
Diss. ETHN° 13403

Foundations of Dynamic Geometry

A dissertation submitted to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

for the degree of Doctor of Technical Sciences

presented by

Dipl.-Math. Ulrich Kortenkamp

born 18th October 1970

citizen of Germany

accepted on the recommendation of

Prof. Jürgen Richter-Gebert, examiner

Prof. Günter M. Ziegler, co-examiner

1999

2

Preface

Calvin and Hobbes Copyright 1988 Watterson Used by permission of Universal Press Syndicate All rights reserved

Although it is known that Calvin and Hobbes tell the truth about life, I was surprised that

Bill Watterson knew in 1988 what Jürgen Richter-Gebert and I had to learn ten years later:

Sometimes it is necessary to use imaginary numbers even for seemingly trivial tasks.

This thesis shall explain the details of a method called complex tracing, and lay the

foundations ofDynamic Geometry, a new field of research that opened up after we solved

the continuity problem for interactive geometry software.

I came into this project right after I decided not to write my thesis on Cinderella, the

interactive geometry software which at that time was a project of Jürgen Richter-Gebert

and Henry Crapo, but on neighborly polytopes. After the first few weeks of implementing
the new version of Cinderella in Java I understood why it is really hard to write "just
another geometry software." I had to try to implement a dynamic geometry software in

order to understand why it is difficult to create a software that "behaves as expected." It

needs a mathematical theory, and it was not clear to us what to do three years ago.

It was in early 1998 when we had our "ultimate break-through." The time since then

was spent for the implementation of the theory, and it is nice to see that this implementa¬
tion was published before we even started to write papers about it. This "proof of concept"
did help me very much while preparing this thesis.

I want to thank Jürgen for all the discussions, arguments, quarrels, overnight just-in-
time hacks, lessons in geometry, motivating break-throughs and especially for all the fun

3

4

that was needed to create the stimulating atmosphere that made the Cinderella project

possible. Thank you!
Most of the results in this thesis are collaborative efforts of Jürgen and myself, and

I will not try to separate who of us contributed what piece of the big puzzle. I feel very

lucky to be in a work group that tries to concentrate on getting work done rather than

non-disclosing ideas to avoid that they are "stolen."

Another person that I want to thank is Günter Ziegler, who gave me enough free¬

dom to leave Berlin without feeling too guilty. I promise that I will work on neighborly

polytopes again, someday. I learned a lot from Günter, and I admire his ability to put

mathematical pieces in the right context and to translate between the different languages
of mathematicians. He also enabled Jürgen and me to work on the Cinderella project in

Berlin. Without that support it would have been much harder.

There are more persons that made this thesis possible. Among all the others I want

to emphasize my friends Eva-Maria Feichtner and Alex Below, who had to share offices

with me. Thanks go also to all the people in the work groups and the guests of Günter and

Jürgen, and the many friendly mathematicians I met at conferences.

Last but definitely not least I want to thank my wife Doro and my children Mara and

Julius, who had to suffer a lot. First I was busy to finish the software, then I was busy

finishing this thesis - both took much longer than expected - and probably there will be

something else next. Without your love and help I could never have done this, and there

would be no reason to go through all this trouble. Thank you!
Wherever you find the words "his" or "him" or "he" in this thesis, you can try to

replace them by "her" or "she." If the sentence still makes sense, then I meant to include

both versions.

Ulrich Kortenkamp

Zürich, August-October 1999

Contents

Zusammenfassung 11

Abstract 13

1 What is Dynamic Geometry? 15

2 The Interactive Geometry Software Cinderella 19

2.1 Basic Functionality 19

2.2 Main Features 21

2.2.1 Multiple, different, simultaneous views 21

2.2.2 Complex Numbers 27

2.2.3 Cayley-Klein Geometries 27

2.2.4 No Jumping Elements 28

2.2.5 Automatic Theorem Checking 28

2.2.6 Self-exploring Loci 30

2.2.7 High Quality Postscript Output 30

2.2.8 Easy WWW-Export 30

2.2.9 Interactive Exercises 32

2.3 Availability 32

3 Site Map 35

3.1 Mathematics 35

3.1.1 A Framework for Dynamic Geometry 35

3.1.2 Projective Dynamic Geometry 35

3.1.3 Circles and Conies 36

3.1.4 Complex Tracing 36

3.2 Computer Science 36

3.2.1 Java-based Software 36

3.2.2 Efficient Datastructures for Dynamic Geometry 36

3.3 Education 37

3.3.1 Creativity in Math Education 37

3.3.2 Geometry Education and the Internet 37

5

6

3.3.3 Future Developments 37

4 A Framework for Dynamic Geometry 39

4.1 Straight-Line Programs 39

4.2 Relational Instruction Sets 40

4.3 Geometric Straight-Line Programs 42

5 Projective Dynamic Geometry 47

5.1 Points and Lines 47

5.1.1 Homogeneous Coordinates 48

5.1.2 GSP formulation of point/line constructions 51

5.1.3 An SLP formulation 53

5.1.4 Homogeneous RIS GSPs and division-free SLPs are equivalent 54

5.1.5 Abstract Point/Line-RIS GSPs and SLPs 58

5.2 Determinism, Conservatism, Continuity 58

5.3 Randomized Proving 60

5.3.1 Testing Polynomials 60

5.3.2 The Schwartz-Zippel Theorem 61

5.3.3 The Test-Set Lemma 62

5.3.4 Automatic Theorem Proving for Constructive Point/Line-Incidence

Theorems 62

5.3.5 Related Results 70

5.4 Measurements 72

6 Circles and Conies 75

6.1 Extending point/line-constructions 75

6.1.1 Representation of Conies 75

6.1.2 Basic operations 76

6.1.3 GSP formulations 83

6.2 Determinism vs. Continuity 84

6.2.1 Iterated angular bisectors 84

6.2.2 Finite Augmentation does not help 85

6.2.3 Reverse Augmentation 87

6.2.4 Is Continuity important? 87

6.2.5 Algorithm continuity 89

6.2.6 Surfaces 90

6.3 Tracing 92

6.3.1 Complex Elements 92

6.3.2 Singularities 94

6.4 Is Continuity Achievable? 97

6.4.1 Constructible Functions 97

7

7 Complex Tracing 103

7.1 A parameterization of the input space 103

7.2 The Main Idea 104

7.2.1 A small Example 104

7.3 Complex Tracing 106

7.3.1 Reparameterization 106

7.3.2 Continuations and Riemann surfaces 108

7.4 Automatic Theorem Checking 110

7.5 Complexity issues 112

8 Java-based Software 115

8.1 Why choose Java? 115

8.1.1 The History of Cinderella 115

8.1.2 Rapid Application Development 117

8.2 Deploying Java Applications 117

8.2.1 Post-Optimizing Java Applications 118

8.2.2 Platform Independent Installations 120

9 Efficient Datastructures for Dynamic Geometry 123

9.1 Comparision to the traditional approach 123

9.1.1 The Usual Approach: Subclassing 124

9.1.2 Elements and Algorithms 125

9.1.3 Data structures for updates 125

9.1.4 Model-View-Controller implementation 126

9.2 Implementing Complex Tracing 128

9.2.1 Parametrization 129

9.2.2 Tracing 130

9.2.3 Decisionmaking 131

9.2.4 Avoiding tracing 131

9.2.5 Backups and Singularities 132

9.3 Automatic Theorem Checking 133

9.3.1 Using Automatic Theorem Checking for Clean Data Structures
. .

133

9.3.2 Using Automatic Theorem Checking for Exercises 135

9.3.3 A Killer Example 136

9.4 Self-Exploring Loci 137

10 Creativity in Math Education 139

10.1 The need for mathematical consistency 139

10.2 The need for modularity 140

10.3 Raising creativity by restriction 141

10.4 Exploring Geometry with Loci 141

8

11 Geometry Education and the Internet 145

11.1 Creating Web content 145

11.2 Easy Creation of Interactive Web Pages 145

11.3 Theorem Checking for Exercises 146

11.4 Distance Teaching 148

11.4.1 Remote Views 148

11.4.2 Web-based Education 148

11.4.3 Communities 150

12 Future developments 151

12.1 Computation on Riemann Surfaces 151

12.1.1 Complex Tracing 151

12.1.2 Symbolic Methods 152

12.1.3 Parameterization 152

12.1.4 Automatic Theorem Proving 152

12.1.5 Complexity issues 153

12.1.6 Constraint based configurations 153

12.2 Dynamic Geometry Software 153

12.2.1 Third Dimension 153

12.2.2 Macros 154

12.2.3 Education 154

12.3 Other Applications 155

12.3.1 Computational Geometry 155

12.3.2 Parametric CAD/CAM 156

12.3.3 Computational Kinematics 156

12.3.4 Virtual Reality 157

13 Conclusion 159

A Alphabetic Glossary 163

B Bibliography 165

C Curriculum Vitae 175

List of Figures

1.1 Geometry software session 16

2.1 Appolonius' construction 20

2.2 Three Euclidean viewports 22

2.3 Parallel Bundles in a Spherical Viewport 23

2.4 Offset Parabola in a Spherical Viewport 24

2.5 Polar Cardio Curve 25

2.6 Hyperbolic Steps 25

2.7 Hyperbolic Incircle 26

2.8 The radical Axis 27

2.9 Three different geometries 28

2.10 Theorem Checking in Cinderella 29

2.11 A conchoidal curve 30

2.12 HTML integration 31

2.13 Interactive Exercise 33

5.1 Embedding of R2 in MP2 49

5.2 Polar version of Pappos' Theorem 51

5.3 Von-Staudt Addition 57

5.4 Von-Staudt Subtraction 57

5.5 Von-Staudt Multiplication 57

5.6 Pappos' Theorem 69

5.7 A regular pentagon 70

5.8 Pappos' Theorem 71

5.9 Cayley-Klein Measurements 73

6.1 Circle by center and point 78

6.2 Intersecting two Conies 82

6.3 Conic radicals 82

6.4 Angular bisector construction 83

6.5 Angular quadrisectors 85

6.6 Sign decisions don't work 86

6.7 Iterated Angular Bisectors 87

9

10

6.8 Mirror construction for segments 88

6.9 Benchmark Example 88

6.10 Construction generating a surface 90

6.11 Surfaces generated by a construction 91

6.12 Near-to decisions 92

6.13 Midpoint construction 93

6.14 Radical Axes Theorem 94

6.15 Crash at a Singularity 95

6.16 Local vs. global decisions 96

6.17 Removable singularity 97

6.18 Constructing Vx2 99

6.19 Constructing (*,/(*)) 100

6.20 Constructing the derivative 101

7.1 Parameterization of the Input 104

7.2 Tangent situation causing a singularity 105

7.3 Avoiding the tangent situation 105

7.4 Angular Bisector Theorem Ill

8.1 The first Java-based Cinderella 116

9.1 Traditional Class Hierarchy 124

9.2 Algorithms and Elements 126

9.3 Construction Update Datastructure 127

9.4 Model-View-Controller structure 128

9.5 Intermediate step 129

9.6 Near-to-Decision 131

9.7 Point/Line-incidence proving 134

9.8 Automatic Theorem Proving in Exercises 136

9.9 A four bar linkage 138

10.1 Loci of special triangle points 142

10.2 Variations on the 4-bar-linkage 143

11.1 Mathsnet 149

11.2 Angliacampus Example 149

12.1 Variational Design 156

Zusammenfassung

Diese Arbeit behandelt die mathematischen, informationstechnischen und didaktischen

Grundlagen der Dynamischen Geometrie.

Bisher gab es kein Computerprogramm, welches die dynamische Manipulation von

zweidimensionalen Konstruktionen mathematisch zufriedenstellend gelöst hätte. Die Um¬

setzung des Poncelet'schen Kontinuitätsprinzips ist nur in der reinen Mathematik ge¬

lungen: der Grundsatz, dass mathematische Eigenschaften auch dann erhalten bleiben

müssen, wenn sie nicht sichtbar sind, blieb auf der Strecke, obwohl er in der Geometrie

geboren wurde. Es geht gar so weit, dass die Gültigkeitsbereiche von Konstruktionen un¬

tersucht werden, die aber eben nicht durch die Mathematik vorgegeben werden, sondern

durch die jeweils eingesetzte Software.

In dieser Arbeit versuche ich, die Mathematik und die Informatik wieder ein Stück

näher zusammen zu bringen. Im ersten, mathematischen Teil, wird anhand von konkreten

Beispielen untersucht, woher die merkwürdigen, unerwarteten Effekte in Geometriepro¬

grammen kommen, wieso manchmal - scheinbar unmotiviert - Elemente verschwinden

oder über grosse Entfernungen springen. Es wird die Grenze gesucht zwischen trivialer

Implementation und den echten mathematischen Herausforderungen: Welche Konstruk¬

tionen erzeugen die Probleme? Was ist noch einfach?

Zunächst muss dafür ein formaler Rahmen für Dynamische Geometrie definiert wer¬

den, innerhalb dessen klar formuliert werden kann, welche Eigenschaften ein Geome¬

triesystem hat. An Punkten und Geraden wird gezeigt, wie mit homogenen Koordinaten,

Projektiver Geometrie und Cayley-Klein Geometrien ein in sich geschlossenes System ge¬

bildet wird, welches sowohl deterministisch ist als auch kontinuierliches Verhalten zeigt.
Zudem können Inzidenzsätze innerhalb dieses Systems einfach mit Methoden der Rando-

misierung bewiesen werden.

Dann wird der Versuch gestartet, auch Kreise (oder Kegelschnitte) in das System

einzugliedern. Eine Hauptaussage wird sein, dass wir dann nicht erwarten können, ein

deterministisches und kontinuierliches System zu erhalten. Die Frage, ob es überhaupt

möglich sei, kontinuierliches Verhalten zu erzeugen, - schon allein dadurch berechtigt,
dass es bislang keine Geometriesoftware gab, die dieses zeigte - kann dann aber schliess¬

lich positiv beantwortet werden. Der Weg zu einem kontinuierlichen System führt wieder

zu den Methoden, die sich aus der Geometrie hinaus gebildet haben, und die Lösung
des Kontinuitätsproblems der Dynamischen Geometrie liegt in der Zuordnung geeigneter
Riemannscher Flächen zu den Konstruktionselementen.

11

12

Die konkrete Anwendung der Theorie komplexer Funktionen erfordert aber auch eine

Umsetzung auf rechnerischer Ebene. Diese wird im zweiten Teil der Arbeit behandelt.

Einige der Implementations-Details wie sie der Geometriesoftware Cinderella zugrunde

liegen werden vorgestellt, und auf die Unterschiede und neuen Probleme im Gegensatz
zu "klassischen" Geometrieprogrammen hingewiesen. Zusätzlich wird darauf eingegan¬

gen, wie die neuen Möglichkeiten des weltumspannenden Internets durch den Einsatz der

Sprache Java genutzt werden können, welche Probleme dabei auftreten, und wie sie gelöst
werden können.

Im dritten Teil der Arbeit gehe ich darauf ein, wieso selbst für schulmathematische

Zwecke ein derart komplexes mathematisches Fundament von Nöten ist. Die Notwendig¬
keit der korrekten mathematischen Behandlung von Geometrie auf dem Rechner sowie

der flexiblen, modularen und möglichst allgemeinen Programmierung wird am Beispiel
des kreativitätsbildenden Einsatzes des Computers im Mathematikunterricht diskutiert.

Als konkretes neues Einsatzgebiet dynamischer Geometriesoftware kann, basierend auf

den mathematischen Methoden des ersten Teils und der Anbindung an das Internet, die im

zweiten Teil beschrieben wurde, die Erstellung interaktiver Geometrie-Arbeitsblätter ge¬

nannt werden. Diese können von Schülern und Studenten online bearbeitet werden, und

das Programm gibt selbstständig Hilfestellungen und überprüft die Lösung. Dabei wird

der Lösungsweg nicht starr vorgeschrieben, sondern kann durchaus von der vorgegeben

Lösung abweichen. Ohne den im mathematischen Teil eingeführten Begriff des geome¬

trischen Satzes wäre dieses automatische Überprüfen von Lösungsvorschlägen gar nicht

möglich, es wäre noch nicht einmal klar, was es überhaupt heisst, dass eine Konstruktion

das korrekte Ergebnis liefert.

Ausserhalb der zweidimensionalen computergestützten Geometrie gibt es noch weite¬

re Anwendungsfelder, beispielsweise parametrisches CAD, computergestütze Kinematik

oder auch das ganze Gebiet der "virtual reality," die mit dem gleichen oder ähnlichen Me¬

thoden bearbeitet werden können. Diesen Anwendungen widmet sich der letzte Teil, in

dem auch offene und weiterführende Fragen angesprochen werden.

Abstract

This thesis is about the foundations of Dynamic Geometry with respect to mathematics,

computer science and education.

Up to today there was no software which could handle dynamic manipulation of two-

dimensional constructions in a mathematically satisfying way. Only in the pure math¬

ematics the principle of continuity of Poncelet, stating that any mathematical property

must remain valid even if it is not visible, has found its place; geometry, which was its

birthplace, went on untouched. Even worse, nowadays the domains of validity of con¬

structions are examined, which are not caused by mathematics, but by specific implemen¬
tations within the software used.

This thesis is trying to close the gap between mathematics and computer science a

little bit. The first, mathematical part, will explore the strange and unexpected effects in

geometry software using concrete examples. It will be asked, why sometimes - seemingly
without reason - elements disappear or jump from one position to the other. The border

between trivial implementation and real mathematical challenges will be made visible:

Which constructions are causing the problems? And what is still easy to do?

At first there must be a formal framework for Dynamic Geometry, which will enable

us to speak about the properties of a geometry system. Using points and lines as a test

example we will show how homogeneous coordinates, Projective Geometry and Cayley-
Klein geometries work together as a closed system. This system is determined by its

input elements and continuous at the same time. In addition, it is easily possible to prove

incidence theorems with methods of randomization within that system.

Next we will try to add circles (or conies) to this system. A main point will be that

we cannot expect to get a system that is uniquely determined by the input and continu¬

ous. The question whether it is possible at all to get continuous behavior - a reasonable

question, since there was no continuous geometry software up to now - can be answered

positively in the end. Going back to the methods that were once coming from Geometry
we will create a continuous system. The solution to the problem of continuity in Dynamic

Geometry will be based on assigning suitable Riemann surfaces to the construction ele¬

ments.

The application of the theory of complex functions requires also a transfer to com¬

putational methods. We will address this in the second part of the thesis. Some of the

implementation details ofthe geometry software Cinderella will be presented. The differ¬

ences and new problems in contrast to the "classic" geometry packages will be explained.

13

14

The new possibilities of the world wide connecting Internet can be accessed by using Java

as the implementation language, and the problems that are caused by this choice as well

as the corresponding solutions are discussed.

In the third part I will explain why even for school-level geometry such a complex
mathematical foundation is necessary. The importance of a correct mathematical treat¬

ment of geometry on a computer as well as a flexible, modular and most general pro¬

gramming will be shown using the process of building creativity with the help of the

computer in mathematics classes. As a concrete and new application of geometry soft¬

ware, which is based on the mathematical methods of the first part and its connection with

the Internet as described in part two, I will show interactive exercises. These can be done

online, and the software will give context-sensitive hints to the solution automatically,
and it will also check whether a solution is correct. Here the path to the solution is not

fixed, but can differ from the given solution. Without the notion of geometric theorems

as developed in the mathematical part this automatic checking of solutions would not be

possible; moreover, it would not be clear at all what it means for a construction to give a

correct result.

Apart from two-dimensional computer based geometry there are several other areas

where the same or similar methods can be applied; parametric CAD, computational kine¬

matics or the whole field of virtual reality, just to mention a few. These applications are

the topic of the last part, which is also devoted to open and continuing questions.

Chapter 1

What is Dynamic Geometry?

Twenty-five years ago computers were not at all suited for visual manipulation of ge¬

ometry. They were lacking the high-resolution graphics devices we can find today in all

computers, they did not have easy-to-use input devices like mice, some were even fed with

punch-cards still, and their memory and CPU could not handle large amounts of data in

the blazing speed we became used to today. Also, there were much more basic problems
in data processing that had to be solved before - the book series "The Art of Computer

Programming" by Donald Knuth [43, 44, 45] was still brand new (and everybody was

sure that the next volume will be available soon, which has not changed since then), it

was just a few years ago that the revolutionary programming language Pascal had been

introduced by Niklaus Wirth [88], algorithms like Quicksort [45], which is now taught to

every computer science student, were still exciting.

In these twenty-five years a lot has changed. Computers are on every desktop, 8-years
old seem to know more than their teachers about it, high-speed 3D-rendering is affordable

and any good computer game needs it. You can buy personal digital assistants that fit in

your pocket and outperform the big computers of the 70's by far. The computers talk to

each other via phone or cable lines, everybody has email and a homepage, the Internet is

the revolutionary new medium at the end of the millennium. The world of computers has

changed from the black/green character-based terminals that only gurus could handle to

the multi-colored streaming video virtual reality for everybody.

This radical change has opened new areas for the use of computers. It is not surprising
that during the 80's a new discipline called "Dynamic Geometry" had appeared, that at

first tried to use computers as a ruler and compass replacement. That is, using a mouse

and a high-resolution display you can draw lines and circles, use their intersections and

make a printout of your drawing. A first benefit of using a computer here is the increased

accuracy of the drawing - you will be able to use the exact intersection of two lines, even

if you are not very skilled in drawing. But the important enhancement with respect to

the old tools ruler and compass is that the computer can record the way you constructed

lines, points and circles, and the software is able to quickly redo the construction after

you changed some parameter. This is the key to interactivity: Grab a point, move it and

15

What is Dynamic Geometry'? 16

Figure IIA typical session with a Dynamic Geometry software The user has a toolbar with

different tools like "draw a line" (ruler), "draw a circle" (compass) which he chooses to perform
certain tasks Below is a drawing surface where these tasks are carried out, comparable a sheet of

paper

The Screenshot shows a construction of a conchoidal curve, which can be done with a marked ruler

(see [21])

see immediately how the construction changes

This dragging capability is the fundamental improvement versus the mechanical de¬

vices ruler and compass Most times when you start a construction from scratch, you have

no control over the intermediate construction elements, and it might (willI) happen that

some parts ofthe construction are clustered or lie outside the drawing surface Ifyou have

the chance to move free objects while you construct or after you are done you can avoid

these effects

Much more important is the fact that you can explore the dynamic behavior of a con¬

struction by moving it You can see what parts of the construction change and which re¬

main the same You get by far more insight into this particular construction and geometry

in general if you can experience what happens under movements A more sophisticated
software will also let you give another dimension ofunderstanding by supporting loci, the

17 What is Dynamic Geometry"?

traces of objects under movement of other objects, that are adjusted dynamically as well.

The first software packages that could be used for Dynamic Geometry were Geome¬

ter's Sketchpad [36], which appeared first in 1989, and Cabri Géomètre [54], dating back

to 1988, and they started another revolution: Computers could be used in school for teach¬

ing geometry, and since then a lot of work has been done that discusses the many aspects

of using Dynamic Geometry Software in education. But the software since then has al¬

most remained the same, the latest versions of both Sketchpad and Cabri were released in

1995 - it seems like there has been no real substantial progress for ten years. Of course,

there were minor improvements with respect to user interface design or other new features

like conies in Cabri II. But the core of Dynamic Geometry hasn't changed since. Today,
there are more than 40 packages for Dynamic Geometry, but none ofthem has gone other

than the straight-forward way of implementing Dynamic Geometry. So the quality of

Dynamic Geometry Software today seems to be just a question of the user interface, the

educational support or - the price.
This would not be a pity if the core of Dynamic Geometry were a completely un¬

derstood matter. But, unfortunately, this is not the case. Jean-Marie Laborde, the main

designer of Cabri Géomètre, pointed out the need of a true mathematical foundation of

Dynamic Geometry [52]:

"I think we need a real mathematical treatment of all consequences of stretch¬

ing geometry in some way to a wider system. This system cannot be simply
the projective one ifwe want to maximize the way the environment takes into

account the special characteristics of non-static objects which are at the core

of Dynamic Geometry."

"Where's the problem?" you might ask. "Ambiguities!" is the answer. While a con¬

struction is done the user is responsible to resolve ambiguities that arise from operations
like "intersection of a circle and line" or "angular bisector." For both constructions there

are several possibilities, a circle and a line have two intersections (if they intersect prop¬

erly), two lines define two angular bisectors (which are perpendicular to each other). If

you work on screen with a mouse you can decide visually which of the two solutions you

prefer.
But already when you use a keyboard interface, a textual description of a construction,

you cannot give enough information to the computer by just specifying the construction

steps. You will have to add additional information, like "take the intersection of line a and

circle c that is closer to line bV This additional information cannot, and this is crucial, be

generated automatically in general.
The real problem arises when the user interacts with a construction and moves base

points. The construction shall be re-done by the computer, and for this the construction

has to be stored in some format in the computer's memory. Now each time a base element

has been moved the decisions that were made by the user for the first figure have to be

made by the computer. Not arbitrarily, but - this would be perfect - the same decisions

the user would make if we could ask him again.

What is Dynamic Geometry"? 18

How should a construction behave under movements? The most natural thing would

be a continuous movement of dependent elements: When a free element is moved only
a little bit, then the dependent elements will move only a little bit, too. We do not want

elements to "jump around" wildly.
This is the core problem of Dynamic Geometry: To find a well-defined methodfor

handling ambiguities while someparameters ofa construction are changedcontinuously.
The same questions arise in other contexts: An example for an area that is understood

very well are analytic functions on Riemann surfaces. If you regard a function as a "con¬

struction sequence" consisting ofbasic operations - addition, multiplication, square roots,

etc. - you have to handle ambiguities. There is not one square root of a real number, there

are two, possibly complex ones. If we denote the the solution of the equation^2 = x by

y/x, an expression like

/(x) = v/x-Vx (1.1)

is ambiguous, there are two sign decisions that have to be made.

For a certain value of x we can give the decisions explicitly: For example, let x — 4,

then the inner root shall be —2 and the value /(4) shall be +\/6, the square root of six

that is larger than zero. Or let x — 9, let the inner root be 3, and the value /(9) shall be

again +y/6. Were these decisions consistent with the ones at x = 4?

If we really want to create afunction f(x) that is continuous, we must be able to find

the right, consistent decisions for any x, and we have to extend the definition space off.

Using analytic continuations we can create a continuous function on a Riemann surface

that is a four-cover of complex space in this example. In this thesis this concept will be

extended to cover ambiguous geometric constructions, and in fact we will find a lot of

parallels between the theory of complex analysis and Dynamic Geometry.
The similarities do not lead to a one-way transfer of knowledge from complex analysis

to Dynamic Geometry. There are several open questions in Dynamic Geometry which

were not investigated until now in their complex analysis counterpart (as far as I know):
for instance, how hard is it to decide whether there is a continuous path from one instance

(evaluation) of a complex function to another one, or "Can you get lost on Riemann

surface?"

It is not only the geometry part that I want to cover with this thesis:

Dynamic Geometry is the theory of construction-like descriptions of

function-like objects under parameter changes.

When talking about Dynamic Geometry, it is useful to think geometrically, because

this provides the necessary intuition, but one should always keep in mind that this way of

thinking might be applicable to other problems as well.

Chapter 2

The Interactive Geometry Software

Cinderella

This thesis is based on the research work that was done while Jürgen Richter-Gebert and

I were writing what is now called The Interactive Geometry Software Cinderella [71, 70].
In this chapter I want to describe the software phenomenologically without going into

details. Many of these details will be presented in the other parts of the thesis. Unfortu¬

nately, it was not possible to cover every detail that was needed for the implementation in

this thesis, since it would have created a book of several hundred pages. Nevertheless, it

was a symbiotic process that lead to the theory and the implementation: the one could not

have been without the other. Many of the little tricks that went into the source code just
work because we can make certain mathematical assumptions, and without these tricks,
the software would be slow and therefore unusable. Because of these connection I would

like to consider the implementation part of this thesis, even if it is not included. You will

find some of the more important implementation issues in Sec. 9.2.

2.1 Basic Functionality

Cinderella is a software package for doing geometry on a computer. In a way it replaces

pencil, paper, ruler and compass with equivalent computer tools. With the mouse you

"draw" in a window on screen, i.e. you place points, connect them by lines, erect perpen¬

diculars, etc.

This functionality is not very exciting, but already useful if you want to do exact

constructions. You can be sure that you exactly - only restricted by the floating point

accuracy of the computer - hit an intersection point oftwo lines, or draw an exact parallel
to some other line. Also some constructions that are tedious to do by hand are easily done

with the computer, for example inversions at a circle (or conic). The additional possibility
of rescaling a figure can help you if the construction you are doing exceeds the limits of

the window.

19

The Interactive Geometry Software Cinderella 20 2 1 Basic Functionality

Figure 2.1: An example for a construction that is easy with Cinderella, but hard to do with ruler

and compass on a sheet of paper. This construction is due to Appolonius. It solves the problem to

find a circle that is tangent to three given circles.

2 2 Mam Features 21 The Interactive Geometry Software Cinderella

The important distinction of Cinderella to other drawing software - Corel Draw, Mi¬

crosoft Word or others - is that it keeps track of your construction steps and is able to

re-do them, even for a different placement of the base elements. This happens instantly
and interactive, so you can pick a point and drag it to some other position, and the rest

of construction is updated during the move. This looks and feels like having build the

construction from matter.

This feature, which is characteristic for interactive geometry software, is very useful

while you do the construction: You can adjust it in order to avoid crowded parts of a

drawing, to make it look nicer, or to have access to elements that lie outside the drawing

region. But is even more useful when you have finished the construction, since you can

explore the geometric properties of it. "What happens if?" is a question that can be

answered with dynamic geometry software, and, even better, you can build intuition and

feeling for geometry using the drag-mode of interactive geometry software.

Cinderella supports points, lines, circles, arbitrary conies, segments, polygons, mea¬

sured distances and angles as well as loci. Among the basic constructions are intersections

of lines and conies, parallels and perpendiculars, angular bisectors, circles defined by their

centers and a point on the circle or by three points, and conies defined by five points.

2.2 Main Features

Besides the basic characteristic of interactive geometry software, the ability to move

points and lines while the constructions is immediately updated, Cinderella has several

unique traits, which we want to emphasize. Most of these have only been possible due to

the mathematical foundation of Cinderella - we just note this to stress the importance of

a profound mathematical background.

2.2.1 Multiple, different, simultaneous views

With Cinderella, you can view a single construction in different geometrical interpreta¬
tions at the same time. Internally, an abstract model of the construction is maintained,
which can be displayed through one or more windows - or viewports, as we call them.

These come in many different flavors, and each of it has its own strengths.

Euclidean plane

The usual viewport, which is also the default viewport at startup, is the Euclidean plane.
Of course, this is not really the mathematical Euclidean plane, but computer display ver¬

sion of it. This is the default viewport, since most people are used to it and want to work

in it. The pixels on the screen are mapped to a rectangular part of the Euclidean plane

embedding of the projective plane (which is the abstract world of the Kernel, see Ch. 5

and 6), or vice-versa. Lines look like lines, circles look like circles.

The Interactive Geometry Software Cinderella 22 2 2 Mam Features

Figure 2 2 A Cinderella session with three different Euclidean viewports The construction shows

an offset curve of an parabola, which is a challenge for every CAD system The window in the

lower right of the screen shows the two internal cusps of the offset curve, the window in the upper

right shows a detail view of the right cusp

You can choose the section of the Euclidean plane you want to see by zooming in or

out and by translating Just imagine you have a variable-sized rectangle you can put on

the (abstract) Euclidean plane, and everything inside that rectangle will be displayed on

screen

Even if you only had this single kind of viewport, it would make sense to have multi¬

ple, simultaneous copies A possible scenario You want to explore a locus - an algebraic
curve created as the trace of an object - that has an interesting bend You want to zoom

into the construction, since you cannot see whether there is a cusp at that position or not

At the same time you want to have a global overview over the construction, because you

want to move points to see how the locus changes at that position With Cinderella you

can open a second (or third,) Euclidean viewport to have several views at the same

time You move points in either of the views, and you get an immediate visual feedback

in all of them, see Fig 2 2

2.2. Main Features 23 The Interactive Geometry Software Cinderella

Figure 2.3: Three parallel bundles, on the left in a Euclidean viewport, on the right in the spherical

projection. The dashed lines show the antipodal elements on the back hemisphere. The equator of

the sphere is the circle in the two dimensional projection; the three parallel bundles meet in three

different points on the equator.

Spherical Projection

Inside Cinderella the Euclidean plane is augmented by a "line at infinity," which embeds

the plane into a space called the projective plane. This projective plane can be visualized

as a double-cover of the unit sphere in three dimensional space: Points are mapped to

pairs of antipodal points on the sphere, and lines are mapped to great-circles around the

sphere. The map is given by a central projection of the plane located at z — 1 in 3-space

through the origin onto the unit sphere. The "north pole" of the sphere touches the plane.
The equator of the sphere does not correspond to any point ofthe Euclidean plane, instead

we can find the "points at infinity" there. See Sec. 5.1.1 for a detailed description of this

embedding.

We can use the spherical projection viewport to get a better understanding of the con¬

cept of infinity. Most people have heard that parallel lines meet at infinity, but they could

never verify this by experience, or even imagine it. In Cinderella you can open a spherical
view and move a point straight to the equator, and you can see that all lines meeting this

point become parallel in the Euclidean viewport. The position on the equator determines

the direction of the parallel bundle (Fig. 2.3).

While it is very instructive to explain infinity to somebody using spherical viewports,
its applications go far beyond. For example, you can study the behavior of a locus curve

at infinity: Take the offset parabola of Fig. 2.2. In the spherical port you can see that

the parabola touches the line at infinity, and the offset curve touches at the same point

(Fig. 2.4. When you animate the construction you can see how the offset point C changes
from one side of the parabola to the other.

The Interactive Geometry Software Cinderella 24 2.2. Main Features

Figure 2.4: The left picture shows the offset parabola in a spherical port with the line at infinity on

the boundary of the circle. The right picture shows the same situation after rotating the sphere.

Polar viewports

As explained in Sect. 5.1.1, the roles of points and lines in Projective Geometry can be

interchanged. Instead of a line connecting two points you have an intersection point of

two lines, and so on. This is called the dual or polar, the original situation is called primal.
Cinderella can automatically display a construction in a polar Euclidean or polar spherical

viewport. This is very useful, for example, when you try to prove a theorem: Sometimes

the polar version is much easier to understand and prove.

The polar view is not restricted to points and lines, also conies and loci are supported.
The polar of a conic C is the envelope of all dual lines of points that lie on C, it is again a

conic, and it can be easily calculated by taking the adjoint of the matrix of C. The locus

is just the locus of the polar object.

Poincaré Disc Model of Hyperbolic Geometry

Hyperbolic geometry is probably the most famous non-Euclidean geometry. Several

drawings of MC. Escher [13] show tilings of a circle that become finer and finer to the

boundary. These drawings use the Poincaré-model of the hyperbolic plane: The funda¬

mental object, which plays the role of infinity, is the outer circle. Since it is at infinity,
we cannot reach it by making a finite number of steps of some constant distance. This

is shown in Fig. 2.6: You are trapped inside the circle if you allow only finite hyperbolic
distances.

The hyperbolic plane is a wonderful playground for geometric explorations. You can

check, for example, how your favorite theorem looks like in the hyperbolic plane. If you

2 2 Mam Features 25 The Interactive Geometry Software Cinderella

Figure 2.5: On the left the primal picture of a cardiographie curve, on the right the same con¬

struction in a polar view. Observe that the dual of the circle is a hyperbola. There is no way of

recognizing polar Euclidean circles immediately.

Figure 2.6: Try to reach the boundary of

the Poincaré view by making hyperbolic unit

steps - you will never succeed. The circle is

to the hyperbolic plane what the line at infin¬

ity is to the Euclidean plane.

The Interactive Geometry Software Cinderella 26 2.2. Main Features

A Point(0 93|-0 34) (0 93|-0 34)

B Point(0 87|0 47) (0 87|0 47)

a Join(A.B) y = -12 89x +11 ;

C Point(-0 70|-0 71) (-0 70|-0 71)

b Join(B.C) y = 075x -0 18

c Join(C.A) y = 022x -0 55

d AngleBisector(a,b,B) y = 470x -3 63

e AngleBisector(b,c,C) y = 0 44x - 0 40

f AngleBisector(a,c,A) y = -1 56x + 1 11

D Meet(d,e) (0 76|-0 07)

g Perpendicular(c,D) y = 493x -3 80

h Perpendicular(b,D) y = -1 62x +1 16

k Perpendicular(a,D) y = 0 45x - 0 41

E Meet(c.g) (0 69|-0 4)

CO Circle(D.E) 2 53x2 + 1 26y2 -

F Meet(b.h) (0 57|0 24)

G Meet(a,k) (0 9110)

Figure 2.7: The construction of an incircle shown in the hyperbolic Poincaré viewport. Lines

are shown as circular arcs that are perpendicular on the boundary circle. The construction uses

hyperbolic measurements and shows an hyperbolic inscribed circle. On the right the construction

text view.

can do hyperbolic measurements, you can check which constructions of the Euclidean

plane are still valid, and which of them fail. Did you know that two hyperbolic circles

may have 4 intersections? What does this mean for constructions that use circle/circle

intersections? These and other questions take you to the roots of geometry.

Other geometry software emulates the Poincaré disc model with construction macros

for circles in a Euclidean view. A big advantage of a built-in view is its speed, its com¬

pleteness and its correctness. Especially completeness is hard to achieve with macro-

based approaches, since this would mean to provide macros that work on loci - which

no Dynamic Geometry software so far can do. The correctness is just a matter of correct

macro constructions, but this seems to be not as easy as one might think: For example, the

macro should still work for base elements that lie outside the fundamental conic, "behind

infinity."

Construction Text

A special viewport is the textual description of the construction. A list of all elements, to¬

gether with their definitions and current coordinates can be used for information purposes,

but also as an easy way to do exact selections. Whenever you have to select an element,

you can just click on the corresponding entry in the construction text. This becomes a

necessary tool in highly degenerate situations.

