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Preface

I carried out this dissertation in the framework oftwo scientific projects which were funded

by the Swiss Federal Government

'Nitrogen Saturation Experiments' (NITREX), part of the European Research Programme

'Environment' The Swiss contribution to this project was funded by the 'Bundesamt fur

Bildung undWissenschaft', BBW Nr 94 0139

'Modelling runofffromforested hdlslopes with a small scale topography, financially supported by the

Swiss National Science Foundation, NF 21-46927 96

Structure of the Dissertation

In this section, I will briefly describe how the different chapters of this dissertation merge

together This thesis reports on the research on runoff generating processes at three spatial

scales in the northern Swiss prealps It supports a study on the cycling of nitrogen

(NITREX), which is performed on artificially delineated sub-catchments Typically, runoff

is generated somewhere in a catchment by the generating process and flows towards the

catchment oudet along possibly varying flowpaths A complete characterization of runoff

processes thus needs a description of the dynamics of the underlying generating process and

a characterization of the flowpaths of the runoff process

The first chapter presents a short overview of the important runoff processes and of some

applications of time series analysis in hydrology To characterize the dynamics of the runoff

generating processes, I used methods of time series analysis The techniques I applied are

rather uncommon in soil physics and hydrology For the reader to become more accustomed
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to the time series analysis methods, I dedicated a chapter to them (Chapter 2) I mainly focus

on two topics 1) how to deal with the inherent nonlinearity of the rainfall-runoff

relationship, and 11) how to estimate linear transfer functions from observed data possibly

corrupted by measurement errors The next chapter (Chapter 3) describes a tracer

experiments performed on two soil plots The purpose of this experiment was to detect the

transport regime and the flowpaths in top- and subsoil layers of the two soil plots In Chapter

4, the algorithms derived in Chapter 2 are applied to characterize the nonlinear dynamics of

the runoff generating processes at three spatial scales In addition, measurements of the water

quality serve to determine the residence time of the runoff water in the vadose zone

Combining this information with the results of the time series modelling is the key to

understanding the dominating runoff processes In the last Chapter, the results of the study

at three spatial scales are combined with tracer experiment at the smallest scale and I discuss

the fate of rainwater and dissolved nitrogen components in the NITREX sub-catchments
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Abstract

This thesis presents a study on the generation of runoff from prealpine catchments at three

spatial scales The study was part of the Nitrogen Saturation Experiments (NITREX), a

European project on the cycling of nitrogen in forest ecosystems On the Swiss NITREX

site in the Erlenbach catchment (Alptal valley, canton of Schwyz), the nitrogen deposition
onto forested sub-catchments (1500 m ) delineated by trenches was experimentally
increased, and its transfer into the soil and vegetation and the losses by runoff and derutrifi-

cation were investigated Preliminary results of the mtrogen budget strongly suggested that

the nitrate losses of the sub-catchment were hydrologically controlled To obtain detailed

information on the effect of runoff processes on nitrogen turnover, we monitored the fluxes

of water and dissolved solutes from the sub-catchments, from the Erlenbach headwater

catchment (0 7 km ) and from two isolated soil plots (13 m ) The Erlenbach is a steep

(20 percent) and narrow catchment, with a network of drainage trenches connected to per¬

manent brooks in deeply incised gorges Two sub-catchments are forested, the third is a wet¬

land In the forested sub-catchments, closely linked to the topography, two soil types

predominate a wet muck humus soil in small depressions and a better drained mor humus

soil on mounds and ridges On the wetland sub-catchment only the muck humus occurs

The soil plots, which represent these two soil types, were instrumented to monitor the out¬

flow at three depths and the moisture status of the different soil layers On the soil plots, we

carried out controlled irrigation and tracer experiments as well as observations under natural

boundary conditions By comparing the dominating runoff processes at all scales, we studied

the effect of vegetation, soil type distribution and drainage area on the runoff generation

To identify the runoff dynamics, we estimated linear discrete transfer functions from water

input and outflow measurements Before estimating the transfer functions, the data series

were linearized by means of the following approach First, we fitted a linear transfer function

with parameters which were allowed to vary in time to the observed data The fitting pro¬
cedure we applied based on Kalman filtering and fixed interval smoothing techmques Then,

the parameter which describes the hydrological gain (l e the amount ofrunoffcaused by one

unit of water input) was compared to additional data characterizing the water regime of the

soils Since the level of the groundwater correlated best with the time variable gain, this var¬

iable served to transform the measured precipitation nonhnearly into an effective precipita¬

tion From the linearized rainfall-runoff data we estimated linear transfer functions with

constant parameters, which could be given a physical interpretation To obtain unbiased

parameter estimates, we employed a recursive and iterative instrumental variable method To
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avoid overparameterization, we selected the model structure (1 e number of parameters of

the transfer functions) based on an information criterion This procedure was applied to data

from the irrigation experiments on the soil plots and to rainfall-runoff measurements on the

soil plots (13 m ), the sub-catchments (1500 m ) and the Erlenbach headwater catchment

(0 7 km ) To locate the pathways of the runoff processes in the soil plots, we performed
tracer experiments under a controlled water regime To unravel the effect of the various soil

horizons on the runoff dynamics, CI" and Br" tracers were applied onto the soil surface and

also injected below ground at the interface between the upper humus layer and the gleyic
subsoil ofboth plots Water sampled at the outflow of the plot, sub-catchments and headwa¬

ter catchment allowed to quantify the ratio of event or pre-event water in the runoff

On the soil plots, runoff reacted generally very fast to rainfall or irrigation water inputs On

the wet muck humus plot, few but large macropores in the gleyic subsoil contributed sub¬

stantially to the runoff generation On the better drained mor humus plot, the tracer recov¬

ery and the runoff ratio were higher, but the runoff dynamics of the flow processes were

clearly slower We attributed this to the effect of the better structured subsoil ofthis plot On

both soil plots, water entering through the subsoil contributed considerably to the runoff

generation during rainfall events At the same time, large quantities of water drained from

the soil plots as deep seepage without direcdy contributing to the outflow

Despite the different vegetation and soil type distribution, the runoff dynamics were very

similar in all sub-catchments Thus, it was not the abundance of the mor and muck humus

soil which determined the characteristics of the runoff, but rather the spatial arrangement of

the muck humus zones and the presence of waterlogged areas All sub-catchments reacted

faster to rainfall than the smaller soil plots, which was likely due to the presence of water¬

logged areas The electrical conductivity indicated, particularly during peak runoff, that the

residence time of rainwater in the sub-catchments was very limited Furthermore, the con¬

tribution of the mor humus areas to the sub-catchment runoff was very limited

Regardless of the larger area of the headwater catchment, the dynamics of the runoff pro¬

cesses resembled those ofthe sub-catchments closely The transfer functions and the electrical

conductivity measurements indicated that two flow components added to the runoff The

slow component had an electrical conductivity comparable to that of the runoff of the mor

humus soil plot It passed through the macropores of the subsoil which contributed directly
to the main brook of the Erlenbach catchment The fast component originated from wet or

waterlogged muck humus areas and was rapidly routed to the brooks by the drainage
trenches

The identified flow processes in the sub-catchments agree well with the preliminary nitrogen

budget Because of the short residence time of water and solutes, nitrate may not be removed

from the rainwater by the slow microbial activity Still, the contact time may be sufficient to

retain the ammonium by the much faster adsorption process
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Kurzfassung

Diese Arbeit prasentiert eine Untersuchung zur Abflussbildung in voralpinen Einzugsgebie-
ten auf drei raumlichen Skalen Sie wurde im Rahmen des NITREX Projektes (Nitrogen
Saturation Experiments) durchgefuhrt, em Europaisches Projekt, dass den Stickstofikreislauf

in Waldokosystemen untersucht Im Erlenbach Einzugsgebiet (Alptal, Kanton Schwyz)
wurde der Stickstoffeintrag in bewaldeten Teileinzugsgebieten kunstlich erhoht, um die

StickstofFumsetzung im Boden, die Aufnahme durch dieVegetation sowie die Austrage durch

Abfluss und als Denitnfikation zu untersuchen Erste Ergebnisse zeigten, dass die Stickstoff-

austrage aus den Teileinzugsgebiete durch hydrologische Prozesse gesteuert werden Um

detailliertere Informationen uber den Einfluss der Abflussprozesse aufden Stickstofikreislauf

zu erhalten, beobachteten wir in den Teileinzugsgebieten (1500 m ), im Erlenbach Einzugs¬

gebiet (0 7 km ) und aufzwei isolierten Flachen (13 m ) die Abflusse und die dann gelosten
Stoffe Das Erlenbach Einzugsgebiet umfasst einen schmalen, steilen Hang (20 Prozent) und

wird von Abflussgraben durchzogen Diese munden in tief emgeschnittene Bachlaufe Die

Teileinzugsgebiete wurden durch 80 cm tiefe Graben abgetrennt Zwei Teileinzugsgebiete
smd bewaldet, das dritte ist eine feuchte Wiese In den bewaldetenTeileinzugsgebieten treten

in Abhangigkeit von der Topographie zwei Humusformen auf ein nasser Anmoor Humus

in Senken und ein gut draimerter Rohhumus auf Kuppen In der feuchten Wiese kommt

nur Anmoor Humus vor Die 13 m grossen isolierten Flachen wurden inje einer dieser

Humusformen eingenchtet um den Abfluss und die Bodenfeuchte in verschiedenen Tiefen

zu erfassen Auf diesen Flachen fuhrten wir unter kontrollierten Randbedingungen

Bewasserungs- und Tracerexperimente durch und Beobachteten das Verhalten des Systems
bei naturhchen Niederschlagsereigmssen Um die Auswirkungen der Vegetation, der

Humusform und der Gebietsgrosse aufdie Abflussbildung bestimmen zu konnen, verghchen
wir die Abflusse auf alien drei Skalen

Zur Identifikation der Abflussdynarmk schatzten wir hneare diskrete Transferfunktionen von

den Wassennput- und Abflussmessungen Bevor wir die Transferfunktionen schatzen konn-

ten, wurden die Daten folgendermassen lineansiert zuerst schatzten wir eine hneare Trans-

ferfunktion nut zeitabhangigen Parametern ausgehend von den erhobenen Daten Dieses

Schatzverfahren basiert auf dem Kalman Filter und auf Glattungsalgonthmen Danach ver¬

ghchen wir die zeitabhangigen Parameter nut zusatzhchen Messungen zum Wasserhaushalt

Weil die Grundwassertiefe am besten mit dem hydrologischen Gewinn (i e die Abflusszu-

nahme, die durch eine Einheit Wasserzufuhr verursacht wird) korreherte, verwendeten wir

diese Grosse, um die gemessenen Niederschlage in efFektive Niederschlage umzuwandeln
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Von den so lineansierten Niederschlags- und Abflussdaten schatzten wir erneut hneare

Transferfunktionen, die wir physikalisch interpretieren konnen Damit systematische
Abweichungen der geschatzten Parameter verrmeden werden, benutzten wir einen auf Hilf-

svanabeln basierenden rekursiven und iterativen Schatzalgonthmus Die Struktur derTrans-

ferfunktion (d h die Anzahl Parameter) wurde anhand eines statistischen Kriteriums

bestimmt Dieses Verfahren wendeten wir auf die Daten der Bewasserungsexpenmente und

auf die Daten zu naturlichen Abflussereigmssen auf alien drei Skalen an Zusatzlich fuhrten

wir Tracerexperimente auf den isolierten Flachen durch, um die Fliesswege des Wassers zu

lokahsieren Wir apphzierten CI" und Br" an der Bodenoberflache und in derTiefe, um die

Auswirkung unterschiedhcher Bodenhonzonte auf die Abflussdynamik zu charaktensieren

Uber die elektnsche Leitfahigkeit der Abflusse auf alien drei Skalen quantifizierten wir den

direkten Beitrag des Niederschlags zu den Abflussen

Der Abfluss der isolierten Flachen reagierte schnell auf Niederschlag oder Bewasserung Im

nassen Anmoor Humus trugen vereinzelte Makroporen wesenthch zum Abfluss bei Die

Wiederfindungsrate fur Wasser und Tracer war zwar hoher im Rohhumus, die Abflussbil-

dung warjedoch wesenthch langsamer Wir fuhrten dies aufden besser struktunerten Unter-

boden der Rohhumusflache zuruck Auf beiden Flachen flossen wahrend naturlichen

Niederschlagsereigmssen nicht unerhebhche Wassermengen untenrdisch aus angrenzende
Gebieten zu, gleichzeitig aber sickerten grossere Wassermengen in tiefere Bodenschichten,

ohne zum Abfluss beizutragen
Trotz der unterschiedlichen Verteilung von Vegetation und Humusformen war die Abfluss¬

dynamik der Teileinzugsgebiete ahnhch Daraus folgt, dass mcht der Flachenanteil an

Anmoor oder Rohhumus sondern deren raumhche Anordnung und die Anwesenheit was-

sergesattigter Gebiete die Abflussbildung bestimmte Die Reaktion der Teileinzugsgebiete
auf Regenereigmsse war schneller als diejenige der isolierten Flachen, was wir ebenfalls auf

die Prasenz wassergesattigter Gebiete zuruckzufuhrten Die elektnsche Leitfahigkeit der

Abflusse zeigte zudem, dass die Verweilzeit des Niederschlagswassers in den Teileinzugsge-
bieten sehr gering und der Beitrag der Rohhumusgebiete zum Abfluss hmitiert war

Trotz der grosseren Flache des Erlenbacheinzugsgebietes war dessen Abflussverhalten ahnhch

demjemgem derTeileinzugsgebiete Die Transferfunktionen und die elektnsche Leitfahigkeit
des Abflusswassers zeigten, dass eine langsame und eine schnelle Komponente zum Abfluss

beitrugen Die langsame Komponente hatte eine Leitfahigkeit vergleichbar mit derjemgen
der Rohhumusflache Das Wasser floss durch Makroporen im Unterboden, die direkteVer-

bindung zum Vorfluter hatten Die schnelle Abflusskomponente entstand auf nassem und

wassergesattigtem Anmoor Humus und wurde durch die Drainagegraben schnell zumVor¬

fluter gefuhrt

Die identifizierten Abflussprozesse stimmen mit den ersten Ergebmssen der Stickstofmaus-

haltsstudie gut uberein Wegen des relativ grossen Zeitbedarfs zum Abbau des Nitrats durch

Mikroorgamsmen bei gleichzeitig kurzerVerweilzeit des Wassers und der gelosten Stoffen im

Boden, wird Nitrat mcht aus dem Regenwasser entfernt Die Verweilzeit reicht aber fur die

schnellere Adsorption von Ammonium aus
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2 1 Introduction

1.1 Scientific Background

The Swiss contribution to the European NITREX project (Wright and Rasmussen, 1998)

started in 1993 The NITREX project was set up to study the consequences of an increased

atmospheric deposition of nitrogen onto forested ecosystems The project had two main

objectives l) to detect the critical load ofnitrogen which does ultimately not result in a nitro¬

gen saturation of the ecosystem, and n) to determine whether the nitrogen saturation of a

forest ecosystem is reversible An ecosystem is saturated with nitrogen if the input of this ele¬

ment into the ecosystem exceeds the uptake by plants and soil micro-organisms and the

internal storage capacity for N-components The excess nitrogen leaves the ecosystem in the

runoff, in the deep seepage that percolates through the root zone towards deeper groundwa¬

ter layers or by an increased denitnfication It may also be accumulated in the organic soil

material The nitrogen exports by runoff and as denitnfication can be monitored and are

therefore used as indicators for the nitrogen state of the ecosystem Results from NITREX

studies in Sogndal (Wright et al, 1995) and Gardsjon (Moldan et al, 1995) indicate that eco¬

systems do not respond gradually to nitrogen inputs For instance, if the export of nitrogen

is hydrologically controlled, export even occurs from ecosystems not (yet) saturated with

nitrogen In such cases, the residence time of nitrogen in the ecosystem is too short to be

entirely taken up by plants and micro-organisms Thus, any study on the cycling of nitrogen

in natural ecosystems requires detailed information on the hydrology of the studied area

Given such information, it is possible to distinguish between hydrologically controlled leach¬

ing of nitrogen and leaching of nitrogen which is caused by a saturation of the ecosystem

In the framework of NITREX, two types of experiments have been performed In areas

which suffered for a long time from large atmospheric nitrogen deposition, "clean roof"

experiments were set-up to study the reversibility of the nitrogen saturation of the forested

ecosystem In this type of experiments, the rainwater is collected on a roofbetween the tree

canopy and the ground and purified before re-application onto the soil surface In areas with

small deposition of nitrogen, selected ecosystems are treated with well-defined amounts of
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nitrogen In both types of experiments, the reaction of several compartments of the ecosys¬

tem to the altered nitrogen load were monitored

100 km

Figure 1.1: Situation of the Alptal valley in Switzerland

The Swiss NITREX site is situated in the valley of Alptal, in the northern Swiss

prealps (Fig 1 1) Since more than 30 years, hydrological data records of several headwater

catchments within the Alptal valley have been collected by the Forest Hydrology group of

the Swiss Federal Institute of Forest, Snow, and Landscape Research (Burch, 1994) One of

the best documented headwater catchments m this area is the Erlenbach, a long, narrow and

steep catchment with a total surface area of 0 7 km Within the Erlenbach catchment, three

areas were selected for the Swiss NITREX project Two of them are forested, the third one

is a wetland, grown with grasses only (Fig 1 2)

The selected areas were delineated by means of trenches to obtain the so-called sub-catch¬

ments, in the following referred to as Nj, N2 and N3 The subsoils in the area are clayey and

gleyic, which suggests that they have small hydraulic conductivities Based on this pedologic

information we considered the sub-catchments as hydrologically tight systems To establish a
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balance for water and nitrogen, the sub-catchments were instrumented to quantify the major

fluxes of water and nitrogen entering or leaving the sub-catchments To detect changes in

the nitrogen content of the understory vegetation and the tree layer, a detailed monitoring

program and long term experiments were accomplished (Miiller, 1997) In addition, an ini¬

tial inventory of the soil nitrogen pools was performed based on a geostatistical approach.

Figure 1.2: Map of the sub-catchments Nj, N2 and Ncj tnAlptal (P Schleppi, pers comm )

No detailed information on the hydrology of the sub-catchments was available before the

NITREX experiment started However, some mformation was available from a site nearby

where Stadler (1996) investigated the influence of soil freezing on the runoffgeneration This

study was performed on two soil plots of about 10 m on a steep slope Initially, the plots

were equipped to measure the total runoff but the instrumentation in one of the plots was

later extended to measure flow parallel to the surface in the gleyic subsoil, in the humic A

layers and on the surface Furthermore, the plot was delineated by trenches to a depth of 80
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cm to avoid lateral inflow of water In spring and early summer 1995, runoff generation

during natural rainstorms was studied by Gysi (1996) Surprisingly, he observed a large flow

ofwater in the gleyic subsoil Since the soil matrix is virtually impermeable, we hypothesized

there was a network of large pores, channels or fissures in the subsoil (Feyen et al, 1997)

This, however, conflicted with the assumption that the sub-catchments had an impermeable

lower boundary This contradiction stimulated further efforts to study the hydrology of the

sub-catchments I focused my work on the processes of runoff generation within the sub-

catchments Two distinct soil types occur in the sub-catchments and their distribution is

closely linked to the micro-topography Therefore, I studied water flow and runoff genera¬

tion for the two soil types by controlled experiments and by observing the system without

any intervention

The main goals of the detailed observations on the soil plots were

• to detect along which flowpaths the water flows through these soil plots, to study the

dynamics of the flow processes, to compare these processes for both plots under natural

rainfall and under controlled irrigation and to draw conclusions on the origin of the

water leaving the soil plots at the downslope draining ditch

Initial hypothesis

Given the distinct vegetation and soil moisture status of both plots, I expected much larger runoff vol¬

umes from the muck humus as compared to the mor humus plot In addition, because of the different

soil structure tn the subsoil of both plots, I assumed that runoff generation is much slower in the mor

humus plot

For the NITREX project the runoff of the sub-catchments N1? N2 and N3 was and still is

continuously observed Thus, it is possible to directly compare the runoffprocesses from the

sub-catchments and from the soil plots This led to two additional objectives

• to determine the relative role of the two soil types for the runoff generation in the sub-

catchments

Initial hypothesis

Given the topographic distribution of both soils, 1 e the muck humus in the depressions and the mor

humus on the hillocks, and the fairly wet soil moisture status of the muck humus areas, I assumed that

the mam part of the runoff is generated in the muck humus areas
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• to determine the influence of the soil type distribution in the three sub-catchments on

the generation of runoff

Initial hypothesis

Since only muck humus occurs on the N3 sub-catchment, I expected larger amounts of runoff and faster

response to rainfall in this sub-catchment

The Forest Hydrology group of the Swiss Federal Institute of Forest, Snow, and Landscape

Research kindly provided the runoff data of the Erlenbach headwater catchment Thus,

simultaneous data records measured at tree different scales were available This widened the

possibilities of studying the effect of soil, vegetation and scale on the runoff generation and

led to a fourth objective of this thesis

• to combine the data on the water fluxes at three spatial scales to examine the effect of

catchment size on the dynamics of the runoff processes and to reveal the sources of the

runoffwater and its flow paths throughout the Erlenbach catchment

Initial hypothesis

After observing the runoff during a high intensity rainstorm (July, 1995) I assumed that the runoff gen¬

eration at all scales is very fast and that most of the runoff processes can be located on the soil surface or

in the upper soil layers

To achieve these objectives, I applied two independent strategies

• First, I modelled the hydrological data by time series analysis and transfer function esti¬

mation After linearization the rainfall-runoff data series of all study areas based on their

soil moisture status, discrete transfer functions were estimated These transfer functions,

representing a class of black box and scale independent models, could be interpreted in

terms of physically meaningful processes

• Second, I used water tracers to explore routing and residence times of soil water and sol¬

utes Water quality data of rainfall and runoff were used to classify the origin of runoff

water as event or pre-event water In addition, controlled irrigation experiments with

artificial tracers were carried out on the soil plots to detect the flow paths of water and

solutes

The sequel of the introduction is a short overview of the most common hydrological proc¬

esses which have been reported on Afterwards, I discuss some applications of time series

modelling for identifying the dynamics of runoff generating processes
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1.2 Runoff Generating Processes

Runoff generation in natural catchments is driven by many processes Parallel processes at

different locations or successive processes at the same location are excited by the rainfall and

influenced by vegetation, topography, structural properties of the soil, moisture state and

scale of the catchment Since the pioneering work by Horton (1933), who distinguished

between infiltration and lateral flow of water on the soil surface, many other hydrological

processes have been reported on (e g Anderson and Burt, 1990, Bonell, 1993) Hydrological

processes span about eight orders of magnitude in space and time (Bloschl and Sivapalan,

1995) Ideally, processes should be observed at the scale they occur processes larger than the

observation scale appear as trends in the data, processes smaller than the observation scale

appear as noise (Cushman, 1987)

Despite the growing knowledge about water flow in saturated and unsaturated media, it is

not yet possible to investigate the hydrology ofa catchment without any field measurements

I briefly describe the processes ofrunoffgeneration and discuss the most common modelling

approaches Figure 1 3 schematically shows the most common runoffprocesses

1.2.1 Flow Processes on the Soil Surface

According to Horton (1933), it is the infiltration capacity ofthe upper soil layer which deter¬

mines how the precipitation is partitioned into surface runoff ("Hortoman overland

flow", g) and infiltration (a) Under certain conditions, e g if a dry hydrophobic litter layer

is present (Burch et al, 1988), a temporally reduced infiltration capacity may lead to a "tem¬

porary Hortoman overland flow" This flow process, however, disappears after wetting of the

water repellent upper soil layer If the infiltration continues until the soil matrix is saturated,

water will start to flow on the soil surface This process, which is called "saturation overland

flow" (d), will then occur independently of the rainfall intensity (Kirkby, 1988) Especially

in lower basin areas or near the stream channel, where large sub-surface fluxes ofwater con¬

verge, the ability of the soil to transport water in the lateral direction may be insufficient

This can lead to "return flow" (i), the exfiltration ofwater from the soil surface Since return
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Figure 1.3: An overview of runoffgenerating processes Infiltration (a), matrix flow (b), lateral

macroporeflow (c), saturation overlandflow (d), sub-surface lateral matrixflow (e), vertical macropore

flow (f), Hortoman overlandflow (g), groundwaterflow (h) and return flow (i)



1 2 Runoff Generating Processes 9

flow may originate from the soil matrix or from macropores, it is closely linked to flow proc¬

esses in the subsoil According to Dunne and Black (1970), return flow is one of the com¬

ponents contributing to saturation overland flow

1.2.2 Flow Processes in the Sub-surface

Since most forest soils in humid climate areas have a permeable upper layer, the main portion

of the precipitation can be taken up by the soil matrix (b) (Bonell, 1993) The water regime

of forests is therefore dominated by flow processes in the soil They can be subdivided into

processes within the unsaturated (throughflow, interflow) and in the saturated zone (ground¬

water flow, deep sub-surface flow) (Ward and Robinson, 1990) In the unsaturated soil layers,

sub-surface lateral matrix flow (e) is induced when the hydraulic conductivity is larger in the

lateral than in the vertical direction This is the case when more permeable upper soil layers

overlay subsoil layers with a small permeability The less permeable soil layers are natural

boundaries for the water flow which leads to local ponding (perched water table) Since the

hydraulic conductivity decreases with depth in most soils, this situation is quite common

The importance ofsub-surface lateral matrix flow has been shown in numerical calculations

by Freeze (1972) and has since been confirmed by many experiments (e g Beven, 1982)

