
DtssJETH £*-3

Diss. ETH No. 12520

Group Signature Schemes and

Payment Systems Based on

the Discrete Logarithm Problem

A dissertation submitted to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY

ZURICH

for the degree of

Doctor of Technical Sciences

presented by

Jan Leonhard Camenisch

Dipl. El.-Ing. ETH

born 25. April, 1968

citizen of Chur

accepted on the recommendation of

Prof. Dr. Ueli Maurer, referee

Prof. Dr. Ivan Bjerre Damgard, co-referee

1998

Leer - Vide - Empty

to Isabelle

Leer - Vide - Empty

Abstract

The security of many cryptographic systems relies on the difficulty of

computing discrete logarithms in certain finite groups.

This dissertation studies existing cryptographic protocols which are

based on this problem. These protocols are unified and extended to

a framework for designing cryptographic systems. Using this frame¬

work, new and efficient realizations of digital group signature schemes
and digital payment systems are developed.

Group signature schemes allow a member of a group to sign messages
anonymously on the group's behalf. In the case of later dispute, a desig¬
nated group manager can reveal the signer's identity. An efficient real¬

ization of this concept is proposed. Furthermore, the concept of gener¬

alized group signatures is developed and realized. This type of scheme

allows the definition of sets of group members which can jointly sign
on the group's behalf.

Anonymous digital payment systems allow a customer to pay digitally
and anonymously. Unfortunately, anonymity also opens the path to

criminal misuse, for instance to launder money. As a compromise be¬

tween the protection of privacy and the possibility of surveillance for

crime inspection, the concept of revocable anonymity has been pro¬

posed. It introduces a trustworthy third-party which can reveal the

identity of a payer in cases of misuse. From an operational point of

view, it can be an important requirement that this third-party is not in¬

volved in ordinary transactions, but only in anonymity revocation. In

this work we present an efficient anonymous digital payment systems

satisfying this requirement.

Leer - Vide - Empty

Zusammenfassung

Die Sicherheit vieler kryptographischer Systeme beruht auf der Schwie-

rigkeit, diskrete Logarithmen in endlichen Gruppen zu berechnen.

Diese Dissertation untersucht existierende kryptographische Protokol-

le, welche auf diesem Problem aufbauen. Diese Protokolle werden

vereinheitlicht und zu einem Baukasten fur kryptographische Systeme
erweitert. In einem zweiten Teil werden damit neue und effizientere

Realisierungen digitaler Gruppenunterschriften und anonymer digita-
ler Zahlungssysteme entwickelt.

Gruppenunterschriften erlauben es Mitgliedern einer Gruppe Doku-

mente anonym im Namen der Gruppe zu unterschreiben. Im Falle ei-

nes Missbrauchs kann jedoch ein Gruppenmanager die Idenrirat des

Mitglieds eruieren, welches die Unterschrift geleistet hat. Es wird ei¬

ne effiziente Realisierung dieses Konzepts entwickelt. Weiter wird das

Konzept der verallgemeinerten Gruppenunterschrift entworfen und

realisiert. Dieses erlaubt Mengen von Gruppenmitgliedern zu dehnie-

ren, so dass nur Gruppenmitglieder, die eine solche Menge bilden, ge-
meinsam im Namen der Gruppe unterschreiben konnen.

Anonyme digitale Zahlungssysteme ermoglichen es Kunden, digital
und anonym zu bezahlen. Da die Anonymitat aber auch missbraucht

werden kann, um zum Beispiel Geld zu waschen, wurde die aufheb-

bare Anonymitat als Kompromiss zwischen Privatspharenschutz und

Verbrechensbekampfung vorgeschlagen. In einem solchen System gibt
es eine vertrauenswiirdige Instanz, welche in Fallen des Missbrauchs

gezielt die Anonymitat eines Kunden aufheben kann. Von einem ope-

rationellen Standpunkt aus gesehen kann es wichtig sein, dass diese

vertrauenswiirdige Instanz nur fur das Aufdecken der Anonymitat ak-

Vlll

tiv sein muss. In dieser Arbeit wird ein solches System prasentiert.

Acknowledgements

First of all, I am profoundly grateful to Ueli Maurer, who gave me

the opportunity to work in cryptography and always supported me.

I thank Ivan Damgard for his interest in this work and for his insightful
comments.

Jean-Marc Piveteau and Markus Stadler guided me into the fascinating
field of cryptography and the basis for this thesis lies in the joint work
with them. Many of the results reported herein are the fruits of lively
discussions with Markus Stadler.

It has been a pleasure to share an office with Christian Cachin and dis¬

cuss UNIX, cryptography, and such things as 42. He also provided the

practical basis for this thesis: a set of ETpX-macros. I also had the op¬

portunity to share an office with Stefan Wolf and discussing fatzkes,

nolding, and tools.

I'm indebted to Ronald Cramer for his valuable critics and for "being
an asshole for some minutes". Markus Michels suffered for me and

read an early version of Chapter 3. Chris Green did a marvelous job
proof-reading this writing. Sandra Baumer volunteered to proof-read
Chapter 4.

I thank the not-yet-mentioned former and current members of the "In¬

formation security and cryptography group", Masayuki Abe, Dani

Bleichenbacher, Matthias Fitzi, Martin Hirt, Reto Kohlas, and Thomas

Kuhne. We always had a great and relaxing atmosphere. Keep going!

Funds for this work were provided by the Swiss Commission for Tech¬

nology and Innovation (KTI) by grants No. 2724.1 and 3179.1, and by
the Union Bank of Switzerland.

X

Last, but certainly not least, I am grateful to my parents and grand¬
parents for their support and sending me on the right way.

Jan Camenisch, February 1998

Contents

1 Introduction 1

2 Foundations and Basic Protocols 5

2.1 Preliminaries 5

2.1.1 Complexity Theory 5

2.1.2 Interactive Protocols 7

2.1.3 Miscellaneous Notations 8

2.2 Algebra and Number Theory 9

2.2.1 Groups 9

2.2.2 The Groups Zm and Z*m 10

2.2.3 Efficiency of Group Operations in Zm 11

2.3 Number-Theoretic Problems 12

2.3.1 The Discrete Logarithm Problem 12

2.3.2 The Representation Problem 15

2.3.3 The Diffie-Hellman Problem 15

2.3.4 Factoring Large Integers 16

2.3.5 Computing Square-Roots and e-th Roots 17

2.4 Public Key Cryptography 19

2.5 Public Key Encryption 20

xii Contents

2.5.1 Diffie-Hellman Key Exchange 20

2.5.2 The RSA Encryption Scheme 21

2.5.3 The ElGamal Encryption Scheme 22

2.6 Identification Protocols 23

2.6.1 The Schnorr Identification Protocol 23

2.7 Digital Signature Schemes 24

2.7.1 The RSA Signature Scheme 26

2.7.2 The ElGamal Signature Scheme 27

2.7.3 The Schnorr Signature Scheme 28

2.8 Blind Digital Signature Schemes 29

2.8.1 The Blind RSA Signature Scheme 30

2.8.2 The Blind Schnorr Signature Scheme 31

2.9 Zero-Knowledge Proofs of Knowledge 33

2.9.1 Interactive Proofs of Knowledge 34

2.9.2 Zero Knowledge Protocols 35

2.9.3 Witness Hiding Protocols 37

2.9.4 An example: Schnorr's Identification Scheme
. . 39

2.10 Hash Functions 42

2.11 Secret Sharing 44

3 Proofs of Knowledge About Discrete Logarithms 47

3.1 Introduction 47

3.2 Proving Knowledge of Secret Keys 49

3.2.1 Algebraic Setting 49

3.2.2 First Building Blocks and Notation 49

3.3 Statements About Knowledge 52

3.4 Proving the Equality of Secret Keys 57

3.5 Proving Polynomial Relations Among Secret Keys
59

Contents xiii

3.5.1 Linear Relations 59

3.5.2 Polynomial Relations 61

3.5.3 Related Work 69

4 Efficient and Generalized Group Signature Schemes 71

4.1 Introduction 71

4.1.1 Related Work 72

4.1.2 The Schemes Presented in This Chapter 73

4.2 Our Model of Group Signature Schemes 74

4.3 Constructions of the Schemes 76

4.3.1 An Efficient Simple Group Signature Scheme ...
76

4.3.2 A Generalized Group Signature Scheme 79

4.3.3 An Example: A Threshold Group Signature Scheme 82

4.3.4 Security Properties 83

4.3.5 Efficiency Considerations 84

4.4 Extensions 85

4.4.1 Sharing the Functionalities of the Group Manager 85

4.4.2 Reducing the Size of the Group's Public Key ...
86

5 Group Signature Schemes for Large Groups 87

5.1 Introduction 87

5.2 The Basic Idea 88

5.3 Building Blocks 90

5.3.1 Double Discrete Logarithms and Roots of Loga¬
rithms 91

5.3.2 Proofs of Knowledge of Discrete Logarithms and

Representations 91

5.3.3 Proofs of Knowledge of Double Discrete Loga¬
rithms 92

XIV Contents

5.3.4 Proofs of Knowledge of Roots of Discrete Loga¬
rithms 96

5.4 The Basic Group Signature Scheme 99

5.4.1 System Setup 100

5.4.2 Generating Membership Keys and Certificates . .
101

5.4.3 Signing Messages 102

5.4.4 Opening Signatures 103

5.4.5 Security Properties 104

5.4.6 Efficiency Considerations 104

5.5 An Advanced Scheme 105

5.5.1 System Setup 105

5.5.2 Generating Membership Keys and Certificates
. .

106

5.5.3 Signing Messages 107

5.5.4 Opening Signatures 108

5.5.5 Security Properties 108

5.5.6 Efficiency Considerations 109

5.6 A More Efficient Variant 109

5.6.1 System Setup Ill

5.6.2 Generating Membership Keys and Certificates . .
112

5.6.3 Signing Messages 112

5.6.4 Opening Signatures 114

5.6.5 Security Properties 114

5.6.6 Efficiency Considerations 115

5.7 Extensions 115

5.7.1 Sharing the Functionality of the Group Manager .
115

5.7.2 Generalized Group Signature Schemes 116

5.8 Comparison of the Different Group Signature Schemes .
117

5.9 Open Problems 118

Contents xv

6 Payment Systems with Passive Trustees 119

6.1 Introduction 120

6.2 Digital Payment Systems 121

6.3 Anonymity Revocation by a Trustee 122

6.4 Payment System with a Passive Trustee 124

6.4.1 System Setup 124

6.4.2 A Subprotocol: A Modified Blind Schnorr Signa¬
ture Scheme 125

6.4.3 The Withdrawal Protocol 127

6.4.4 The On-line Payment Protocol 128

6.4.5 Anonymity Revocation 129

6.4.6 Security Properties 130

6.4.7 Efficiency Considerations 132

6.5 Extensions to Off-line Payments 132

6.5.1 Enabling the Bank to Identify Cheaters 132

6.5.2 Observers Can Prevent Double-spending 134

6.5.3 Security properties 140

6.6 Sharing the Revocation Capability Among Several Trustees141

6.7 Comparison with Other Schemes with Passive Trustees
.

141

7 Sharing and Diverting the Capability of Anonymity Revoca¬

tion 143

7.1 Provable Encryption 144

7.2 Sharing the Capability of Anonymity Revocation 145

7.2.1 Threshold Access Structures 146

7.2.2 Using Publicly Verifiable Secret Sharing 146

7.3 Diverting the Capability of Anonymity Revocation.... 147

8 Concluding Remarks 149

xvi Contents

Bibliography 151

Index 171

Chapter 1

Introduction

In their seminal 1976 paper "New Directions in Cryptography" [DH76],
Diffie and Hellman devised the concept of public key cryptography and
showed that secret communication is possible without a prior exchange
of a secret key, as was necessary previously. Their ingenious idea was to

use two different keys, a public key for encryption and a private key for

decryption. Based on this asymmetry, they further devised the concept
of digital signatures. Here, the private key is used to sign a message
and the public key is used to verify a signature. However, Diffie and

Hellman did not provide realizations of the new concepts, but they pro¬

posed a protocol that allows two entities to derive a common secret key
only by exchanging information in public. This protocol is based on the

difficulty of computing discrete logarithms in a certain finite group.

The concept of public key cryptography inspired many researchers,
and it soon became a fast-growing and fascinating research disci¬

pline. In the following years, many realizations of digital signature
schemes and public key encryption schemes were proposed, most no¬

tably the ones by Rivest, Shamir, and Adleman [RSA78] and by ElGa¬

mal [ElG85a]. Based on these primitives, more complex systems such

as digital payment schemes or voting schemes were devised.

This dissertation is concerned with cryptographic protocols based on

the difficulty of computing discrete logarithms in finite groups. Parts

of this thesis have already appeared in [CMS96, Cam97, CMS97, CS97a,

CS97b].

2 Introduction

Chapter 2 provides the mathematical and cryptographical background.
This includes problems from number theory, such as computing dis¬

crete logarithms or factoring large integers, that are underlying our

protocols. An introduction to public key cryptography and its concepts
is given, and basic realizations thereof are described. The concept of

zero-knowledge proofs of knowledge, an important tool for character¬

izing properties of cryptographic protocols, is summarized. The chap¬
ter ends by introducing hash functions and secret sharing schemes.

In Chapter 3 a framework for designing cryptosystems based on the

hardness of computing discrete logarithms is developed. We summa¬

rize and unify known building blocks such as protocols for proving
the knowledge of the discrete logarithm of a given public key. A new

method for proving that the discrete logarithms of public keys satisfy a

given set of modular relations completes this chapter.

The remaining chapters describe realizations of two cryptographic con¬

cepts: group signature schemes and digital payment schemes. A group

signature scheme allows a member of a group of entities to digitally
sign messages anonymously on behalf of the group. In case of a later

dispute a designated group manager can revoke the anonymity and

identify the originator of a signature.

Chapter 4 states our model of group signature schemes, which is a gen¬
eralization of the models found in the literature in that it allows the

definition of coalitions of group members, called authorized coalitions,
that are able to sign on behalf of the group. More precisely, only group
members who form an authorized coalition are jointly able to sign on

the group's behalf. The chapter presents the first realization of a gen¬
eralized group signature scheme together with a realization of an or¬

dinary group signature scheme that is more efficient than previously
proposed schemes.

The group signature schemes described in Chapter 4, as well as the

schemes found in the literature, have the property that the size of the

group's public key and/or the length of signatures are linear in the

number of group members. Hence, these scheme are impractical for

large groups. Chapter 5 proposes a new approach to realize group sig¬
nature schemes that overcome this problem, i.e., in this approach the

size of the group's public key as well as the length of signatures are

independent of the group's size. The idea underlying this new way of

realizing group signature schemes is that group members are given a

3

certificate by the group manager stating that they belong to the group.

To sign a message on the group's behalf, a group member must prove

knowledge of a certificate, but does not have to present the certificate

itself.

Chapter 6 considers anonymous payment schemes. Such schemes al¬

low digital payments in a way that protects the payer's privacy, i.e., the

bank does not know which payer transferred money to which payee.

However, anonymity can be misused by criminals, for instance for

money laundering. As a remedy, the concept of conditional anonymity
has been proposed [BGK95, SPC95]. It introduces a trustee as a trusted

third party that is capable, in cooperation with the bank, to revoke

the anonymity of a payment and to identify the payer. This chapter
presents digital payment systems with revocable anonymity. Unlike

other such systems that have been previously proposed, the trustee is

only involved in the act of anonymity-revocation but not in other trans¬

actions such as payments.

What group signature schemes and payment systems with revocable

anonymity have in common is that there is a trusted third party that is

able to revoke the anonymity of other parties. This party is trusted not

to reveal identities at will. To reduce the risk of fraudulent anonymity-
revocation, the revocation capability can be distributed among several

entities such that only designated subset of them can jointly reveal

identities. Chapter 7 discusses several methods to achieve this.

Leer - Vide - Empty

Chapter 2

Foundations and Basic

Protocols

This chapter provides an introduction to the topics of algebra, number

theory, and cryptography that will be used in the subsequent chapters.
Readers familiar with these topic may skip this chapter. References for

these topics include the books by Koblitz [Kob94], Kranakis [Kra86],
Menezes et al. [MvOV97], Schneier [Sch96], and Stinson [Sti95]. Read¬

ers interested in the theory of cryptography will find the manuscript
entitled "Foundations of Cryptography" by Goldreich [Gol95] helpful.
A reference for complexity theory is the book of Papadimitriou [Pap94].

2.1 Preliminaries

2.1.1 Complexity Theory

An algorithm is a computational procedure that takes a (variable) input
and halts uttering an output. Often, the model of a Turing machine is

used to make the notion of an algorithm precise. In complexity theory,
problems are often classified by the most efficient known algorithm for

solving them. The efficiency of an algorithm is measured with respect
to the resources required to solve the problem (i.e., primitive steps and

6 Foundations and Basic Protocols

memory or the number of gates).

To compare running times of algorithms, the standard asymptotic no¬

tation is used. The expression f(n) = 0(g{n)) denotes an asymptotic
upper-bound on f(n) imposed by g(n) and means that there exists some

positive constant c and a positive integer no such that 0 < f(n) < cg(n)
for all n >rin. Intuitively, this means that / grows no faster asymp¬

totically than g. Furthermore, if g(n) = 0(f(n)) holds, then we write

f(n) = Q(g(n)), and if both f(n) = 0{g{n)) and f(n) = Q{g(n)) hold, we

write f(n) = Q(g(n)). An upper-bound that is not asymptotically tight,
denoted with f(n) = o(g(n)), is the following: For any positive constant

c, there exists an integer tio such that 0 < f(n) < cg(n) for all n > hq. The

expression o(l) is often used to denote a term f(n) with lim^oo f{n) = 0.

A polynomial-time algorithm is an algorithm that has a worst-case

running time of 0(nk) for some constant k, where n is the size of the

input. Exponential-time algorithms have a worst-case running time

that can be upper-bounded by 0{cn) for some c > 1. Sub-exponential
time algorithms are those whose running time is upper-bounded by
0(exp(c + o(l)nQ(lnn)1~a)), where c is a positive constant, and a is a

constant satisfying 0 < a < 1. Observe that for a = 0 the running time

is polynomial, while for a = 1 it is fully exponential.

Computational problems are often modeled as decision problems: de¬

cide whether a given x G {0,1}* belongs to a language L C {0,1}*. P is

the class of languages for which this can be decided in polynomial time.

NP is the class of problems for which the decision whether x belongs
to L can be verified in polynomial time when provided a certificate (or
witness) of this fact. Clearly P C NP.

Let RC {0,1}* x {0,1}* be a boolean relation. We say that R is poly-
nomially hounded if there exists a polynomial p(-) such that \w\ < p(\x\)
holds for all (x, w) e R. Furthermore, R is an NP-relation if it is poly-
nomially bounded and if there exists a polynomial-time algorithm for

deciding membership of pairs (x, w) in R. Finally,

LR = {x | 3 w such that (x, w) e R]

is the language defined by K.

Definition 2.1. A language L is in NP if there exists an NP-relation RL C

{0,1}* x {0,1}* such that x G L if and only if there exists a w such that

{x,w)ERi- Such a wis called a witness of the membership ofx in L. The set

of all witnesses ofx is denoted as Rl(x).

2.1 Preliminaries 7

Alice Bob

(x,y) (x,z)
1

i

communication
-4

4-

computations
communication

*.

computations

1

([A(y),B(z)](x)) ([B(z),A(y)](x))

Figure 2.1: An example for the notation of protocols.

2.1.2 Interactive Protocols

An interactive protocol can be seen as a game between two players,

say Alice and Bob. The parties send messages back and forth and per¬

form some computation as prescribed by the specification of the proto¬
col. Eventually the protocol finishes and each player obtains a (possibly
different) output.

Definition 2.2. An interactive protocol is a pair of algorithms (A,B) for
two communicating players Alice and Bob. The players' outputs are denoted

[A(y), B(z)](x) and [B(z), A(y)](x), respectively, where x denotes their com¬

mon input and y and z for their respective private inputs. Alice's view of a

protocol with Bob consists of the entire list of parameters Alice "sees" during
the execution of the protocol and is denoted (A(y), B(z))(x). This includes all

communicated values, Alice's inputs and outputs, as well as all computations
and random choices made by her.

Often, the communicating parties are assumed to be two determinis¬

tic Turing machines that have an input tape, an output tape, a random

tape, a write-only communication tape, and a read-only communica¬

tion tape. The read-only communication tape of one machine is the

write-only communication tape of the other machine.

We now introduce some notation that will later be used when analyz-

8 Foundations and Basic Protocols

ing properties of a protocol. Let (A, B) be an interactive protocol. Then

B denotes an interactive algorithm that a (dishonest) player Bill could

run instead of B. The only thing that the algorithms B and B have in

common is that they properly interact with A. To analyze the proper¬
ties of Alice that manifest themselves though the interaction with Alice

running A, one often uses a third party. This party, called Master, inter¬

acts with Alice, but, in contrast to Bob and Bill, has the ability to reset

and restart Alice at will. This type of interaction is called oracle access to

Alice, if an interaction with Alice is counted as a single step for Master,
and is called black-box access to Alice, when the running time of Alice

counts also as running time of Master. With MA^x\y) we denote Mas¬

ter's output when running M on input y and is interacting with Alice

running A on input x.

Next, we explain our notation for illustrating protocols (see Figure 2.1).
The players' names are indicated in boxes on the first line and their lists

of inputs are shown in brackets on the next line. The players' compu¬
tations and their communication is shown between the two horizontal

lines. Their lists of outputs in an honest execution of the protocol are

shown in brackets on the bottom line. Dishonest players are not re¬

stricted to store only their specified output, but are assumed to store

their entire view. Whenever the protocol specifies that a player must

verify a condition it is assumed that, if the verification fails, the proto¬
col is stopped and all parties are informed.

2.1.3 Miscellaneous Notations

Let ?{() denote a hash function that maps binary strings of arbitrary
length to binary strings of a fixed length, i.e., H : {0,1}* ->• {0, l}e. For

a definition of a cryptographic hash function we refer to Section 2.10.

Throughout this thesis we assume a standard binary representation of

integers, elements of algebraic groups, and text strings. For instance,
if a is a group element, then b--Jf{a) means that H is applied to the

binary representation of a. lib is used later in some algebraic expres¬

sion, we assume that it is first recovered from the binary string H((a).
Furthermore, a\\b denotes the concatenation of the binary strings repre¬

senting a and b.

By c[i] we denote the i-th bit of a string c counting from the right-hand
end. The term (c,),G5 denotes the ordered list of c,'s for which i is in

2.2 Algebra and Number Theory 9

some set 5, i.e., if 5 = {5,1,6,2} then (c,),eS = (ci,C2,C5,c6). The term

pr,() denotes the first projection of a tuple, i.e., pr,((xi,... , x„)) = x,.