Internally, the construction viewport uses the same display mechanism as any other

view, so it is also immediately updated whenever you change something in any other port.

2 2 Mam Features 27 The Interactive Geometry Software Cinderella

See Sec. 9.1.4 for a detailed description of the underlying architecture.

2.2.2 Complex Numbers

Cinderella uses complex numbers for all coordinates and values. Intermediate construc¬

tion elements may become complex, but they usually do not disappear (this might happen
in degenerate positions only). The construction is carried out until the end with these

imaginary elements, and if a result is again real, then it will be displayed.
A particularly nice example of why this is use¬

ful is the radical axis of two circles. The radi¬

cal axis is a line that is perpendicular to the line

connecting the midpoints of the two circles, and

which lies between the midpoints cutting theirjoin¬

ing segment s into two parts at a certain ratio de¬

fined by the distance and the radii of the circles.

For equally-sized circles the radical axis happens
to be the perpendicular bisector of the segment s.

When the two circles intersect, then the radical

axis meets the two intersection points. This means

that we can define it also as the join ofthese two in¬

tersections. Usually, this construction is considered

valid only if the circles intersect, but algebraically
the above is also true when we move the two cir¬

cles apart. The two intersections did not vanish, they became complex. They are defined

by the two solutions of a polynomial of degree two with real coefficients, thus they are

complex conjugates and their join is again a real line with real-valued coordinates.

This feature is sometimes confusing for the user, especially in a classroom environ¬

ment. See Sec. 10.1 for some thoughts about this.

Figure 2.8: The radical axes of two

pairs of circles of equal radii. They

always bisect the segment joining the

centers of the circles, even if the in¬

tersections defining the radical axis be¬

come complex, as shown on the left.

2.2.3 Cayley-Klein Geometries

In the viewport section we already mentioned hyperbolic measurements. Cinderella offers

three different measurements, the usual Euclidean distances and angles, elliptic measure¬

ments, which occur when you want to measure distances and angles on a sphere, and

hyperbolic measurements.

You can use any of the measurements in any of the viewports, there is no direct con¬

nection between displaying and measuring. Of course, it often makes more sense to use

the hyperbolic measurement in the hyperbolic viewport, etc. For example, the Poincaré

disc model is coherent with hyperbolic angle measurements, the Euclidean angles you

measure between the circular arcs are the same as the hyperbolic angles between the

lines.

The Interactive Geometry Software Cinderella 28 2 2 Mam Features

Figure 2.9: Circles in the three types of geometry that Cinderella supports. On the left the elliptic

geometry in a spherical view, in the middle the usual Euclidean metric in a Euclidean view, and

on the right hyperbolic circles in a Poincaré view.

The implementation of different measurements in Cinderella is very general. As ex¬

plained in Sec. 5.4, the measure depends on the choice of a pair of fundamental conies.

When you switch between different geometries in Cinderella, you do only exchange the

fundamental object, and this creates the right measure automatically.

2.2.4 No Jumping Elements

The most important contribution of Cinderella is its handling of continuity. It will never

happen that a small move of a free object will cause a suddenjump of a dependent object.
This is a fundamental new feature compared to traditional geometry software, where this

kind of discontinuity can happen all the time.

Usually jumping elements are caused by the intrinsic ambiguities of conic/line and

conic/conic intersections, where two or four intersection points have to be assigned the

right names. Cinderella does these assignments based on nearness conditions, and in¬

cludes a concept to handle singular (degenerate) situations, that occur for example in

tangent cases. Chapter 6 and 7 are explaining the underlying mathematical foundation in

depth.

2.2.5 Automatic Theorem Checking

Based on the continuity of elements a randomized theorem checker has been built into

Cinderella. The theorem checker is surveying all the construction steps done by the user

and reports all non-trivial incidence theorems it finds (see Fig. 2.10). It is also used for

the correctness checking of interactive exercises, see below, and to keep the internal data

structures consistent.

2 2 Mam Features 29 The Interactive Geometry Software Cinderella

File Edit Properties Geometry Views Modes Format Help

^^m^^&^äS^iM^ MSsm^û^}
Is

Add a single point with the mouse

'm i-aa&J0 IJULlDIâ iJfeE

Figure 2 10 The theorem checker at work The checker automatically discovered that the point of

intersection of d and e lies on /, too

The Interactive Geometry Software Cinderella 30 2.2. Main Features

2.2.6 Self-exploring Loci

Figure 2.11: A very interesting and

computationally challenging locus is

the conchoidal curve, that is created by

rotating a line around a point and mark¬

ing the distance d on that line from an¬

other line.

A locus is the trace of an object under move¬

ment of some other object. The first object should

depend on the second, otherwise the locus is pretty

boring. Cinderella includes automatic loci, that it

tries to display as good and correct as possible. Un¬

fortunately, correct locus calculations are very time

consuming and it is not always possible to spend
all the time you would need for a perfect display.
The locus display routines are still the best cur¬

rently available ones. Cinderella uses a sophis¬
ticated speedup-slowdown algorithm to find good
base points for the calculation. Observe that the

speed of the object to be traced is some, not ex¬

plicitly given, function of the speed of the moving
element. We must try to find the inverse of that

function and let the moving element move with that

speed.
Other problems with loci are their behavior at

infinity and how to detect which parts of the locus

are off screen. Although Cinderella can display many loci without problems, the easiest

way to crash Cinderella is probably to draw a locus. You can read about the implementa¬
tion of loci in Sec. 9.4, and how you can use them in education is described in Sec. 10.4.

2.2.7 High Quality Postscript Output

Cinderella was used to create the figures in publications from its very beginning, so we

took care to ensure a very high quality of the constructions for printing. The printing
mechanism built into Java did not meet our quality requirements, since its positioning
resolution is at approximately 72 dpi, less than most computer displays offer today.

The best way to provide a platform independent high quality output was to include

an export facility to encapsulated Postscript. The postscript code that is produced by
Cinderella is readable and editable (if you know postscript a little). Most of the figures in

this thesis have been done with Cinderella, of course. It is currently not possible to include

I^TpX or TpX code as labels or texts (as it is the case with IPE [8]), but a workaround is

using the psfrag-package for I^TpX which permits replacement of postscript text with any

I^TpX code, including typeset math.

2.2.8 Easy WWW-Export

It was easy to add an export constructions to interactive web pages, since Cinderella is

written in 100% Java. These web pages can be accessed using any recent browser like

Internet Explorer 5 or Netscape 4.5, and they offer the full interactivity of the move mode

2 2 Mam Features 31 The Interactive Geometry Software Cinderella

(H -w fNßtscape. VÄntalsumme [i X

File Etfit View Go Communicator Help

Figure 2 12 An example taken from the educational material included with the German school

edition of Cinderella [70] The student shall check whether the sum of inner angles in a triangle is

180 degrees, using the calculator on the left The calculator is a Javascript object embedded into

the HTML code of the page

or automatic animations, without requiring the standalone version of Cinderella The

runtime libraries necessary may be freely distributed This makes Cinderella a handy tool

for the preparation of distance learning material

The export itself is as easy as could be Once you have created a construction, you can

save the necessary HTML code that is used to display the Cinderella applet No further

knowledge of web page creation is necessary

The web export was also used to create the additional educational material in [70]
The use of portable standards makes it possible to create cross-platform multimedia prod¬
ucts while still offering extendibility, for instance an external Javascript-based calculator

was included in some web pages, which with a different approach would have had to be

integrated into Cinderella, see Fig 2 12

The web pages created with Cinderella can be included on CD-ROM or other media or

can be downloaded via the web The applications range from interactive examples created

by teachers for their students and distributed on floppy disks up to whole educational

websites devoted to geometry that cover all topics, starting with elementary geometry and

ending at the research level Fun examples or geometry puzzles are other areas where

The Interactive Geometry Software Cinderella 32 2 3 Availability

Cinderella can be used for improved interactive presentation. Even the demo version

of Cinderella that was first published in February 1999 has been used by several people
for this [12, 73, 83], and a list of exemplary websites is maintained on the Cinderella

website [46].

2.2.9 Interactive Exercises

The next level of interactive geometry is reached by combining the powerful theorem

checking engine of Cinderella with the web export. The result are interactive geometry

exercises with automatic solution checking done by the computer.

Suppose that in a sequence of geometry lessons you have taught how to do basic

constructions like angular bisector or midpoint using ruler and compass only, and now

you want to check whether the students can transfer these constructions to other situations.

You design an assignment that combines some of the basic constructions. This approach
has several drawbacks: It is very much work for you as a teacher to check all the different

solutions the students offer. Good students might come up with "better" constructions as

the one you had in mind, and you have to find out whether it is really a valid solution

or whether it fails for some situations. Inexperienced students might come up with no

solution at all, because they got stuck after the first few steps.

The interactive exercises created with Cinderella (Fig. 2.13) attack these problems by

offering an automatic solution checking based on the built-in theorem checking, and an

automatic hinting mechanism that guides students to the next step while still not restricting
them to a particular construction sequences. This flexibility ensures the greatest freedom

possible for the students while still helping them not to get lost.

It is not easy to design a good exercise, but since the exercises can be accessed using
the Internet it is only a matter of month to create a database of high-quality exercises in a

joint effort of teachers nation- or world-wide.

2.3 Availability

We started the project not only for our own purposes, but we always had in mind that the

software should be available to a wide public. We chose not to give it away as an open

source software for free, but to have it published like a book. This goal of a commercial-

grade software was challenging and introduced much more work than an academic soft¬

ware project usually brings with it. We chose that way of distributing the software for

several reasons. The most important reason of all is, that we would never have finished

a version of Cinderella that is suitable for distribution if we did not sign a contract with

somebody that forced us to do it. Another issue is that we could not afford to advertise

the software, or to do the whole support once it is used by too many people.
The software is now available from Springer-Verlag [71], and comes with a 143 pp.

manual. Another edition of the software will be available from HEUREKA-Klett Soft-

2 3 Availability 33 The Interactive Geometry Software Cinderella

B -w I Netscape Aufgabe 14

File Edit View Qo Comfftunicator Help

dj|r BODtaatt* J) tOCatlOn |ïil^hme/kortenW H
êmmmmm*
^HEUREKA I PunWsuchs (3)

[Applet de Cinderella CindyApplet running LAJé^î3 i3 \ê>

~WÊT

Figure 2 13 An example of an interactive Exercises, also taken from the German school edition of

Cinderella [70] On the lower left you can see the (German) hints and comments that Cinderella

gave during the last construction steps, on the lower right you see the available tools for this

exercise Move, add a point, add a line, compass, hint, undo and restart

The Interactive Geometry Software Cinderella 34 2 3 Availability

wareverlag, Stuttgart. This edition focuses on the "after-school market" and comes bun¬

dled with self-learning material. This edition was a lot of extra work, since we had to fix

several problems that are special to in-school usage.

Actually, both editions are based on the same source code, and we are still convinced

that the mathematics both for a school version and a university version must be the same.

The difference is only in the configuration of the user interface and the construction tools

that are available.

The source code of Cinderella is not public for legal reasons, parts of it may be avail¬

able on request for scientific purposes from Jürgen Richter-Gebert or myself.

Chapter 3

Site Map

This chapter gives you a rough outline of this thesis. Depending on your background and

your interest you might choose different chapters to read, and you can make your choice

using the short abstracts below.

This thesis is divided into three main parts, mathematics, computer science and educa¬

tion. The first part builds the theoretical foundation of Dynamic Geometry, the computer

science part discuss the various problems and their solutions that arose when we tried to

implement the mathematical theory. The third part covers several pedagogical issues that

came up while and after we implemented Cinderella.

3.1 Mathematics

At first sight it is not clear where the mathematical difficulties lie in Dynamic Geometry.
Most people think that high school mathematics should suffice to implement a Dynamic

Geometry system that will be used in high school. One of the main goals of the mathe¬

matics part is not only to solve problems, but to demonstrate that there are problems.

3.1.1 A Framework for Dynamic Geometry

Conceptually probably the most important chapter, but for most people only of marginal
interest. It defines the notion of a relational instruction set, a formalized way of de¬

scribing construction steps that can be ambiguous, and introduces geometric straight-line

programs, that use these relational instruction sets for describing complete constructions.

3.1.2 Projective Dynamic Geometry

As a warm-up we look at a particularly nice world of geometry. Using only points and

lines in the projective plane, we look at the properties of this kind of Dynamic Geometry.
It turns out that it is very well behaved - continuous, actually polynomial -, and we can

do randomized theorem proving.

35

Site Map 36 3 2 Computer Science

3.1.3 Circles and Conies

Heavily contrasting the previous chapter which presented a nice, well-behaved world of

geometry, this chapter introduces all the problems that arise when we want to extend from

points and lines to circles or even arbitrary conies. It will be shown that we cannot expect

a system that is continuous and determined at the same time. And it will be shown that

orientations cannot be used as an approach to continuity.

3.1.4 Complex Tracing

Here the main result is presented: Complex tracing, a technique that takes the history
of a configuration into account. The main trick is that we carry out all calculations in

complex space, and there we have all the powerful tools from complex analysis that we

need to guarantee not only continuity, but even analytic behavior, as well as plenty of

space to take detours around "bad" situations. In a last section we will scratch the topic
of the computational complexity of complex tracing: Although complex tracing can be

implemented as described in the previous chapter, it is not clear whether there exist better

implementations with the same properties. Under continuity assumptions we can ask for

the equivalence of or reachability between two instances of a construction. Can we decide

this problem without having to trace?

3.2 Computer Science

This part covers some of the implementation specific details of Cinderella. It is serving
as a proof of concept, showing that complex tracing can be used in geometry software.

3.2.1 Java-based Software

This chapter tells the history of the Cinderella project and explains why we decided to

use Java as implementation language for the software. Some of the special issues that

arise with platform independent software are discussed, and our approaches to solve these

issues are presented.

3.2.2 Efficient Datastructures for Dynamic Geometry

A more flexible organization of construction data than the usual approach to implement

Dynamic Geometry software in object-oriented languages is presented and its advantages
over traditional concepts are pointed out. Although targeted at the mathematical results

of the first part, these data structures are useful also for classical, non-tracing geometry

software. Next it is shown how the theoretical results can be transformed into an algorithm
for complex tracing. Some of the heuristics that make complex tracing and automatic

3 3 Education 37 Site Map

theorem checking applicable are explained, as well as the various additional uses of the

automatic theorem checking engine for improved stability of the software.

3.3 Education

This thesis covers also some topics of mathematics and geometry education. This is not

meant as a pedagogically stringent coverage of the topic, but as a starting point for in-

depth educational research. The link between profound mathematics and better teaching
shall be established.

3.3.1 Creativity in Math Education

A mathematically correct system can be used much better as a tool to raise creativity
than a system which creates confusing or false output. Some of the possible stimulating
uses are introduced and discussed, under the consideration of new ways of teaching using

geometry software.

3.3.2 Geometry Education and the Internet

For most teachers the Internet integration of Cinderella is the most important new feature.

In this chapter we will show some of the scenarios that are possible now and will be

possible in the future using the capabilities of the network in conjunction with Internet-

enabled software.

3.3.3 Future Developments

Many questions are still open and some new questions have been raised by this thesis.

The last part covers these questions and intends to exhibit some of the next challenges -

in mathematics, education, computer science and other areas - that are to be taken.

Site Map 38 3 3 Education

Chapter 4

A Framework for Dynamic Geometry

In this chapter we will fix a framework for Dynamic Geometry. It will be a rather general

setup that enables us to speak not only about 2D/3D/Euclidean/elementary geometry "as

we know it," but also about other structures that only look like geometric construction

sequences.

4.1 Straight-Line Programs

A common and convenient way to describe polynomials without explicitly referring to

their coefficients are straight-line programs (SLPs). They were introduced as an alge¬
braic formulation for computations, and they have been proved useful as a measure for

the complexity of polynomials [57]. Straight-line programs are in a way a sequence of

elementary calculations (addition, multiplication, subtraction and - not necessarily - divi¬

sion) on input variables and intermediate results. With this tool you can encode functions

(to be precise, rational functions ifyou allow division, or polynomials otherwise) in a very

condensed way. It is even possible to describe some polynomials with doubly exponential

degree with a linear number of operations (see Sec. 9.3.3 for a geometric translation of

this). The book of Bürgisser et. al. [6] is a good source of other results with respect to

straight-line programs and complexity.
As a formal reference, let us partially recall the definition of a straight-line program

as presented in [6] :

Definition 4.1 (Straight-Line Program) Let K be afield and let A be a K-algebra. Let

Q. — Kc UKU {+, —,*,/} be the set of instructions, where Kc denotes the set ofO-ary
instructions Xe that produce a constant À G K, K denotes the set of unary instructions

À that are identified with the scalar multiplication by À, and {+,—,*,/} are the basic

binary instructionsfor addition, subtraction, multiplication and division.

Let n be a positive integer and a G A". The pair (A; a) is called an input of length n.

The arity ofan operation coeQw denoted by ar(co).

39

A Framework for Dynamic Geometry 40 4 2 Relational Instruction Sets

1. (Syntax of a straight-line program) A straight-line program T over K expecting

inputs oflength n is a sequence (T\,..., Tr) of instructions

T, = (cOj;^!,...,^^)),

where Cfy G Q. and the u,g are integers satisfying —n < u}£ < i.

2. (Semantics of a straight-line program) Let T = (T\,... ,Tr) be a straight-line pro¬

gram expecting inputs oflength n, T} as in I. T is said to be executable on (A;a)
or executable in A on input a with result sequence b = (è_w+i,... ,br) G An+r, if
bt = an+lfor -n+ 1 < i < 0 and b, = co2(o„,i,.. A!ar(co!))/c"' \<i<r. (A;b) is

called the output corresponding to the input (A; a).

3. A straight-line program is division-free ifit does not use divisions.

Instead of repeating all the results about straight-line program we will present a new

concept which will be shown to include straight-line programs.

4.2 Relational Instruction Sets

Clearly, although we can describe some geometric constructions coordinate-wise by SLPs,

as shown in Ch. 5, we cannot expect straight-line programs to be able to describe even ele¬

mentary constructions like circle-line-intersections (since these require - at least - square

roots). A more flexible setup are Geometric Straight-Line Programs (GSP). Since we

do not want to restrict ourselves to a certain set of primitive operations (like addition,

multiplication, division in the case of ordinary SLPs) or an underlying algebra^ we first

introduce the concept of a relational instruction set (RIS).

Informally, a relational instruction set describes objects (like points, lines, conies)
and possible constructions using these objects (like "point on line" or "angular bisector").
Instead of giving an algorithm or formulas for the constructions only a relation is specified
that enables us to check for a certain input and output whether it is a valid construction.

Definition 4.2 (Relational Instruction Set) A relational instruction set is a pair (0,Q)
of objects 0 and primitive operations (or primitives^ Q. with thefollowingproperties:

O — (Oi,..., Ok) is afamily ofsets O,. These sets partition the objects into classes ofthe

same type.

The primitive operations Q. are relations

co.cCQ,! x---xQ^)xC^+1

with input size ar(cu;) = sv Ifwe want to emphasize the input size we write co^. An element

ofthe set 0Xl x • • • x 0Xs is called input and an element of 0Xs +1
is called output of(üv

4 2 Relational Instruction Sets 41 A Framework for Dynamic Geometry

Example 4.3 (Projective Geometry) For a projective plane P = (P,L) ofpoints P and

lines L let

Join = Cûi := {{p\,p2,l) s.t. I is the line through

p\ andp2 andp\ ^ P2} C (P x P) x L and

Meet = CÛ2 : = {(l\, h, P) s-1- p is the point on

l\ and I2 and 11 ^ h} C (L x L) x P
.

Then ((0\ = i3, 02 = L), (cûi, 0)2)) is a relational instruction set describing meet andjoin
in Projective Geometry. The objects can have one of two different types, either they are

a point or a line. Both primitives have input size 2. Furthermore, both primitives are

determined, this means,for a given input there is at most onepossible output (inprojective

planes two distinct lines meet in exactly one point, and two distinctpoints are connected

by exactly one line). We will discuss determinedprimitives in more detail later.

Example 4.4 (Straight-line programs) For afield K. and a K-Algebra A define a rela¬

tional instruction set with only one object type, the objects 0\—A are the elements ofthe

algebra. The primitives describe the arithmetic operations in thefield.

+2 :— {(a,b,c) s.t. a + b — c} (addition)

*2 := {(a,b,c) s.t. ab — c} (multiplication)
—2

:= {(a,b,c) s.t. a— b + c} (subtraction)

/ := {(a,b,c) s.t. a— bcandb / Ok} (division)

Cj := {À} ÀGK (constants)

S]^ :— {(ka,a) s.t. a &A} ÀGK (scalar multiplication)

Observe that we are able to describe subtraction and division without referring to the

basic operations in the algebra. Actually, the whole RIS does not depend on A being an

algebra. But ifA is indeed an algebra, then the primitives are again determined.

We can even add other primitives like

\f- :— {(a,b) s.t. a— bb} (square root)

This definition makes sense even if the algebra is not an algebraically closedfield. In

general algebras there is notfor every input a an output b such that (a, b) G y/- .

Relational instruction sets provide a way to describe constructions without requiring
the ability to know a way, or even the mere existence of a way to carry out the necessary

calculations. Observe that this is not only important in cases where there exists no "so¬

lution" for a certain input of a primitive, but also when there is more than one: Take the

square root primitive over the field of rational numbers Q. For most inputs you cannot

find a square root within Q. But for some, say 4, there are two square roots: —2 and 2.

A Framework for Dynamic Geometry 42 4 3 Geometric Straight-Line Programs

We do not have to specify which one we mean, as we had to do if we tried to define a

square rootfunction y/~-. This is crucial throughout this thesis: We have to find a method

that deals with ambiguities that occur in geometric constructions. At this point, we do not

yet present a method to deal with the ambiguities, but at least we can describe them.

Example 4.5 (Ruler and Compass Constructions) In the projective plane P = (P,L) of

points P and lines L let C be all circles (with respect to Euclidean measurements). The

primitives ofa RIS (0, Q) with O — (P,Z,C) that can handle intersections ofcircles and

lines or circles and circles are given by:

Join = Cûi := {(pi,p2,l) s.t. I is the line through

p\ andp2 andp\ ^ P2} C (P x P) x L
,

M eet = Cû2 : = {(l\, h, p) s. t. p is the point on

l\ andI2 andl\ / I2} C (L x L) x P
,

Circle = 0)3 := {(pi,/?2,c) s.t. c is a circle with

center p\ andp2 / p\ lies on the circle} C (P xP) xC ,

CLInt = CÛ4 := {(cf,p) s.t. p is apoint ofintersection of

circle c and line 1} C (C x L) x P
,
and

CCInt = CÛ5 := {(c\,C2,p) s.t. p is apoint ofintersection of

the circles c\ andc2} C (C x C) x P
.

Again, we do not care about ambiguities, vanishing intersections or anyproblems that

might occur ifwe had to write down explicitfunctions to describe the primitives.

4.3 Geometric Straight-Line Programs

Let us point out that the relational instruction sets are in a way more useful than a

constraint-based approach to geometric constructions: They reflect the constructiveness

of the geometric structures we want to study. By defining geometric straight-line pro¬

grams as below we can be sure that there will be no cycles in the dependency graph of the

elements in a construction.

Definition 4.6 (Geometric Straight-Line Program) A geometric straight-line program

or GSP on a relational instruction set (0, Q) is defined by a triple [X1R, T). X— (X\,..., X„)
are called input variables. R — (Rq, ... ,Rm-\) are called output variables or intermediate

results and T — (To,... ,Tm_i) are called statements. Every statement T} is a primitive

operation coiî ofinput size sJr andsJr pointers u{'... u '
G [—«,...,/' — 2] C Z. The length

ofthe GSP is m.

4 3 Geometric Straight-Line Programs 43 A Framework for Dynamic Geometry

Remark 4.7 We will omit the reference to the RIS whenever it is immediate from the

context.

Example 4.8 (A Projective Geometry program) Consider the straight-lineprogramwith

input variables X = (Xi,... ,Xs), intermediate results R = (i?o, • • ,^12) and the state¬

ments shown in the table below.

You may read the table like this: The pointers in the primitives point to the input or

output variables, if a pointer i is less than zero, then it points to X\,\, else to Rt. The

pointers denote the input of the primitive, the output is the output variable on the same

line.

The straight-line program on the left could

be interpreted like in this construction of

Pappos' theorem. The input variables are

five points, the meet andjoin primitives pre¬
scribe lines and new points.

Index Var/Result Statement

-5 X5 —

-4 XA -

-3 x3 -

-2 x2 -

-I Xi -

0 Ro Join-5,-4

I Ri Join-4,-3

2 R2 Join -3,-2

3 R3 Join -2,-1

4 Ra Meet 0,2

5 Rs Meet 1,3

6 Re Join -5,5

7 Ri Join-1,4

8 R% Meet 6,7

9 R9 Join -5,-2

10 Rio Join-1,-4

11 Ru Meet 9,10

12 R12 Join 8,-3

Observe, however, that we did not yet define

any semantics ofstraight-line programs yet.

The picture on the right is only an illustra¬

tion ofwhat we would like to be able to de¬

scribe.

Notation 4.9 As a shorthandwe refer to Xt by the notation R-v

We will formalize the interpretation of a geometric straight-line program by the notion

of an instance. An instance of a straight-line program is an assignment of objects to the

variables that is consistent with the primitives. In the case of our example above it was

sufficient to assign distinct points to the variables X\ to X5, and the intermediate results

R,, in particular their types, were determined. This only worked because the primitives
and pointers matched. Let us formalize this as a well-defined GSP.

Definition 4.10 (well-defined) A geometric straight-lineprogram (X,i?,T) is well-defined

ifthere is an assignment oftypes to the input andoutput variables such thatfor every state¬

ment Tt — ((ûy,u(0
'j>"\ ,Usj) and everypointer p G u\ , Us] the type ofthe variable the

A Framework for Dynamic Geometry 44 4 3 Geometric Straight-Line Programs

pointer references and the type ofthe corresponding set ofobjects in the input ofcdj are

the same, and the output type ofthe primitive in the k-th statement equals the type ofR^.

Remark 4.11 It is obvious that the assignment oftypes is unique, so it isjustified to call

this assignment the type assignment ofthe GSP.

This technical definition just ensures that a the statements of a straight-line program
work on objects of the correct type. Now we will fill the variables with life - we will look

for an assignment of objects to the variables that respects not only the type assignment,
but also the primitives. The notion of an instance is similar to the definition of executable

with ordinary straight-line programs.

Definition 4.12 (Instance) An instance ofa geometric straight-line program (X,i?,T) at

X = X is an assignment ofobjects X = X\,... ,X„ andR = Rq,... ,Rm-i) to the variables

X = (X\,... ,X„) andR = (Rq, ... ,Rm-\ such that

1. The object types ofX andR match the type assignment ofthe GSP, and

2. All primitives are satisfied, that is, for every statement T, — (cfy; u\ ,.. .,us'') the

relation

1 sj

is true (we extendNotation 4.9 to the tilde-version ofX andR).

Remark 4.13 Although geometric straight-lineprograms are very similar to straight-line

programs as in Def 4.1 there are some conceptual differences.

• The 1L-Algebra is part of the input ofa straight-line program. For GSPs the rela¬

tional instruction set isfixed in advance.

• The result sequence ofa straight-line program is determined by the the input, if it

exists. GSPs need not be determined, infact, there might be several instances with

the same input variables but different intermediate results.

• What is known as instructions is called statement, just to avoid confusion with the

instructions ofthe RIS.

Let us define some basic properties that geometric straight-line programs can have.

First we rule out syntactically correct, but semantically programs that make no sense.

Definition 4.14 (Consistency) A geometric straight-line program is consistent if there

exists an instance ofit, inconsistent otherwise.

4 3 Geometric Straight-Line Programs 45 A Framework for Dynamic Geometry

From now on most GSPs under consideration will be consistent. Nevertheless you

should take care: To decide whether a certain GSP is consistent is not trivial at all, it is at

least NP hard (see Sec. 7.5 for more information about complexity issues).
The next definition fixes what we already mentioned informally when discussing the

Projective Geometry RIS.

Definition 4.15 (Determinism) A geometric straight-line program is determined ifany

assignment ofthe input variables can be completed to at most one instance. A relational

instruction set (0, Q) is determined if every straight-line program on (0, Q) is deter¬

mined.

For some relational instruction sets it is easy to determine whether they are deter¬

mined: If every primitive CO, has for every input exactly one "output," then a straight-line

program cannot "branch," it is determined.

Definition 4.16 (Determined Primitive) A primitive

CO, C 01 X • • • X Qar^) X 02(ar(a),)-|-l) =: °

is determined, iffor each a G 0i x ••• x 0ïar(coî) there exists at most one object b G

Q(ar(co!)+i) such that (a,ô) G O.

Theorem 4.17 (Determined GSPs) Ifevery primitive ofa RIS (0,Q) is determined, so

is every geometric straight-lineprogram over (0, Q), and thus the RIS itself. The converse

is also true.

Proof 4.18 Easy induction on the length of a GSP. A GSP of length 1 is clearly deter¬

mined, since the only possible instance is the element (a, b) ofthe primitive that matches

the assignment ofthe input variables.

Let us assume that the theorem holdsfor any GSP of length r, and let (X,R, T) be a

GSP of length r+l. The GSP (X,R, (T\,... ,Tr)) is determined. If there is no instance

for the shortened GSP then there is no instance for the original GSP and we are done.

Let (X,i?) be the unique instance of the shortened GSP otherwise. Then there is at most

one element (a, b) G cor+i where a is the assignment ofthe input ofthe lastprimitive that

is determined by the instance, and (X,R, b) is the only instance possible of(X,R, T).
The equivalence statementfollows from the trivial GSP of length 1 that uses only a

statement with a non-determinedprimitive. D

Example 4.19 (Projective Geometry) The RISfor Projective Geometry as introduced in

Ex. 4.3 is determined, since the twoprimitives Meetand Join are determined. Observe that

we excluded coincident lines orpoints as inputfor the primitives: Without that restriction

the primitives could be undetermined.

A Framework for Dynamic Geometry 46 4 3 Geometric Straight-Line Programs

Example 4.20 (Straight-Line Programs with Square Roots) The RLSfor straight-line

programs (Ex. 4.4) with additional y/~- -primitive is not determined, since the yf~- -primitive
is undetermined. The number ofinstances can be exponentially large with respect to the

length ofthe GSP. Let K = C andA = K, and consider the SLP on the left:

Index Var/Result Statement
For X\ = 1 there are 2r+1 instances of this

~

GSP. You can easily find them all by look-

v
-1 ing at the last output variable: It must be as-

V" 0 signeda value z that satisfies z2r =1, i.e. it

yf- 1 is a 2r+l-th root of unity. Any of these will

^f} 2 determine the variables preceding Rr, so we

have a 1-1 mapping of the roots of unity to

j
the instances ofthe GSP with input {1}.

V7 r-1

This explosion of the number ofinstances evenfor only slightly undeterminedprimi¬
tives will be a major obstacle in the implementation ofa continuous Dynamic Geometry

system, see Ch. 6 and Ch. 9.

-1 Xi

0 Ro

1 R\

2 R2

3 R3

r Rr

Chapter 5

Projective Dynamic Geometry

As a first introduction to what one might expect from a theory that handles Dynamic

Geometry we look at "projective Dynamic Geometry (PDG)" The fundamental objects
are points and lines in the real (or complex) projective plane.

In this chapter we will see that it is very easy to do geometry on a computer [67], as

long as only lines and points (or, in higher dimensions, affine subspaces) are involved.

After choosing the right coordinatization (see Sec. 5.1.1) it is almost trivial to work with

incidence geometry, and the results (on screen) are indeed what everybody would expect.

Unfortunately, this raises the bar for larger (more functionality/objects) systems: The

user expects much more than what is easily achievable, and it is not a trivial task to explain

why the computer does not "behave nicely." We will discuss these problems in chapter 6,

let us first concentrate on the easy part.

5.1 Points and Lines

From now on we will work in the real or complex projective plane MP2 resp. CP2. When

the basic field is not important we will refer to it as K.

The points in KP2 are the 1-dimensional linear subspaces of R3, the lines are the

2-dimensional linear subspaces of R3 (the subspaces of co-dimension 1). Since every

1-dimensional subspace U C V, for arbitrary R-vector spaces V, can be written as

£/ = {Àx,ÀGR}

with x G V\ {0} we can identify antipodal point-pairs on the unit sphere £2 with the points
in the real projective plane. For lines we can work with the orthogonal complement of the

subspace, which is 1-dimensional, and we can identify antipodal point-pairs with these

complements.

47

Projective Dynamic Geometry 48 5 1 Points and Lines

5.1.1 Homogeneous Coordinates

The most common coordinatization of points uses two coordinates, and lines are usually

represented by a linear equation in x and>\ It dates back to the 19th century that a better

way of coordinatization of points and lines has been found. In his article "Ueber ein neues

Coordinatensystem" [63] Julius Pliicker describes an approach to Projective Geometry
that uses three points in the projective plane as reference points for a coordinate system.

He finds that using three coordinates for points (instead of the usual coordinate system)
has the enormous advantage of ending up with homogeneous equations for curves - all

monomials in the polynomial describing the curve have the same total degree. This make

calculations very easy and straight forward. As Pliicker says [63]:

"Ich habe bei den folgenden Entwicklungen nur die Absicht gehabt, an Bei¬

spielen zu zeigen, dass die neue Methode einerseits zum Beweise vorgeleg¬
ter einzelner Sätze und zur Darstellung allgemeiner Theorien sich sehr ge¬

schmeidig zeigt, und dass sie andrerseits Resultatefinden lehrt, wenn man sie

aus allgemeinen analytischen Gesichtspunkten betrachtet."

which means that he wants to show how smooth the new method (of homogeneous coor¬

dinates) can be used to prove theorems and actually helps in the process of finding new

results.

Another interesting point is that Pliicker remarks that the biggest advantage of the

new coordinatization may be its application to the (at that time) new developments in

mechanics, but he writes that he could not consider this in this article. He could not

foresee that his work would be even more valuable for the field of computer graphics and

visualization.

Let us describe homogeneous coordinates from a modern, 20th century computer sci¬

entists, point of view.

We represent points by three coordinates (x,y,z), not all being zero. This point/? :=

(x,y,z) in R3 defines a unique linear subspace of R3 that contains the origin and p. Since

all À(x,_y,z), À G R\ {0} represent the same subspace, i.e. the same projective point, we

identify scalar multiples: (2,2,4) and (1,1,2) are the same point. We choose row vectors

or column vectors for the coordinates, whichever is more convenient in a particular case.

If it is not clear from the context, we assume that points are represented as column vectors,

and lines are represented as row vectors.

We do the same with lines: By (a, b,c) G R3 we represent the linear subspace that is

the orthogonal complement of the two-dimensional linear subspace that corresponds to

the line.

Embedding of the Euclidean Plane

What do we get by this representation? First of all, we have a nice embedding of R2, the

Euclidean plane, in this coordinatization of RP2. All points of the Euclidean plane can be

5 1 Points and Lines 49 Projective Dynamic Geometry

Figure 5.1: The projection of points on the

Euclidean plane to the sphere. This picture

explains how the Euclidean plane is embed¬

ded into MP2. Points at infinity can be found

on the equator of the sphere.

written as (x,_y, 1), the homogenization of (x,y) G R2. Clearly, all points that have a third

coordinate that differs from zero can be identified with a point of the Euclidean plane,
since (x,.y,À) = (f ,£, 1).

The remaining points of RP2, those having 0 as the third coordinate, are the points on

the "line at infinity," a one-dimensional projective space isomorphic to RP1. By choosing
another normalization of the triples {x,y,z) we have another nice picture that puts the

line at infinity into our reach: Let |(x,_y,z)| denote the Euclidean norm \Jx2 +y2 +z2 of

(x,_y,z). Then for v := | {x,y,z) | the vectors ±(^, ^, f) are antipodal points on unit sphere
S2. Every point that belongs to the Euclidean plane located at z — 1 is mapped on the

union of the open upper and lower hemispheres of S2, the points that are on the line at

infinity are mapped to the equator £ := S2 fl {(x,_y,z) \z — 0}.

Easy tests

How can we check whether a point is coincident with a line? In the projective plane the

two linear subspaces defined by the line and the point must have a non-trivial intersection.

This is the case when the two 1-dimensional subspaces, the linear subspace of the point
and the orthogonal complement subspace of the line, are orthogonal. This can be easily
checked in our coordinatization: No matter which representation of the projective ele¬

ments we take, the scalar product of the two must be zero, since the two coordinatizations

of the point and the line have a zero scalar product if and only if the subspaces spanned

by the coordinatizations are orthogonal.
Other relations on points and lines are collinearity resp. concurrency. Three points are

collinear if and only if there is a line that meets all three of them. This happens if and only
if the three subspaces of the points are linearly dependent, which is exactly true when the

determinant of the three coordinatizations is 0. Observe that this criterion is independent
of the special coordinatization, since the determinant is multilinear, and non-zero scalar

multiples can not change the result from zero to non-zero or vice-versa.

Three lines are concurrent if and only if all three meet in one point. In that case the

/ \

Projective Dynamic Geometry 50 5 1 Points and Lines

y\ yi z\ z2 Xj x2

Z\ Z2
>

X\ x2
?

y\ yi

three two-dimensional linear subspaces share a common one-dimensional linear subspace,
and all normal vectors lie in the (two-dimensional) orthogonal complement. This is the

same condition as above: Three lines are concurrent if and only if the determinant of the

three coordinatizations is 0.

Basic Operations: Meet and Join

We can not only check whether a line meets a point, but we can also calculate explicitly
the unique line joining two different points or the unique point of intersection oftwo lines.

The three-dimensional vector or cross product calculates a vector orthogonal to the

two factors:

x

It is easy to check that for any two vectors v and w the scalar products (v x w)Tv and

(v x w)Tw are equal to zero, since {a x b)Tc = det(a, è,c).
So if we use the coordinatizations of two points and calculate their cross product,

we get a coordinatization of a linear subspace orthogonal to both subspaces induced by
the points. If we interpret this as the orthogonal complement of a two-dimensional linear

subspace, then this subspace, representing a line, contains the first two subspaces: It is the

line joining the two points. On the other hand, if we start with the orthogonal subspaces
of lines we will end up with a linear subspace that represents the intersection point of the

two lines.