The streamlines of the lateral sub-surface matrix flow are parallel to the impermeable layers,

but they can be diverted by lateral or vertical macro- or mesopores (c) When the infiltrating

water reaches the capillary fringe of the groundwater, it quickly raises the level of the fully

saturated zone The resulting downslope flow process is governed by the lateral saturated

hydraulic conductivity and the presence of preferential flowpaths such as macropores or

pipes Numerous experimental studies (McDonnell, 1990,Turton et al, 1995) have demon¬

strated the importance of macropores for lateral flow and transport Sub-surface flow in

macropores (c, f) can contribute substantially to the fast runoff It has been shown by Mosley

(1982), that even flow in highly permeable matrix layers can cause identically fast runoff

processes If the subsoil and the bedrock are highly permeable, or if cracks or fissures into

deeper geological layers exists, a substantial part of the infiltrated water percolates towards

deeper groundwater layers (h)
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1.3 Time Series Modelling in Hydrology

Time series analysis is the most common technique to explore, describe and forecast envi¬

ronmental time series Most time series models have in common that they are a lumped

description of natural processes with a small number of known or adjustable parameters

Apart from providing a good description of the data series, time series modelling should lead

to models which are physically meaningful and statistically well defined I will focus on some

applications for exploration and forecasting of hydrological time series to illustrate the main

features of this model category For a comprehensive overview of modelling rainfall, flow

and mass transport in hydrological systems, see Conell andTodim (1996)

Probably the best known linear model in hydrology is the Instantaneous Unit Hydrograph

(IUH), which is mainly used for prediction and forecasting purposes (e g Bras, 1990) The

IUH can be presented as a time series model in observation space (Jakeman et al, 1990) or

in the state space (Rodnguez-Iturbe et al, 1978, Ihnnger, 1985) The IUH is a transfer func¬

tion which transforms the effective water input into the hydrological response ofa basin The

central hypothesis of this approach is that the watershed response is linear For this reason, it

can only be applied successfully if the effective, runoff generating water input is known It

is, however, not clear how to make reliable a priori estimates of the effective input A further

disadvantage, besides the constraints of proportionality of rainfall and runoff, is the time

mvanance ofthe ordinates ofthe IUH Since in general the response ofa catchment depends

on antecedent moisture conditions, the application of the IUH approach to predict or fore¬

cast the nonlinear response of a catchment is cumbersome

The nonlinear properties of the runoff generation strongly depend on the soil moisture state

of the drainage basin This perception of a natural drainage basin is often used to deal with

the nonhneanty Since direct measurements on soil moisture state variables are rarely availa¬

ble, they are often replaced by a surrogate variable Since the runoff itself reflects the actual

and past moisture conditions of a catchment, is often used as a surrogate variable Although

this is physically not opportune (it implies a feedback between the runoff and the precipita¬

tion), it has been successfully applied to make predictions of the runoff Kachroo and
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Natale (1992) subdivided the rainfall-runoff data series into smaller sections with a compa¬

rable hydrological status They classified the runoff as into low, medium, and high flow and

estimated the appropriate transfer functions for each classification by means of the method

ofweighted least squares A comparable approach are the NeTAR (Nested Treshold Autore-

gressive) models ofAstatkie et al (1997), which were applied to predict the discharge from

a stream in northwest Iceland The authors identified the air temperature during periods of

snow- or glacier melt and the state of the basin storage as the main sources of nonhnearity

Daily measurements on the air temperature were available and as a surrogate for the moisture

state of the basin, daily discharge values were used First, they estimated a treshold discharge

to distinguish between high and low basin storage Afterwards, for periods with low basin

storage, three temperature classes were distinguished which accorded to low snow or ice

melt, high snow or ice melt and glacier ice melt only For each ofthe so-defined four regions

linear time series models with discharge, precipitation and temperature were determined

This class of treshold models are an extension of the SETAR (Self Exiting Treshold Autore-

gressive) andTARSO (Open-loop Treshold Autoregressive System) models ofTong (1990)

and Tong (1983) A similar approach are the constrained linear systems (CLS), a simple piece-

wise linear black-box model (Natale andTodim, 1977) Still, this type of treshold models are

only one possibility to deal with the nonhnearity of runoff generation An overview of sev¬

eral techniques to model nonlinear time series is presented by De Gooijer (1992) and by

Priestley (1988)

In the state dependent modelling approach of Pnesdey (1988) the parameters of the time

series models vary with time The parameter variation is linearly related to changes in the

precipitation and the runoff An alternative to the state dependent models is proposed by

Young (1989) He proposed to use algorithms of times series analysis to estimate discrete

linear transfer functions from observed data To avoid an overparameterization, the number

of parameters of the transfer functions is determined by information criteria based on

common statistical inference These information criteria find a trade-off between the good¬

ness of fit and the precision of the estimated parameters As a result, parsimonious linear

transfer functions, which can often be interpreted in terms ofphysical processes, can be esti-
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mated from observed data Since processes underlying hydrological data are mainly nonlin¬

ear, linear transfer functions may be inappropriate descriptors Still, time series analysis

techniques may be applied to model the nonlinear properties of the runoff generation This

approach uses information on the hydrological state ofthe catchment to transform the meas¬

ured precipitation into effective, runoff generating precipitation Again, ifno information on

the soil moisture state of the basin is available, the runoff can be used as a surrogate variable

Also for modelling the transport ofsolutes in porous media, time series approaches have been

applied An approach described by Beven andYoung (1988) treats the porous medium as an

Aggregated Mixing Zone (AMZ) two parallel reservoirs, one accounting for the slow com¬

ponent of the solute transport, the other for the fast component In a way this is similar to

the concept ofmobile and immobile water ofvan Genuchten andWierenga (1976) The slow

component accords to that part of the solute which is exchanged between the mobile and

the immobile water, the fast component equals the solute which remains in the mobile

water From tracer experiments under steady flow conditions, linear transfer functions may

be estimated based on time series ofsolute input and breakthrough From these transfer func¬

tion, the volume ofthe mobile and immobile pore water can be computed In fact, the AMZ

approach is the discrete counterpart of the continuous transfer functions ofJury (1982)

Comparable to the AMZ is the ADZ (Aggregated Dead Zone) model ofYoung and Wallis

(1986) for the dispersion of solutes in rivers

Often time series models can be given a physically meaningful interpretation Parlange et al

(1992) calculated the mean diffusivity of the soil from the parameters of an AR(1) model

The AR(1) model was fitted to the depth profile of the soil moisture distribution Young and

Beven (1994) showed how the determmistical part ofa transfer function model can be inter¬

preted directly in terms of dynamic conservation equations associated with environmental

flow processes The authors divided the total runoffofa catchment into a fast and a slow flow

component A direct extrapolation of both flow components to stormflow and baseflow is,

however, not possible For baseflow separation purposes additional geochermcal information

is a prerequisite Moreover, the uncertainty of the parameters of the time series model may

lead to associated uncertainty in the derived 'physically meaningful' processes
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Chapter 2

The Modelling of

Hydrological Time Series

2.1 Introduction

In time series analysis much of the research concentrates on defining time series models for

natural processes In contrast to many physically based deterministic models, time series

models which describe natural systems have a fairly simple model structure Deterministic

models are often based on the researcher's subjective interpretation of reality In addition,

such models tend to be complex and highly overparametenzed The purpose of time series

modelling is not the development of complex and subjective physically based simulation

models, but rather the development of algorithms which allow to estimate the underlying

structure ofthe observed time series and to capture their main characteristics The estimation

algorithms are objective in the sense that they are based on methods of statistical inference

Although time series models do not rely on a deterministic representation of a natural sys¬

tem, the fitted time series model may in many cases be interpreted in terms ofphysical proc¬

esses
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The structure and parameters of a time series model can be determined by a wide variety of

estimation, filtering and smoothing algorithms, both in the frequency and the time domain

In the time domain, where the interpretation of time series models is more obvious, dynam¬

ical processes can be represented in the 'observation space' and the 'state space' In the observa¬

tion space, the input and the output of a system are directly linked by a transfer function In

state space setting, information on the input and output of a system are used to model the

temporal variation of a (mosdy) unobserved internal system state The system output is lin¬

early related to the system state In both representations parsimonious models are preferred

and selected by statistical inference

Parsimonious and physically interpretable time series models are a valuable alternative to the

classical deterministic approaches in hydrology and soil physics However, most time series

applications in hydrology focus on forecasting of streamflow or chmatological phenomena

This thesis rather focuses on detecting (soil) physical and hydrological processes from nonlinear

time series of water input and runoff Although very well known in system engineering,

most ofthe estimation techniques apphed in this work are not widespread in soil science and

hydrology Therefore, I include a detailed description of estimation procedures and algo¬

rithms used in the following chapters This introduction to the basic theory elements mainly

relies on the following textbooks

• Box, GEP, and G M Jenkins 1970 Time Series Analysis, Forecasting and Control

Revised edn published 1976 San Francisco, Holden-Day

• Gelb.A (ed) 1979 Applied Optimal Estimation, The M I T press

• Norton,J P 1986 An Introduction to Identification, London Academic Press

• Pnesdey, M B 1988 Non-linear and Non-Stationary Time Series Analysis, London Aca¬

demic Press

• Young, PC 1984 Recursive Estimation and Time Series Analysis, Berlin Springer- Verlag

All other sources are mentioned explicitly in the text

This chapter first discusses time series models in the observation space (2 2) A linear discrete

transfer function model is extended to take stochastic disturbances due to measurement
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errors and inadequacies of the transfer function into account (2 2 1) To estimate the param¬

eters of the transfer function, a recursive least squares procedure can be applied (2 3 1), but

may lead to biased estimates (2 3 2) To by-pass this problem I applied alternative (unbiased)

estimation procedures based on the application ofan instrumental variable (2 4 1 and 2 4 2)

To select an optimal model structure (l e number of parameters of the transfer functions), it

is useful to employ statistical criteria which combine the goodness of fit and the parameters

uncertainty (2 5)

Since runoff is mostly generated by a nonlinear process, the application of linear transfer

functions is often inconvenient Still, it is possible to approximate a nonlinear process by a

linear transfer function with parameters which vary in time (2 7 2) The estimation of such

transfer functions benefits from time series analysis methods in the state space (2 6), which

are (in this thesis) mainly filtering (2 6 1) and smoothing (2 6 2) procedures Although these

estimation procedures have been developed to estimate the noise free state of a system, they

may be applied to estimate time variable parameters ofa linear transfer function too The cor¬

relation of the time variable parameters with information on the hydrological state of the

system is applied to linearize the initial rainfall and runoff data Finally, discrete linear transfer

functions may be estimated from the linearized data by the estimation methods of section

2 2 In sections 2 7 3 and 2 7 4, an overview of this linearization procedure is given

2.2 Time Series Models in the Observation Space

Ifan exogeneous input variable (e g rainfall) acts on a system (e g soil), it activates the inter¬

nal system dynamics (e g by changing the soil water content or the depth ofthe groundwater

table), which in turn may result in a system output (e g runoff) After cessation ofthe driving

inputs, the internal dynamics steadily diminish and tend towards a state of rest again A sin¬

gle-input, single-output linear time series model in the observation space describes these

dynamics mathematically as

yl = -aiy'ki + boUk5 (2 1)
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In Eq (2 1), y\ denotes the true system output at time k, uk s is the true value of the exo-

geneous input and S is a time delay between the beginning of input and output The gain of

the system, bo, is the change of the output induced by a unit increase of the input The

autoregressive decrease of the output after cessation of the inputs is expressed by ai As can

be seen in the observation space, there is a direct link between input and output, without

exphcidy modelling the changes in the internal state of the system

Equation (2 1), being a fully deterministic description of a dynamical process, can be

extended to take additional autoregressive and exogeneous components into account as

n m

'=1 j=0

with ax to a„ being the parameters defining the autoregressive dynamics and b0 to bm the

parameters associated with the exogeneous input In observation space, the model structure

ofa time series model is summarized as [n (m +1) 5], where n is the number ofautoregressive

components, (m +1) the number of input terms and 5 a time delay as before Since the var¬

iables yl and u*k s,
and the model parameters at and & have no spatial significance, Eq (2 2)

describes a lumped system with linear dynamics

The output of dynamical systems depends on its history, not just on the present (or delayed

by 8) exogeneous inputs The past of a system influences the future by a number of initial

conditions or 'stored energies', which determine the dynamics of the system This number

of stored energies equals n, the autoregressive model order of the time series model For

hydrological systems (e g a drainage basin), the number of stored energies is tantamount of

the number ofparallel or serial reservoirs

2.2.1 Sources of Stochastic Disturbances

This section describes how stochastic disturbances may be represented in a time series model

However, for estimation purposes a much simplified time series model will be applied In

Eq (2 2), the variables associated with the unknown parameters at and b] are exacdy known

quantities Further, I assume that the [n (m +1) 5\ model structure describes the system
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dynamics completely This does, however, not cohere with reality several stochastic distur¬

bances may corrupt the purely deterministic model (2 2) We recognize three sources of sto¬

chastic disturbances which may corrupt a time series model (Fig 2 1)

ukS

+

ekS

SYSTEM

*
MODEL

• +

Figure 2.1: Stochastic and deterministic components of time series models

Because of the invasive character of the measurement process, or because of the specific

properties of the measurement devices, the true system inputs u"k s
and system outputs y*k

are unobservable They are corrupted by unknown stochastic disturbances We can define

two observable variables yk and uk s as

yt = yt+Q

ukS - ukS+ek8<

(2 3)

(2.4)

with yl and u*k s as before the true (but unobservable) system output and input The meas¬

urement errors on the output and the input are stochastic disturbances denoted by { ft } and

{£k s } A third stochastic disturbance may occur if the [n (m +1) S\ model structure is an

imperfect representation of the true system This can be due to further exogeneous inputs

which are not considered in the model or to additional dynamics which are not expressed.

Also, since Eq (2 2) is a linear time series model, possibly nonlinear properties of the true

system are not accounted for All the deviations of the model from the true system are

enclosed in the stochastic model error { Ek } For the moment, we do not make assumptions

on the statistical properties of the noise processes { ft }<{ekS ) an<^ i^k }
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Taking the stochastic disturbances into account, model (2.2) can be extended to

n m

Of + Q = -X "M' + & > + £ *'(B*> *
+ e»; *> + £*• (2'5)

i=l 7 = 0

or

n m

» = ^a,ykl + ^bjUkjS+Ek. (2.6)

<= 1 y = 0

By using the backward shift operator z
' (z 1yt = y^ ]

and z °yt = yt), the time series

model (2 5) can be written as

A(z >)(>£+Q = B(z »)(«;*+eta)+ £t, (2.7)

with

A(z') = zO + ^z' + ...+a„z" (2.8)

and

fi(z') = 2>0Z° + V '
+ •••+ 2>mZm. (2 9)

Because of the hnearity of the backward shift operator, the right hand-side ofEq (2 7) takes

the form

fl(z')(«;,+ ei4) + £t =B(z,K*+B(z1)et«+^- (2-10)

Without loss ofgenerality, the time delay S can be set equal to zero. Equation (2.10) changes

to

B(z1)(u'k + ek)+Ek = £(z'K +b0ek+biekl + ...+bmekm+Ek . (2.11)

If the stochastic disturbances {Ek } and {E^ } are white noise (l e zero mean, serially uncor-

related random variables), they can be combined into a new stochastic term

£(z i)(«: + ek) +Ek = fl(z ')«: + (V* + £*) +M* i
+ +bmekm (2.12)
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Since a linear combination of two white noise processes again equals a white noise process,

e g (b0Ek + Ek) = ek , Eq (2 12) can be reformulated as

B(z!)(MJ +ek) + Ek = B(zl)u"k +ek + C&, +
...

+ cpekp , (2.13)

or, by using the backward shift operator

B(z')(i4 +ek) + Ek = B(z')"J+C(z')et. (2.14)

The parameters C\ to cp of the polynomial C(z ') are introduced to allow for more flexi¬

bility in the description of the stochastic disturbances The stochastic time series model (2 7)

now takes the following form

A(z %f +&) = B(z ')«; +C(z l)ek (2 15)

or

B(z') , C(z')
,_,,,

y* =
77n *+7Tn * (216)

A(z ') A(z ')

This model clearly shows how the observed output variable depends on a purely determin¬

istic input variable and a stochastic noise model The same result can be obtained ifthe com¬

bined stochastic disturbances { Ek } and { Ek } are described by a moving average process of

the form

r r

ek = ^f,£kl + ^fj'Ekj (2 17)

j=0 j=0

In other words, if we assume that the measurement error of the input and the model error

do not introduce their own dynamics (l e they have no autoregressive components), then

the noise model has the same autoregressive behaviour as the observed output variable Fur¬

ther, it is no longer possible to distinguish in model (2 16) between the measurement errors

of the input and the model errors and we shall use the same stochastical process { Ek } to

denote both processes
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It is possible to describe the combined noise processes {Ek} and {Ek} with an autoregressive

(AR) model of the form

s

ek = ^8,ek,+ek, (2.18)

i = 1

or an autoregressive moving average (ARMA) model (Eq 2 19)

s r

ek = £s,e*, + £/£*,• (2.19)

i=l i=0

This changes the dynamics of the noise model in Eq (2 16) towards a more general transfer

function of the form

_

g(z ') C(z ')
^ ~

A(z')
*

D(z >)
" ( }

with

£>(z>) = z°+d1z1 +
.
.+dz". (2.21)

In model (2 20), D(z ') is a combination of the autoregressive dynamics in A(z l) and of

the ARMA model (2 19) This model is a special case of the most general parametric model

structure

., n g(z') .
,
C(z ')

..„,

which allows for more flexibility in the noise description and for common or different poles

(or dynamics) for the different inputs

Transfer function models (2 16) and (2 20) express how stochastic disturbances of the input

variable and the model error can be dealt with in a time series model However, the effect

The so-called Box-Jenkins model structure (Box and Jenkins, 1970), can be derived from

Eq (2 22) by setting A(z ') equal to one, the Output-Error model structure by setting

A(z '), C(z ') and D(z ') equal to one
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of the stochastic disturbance on the output measurements { ft } is still not considered

Because disturbances on the output measurements do not pass the system, it can be argued

that they have a smaller impact on the estimation procedure than {ek} or {Ek },and may

often be neglected Nevertheless, as will be shown later, their presence affects the estimation

procedures which are used to estimate the model parameters

The stochastic disturbances { C,k }, {Ek } and {Ek } are unknown a priori As a consequence,

it is not possible to use the transfer functions (2 16) or (2 20) as a basis for inference For prac¬

tical purposes we can assume a fairly general transfer function model of the form

yk = J^»kS+%> (223)

with yk and uk s
the observable system output and input, and a model for the stochastic dis¬

turbances of the form

1 P

nk = 5>*. + 5>*'=5(^' (224)

1=1 1=1

with {ek } a white noise process In this model, we treat { T)k } as a general noise term which

accounts for all the stochastic and deterministic effects on yk which are not due to the effect

of the unmeasurable true input signal Therefore, the parameters of the noise model (2 24)

must be interpreted independently ofEq (2 20) and of the general transfer function model

(2 23)

The transfer function model (2 23) can be rewritten in matrix notation by first using the def¬

inition of the backward shift operator

yk=-a\yki- -anykn+bQukS + +bmukmS + r)k (225)

and then grouping the parameters and the observations into two vectors This results in

y4= zja+jfc, (2 26)

with
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T = [yjn. — .yti,. "*«,-, «**.«] (2-27)

and

a = \-al,...,-a„,b0,...,bmj . (2.28)

In Eq. (2 26), zj is a (n + m + 1) row vector with the present and the past input and output

variables, a is a (n + m + 1) column vector containing the model parameters and the scalar

noise process { X\k }

2.3 Estimation ofTransfer Function Models

2.3.1 Recursive Least Squares

The least squares approach is a simple and concise technique to estimate parameters of

regression models Assume we have observed the input to and the output from a system at a

number N of points tk - f0 + kAt ,k = 1,2, ...,
N Using Eq (2 26), we model the k -th

observation, k > max(n, m + 1 + S), as a linear combination ofpast output and present and

past input values Without loss of generality we can assume that the time delay S equals zero

In an initial step, using only the first K = max(n, m + 1) + 1 observations, we obtain an

estimate am of the parameter vector, a, from the well known normal equations

f K

am Xz*zI
k= 1

1 K

^zkyt. (2.29)

l

Of course, a'*^ minimizes the sum of squared deviations

K

J= XOi-2*3"0)2' (2-30)

*= l
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and the estimation error after K observations, a'*^ = a"0-a, of the parameter vector is

given by

a<*> = Wl

U =

1 K

*= I

hA

u = l

-1 K

(2 31)

* = 1

To derive this expression we used the model (2 26) and the defimtion of a(Ar) (Eq 2 29) In

principle, the same approach can be used to estimate a from all the available data However,

such an 'en bloc' solution to the estimation problem is computationally inefficient and a

recursive algorithm which updates the estimate a'* '* at each time instant k,

k>K = max(n, m + 1) + 1, is preferable To clearly distinguish between the 'en bloc' solu¬

tion and the recursive solution, the recursive estimate of the parameter vector after k = K

observations will be denoted as kk, the corresponding estimation error as &k The recursive

form of the least squares equation is

with

and

a* = akl-Kk[yk -z[atlJ

K* = P*,z*[l+zlPtlzJ

P*=P*.-P*1z*[l+zlPtlzJ"lzIp*.

(2 32)

(2 33)

(2 34)

The derivation of the recursive form of the least squares estimator, a straightforward appli¬

cation of linear algebra, is given in Appendix A 1

Superficially, the time series model (2 26) equals a multiple regression model In regression

analysis however, the independent and dependent variable are clearly separated In time

series model (2 26), the observed output yk serves as both the independent (in zk) and

dependent variable However, Mann and Wald (1953, cited in Priestley, 1981, pp 353)

showed that the optimal properties of the least squares estimation are preserved for N —> °°
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The estimation algorithm (2 32), as it has been derived, is a deterministic procedure in the

sense that it ignores the statistical nature of the input and output measurements and of he

noise process { T)k } As a consequence, it does not provide any information on the quality

of the estimates. In order to provide statistical information on the nature of the estimates, it

is necessary to make some assumptions about the noise process { X\k }

• a) E[7Jt ] = 0, l e
, { 7]k } is a zero mean noise process

• b) E\r)kT]k+l ] = O if i = 0, else E[T]kT]k+l] = 0, which means that {t]k } is serially

uncorrected.

• c) E[7]^Zt ] = 0, i.e. the noise {T)k} is independent of the measurements vector Zk

This condition implies the independence of { T]k } and z, for / <k

Because of these assumptions, the expected value of the estimation error at time instant fe,

E[5t], is equal to zero. Thus, the covanance matrix of the estimation errors at time instant

k, Pt*,can be defined as

p; = E[itiZ] = Cov[a„ aj. (2.35)

With Eq (2 31) this expression can be written as

p;=

i-i *

E,Z7

.;= i

X^'E2' Vi

1= 1 ;= i

-

Ic -1"

Sz'z?
.1=1

(2.36)

Taking the expectation of the right-hand side of this expression conditional on

z,, i = 1, 2, ...,
k and using the second and the third assumption, we find

r *

p; i,zj

.1 = 1

i,z]

1= 1

E„|zl^l c,zj

L/= l

-l

(2.37)
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Then taking the expectation with respect to the marginal distribution of Z,, I = 1,2, ,k,

and recalling that the conditional expectation is identical to the marginal expectation for

independent random variables, we obtain

p;=ct2p* = <t2 i,zj

t= 1

(2 38)

Thus, the covariance matrix of the estimation errors Pk is the product of the noise variance

CJ2 and the Pk matrix The covariance matrix may be calculated at any time instant k with

either an a priori estimate of the noise variance fJ or an estimate recursively obtained from

the data as

6l = dL-\(dh-ril) (2 39)

The recursive equations offer the possibility to evaluate the accuracy ofthe estimates at each

time instant k In addition, in contrast to the 'en bloc' least squares solution of Eqs (2 29)

and (2 31), there is no need for a matrix inversion However, the least squares solution has

to be used with care The assumptions made to derive the covanances of the estimation error

of the least squares solution conflict with the stochastic properties ofEq (2 26) and, in addi¬

tion, the algorithm is based on hypothetical noise free output measurements Moreover, the

elements of Pt* in Eq (2 38) behave like that of Pt except for the scaling factor O" and are

a strictly decreasing function of the sample size This means that the influence of observa¬

tional data on the estimate of a^ decreases towards the end of the data series Although this

is statistically consistent, it limits the use of the least squares approach for nonstationary or

nonlinear time series

As a further limitation of the least squares approach, errors in the measurement of the output

and the input variable will impair the estimate a^ The next section shows, how the presence

of the noise process { C,k } associated with the variables in zk and the properties of { T]k } may

provoke a bias of the estimated parameters ak, no matter how many data are used
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2.3.2 Biased Least Squares Estimation

The zk vector in Eq (2 26) contains noisy past output and noisy present and past input var¬

iables We can, however, assume that the influence of noise sources associated with the input

variables is completely comprised in the noise process { T]k } Thus, in analogy to Eq (2 26),

we can write

i=l j=0

(2 40)

Since the input variable is supposed to be noise-free, the noise process { T]k } of (2 40) differs

from that of (2 26) By separating the true output variable and the measurement errors

yl + & = Xa' {y*k'+ ^'] + X b'u*>"*+ %'
1 = 1 ./ = 0

(2 41)

1=1 j=0

(2 42)

After combining the elements of the noise vectors, 1 e T)k - C,k = Ek, and by writing

Eq (2 42) in matrix notation follows

fk = zIa*+£*> (2 43)

with

,T _

zk
- (yti + Cki), ,(y't„ +?*„).«**. .»**,<S-m (2 44)

and ak the vector with the parameters as before



2 3 Estimation of Transfer Function Models

The normal equation which gives the least squares solution to this problem is

k

at ,**zl

-1 k

U= 1

27

(2.45)

/= 1

or, after combimng with Eq (2 43) and rearranging terms

V k T"1 k

at + ,****

./= 1 /= 1

(2.46)

To calculate the bias of the estimation, we take the expectation of the above expression

E*|fW*] = Ej

-

t -i -

k -|"
«t + Ez*zI

./=i

E£K Ez*£*
j=i j

(2.47)

with Eg ,j-
the expected value of the noise process {E' } given { f } and E4aJ= at Thus,

the least squares solution is only unbiased if the second term of the right-hand side of Eq.