The expression £ Gr X means that £ is randomly chosen from the (finite)
set X according to the uniform distribution.

The logarithms of x to the bases e and 10 are denoted by ln(x) and lg(*),
respectively. Moreover, when not stated otherwise, log(x) denotes the

logarithm of x to the base 2.

2.2 Algebra and Number Theory

While for a long time number theory was considered a pure theoretical

science with no applications, today it plays an important role in cryp¬

tography. Most public-key cryptosystems are based on problems from

number theory. In this chapter we describe some facts from algebra and

problems found in number theory that are instrumental to (public-key)
cryptography.

2.2.1 Groups

Let S be a nonempty set and * be a binary operation that maps S x S to

S, thus a * b denotes the result of * applied to the elements a,b G S. The

operation * is called commutative if a*b = b*a holds for all a, b G S, and

associative if we have {a * b) * c — a * (b * c) for all a,b,c G S. An element

e G S is called an identity element if for all a G S, e * a = a * e
—

a holds. An

inverse of an element a G S is an element b G S such that a*b = b*a = e

holds, provided that e exists.

Definition 2.3. A group is a set G together with an associative binary oper¬

ation * on elements of G such that G contains an identity element for * and

every element has an inverse under *. If* is commutative, the group is called

abelian or commutative. Often, a group is denoted by (G, *) or simply by G.

A group G is called finite if\G\ is finite. The number of elements of a finite
group is called its order.

It can easily be seen that in a group the identity element is unique, as

is the inverse of any element. If the operation is called addition, the

identity element is denoted as 0 and the inverse element of a as —a. If

10 Foundations and Basic Protocols

the operation is called multiplication, the identity element is denoted

as 1 and the inverse of an element a as 1/a or a~l. Subsequently, the

multiplicative notation is used when dealing with arbitrary groups. So

am means that a is multiplied m-times by itself, and a~m denotes (l/a)m.

A group G is called cyclic if there exists an element a G G such that

every element b G G can be written in the form ax for some xeZ. Such

an element a of G is called a generator of G, and one writes {a) = G to

indicate that a generates G. The order of an element b, denoted ord(b),
is the smallest positive integer n such that b" = 1. The order of any
element of a finite group divides the order of the group. Furthermore,
if a is a generator of the cyclic group of order m, then the element b = a1

has order mj gcd(m, i). In particular, b is a generator of G if and only if

gcd(m, f) = l. Hence if m is prime, every element different from 1 is a

generator of G.

A subset HCGis called a subgroup of a group G if it is a group in its

own right under the operation of G. In particular, H contains 1, and if

a,b G H then ab,a~l G H. Furthermore, |H| divides \G\. An important
class of subgroups of G are the groups generated by an element a of G,
denoted (a). The order of (a) equals the order of a. Hence, the order of

any group element divides the order of the group.

2.2.2 The Groups Zm and Z*m

The set of the integers modulo m, denoted as Zm, together with addition

modulo m constitutes an abelian group of order m. Another important
group is Z*m, formed by the positive integers smaller than m and rela¬

tively prime to m together with the multiplication modulo m. The order

of Z*m is given by the Euler totient function ip(m).

Definition 2.4. Let n be a positive integer. The Euler ^-function is defined
as the number of nonnegative integers k less than n which are relatively prime
to n:

<p(n) = \{k 11 < k < n and gcd(k,n) - 1}|.

2.2 Algebra and Number Theory 11

For an integer n — nf=i /?"', where the p,'s are distinct primes, we have

k

tp{n) = nY[{\-p;x).
i=\

The group Zm is cyclic for all m, whereas Z*m is cyclic if and only if m is

2,4, or a power of an odd prime.

2.2.3 Efficiency of Group Operations in Zm

To measure the efficiency of cryptosystems built on an algebraic group,
it is necessary to know how many resources an operation on group
elements takes. In this subsection we will consider only operations that

can be carried out fast, i.e., in time polynomial in the size of group-
elements. These are addition, multiplication, exponentiation, and the

computation of inverses. More information is found in the books of

Knuth [Knu81], Cohen [Coh93], and Cormen et al. [CLR92]

Let m be an integer. Addition modulo m of two elements of Zm takes

0(log(m)) time (bit-operations). The additive inverse in Zm can also be

computed in linear time.

The modular multiplication of two elements of Z*m takes 0(log2(m))
time. The inverse of an element a can also be computed in 0(log (m))
time using the extended Euclidean algorithm. The algorithm calculates

two integers u, v such that ua + vm = gcd(a, m). By definition of Z*m we
have ua + vm = 1 and thus u = a"1 (mod m).

Exponentiation of a group element a with an integer n < \G\ means

to apply the group operation n times on a with itself, i.e., to compute
b = a". The naive method requires n — 1 group operations. Using the

so-called square and multiply method, exponentiation can be performed
with a maximum of only 21og(n) group operations in any group. The

idea is as follows: represent n in binary form

n = £a;2'

with a, G {0,1} and k — [log(n)J. Then apply the following algorithm:

12 Foundations and Basic Protocols

b:=l

for i = k downto 0 do

b := b b

if a, = 1 then b := b a f i

od

Hence, an exponentiation in Z*m can be achieved in O(log3(m)) time.

2.3 Number-Theoretic Problems

The security of many cryptosystems relies on the intractability of solv¬

ing some (number theoretic) problems such as factoring a large integer.
Basically, a problem is intractable if there is no algorithm that solves the

problem using a reasonable amount of resources (time and/or mem¬

ory). Most often, it cannot be proved that no such algorithm exists, but

one rather has to assume that no such algorithm exists because nobody
has found one. We still have to specify what a reasonable amount of

time means. In theory, this means that the resources needed by the best

algorithm are at least exponential in the number of bits needed to de¬

scribe the problem. In practice, this means that the fastest computer
should not be able to find a solution for a specific instance of the prob¬
lem within years (centuries, lifetime of the universe etc.).

In the following, we present only those problems that are used later

on in this thesis. For further information and more details we refer to

[MvOV97, Coh93].

2.3.1 The Discrete Logarithm Problem

The difficulty of computing discrete logarithms is the basic problem un¬

derlying the results of this thesis. We will formally state this problem
and give a short overview of existing algorithms for solving it. For a

more extensive survey on the discrete logarithm problem and the state

of the art in solving it, as well as for references for the various algo¬
rithms, see [McC90a, Odl94].

Definition 2.5. Let G be afinite cyclic group and g G Gbea generator ofG.
The discrete logarithm ofsome element a EG, denoted log(a), is the unique

2.3 Number-Theoretic Problems 13

integer x, 0 < x < \G\, such that a = gx.

Often, the discrete logarithm is also called index of an element a. If g is

not a generator, the notion of the discrete logarithm of a to the base g is

extended to be the smallest integer x, such that a = gx, if it exists.

The following facts, known from ordinary logarithms, also hold for dis¬

crete logarithms. Let G = (g) be a cyclic group of order n and a, b, and c

elements of G. Then we have log lab) = log (a) + log (b) (mod n) and

log (ax) = x log (a) (mod n) for any integer x. Furthermore, if h is also a

generator of G, then log (a) = logh(a)logh(g)-1 (mod n). The last equa¬

tion includes the interesting special case log (ft) = logh(g)_1 (mod n).

Definition 2.6. The discrete logarithm problem (DLP) is the following:
given a finite cyclic group G, a generator g of G, and an element a, find the

integer x, 0 < x < \G\ — 1, sucft that a — gx holds.

In the following we give a brief overview of algorithms to solve the

DLP in a cyclic group G = (g). They can be categorized by the kind of

representations of the group elements they work with:

I. Generic algorithms that work in arbitrary groups. These include

Pollard's rho algorithm [Pol78] and the Baby-Step/Giant-Step al¬

gorithm.

II. Algorithms which work in arbitrary groups but are especially ef¬

ficient if the group's order is smooth, i.e., has only small prime
factors. An example is the Pohling-Hellman algorithm [PH78].

III. Special algorithms that exploit the representation of the group el¬

ements and thus work only in the group they were designed for.

The index calculus algorithm for Z* is an example (e.g. [COS86]).

Let us first discuss generic algorithms. The naive algorithm is of course

exhaustive search, i.e., computing the successive powers g°, gl, g2,...
until the element a is obtained. This requires 0{n) group operations.
A more efficient algorithm is the so called Baby-Step/Giant-Step algo¬
rithm attributed to Shanks [Knu81]. It computes discrete logarithms
in 0(y/nlog(n)) group operations and needs storage for yfn group ele¬

ments. Pollard's rho algorithm has the same time complexity but needs

only negligible storage.

14 Foundations and Basic Protocols

If the group order n = peJ ...
• pf has only small prime factors, it

is favorable to use the Polling-Hellman algorithm. It requires only
0(X;=i e,(lgn + \fpij) group operations if the factorization of n is given
(see also Section 2.3.4). If n is prime then the Polling-Hellman algorithm
degenerates to the Baby-Step/Giant-Step.

The algorithms considered so far are all exponential. However, for the

groups Z* and Z*.m, where p is a prime, there exist sub-exponential
algorithms. The index calculus algorithms have a running time that

is upper-bounded by 0(exp((c + o{\))\/ \nq\n\nq)) group operations,
where q is p or 2m and c > 0 is some constant. For Z* one of

the most efficient algorithms is the number field sieve. It needs

O(exp((1.92 + o(l))(lnp)1/'3(lnlnp)2/'3)) group operations to compute a

discrete logarithm.

We have seen that the hardness of the DLP depends strongly on the

representation of the elements of the group considered. This is not sur¬

prising, since in some groups the DLP is rather easy to solve: For in¬

stance, in (Zm, +) computing discrete logarithm of an element a to the

base g means solving the equation gx = a (mod m) for x. This basically
involves the computation of gcd(g, m), which takes 0(log2(m)) group

operations using the extended Euclidean algorithm. Hence, computing
discrete logarithms in an arbitrary cyclic group G is in essence finding
an isomorphism between G and (Z|G|,+) that can be evaluated effi¬

ciently.

Shoup [Sho97] showed that there exists a lower bound on the computa¬
tional complexity of the DLP for generic algorithms that do not exploit
any special properties of the encoding of the group elements (type I

and II). More precisely, Shoup showed that any algorithm that solves

the DLP must perform at least £l{\fp) group operations, where p is the

largest prime dividing the order of the group. If the group order is

prime, this lower bound is for instance met by Pollard's rho algorithm.

Together with the rho algorithm, Pollard [Pol78] proposed also a so-

called lambda algorithm that computes discrete logarithms with a para¬

meter-dependent success probability in 0{yjw) group operations when
the solution lies within a restricted interval of width w.

2.3 Number-Theoretic Problems 15

2.3.2 The Representation Problem

The representation problem is a generalization of the discrete logarithm
problem with respect to the number of bases.

Definition 2.7. Let G be a finite cyclic group oforder n and let the elements

&i> • • • igm^G be distinct generators ofG. A representation ofsome element

aeGis an m-tuple (xi,... , xm), 0 < x, < n - 1 for all 1 < i < m, such that

m

i=i

A representation is also called an index tuple. For any element a G

G there exist exactly nm_1 m-tuples representing a with respect to

gl,--- ,gm-

Definition 2.8. The representation problem (RP) is the following: given
a finite cyclic group G, a generator-tuple g\,... , gm, and an element a, find
integers x\,... , xm, 0 < x, < n — 1, such that a = rjjli g?' •

The representation problem is a generalization of the DLP. Moreover,

if the generators gi,... ,gm are chosen randomly, it is as hard as the

DLP to find two different representations of an element. For a thorough
discussion of the representation problem we refer to [Bra93].

2.3.3 The Diffie-Hellman Problem

The Diffie-Hellman Problem is closely related to the discrete logarithm
problem.

Definition 2.9. The Diffie-Hellman problem (DHP) is the following: gi¬
ven a finite cyclic group G, a generator g of G, and the two elements g" and

gv,find the element guv:

It is obvious that the DHP can be solved in polynomial time when the

DLP can be solved in polynomial time by first computing u = log (gu)
and then (gv)u. For some groups, the DLP and the DHP were shown to

be computationally equivalent [dB90, Mau94, MW96].

Definition 2.10. The Decision Diffie-Hellman problem (DDHP) is the

following: given a finite cyclic group G, a generator g of G, and the three

elements gu, gv, and gm, decide whether the elements gw and guv are equal.

16 Foundations and Basic Protocols

The Decision Diffie-Hellman problem was first mentioned in [Bra93],

although there are earlier cryptographic systems that implicitly rely on
the hardness of this problem (e.g. [Cv90, Cha91]).

Clearly, an efficient algorithm to solve the DHP implies one for the

DDHP. Generally, the DDHP is assumed to be intractable, but not much

is known about it.

Shoup [Sho97] proved that the lower bound on the complexity of

generic algorithms to solve these two problems is Cl(^/p), where p

stands for the largest prime divisor of the group order in the case of

the DHP, and for the smallest prime divisor of the group order in the

case of the DDHP. However, it can be shown that in this model the DLP

and the DHP are not computationally equivalent [MW].

2.3.4 Factoring Large Integers

The integer factorization problem is the problem underlying the prob¬
ably widest known public-key cryptosystem.

Definition 2.11. The integer factorization problem (FACTORING) is the

following: given a positive integer n, find its prime factorization, i.e., find
pairwise distinct primes p, and positive integers e, such that n = p6^ pf pekk.

The algorithms for factoring an integer n can be divided into two types.

I. General purpose algorithms. Their running time depends only
on the size of n. Examples are the quadratic sieve and the general
number field sieve.

II. Special purpose algorithms. Their running time depends on a

special property of n, such as the size of the largest prime factor.

Trial division, Pollard's rho algorithm, Pollard's p
— 1, and the

elliptic curve algorithm fall in this category.

The most obvious algorithm for factoring is trial division. In the

worst case, all primes smaller than y/n must be tried for com¬

pletely factoring n. A more efficient, but still exponential algo¬
rithm is Pollard's rho [Pol75]. It has running time 0(y/n). If n

has a small prime factor, say p, the elliptic curve method finds

2.3 Number-Theoretic Problems 17

it in 0(exp((l + o(l))\/21nr;lnlnp)) time. Other sub-exponential al¬

gorithms are the quadratic sieve algorithm introduced in [Pom85]

which has a running time of 0(exp((l + o(l))\/lnnlnrnn)) and the

number field sieve algorithm [LLJ93] having a time-complexity of

O(exp((1.92 + o(l))(lnn)1/3(lnlnn)2/3)). The latter was used to factor

RSA-130 [CDEH+96]. When the smallest prime of n is about the size

of yfn, the elliptic curve and quadratic sieve have the same asymptotic
running time. In practice, however, the quadratic sieve is faster in this

case.

In contrast to the situation with the discrete logarithm, it is not clear

which kind of algorithm is best when only given the integer n. Of

course, one wants to apply one of the special purpose algorithms when¬
ever possible. In [MvOV97] it is proposed to apply all the different

types of algorithms in the following order:

1. Trial division by small primes up to some bound b\.

2. Pollard's rho, hoping to find any small factors smaller than some

bound bi > b\.

3. An elliptic curve factoring algorithm, hoping to find any small

factors smaller than some bound b$ > bi.

4. Finally, applying one of the general-purpose algorithms.

2.3.5 Computing Square-Roots and e-th Roots

Computing e-th roots over the integers modulo a composite is the prob¬
lem the RSA cryptosystem [RSA78] is based on.

Definition 2.12. Let G be a group and e < \G\ be an integer. An element

b eG is called an e-th root ofan element a e G if we have

be = a.

If gcd(e, |G|) = 1 holds, then an e-th root always exists and is unique.
Computing e-th roots is feasible if \G\ is known: it can be solved by

computing e_1 in Z*G, and thus obtaining b — ae
.

18 Foundations and Basic Protocols

Definition 2.13. The e-th root problem (ERP) is the following: given a

group G of unknown order, a positive integer e < \G\ and an element a G G,

find an element b G G such that V = a.

If G = Z*, with n being the product two primes p and q, and the con¬

dition that b G G is replaced by b G Zn/ we get the RSA problem (RSAP).
In this case the order of the group can be found by factoring n. Thus, if

FACTORING is easy then so is the RSAP. Whether the converse is also

true is not known.

Definition 2.14. Let n be the product of two primes p and q. Then an element

a&Znisa quadratic residue modulo n (or a square) if there exists an integer
w such that

w2 = a (mod n).

If there exist no such w G Zn, a is called a quadratic non-residue. The set of
all quadratic residues and the set of all non-residues in Z*n are denoted by QRn
and QNRn, respectively.

If the factorization of the modulus is known, then there exists an effi¬

cient algorithm to decide whether an element is in QR„. For a modulus

with unknown factorization this is believed to be as hard as factoring,
but this has not been proved.

Definition 2.15. The quadratic residuosity problem (QRP) is the follow¬
ing: Given integers n and a, 0 < a < n, decide whether there exists an integer
w, 0 < w < n, such that

w2 = a (mod n).

The Legendre symbol is useful for keeping track of whether or not an

integer a is a quadratic residue modulo a prime p.

Definition 2.16. Let p be an odd prime and a an integer. The Legendre

symbol (|) is defined to be

ifp\a
eQR„

gQNR„

2.4 Public Key Cryptography 19

The Jacobi symbol is a generalization of the Legendre symbol to inte¬

gers n which are not necessarily odd primes.

Definition 2.17. Let n > 3 be an integer with prime factorization n =

Pi1 P? "' Plk and let a be an integer. The Jacobi symbol (^) is defined to

be

W

"

W W \Pk)

2.4 Public Key Cryptography

Encryption schemes can be divided into two categories: private key or

symmetric schemes and public key or asymmetric schemes. In a pri¬
vate key scheme, the same key is used for encryption and decryption.
Hence, when two parties want to securely communicate with a sym¬

metric encryption scheme, they need to exchange a private key in ad¬

vance. In a public key scheme, a different key is used for encryption
and decryption. The key used for encryption, the public key, can be

published, while the secret key used for decryption must be kept secret.

This is an advantage: while the key for a symmetric encryption scheme

must be exchanged securely, the public keys need to be exchanged only
authentically - a much weaker requirement.

While symmetric encryption schemes were already known to Cae¬

sar, public key cryptography was only invented in 1977 by Diffie and

Hellman with their paper entitled "New Directions in Cryptography"
[DH76]. They put forth the notion of trap-door one-wayfunctions. These

are functions that are easy to compute but hard to invert - unless a

trap-door is known. More precisely, the inverse of the function is hard

to find given only the function. Given such a function /: A ->• (B, it can

be published as public key, while the trap-door (the secret key) remains

secret. The encryption of a message m G 9\. is then simply f(m), and

decryption is f~l(f(m)) = m.

Apart from encryption, trap-door one-way functions also make it possi¬
ble to realize digital signature schemes. For instance, the signature of a

message m e*B can be s = f~l(m). It can then be verified by everybody
by deciding whether m = f(s) holds using the public key.

20 Foundations and Basic Protocols

2.5 Public Key Encryption

Definition 2.18. A public key encryption scheme is a triple of algorithms
(gen, enc, dec). The first algorithm is probabilistic, the second one is often
probabilistic, and the third one is deterministic. The algorithm gen generates a

secret key xa and a corresponding public key yafor an entity A when input the

system parameter. The algorithm enc takes ya and the message m as input and

outputs a ciphertext c. On input ofa ciphertext c and the secret key xa ofparty
A, dec outputs the encrypted message m. Thefollowing must be satisfied for
all messages m and all key pairs {xa,ya) output by gen.

dec (c
x) i =m ^Pr0Kc = enc (m' ya)) > 0

v '

a,y zfim otherwise.

If the algorithm enc is probabilistic we call the encryption scheme prob¬
abilistic.

The length of messages that can be encrypted is often limited. Further¬

more, public key encryption schemes are often slower than symmetric
ciphers. To encrypt large messages, public key encryption is therefore

used only to encrypt a session key, which is in turn used as a key for a

fast symmetric cipher such as DES or IDEA [LM91, Lai92].

To enable a recipient to recognize a decrypted string as a valid message,

messages should contain some redundancy. Typically, this is achieved

by applying a hash function to the message and appending the result

to the message before encryption.

2.5.1 Diffie-Hellman Key Exchange

Apart from founding public-key cryptography, Diffie-Hellman [DH76]
also proposed a concrete scheme for obtaining a common private key
using an authentic but not secret channel. This private key can then for

instance be used for encryption with a symmetric encryption algorithm.

The scheme works as follows: Let G be a finite cyclic group of order q

and let g G G be a generator of G such that computing discrete loga¬
rithms in G is infeasible. Furthermore, let yA—gXA arid yB-=gXB be the

public keys of two parties Alice and Bob and let x& and xg be their

respective secret keys. To derive a common secret key k, Alice and

2.5 Public Key Encryption 21

Bob exchange their public keys over the authentic channel and raise the

partner's public key to the power of their own secret key and thereby
get

If .,XB ..*A nXAXB
K—)lA —}>B—g '

the common private key.

The security of the scheme is based on the DHP; it is this scheme that

gave the problem its name. This protocol can also be used to encrypt

messages the discrete logarithm of which is known to the sender. Let

m — gm be the message that B wants to send privately to A. To do so, B

computes c = y, which A can decrypt upon reception by computing
c\/xA _ m

2.5.2 The RSA Encryption Scheme

Rivest, Shamir, and Adleman [RSA78] were the first to propose a con¬

crete realization of a trap-door one-way function as introduced by
Diffie and Hellman. It is based on the difficulty of computing e-th roots

modulo a composite n, i.e., the RSA problem.

This encryption scheme works as follows. Let p and q be two large
primes such that p

— 1 and q
— 1 are not smooth, n = pq, and let e be

an integer satisfying gcd(e, ip(n)) — 1. The public key of a recipient Bob

is the pair (n, e) and his secret key is the triple (p, q, d), where d satisfies

de = l (mod (p(n)).

To encrypt a message m G [0,... ,
n — 1] for Bob, a sender Alice com¬

putes

c~me (mod n)

and sends c to him. Bob can recover m using the secret value d as fol¬

lows:

m~cd (mod n).

The correctness of this encryption method is seen as follows:

cd = (me)d = m (mod n)

holds since ed = \ (mod ip(n)).

22 Foundations and Basic Protocols

The security of the scheme is based on the RSAP. However, there are

some pitfalls that can make the system insecure. For instance, when e is

chosen small for reasons of efficiency, a number of attacks are possible.
Hastad showed that when encrypting the same message for multiple
recipients having the same public exponent e but a different modulus,
the message can be computed from the cipher-texts without knowing
any of the corresponding secret keys [Has88]. Furthermore, if polyno¬
mial relations among the encrypted messages are known, messages can

also be recovered [CFPR96]. Such attacks can be prevented by salting,
i.e., appending a random bit-string to the message before encryption.