Remark 5.1 When we try to calculate the intersection ofI and m where £ — m, we will

get (0,0,0) as a result an invalid coordinate triple. The same holdsfor thejoin ofpoints

p and q, ifp — q.

Duality/Polarity

As we have seen above, the concepts of points and lines are not very different. There is

a natural duality between them, which is reflected by the symmetry of the homogeneous
coordinates. Here is a translation table:

point & line

meet & join
collinear & concurrent

point on line & line through point

Any theorem or other statement about points and lines in projective space can be

translated - using this table - into another, equivalent statement. This duality orpolarity

(the second notion seems to be more popular to people working in polytope theory) is

very useful : Often a proof of a geometric theorem is much nicer or might be easier to find

in the polar setup.

5 1 Points and Lines 51 Projective Dynamic Geometry

/ ^>^ / ^— ~* Figure 5.2: A polar version of Pappos'Theo-

^——- 7 ^S\\\^"\ rem- The labelling of points and lines is the

'^y / \^^t ^\ same (only polarized) as in example 4.8. Ob-
'

/ \ \\\
4

serve that the theorem is exactly the same:

/ \ \ \'\- Pappos is self-polar.

Cinderella offers a polar view of the Euclidean plane, see Ch. 2.

5.1.2 GSP formulation of point/line constructions

We already presented a relational instruction set that formalized points, lines, meet and

join in Projective Geometry, without using coordinates. It would be easy to include the

other predicates - point on line, line through point, collinear and concurrent - that were

introduced in the last section. For the collinearity and concurrency primitives a new object

type that mimicks a boolean variable, consisting of only two objects, TRUE and FALSE

could be introduced.

Definition 5.2 (Abstract RIS for points and lines) The abstractRISforpoints andlines

is the RIS as introduced in example 4.3, augmented by new objects B — {TRUE, FALSE}
and new primitives

POL2 = {{I,a) s.t. a lies on 1} cLxP

LTP2 = {(a, £) s. t. t meets a} cPxL

Coll = {(a,b,c,TRUE) s.t. a,b,c are collinear}

U {(a, b, c, FALSE) s.t. a,b,c are not collinear} cPxPxPxB, and

Cone = {(l,m,n,TKUE) s.t. £,m,nare concurrent}

U {(£,m,n, FALSE) s.t. £,m,n are not concurrent} cLxLxLxB.

Although this extended RIS could describe the projective plane, its points and lines

and the basic operations, it is a little bit too abstract to be useful. Instead, we will define

a RIS that is based on homogeneous coordinates.

Projective Dynamic Geometry 52 5 1 Points and Lines

Definition 5.3 (Homogeneous RIS for points and lines) The objects ofthis RLS are the

vectors in K3 andK-scalars. We do not identify scalar multiples ofthese vectors, andwe

do not exclude the zero vector. So we have 0= (0\, O2) with 0\ := K3 and O2 : = K

We have only three primitives, that correspond to the crossproduct, the scalarproduct
and determinants:

Cross Product: Cross3 = {(x,_y,z) s.t. z — xxy} C (Oj)3
Scalar Product: Seal2 = {(x,y,z) s.t. z = xTy} C (O1)2 x O2

Determinant: Det4 = {(x,y7z,r) s.t. r — det(x,>',z)} C (0\)3 x O2

Its immediate from their definitions that these primitives are determined, so the same is

true for every straight-line program on the homogeneous RIS. This matches our intuition:

There is only one instance of a construction with points and lines if you fix the input

parameters. We will investigate this and other properties in Sec. 5.2.

By moving away from the abstract definitions of points and lines to homogeneous
coordinates we lost the distinction between points and lines. If we would like to fix that

we could do so by introducing two disjoint sets 0\ = K3 and 0[= K3 that represent points

resp. lines. The cross product had to be split in a meet and a join primitive, both working
on the correct sets. The scalar product had to be changed to be valid for one point and one

line only, and the determinant should ensure that only objects of the same type are used.

But since we would not get any additional insight by these formalizations, we decided

to work with the same objects for points and lines. This is a little bit like ignoring the

difference between row and column vectors. This makes a wider range of constructions

possible: By using a point as a line we can change from a line to its polar point and vice

versa. Although we can actually construct more with this extra operation, we do not get

more computational power from an algebraic point of view, as we will see in Sec. 5.1.5.

Another change from the abstract RIS is that we allowed the zero vector to be used as

homogeneous coordinates. This zero-vector does not represent a projective point or line,
but we can assign it to an "invalid point" or "invalid line." So when does this invalid point

appear? Let us assume that we did not feed it as an input point. Then the only way to get

an invalid point is to calculate the cross product of two vectors that are scalar multiples of

each other. This means, we are trying to carry out a join or meet operation on two equal
lines or equal points, which we did not allow on the abstract RIS.

On the homogeneous RIS we do not restrict ourselves like that. We allow operations
that create invalid objects, and we allow further operations on these invalids.

What happens if we feed an invalid point into one of the three predicates? For the

cross product we will just end up with the zero vector, i.e. the invalid object, and the

scalar product and the determinant will evaluate to zero as soon as an invalid element is

used as input (see 5.1). This means that the point on line and line through point tests

and the collinearity and concurrency conditions are always true for invalid points or lines.

This will be useful later, when we want to prove theorems by random instances - when a

construction degenerates, this will not count as an counter-example for a theorem.

5 1 Points and Lines 53 Projective Dynamic Geometry

Remark 5.4 The determinant primitive is redundant, since we can replace it by a com¬

bined cross and scalarproduct as in det(x,_y,z) = (x xy)Tz.

Geometrically: Three points are collinear if and only if the line through two of them

meets the third point, and three lines are collinear if and only if the intersection of two of

them lies on the third line. So we can assume that a GSP on a homogeneous RIS does not

use determinants, if we need it:

Definition 5.5 (Determinant-free GSP) A GSP on a homogeneous RIS is determinant-

free ifit does not contain a Det statement.

5.1.3 An SLP formulation

The above did not really need the concept of a geometric straight-line program. In fact, we

will show now that the homogeneous RIS is compatible with (or equivalent to) ordinary

straight-line programs.

The first observation is that we can compile every GSP on a homogeneous RIS to an

SLP over K, that is in a certain way equivalent to the GSP. In the following transformation,

as in all the transformations in this thesis, we will use pointers that are pairs of indices,
and we assume a lexicographic order on these indices.

Transformation 5.6 (Transformation of an GSP on a homogeneous RIS to an SLP) Let

(X,P,r) be a GSP on the homgeneous RLS ((Oj =K3,02 = K),Q = (Cross, Seal, Det)).
We replace every variable Xt or Rt of type 0\ with three variables Xl} or RhJ. By re¬

mark 5.4 we can assume that Y is determinant-free. The remaining statements of Y are

transformed into several SLP instructions as in this table:

GSP statement <H> SLP code

k: Cross i j -n- k,—5

k,-A

k,-3

k,-2

k,-\

k,0

k,l

k,2

k,3

* /,2 7,3
* /,3 7,2
* /, 3 7,1
* /, 1 7,3
* M 7,2
* *,2 7,1
— /', —5 /', —4

— /', —3 /', —2

— /', — 1 z, — 0

k: Seal i j -n- k,—3

k,-2

k,-l

k,0
k

* i, 1 7,1
* *,2 7,2
* i, 3 7,3

+ k,-3 k,-2

+ k,0 k,-l

Projective Dynamic Geometry 54 5 1 Points and Lines

After renumbering the variables in the transformed GSP we end up with an SLP that

calculates each variable individually. The input ofthe SLP is the split input ofthe original
GSP, the output ofthe SLP must be re-blocked to get the output ofthe GSP.

Remark 5.7 We couldhave transformed the GSP into an SLP over the K-algebra A = K3

that has the cross product as multiplication. But we did not want to rely on the special

multiplication, since we canfall back to thefield K, and in the next section we will do the

reverse transformation, which is notpossiblefor all algebras A.

5.1.4 Homogeneous RIS GSPs and division-free SLPs are

equivalent

Transformation 5.6 showed that any GSP on a RIS may be expressed as an division-free

SLP. Now we will show the converse: Every division-free SLP over a fields = K can be

emulated by an appropriate homogeneous RIS GSP.

The construction is easy and builds on the fact that we can do multiplications, addi¬

tions and substractions geometrically using von-Staudt constructions (due to Karl Georg
Christian von Staudt, see [80, 81]). Here are three formulas that we will need for the

transformation. We can emulate multiplication, addition and substraction in K by re¬

peated cross products in K3 using some additional constant vectors:

Addition:

CDx 0)]x (?)]x [[(0x (!)]x G)Ex (0
(?)x 0)]x [(:)x G)Ex C)

GXÛMD
~

\-(*+y)J W

= (?) CD

Subtraction:

(0x (!)]x G)]x (?)]x (?)]x [[(0x (!)]x G)]]x (0
:)x(ï

'0

X | o X X

G)x0)]x(0]x0)

X

1>
.

X (J

\-(*-y)J W

= (Ï) (5.2)

5 1 Points and Lines 55 Projective Dynamic Geometry

Multiplication:

x

(7)x 0]x 0]x 0]x (0]x 0
(?)x 0]x (0 X 0

'0

X I 0

X

(?)x 0]x 0]x 0]x 0]x 0
;jxi?

'0

X I 0 X

X(i)x (;)]x C)
(') x G)]* (!)
= (r)x (I)

= (!)

x

;)

(5.3)

With these formulas in mind, we are ready for

Transformation 5.8 (Transformation from SLP to homogeneous RIS GSP) ForxE K

let feK be the vector x — 0
.
Given an SLP (X,R, Y) over K with input X\,...,X„

w
and length m we write down a GSP, andwe give transformationsfor the input ofthe SLP

to the input ofthe GSP. Finally, we identify variables where we can read offthe values of
the variables ofthe original SLP.

The input of the GSP will be X — (Zj,... ,Xw,Cj,.. .,C^), all of type 0\. An input
vector (x\,... ,x„) ofthe SLP is mapped to

The instructions of Y are transformed as in this table. As an abuse of notation C}

standsfor the pointer — (n — 6 + Ï) thatpoints to Ct:

Projective Dynamic Geometry 56 5 1 Points and Lines

SLP instruction <-> GSP code

+ i J <H> k,-5

k,-4

k,-3

k,-2

k,-l

Cross

Cross

Cross

Cross

Cross

Cross

Seal

7,0

k,-5

7,0

k,-3

k,-4

k,-\

k,0

<H> k,-7

k,-6

k,-5

k,-4

k,-3

k,-2

k,-l

k,0

Cross

Cross

Cross

Cross

Cross

Cross

Cross

Cross

Seal

7,0

k,-l

k,-6

k,-5

7,0

k,-3

k,-4

k,-\

k,0

++ k,-l

k,-6

k,-5

k,-4

k,-3

k,-2

k,-l

k,0
k

Cross

Cross

Cross

Cross

Cross

Cross

Cross

Cross

Seal

7,0

k,-l

k,-6

k,-5

k,-4

k,-3

k,-2

k,-l
k,0

C2

C3

c4

c6

k,-2

c5

c4

c6

c3

c3

c4

c6

k,-2

c4

c5

c2

c3

Cx

Cs

7,0

C3

C2

c4

In the case where i is negative z, 0 refers to i. In the new program k, 0 holds the tilde-

version ofk. So we can re-use the results ofthe cross-product computations, and we also

have access to a variable which contains exactly the same value as the corresponding
variable in the original SLP.

The correctness ofthe transformationfollowsfrom equations 5.1, 5.2 and 5.3.

How did we come up with the cross product construction? The basic building blocks

used are the von-Staudt constructions for multiplication and addition/subtraction (von
Staudt used these constructions to get rid of coordinates in Projective Geometry, see

also [17]). We can read off the formulas directly from these figures, keeping in mind

that

the line at infinity has coordinates (0,0,1) and parallel lines meet at infinity,

• the_y-axis has coordinates (1,0,0),

5 1 Points and Lines 57 Projective Dynamic Geometry

Figure 5.3: Von-Staudt

Addition: Adding the x-

coordinates of two points

by constructing two con¬

gruent triangles.

Figure 5.4: Von-Staudt

Subtraction: Subtracting
the x-coordinates of two

points by constructing
two congruent, but

mirrored, triangles.

• the x-axis has coordinates (0,1,0),

• thex= 1-linehas coordinates (0,-1,1),

• the origin has coordinates (0,0,1),

• the point (1|0) has coordinates (1,0,1), and

• the point (0| 1) has coordinates (0,1,1).

Figure 5.5: Von-Staudt

Multiplication: Multiply¬

ing the x-coordinates of

two points by transferring
two ratios. If you reverse

the construction you can

also do divisions.

Projective Dynamic Geometry 58 5 2 Determinism, Conservatism, Continuity

5.1.5 Abstract Point/Line-RIS GSPs and SLPs

Just for completeness we want to mention a way to avoid dealing with coordinates and still

showing the "equivalence" of point/line-constructions and straight-line programs over a

field K The necessary trick would be to add a cross ratio primitive to the abstract RIS

for point/line-constructions. This cross ratio primitive would map four points^, B, C and

D that lie on a line to the cross ratio (AB\CD), a projective invariant that is very useful

whenever you want to do measurements in projective space, see also section 5.4. The

cross ratio is defined by taking the signed distances on the line between the points and

dividing them:

CR(AB\CD) -

jÂ5^-l
You can also get the same cross ratio by using homogeneous coordinates on the line

(two-dimensional) and taking determinants (lowercase letters denote the homogeneous
coordinates of a point on a line):

CR(AB\CD)
=
f^f'fi

v ' '

det(ad) det(ôc)

Now we can use the cross ratio to extract the variables from the points on the x-axis.

We only have to define a point "0," a point "1" and a point °° at infinity (observe that these

points do not necessarily lie where you expect them, but can be placed arbitrarily), and

the cross ratio (0X| 1°°) is the "value" of point X.

We do not give the transformations explicitly here, it should be sufficient to know that

you could do them also for abstract constructions. They are based on the same von-Staudt

constructions as the homogeneous GSP to SLP transformation. It is just a matter of taste

whether you want to work coordinate-free until the very last moment, or whether you

introduce coordinates as early as possible since you need them anyway.

5.2 Determinism, Conservatism, Continuity

An implementation of a Dynamic Geometry system that supports points and lines in pro-

jective space is easy. Working with such a system raises certain expectations for Dynamic

Geometry systems, which at the first look seem to be very reasonable.

The first apparent property is determinism: For any given input, there is at most one

instance of a construction. We already proved this using the fact that all instructions in

the homogeneous relational instruction set are determined. But remember that this is

a special property - we will see that the RIS for a reasonable dynamic geometry system

that can handle circles is not determined. Nevertheless, most other implemented Dynamic

Geometry software shows deterministic behavior, and it is in fact what people expect.

The second property is a direct consequence of determinism, and for determined sys¬

tems it is so natural that you probably will not notice that this is a distinguished behavior.

5 2 Determinism, Conservatism, Continuity 59 Projective Dynamic Geometry

The point/line-constructions are conservative, meaning that when you move objects and

then undo all your moves by reversing them, then you will have the same instance of the

construction. If there is only one instance, like in a determined system, you will always
have the same instance for the same set of input parameters, but in an indetermined system

you might still expect conservatism. The reason why we explicitely mention conservatism

is that Cinderella looks like being non-conservative (macroscopically), but actually it is

conservative (microscopically). That is, every move is translated into a series of small

moves, of which each is conservative. The twist comes in because a move in one direc¬

tion is translated into another series of moves as the move in the opposite direction.

The third, and, as you will see, most challenging, property is continuity. We did not

define a topology on our objects yet, but its clear what is meant by continuous move¬

ments: We do not want to have large "jumps" of elements for small changes in the input

parameters (here we do not consider a point moving through infinity and coming back

from the other side of the plane as a large jump, have a look at the spherical projection!).
These three observations are at the core ofthe problems arising in Dynamic Geometry.

Of course, a user who starts to work with points and lines and experiencing the well-

behaving world of Projective Geometry, expects the system to show the same behavior

when other objects, for example circles, are introduced. See the next chapter for some

examples, and let us concentrate on the reasons for the niceness of Projective Geometry.
We have shown in the last section that the homogeneous RIS GSPs can be written as

ordinary straight-line programs over a field K This means that all variables are given by
multivariate polynomials in the input coordinates, coordinate-wise. So here are the quick

proofs for our observations:

Proof 5.9 (Point/Line-constructions are determined) Since every coordinate of every

point and line is apolynomial in the coordinates ofthe inputpoints and lines, as is every

variable calculated by scalar products (and determinants), there is only one instancefor

every GSP with given input, which we canfind by evaluating the polynomials. D

Proof 5.10 (Point/Line-constructions are conservative) Since there is only one instance,

we cannot end up in another instance after moving around. D

For the last proofwe have to fix a notion of continuity. We do not define a topology for

KP2 U {(0,0,0)}, but if we did we ended up with the same continuity as the one below:

Definition 5.11 A GSP on a homogeneous RIS is continuous if all coordinate functions
are continuousfunctions in the input coordinates.

Of course, this definition was made to make the following proof trivial:

Proof 5.12 (Point/Line-constructions are continuous) All coordinatefunctions arepoly¬
nomials in the input coordinates, so they are continuous. D

Projective Dynamic Geometry 60 5 3 Randomized Proving

You might wonder why we dwell on trivialities here. The reason is that these triviali¬

ties immediately become non-trivial in the next section, and it needs a lot of work to find

out why they are suddenly that hard. For now you can just accept that everything is easy

in the world of points and lines, but you should not draw the conclusion that it will stay

like that.

5.3 Randomized Proving

In this section we will describe a way to prove geometric theorems automatically without

using symbolic methods like Gröbner bases [77] or binomial proofs [66]. This method is

very powerful, it is not restricted to special classes of point/line-incidence theorems, but

it works for any point/line-incidence theorem. See also Sec. 5.3.5 for related results in

that context.

The method uses the fact that the coordinate functions in homogeneous RIS GSPs are

multivariate polynomials, and for these we can use a lot of known theory.

5.3.1 Testing Polynomials

Assume that you are given for a field K a polynomial p G K[X], and you would like to

determine whether it is the zero polynomial, that is, p = 0. Clearly it depends on the

representation ofp how difficult this is. If you know all the non-zero coefficients ct and

d

t=0

then it is a trivial task: All coefficients must be zero for p being the zero polynomial.
But if the polynomial is described by a "black box," some device where you can insert

a value for x and get the evaluation p(x) ofp at x then it is not as easy as above. You need

more information about the polynomial to be able to tell anything. One particular useful

piece of information is the maximum degree d of p, since the fundamental theorem of

algebra (using the Euclidean algorithm) tells us that there are at most d distinct roots of

p (see Thm. 4.4 in[56]), unless p
= 0. So if we are lucky and find more than d roots we

have a certificate for the polynomial being identically zero.

This simple technique can be used to derive a Monte-Carlo method for checking ze-

roness of polynomials:

Theorem 5.13 (Zero testing for polynomials) Let p e K[X] be a univariatepolynomial
with degree < d. Choose afinite subset 5cK, andpick r uniformly at randomfrom S.

Then

rr\p(r) = 0\p(X)£0] <
—, .

5 3 Randomized Proving 61 Projective Dynamic Geometry

Proof 5.14 There are at most d roots, which we divide by the number ofpossible values

for r. D

The probability that we pick a root "by accident," given that the p is not the zero

polynomial, can be made very low. If the set S is chosen very large, we can make the

probability of picking a root as low as any e > 0, so in the limit case we can be sure

just by one test. By repeating the zero test independently we can also easily lower the

probability of a wrong answer.

The black boxes we will look at are division-free straight-line programs. These are

not really black, since we can read the instructions, so we know a lot more than only
the total degree. But it is not clear whether this additional knowledge can be of any use.

Together with the connection of projective Dynamic Geometry to straight-line programs

we can then apply the results to geometric constructions.

Since division-free straight-line programs model multivariate polynomials - the num¬

ber of variables is the size of the input of the SLP - we have to extend Thm. 5.13 to the

multivariate case.

5.3.2 The Schwartz-Zippel Theorem

Although the number of roots of a multivariate polynomial is usually infinite, consider

p{x,y) — xy, the bound given by the following theorem is as good as in the univariate

case. The trick is that we restrict ourselves on a subset of the input that is the cartesian

product of subsets of the field. We could not choose just any subset of W.

Theorem 5.15 (Schwartz-Zippel Theorem) Let Q{x\1... ,x„) G K[xj,... ,x„] be a mul¬

tivariate polynomial of total degree d. Fix anyfinite subset S C K, and let rj,.. .,rn be

chosen independently and uniformly at randomfrom S. Then

Pr[ö(r1,...,rw) = 0|ö(x1,...,xw)^0]<— .

Proof 5.16 For an easy proofusing induction on the number ofvariables see [60].

If we know the maximal probability of finding a zero under the assumption that the

polynomial is not the zero polynomial, then we can also prove that a polynomial is the

zero polynomial by choosing a set S that is large enough for the probability to be below 1

and evaluating the polynomial for all (rj,... ,rw) £ S". This gives the following corollary
about test sets.

Corollary 5.17 (Test Sets) Let Q(x\,... ,xw) G Kjxj,... ,xw] be a multivariatepolynomial

oftotal degree lessor equal d. Fix anyfinite subset S CKwith \S\ > d. IfQ(ri^...,r„) = 0

for all (rj,... ,r„) G S" then Q(x\,.. . ,xw) = 0.

Projective Dynamic Geometry 62 5 3 Randomized Proving

Proof 5.18 The probabilityfor Q evaluating to 0 in S" under the assumption that Q^O
is less than 4r < 1 by Thm. 5.15. The evaluations prove that the probability is equal to 1,

so the additional assumption ofthe Theorem cannot be true. D

This corollary can be used to create a deterministic algorithm for zero checking of

polynomials. If we have a bound for the total degree of a polynomial then we just can

evaluate the polynomial over a large enough subset ofK and we will either find a counter¬

example that shows that the polynomial is not equal to zero, or we will end up with enough

examples that prove the zero identity.

5.3.3 The Test-Set Lemma

In some cases the total degree exceeds the single degree in each variable drastically. Ifwe

know the single degrees we can reduce the test set size as shown below in a lemma that

appeared in [93].

Lemma 5.19 (Test Set Lemma) Let Q(x\,...,xn) G K[xj,..., xn] be a multivariatepoly¬
nomial of degree in xt less or equal dv Fix finite subsets S, C K with \S,\ > dv If

Q(r\,...,rn) =Oforall(ri,...,rn) eS\X---xS„ then Q(x\,.. .,xn) = 0.

Proof 5.20 We prove the lemma by induction on the number ofvariables n. For n= 1 the

lemma is equivalent to Cor. 5.17, so let us assume that it is truefor n — j andprove itfor

Write Q as a univariate polynomial Q in x :— xJ+\. The coefficients ctofQ are mul¬

tivariate polynomials inx\,...,Xj with the induced degree bounds dv The degree ofQ is

d := dj+i.
Fix (fi,...,fj) ESiX---xSj, andconsider the univariatepolynomial Q(x) :—Q(fi,. ^fJ).

This Q has degree at most d, and its coefficients are exactly the coefficients ct evaluated

at (fii...,fj). Since Q(r) — Ofor allr G SJ+\ we know more than d roots ofQ, so Q = 0.

But we can choose any element ofS\ x • • • xSj as (rj,. -.,fj), so we know by induction

that all c}
= 0, andwe can conclude that Q — Q = 0. D

Lemma 5.19 does not only imply Cor. 5.17, but it is much more powerful. Suppose

you are given a polynomial in ten variables with degree two in each variable. If you are

unlucky, you have to check 2110 instances when you rely on the total degree. When you

use the refined version, you can do the same with 310 instances, a factor of 282.475.249.

5.3.4 Automatic Theorem Proving for Constructive

Point/Line-Incidence Theorems

Let us now mix what we know about homogeneous coordinates and zero testing of poly¬
nomials. We will get an automatic theorem prover for incidence theorems on points and

lines in the projective plane.

5 3 Randomized Proving 63 Projective Dynamic Geometry

For every homogeneous RIS GSP we will write down another GSP on another GIS that

gives an estimate for the degree in each input variable of the polynomials describing the

intermediate results of the GSP. With this estimate we can apply the test-set Lemma 5.19.

Let us collect all the necessary notations and definitions for this.

Notation 5.21 (Multidegree of a polynomial) For a multivariatepolynomialp G K[X\,... ^Xn],p ^
0 let deg(p) = (dii...,d„) denote the degree in each variable.

Definition 5.22 (Partial order on multidegrees) A multidegree {c\,..., cn) is less or equal
to (d\,.. .,dn) ifc} <d}for alii G {1,...,«}. In that case we write (c\,... ,c„) < [d\,.. .,dn).

Definition 5.23 (Sum of multidegrees) For two multidegrees {c\,..., cn) and (di^...,dn)
their sum (c\,..., cn) + [d\,..., dn) is defined by

(ci+dh...,cn + dn).

Definition 5.24 (Maximum of multidegrees) For two multidegrees (c\,..., cn) and [d\,..., dn)
the maximum multidegree max{(c\,..., c„), {d\,..., d„)} is the multidegree

(max{ci,<fi},. ..,max{cn,dn}).

A few basic observations help us in finding the upper bounds for the multidegrees of

the coordinate polynomials. When we multiply polynomials, the degrees will be added,
when we add polynomials, we must take the maximum degree of each to receive the

multidegree.

Lemma 5.25 (Bounds on the multidegree) Let p, q G K[X\,... ,X„] be two polynomials
with deg(p) -< (c\,..., cn) and deg(g) -< [d\,..., dn). Then

1. de§,(pq)<{ci+di,...1cn + dn)1

2. deg(p + q)< max{deg(p), deg(<?)},

3. deg(p -q)< max{deg(/>), deg(<?)}.

Proof 5.26 The degree bounds on p and q show that we can write

p(x1,...,xn)=^---^aJ1>...j„xy xJ„" and (5.4)
71=0 j„=0

q(xh...,x„)= X ••• X K,.,kÂl <" (5-5)
k\ =0 k„=0

Projective Dynamic Geometry 64 5 3 Randomized Proving

1. Multiplying equations 5.4 and 5.5 gives

c\ cn d\ dn

p(xu...,xn)q{xh...,xn)= £ •• £ Z ••• X «/i..../A...*B*i1+*1 xn+kn-
71=0 jn=0ki=0 kn=0

The bound on the multidegreefollows immediatelyfrom this representation.

2. The sum ofp and q is given by

max{c\,d\} max{c„,rf„}

p(xi,...,x„)+q(xh...,x„)= £ £ (Uji-jn + fiji-M1 xL".
71=0 Jn=0

The bound on the multidegreefollows immediatelyfrom this representation.

3. We can apply the sameformula asfor the addition multidegree boundsince deg(-q)
deg(q)for all multivariatepolynomials q.

D

Notation 5.27 (Multidegree of a vector) For a vector (p\,p2,p3)T ofmultivariatepoly¬
nomials we introduce the shortcut deg((p\,p2,P3)T)for the vector ofmultidegrees (deg(p \), deg(p2), deg(j>3))l

Lemma 5.28 (Multidegree bounds for determinants of polynomials) Letp\^p21p31q\1q21<î3ir\ir2^3

K[X\,... ,X„] be multivariatepolynomials with deg(pt) ^ (c}\,..., c,„), deg(^) -< (d,i,..., din)
and deg(r,) < (e,j,..., eOT). Then we can give the following upper boundsfor operations
on these polynomials.

1. The multidegree ofa 2 x 2-determinant is bounded by

deg
Pi q\

P2 <?2

= deg{piq2 -piqi)

< max{deg(^i^2),deg(>2^i)}
< max{deg(/Ji) + deg(^2),deg02) +deg(^i)}

2. The multidegree ofa each coordinate ofa crossproduct oftwo vectors ofmultivari-

5 3 Randomized Proving 65 Projective Dynamic Geometry

ate polynomials is bounded by

'P\\ Mi

deg | | P2 x \q2
\P3/ W

r< deg

P2 q2

P3 q3

Pi q\

P3 <?3

p\ q\

\ P2 q2 J

/max{deg02) + deg(q3),\
deg(p3) + deg(q2)}

max{deg03) + deg(^i)
deg(pi) + deg(q3)}

max{degOi) + deg(<?2)

V deg(/j2) + deg(^i)} /

3. The multidegree ofthe scalarproduct oftwo vectors is bounded by

deg (pi,P2,P3)
max{max{deg(/?i) + deg(<?i),

r< deg(p2) + deg{q2)},
deg(p3)+deg(q3)}

4. The degree ofa 3 x 3-determinant ofpolynomials is bounded by

deg

q\ r\ (

12 r2 < deg

<13 r3 \
-<

Pi\ Mi

P2 x \q2
py W3,

max{

max{deg(/?2) + deg(^3) + deg{r\)1

deg{p3) + deg(q2)+deg(r1)},

max{deg(p3) + deg(qi)+deg(r2)1

deg(pi) + deg(q3)+deg(r2)},

max{deg(pi) + deg(q2)+deg(r3)1

deg(p2) + deg(qi)+deg(r3)}}

Proof 5.29 All the bounds are immediatefrom the preceding lemmas. Ü

Now we are set for the transformation of the homogeneous RIS GSP to an GSP over

the bounding RLS, which can carry out maximum operations and additions on multide¬

grees.

Projective Dynamic Geometry 66 5 3 Randomized Proving

Definition 5.30 (Bounding RIS) A bounding RIS is a relational instruction set whose

objects 0\ are multidegree vectors (d\,...,d„) G Nq with two primitives, MAX2 and +2,
where

MAX2 = {(a,b,c) s.t. c = max{a,/3}} C 0j

+2 = {{a,b,c)s.t. c = a + b} C 0\

The transformation from the original GSP on the homogeneous RIS to the GSP on the

bounding RIS uses the formulas from Lemma 5.28.

Transformation 5.31 (Homogeneous RIS GSP to Bounding RIS GSP) Let (X,R,T) be

a GSP on a homogeneous RIS, X = (X\,... ,X„), Y = (Y\,..., Ym). The new GSP on the

bounding RIS will be (X, R, Y).
The input X ofthe new GSP is constructed by takingfor every variable Xt oftype 0\

(the homogeneous coordinate vectors) three variables X,\ ,Xï2 andX^, andfor every vari¬

able Xj oftype O2 (the scalars) one variable X,. The input variables will be multidegrees
with the same number ofelements as the size ofthe input ofthe new GSP.

The statements ofthe bounding RLS GSP are obtained by translating every statement

of the original GSP conforming to this table, the translationfor the Det primitive is ob¬

tained by first translating to a determinant-free GSP and then using the Cross and Seal

translations:

Homogeneous RIS GSP <-> BoundedRIS GSP code

«-> k,-5 + 7,2 7,3

k,-4 + z, 3 7,2

k,-3 + z, 3 7,1

k,-2 + z,l 7,3

k,-\ + z,l 7,2

k,0 + z,2 7,1

k,\ Max k,-5 k,-4

/c,2 Max k,-3 k,-2

k,3 Max k,-l k,0

«-> k,-3 + z,l 7,1

k,-2 + z,2 7,2

k,-\ + z, 3 7,3

k,0 Max k,-3 k,-2
k Max k,0 k,-\

What can we do with this transformation? It is meant to have an easy way to get a

bound on the degree in each variable of every intermediate result of a GSP. We know

the multidegree of each input element, it is one for the variable corresponding to the

5 3 Randomized Proving 67 Projective Dynamic Geometry

coordinate ofthe input, and zero for all other variables. Ifwe feed this into the transformed

GSP, we will get the best possible trivial upper bound for the degree of each variable of

the polynomial described by the original GSP.

Definition 5.32 (Standard Input of a Bounding RIS) For a bounding RIS on multide¬

grees (di,...,d„) oflength n the standard input is

X = (i,o,o,o,...,o)

X2 = (0,1,0,0,...,0)

X3 = (0,0,1,0,...,0)

X„ = (0,0,0,...,0,1)

The transformation to bounding RIS GSPs is a universal tool that we can use to prove

constructive incidence theorems in Projective Geometry involving points and lines. Infor¬

mally spoken, a constructive incidence theorem is a theorem of the form "In a projective

point/line construction given by following construction steps this point/line-incidence has

to occur." The exact definition of constructive incidence theorem is based on homoge¬
neous RIS GSPs:

Definition 5.33 (Constructive Incidence Statement) A constructive incidence statement

is a GSP (X1R1Y) with input size n andlength m on a homogeneous RIS with thefollowing

properties:

1. All input variables are oftype 0\, i.e. they standfor homogeneous vectors.

2. All intermediate results are of type 0\, exceptfor Rm-\, which is of type O2. The

variable Rm-\ is called conclusion.

The conclusion of a constructive incidence statement is, since it is of the scalar type,

created by a Seal or Det primitive, all other statements must use the Cross primitive. So

the conclusion could be stated in human language as "if we construct like that, then in

the end this incidence will always be true" or "if we construct like that, then in the end

these three points/lines will always be collinear/concurrent." This "always be" is coded

by asking for the polynomial of the last intermediate result Rm-\ :

Definition 5.34 (Truth of a Constructive Incidence Statement) A constructive incidence

statement oflength m is true ifall instances of it have Rm-\ — 0, i.e. the polynomial en¬

coded by Rm-\ is the zero polynomial, and it is false if there exists one instance with

Rm-\ ^ 0. In that case we speak ofa constructive incidence theorem.

Of course, there are statements that are always true because they degenerate before

evaluating the conclusion, one input of the last statement is always the zero vector.

Projective Dynamic Geometry 68 5 3 Randomized Proving

Definition 5.35 (Degenerate Constructive Incidence Theorem) A constructive incidence

theorem is degenerate ifone input ofthe last statement is the zero vectorfor all instances

ofthe constructive incidence statement.

Degenerate constructive incidence theorems are always true, since the scalar product
and the determinant evaluate to zero when one of the inputs is the zero vector.

With all this equipment we can give a simple algorithm for theorem proving:

Algorithm 5.36 (Theorem Proving for Constructive Incidence Theorems)

Input: A constructive incidence statement (X,i?,T). of length m

Output: Either TRUE if the constructive incidence statement is true, or a counter-example.

1. Transform (X,i?,T) to the GSP (X,R,Y) on abounding RIS as in transformation 5.31.

2. Evaluate (X,R,Y) with the standard input for bounding RIS GSPs to get the multi-

degree ofi?OT_i.

3. Choose a test-set using the multidegree according to Lemma 5.19.

4. Feed all elements of the test-set into the original GSP. If the evaluation of Rm-\ is

non-zero for at least one element of the test-set, return it as a counter-example for

the statement. Else return TRUE.

The correctness of the algorithm follows immediately from the test-set Lemma 5.19

and the bounds on the multidegrees for cross and scalar products ofvectors ofpolynomials
as in Lemma 5.28.

Example 5.37 (Pappos' theorem) We willprove Pappos
'

theorem using algorithm 5.36.

First ofall we have tofind a construction sequence that encodes Pappos' theorem as a

constructive incidence theorem. Weformulate example 4.8 as an homogeneous RLS GSP

andadd a conclusion, and then we transform it and evaluate it on the standard input. See

table 5.1for the construction and the bound on the multidegree.
Next we only have to evaluate 415 (roughly a billion) examples ofPappos' theorem

andwhen we do notfind a counter-example this will be aproofofthe theorem.

The problem of this method of proving theorems is that the degree bounds can in¬

crease very quickly, actually it can happen that they double in each construction step.

So although we have efficient methods of zero-testing polynomials, we have to check an

enormous amount of examples to have a valid proof.
Here the power of randomized proving can be exploited in its full strength: The bound

on the multidegree can be used trivially as a bound on the total degree by adding all

single degrees (in the case of example 5.37 the total degree will be less than or equal to

15 • 3 = 45. So using the Schwartz-Zippel theorem 5.15 we know that if we pick one

random example from a set of size (232)15 and this evaluates to zero, then the probability
that Pappos' theorem is false is less than 4^, only slightly more than 0.000001%.

5 3 Randomized Proving 69 Projective Dynamic Geometry

Index Var/Result Statement

-5 X5 -

-4 X4 -

-3 X3 -

-2 x2 -

-1 X -

0 i?o Cross -5,-4

1 R\ Cross -4,-3

2 R2 Cross -3,-2

3 R3 Cross-2,-1

4 R4 Cross 0,2

5 Rs Cross 1,3

6 Re Cross -5,5

7 Ri Cross-1,4

8 Rs Cross 6,7

9 R9 Cross -5,-2

10 Rio Cross-1,-4

11 Rn Cross 9,10

12 Rl2 Cross 8,-3

13 Rl3 Seal 11,12

Index Multidegree

00000000000010 0]

000000000000010]

000000000000001]

00000000010000 0]

00000000001000 0]

00000000000100 0]

00000010000000 0]

00000001000000 0]

00000000100000 0]

00010000000000 0]

00001000000000 0]

00000100000000 0]

10000000000000 0]

01000000000000 0]

00100000000000 0]

000000000011011]

000000000101101]

000000000110110]

00000001101100 0]

00000010110100 0]

00000011011000 0]

0110 0 0 0 0 0]

1010 0 0 0 0 0]

110 0 0 0 0 0 0]

00000000 0]

00000000 0]

00000000 0]

0 0 0]

0 0 0]

0 0 0]

22222222222222 2]

22222222222222 2]
22222222222222 2]

000011000000011]

000101000000101]

000110000000110]

01100000001100 0]

10100000010100 0]

11000000011000 0]

11111100 0111111]

11111100 0111111]

11111100 0111111]

22222223322222 2]

22222232322222 2]

22222233222222 2]

13 (3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)

Table 5.1: On the left you can read off the construction steps for Pappos' Theorem, on the right
the evaluated multidegree bound is shown for every intermediate result.