(2 47) is zero We can separate the stochastic disturbances from the vector with the observa-

zk ~ z*k + ?z*

with

and

&t = [&i. ..,&..o,...,o]

* * # * * I
Z/t -

ykl>---'ykn'Uk&>---<UkS-n>\

(2.48)

(2.49)

(2.50)

It is now possible to write the expectation term ofEq (2 47) as
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c£'lf

k

L(= 1

= E,
-e-\; 2>:*

.( = 1

r *

+ E,
'E\£ /J Czk K

.i= i

(2.51)

or in the following expression for all the time instants in the time series, assuming n > m + 1

and by setting S equal to zero

%|C
./=i

D£'K

+ E;k|C

T>n Vn+l * • is 1

bn 1 t« • • S/V2

f, & • • Qnh

0 0
. .

0

0 0
. • °.

yn yn+i

y»i yJ

y* y\

un+l un+2

Wn+1 m M«+2 m

'Jn+l Si+1

1fi+2 ~ in+2

y'Nn
'?n+2 ~~

bn+2

.

Vn-Sn
-

(2.52)

By inspecting Eq. (2 52), it is obvious that the least squares estimation will be unbiased only

ifboth noise processes { C,k } and { T)k } are zero mean serially uncorrected random variables

and are mutually independent. If a prion information on the noise statistics is available, this

bias can be corrected for However, since this is rarely the case, other methods are required

to obtain an unbiased estimate
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2.4.1 Ordinary Instrumental Variables

Instrumental variable (IV) techniques are based on the assumption that an additional variable

x| exists with the following properties

• Xj is strongly correlated with the unmeasurable noise-free observations vector x*k

• \*k is independent with the noise processes { ft } and { T]t }

If an IV is available which fulfils both requirements, it can be easily used to formulate an

alternative normal equation of the form

./= 1

-1 k

Eiu (2.53)

/= 1

It can be seen from Eq (2 52) and from the properties of the IV that the bias of the least

squares estimation based on the application of an IV is zero Estimating the bias of a calcu¬

lated by means of Eq (2 53) results in

EE|ftW = Ef|

-

k -i k 1

»k+ 5/j zi EE|f £** Ei

./=i ./= 1 J
(2.54)

which is analogue to Eq (2 47) Since the IV is independent ofthe noise processes { C* } and

{ r\k }, the expected value

aE\{ 'YjX'kE'k
U= 1

(2.55)

equals zero and the estimation is unbiased Clearly, with the definition of an IV the estima¬

tion problem is not solved Rather it has reduced to finding an adequate IV vector Recalling

section 2 3 2, we showed that the error {ft } on the output measurements can cause a biased
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least squares estimation In most cases, { ft } is not a white noise process For this reason,

{E't } will be correlated with present and past values of { ft } One possibility to deal with

this problem is the introduction of an IV in the normal equations, as in Eq (2 53)

A possible IV vector can be a second measurement of yk, with independent noise character¬

istics Another possibility is using 'smoothed' values of the output variable The smoothing is

likely to reduce the effect of the noise process { £k } on the estimation Along this line of

thinking,Young (1985) proposed an auxiliary model to estimate an IV vector The auxiliary

model has the following form in transfer function notation

with

ftz') =/30 + ^z>+ +pmz- (257)

and

&{z i) = 1 + a,z
'
+ +anz" (2 58)

The polynomials a(z ') and /J(z ') are chosen and updated in a recursive or iterative fash¬

ion, based on the estimation results The IV vector x| is then composed by replacing the

output measurements in z[ (Eq 2 44) by the outcome of the auxiliary model (2 56) Pro¬

ceeding through the iterations or recursions, the estimate x| will progressively become

more correlated with the true but unmeasurable observations vector z
k

For a more exten¬

sive description of the IV technique, please refer to Sonderstrom and Stoica (1983)

An iterative scheme, which may be applied to estimate the parameter vector by means of an

instrumental variable approach, takes the following form

1 Calculate an initial estimate of the parameter vector Ak by means of a (biased) least

squares procedure This results in a set of ai and fc parameters of the transfer function

Eq (2 23)
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2 By means ofEq (2 56), compute the instrumental variable xj The parameters of the

polynomials d(zl) and |8(z ') are set equal to those obtained from the least squares

estimation at the previous step, or, a, = a, and jS, = b

3 Re-estimate the parameter vector at by application of the altered least squares normal

equation (2 53) This again results in a set of a, and b} parameters, which can be utilized

to compute the IV in step 2 The iteration continues until the parameter estimation con¬

verges A schematic overview of the IV procedure is given in Fig 2 2

Noise C

"

Noise EiS _

System 80>

ii
Input ukS -

i__ i

II £v^ *•

N
n

iteration oop

1

II £\^ *

nv "

<S(zi) a,,bj 1

Figure 2.2: The Instrumental Variable procedure (Section 2 4 1)

2.4.2 Refined and Simplified Instrumental Variables

More sophisticated versions ofthe IV methodology may be formulated In the previous sec¬

tion (2 4 1), we made no specific assumptions on the nature ofthe noise process { T]k } Still,

the noise process {T)k } can be modelled by means of an ARMA process, as in Eq (2 59)
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*-^'+5^e*- .

(259)

with {ek } being a zero mean serially uncorrelated random variable The Refined Instru¬

mentalVariable (RIV) technique can be used to estimate the model parameter for the com¬

plete transfer function model-Eq (2 59) The details of this estimation procedure, which is

both recursive and iterative, are explained inYoung (1985) A simplification of the RIV pro¬

cedure, the SRIV (Simplified RIV), can be obtained by assuming that both C(z ') and

Z)(z ') are equal to one

2.5 On Model Identification and Evaluation

The time series model (2 23) contains a deterministic part which is associated with the

observed input and a stochastic part, associated with a white noise process {ek } as described

in Eq (2 24) The estimation of time series models of this kind, with a deterministic and a

stochastic part, typically follows a sequential approach in a first step, the deterministic part

of the time series model is considered to obtain an estimation of the polynomials of

Eq (2 60)

yt = TTT»*s + flk (2 60)
A(z')

For this purpose, instrumental variable techniques as in the previous section (2 4) may be

applied From the difference between the estimated and the measured output, the noise

sequence { T)k } can be computed In a second stage ofthe estimation procedure, an adequate

noise model is determined, most of the time with an autoregressive moving-average model

structure of the form

f, =2illle (2 61)
C(zi)

or as an autoregressive model of the form
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For both steps of the estimation procedure two issues are crucial

• which is the optimal model structure (order), l e the most appropriate order of the

model polynomials A, B, C and D and the size of the time delay S, and

• how well does the selected optimal model structure describe the time series

Evidently, if the number of model parameters increases, more of the initial variation in the

data is accounted for However, the uncertainty on the parameter estimates will not neces¬

sarily decrease If a model is overparametenzed, the importance of a single parameter in the

total model structure decreases, which is expressed by a larger variance of the estimation

error of the parameter estimation Thus, it is necessary to apply criteria which define how

well a model performs (deviation between measured and estimated outputs) and which

reflect the variance of the estimation error of the parameter estimation (thus, the 'parameter

efficiency') of the model Despite considerable efforts (see de Gooijer et al, 1985), there is

still no unique solution to determine the structure and goodness of fit ofa time series model

from experimental data

2.5.1 Criteria based on the Goodness of Fit

2.5.1.1 The Mean Squared Error

N

MSE=i£u-Ji)2 (2.63)

with IX = max(n, m + <5+l) + l This criterion can be used to compare different model

structures estimated from the same input-output data series Because the expected value of

the residual variance changes with the length ofthe time series, the criterion cannot be used

to compare models estimated from different series of data
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2.5.1.2 The Nash/Scutcliffe Criterion (Coefficient of Determination)

(Ji-%)

Rt=1-^ (264)

k = fi

with yk being the arithmetic mean of the output data series Using this criterion, it is pos¬

sible to compare models fitted to different series of data However, if the available data are

split into a calibration and a verification series, then this criterion should be used with care

If, for instance, the verification period is drier than the calibration period, there will be less

runoff As a consequence, the differences between yk and yk will be smaller, and in turn,

2
smaller RT values than for the calibration period will result

2.5.2 Criteria based on the Parameter Efficiency

2.5.2.1 EVN (Error Variance Norm)

The EVN was specifically developed for use with instrumental variable methodologies

n + m + 1

EVN =
^2— y p (ao (2 65)

i = 1

with p (#) the covanance ofthe estimation error ofthe i-th parameter Ifthe parameter esti¬

mation is performed by means ofa recursive least squares or instrumental variable technique,

than the estimation error at the last recursion (time instant AO is used This corresponds to

the i-th diagonal element of the Pk matrix M k = N The EVN is a measure of the overall

var lance (and thus efficiency) of the model parameters The more parameters a model con¬

tains, the larger the estimation errors on the parameters and thus the larger the EVN will be

It can be altered into a normalized form (NEVN)
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n + m + 1 ,

NEVN =

n + m + 1 Zj a}(N)
(2 66)

with ti?(N) the recursive estimate of the l-th parameter of the at vector at time instant k =

N and G;j the variance of the residuals from the modelling If the estimation error of the

parameters small compared to the parameter value, the NEVN will be small, too

2.5.3 Information Criteria

Methods based on information measures are a mathematical expression of the principle of

parsimony They combine the goodness of fit with the efficiency of the model parameters

The purpose of the application of an information criterion is determimng the time series

model which describes the observed data best by using the smallest number ofparameters

2.5.3.1 Young Information Criterion (YIC)

TheYIC, which has been developed for single-input single-output transfer function models,

combines the residual variance of the model with the parameter efficiency into one crite¬

rion

N

YIC = In

Xu-%)2
k_=JX_ + ln(NEVN) (2 67)

TheYIC will be minimal only if the model fit and the parameter efficiency are optimal

2.5.3.2 Akaike Information Criterion (AIC)

To identify the autoregressive order of the noise model (Eq 2 62), an alternative identifica¬

tion criterion based on Akaike (1974) can be used

AIC =(N-n)loga* + 2v (2 68)
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with V the number of fitted parameters, fi = max(n, m + 8+ 1) and

N

^2 = a^ E {yk~%)2 (2-69)

k = n+ 1

The AIC tries, as the YIC, to reach an optimal balance between reducing the residual vari¬

ance and increasing the number offitted model parameters The AIC criterion can be applied

to moving average (MA) and autoregressive moving average (ARMA) models, too

2.6 Time Series in the State Space

2.6.1 The Kalman Filter

The state space representation of a finite parameter linear model provides a system descrip¬

tion which is more closely related to physical reality than observation space representations

It clearly distinguishes between internal dynamics of a system (Eq 2 70) and the observation

process (Eq 2 71)

x* = 4>kAxk i
+ K iu*-i + Gk jWt, (2.70)

Y*=H*xt+vt, (2.71)

where the time index k takes the values from k=\,2, ,N and

•

xk is an n-dimensional state vector

• U^ 2
is an m-dimensional vector with the actual inputs

• w^.i is a p-dimensional system noise vector

•

V^ is a /-dimensional measurement noise vector

• Yt is a /-dimensional vector of actual outputs

• 0t j
is the system dynamics matrix of dimension n X n

• L4 j
is the input transition matrix of dimension nxm
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• Gt, is the system noise transition matrix of dimension nX p

• Ht is the measurement matrix of dimension Ixn

The state or model equation of the state space model (2 71) describes how the internal

system state at time instant k (e g soil water content) depends on the state at the previous

time instant k-\ and the exogeneous inputs (e g rainfall) The system noise {wt ( } takes

account for all influences on the system state which are not caused by the exogeneous inputs

By means ofthe observation equation, the system state is linearly transformed into the system

output (e g runofi), which is corrupted by the measurement error { vk }

The state space representation as written above equals a vector system of difference equa¬

tions Any high order differential or difference equation, possibly with time variable coeffi¬

cients, may be represented as a vector system of first order difference equations. Since the

elements of the L, <k
., Gk ,

and Ht matrices may vary in time, the state space represen¬

tation is not limited to stationary or linear systems. In addition, the individual elements of

Vk, and v/k [ may influence several system states simultaneously This can be expressed by

allowing the elements off the main diagonal of Lt and Gk l
to be nonzero

In the observation space, the purpose of the estimation procedures was to find appropriate

parameters for the transfer function In state space, these parameters are supposed to be

known from the underlying physical system description or from a fairly general stochastic

model Now the estimation concerns the state vector in the presence of measurement and

system noise, but with given model parameters Of particular interest is the estimation of a

state vector which minimizes the estimation error By means of filtering, l e estimating the

state vector at the current time based upon all past and present measurements, an unbiased

and minimum variance estimate X* of the state vector can be found A possible solution to

this estimation problem is the Kalman filter (Kalman and Bucy, 1961), a linear recursive esti¬

mation which constructs an optimal estimate ofthe state vector given past and present values

ofthe actual outputs vector and past values ofthe actual input vector The complete two stage

Kalman solution to the estimation problem takes the following form
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• Extrapolation

**|u= 4>*i**i|*i + L*iU*i (2 72)

Updating

P*|*l ~ §k lPk l\kl$k i+ Q* i (2 73)

**|* =**|*. + K*[Y*-Htxt|t] (2 74)

P„*= [i-K^P^, (275)

Details on the derivation of the Kalman filter are given in Appendix A 2 The optimahty of

the Kalman filter algorithm is expressed by the Kalman gain matrix Kk The Kalman gam

matrix is proportional to the uncertainty in the estimate and inversely proportional to the

measurement noise contained in Rt The influence of the system noise and the measure¬

ment noise on the state estimation can be summarized by normalizing all elements of Pkik

with the appropriate element of Kk In the following, this is shown for a system with a state

vector of dimension n = 1 and with one input and one output variable only The Kalman

filter equations (2 72) to (2 75) can be altered to

• Extrapolation

Updating

*t|ti = <t>t 1**11*1+ L*i"*i (2 76)

^ i
= «l»* i«* i|t i*I» + NVR

t_, (2 77)

**l* =**l*i+ Kt[)i-Htx^] (2 78)

P'klk = [l-KtHt]p;|tl, (2 79)
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with

NVR
k ,

= ^ and (2 80)

^1 = ^ (28D

The noise variance ratio NVR^, which has to be specified by the analyst, determines the

filtering properties ofthe Kalman filter Ifwe assume that the noise processes vt and wt are

stationary in the wide sense, the covanance matrices Qk and R4 are constant for all k The

noise variance ratio matrix NVR^ reduces to NVR, a matrix with time invariant values For

large NVR values, the filter will react more on changes in the data, rather than estimating a

smooth time series of the state vector The opposite, a smooth time series of the state vector,

which clearly expresses the a priori known internal dynamics, can be obtained by choosing

a small NVR value In most applications, the NVR can be defined at a fixed value for all

data points However, if rapid changes in the state vector are expected, it is possible to give

the NVRj matrix locally larger values This techmque, which is called 'variance intervention'

reflects the analyst's interpretation of the system dynamics

2.6.2 Smoothing

The Kalman filter has been used successfully for a wide range ofapplications Ihrmger (1985)

modelled hydrological time series by means of the Kalman filter, and showed that the non¬

linear properties of runoff generation can be modelled by letting the matrices Lt, and <|>t l

vary in time The Kalman filter has also been applied for the inverse estimation ofparameters

characterizing the hydrodynamic behaviour of aquifers (Ferraresi et al, 1996) Especially the

on-line forecasting of hydrological series is an intensively used application of the Kalman

filter (Chao-Lin Cluu, 1978,) However, if a Kalman filter is apphed for off-hne modelling

and interpretation of hydrological time series, it does not fully explore the information con¬

tained in the data A filter estimates a noise free state vector at time instant k, based on all

observations up to k In off-line analysis, however, data at time instants fc+1 to N are available



40 2 The Modelling of Hydrological Time Series

as well To estimate the system state, xk, based on all available measurements, a smoother can

be used Smoothing is a data processing scheme which uses all data between the time instants

1 and N to estimate the system state at l<k<N The smoothed estimate of xk is then denoted

as kuN, which expresses that the estimate is conditioned on all available data Three types of

smoothing are of interest Infixed point smoothing, the state vector at time instant k = k' is

estimated as the total number of observations N increases Infixed lag smoothing, the state

vector at time k' = N - I, which has a fixed lag / to the total number of observations N, is

continuously updated The former two smoothing procedures can be used on-line, l e for

applications where the number ofavailable data still increases The Fixed Interval Smoothing

(FIS), which will be discussed in this chapter, is for off-line procedures It is used to estimate

the state vector at all time instants k between 1 and N, exploiting all available data FIS can

be considered as a combination of a forward filtering procedure from k =1 up to k = N (e g

by means of the Kalman filter), which is followed by a backward filter which revises the for¬

ward estimates using data from k = N-\ up to k = 1 The result of the smoothing process is

an optimal estimate xk,N of the state vector at time instant k, based on all data up to k = N

The most straightforward derivation of a fixed interval smoother is obtained by combining

the results of a forward and a backward filtering process Let xk,k as before denote the result

of the forward filtering and i,Xj.|t the outcome of the backward filter Because of the Gaus¬

sian assumptions on the noise processes V^ and Wt, the estimation errors of the backward

and the forward filter results are uncorrelated Thus, an optimal smoother takes the form of

a linear combination of Xut and bxt^ as

**|/v = A*W + A*b*t|,t, (2 82)

with A and A* time variable weighting matrices to be determined As for the derivation of

the Kalman filter, the smoother is optimal if it is unbiased and the smoothed estimates have

a minimal error variance By replacing the state estimates in Eq (2 82) by the true values plus

an estimation error, we obtain

xHN= [A+A'-IJ+Ax^ + A*^ (283)

For unbiased filtering errors, the smoothing error xk,N equals zero only if
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A* = I -A

The smoothing error ofEq (2 83) can be reformulated as

X*|/V = ^**|* + (I ~A)bx*|*>

and the covariance of the estimation error of the smoother is

P*l* = Covjx^x^] = E[xt|Afx^w]

PklN = AP^AT + (I -A )J>k[k (I -A )T

(2.84)

(2.85)

(2.86)

(2.87)

with bPt,t the covariance matrix ofthe estimation error ofthe optimal backward filter Dif¬

ferentiating Eq (2 87) with respect to A and equating the result to zero results in

I-A
rk\k \**k\k + t?k\kj . (2 88)

and

P*|/v - flVf' +W1
-1

(2.89)

From Eq (2 89) it is obvious that the estimation error of the smoothed estimate is always

smaller than or equal to the filter estimation error It is now possible to write the state vector

as

Kk\N r*|w (P*|*) X*|* + (bPt|t) bX/tl* (2.90)

Equations (2 90) and (2 89) can be used to calculate the smoothed estimate of the system

state if the backward and the forward filtered system state and the corresponding error cov¬

ariance matrices are available Evidently, also the normalised error covariance matrices of

Eqs (2 76) to (2 81) can be used to estimate the smoothed state vector Since the above

smoother solution processes the time series three times (backward, forward and their com-



42 2 The Modelling of Hydrological Time Series

bination), it is computationally rather inefficient Therefore, several alternatives of the basic

smoother equations (2 90) and (2 89) have been developed An example of an optimal

smoother which does not involve backward Kalman filtering are the Rauch-Tung-Stnebel

(Rauch et al, 1965) algorithms

*k\N = **|*+A*[**+l|'V-**+>l*J (291)

P*+i|/v~P*+i|* A*> (2 92)

and

A* = V*P*+i|* (2 93)

This backward recursion once more filters the initial forward Kalman filter state vector The

combination of a forward and backward filtering process assures that the estimate at time

instant k is conditioned on all available data As can be seen from the smoother equations, at

least one complete filter solution is necessary to calculate the smoothed solution Therefore,

fixed interval smoothing can only be performed off-line, if all the observational data are

available

2.7 Data Based Modelling

2.7.1 Definition

Most ofthe modelling work in soil physics and hydrology relies on deterministic approaches

Deterministic modelling of natural systems often depends on prior scientific knowledge and

may lead to far too complex and overparametenzed models for natural dynamical systems

This conflicts with the nature of many natural systems, which are often governed by only a

few dominant processes Data Based Modelling (DBM), as proposed by Young and Beven

(1994), approaches the modelling of natural systems from an alternative, statistically reliable

perspective The DBM approach is based on objective statistical inference ofthe model struc-

P*|JV - P*|* + A*
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ture and parameters Instead ofpostulating a model structure (e g as a set ofdifferential equa¬

tions), DBM uses time series analysis to characterize the dominating system properties from

series of observational data without making assumptions on the nature of the processes In

its purest form, DBM avoids subjective analyst opinions from entering the model identifica¬

tion and parameter estimation process However, Jakeman et al (1994) have shown how a

limited amount of a prion knowledge can substantially improve the DBM technique More¬

over, the modelling ofhydrological time series involves a physical interpretation of the iden¬

tified model structure and of the estimated parameters As a consequence, only time series

models which have a physically plausible meamng are ofinterest This puts, however, restric¬

tions on the model identification and parameter estimation procedure

The number of at and b parameters and the value ofthe time delay define the model struc¬

ture [n (m +1) S\ of a discrete transfer function (Eq 2 60) It can be shown how certain

model structures ofdiscrete transfer functions are analogous to continuous partial differential

equations A first order linear differential equation, e g, may be represented in discrete time

by a [1 1 5\ time series model Higher order differential equations can be rewritten as a first

order vector differential equation In terms of system dynamics, this is equivalent to treating

higher order dynamics as a series of parallel first order dynamics Identically, time series

models of structure [n (m +1) S\, restricted to the condition that n = m + 1, may be writ¬

ten as n parallel [115] models If n > m + 1, two dynamical processes in series may occur

and if n <m + 1, a process without dynamics (l e only a gam factor, no autocorrelative

parameters) results In this work, the application of time series modelling will be mainly

restricted to transfer functions which present one single or two parallel processes (l e

n = m + 1) Powerful methods ofstatistical inference to select the appropriate model struc-

Instantaneous time series models, l e models without an autoregressive decrease of the

output after cessation of the input may occur as a consequence of an insufficient resolution

of the time series If for instance, a drainage basm reacts very fast to precipitation (e g
within minutes), averaged hourly runoff values may not capture these fast dynamics Con¬

sequently, the analysis of the time series will lead to the formulation of instantaneous time

series models
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ture are information criteria (see section 2 5 3) In the following of this thesis, we used the

YIC information criterion (Eq 2 67) to distinguish between [1 1 S\ and [2 2 5] models

The estimated parameters of the transfer function as well must have a physical significance

An excellent method for examining the physical relevance of a transfer function model is to

calculate the impulse response The impulse response of a dynamical model is the output

which is generated after an impulse input has been apphed An impulse input can easily be

generated by setting the input uk to 1 at k = 1 and to zero at all k ^ 1

2.7.2 Data Based Modelling of Nonlinear Time Series.

Data series of hydrological processes are typically generated by a nonlinear process If the

nonlinear phenomena underlying the experimental data were mathematically understood,

the modelling of the time series would only involve a parameter estimation However, since

a profound physical understanding is rarely available, the modelling process mosdy starts with

the inspection ofa set ofnonlinear models At this stage the analyst can decide to use a prion

knowledge as e g Jakeman et at (1994), or he can subject a series of nonlinear models to a

battery of diagnostic checks (De Gooier and Kumar, 1992) However, in the most general

case, a nonlinear process can be approximated by a linear model with time variable parame¬

ters The estimation problem then changes from selecting an appropriate nonlinear model to

the estimation ofthe time variable parameters ofa linear model In the following ofthis chap¬

ter a procedure of statistical linearization is presented Afterwards, it will be shown how the

time series ofa time variable parameter can be employed to linearize the rainfall-runoff data

2.7.3 Derivation of a Time Variable Parameter Model

Consider a time series of output values yk generated by a nonlinear process

yk = F(X») + ek (2 94)

*k = v*i> ,ykn>»ks> >"kmS,Vk6'> ,UkgS;ekl, ,ekp\, (2 95)
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with {ek } a white noise process, uk s
the input variable and F a general (nonlinear) well

behaved function The vectors Vk g* to Uk q g* contain all the other available information

on the system The nonlinear function F can be approximated by a Taylor series about some

fixed time instant fc0 and written as

y* = F(xo+£ 3F(Xt)

dy*. (y*,-y*0,) + (2 96)

3F(XJ

; = 0

9F(X*)

<*"-N^*SSft

( = 1
de/ci

'o s = 0

(ekl-ek ,) + ek + C(Xk<j)

dVksl (VksS*-Vk^g') +

To proceed, we neglect the higher order terms C(XiCq) ,
as well as the partial derivative of

F(Xfc) with respect to Vk s g* Certainly, the information contained in the additional system

measurements describes the nonlinearity of the system, and should be a substantial part of

the linearized process model However, our attempt is to develop a linear input-output trans¬

fer function with time variable parameters Equation (2 96) can be simplified to

3F(Xt)
aw.

v
- Try ^ + V ££iMv + V *SMH + V *<**), (2 97)

, = 0 /= 1

T(%* = t0) contains all the terms that depend on k = k$ and can be considered as a long term

trend of the system As hydrological time series most often show negligible trend compo¬

nents, it can be neglected By renaming the partial derivatives as

3F(Xt)

dy*. k

3F(Xt)

d»k,s

= -a,(*o)

bj(k0)

(2 98)

(2 99)
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9F(Xt)

dekl
cfio) (2.100)

Equation (2.97) reduces to

yk = ^ -a,(k0)yk ,+ ^b](k0)uk]S+^ C[(k0)ek, (2 101)

i=l ; = 0 /= 1

Clearly, the coefficients a,(k(,), b,(&0) and C;(£0) depend on the time k$ and thus Eq (2 101)

may be written in a more general form as

yk = z[a(k) + ek, (2.102)

with

4 = ki.•ykn,utS). ,ukmS\ (2.103)

and

a\k) = [ai(k), ...,an(k),b0(k), ...,bm(k),Cl(k),...,cp(k)^. (2.104)

The deterministic part of the above transfer function model strongly resembles the deter¬

ministic part of the linear transfer function equation (2 26), however, now with time variable

parameters Thus, by this procedure of statistical linearization, the estimation problem has

been reduced to estimating the temporal change of the parameters of the transfer function

model.