2.5.3 The ElGamal Encryption Scheme

The following encryption scheme was proposed by ElGamal [ElG85a,
ElG85b]. It can be seen as a special way of using the Diffie-Hellman

key exchange protocol. Let G be a finite cyclic group of order q and let

g G G be a generator of G such that computing discrete logarithms in

G is infeasible. In the original proposal, G was chosen to be Z* (thus
we have ord(g) = p — 1) where p is a large prime. In order to encrypt
a message m G G for Bob having public key y = gx, Alice first chooses

an a randomly in Z, and computes the pair (A, B) = (gf^tfrn) being
the encryption of m. Bob, knowing the secret key x, can decrypt the

message m by calculating

B
_

yam
_

gxam
_

Ax
~

g"x gax
~~

Alternatively, the role of the public key and the base can be inter¬

changed and we get the following variant which we will also employ
later. Now a message can be encrypted by randomly selecting an a in

Zq and computing the pair (A, B) = (xf^m). Decryption is performed
by calculating

B g?m g"m
—.—r

= "^^r — —r
= m

Ax~' yix
'

rrxax~

In both schemes, the security is based on the assumed intractability of

the DHP. Note that these are probabilistic encryption schemes. Further¬

more, if a different a was used for every encryption, it is equivalent to

the DDHP to decide whether two pairs (A, B) and (A', B') both encrypt
the same message m.

2.6 Identification Protocols 23

2.6 Identification Protocols

An identification protocol allows a prover Peggy to convince a verifier

Vic of her identity. Vic is given a public key which he knows belongs
to Peggy. Thus, if some entity can prove to him knowledge of the se¬

cret key corresponding to Peggy's public key, he can conclude that this

entity must be Peggy.

Informally, an identification protocol consists of a probabilistic algo¬
rithm gen and an interactive protocol (prv, ver) for a prover Peggy and

a verifier Vic. The algorithm gen generates a secret key xp and a corre¬

sponding public key yv for Peggy when input the system parameters.
The protocol (prv, ver) must basically satisfy three properties. First,

it must be secure for Peggy, i.e., Vic should not be able to learn any¬

thing about her secret key. Second, Peggy should always be able to

convince Vic of her identity if he is honest. And third, an entity Paula

not knowing the secret key should not be able to convince Vic that she

is Peggy. These properties can be formalized as zero-knowledge and as

a complete and sound proof of knowledge. Since these are important
concepts, we will treat them separately in Section 2.9.

2.6.1 The Schnorr Identification Protocol

Schnorr's identification protocol [Sch91] is a so-called three move pro¬

tocol, i.e., there are three communication steps between Peggy and Vic.

This is a property shared with many other protocols we will encounter.

The exchanged messages t, r, and s are called commitment, challenge,
and response (see Figure 2.2 for an example).

The security of the protocol is based on the assumed intractability of

the discrete logarithm problem. The protocol is derived from an initial

idea of Chaum et al. [CEvdG88].

The Schnorr protocol allows Peggy to prove that she knows the dis¬

crete logarithm of her public key. More generally, this protocol can also

be used as a sub-protocol in more complex protocols to prove one's

knowledge of the discrete logarithm of an arbitrary group element with

respect to an arbitrary base. Such extensions will be treated in detail in

Chapter 3. Let us therefore describe the protocol in a more general al¬

gebraic setting than in [Sch91].

24 Foundations and Basic Protocols

Peggy Vic

(g,q*y)
i1

4-

reRzq
t-=gr

s—r — cx (mod q)

t

ce{o,i}*c

s

(yes/no)

Figure 2.2: The Schnorr identification protocol. The secret key is the

discrete logarithm of the public key.

Let G be a finite cyclic group of order q and let g G G be a generator
of G such that computing discrete logarithms in G is infeasible. Let

y = gx be the authentically published public key of Peggy and let x be

her secret key. Then, using the protocol depicted in Figure 2.2, Peggy
can convince Vic of her identity by proving to him her knowledge of

the discrete logarithm of y.

It can easily be seen that Peggy can always convince an honest verifier

Vic, i.e., that Peggy can reply to all challenges. In contrast, a cheating
prover can only prepare for one of the 2k possible challenges, and if this

fails, try to find a correct s. However, if the cheater can find such an s,

he can also compute the discrete logarithm of y to the base g. A protocol
with this property is called a proofofknowledge (see Section 2.9). Further¬

more, it can be argued that the protocol is secure for Peggy, since all the

information Vic obtains seems completely random to him. This prop¬

erty is called honest-verifier zero-knowledge (see Section 2.9.2). A detailed

security analysis of the protocol is found in Section 2.9.4.

2.7 Digital Signature Schemes

This section considers the digital analogue of handwritten signatures.

Informally, a digital signature is a binary string that relates a message

2.7 Digital Signature Schemes 25

to the signer's public key. On one hand, everyone must be able to verify
a signature when given the public key of the signer and the message.
On the other hand, only the signer, i.e., the party that knows the secret

key, must be able to compute a signature.

As mentioned earlier, the concept of a digital signature was put forth

by Diffie and Hellman in their seminal paper [DH76].

Definition 2.19. A digital signature scheme is a triple of algorithms
(gen, sig,ver). The first is probabilistic, the second one is often proba¬
bilistic, while the third one is deterministic. The algorithm gen generates a

secret key xs and a corresponding public key ys of a signer S on input of the

system parameters. The algorithm sig takes xs and a message m as input and

outputs a signature a of m. On input of a message m, a signature a, and the

public key ys of a signer, the the algorithm ver outputs true or false. The

following must be satisfied.

ver
On

a u) = / true ifProb(a = sigfa.**)) > 0
v ' '•!/s; \ false otherwise

Furthermore, a signature scheme must be unforgeable. This means that is must

be infeasible to compute a signature of a message with respect to a public key
without knowing the corresponding secret key.

Attacks on signature schemes are often characterized by the kind of

forgery they achieve.

total break: An adversary is able to compute the secret key of the signer,
or can efficiently compute a signature of any message by some

other algorithm than sign.

selectiveforgery: An adversary is able to compute a signature of a par¬

ticular given message or a special class of messages.

existential forgery: An adversary is able to compute a signature of at

least one arbitrary message. The adversary might have no or little

control over the message that is signed.

In the last two kinds of attacks, the adversary is allowed to involve the

signer. The attack is successful if the adversary manages to compute a

signature of a message that the signer did not sign. Goldwasser, Mi-

cali and Rivest [GMR88] were the first to propose a signature scheme

26 Foundations and Basic Protocols

that is provably secure against existential forgery, the strongest notion

of security, assuming only the existence of claw-free trap-door permu¬
tations. However, most proposed signature schemes cannot be shown

to be secure against all these attacks.

A way to construct a digital signature scheme is to take an identifica¬

tion protocol and replace the challenge by the result of a one-way (hash)
function applied to the commitment and the message to be signed. For

such constructions, it is often argued that a signature scheme is secure

if the underlying identification protocol is a zero-knowledge proof of

knowledge and a secure one-way function is used. To give a theoreti¬

cal foundation to this kind of reasoning the random oracle model [BR93]

was invented. In this model the hash-function is replaced by an ora¬

cle that outputs a random bit-string when queried. When the oracle

gets a query that it has gotten before, it answers with the same string
as before. In their paper Bellare and Rogaway also provide a signature
scheme that is secure in this model.

2.7.1 The RSA Signature Scheme

The RSA signature scheme [RSA78] is directly obtained from the RSA

encryption scheme. It is thus based on the assumed intractability of

computing e-th roots modulo a composite.

Let p and q be two large primes such that p — 1 and q — 1 are not smooth,

and e be an integer with gcd(e, ip(n)) = 1. A signer's public key is

the pair (n,e) and his secret key is the triple (p,q,d), whereby de = 1

(mod (p(n)) must hold. Finally, let 9-(be a collision-resistant hash func¬

tion that maps {0,1}* to Z„.

Definition 2.20. An RSA signature ofa message m G {0,1}* for the public
key (n,e) is a value s G Z„ satisfying

se = H(m) (mod n).

An RSA signature can be computed by the signer (who knows d) as

follows:

s-=9i(m)d (mod n).

The correctness of this signing procedure follows from the

se = H(mfe = Oi(m) (mod n),

2.7 Digital Signature Schemes 27

since de=l (mod <p(n)).

If the hash function 9i(-) were not applied to the message, the prod¬
uct of signatures would result in the signature of the product of the

corresponding messages. Moreover, signatures could in this case be

existentially forged by first choosing s and then setting m~se (mod n).
The ISO/IEC 9796 standard states a signing process for RSA that covers

such problems.

2.7.2 The ElGamal Signature Scheme

The following signature scheme was proposed by ElGamal [ElG85a,
ElG85b] together with the public key encryption scheme described in

Section 2.5.3.

Let G be a finite cyclic group of order q, and let g G G be a generator of G

such that computing discrete logarithms in G is infeasible. Let y = gx be
the public key of the signer and x the corresponding secret key. Finally,
let 9{ be a collision-resistant hash function that maps {0,1}* to Zv

Definition 2.21. An ElGamal signature of a message m G {0,1}* for the

public key y — gx is a pair (u, s) G G x Zq satisfying

In the above definition, y" means that the group element u is first

represented as an integer «' g Z|q, u" is set to u' (mod q), and only
then y" = y" is computed. In the following, as already mentioned in

Section 2.1, we will implicitly assume that such conversions between

group elements, integers and strings are done.

Such a signature (u,s) of a message m can be computed by the signer
(who knows x) as follows:

1. chooser at random from Z*,

2. compute u-=gr, and

3. compute s-r~1(^i'(m) - xu) (mod q).

The correctness of this signature scheme follows from the congruence

yuUs = VxuVrS = oxu+rs = oti(m\

28 Foundations and Basic Protocols

We will briefly discuss the security of this signature scheme. Clearly,
the signatures can be forged when computing discrete logarithms in

G is feasible. Furthermore, it is important that the random value

r is chosen differently each time a message is signed, since other¬

wise the secret key could be computed from two such signatures. Fi¬

nally, if no hash function was used, signatures could be forged ex-

istentially. For a more detailed analysis of the security we refer to

[AV96, Ble96, ElG85b, LL97, MvOV97, PS96]. The attacks of [LL97] ap¬

ply also to other schemes based on the discrete logarithms that employ
a prime order subgroup. However, they can easily avoided by choos¬

ing the actual system parameters carefully, e.g., choosing p and q such

that all prime factors of (p — l)/2^ are larger than q.

A variant of the ElGamal signature scheme was proposed as a stan¬

dard under the name Digital Signature Algorithm (DSA) by the U.S.

National Institute of Standards and Technology (NIST) [Nat94]. An

overview of all different variants of signature schemes of the ElGamal-

style is given in [Pet96].

2.7.3 The Schnorr Signature Scheme

The Schnorr signature scheme [Sch91] is another variant of the ElGamal

signature scheme. It is also an example of the construction of a signa¬
ture scheme from an identification protocol. Compared to the ElGamal

signature scheme, Schnorr's scheme achieves shorter signatures.

Let G be a finite cyclic group of order q and let g G G be a generator of

G such that computing discrete logarithms in G is infeasible. Let y = gx
be the public key of the signer and x be his secret key. Finally, let H be

a collision-resistant hash function that maps {0,1}* to Zv

Definition 2.22. A Schnorr signature of a message m G {0,1}* is a pair
(c, s) with c, s G Zq satisfying the verification equation

c = #(m||gy).

Remark 2.1. The size of the domain of the hash function (and thus of

c) could be smaller than q, but should be at least 2160.

A Schnorr signature (c, s) of a message m can be generated by the signer
as follows:

2 8 Blind Digital Signature Schemes 29

1 choose r at random from Zq,

2 compute c -!H(m\\gr) and

3 s = r — ex (mod q)

The correctness of this signing procedure follows from

g5yc = gs+xc = rxc+xc = gr

and H(m\\gsyc) = H(m\\gr) = c

2.8 Blind Digital Signature Schemes

The concept of blind signatures was introduced by Chaum [Cha83] to

be able to protect the privacy of users m applications such as electromc

payment systems In contrast to regular signature schemes, a blind sig¬
nature scheme is an interactive two-party protocol between a recipient
and a signer It allows the recipient to obtain a signature of a message
in a way that the signer learns neither the message nor the resulting
signature

Definition 2.23. A blind signature scheme consists ofa probabilistic algo¬
rithms gen, an interactive protocol (R, S) between the signer S and the recip¬

ient R, and a verification predicate ver The algorithm gen generates a secret

key xs and and a corresponding public key ys of a signer S when input the

system parameters Thefollowing must be satisfied if both players are honest

ver
(m

a u) =
I trUe lfProb(a = ^R> S(**)Kys,»»)) > 0

v ' ,i,s> \ false otherwise

Furthermore, a blind signature scheme must be unforgeable This means that

it must be infeasible to compute a signature of a message with respect to a

public key without engaging in the signing protocol with the signer Finally,
when given a set of views ofprotocol runs and the (unordered) set of message-
signature pairs that resultedfrom these protocol runs, it must be infeasiblefor
the signer to find the correspondence between views and message-signature
pairs This property is called blindness

There are two kinds of blindness that disable a signer from linking
views and message-signature pairs

30 Foundations and Basic Protocols

Definition 2.24. A blind signature scheme (R, S) is called statistically blind

if the tuples (m, [R, S](ys, m)) and (S, R){-) are statistically independent, and

computationally blind if linking views and message-signature pair requires
the signer to solve some computationally infeasible problem (e.g., computing a

discrete logarithm).

The first realization of a blind signature scheme was presented by
Chaum [Cha84]. It is based on the RSA signature scheme. Later, Chaum

and Pedersen [CP93] and, independently, Okamoto [Oka93] presented
schemes based on the discrete logarithm problem. Okamoto's schemes

are based on the Schnorr signature scheme. Camenisch, Piveteau, and

Stadler [CPS94a] proposed further discrete-logarithm-based blind sig¬
nature schemes for a modification of DSA and for the Nyberg-Rueppel
signature scheme [NR93]. Their approach was generalized by Horster,
Michels and Petersen [HMP95, Pet96] for most of the ElGamal-style sig¬
nature schemes. All these schemes are statistically blind.

A variation of blind signatures are the so-called partially blind signa¬
tures [AF96, AC97]. In such schemes a part of the message is signed
blindly while the other part remains unblinded and is thus known to

the signer when signing. Such schemes are useful to assure the signer
that certain information is contained in a message that is otherwise

blindly signed.

2.8.1 The Blind RSA Signature Scheme

In Figure 2.3 the blind RSA signature generation protocol as invented

by Chaum [Cha84] is displayed. It allows a recipient to blindly obtain a

signature of a message m G Z* from the signer who has the public key
(e,n) of an ordinary RSA signature scheme. The signer's secret key is

d = e"x (mod <p{n)). The protocol is correct since s is a valid signature
of m:

se = fr~e = (rhd)er~e = fhr~e = mrer~e = m (mod n).

To prove the protocol's blindness property, it must be shown that any

given valid message-signature pair (m, s) could have originated in any

given instance of the signing protocol. Let the signer's view of such

an instance be (m,s). If (m,s) was generated during the instance of the

2.8 Blind Digital Signature Schemes 31

Recipient Signer

(m,n,e)
i

(n,d)
4-

rjER K
m—mf (mod n)

m

A-

s

s—ihd (mod n)

s~sr
l
(mod n)

(s)

Figure 2.3: A protocol for obtaining a blind RSA signature of a message
mGZ*.

protocol leading to the view (in, s), then the blinding factor chosen by
the recipient must have been

r'~(mm~1)d (mod n).

Now, we have to show that for this r' the congruence s = sr' (mod n)
holds:

sr' = s(m m~l)d = (sem m~l)d = (mm m~l)d = md = s (mod n),

whereby we used the fact that s is a valid signature of m.

2.8.2 The Blind Schnorr Signature Scheme

The protocol shown in Figure 2.4 is a protocol for blindly issuing
Schnorr signatures. It was first proposed in a slightly different ver¬

sion in [Oka93]. The setup of the system is the same as for the ordinary
Schnorr signature scheme. The protocol allows a recipient to obtain

a signature of a message m G {0,1}* without the signer receiving any
information about m or the resulting signature (c, s). If both players fol¬

low the protocol then the pair (c, s) is a valid Schnorr signature of m:

since we have

gsVc = /+7ye+<5 = gf-ex+-i+lxys = tgty* = t,

32 Foundations and Basic Protocols

Recipient Signer

(m,g,q,y)
i

(g,q,x)
i

4-

1,6 £RZq
t.= tgiys
c:=H(m\\t)
c—c- 6 (mod q)

s:=s + 7 (mod q)
I

t

I

rEKZq
i=gf

s - f — ex (mod q)

c

s

4-

(c,s)

Figure 2.4: A protocol for obtaining a blind Schnorr signature of a mes¬

sage m G {0,1}*.

the verification condition c = ^/'(m||^syc) holds and the signature is

valid. To prove that the protocol is blind, i.e., that the signer's view

is statistically independent of both the message and the signature (c, s),

one has to show that for every possible view and every possible signa¬
ture there exists exactly one pair (7, S) of blinding factors which would

result in that particular signature and view. Given any view consisting
of f, t, c, s, and any signature (c, s) of a message m, let

7

6

t*

= s — s (mod q),
= c — c (mod q), and

= ig'y5-

To prove the blindness property, it remains to show that t* = £ = gsyc is

satisfied:

t* = tg1^6 = gf+1+x5 = oT+s-S+x(c-H) _ gS+xc r-s-xc
_ gS

c
_ t

The last two equalities hold because s = f — xc (mod q) and since (c, s)

is a valid signature.

2.9 Zero-Knowledge Proofs of Knowledge 33

2.9 Zero-Knowledge Proofs of Knowledge

Traditionally, a proof of a (target-)statement is a sequence of statements.

When interpreted, this sequence eventually leads to the validity of the

target-statement. Anyone who is able to interpret the sequence can ver¬

ify the proof. Such a proof is a fixed object that, once obtained, can be

passed on to other people to convince them of the validity of the state¬

ment, too.

In contrast, an interactive proof of a statement is an interactive proto¬
col between two entities, a prover and a verifier. After the execution

of the protocol, the verifier is convinced of the validity of the state¬

ment. Interactive proofs have two remarkable advantages compared
to conventional proofs. First, there exist protocols for proving a state¬

ment such that the verifier does not receive any information apart from
the validity of the statement. Hence, the verifier is not able to prove
the statement to other people. Such protocols are called zero-knowledge.
Second, there are statements that can be proved interactively but not

with a conventional proof [Sha90].

Interactive proof systems were invented by Babai et al. [Bab85, BM88]
and by Goldwasser et al. [GMR85] who also introduced the notion of

zero-knowledge. Goldreich et al. showed that all statements in NP have

a zero-knowledge proof-system [GMW87b]. In the model used in these

papers, the prover is computationally unbounded, while the verifier is

a probabilistic polynomial-time machine.

Building on this model, several papers (e.g., [BCC88, BC86, Cha87])
modified the original model such that the prover is a (probabilistic)
polynomial-time machine. Whereas before, the prover was powerful
enough to compute a witness of the statement, now he is not. Thus,
either the statement is in P, or the prover must 'know' a witness, i.e.,

store the witness or compute it in polynomial time from other stored

information. To distinguish between the models, protocols in the latter

model are usually called arguments, computationally convincing proofs, or

proofs ofknowledge, while the term proofsystems refers to the Goldwasser,

Micali, and Rackoff model. For a discussion of the different models we

refer to [BC89].

In the following we will consider only protocols between players that

are computationally bounded, i.e., probabilistic polynomial-time Tur-

34 Foundations and Basic Protocols

ing machines.

2.9.1 Interactive Proofs of Knowledge

The concept of a proof of knowledge was first mentioned as a remark

in [GMR85], formalized by Feige, Fiat, and Shamir [FFS88], and then

refined by many others (e.g. [TW87, FS90, BG92]). Below, we give a

definition of a proof of knowledge similar to that presented in [BG92].

Definition 2.25. Let R C {0,1}* x {0,1}* be a polynomially bounded bi¬

nary relation and let LR be the language defined by R. An interactive proof
of knowledge is a protocol (P, V) that has thefollowing two properties:

Completeness: If(x,w) G R then [V, P(w)](x) = accept.

Validity: There exists a probabilistic expected polynomial-time machine K

(knowledge extractor) such that for every P,for all polynomials p(-)
and all sufficiently large x G LR,

Prob((x,Kp{x)) G R) > Prob([V,P](x) = accept) - —J— .

p(\x\)

The probabilities are taken over all random choices of V, P, P, and K, respec¬

tively.

In this definition P denotes any prover who does not necessarily know

the secret. Moreover, Kp^ means that the knowledge extractor is given
oracle access to P, i.e., can reset and rerun P on input x.

The validity property captures the meaning of an interactive proof of

knowledge, namely that P demonstrates her knowledge via communi¬

cation with V and that one can extract this knowledge via communi¬

cation with P only. It also captures what the knowledge of a machine

means: everything that it can compute in expected polynomial time

(e.g., by using the knowledge extractor).

The above definition gives no requirements for the case x £ LR, i.e., a

proof of knowledge for R does not necessarily give an interactive proof
for language membership in LR. If this is required, or if the protocol is

also run on inputs x £ LR then the following additional property should

also be satisfied.

2.9 Zero-Knowledge Proofs of Knowledge 35

Soundness: For every P, \/x £ LR,

~ 1

Prob([V, P](x) = accept) < -

holds. The probabilities are taken over all random choices of V

and P.

If a protocol satisfies this soundness criterium, the probability of accep¬
tance can be made arbitrarily small by repeating it sequentially suffi¬

ciently many times. For further details and explanation on proofs of

knowledge we refer to the paper by Bellare and Goldreich [BG92].

2.9.2 Zero Knowledge Protocols

The notion of zero-knowledge makes it possible to prove that a protocol
is secure for the prover, i.e., that the verifier is not able to gain any
information from the interaction with the prover that he could not have

computed himself, no matter how he deviates from the protocol.

To define zero-knowledge, we need some notions of indistinguishabil-
ity of random variables as put forth in [GM84, GMR85].

Definition 2.26. Let L G {0,1}* be a language and let A = {A(x)}xEl and

B = {B(x)}xei be two ensembles ofrandom variables indexed by strings x e L.

We say that the ensembles A and B are

• perfectly indistinguishable iffor all x G L the random variables A(x)
and B(x) are identically distributed.