Figure 5.6: The configuration corre¬

sponding to table 5.1

Projective Dynamic Geometry 70 5 3 Randomized Proving

In [74] Schwartz discusses how the probability can be kept low even if all calculations

are carried out in the integers modulo some random prime, which solves all the numerical

problems that can arise while evaluating a homogeneous geometric straight-line program.
However, we will not discuss this here.

We would like to end this section with two remarks concerning this method of proving
incidence theorems.

Remark 5.38 There are non-constructive incidence theorems.

This is an obstacle when you want to generally apply the theorem proving algorithm
for incidence theorems. There is no algorithm that constructs construction sequences

for theorems given in hypotheses/conclusion-form automatically, and there cannot be a

general one, since there are theorems with no corresponding construction sequence.

Here is one example: If you construct the five intersec¬

tions of the lines that are given by each edge and a non-

adjacent diagonal in a pentagon, then if four of these are on

a line, then will be the fifth. This is true for a regular pen¬

tagon, where these intersections lie on the line at infinity,
see Fig. 5.7, and thus it is true for every projective transform

of the regular pentagon. But whenever we have an arbitrary

pentagon, which is not the projection of a regular one, then

c- «-7 a i
there will be no four of these points constructed above that

Figure 5.7: A regular pen-
^

tagon and its diagonals
lie on a line- So tne assumPti°n of the theorem is only valid

for projections of regular pentagons. Since these need non-

rational coordinates (in any projection!) the theorem is non-constructive.

Even worse: There are theorems that are not constructible even if you admit other

tools like a compass! These appear in configurations that cannot be constructed since the

placement of some points involves solving polynomial equations of degree higher than 4.

Another issue is the efficiency of the proving algorithm. As mentioned above the

degree bound cannot guarantee polynomiality of the proving algorithm. If we need a

polynomial time algorithm (polynomial in the size of the construction), we must use the

randomized variant.

5.3.5 Related Results

The idea of using zero-testing of polynomials in geometric theorem proving is not new, it

is known as the method of "proving by examples" or "parallel numerical verification" and

was developed by Mike Deng, Lu Yang, Jingzhong Zhang and their co-workers [10, 90,

91, 93] based on work of Jiawei Hong [28, 29]. Hong gave criteria to determine whether

a particular example (evaluation) is a proof for a polynomial being the zero polynomial,
in fact, if the value you plug into the polynomial is large enough - where "large enough"
is the critical part - one evaluation is sufficient. The parallel method concentrates on

evaluating several examples instead of only one. The adjective "parallel" comes from the

5 3 Randomized Proving 71 Projective Dynamic Geometry

Figure 5.8: Pappos' theorem in

general position: A\,Ai and Aj are

pairwise distinct, as are 5i, #2 and

^3. We want to prove that the C,

are collinear.

fact that you can carry out the necessary evaluations of polynomials in parallel, since they
are independent. Nevertheless, so far there is no implementation known to us that actually

parallelizes the computations.

The main difference of the former approaches is that the step of finding the polyno¬
mials corresponding to the geometric theorem is not included. Instead the authors rely on

other ways to find a polynomial system that has to be checked, e.g. Wu's method (after
a suitable coordinatization) that was introduced in [89]. So a set of hypotheses is created

and a conclusion, and a first obstacle is to create one polynomial equation by elimina¬

tion techniques. In our situation we can use the given construction sequence to create the

polynomials automatically. However, proving by examples in general is more powerful,
since we can only create the construction sequences automatically as long as only points
and lines in projective space are involved. See the next chapter for the reasons and the

way out of this dilemma.

We would like to present one particularly nice example of the "proving by examples"
method that shows how the method can be applied even if we do not use a computer, and

how we can actually avoid any evaluations by simple arguments. This is not an example
for automatic theorem proving, but it is an example how the methods of automatic theorem

proving can be enhanced when we do not work with general bounds for the degrees but

with concrete configurations. This proof was presented in [93].

Example 5.39 (Pappos' Theorem using the parallel numerical method) Let £, m be two

distinct lines. Let ^1,^2,^3 be three points on £ andB\ ^2^3 be three points on m. The

three intersections ofAtBj andAjBt, i ^ j e {1,2,3}, are denoted by C3, C2 and C\ as in

Fig. 5.8, and we want to show that they are collinear.

After a projective transformation we can assume that £ is the x-axis and m is the y-

axis, and no point lies on the line at infinity. So the dehomogenized coordinates of the A,

are (u,,0), and the coordinates ofthe Bt are (0, vt). By (xllyl) we denoted the coordinates

ofthe C,.

The hypotheses are the equations that describe the position of the C} with respect to

the A} andBj, so we have

Projective Dynamic Geometry 72 5 4 Measurements

Cj

H\ : v2X3 + u\y3 - u\v2 = 0,

H2 : V]X3 + U2y3 - u2vx = 0,

H3 : v3x2 + uxy2 - ux v3 = 0,

#4 : V]X2 + u3y2 - U3V1 = 0,

H5 : V3X1 + U2y\ — U2V3 — 0, and

H6 : v2x\ + u3yi - u3v2 = 0,

that are created by the collinearities AtBjCk with i ^ j 7^ k ^ i.

The conclusion is described analogously by

x\ y\ 1

X2 y2 1

X3 y3 1

Now we try to estimate the degree of the conclusion polynomial. Using pairs of hy¬

potheses we can describe the dependent variables byfractions

*k =
hi
Nt

yk =
N,

where LlJ1MlJ1NlJ are polynomials in ul:uJ:vtlVj ofa degree less or equal to 1 in each

variable. So the conclusion can be written as, after eliminating the common denomina¬

tors,

L23 M23 N23

L13 M13 N13

Ll2 Ml2 Nu

0 = = 0,

{0,1,2Y aswhere the degree o/"0 in each variable is less than 3. So we can choose S

a test setfor the theorem (usingLemma 5.19).

But, ifAt — 0 or Bt — 0, then the theorem is obviously true, so we only have to check

itfor S' : — {1,2}6. But now two ofthe At and two ofthe Bt have to coincide, so two ofthe

Q are coincident, too, which means that the theorem is trivially truefor all test cases. D

5.4 Measurements

Most people think that Projective Geometry and measurements are two different worlds

that cannot be merged. Interestingly this was noted already by Felix Klein in his "Vor¬

lesungen über nicht-euklidische Geometrie" [42], and unfortunately it is still true today:

"

...
weil sich die Geometer an den Gedanken gewöhnt hatten, daß Metrik

und projektive Geometrie in keiner Beziehung zueinander ständen."

5 4 Measurements 73 Projective Dynamic Geometry

Figure 5.9: Measuring distances and angles in Cayley-Klein geometries

The way out of the non-existing dilemma is completely formalized by Cayley-Klein ge¬

ometries. We will not discuss this wonderful part of geometry here in full detail, but for

a better understanding we just want to give a rough sketch of how measurements can be

expressed in Projective Geometry.
The first thing you need is a dual pair of conies that play the role of infinity: Two

conies C and D are said to be a dual pair if

//C = £>* and XD = C*

for some p. and X. Here C* is the adjoint of a conic. If the matrix ofC is invertible, then

C* — det(C)C_1, but the formal definition also works for matrices that are not invertible:

C* = (det(Cy))y

Here CtJ is the matrix C missing row i and column j. In a dual pair (C,D) we call C

thefundamental conic and D is its dual.

A dual pair (C,D) has the property that every point that lies on C is tangent to D ifwe

interpret it as a line, and vice-versa. This extends the point/line duality to conies and its

duals. We need this property in order to measure angles, see below, because we have to

calculate tangents to the fundamental conic.

All measurements are now carried out with respect to that fundamental pair of conies,
and the key operation here is the cross ratio of four points or four lines, as introduced in

section 5.1.5.

You might wonder why the cross ratio is a suitable way to do measurements, since it

is a projective invariant, which is definitely not the case for, say, Euclidean distances. But

here the trick is that we are not measuring the distance between four objects, but only two

objects, and the missing two ones for the cross ratio will be calculated from the first two

ones and the fundamental conic. Thus the transformations that are invariant with respect

to distances or angles are exactly those transformations that map the fundamental conic

and its dual to itself.

Here is the recipe for distances:

• Fix a fundamental pair of conies (C7D).

Projective Dynamic Geometry 74 5 4 Measurements

• For two points A and B take the j oin £ = A VB and intersect it with the fundamental

conic C. Call the intersections X and Y.

• Calculate the cross ratio CR(AB\XY), which is possible since all four points lie in a

1-dimensional subspace (on a line).

• Take the logarithm ofthe cross ratio and (ifyou like) multiply it with some cosmetic

constant Cdist- Call the result "distance."

And the analogous (polar) procedure for angles:

• Fix the same fundamental pair of conies as for distance measurements.

• For two lines a and b take the meetM= aA b and let the tangents to the fundamental

conic throughM be x and y.

• Calculate the cross ratio CR(ab\xy), which is possible since all four lines meet in a

point.

• Take the logarithm ofthe cross ratio and (ifyou like) multiply it with some cosmetic

constant cang. Call the result "angle."

These simple formulas

dist(AB) = cdlst\n(CR(AB\XY)) and Zab = cang\n(CR{ab\xy))

unify the measurements in Euclidean, hyperbolic, elliptic, relativistic and some other

types of geometry. You can classify the geometries via the projective equivalence of

fundamental conies and dual fundamental conies.

More material on Cayley-Klein geometries in Dynamic Geometry software can be

found in [87] and [49].

Chapter 6

Circles and Conies

The last chapter presented the easy part of Projective Geometry on a computer. The

implementation of a software that is based on Ch. 5 is straight-forward. Since we could

fall back on mathematics ofthe last century we can expect that within the last one hundred

years enough research has been carried out to cover also what is needed to add circles and

conies to the setup of dynamic projective geometry. It turns out (in the next chapter) that

there actually is enough theory to make also conies and circles available, but we will have

to rediscover it.

6.1 Extending point/line-constructions

We will now extend the homogeneous coordinates approach for points and lines to cover

also algebraic curves of degree 2, conic sections.

6.1.1 Representation of Conies

Definition 6.1 (Conies in homogeneous coordinates) A conic in theprojectiveplane MP2

is given by a homogeneous equation ofdegree 2:

C :— {(x,y,z) s.t. ax~ + for + or + exy +fxz+gyz — 0} (6.1)

Another common representation of a conic can be given by a 3 x 3-matrixy4:

C := {(x,y,z) s.t. (x,y,z)A(x,y,z) = 0} (6.2)

Clearly this representation is not unique, even if we identify scalar multiples of A, but

with the additional restriction on A to be symmetric we can read off the coefficients of

Eq. 6.1 from A

75

Circles and Conies 76 6 1 Extending pomt/lme-constructions

6.1.2 Basic operations

We will now define a set of basic operations that we definitely expect from a Dynamic

Geometry system. Although this set is very small, all problems will already arise within

this limited framework. For a much more detailed discussion of the possible operations
on points, lines and conies see [87]. Another good source will be [4], which is partly
based on [68].

We will explicitly describe how the necessary calculations for the basic operations can

be carried out in homogeneous coordinates.

Conic by five points

For interactive manipulations the definition of a conic by its matrix is not very suitable. It

is much more preferable to be able to visually manipulate a conic via a direct connection

of a point on screen to the entries of the matrix.

Five points define a unique conic, if no four of them are on a common line. So we

introduce a primitive Conic that uses five points as input and outputs the conic defined by
these five points, and the zero matrix in the degenerate case.

The conic equation can be calculated using the five equations that are given by the

point/conic incidences. A general conic can be written as

a-xr + b-)r + c-z^+d-xy + e-xz + f-yz = 0. (6.3)

Using the known coordinates (x„ynz,) of the points on the conic, i = 1,...,5, as¬

suming that (x,y,z) describes another point on the conic, and regarding the coefficients

a,...,/ as unknowns we get a linear equation system

x\ -a+y\ -b + z\ -c + x\y\ -d+ x\z\ -e-\-y\z\ •/ = 0

x^-a+y^-b + z^-c + X2y2-d+X2Z2-e+y2Z2-f — 0

x^-a+y^-b + z^-c + X3y3-d+X3Z3-e+y3Z3-f — 0

A -a-\-y\ -b-\-z\ -c + x4y4 -d+ x4z4 -e+y4z4 •/ = 0

x\ -a+y\ -b + z\ -c + x^ys -d+ x^zs -e+y^zs •/ = 0

x~ -a+yr -b + z^ -c + x y -d+x z -e+y z •/ = 0

This equation system has a non-trivial solution, so for the determinant of the coefficients

(6.4)

A A A xiyi X\Z\ yizi

x% A A X2y2 X2Z2 y2Z2
X2

X3 A A X3y3 X3Z3 y3Z3
X2
x4 A A x4y4 X4Z4 y4z4

A A A xsys X5Z5 yszs

X2 A z2 xy xz yz

6 1 Extending point/line-constructions 77 Circles and Conies

must hold. Equation 6.4 in turn gives a formula for the coefficients a,...,/ in terms of

the (x^y^z,): If we expand the determinant along the last row, we see immediately that

a,...,/ are given by the 5 x 5-subdeterminants of the 5 x 6-matrix.

This formula is computationally expensive, so we would like mention a better way to

find the conic using the "Pliicker //." The linear combination C = XA-\-pB oftwo conies A

and B that meet in four different points is another conic that also meets these four points.
We can adjust the two parameters X and p. such that a given fifth point is also met by C.

So in order to find the conic that meets five points we just have to find two conies that

meet in four of the points. Since the product of the equations of two lines is the equation
for the degenerate conic consisting of these lines, we can just proceed like this:

• Choose two pairs of points, say (p\,pi) and (p3,p4).

• Calculate the degenerate conies (p\ x p2) • (j>3 x p4)T and (p\ x p^) • (j>2 x p4)T
These meet exactly in p\, ... ,p4 (if the points are in general position).

• Adjust the linear combination C = XA + pB such that C meets ps, too. You can

choose X = pl5Bps and p = —pl5Aps.

Euclidean Circle by three points

The general equation defining a circle with center (xo,yo),

(x-x0)2 + (y-yo)2-r2 = 0,

can be written with homogeneous coordinates as

x2 +y - xqxz -y0yz + (xq +y^ + r2)z2 — 0.

This shows immediately that for the complex homogeneous coordinates / := (z, 1,0) and

J :— (z, —1,0) the equation is satisfied. This shows that all circles share two common

complex points / and J. See the last chapter for historical comments on the introduction

of/ and J into projective geometry.

Since a circle is a special conic and a circle is defined by three points, we can imme¬

diately define a basic operation for circles using the Conic primitive and the two constant

points / and J. So for all p\1p21P3 C P3 we have

C\rc\e(pi,p2,P3) = Con\c(I,J,pi,p2,P3).

Circle by center and point

Another way to describe a circle is by its center and radius. Of course, this depends on

the measurements, but here we give a formula that works for any measurement, using the

fundamental conic i7 of the corresponding Cayley-Klein geometry.

Circles and Conies 78 6 1 Extending point/lme-constructions

Figure 6.1 : A circle as linear combination of a degenerate circle with radius 0 and the fundamental

conic.

Let D be the degenerate conic that is given by the two tangent lines to F through M.

This conic is a circle with radius 0 - for any point Q on D and intersections X and Y of

the line through M and Q with the fundamental conic the cross ratio CR{QM\XY) is 1,

since X — Y.

We claim that C :— XF + pD is a circle around M, i.e. all points on C have the same

distance to M. Let P be an arbitrary point on C, and let Xp and Yp be the two points of

intersection of the line through P andM with F. The distance ofP toM is given by

dist(MP) = cd\n{CR{MP\XPYp)) (6.5)

The unique projective transformation that maps the two tangent points T\ and T2 ofD and

F as well asM to themselves and that maps P to a point Q is denoted by Aq.
Define F' as the set of points given by applying Aq to Xp for all Q on C:

F' := {x s.t. x = AqXp for some Ö G C} (6.6)

An easy calculation shows that F' is given by a quadratic form, it is a conic. Moreover,

it is a conic that is tangent to the two lines of D and that meets Xp, so it must be the

fundamental conic F.

This shows that Cayley-Klein-measurements are invariant under Aq for QeC, which

means that all points on C have the same distance fromM as P.

We have seen that it is sufficient to find the right linear combination ofF and D to find

the circle aroundMthrough P using the same adjustment step as above in Sec. 6.1.2. The

only part that is still missing is a way to find the degenerate tangent conic, but we will see

how to do that in the next section.

6 1 Extending point/line-constructions 79 Circles and Conies

Intersection of a conic and a line

Intersecting a conic and a line is the polar operation to constructing the tangent lines to a

conic. It is sufficient to describe one of these operations, and we will use the second one

because it is a little bit easier to visualize.

We are looking for the two lines £\ and £2 through a point p that are tangent to a

given conic C. We will use a two-step procedure for the calculation. First we calculate a

degenerate conic D that consists of the two tangent lines, and then we try to "factorize"

the conic D into the two lines.

A useful tool is the cross operator that creates a matrix out of a vector that simulates

the cross product:

Definition 6.2 Let p = (x^^z)1 e K3 be a vector. The cross operator Lp ofp is a matrix

in K3x3 which is defined by

V =\ z0-x I (6.7)

0 —z y
z0—X

-y X 0

A cross operator always yields an anti-symmetric matrix, in fact, any anti-symmetric
3 x 3-matrix can be written as a cross operator of a suitable vector.

Lemma 6.3 Letp = (x^y^z)1 be a vector. Then

L*-[b\ = \y\x\b\ (6.8)

Proof 6.4 Eq. 6.8 follows immediately by using Eq. 6.7from the definition of the cross

operator. D

Now the matrix of D, the degenerate conic of two lines through p that are tangent to

C is given by

D = (LP)TC(LP). (6.9)

This follows again immediately from the definition of the cross operator. A point x lies

on D (or, in the polar sense, a line x is tangent to D) if

xTDx = 0. (6.10)

Plugging Eq. 6.9 into Eq. 6.10 gives

0 = xTDx = xT(Lp)TC(Lp)x = (Lpx)TC(Lp)x = (pxx)TC(pxx) = 0, (6.11)

so a point x lies on D if the line through x and p is tangent to C.

The next step is to find two vectors £\ and £2 such that the matrix £\£T2 and D describe

the same conic. As a first observation we see that a conic is invariant under addition of a

cross operator to its matrix.

Circles and Conies 80 6 1 Extending point/lme-constructions

Lemma 6.5 For a/z* g e K3 andmatrices A eK3x3 the conic described by A and the conic

described by A plus the cross operator ofq are the same:

Proof 6.6

{p s.t. pT(A +Lq)p = 0} = {p s.t. pTAp = 0} (6.12)

pT(A+Lq)p = pTAp+pTLqp
= pTAp +{px q)p
= pTAp + det(p,q,p)
= pTAp

We will now use Lemma 6.5 to find a matrix D' that describes the same conic as D,

but is of the form £\£T2. We know that D' has rank 1 - all columns (or rows) are just

multiples of each other. This condition can be expressed in terms of the subdeterminants

ofD': Every 2x2 subdeterminant must vanish.

(a
d e\

d b f \. Choosing the right subdeterminants gives nice formulas for the

e f c)
coefficients (l,m,n) for the cross operator:

0 =
b f-n

f+ n c

= bc-f2+n2^l2 =
b f

f c
(6.13)

and similarly

2 a e

m —

—

e c

and n —

—

a d

d b
(6.14)

We have to take care that we choose the right signs for the square roots when we calculate

(fm,n), but we can do it such that no other subdeterminant equation is violated. Now/)'

is obtained by adding the cross operator of (fm,n) toD.

Further investigation reveals that (fm,n) is a scalar multiple ofp:

±y/ap

where

a zrba + 2zbxe — bx~c + 2yzfa — 2yfxe —yea + zrd

—2zdye — 2zdxf+ 2 dxyc -\-y2e2 + x2f2 (6.15)

This fixes the necessary sign decisions, we just have to use the same signs as in p.

6 1 Extending point/line-constructions 81 Circles and Conies

Here is another way to get a. Using Eq. 6.9 and our knowledge about (l,m,n) we can

write

(Lp)TCLp±^/ÖLp = ((Lp)TC±^l)Lp (6.16)

In order to get a rank-1 matrix from Eq. 6.16 y/ä must be a eigenvalue of (LP)TC, because

else the determinant of (LP)TC ± v^l does not vanish and the product of this matrix with

Lp will have the same rank as Lp, which is 2.

As a last step we have to choose a row £\ and a column £2 of D' that are not equal
to zero (we get a zero row or zero column if one entry of £2 resp. £\ is zero, but there is

always a good choice, since otherwise the rank of the matrix would be 0, not 1). Since

£\£T2 is a scalar multiple ofD', these are the tangents to C through p.

Intersection conic/conic

As a final example for the Pliicker-// technique we show how to find the four intersections

of two conies.

The important observation is that all linear combinations of two conies will pass

through the common intersections of these two conies. By adjusting the parameters of

the linear combination we can find degenerate conies consisting of two lines that pass

through the intersection points. Splitting these conies into two lines reduces the problem
either to the previously solved conic/line-intersection or, if we split two ofthem, to simple
line/line-intersections.

Fig. 6.2 shows the situation for two conies that intersect in four real valued points.
The six lines are a generalization of the radical axis of two circles, see also Sec. 2.2.2.

The adjustment of the parameters is computationally easy. Let D(k) — C\ +ÀC2 be a

linear combination of the two matrices defining the two conies. The necessary condition

for D(k) to become degenerate is

det(D(X)) = 0 (6.17)

which is a polynomial equation of degree 3. So there are three - possibly complex - solu¬

tions for this equation, which correspond to the three different degenerate conies through
four points.

In the case where the coordinates of the conies (the entries of the defining matrices)
are real numbers, there will be at least one real solution to equation 6.17. Fig. 6.3 shows

this solution for two ellipses that intersect in two points only.

Compound operations

The basic operations so far are fairly complete. Most other important constructions can

be built from these basic building blocks. We will try to follow this principle of a small

and easy to handle set of operations. This is not only useful to unclutter the theory, but

Circles and Conies 82 6 1 Extending point/lme-constructions

Figure 6.2: All linear combinations of the two conies C\ and C2 pass through their intersection

points. In this family there are three degenerate conies D\, D2 and D3 that consist of two lines

each.

Figure 6.3: Two conies and their real generalized radical axes.

6 1 Extending point/line-constructions 83 Circles and Conies

also from an implementational point of view: Using macros that re-use easily verifiable

operations greatly decreases the number of implementation bugs. Sometimes this induces

a small performance penalty, but we prefer the overall stability and reliability of such a

system. See the implementation section for more details on this issue.

However, one construction which we will use

as an example later should be mentioned. We can

construct the (Euclidean) angular bisectors of two

lines using the following construction: Construct a

circle through the intersection of the two lines, and

choose for each line one of the intersection points
of it with the circle. Construct two circles using
these two points, taking one of it as center and the

other on the boundary and vice-versa. The two in- Figure 6.4: Angular bisector

tersections of the last two circles lie on one of the

angular bisectors, as does the intersection of the first two lines. This completes the con¬

struction.

Note that we did not specify how to get a certain angular bisector. It will be one of

the key statements of this chapter that there is no generic construction for only one of the

two bisectors, you will always get both or none.

Another side remark: For two identical lines this construction does not work, since

we cannot find the center of the first circle. This can easily be fixed by changing the con¬

struction from "angular bisector of two lines" to "angular bisector of two lines that meet

in a point," where the point is specified separately. See Sec. 9.3.1 for more information

on how this is implemented in Cinderella.

6.1.3 GSP formulations

Similarly to Sec. 5.1.2 we will now define a homogeneous relational instruction set for the

basic operations on points, lines and conies extending Def 5.3. We will omit an analogon
to the abstract RIS as given in 5.2 - the formalism would be too much just for having a

tool for informal descriptions. Instead we will just refer to the basic operations of the last

section and assume some reasonable RIS.

Definition 6.7 (Homogeneous RIS for points, lines and conies) The homogeneous RIS

for points, lines and conies is the homogeneous RISforpoints and lines as in Def. 5.3 aug¬

mented by thefollowing objects and operations:

The new object type O3 is given by the set ofall matricesM eK3x3. We do not exclude

the zero matrix, andwe do not identify scalar multiples.

The new primitives correspond to the necessary calculationsfor the basic operations
as in Sec. 6.1.2.

Circles and Conies 84 6 2 Determinism vs Continuity

DegConic = {(x,y,M)s.t. M= xyt} C(01)2xO?
Eval2 = {(x,M,s) s.t. s = x'Mx} C Oi x O3 x O2

LinComb = {(A,B,X,M,C)s.t. C = lA+pB} C {O3)2 x (O2)2 x O3

CrossOp1 = {{p1M)s.t.M = Lp} CO1XO3

MatrixEval2 = {{A1B1C)s.t.C = BtAB} C(Os)3
Split1 = {(D,p)s.t. xtDx = 0^xt(pqt)x =

forallxeK3}
--0}qeK3

C {Ox)2x03
Radical2 = {{ChC2,D)s.t.D = pCi+rhjC2,

det{D) = 0} C (O3)3

This RIS is not determined, since the Split and Radical primitives are not determined.

In the next section we will see that this is not caused by an awkward definition but that it

is a mathematical necessity.
We also note that Split and Radical are not given explicitly but implicitly. We could

have forked the necessary decisions into two respective three different solutions, thus

avoiding the scalar multiplicity of the results. Anyway, it does not make a real difference

(theoretically, not in the implementation), whether we have infinitely many solutions or

just two or three.

6.2 Determinism vs. Continuity

The two major properties of point/line-constructions was that they are determined (or

conservative) and continuous. In this section we will see that we have to give up at least

one of these when we admit circles and their intersections in the constructions. The

same is true if we introduce angular bisectors, actually we use the circle intersections to

construct angular bisectors.

We still do not fix what we mean by "continuity," because we are not yet sure what we

can expect. Instead, we rely on an intuitive notion of continuity, which will be adjusted
whenever necessary.

6.2.1 Iterated angular bisectors

Consider the following construction: Two lines a and b that go through a pointa and one

angular bisector c of a and b through A. Furthermore assume that b is fixed and a can

be rotated around A. It is obvious that the c must rotate by | whenever a rotates by a if

we want a continuous movement. After a full turn (360 degrees or 2%) of a the angular
bisector will be at its old place. So we have both a continuous and deterministic behavior.

But what happens ifwe use another angular bisector for a line d at angle ^ (Fig. 6.5)?
This line will move with a quarter of the rotational speed of a, so after a full turn of a we

end up with d rotated by 90 degrees. For the same input (a and b) this construction has

different output ifwe assume continuity in movements.

6 2 Determinism vs Continuity 85 Circles and Conies

Figure 6.5: The two possible configurations of a angular quadrisector construction. Under the

assumption of continuous movements both must be connected by a continuous motion of a, hence

this construction is not determined.

Theorem 6.8 (Continuity destroys Determinism) As soon asyou two angular bisectors

in a construction, you cannot have deterministic and continuous behavior. If a RLSfor

points, lines and conies admits an angular bisector construction, then under the assump¬

tion ofcontinuity the RIS cannot be determined.

Proof 6.9 Use an angular quadrisector constructionfor a line £ that moves at the quarter

of the rotational speed ofanother line a. This line £ will be perpendicular to its original

position after afull turn ofa. D

It is important that it is not the fault of the homogeneous RIS as defined in 6.7 that

it is not determined (because of the indetermined primitives Split and Radical). Any
reasonable RIS, that is, any RIS that admits at least the basic constructions for points,
lines and conies, will not be determined if it shows continuous behavior, if it uses the

homogeneous coordinatization of objects.

6.2.2 Finite Augmentation does not help

Why did we need an angular quadrisector in the last section? Shouldn't one angular
bisector be enough? In fact, yes, because we usually do not consider the direction of a

line, so we only had to rotate a by a half-turn, and then c would have been perpendicular
to its original position.

But most software uses orientations, and it looks like a promising way to distinguish

lines, points and conies by their signs. At least for one angular bisector it seems to work,

so this technique could be the solution to find a better RIS by modifying the objects in

addition to the primitives.

Unfortunately, sign decisions are not the solution to the continuity problem. Here is

a simple construction that fails to work: Take three circles of the same radius, one fixed

and two having their center on the first one (we can create points on circles using lines

Circles and Conies 86 6 2 Determinism vs Continuity

Figure 6.6: Non-continuous behavior due to sign decisions. When B moves through C, then D

jumps onto A.

through the center and another free point) like in Fig. 6.6. At the intersection D a counter¬

clockwise turn of the circle that is centered at B will move it onto the circle around C.

If we use this handedness decision all the time then D will jump onto A when B moves

through C.

The reason why sign decisions make one angular bisector work, but not the next,

quadrisecting, one, is revealed by closer inspection. It is true that after a 180 degree turn

ofa (see again Fig. 6.5) the bisector c is at its old position. But it has the wrong orientation

- we are not able to forward our decision making tool through the construction. You can

also see this effect in the figure: The label of c is at the opposite side in the right drawing,
which is a hint for the orientation of c.

This loss of information at an angular bisector can be exploited to proof the following
theorem. Iterating angular bisectors makes all "additional information approaches" fail.

Trying to achieve determinism under the assumption of continuity by adding finite number

of bits of information to the input elements of a construction will fail.

Theorem 6.10 (Finite Augmentation Theorem) Ifwe allow only afinite number ofad¬

ditional bits ofinformationfor the input elements ofthe homogeneous RIS it still cannot

be determined ifit is assumed to be continuous.

Proof 6.11 Assume that we addn bits ofinformation to the input elements. Consider an

iterated angular bisector construction ofn+l iterated bisectors. We must make 2n full
turns with the rotating line in order to return to the starting configuration, which means

that there are 2n+l different instances for the same construction sequence (see Fig. 6.7

for the 23 instances in the case n — 2). These cannot be encoded by n additional bits. D

The contrasting difference to Thm. 6.8 of the finite augmentation Theorem is that it

extends the impossibility of continuity and determinism to relational instruction sets using
extended descriptions of the objects. Thm. 6.8 only addresses relational instruction sets

that work on the same object types as the homogeneous RIS for points, lines and conies.

6.2. Determinism vs. Continuity 87 Circles and Conies

Figure 6.7: Illustration of the finite augmentation theorem. The eight (23) instances of a three-fold

iteration of the angular bisector construction.

It is not at all clear how an augmented RIS could be used in a dynamic geometry

system, because we do not know how to assign the additional bits, but Thm. 6.10 tells us

that we do not need to care.

6.2.3 Reverse Augmentation

A closer inspection of the last theorem points out a possible criticism: We only used

the additional bits of the input elements, and we did not try to use the additional bits of

the dependent objects. If we could make use of these, then we were able to make the

continuous iterated angular bisector construction determined. Exactly the number of bits

that we need to encode the exponential number of different states (or instances) of the

construction is available if we only allowed oriented lines.

But, as we have also seen, we are not able to propagate the necessary bits through
the construction; already the orientation ofthe first angular bisector cannot be read off the

input lines. Still there might be a way to use these additional bits "inside" the construction

for a good determinism strategy, using some kind of reverse augmentation. Throughout
this thesis we will assume that we only use the input elements for detecting determinism,
and in fact it seems like there is no easy way to use the lost bits of dependent elements.

6.2.4 Is Continuity important?

We might ask whether it is really important in real life that a Dynamic Geometry system is

continuous. It is not an artificial restriction that is introduced because it is mathematically

interesting, but it is crucial for elementary tasks in a dynamic geometry system.

A popular example, which is also mentioned in [53], ofthe importance of continuity is

shown in Fig. 6.8. A segment is mirrored at a line using a small construction to mirror each

endpoint. If a Dynamic Geometry software is not able to keep track ofthe intersections of

a circle and a line, it can happen that the construct mirror image flips over to the original

image, or even worse, only one point switches to the other side.

Circles and Conies 88 6 2 Determinism vs Continuity

Figure 6.8: On the left you can see the original construction of a mirrored segment S, on the right

you see the same construction after the point D was moved and new (wrong) decisision were made

by the software.

Figure 6.9: A construction that jumps in all geometry software packages except Cinderella, and

also in CAD software like Autodesk Mechanical Desktop: A circle (several positions drawn with

thin lines) moves through another circle (one position drawn with thick lines) of the same radius.

On the left the behavior we would like to see, the intersection of the two circles stays above the

line, on the right the jumping situation. The decision strategy of Cabri cannot work here, since the

other intersection is not already given by some other, fixed point.

In the case of this mirror construction there is an immediate argument why this cannot

be the right behavior: A point and its mirror image are the two intersections of a certain

line and a circle, and if these two intersections are distinct - the point does not lie on the

mirror line - then one should be the original point and the other one should be its image.
It is easy to check this condition for some constructions, and in fact this strategy is built

into Cabri Géomètre [54]. See also section 9.2.4 which describes how Cinderella re-uses

this idea for more efficient calculations. A situation where this strategy fails is given in

Fig. 6.9: Two circles of the same radius are centered on a line

Another "real world" example of problems with jumping elements is the angular bi¬

sector construction as introduced in section 6.1.2. We already mentioned that it is not

clear how to describe this angular bisector construction in a way that gives the "right"

angular bisector also after movements, and we saw in section 6.2.2 how we can force

discontinuities by iterating angular bisector constructions in a conservative system.

Another effect we can see in many geometry softwares is that depending on the first

6 2 Determinism vs Continuity 89 Circles and Conies

helper point on one of the lines we get either one or the other angular bisector, and the

"jump" is when the helper point moves through the intersection of both lines.

A third reason for continuity are geometric theorems: A well-known theorem for

triangles states that the three angular bisectors meet in a point - which is true if you

choose the right angular bisectors, but fails badly if you take the wrong ones, see Fig, 7.4

on page 111. What we want to avoid is that by moving a construction we can come from

a "theorem is true"-situation to a "theorem is false"-situation.

This would not only be counter-intuitive, but also destroys any meaningful notion of

a geometric theorem. This is a big problem when we want to do randomized theorem

proving as in Sec. 5.3. How can we get a random example of a theorem (or even wore,

many random examples), if we cannot describe the theorem for arbitrary parameters? We

have exactly one instance, the one we constructed, and we do not have a way to create

any other instance. This is far away from a "random" instance.

It is not immediate that continuous movements guarantee that theorems are true for¬

ever (although we will prove that later), but it is much more likely than in a system which

shows random behavior.

6.2.5 Algorithm continuity

All examples above have in common that the jumping situations occur at degenerate posi¬
tions - for example, two circles become equal, and their intersection is undefined, or two

points become equal and their connecting line is undefined.

So maybe it is just an isolated effect that occurs at these singular situations. Most

people could accept this behavior because you can "see" that there is a "problem" some¬

where.

We would like to point out that there are situations where we have really unmotivated

discontinuities. The standard example are again angular bisectors of two lines that share

a common given point, which are always defined, regardless of the two lines being equal
or not. These can be used for the iterated bisector construction of Thm. 6.10, which will

always create a jump in determined geometry systems. In a way this is a second order

effect - we do not see the first discontinuity (the sign change of the first angular bisector),
but we see the change when a construction uses this sign (as the intersection of the circle

and a line does in most geometry software).
Another example are operations like "conic/conic-intersection," which hide the com¬

plexity of the calculation from the user. Here it is not possible to see from the outside

where the internal singularities are. Try intersecting two conies in a Dynamic Geome¬

try software - other than Cinderella - that can handle conies, and watch how the four

intersections are interchanged all the time while moving one of the conies. This highly
undesirable behavior is not understandable without knowing the internal implementation
of the intersection algorithm.

Related to this is the behavior of macros. A macro is a part of a construction sequence

that can be reused for a construction, and it is defined by its input and output elements. The

Circles and Conies 90 6 2 Determinism vs Continuity

Figure 6.10: A construction having only two degenerate positions, when A =M\ ox A =M2. The

oriented distance (marked by an arrow) can be plotted in a graph as in Fig. 6.11.

corresponding intermediate construction steps and intermediate elements will be hidden

if you apply a macro, making it look like a new tool. Most geometry software systems

support macros in one or the other way.

Imagine that you create a macro using two lines and a point as input and that constructs

the angular bisector using three circles as intermediate elements. If you apply this macro,

it will create one of the angular bisectors (most times you will not be able to predict
which one). You will not see the circle construction that drives this angular bisector, but

of course you will experience all the discontinuities that are caused by it.

Our point is that even if you are aware of the singularity problems in constructions,

you will always come into situations where you will not immediately "see" what causes

the discontinuity. This means that the software will show unpredictable and unintuitive

behavior.

6.2.6 Surfaces

Let us have a look at an interesting construction that shows the incompatibility of deter¬

minism and continuity once more. The construction will have only two singular positions,
and in all other cases the dependent elements will have real valued coordinates.

In Fig. 6.10 we see one (movable) pointa with two lines a\ and «2 connecting^ with

M\ and M.2. There are two instances of the angular bisector b of a\ and «2 through A.

Intersect one of it with a circle of fixed radius around^, and measure the distance of the

point of intersection from a line £ that is parallel to the connecting line a ofMi and M2

and goes through^.
This distance in relation to the position ofA is shown in the graphs in Fig. 6.11. The

left plot corresponds to the situation in a determined system like Cabri: For every position
ofA there is only one distance dist(i?,£). The bottom picture shows all possible instances,

6 3 Tracing 91 Circles and Conies

Figure 6.11: The two small graphs show incomplete surfaces generated by the construction shown

in Fig. 6.10 in determined geometry software. The big graph shows the complete surface that must

be available in a continuous system.

i.e. up to two instances per (x,y)-position.

Try to remove parts of the plot on the right to make it determined while still having
a smooth surface. This is not possible; if you start at any position you will have to add

more and more to make the surface smooth until you end up with all the points. On the

left you can actually see where the jump in a determined geometry software occurs (the

plot shows exactly the behavior of Cabri): If you move pointa over the segment between

M\ and M2, the distance will "flip," which is caused by changing to the other angular
bisector instance. Other software might show other behavior, but there will always be a

"jump."