2.7.4 Estimation of Linear Transfer Functions with Time Variable

Parameters

Equations (2 102) to (2 104) define a transfer function with time variable parameters To esti¬

mate the parameters of this transfer function.Young (1993) proposed to apply a fixed interval

smoothing technique (Eq 2 90) But, this fixed interval smoother estimates the temporal

variation ofa state vector In addition, unlike in the state equation (2 70) ofa state space model,
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no information on the temporal variation of the parameter vector of transfer function

(2 102) is available

Since there is no a priori information on the temporal variation ofthe parameters, it is useful

to adopt an explicit but simple model which describes the parameter variation Examples are

random walk and integrated random walk models from the family of Gauss-Markov

sequences (see Appendix A 3) For the temporal variation of the parameter vector of Eq

(2 102), we can assume a random walk model of the following form

ak = ak, + wt, (2 105)

Equation (2 102) can now be recognized as the observation equation and Eq (2 105) as the

state or model equation of a state space model Actually, there is htde difference between the

state or model equation ofa state space model (Eq 2 70) and a stochastic difference equation

(Eq 2 105) which describes the temporal parameter variability If we compare the observa¬

tion equation of the state space setting Eq (2 71) with the observation equation of the time

variable parameter model Eq (2 102), the 'observation matrices' Ht and z\ differ In state

estimation, the matrix Hk is considered to be deterministic and known, whereas in parame¬

ter estimation the xj vector is usually stochastic As has been shown before, it contains noisy

previous output observations and present and previous input samples Fortunately this has no

further influence on the estimation procedure Exphcit modelling ofparameter variation is

therefore a sort of state estimation problem, with a parameter vector as the state The equiv¬

alence ofparameters and states opens the door to a wide range ofstate estimation techniques,

such as Kalman filtering and Fixed Interval Smoothing To estimate the time variable param¬

eters a(t)ofEq (2 102) the Kalman filter equations can be rewritten as

• Extrapolation

a*|*i = atini + Ltl«tl (2 106)

P*i = P;iM+NVRtl (2107)

• Updating
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a*|t = atiiH + KJ^-zJatiu] (2 108)

r# =(I-KtzI)P;|M (2 109)

Kt=P*tzlRt' (2110)

Thus, in Eqs (2 106) and (2 108), a^* and a^ i are no longer system states, but the time

variable parameter vector ofEq (2 104) The Kalman filter can be apphed to obtain estima¬

tions of the time variable parameters for both the backward and the forward filtering prob¬

lem The apphcation of the smoother equations (2 89) and (2 90) is then straightforward

Evidendy, also alternative forms of the smoother can be apphed to estimate the smoothed

parameter estimates a^n An example of the filtering and smoothing procedures applied on

rainfall and runoff data of the Erlenbach headwater catchment is given in Fig (2 3) Rainfall

and runoffmeasured at 10 nun intervals are used to estimate the time variable gain parameter

of a [1 1 1] linear transfer function For this purpose, Eqs (2 106) to (2 110) are employed

to obtain the filtered parameter estimation, followed by Eqs (2 91) to (2 93) for the

smoothed estimate The NVR was set to 0 001, and the initial values of the parameter vector

and the matrix of the covanances of the estimation error were obtained from estimating a

linear time invariant [1 1 1] transfer function The time series of the time variable parameter,

together with additional measurements on the hydrological state of the system, can be

apphed to linearize the hydrological data series The complete linearisation procedure, which

will be apphed later in this work, can be summarized in the following steps (see also Fig 2 4)

1. Estimate a linear transfer function of form (2 23) from the rainfall and the runoff data To

avoid a biased parameter estimation caused by noisy data, an instrumental variable

method (section 2 4 2) may be apphed In this work, the applied instrumental variable

techniques most often converged after 3 to 5 iterations and the model identification is

performed according to the Young Information Criterion (Eq 2 67)
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Figure 2.3: Example of the filtering and smoothing procedures. Precipitation and runoff data for
the Erlenbach catchment are used to estimate the time variable gain parameter b0(k) of a [\ \ 5\
transfer function.Kalman filter (kk) and smoother (a^J results are shown together with the

covariance of their estimation errors Ptit and P^i/v .
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2. The model residuals, f)k , may be tested for nonlinear and/or nonstationarity effects The

autocorrelation function of the model error, cross-correllogram of X\k with uk and yk,

and tests for stationanty can be used If the residuals do not show any signs of non-sta-

tionanty and/or nonhnearity, this estimate is the final solution to the estimation prob¬

lem

3. Most of the time, however, a linear transfer function will not describe the rainfall-runoff

data well Studying the estimation errors of the parameter estimates reveals which model

parameters are likely to vary in time For hydrological time series, most often the param¬

eters associated with the exogeneous inputs (l e the gain parameter) will show a time

variable behaviour By means of the fixed interval algorithms Eq (2 90) based on the

Kalman forward and backward filter solution or by means of Eqs (2 91) to (2 93) the

temporal variation of the parameters of transfer function (2 102) may be investigated In

most cases, a fairly simple [1 1 5\ time series model with a time variable gain parameter

b0(k) and a fixed autoregressive parameter al is estimated The time delay S, the value of

al and the initial value for b0(k) are obtained from the linear transfer function estima¬

tion Identically, the estimation error of the parameter estimates of the linear case may be

applied to construct the initial value of the covanance matrix of the estimation error

Pk,k j
at k = 1 This matrix as the initial value of the parameter vector, is necessary to

perform the extrapolation step at the initialization of the Kalman filter algorithm

(Eq 2 72)

4. Examine the nature of the time variable parameter(s) in relation to the additional system

information contained in l]k g* (Eq 2 95) The main interest goes to those additional

variables which show a good temporal correlation with the time variable parameters of

the transfer function If a good correlation can be found, a nonlinear equation can be fit¬

ted, based on a weighted least squares approach The weighting follows according to the

scaled elements of the covanances of the estimation error in the VkiN matrix Thus, in

general terms, the nonlinear behaviour of the runoff generation can be modelled as

S*|/v = 3(Ut«*) (2 111)
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5. This nonlinear equation can be used to transform the measured inputs into effective

inputs By employing the nonlinear equation (2 111), which is most often as power law

(see also Section 4 4 3), the effective precipitation is computed as

«**«=«t*3(Ut**) (2 112)

6. Again, a linear transfer function can be estimated by means of an instrumental variable

algorithm Instead of the measured precipitation, now the effective precipitation is used

as the input variable This procedure can be continued until the residuals of the model¬

ling no longer suggest that the time series are nonlinear
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Figure 2.4: Overview of the nonlinear transferfunction estimation procedure
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3.1 Introduction

Man-made increase ofatmospheric nitrogen deposition may destabilize extensively managed

forest ecosystems As a result of long-term addition of nitrogen beyond the natural demand

of plants and micro-organisms, nitrogen species leak from the ecosystem and threaten the

quality of surface and groundwater resources (Dise and Wright, 1995)

Wright and Tietema (1995) and Gundersen and Rasmussen (1995) recognized that the

leaching of nitrate from nitrogen limited forest ecosystems may be induced by hydrological

processes For catchments treated with ammonium nitrate, an elevated concentration of

nitrate in the runoff was observed, whereas ammonium was completely retained The

authors attributed the nitrate losses in the runoff to periods with high flow of water which

occurred mainly during the winter and especially during snowmelt periods

Numerical simulations by Creed et al (1996) supported the so-called flushing hypothesis

Their simulations showed that after a period oflow demand by the forest ecosystem, nitrogen

was enriched in the upper soil layer and it was flushed from there by intensive rainfall or

spring snowmelt Fast flow processes may cause losses of nitrogen from natural ecosystems,

too The residence times of rainwater and nitrogen species in the vadose zone may be too

short to allow plants or micro-organisms to take up readily available nitrogen Short transit

times of water and solutes in a natural catchment have been reported by Nyberg (1995)

Thus, the export ofnitrogen from natural ecosystems may at least partly depend on the rout¬

ing ofwater through the soil

There is plenty ofevidence for the existence offast flow paths such as macropores or fractures

in agricultural soils It has been shown that a small amount of macropores may dominate the

transport of water and dissolved chemicals (e g Flury et al 1994, Flury et al 1995)

Runoffgeneration in forested catchments has been the subject ofmany hydrological studies

(e g see Bonell, 1993 for an overview) Since most undisturbed forest soils have a highly per¬

meable surface layer, most of the research concentrates on the subsurface flow The extent

and the residence time of the subsurface flow has a significant influence on the interaction

between the soil matrix and the soil water The nature ofsubsurface flow depends on the soil
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structure and on hydrological controls such as soil moisture content and precipitation inten¬

sity A possible flow mechanism is the displacement of pre-event soil matrix water by the

rainfall (Wilson et al 1990) The presence ofpreferential flow paths in the subsoil which by¬

pass the soil matrix, may drastically change the flow regime (Beven and German, 1982,

Turton et al, 1995, Leaney et al, 1993, Mullholland et al, 1990, Hornberger et al, 1991)

However, although present in most forest soils, macropores not always play an active role in

the subsurface flow It has been shown by Luxmoore et al (1990) andTsuboyama et al (1994)

that the flow through macropores depends on the rainfall intensity Additionally, Sidle et al

(1995) andWilson et al (1990) showed that macropore flow was more likely to occur under

wet antecedent moisture conditions If flow through macropores occurs, it can be argued

that because of the short residence times ofthe rainwater in the soil, the runoffwill have the

chemical signature of the precipitation This hypothesis has been confirmed by Turton et al

(1995), who detected a negative correlation between the rainfall intensity and the amount

of pre-event water in the runoff of a small forested soil plot It has been shown McDonell

(1990) and Bazemore et al (1994), however, that rainfall water can also mobilize pre-event

water in the soil and force it into the macropores As a result, fast runoff will occur with the

chemical composition of the soil matrix water Fast flow processes m the subsoil can also

occur if the content ofmobile soil water is limited (Lange et al, 1996) or as lateral transport

along impermeable bedrock surfaces (Renzetti et al, 1992) Finally, return flow and the

resulting saturation overland flow can also be the cause of fast runoff generation (Pearce et

al, 1990, Peters et al, 1995)

Thus, to understand the cycling of nitrogen in a biogeochemical environment a sound

knowledge of the hydrologic control of the transport ofsolutes in the subsurface is essential

The experiment we describe in this article was set up to provide this information for an

experimental study in which mtrogen was added to a prealpine coniferous forest ecosystem

(Schleppi et al, 1998) The study was part of the so-called mtrogen saturation experiments

(NITPvEX,Wright and van Breemen, 1995) in which, at a series of sites, the mtrogen dep¬

osition was altered At the Swiss NITR-EX site in the Alptal valley, N labelled nitrogen was

applied to a small, artificially isolated forested catchment (1500m ), and its transfer into the
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soil and vegetation and the losses by runoff and denitrification were investigated Although

the concentration of nitrogen species in the runoff seemed to favour the nitrogen flushing

hypothesis, the actual hydrologic dynamics were unknown Visual observations of the artifi¬

cial catchments during rainstorms led to the hypothesis that the generation of runoff was

strongly influenced by the micro-topography Within the artificial catchment, there is a close

correspondence between the micro-topography and the distribution of the two main soil

types A wet umbnc Gleysol with a muck humus topsoil is common in the depressions of

the catchment, whereas a drier umbnc Gleysol with a mor humus topsoil dominates the hill¬

ocks Our observations suggested that the mor humus soil had a limited hydrological activity

and that runoff was mainly generated in the wet dips covered by the muck humus To put

this hypothesis to a test, it was necessary to study the runoff generation in well defined arti¬

ficial catchments Because of the high spatial and temporal variability of soil chemical and

hydrological processes, even in a small catchment of 1500 m
,
we decided to concentrate on

two soil plots of about 13 m
,
one representative for the muck and the other for the mor

humus soil To gain insight into the dominating flow processes and to estimate the residence

times of water and solutes in the different compartments of the soil, we performed a series

of experiments where we applied various tracers on the soil surface and in the subsoil This

article describes the experiments, reports the results we obtained thereof and draws some

tentative conclusions about their relevance for the Swiss NITREX project

"muck" and "mor" humus are descriptions of the humic topsoil Muck humus represents

an Aj horizon (mineral soil mixed with organic matter decomposed under hydromorphical
conditions) which mainly developed in anaerobic, waterlogged soils The topsoil we

denoted with "mor humus" is much better drained and characterized by a moderately thick

litter layer on top of a humic A^ horizon This humus form has a low pH
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3.2 Material and Methods

3.2.1 Experimental Site

The study site 'Alptal' (47°03N, 8°43E) is situated at the upper end of a bhnd valley in the

Swiss prealps at an altitude of 1200 m a s 1 The prevailing Northwest winds force wet air into

the valley, causing high intensity rainshowers The annual precipitation is 2300 mm y" ,
30

percent is falling as snow between December and May. The average annual air temperature

is 6 °C, with a minimum of-2 °C in February and a maximum of 17 °C in August. The

experimental plots are situated on a moderately steep slope (20 percent), with a Southwest

orientation The bedrock at the site is Flysch: a calciferous sediment ofthe tertiary, composed

of schisted, marled clays interchanged with stony or sandy layers.

The soils in the area are generally classified as umbnc Gleysols. Closely linked to the micro-

topography, two different organic topsoils developed (Schleppi et ah, 1998). On small ridges,

an acid mor humus topsoil formed The organic surface layers L, F, and H, followed by the

humic A|, horizon cover moderately wet and well structured gleyic G0 (fully oxidized) and

Gor (partly reduced) horizons (Table 3.1) On the mor humus there are two vegetation layers'

the understory vegetation consists mainly of Vacanium myrtilhs and Equtsetum sp, while the

tree layer is dominated by Norway spruce (Picea Abies, (L.) Karst). On the mor humus plot

we selected for this experiment, the understory vegetation was scarce

Table 3.1: Properties of the mor humus soil

Depth *

[cm]

Porosity
+

[m3nT3]
particle size distribution

Sand Silt Clay

t pH* OC*

fekg >]

LFH 0-6 - - - 33 345

Ah 6-30 0 75 47 47 6 36 71

G„ 42 22

G„r
>30 0 74 49 46 5

51 25

£ Depths at the experimental soil plot (profile from 0-60 cm)
f From from Diserens (1992), clay < 2um, silt 2-63 urn, sand 63 [im~2 mm, percentage by weight
# Arithmetic average of 72 samples taken on a regular 4 x 4 m grid on a neighbouring site, measured in

CaCl2 0 01M



58 3 A Tracer Experiment to Detect Flow Paths in Forest Soils

The much wetter muck humus topsoil developed in depressions between the ridges and

mounds The soil profile consists of a thm litter layer L, a well-developed muck humus hori¬

zon Aa, a pardy reduced gleyic horizon Gro and a fully reduced gleyic horizon Gr (Table 3 2)

Because of the high soil moisture content throughout the year, there is no tree layer The

understory vegetation is dominated by Calta palustns and grasses The matrix of the subsoil

horizons Gro and Gr is barely permeable However, because of the high number of stones,

old tree roots and dead wood in the anoxic soil layers, a partly continuous network ofwater

conducting pores exists

Table 3.2: Properties of the muck humus sod

Depth *

[cm]

Pbros.*

[mV3]
KMt§

[msec ]

particle size

sand

distribution

silt

clay

t

pH# O.G*

[gkg -1]

L 0-3 - - - - - -

Aa 3-25 0 90 7 2 10"7 51 45 4 54 134

Gr 25-40 0 76 0 2 10'7 44 44 12 51 80

Gr >40 071 0 7 107 43 42 15 59 32

"*" Depth at the experimental soil plot (profile from 0-60 cm)
f From Diserens (1992), clay < 2 urn, silt 2-63 ^im, sand 63 um-2 mm, percentage by weight
§ From Stadler et al (1996)
Arithmetic average of 72 samples taken on a regular 4 x 4 m grid on a neigbounng site, measured in

CaCl2 0 01M

3.2.2 Soil Plots

For each of the humus types, we selected an experimental plot of about 13 m with similar

plot slope and aspect To prevent lateral inflow of water, the soil plots were separated from

the surrounding soil by means of 80 cm deep trenches In the downslope open face of the

soil plots runoff gutters were inserted 25 cm into the soil profile in three different depths

(Fig 3 1) The gutters were filled with two sand layers of distinct particle sizes to maintain a

minimal suction at the profile face and to prevent an early deflection of the flow lines of

water Near the profile face we used a particle size of 0 3-0 9 mm, near the gutter the particle
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size was 3-5 mm.The gutters were 2 m wide, their height was 5 cm (surface runofi), 25 cm

(interflow) and 30 cm (depth flow).The depths in which the runoff gutters were installed

matched approximately the adjacent soil horizons (Fig. 3.1). The gutter outflow was

recorded with tipping buckets having a resolution of about 100 ml. The tipping pulses were

recorded on a data-logger (Campbell Scientific, CR10).To convert the counts per unit of

time to flow rate, each tipping bucket was calibrated separately in the laboratory.

Horizon Depth
Mor Muck (cm>

X Temperature, Tl to t3

^ Soil moisture content, 91 to 84

0 Matnc potential , \|/1 to \|/4

Surface runoff

Depth runoff

Dead wood

PVC plates

Runoff gutter
with

2 sand layers

Figure 3.1: Side-view of the soil plots. Temperature ft] to 1-f), soil moisture content (8j to Q^) and

matric potential (tyj to y4J are measured in four depths, T | (5 cm),T2 (10 cm),T$ (20 cm) and

T4 (40 cm). Three runoffgutters collect the outflowfrom surface and near suface layers (0-5 cm),from
the interflow (5-30 cm) and from the depth runoff (30-60 cm).There is one piezometer per plot
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Two small pits (50 x 10 x 60 cm) were excavated within the soil plots to install additional

equipment (Fig 3 1) In total, 16 TDR probes with 2 rods (25 cm long) to record the soil

moisture content (0j to 64), 16 tensiometers equipped with pressure-transducers to measure

the matric potential (\|fj to \y4) and 9 thermistors (Tj to T3) were installed in four depths in

each plot The symbols 9j to 94 and \|/i to \(f4 thus denote the averages of the measurements

inTj (5 cm),T2 (10 cm)T3 (20 cm) andT4 (40 cm) After the installation, the pits were care¬

fully refilled with the original soil to reduce disturbances of the flow field In addition, a pie¬

zometer was installed in each plot All instruments were automatically operated, and the

observations were recorded using the same data-logging system The outflow volumes and

groundwater levels {Z.J) were recorded every minute, all the other measurements were made

at 15 mm intervals Both plots were covered with a plastic roof The roof served to shield the

plots from rain and to minimize the evapotranspiration by reducing net radiation and wind

speed near the plot surface

3.2.3 Sampling and Analyses of the Runoff

Electrical conductivity was continuously monitored (EC Probes LF 323-B,WTW) to adjust

the temporal resolution ofthe runoffsampling During the early breakthrough ofthe tracers,

water samples (~10 ml) were taken every 2 5 litres of outflow, after passing ofthe tracer peak

the resolution was reduced to one sample per 10 litres of runoff All water samples were fil¬

tered through membrane filters (0 45 um) and analysed using a Dionex ion chromatograph

with a conductivity detector

3.2.4 Sprinkling Device

Both soil plots were irrigated with a mobile sprinkling device The device consisted ofa spray

bar moving on two parallel rails, driven by an electric motor Irrigation was intermittent the

spray bar was in motion for 20 s an stopping 80 s till the next cycle began The spray bar had

16 nozzles (TEEJET 110015LP) mounted at an average height of 30 to 40 cm above the

ground The distance between adjacent nozzles was 30 cm and their irrigation angle was set

to achieve a 50 percent overlap between two neighbouring nozzles Tap water was pumped

from a 5 m freshwater tank installed uphill The resulting pressure at the nozzle inlet was
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200 kPa The coefficient of temporal variation of the water flow, measured by a water meter

at the inlet of the spray bar, was determined as 0 04 for a measuring period of 10 minutes

The uniformity of the irrigation on the soil surface was measured by square cups

(10 6 cm x 10 6 cm) The coefficient of spatial variation was 0 04 for the mor humus plot

and 0 11 for the muck humus plot When all nozzles spray at the same rate and if the ground

surface is parallel to the spray bar, a uniform irrigation rate can be achieved The discrepancy

between the plots is very likely due to the roughness of the soil surface On the muck humus

plot the micro-topography was much more pronounced due to the ground vegetation and

this resulted in the larger spatial variation

3.2.5 Tracer Application

The tracer experiments lasted from August 20 to 25 for the mor humus soil plot and from

September 8 to 13 for the muck humus soil plot (Fig 3 2) During these periods, we irri¬

gated both plots at a steady rate of 1 75 10 m m~ s" to maintain steady state flow condi¬

tions To faster attain a condition of steady state, we prewetted both plots The steady

irrigation rate remained constant with only minor interruptions during the whole period.
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Figure 3.2: Timing of the tracer application on the soil plots The arrows show the timing and the

rate of the tracer application, the grey area indicates the period ofsteady state irrigation
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To distinguish the processes in the humic topsoil and in the gleyic subsoil, the tracers were

applied on the surface (line source of Br") and as a subsurface line source (Cr).The two line

sources were adjacent, at an average distance of about 3.3 m from the runoffgutters. On both

lines, the tracers were applied at a high rate (seeTable 3.3).To obtain additional information

on the flow processes at a lower tracer application rate, the salts were also applied at a smaller

rate on two larger areas situated in the lower half of the plot (area sources, see Table 3.3, Fig.

3.3).

For the tracer application onto the soil surface, a small pressure container with a nozzle si¬

milar to that of the sprinkler was used. The container was manually moved over the area

marked for application and care was taken to keep the distance between the nozzle and the

soil surface constant (30 cm). To avoid an interruption of the irrigation regime, the tracers

were applied on the surface as fast as possible.