• statistically indistinguishable if their statistical difference is negligi¬
ble, or more technically, iffor every polynomial p(-) and for all suffi¬
ciently longxELitholds that

X \Prob{A(x) = a)-Prob{B(x) = a)\ < -±-r-
ae{0,l}' V\\x\)

• computationally indistinguishable if no efficient algorithm exists

that can distinguish them, i.e., for every probabilistic polynomial-time

36 Foundations and Basic Protocols

algorithm D,for every polynomial p(-) andfor all sufficiently long x EL
it holds that

\Prob(D(x,A(x)) = l) - Prob(D(x,A(x)) = l) I < —J-^
.

iv / \ / i

p(\X\)

According to these three kinds of indistinguishability there are three

different degrees of zero-knowledgeness of an interactive protocol.

Definition 2.27. [GMR85] An interactive protocol (P, V) is said to be per¬

fect/statistical/computational zero-knowledge, iffor every probabilistic

polynomial-time verifier V there exists a probabilistic expected polynomial-
time simulator Sv so that the two ensembles

{[V,P](x)}xeL and {Sv(x)}xeL

are perfectly/statistically/computationally indistinguishable.

When a protocol is simply said to be "zero-knowledge", most authors

mean that it is computational zero-knowledge. We follow this conven¬

tion. An alternative, but equivalent definition is to require the simula¬

tor S(-) to output V's view (V, P)(-) rather that V's output.

There exist several different flavors of definitions for zero-knowledge.
For instance, some definitions require the simulator to run in strict pol¬

ynomial time but allow the simulator to fail with a small probability
(e.g., [Gol95]).

An interesting question is whether the composition of zero-knowledge

protocols remains zero-knowledge. While a parallel composition of

zero-knowledge protocols is in general no longer zero-knowledge, se¬

quential compositions can be shown to be zero-knowledge, when the

definition is slightly modified [G094], i.e., the verifier and the simu¬

lator are allowed an extra input z the size of which is polynomially
bounded in the size of x. This definition is called auxiliary input zero

knowledge.

To prove that a protocol is zero-knowledge according to Definition 2.27,

one would have to construct a simulator for every possible verifier.

In practice, this is often done by constructing a single simulator that

works for all verifiers. To match this situation, a third definition of zero-

knowledge was proposed, black-box zero-knowledge. Here, it is required

2.9 Zero-Knowledge Proofs of Knowledge 37

that there exists a single simulator that works for all verifiers. This sin¬

gle simulator is allowed to use a verifier as a black-box, i.e., the simula¬

tor can choose the input and the coin tosses of the verifier. It has been

shown [G094] that all protocols that are black-box zero-knowledge are

a subset of all protocols that are auxiliary-input zero-knowledge, which
in turn are a proper subset of the protocols that are zero-knowledge ac¬

cording to Definition 2.27.

A slightly weaker requirement than zero-knowledge is honest-verifier

zero-knowledge. It formalizes the property of a interactive protocol
that a verifier who follows the protocol specification (runs V) cannot

extract information from the prover.

Definition 2.28. An interactive protocol (P, V) is said to be perfect (sta¬

tistical/computational) honest-verifier zero-knowledge, if there ex¬

ists a probabilistic expected polynomial-time simulator Sy so that the

two ensembles {[V, P](x)}xi and {Sy(x)}xei are perfectly (statistically/
computationally) indistinguishable.

2.9.3 Witness Hiding Protocols

Feige and Shamir [FS90] proposed an alternative criterium of security:
witness indistinguishability and witness hiding. The latter seems to

be a natural security requirement that can replace zero-knowledge in

many cryptographic protocols. Moreover, it has the advantage over

zero-knowledge that it is preserved under arbitrary composition of pro¬

tocols.

Informally, a proof of knowledge is witness indistinguishable if the ver¬

ifier cannot tell which witness the prover is using (even if he knew all

witnesses).

Definition 2.29. Lef (P, V) be a proof of knowledge for a binary relation

R. It is called witness indistinguishable iffor every polynomial-time ver¬

ifier V, all sufficiently long x G LR, any two sequences W = {wx}xeiR
W = {w'x}xeLR such that wx, w'x G R(x), and all auxiliary inputs z E {0,1}*
the two ensembles random variables

{x, (P(w), V(z))(x)}kLr and {x, (P(w'), V(z))(x)}xeLR

are computationally indistinguishable.

38 Foundations and Basic Protocols

A variation of witness indistinguishability due to Goldreich [Gol95] is

witness independence. It requires the random variables (P(w\), V(z))(x)
and (P(w2), V(z))(x) to be identically distributed.

If an instance has only a single witness, then the related protocol is triv¬

ially witness indistinguishable. In their paper Feige and Shamir proved
that witness indistinguishability is preserved under polynomial com¬

position of protocols. Furthermore, every zero-knowledge protocol is

witness indistinguishable.

Before we can define what a witness hiding proof is, we need the notion

of an invulnerable generator for a relation.

Definition 2.30. GR is a generator for relation R if on input 1" it produces
instances (x, w) E R oflength n. Gr is called an invulnerable generator if
for any polynomial-time cracking algorithm C,for all polynomials p(-), and

for all sufficiently large n we have

Prob((x,C(x)) E R) < ~
,

p(n)

where x = pr1(GR(l")). The probabilities are taken over the random choices of
GR and C.

Recall that prx(-) denotes the first entry of a tuple given in the argument.

Intuitively, a proof of knowledge is witness hiding if participating in the

protocol does not help a (dishonest) verifier to compute a new witness

to the input which he did not know at the beginning of the protocol,
i.e., if the verifier is able to compute a witness after participating in the

protocol, then he could have done so before.

Definition 2.31. [FS90] Let (P, V) be a proofofknowledgefor relation R, and

let GR be an invulnerable generatorfor R. The protocol (P, V) is said to be wit¬

ness hiding on (R, GR) if there exists an expected polynomial-time witness

extractor W, such that for any polynomial-time V,for all polynomials p(-),
andfor all sufficiently large n we have

Prob((x, [V, P(w)](x)) ER)< Prob((x, W^'Gr(x)) E R) + -^— ,

where w is arbitrarily distributed over R(x), and x — pr^Gj^l")). The prob¬
abilities are taken over the distributions of the inputs and witnesses, as well as

over the random choices of P and W.

2.9 Zero-Knowledge Proofs of Knowledge 39

In contrast to zero-knowledge, the distribution of the input enters the

definition. In particular, there may be infinitely many witnesses that

are easily extracted, but these are not output by the generator.

The definition of witness hiding guarantees only that witnesses are

not disclosed completely. In contrast to zero-knowledge, partial in¬

formation may leak. For instance, a digital signature cannot be zero-

knowledge, but they can be witness hiding (e.g., fail-stop signatures
[vHP93, WP90]).

Witness indistinguishable proofs are not necessarily witness hiding; for

instance, if for each instance there exists only a single witness, then

a protocol that yields this single witness is (trivially) witness indis¬

tinguishable. However, if each input has at least two "computation¬
ally independent" witnesses, then a witness indistinguishable proof of

knowledge is also witness hiding, as is shown in [FS90]. Furthermore,

parallel compositions of the protocol are also witness hiding, since wit¬

ness indistinguishability is maintained under composition of protocols.

2.9.4 An example: Schnorr's Identification Scheme

In [Sch91] it is shown that Schnorr's identification scheme [Sch91]

(see also Figure 2.2) is a proof of knowledge, but that it is not zero-

knowledge. Chaum et al. [CEvdG88] have shown that the variant with

k — 1 and q = p
- 1 is a zero-knowledge proof of knowledge when se¬

quentially repeated log(p) times. In this subsection we will analyze the

Schnorr identification protocol with respect to the definitions presented
in this section. Let Q be a family of groups with prime order such that

computing discrete logarithms in them is infeasible. The binary rela¬

tion Rs underlying the protocol is the set {((G,g, y), x) \ y = gx with 0 <

x < ord(G) ;y,g^\EG;GE Q} and let Ls be the language defined by

To show that the Schnorr identification protocol is a proof of knowl¬

edge for the relation Rs we have to prove the protocol's complete¬
ness and validity. As mentioned earlier, it is easy to see that P can

always convince V and hence the protocol is complete. To prove the

protocol's validity we construct a knowledge extractor. Let e denote

Prob([V, P](G,g, y) = accept) and let I denote the length of the input

(w 3 logg). Consider the following program for a knowledge extractor

40 Foundations and Basic Protocols

K that has oracle access to the "prover" P:

1. Run P using a randomly chosen c E {0,1}*. Proceed if the ob¬

tained triple (f, c, s) is accepting, otherwise output _L and halt.

2. Reset and run P again with a randomly chosen c E {0,1}* until

an accepting triple (t, c, s) is found. If c ^ c proceed to Step 3,

otherwise output ± and halt.

s — s
3. Output x-= ; (mod q)

Let pt denote the probability that P outputs a commitment t and let

£f denote the probability that then, on input of a random c Gr {0, l}k,
P outputs an s such that (t, c, s) is an accepting triple. Then we have

e = ltPt£t-

Let us first discuss the expected running-time of K. Recall that verifying
whether a triple is accepting requires 0(£3) steps. Consider a particular
f. Then, the probability that K halts in the first step is 1 - et and the

running time is 0(£3) (a call to the oracle P counts as one step). In the

other two cases we have an expected running time of l/etO(£3). How¬
ever, since Step 2 is only entered with probability et, the total expected
running-time given a particular t is

(l-et + et-)0(£3) = (2-et)0(t3).
£t

Since a particular t gets chosen with probability pt, the expected run¬

ning time of the knowledge extractor is

5>(2 - et)0(t3) = (2 - e)0(£3) < 20(f),
t

which is polynomial in the length of the input as required.

What remains to discuss is the probability that the extractor K will out¬

put a witness and not the special symbol -L The probability that in the

second step a triple with c ^ c is found is

et2k -1 1

£,2* et2*'

2.9 Zero-Knowledge Proofs of Knowledge 41

since we have et2k > 1 accepting triples in Step 2 and one of which we

cannot use. Again, the probability that Step 2 is reached is et and thus

the total success probability is

Prob(((G,£,y), K^y))) e Rs) = £p,e,(i - _L_) = £ - 2~k.

For all polynomials p(-) and all sufficiently large £, this probability is at

least e — p(£)~x ifk — 0(poly(^)) holds. Hereby we have constructed a

knowledge extractor.

Lemma 2.1. The Schnorr identification protocol is a proof of knowledge for
k = 0(poly(*)).

Let us discuss next under which conditions the Schnorr identifica¬

tion protocol is zero-knowledge. As stated in [Sch91] it is not zero-

knowledge when k is selected as required in Lemma 2.1. This is be¬

cause k is too large and thus the success-probability of the simulator is

negligible. However, when a smaller k is chosen, namely k = 0(log(^)),
it is zero-knowledge. The following algorithm constitutes a simulator

for the output of any verifier V.

1. choose cGr {0,1}*.

2. chooser ERZq.

3. compute t~gryc.

4. run V, send it the computed t and receive a c.

5. if c equals c send s=r to V and output V's output and halt, other¬

wise continue with Step 1

By construction, the output of the simulator is identically distributed

to the output of the verifier. To conclude that the protocol is zero-

knowledge, it remains to discuss the running time of the simulator. The

probability that in Step 5 the variable c will equal c (and thus that sim¬

ulator will halt) is 2~k, since for the verifier V all possible choices of c

are equally likely. Hence the expected runtime of the simulator is 0(2*).
Therefore, we have to choose k as 0(log(^)) so that the simulator's ex¬

pected running time is polynomial in £. However, for such a choice the

42 Foundations and Basic Protocols

Schnorr identification scheme is no longer a proof of knowledge since

this would require that k = 0(poly(^)) holds.

To get both properties at the same time, the protocol must be repeated
in a sequential manner. Let / be the number of repetitions (rounds).

To simulate the output of any verifier V in the obtained protocol, we
need to use the fact that the simulator is allowed to reset and rerun the

verifier. Before the first round, the simulator resets the verifier. Then,

the simulator tries to find values which pass the first round (similar
to the steps as described above) and stores these values. Using these

values, the simulator always passes the first round, and can try to find

values for the second round, and so on. The expected running time of

this simulator is 0(poly(/2*)) and thus j must be chosen as 0(poly(£)).

Let us now consider how j must be chosen so that we get a proof of

knowledge. The knowledge extractor is similar to that for the ordinary
protocol, with the difference that in Steps 1 and 2, not only a single pro¬
tocol run is considered but all / iterations. In this case, the expected
running time remains polynomial in £. The probability that the extrac¬

tor will output a witness becomes e — 2~k). As the zero-knowledge

property requires k to be 0(log(^)), the parameter j must be satisfy
Q.(poly(£)). Thus we have the following lemma.

Lemma 2.2. The Schnorr identification protocol is a proof of knowledge
and is perfect zero-knowledgefor k = 0(log(^)) when sequentially repeated
0(poly(£)) times.

The Schnorr identification protocol is not known to be witness hiding
but is trivially witness indistinguishable since for each instance there

exists only one witness. However, Okamoto presented a variant that is

witness hiding [Oka93]. This variant uses two different bases and thus

two secret exponents. So, there exist q different witnesses per instance.

This variant is witness indistinguishable and thus also witness hiding.

2.10 Hash Functions

In signature schemes, hash functions are applied to reduce messages of

arbitrary length to bit-strings that can be handled by the signing algo¬
rithm. Hash functions can also be used as a substitution for the verifier

in proofs of knowledge and thus turn them into signature schemes.

2.10 Hash Functions 43

Definition 2.32. A hash function is a function mapping binary strings of
arbitraryfinite length to binary strings ofafixed length £:

#:{0,1}* -+{0,1}'.

Naturally, we require a hash function to be efficiently computable. For

cryptographic purposes a hash function must also be hard to invert, i.e.,

it must have at least one of the following properties:

• weak collision resistant: For a given x, it is hard to find an x' ^ x

such that H(x) = H(x') [NY89].

• strong collision resistant: It is hard to find a pair (x, x') with x ^ x'

such that 9f(x) — H(x') if H is chosen at random from a family
of hash-functions [Dam88].

• one-way: For a given c, it is hard to find an x such that H(x) = c.

It can easily be seen that a strong collision resistant hash function is also

one-way and of course weak collision resistant. In the context of this

thesis, a weak collision resistant hash function meets all requirements.
However, for some applications more specific properties such as corre¬

lation freeness are needed [Oka93, And95]. For a recent discussion on

the subject of strong and weak collision resistance see [BR97].

The notion of hardness depends on the actual security requirements.

Assuming that the best algorithm to invert the hash function is brute-

force search, the hardness depends mostly on the number of output-
bits. To estimate the number of necessary output-bits the so-called

birthday-attack has to be considered: to find a collision with probabil¬
ity 1/2 only about 2ll2 random hashes must be made. Today, an output
size of 160 bits seems to yield a reasonable security.

Numerous cryptographic hash functions have been proposed so far in

the literature. They can be divided into two kinds by their construction:

I. Hash functions that use block ciphers as building blocks.

II. Specially designed hash functions.

44 Foundations and Basic Protocols

An example of the first type is the Tandem DM based on IDEA [LM93].

Examples of the second type are the secure hashing algorithm (SHA)

[Nat93], Ron Rivest's MD5 [Riv92], or the RIPEMD-160 by Dobbertin,

Bosselaers and Preneel [DBP96, BDP97]. Recent attacks on MD5 by
Dobbertin [Dob96] make the use of SHA or RIPEMD-160 advisable.

Preneel's thesis [Pre93] is a comprehensive treatment on hash functions.

2.11 Secret Sharing

Secret sharing schemes are used often as a building block of cryp¬

tographic systems. For instance, they are instrumental to multi¬

party computations and distributed protocols (e.g., [GMW87a, Fra93,

Can95]).

Informally, a secret sharing scheme is a procedure that allows a group
of people to share a secret in such a way that no one of them gets

any information about the secret. However, all members of any des¬

ignated subset can pool their obtained shares and reconstruct the secret

again. Such schemes were independently invented by Blakley [Bla79]
and Shamir [Sha79]. For a survey on different schemes we refer to Sim¬

mons [Sim91] and Stinson [Sti92].

Let (P = {Pi,... , P„} be a set of participants. A set {P,|f E S} of partic¬

ipants that can jointly reconstruct the secret a is called a qualified subset

of 5P. In this case we also refer to S as a qualified set. The set of all quali¬
fied sets r C 2^x'-'"} is called the access structure and is usually required
to be monotone, which means that the following holds.

If AeTandACj AC{1,... ,n} then Siet.

A minimal qualified subset S E T is a set of participants such that S £ T

for all proper subsets S of S- A basis of T, denoted by To, is the set of all

minimal qualified subsets.

A common special case of a monotone access structure is a threshold

structure, where for a threshold k the access structure T is defined to be

{SQ2*\\S\>k}.

Every access structure T has a natural dual access structure T*:

SET ^ 5£l\

2.11 Secret Sharing 45

where S denotes the complement of S in {1,... , n}. If T is monotone,

then T* is also monotone and we have (P)* = T. If T is a threshold

structure, then so is P. For instance, the dual access structure of T =

{5 c 2*1--"> I \S\ > k} is P = {5 C 2<1--"> | |5| > n - k +1}.

Definition 2.33. A secret sharing scheme/or !P, T, and a set of secrets I

consists ofthree procedures genr, verp, and recp. X/te probabilistic algorithm
genr to/ces a secret a G I and n = | !P| as mpuf and outputs a share c, for every

participant P, E T. The deterministic algorithm recp takes a qualified subset

S and the list (c,),65 as input and outputs the secret a. The following must

hold:

Vael V5GT: a = recr(5,(c,),e5)) •

The procedure gen is often run by a third, trusted party D, called the

dealer, who distributes the shares to the individual participant. But

there are also schemes that do not require a dealer, i.e., where gen is a

multi-party protocol among the participants. Before running the algo¬
rithm rec, the participants of a qualified subset may have to pool their

shares (and thereby make the shares known to each other). However,
there exist schemes with algorithms rec that allow the participants to

compute a function of the secret in a distributed manner without re¬

vealing any other information about their shares and the secret than

the computed result [DDFY94].

A secret sharing scheme may have the following properties:

Perfect: A secret sharing scheme is called perfect if all subsets of partic¬
ipants that do not form a qualified set are unable to obtain any
information about the secret a or about shares of other partic¬

ipants. Such schemes are also called information theoretically
secure. There are also computationally secure secret sharing
scheme, where it is infeasible to compute the secret a for any sub¬

set not in T (e.g. [Kra94]).

Ideal: A secret sharing scheme is called ideal if the size of the shares

equals the size of the secret.

Verifiable: A secret sharing scheme is called verifiable if each participant
can verify that he/she has indeed obtained a valid share, i.e., the

dealer need not be trusted. Such a scheme was first proposed by
Chor et al. [CGMA85]. Verifiable secret sharing schemes require

46 Foundations and Basic Protocols

a third algorithm verr, that takes as input a share, and outputs
true if and only if the share is valid. Hence, the participants can
convince themselves that the shares are valid. Schemes that also

allow other entities to validate the shares of all participants are

called publicly verifiable [Sta96b].

Benaloh and Leichter [BL90] proposed a simple and elegant construc¬

tion for realizing a secret sharing scheme for any (monotone) access

structures. Schemes obtained by this so-called monotone circuit con¬

struction are perfect, but not ideal, since every participant gets as many
shares as the number of qualified subsets he/she belongs to, and all

shares have the same size as the secret.

Perfect secret sharing schemes have the property that it is possible to

construct a complete set of shares given the shares of any non-qualified
set and the secret, with the same probability distribution of the shares

as when they were generated by genr [Cra97]. Formally, the algorithm
cmplr takes as inputs the set of participants !P, a non-qualified set of

participants 9\[<£r, the set {?,|z G 9\[} of their shares, and the secret a,

and outputs the set {sj\j E 5\£}, i.e., we have

cpmlr(!P, 9i, {?I|i G #}, a) = {c;|/ G H} ,

where 5\£ denotes the complement of fA£ in {1,... ,n}.

Finally, as an example, consider secret sharing scheme conceived by
Shamir [Sha79]. It is a threshold secret sharing scheme with n partic¬
ipants. A secret a (an element of a finite field GF(<7), with q > n) is

shared by randomly choosing the coefficients a.\,... , ajc_i G GF(q) of

the polynomial

f(X).= ak^Xk-l + ... + alX + a (mod (?),

where k is the threshold k. The share for participant P, is then calculated

as c,~ f(p,), where p, is a publicly known element of GF(q) associated

with participant P„ e.g., p, — i. Given k or more shares, the polynomial
/ and thus the secret a can be reconstructed by Lagrange interpolation
on the points (pn c(). This scheme is ideal as well as perfect.

Chapter 3

Proofs of Knowledge
About Discrete Logarithms

This chapter provides building blocks for cryptographic systems based
on the hardness of the discrete logarithm problem. Various known

methods for proving the knowledge of secret keys and for proving
that, additionally, they satisfy given predicates, are summarized and

unified. Furthermore, a new method for proving that the secret keys

satisfy modular relations is presented.

This chapter also provides building blocks for the different group sig¬
nature schemes and the payment systems described in the next chap¬
ters.

3.1 Introduction

Crypto-systems found in literature that are based on the difficulty of the
discrete logarithm problem often employ similar techniques for prov¬

ing knowledge and properties of secret keys. These are for instance

proofs of knowledge of discrete logarithms (with respect to a single
or to multiple generators) and proofs that known discrete logarithms
satisfy some given predicates such as the equality of two of them. In

this chapter we summarize and generalize such techniques and present

48 Proofs of Knowledge About Discrete Logarithms

them within a general framework. We also propose new techniques for

proving that the secret keys known to the prover satisfy some given
modular (polynomial) relations.

All proof systems presented in this chapter can be described as three-

move protocols similar to Schnorr's identification protocol depicted in

Figure 2.2. These protocols can be shown to be honest-verifier zero-

knowledge proofs of knowledge. Furthermore, if they are repeated se¬

quentially sufficiently many times and if the challenge is chosen from

a sufficiently small set, the protocols are zero-knowledge proofs of

knowledge (cf. Sect. 2.9.4).

Using the techniques introduced in [FS87, FFS88], every honest-verifier

zero-knowledge proof can be turned into a signature scheme by replac¬
ing the verifier by a hash function, i.e., the challenge is set to the hash

value of the commitment (and of the message to be signed). This ap¬

proach has been formalized by Bellare and Rogaway as the so-called

random oracle model [BR93, BR96]. In this model, the hash-function (or
the verifier, respectively) is replaced by an oracle. The oracle answers

queries with random strings, except that the same query always yields
the same answer. Bellare and Rogaway proved that in this model the

signature scheme of [GMR88] is secure against an adaptively chosen

message attack. Pointcheval and Stern [PS96, Poi96] applied this result

to a variant of the ElGamal signature scheme and stated that every sig¬
nature scheme obtained from an honest-verifier zero-knowledge proof
of knowledge is secure against existential forgery under an adaptively
chosen message attack.