This example suggests two approaches. The first one would be to try to minimize

the occurance of jumping situations by (implicitly) selecting the right instances for ev¬

ery point. The second one would be to allow indeterminism to make continuous moves

possible.

Circles and Conies 92 6 3 Tracing

Figure 6.12: The assignment of the new

to the old intersections is easy if the sum

of the distances "across" is significantly

greater than the sum of the other two dis¬

tances.

6.3 Tracing

Now that we know that the search for the "right," determined, algorithms will not be

successful, we will use an approach that looks very unsophisticated at first, but it will turn

out to be the solution to the continuity problem later.

What do we try? We have an instance of a construction, we change a parameter and

we have to choose the right one out of a set ofnew instances. First of all, we can make the

global decision by deciding each undetermined construction step at a time. So we have

to be able to assign the two new intersections of a conic and a line (or two circles, or the

four new intersections of two conies) to the old ones. We will do this using a "near-to"

decision: Under the assumption of continuity the new points should be close to the old

points after a small movement.

By measuring the pairwise distances we might be able to find the right assignment

(Fig. 6.12). If not, for example, because the points moved to fast or are too close to each

other, we will need another, intermediate instance of the construction. We do not know

how to get this at the moment, but let us assume that it is possible.
With this vague strategy in mind, let us investigate the problems of this method.

6.3.1 Complex Elements

We have seen already that complex coordinates are useful in projective geometry, even if

we want to handle constructions within the reals. For example, the circle operation for

Euclidean circles used the conic construction together with two complex-valued points.
The whole theory of measurements in Cayley-Klein geometry could not work without

complex numbers.

Another reason for working within the complex projective plane are intersections of

conies and lines: As we have to solve a quadratic equation for the points of intersection

we can end up with two, one or no solution, corresponding to true intersection, tangent

line and disjoint objects. This would be a problem for the near-to tracing algorithm: How

6 3 Tracing 93 Circles and Conies

Figure 6.13: The construction on the left does work even if the distance ofA and B is greater than

the radii of the circles. The line b is still a real line, and E is still the midpoint ofA and B.

can we find the best match if there is nothing or not enough to match? If we solve all

polynomial equations over the complex numbers, we will always have the same number

of solutions (counted with multiplicity).
If we can do near-to decisions also with complex elements then we can still trace

even if intersections become complex. It is not easy to find a numerically stable distance

measure in CP2 that can be used for tracing, but we do not care yet.

A nice side-effect of using the complex numbers as base field for geometric construc¬

tions is that theorems that are true for the reals or constructions that work within the reals

work even if intermediate elements become complex. In the next chapter we will prove

this, here we will just give two examples.

Example 6.12 (Midpoint construction) The midpoint between twopointsA andB is the

intersection ofthe line connectingA andB and the perpendicular bisector ofthe segment
AB. The latter can be found by intersecting two circles with equal radii, one around A

and the other aroundB, and connecting the two intersections by a line. If the two circles

are too small to intersect in realpoints, we can use the complex intersections andget the

same result, since both intersections are complex conjugates and theirjoin is again a real

line. See Fig. 6.13.

Example 6.13 (Radical intersection Theorem) The three radical axes of three circles

meet in apoint, even ifthe circles do not intersect. This observation is based on the same

conjugates argument as in the midpoint example. See Fig. 6.14.

A very important remark must be made at this point: As we have already seen, we

cannot use signs as a decision tool. We have just found another reason, namely that

there is no useful way to define orientations for elements having complex coordinates.

Actually, this is what Winroth has to admit in his thesis [87]: A close inspection of his

work reveals that he first claims that continuity can be achieved using sign decisions,
but later restricts his - incomplete - proof to the case where no complex elements or

degenerate situations are involved. The proof itself is based on the wrong assumption
that there is a continuous function for the "orientation vector" of all computed elements.

Circles and Conies 94 6 3 Tracing

Figure 6.14: The radical axes of three circles meet in a point, even if the circles do not intersect.

The construction of the radical axis using the two intersections of two circles gives always a real

line.

His conclusion is to resort to "continuous tracking," which he does not explain in detail,
but which is probably the same concept as the "tracing" explained above. We mention

Winroth's results here explicitly because his thesis seems to provide solutions to many

of the problems that are also addressed in this thesis, but actually some of his claims

are at least misleading. While you read his text you believe that he proves continuity,
but in the end you see that he actually proves it only for a very restricted set of special
cases. Nevertheless, his work contains many good and interesting approaches to Dynamic

Geometry (although many comparisions of his software to Cinderella are based on a very

old - even at the time he made them - version of Cinderella and thus not valid anymore),
and we hope that his system "pdb" (projective drawing board) will be available some day.

6.3.2 Singularities

So far we did not analyze one particular case where the "near-to" decision tracing strategy

will fail: Whenever two points are very close or even at the same place we will not be

able to distinguish them. This happens for example in the case where a line intersecting a

circle is moved into a tangent situation, as illustrated in Fig. 6.15.

After we moved through a singularity, we will not be able to assign the two new paths
of the points to the old ones. It is also not possible to distinguish the two points while we

are in the degenerate - tangent - situation, but we do not have to distinguish these points,
since in that position the two points have the same coordinates.

Winroth in his Ph.D. thesis [87] comes to the following conclusion:

Of course, no unique correspondence can be defined between the roots before

and after this singularity, not even in theory.

This conclusion is, although reasonable at first sight, completely wrong, as we will see in

6 3 Tracing 95 Circles and Conies

Figure 6.15: Two intersections of a line and a circle crash into a singularity: While we can assign
the two new intersections to the old ones both before and after the tangent case - in real and

complex space -, we do not have a way to decide how the points before and after the singularity
should be assigned to each other.

the next chapter. Poncelet had a better intuition when he formulated what Kepler and oth¬

ers conjectured before (cited following [17], who cites from [64], boldface emphasizing
was done by the author):

Let us consider an arbitrary figure, in a general position which in a certain

sense is indeterminate among all positions it can assume without violating
the laws, the conditions, the bonds that exist between the different parts of

the system; let us suppose according to these data one has found one or more

relations or properties, which may be metric or descriptive, belonging to the

figure, by way of ordinary explicit reasoning, that is, the procedure which is

in certain cases considered as the only rigorous one. Is it not obvious that if

while preserving those data one undertakes to vary the original figure ever so

slightly and subjects parts of it to an arbitrary but continuous motion - is it not

obvious that the properties and relations, found in the first system, remain

valid in its successive stages, provided that due account is attributed to the

particular modifications that may arise, for example if certain magnitudes
vanish or change their direction or sign, and so on, modifications that can

easily be recognized apriori and by sure rules?

What Poncelet writes here in a very poetic and emphatic style is that we really expect that

a metric or incidence property of a construction that is true for small coordinate changes
of a construction should also be true in general. When we move through a singularity, we

must make sure that all changes that happen to the construction later are done in a way

that none of the properties that were valid before will be violated.

Circles and Conies 96 6 3 Tracing

Figure 6.16: The left and the right intersection A i and A2 must always be on the same side, either

both on the left or both on the right half of its circle, else the principle of continuity is violated.

Let us look at the implications of the principle of continuity.

Local and global decision consistency

Consider the following construction: Two circles with the same radius that are intersected

by a line parallel to the line connecting the centers of the circles. Pick a point of intersec¬

tion of the line with each circle such that they are "on the same side" (Fig. 6.16).

Now, when we move the parallel line first in a way such that both circles still have two

real intersections with it. We will expect that^i and ^2 "stay on their half of the circles."

The distance between A\ and^2 will be constant, and equal to the distance ofMi andA/2.

Now, if we move the parallel line through X across the tangent case the two inter¬

sections will have complex coordinates. We have to decide for both A\ and A2 which

complex branch they take (see Fig. 6.15). There is no obvious reason to prefer one or the

other branch, but in any case we have to make two consistent decisions, i.e. the distance

between A\ and ^2 should still be the distance between Mi andA/2.

When we come back and move the parallel line into a situation where both circles

have a real intersection with it, then we again have to decide for each intersection whether

it should go left or right, but again we must ensure that both go to the same side, or else

the principle of continuity will be violated.

We see that we have to make local decisions that are globally consistent, and this

happens always when two parts of the construction go through singularities at the same

time. We will see later how we can achieve global consistence while still operating locally.

Removable singularities

Another important issue are removable singularities: It can happen that a dependent el¬

ement cannot be computed at a certain position (this means, its coordinates will all be

zero), but the continuous motion before and after that situation could be completed, the

singularity can be removed.

6 4 Is Continuity Achievable"? 97 Circles and Conies

Figure 6.17: A removable singu¬

larity: If the free point X moves

through the center M of the circle,

the line will not be defined in that

moment, and thus the intersection C

with the circle will not be defined,

either.

One example was presented in Fig. 6.9: If two circles with the same radius are fixed

on a line and one is moved through the other, then there is a highly degenerate situation

when both circles are centered around the same point. But if we consider the complete
motion of one circle through the other, we can remove the singularity by glueing in the

limit point, the one that is on the circle, on the correct side of the supporting line, and at

the biggest distance possible from this lines.

In any case where we move through such a degenerate situation we really want the

dynamic geometry software to behave as if it had automatically removed the singularity.
Here is another example which only needs a circle, the center of the circle, a line

through the center and another, free point, and one intersection of the circle with the line

(Fig. 6.17).
If we move X, then the two points of intersection of the circle and £ will always be

easily distinguishable. But if we move X exactly through M, then we will have a degen¬
erate situation where A — X and £ is not defined. We know to which point of intersection

we want C assign to after we passed the degenerate position, but how can we describe this

mathematically?

6.4 Is Continuity Achievable?

Now that we know a lot of example situations that are crucial for continuity, we can ask

whether this goal is achievable at all. By looking at constructible functions we will give
some criteria that coordinate functions of geometric elements must satisfy in a system that

behaves continuously.

6.4.1 Constructible Functions

The points that are constructible with ruler and compass are a well studied topic of al¬

gebra. It is a crucial part of the basis of Galois theory to show that, if we identify the

Circles and Conies 98 6 4 Is Continuity Achievable"?

Euclidean plane with the complex numbers, the constructible numbers are a certain sub-

field of C. Using the two tools starting with a finite set of starting points it is only possible
to construct the smallest field containing these points and repeated field extensions of de¬

gree two of this.

For example, if we start with the two points 0 and 1 it is possible to construct Q+z'Q
and all (iterated) square roots. But all constructions that are used to show this theorem

neglect the decision that must be made to find the right intersection of the line and the

circle created by ruler and compass (see Huckenbeck's thesis [31] where he studies the

ruler/compass-constructible functions in depth, but without considering dynamics). Since

it suffices to show that there is a way it is not important to give the exact choices - there

is a right choice, that's all.

The situation in Dynamic Geometry is similar: The user made his choices, and later

the computer has to make the corresponding consistent choices himself. Here it is not

sufficient to know that there is a right choice, we have to find it.

Let us have a look at the functions that can be constructed, assuming that the Dynamic

Geometry system used shows continuous behavior. Here is a way to extract such informa¬

tion from a construction: Similar to the von-Staudt constructions in the point/line model

we use a point x on the x-axis as a variable x. The function's value y — f{x) is another

point y on the x-axis. Since we can use a parallel transport construction or perpendicular

projections to "move" a function value to that x-axis this is not as restrictive as it might
look like.

Definition 6.14 (Constructible function) Afunctionfix), xG [a,/3] C M is a constructible

function ifthere there is a construction wherefor allpositions (x, 0,1), x G [a, b], ofafree
point a dependentpoint F has coordinates X{f[x) ,0,1).

Be careful: We do not use the RIS/GSP-concept for the definition of a constructible

function, since we have no concept yet to avoid indeterminism.

A first trivial observation is that all constructible functions must be continuous in a

continuous system:

Theorem 6.15 (Constructible functions are continuous) Under continuity assumptions,
all constructible functions are continuous.

Proof 6.16 If f[x) is a constructible function which is not continuous at xo, then the

construction willjump ifmoved across xrj. D

A large class of constructible functions are the polynomials, which in fact are contin¬

uous.

Theorem 6.17 (Polynomial constructions are constructible) All polynomial functions

p(x) in one variable are constructible.

6 4 Is Continuity Achievable"? 99 Circles and Conies

Figure 6.18: Constructing the square root of x2.

Proof 6.18 This is a consequence of Transf. 5.8, which shows that we can encode any

straight-line program in the coordinates ofapoint usingpoint/line-constructions only.
D

Are there continuous functions that are not constructible? In fact, there are. Here is

an example:

Theorem 6.19 (The absolute value function is not constructible) The absolute valuefunc¬
tion |x| is not constructible in a neighborhood of 0 in a continuous Dynamic Geometry

system.

Proof 6.20 Suppose |x| is constructible. Using von-Staudt division (see Fig. 5.5) we con¬

struct a function A. This function is not definedfor x — 0, but for every x ^ 0 in an

neighborhood of 0, and it is — 1 for all x < 0 and +1 for all x > 0. The point defining -A

willjump at 0. D

A surprising consequence is that there is no +-^-construction in a continuous system

(a function that constructs just the positive square root of a positive real number). This

shows that there cannot be an explicit construction for the square root in the ruler/compass
constructions without ambiguity!

Theorem 6.21 The positive square rootfunction -\-^Jxfor x > 0 is not constructible.

Proof 6.22 This is a direct consequence of Thm. 6.19 and Thm. 6.17, since else we could

construct +Vr — Ixl. D

Circles and Conies 100 6 4 Is Continuity Achievable"?

&£(*))

Figure 6.19: A construction that con¬

structs a point with coordinates (x, f(x))

given x and f(x).

We encourage you to do the construction shown in Fig. 6.18 that constructs x2 and

finds the square root ofthat value. With Cinderella the construction will not jump, and

this means that the constructed point — Vx2 defines the function —x, and not — |x|.
What made the absolute value function unconstructible? It is continuous, but not

differentiable at x = 0. A very important observation is that any function that is not

continuously differentiable cannot be constructible in a continuous geometry system.

Theorem 6.23 (Constructible functions are differentiable) In a continuous geometry

system all constructiblefunctions are continuously differentiable.

The proof of this theorem is based on the following two lemmas.

Lemma 6.24 If fix), x G [a,b] is constructible, then we can construct a point moving

along {x,f{x),\).

Proof 6.25 Use the construction shown in Fig. 6.19. U

Lemma 6.26 Given a point moving along (x,/(x)), x G [a,b] and a xo G [a,b] we can

construct a line that will not move continuously iffix) is not continuously differentiable

atXQ.

Proof 6.27 We will give a constructionfor a line £ that willjump ifand only iffix) is not

continuously differentiable at xq. This line is defined by the (fixed) point A — (xo,/(xo))
(we can construct this) and another point B — (xq +h,f(xQ +h)), which uses the same

construction as A, but is driven by the point x at (xo+h, 0) (Fig. 6.20).
The right and left limit of the slope of£ as x goes to xq will be identical to the right

and left limit offix). Actually, we just constructed the line which is used to define the

derivative ofafunction. D

This completes the proof of Thm. 6.23.

With some extra work we could give constructions that jump if any derivative of a

constructible function is not continuous. However, with the tools presented in the next

chapter this will be an easy consequence, and so we will avoid the technical details here.

6 4 Is Continuity Achievable"? 101 Circles and Conies

Xx0J{xo))

Figure 6.20: A construction that con¬

structs a line with a slope that converges

like the derivative of f(x) atxo

Circles and Conies 102 6 4 Is Continuity Achievable"?

Chapter 7

Complex Tracing

The last chapter illustrated the fundamental problem when trying to achieve continuity in

a Dynamic Geometry system: Adding construction steps can change the parameter space

of a construction - as it happens when we iterate angular bisectors.

But this problem occurs and has been solved in other areas. Probably the most promi-
ment one is the theory of Riemann surfaces, where the definition space of a function is

extended as necessary. Like adding construction steps in Dynamic Geometry composing
functions will change the definition (or parameter) space. The role of the iterated angu¬

lar bisectors in Dynamic Geometry is taken by iterated square roots over C* in Complex

Analysis.

This chapter will show how close the relations really are, and how methods of complex

analysis can be used to solve the problem of continuity in Dynamic Geometry.

7.1 A parameterization of the input space

As a first step we have to clarify what we mean by a dynamic parameter change. If we

look at a geometry software we see that the input to a motion will not be a continuous

path, but a series of mouse events, that give a sequence of new positions for a point (or
another object, but we will restrict ourselves to movements of points right now).

The most natural approach is to translate this discrete information into a piecewise
linear path for the moving element. In Fig. 7.1 this path is shown: We connect each pair
of subsequent mouse positions by a line, and we assume that the point moves continuously
on that line. The whole problem is reduced to being able to move a point from A to B along
a straight line.

We will use a parameter X G R that runs from 0 to 1 to describe this move along
a segment AB, and for all AG [0,1] we assume that the moving point P will have the

coordinates

P{X) = (\-X)A + XB.

103

Complex Tracing 104 7.3. Complex Tracing

Figure 7.1 : Instead of getting a continuous path we will get a series of discrete mouse events. The

continuous path we will consider is just one piece of the piecewise linear parameterization of a

moving element. The main idea is now to move from the left picture to the right one, to a complex

parameterization of the Input: We will allow detours through complex space for the parameter

A. You can imagine this as having the mouse cursor step a little bit outside the screen to avoid a

singularity.

7.2 The Main Idea

As we have seen in Sec. 6.1.2, we can carry out all basic operations for points, lines and

conies using addition, multiplication, subtraction, square and third roots over the field of

complex numbers. We also have a strategy of keeping track of decisions while dynam¬

ically changing parameters. If we move a point from A to B we will use intermediate

points (1 — X)A + XB with A, G [0,1] for making the right "near-to" decisions. The only

problem with this approach is that we cannot distinguish points after they passed through
a singularity - there seems to be no way to prefer one assignment to the other, but yet we

have to, as shown in the last chapter.
How can we handle these degenerate situations, how can we avoid the singularities?

The answer is, we will just avoid them by not walking through them. We can choose

another path from A to B than the segment [0,1]. All basic operations still work for

complex numbers, so we can choose anypath p: [0,1] —>- Cfrom p(0) — 0 to p(\) — 1 in

the complex plane. We use this path as a parametrization for the movement from A to B;

the intermediate points now lie at (1 — p(k))A +p(k)B with A, G [0,1].

7.2.1 A small Example

Before we will prove that we can always avoid degenerate positions, we will have a look

at one of the examples of Sec. 6.3.2. What will happen to the singularity in Fig. 6.15 if

we change from an ordinary, real movement to a complex path?
Here is the setup: Let C be the unit circle around 0 with equation x2 +y2 —z2 — 0. Let

£QC) be the line x — Az = 0. If we try to trace the two intersections of £(k) and C from 0

to 2 (using real values for A- only), we will crash into the singularity at A- = 1 (Fig. 7.2).
Ifwe change the path 11-» 2t of A- to the path tt->l— em, we will avoid the singularity,

as you can see in Fig. 7.3.

7 3 Complex Tracing 105 Complex Tracing

05

Figure 7.2: When the line moves

from x = 0 to x = 2 along x = A,
A G [0,2] cRwe will hit a singu¬

larity at x = 1.

Figure 7.3: If we choose a path

yM{t) = 2(sm(iü/2) + iacos(iü/2))
for p ^ 0 we can avoid the singu¬

larity at (1,0). The figure shows a

3-dimensional plot of the complex
intersections of the line with the cir¬

cle for different //'s.

Complex Tracing 106 7 3 Complex Tracing

7.3 Complex Tracing

Now we will formalize the idea of "complex tracing" presented above. As a first step we

will transform a GSP on the homogeneous RIS to a GSP on a very basic RIS that encodes

the A.-parameterization along a (complex) line. This RIS uses elements of C as its objects
and can do additions, multiplications, subtractions as well as square root and third root

operations as the inverse of second and third powers.

Next we will see how we can assign to any instance of a GSP on the basic RIS a

Riemann surface that completely determines the instance we will reach when we move

along a path. Finally, we will prove the important fact that we can always find a complex

path that avoids singularities if we do not start or end in a degenerate situation.

7.3.1 Reparameterization

We have already seen that it is both useful and sufficient to work with only one complex

parameter A- instead of allowing all free elements to be moved at the same time. We will

further reduce the complexity of the objects involved in constructions by moving to the

coordinate level. Here is a very basic RIS for calculations within the complex numbers,
that is as powerful as the homogeneous RIS for points, lines and conies. It is a version of

the RIS in Ex. 4.4 simulating straight-line programs with additional root operations.

Definition 7.1 (Basic Complex RIS) The basic complex RIS is a RIS as in Ex. 4.4 over

A — C with the additional operationsfor square and cubic roots:

\f- :— {(a,b) s.t. a — bb} (square root)

\f- :— {(a,/3) s.t. a— bbb} (cubic root)

As we already did when we showed the equivalence between straight-line programs

and the homogeneous RIS for points and lines, we will now transform a GSP over the

homogeneous RIS for points, lines and conies to a GSP over the basic complex RIS.

Transformation 7.2 (Homo. RIS for points, lines and conies to basic complex RIS) The

translation ofthe primitive operations that work on vectors and scalars only is exactly the

same as in Trans. 5.6 onpage 53.

The translation of the primitives DegConic, Eval, LinComb, CrossOp and MatrixEval

is also straightforward.
The Split primitive is translated by inserting the appropriate code to calculate a as in

Eq. 6.16 and then using the ^-primitive to get ±\/öc. This can be used tofind a matrix

by inserting instructions to calculate

M={{Lp)TC±Vä\)Lp (7.2)

7 3 Complex Tracing 107 Complex Tracing

Thefirst row ofM isfiltered and is available as the result ofthe Split operation.
The Radical primitive is translated similarly. Expanding the det(D) = det(pC\ +

KC2) = 0 condition gives a polynomial equation of degree 3 for p and K. This can be

solved algebraically using third roots and square roots. We omit the lengthy formula
here, but assume that the corresponding code is inserted.

A few remarks are necessary at this point:

• The translation of the Radical-primitive can be designed to be division-free by

choosing suitable formulas for p and A,.

• We cannot translate any instance of a homogeneous RIS GSP to an instance of the

basic complex RIS. This happens because all scalar multiples of an output to the

Split or Radical primitive are also valid outputs. But, it is possible to find another,

equivalent instance in the sense that the dependent objects are scalar multiples of

the objects in the original instance.

• By fixing the first row ofM in the translation of the Split operation we might loose

some information. In the case where the first row is the zero vector we usually
choose another row in order to find the intersection point. It is important for us not

to do this change, as it is crucial to have a fixed calculation without branches. In

the next sections we will see that we will not loose too much, since the case that all

three entries of a vector become zero will only happen for very few input values.

We still have to change the GSP such that it is parameterized by a single parameter A,.

This is done in the obvious way: Given any GSP on a basic complex RIS and two assign¬
ments for the input variables, we can create the linear interpolation between these two by
a little additional construction. The resulting GSP will have only one input variable.

Definition 7.3 (Reparameterization) Given a GSP (X,R, Y) on a basic complex RIS, an

instance (X,R) anda second assignmentX ofobjects to the input, the reparameterization
of (X,R,Y) from X to X is a GSP ((A,),i?',r') that is derivedfrom Rand Y by

• adding instructions to the beginning ofthe GSP that calculate (1 — A.) and all con¬

stants that correspond to the objects in X andX, and

• adding instructions to calculate (1 — A-)^ + XXt using the above calculations, and

• replacing all references to X with references to intermediate results (1 — X)Xt + XXV

Now we are at a mathematical level where each coordinate of the objects in the origi¬
nal GSP on the homogeneous RIS is described by an output variable of the reparameter-

ized GSP. All coordinates can be obtained by repeated application of additions, multipli¬

cations, inverses of squares and cubes to constants and A,. We must take into account that

the inverses of squares and cubes are not given by functions, but by relations, and this

Complex Tracing 108 7 3 Complex Tracing

means that we cannot just change A- to 1 and find the right coordinates of all elements by

evaluating the GSP.

The only completely known instance is the one at A- = 0, since we can read it off

the one we put into the reparametrization. In the Dynamic Geometry software setting
this is the instance the user constructed, where he explicitly made the choices in case of

ambiguities. How can we, starting at A- = 0, make our way to A- = 1?

7.3.2 Continuations and Riemann surfaces

The answer to the question in the last paragraph is "by walking from 0 to 1." In Sec. 6.3

we formulated a heuristic approach to continuity that used this method. Now we will for¬

malize this approach. Whenever we will speak about a GSP, we mean a reparameterized
GSP using the notations of Def. 7.3.

The approach presented now is in fact not really new (although we do not know a

reference for a complete formal description). Felix Klein mentions in his book "Develop¬
ment of Mathematics in the 19th Century'" [41] that we are in the lucky position today
that we do not have to believe Poncelet's Principle of Continuity, but we really know it

works and even how, using analytic functions. So in a way we are rebottling old wine,
it is a rediscovery of a well-known theory that so far nobody applied to Dynamic Geom¬

etry. In fact, we think that Dynamic Geometry is a very intuitive approach to Riemann

surfaces, and therefore we also try not to clutter the beautiful mathematics with too much

formalism.

Let us first assume that we have the maximal possible number ofinstances of (A-, R',T')
with A- = 0 and A, = 1, i.e. all inverse squares and cubes are applied to a complex num¬

ber different from 0 in both the start and the end position. In this case we can find a

e-neighborhood £/e(0) of 0 such that all intermediate results of the GSP can be described

by analytic (in particular continuous!) functions f. What we are looking for is a path
from 0 to 1 along which we can continue the function and find the right instance at 1 by

analytic continuation of the f. This will give a continuous function for all coordinate

functions of the original construction.

Back in the geometric world we know such a path whenever there is no singularity

blocking our way from one position to the other, we just take the path along the real

segment [0,1] (the identity). We will prove now that it is always possible to find a -

possibly complex - path from 0 to 1. For this we will use complete analytic continuations,
Riemann surfaces and the identity theorem for analytic functions.

Here is the definition of the Riemann surfaces associated to the intermediate results of

a GSP.

Definition 7.4 (Riemann surfaces for a GSP on a basic complex RIS) Let ((X),R,Y) be

a GSP on a basic complex RIS and let (0,i?) be an instance of (A-,i?, Y)atX — 0. Fur¬

thermore, assume that there is a region G C C containing 0 such that there is an analytic

function f for every R} with (A-, f (A.) ,...,fn (A.)) being an instance of((k), R, Y) at every

7 3 Complex Tracing 109 Complex Tracing

A- G G Then the Riemann surface of R,, denotedX(Rt), is the Riemann surface X(f)
defined by f.

The Riemann surfaces X(f) define complete analytic continuations of the f up to

isomorphism (Thm. 3.5 in [15]). This means we can associate to every variable an analytic
function on its Riemann surface.

Definition 7.5 (Complete analytic continuations for basic complex RIS GSPs) Using the

notations ofDef. 7.4, the complete analytic continuation f : X(Rt) —> C is the unique (up
to isomorphism) complete analytic continuation defined by X(R,).

The fibers of the Riemann surface lie above all the points of C that define non-

degenerate constructions. Non-degenerate constructions are those where we do not have

to find the square or cubic root of 0, you can (and should) imagine them as all the situa¬

tions where no ambiguous intersection points collapse, like in the case of a line becoming

tangent to a circle.

Definition 7.6 (Singularity of a basic complex RIS GSP) A singularity ofa basic com¬

plex RIS GSP is a point in the complement of the set ofall A,n in C, where the fiber over

A-o is non-emptyfor all X{Rl).

Let us prove that under the assumption that we are in non-degenerate (or non-singular)
situations at A- = 0 and A- = 1 we will always find a path from 0 to 1. The proof uses

induction on the number of instructions of the GSP, and also uses the identity theorem for

Riemann surfaces, which we will briefly recall.

Theorem 7.7 (Identity Theorem for Riemann surfaces) If two analyticfunctions cp : X—>

Y and \|/ : X —) Y are identical on a non-discrete subsetN C X, then cp
=

\|/.

Proof 7.8 For aproofsee any book on complex analysis on Riemann surfaces, e.g. [15].

Here non-discrete means having no accumulation point. We are ready to prove the

main theorem of this section:

Theorem 7.9 (Complex Connectedness Theorem) Let ((k),R,Y) be a GSP on a basic

complex RIS satisfying the conditions ofDef. 7.4. Then either the GSP is in a singular

position at X — 1, or we canfind a pathfor Xfrom 0 to 1 that avoids all singularities of
all f. Moreover, in the later case all singularities are discrete.

Proof 7.10 We prove the theorem by induction on the length ofY — (Y\,..., Yr). Ifr — 1

we are done, because the onlyfunction we have is the identityfunction.
Let us assume that the theorem is truefor i <r. If I is a singularity, then we are done,

so let us also assume that f is a holomorphicfunction on X(R}) for all i < r. If the last

instruction Yr ofthe GSP is one ofthe operations addition, subtraction, multiplication, or

Complex Tracing 110 7 4 Automatic Theorem Checking

constant, the resulting Riemann surface will introduce in the worst case all the singular¬
ities that were already present in the Riemann surfaces of their operands, which means

that nothing has changed.

If the Yr is a square or cubic root, it introduces singularities at all zeros of their

input. If the input is zero for all elements in the fiber ofX=lwe are done because

of the singularity at 1. If the input is different from 0 for one element zç, in the fiber of
A- = 1, it cannot be zero on a non-discrete set, because then it had to be identical to zero,

a contradiction. So we are also done, because there is a path from 0 to 1 avoiding all

singularities.

Remark 7.11 The instance ofthe GSP we reach at 1 depends on the path taken, or better,

on its homotopy class. Ifwe walk close to the real line we will either use a path that is

homotopic to direct path on the real line, if there is no singularity on the real line, or

we can at leastfind a series of homotopic paths from 0 to 1 that converges to the path
on the real line. Thus a geometry software based on complex tracing will always look

like it is doing the right thing - given that the complexpath does not "catch
"

additional

singularities. However, even if it catches a singularity, we will end up at a situation that

is "mathematically correct."

Remark 7.12 We excluded singularities by identifying the instances ofa GSP where we

construct the root of 0. These singularities can be canceled out in the case where the

function f that gives the argument ofthe root is identical to zero. You get an equivalent

non-singular GSP byjust omitting the trivial root operations and shifting the rest of the

program.

Definition 7.13 (Reduced GSP) A reduced GSP is a GSP where every global singularity
has been canceled out.

Finally, we are able to define what we mean by a continuous move of a GSP on a

homogeneous RIS on points, lines and conies, using the analytic continuations just intro¬

duced.

Definition 7.14 (Continuous Move) A continuous move of a configuration given by a

GSP (X, R, Y) on a homogeneous RIS onpoints, lines and conic is a change ofthe input X

to another inputX with instances (X,R) and (X,R) that is induced by a complete analytic
continuation ofthe associated reparameterized basic complex RIS GSP, i.e. the transfor¬
mation o/"(X,i?,r) with the instance (X,R) will give an instance of the reparameterized
GSP that can be reached by an analytic continuation along a continuouspath.

7.4 Automatic Theorem Checking

We will now present an approach to automatic theorem proving. We intend to use it

for geometry theorem proving as we already did with points and lines in Ch. 5 using

7 4 Automatic Theorem Checking 111 Complex Tracing

i^
Figure 7.4: Two instances of the angular bisector theorem - one is obviously a bad choice

polynomial descriptions of theorems and the variations on the fundamental theorem of

algebra.
Before we procède, we must fix what we mean by "theorem." Is "The angular bi¬

sectors in a triangle meet in a common point" a theorem? Different people might come

up with different opinions on this, since there are some choices in the construction that

rule about the truth of it. In Fig. 7.4 we see two instances of a triangle and its angular

bisectors, one shows the theorem, the other one does not.

In a continuous geometry software we actually want theorems to be true always, if

they are for the neighborhood of one instance. By moving base elements we should not

be able to destroy the theorem. Let us define a geometry theorem by requiring a non-

singular instance and that it is true for all instances we can reach by continuous moves

without hitting singularities.

Definition 7.15 (Dynamic Geometry Statement) A Dynamic Geometry Statement (DGS)
is a GSP on a homogeneous RIS on points, lines and conies together with an instance

(X,R) ,
where the last instruction has a scalar ouput. It is truefor the instance (X,R) if

the scalar is 0 atX, it is false otherwise. Ifthe corresponding GSP is reduced, we call the

DGS reduced.

Definition 7.16 (Dynamic Geometry Theorem) A Dynamic Geometry Theorem is aDy¬
namic Geometry Statement that is true, andfor which all instances that can be reached

using subsequent continuous moves are also true.

As stated in Def. 7.14, we are allowed to make several subsequent moves but we

may not "stop" at singularities. This would obviously destroy any meaningful notion of

theorem, because you could move a construction into a completely degenerate position (in
our angular bisector theorem example we could move all three vertices of the triangle to

Complex Tracing 112 7 5 Complexity issues

the same position) and then move everything apart again. While we rest at the singularity

(and change moving elements), we do not have any control over the choice of the angular
bisector (it is the "invalid line" with coordinates (0,0,0)).

You should also keep in mind that we can arrive at different instances of a configura¬
tion by using different sequences of linear paths. Actually, making continuous moves is

not even commutative - we can arrive at a different instance if we first move A to A' and

then B to B' compared to moving first B to B' and then AtoA'.

How can we do some kind of automatic theorem proving for geometric theorems as in

Def. 7.16? An obstacle here is that we do not have a fundamental theorem of algebra for

square and cubic roots, and we cannot give immediate bounds for the number of examples
we need to prove that a theorem ist true (there is still a chance to find these bounds, see

Ch. 12).
What we can prove is the following theorem that is just a formalized version of Pon-

celet's Principle of Continuity:

Theorem 7.17 (Continuity of Geometric Theorems) Let (X,R) be the instance ofa re¬

duced Dynamic Geometry Statement, and let the DGS be true at X and at all other in¬

stances in a neighborhoodofX. Then the statement is a theorem and truefor all instances

that can be reached using subsequent continuous moves.

Observe that we cannot use a simple induction to prove this theorem, because we

cannot make turns between the linear pieces. Also, we cannot just take the short-cut and

use only one linear interpolation, because we could loose reachable instances by that. But

we can use the simple observation that we have a neighborhood of the piecewise linear

path which can be used to smoothen it.

Proof 7.18 Since the continuous moves do not hit the discrete singularities, there is an

open neighborhood of the linear interpolations without singularities. This means that

there is a sequence ofanalyticpaths within that neighborhoodthat converges to thepiece-
wise linear path ofcontinuous moves. For all these analytic paths the complete analytic
continuation ofthe DGS scalar is identical to zero, and thus alsofor the piecewise linear

path. D

At this point it would be interesting to consider not only paths of one complex variable

A-, i.e. slices of the configuration space of a geometric construction, but the complete

space, given by all free variables of a GSP on the homogeneous RIS for points, lines and

conies. But this is beyond the scope of this thesis and will be presented elsewhere.

7.5 Complexity issues

As the last section in the mathematical part we want to outline some results on complexity
issues in Dynamic Geometry, which will be presented in full detail in [72].

The general question is:

7 5 Complexity issues 113 Complex Tracing

"Given two instances of geometric construction (given as a GSP), can we

move continuously from one to the other using only pathes of a certain type?"

The answer depends on both the RIS that we use, as well as on the type of moves we

allow.

For determined relational instruction sets the answer is easy for a suitable definition

of continuous move, since in that case we can just check whether both instances actually
are instances of the GSP. If so, we can move from one to the other, otherwise we cannot.

Let us briefly summarize some results for constructions using points, lines, and angu¬

lar bisectors under the assumption of continuity as defined above. Recall that the instance

we will reach while doing a series of analytic continuations along a certain path is unique
if we do not hit singularities.

We will now restrict the paths we can use for moving from one instance at^4 to another

instance at B, thus restricting the instances we can reach at B, and we will ask how hard it

is to decide whether we can reach a certain given instance at B.

As we know already, it is not always possible to move from A to B on the real line

given by (1 — X)A + XB, A- G R, without hitting a singularity. Nevertheless, we can show

that there are constructions where you will not hit a singularity and it is NP-hard to decide

whether you will reach at given instance at B. The proof uses a transformation of the 3-

SAT problem to a geometric construction on points, lines and angular bisectors.

The same proof also holds for paths in an e-neighborhood of a real path (a complex

cylinder), and since one can avoid all singularities using paths like that we have a nice

result on the real reachability problem of constructions.

We do not have a result for the complexity class of the reachability problem if we do

not restrict the paths, i.e. if we may use any path through complex space. It still could be

that there is an easy way to check whether we can find a path connecting A and B, and

in fact it would be a very useful result to have: If we want to do randomized theorem

proving on points, lines and conies as we did on points and lines only, creating a number

of random examples and checking each instance, we need a way to create these examples

using a certain random distribution among a large number of possible examples. Up
to now we only can get a reachable and thus valid instance at some other position by

walking there along a path, and this is computationally expensive. If we could create a

random instance instead of a random input only and check whether it could be reached

in a reasonable time, we would have a much better chance to do randomized theorem

verification in, say, polynomial time.

Let us reformulate the problem in a way that it can be attacked without having to

worry about geometric constructions:

Problem 7.19 Given a GSP ((A,),i?,T) on a basic complex RLS, i.e. an instruction se¬

quence using complex additions, multiplications, square roots and cubic roots. Let (A,,i?)
and (k,R) be two instances. What is the algebraic complexity ofthe decisionproblem: Is

there a complex path y: [0,1] —> Cfrom XtoX that avoids singularities, starts at (k,R)
and ends at (k,R) such that allfunctions f induced by the R} are continuous?

- or: Can you get lost on a Riemann surface?

Complex Tracing 114 7 5 Complexity issues

Chapter 8

Java-based Software

In this chapter we will give a short overview about our choice of the programming lan¬

guage, and we will discuss the most important features and drawbacks that influenced

the design and the coding of Cinderella. The experiences with Java are in part special to

Cinderella, some others will apply to any Java geometry software, and some are true for

any Java software. Many of the aspects are discussed in more detail in [48].