Rails for mobile

sprinkling device

Trenches around rhe

soil plot

Plots

muck humus: 13.8 m2

mor humus: 11.8 m^

Tracer Source Type

Q]- Line Source 1.3 x 0.1 m

Subsurface (0 25 m)

Br" Line Source 13x01 m,

Surface

Area Source, Surface

Figure 3.3: Tracer application areas on the soil plots (to scale). The marked areas on the soil plot

identify the spatial extent of the tracer application areas. The arrows correspond to those of Fig. 3.2.
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For the subsurface application of the tracer at the interface between the humic A horizon

and the gleyic G horizon, we developed an alternative technique To avoid ponding on the

horizon interface, it was necessary to apply a small volume of tracer solution In addition, it

was important that the time interval for dispensing the tracer was as short as possible, in order

to approximate a pulse input. To meet these requirements, we first excavated a small trench

of 10 cm x 130 cm surface area down to the depth of the horizon boundary (~25 cm) Then,

100 hollow steel needles were vertically placed at equal spacing in the trench (Fig. 3.4).The

needles, were 25 cm long with a diameter of3 mm, had a small lateral opening at a distance

of 1 cm from the tip

Figure 3.4: Tracer application in the sub-surface. The drawing on the left is an overview of the equip¬

ment usedfor the tracer application. The picture on the right shows the spreading of the injected tracer

in the sub-surface during a pre-expenment. The tracer is visualized by the dye Brilliant Blue FCF

The trench was filled with coarse sand (particle size 3-5 mm) and the litter layers on the soil

surface were put back in place. Prior to the tracer application, the same irrigation regime

was applied to the application area as to the rest ofthe soil plots All needles were connected

with a flexible capillary tapping one of the five tracer containers Immediately before the

tracer application, the containers were filled with the solution and connected to a bottle with

compressed air (50 kPa) The application was stopped at the first sound of air escaping from
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the needles Then, the capillaries were disconnected from the containers and the remaining

volume of the tracer solution was measured

Table 3.3: Summary of the tracer application on both plots

Tracer

Mass

tgl

Solution

[10 3m3]
Application Area Application

duration [s]

Application rate

[mVV1]

M
C1 + 12 7 100 0 13 25 3 1 10

4

s
3

Br" 5 78 1 77 0 13 46 3 0 10"4

X

0
cr* 63 195 2 03 144 0 067 10-4

s
Br* 18 7 195 3 00 215 0 03 10

4

3

ci-t 38 7 152 0 13 19 6 2 10
4

lck

Hum Br"§

cr*

29 5

169

0 74

2 00

0 13

2 07

53

81

1 HO4

0 12 10
4

s Br"* 19 7 199 2 73 129 0 056 10
4

* Subsurface application,^ Surface application as a line source
* Surface Application Area Source

3.3 Results

3.3.1 Results of the Steady State Irrigation

The irrigation of the soil plots at a constant rate of 2 3 10" m m s induced hydrological

conditions that were close to steady state Figure 3 5 shows that the total runoff, but not its

components, was almost constant on the muck humus plot The outflow from the deepest

soil layer increased slighdy at the expense ofinterflow and surface runoff Surface runoffcon¬

tributed only minimally to the total flow Since the soil was already very wet at the beginning

of the steady irrigation, only minor changes in the volumetric water content ofAG = + 0 02

for B\ and ofA6 = + 001 for 92 were observed In the subsoil, no changes could be detected

The soil water content was 0 77 (93) and 0 64 (64) Similarly, apart from small fluctuations,

the groundwater table Z.^ remained at a constant level of 8 cm below the soil surface The
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readings of the tensiometers in 5,10 and 20 cm indicated that, in the average, soil water was

under hydrostatic pressure Direct solar radiation on the plastic roof in the early afternoon

warmed the tensiometers and lead to a sharp drop in the matric potential measurements The

periodic fluctuations are therefore artefacts induced by rapidly changing temperature

During the steady irrigation on the muck humus plot, on average 34 5 percent of the irri¬

gated water could was collected as runoff, 26 percent in the depth runoff and 8 5 percent in

the interflow

On the mor humus soil plot, initially only the depth runoff reacted to the steady irrigation

(see Fig 3 6) After 1 5 days, however, the interflow set on but its contribution to the total

runoff remained small During the further course of the experiment, the depth flow

increased slightly although the level of the groundwater table Z_, remained constant at 56

cm Somehow contradictory is the steady increase of the soil water content in the upper

humic layers (6j) The soil water content increased from 40 to 46 percent (8j) cm and from

45 to 50 percent (62) In the subsoil (93 and 04/), the soil water content remained constant at

58 percent The matric potentials \|/j, \|/2 and \|/3 were generally constant, but decreased

briefly after the irrigation stopped Radiation and changing temperature had a less pro¬

nounced influence on the pressure transducer readings because the tree crowns above the

plastic roof shaded the plot Although the mor humus plot was much drier than the muck

humus plot, we collected 45 percent of the applied water, mainly in the depth runoff

The runoff data suggest that on both plots a steady hydrological state could be attained This

is supported by the fairly constant levels of the groundwater table The small fluctuations in

the level of the groundwater, especially for the muck humus plot, are highly likely due to

the intermittent character of the irrigation regime However, there are some striking char¬

acteristics that need to be discussed

Despite the reduced and clayey gley horizon in the subsoil, the water balance was not closed

for either of the two plots Since the evapotranspiration was minimized by the plastic roof

and since we did not observe any water flowing into the lateral trenches, seepage into deeper

soil layers is the most likely explanation for the water losses Despite the trenches around the

soil plot, the groundwater in the plot was hydrauhcally linked with the direct surroundings
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Figure 3.5: Results of the steady state irrigation (2 3 10" m m" s~ ) on the muck humus plot

Partitioning of the total runoff depth of the groundwater layer Z ,
volumetric soil water content in the

upper two layers (Q^ and 0^ and the matric potential in the upper three layers (\|/1( \|/2 and \|/-jj.
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of the plot Because the level of the groundwater was constant during the steady irrigation,

we can assume that there was an equilibrium between the groundwater flow within the

experimental soil plots and the surroundings of the soil plots This may have caused the con¬

siderable losses of irrigation water into deeper groundwater layers

Notwithstanding the constant levels of runoffand groundwater table, we observed a notice¬

able increase in the soil water content of the upper two layers on the mor humus plot We

hypothesize that the large amount ofpartly decomposed organic matter (see Table 3 1) took

up some water But the obvious increase in the water storage does not question our conclu¬

sion that the system reached a steady state If we assume that the soil water content increased

by A9=0 055 in the upper 15 cm during the phase of steady irrigation, then the storage

change corresponds to about 1 6 percent of the total volume of irrigation water

Finally, the matnc potential \|f j of both plots indicate that the surface layers were close to

saturation The next deeper layer had slightly smaller matnc potential \|/2, whereas the two

deepest layers were very close to saturation Here again, we hypothesize that this is an effect

of the high organic matter content of the upper layer of both plots However, the smaller

matnc potential in the second soil layer (\^2) mav nave Deen caused by trapped air, too

3.3.2 Tracer Breakthrough on the Muck Humus Plot

An overview of the results of the tracer experiments on both plots is given in Fig 3 9 After

the beginning of the irrigation, we waited about one day for steady hydrological conditions

Then we applied the subsurface line tracer CI" (as CaCl2) and immediately afterwards the

surface line tracer Br (as CaBr2) We monitored the breakthrough of both solutes by meas¬

uring the electrical conductivity of the runoff As soon as the electrical conductivity of the

runoff reached its initial value, the tracers Br" and CI were again applied (as CaBr2 and

CaCy, but now on a larger surface in the lower half of the plot (Fig 3 2 and 3 3)

On the muck humus plot, very little surface runoff was observed As a consequence, to few

samples were collected to estimate reliably the breakthrough ofthe tracers m the surface run¬

off The CI" tracer, which was injected along a line of 130 cm at the boundary of the humic

topsoil and the mineral subsoil (see Fig 3 1), appeared shordy after its injection in the depth
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runoff (Fig 3 7) After about five minutes only, the CI" concentration began to increase, and

the maximum concentration was observed 18 minutes after the tracer application After¬

wards, the tracer concentration in the depth runoff decreased exponentially and the back¬

ground level of CI" was attained after about 200 minutes During this interval of time, 31

percent of the applied mass of chloride was recovered from the depth runoff (Fig 3 9)

The tracer concentrations in the interflow (5-30 cm) showed only a very small increase Less

then one percent of the applied mass was collected in the interflow This is somewhat sur¬

prising because the groundwater table remained in a depth of 10 cm below the surface

throughout the experiment (cf Fig 3 5) Evidently, the streamlines of water were not par¬

allel to the soil surface but were diverted to greater depths between the application strip and

the downslope boundary ofthe plot The lateral distance from the tracer source to the runoff

gutters was about 3 3 meter Thus, the velocity of the tracer peak in the water conducting

soil pores was 0 0031 m s~ If we assume that the hydraulic gradient was equal to sinCt with

a the slope angle, and if the transport of water follows Darcy's law, the estimated hydraulic

conductivity Kumat of the Gor and Gr soil horizons at the prevailing moisture content equals

0 0062 m s~ This value is about 10 times larger than the measured saturated hydraulic Ksat

conductivity in Table (3 2) This discrepancy suggests there was a network of fast flow paths

in the subsoil horizons During the 18 min between tracer injection and peak detection, less

then 0 5 percent of the total amount of water present in the soil volume between tracer

injection line and lower plot boundary took part in the transport of the tracer

Also the Br" tracer, applied along a line directly onto the surface, rapidly reached the depth

runoff gutter (Fig 3 7) The first sample with increased Br" concentration was collected 9

min after the end of the tracer application, and the concentration reached its maximum after

22 minutes Then, the concentration dropped sharply, but reached a second smaller peak

after about 400 minutes Finally, the concentration of Br" decreased to the background level

at a rate much slower than that of the subsurface tracer CI" Thus, it appears that the break¬

through of Br~ was a superposition of a fast pulse and a slower secondary breakthrough The

Br" recovery in the depth runoff was 28 percent, which compared well with the 31 percent

of the total recovery found for CI" (Fig 3 9) No breakthrough of Br" was observed in the
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interflow which suggests that a small portion of the surface tracer Br" quickly bypassed the

upper soil layers along the many roots of plants and through mice holes The largest fraction

of the tracer mass, however, seeped slowly through the soil matrix The absence ofBr" in the

interflow confirms that there was no lateral preferential flow at the interface between the

humic and the subsoil horizons

As described in the section 3 2 5, the tracers Br" and CI" were also sprayed evenly onto the

surfaces in the lower half of the plot The flux densities were about 50 (CI") and 20 times

(Br") smaller during the application (cf Table 3 3) as compared to those of the line sources

Despite the small distance between the area treated with CI" and the runoff gutters there was

no fast breakthrough, neither in the interflow nor in the depth runoff The first sample with

an elevated CI" concentration appeared 40 minutes after the tracer application in the inter¬

flow and after 70 minutes in the depth flow Then the concentration steadily increased in

both runoff fractions reaching peak concentrations after 500 rmn in the interflow and after

400 rmn in the depth flow Although the tracer concentration in the interflow was more than

twice as large as in the depth runoff, the total recovery of CI" in both runoff fractions was

almost equal 22 percent in the interflow and 21 percent in the depth runoff

Following the application ofBr" over an area of 2 7 m at an average distance of 1 7 m from

the lower plot boundary, we obtained Br" breakthrough curves which closely resembled

those ofCI" The first breakthrough appeared 60 rmn after the application in the depth runoff

and after 120 mm in the interflow, the peak concentrations in both runoff components were

similar and simultaneous The recovery from depth runoffwas 26 percent, but only 5 percent

ofthe applied mass was recovered in the interflow (cf Fig 3 9) Again, no indications for fast

transport of water and solutes were detected

The differences between the maximum concentrations of CI" and Br" in the interflow can

be attributed to the larger soil volume which had to be passed by Br" The equal concentra¬

tions of CI" and Br" in the depth runoff can be explained by macropore short-cuts in the

subsoil The residence times of both solutes in the upper humic soil is comparable and long

compared to those in the subsoil Therefore, both tracers are equally diluted in the upper
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Figure 3.7: Tracer breakthrough on the muck humus plot. The left column is the depth runoff, the

interflow is at the right. The arrows define the timing and location of the tracer application and corre¬

spond to Figs. 3.2 and 3.3. C/Cq is the relative tracer concentration.
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layer. In the macropores of the subsoil the tracer concentrations undergo only minimal

changes. Furthermore, the absence of preferential flowpaths in the humic horizons might

explain the slight delay of the breakthrough in the interflow as compared to the leaching by

the depth runoff.

We postulate that the relatively slow transport in the matrix ofthe upper soil layers dominates

the breakthrough of the tracers. Given the timing of the surface applied CI" breaktrough in

the depth runoff, it can be argued that the tracer is transported at an angle intermediate

between the surface slope and the vertical downward direction This is supported by the

breakthrough ofBr", which is equally fast but less concentrated in the interflow. In summary,

the solutes moved slowly through the upper muck horizon towards the subsoil.After the sol¬

utes reached the clayey subsoil, they were rapidly transported laterally through a network of

macropores in the subsoil

3.3.3 Tracer Breakthrough on the Mor Humus Plot

Since the mor humus soil plot was generally much better drained and had a lower ground¬

water table than the muck humus plot, hardly any interflow and no surface runoff was

observed. Therefore, only the tracer breakthrough curves in the depth runoff will be dis¬

cussed.

The breakthrough of CI", injected in the subsoil at a distance of 3 3 m from the gutter, was

initially as fast as on the muck humus plot the first increase of the concentration was

recorded after 7 nun, but thereafter, the concentration rose more slowly reaching a maxi¬

mum after only 70 min (18 min on the muck humus plot).The subsequent decrease was slow

After 2000 min the concentration was still larger than the background concentration The

maximum concentration of Cl~ in the depth runoffwas more than 10 times smaller than the

maximum concentration observed on the muck humus soil plot. This indicates that the dilu¬

tion and thus the volume of water which participated in the transport process was much

larger for the drier mor humus soil as compared to the wetter muck humus soil Based on

the travel time of the peak concentration, only 1.3 percent of the total volume of water par¬

ticipated in the flow. Although this is a very small portion of the soil water, it is still about
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three times larger than on the muck humus plot The mass recovery of CI" in the depth run¬

off, however, was 40 percent (Fig 3 9), clearly exceeding the value observed for the muck

humus soil (31 percent)

In the mor humus subsoil the water flows in a more complex network of small cracks and

fissures These flow conditions contrast with those on the muck humus plot where only few

but large macropores exist The runoffand the low level ofthe groundwater indicate that the

water drains vertically down to the groundwater table Then, in the saturated zone the flow

direction is parallel to the slope This explains the quick passage of the tracer through the

subsoil, however, with a delayed arrival of the bulk of the tracer and a slow recession rate

Since in the mor humus plot the tracer plume reaches the saturated zone, it can be diluted

much more than within a few (saturated) macropes in the subsoil of the muck humus plot

The Br" tracer, which was apphed along a hne onto the soil surface did not show a quick

breakthrough (Fig 3 8) The leading edge of the Br" breakthrough reached the depth runoff

gutter after about one hour Thereafter, the Br" concentration increased slowly reaching a

maximum after 400 mm The subsequent decrease of the tracer concentration was compa¬

rable to that ofthe CI tracer applied in the subsurface The mass recovery ofBr" was 31 per¬

cent (Fig 3 9) Despite the high application rate of the tracer solution, there was no evidence

for a fast transport ofthe Br" anions in the humic topsoil This indicates that the transport in

the topsoil was predominantly matrix flow Because of the low soil pH, the transport of Br"

was possibly delayed by adsorption

The breakthrough of Br" and CI", applied onto the surface in the lower half of the plot, was

even more delayed The two tracers, which were applied only after the tracers concentrations

of the previous experiment (line sources) were close to the background, appeared in the

runoff two hours after their application Then, the concentrations continuously increased

reaching a maximum after 620 minutes (Br") and 700 minutes (CI") The subsequent decrease

was in both cases comparably slow These results support the hypothesis ofvertical transport

down to the saturated layer The stronger retardation of CI" is probably due to the more pro¬

nounced adsorption of CI" in the humus layer The recovery of the applied tracer mass

equaled 49 percent for CI and 37 percent for Br"(Fig 3 9) This difference wass most prob-
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ably caused by the longer travel distance and thus more pronounced mixing with the

groundwater.
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3.4 Discussion

In the framework of a study on the cycling of nitrogen in forested ecosystems, we performed

a tracer experiment on two different soils under controlled hydrological conditions Based

on preliminary results (Schleppi et al, 1998) we hypothesized that the observed leaching of

nitrate might be possibly due to fast flow ofwater We performed a tracer experiment on two

soil plots which were irrigated to attain a steady hydrological state To identify the influence

of the different soil horizons on the transport of water and solutes, we injected tracer solu¬

tions into the subsoil and applied tracers as line and are sources at different distances from the

runoff gutters (Figs 3 2 and 3 3, Table 3 3) Figure 3 9 presents a summary of the results

A CI" tracer, which was injected along a line (130 x 10 cm) at the interface between the

humic topsoil and the gleyic subsoil horizon, appeared quickly in the depth runoff of both

plots Still, the maximal tracer concentration was reached four times faster in the muck

humus plot (18 minutes) compared to the mor humus plot (70 minutes) In addition, the

peak concentration of the breakthrough curve was more than ten times higher on the muck

humus We attribute this discrepancy to the differences in the structure of the subsoil ofboth

plots The subsoil of the muck humus plot has almost no structure Because of the almost

impermeable soil matrix, the transport in the subsoil of the muck humus plot occurs mainly

in the few preferential flow paths such as mice holes or along tree roots and buried wood

Therefore, the transport ofwater and solutes was very fast and because of the small amount

of water taking effectively part in the transport process, the dilution of the tracer was not as

pronounced as in the subsoil of the mor humus plot On the much drier mor humus plot,

the subsoil is more structured, which is expressed by a large amount of small cracks and fis¬

sures As a consequence, the bulk of the tracer mass was transported more slowly and the

recession ofthe tracer concentration was slower, though the early breakthrough ofthe tracer

was equally fast as on the muck humus plot These assumptions were confirmed by an esti¬

mation of the fraction of the soil water which took part in the runoff generation between

tracer application and peak arrival, for the muck humus plot this was less than 0 5 percent,

for the mor humus plot about 1 3 percent No significant breaktrough of the CI" tracer was
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detected in the interflow Because of the slightly higher depth runoff and the clearly slower

decrease of the tracer concentration on the nior humus plot the recovery of CI from the

muck humus plot (31 percent) "was lower than on the mor humus plot (40 percent) The

recovery of the tracer corresponds nicely to the results of the water balance

Tracer Recovery Mor Humus

*~"~'^-^ Subsurface Source of Cl~

""'
mass recovery time to peak

40% ~ 70

Surface Line Source of Br-

31% -380

£
"

Surface Area Source of CI

49% ~700

Surface Area Source of Br~

37% - 620

Tracer Recovery Muck Humus

^f—*. Subsurface Source of Cl"

mass recover) time to peak

r.P'1 Surface Area Source of CI~

~soo

-300
22%

21%

JH Surface Area Source of Br-

5%

26%

-380

-400

Figure 3.9: Summary of the tracer experiments on the soil plots The mass recovery of the tracer (per¬

centage of weight), the arrival of the peak concentration in the runoffgutteis (in minutes after the appli¬

cation), the approximate location of the application areas and the possiblefowpaths of the tracer are

displayed

The breakthrough of the Br tracer which was applied as a line source (130 cm x 10 cm) on

the soil surface, confirmed the results of the subsurface application of Cl~ For the muck

humus plot, an equally fast arrival of the Br anions m the runoff gutters (peak arrival after

22 minutes) resulted as for the subsurface CI application Afterwards the concentration of

Br sank exponentially to 50 percent of the first peak, rose again to form a secondary peak

at about 400 minutes after the tracer application and finally decreased much more slowly to

the background concentration Also on the mor humus plot a fast arrival of the tracer was

observed, however, followed by a much slower increase of the concentration to reach a max-
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imum value after about 400 mm Then, the tracer concentration decreased with a rate which

was comparable to that of the subsurface CI" tracer, so that after 2000 mm the concentration

in the depth runoff was still higher than the background concentration Summarized, apart

from the early arrival on the muck humus soil, the breakthrough curves on both soil plots

show the same characteristics We conclude that in the upper humic soil layers o£ both soil

plots flow processes in the soil matrix dominated the transport of the tracer The early peak

in the muck humus soil can be attributed to the higher tracer application rate, which prob¬

ably caused fast flow processes in mice holes or along roots From the total mass ofBr" which

was applied onto the soil surface, 31 percent was gathered again in the depth runoff of the

mor humus plot and 28 percent in the depth runoff of the muck humus plot No tracer was

observed in the interflow ofthe muck humus plot The slightly lower tracer recovery ofBr"

applied as a surface line source compared to the subsurface source of CI" might be due to

adsorption of the tracer in the humic soil layers

After the application of the line sources ofBr" and CI" we momtored the electrical conduc¬

tivity of the different runoff fractions to determine when the tracer concentration m the

runoff had reached a constant value or was at the background level This allowed us to re¬

use Br" and CI as tracer anions In the second part of the experiment, both tracers were

applied to the plots again, however, now as areal tracers onto the soil surface On the muck

humus soil plot, a breakthrough of both tracers was observed in the interflow (runoff from

the humic horizon) and in the depth runoff (subsoil) The smoothness of the tracer arrival

suggested that in the upper humic soil layer flow through the matrix was the prevailing trans¬

port mechanism The ratio of the concentrations of Br and CI in the interflow and the

depth runoff indicated that the main transport direction was intermediate to the slope direc¬

tion and vertically downward The timing of the maximum concentration was comparable

to the second peak that was generated after the application of the surface line source of the

Br tracer The total mass recovery was 31 percent (5 percent interflow, 26 percent depth run¬

off) for Br" and 43 percent for CI" (22 percent interflow, 21 percent depth runoff) On the

mor humus soil plot both surface area tracers had very similar breakthrough curves, however,

with larger arrival times then on the muck humus plot The maximal concentration of CI"
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in the subsurface runoffwas reached after 700 minutes, the maximal Br" concentration after

620 minutes The mass recovery was 37 percent for Br" and 49 percent for CI" Here again,

the results ofthe line tracer experiments were confirmed The slower arrival ofthe peak con¬

centrations is probably due to adsorption effects in the humic layers

In our initial hypothesis on the hydrology ofthe artificial NITREX catchments, we assumed

that the mor soil on the ridges was not hydrologically active and that the main part of the

runoff would flow through the muck humus in the depressions Given the results of the

steady irrigation and the tracer experiments, this hypothesis has to be adjusted The flow pro¬

cesses in the gleyic subsoil of the muck humus mainly occur in a network of macropores

Therefore, the flow in this soil layer is fast Also in the humic topsoil fast flow processes can

occur, however, most likely during a high intensity rainshower Given the topographical

position of the muck humus soil, in slightly depressed catchment areas, a concentration of

the water from upslope areas can also cause fast flow processes in this soil Since at least part

of the macropore network in the subsoil is continuous in the lateral direction, the muck

humus soil will most probably be the catchment area where fast runoff is generated From

the water balance during the steady irrigation (34 5 percent of the applied water could be

collected), and from the tracer recovery of the subsurface tracer (no adsorption), we can con¬

clude that about one third of the amount of water which passes the soil surface contributes

to the fast part of the runoff generation

Surprisingly high levels ofthe groundwater and output flow from the mor humus plot could

be detected These results were confirmed by the mass recovery of the subsurface tracer (40

percent) The timing of the runoffgeneration in the mor humus soil is clearly slower than in

the muck humus soil This is due to the lower soil water content and the more pronounced

network of vertical pores In addition, also the deeper level of the groundwater level in the

mor humus might delay the tracer breaktrough Thus, also on the mor humus plot runoff

processes occur which may contribute to the total runoff of the sub-catchments The upper

soil layers of the mor humus areas have a very low pH For this reason, part of the humic

substances may have a positive load, allowing for nitrate to be removed from the soil solution

by anion exchange In addition, the flow processes in the well structured mor humus soil are
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clearly slower than in the muck humus soil, which allows the microbial activity to play a

more important role The fast flow processes in the muck humus subsoil cause relatively short

residence times ofnitrate in at least part of the catchment As soon as the precipitation water

reaches the macropores of the reduced subsoil, it will quickly leave the catchment As a result,

in the muck humus plots an incomplete microbial immobilisation of nitrate may occur Still,

the residence time of the rainwater in the soil is large enough for ammonium to be removed

from the soil solution by anion exchange The findings of this study correspond well with

the results and the hypothesis presented by Schleppi et al (1998)
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Spatial Scales
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4.1 Introduction

Scale and spatial variability strongly affect the hydrological response of a drainage basin

Recent research on the effects ofspatial variability and catchment scale on runoffgeneration

revealed the importance of two processes the production of runoff and the transport (rout¬

ing) of runoff water through the catchment (Bloschl, 1995) The production of runoff on

hillslopes, l e the partitioning of rainfall into runoff, soil water content changes and eva-

potranspiration determines the hydrological response of small catchments (Beven and

Wood, 1993,Wooding, 1965) For larger catchments, the relative role of the stream network

geometry and thus of the transport of the runoff increases Robinson et al (1995) showed

that the transition between hillslope dominated and stream network dominated hydrologic

response depends on the Peclet number of the catchment Both production and transport of

runoff are influenced by the spatial variability inherent to natural catchments Spatially var¬

ying soil properties, geology, geomorphology and vegetation, together with the heterogene¬

ity ofthe rainfall (Seyfhed andWilcox, 1995) affect the runoffgeneration in a drainage basin

Distributed deterministic catchment models are often used to study the importance ofspatial

variability for the generation and routing of runoff Since deterministic models are based on

a mathematical description of transport processes, they can be extrapolated beyond the cal¬

ibration conditions (Beven, 1985) In addition, spatially distributed information on soil and

geomorphological properties may be incorporated in the model to optimize its performance

These advantages, however, are outweighted by a serious drawback Since spatially distri¬

buted information is seldom available, the parameterization of a distributed deterministic

model is a non-trivial task (Beven, 1995, Grayson et al, 1992) Furthermore, large uncer¬

tainties about the estimated parameters arise since numerous parameters have to be estimated

from a generally incomplete data base This limits the suitability of distributed deterministic

models for exploring and detecting hydrological processes in heterogeneous study areas

An alternative to distributed models are lumped-parameter approaches Wilcox et al (1990)

and Grayson et al (1992) showed that the use oflumped-parameter models yield a good cor¬

respondence between measured and simulated hydrographs Although the spatial compo-
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nents of the runoff generating processes are often lost in such models, the small number of

parameters can be more reliably estimated Beven (1989) pointed out that three to five

parameters should be sufficient to describe the main characteristics of a hydrological data

record Most lumped-parameter models are, as deterministic models, based on certain

assumptions on the processes in the real world A lumped parameter approach which makes

no a priori assumptions on the properties of the hydrological processes was presented by

Young and Beven (1994) They proposed to use information on the soil moisture state to

linearize the rainfall-runoff data and to apply algorithms of times series analysis to estimate

discrete linear transfer functions from these data Wang et al (1981) suggested that the non¬

linear properties of the runoff generation disappear with increasing scale This hypothesis

was, however, only partly supported by the findings of Robinson et al (1995) Although the

hydrological gain (i e the amount ofrunoffcaused by one umt ofwater input) became more

linear, the timing ofthe runoff peaks depended more strongly on the hydrological state with

increasing catchment size

The purpose of this study is to detect the dominating runoff processes at three spatial scales

and to discuss the effect of the spatial variability of soil and vegetation and the size of the

drainage basin on the generation of runoff To this end, we used hydrological data of catch¬

ments of three different sizes This chapter addresses the following questions

• Which processes dominate the runoff generation at a particular scale' Are these processes

effective at the next larger scale' How do soil type and vegetation distribution affect

these processes on different scales'To identify the various runoff processes, we used non¬

linear time series modelling

• What is the origin of the runoff water' Is it possible to link the origin of the runoff

water with a process detected by the time series modelling' To this aim, we measured the

electrical conductivity of the runoffwater and determined whether it was 'event' or'pre-
event' water
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4.2 Theory

4.2.1 Linear Reservoir Model

A dynamic storage equation models the rate of change of the catchment storage S(t) as the

weighted difference of the volume of rainfall u*(t-5) entering the catchment minus the

volume of runoff x(t) leaving the catchment at the outlet

*M-
= -x(t) +Pu*(f-S) (4 1)