Finally, using a result of Okamoto [Oka93], it is also possible to derive

blind signature schemes from the schemes presented in this chapter (cf.
Section 2.8).

Throughout this thesis, we describe the different proofs of knowledge
not as protocols but rather as signature schemes derived from these

protocols, since we most often use them as such. However, the reader

should keep in mind that there always exists a corresponding protocol

being a proof of knowledge. To reflect this, we call the schemes signa¬
tures based on proofs ofknowledge, SPK for short. We also say that a signa¬
ture 'proves' the knowledge of secret keys, although, strictly speaking,
a signature can never be a proof in the strict sense as defined in Sec¬

tion 2.9, but only an argument [BCC88].

3.2 Proving Knowledge of Secret Keys 49

3.2 Proving Knowledge of Secret Keys

3.2.1 Algebraic Setting

The algebraic setting is as follows. Let G be a finite cyclic group of

prime order q, k an integer, and let g, h, gi,... , g*. G G be generators of

G such that computing discrete logarithms of any group element (apart
from the the identity element) with respect to one of the generators is

infeasible. Furthermore, the generators should be chosen in a random

manner, such that the discrete logarithms of no generator with respect
to another are known. Then, the computation of a representation (in¬
dex tuple) of a group element with respect to multiple generators is as

hard as the discrete logarithm problem (see Section 2.3). In practice,
G is often chosen as a subgroup of Z* for some prime p or a group

generated by the points of an elliptic curve over some field [Men93].

Depending on the application, it may be important for the participants
to assure themselves that G is properly chosen, i.e., has prime order.

For instance, in the case of G not having prime order (e.g., G = Z*)

and depending on the prime factors of \G\, there are a number of at¬

tacks known [AV96, Ble96, LL97] that range from existentially forging
signature to computing the secret key of signer from given signatures.
Finally, let H : {0,1}* —> {0,1}' denote a strong collision-resistant hash

function (see Section 2.10). We assume that all these parameters are

publicly known and accessible.

The prover chooses her secret keys (randomly) from Z*. (Again, we call

the prover Peggy and the verifier Vic.) Public keys are then computed
as the product of some generators that are exponentiated with some of

the secret keys. For instance, the prover could choose x\, x2 ER Z* as

secret keys and compute her public keys y\~g\lgXl and y2-=gXl+2xi.

3.2.2 First Building Blocks and Notation

The first and simplest building block is an SPK of the discrete logarithm
of a public key y to the base g.

Definition 3.1. A pair (c,s) E {0, lJ'xZ, satisfying

c = 9i(S\\V\\m) with S = g\\y and V = gsyc

50 Proofs of Knowledge About Discrete Logarithms

z's an SPK of the discrete logarithm of a group element y to the base g of the

message m E {0,1}* and is denoted

SPKrKa): y = ga}(m).

Basically, such an SPK is a Schnorr signature (see Section 2.7) with a

slightly different argument to the hash function.

An SPK\{a : y = ga}(m) can be computed if a value (secret key) x =

loggy (mod q) is known, by choosing a random integer r from Zq and

computing t—gr and then c and s according to

c:=X(g\\y\\t\\m)

and

s--r — ex (mod q).

If the base and the public key are evident from the context, they will

sometimes be omitted in the argument to the hash function. Although
this "proof" is not interactive, we call t the commitment, c the chal¬

lenge, and s the response (cf. Section 2.6).

Along with this first building block we also introduced our notation.

An expression such as

SPJQ{(a,/3): y = ga A z = g?ha}(m)

denotes a signature based on a proof of knowledge of values (secret

keys) a and (3 such that the statement on the right hand side of the

colon is true. In the above example, the knowledge of a and f3 such

that y = ga A z = g^h" is hold is proven. This is equivalent to proving
the knowledge of the discrete logarithm of y to the base g and of a

representation of z to the bases g and h and, in addition, that the /t-part
of this representation equals the discrete logarithm of y to the base g.
We will stick to the convention that Greek letters denote the knowledge
of the prover. If the message m is the null string, the term (m) after

the '}' is omitted. The index i of SPKi is thought as reference to the

definition of a particular SPKi. For the general understanding of what

is proven by a signature, the index is not important. However, when it

comes to computing and verifying a signatures, the index i refers to the

3.2 Proving Knowledge of Secret Keys 51

exact procedures for doing so. With higher indices these procedures
will get more complex, but also allow more complex statements to be

proven. With regard to the arguments of the hash function, we stick to

the following convention:

• the argument includes the message m that is signed (however, m

might be the null-string),

• the string S contains the commitment of the knowledge (or state¬

ment) that is being proven, and

• the string V contains the parts that ensures the validity of the sig¬
nature.

Moreover, from the term denoted by V one can derive the verification

equations for the interactive protocol corresponding to a SPK scheme.

That is, every component of V must then be equal to a component of

the commitment. For instance, for our first building block we have

the commitment t and V — gsyc from which we derive the verification

equation t = gsyc for the corresponding interactive protocol. This is

also how an SPK-signature can be computed: first the commitments

are chosen, then, in order to compute the challenge c, the hash func¬

tion is evaluated, whereby the concatenation of the commitments are

included in the argument to the function instead of V. Finally, the re¬

sponses are calculated such that the components of V are equal to the

corresponding components of the included commitment.

The next building block is an SPK of a representation of a public key.
The corresponding proof systems were first introduced in [CEvdG88].

Definition 3.2. A (k + l)-tuple (c,si,... ,sk) E {0,1}* x (Zq)k satisfying

c = 9((S\\V\\m) with S=gx\\...\\gk\\y and V^tfYYg
i=i

is an SPK of a representation of a group element y with respect to the bases

gi> • • ,gk of the message m g {0,1}*. It is denoted by

SPK2{(ai,...,cxk):y = llg°-}(m).
1=1

52 Proofs of Knowledge About Discrete Logarithms

Such a signature can be calculated as follows if values (secret keys)
X\,... ,xk E Zq are known such that y = nf=igx' hold. The prover
chooses the integers r\,... , rk at random from Zq, computes

c-=^(giii...iiftiiyiin«r,H.
1=1

and

s,=rt — ex, (mod q) for i = 1,... ,k.

3.3 Statements About Knowledge

Before we can define more general signature systems, we need some

more notation. To express the fact that a public key y, can be formed us¬

ing only a subset of the generators g\,... , gk we use a set % C {1,... , k}
such that y, = Yljej, gX{,'!) holds, where X(,;) are secret keys of the entity
to which the public key y, belongs. Note that the secret keys X(,;) are

in general not numbered consecutively but carry a tuple (f, j) where the

first entry is the index of the public key y, and the second entry is the

index of the respective generator g}. In particular, the secret keys X(lt])
f°r j £ Ji are not defined. If it is clear that (i, j) is a pair of indices, we
write xtJ instead of xihJ).

Next we show how to prove the knowledge of a representation of sev¬

eral, say n, public keys at the same time. In principle this can be done

by computing n separate signatures SPK2{(alJ))eji : y, = Fljei &?'Km)-
However, it is possible to merge these signatures by choosing the

same challenge for all of them and thus making the resulting signature
shorter.

Definition 3.3. A (1 + Sf=1 \%\)-tuple (c,(si;)l=1,...,B,;eJ{) G {0,1}' x

(Zq)V=iW satisfying

c = 9({S\\V\\m)
with

S=ft||...||ftlN|...||y«||A||...||A

v=y!n^,ii-iiyc«n^'
ieji i&%

3.3 Statements About Knowledge 53

is a SPK of the representation of all the public keys yi,... , yn to some of the

bases g\,... ,gk of the message m G {0,1}* and is denoted

SPK3{(a,;),=1,..,„,;ej!: Ay< = rK"Kw)-
i=l jel

Computing such a signature is similar to simultaneously computing n

separate signatures, each proving the knowledge of a representation of

a y,. The prover, knowing all x,/s, chooses r,/s (i = 1,... ,n;j G J,) at

random from Zq and computes the commitments t, = Tljej, &?' f°r au

i = 1,... ,
n. Then the challenge is evaluated as

c=^(gil|...||gtllyi||...||y»IUI|...||i.||till-..|IMW

and finally stj~rt) + cx,} (mod q) are computed for (i — 1,... ,n;jE Jt).
It can easily be verified that the obtained tuple (c,(s,j),=ii...i„/;jr) is

a valid signature SPK3{(a<y),=i, ..,„-.,& A,=i y, = Yl,ej,g°'!}(m) of the

message m.

Note that, by using this technique, it is always possible to merge several

signatures to get a single shorter signature.

The next primitive makes it possible to prove the knowledge of a

representation of one out of several public keys without revealing which

one. This primitive was proposed by Cramer et al. [CDS94]. Of course,

if the prover does not mind revealing the public key the representation
of which she knows, then she can just point out this public key, say

y„ and prove her knowledge of a representation of it with the shorter

signature SPK2{(a,;);j! : y, = Ujej, g, "}(•)•

Definition 3.4. An (n + £T=i \Jt\)-tuple (cu... ,c„,(s,y),=1)...,„,;eJ;) G

({0,1}<)« x (Z9)2"=i M satisfying

©c, = tf(S|M|m)
i=i

with

s=gi||...Wyi||...||y»llJi||-.||i.

^ = y? n«7'll. • II y? n^'
l&Ji /£%

54 Proofs of Knowledge About Discrete Logarithms

is an SPK of the discrete logarithm of (at least) one y, out of the list

{yi,... ,y„} to the base g of the message m G {0,1}* and is denoted

SPK4{(a„),=1,...,„,^ : \/ y, = Y\s°"}(m>-
1=1 ;6j?,

The term ©JLi c, in this definition denotes the bitwise XOR of all c,'s.

The idea behind this scheme is the fact that a single SPK^a^)^^ :

y, = ri/ej; g°!'' }im) can be forged if the challenge is known before the

computation of the commitment. The verification condition ©,"=1 c, =

9f(S\\ V\\m) of the SPK4 enables the prover to choose all but one of the

c,'s. Thus she can forge all but one of the "partial signatures" each

proving the knowledge of a representation of a y,. It follows that at

least for one y, she must know a representation. Let us finally remark
that it is not possible to distinguish between signatures SPKj that were

computed using the knowledge of a representation of different public
keys y,. This is because the interactive protocol corresponding to the

"partial signature" SPK2{(a,,)]j: : y, = Yltej,ga,''}(rn)ls honest-verifier

zero-knowledge.

Let us describe how a signature SPK4{(a,;)i=i). ,,n,jej, ' V7=i Vi =

11/6.55 gi '}(m) can De computed by considering a concrete example. We

assume that the representation of y\ is known, say y\ = g\ngXu- In this

case, the prover chooses the integers rii,r14,(s(;),=2, ..,n,jej, randomly
from Zq and c2,... ,c„ randomly from {0,1}' and computes

h --=g[ng? and t,••= yc; f] 8," for i = 2,... ,
n.

Then she computes Ci, sn, and S14 according to

ci-=^(g||... W|ti||...||rn||m)e0c,
1=2

and

sn = rn-cixn (mod q)

Si4~ri4 — C\Xn (mod q)

The resulting tuple (ci,... ,c„, (s,;),=iv..>n,ij;) constitutes a valid signa¬
ture SPK4{(a,;),=1,.. t„;ljj : V,"=i y« = Tl,j,g"''}(m) as can easily be ver¬

ified.

3.3 Statements About Knowledge 55

Let us now look at more complex statements. For instance consider the

public keys y\, y2, y3, and y4 and the statement

(yi = ga" A y2 = g°2) V (y2 = ga* A y3 = g°3) V (y3 = ga> A y4 = gQ<).

The goal is to prove the knowledge of values ot\, a2, a3, and a4 such

that this statement is true. In other words, the goal is to prove the

knowledge of the discrete logarithms of all public keys in one of the

sets {yi,y2}/ {yi,y3}, or {y3,yn}. In principle, such a proof could be

realized using the same technique as for the previous building block:

combining the partial signatures

SPK3{(a1,a2): yx = ga> Ay2= ^2}(m)

SPK3{(a2, a3): y2 = g°* A y3 = g°>}(m)

SPK3{(a3, a4): y3 = ga* A y4 = g°*}{m)

by XOR-ing their challenges. However, this approach is not very effi¬

cient, since the more such subsets we have, the longer such a combined

signature becomes.

Fortunately, Cramer et al. [CDS94] presented a much nicer solution

for proving such statements. More exactly, it allows the construction

of a system for proving the knowledge of a representation of all ele¬

ments of one out of several defined subsets of the set of public keys
¥ = {yi» • • i y«} without revealing the subset. To define such a sig¬
nature system formally, let T denote a monotone set of subsets of

{1,... , n} (the indices of the public keys). Note that I" is an access struc¬

ture as it is known from secret sharing.

Definition 3.5. A (n + Y?l=l\J,\)-tuple (cu... ,c„,(s,;)!=1, ,.^,eJi) E

({0,1}')" x (3,)SU.XI satisfying

Vi* e T : xecr(S,(ct)l£S) = #(S||V||m)

with

s=gi||...||gk||yi|| lly»HJu||...||JUr

v = yciYlg5;'\\---\\ycnY[s?
izji]^%

56 Proofs of Knowledge About Discrete Logarithms

is an SPK of the representation of all {y,\i E S} with respect to the bases

{gj\j £ 3i\f°r & kflSt one SET, ofthe message mE {0,1}*. Such a signature
is denoted by

SPK5{(ai;)!=1,...,„,^:\/(Ay' = n^")}(m)-
5erW id

Recall that P denotes the dual access structure of T and that recr* is an

algorithm that reconstructs the secret if given all shares of a qualified
set S E P, (cf. Section 2.11). If the size of the shares and the size of the

commitments do not match, a suitable mapping must be introduced. In

the following we assume that the shares have the same size as the c,'s.

The idea behind this signature system is basically the same as the one

behind the scheme from Definition 3.4: combining the partial signa¬
tures SPK2{(a!;);6jr : y, = Fl^g?''}(m) by implying conditions on the

challenges c,. Here the conditions are obtained by interpreting the chal¬

lenges also as shares of a secret sharing scheme for the access structure

P. The secret is the value calculated by the hash function. Due to

the relation between the access structures T and P, a set of 'shares'

{cj\j £ S G T} can always be completed to a full set of shares of a secret

sharing scheme for P. Thus a prover knowing representations of all

public keys in the set {y,|z G S} for some SET can choose all c;'s for

which j E S and thus forge the partial proofs for these yy's.
Let us now show in detail how such a signature can be computed.
Without loss of generality, we assume that for some integer u < n the

prover knows the representations of yi,... , y„ and that S — {1,... , u}
is contained in T. The prover chooses the integers (r,y)l=ii...jU#/e^ and

(Si;)i=«+i,...,n,;ej! randomly from Zq, picks cu+\, ,c„ randomly from

{0,1}', and computes

*=#kin. • urinal... iirK'fein ^11 • •

•••llyc„TK"'H>

{c!,... ,c„}:=cmplP({l,... ,n},{u + l,... ,n},{cu+i,... ,c„},cr),

and

Sif-=r,, -c,x,, (modq) for i = 1,...,«;;' G J, .

3.4 Proving the Equality of Secret Keys 57

The algorithm cmplP completes the set {cu+\,... ,c„} to a full set of

shares for the secret a according to the access structure T* (cf. Sec¬

tion 2.11).

3.4 Proving the Equality of Secret Keys

In the previous section we have seen how to prove different statements

about the knowledge of discrete logarithms and representations. An

interesting extension is to prove not only the knowledge of secret keys
but also that certain relations among them hold. The remainder of this

chapter is devoted to presenting different methods for proving state¬

ments about the knowledge of discrete logarithms and representations,
and, simultaneously, statements about relations among them.

We start by considering we consider methods for proving the equality
of secret keys. The simplest non-trivial case is a signature proving that

the discrete logarithms of two public keys with respect to two different

bases are equal. Such a scheme was introduced in [CP93] in the context

of blind signature schemes.

Definition 3.6. A pair (c,s) E {0, l}e x Zq satisfying

c = 9<(S\\V\\m) with S = g\\h\\y\\z and V = gsyc\\hszc

is a signature of the message m E {0,1}* based on a proof of knowledge and

of equality of the discrete logarithm of z with respect to the base h and of the

discrete logarithm ofy with respect to the base g. It is denoted by

SPK6{(a):y = ga Az = ha}(m).

An SPK(,{a : y = ga A z = ha}(m) = (c,s) can be computed as follows

if a value x = log y (mod q) is known and if log y
= log,, z (mod q)

holds. One chooses a random integer r from Zq and computes h-.=gr
and t2-=hr. Then, c and s are calculated according to

C:=#(s||%||Z||tl||f2||m)

and

s—r — ex (mod q).

58 Proofs of Knowledge About Discrete Logarithms

A signature of the type SPKe can be seen as two "parallel" signatures
SPK\{(a): y = ga}(m) and SPK\{(a): z = ha}(m) where the exponent
for the commitments, the challenges, and the responses are the same.

This technique can be generalized to representations: whenever two

responses s, are equal, the respective elements of the representation(s)
are equal, too. This is formalized in the next definition. Note that,

when two responses are different it does not imply that the respec¬
tive elements of the representation(s) are also different, since if the

signer/prover chooses different exponents in the commitments, then

the responses are different regardless of the value of the secret key.

Definition 3.7. A (u +1) tuple (c,sj,... ,su) E {0, l}e x (Zq)u satisfying

c = X{S\\V\\m)

with

s =gi|l---lbllyill---lly«IUi||---HX||{e,;},=i, ,„,;ej[

v = yfn^'ll-llyc-n^1

is a signature of the message m E {0,1}* based on a proof of knowledge of
representations ofy\,..., y„ with respect to some of the bases g\,.-. ,gk and

that, additionally, some of the elements of the representations are equal. It is

denoted

SPK7\(au...,au): U =UC') A • •"
A (^ =11^"') Vm)>

where the indices et] E {1,... , u} refer to the secrets ot\,... ,au and the ele¬

ments of J, are indices referring to the base elements g\,... ,gk.

In this definition, we made an exception of our convention for index¬

ing the secret key. Here, they are indexed as x\,... xu. This is necessary
since in this case a secret key can appear several times in the represen¬
tations of the public keys.

To clarify Definition 3.7 let us consider, as an example, the signature

SPK7{(a,/3,7) •• y = g\g2g" A z = 8184}- Such a signature proves the

knowledge of the representation of y with respect to the bases g\, g2,
and g3 and of z to the bases g\ and g4. Additionally, it proves that

3.5 Proving Polynomial Relations Among Secret Keys 59

the gi-part and the g3-part of the representation of y are equal and,

finally, that the gi-part in the representation of z equals the g2-part in

the representation of y.

An SPK7 can be computed if a u-tuple (xi,... , xu) is known that satis¬

fies the considered statement. One first chooses rt Er Zn for i = 1,... , u,

computes c as

c=#foii-Hfe,}^, ^^iin^'ii-iin^'ii).

and then sets s, =r, — ex, (mod n) for = 1,... ,
u.

The approach of this section, namely requiring some of the s,'s to be

equal, can be generalized to requiring the s,'s to satisfy some modular

relations modulo q. Then it can be concluded that the corresponding
secret keys also satisfy these relations. However, this works only when
all challenges are the same. Thus, proving statements that include also

the V-connective is not possible since the challenges might be differ¬

ent. However, in [CS97b] it is shown how this approach can be used

nevertheless, when the statement to prove is transformed into new one

having a special form. Unfortunately, the size of the new statement is

exponential in the size of the old statement.

In the next section we describe another, more efficient, method to prove
such statements in a more direct way.

3.5 Proving Polynomial Relations Among
Secret Keys

3.5.1 Linear Relations

As a start, let us restrict ourselves to linear relations among the secret

keys. When the secret keys are discrete logarithms with respect to a sin¬

gle base, it is trivial to prove that a linear relation among them holds.

It does not even require the knowledge of the secret keys. As an ex¬

ample, consider the equation 3*! + 5x2 = 6 (mod q) and let y and z be

two public keys. Then, verifying whether the equation holds for the se¬

cret keys x\ = log y and x2 = log z can be done by computing y3z5 and

checking whether the result equals g6.

60 Proofs of Knowledge About Discrete Logarithms

When the bases of the discrete logarithms are different or the secret

keys are elements of representations, a linear relation among them can

not in general be verified in such a way. It is only possible if the prover

provides some additional public keys such that each secret key is the

discrete logarithm of one of these with respect to a single base (g in the

above example). However, these additional public keys leak knowl¬

edge about the secret keys that was not available before. For instance

an equality of two secret keys could then easily be recognized. To cir¬

cumvent this, these additional public keys can be randomized using
an additional base, say h, whose discrete logarithm with respect to any
other base used must not be known. We illustrate the resulting method

by continuing our example. Let y\ and y2 be the public keys and gi
and g2 the bases of the logarithms. Again, the goal is to show that

3 log yi + 5 log y2 = 6 (mod q) holds. Different from before, the en¬

tity (the prover) knowing the secret keys x\ - log y\ and x2 = log y2

must be involved: she chooses two random integers r\ and r2 from Z*

computes the additional public keys

yx^V'andy^/rV2.

and provides the three signatures

Lfi:=SPK7{(a,7) : yx = gf A yi = h~>g°},

U2.= SPK7{(f3,5) : y2=#f A y2 = hsg^}, and

u3=sPM(£) : y3y25/g6 = he}.

The signatures LZi and U2 prove that j/i and y2 correspond to y\ and

y2, i.e., that the secret keys are the exponents of the g part of the repre¬
sentation of the yVs. The signature LT3 proves that the considered linear

equation among the secret keys holds. More precisely, it proves that

the g-part of the representation of y\ y2/g6 with respect to g and h van¬

ishes, which is only possible if the considered relation holds (otherwise
the prover could compute the discrete logarithm of g with respect to

the base h).

In some sense, the signature U3 also proves the knowledge of a dis¬

crete logarithm of a public key, namely the public key y3 y^/g6 that

is constructed according to the considered linear equation. Hence this

method can be seen as a way of transforming a relation into a public
key the discrete logarithm of which can only be known if the relation

holds.