8.1 Why choose Java?

For every software project the programming language(s) to be used will influence the

whole project. It is a major design decision, and it should be taken with care. In our

case it was more a decision by heart, triggered by various circumstances, and decided

within two or three days, but we would make the same decision again if we had to. In

this section we want to present the reasons why we chose Java, and why this could be the

right decision for other projects, too.

8.1.1 The History of Cinderella

Let us start with a (slightly personal) review of the history of Cinderella. The Cinderella

project was started in 1992 by Jürgen Richter-Gebert and Henry Crapo, with phases of

more and phases of less progress. The software was written for the NeXT platform, a very

innovative, object-oriented computer system that - like other good computer systems -

was not as successful as it deserved to be. The decision for the NeXT and its proprietary

application builder tool, Objective-C and Display PostScript made it hard to port the soft¬

ware to another platform. Unfortunately, the decreasing availability of NeXT computers

made it very difficult to demonstrate the software, and the problems culminated in July
1996 at the Mt. Holyoke conference on Discrete and Computational Geometry. Although
there were several NeXT computers available, none of them could be used at first, be¬

cause they were either running an outdated version of the operating system, or they could

115

Java-based Software 116 8 1 Why choose Java"?

not be connected to the projection device. It was only in the last minute that a suitable

machine was available. The demonstration at the conference finally went very well, but it

was clear for Jürgen when he returned to Berlin that he will never again give a software

demonstration that relies on a computer system that is - although superior to most, if not

all, of the competing systems - not used by enough people.
But on the other hand, the conference was a big success and the response of the au¬

dience was very friendly. And Jürgen was invited to give a talk at the CGAL startup

meeting at ETH Zürich, where he wanted to present the software again. See [62, 14] for

more information about the CGAL project.
It was clear that the program had to be ported or rewritten in another language. But

it was also clear that the new language had to be object-oriented. At that time Java was

just at the beginning of its career. Nobody at our institute (the math department of the

Technical University Berlin) knew it, but it was claimed to be portable and easy to learn.

But there were also rumours that it is much to slow to do any serious work. After thinking
about it for a while we decided to give it a try. A first applet that supported points and

lines 8.1 was very convincing: Java is fast enough, and we will try it. And it looks like

it was the right decision: 3 years later many people are not only talking about, but they

We started to write the new version of Cinderella

from scratch. Within three weeks we created a demo-

able Java version Cinderella, that almost replaced
the old NeXT-Cinderella - at least it was good for

the CGAL startup meeting demonstration. After

three other weeks of development we submitted Cin¬

derella for the MultimediaTransfer '97, a competi¬
tion that should stimulate communication between

industry and science. Another three weeks in Jan¬

uary 1997 made the program good enough to be

named "Most Innovative Multimedia Software." At

that point the software had many features that could

fill a demonstration, it was reasonably stable and

well designed.
But still a lot was missing: It was not possible

to print or even save constructions, the user inter¬

face needed a brush-up, measuring was not imple¬
mented at all (you could draw Euclidean, hyper¬
bolic and elliptic circles), the interactive exercises

were just a "technology preview" and could not be

created without a lot of hacking, and there were too many (even critical) bugs that we

knew how to avoid, but had to fix someday.
Nevertheless we were, based on our "rapid application development" experience with

Java, convinced that we could do this in a few months ofwork. At the same time Springer-

actually use Java (and Cinderella).

File Edit View Co Communicator Hslp

nil* Bookmarks J. toatten fjF Wtef's Belated gj

Clmlybeta

fad4 single Paints *a(3d single

uWBSEEE a y

j unsigned ims Applet wind

issts»4f»<I H»A«s;l IS 18 35 MET EST

w A J«U -äP O v&

Figure 8.1: The first Java-based version

of Cinderella, dating back to August
1996

8 2 Deploying Java Applications 117 Java-based Software

Verlag and HEUREKA-Klett started negotiations with us about a publication of the soft¬

ware.

The rewrite started with the introduction of algorithms (see Ch. 9) and improvements
on the user interface. We switched from Java 1.0.2 to Java 1.1, which meant that we had

to rewrite both the mathematical kernel and the user interface.

After a year of negotiations and rewriting we were almost finished with both. But then

we realized that we had to rewrite everything again: The continuity theory (Ch. 7) required
that everything had to be implemented with complex numbers. Also the kernel became

much more complex, the adaptive step-width algorithm for complex tracing (Sec. 9.2)
needs much more effort than the easy update loop as found in usual Dynamic Geometry
software.

The first running prototype of complex tracing worked in March 1998, and it took a

few months until it was stable enough to be included in a commercial product. During
1998 we also added many other features on request of the publishers, the beta-testers and

ourselves. The current version of Cinderella has not changed significantly since Decem¬

ber 1998.

8.1.2 Rapid Application Development

The most important "feature" of Java that is often underestimated is that it is very easy

to write Java software, and to create large (there are more than 55K lines of source code

in about 340 classes, approximately 900 kilobyte that were written by only two persons)
in projects from scratch. Here we just want to recommend Java for both academic and

commercial purposes. The total cost of programming work (compare to total cost of

ownership for operating systems) is very low according to our experience. We could

create Cinderella using free and open-source tools only, XEmacs and CVS to mention the

two most important ones. Development was done using computers running Solaris and

Linux. We recommend the German book "Erfahrungen mit Java" and in particular the

chapter about Cinderella [48] for more information about Java success stories (including
information on the drawbacks and ways around them).

8.2 Deploying Java Applications

Although Java applets are easily distributable over the internet with the help of a standard

web browser, there are no technical provisions in the Java specification that make it easy

to distribute and install Java applications. Everything depends on a correctly installed

Java VM on the host operating system, and there is no platform independent file system

layer that can be used for additional resources like configuration or data files.

Another drawback of standalone Java applications - distributed as shrink wrapped

packages - is that they do not offer the performance the user expects from a native pack¬

age. Software running within a browser is not expected to be as fast as standalone appli-

Java-based Software 118 8 2 Deploying Java Applications

cations, but if we hide the Java environment from the user and present a Java application
outside a browser we have to try to create a software that performs best possible.

In this section we will describe two ways how we addressed these two issues, using

post-optimization and a third-party installer tool. These two together make Java suited for

shrink-wrapped software.

8.2.1 Post-Optimizing Java Applications

Java has to suffer from performance penalties due to the dynamic linking at runtime and

the interpretation of Java byte code. These two together avoid most of the optimizations

usually done at compile time. Inlining of code or jump optimizations by devirtualizing,
common optimizations done in C++, are not possible across different classes.

Most of the dynamic loading features are never used in an average Java application.
The classes that will be loaded are fixed, not at compile-time but at least at deployment
time. Cinderella is installed as ajar-file containing all classes of the application. When¬

ever there would be a change that could create problems for inline optimizations or virtual

function call resolution we could redistribute a complete new archive with all the changed
classes.

In fact, we first started to do these optimizations by hand, for example in the base

classes for complex number calculations. We replaced every virtual access and every

method call with direct references to variables in ordered to avoid the enormous overhead

introduced by the JVM. This created unreadable and unmaintainable, "write-once-read-

never" code (Table 8.1), which was only justified by the performance gains by a factor of

more than 3.

The Java technology since then has matured. Just-In-Time-compilers can do some

optimizations that formerly have been done at compile time at runtime, since they do the

whole compilation at runtime. The price we have to pay for these optimizations is a slow

startup of Java applets and applications, which is very annoying since the JIT-compiler
does the same compilations over and over again, for every new start ofthe program. As far

as we know there is no JIT compiler that caches compilitations over sessions, and it does

not look like a trivial task to implement a caching strategy that can survive the lifecycle
of JVM instances. Another problem is that not every platform offers a JIT-compiler, and

even those available differ extremely in performance.
The approach we take in Cinderella is to do the optimizations after the whole project

has been compiled and frozen. At that point we know which classes will be loaded dy¬

namically, which code may be inlined and how method calls can be devirtualized. Many
other - standard - optimization techniques may be applied, like loop unrolling or constant

expression elimination.

For Cinderella we used a tool supplied by IBM alphaworks called JAX [78], an

acronym for Java Application extractor. Cinderella was used as a test suite by the JAX

team [79]. JAX does a class hierarchy analysis on the code, using the additional infor¬

mation about dynamically loaded classes and dynamically invoked methods, and then it

8 2 Deploying Java Applications 119 Java-based Software

public Vec solveCubic(double ar double ai

double br double bi

double cr double ci

double dr double di)

// tl (4ac b 2)

double acr (ar*cr ai*ci)

double aci (ar*ci+ai*cr)

double tlr 4 * acr (br*br bi*bi)

double tli 4 * aci 2 * br*bi

// ab ab

double abr (ar*br ai*bi)

double abi (ar*bi + ai*br)

// t3 tl *c 18 ab * d (4 ac b*b)*c 18 abd

double t3r (tlr*cr tli*ci) 18 * (abr*dr abi*di!

double t3i (tlr*ci + tli*cr) 18 * (abr*di + abi*dr!

// aa 27 a*a

double aar 27 * (ar*ar ai*ai)

double aai 54 * (ai*ar)

// aad aa *d 27 aad

double aadr (aar *dr aal* di)

double aadi (aar*di + aai*dr)

// tl b 2

double bbr (br*br bi*bi)

double bbi 2 * br*bi

// w b 3

double wr (bbr*br bbi*bi)

double Wl (bbr*bi + bbi*br)

// t2 aad + 4w 27aad + 41

double t2r aadr + 4 * wr

double t2i aadi + 4 * wi

// tl 27 *(t3 * c + t2 *d)

tlr (t3r*cr t3i*ci + t2r*dr

tli (t3r*ci + t3i*cr + t2r*di

t2i*di)

t2i*dr)

// DIS OK

// w 2 b 3

wr * 2

wi * 2

// w

wr +

wi +

w + 9 a b c

9 * (abr*cr abi*ci

9 * (abr*ci + abi*cr

// w

wr

Wl

w + 27 a*a d

aadr

aadi

tlr * 27

tli * 27

t2r Math sqrt(Math sqrt(tlr*tlr+tli*tli)
t2i Math atan2(tli tlr)

tli t2r*Math sm(t2i/2)

tlr t2r*Math cos(t2i/2)

// w w + a * dis // sqrt war schon oben

wr + tlr * ar tli * ai

Wl + tlr * ai + tli * ar

// w ausgerechnet Jetz wl und w2

// wl assign(wr wi)

// w2 assign(wr wi)

// wl sqrtl_3()

// w2 sqrt2_3()
double radius Math exp(Math log(Math sqrt(wr*wr+wi*wi))/3 0)

double phi Math atan2(wi wr)

double wli radius*Math sm(phi/3)
double wir radius*Math cos(phi/3)
radius * radius

phi * 2

double w2i radius*Math sm(phi/3)
double w2r radius*Math cos(phi/3)

// x 2 b 2

// x x 6 ac

xr 2*bbr 6 * acr

xi 2*bbi 6 * aci

//y assign(c2) mul (b) mul(wl)

yr c2 * (br * wir bi * wli)

yi c2 * (br * wli + bi * wir)

// z assign (cl) mul(w2)

zr cl * w2r

zi cl * w2i

//wl mul(a) mul(3) mul(c2)

tlr c2 * 3 *(wir * ar wli

tli c2 * 3 *(wir * ai + wli

double s (tlr*tlr + tli*tli)

/ s

/ s

t2r (xr*tlr + xi*tli)

t2i (xr*tli + xi*tlr)

xr t2r

XI t2i

t2r (yr*tlr + yi*tli)
t2i (yr*tli + yi*tlr)

yr t2r

Yi t2i

t2r (zr*tlr + zi*tli)

t2i (zr*tli + zi*tlr)

zr t2r

Zl t2i

return this

// tl (27 dis) Sqrt()

Table 8.1: This code, which dates back to the time where we did not use JAX for post-optimizing
the Java byte code and had to do manual optimizations, finds the roots of a polynomial of degree
three. The comments should help to understand what is actually done, but whether they really can

be questioned.

Java-based Software 120 8 2 Deploying Java Applications

zipfile

Cinderella

methods

Applet
fields classes

Cinderella Application

zipfile methods fields classes

before:

after:

896758

306176

3927

1985

2754

1530

383

247

896758

398657

4033 2817 412

2527 1795 292

savings: 590582

65%

1942

49%

1224

44%

136

35%

498101

55%

1506 1022 120

37% 36% 29%

Table 8.2: Code compression with JAX

eliminates unused variables and methods and changes virtual access to methods and vari¬

ables to direct access whereever possible. This results in an enormous reduction of the

code size: The standalone application Cinderella is around 55% smaller than the original

code, and the applet's size is reduced to about one third (Table 8.2).
While the decreased size of the standalone application is mainly caused by the usual

optimizations of JAX, the additional significant gain in the applet version is achieved

by dead code elimination of parts that will never be used in the applet, like the "save

construction" operation or the PostScript export. This is a major advantage ofusing a tool

like JAX for post-processing: We can use exactly the same code for applet and application,
and JAX will care about removing the parts of the program that are not necessary for the

applet at runtime automatically. All we need is different configuration file.

As a test we created a runtime that only supports Euclidean views and the "Move"

mode. All dynamic references to other views and modes were eliminated from the con¬

figuration. This runtime was only one third ofthe current applet runtime, one nineth ofthe

original code size. This demonstrates the power of Java application extracting tools: You

can use the same codebase for several applications and applets, giving you apparent ad¬

vantages like increased stability and less administrative effort, while still getting compact
and optimized code.

More information on successful compression with JAX can be found in the research

report by the JAX authors [79]. This report also covers the compression of Cinderella,
since Cinderella was used by the JAX team for performance and regression tests. As

a side remark we want to mention that the size reduction could be increased further if

another class file layout could be used (e.g., as suggested by Pugh [65])

8.2.2 Platform Independent Installations

The targeted user group of Cinderella is very inhomogeneous. We cannot assume any¬

thing about the platforms Cinderella will be used on. Despite the fact that we could make

Cinderella run on any platform that supports Java 1.1, we cannot hope that the users will

be able to make Cinderella run if we only provide the jar file containing all the classes. In

that situation the use of a third party tool to create a cross platform installer seemed to be

8 2 Deploying Java Applications 121 Java-based Software

a good choice.

We found the following requirements for us:

• The installer must be able to install a Java Virtual Machine on Windows 95/98/NT

and MacOS, for the case that there is no JVM available.

• The installer must run on any Java-1.1 platform.

• The installer must support internationalization.

• The installation should "look like any other installation on Windows," that is, a

Windows user must not be confused with details about Java.

There are several cross platform installers for Java available (InstallShield for Java [35],

J'Express [11], InstallToolkit [33] and InstallAnywhere [92]). Of these, only InstallAny¬
where is able to install a JVM on MacOS. This was reason why we chose InstallAnywhere

(IA) as installation toolkit for Cinderella. It also supports all the other requirements we

listed above and even has some more interesting features. The installers created by In¬

stallAnywhere are of high quality and integrate seamlessly into the Windows operating

system, and offer the same ease of use on other platforms, including Unix. This makes

them usable also for non-experts.

Despite its features, IA has several drawbacks, which we want to mention.

1. Not fully scriptable. Our development environment is based on GNU make and

almost everything in the build process is automated. IA can be run from the com¬

mand line, but it is not possible to pass a machine generated configuration script
to it. All configurations of the installer have to be done using the graphical user

interface of IA, which is very time consuming and error prone.

IA offers a concept called "speedfolders," which can partly automate the build pro¬

cess, but they are not powerful enough to suit our needs. A speedfolder defines

a directory which should be recursively included in the distribution. Inclusion or

exclusion rules (but not both) based on suffix matching can be defined. Even with

these rules it can happen that empty directories are included.

2. No version control support. The binary file format of the IA configuration files

is not suitable for true versioning with CVS. Even worse, IA saves its localization

information in a separate directory, and if this directory is added to the CVS system

the extra CVS directory in that directory causes IA to crash. These problems could

be avoided with a fully scriptable version of IA.

3. Incomplete internationalization support. Although the most recent version of IA

supports creating installers in six languages (additional languages are available sep¬

arately), the internationalization support is far from being perfect. It is not possible
to create an internationalized version of an already existing installer. There is no

Java-based Software 122 8 2 Deploying Java Applications

built-in support for different custom messages for the different locales, this is only
available via post-editing by hand of some configuration files.

With respect to internationalization we have to recommend J'Express, which is

much more powerful in that area. Unfortunately, J'Express does not support in¬

stalling a JVM on MacOS. Other remarkable features of J'Express which make it a

good alternative if you can do without MacOS support are silent installs (which can

be run unattended) and automatic updates.

With InstallAnywhere we were able to create an installer which can be run from CD-

ROM or even remotely via the web. We are very satisfied with this installer, although the

creation of it is not as easy as it could be.

Chapter 9

Efficient Datastructures for Dynamic

Geometry

In this chapter we will present some of the underlying data structures of Cinderella. The

design of these data structures is crucial for the performance and stability of the whole

software. We will also show how the mathematical theory of complex tracing can be

implemented in an efficient way.

We want to emphasize that this description is not as complete as a project description
in computer science could be. However, it is important to see that this thesis is not pri¬

marily about the implementation of a geometry software, but about the underlying mathe¬

matical foundation. This chapter should not be taken as the one-and-only recipe to create

a software like Cinderella, but as a collection of hints how we did it and how it could be

done - that's the reason why we did not present everything in a way that you can type

in the code immediately. This is different compared to the mathematical part: the math¬

ematics are determined already by a couple of formal requirements the software should

fulfill, in particular the continuity assumption. The actual implementation depends more

on personal parameters, like "programming style" or "software development paradigms."
We are proud to have an elegant implementation of the theory, that reflects at least a little

bit of the beauty of the mathematics, but it is not the only way to do it.

9.1 Comparision to the traditional approach

First we will discuss why we did not use the classic approach [69, 58] to object-oriented

geometry software, which is used in most software for dynamic geometry and other ap¬

plications today. We want to say in advance that it is not our goal to replace the traditional

approach - it is still suited for many applications. Only in the special case of sophisticated

dynamic geometry software that should be able to handle also intersections of circles and

conies we want to suggest to rethink the way it is implemented.

123

Efficient Datastructures for Dynamic Geometry 124 9.1. Comparision to the traditional approach

GeometryElement

PointOnLme LineThroughPoint

IntersectionLineLine IntersectLineComc

Parallel

ConicBy5Pomts CircleByRadius

CircleBy3Points

Orthogonal

Figure 9.1 : A part of the typical class hierarchy for a Dynamic Geometry System. A common root

class is subclassed into the classes for different geometric objects, which are again subclassed in

order to create the object definitions. Cinderella does not follow this hierarchy but replaces the

lower class layer (below the dotted line) by the algorithm concept.

9.1.1 The Usual Approach: Subclassing

When you think about a class hierarchy for an object-oriented Dynamic Geometry system,

you will probably end up with a tree like shown in Fig. 9.1. Common root of all geometric

objects is a standard GeometryElement class. This class contains all the methods and

fields that are useful for all geometric elements, for example information about the color

and label of the element, and methods for showing the element on screen and to update it.

Another important piece of information is a list of dependend elements.

Subclassed from this object are Point, Line and Conic, and maybe more, classes that

correspond to the different object types that are available. These contain the additional

data that is needed for them, like the coordinates for a point, the matrix of a conic, or the

text of a text label, and override the display method.

The definition of an element, that is, the information whether it is a free point or a point
of intersection, a free line, a parallel line or an orthogonal line, and so on, is maintained by
another level (or more) of subclassing. The classes in this layer overload the recalculation

method and introduce fields that store the additional information needed.

A mouse move is processed as follows: The coordinates of the moved element are

changed to reflect its new position, and then all dependent elements are updated by

traversing the list of (directly) dependent objects. All elements that have been updated
add all their (directly) dependent elements to the list of elements that still need an update,
unless they have been updated already. We omit the details, which are fairly standard.

A much more detailed presentation of the internals of a traditional Dynamic Geometry
software can be found in [58], using the software Euklid [59] as an example.

9 1 Comparision to the traditional approach 125 Efficient Datastructures for Dynamic Geometry

9.1.2 Elements and Algorithms

In Cinderella we moved away from the traditional class hierarchy and introduced a new

architecture that is based on splitting up the geometric type, the visual representation and

the constructive definition of the elements.

The class hierarchy also starts with common superclass for geometric objects, PGElement

(the "PG" stands for "projective geometry"). This still contains some fields and methods

that are useful for all types of elements, as well as certain administrative data. Subclasses

of PGElement are PGFlat (which is subclassed again to PGPoint and PGLine), PGConic

and other object types. But instead of subclassing these classes again to reflect the con¬

structional definition of objects, every instance of PGElement stores an Algorithm ob¬

ject. All information about dependent elements, defining elements and update methods is

encoded in these Algorithm objects.

Why did we detach the algorithms for updates from the elements? It turns out that the

traditional subclassing approach is not feasible for efficient Dynamic Geometry software,
and this holds in particular if we want to do complex tracing as described later in this

chapter. The crucial point is that we will never calculate one intersection of a conic and a

line, but always both intersections, we will never calculate one intersection of two conies,
but allfour ofthem. This means that in the case where we did define, say, a perpendicular
bisector using two circles, we will have to find both intersections and select the right one

of these twice. With the algorithm concept we do not have a strict "belongs to"-relation

between geometric elements and their algorithms, but the algorithms just operate on the

coordinates of several geometric elements, see Fig. 9.2.

The Algorithm approach of Cinderella is a convenient way to reuse the information

we have already found, since the same algorithm instance is plugged into both PGPoint-

objects. It also increases the stability of the selection process: It can never happen that

two intersections collide suddenly (as it happens in the mirroring example, see Fig. 6.8

on p. 88).
An important question is how we identify whether we can use the same algorithm for

two elements. In Sec. 9.3.1 we will explain it in detail, here we just mention that we use

the internal theorem checking engine of Cinderella.

9.1.3 Data structures for updates

The mathematical kernel of Cinderella must update a construction whenever a free ele¬

ment has been moved. The movement of a free element itself is parameterized using a

complex parameter X. We will discuss in Sec. 9.2.1 how we can do the necessary repa-

rameterizaton on the fly. Here we want to present how an update is propagated to all the

dependent elements.

Since we do not store a list of dependent elements within the PGElement but maintain

the dependency information inside the Algorithm-objects we must use another strategy

as in the traditional class hierarchy situation.

Efficient Datastructures for Dynamic Geometry 126 9 1 Compansion to the traditional approach

ElementList

geoObj[0]

geoObj[1] •-

geoObj[2] •-

geoObj[3] •-

geoObj[4] •-

geoObj[5] •-

:T

PGPoint A

vector

PG Point B

vector

PGLine a

vector

PGConic C

matrix

PG Point D

vector

PG Point E

vector

JoinAlgorithm

/* calculates the join

of two points */

-9 input[0]

-• input[1]

-• output[0]

IntersectLCAIgorithm

/* calculates intersection

of line and circle */

—• input[0]
—• input[1]
—• output[0]
—• output[1]

Figure 9.2: Part of the geometry kernel of Cinderlla. A list of geometric objects, which are

instances of PGElement, is maintained. The algorithms, which do not belong to the geometric ele¬

ments but are independet, operate on the coordinates that are stored inside the geometric elements.

This makes it possible to reuse one algorithm for several geometric objects.

We want to minimize the time spent during an update, which suggests precomputing
a list of algorithms to be updated when an element is moved. These list of "programs," is

stored in a hash table referenced by the movable objects. Whenever an algorithm is added

to the kernel we add it also to all programs that contain a reference to a defining element

of the algorithm. Since we add the algorithm to the end of the list, we can be sure that

the order of algorithms in the list is always consistent with the construction order. Note

that this consitency is due to the way a construction is carried out, and this easy approach
must be replaced by a more sophisticated one in the case we want to allow redefinitions

of objects (changing the algorithm of an object). In that case we must take care of finding
the correct linear order of a partially ordered set, and we have to avoid the introduction of

circular references.

Whenever an element is moved, we just have to iterate through the list of dependent

algorithms and update each of the algorithms. See Fig. 9.3

9.1.4 Model-View-Controller implementation

In the last sections we presented the mathematical kernel of Cinderella. In order to sepa¬

rate the mathematical representation and the screen output we organized the visual repre¬

sentation in another way than usual. The crucial concept uses the Model-View-Controller

concept, where the kernel presented so far represents the model, the viewports correspond
to the views, and the controller is given by the different modes of Cinderella (add a line,

9 1 Comparision to the traditional approach 127 Efficient Datastructures for Dynamic Geometry

Figure 9.3: The list of elements and the list of algorithms are connected using a list of programs.

The program of an element is traversed if the element is moved, causing all algorithms of depen¬
dent elements to be recalculated, and thus the update of all elements that must change.

Efficient Datastructures for Dynamic Geometry 128 9 2 Implementing Complex Tracing

Display as two- or three-dimensional picture

'~

» 7

£ *.

u.Z..,»*«,.,«.,,

Mathematical Model

6-dimensional

abstract description
of the construction

is shown

change

the model

different modes

determine reaction

to events

mouse events

Adapter
translation from

screen coordinates

to coordinates of the model

mathematical events

Figure 9 4 The Model-View-Controller structure of Cinderella

move a point, etc), see Fig 9 4

The mathematical objects in the kernel have no information on how to be displayed
on the computer screen Each viewport has a factory method that is able to create visual

representations for the PG-Objects Whenever a kernel object is created, every viewport is

asked to create a suitable visual representation These shadow objects are maintained and

stored by the viewport, the kernel objects themselves do not know about their représen¬

tions

After a kernel update every viewport is informed about that the construction has

changed, and it must update its viewport elements The kernel updates are a reaction

to mouse events, which are interpreted using the current mode of Cinderella In the move

mode, a mouse drag causes a move of an object, in the "add a line"-mode up to three

new elements are added to the kernel The mouse events are coming from the different

viewports, which figure out what elements are affected by mouse actions and at what po¬

sition This is the reason why the viewport elements must know the corresponding kernel

elements

9.2 Implementing Complex Tracing

We will now come to the heart of Cinderella?, mathematical kernel, the part that imple¬
ments complex tracing Here is the basic tracing algorithm

Algorithm 9.1 (Tracing Algorithm)

Input: A construction C, an instance at starting position A, and an end position B

Output: An instance at B that is likely to be reachable by a continuous motion from A to B

9 2 Implementing Complex Tracing 129 Efficient Datastructures for Dynamic Geometry

Figure 9.5: Here is a situation where the near-

to decision will fail badly without a forced

intermediate step into complex space. If we

move the point A on the line directly to the

position A' the near-to decision will leave B
,

the point of intersection of the circle and line

b at its place. Instead it should move to B1,
since we would otherwise have constructed

an absolute value function. You can imag¬
ine that the intermediate complex step creates

a "turn" into complex space where both in¬

tersections are complex conjugates, and this

forces additional intermediate steps.

1. Do a reparameterization of the construction such that a complex parameter X cre¬

ates the desired move while letting X move from 0 to 1.

2. Set the initial position on the path y: 11-> (1 + em(l~^) to t = 0. Set the initial

stepwidth to s — 0.5.

3. Assume that the construction is in a valid position for X — 0.

4. Add s to t and let X — y(max(7, 1)).

5. Update the construction at X and try to assign the new elements to the old elements

of the last valid position based on nearness decisions.

6. If the assignment is possible, multiply the stepwidth s with a speed factor a > 1, and

go to 3. If t — 1, the algorithm terminates.

7. If the assignment fails, multiply the stepwidth s with a slowdown factor ß < 1 and go

to 4. If the stepwidth s is less than a fail value e > 0 then the algorithms terminates.

The values for a and ß must be chosen with care. Unfortunately, there is no theoretical

result yet that tells us which values are best.

You see that we will always make at least one complex intermediate step. This is a

heuristic that eliminates most of the wrong assignment decisions that occur in practice.

Fig. 9.5 shows a typical example. A step into complex space will often, especially for

complex conjugates, create the necessary intermediate steps to make the right decision.

9.2.1 Parametrization

How did we implement the reparameterization of the elements? We may have to create

many intermediate steps for one mouse move, and we would like to have a as generic as

Efficient Datastructures for Dynamic Geometry 130 9 2 Implementing Complex Tracing

possible tracing engine.
In Cinderella we implemented the following: Whenever an element (this could be a

point or a line, or even the radius of a circle) is moved from position^ to a new position^,
we will tell its algorithm object that a new position is requested. Every "movable" algo¬
rithm (free points, lines through a point, points bound to a line or circle) has a initMove

method that is called with the new position as parameter.

After that initialization, subsequent calls to the goTo method passing a complex num¬

ber will move the movable element to the abstract position (1 — X)A + XB. Here abstract

means that the new position of the moving element needs not to be exactly the linear

combination as written above. The goto mechanism enables any algorithm to remap the

complex path to another, better suited path than a simple linear interpolation. There are

several movable algorithms that make use of that, for example all algorithms that allow

underconstrained movements.

An example for an algorithm that is underconstrained is "Point On Line." Here the

initialization and goTo-methods must take care that all intermediate elements on the path

really are on the line the point is bound to. In particular, the end point must be projected
to the line. Underconstrained elements are very hard to handle, the available degree of

freedom must be used in a reasonable way, but in the end all ways are arbitrary. We refer

to [87], where one way of handling these situations is discussed in detail, but we cannot

claim that this way is superior to other design decisions. In the end it would be desirable

to leave the choice to the user, which strategy or behavior he prefers.

9.2.2 Tracing

The assignments done in step 5 are based on nearness decisions. Let us illustrate the case

where we have to assign two new points B\ and B2 to two old points A\ and A2. We will

measure all pairwise distances, as in Fig. 9.6.

Then we will decide whether we can make a decision at all: If the two new points or

the two old points are very close to each other compared to the sum of their distances to

the old points, we will request an additional intermediate step. Else we will look at the

difference between the direct path and the detoured path that create a triangle (in Fig. 9.6

illustrated by a gray triangle, the direct path is the diagonal one). If this is sufficiently

high for both assignments, we will return the "shorter" one, else we will also request an

intermediate step. To make this work, the distance measurements must obey the triangle

inequality (what they should do anyway).
The performance of the algorithm is highly dependent on the choice of a numerically

stable distance measure. So far we have not found a provably good one, but we rely on

some kind of complex projective distance. In order to increase the numerical stability we

tried to choose different measures based on the position in projective space. A problem
that appeared when we had this flexible measurements was that the mixed distances of

two point pairs were calculated using different measurements, which lead to wrong as¬

signments or even a complete failure of the algorithm. If you try to use an approach like

9 2 Implementing Complex Tracing 131 Efficient Datastructures for Dynamic Geometry

Figure 9.6: Two old points Ai and A2

shall be assigned to B\ and Bi. This

two-dimensional picture is confusingly

easy to read, the original situation is

taking place in CP2 and thus much more

complex.

that, you must take care not to change the measurements during a near-to decision phase.
Another remark: We will do the assignments one by one by iterating through the

program list associated with the moving element. If any assignment fails, we will imme¬

diately stop the execution of this program, since we cannot be sure that the assignments
we find later are still valid when we do the intermediate step that is requested.

9.2.3 Decision making

The careful reader will have noticed that we are talking about decisions that assign new

points to old points, while the analytic continuations of Ch. 7 work on complex numbers.

This works because we know that the analytic continuations will give exactly the same

results. But going up to the model of points, lines and conies, i.e. vectors and matrices,

we can improve the numerical stability since we do not require all algorithms in a con¬

struction to use the same formula all the time. Any algorithm may choose under which

conditions it will work best, and return just any representation of its results, that is, any

scalar multiple of their homogeneous coordinates.

For example, the conic/conic-intersection can be calculated using any two ofthe three

degenerate conies, or one of the degenerate conies and one of the original conies, just
whatever is more stable for a certain situation. Or, the split operation can choose any of

the three columns to return, just to make the maximal number of significant bits available.

Or, even a simple algorithm that calculates the join of two points can scale/normalize its

result to avoid numeric overflows.

Based on our knowledge that the original analytic continuation process will give the

continuous motion we are looking for, we use the homogeneous objects for our decisions,

being sure that this will give the same results.

9.2.4 Avoiding tracing

Not every algorithm (or primitive operation) is ambiguous, in fact, most of them are not.

Whenever we have a part of the construction that need not to be traced, we want to avoid

to include it in the recalculation of the intermediate steps. For this reason we split the

program list (Fig. 9.2 in Sec. 9.1.2) into two, a list of all dependent elements and a list of

the elements that have to be recalculated for the intermediate tracing steps. Note that these

Efficient Datastructures for Dynamic Geometry 132 9 2 Implementing Complex Tracing

are not only the ambiguous algorithms, but also all algorithms on which the dependent

algorithms depend.
This split is even more valuable when we avoid tracing for elements where we have a

kind of test function or certificate, see Sec. 9.3.1 below.

9.2.5 Backups and Singularities

Before we explain what happens when we hit a singularity other than that the tracing

algorithm fails, we have to introduce a helper mechanism of the tracing kernel.

The tracing algorithm requires that we are able to recalculate a construction sequence

for different input parameters quickly, and we must be able to store a valid construction

sequence for later reference. For this we introduced a data structure Register (registry)
that supports saving and retrieving the whole calculation into or from a numbered slot.

Since we cannot use memory dumps in Java as we could do in C or C++, we require that

everything that needs to be saved implements an Assignable interface and is registered
with the Register class. The Assignable interface guarantees the implementation of an

assign method, that can be used to copy the value of an instance onto another instance.

When an object is registered with the registry, the registry will create a number of

objects of the same class and append them to the different slot arrays. These will be used

as storage for the value of the original object, which is also stored by reference. A call

to the store method of the registry will copy all original, registered assignables to the

slot array, a call to the retrieve method wil copy the stored values back to the original

objects.
Now we are able to work around singularities using the following strategy:

• If we start on a singularity, that is, if we are in a situation where certain pairs or

quadruples of points cannot be properly distinguished, we will just don't care. If

these points will move apart later, we will start to care by raising a flag.

• If we hit a singularity directly (for example, by moving a line intersecting a circle

into the tangent situation), the tracing algorithm will fail. In that case, we will just

jump to the final position X — 1 and assign the points arbitrarily. This does not cause

a problem, since the points we want to distinguish have the same coordinates, thus

all decisions lead to the same result.

The last valid position where we could distinguish the offending points is stored in

a slot of the registry. If we move away from that singularity again, we will not start

from there, but we will instead startfrom that backup position.

• If we hit a singularity on our path, but not where we wanted to go to, we can either

restart at X — 0 and choose another path (for example by scaling the imaginary part

of it), or we proceed as in the direct hit case, with the problem of the chance of

making the wrong decisions for X — 1 (since we will go the backup position when

we resume moving, we might not care for this single position).

9 3 Automatic Theorem Checking 133 Efficient Datastructures for Dynamic Geometry

We want to remark that the approach of Cinderella works fairly good in practice, but

can be fooled. For example, Cinderella does not store a backup position for all elements

that can be moved. Imagine you have a construction of several lines, circles and their

intersections, and you move some lines into degenerate positions. Then you move them

out of the singularities again in a completely arbitrary order. How could you decide which

backup is the right one? Cinderella always resets its backup position to the current posi¬
tion in case we change the element that moves. This can causes unpredictable behavior,
but it always occurs after stopping in degenerate situations. As an example you can try to

move a triangle showing the angular bisector theorem into a highly degenerate position,
best would be to move all vertices onto one point using the "snap to grid"-mode. If you

now move some other element, a fourth point for example, and then make the triangle

non-singular again, it can happen that you changed to an instance where the theorem is

destroyed.

9.3 Automatic Theorem Checking

The automatic theorem checker of Cinderella is a very useful tool, not only for people who

use it while they work, but also internally. It works by creating many new instances of a

construction and evaluating a conjecture for all of these instances. If a counter-example
is found, the conjecture is rejected, otherwise it is accepted as a theorem.

The automatic theorem checking proposed in Ch. 7 cannot be used directly - we would

have to evaluate an infinite number of examples first. But we can mix the randomized

theorem proving methods of Sec. 5.3 and the theoretical results for a simple proving
heuristic: Move every free element of a construction into a random direction (using a

special version ofthe initMove-method, initRandomMove), and repeat this several times

to create many instances. If we do not find a counter-example within the instances, we

assume that we have found a theorem.

Although we are still lacking theorems that support this strategy theoretically, we have

found that the method works very well in practise. It is possible to make it fail on purpose,

but for every day use it is fine.

9.3.1 Using Automatic Theorem Checking for Clean Data Structures

One internal use ofthe general automatic theorem checker in Cinderella is to help keeping
the data structures clean. Whenever an element is added to the kernel, the theorem checker

checks whether it is already known. It does not check whether the same object reference

or an element with the same definition is contained in the construction data, but it "proves"
whether one of elements currently in the construction is always at the same place as the

new element. If that's the case, it will not insert the new element, but re-use the old one.

This is important for the ease-of-use of Cinderella. Ifyou draw a line £ connecting two

points A and B, put a point C on that line, and construct the line m connecting A and C, then

Efficient Datastructures for Dynamic Geometry 134 9 3 Automatic Theorem Checking

Figure 9.7: The theorem checker proves Pappos' theorem on the fly. We can see this by observing
that after the last intersection point K = Meet(e,/) has been defined the line k is extended to

include it.

£ and m will always have the same coordinates. Imagine for a moment that £ and m are

represented by different elements. Now whenever you want to pick £ with the mouse, you

will also pick m. This will confuse all operations that work on lines, because you will put

an extra line into the input accidently whenever you choose £ as an input element. Also,
the display of the line will be weird, because of rounding problems in the line drawing
subroutines (provided by the operating system). Many other geometry softwares do at

least check for double definitions (you cannot insert the line through A and B twice), but

Cinderella is the only program that can handle identities caused by geometric theorems.

Cinderella will insert the line m, prove that it is equal to £, and remove m again.

The same technique is used for a separation strategy that can help to avoid the need

of complex tracing. Whenever an intersection of a conic and a line or of two Euclidean

circles is added to the kernel, it will be checked whether the other intersection - the

method does not work very well for conic/conic-intersections - is already known. If so,

then the defining algorithm of the point will be changed from "intersection conic/line"

resp. "intersection circle/circle" to "other intersection of conic/line/point" resp. "other

intersection conic/line/point." Since the "other intersection" algorithms, which calculate

both intersections and return the one that is not equal to the point, are determined, they do

not have to be traced.