The weighting factor is the so-called 'gain constant' /} , accounting for losses ofwater from

the basin which are not due to runoff processes In Eq (4 1), the input and output variables

are true, but unmeasurable quantities, and 8 denotes the time delay between the onsets of

the input and the output If we make the physically reasonable assumption that the catch¬

ment runoff depends linearly on the storage S(t) or,

x(t) =aS(t) or S(t) =tcx(t), (42)

with tc = — a catchment specific Time Constant Equation (4 1) can be written as

te^- = -x(t) +Pu*(t-S) (4 3)

This differential equation describes a first order linear dynamic system, and its response to a

step input is equal to

x(t) =/3(l-e-'a) (44)

4.2.2 Linear Time Series Model

It can be shown, that the discrete analogue ofthe differential equation (4 3) takes the follow¬

ing form

xk = -a,xkl + b0u;s, (4 5)
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where al describes the autoregressive decline ofthe hydrograph after cessation ofthe rainfall

and b0 is the hydrological gain of the basin As before, xk is the true catchment outflow and

u;s the true rainfall The discrete time equation represents the continuous time description

only ifthe input and the output variables are constant over the sampling interval ts The time

constant t. = — of this transfer function can be calculated as

a

ln(-a,)

If the system is stable, l e if \a,\ < 1, then xk will reach a steady value if u J, s
is chosen as a

unit step function This steady value is the so-called Steady State Gain (GsU^

G =
-A_ (4 7)
1+a

If two parallel processes occur, both driven by the same input and both contributing to the

same output, then Eq (4 5) can be extended to

•** = -"Ai-HA^o";! +blu'kis (4 8)

or, after application of the backward shift operator z
' (z 'xk = xk,)

(2>„z-» + b.z ') ,.
_.

xk =
Tp--2——>—~u-kS (4 9)*

(1 +alz'+a1z2)
"

The transfer function form of this type of time series model is obvious from Eq (4 9) By

means ofpartial fraction expansion, Eq (4 9) can be decomposed into two parallel first order

processes (cf Eq 4 5) In short notation, transfer function models are denoted by

[n (m+1) S\, with n the number of autoregressive parameters and (m+\) the number of

parameters associated with the exogeneous inputs

4.2.3 Estimation of the Transfer Function Model

Since the true values of the input and output variable are not measurable, Eq (4 9) can not

be used in this form It is extended with a stochastic term {%k}, taking into account stochas-
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tic disturbances caused by measurement errors and the inadequateness of the time series

model

(b„z~ + b.z~ ) E .. ...

yt =

,,

"

.1

'

-2 «.*+£* (4-io)

(l-a,z -a2z )

Here, yt and H^ are the measured output and input variables Equation (4 10) is equivalent

to an autoregressive time series model with exogeneous inputs (ARX).The unknown sto¬

chastic disturbances { £t} strongly influence the parameter estimation procedure. Young

(1984) showed that a least squares procedure results in biased estimates ofthe parameters.The

method of the so-called 'instrumental variables' (Ljung, 1987, Sonderstrom and Stoica,

1983) may be applied to bypass these problems We applied the 'Simplified Refined Instru¬

mentalVariable' method byYoung (1985) to estimate the parameters of the transfer function

model recursively To identify the optimal number of parameters of the linear transfer func¬

tion, we used theYoung Information Criterion (YIC).This criterion combines the goodness

of fit of the transfer function with the uncertainty of the parameter estimations The transfer

function which results in the smallest value for theYIC is preferable

4.2.4 Nonlinear Time Series

Catchment runoff is typically a nonlinear function of the amount of rainfall If the nonlinear

phenomena underlying the runoff generation were mathematically understood, then the

modelling ofthe time series would only involve parameter estimation But a profound phys¬

ical understanding is rarely available and the modelling process starts with the inspection of

a set of nonlinear models. In the most general case though, a nonlinear process can be

approximated by a linear model with time variable parameters This operation, which is

called statistical linearization, is extensively used byYoung (1993) The result is a linear trans¬

fer function with time dependent parameters which can be written as

(bJk)z~° + b.(k)z~' + ... + blk)z~m) B
y* =

TT^2 1,1 ~i Lu"+Z>- (4 11)
(l-a,(/:)z -a2(k)z -...-a„(k)z )
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Equation (4 11) is an extension ofEq (4 10), allowing time varying parameters The estima¬

tion problem changed to inferring the time variable parameters of this linear model For

hydrological series, mostly the parameters associated with the input variables will vary

Therefore, at this stage of the analysis, mainly a transfer function oforder [1 1 S\ with a single

time variable parameter b0(k) will be used

The estimation of the time variable parameters bases on a smoothing algorithm which esti¬

mates b0(k\N) from all N available observations In this work, we employed the smoothing

algorithms developed by Rauch et al (1965), which are based on the outcome ofthe Kalman

filter (Kalman and Bucy, 1961) The correlation of b0(k\N) with additional information on

the hydrological state ofthe catchment can be explored and used to model i>0(A: |iV) as a non¬

linear function 3 of the state variables

fco(*|A0 = S(State) (4 12)

This function can be used to transform the measured precipitation into an effective, runoff

generating input variable uefkS

",#« = «;5x3(State) (413)

To use Eq (4 13), additional measurements on the hydrological state of a basin (e g soil

water content, groundwater depth, soil water potential) are necessary Most often, though,

the runoff yk, too, can be employed as a surrogate variable for the soil moisture state Based

on the output measurements and the effective input variable urfkS,linear transfer functions

can be estimated, e g by means of an instrumental variable technique

4.3 Material and Methods

All experimental catchments are situated in the upper part of the valley ofAlptal, (northern

Swiss prealps), between 1100 m and 1530 m a s 1 The prevailing westwinds force wet air into

the valley, causing the high annual sum of precipitation of 2300 mm The seasonal

distribution of the precipitation shows a maximum during summer (270 mm in June) and a
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minimum during fall (135 mm in October) About 30 percent of the rainfall is snow, which

mainly falls between December and May The average annual air temperature measured at an

elevation of 1150 m is 4 9 °C (Burch, 1994) The geological substrate at the Alptal valley is

Flysch, a formation with layers of calcareous sandstone alternating with shists On this

bedrock, an umbnc Gleysol (Diserens, 1992) developed with, depending on the soil

moisture conditions and the micro-topography, two distinct humus rich topsoils

4.3.1 Erlenbach

Dating back to 1978, the Erlenbach catchment is one of the best documented alpine catch¬

ments in Switzerland It has a surface area of about 0 7 km and an average slope of 20 per¬

cent with aspect west The catchment is very narrow with permanent brooks deeply cut into

narrow and steep gorges About 39 percent of the catchment is covered by forests, the other

61 percent are wetland dominated by grasses To prevent landslides from the wetland areas, a

network of drainage trenches covers the catchment These trenches quickly rout the runoff

of the wetland zones to the permanent brooks

Precipitation is measured at two sites at one wetland site near the catchment boundary the

pluviometer is at a standard elevation of 2 meter, and at the other site, well within the for¬

ested part ofthe catchment, precipitation is measured above the canopy layer (30 m) (see Fig

4 1) Runoff of the Erlenbach is measured by a large V-notch weir, where also the electrical

conductivity (EC) of the runoff is recorded The average annual water balance (1978-1993)

shows that the total amount of precipitation of 2190 mm is partitioned into 1740 mm of

runoff (79 5 percent) and 450 mm of evapotranspiration (20 5 percent)

4.3.2 Artificial Sub-catchments

Within the Erlenbach headwater catchment, three artificial sub-catchments of about

1500 m were set-up to study the cycling of nitrogen (Schleppi et al ,1998) One wetland

(N3) and two forested areas (Nj, N2) were delineated by 80 cm deep trenches (Fig 4 1) To

avoid erosion of the gleyic subsoil, the trenches were covered with a geo-textile The runoff

of the sub-catchments is caught in the trenches and the trench water collected by a V-notch
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weir where the water level is recorded automatically every 10 minutes by an ultrasonic

device In addition, the EC of the runoff is recorded (LF95,Tetracon,WTW) with the same

frequency Since 1996, both sub-catchments have been sprinkled with rainwater, collected

on a plastic sheet upslope the sub-catchments The sprinkling is simultaneous and propor¬

tional to the natural rainfall and the applied quantity is continuously logged The water bal¬

ance ofboth forested plots from April 1994 to March 1995 was nearly closed (Schleppi et al,

1998)

Figure 4.1: Overview of the sub-catchments Nj, N2 and N3 The shaded areas are forests, the

white areas indicate the wetland

On the forested sub-catchments, closely linked to the micro-topography, two distinct humus

topsoils occur on top of the gleyic subsoil In small depressions, a wet muck humus topsoil

prevails and on the drier ridges a mor humus top layer is present Figure 4 2 shows the dis¬

tribution of both soils and waterlogged areas in the forested sub-catchment Table 4 1
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Figure 4.2: Soil type distribution on the sub-catchments Nj (right) and N2 (left).

presents the soil type statistics for the three sub-catchments In the sub-catchment N2, the

groundwater levels were recorded separately for both soil types with readings synchronized

to those of the runoff.

Table 4.1: Properties of the sub-catchments

Area (m ) Fraction covered by

Muck humus Mor Humus

Nj 1974 32 78

N2 1449 53 47

N, 1473 100 0

In the wetland sub-catchment N3, only the muck humus topsoil occurs On the mounds

and ridges, where the upper soil layers are mor humus, Norway spruce (Picea Abies (L.)

Karst.) and silver fir (Abies Alba Mill) grow The ground vegetation is dominated by Vacamum

species on mor humus and mainly grasses and Equisetum species on muck humus To obtain

detailed information on the runoff generation in both humus types, we monitored runoff
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from and carried out experiments on two soil plots each representing one of the humus

types

4.3.3 Soil Plots

The soil plots were, as the sub-catchments, separated from their environment by trenches of

80 cm deep Both plots were situated near the sub-catchments, having the same slope (20

percent) and aspect (SW) The muck soil plot had a surface area of 13 8 m and was covered

with grasses The mor soil plot (area 118 m2), situated between large Pine trees, was covered

by needle htter and free of any vegetation For both plots, we used the same precipitation

records as for the sub-catchments, l e those which were collected above the tree canopy

Thus, by using these precipitation records, the runoffreflects also the influences of the vege¬

tation Tables 3 1 and 3 2 show physical and chemical soil properties of the plots A detailed

description of the soil properties ofboth plots and of the instrumentation is given m section

32

During the installation of the sensors in the soil plots, we recognized differences in the soil

structure of the subsoil The gleyic subsoil horizons in the muck humus plot were almost

completely reduced In addition to stones from calcareous layers of the Flysch bedrock, we

detected old tree roots and a few channel-like pores The subsoil of the mor humus plot was

much better structured Beside stones and tree roots, the pardy reduced subsoil had complex

micro-structures with varying sizes, but mainly extending in the vertical direction Generally,

the mor humus plot was much better drained and the groundwater was much deeper

In addition to monitoring natural rainstorms, we performed an irrigation experiment under

controlled boundary conditions This had a dual purpose First, from earlier experiments

(Feyen et al, 1997), we had evidence that the subsoil was definitely more permeable than

assumed (see also section 1 1) and that water from upslope areas could possibly enter the plots

through the subsoil By irrigating the plots during periods free ofnatural rainfall (i e no sub¬

surface inflow of water mto the plots), it was possible to study the runoff generated within

the soil plots only Second, since the precipitation was measured above the tree canopy layer,

the real input ofwater mto the mor humus plot is overestimated because of the interception
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by trees This again limits the possibilities to compare the influence of the soil type on the

runoff generation on both plots During the irrigation experiments, we covered the plots

with a plastic roof to shield them from rainfall and to reduce evapotranspiration Thus, by

controlling the boundary conditions of the soil plots, we studied the influence of soil type

on the runoff generation

An irrigation device, developed to impose a constant and spatially uniform flux of water

drove over the inclined plots on two rails Attached to the device was a bar with 16 nozzles

which sprayed the water onto the ground from an average height of30 cm In the laboratory,

we tested whether the sprinkler sprayed uniformly and we obtained a coefficient of spatial

variation of 0 04 Under field conditions, the same coefficient of variation was obtained on

the mor humus plot, which had a smooth surface On the muck humus, however, the

rougher soil surface caused a much larger coefficient of variation of 0 11

4.3.4 Event and Pre-event water

To partition the runoff into 'event' and 'pre-event' water, we used the approach of

Pearce et al (1986), who suggested to compute

Q.u = QJr'~?r\ <4 14>

where Q is the runoff, C the electrical conductivity of the runoff and the subscripts denote

the event (new), the pre-event (old) water and the actual electrical conductivity ofthe runoff

(a) Conceptually, this corresponds to the existence of two reservoirs, one with the soil water

('old' or 'pre-event') and the other with rainwater ('new' or event') The total runoff Qto, is

a mixture of the outflow ofboth reservoirs For the electrical conductivity of the rainfall, we

used the average of six weekly samples, half of which were taken from the throughfall

Clearly, considering a natural drainage basin as composed of two reservoirs is an extreme

simplification More sophisticated methods to trace the origin ofthe runoffwater are the use

of dissolved organic carbon (DOC) and O (Peters et al, 1995), IC content and acid neu¬

tralizing capacity of the runoff (Elsenbeer and Lorien, 1995), or the use of end member
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mixing analysis (EMMA, Hooper et al, 1990) Still, Caissie et al (1996) showed that the

electrical conductivity can be an adequate parameter to separate the contribution of surface

flow and groundwater flow to the total runoff

4.4 Results

4.4.1 Irrigation of the Soil Plots

4.4.1.1 Muck Humus Plot

The irrigation experiment on the muck humus plot was performed on September 1,1997

We applied rune subsequent pulses of water to the plot with an average apphcation rate of

0 31 10 m m s The duration of the pulses varied between 136 s and 540 s, and the time

interval between the start of the pulses was on average equal to 16 minutes

The total amount of water applied to the soil surface equalled 998 litres At the begin of the

experiment, the groundwater was 12 cm below the soil surface (Fig 4 3) and the average soil

moisture content equal to 0 46 (0j) and 0 69 (02 and 63) The average matric potential of

23 cm (tyi), 14 cm (V2) and 0 cm (\|/3) indicate that the upper horizons of the plot were

fairly wet, though not saturated Immediately after the first pulse of water was applied, the

level of the groundwater started to rise, as did the soil moisture content Briefly after the

application ofthe last pulse, the groundwater reached a maximal height of about 6 cm below

the soil surface, and the soil moisture content increased to 0 64 (6j), 0 72 (02) and 0 74 (63)

The matric potentials l^ and \|/2 slowly decreased to a few centimetres, indicating that the

upper soil layers, too, were close to saturation The suction cups inT3 were mainly below the

groundwater table which resulted in positive values for VI/3 The discrepancy between the

matric head and water table depth are likely due to the micro-relief of the soil plot or to an

impeding layer in the subsoil However, the patterns ofthe temporal variation ofthe ground¬

water table, the soil water content and the matric potential match well (Fig 4 3)

The irrigation resulted in a fast response of the outflow in the gleyic subsoil (depth runoff)

The first 3 pulses produced only a small increase of the interflow However, as soon as the
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plot was wetter and the groundwater closer to the soil surface, the interflow reacted more

strongly to the irrigation pulses than the depth runoff After the last pulse, the interflow rap¬

idly decreased and completely vanished after 70 minutes The depth runoff decreased more

slowly and stopped four hours after the end of the irrigation The total amount of depth

runoff equalled 195 litres (20 percent of the irrigation) and 167 litres in the interflow (12

percent) The runoff ratio, i e the ratio of the total runoff to the total water input, equalled

32 percent The other 68 percent of the irrigation water caused changes in the soil water

content and flowed from the plot as deep seepage

Initially, we fitted a discrete linear transfer functions ofstructure [1 1 8] to the data (Eq 4 10,

Table 4 2) For both runofffractions, a time delay 8 =4 resulted in the best fit A linear trans¬

fer function described the depth runoff slightly better than the interflow This is mainly due

to the weak initial reaction of the interflow and shows that the production ofrunoffdepends

not only on the water input but also on the state of the system, namely, the water storage of

the soil

Table 4.2: Nonlinear transferfunction modelsfor the irrigation experiments tc is the Time Con¬

stant and Gslal the Steady State Gain of the system YIC is the Young Information Criterion and R^
the Coefficient ofdetermination of the time series model

Runoff Model Parameters tc Gstat Rr YIC

fraction [min]

Depth runoff [114] <j,
= -0 9454 ± 0 0001 17 81 0 176 0 93 -10 6

[mm mm *] b0 = 0 0096 ± 0 0003

Interflow [114] a,
= 0 8746 ± 0 0003 7 46 0 184 0 90 -9 9

[mm nun '] 60 = 0 0231 ± 0 0007

§ u 3 Depth runoff [116] a,
= -0 90130 ± 0 0004 9 62 0 528 0 77 -8 4

* | | [mm mm '] b0 = 0 0519 ± 0 0002

Depth runoff 114] ax
= -0 9538 ± 0 0001 2114 0 186 0 95 -111

[mm mm"1] b0 = 0 0086 ± 0 0002

Interflow [114] <t,
= -0 8569 ± 0 0002 6 48 0 166 0 97 -12 5

[mm mm"1] b0 = 0 0238 ± 0 0004

§ u 3 Depth runoff [114] a, =-0 8927 ± 0 0003 8 81 0 394 0 84 -9 2

- | | [mm mm"1] ba = 0 0381 ± 0 0006

u S «£

« .3 <
.

s »

3 <S
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To explore the nonlinear dependence ofboth runofffractions on precipitation, linear transfer

functions of structure [1 1 4] with a time variable gain parameter b0(k\N) were fitted to the

experimental data We fixed the autoregressive parameter at of the time-dependent transfer

functions to the value obtained for the linear time invariant transfer function (Table 4 2) We

modelled the variation of b0(k\N) by a second order polynomial in the level of the ground¬

water (see Fig 4 3) We fitted the polynomial by least squares using only the data records

(shifted with the time delay S) when the plot was irrigated For these data points the variance

of the estimation error of b0(k\N) was minimal because the estimation depended on infor¬

mation in both the input and output data series Then, we transformed the irrigation rate to

effective (runoff generating) input (cf Eq 4 13) and re-estimated the parameters of the time

invariant hnear transfer function (Table 4 2 and Fig 4 3) As before, [1 1 4] models described

both runofffractions best Compared to the linear transfer function estimated from the initial

data, the nonlinear models fitted both runoff fractions better This was most clear for the

interflow, indicating that the groundwater level had a more pronounced influence on this

runoff fraction

We calculated time constants ((,., Eq 4 3) and a steady state gams (Cstal, Eq 4 5) from the

transfer function parameters (Table 4 2) For the depth runoff this resulted in a tc of21 min¬

utes and a Gstat of 0 19, for the interflow the tc equalled 6 5 minutes and the Gslal was 0 17

The sum of the G5lat of both runoff fractions indicates that of the total surface of 13 8 m

about 36 percent is drained by through runoff gutters This is in close correspondence to the

runoff ratio, l e the ratio of the total runoff to the total water input

The first arrival of the outflow in the gutters is much faster than can be expected from the

saturated hydraulic conductivity Ksat (Table 3 2) The fast reaction of the runoff suggests that

flow along preferential flowpaths such as macropores is the most important component of

the early runoff This is in agreement with the tracer experiments described in Chapter 3

Especially in the gleyic sub-soil horizons of the muck humus plot we observed large, chan¬

nel-like macropores Preferential flow through macropores also explains the less pronounced

nonlinear properties of the depth runoff compared to the interflow Since in the gleyic sub-
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soil most of the water flows through macropores, the impact of the soil water content and

the groundwater level on the runoff generation is smaller

Clearly, the high irrigation rate influences the dynamical properties of the outflow It may

possibly result in an underestimation of the time delay 8 and in an overestimation of the

hydrological gain of the soil plots Still, these high rate of water input is not unnatural and

can be observed during thunderstorms during fall Moreover, during the irrigation we never

observed ponding, so the water is certainly not forced into macropores Finally, the dynam¬

ical properties of the runoff generation are mainly inferred from the autoregressive compo¬

nents of the estimated time series models This corresponds temporally with the dechmng

part ofthe outflow hydrographs, 1 e the draining ofthe soil plots after the irrigation fimshed

4.4.1.2 Mor Humus Plot

On the mor humus plot, the irrigation experiment took place on August 19,1997 The irri¬

gation regime was comparable to that of the muck humus plot, except a slightly longer time

lag between the irrigation pulses This was a consequence of the slower reaction of the out¬

flow to the irrigation inputs on the mor humus plot Before the irrigation started, the

groundwater was 58 cm below the soil surface (Fig 4 4) and the soil moisture content was

0 29 (B{), 0 47 (62), 0 58 (63) and 0 56 (64) The tensiometer readings at this time indicated

that the organic upper soil layer (\y{) and the deeper gleyic soil layers (V|/3 and \f^) were close

to saturation, whereas the humic A], horizon was still unsaturated (X)^) Except for the first

five pulses, the level of the groundwater reacted rapidly to the irrigation In contrast to the

muck humus plot, the groundwater level fluctuated strongly with the irrigation The tensi-

ometers showed that the topsoil (\|/j) and the deeper subsoil (V|/3 and yf^) became quickly

saturated, whereas the humic A^ layer remained unsaturated (y^ during the experiment As

can be seen from Fig 4 4, mainly depth runoff drained from the mor humus plot The first

five pulses, however, only induced a small increase of the discharge from the subsod This

corresponds well to the piezometer measurements, suggesting a direct influence of the

groundwater on the runoff generation After the last irrigation pulse, the depth runoff

declined more slowly than on the muck humus plot Surface runoff flowed only during the

irrigation, whereas the interflow reacted on the last two pulses only (Fig 4 4)



98 4. Runoff Processes at Three Spatial Scales

1..5

21.0-
2

100 200 300

Time [mini

* Depth runoff

200 300

Time [mini

ta
0 0.4

Observed Depth runoff

- Nonlinear

model [1 1 4]

100 200 300

Time [min]

100 200 300

Time [min]

CO
"

S°"6 =

d
93

CI -

£ :

„0.5-
C :

,.- 62'
,-.--.-...

C :

8o.44
u

u :

0 -

^61 ^~~

100 200 300

Time [min]

Figure 4.4: Results of the irrigation experiment on the mor humus plot. Water input (a), Z„w and

matric head (b), measured outflow (c), soil water content (d), nonlinear modelfor the depth runoff(e),

gain parameter vs. Z„wfor the depth runoff If)

In total, we applied 894 litres of water to the mor humus plot, of which 446 litres (50 per¬

cent) were collected as depth runoff, 23.4 litres (3 percent) as surface runoff and 8.5 litres (1
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percent) as interflow Thus, the total runoff ratio of 54 percent was clearly larger than on the

muck humus plot

A linear transfer function of structure [1 1 4] failed to describe depth runoff (Table 4 2) As

before, we estimated a hnear transfer function with a time variable gain parameter from the

data Almost the complete range of variation of b0(k\N) could be attributed to changes in

the groundwater level between 58 cm and 52 cm For higher groundwater levels, the influ¬

ence on b0(lc\N) declined Two straight lines that intersect at a groundwater level of 52 cm

(see Fig 4 4) served to transform the irrigation into effective input. The resulting re-esti¬

mated time invariant transfer function still did not fit the data well (Fig. 4.4).The time delay

d between the begin of the irrigation and the begin of the runoff varied during the experi¬

ment Since this type of nonlineanty is not taken into account by the discrete transfer func¬

tion models, the estimated parameters are to be interpreted with care

Similar to the muck humus plot, the fast reaction of the outflow to the irrigation pulses

reveals that water flow along preferential flow paths determines the runoff dynamics on the

mor humus plot, too. However, the fast outflow occurred only when the soil was very wet.

Furthermore, the recession of the hydrographs after stopping the irrigation was smoother

than on the muck humus plot, indicating slower runoff dynamics

4.4.2 Runoff from Natural Rainstorms

The rainfall, runoff, soil water content and matnc potential were recorded from fall 1996 to

spring 1997 Avoiding snowfall or snowmelt, we selected two data records: SI from May 28

1997 to July 27 1997 (from May 28 1997 to June 28 1997 for both soil plots) and S2 from

October 1, 1996 to November 11, 1996. Since the precipitation and runoff measurements

serve to estimate nonlinear transfer functions, snowfall (momtored with heated pluviome¬

ters) and snowmelt (runoff without rainfall) would have severely comphcated the analysis.