3.5 Proving Polynomial Relations Among Secret Keys 61

3.5.2 Polynomial Relations

Before we can define an SPK for proving that modular relations among
the secret keys hold, we have to find a way to apply the approach in

the previous section to polynomial relations. Let us explain how this

is achieved by continuing the example from the previous section and

considering the polynomial 2x\ + x2 = 3 (mod q). To construct a public
key that corresponds to this polynomial, we need two additional public
keys, one with xf as exponent, the other with x2 as exponent. For x2

this is not different from the previous paragraph. However, for x\ this

is different, since in this case we have to show that one exponent of the

additional public key equals the 4-th power of the discrete logarithm of

yi. One way to do this is by so-called bit-wise proofs (for an example
of such proofs we refer to Section 5.3). Unfortunately such proofs are

not very efficient. However, if the degree of the polynomial is not too

large, it can be shown more efficiently.

First we observe that it is possible to show that the discrete logarithm
of a public key, say z3, is the product of the discrete logarithms of two

other public keys, say z\ and z2. Namely, the signature

SPKb{(a,0) :Zl=gaAz2 = gPAz3 = z?}(m)

proves this, as can easily be seen.

With this observation, we can continue our example. To show that

2x\ + x2
= 3 (mod q) holds, the prover has to provide the values

yiv=hrng*\ yn-=hr»gx\ yis^V'. andy14:=/trV\

where the rn,r12,r13, and ru are randomly chosen from Zq and with

x\ = logglyi (mod q). We observe that

yi2 = h*fi\, y13 = h^y\\, and y14 = h*jf*

holds for some values v\, v2, and v3. Therefore the signature

Uv=SPK7{(a,<3,y,5,e,) : y1=gf A yn=h0ga A

yu = fr7yTi A yi3 = ft'yf2 A yi4 = hey?3}

proves that the g-part in the representation of yu is indeed the 4-th

power of the discrete logarithm of yx with respect to g\. Thus, Hi,

Ur.= SPK7{(C,v) : y2 = g2C A y2 = feV}. and

62 Proofs of Knowledge About Discrete Logarithms

U3=SPKi{(0) : y24y2/g3 = ^}

prove that 2(log y{f + log y2 = 3 (mod q) holds. In particular, the

signature U3 proves knowledge of the discrete logarithm of the "public
key corresponding to the considered equation".

This technique was already used in [CS97a] and similar techniques
have been used in [Dam94, Dam95, Oka97, F097] with commitment

schemes.

Remark 3.1. Instead of providing the additional public keys for all

e - 1 exponents (x\,x2, x3,... ,x6^1), it would suffice to provide only
the keys for (x\, x\, x\, x\...), and then prove that xe can be constructed

from these according to the square-and-multiply algorithm (cf. Sec¬

tion 2.2.3). Furthermore, there exists a trade-off between bit-wise proof
and the techniques described here: if the exponents become large, bit¬

wise proofs are more efficient. This tradeoff depends on the polynomial
that is considered. However, we do not consider this remark in the fol¬

lowing definitions.

We have now developed all techniques for defining our next building
block. This requires some more notation. Let us therefore redraw the

scenario. Given are n public keys, u polynomials, and the goal, which
is to prove knowledge of secret keys that are the representations of the

n public keys and that, additionally, these secret keys satisfy the u poly¬
nomials. More technically, we are given the generators g,h,g\, ..., gk,

the public keys

yi = n^'.-.y- = Il«;"'

and the w polynomials

b\ = fluaj" + aX2ae212 + ...+ alwa%a (mod q)

K = fluiai"1 + au2ae2"2 + ...+ auwae^ (mod q)

in ai,... , aw, where w denotes the number of secret keys w = £"=i \%\-
We require that for all i and / (i = 1,... , u; j = 1,... , w) it holds that

if atj = 0 then e,; = 0, and if at] ^ 0 then1 e,; > 0. Furthermore, we

:The case of negative exponents could be included, too. Then, the additional public
keys y,y's must also be provided for the negative exponents. This can be done using the

fact logs y = (logyS)-1 (mod q).

3.5 Proving Polynomial Relations Among Secret Keys 63

need a one-to-one mapping from the secret keys to the w variables of

the polynomials: let in(-) denote such a mapping from {1,... , w} to

the indices {1,... , n) x (J\ n ... n %) of the secret keys. Finally, let e;
denote max{ei;,... ,eu,} for; = 1,... ,

w.

Definition3.8. A (2J]f=let + \ + w + u) tuple (yu,... ,yux,y2\, . •
,

9wew, C,(S(/),=1, ,„/;ejr,(S,;),=i, ,,„,,=!, A, fj,... ,fu) G G^='#' X {0,1}' X

(Zq)w+^-^+u satisfying

c = ti{Sx\\S2\\Vl\\V2\\V3\\m)

with

s1=gi||...|bllglNyi||-..||yn||ynl|...||y1dly2ill-..||y^JI

s2 = ji ii... n% ii mug-". n;=1 y-;;; n... n g~K 117=1 f;:t
^=y{Tl8T\\---\\ycnUgT

1&3\ l£J»

v2 = y^'gs^W... || y^yl^lly^^ll • • •

• • • II ifwej1 3w(lw-l)

*=(g~h n#>*11 • • • 11 (*-K n?z)hfu
1=1 i=i

is a signature of the message m E {0,1}* based on a proof

• ofknowledge ofthe representations ofy, with respect to the bases {g; | / G
%}foralii = 1,...n,and

• that, additionally, the secret keys ain(1),... ,ain(a,) satisfy the u poly¬
nomials

w

bl = Y,fl.;aln(;) (mod a) fori = I...u.

ft is denoted by

SPKs{(ail)l=h ,„.,eJ5 : (yi = J\g°l>) A • • • A (y„ = Tig?')*
l$Ji ie%

(h='ZahaM]) (modq))A...A(bu=%aU!ae;> (mod q))\(m).
;=1 y=l

64 Proofs of Knowledge About Discrete Logarithms

Let us consider the different parts of the argument of the hash function

in this definition. The Si-part is the usual inclusion of the bases and

public keys. In the S2-part the statement that is proven is committed,
where in denotes a description of the mapping in(-). The V\ part as¬

sures that the representations of the public keys y\,... , yn are known,
the VVpart guarantees that the y,'s encode the secret keys and their

powers, and finally, the V3-part assures that the u polynomial relations

hold.

Remark 3.2. To improve the efficiency of the SPKS (and of the SPK?)

they can be modified to use addition chains2 [Knu81] for the e,'s. The

chain for i, must of course contain elM... ,em. Then the prover would

have to provide only the y,;'s for which / is an element of the addition

chain for et. This induces of course that the relations among the y,;'s
must be proved in a slightly different way. To illustrate this, consider

the addition chain (1,2,3,6) for ex = 6 and let yi —gXl. Then

lii:=SPK7{(a,0,7,<5,e,C,0) = yi=Sia A yn=/z7gQ A

y12 = fe'yS A y13 = /*£yf2 A y13 = h^ A y16 = h»fu}

proves that the exponents in the g-part of the j/i;'s are X\ powered to j
(note that (3 = a3 (mod q)).

Theorem 3.1. The interactive protocol corresponding to the SPK8 is honest-

verifier zero-knowledge and a proofofknowledge ofthe representations (a,;)/G jr,

of all yt,i = 1,... , n, with respect to the bases gjfor j E J, and thefact that

these representations satisfy the u relations

w

bt = £ fl,ya^0) (mod q) /or i = 1... u.

Proof (sketch). Honest-verifier zero-knowledge: We show how a com¬

munication by the prover with an honest verifier can be simulated.

First choose the integers (s,,),=i,. .,„//ej?, (si;),=i,... ,„,,,=!,... A,fi,... ,fu at

random from Zq and c randomly from {0,1}*. Furthermore, choose

all (ytj)t=i,...,w,j=i,...,e, randomly from G. Then all commitments, i.e., all

2An addition chain for an integer n is an ascending sequence 1 = Oq < a\ < ... < ar = n

such that for 1 < i < r we have a, = fl; + ak for some ; and k,0 <k< j < i.

3.5 Proving Polynomial Relations Among Secret Keys 65

the values that are included in the V\-, V2-, and V3-part of the ar¬

gument of the hash function (see Definition 3.8), can be computed

(e.g., t\ = y\ Y\jejlgSl'). These commitments, the challenge c, and the

response-tuple ((s,;),=i, ,„,,eJi, (s,,)l=ii...tW:]=i,..,ii,ri,... , reconstitute a

simulated protocol view that is statistically independent from the view

of a protocol run of an honest verifier with the real prover and hence

the protocol is perfect honest-verifier zero-knowledge.

Proof of knowledge: Here we show only that from two views of the

protocols with the same commitments one can compute the secret keys
and that these satisfy the modular relations. The rest of the construction

of a knowledge extractor is similar to that given in Section 2.9 for the

Schnorr identification protocol.

Assume that we are given the views of two runs of the interactive pro¬
tocol with the same commitments but with different challenges c and c

and the responses

(Siy)i=l, ,n,]j,) (S[;)i=l,...,10,7=1,...,e,irli • • • Ju, and

wiy)i=l,. .,n,j£j,, lsi/)i=l,...,w,7=l, .,e,i^l) • • iru-

We now have to show that from these two views it is possible to com¬

pute values that are representations of the y,'s and that they satisfy all

u relations.

From these challenges and responses we get the equalities

yiUg," = fills," fori = l,...,«

and thus can compute the values

s — s

x,j~——~ (mod q) for i = 1,... ,n;j E J,

such that

y' = n^i" fori = l,...,n

holds. Similarly, from the s,y's and the j^'s we can compute values rtj
such that

Vij = hr"gx'^ for i = 1,... , w, j = 1,... , e,

66 Proofs of Knowledge About Discrete Logarithms

holds. It remains to show that the xtfs we have computed actually sat¬

isfy the u modular relations. Consider the values y, that are computed
according to the u given polynomials, i.e., computed as

W e

yr=g~b,YlyZ = g->./II<-fl'<r<<'Vg^<V»o> for i = 1,... , u,

where in the second term the y,;'s are replaced by their representation
with respect to g and h. Recall that the g-part of a value y, vanishes if the

Xifs satisfy i-th polynomial. From the two views one can also compute
values i>i = (fi - fi)l(c - c) (mod q),... ,vu = (fv - fv)/(c - 6) (mod q)
such that y, = hv' holds for i = 1,... ,

u. Therefore, if for some y, the

g-part does not vanish, i.e., if XyLi "/y^w/) *s not equal to bt modulo q,

then one can compute the discrete logarithm of h to the base g using
the two different representations of this y,. Since this is assumed to be

infeasible, the Xj/'s must satisfy all u relations.

The following example shows how such a signature can be computed.
Let yi = gXug212 be a public key and let x\x + Ax32 + xu

= 7 (mod q)
hold for the secret keys xu and x\2. Then a signature

SPK8{(a, (3): yx = g^2 A (a2 + 4/33 + (3 = 7 (mod q)) }(m)

of the message m can be computed as follows. First calculate the addi¬

tional public keys by choosing vn, v\2, v2\,v22, and v23 at random from

Z* and compute

yn-=hv"gx», yir.=hv"yx?,

y2V=h°»gx", yii-^h^y^, and y23-.=h^yx2f.

Then choose rx, r2, rn, ri2, r21, r22, r23, and u at random from Z* and com¬

pute

h=g[lgr22,

tn = hr«g'\ tu = hr"y[[,

hv=hr»gr2, t22-.=h^yr2\, tK-.=hr»yr2\,

3.5 Proving Polynomial Relations Among Secret Keys 67

and

c-^feilbl|g||/i||yi||yii||yi2l|y2i||y22||y23||{i,2}||{ii,i2}||

^2y243W/ll'l|IM'l2||f2l||r22||t23||ffcM,

where {11,12} is the description of the mapping in(-). Finally, one can

compute

sn:=ri - cxu (mod q), s\2-=r2 - cx\2 (mod q),

hi := rn - cvn (mod q), s"12 = ru - cvx2 (mod q),

hv-r2\ - cv2\ (mod q), s22:=r22 - cv-n. (mod q),

s23 ~ rn - cvn (mod q), and

fv=u- c((vn + xnvn) + 4(y23 + x2lv22 + xfi^i) + ^2i) (mod q)

and thus gets the tuple

(yil,yi2,y21,y22,y23,C,Si1,S12,S'ii,S"i2,S2i,S22,S23,fl)

which constitutes an SPK8{(a,/3) : yi = g^g^ A (a2 + A(33 + (3 = 7

(mod q)) }(m). This is because the following equations hold:

h = y\^gT

fii = yii^ugSn-fi2 = yi2^12ysiIi1,

hi = fnh^t2, t22 = yyf*y%, t23 = f^f^, and

th=(MMn)Ch\
o

This technique of relating the validity of a relation among secret keys
to the knowledge of a discrete logarithm allows the application of the

method of [CDS94] (see SPK5) for proving statements about the knowl¬

edge of secret keys and about relations among them that also contain

V-connectives. For the sake of an easier notation, let y\,... ,yu denote

the public keys that are constructed according to the polynomial rela¬

tions, i.e.,

w

yr=g~b'Ilyt fOTi = l,...,U
7=1

68 Proofs of Knowledge About Discrete Logarithms

Note that a verifier can compute yi,... , yu from the additional public
keys yt], thus the y/s need not be part of the signature.

Using these y,'s, we can now formulate statements about knowledge of

representations and about relations among the secret keys as we did in

the case of SPK5: Let T be a set of subsets of {1,... , n, n +1,... ,n + u},
where 1,... ,n correspond to y\,... ,yn and n + 1,... ,n + u corre¬

spond to yi,... ,yM.

Definition3.9. A (2XJlje, + n + w + 2u) tuple (yn,... ,yUx,y2\,... ,

yWew,Ci,...cn+u,(st!)l=it ,„,]ey,,(s,}),=i, ,w,)=i, ,e,, r1(... ,fM) G G1"^' x

({0,l}e)n+u x (Z„r+2V'+M satisfying

V^GT*: recr,(S',(cl)yiS)=^(S1\\S2\\V1\\V2\\V3\\m)

with

Si = gi\\ ||gfc||g||fc||yi|| • • • ||y„||yu|| • llyidlydl • • • Hy*.

s2 = m ... imiiniig-b> nr=i y^ii •.. ii g~K nr=i y^r
^1 = y? n# ii •• ii ynUsT

V2 = y^h^g^W... || y{l^h^n y^ ||

^-«fcfa^.ii... ii jfi^fc**jfK_x)

7=1 7=1

is a signature of the message m E {0,1}* based on a proof

• of knowledge of the representations of all {y,\i G 5} with respect to the

bases {g,\jE%}, and

• that, additionally, the secret keys (otl,)tes,i<n,ie3, satisfy

w

b, = X fl</a!n(7) (mod <?) /or fl//11 (»' + ") e 5.

3.5 Proving Polynomial Relations Among Secret Keys 69

for at least one SET. Such a signature is denoted by

spK9{(Qi;)1=1, ,„,/gJ!:V((A y> = rK")A
Ser ieS,t<n jeJ,

(A k<=I>Xn(7) (mod ?))J}(m).
(i+n)ei ;=l

In this definition pr1(in(-)) denotes the first projection of the index-

tuple that is output by in(-))- For instance, if in(8) is (3,7), then

prt(in(8)) is 3. In particular, pr^in^l)) = 1 and pr1(in(o;)) = n holds.

The security properties of the SPK9 follow from those of the SPK5 and

the SPK$. The way of computing an SPK? should be clear from the way

an SPK5 and an SPK8 are computed.

3.5.3 Related Work

In this subsection we compare our method for proving the validity of

modular relations with that of Brands [Bra97].

The idea behind the scheme of Brands is as follows (translated into

our setting, i.e., using the scheme of Brands in the SPK8 and SPKg).
The known secret keys are committed with a single additional public
key, i.e., if X\,... ,xk are the secret keys, the additional public key is

y = Ylk=igx', where log g„ (i / ;'), must not be known. Then, modular

relations hold if the prover can show that she knows a representation
of y with respect to a set of bases that is constructed from gi,... ,gk

according to the considered relations.

A comparison between the efficiency of Brands' scheme with ours de¬

pends strongly on the proved statements. In the following we consider

only the length of signatures (or the number of values communicated

in the interactive case). If the statement to be proved contains no V-

connectives, the scheme of Brands is more efficient. When the state¬

ment also contains V-connectives, our approach is more efficient.

Finally, let us remark that the scheme of Brands makes it possible to

use the logical NOT in statements about equations. However, this could

easily be added to our schemes as follows. First note that if a modular

relation does not hold, then the g-part of the representation of the y,

70 Proofs of Knowledge About Discrete Logarithms

that corresponds to the considered relation does not vanish. Thus the

prover must show that this is the case by providing the signature

SPK2{(a,(3):g = hay?}.

Of course, these signatures must be appropriately merged into the SPK$
and SPK9.

Chapter 4

Efficient and Generalized

Group Signature Schemes

A group signature scheme allows a member of a group to sign mes¬

sages anonymously on behalf of the group. In the case of later dispute
a designated group manager can revoke the anonymity and identify
the originator of a signature. In this chapter we describe a new effi¬

cient group signature scheme. Furthermore, we present a model and

the first realization of a generalized group signature scheme. This type
of group signature scheme allows the definition of coalitions of group
members that are able to sign on the group's behalf. These results have

appeared in [Cam97]. The schemes presented in this chapter, as well

as all previously proposed schemes, have the property that the size of

the group's public key and/or the length of signatures are linear in the

number of group members. In the next chapter we present group sig¬
nature schemes where all parameters are independent of the number of

group members.

4.1 Introduction

In [CvH91] Chaum and van Heyst proposed a new type of signature
scheme for a group of entities, called group signatures. Such a scheme

72 Efficient and Generalized Group Signature Schemes

allows a group member to sign a message on the group's behalf such

that everybody can verify the signature but no one can find out which

group member provided it. However, there is a trusted third party,
called the group manager, who can reveal the identity of the origina¬
tor of a signature in the case of later dispute. This act is referred to

as "opening" a signature or also as revocation of a signer's anonym¬

ity. The group manager can either be a single entity or a number of

coalitions of several entities (e.g., group members). This concept can be

generalized to allow designated subsets of all group members to jointly
sign a message on behalf of the group.

Group signatures could for instance be used by a company for authen¬

ticating price lists, press releases, or digital contracts. The customers

need to know only a single company public key to verify signatures.
The company can hide any internal organizational structures and re¬

sponsibilities, but can still find out which employee (i.e., group mem¬

ber) has signed a particular document.

4.1.1 Related Work

Apart from group signature schemes, there exist several other group-
oriented concepts for signature schemes, most notably multi-signatures
[Boy89, CH89,0093] and proxy signatures [MU096]. Multi-signatures
can be seen as generalized group signatures without the possibility of

identifying the signers later, while proxy signatures are group signa¬
tures that do not provide the signer with anonymity.

Solutions for group signature schemes were first presented in [CvH91]
and later in [CP95, Che94]. We discuss these schemes briefly. In

[CvH91] four different schemes were proposed. Three of them re¬

quire the group manager to contact each group member in order to

find out who signed a message. These schemes provide computational
anonymity, whereas the fourth scheme provides information-theoretic

anonymity. For two of the schemes it is not possible to add a new

member after the scheme has been set up (including the scheme giving
information-theoretic anonymity). In none of the proposed schemes

does it seem possible to distribute the functionality of the group man¬

ager efficiently.

Later, Chen and Pedersen proposed two new schemes in [CP95, Che94]

4.1 Introduction 73

providing information theoretic anonymity and computational ano¬

nymity, respectively. These schemes allow the addition of new mem¬

bers after the setup of the system and the distribution of the function¬

ality of the group manager. They are based on proofs of knowledge of

discrete logarithms of one out of several public keys, each belonging
to a group member. These proofs have the special property that, when

one knows all secret keys, one can tell which one was used in the proof.
Two such proofs are used in parallel, each group member has a pub¬
lic/secret key pair for each the two proofs. One of the two secret keys
of each group member is made known to the group manager. Hence

she1 can tell which member signed, but not sign on behalf of members,
since she lacks the knowledge of the members' second secret key. How¬

ever, this solution has the drawback that the group manager can falsely
accuse a group member of having signed a message: to this end she

would compute one of the proofs of knowledge using the known secret

key of the member she wants to accuse. This risk can be weakened, but

not prevented, by sharing the functionality of the group manager.

Recently and independently, Petersen [Pet97] proposed an (ordinary)
group signature scheme that is similar to that presented in Section 4.3.1.

Furthermore, he also originated a threshold group signature scheme

which is a generalized group signature scheme for a threshold author¬

ity structure.

4.1.2 The Schemes Presented in This Chapter

In this chapter we describe an efficient group signature scheme where

the manager cannot falsely accuse group members (even if she is also

a group member). Furthermore, we also present the first generalized
group signature scheme. In both schemes, the functionality of opening
signatures can be shared among several entities such that the identity
of a signer can still be revealed efficiently by them. Both schemes allow

the addition (or removal) of group members after the initial setup. They
provide computational anonymity which we believe is satisfactory, be¬

cause the security of the signature scheme itself is also computational
(as is the case for all signature schemes). Moreover, both schemes are

secure in the random oracle model [BR93, BR96].

JIt is at times convenient to call the group manager Maude. Thus 'she' refers to the

group manager and 'he' refers to some group member

74 Efficient and Generalized Group Signature Schemes

4.2 Our Model of Group Signature Schemes

In this section we define the concept of (generalized) group signature
schemes. Let !P = {Pi,... , Pn} be a set of group members and M be a

designated entity, called group manager. Let T be a subset of 2*1' •"). A

set of group members {P,|i E S, S E T} is called an authorized coalition

and T is called authority structure. The structure must be monotone, i.e.,

for two sets S and S G 2*1- •">, if S E T and 5' 2 5, then also S E T.

The special case where we have the non-monotone authority structure

T = {{1}, {2},... , {n}} is called a simple group signature scheme.

A (generalized) group signature scheme for T and M with respect to T

consists of four procedures:

setup: A probabilistic interactive protocol between the group man¬

ager M and the members of !P. On input T this protocol outputs
the group's public key % a secret key x, to each group member

P, G T, and an opening secret key u> to the group manager M.

sign: A probabilistic interactive protocol between members P,|i 5

for some 5 G T. On input of a message m, the group's public key
<y, the access structure T

,
the coalition 5, and the secret keys x,

of the group members P,|i G 5, this multi-party protocol outputs
a signature sofm.

veri fy: On input a message m, the group's public key 'Jf, the structure

T, and a signature s, this algorithm outputs yes if and only if the

signature is correct.

open: An algorithm that takes as input a message m, the group public
key <y, the structure T, a signature s and the revocation secret

key w. If s is a valid group signature of m with respect to ty,
the algorithm outputs S E T and a proof that the group members

P,\i E Sindeed signed m.

The requirement that open also outputs a proof is often omitted but is

essential when minimizing the trust to be put into the group manager.

