in V exactly once.

Trivially, all visibility graphs of polygons without holes have a Hamilton

circle: in a polygon T, given by a (say, clockwise) ordered list of vertices

{vi,..., v„}, this ordered list also describes a Hamilton circle.
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n
Figure 5.3: A polygon with holes and without a Hamilton circle

Visibility graphs of polygons with holes, on the other hand, do not nec¬

essarily contain a Hamilton circle as the polygon in Fig. 5.3 demonstrates

[47]: vertices vi, v3, v$, «7 only see their neighboring vertices. Therefore, a

potential Hamilton circle would start at vertex vi, then w.l.o.g. continue to

v2. Then it would have to continue to ^3, which would be cut off otherwise.

The potential Hamilton circle would thus continue along the boundary of

the outer polygon until it reaches vertex v§, from which it has to go back

to vi in order not to cut off v\. The vertices vg,..., «12 of the holes are not

reached in this potential Hamilton circle.
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Chapter 6

Conclusion

We can look at almost all of the results in this thesis in the context of

approximability classes as introduced in Chapt. 1. The following tables

summarize the results, where each table covers one of the main chapters,

i.e., guarding, hiding, convex covering, and visibility graphs. The tables

show the best approximation ratios that known approximation algorithms

achieve, as well as the strongest inapproximability results known for the

problem. The sources of the results are also indicated: they either point to

a section of this thesis or to another publication.



Guarding
Problem:

Minimum Fixed Height

Guard on 1.5D Ter¬

rain

Minimum (Boundary
restricted) Vertex

Guard on Polygons

without Holes

Minimum (Boundary
restricted) Edge

Guard on Polygons

without Holes

Minimum (Boundary

restricted) Point

Guard on Polygons

without Holes

Minimum (Boundary
restricted) Vertex

Guard on Polygons

with Holes

Minimum (Boundary
restricted) Edge

Guard on Polygons

with Holes

Minimum (Boundary

restricted) Point

Guard on Polygons

with Holes

Best inap¬

proximabil¬

ity Result:

Best approx¬

imation algo¬
rithm:

e P, 2.1, [37]

APX-hard,
2.2

£ "logn",

[26]

APX-hard,
2.2

£ "logn",

[26]

APX-haxd,
2.2

£ "logn",

[26]

"log n"-hard,
2.3

£ "log n",

[26]

"logn"-hard,
2.3

e "logn",

[26]

"logn"-hard,
2.3

£ V",-
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Minimum Vertex

Guard on Terrain

"logn"-hard,
2.4

6 "log n",
2.5

Minimum Vertex

Guard on Terrain

with Triangle Re¬

striction

"logn"-hard,
2.4

6 "logn",
2.5

Minimum Point Guard

on Terrain

"logn"-hard,
2.4

£ "nc", 2.5

Minimum Point Guard

on Terrain with Tri¬

angle Restriction

"logn"-hard,
2.4

£ "logn",
2.5

Minimum Fixed Height

Guard on Terrain

"logn"-hard,
2.4

£ "n"', 2.5

Minimum Fixed Height

Guard on Terrain

with Triangle Re¬

striction

"logn"-hard,
2.4

£ "logn",
2.5

Thus, for some guarding problems, a gap between the best inapproxima¬

bility result and the best approximation algorithm remains. Most notably,
it is not clear whether Minimum Vertex Guard on Polygon without

Holes is in APX or whether it is "log «"-complete. This is an important
and certainly interesting, open problem.

For some point guard variations as well as for unrestricted fixed height

guarding problems, the approach of Sect. 2.5 of discretizing the space of

possible guard positions in order to obtain an approximation algorithm does

not work. It is therefore an interesting open problem to find approximation

algorithms for these problems that achieve non-trivial approximation ratios.
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Hiding
Problem: Best inap¬

proximabil¬

ity Result:

Best approx¬

imation algo¬
rithm:

Maximum Hidden

(Vertex) Set on Poly¬

gon without Holes

APX-hard,
3.1

e "ne", -

Maximum Hidden

(Vertex) Set on

Polygon with Holes

"ne"-hard,
3.2

£ "n"', -

Maximum Hidden

(Vertex) Set on

Terrain

"n°'-hard,
3.3

£ "ne",-

The approximability of hiding problems is settled for input polygons
with holes and for terrains, i.e., they are "ne"-complete. The corresponding
algorithms that achieve such ratios are all trivial: an algorithm that simply
returns a single vertex always achieves a ratio of n.

However, the situation is not settled for input polygons without holes.

Here, a large gap remains.

Convex Covering
Problem: Best inap¬

proximabil¬

ity Result:

Best approx¬

imation algo¬
rithm:

Minimum Convex

Cover on Polygon

with(out) Holes

APX-hard,
4.3

£ "logn",
4.2

Thus, for Minimum Convex Cover a gap remains: It is not clear, if

this problem is in APX or "logn"-complete. This is an open problem for

future research. Furthermore, it is not clear whether allowing holes in the

input polygons makes a difference.
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Visibility Graphs
Problem: Best inap¬

proximabil¬

ity result:

Best approx¬

imation algo¬
rithm:

Minimum Dominat¬

ing Set on Visibility

Graph for Polygon

without Holes

APX-hard,

5.2

£ "logn",

[31]

Minimum Dominat¬

ing Set on Visibility

Graph for Polygon

with Holes

"logn"-hard,
5.2

£ "logn",

[31]

Maximum Indepen¬

dent Set on Visibility

Graph for Polygon

without Holes

APX-hard,
5.3

£ "n"\ -

Maximum Indepen¬

dent Set on Visibility

Graph for Polygon

with Holes

"ne"-hard,
5.3

£ "n",-

Maximum Clique on

Visibility Graph for

Polygon without

Holes

£ P, 5.4, [14]

Maximum Clique on

Visibility Graph for

Polygon with Holes

"n^-hard,
5.4

£ "ne",~

Minimum Clique Par¬

tition on Visibility

Graph for Polygon

without Holes

APX-hard,
5.5

£ "logn",
5.5

Minimum Clique Par¬

tition on Visibility

Graph for Polygon

with Holes

'V'-hard,
5.5

e "n"',~

As a last result, we have from Sect. 5.6 that visibility graphs of polygons
without holes always contain a Hamilton circle, while some visibility graphs
of polygons with holes do not contain a Hamilton circle.

Thus, for problems restricted to visibility graphs, some gaps in the inap¬

proximability remain. However, the problems MAXIMUM CLIQUE ON ViS-
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iBiLiTY Graph and Minimum Clique Partition on Visibility Graph

clearly show that allowing holes in the input polygons does make a differ¬

ence.

To conclude, let us note that approximation algorithms are very rare for

geometric problems in general (see comments in [31]); they are particularly
rare for visibility problems (as mentioned in [48]). The same holds to an

even greater extent for inapproximability results. It is the sincere hope of

the author that this thesis will be a starting point to more intense research

in the field of approximability and inapproximability of geometric problems
in general and visibility problems in particular. As can be read from the

tables above, an interesting set of problems remains open: a challenge for

future research.
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