The rainfall-runoff data series at all scales are shown in Figs 4 6, 4 7,4.10,4.11 and 4.13.
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Table 4.3: Water balances during SI and S2 The abbreviations standfor Erlenbach (ERL) and

the sub-catchments Nj, N2 and N3 The number in brackets is the runoff ratio, 1 e the ratio of the

total runoff to the total rainfall, in percentage The different amount of rainfall on the sub-catchments ts

due to the additional irrigation Nj and N2 were sprinkled, N3 received natural ram only

spring SI fall S2

Rainfall

[mm]

Runoff

fraction

Runoff

[mm]

Rainfall

[mm]

Runoff

fraction

Runoff

[mm]

May 28 to June 28,1997

Muck

Mor

Nt

N2

Nj

ERL

Oct 01 to Nov 11, 1996

Muck 287 0 surface runoff

interflow

depth runoff

0 2(<1%)

2 5 (<1%)

62 2 (22%)

296 4 surface runoff

interflow

depth runoff

1 9 (<1%)

71 9 (24%)

63 7 (22%)

Mor 287 0 surface runoff

interflow

depth runoff

May 28 to July 27,

0 1 (<1%)

1 1 (<1%)

74 9 (26%)

1997

296 4 surface runoff

interflow

depth runoff

Oct 01 to Nov 11,

0 7 (<1%)

0 1 (<1%)

143 0 (48%)

1996

Ni 704 7 366 9 (52%) 318 5 182 5 (57%)

N2 709 4 461 9 (65%) 320 7 223 3 (70%)

N3 660 4 471 3 (71%) 296 4 272 8 (92%)

ERL 662 4 468 8 (71%) 300 7 234 2 (78%)

We monitored the precipitation at two different locations within the Erlenbach headwater

catchment near the NITREX sub-catchments above the tree canopies (Fig 4 1), and 2 m

above the ground near the boundary of the headwater catchment From Table 4 3 it can be

seen that the total amount of precipitation measured at the two locations was comparable

during both measurement periods (ERL vs N3) Sprinkling the sub-catchments Nj and N2

increased the total precipitation by 7 percent (ERL vs Nj, N2) The characteristics of the

rainfall shghdy differed for the two observation periods In fall 1996 (S2), the average rate

during periods with rainfall equalled 0 3471±0 3475 mm/10 mm, whereas the rate was

0 4390±0 7075 mm/10 mm for spring 1997 (SI) The higher average precipitation and the

larger standard deviation during spring are presumably due to thunderstorms

The runoff ratio shows that during fall 1996 more runoff flowed from all studied areas than

during spring 1997 For both periods, more water flowed from the mor humus plot than
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from the muck humus plot This is in agreement with the irrigation experiments The runoff

from the mor humus plot flowed mainly in the depth runoff During period SI the interflow

almost completely vanished on the muck humus plot, but during S2 interflow was the most

important contribution to the runoff Surface runoff did in none of all cases contribute sig¬

nificantly to the total runoff, on either plot and for either period During both observation

periods, the runoff ratio was largest for the sub-catchment N3 The particularly low runoff

ratio on Nj is most likely due to an overestimation of the catchment area The upper part of

this sub-catchment has a flat topography, which makes an accurate delineation ofthe water¬

shed boundaries uncertain Based on the balances for nitrogen and water ofNj and N2, the

actual area of Nj was estimated as 1670 m (pers comm P Schleppi) This increases the

runoff ratio for Nj to 62 percent (SI) and 67 percent (S2) respectively, which now compares

well to N2

4.4.3 Modelling the Nonlinear Properties of the Runoff Generation

To model the variation of the time variable parameter b0(k\N) we explored the measure¬

ments of the soil water content (9j to G4), the matric potential (\|fj to \|fj) and the depth of

the groundwater table (Z^,) First we studied the correlation ofthese variables with the time

series of b0(lc\N) The variables 8j and Z„w correlated best with b0(k\N) In contrast to the

irrigation experiments, however, the selection of a nonlinear equation was less obvious

Therefore, according to the approach by Beven andYoung (1995), we modelled the variation

of b0(k\N) by powerlaw relationships of the form

«#n = "«x(e1)1' (4.15)

and

«*.« =«;«x(Z,Jr (4.16)

We estimated the parameter y by minimizing theYIC which results from the estimation of

a linear [115] transfer function from yk and u,fts (Eq 4 10) This procedure, although

computationally inefficient, resulted in an equation which described the nonlinear depend-
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ence of b0(k\N) on the hydrological status best As an example of the minimization proce¬

dure, Fig 4.5 shows the relation of y and the YIC for the depth runoff of the muck humus

plot.

0 02 04 06 08 1 12 14 16 18 2

Parameter y

Figure 4.5: Result of the power law optimizationfor the depth runofffrom the muck humus plot

Table 4.4: Power law exponent y estimatedfor both time series and all studied areas YIC is the

Young Information Criterion and RT the Coefficient ofdetermination of the time series model

Scale SI S2

y (R£ ) YIC [model] y (r£ ) YIC [model]

-2 7 (0 65) -8 4 112]

-0 8 (0 88) -10 5 112]

-0 5 (0 74) -8 7 112]

-13 (0 94) -13 2 111]

-1 8 (0 94) -13 3 111]

-12 (0 93) -12 6 111]

-10 (0 87) -11 2 112]

muck interflow -1 2 (0 80) -9 4 1 1 2]

ilpl muck depth runoff -1 3 (0 77) -10 0 1 1 4]
0

mor depth runoff -1 9 (0 76) -8 5 1 1 3]

13 N, -1 1 (0 89) -119 111]

u

N2

N3

-1 1

-0 9

(0 90)

(0 88)

-12 0

-113

111]

111]

ERL -10 (0 88) -116 1 13]

Since it generally resulted in lower values of the YIC, we used the level of the groundwater

Zgy, to model b0(k\N) A linear combination of Z„w and 0j, obtained by a multiple linear
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regression, did not result in a lower value oftheYIC, nor did a sequential apphcation ofboth

variables This is possibly due to the high correlation between the two variables Table 4 4 hsts

the results of the powerlaw optimization for all studied areas and time periods

4.4.4 Runoff from the Soil Plots

Generally, the nonlinear transfer functions performed better for the wetter fall period (S2)

than for the spring period (SI) Table 4 5, reports the parameters of [1 1 8\ models, which

characterize the runoff of both soil plots best

In addition to the complete time series SI and S2, we analysed the hydrological processes

using subsets of the data series SI (Sla, Sib and Sic) and S2 (S2a and S2b) (see Figs 4 6 and

4 7) Fig 4 9 presents the resulting nonlinear transfer functions for Sib and S2b For both

soil plots and both time series, the predicted runoff increased sooner after the begin of the

rainfall than the observed runoff In addition, the runoff of small rainfall events was most

often overestimated These findings suggest that the time series were still not completely lin¬

ear On the muck humus plot, the peak runoff and the declining limb of the hydrographs

were described well, but [1 1 8] transfer functions failed to describe the depth runoff from

the mor humus plot Thus, the interpretation of the transfer function models for the mor

humus plot requires some care

The optimal time delay 8 was slightly smaller in case of the interflow Still, as for the irriga¬

tion experiments on the mor humus plot, the time delay 5 was probably not constant during

the observation periods Therefore, the estimated time delays ofTable 4 5 are the average 8

for all rainfall events within the time series This nonlinear property, the variable time delay

between the beginning of the rainfall and the beginning of the runoff, can not be accounted

for by the nonlinear transfer function The transfer function estimation procedure results in

an average 8 for the complete time series It occurs that, according to theYIC criterion, sev¬

eral models with only 8 varying are about equally good The autoregressive parameters vary

slightly for those models with 8 varying within one unit around the optimal value, but more

for 8 varying with two or more units It is therefore important to consequently base the

model selection on theYIC
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~r Sla Sib 4

:
. i , , ,

i] i , .,
i,. i.,lu.. i.l 1 klL, JftluLlI ,.lu t , jL , ,
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Figure 4.6: Runofffrom the soil plotsfor SI Sla and Sib denote the subsets studied in detail
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The estimated tc of the depth runoff of the muck humus plot varied between 77 6 and 97 6

minutes (Table 4 5) In the interflow, the tc were of the same magnitude, but the Gslat were

larger The tc estimated for the depth runoff from the mor humus plot were significantly

larger than those of the muck humus plot In addition, the estimates differed considerably

for the series SI and S2 Since the tc can be interpreted as an indicator for the average travel

time, the water resides longer in the mor humus than in the muck humus plot

For S2, the combined Gstat ofthe depth runoffand interflow from the muck humus plot was

smaller than the Gsm of the depth runoff from the mor humus This agrees with the results

of the irrigation experiments and with the runoff ratio under natural rainfall conditions,

showing that the total runoff per umt area was larger on the mor humus plot This result is

surprising because the mor humus plot was definitely better drained than the muck humus

plot

During the irrigation experiments on both plots, the soil moisture content was high and the

evapotranspiration limited because ofthe roof Due to the high irrigation rates, the nonhnear

properties of the runoff generation on the muck humus disappeared towards the end of the

irrigation experiment Transforming the time series of water input and subsequently estima¬

ting a transfer function provided suitable results For the natural rainfall events on the muck

humus plot, the fit of the transfer functions was slightly worse Still, it was possible to com¬

pare the results of the transfer functions estimated from the irrigation experiments and from

the natural rainfall events On the mor humus plot, the nonlinear dependence of the depth

runoff on the rainfall or irrigation was more pronounced and the fit of the transfer function

was inferior

Generally, the time constants tc of the depth runoff and of the interflow were much shorter

for the irrigation experiments than for the natural rainstorms In addition, the tc ofthe inter¬

flow and the depth runoff clearly differed for the experiments (faster interflow), but were

about the same for the natural events We think that this is due to sub-surface flow (e g rising

groundwater or flow through macropores in deep soil layers) entering the plot through the

subsoil Since such fluxes originate from a large volume of water and have longer travel dis¬

tances than runoffproduced on the soil plot, they react more slowly on water inputs and thus
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EC for the soil plots (S2a) EC for the soil plots (S2b)

mor (depth runoff)

V

^ muck (depth runoff)'
muck (interflow)
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muck (interflow)
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EC for Nl, N2 and ERL (S2b)

Figure 4.8: Electrical conductivity (EC) for S2a and S2b at all scales. Nj and N2 are sub-

catchments and ERL denotes the headwater catchment Erlenbach.

result in slower runoff dynamics. If sub-surface fluxes dominate the outflow from a soil plot,

it is likely that the tc ofthe runoff will be much larger than the tc detected from the irrigation

experiments. Also, the differences in the runoff dynamics from the interflow and the depth

runoff from the muck humus will disappear. Both consequences of sub-surface fluxes are

obvious from Table 4.5. If the soil moisture state during controlled irrigation experiments

and natural rainfall events is comparable, the Gsla, resulting from the latter will be larger. For

the wetter observation period S2, this effect could be observed (cf.Table 4.2 and 4.5).
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muck depth runoff (Sib) muck depth runoff (S2b)
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Figure 4.9: Nonlinear transferfunctionsfor the runofffrom the soil plots.
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Table 4.5: Nonlinear transferfunctions for the runofffrom the soil plots during natural ratnfall
events tc is the Time Constant and Gslal the Steady State Gain of the transferfunction YIC is the

Young Information Criterion and RT the Coefficient ofdetermination ofthe time series models

Time Model Parameter Gstat te [min] < YIC

Sla [111] at -0 8868 +/- 0 0030

b0 0 0133 +/- 0 0003

0 118 83 3 0 83 -10 10

Sib [112] a, -0 9026 +/- 0 0027

b0 0 0159 +/- 0 0004

0 163 97 6 0 91 -10 39

runoff lutnus
SI [112] ax -0 8705 +/- 0 0037

b0 0 0175+/- 0 0003

0 135 72 1 0 77 -9 97

Depth muck
S2a [113] a, -0 8791 +/- 0 0028

b0 0 0295 +/- 0 0002

0 244 77 6 0 91 -10 79

S2b [114] «! -0 8932 +/- 0 0028

b0 0 0288 +/- 0 0005

0 270 88 6 0 90 -10 48

S2 [114] a, -0 8948 +/- 0 0027

b0 0 0242 +/- 0 0005

0 230 90 0 0 88 -10 51

Sla

Sib
Not enough runoff generated

(A

S
SI

^
S2a

S2b

S2

[111]

[113]

[112]

ax -0 8821 +/- 0 0028

b0 0 0378 +/- 0 0001

ax -0 9025 +/- 0 0001

b0 0 0353 +/- 0 0007

aj -0 8961+/- 0 0014

b0 0 0308 +/- 0 0009

0 320 79 7 0 91 -10 71

0 362 97 5 0 91 -1101

0 362 97 5 0 80 -9 37

*S «

O 3

§ £
C 3

a o

Sla

Sib

SI

[113]

[113]

«! -0 9198 +/- 0 0033

to 0 0136 +/- 0 0005

a, -0 9334 +/- 0 0033

b0 0 0114+/- 0 0040

Estimation algorithms did not converge

0169 120 0 80

0 172 145 0 69

S2a

S2b

[113]

[113]

ax -0 9789 +/- 0 0005

b0 0 0164 +/- 0 0003

«! -0 9832 +/- 0 0004

i0 0 0172 +/- 0 0004

-8 74

-8 69

0 775 469 0 87 -10 5

1023 590 0 79 -9 82

S2 [113] a, -0 9588 +/- 0 0024

b0 0 0293+/- 0 0011

0 685 241 0 76 -8 54
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The data on the electrical conductivity of the runoff were analysed to determine the origin

ofthe runoff water (cf Eq 4 14) In Table 4 6, the analysis of the origin of the runoff is sum¬

marized The percentages ofevent and pre-event water were obtained by integrating the time

series of Q0y and Qnew (cf Eq 4 14) The EC data of the runoff are shown in Fig 4 8 and

Fig 4 15 presents the corresponding time series of pre-event and event water for S2a and

S2b

Table 4.6: Origin of the runoffwater during S2a and S2b at all scales Nj and N2 are sub-catch¬

ments and ERL is the Erlenhach headwater catchment EC is the electrical conductivity (/iS cm ) of
the rainfall (Cnew) and of the pre-event soil water (C0\j) The percentages of old and new water are

integratedfor the complete subsets S2a and S2b

Period EC Muck humus Mor humus N< N2 ERL

Depth flow Interflow Depth flow

110 126Ccld 162 130 300 294

c 10 3 10 3 10 3 10 3 10 3 10 3

% old 71 43 59 42 40 50

% new 29 57 41 58 60 50

Q»M 205 181 322 135 149 295

c 72 72 72 72 72 72

% old 71 47 54 38 38 48

% new 29 53 46 62 62 52

At the begin of a rainfall event, water with the chemical signature of pre-event soil water

percolated through the clayey subsoil of the muck humus plot It was only after more than

one hour that the EC ofthis runoff fraction decreased and the dilution with event water was

discernible This resulted in a cumulated amount of 71 percent pre-event water in the depth

runoff, for both S2a and S2b The EC of the interflow of the muck humus plot decreased

quickly after the start of the rainfall Thus, event water contributed more to the runoff in this

depth At the end of the rainfall event, the EC rose more rapidly in the interflow than in the

depth runoff Integrated over the subsets, this results in a larger contribution of event water

(57 percent for S2a and 53 percent for S2b) than pre-event water The different course of the
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EC in the interflow and in the depth runoff again suggests that at least part of the runoff

flowing from the mor humus is not produced within the soil plot

The EC ofthe depth runoffofthe mor humus plot is about twice as high as that ofthe muck

humus plot This can be due to the longer residence time of water in this soil, as indicated

by the transfer functions, or by the larger contact area in the better structured mor humus

subsoil This was observed during the tracer experiments of Chapter 3, too the residence

time of the tracers in the mor humus soil was longer than in the muck humus soil In addi¬

tion, the relative tracer concentrations in the outflow were lower (= more diluted) in the

mor humus soil

Since no interflow flowed from the mor humus plot, the infiltrated rainfall lowered the EC

ofthe depth runoffmor rapidly than on the muck humus plot For both subsets S2a and S2b,

pre-event water dominated the outflow from the mor humus plot (59 percent pre-event

water for S2a, 54 percent for S2b) These values are intermediate between those of the depth

runoff and the interflow of the muck humus plot
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4.4.5 Runofffrom the Sub-catchments

Table 4.7: Nonlinear transferfunctions for the runofffrom the sub-catchments N1( N2 and N3 tc

is the Time Constant and Gstat the Steady State Gain of the transferfunction YIC is the Young Infor¬

mation Criterion and Rj- the Coeffiaent ofdetermination determination of the time series model The

number in brackets is the contribution of the slow and thefast process (derivedfrom [2 2 S] models) to

the total runoff

Area Time Model <c [min] Gj((I( r4 YIC

Sla [111]

Fast Slow Fast Slow

0 8359 0 32 -9 77

Sib [110] 183 0 40 0 93 -1109

Sic [110] 109 0 59 0 93 -10 78

z
SI

S2a

[111] 83 0 31 0 89 -11 90

[2 2 1] 66 550 0 45 (58%) 0 33 (42%) 0 98 -13 58

S2b [2 2 2] 52 477 0 42 (49%) 0 44 (51%) 0 96 -11 67

S2 [111] 106 0 74 0 94 -13 22

Sla [113] 94 0 56 0 87 -10 60

Sib [111] 258 0 73 0 95 -12 43

Sic [111] 188 0 66 0 93 -10 96

z
SI

S2a

[HI] 92 0 40 0 90 -11 96

[2 2 2] 38 738 0 62 (55%) 0 51 (45%) 0 98 -12 96

S2b [2 2 2] 48 475 0 65 (50%) 0 65 (50%) 0 97 -13 07

S2 [111] 102 103 0 94 -13 28

Sla [111] 62 0 49 0 84 -10 04

Sib [110] 215 0 56 0 95 -1187

Sic [110] 150 0 48 0 93 -10 82

z
SI

S2a

[111] 109 0 45 0 88 -1129

[2 2 1] 46 1020 0 69 (59%) 0 49 (41%) 0 97 -12 62

S2b [2 2 2] 34 434 0 60 (51%) 0 58 (49%) 0 95 -10 99

S2 [111] 83 0 95 0 92 -12 57

Also at the scale of the sub-catchments, the performance and the results of the transfer func¬

tion modelling strongly differed between the time series SI and S2 Whereas for S2a and S2b

[2 2 S\ transfer functions described the runoff data best (based on YIC and Rj-), [115]
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models agree best with the Sla, Sib and Sic series and the complete SI and S2 periods

However, Fig 4 12 and Table 4 7 show that [115] models describe the dynamics of the

runoffgeneration slightly worse than [2 2 8\ models The question arises why it is not pos¬

sible to fit [2 2 5] models to all time series In our opinion, this is also caused by the possibly

varying time delay between the begin ofthe rainfall and the begin of the runoff, as discussed

before Transfer functions of structure [2 2 5] typically identify two different regions of the

declining limb ofthe hydrograph the steep upper part (fast process) and the lower, less steep

part (slow process) However, to estimate [2 2 5] models from data, it is a prerequisite that

the timing of the modelled peak runoff (and thus of 8) is appropriate This is most likely the

case for short data series obtained during wet periods

On average, the time delay S of the transfer functions is smaller for the sub-catchments than

for the soil plots, indicating that the sub-catchments responded faster to .rainfall The runoff

dynamics were the same for all sub-catchments The tc ofthe [1 1 S\ models for the complete

data series SI and S2 are consistent for all the sub-catchments If we adjust the Gstat of Nj

by the corrected surface area of Nj (cf section 4 4 2), then the GsW of Nj and N2 match

well For the time series Sla, Sib and Sic, the tc and the Gstat varied in a similar fashion for

all the sub-catchments and were in the average larger than those obtained for the soil plots

Thus, despite the initially faster reaction of the sub-catchments to rainfall (smaller 8), the

runoff dynamics are slower than on the soil plots

The [2 2 5] transfer functions provided more detailed information, showing the existence of

fast and slow processes contributing to runoff As before, all sub-catchments react similarly

to rainfall inputs and the tc of the fast and the slow processes are very similar For S2a, the tc

of the fast process varied between 38 and 66 minutes, and their contribution to the total

runoffwas between 55 and 58 percent The slow process has tc values between 434 and 1020

minutes For S2b, the tc of the parallel flow processes are generally smaller, except for the fast

In some cases, the sum of GsM of the fast and slow flow processes is larger than 1 This is an

effect of the transformation of the rainfall inputs For the original data series, GsM approxi¬
mates the runoffratio (for the number of data points N —» °<>) By transforming the rainfall

inputs, their total amount decreases As a consequence, the estimated b0 parameters) will

be larger and the total Gslal might be larger than 1
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Nl(Slb) Nl (S2b)

- Measured runoff

Nonlinear model [2 2 2]

Figure 4.12: Nonlinear transferfunctions for the runofffrom the sub-catchments Nj, N2 and N3
for the data subsets Sib and S2b

flow process in N2 The contribution of the fast and the slow flow processes to the total

runoff for S2b approached 50 percent for all sub-catchments The time constants of the fast

and the slow processes on the sub-catchments approximately matched those of the muck

humus plot (fast process) and the mor humus plot (slow process) This corresponds with the
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tracer experiments of Chapter 3, where we also concluded that flow processes in the muck

humus areas are faster than in the mor humus In addition, both tracer recovery and runoff

ratio were higher on the mor humus plot Thus, based on these findings we can expect that

both soil types contribute to the runoff of the sub-catchments However, measurements of

the EC of the sub-catchment runoff clearly altered this interpretation

At the begin of a rainfall event, the EC of the runoff from Nj and N2 decreased quickly

(Fig 4 8) The minimal value of the EC, about 40 uS cm"
,
was much smaller than that of

the soil plots This is likely due to the effect of saturated areas in the sub-catchments (see

Fig 4 2) With increased rainfall duration, these saturated areas expand Because of the satu¬

rated soil, rainwater can not infiltrate and quickly reaches the outlet of the sub-catchment

As a consequence, the runoff peaks are mainly composed of rainwater

The absolute values of the EC provide further evidence about the origin of the runoff For

N] and N2, the EC varied between 40 and 139 uS cm"
,
at the muck humus plots between

50 (interflow) and 205 uS cm" (depth runoff) and on the mor humus plot between 110 and

320 uS cm Thus, the quality of the runoff from Nj and N2 corresponds best to the inter¬

flow of the muck humus plot and least to the depth flow ofthe mor humus Thus, attributing

the fast process of the [2 2 5] transfer function to the runoff from the muck humus and the

slow process to the mor humus plot, as suggested by the results of the transfer function esti¬

mation, is incorrect Rather, both the slow and the fast flow processes on the sub-catchments

originate from muck humus zones

4.4.6 Runoff from the Erlenbach headwater catchment

The nonlinear transfer functions describe the runoff from the Erlenbach catchment slightly

worse than that of the sub-catchments For the complete data series SI and S2, [1 1 S\ trans¬

fer functions performed best, for subsets S2a and S2b [2 2 8j models Since S varied between

2 and 4, the Erlenbach catchments reacted in the average more slowly to precipitation than

the sub-catchments The tc of the fast and slow flow processes match nicely those obtained

for the sub-catchments The (,. of the slow process varied between 521 and 1163 mm, that of

the fast processes between 44 and 66 mm Thus, although the headwater catchment is about
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Table 4.8: Nonlinear transferfunction models for the runofffrom the Erlenbach headwater catch¬

ment tc is the Time Constant and Gsta, the Steady State Gain of the system YIC is the Young Infor¬
mation Criterion and Rj- the Coefficient of determination of the time series model The number in

brackets is the contribution of the slow and thefast processes (derivedfrom [2 2 8] models) to the total

runoff

Time Model Jc Gstat R? YIC

Fast Slow Fast Slow

Sla [1 1 3] 94 0 56 0 87 -10 6

Sib [113] 233 0 72 0 95 -12 32

Sic [2 2 3] 66 719 0 36 (53%) 0 32 (47%) 0 95 -10 94

51 [113] 143 0 57 0 88 -1164

S2a [2 2 2] 39 1163 0 52(49%) 0 54(51%) 0 93 -10 18

S2b [2 2 4] 44 521 0 48(44%) 0 60(56%) 0 92 -10 03

52 [112] 145 0 85 0 87 -1120

460 times larger than the sub-catchments, we identified similar flow processes Furthermore,

the tc of the fast processes compare well to those of the muck humus plot, the slow processes

on the other hand, are in agreement with the depth runoff of the mor humus plot

Both the results of the transfer function modelling and the EC measurements indicate that

there are two components with a distinct origin At the begin of a rainfall event, the EC of

the Erlenbach runoff decreased more slowly than the EC of the sub-catchment runoff

Hence, during the initial phase, both pre-event and event water contributed to the runoff

The EC during low flow was comparable to that of the mor humus, as were the tc of the

slow flow process from Erlenbach and the depth runoffofthe mor humus During peak run¬

off, when mainly the fast flow process contributed to the runoff, event water dominated

catchment runoff The tc ofthe fast flow process correspond well with those ofthe sub-catch¬

ments and of the muck humus plot Summarized, at the begin of a rainstorm, flow in the

subsoil horizons and m the upper layers of muck humus areas contributes to the runoff

Because of the mixing of both runoff sources, the EC in the Erlenbach runoff decreases less

fast than on the sub-catchments Ifthe rainfall continues, the wetland areas start to contribute

more to the runoff, enhanced by flow from waterlogged zones Because of the network of

draining trenches, this runoff is routed quickly towards the main brooks Still, also flow in
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the sub-surface leaves the flanks of the gorges and adds to runoff Therefore, the EC during

peak runoffis still much higher than on the sub-catchments When the rainfall stops, the flow

in the sub-surface gains importance and the EC increases again The amount of pre-event

and event water in runoff of the Erlenbach catchment was approximately equal (Table 4 6

and Fig 4 15)

Erlenbach (Sib)

Observed runoff

Nonlinear model [113]

Erlenbach (S2b)

Observed runoff

09-
— Nonlinear model [2 2 4]

08J
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Figure 4.14: Nonlinear transferfunctions for the runofffrom the Erlenbach headwater catchment

4.5 Comparison of Scales

An overview of the runoff processes at all scales is presented in Fig 4 16 Generally, the

runoff ratio increased with the size of the drainage area (Table 4 3) We attribute this to flow

processes in the subsoil In the soil plots, the observed level of the groundwater was mostly

well above the level of the trenches and both inflow of water from the surroundings and

seepage losses from the plot were therefore possible Although the runoff ratio suggested

losses of water, the different tt during the irrigation experiments and the natural rainstorms
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indicated that water entered the plots through the subsoil In the sub-catchments too, the

groundwater table may occasionally drop below the depth of the trenches Because of the

larger size of the drainage area, the influence of this boundary effect is, however, expected

to be smaller than in the soil plots On the Erlenbach catchment, a water balance deficit of

29 percent during spring and 21 percent during fall did not indicate a significant loss ofwater

as deep seepage These deficits are in agreement with the long term water balance of the

Erlenbach catchment (Burch, 1994) and caused by evapotranspiration

Irrigation experiments under controlled boundary conditions in both soil plots revealed that

runoff generation in all depths was fast (see Table 4 2, Fig 4 3 and 4 4) The tc of the depth

runoff and the interflow of the muck humus plot were 21 and 6 minutes, respectively, and

the Gslal equalled 0 19 and 0 17 On the mor humus plot the time delay S depended on the

soil water storage and no good model fit could be obtained Typically, the runoff ratio was

higher on the mor humus than on the muck humus, but the runoff dynamics slower and the

residence time of water longer

The runoff ratio and the Gslal of the muck humus plot during the irrigation were interme¬

diate to the results obtained for natural rainstorms during SI and S2 Independent of the

runoff ratio, the tc of the interflow and the depth runoff of the muck humus plot for natural

rainstorms were much larger than those obtained from the irrigation experiment In addi¬

tion, for S2 the differences in the tc of the interflow and the depth runoff disappeared This

was caused by sub-surface fluxes which determined the dynamics of the outflow ofthe muck

humus even if the soil was dry and deep seepage occurred

The tc of the depth runoff ofthe mor humus were larger than those of the muck humus plot

(Table 4 6) The slower runofffrom the mor humus plot is likely due to the better structured

subsoil

The EC measurements on the soil plots suggest that (cf Table 4 6, Fig 4 8 and 4 15) i) the

slow decrease ofthe EC in the depth runoffofboth plots shows that at the begin ofthe rain¬

fall mainly pre-event water, possibly entering the plot through the subsoil, contributed to

the depth runoff, u) in the interflow of the muck humus, rainwater contributed direcdy to
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the runoff, and m) the residence time of water in the mor humus is larger than in the muck

humus Since no interflow flowed from the mor humus, the depth runoff was diluted more

by the rainfall causing a faster decline of the EC

The tc of [1 1 S\ transfer functions fitted for the sub-catchments Nj, N2 and N3 were larger

than those of the soil plots, but the average time delay S was smaller (Table 4.7). The faster

initial response of the sub-catchments to rainfall is mainly caused by waterlogged areas and

wet muck humus depressions near the trenches and the catchment oudet (Fig. 4.2). Rain

falling onto these areas may contribute directly to the runoff, causing a rapid decrease ofthe

EC (Fig 4 8,4 15) During the course of a rainstorm, the spatial extent ofwaterlogged areas

increases If the rainfall stops, the contribution of the saturated areas to the runoff quickly

vanishes Such dynamics, which mainly occur in the muck humus depressions, correspond

well to the fast process of the [2 2 5] transfer functions (Table 4.7) Since the EC at peak

runoff is very low, the contact of the rainwater with the muck humus layers is minimal. After

the rainfall has stopped, the relative contribution ofthe slow flow processes to the total runoff

increases Comparing the EC of the outflow of the soil plots and of the sub-catchments

shows that also this runoff process originates mainly from the upper layers of the muck

humus areas Consequently, flow processes in the subsoil ofthe mor humus contributed htde

to the runoff of the sub-catchments.