The group publishes its public key *y, the authority structure F, and

some system parameters. A group signature scheme must satisfy the

following properties:

4.2 Our Model of Group Signature Schemes 75

1. Only authorized coalitions {P,|i E S,S E V} of group members

can sign (unforgeability). The correctness of a signature can be

publicly verified using f and T.

2. Given a signature, it is neither possible to find out which coalition

of group members signed a message (anonymity) nor whether

two different signatures were signed by the same coalition (un-

linkability).

3. Group members can neither prevent the opening of a signature
nor sign on behalf of other group members/coalitions (opening
of signatures). This must be infeasible even if the group manager

is involved (security against framing).

4. The group manager must only be involved in the procedures
setup and open.

The following natural properties should also be satisfied by a group sig¬
nature scheme. Property 7 was stated as an open problem in [CvH91]
and achieved first in [CP95, Che94].

5. The group manager is only trusted not to open signatures when

this is not required, but is not trusted with regard to anything else.

6. It should be possible to assign the different roles of the group

manager, namely managing group-membership of entities and

opening signatures2, to different parties. We call these roles mem¬

bership manager and revocation manager.

7. To increase the security against a cheating group manager, it

should be possible to share the roles among a set of entities (e.g.,
the members of the group).

When considering the efficiency of a scheme, the following parameters
are of particular relevance:

• the efficiency of the procedures sign and verify,

• the length of signatures,

2We also refer to the act of opening signature as the revocation of a group member's

anonymity.

76 Efficient and Generalized Group Signature Schemes

• the size of the group's public key 90 and

• the efficiency of the procedures setup and open.

4.3 Constructions of the Schemes

The observation leading to our constructions is that the signature sys¬

tems

SPKt{{ai,...,an): \/y,=Sa'}(m)
1=1

and

SPK5{(a1)... ,an):\/{/\yt=ga')}(m)
Ser ies

defined in Chapter 3 already satisfy most properties of a simple and a

generalized group signature scheme, respectively, if the group's public
key is y = (y\,... ,y„) and each group member P, knows the discrete

logarithm of y,. The only missing properties are related to the group

manager's capability of "opening" a signature. In the following we

present efficient solutions to achieve these missing properties by using
a variation of the ElGamal encryption scheme and the techniques dis¬

cussed in the previous chapter. Furthermore, these solutions allow a

simple way to distribute the functionality of the group manager. The

latter is described in Section 4.4.

4.3.1 An Efficient Simple Group Signature Scheme

The algebraic setting is as follows. Let G be a finite cyclic group of

prime order q and let g be a generator of G such that computing discrete

logarithms to the base g is not feasible. Furthermore, let H : {0,1}* —>

{0,1}^ (£ « 160) denote a collision-resistant hash function.

The group manager M randomly chooses her secret key u from Zq and

computes her public key z—g"' and the commitment SPKi {(a) z =

ga}(M) to it. The group manager's commitment is sent to all group
members. Each group member P,

4.3 Constructions of the Schemes 77

• chooses his secret key xt randomly from Zq,

• computes y,~gx',

• commits to y, by computing SPK\{(a): y, = ga}(Pi), and finally

• sends y, and his commitment to the group manager.

The group publishes 9^:=(yi?--- ,yn) together with the group man¬

ager's public key z and the system parameters G, g, q, and H.

The missing properties are obtained in that, to sign a message m, a

group member encrypts one of the public keys of y — {y\,... , y„} for

the group manager and provides a signature (SPK) of the message m

proving that

• he encrypted one of the y,'s with respect to the group manager's
public key and that

• he knows the discrete logarithm of the encrypted public key.

It follows from these two proofs that the group member must have en¬

crypted his public key and thus the group manager can later identify
the group member as the signer by simple decryption.

Such a group signature scheme could in principle be realized with an

ElGamal encryption and a single signature of the type SPK9. However,

using the technique for proving equality of secret keys as described in

Section 3.4 one can construct a more efficient scheme. Therefore, we

define a new building block.

Definition 4.1. A2n-tuple{ci,... ,c„,su... ,s„) G ({0,1}')" x (Zqf sat¬

isfying the equation

®c,=tf(S|M|m)
1=1

with

S=g\\h\\yl\\zl\\...\\yn\\zn

y = yc^V^\V--\\ycn^Vn^"

is a signature of the message m E {0,1}* based on a proof of knowledge and

of equality of the discrete logarithm of y, with respect to the base g and of the

78 Efficient and Generalized Group Signature Schemes

discrete logarithm z, with respect to the base hfor (at least) one i, 1 < i < n.

Such a signature is denoted

n

SPKw{(ai,... ,an): \/(yi =ga' Az, =ha-)}(m)

The term ©"=i c, found in this definition denotes the bitwise XOR of

all c,'s. Similar to a signature of the type SPKs{a : y, ~ ga A z, = ha},
a signature of the type SPKW can be seen as two parallel signatures
SPKi{(au... , q„) : Vr=i y« = 8°"} and SPK4{(au ..., a„) : V,=i z« =

/tQ'} where the exponents for the commitments, the challenges c„ and

the responses s„ respectively, are equal for each i (cf. Sect. 3.4). From

this it should be clear how a signature of the type SPKW is computed.
We note that two signatures are perfectly indistinguishable (see Sec¬

tion 2.9) with respect to which i the discrete logarithms of y, and z, are

known for and are equal, and that the corresponding interactive pro¬
tocol is honest-verifier zero-knowledge. Thus this signature scheme is

secure in the random oracle model.

The notion SPKw allows us now to formally present our efficient simple
group signature scheme. To generate a signature of a message m, the

group member P; executes the following steps:

1. choose a randomly in Zq

2. encrypt y; by computing A-.=z" and B — yjg"

3. compute the signature (c\,... , cn, s\,... , s„) ==

Vl=SPKw{(au...,an):\J(A = za- A (B/yt) = ga')}(m)
1=1

4. compute the signature (c,s) = V2--= SPK\{(a): B = ga}(V71)

The computed group signature is (A, B, V\, V2) and can be verified by
checking the correctness of the signatures V\ and V2.

Remark 4.1. Signatures of this scheme could even be made shorter

by merging the two signatures V\ and V2 into a single one. This is

achieved, for instance, by defining c to be the XOR of all the c,'s.

4.3 Constructions of the Schemes 79

The signature V\ assures that (A, B) is the encryption of one of the pub¬
lic keys in the list y while the signature V2 guarantees that the signer

actually knows the discrete logarithm of the public key encrypted in

(A, B). The signer thus indirectly proves his knowledge of the discrete

logarithm of a public key contained in y and therefore that he is a mem¬

ber of the group !P. It can easily be seen that only group members can

sign messages.

To open a valid signature the group manager decrypts (A, B) and im¬

mediately obtains the public key of the signer. Assume that the group
member P; was the signer. By providing

SPK6{(a):z = gaAA = (B/y,r}(P,)

the group manager can prove that she opened the signature correctly
and that indeed P; has issued this signature.

4.3.2 A Generalized Group Signature Scheme

The system parameters for this scheme are the same as for the sim¬

ple group signature scheme. In addition to the group members' public
keys, the group manager's public key and to the system parameters,
the authority structure T is also published.

The ideas behind the generalized scheme are more or less the same as

those for the simple scheme. To sign a message m all members of an

authorized coalition prove that each of them encrypted an element of

y = {yi,... y„} and that they know the discrete logarithms of the en¬

crypted values. Furthermore, they must also prove that the encrypted
elements are all different. The problem with this approach is that the

number of encryptions equals the size of the coalition, which should

be kept secret. Therefore, the coalition must also encrypt some dummy
values in order to provide n encryptions.

A generalized group signature scheme could in principle be realized

with ElGamal-encryptions and a single signature of the type SPKg.

However, for the same reasons as for the simple group signature
scheme, we define a new building block to get a more efficient scheme.

Definition 4.2. A2n-tuple (cu... ,c„,Si,... ,s„) G ({0,1}*)" x (Zq)n sat¬

isfying the equation

V^ r : Tecr*tf,{c,)teS) = M{S\\V\\m)

80 Efficient and Generalized Group Signature Schemes

with

s =^INyil|zill---lly»l|z»

V = fi8*\Wh*l-4ti,8s"\KlK'"

is a signature of the message m E {0,1}* based on a proof of knowledge and

of equality of the discrete logarithm ofy, with respect to the base g and of the

discrete logarithm z, with respect to the base h for (at least) all i for which

P, G Sfor some SET. Such a signature is denoted

SPKllUal,...,an):y(/\{yl=8*Azt = h*))\(m).
5er is5

Recall that T* denotes the dual access structure of T and that recp is

an algorithm that reconstructs the secret from all shares of a qualified
set 5 G T*, (cf. Section 2.11). If the size of the shares and the size of

the c,'s do not match, an appropriate matching must be introduced. In

the sequel we assume that the sizes match. Again, we note that two

signatures are perfectly indistinguishable (see Section 2.9) with respect
to which y,'s the discrete logarithms are known for and that the cor¬

responding interactive protocol is honest-verifier zero-knowledge and
therefore this signature scheme is secure in the random oracle model.

The computation of such a signature is similar to that of a signature
of the type SPKw described in the previous subsection. An example is

given in the next section.

We are now ready for a formal description of the generalized group sig¬
nature scheme. To sign a message m on the group's behalf, the group
members forming an authorized set {P[|i 5,5Gr} execute the fol¬

lowing steps together:

1. • choose fli,... , an, and b, for all i with i ^ S randomly in Zq

• for all j E S encrypt y;: A] = zai, B;.— y^i

• for all i ^ 5encrypt gb-: A,=zfl', B,-^1^'

2. compute the signature V\ = (c\,... ,c„,s\,... , s„) =

SPKu{(al,...,an):\/(/\((Bt/yl) = ga- A A, = za'))\(m)

4.3 Constructions of the Schemes 81

3. compute the signature (c,s"i,... ,s„) ==

n

y2-SPK3{(a1,...,a„):/\B!=gQ-}(V1)

Member P; must calculate parts of the signature V\ and V2 alone in

order to hide his secret key from the other members. All other com¬

putations should be performed by all group members on their own

in order to assure themselves of the correctness of the outcome. The

random choices in these common computations must be agreed upon

by the group members in advance, for instance by choosing a random

string each, committing to the string by hashing it, exchanging these

commitments, then exchanging the random strings, and finally taking
the XOR of all these random strings. The resulting group signature is

(Ai, B],... ,A„,Bn,Vi,V2) and can be verified by checking the correct¬

ness of the SPK's Vi and V2.

The signature V\ assures that the list ((A\,B{),... ,(A„,B„)) contains

the encryptions of the y/s G y such that the corresponding P;'s form
an authorized coalition. The signature V2 assures that the authorized

coalition was really involved, i.e., that the discrete logarithms of the en¬

crypted y;'s are known. The inclusion of Vi into V2 as message prevents
the reuse of the signature V2 in another run of the scheme.

Remark 4.1 also applies for this group signature scheme.

Again, it is easy to see that the group manager can find out which co¬

alition provided the signature by checking the validity of the signature
and decrypting all pairs (Aj, B;). Note that a coalition cannot encrypt a

public key of a member not participating in the signing because in this

case it could not provide the corresponding part in the signature V2 and

therefore the group signature would not be valid. By providing

SPK6{(a) :z = gaAA, = (B;/y;)a}(P;)

for all Pj having participated in the signing, the group manager can

assure that she opened the signature correctly.

82 Efficient and Generalized Group Signature Schemes

4.3.3 An Example: A Threshold Group Signature
Scheme

In this section we give an example for a generalized group signa¬
ture scheme with a threshold authority structure. Let k be the mini¬

mum number of members that must cooperate in order to sign and let

f(x)~ Xf=o u,xl (mod p) be the polynomial of a secret sharing scheme

with threshold k over Z* where p « 2l < q is a prime (cf. Section 2.11).
Since the shares are elements of Z*, we define the c,'s to be elements of

Z*, too.

To generate a signature of a message m, the group members forming
an authorized coalition {P,|i E S,S E T}, i.e., at least k group members,

execute the steps below. In both steps it is indicated when the calcula¬

tions must be performed by a specific member on his own. All other

computations should be performed by all coalition members using the

agreed-on random string.

1. • choose a\,... , a„, and b, for all i with i ^ S randomly in Zq

• for all j E S, member P; encrypts y;: A} — zai, By = yyga<

• for all i ^ Sencrypt gbi: A,.= za', B^-g^g"'

2. compute Vy-=(u0,... ,«*_!,Si,... ,s„)

SPKn{(ai,... ,a„): V(A((Vy,) = r A A, = z«'))W
5er ,£5

• for all / G S, member P} chooses r; randomly in Zq and cal¬

culates tZiJ-—zri and tgtj-=gri

• for all i ^ S choose r,ERZq,ctERZp, and compute tZ), = zr' Act'

•c:=^(2y|A1||^||...||A„||^||fZll||tJfil||...||f2,„||^„||m)
• choose Mo,... , Mfc-i such that /(i) = c, (mod p) for all i|i ^ S

and /(0) = c (mod p)

• for all / G S, member P, computes c}—/(;') (mod p) and

s; = r; -c;fly (mod q)

• for all i ^ 5 set s, ~ r,

4.3 Constructions of the Schemes 83

3. calculate (c,si,... ,s„) =

V2 = SPK3{(al,...,an):/\Bl=ga'}(V1):
i=i

• for all j E S, member P, chooses r} randomly in Zq and com¬

putes ij--gri
• for all i e- 5, choose f, randomly in Zq and compute tl—gr'

. c-=#(g||Bi||... ||B„pi||... ||FR||m||u0|| • • • IK+ilMI • • • ||s„)

• for all j E S, member P; computes s} = r]
— c(x} + a}) (mod q)

• for all i G" 5, compute s, = ft — c(bt + a,) (mod q)

The group signature of m is the tuple (A\, B\,... , A„, B„, V\, V2). In¬

stead of all c,'s, the values uq,... ,«/t_i are part of V\. This makes the

signature shorter but equally secure since c and all c,'s are uniquely
determined by uo, , Wjt-i through /(•).

The group signature can be verified by checking the following equa¬

tions:

u0

and

#1 8\ Ax
y\

|... An
Bn

yn II \ 1/1 / I>yi.

II s ac II s /'-'"\ II \
• \\Z An \\g (—) \\m)

II II \ Vfn / II /
yn-

f = ^(g||B1||...||B„||^Bf||...||^"B^H|«0||...||«t+i||si||...|M

where

c,
= /(i) = uq + U\i' + ... + uk_iik~1 (mod p) for 1 < i < n.

4.3.4 Security Properties

Let us briefly discuss the security properties of the generalized group

signature scheme (which hold also for the simple scheme).

Signatures are unlinkable and anonymous: The unlinkability of two or

more group signatures originated by the same members follows

84 Efficient and Generalized Group Signature Schemes

from the fact that signatures of the type SPKn and SPK\o are un¬

linkable and from the fact that the y,'s are probabilistically en¬

crypted. This also guarantees anonymity.

Non-authorized coalitions cannot sign: Because the signatures schemes of

the type SPKi, SPK3, SPKW, and SPKn are secure in the random

oracle model, so are the two group signature schemes. In other

words, if a non-authorized coalition was able to sign, then it could

also compute the discrete logarithms of the public keys of some

entities that form an authorized coalition, which is assumed to be

infeasible.

An authorized coalition cannot sign on another coalition's behalf: There are

two cases. First, a coalition might try to sign on behalf of an

other coalition that includes members that are not present. Again,
we consider the random oracle model. If the coalition succeeded,

they could also compute the discrete logarithms of the public keys
of the members that are not present. Since this is assumed to in-

feasible, this first attack is not possible. In the other case, where a

coalition S contains a true subset C that is also authorized, some

members P; with j E S/C might try to influence the computation
of the signature such that they do not appear as signers. This is

prevented if the members of the coalition assure themselves that

the mutually agreed random string is indeed used for making all

random choices in all the computations.

The group manager cannotfalsely accuse members: Because the group man¬

ager must provide a proof, that public key(s) of the member(s) she

accuses to be the signer(s) are indeed encrypted in the signatures,
she cannot falsely accuse members.

4.3.5 Efficiency Considerations

With regard to efficiency, all algorithms except open have efficiency
linear in the number of group members. The size of the group's public
key and the length of signatures are also linear in the number of group
members. The algorithm open is independent of the group's size (how¬
ever, finding the identity of a signer given his key requires searching in

a database).

4.4 Extensions 85

Comparing the second scheme of [CP95, Che94] and our simple group

signature scheme, it turns out that our scheme is approximately four

times more efficient in terms of computations by the signer and sig¬
natures are about a quarter of the length. Furthermore, the algorithm
open of [CP95, Che94] has an efficiency that is linear in the group's
size.

4.4 Extensions

In this section we show how the functionality of the group manager can

be shared among several parties (e.g., among the group members) and

we present a method for reducing the size of the group's public key.

4.4.1 Sharing the Functionalities of the Group Manager

First of all note that it is trivial to divert the group manager's tasks

to a membership manager, who is responsible for the membership list

(i.e., publishing a new group's public key upon inclusion or exclusion

of group members), and to a revocation manager, who has the task of

opening signatures.

To obtain higher security against fraudulent opening of signatures, the

capability of the revocation manager can be shared among several man¬

agers according to an access structure such that only predefined subsets

of the managers are able to cooperatively open a signature. This can be

achieved by sharing the group manager's secret key w among several

managers with some secret sharing scheme. However, the secret shar¬

ing scheme must enable an exponentiation of group elements with u>

and u;-1 by the revocation managers in a distributed manner without

leaking information about the shares. Such secret sharing schemes are

discussed in Chapter 7.

Remark 4.2. Computations with w_1 by the revocation managers can

be avoided if the group signature schemes are modified to use normal

ElGamal encryption, i.e., Af—g"1 and B, = y,zfl| (if the logarithm of y,

is known) and Ai—gf' and B,—g^'z"' (otherwise). Then, for the general¬
ized group signature scheme the SPK's in Step 2 and 3 must be adjusted
(for the other scheme, the changes are similar): in Step 2 the SPK V\

86 Efficient and Generalized Group Signature Schemes

must be

SPKu{(cxu...,an):\/(f\(At=ga- A (Bjy,) = za'))\(m)
5er ieS

and in Step 3 the SPK V2 must be

«

SPK3{(au[31,...,an,(3n):f\B1=ga'z<}>}(Vl).
1=1

This change would make the signatures somewhat longer, but the pub¬
lic key of a group member who has signed can be computed simply by
B,lA?.

4.4.2 Reducing the Size of the Group's Public Key

The size of the group's public key can be reduced using a technique pro¬

posed by Blom for public key distribution [Blo85]. Let E be a publicly
known generator matrix of an (n,k) MDS code3 over Zq. The group's
public key now is set to {yi,... , yk} and the public key of member P)
is computed as

y,-hyt",
i=i

where e,; denotes the element of E in row i and column ;'. These public
keys are then used in Step 2 of the signature generating procedure. The

secret keys of the individual group members are computed similarly.
This method has the disadvantages that a trusted third party is needed

to compute the group's public and secret keys, and that, if more than

k group members collude, they can find out all secret keys and there¬

fore sign on behalf of any authorized set. Hence there exists a trade-off

between the size of the group's public key and the security.

3An (n, k) code over Zq having generator matrix £ encodes words a (Zq) onto code¬

words b (Zq)", i.e., b = aE. A code is maximum-distance-separable (MDS), if the mini¬

mal distance between any two codes words equals n — k + 1 (see e.g., [Bla83]).

Chapter 5

Group Signature Schemes

for Large Groups

In this chapter we present three group signature schemes where the

size of the group's public key and the length of signatures are indepen¬
dent of the number of group members. In order to realize such schemes

we employ novel techniques of independent interest, such as efficient

proofs of knowledge of double discrete logarithms, of e-th roots of dis¬

crete logarithms, and of e-th roots of components of representations. A
method for proving the knowledge of a signature is of particular inter¬

est. An extended abstract of this chapter has appeared in [CS97a].

5.1 Introduction

In all previously proposed group signature schemes, including those

described in the previous chapter, the length of the group's public key
is at least linear in the size of the group and therefore also the run¬

ning time of the verification algorithm depends on the number of group
members. In some schemes the length of the signature and the running
time of the signing algorithm also depend on the group's size. This

makes such schemes impractical for large groups. Furthermore, if new

members are added to the group, it is necessary to modify at least the

88 Group Signature Schemes for Large Groups

group's public key.

In this chapter we present the first group signature schemes which

overcome these problems1. The lengths of the group's public key and

of the signatures, as well as the computational effort for signing and

verifying, are independent of the number of group members. Further¬

more, new members can be added to the group without modifying the

public key. A detailed comparison of the schemes in this chapter and

those of the preceding chapter is found at the end of this chapter.

Recently, Kilian and Petrank proposed the concept of identity escrow

[KP97], which is in essence the same as the concept of group signatures.
Taken as a group signature scheme, their solution also achieves the goal
of the size of the group's public key and the length signatures being
independent of the number of group members. Their solution uses bit

commitment schemes for proving the knowledge of a signature and

hence is much less efficient than the schemes presented in this chapter.

5.2 The Basic Idea

The following is a simple construction of a group signature scheme

which achieves the target of having the size of the group's public key
and the length of the signatures independent of the number of group
members. The group's public key consists basically of the group man¬

ager's public key of an ordinary digital signature scheme. Each group
member generates a number of public and secret key pairs of a (pos¬
sibly different) ordinary signature scheme. The group members' pub¬
lic keys, now called membership keys, are all signed/certified by the

group manager. With this set up, a group member can sign a mes¬

sage by providing one of these membership keys, the corresponding
certificate, and an ordinary signature of the message with respect to

the provided membership key. Since the group manager knows which

membership key belongs to which member, she can easily open signa¬
tures. Of course, a membership key can be used only once, since oth¬

erwise signatures would be linkable. Thus this solution is impractical.
In principal, this could be overcome by only proving the knowledge of

a membership key and a certificate, rather then presenting them. Such

1The only previously proposed schemes with fixed size public keys [PLW95, KPW96]
were broken [Cam, Mic96].

5.2 The Basic Idea 89

a proof can be given using general (zero-knowledge) proof-techniques
such as those of Brassard et al. [BCC88] or Boyar et al. [BP96]. Further¬

more, since the membership key is no longer presented, a signer must
also provide some information that allows the group manager to open
a signature later on. More technically, such a scheme can be constructed

as follows.