This kind of shortcut can be applied very often in typical constructions. An example
for which this strategy is optimal is a chain of circles of the same radius as in Fig. 2.9 on

p. 28.

Another information maintained by Cinderella are point/line-incidence relations. These

are needed for the line clipping mechanism, which can clip lines to its (Euclidean) end-

points. To make this work, we have to know which points lie on lines, and this information

is created generically by the automatic theorem checker. See Fig. 9.7 for a non-trivial ex¬

ample.

9 3 Automatic Theorem Checking 135 Efficient Datastructures for Dynamic Geometry

9.3.2 Using Automatic Theorem Checking for Exercises

We can use the automatic theorem checking engine for a very exciting new feature of

Dynamic Geometry software, the creation of interactive construction exercises. Students

can work with a subset of the geometry tools of Cinderella inside a web browser, and the

computer verifies the solution - which is not a fixed construction, but only some elements

that should be construct in any way - or gives context sensitive hints. See Sec. 11.3 for

some information about the use of automatic exercises in education. Here we will explain
how the automatic exercises are realized in Cinderella.

A necessary ingredient for any automatic exercise is a construction for its solution.

This is only fair, the one who creates the exercise has to know how it can be solved.

But the real reason for this is that Cinderella uses the elements of the given solution as

"certificates" to find out whether the solution has been found, or whether the elements

corresponding to a certain hint have been constructed.

When a student starts up an interactive exercise sheet, he will see all "starting ele¬

ments" of the solution construction that was provided, say, points A and B, and he will

be asked to solve the exercise, let us take "Construct the midpoint ofA and 5." What he

does not see is that the whole solution is already present in the mathematical kernel of

Cinderella. The software has just bypassed the creation of the corresponding viewport
elements (see Sec. 9.1.4) for all non-start elements.

Now while the student adds more and more elements to the construction, for every new

element the automatic theorem checker will check whether this element is already present

in the kernel, as usual, and when it is found, it will reuse this old element and, if necessary,

report it to the viewports to make it appear. This has the effect that valid constructions for

the already present elements will be detected on the fly. We can check for all elements that

are reported to the kernel whether a hint or even a solution is associated with them, since

exactly the elements that were already present in the example solution will be reported.
Another effect of having the construction already in the kernel is that we can easily

track the current position of a solution element if the student changes some of the input

parameters (the pointa or B in our example).

This is enough for a basic exercise checking engine. In Fig. 9.8 you can see an ex¬

ample where the theorem checker accepts an alternate solution to the midpoint problem.
The original solution was the standard construction of the bisector a using intersections

C and D, and finding the intersection Eofa and the line b connecting A and B. The two

circles that are necessary for this particular solution have also been used by the student,
but then he proceeded by adding two more circles, the intersections F, G, H and K, and

he finished his solution by intersecting the lines c and d that connect F and G resp. H and

K. This point of intersection has been identified by the theorem checker with E, and since

E was marked as solution element during the design of the exercise, the construction is

accepted as a solution.

This technique will not work whenever we have underconstrained elements, like in

the angular bisector construction (Fig. 6.4 on page 83), or the point on Thaïes' circle in a

Efficient Datastructures for Dynamic Geometry 136 9 3 Automatic Theorem Checking

Figure 9.8: The internal construction is used

to check the solution of the student. The two

circles around A and B have been reused by
the student, but then he left the standard con¬

struction for an alternative one. After he ar¬

rives at his solution the intersection of c and d

is identified as being always equal to the so¬

lution element E. The lines a and b are not

visible, but only used inside the kernel.

construction of an right angled triangle, or even a free point, for example when you want

to construct the trisection of a segment. The kernel will usually not prove that a pointa
on a line a is equal to another point B on that line, because then we could bind at most

one point to a given line.

In Cinderella'? theorem checker we introduced a method we called "guessing," which

is disabled by default, and enabled while an exercise is solved. In that case, also "defini¬

tion equality" will be accepted, which means that an underconstrained or free element that

is present in the kernel, but not in the viewports, is reported as equal to another element

that is added to the kernel, if the definitions of these two are equal, i.e. both are a free

point, both are a point on the same line/circle, both are a circle centered at the same point,
etc.

This approach works fine as long as the guessing cannot be wrong, for example, if all

free and underconstrained elements are uniquely defined, i.e. there are no two free points,
no two points bound to the same line, and so on. Otherwise Cinderella will probably
not recognize a part of the construction properly if it is done in another order than in

the original construction. Anyway, as soon as the elements for a hint are unique again,
Cinderella will "synchronize" again. Also the checking of solutions which are unique
will never be affected, which was the final reason why we included this feature, although
it will not be guaranteed to work for ill-formulated exercises.

9.3.3 A Killer Example

The theorem checker is not perfect. On the one hand we do not have a theorem that

guarantees that randomized examples are enough, although we are sure that there must be

a way to extend the randomized techniques that work for polynomials also to the special

analytic functions we deal with.

9 4 Self-Exploring Loci 137 Efficient Datastructures for Dynamic Geometry

On the other hand we have a problem that is much worse, the numerical instability of

the whole theorem checking process. Even if we can create many examples (which we

can do now only by moving to them, introducing all problems of the tracing algorithm,
see also Sec. 7.5), we do not have a method to check whether a certain value we calculated

is zero or not. In fact, we are dealing with expressions built from additions, multiplica¬

tions, square roots and third roots, and these are hard to handle, both symbolically and

numerically, see [55, 7].
Here is an example which will crash the theorem checker of Cinderella. It is somewhat

artificial, and you cannot draw it properly on a sheet of paper, which is the reason why we

did not include a figure.

Example 9.2 (Killer Example) Draw a Euclidean circle ofradius 1 around the origin.
Put a pointA on the x-axis. Using von-Staudt Multiplication (see 5.5) we can construct a

point A2 on the x-axis whose x-coordinate is the square of the x-coordinate ofA. Repeat
this to getpoints A4, A16, A256, A65536.

With a circular inversion you can get apointB with an x-coordinate that is the inverse

of the x-coordinate ofA65536. This value is very smallfor almost all positions ofA, and

the theorem checker willprove that B is equal to the origin.

If you try this at home, you will see that it is hard to do the construction at all, but if

you succeed, you will see the theorem checker fail.

9.4 Self-Exploring Loci

As a last implementation detail we want to explain the locus heuristics of Cinderella. It

is not at all clear what we want to see when we ask for the locus, the trace of a point
while a construction is moved under certain constraints. Since we are not working with

a determined, but with a continuous system, we cannot just ask for the position of the

dependent point for all positions of the moving point.
One possible alternative would be all positions of the dependent point we can reach

by continuous moves. But this could lead to disconnected curves (disconnected in real

space, of course not in complex space), which is highly undesirable. So we ended up with

the following goal for Cinderella: We want to get the curve of all positions we can get

by real continuous moves, continuous moves where the dependent point has real valued

coordinates.

We get this curve by moving along the "road," the line or the circle where the moving

point should reside on. Whenever we run into complex space, we immediately change the

direction in which we traverse the road. Whenever we come back to the starting position
and if we move in the same direction as in the beginning, we check whether we have the

same instance as when we started. We are done then, else we have to continue our walk.

Because we turn around whenever we run into complex space but do not change the

detour path we take around a singularity, we will circle around a singularity on the Rie-

Efficient Datastructures for Dynamic Geometry 138 9 4 Self-Exploring Loci

Figure 9.9: The locus of the cen¬

ter point of the upper bar in a four-

bar-linkage (the lower bar is fixed).
Cinderella shows the complete lo¬

cus that would be created by a real

mechanical linkage of the same di¬

mensions. All determined systems

can only show half of the locus.

mann surface of the dependent point: it just became complex, so the discriminant of some

root must have switched from positive to negative and back again. Since we always move

on the half-circular path that is on the left of the oriented segment connecting start and

end, we will make a full turn around the singularity. This has the - desired! - effect of

changing into another real component of the locus, we will explore another instance of

the construction at the input points we just came from. See also Fig. 7.3 and try to follow

the path of the two intersections using first p. = 1 and then p. =
— 1, and watch how the

two points of intersection are interchanged.
In practice this gives a very natural way of drawing loci. The dependent points do not

make sharp turns, they move differentiable. The loci show the "physical behavior" of the

dependent points, for example in the case of the 4-bar-linkage shown in Fig. 9.9.

The speed while moving a point on a line is another important issue when we generate

loci. It is not feasible to use a constant speed, because in that case we would never be able

to walk along the whole line in finite time (see Fig. 1.1 and 2.2.6 for an example locus).
Cinderella is built on a concept that uses speed-ups and slow-downs like we already did

in the tracing algorithm 9.1. Although this concept works acceptable for many loci, it still

fails sometimes for complicated curves. We do not want to miss details in a locus, but

we also have to be able to rush through the parts that are not on screen or which are only

interesting at a higher screen resolution. It remains an open problem to find an efficient

algorithm for better locus generation.

Chapter 10

Creativity in Math Education

Dynamic Geometry Systems (DGS) are very powerful tools in math education, and some

research has been done regarding the use of such systems in teaching (starting points
could be [24, 51, 30, 19,3]).

A particular interesting question is whether intellectual creativity can be stimulated

by such tools. Here we will not cover all aspects of creativity in math education, but we

want to investigate some implications for the software.

We want to emphasize that it is not important for one software to be able to cover all

educational aspects. It should be in the responsibility of the teacher to choose the best

suited tool from case to case. If, for example, axiomatic proofs are of importance, the

teacher should choose a software like GEOLOG [27], that supports these with the built-in

prolog inference engine.

However, a certain mathematical standard should be obeyed by any DGS. It will be

one of the forthcoming tasks to specify a quality ensurance standard for Dynamic Geom¬

etry Software [38].

10.1 The need for mathematical consistency

Try to explain why your favorite Word processor crashes if you have a manuscript of

more than 50 pages with some figures in it. You will not be able to do it other than by

referring to implementation bugs. The good thing is that you know that something wrong
has happened.

Try to explain why your favorite Word processor changes certain spellings. That's

easy, it just corrects the mistakes you made. But how do you know that the computer is

right and you are wrong? In some cases it is just confidence. You believe that the software

manufacturer did the right thing, and the software will not fail.

We meet a similar situation when students use a computer algebra or Dynamic Ge¬

ometry system. They assume that the computer is right, and what they see on screen is a

proper picture of (abstract) geometry. As pointed out in Ch. 6 this is not the case for most

139

Creativity in Math Education 140 10 2 The need for modularity

Dynamic Geometry Systems. This leads to the problem that the students do not learn

what you want to teach them, e.g. Euclidean Geometry, but some other kind of geometry.

In [53] this is taken as a matter of fact, and Jean-Marie Laborde tries to create a con¬

sciousness for this. He explains that the addition of dynamics to Euclidean Geometry
leads to another, very different type of geometry, called "Dynamic Geometry," and the

implementation (e.g. in Cabri Géomètre II) is a third kind of geometry ("Cabri Geome¬

try"). All three lie in "generic position," there is no common line joining these three.

The mathematical part of this thesis shows that we cannot agree with this point of

view. Clearly, Dynamic Geometry is a much richer concept than Euclidean, projective,

Hyperbolic, ... Geometry, that exceeds a simple parametrization of static geometry. But

there are certain mathematical implications that prescribe the behavior of any implemen¬
tation. Every software should try to come as close as possible to this "ideal" world of

Dynamic Geometry. Our strong believe is that we can reach that goal within the next ten

years. Two ingredients are needed: We need more research that stabilizes the method

of complex tracing numerically (see also Sec. 9.2) and exploits ways to minimize the

computational power needed, and we need faster computers that can do all the work.

Meanwhile teachers should ask for the best possible approximation of Dynamic Ge¬

ometry, because anything else will confuse the student at some point. It is fun to watch and

analyze the artefacts that are created by Dynamic Geometry Systems, but it also needs a

lot of experience and knowledge of geometry to deal with them - exactly what we cannot

expect from the users which are people who are new to geometry.

Here is an example, due to Laborde [53]: A student who tries to construct a reflection

of a segment at a line using circles and varies the construction later might be confronted

with a jumping point situation where the reflection coincedes with the pre-image or, even

worse, only one end-point is on the wrong side (see Fig. 6.8 on page 88). This is very

discouraging for the student and thereby questions the effective use of DGS in teaching.
Cabri can solve this particular problem using a seperation technique similar to the "other

intersection"-technique of Cinderella (see Ch. 9.2.4).
Another example that is not covered by this separation technique are the iterated an¬

gular bisectors as presented in Ch. 6.2.2, see Fig. 6.7. A clever student who just learned

how to bisect an angle might be tempted to try the quadsection of an angle using two

bisections. How can you explain him that his approach is good and correct, when the

computer disproves it for some cases? How should he learn that this is a construction that

is always correct, if he can see that it is not correct at least half the time?

10.2 The need for modularity

What can we do with a mathematically consistent system? Everything, and that is the

point. It is possible to manipulate a construction, to move it around wildly, to draw sur¬

prising loci, and the visual feedback you get represents mathematics. What we eliminate

by doing the right mathematics are the artificial borders to exploration.

10 4 Exploring Geometry with Loci 141 Creativity in Math Education

We claim that it is absolutely necessary for a geometry software to have a strong

mathematical background in order to enable the students to explore geometry.

It could be questioned whether the strict mathematical behavior of Cinderella is al¬

ways good for geometry education. Take the midpoint construction as an example: While

it is nice that Cinderella can work with complex intersections (see Ex. 6.12), it is proba¬

bly confusing for 7th-grade students. We would rather prefer that they find a construction

where the intersections cannot vanish.

The reason why we still think that the mathematical approach to Dynamic Geometry
software is the right one (instead of a purely educational approach), is that it is easily

possible to downgrade a mathematically correct software for special situations, but it

is hard or impossible to upgrade a software that can only handle "low-level" geometry.

While it is easy to "switch off' complex elements altogether in Cinderella, it is not easy

at all to switch them on in other software. While it is easy to configure Cinderella to

allow jumping elements, it is impossible to configure other software such hat it behaves

continuously.

Also, it is always possible to remove certain functionality from the software. For the

school edition of Cinderella we created a "normal" and a "professional" version of Cin¬

derella, where the professional version is identical to the full-fledged university edition,
and the "normal" version just lacks the support for other viewports than the Euclidean

one, the support for other geometries, and several operations, including those for conies.

10.3 Raising creativity by restriction

The highly modularized approach of Cinderella is the basis for one approach to creativity:

Creativity that is caused by restriction. The difficulty of the same task can range from

impossible to easy for different sets of available tools. The McGyver-kind of student may

be able to find the midpoint of a segments using only a compass, while most students will

use compass and ruler.

This method of raising creativity by restricting the set of tools for an assignment can

either be forced by exporting only a certain subsets of tools in an interactive exercise,

or it can be suggested only and it will be backed by the automatic theorem checker that

does not prescribe the exact construction sequence for a solution. So Cinderella leaves

the opportunity for the teacher to encourage students to find a more challenging way to

solve an exercise without forcing them to do so and without having to know this solutions

themselves.

10.4 Exploring Geometry with Loci

Instead of restricting a student to raise creativity, we can also give him additional power

in order to encourage him to look for interesting constructions.

Creativity in Math Education 142 10.4. Exploring Geometry with Loci

Figure 10.1: All loci generated by mixed intersections of the angular bisectors (ang), perpendicular
bisectors (perp), edge bisectors (mid), and heights (hei).

A student who is looking at the locus ofthe intersection ofthe perpendicular bisectors

of a triangle while moving one point on the line parallel to the non-adjacent edge will see

that this moves on a line - of course, it moves on the fixed bisector due to the perpendicular
bisector theorem. So what is going on if he breaks this dependency just to find out what

happens? Fig. 10.1 shows all possible combinations in a single overcrowded picture. See

the web site of Weth [84] for a discussion of this scenario from a purely educational point
of view (using Cinderella).

Weth covers these rather new uses of Dynamic Geometry software in great detail [86,

85] using other geometry software, and we would like to cite his first reaction to Cin¬

derella: "I just did some experiments with 'loci constructions.' Fantastic. This is a new

quality of interactive geometry software." This strongly indicates that our approach of

concentrating on the mathematics and not on the particular requests of education, our

stubborn attitude to make a construction tool only available if it is completely understood

and correctly implemented, is nevertheless useful for education. We do not want to teach

"geometry software," but geometry.

At this point - instead of only repeating the research ofWeth - we just want to suggest

another example where we can use loci in explorative education. Recall the mechanical

linkage of Fig. 9.9. The four-bar-linkage itself has a lot of potential with respect to varia¬

tion. Depending on the lengths of the bars several very different curves are possible, see

Fig. 10.2
.
Even more variation is possible if you allow to add another (or more) link to

the construction. A challenging contest in class could be to get the wildest curve possible
with a certain number of sticks.

It should be studied whether this use of Dynamic Geometry software can really help
to stimulate the students' creativity, and we hope for first results in December 1999, when

a comparative study [22] will be done at various schools in Germany. Although the main

10 4 Exploring Geometry with Loci 143 Creativity in Math Education

Figure 10.2: These different curves are the loci of the center point of the middle bar of the 4-bar-

linkage. Only the distance between the two fixed points was changed to create these variations.

focus will lie on the impact of interactive exercises, there will be an approach to teach

distances to children in 7th grade using loci of mechanical linkages.

Creativity in Math Education 144 10 4 Exploring Geometry with Loci

Chapter 11

Geometry Education and the Internet

The world wide web has started a revolution. Ten years ago wide area networks were only
used by big companies, and they were hard to maintain, expensive and - boring. This has

changed radically. Anybody who has a computer can join the Internet today, at a low

charge. It is easy, cheap and exciting.
After the first excitement has gone, it does not look as wonderful as it did. The Internet

is very good at distributing information, but it does not create the content by itself, its the

users who have to do it.

It all boils down to having a fairly good organized, or at least browsable and search¬

able, collection of flashing news, sports information, weather data, travel guides and

things you never wanted to know about persons you never met. What's missing is content

that really uses the fact that it is presented on a computer.

11.1 Creating Web content

Of course, this is a little bit exaggerated. What I really want to point out is that we

need software that makes it easy for everybody to create real, interactive content for the

Internet.

When I look up a geometric theorem on the web, I want more than some pages that I

can print out. I want to experience it, use it, change it, compare it. I want to interact with

it.

I am not talking about one all-purpose software. Instead, every software which is used

to work on a computer must provide a way to export the current work to the internet. Then

we can hope for accessability of interactive content in all areas.

11.2 Easy Creation of Interactive Web Pages

Following the claims of the preciding paragraphs, Cinderella offers an easy way to export

geometric constructions. Since Cinderella is written in Java, it was easy to reuse the

145

Geometry Education and the Internet 146 113 Theorem Checking for Exercises

application code for a runtime applet version that builds on the same mathematical kernel

and the same display routines as the standalone version (see Sec. 8.2.1 for the technical

details).
A very important constraint while designing Cinderella was that it must be very easy

to create web pages, because we cannot expect that the broad audience we want to address

knows anything about HTML. Creating web pages must be as easy as saving a construc¬

tion to hard disk.

We met this goal at least partially: If you want to create a web page containing an

interactive version - you can move free elements - of a construction, you can do this just

by saving the construction and an automatically generated, very basic page description in

HTML. To publish this on the internet two additional steps are needed. First you have to

put a copy of the runtime library contained in the file cindyrun. jar into the directory
which contains the web page, and then you must transfer the three files to a web server,

using whatever method is provided by the Internet service provider.
If you want to export an animation to the web, its as easy as exporting an ordinary

construction: The animation control dialog window that appears whenever you start an

animation includes a web export button that now creates an HTML file that starts the

animation using the current parameters. The runtime library is the same as above.

This easy creation of web pages makes it possible for everybody who uses the soft¬

ware to publish his work within seconds. This makes Cinderella different from other

approaches like Cabri-Java [50] (which is close in ease of use, you can load files of the

original standalone version of Cabri with the applet, given that they do not use objects
or tools that are not present in the applet version) or Java Sketchpad (JSP [37], the ap¬

plet version of Geometer's Sketchpad, which requires an additional conversion step from

standalone files). The complete strength of the standalone can be put on the web without

requiring additional work.

11.3 Using Automatic Theorem Checking for Exercises

The ordinary web export of Cinderella is very useful and opens up many exciting pos¬

sibilities due to the tight Internet integration. But we did not make special use of the

mathematical power of the software yet. The combination of the Java implementation
and the automatic theorem checking presented in 9.3.2 unleashes a new level of Internet

integration of Dynamic Geometry software.

A student who shall use a (standalone) geometry software to teach himselfgeometry is

probably completely clueless about what to do with the software. It is almost like handing
out pencil, ruler, compass and paper to the students and expecting that they will discover

theorems by trial and error.

After clicking around with the mouse a little bit most students will be frustrated and

stop working with software. You can compensate for this by handing out printed exercise

sheets that suggest starting points for geometric exploration, or even interactive web pages

113 Theorem Checking for Exercises 147 Geometry Education and the Internet

which illustrate your suggestions dynamically. What is still missing is a kind of feedback

for the constructions the student does with the software, and these usually need a direct

teacher interaction. Teaching with the help of a computer thus introduces lots of extra

work, and it is very difficult to support every student personally.
A much better help would be if the software could give helpful tips or hints, or com¬

ment on the solutions to construction exercises. Cinderella contains support for creating

special versions of the software that run inside a web page and offer a subset of the orig¬
inal tools to solve a particular construction exercise, and the internal theorem checking

engine is used to provide context sensitive hints and to check for the correctness of a

constructed solution.

The design of such an interactive exercise involves more work than the ordinary web

export, and it is a non-trivial task to create a good exercise. An exercise consist of an

example construction that solves the exercise, a set of tools that may be used to complete
the construction, the definition of the starting elements that are presented directly after

the applet has been started, the definition of a task text that is shown to the student, the

definition of one or more solutions, and the optional definition of context sensitive hints.

The example construction will be used by Cinderella to verify solutions and to identify

parts of the construction that seem to be useful. See Sec. 9.3.2 for details on the technical

details of element identification and correctness checking. It serves also as a sanity check

for the exercise - if the teacher can solve the exercise it is likely that it is doable.

The tool set may contain a subset of Cinderella's tools. The default tools are the

electronic versions of ruler and compass, together with the tools for moving elements,

undoing construction steps and restarting the exercise.

The start elements are chosen from the construction, and the chosen set is comple¬
mented by all elements that were necessary to construct the start elements. This is neces¬

sary to avoid invisible constraints on the start elements.

The solution must also be defined. Here the theorem checking of Cinderella comes

into the game: Not the complete construction sequence is a solution, neither it is required
that the elements we are looking for must share the definition with the solution that is

presented by the student. It will be checked by Cinderella whether the student's solution

will always - for any placement of the starting elements - be at the same place as the

solution elements in the example construction. See Fig. 9.8 on p. 136 for an example
where two different constructions lead to the same solution.

The hints that can be defined are actually very similar to solutions, except that they
will not end an exercise, but are some kind of checkpoint. If Cinderella recognizes that

a hint has been completed by the student, it can give motivating comments like "you are

on the right track." If the student asks for a hint, the next uncompleted hint will be given,
first in a textual form, then by automatic addition of the necessary construction elements.

If there no more hints available, the solution will be presented in a likewise manner.

A current restriction in the hint processing of Cinderella is that the software is not able

to differ between to alternate ways to the solution. Theoretically it is possible to recognize
which way the student is taking to solve the exercise and to present the correct hints in

Geometry Education and the Internet 148 11 4 Distance Teaching

either case. The missing part here is the user interface to input this kind of hinting, but it

will be supported in a future version of Cinderella. First we will have to watch the user's

(exercise author's) feedback on this first interactive exercise tool ever.

Since the software has just become available there is no empirical evidence on the

educational impact of interactive exercises. We hope to receive some data within the next

year, a first academic study using Cinderella in school which is focused on the use of

interactive exercises will be done in December 1999 by Heintz [22].

11.4 Distance Teaching

Distance teaching is one ofthe upcoming educational challenges. Here we want to discuss

briefly some of the parts of distance teaching where software like Cinderella could be

helpful.

11.4.1 Remote Views

The Model-View-Controller architecture of Cinderella (see Sec. 9.1.4) can provide a kind

of geometry phone or remote geometry blackboard. Within a local network, for example
a computer lab in school or university, or using wide area networks like the Internet a

geometric construction can be used on two different machines at the same time. Just

think of it of opening second Euclidean viewport, not on the same display, but on the

computer next to you, or even thousands of miles away. Whatever you do in one view

will be shown one the other display at the same time (not counting network delays). The

synchronization can be quite fast even on low-bandwith networks, because the viewports
are responsible for the display of objects themselves, and the information that must be

transmitted for every frame of a construction is on the order of a few hundred bytes.
This scenario is hypothetical and is not as developed in practice as it could be, since

we first concentrated on web export and the standalone version of Cinderella. But even

today you can use Cinderella remotely using tools like the Remote AWT, supplied by
IBM [34]. But we want to remark that the viewport approach of Cinderella is a key

ingredient to the successful synchronous electronic communication of geometry.

11.4.2 Web-based Education

In web-based education an educational institution or a private content provider creates

a web site that is dedicated to deliver material for self-teaching (not only in geometry,

but any other discipline). This is backed by communication tools like chat rooms, news¬

groups/message boards, email, etc. The maintainer of the web site will probably support

the acquisition of material by having online teachers answer questions and help with the

material. Depending on the scope of the "virtual campus" degrees may be offered that

require examinations that either are done online or in person.

11 4 Distance Teaching 149 Geometry Education and the Internet

Fila Eftf View » »lp I

^^SOOfanaffe ^.Location |http //www. anglia.OT.uk/educaticm/mathEnet/dyiiflmic/indeK.htmltf /! ^}T Wh^ fiSlafôïa jf3

jMatnst Geometry with

LnsLJ Cinderella

Do some mathematics now!
Buy *h's »HwiBTt si AmBEon.o3.uk | Amazon.<»m.

Return to main Dynamic Geometry page

Be E3&t!@&äti' tr s s page curtail" s irdei ellcf

dy lörriL reurretrt1 cs.rci if ti is is. t e first ore ir le

ïtai-tirg ijjDiir b a*, se it i-ra^ take ate ^ irsrutes

tû lütfd Lit er Net«&pe eoïïtïïuiiiitator 4 07 tr

Internet EKplBrer 4 01 i,or later is needed A

picture w II fl.ppedi' to tr e fiirt After it r^s

lücdeu later sl-etcies *. il appear r just a rratte üfsSLü us

^ ne tr e picture spears you cm irteract win t L5, û <i311 ig
tre red parts

Maths Net sketches

- What shape is a

What is meant by

Go|

Special feature Rotations

- Investigate

- Locus def nitions

fï*[~ j „A »t, dP ta \g,i

Figure 111 Starting point for Dynamic Geometry explorations on Mathsnet UK, the first educa¬

tional website that used Cinderella

gg Hetœipjï l*»Wfe*

File EM VI8W flo Ctnsrsuntcstor

HBjp
Help I

tm§' BoBttiarss Ji Locate« [http //^.^^^iik/ababio^uiEet/ UV Wässfwi*« Q

Interactive

Isoftware

j Puzzles
fAnimations

lArticles
iDownload
1 Resources
L nks

ICredits

Maths]
1 Net I

Curriculum materials 1

I by MathsNet in partners!

- Mi¬

ni £ha

s und s ii-ib Im

OT Can fc-ou iK-fei

uteri of-iuO*7 Angf* «C«W«t *yi$&

Any comments gratefully received

© MathsNet 1999

j & u* dP ca s^ j

Figure 11 2 An Example of the material provided by Angliacampus [2] Using the colored boxes

on the right of the construction you can navigate the material To the left and the right of your

current position are similar pages, above are easier examples, below are harder ones

Geometry Education and the Internet 150 11 4 Distance Teaching

Cinderella can help to increase the success of educational websites by providing a

solution to present geometry and geometry-like figures interactively, thus adding another

level of understanding. Using the interactive exercise features of Cinderella it will also be

possible to do online examinations (currently there is no support for secure transmission

of scores, but this could be added on demand).
We hope to receive more empirical information about the successful use of Dynamic

Geometry software on educational web sites when AngliaCampus refurl:angliacampus, a

UK-based subscription service to deliver educational material, will go online with Cin¬

derella sketches. First impressions can be found on the Mathsnet UK website at [12], see

Fig. 11.1 and Fig. 11.2.

We want to conclude that web based education is constantely gaining attention, and

it is necessary to provide sophisticated, specialized authoring tools for content providers,
otherwise the new possibilities of the Internet will not be exploited. It is not clear yet

whether this form of teaching/learning will be "better" in any way than traditional ap¬

proaches, but without the appropriate tools it will not be possible to use the new media to

their full extent.

11.4.3 Communities

As the last topic in distance education we want to mention the concept of net communities.

For everybody who has Internet access today it is possible to communicate with other,
to find information on the net, and to publish information yourself at low or even no

cost. These publishing possibilities were not available before, and they have started a

revolution.

One problem about this unlimited publishing is, that it is almost impossible to find
the information. Even search engines like AltaVista or Internet directories like Yahoo do

not really help, since they will find much more web pages related to a topic than you

will ever be able to review. Do the following experiment now: Try to find material about

Pythagoras' theorem on the net. On Oct. 18, 1999, a simple search with AltaVista found

around 1000 web pages containing information about Pythagoras' theorem; the example
construction on the Cinderella website [47] was number 19.

A concept that could avoid the scattered and unbrowsable information on the net are

communities. A web community is a place of exchange on the web, focused on a topic,

open for everybody, like a market place. It provides space for user-contributed material,
and it is the first stop whenever you are looking for something related to the special interest

of the community.
We are currently planning to provide such a community exchange for Cinderella users,

where it will be possible to collect constructions and exercises that are either specific to

a certain age or grade, or to a special topic, like descriptive geometry or optics. We hope
that this place will be accepted and filled with life by the people using Cinderella, and

that within a few years there will be a complete collection of geometric constructions.

Chapter 12

Future developments

What's next in Dynamic geometry? In this chapter I want to present what I think are

important questions that should be answered within the next year, both to complete the

mathematical results of this thesis, and to make them work also in other contexts. I also

want to point out some other questions in relation to Dynamic Geometry software and its

application in education. Finally, I will give some examples where we should try to apply
the methods found in this thesis.

12.1 Computation on Riemann Surfaces

The main contribution of this thesis is that it resurrected the existing theory for Dynamic

Geometry and made it applicable. Computer science has neglected many ofthe old results

in geometry that at first sight seemed to have no direct application or even a connection

to questions in computational geometry. Many problems in Dynamic Geometry software

could have been solved years ago, but apparantly the advances in the mathematical treat¬

ment of geometry did not find their way.

12.1.1 Complex Tracing

The tracing algorithm of Sec. 9.2 is the heart of Cinderella. It used to "walk" on the

implicitly given Riemann surfaces of the construction.

In this thesis we did not give criteria for the numerical stability of the algorithm,
and actually all of our results concerning the implementation of complex tracing are just

empirical. The heuristics do work, and they seem to be reasonable, but there is no proof
whatsoever that guarantees the correctness of the results or gives performance guarantees.

It is important for the further application of complex tracing also in other contexts that

this gap is closed. The heuristics that work for Cinderella may fail in other places, and

we do not even have a method to verify whether we get correct results.

A reasonable approach to answer the questions about finding the right stepwidth
would be to use the methods of the homotopy method of Smale et al. (see [5]). The

151

Future developments 152 12 1 Computation on Riemann Surfaces

homotopy method is used to find the roots of polynomial equations by tracing them along
a path. Further inspection shows that the results of Smale are not directly applicable and

the connection of homotopy methods to complex tracing is not as tight as it seems to be

at the first look, but still it is promising to merge the tools used for the homotopy method

into an analysis of complex tracing.
Even if we can find criteria that make complex tracing work reliably, we still have

to work around the numerical problems that arise. The introduction of roots makes it

difficult to work with fixed bitlength calculations.

12.1.2 Symbolic Methods

It could be that there is a better way to walk on Riemann surfaces. If we know, for

instance, where the singularities of the analytic functions lie and where we have to flip

decisions, we might have a chance to go directly, without intermediate steps, to the right
instance of the construction. Or, perhaps we could find a symbolic representation of the

associated Riemann surface that can be used for fast moving on it.

12.1.3 Parameterization

The parameterization we introduced in Sec. 9.2.1 was the key to the reduction from func¬

tions in several variables to functions in one complex variable. Without it we could not

have used the results of complex analysis like the identity theorem for analytic functions.

However, the continuity theorem for geometric theorems (Thm. 7.17) indicates that there

must be a way to handle the situation also for the multivariate case. It is an important next

step to find the proper theoretical setup for multivariate geometry.

12.1.4 Automatic Theorem Proving

The automatic theorem checking that is done by Cinderella is based on the strong feeling
that it is unlikely to find many true instances of a Dynamic Geometry Statement without

having a Dynamic Geometry Theorem. In the case of point/line-constructions we could

use randomized proving for multivariate polynomials, and the methods there prove that

we have the right feeling, it is unlikely to find a true instance of the statement unless its

true everywhere.
In the general case we have to deal with special analytic functions, mainly constructed

by addition, multiplication, and inverses of squares and cubes. It still seems to be possible
to prove theorems by random instances, but we could not yet find theorems analogous to

the Schwartz-Zippel Theorem 5.15.

Actually, the situation is even worse. We do not even have a way to create many

random instances of a statement. We worked around this using a kind of random walks,
but this is an extrace obstacle for true randomized theorem proving as opposed to the

theorem checking presented in this thesis (however, we want to point out that we could

12 2 Dynamic Geometry Software 153 Future developments

at least fix what we mean by a Dynamic Geometry Theorem, which was not clear before,
and that this was a necessary step towards a theory of randomized theorem proving).

12.1.5 Complexity issues

One key ingredient of automatic theorem proving is the fast generation of random in¬

stances. As we said above, we have to resort to a kind of random walk on a Riemann

surface. What we really would like to do is to jump to other instances. This means

that we must be able to decide whether there is a path on the Riemann surface from the

known instance to the generated one. Currently we do neither know an algorithm to de¬

cide whether to positions are connected, nor do we know the algorithmic complexity of

this questions. It is still possible that one can do this efficiently.

12.1.6 Constraint based configurations

All geometric constructions we considered in this thesis really were constructions: Start¬

ing with elements that could be placed freely, we added one element at a time. The

dependencies of the objects are partially ordered.

This leads to a certain inflexibility of the geometric configurations, we cannot pick

just any element and move it, but we have to pick an element that has a degree of free¬

dom. Sometimes this is undesirable, and actually there is a way to describe configurations
without having to construct elements one by one. Using constraints that fix the relative

positioning of objects we can break the orientation of dependency graph. The constraint

based approach, which is used in software for computer aided construction, is much more

flexible (see Rem. 5.38) for a geometric theorem that cannot be constructed, but described

using constraints), but introduces also a lot ofnew problems. The most important question

is, however, whether we can apply sort of the theory of complex tracing also to constraint

based configurations.

12.2 Dynamic Geometry Software

After we could solve the continuity problem for Dynamic Geometry Software, we still

have some questions that should be addressed in the near future.

12.2.1 Third Dimension

Many people ask for Cinderella-3D, a version of the software that can work with con¬

structions in 3-space. In the three-dimensional setup we still can apply the theory of

complex tracing, although it is a little bit more involved. The reason why we think that it

is a challenging project that needs at least some years of work does not lie in the area of

continuity problems.

Future developments 154 12 2 Dynamic Geometry Software

The first hurdle to take is the design of an intuitive user interface for three dimensional

dynamic geometry, that can be compared in both ease-of-use and expressional quality
to Dynamic Geometry software in 2D. There is hope that this will be easy given the

capabilities of todays and tomorrows computers.

A much bigger problem is the exploding complexity of geometric operations in 3-

space. If we just want to be able to intersect linear and quadratic objects, like we can do

in 2D, we will have an enourmous amount of special objects that occur as the intersection

of quadrics. To create a versatile software for 3D will need much more manpower than

the Cinderella project.

12.2.2 Macros

So far we did not address macros at all. A macro is a part of a construction that can

be reused for other input elements, comparable to a subroutine in a computer program.

Cinderella does not offer macros yet, and it is a feature that many people miss.

Macros are easy to add to a conservative geometry software, because we do not have

to care at all about ambiguous decisions. In a continuous system it is much harder even

to find out what a macro should do.

Here is, very briefly, a way to implement macros in a continuous system: Store a com¬

plete instance ofthe macro construction. If the user applies the macro to some other input,
move the macro construction continuously from its instance to the new input parameters.

Then you can copy the necessary parts of the macro to the construction where you want

to apply it.

This is an easy way to have macros, and you might ask why it is not implemented yet.

The top reason is that the user interface to input macros still has to be designed, and that

we have to find strategies to handle underconstrained constructions in macros.

12.2.3 Education

The Cinderella project was always driven by mathematics, and not by mathematics ed¬

ucation. We are still sure that it does not make sense to adjust geometry in a way that

it complies with the curricula, but it must be the curricula that are adjusted to match ge¬

ometry. It is our strong believe that the principle of continuity is important for a proper

understanding of geometry, and that the new possibilities of a software like Cinderella

- we mean the mathematical possibilities, not the Internet support - are a chance to use

geometry for teaching again. The trend should be to go back to the roots of modern ge¬

ometry, and use this wonderful part of mathematics with help of the computer to teach

better mathematics.

Of course, this a very personal view, and there is no empirical evidence that math¬

ematically founded geometry software does really make a difference to other geometry

software. This is a field of research for the future; but it will be hard to do this research

because it needs the rethinking of geometry and math education as a whole. Again, it

12 3 Other Applications 155 Future developments

does not make sense to put mathematical founded geometry software into the corset of a

curriculum that has been built over decades and could not be focused on the new possibil¬
ities of Dynamic Geometry - if we can overcome this, we will have a chance to go new

ways in education.