The characteristics of the runoff from the sub-catchments Nj, N2 and N3 were very similar.

Thus, it appears that not the relative abundance ofmor and muck humus soil determines the

characteristics of the runoff, but rather the spatial arrangement of the muck humus zones

and the extent of the areas waterlogged during rainstorms

The time constants of the Erlenbach headwater catchment runoffwere very similar to those

of the sub-catchments This is surprising since the size of the Erlenbach catchment is about

460 times larger Apart from the spatial distribution of forests and wetland areas, two features

of the Erlenbach catchment are of major importance First, most of the wetland areas are

drained by trenches which are directly connected small brooks in deeply incised gorges Sec¬

ondly, sub-surface flow leaving the flanks of the gorges may contribute direcdy to the catch¬

ment runoff At the begin of a rainfall event, the EC of the brook water decreases more
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gradually than in the runofF from the sub-catchments At this stage, both the flow from the

wetland areas and that from the sub-surface adds to the runofFand the mixing of both frac¬

tions causes the slower decrease of the EC When the rainstorm continues, flow from the

wetland areas contributes more to the runofF This is favoured by the draining trenches

throughout the catchment, routing the runofF to the brooks Because sub-surface fluxes too

add to the total runofF, the EC is not as low as in the sub-catchment runofF After cessation

of the rainfall, the runofF from wetland areas diminishes and sub-surface flow dominates the

runofF The EC rises and reaches the same value as m the depth runofF of the mor humus

plot Because of the drainage trenches runofF produced in the wetland areas reaches the

brook quickly so that the tc of the transfer functions for the headwater catchment and the

sub-catchments match well The slow component of the [2 2 5] models, as well as the EC,

correspond well to the depth runofF oF the mor humus plot, too

4.6 Summary and Conclusions

To support a study on nitrogen cycling of nitrogen in an alpine forest ecosystem, we studied

the runofF generation tree spatial scales Our objective was an improved understanding ofthe

influence of the catchment scale and of the soil and vegetation on the runofF characteristics

To this end, we used data on the precipitation, runofFand the EC oFthe runofF water during

two observation periods, together with the findings From an irrigation experiment The larg¬

est study area, the Erlenbach headwater catchment (0 7 km ), is a steep and narrow catch¬

ment which is drained by permanent brooks Within this headwater catchment, we

delineated three sub-catchments (1500 m ) with distinct vegetation and soil types Two sub-

catchments are covered by forest - they were the subject ofa study on nitrogen cycling - and

a third is wetland Within these sub-catchments only two soil types occur, namely a mor and

a muck humus soil We studied runofF generation on two small plots (~13 m ), one repre¬

senting the muck, the other the mor humus soil We collected the runofF in three depths and

measured the soil moisture regime with a high temporal resolution
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From the rainfall-runoff data, we calculated input-output water balances during two periods,

one in fall 1996 and the other in spring 1997 and estimated the contribution of event and

pre-event water to the total runoff from the EC data To model the runoff generation, and

to detect the contributing flow processes, we used time series analysis Since the rainfall-

runoff relationship is very often nonhnear, we first linearized the relation by transforming

the input variable, using the following procedure First, we fitted a linear [1 1 S\ transfer

function to the data with parameters which were allowed to vary in time Then we compared

the time varying gain parameter to additional data characterizing the water regime of the

soils Since the level of the groundwater correlated best with the time variable gain, this var¬

iable served to transform the measured precipitation nonhnearly into an effective precipita¬

tion From the linearized the rainfall-runoff data we estimated linear transfer functions with

constant parameters To avoid overparametenzation we selected the model order based on

an information criterion The structure and the fitted parameters of the transfer function

models could be physically interpreted and provided information on the dynamics of the

hydrological processes The main drawback of this method is the incomplete description of

the nonhnear dependence of runoff on precipitation Although the effect of the varying

hydrological gain ofthe system can be corrected by a transformation ofthe precipitation, the

varying start of the runoff after rainfall could not be adequately described

The runoff ratio ofboth soil plots showed that a considerable fraction of the water input was

lost as deep seepage Surprisingly, the runoffratio of the wetter muck humus plot was smaller

than that of the better drained mor humus plot Irrigating resulted in fast runoff processes

on both plots The dynamics of the interflow of the muck humus plot were much faster and

the influence of the groundwater more pronounced than in the depth runoff Especially in

the depth runoff, flow through large macropores contributed substantially to the runoff

Compared to the muck humus, the sub-surface horizons of the mor humus plot are much

better structured, causing slower runoff dynamics Under natural boundary conditions the

difference between interflow and depth runoff disappeared on the muck humus plot On

both plots, the runoff dynamics were clearly slower than during the irrigation experiments

This was due to sub-surface water flow entering the soil plots through the subsoil
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Flow through the sub-surface horizons of the mor humus areas was of a minor importance

for the runoff generation from the sub-catchments Despite the different vegetation and soil,

the runoff dynamics were very similar in all sub-catchments They reacted faster to rainfall

than the smaller soil plots, which is likely due to the presence of waterlogged areas Rain

falling onto waterlogged areas cannot infiltrate and contributes direcdy to the runoff The

electrical conductivity indicated that, particularly during peak runoff, the mixing of event

with pre-event water was limited The results of the transfer function estimation suggest that

the sub-catchment runoff is composed of flow in the muck humus areas (fast flow process)

and in the subsoil of the mor humus (slow flow process) Still, the EC measurements disprove

this interpretation and strongly suggest that most of the runoff from the sub-catchments

originates from near surface muck humus soil layers or waterlogged zones Thus, extrapola¬

ting the results obtained in the soil plots did not clarify the runoffprocesses observed in the

sub-catchments Identically, expanding the findings for the sub-catchments to the Erlenbach

headwater catchment may not result in adequate runoff predictions Although the runoff

dynamics are very similar on both scales, partly caused by the network of drainage trenches,

the EC of the Erlenbach runoff is much higher During low flow conditions, the EC com¬

pares well to that of the depth runoff of the mor humus plot During peak runoff the EC is

still much higher than on the sub-catchments We conclude that the runoff ofthe Erlenbach

is composed of water flowing from the wetland areas (fast flow process) and water which

flows in the sub-surface soil layers (slow flow process)
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Chapter 5

Concluding Remarks

Determined by the structure of the dissertation, Chapters 3 and 4 presented their own con¬

clusions drawn from the specific material given therein This chapter synthesizes the results

and comments the relevance for the NITREX project I used two independent approaches

to identify the dynamics ofthe govermng runoffprocesses and the origin ofthe runoffwater

on the soil plots (13 m ), the sub-catchments (1500 m ) and the Erlenbach headwater catch¬

ment (0 7 km ) First, discrete transfer functions estimated from observed data served to

detect the nonlinear characteristics of runoff generation Second, I used tracer experiments

on the soil plots and electrical conductivity measurements at all the scales to locate the runoff

processes in the studied catchments The synthesis ofthe results obtained by the two methods

led to the conclusions presented in this chapter

Irrigation and tracer experiments under controlled boundary conditions showed that on the

isolated soil plots different runoffprocesses prevailed On the better drained mor humus plot,

the recovery of tracer and irrigation water was higher than on the wetter muck humus plot

From the muck humus plot, 32 percent of the irrigation water flowed into the runoffgutters

(54 percent from the mor humus plot) and, on average, the tracer recovery on the muck

humus plot was 33 percent (39 percent on the mor humus plot) This matches with the

runoff ratio of the soil plots during natural rainstorms, which was higher for the mor humus



130 5 Concluding Remarks

plot Tracers injected into the subsoil appeared in the outflow after 18 mm (muck humus)

and 70 mm (mor humus) This implies that the macropores m the subsoil ofboth plots were

important flowpaths Also from the results of the irrigation experiments of chapter 4 could

be concluded that preferential flowpaths contributed to the runoff generation

The transfer functions, estimated from the irrigation experiment and from the natural rain¬

storms, indicate slower runoff generation on the mor humus than on the muck humus plot

The slower dynamics in the mor humus soil are very likely due to the effect of the more

pronounced network of small pores in the subsoil The tracer experiments support these

findings Tracers, either applied onto the surface or at the interface of the humus layers and

the clayey subsoil broke through much faster on the muck than on the mor humus plot

The momtonng of natural rainfall events revealed that both soil plots were affected by sub¬

surface fluxes, too In general, the dynamics of the runoff processes on both soil plots were

slower during natural rainfall events than during the irrigation experiments On the muck

humus plot, sub-surface flow reduced the difference between the dynamics of the depth

runoff and the interflow, detected during the irrigation experiments Data on the electrical

conductivity of the outflow from both plots indicated that at the beginning of a rainstorm

mainly pre-event water flowed from the soil plots This agrees well with the notion of sub¬

surface (pre-event) water from upslope areas which enters the soil plots The first initial

hypothesis can be adapted as follows

Conclusion 1

Due to differences in the structure of the subsoil, the flow processes on the muck humus plot much are

faster than on the mor humus plot Despite the lower soil water content and the rainfall interception by

vegetation, the runoff ratio of the mor humus plot is higher There is a clear influence of sub-surface

water flow, originating from upslope areas which enters the soil plots

By transferring the information from the runoffprocesses on the soil plots to the sub-catch¬

ments, we would hypothesize that the major (but slowest) component of the sub-catchment

runoffwould flow through the porous clayey subsoil of the mor humus The fast component

of the runoff would be generated in the muck humus depressions Data on the EC of the

runoff of the sub-catchments, however, completely altered this view
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Despite the differences in the distribution of the soil type, the generation ofrunoffwas com¬

parably fast on all sub-catchments The spatial distribution of the wetter muck humus zones

and the waterlogged areas appeared to be more important than the area covered by each of

the soil types Waterlogged areas in the muck humus depressions caused surface or near-sur¬

face runoff, responsible for the very low electrical conductivity during runoff peaks The

dynamics of fast and slow flow processes in the sub-catchments, identified by estimating

transfer functions, agreed well with those of the soil plots, suggesting faster generation of

runoff process in the muck humus and slower generation in the mor humus soil Electrical

conductivity measurements, however, revealed that the largest part of the runoff of the sub-

catchments had a limited contact time with the soil and originated from surface or near-sur¬

face muck humus zones Consequently, our initial hypothesis can be refined as

Conclusion 2

Surface and near-surface flow in muck humus soil layers contributes most to the runoff of the sub-

catchments Waterlogged areas in the muck humus depressions cause a direct contribution of rainfall to

the runoff Consequendy, the residence time of rainwater and solutes in the sub-catchments is short

Conclusion3

Despite the different abundance of mor and muck humus areas within the three sub-catchments, the

runoff processes are almost similar Thus, the spatial distribution of muck humus and waterlogged areas

influences the runoff generation more strongly than the area covered by each of the soil types

By extrapolating this information to the Erlenbach catchment we would predict slower flow

processes at this scale because ofthe longer travel distance, but the runoffwould still be dom¬

inated by water flowing from the muck humus layers

Despite the larger area of the headwater catchment, the dynamics of the runoff processes

resembled those of the sub-catchments closely The nonlinear transfer functions and the

measurements of the electrical conductivity indicate that two components add to the runoff

The slow component flows mainly in the subsoil, having an electrical conductivity compa¬

rable to that of the depth runoff of the mor humus soil plot This component contributes

directly to the brook through the flanks of the gorges The fast component originates from

wet or even waterlogged muck humus areas and is led to the brooks by the drainage trenches
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Conclusion 4

Erlenbach runoff is composed of two parallel flow processes the first is surface or near-surface runoff

from wetland areas (fast process) and the second is sub-surface flow in the macroporous subsoil (slow

process)

At the beginning of the NITREX project, the subsoil was assumed to be impermeable The

water balances of the sub-catchments support this hypothesis But, the different origin of the

runoff of the sub-catchments and of the Erlenbach catchment casts some doubt on this

assumption In the sub-catchments, flow in the subsoil contributes little to the runoff Rain¬

water falling on the trees and infiltrating into the mor humus has therefore little importance

for the runoff of the sub-catchments, but flows through the subsoil to the brooks of the

Erlenbach catchment Thus, the trenches surrounding the sub-catchments might not capture

all ofthe runoffleaving (or entering) through the subsoil This limits the possibility to extrap¬

olate the findings of NITREX to 'natural' catchments On the other hand, the findings

about runoffgeneration in the sub-catchments suggest, that the runoffofthe sub-catchments

is mainly generated in surface or in near-surface muck humus zones This, off course, agrees

to the regions were most of the nitrogen transformation occurs Thus, it is possible that the

NITREX programme, which focuses on the nitrogen turnover at the spatial scale of the sub-

catchments, captures the most important nitrogen fluxes

Preliminary results on the export ofammonium and nitrate showed that the leaching ofinor¬

ganic nitrogen occurred mainly as nitrate (Schleppi et al, 1998) This agrees well with the

runoff characteristics of the sub-catchments The fast flow processes in the muck humus

depressions and on waterlogged areas cause relatively short residence times ofwater and so¬

lutes the sub-catchments As a result, in the muck humus areas an incomplete microbial

immobilisation ofnitrate may occur Still, the residence time ofthe rainwater in the soil may

be large enough for ammonium to be removed from the soil solution by anion exchange

However, detailed information on the runoff generation in the sub-catchments and on the

permeability of the subsoil can only be obtained from a multiple tracer experiment with

inert tracers applied at various locations within and near the sub-catchments
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AppendixA

A.l Recursive Formulation of the Least Squares Solution

To derive a recursive algorithm, we first set the initial recursive solution after k observations

equal to the 'en bloc' solution, or aw = at .We can write the equation (2.29) as

r k

at = 2>,T
Li = l

-l k

]>,?, =P*F*>

i= 1

(A.1.1)

with

and

i-l

5>.T
Li = 1

(A.1.2)

i=i

(A. 1.3)

A recursive expression for Pt is obtained by sphtting the total sum of Eq. (A.1.2) as follows

nt-1

P '-
rk 2>

Li = 1

+ ztz.
.T

k'-k (A.1.4)

* - *-l + zkzk (A.1.5)
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Equation (A 1 5) can be pre-multiphed by Pk and then post-multiplied by Pk ,
to give

By post-multiplying Eq (A 1 6) by zk and rearranging the terms one finds

Ptl*t =Ptit[l+2lPtlzt] (A 17)

Again,Eq (A 1 7) can be postmultiphed by 11 + zJPt {zk\ z|Pj j
to obtain

P, xzk [l + zlP, ,zt]-IilPt, = P*z,zlPt, (A 1 8)

By substituting Eq (A 1 6) into Eq (A 1 8) the final recursive expression for Pk j
can be

obtained

P*=P*>-P*i**[l+zlP*,z*]~zlP*i (A 19)

In a similar way, Ft can be expressed as

Fk=Fkl + zkyk (A110)

Combining Eqs (A 1 1, A 1 9 and A 1 10) gives the recursive form of the least squares esti¬

mation'

**i-P*i**[l+*lPt.**]"*I'\i [F*i+ *»>'*]>

or, after expanding the product

(A 111)

&k = Pki¥kl-Pklzk[l+zJPuZk]~lzJPklFkl + Pklzkyk (A 112)

-P*,zt[l+zlPtlzJ zTkPkiZkyk

a* = atl + Ptlzt[i+zTpkiZJ xJakl + Pkixkyk , (A 1 13)

-Ptlzt[l+zlP41zJ zjPkizkyk
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= at,-K, zTkakl + zJPklzkyk-[l+zTkPkizk] %

'lth

(A 1 14)

(A 1 15)

(A 1 16)

K* = PM**[l+«lPt,«J

Thus, we can write

a* = a^-Kj^ -zjfitlj

Equation (A 1 16) is the recursive solution to the estimation problem

A.2 Derivation of the Kalman Filter

The best estimate of the state vector is denoted as \k,k and is defined as the conditional

expectation of x^ given Ut l
and Yk, 1 e

x*|* - E [**l(Yt,Utl)] (A 2 1)

Before proceeding with the derivation of the Kalman filter, a few assumptions on the noise

and state vector are necessary

a) x0 is a Gaussian random vector with known mean and covariance matrix

E[x0] = Y0

Cov[x0, x0] = Z0
This assumption defines the initial condition of the state vector at time k = 0, before the

Kalman filter estimation procedure starts

b) wk is a Gaussian random vector with zero mean and serially uncorrelated

E[wJ = 0

Cov[w„wT] = Qk5kT
with Qt a known positive semi-definite covariance of Wt and 8kt the Kronecker delta

c) v^ is a Gaussian random vector with zero mean and serially uncorrelated

E[vJ = 0
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Cov[vt, vj = Rk8n
with Rt a known positive semi-definite covanance matrix of v^ and 8kT the Kronecker

delta

d) \k, Wj,X0 and vr are mutually independent for all values of k and t

e) Ut! and all matrices hk, §k p Gk, and Hj. are deterministic, noise free vectors or

matrices

Since the systemt and the observation equation are hnear, and because of the first four

assumptions, the conditional probability density of xt|t, p xt|(Yt, Ut!) ,
is also Gaussian

Thus, it is completely characterized by its conditional expectation xk,k and by the condi¬

tional covanance matrix Z^ = Cov\\J, x^Y,., Vk j)

The Kalman filter is a powerful discrete algorithm applied to compute an estimate of x^

The Kalman filter approaches the estimation problem with a two-stage solution To derive

the Kalman filter equations, we assume, without loss of generality, that the system noise tran¬

sition matrix G^, equals the identity matrix of the right dimensions To avoid a growing

memory filter, the estimate is sought for in a linear recursive form

ft« = K****l*i + K*Y*. (A 2 2)

where Kt and Kk are time varying weighting matrices and kk,k t
a prior estimate of the

system state vector at time instant k, based on all observations up to k -1 Because of the

second assumption, the prior estimate of the system state can easily be obtained and by

extrapolating the system state at k -1 as

*«*! = ^i^mi + LjiU*, (A 2 3)

Equations (A 2 2) and (A 2 3) show the multiple stage properties of the Kalman filter first,

the system state is extrapolated forward in time (Eq A 2 3), afterwards this extrapolation is

updated (Eq A 2 2) with the newly available data at time instant k The Kalman filter equa¬

tions can be derived by optimizing the linear estimator (Eq A 2 2) for K*k and Kk The opti-

mahty criteria are the unbiasedness of the estimator and the minimum variance of the

estimation error If the assumptions on the measurement noise and the system noise cohere
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with reality, the Kalman filter will be the optimal filter The estimation errors xk,k and xt,t l

are defined as

x*|* = **|*-x* (A24)

x*|n = *k\ki~xk (A 2 5)

Combining Eqs (A 2 4), (A 2 5) and (A 2 2) results in

x*|* = [K + K*H* - X] x* + K*k\k i
+ K*v* (A 2 6)

Since by definition E[vt] = 0 andif Etx^ J = 0, this estimator will be unbiased for any

given state vector only if the term in brackets is zero, or

K^I-K^H, (A 2 7)

Equation (A 2 2) can now be written as a function of Kt, the Kalman gain matrix, as

x*|*
= x*|* l+ K* [Y* - H*x*|* 1} (A 2 8)

with the corresponding estimation error

x*|* = x*|* i
+ Kt [vt - Htxt|t,] (A 2 9)

Equation (A 2 9) can be used to calculate the covanance matrix of the estimation error of

the system state, which is defined as

*v = C°v[x*l*-x*l*] =E[x^xjJ (A 2 10)

Also the covanance matrix of the estimation errors can be extrapolated between two meas¬

urements as (prove not shown)

P*|*i = *t ipt i|t i<t»I i
+ Q* i, (A 2 11)

and updated when a new measurement is employed as

P* = (I -K,H,)PW ,(I -KtHt)T + K,RtK^ (A 2 12)
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An optimal expression for K.k can be determined by choosing and minimizing an appropri¬

ate cost function This can be achieved by choosing the cost function to minimize as a

weighted scalar sum of the diagonal elements of the covariance matrix of the estimation

errors Pi(t

A = 11 **|Js =E[xJ|tSxt|t], (A 2 13)

with S being a symmetric and positive semi-definite matrix oforder n Taking the first deriv¬

ative of the cost function Eq (A 2 13) with respect to Kk and comparing it to zero results

in the following expression for Kt

K, = Pi|nHl[HtP,|tlHl + Rt]"1 (A 2 14)

A disadvantage of the calculation of the Kalman gain matrix K^ is the matrix inversion The

computational efficiency of algorithm (A 2 14) would increase considerably if it could be

rewritten avoiding the matrix inversion By using the matrix inversion relationship

P*|* = P*|ti+HXHt, (A 2 15)

combined with Eq (A 2 14) and after expanding and rearranging terms, an alternative

expression results

K* = P*XR< <A216)

The complete two stage Kalman solution to the estimation problem now takes the form

• Extrapolation

**i*i = 4>*Ai|u + L*iu*i (A217)

(A 2 18)

(A 2 19)

*\|*i = <l)*iP*i|*i<1)*i + Q*

• Updating

x*|*
= **|/U + K*[_Y*~H**Jk\k 1
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Pk{k = [l-KtHt]pt|tl (A 2 20)

Equation (A 2 20) can be obtained by substituting Eq (A 2 14) into Eq (A 2 12)

A.3 Gauss-Markov sequences

If no physical information on the dynamics of the system state is available, it still can be

explicitly modelled by assuming that the state vector evolves in a fairly general stochastic

manner It is possible to assume that the state vector at time k is a realization of a random

process To completely describe the time series ofthe state vector xk for k = 1 to N, thejoint

probability density function of all state vectors needs to be specified

p(x, xN) (A 3 1)

However, since in almost all applications the state vector at all time instants is estimated from

only one realization of the input and output data series, this huge amount of information is

not available We can simplify the joint probability density function by assuming that the

temporal variation of the state vector is a Markov random sequence

P(x*lx*i xi) = P(x*lx*i) (A 3 2)

This means that the probability density function of xk depends on deterministic or stochas¬

tic knowledge of xk { only A Gauss-Markov random sequence can be obtained with the

additional requirement that p(xt) and p(xt t) have Gaussian probability distributions The

variation of the state vector can now be described by a general Gauss-Markov stochastic dif¬

ference equation of the form

x* = ti**i+Gtlwtl (A33)

The simplest and probably best known form of this stochastic difference equation is a

random walk process

x* = x*i + w*i (A34)

The random walk model can be shghdy changed to obtain an integrated random walk proc¬

ess, a smoother model for the parameter variation
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xk = xkl + skl (A 3 5)

s* = s*i + w*i (A3 6)

The smoothness of the model for the parameter variation can be manipulated in a smoothed

integrated random walk model

x* = Px*i+st, (A37)

h, + W/t i (A 3 8)
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