12.3 Other Applications

Finally, I want to mention a few other areas where the ideas presented in this thesis could

be applied successfully after some modifications or extensions.

12.3.1 Computational Geometry

Computational Geometry is the part of computer science that works with data structures

and algorithms for everything that is more or less related to geometry. We are sure that the

methods that can handle the dynamic aspect of constructions can also be used to handle

dynamic behavior of other geometry-like data.

A particular problem that must be solved for this is the proper handling of complex
elements and orientations. Consider as an example that you want to add an algorithm
for the smallest enclosing ellipse [18] to Cinderella. The algorithm is not able to handle

complex points as input, since at some point there is a "x > 0" test required, which does

not make sense for complex x. However, for points with real coordinates the smallest

enlosing ellipse is continuous in the input parameters. So can we change the algorithm in

a way that it also handles complex input?

Another prominent problem are convex hulls of point sets in the plane. These also

need a kind of "sidedness"-test, it must be possible to check whether a point lies to the

left or to the right of a line. Can we include a convex hull construction in Cinderella?

Both examples cannot be easily merged with Cinderella^ complex analysis approach:
The stationary behavior of both smallest enclosing ellipse and convex hull - if you move

a point that is inside the ellipse or the hull, nothing happens until you try to move it

across the boundary - shows that these are not real analytic functions, so even if we can

extend the algorithms to complex space, we will never have analytic functions. In fact,
the orientation decision could easily be used to create an absolute value function, which

is not possible in a continuous system (Thm 6.19).

However, this does not exclude the chance of having a theory of partial continuity,
where effects that are created by the orientation decisions are accepted as unavoidable,
but for all other situations we still get continuous behavior. It will be part of the research

in the next years to find a way to get merge continuity with orientations without loosing
too much of each.

Future developments 156 12.3. Other Applications

Figure 12.1: A jumping situation in parametric CAD: If the center of the circle that defines the

drill hole in the block is moved across the boundary of the original block, the bevel jumps from

one side to the other.

12.3.2 Parametric CAD/CAM

In variational orparametric computer aided design (parametric CAD) we find a situation

that is similar to what we have in a Dynamic Geometry Software. It should be possible
to change parameters of a CAD construction in way that slight parameter changes do not

cause big changes in the construction. This can be used for instance to have a single

prototype construction which can be customized quickly, or for data compression when

we have to store a large number of similar objects, or just for easy and rapid construction

of new models by starting with an approximate sketch that is made exact later.

Not only the situation is similar to Dynamic Geometry, the problems [9, 26, 25] are

similar, too, see Fig. 12.1. And there is great hope that these problems, in the first place
the "persistent naming problem," can be solved using the theory presented in this thesis.

The most important next step to a complete solution of the persistent naming problem
would be to extend the methods presented to constraint based design. The problems that

arise in Computational Geometry we mentioned in the last section must be addressed, too,

because many constraints that are used today in CAD are orientation-related.

12.3.3 Computational Kinematics

So far all constructions that we considered were abstract, there was motion, but no concept

of mass. If we want to do physics simulation in a Dynamic Geometry system we need

some other ingredients.

One thing would be to have a more sophisticated way to handle motion, for example
based on the energy that is in the system. This could also help for the generation of

loci. Another part would be to include some way to detect collisions between elements,

a part that has been neglected so far. Closer inspection reveals that this again calls for a

integration of orientation information into the methods of complex tracing. This shows

that orientations should be #1 on our priority list of future research.

12 3 Other Applications 157 Future developments

12.3.4 Virtual Reality

As the last example for areas where we hope to use the technology ofDynamic Geometry
we want to mention "Virtual Reality," whatever that is.

Most of the research in the context of simulating the world on a computer is spent for

3D visualization and human-machine interfaces. These are important issues, and these are

also very appealing topics since they create wonderful pictures and exciting technology.

Anyway, on the mathematical front there is still a lack of methods. Most simulations

are "faked" in the sense that they either fail for certain situations, or they exclude these

failures in the very beginning and thus are not as general as reality would be.

Try to find a simulation ofLego construction kit. There are some approaches, but you

will not find one that really "works." The reason is that the same continuity problems
that were unsolved for years in Dynamic Geometry software have to be solved in real

world simulations. Just consider the 4-bar-linkage (Fig. 9.9 on p. 9.9). The locus that is

generated by animating the linkage can be created by building a Lego model that draws

the curve. If you can simulate Lego, you can create the complete locus - so you must be

able to create complete loci when you want to be able to simulate the world.

It is not at all clear whether we want to have a simulated world, but if we do, we will

have to understand the mathematics first, otherwise virtual reality will always remain a

fake.

Future developments 158 12 3 Other Applications

Chapter 13

Conclusion

"I would like to recall a man who stands somewhat on the side, the elder Carnot. The

book of his that interests us here, his Géométrie de position, appeared in 1803. Carnot

(1753-1823) was a student of Monge in Mezières. As a general and a stalwart republican
he played a significant role during the Revolutionary period. Only later did he regain the

leisure for scientific work, mainly on fundamental mathematical problems.
His Géométrie is a very remarkable book. It contains the significant modern thought:

In geometry on should not isolate the various cases presented by a figure according to the

arrangement of its parts - something that had been standard since Euclid - rather they
should be given a common, unified treatment by introducing the principle of signs. But

Carnot did not express this thought in quite this way. On the contrary, he stubbornly
defended himself against the theory of signs so usual in analysis, considering it badly
founded and contradictory. He believed he had proved this by constantly operating with

many-valued functions in a purely formal manner, arriving at "false" results like v/—«•
^f^a — va2 — a, etc. In geometry he intended that the rule of signs arise merely from

considering the figure and its variations. On this bases he created a "théorie desfigures
corrélatives." In this way geometry was to be freed from the "hieroglyphics of analysis"
and to arise anew in a purely synthethic form.

The execution of these ideas is occasionally rich in insight but often elementary to the

point of triviality. Perhaps one may see this book as the counterpart to Carnot's incorrupt¬
ible but not brilliant personality.

As a separate point I should mention that the very well known elementary theorem

on the equality of the products of the segments formed on the sides of a triangle by an

arbitrary transversal is due to Carnot, and it is often called Carnot's theorem.

Carnot's book is of historical importance for its rejection of analysis. This was the

source of a dispute soon to emerge between analytic and synthetic modern geometry and

which finally developed into an antagonism of major importance.
If Carnot's work already contains a vague presentiment ofthe direction in which mod¬

ern geometry was to develop, then in Poncelet we find its great creator. He adopted

Monge's and Carnot's ideas with the greatest brilliance and, conquering all difficulties,

159

Conclusion 160

created a breakthrough. By setting up "projection" and "duality" as unifying geomet¬

rical principles, he became the discoverer and founder of "projective geometry," which,

uniting all previous oppositions, was to progress to great fertility. It was a new kind of

geometrical intuition, "projective thinking," that enabled him to surpass his predecessors.
We have already spoken ofthe genesis ofPoncelet's great geometrical work, the Traité

des propriétésprojectives desfigures (1813 and 1822).
Poncelet began with a study of centralprojections and the relations among the parts of

a figure that remain invariant under arbitrary central projections. This approach induced

him to add to the ordinary geometrical elements certain definite "infinitely distant" ones:

to the line he adjoined an infinitely distant point, to the plane an infinitely distant line, and

to space an infinitely distant plane. He was then able to state theorems in all generality.

Among these theorems the one on the constancy of the cross-ratio of four points on a line

plays a major role. I do not wish to examine here the extent to which such ideas had been

touched on by previous authors; it was Poncelet who made them the foundation of all

further development and therm lay the essential progress of his conception.
A second important element of the new geometry was the theory of poles and polars

for quadric curves and surfaces, leading to a general theory ofduality. Points and lines in

the plane, and points and planes in space are considered equivalent and can be substituted

for each other as basic geometric elements. For example, to a plane curve composed of

points there corresponds the curve enveloped by the tangents of the first, to a space curve

there corresponds its developable curve, etc.

To these two new ideas there was then added the principle of continuity; this is

Carnot's idea of the "correlativity of figure," but freed of all vagueness and brilliantly
executed. This states that a relation known to hold with sufficient generality for a given

figure also holds for all other figures that may be derived from it by continuous variation.

Poncelet made daring and far-reaching uses of this principle, venturing without a

qualm into the realm of imaginaries when conditions seemed to require it. For exam¬

ple, from the fact that two conies intersect in at most 4 points, he deduced that the number

of intersection points must always be 4, only that 2 or 4 of them may be imaginary. With

this he provided a projective definition of the circle as a conic with two fixed imaginary

points - today we call them the "circular points" - on the infinitely distant line. Likewise

he defined the sphere as a quadric surface which intersects the infinitely distant plane in a

given imaginary curve (known today as the "spherical circle"). Because the hyperboloid
of one sheet is generated by two families of straight lines, this must also hold for the

ellipsoid, only in this case the lines are clearly imaginary, etc.

What foundation did Poncelet provide for these audacious ideas? None at all, we are

astonished to find. He gave no proof for the principle of continuity, which was intuitively
clear to him; and he made no attempt to define the imaginary point. Evidently he felt

no need to do anything of the kind, especially since his final results always contained

conjugate complex elements and therefore moved entirely within the space of reals.

Only reference to analysis, which Poncelet rejected on principle, could have provided
a secure foundation for these new concepts. An imaginary point, like a real one, is just

161 Conclusion

a common solution of a number of simultaneous equations, each of which represents one

of the intersecting geometrical objects. That the same number of objects of equal degree

always produce intersections of the same kind, e.g., the same number of "points," is just
a theorem on the common solutions of algebraic equations; the solutions may be real or

complex depending on the relations among the coefficients, but systems having the same

number of equations of the same degrees have the same number of solutions. And as for

the principle of continuity itself, it is not hard to establish rigorously by the modern theory
of functions. Every geometrical statement can be expressed analytically (understanding

geometry in the restricted sense that was usual in Poncelet's day) by equating to zero an

algebraic or even analytic function f(a, b, c,...) of the parts a, b1 c,... of the figure. Then

the principle of continuity simply states that an analytic function which vanishes on any

part, no matter how small, of its domain, must vanish everywhere.
Poncelet should be seen as one of the greatest representatives ofthat class of mathe¬

maticians whom we have characterized as daring conquerors. His influence runs through
the whole 19th century and has become an essential part of our thought."

Felix Klein, Development of Mathematics in The 19th Century, Berlin 1928

(Translation by M. Ackermann)

Conclusion 162

Appendix A

Alphabetic Glossary

Angular Bisector One ofthe two lines that

cuts one ofthe two included angles of

two other lines into two equal parts.

Most —»Dynamic Geometry systems

cannot handle iterated angular bisec¬

tors correctly.

Applet A —»Java program that is em¬

bedded in a web page and can

be displayed by a Java-compliant
—»Browser.

Browser A software like Netscape or In¬

ternet Explorer that is used to display

—»HTML, which might be down¬

loaded via the —»Internet.

Cayley-Klein Geometry Unified treat¬

ment of measurements in

—»hyperbolic, —»elliptic, relativistic

and —»Euclidean geometry (and some

others). Needs a —»fundamental

conic and uses —»cross ratios to cal¬

culate the distances and angles. See

section 5.4

Cabri A Dynamic Geometry soft¬

ware [54].

Cinderella A new Dynamic Geometry
software [71, 70].

Conic (or conic section) A curve that is the

solution space of a quadratic form.

Another way to charaterize conies is

to cut a 3-dimensional circular cone

with a plane. The curve created on

the plane by the cone is the conic sec¬

tion.

Cross Ratio The cross ratio (AB\CD) of

four points on a line is defined by

introducing coordinates on the line

and calculating L~JL~J, identi¬

fying the points with their coordi¬

nates. The cross ratio is projec-

tively invariant and can be used to

do measurements with respect to a

—»fundamental conic.

Drag Press the mouse button, move the

mouse, release the mouse button. If

you drag objects, you start by press¬

ing the mouse on the object, like

grabbing it.

Dynamic Geometry system A computer

software which can be used to con¬

struct with points, lines, circles,
—»conies and possibly more objects,

163

Alphabetic Glossary 164

and which lets you —»drag —»free el¬

ements later while maintaining the

construction automatically.

Fundamental conic A —»conic that de¬

termines the measurements in

—»Cayley-Klein geometries. It plays
the role of infinity. In case of degen¬
erate conies we need also a dual conic

to form a —»fundamental pair.

Fundamental pair (of conies) A —»conic

and a dual conic that together deter¬

mine the measurements in —»Cayley-
Klein geometries.

General Position A set of geometric ob¬

jects that avoids certain degeneracies
that have to be specified somewhere

is in general position. Opposite of

—»special position.

HTML Markup language to describe web

pages.

Internet The revolution of the millenium.

Computers are connected all around

the world, and can communicate us¬

ing simple protocols. Most popular

applications of the Internet are the

-»World-Wide-Web and eMail.

Java An interpreted, platform independent

computer language created by James

Gosling (Sun Microsystems) [20].
Can be used inside web pages, but

also for standalone applications.

Locus The path of a dependent point while

moving a movable object. The locus

of a line is usually the envelope cre¬

ated by the moving line.

Pappos' Theorem The "smallest" inci¬

dence theorem in the projective

plane. Very useful as an example.
A generalization is —»Pascal's Theo¬

rem.

Pascal's Theorem Given two groups A,

andB, of three points on a conic, then

the three intersections Q ofAjBk and

AkBj, k y£ j y£ i j£ k, are collinear.

Specialized version is Pappos' Theo¬

rem. The polar version of this theo¬

rem is Brianchon's theorem.

Sketchpad A Dynamic Geometry soft¬

ware [36]

Special Position A set of geometric ele¬

ments that satisfies a certain degener¬

acy condition. Opposite of —»general

position.

Appendix B

Bibliography

[1] Mechanical theorem proving in geometries. Basic principles. Transi, from the Chi¬

nese byXiaofanJin andDongming Wang. Texts and Monographs in Symbolic Com¬

putation. Springer-Verlag, Berlin, 1994.

[2] Angliacampus. http://www.angliacampus.uk. Educational website using Cinderella

for geometry.

[3] A. Beckmann. Zweischrittiger Computereinsatz beim Beweislernen im Geometrie¬

unterricht. Satzfindung und Beweisfindung. Mathematik in der Schule, pages 301—

308, 1997.

[4] Alex Below, Ulrich Kortenkamp, and Jürgen Richter-Gebert. Primitive Geometrie

Operations, in preparation, 2000.

[5] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity andReal

Computation. Springer, New York, 1998. The homotopy method might be a key for

finding stability criteria for complex tracing.

[6] Peter Bürgisser, Michael Clausen, andM. Amin Shokrollahi. Algebraic Complexity

Theory, volume 315 of A Series of Comprehensive Studies in Mathematics, chap¬
ter 4, pages 103-124. Springer-Verlag, Berlin Heidelberg New York, 1997. Straight-
line programs in algebraic complexity theory.

[7] Christoph Burnikel, Rudolf Fleischer, Kurt Mehlhorn, and Stefan Schirra. A

strong and easily computable separation bound for arithmetic expressions involv¬

ing square roots. In Proceedings ofthe 8th ACM-SIAMSymposium on Discrete Al¬

gorithms (SODA97), pages 702-709, New York, Philadelphia, January 1997. ACM

Press/SIAM Publications. Although the bound is easily computable, square root

expressions are not.

[8] Otfried Cheong. The Ipe extendible drawing editor, http://www.cs.ust.hk/ ot-

fried/Ipe/Ipe.html, 1994. A nice extensible drawing editor.

165

Bibliography 166

[9] D-Cubed. Dem benchmarks, http://www.d-cubed.co.uk/dcm_benchmarks.html.
Some benchmarks for variational/parametric capabilities of CAD software.

[10] Mike Deng. The parallel numerical method of proving the constructive geometric
theorem. Chinese Sei. Bull, 34:1066-1070, 1989.

[11] J'Express. http://www.denova.com. A Java software installation software.

[12] Bryan Dye. Mathsnet. http://www.anglia.co.uk/education/mathsnet/. First external

collection of interactive geometry examples created with Cinderella.

[13] Maurits Cornells Escher and F. Bool. M.C. Escher: His Life and Complete Graphic
Work. Harry N. Abrams, 1992. A 99.8% complete collection of Escher's work.

[14] Andreas Fabri, Geert-Jan Giezeman, Lutz Kettner, Stefan Schirra, and Sven

Schönherr. On the design of CGAL, the computational geometry algorithms library.

Software - Practice and Experience, 1999. to appear; preliminary version avail¬

able as technical report #291, Departement Informatik, ETH Zurich, Switzerland,

February 1998.

[15] Wolfgang Fischer and Ingo Lieb. Ausgewählte Kapitel aus der Funktionentheorie.

Vieweg, Braunschweig, Wiesbaden, 1988. All the complex analysis you need for

this thesis is contained in chapter II of this book.

[16] Wolfgang Fischer and Ingo Lieb. Funktionentheorie. Vieweg, Braunschweig, Wies¬

baden, 1988. A very basic introduction into complex analysis.

[17] Hans Freudenthal. The impact of von Staudt's foundations of geometry. In R. S.

Cohen, J. J. Stachel, and M. W. Wartofsky, editors, For Dirk Struik, pages 189-200.

D. Reidel, Dordrecht-Holland, 1974. An article emphasizing the foundation-laying
contribution (in terms of purely algebraic description) of von Staudt to projective

geometry.

[18] B. Gärtner and S. Schönherr. Exact primitives for smallest enclosing ellipses. Infor¬
mation Processing Letters, 68:33-38, 1998.

[19] Th. Gawlick. Beeinflusst der Einsatz von Geometrie-Software das Herausbilden

von Grundvorstellungen? In Beiträge zum Mathematikunterricht. Franzbecker, Bad

Salzdetfurth, 1999. (to appear).

[20] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. The

Java Series. Addison-Wesley, September 1996.

[21] Robin Hartshorne. Companion to Euclid. Springer-Verlag, New York, 2000. A

modern guide to the elements of Euclid.

167 Bibliography

[22] Gaby Heintz. Überprüfung des Lernerfolgs durch die Benutzung von Tagebuch-
Protokollen bei interaktiven Geometrieprogrammen - am Beispiel von Cinderella.

PhD thesis, Gerhard Mercator Universität Duisburg, in preparation.

[23] Joost Heintz and Claus-Peter Schnorr. Testing polynomials which are easy to com¬

pute. In Logic andalgorithmic, int. Symp., Zuerich 1980, Monogr. L Enseign. Math.

30, 237-254(1982).

[24] Reinhard Hölzl. Im Zugmodus der Cabri Geometrie. PhD thesis, Universität Augs¬

burg, 1994. An empirical study concerning the use of geometry software in mathe¬

matics education.

[25] Christoph M. Hoffmann. How solid is solid modeling? In Ming C. Lin and Dinesh

Manosha, editors, Applied Computational Geometry - Towards Geometric Engi¬

neering, LNCS, pages 1-8. Springer-Verlag, 19?? Hoffmann is asking for a theory
for parametric CAD, which is presented in this thesis.

[26] Christoph M. Hoffmann. Solid Modeling, chapter 47, pages 863-880. Discrete

Mathematics and its Applications. CRC Press, Boca Raton, New York, 1997. Here

Hoffmann explains the "difficult problem of persistent naming", and underlines its

theoretical and practical importance. In the future a working approach to persistent

naming could help to modularize solid modeling systems into standardized compo¬

nents.

[27] Gerhard Holland. Geolog-Win. Dümmler, Bonn, 1996. A axiomatics-based geom¬

etry software, containing Prolog-driven exercise facilities.

[28] Jiawei Hong. Can we prove geometry theorems by computing an example?
Sei. Sinica, 29:824-834, 1986.

[29] Jiawei Hong. Proving by example and gap theorems. In Proc. 27th Ann. Symp. Foun¬

dations Comp. Science, pages 107-116, Toronto, October 1986. IEEE. Gives bounds

for values that can be used for proving polynomials to be identical to zero by evalu¬

ating at one point.

[30] C. Hoyles. Microworlds / schoolworlds: the transformation of an innovation. In

Learningfrom computers: mathematics education and technology. C. Keitel and

K. Ruthven, Berlin, 1993.

[31] Ulrich Huckenbeck. Geometrische Maschinenmodelle. PhD thesis, Bayerische
Julius-Maximilians-Universität Würzburg, 1986. Huckenbeck discusses what func¬

tions are computable using ruler and compass or ruler and right angles. However, he

is considering the situation non-dynamically, which considerably restricts the set of

computable functions.

Bibliography 168

[32] Oscar H. Ibarra and Brian S. Leininger. On the simplification and equivalence prob¬
lems for straight-line programs. J. Assoc. Comput. Mach., 30:641-656, 1983. It is

shown that the simplification and equivalence problems for straight-line programs

are unsolvable for all nontrivial classes.

[33] Install Toolkit for Java, http://www.alphaworks.ibm.com/tech/installtoolkit. A Java

software installation software.

[34] Remote AWT. http://www.alphaworks.ibm.com/tech/remoteawt. A client/server

software that is able to route the Java window system to another machine on the

network, without requiring X-Windows or similar software.

[35] Installshield for Java, http://www.installshield.com. A Java software installation

software.

[36] Nicholas Jackiw. The Geometer's Sketchpad. Key Curriculum Press, Berkeley,
1991-1995.

[37] Nick Jackiw. Javasketchpad. http://www.keypress.com/sketchpad/java_gsp/index.html.
A Java applet that can display geometric constructions that are similar to construc¬

tions done with Geometers' Sketchpad.

[38] Nicolas Jackiw, Ulrich Kortenkamp, Jean-Marie Laborde, Jürgen Richter-Gebert,
and al. A quality standard for dynamic geometry software. This shall set a lower

standard for geometry software, divided into categories like user interface, math¬

ematics, overall stability. A future goal is an exchange format for geometric con¬

structions. Hopefully this paper will be the result of a developer's conference for

Dynamic Geometry., in preparation.

[39] Erich Kaltofen. Greatest common divisors of polynomials given by straight-line

programs. Journal of the Association for Computing Machinery, 35(1):231-264,

January 1988. Notion of algebraic straight-line programs.

[40] Felix Klein. Elementarmathematik vom höheren Standpunkt aus., volume 2 of Die

Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen. Springer-

Verlag, reprint 1968 edition, 1925. Felix Klein would not have been surprised at all

by the solution to the continuity problem in Dynamic Geometry.

[41] Felix Klein. Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert.

Springer-Verlag, Berlin, 1928. Wonderful.

[42] Felix Klein. Vorlesungen über nicht-euklidische Geometrie, volume 26 of Die

Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen. Springer-

Verlag, Berlin, 1928. Reprint 1968. A must-read for everyone doing geometry.

169 Bibliography

[43] Donald E. Knuth. Fundamental Algorithms, volume 1 of The Art ofComputer Pro¬

gramming. Addison-Wesley, Reading, Mass., 1968. A must-read even today.

[44] Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer

Programming. Addison-Wesley, Reading, Mass., 1969.

[45] Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Pro¬

gramming. Addison-Wesley, Reading, Mass., 1969. Useheapsort!

[46] Ulrich Kortenkamp and Jürgen Richter-Gebert. Cinderella website.

http://www.cinderella.de. All about Cinderella: examples, infos, links, etc.

[47] Ulrich Kortenkamp and Jürgen Richter-Gebert. Geometry and education in the in¬

ternet age. In Proceedings of the ED-MEDIA & ED-TELECOM 1998 World Con¬

ference on Educational Multimedia, Hypermedia and Telecommunications, pages

790-799, Freiburg, March 1998. Association for the Advancement of Computing
in Education. Implications of Java based, internet-aware software on (geometry)
education. Available at http://www.cinderella.de/papers/geo-i.pdf.gz.

[48] Ulrich Kortenkamp and Jürgen Richter-Gebert. Cinderella. In Erfahrungen mit

Java, chapter 16, pages 381-401. dpunkt.Verlag, Heidelberg, 1999. Overview over

the Cinderella project with special emphasis on the use of Java (in German).

[49] Ulrich Kortenkamp and Jürgen Richter-Gebert. Euklidische und Nicht-Euklidische

Geometrie in Cinderella. In Thomas Weth, editor, Nürnberger Kolloquium
zur Didaktik der Mathematik, Nürnberg, April 1999. A high-speed in¬

troduction starting from scratch into non-Euclidean geometry. Available at

http://www.cinderella.de/papers/nichtEuklidisch.pdf.

[50] Gilles Kuntz. Cabri-java. http://www.cabri.net/cabrijava. A Java applet that can

read some original Cabri files and display them interactively.

[51] Colette Laborde. Visual phenomena in the teaching/learning of geometry in a

computer-based environment. In Carmelo Mammana, editor, Perspectives on the

Teaching ofGeometryfor the 21st Century. 1998.

[52] Jean-Marie Laborde. Exploring non-euclidean geometry in a dynamic geometry

environment like Cabri-géomètre. In James King and Doris Schattschneider, editors,

Geometry Turned On, volume 41 ofMAA Notes, pages 185-192. MAA, 1997. Jean-

Marie Laborde asks for a complete model for dynamic geometry, and stresses the

importance of a real mathematical treatment.

[53] Jean-Marie Laborde. Some issues raised by the development of implemented dy¬
namic geometry as with cabri-géomètre. In Hervé Brönnimann, editor, Proceedings

of the 15th European Workshop on Computational Geometry, pages 7-19, Antibes

Bibliography 170

- Juan-les-Pins, March 1999. INRIA Sophia Antipolis. Extended abstract of a talk

given at the Conference. During the talk the Differences between Cabri and Cin¬

derella were shown on a computer (not mentioned in the abstract).

[54] Jean-Marie Laborde and Franck Bellemain. Cabri-Geometry II Texas Instruments,

1993-1998. Copyright Texas Instruments and Université Joseph Fourier, CNRS.

[55] Susan Landau. How to tangle with a nested radical. Mathematical Intelligencer,

16(2):49-55, 1994. An expository paper that demonstrates that it is very hard to

denest (or simplify) an expression of nested radicals.

[56] Serge Lang. Algebra. Addison-Wesley, Reading, MA, 2nd edition, 1984. A standard

reference textbook for algebra.

[57] Nancy A. Lynch. Straight-line program length as a parameter for complexity analy¬
sis. J. Comput. Syst. Sei., 21:251-280, 1980.

[58] Roland Mechling. Euklid, http://www.mechling.de. Homepage ofEuklid, agerman

shareware geometry software.

[59] Roland Mechling. Euklid. Another geometry software.

[60] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms, chapter 7.

Cambridge University Press, Cambridge, 1995. Good and broad introduction to

the theory of randomized Algorithms.

[61] Jürg Nievergelt, Peter Schorn, Michèle De Lorenzi, Christoph Ammann, and Adrian

Brüngger. experimental geometrY Zurich - software for geometric computation.
Gelbe Reihe 163, Departement Informatik, Institut fü Theoretische Informatik, ETH

Zürich, Zürich, July 1991. A project which was very similar to CGAL.

[62] Mark H. Overmars. Designing the computational geometry algorithms library egal.
In M. C. Lin and D. Manocha, editors, ACM Workshop on Applied Computational

Geometry, Philadelphia, Pennsylvenia, May, 27-28 1996. Lecture Notes in Com¬

puter Science 1148.

[63] Julius Plücker. Ueber ein neues Coordinatensystem. Crelle's Journal, 5:1-36, 1829.

A very nice article that describes the benefits of homogenization.

[64] Jean-Victor Poncelet. Traité despropriétésprojectives desfigures. Gauthier-Villars,
1822.

[65] William Pugh. Compressing java class files. In Proceedings of the ACMSIGPLAN

'99 Conference on ProgrammingLanguage Design and Implementation, Atlanta,G

GA, 1999. An alternative class file format for Java that reduces the byte code size

by a significant factor.

171 Bibliography

[66] Jürgen Richter-Gebert. Mechanical theorem proving in projective geometry. Annals

ofMathematics and Artificial Intelligence, 13:139-172, 1995. Presentation of the

method of proving projective geometry theorems using bi-quadratic final polynomi¬
als.

[67] Jürgen Richter-Gebert. How to do geometry on a computer. A 2-hour lecture given

by Jürgen at various occasions that is ajump start into oriented Projective Geometry.,
1996-1999.

[68] Jürgen Richter-Gebert. Primitives for geometric operations. Course material for

the Equinoctial School, ETH Zürich, September 1997. A concise introduction to

geometric operations in projective and metric geometry.

[69] Jürgen Richter-Gebert and Ulrich Kortenkamp. OO-Graphikprogrammierung in

Java. Technical report, ETH Zürich, 1997-1999. Course material for a two-day

introductory course to Java. In the exercises a class hierarchy for dynamic draw¬

ing software is developed, following the traditional model of Dynamic Geoemtry
software.

[70] Jürgen Richter-Gebert and Ulrich Kortenkamp. Die interaktive Geometriesoftware

Cinderella. Book & CD-ROM, HEUREKA-Klett Softwareverlag, Stuttgart, 1999.

German school-edition of the Cinderella software.

[71] Jürgen Richter-Gebert and Ulrich Kortenkamp. The interactive geometry software

Cinderella. Book & CD-ROM, Springer-Verlag, Berlin Heidelberg New York, 1999.

First commercial release of the Cinderella software.

[72] Jürgen Richter-Gebert and Ulrich Kortenkamp. Complexity issues in Dynamic Ge¬

ometry, in preparation, 2000. A complete coverage of the complexity results in

Dynamic Geometry.

[73] Franco Saliola. Non-Euclidean Geometry with Cinderella on the Internet.

http://members.xoom.com/fsaliola. First examples on the net using hyperbolic ge¬

ometry with Cinderella.

[74] Jacob T. Schwartz. Probabilistic algorithms for verification of polynomial identities.

In Symbolic andalgebraic computation, EUROSAM '79, int. Symp., Marseille 1979,

Lect. Notes Comput. Sei. 72, 200-215 (1979).

[75] Jorge Stolfi. OrientedProjective Geometry: A Frameworkfor Geometric Computa¬
tions. Academic Press, New York, NY, 1991. A complete description of an oriented

version of Projective Geometry, for all dimensions, but only for flats (linear sub-

spaces). Suitable for computer scientists.

[76] Volker Strassen. Berechnung und Programm I. Acta Informatica, 1:320-335, 1972.

Wonderful example of straight-line programs in an algebraic setting.

Bibliography 172

[77] Bernd Sturmfels. Algorithms in Invariant Theory. Texts and Monographs in Sym¬
bolic Computation. Springer-Verlag, Wien New York, 1993. Covers important top¬

ics, like the straightening algorithm and its applications in automatic theorem prov¬

ing.

[78] Frank Tip, Chris Laffra, and Peter F. Sweeney. Jax - Java application extrac¬

tor. http://www.alphaworks.ibm.com/formula/jax. A post-optimization tool for Java

software. You can provide additional knowledge about your software to disable dy¬
namic linking for certain classes. Also removes dead code and classes.

[79] Frank Tip, Chris Laffra, Peter F. Sweeney, and David Streeter. Pratical experience
with an application extractor for Java. In Proceedings of the 14th Annual ACM

SIGPLAN Conference on Object-Oriented Programming Systems, Languages and

Applications (OOPSIA '99), Denver, Colorado, November 1999. ACM. Among

others, Cinderella is used as a benchmark example for Jax to show the benefits of

using an application extractor approach in object oriented programming.

[80] Karl Georg Christian von Staudt. Geometrie der Lage. Bauer & Raspe, Nürnberg,
1847.

[81] Karl Georg Christian von Staudt. Beiträge zur Geometrie der Lage. Bauer & Raspe,

Nürnberg, 1856.

[82] Dongming Wang. Geometry machines: From ai to smc. In Jaques Calmet, John A.

Campbell, and Jochen Pfalzgraf, editors, Proc. Artificial Intelligence and Symbolic
Mathematical Computation 3, volume 1138 of Lecture Notes in Computer Science,

pages 213-239, Steyr, September 1996. Springer-Verlag. Very good overview over

the currently used techniques in automatic theorem proving (including 171 refer¬

ences).

[83] Thomas Weth. Begleitmaterial zu Vorlesungen der Didaktik der Mathematik,

http ://www. didmath.ewf.uni-erlangen.de/Vörlesungen/Geometrie_HS/index.htm.
Prof. Weth uses Cinderella to illustrate the course material for his lectures.

[84] Thomas Weth. Kegelschnitte und höhere Kurven als Ortslinien in Dreiecken,

http ://www. didmath.ewf.uni-erlangen.de/kegel_weth/index.html. Accompaining
web based examples to Weth's creativity research.

[85] Thomas Weth. Kreative Zugänge zum Kurvenbegriff. Der Mathematikunterricht,

4/5, 1998.

[86] Thomas Weth. Kreativität im Mathematikunterricht - Begriffsbildung als kreatives

Tun. Franzbecker, Hildesheim, Berlin, 1999. A very interesting approach to creativ¬

ity that shows (among other things) the new possibilities that arise when computers

are used in teaching.

173 Bibliography

[87] Harald Winroth. Projective Dynamic Geometry. PhD thesis, KTH Stock¬

holm, March 1999. Many basics of Projective Geometry on a com¬

puter. Tries to solve the continuity problem with orientations. Available at

http://www.lib.kth.se/fulltext/winroth990324.pdf.

[88] Niklaus Wirth. The programming language Pascal. Acta Informatica, 1:35-63,

1971. This issue of Acta Informatica is a must-read for everybody who is interested

in the history of computer science.

[89] Wen-tsuen Wu. On the decision problem and the mechanization of theorem-proving
in elementary geometry. Contemp. Math. 29, pages 213-234, 1984.

[90] Lu Yang. A new method of automated theorem proving. In J. Johnson and

M. Loomes, editors, The mathematical revolution inspired by computing, pages

115-126. Oxford University Press, New York, 1991.

[91] Lu Yang, Jingzhong Zhang, and C.-Z. Li. A prover for parallel numerical verification

of a class of constructive geometry theorems. In Proc. IWMM '92, pages 244-250,

Beijing, July 1992.

[92] InstallAnywhere. http://www.zerog.com. A Java software installation software.

[93] Jingzhong Zhang, Lu Yang, and Mike Deng. The parallel numerical method of

mechanical theorem proving. Theoretical Computer Science, 74:253-271, 1990.

Bibliography 174

Appendix C

Curriculum Vitae

Ich wurde am 18. Oktober 1970 als Ulrich Hund in Köln am Rhein geboren, und bin das

einzige Kind von Ulrike Hund, geborene Müller, und Gerhard Hund. In Kerpen, Erft¬

kreis, NRW, wuchs ich auf und besuchte zunächst die Evangelische Grundschule Kerpen
und dann die Gemeinschaftsgrundschule Kerpen-Sindorf. 1980 wechselte ich auf das Ta¬

gesheimgymnasium Kerpen (inzwischen Gymnasium Kerpen), welches ich am 19. Mai

1989 mit Abitur wieder verlassen durfte. Ich belegte dort die Leistungskurse Physik und

Mathematik, und ich hatte 823 von 900 möglichen Punkten, was eine 1,0 als Endnote

ergab.
Mein akademisches Leben begann in Münster, Westfalen, wo ich zum Winterseme¬

ster 1989/1990 das Studium der Mathematik mit Nebenfach Informatik aufnahm. Am

17. Oktober 1991 erhielt ich das Vördiplom. Zwischen Dezember 1994 bis Februar 1995

machte ich die Diplomprüfungen, und am 31. März erhielt ich das Diplom. Der Titel

meiner Diplomarbeit lautete „Pseudosphärenarrangements zu Orientierten Matroiden".

Bereits im März 1993 war ich nach Berlin gezogen, wo ich dann ab 1. April 1994 an

der TU als Wissenschaftlicher Mitarbeiter angestellt war. Mein ehemaliger Doktorvater

dort war der Koreferent dieser Arbeit, Günter Ziegler. Ich habe meine Dissertation in

Berlin nicht abgeschlossen, weil ich die Gelegenheit ergriff an das Departement Infor¬

matik der ETH Zürich zu wechseln, wo mir Jürgen Richter-Gebert eine Anstellung als

Mathematiker angeboten hatte. Seit September 1997 bin ich am Institut für Theoretische

Informatik angestellt.
Am 4. Oktober 1996 habe ich Doro Kortenkamp geheiratet. Wir haben zwei Kinder,

Mara, geboren am 5. März 1997, und Julius, geboren am 22. Februar 1999.

175

Curriculum Vitae 176

I was born as Ulrich Hund on October 18, 1970 in Cologne, Germany, being the only
child of Ulrike Hund, born Müller, and Gerhard Hund. I grew up in Kerpen, Erftkreis,

NRW, Germany, where I attended the Evangelische Grundschule Kerpen and the Gemein-

schaftsgrundschule Kerpen-Sindorf as primary school. Then I changed in 1980 to the

Tagesheimgymnasium Kerpen (now Gymnasium Kerpen), where I got my Abitur on May,

19th, 1989. My profile courses were Physics and Mathematics, the final score was 823

out of 900 points, a 1,0 in the German censoring scale.

My academic life began at Münster, Westphalia, where I studied Mathematics with

a minor in Computer Science starting in the winter term of 1989/1990. On October 17,

1991,1 earned the Vordiplom in Mathematics. From December 1994 to February 1995 I

took the examinations for the math diploma, which I received on March 31st, 1995. The

title of my diploma thesis was "Pseudosphärenarrangements zu Orientierten Matroiden."

I had moved to Berlin already in March 1993, and I got a position as teaching assistent

in the maths department at the Technical University of Berlin starting on the first of April
1994. My former advisor there was the co-examiner of this thesis, Günter Ziegler. I

did not finish my Ph.D. studies in Berlin, instead I took the opportunity to change to the

Department of Computer Science at the ETH Zürich where Jürgen Richter-Gebert offered

me a position as a mathematician. I work at the Institute of Theoretical Computer Science

since September 1997.

On October 4, 1996,1 married Doro Kortenkamp. We have two children, Mara, born

March 5, 1997 and Julius, born on February 22, 1999.