The group manager, we call her Maude, computes a key pair (yM,^M)
of an ordinary digital signature scheme (sig,ver) and a key pair
(;>/r>xr) of a public-key encryption scheme (enc,dec) (cf. Section 2.5)
and publishes the two public keys yR and yM as the group's public
key. The index M stands for her role as membership manager and the

index R for her role as revocation manager. A group member, let us

call him Arto, can join the group in the following way: he chooses a

key pair (z, x) of some digital signature scheme2 (sig', ver') where x is

his secret key and z his membership key. He commits himself to z, for in¬

stance by signing it, then sends z to the group manager. If Arto qualifies
for group membership, Maude sends to him the membership certificate
v = sig(z, Xm). Arto's stores the triple (x, z, v).

To sign a message m on behalf of the group, Arto encrypts z us¬

ing Maude's encryption key, i.e., computes d—enc(z'||r, yR), where r

is a sufficiently large random string. Arto further computes a non-

interactive minimum-disclosure proof p that he knows values z', v', r',
and s' (= sig'(m, x)) satisfying

d = enc(z'\\r',yR), ver{z', v',yM) — true
,
and ver'(m,s',z') = true

.

The resulting signature of the message m consists of the pair (d, p) and

can be verified by checking the proof p.

To open such a signature, group manager Maude decrypts d and so

obtains the membership key z of Arto. She can prove that Arto has

indeed been the signer by providing z, Arto's commitment to it, and a

non-interactive proof that d encrypts z.

It can easily be verified that the security properties required from a

group signature scheme (cf. Chapter 4) hold:

1. Only group members knowing a membership certificate can con¬

struct a valid proof p.

2
Although this scheme can be different from the one the group manager uses, it must

be the same for all group members.

90 Group Signature Schemes for Large Groups

2. Because the proof p does not reveal "useful" information about x,

z, s, or v, and because z is probabilistically encrypted due to the

inclusion of the random string r, signatures are anonymous and

unlinkable.

3. Group members cannot circumvent the opening of signatures be¬

cause they prove that the value d contains their membership key.

4. The group manager is not involved in signing and verifying.

5. The group manager needs only be trusted with respect to open¬

ing of signatures. In particular, she cannot sign on behalf of group

members since (sig',ver') is a signature scheme and neither can

she open signature falsely since she must prove that a member¬

ship key z is encrypted in d.

6. The roles of membership manager and revocation manager can

easily be assigned to different entities by letting the membership
manager choose the key pair (yM,*M) and the revocation man¬

ager the key pair (yR,xR).

7. The functionality of the the membership manager and the revo¬

cation manager can be shared among several entities if the cho¬

sen signature scheme for issuing certificates and the encryption
scheme of the revocation manager allows it. We note that such

schemes exist and refer to our explicit realizations.

The disadvantage of this solution is that the general techniques for

proving statements in minimum-disclosure make the resulting signa¬
tures impractically long. The next sections introduces techniques for

the construction of a more efficient scheme based on proofs of knowl¬

edge of double discrete logarithms and of roots of logarithms.

5.3 Building Blocks

Apart from the building blocks described in Chapter 3, our group sig¬
nature schemes employ systems for proving the knowledge of double

discrete logarithms and of e-th roots of discrete logarithms. Since the al¬

gebraic setting in this chapter is different from that in Chapter 3, we also

describe how those signature schemes/proof systems can be adapted.

5.3 Building Blocks 91

5.3.1 Double Discrete Logarithms and Roots of Loga¬
rithms

Let G = (g) be a cyclic group of order n and a be an element of Z*. A

double discrete logarithm of y G G to the bases g and a is an integer x

satisfying

g{aX] = y,

if such an x exists.

An e-th root of the discrete logarithm of y G G to the base g is an integer
x satisfying

8 = y -

if such an x exists.

For the rest of this chapter, we assume that a cyclic group G = (g) of

order n is given, where n is a publicly known RSA-modulus. Further¬

more, a is an element of Z* with large multiplicative order. The param¬
eters n, G, g, and a should be chosen such that computing discrete log¬
arithms in G to the base g and in Z* to the base a is infeasible. Since n is

required to be an RSA-modulus, computing roots in Z* is also infeasible

without knowing the factorization of n. Finally, let 9f : {0,1}* —> {0,1}*
(i pa 160) denote a collision-resistant hash function.

5.3.2 Proofs of Knowledge of Discrete Logarithms and

Representations

Our group signature schemes build on the the signature/proof systems
described in Chapter 3. However, in the current chapter the algebraic
setting is different from that in Chapter 3. The following two para¬

graphs describe how those building blocks must be adapted in order to

remain secure in the random oracle model, i.e., in order that the corre¬

sponding interactive protocols remain honest-verifier zero-knowledge
proofs of knowledge.

Let us first consider the case where g, or other generators of G, serve as

a base. Since the order n = pq of G, where p and q are two large primes,
is not prime, an upper bound 2e on the challenge c is needed, i.e., c

92 Group Signature Schemes for Large Groups

must be smaller than both prime-factors of n. This is to prevent the dif¬

ference of two random challenges from being congruent to 0 modulo

one of the prime factors of n, since then the knowledge extractor would

fail to find a witness. On the other hand c must not be too small, i.e.,

polynomial in the input size, since the success probability of the knowl¬

edge extractor would otherwise be too small. An example of an upper

bound is £ = 0.4 log n assuming that p and q are « 0.5 log n. Finally, we
note that all involved entities should verify that the order of G is indeed

the product of two equally large primes and that the generators are in¬

deed generators of G. Otherwise, for instance if g had only order p and

p were small, then it would be possible to compute discrete logarithms
to the base g for the entities knowing p.

The other case to consider is when a serves as a base (we assume that it

is prime, however)3. If the prover does not know a's order4, an upper-

bound is needed on those secret keys that are used as exponents with

a as base, e.g., x E {0,... ,2A — 1} for some A. Of course, A must still

be large, since otherwise it would be feasible to compute discrete log¬
arithms using Pollard's lambda algorithm using at most 0(2XI2) group
operations. An example is A = \n\. As a consequence, to achieve statis¬

tical (honest-verifier) zero-knowledgeness, the randomizers r used as

exponents for the commitments must be chosen from a larger set than

x. If the challenge c is chosen from {0,... ,
2l — 1}, then the r's must be

chosen from {0,... ,
2*A+^e — 1}, where e is a constant > 1.

5.3.3 Proofs of Knowledge of Double Discrete Loga¬
rithms

A new building block for our group signature schemes are signatures
based on proofs of knowledge of the double discrete logarithm of an el¬

ement of G. Unfortunately, such proofs are far less efficient than proofs
of knowledge of ordinary discrete logarithms. As in Chapter 3, we

present the building block as a signature scheme. It is based on tech¬

niques introduced in [Sta96a, Sta96b] for constructing particular verifi¬

able secret sharing schemes.

3If the order is not prime, but for instance the product of two large primes, the chal¬

lenge c also must be upper-bounded.
^Nevertheless he should be assured that fl's order is large and not smooth. How this

can be achieved is discussed in Section 5.4.1.

5.3 Building Blocks 93

Definition 5.1. Letk<£bea security parameter. A (k +1) tuple (c,s-[,...,sk)
E {0, lY x {-(2A - 1),... ,2eA - 1}* satisfying

c = H(S\\V\\m) with S = g\\a\\yand V = h\\... \\tk,

where

ti =
h^ ifm = o

ly(flS,) otherwise,

is a signature of the message m E {0,1}* based on a proof of knowledge of a
double discrete logarithm ofy to the bases g and a. It is denoted

SPKX2{(a): y = g^}(m).

An SPKi2{(a): y = g(flQ) }(m) can be computed if the double discrete

logarithm x of the group element y to the bases g and a is known, i.e.,

y = gf We assume that there is an upper bound A on the length of x,

i.e., 0 < x < 2X. Let e > 1 be a constant5. One first computes the values

for i = 1,... ,
k with randomly chosen r,'s G {0,... ,

2fA - 1}. Then, c is

set to H(m || y || g || a \\ h ||... || tk), and finally,

s =

irt if c[i] = 0

1 r, — x otherwise

is computed for i = 1,... ,
k. It can easily be verified that the resulting

tuple (c, si,... ,Sjt) satisfies the verification equations. Note that if the

order of a E Z* is known, the computations of the s, can be "reduced"

modulo this order (as can the r,'s).

Theorem 5.1. The interactive protocol corresponding to the SPKU is honest-

verifier zero-knowledge and a proof of knowledge of the double discrete

logarithm of y with respect to the bases g and a for A = p(|g|) and any e > 1,

where p(-) denotes any polynomial.

5Using the upper-bound 2A and the parameter e is in the prover's interest, since for

these values the corresponding interactive proof is (honest-verifier) zero-knowledge (see
Theorem 5.1).

94 Group Signature Schemes for Large Groups

Proof (sketch). Proof of knowledge: We only show how a double dis¬

crete logarithm of y = g"* can be computed from two different views

having the same commitments. Without loss of generality, we assume

that the ;'-th bits of c and c differ and that c[j] = 0. Then we ha^e

£.=g(flS'> = y(/,) =g"V')

and thus ax = asi~si (mod n) holds. Hence, we can compute (in Z)

X-=Sj —Sj.

Honest-verifier zero-knowledgeness: The simulator randomly chooses

c from {0,... ,
2l - 1} and all r, = s, from {0,... ,

2eA - 1}. Using these

values, the simulator computes

t^U^ iicU] = °

ly'aS,) otherwise

for i = 1,... ,fc. To prove that these values are statistical indistinguish¬
able from a view of a protocol run with the prover, it suffices to consider

the probability distribution Ps,,...,st(si, • • • ,sk) of the s,'s of the prover
and PRu...,Rk(r\,... ,rk) according to which the simulator chooses the

r/s. The latter is]T)=i ^R,(r<)' where PR,(ri) it the uniform distribution

over {0,... ,
2Ae - 1}. If the prover chooses the r,'s uniformly at random

from {0,... ,
2Ae - 1} and the secret key randomly from {0,... ,

2A - 1}
according to any distribution, we have

for s < -(2A - 1)

for - (2A - 1) < s < 0

for 0 < s < 2(X - 2A

for 2eX - 2A < s < (2eX - 1)

for (2eA - 1) < s.

This holds for any distribution of c[i] over {0,1}. Similarly, the proba¬
bility Psj,...,st(si> • • >S/t) is 0 if any s,- is smaller than —(2A — 1) or larger
than (2eX - 1), equals 2~keX if all s, are in the range {0,... ,

2Ae - 2A}, and

Ps,(s){

= 0

<2_eA

__ 2_e^

<2_eA

= 0

5.3 Building Blocks 95

20 30 40

Figure 5.1: The function (1 — ^) for k = 80

is smaller or equal than 2 keX in the other cases. Thus we have

2(2*A - (2Ae - 2A + 1)*)
£|PS„ ,sk(a) - PRl,. ,Rt(a)| <

2k\e

£^^s2(i(i+t^
„,

2A - 1 2k
= 2fc—-t— <

e-l
'

2Ae (2A)

For A as stated in the theorem, the last term can be expressed as one

over a polynomial in the input length, and therefore the two distribu¬

tions are statistical indistinguishable.

To clarify what statistical (honest-verifier) zero-knowledgeness means
to the prover and to judge how e should be chosen in practice, let us

consider the information an s, gives about the secret key x. An s, only
gives information about x if c[i] = 1 and if s, < 0 or s, > 2Ac — 2A. The

smaller (respectively, the larger) it is, the more information it gives (e.g.,
if s, = 1 - 2A then x = 2A - 1 is completely determined). The probability
that a signature SPKi2 (or the related proof system) gives no additional

information about x is thus at least

(2Ae_2A_2A + 1), 2 X-*

V 2A* J \ 2*-VJ
'

Figure 5.1 depicts the function (1 — ^)k for k = 80. One can see that

already for u « 15, the probability that a signature SPK42 does not give

96 Group Signature Schemes for Large Groups

information on the secret key is almost 1. In applications u = A(e - 1)
would be at least 50 (e.g., e = 4/3 and A = 170) and k around 80.

5.3.4 Proofs of Knowledge of Roots of Discrete Loga¬
rithms

Another building block for our group signature schemes are proofs
of knowledge of an e-th root of a discrete logarithm. Of course, such

proofs only make sense if the factorization of the order of the base of

the discrete logarithms is not known. The proof system presented here

is not very efficient but works for all exponents e. For small exponents,
however, one can construct more efficient systems which are presented
later on.

Definition 5.2. A (k + 1) tuple (c,S\,... ,sfc)G{0,l}^ x (Z*n)k satisfying

c = #(S|| V\\m) with S = g\\e\\y andV = h\\... \\tk

where

ti =
igW ifc\i] = 0

1 y(s^ otherwise

is a signature of the message m G {0,1}* based on a proofof knowledge ofan
e-th root of the discrete logarithm ofy to the base g, and is denoted

SPKl3{(a): y = ga'}(m).

Note that the integers si,... ,sk are elements of Z* and therefore are not

zero.

Such a signature can be computed if the e-th root x of the discrete log¬
arithm of y to the base g is known, i.e., y = gx'. One first computes the

values

i,=gW

for i = 1,... ,k with randomly chosen r, E Z*. Then, c is set to

^(m || y || g ||e || Fill... II Ft), and finally,

frt if c[i] = 0,

\rt/x (mod n) otherwise.

5.3 Building Blocks 97

for i = 1,... ,
k. It can easily be seen that the resulting tuple (c, Si,... , sk)

satisfies the verification equation.

Theorem 5.2. The identification protocol corresponding to the SPKi3 is

honest-verifier zero-knowledge and a proof of knowledge ofan e-th root

of the discrete logarithm ofy with respect to the base g.

Proof (sketch). Proof of knowledge: We only show how an x E Z* such

that y^g^ can be computed from two different views having the same

commitments. Without loss of generality we assume that ;'-th bits of c

and c differ and that c[j] = 0. Then we have

t,=gs' = y

and thus

s,

x = -z- (mod n)

since all s;'s and s;'s are elements of Z*.

Honest-verifier zero-knowledge: The simulator can be constructed as

usual.

For small exponents e, one can construct a more efficient system for

proving the knowledge of an e-th root of a discrete logarithm. The idea

is the same as for proving that polynomial relations hold among the se¬

cret keys as described in Section 3.5: the prover provides an additional

element of G and shows that the discrete logarithm of this element is

the e-th root of the discrete logarithm of the original element.

We assume that an element h E G is available, the discrete logarithm
to the base g of which is unknown (for instance, h could be computed
according to a suitable pseudo-random process with g as seed). The

element h is used to randomize the additional elements the prover pro¬
vides. This randomization assures that these additional elements do

not leak information (cf. Section 3.5).

Definition 5.3. An (e — \)-tuple (z\,... , z<,_i) G Ge_1 and a signature

U:=SPK7{(7i,... ,7e,M : fi = >»V A f2 = ^2z{ A...

... A ze_j = h^zf_2 A z = W'zl_x A z = ge\(m)

98 Group Signature Schemes for Large Groups

is a signature of the message m G {0,1}* based on a proof of knowledge of the
e-th root of the discrete logarithm ofz to the base g. It is denoted

SPKu{(a): z = gQ'}(m).

From the properties of the SPK7 it follows that the interactive proto¬
col corresponding to the SPK14 is a proof of knowledge of the values

71,... , 7e, S, e. This is equivalent to the knowledge of a value a which

is the e-th root of the discrete logarithm of y with respect to the base g

as follows from

z = WfeT-i (... h^(h^gs)s. ..)5) =

— yl-te+ie-\i+-+l2Sc-1+TiS'-x „5e — nC„S' _ p.e

for C, = 7e + 7e-i<5 + ... + 72<^~2 + 7iu"e_1 (mod n). Since the discrete

logarithm of g to the base h is not known, one can know only one rep¬
resentation of z to the bases h and g. It follows that C, = 0 (mod n) and

e = 5e = ae (mod n) and that the prover knows the e-th root of the dis¬

crete logarithm of z to the base g. Furthermore, the interactive protocol
corresponding to SPrCi4 is also honest-verifier zero-knowledge, since

the simulator can just choose the fi,... , z<>_i from G and then run the

simulator corresponding to the SPK7.

The system SPK14 could be made more efficient for some e's by using
addition chains for the integer e (cf. Section 3.5). For larger e's it de¬

pends on the actual choice of the system parameter whether the SPK\3
or the SPK14 is more efficient.

An SPKi4{(a) : z = ga!}(m) can be computed if a value x in Z* is

known such that z = g^: one first computes the values Zi--hr'gx' for

i = 1,... ,e — 1 with randomly chosen r, G Z„. Then the signature of

knowledge U is computed. Note that the elements z, are truly random

group elements and therefore do not leak any information.

The last building block we need for our signature scheme is very similar

to the SPK14: a system for proving the knowledge of an e-th root of the

g-part of the representation of a public key with respect to g and h. Such

a system can be derived from the previous one just by omitting the part
that an e is known such that z = g£.

5.4 The Basic Group Signature Scheme 99

Definition 5.4. An (e - \)-tuple (v\,... , ve-i) E Ge J and a signature

U:=SPK7{(71, • • ,le,S): vx = /iV A»2 = W2v[A...

...
A £Ui = hle-'v6e-2 A v = fc7«p/_i}(m)

is a signature of the message m E {0,1}* based on a proof of knowledge of an
e-th root of the g-part ofa representation ofv to the bases h and g. It is denoted

SPKl5[(a,(3): v = hagF}(m).

The security properties of this scheme follow from those of the SPK14.

5.4 The Basic Group Signature Scheme

To realize a group signature scheme along the lines described in Sec¬

tion 5.2, we need a suitable signature scheme for the group (member¬

ship) manager to issue certificates. It must allow group members to

prove the possession of a signature on their membership keys, i.e., cer¬

tificates, issued by the group manager. Furthermore, the scheme must

avoid the possibility of existential forgery of membership certificates

even when other certificates are already known. A good candidate is

the RSA signature scheme (cf. Section 2.7), since it is possible to prove
the knowledge of an e-th root modulo a composite. It remains to find a

format for the membership keys. Due to the multiplicative properties of

the RSA signature scheme (cf. Section 2.8), we must avoid formats that

are maintained under modular multiplication. Furthermore, the for¬

mat must allow group members to prove their knowledge of the secret

key without showing their membership key. We propose the following
format

l + ax (mod n),

where x is a group member's secret key and a an element of large mul¬

tiplicative order modulo n. This choice leads to the following assump¬
tion.

Assumption 5.1. Let n be an RSA-modulus, e an element of Z*,
.,

and

a EZ*n an element of large multiplicative order such that computing discrete

100 Group Signature Schemes for Large Groups

logarithms to the base a is infeasible. We assume that it is hard to compute a

pair (x,v) of integers such that

if = 1 + ax (mod n)

holds, if thefactorization ofn is not known. Furthermore, we assume that this

is true even when other pairs (v',x') are known that satisfy the above equation.

It seems infeasible to construct such values x and v without the help of

the group manager: on one hand, when first choosing x, it is infeasi¬

ble to compute the e-th root of 1 + ax because the factorization of n is

unknown. On the other hand, when first choosing v, it is infeasible to

compute the discrete logarithm of ve — 1 (mod n) to the base a (it might
even not exist). Furthermore, given several pairs (x, v), there seems to

be no method for computing an additional pair.

In the remainder of this section, a first realization of a group signature
scheme based on the above assumption is presented. In this scheme,
the opening of signatures can even be realized in a simpler way than

presented in Section 5.2.

5.4.1 System Setup

The group manager chooses the following values:

• an RSA public key (n, e), where n = pq,p = 2p' +1, and p = 2p' +1
with p, q, p', and q' all prime. The primes p and q are the group

manager's secret key.

• a cyclic group G = (g) of order n in which computing discrete

logarithms is infeasible (e.g., G could be a subgroup of Z* with a

prime p such that n\(p - 1) holds),

• an element a E Z* (a must be of large multiplicative order modulo
both prime factors of n), and

• an upper bound A on the length of group members' secret keys
and a constant e > 1.

5.4 The Basic Group Signature Scheme 101

The group's public key is y~ (n,e, G, g,a,X, e). It is published together
with the other system parameters such as the description of a hash

function 9{, or the security parameter k.

To prevent framing attacks6 by the group manager, she must provide

proofs that she has chosen all parameters correctly. For proving that

g has indeed order n there exists an efficient zero-knowledge proof

system by Boyar el al. [BFL91]. For proving that n is of the right
form, there is no efficient proof system to the best of our knowledge.
Thus one has to use general zero-knowledge proof techniques (e.g.,
[BCC88, BP96, CD97]) and a circuit that takes as input integers p, q,

p', and q' and outputs 1 if and only if they are primes and if n = pq,

p = 2p' +1, and p = 2p' +1 holds. The size of p and q can be checked by
the number of input bits for them (they should have at most [0.5 log n\
bits). This is not very efficient but must done only once. To verify that a

has a large order in Z*, one needs only to test whether a $. {-1,1} and

that gcd(fl2 — 1, n) \ n. This guarantees that the order of a is at least p'q'
since if ord(a) < p'q' then a2 = 1 modulo p or q as can easily be seen

using the Chinese Remainder Theorem (cf. [GKR97]). We remark that

for the group signature scheme presented in the next section, some of

the above proofs can be omitted.

5.4.2 Generating Membership Keys and Certificates

To join the group, a prospective member Arto

• chooses his secret key x randomly from {0,... ,
2A — 1},

• computes the value y—ax (mod n) and

• his membership key z=gy, and

• commits himself to z (for instance by signing it).

To obtain a membership certificate, Arto sends to the group manager

Maude the values y, z, his commitment to z, and

lf:=SPKi{(a): y = aa (mod n)}(z).

6The different attacks by the group manager are discussed in Section 5.4.5.

102 Group Signature Schemes for Large Groups

The latter convinces Maude that y (and thus also z) has the required
form. Maude verifies the values she obtains from Arto, and returns the

membership certificate

v~(y + l)1,e (mod n)

to him. Arto stores x, y, and v securely. The membership key z may get
known to other group members or even to non-members.

5.4.3 Signing Messages

To sign a message m E {0,1}*, Arto computes the following values:

• g-=gr for r Er Zn

• d=^(= zr)

• VV=SPKU{([3): dg = f}(m)

• V2-.= SPKl2{(a): d = f}(V,)

The resulting signature of the message m consists of (g, d, V\, V2) and

can be verified by checking the correctness of V\ and V2. Note that,
rather than encrypting the message m in the value d as described in

Section 5.2, m is included in the argument to the hash function of V\.
The value d can be seen as a kind of "Diffie-Hellman encryption" of z.

If e is large, it might be more efficient to use an SPK\3 instead of SPK14

forVi.

Proposition 5.3. In the random oracle model thefollowing holds. If one can

compute a tuple (signature) (g, d, V\, V2)for a message m E {0,1}* such that

V!=SPKuU0): dg = f}(m)

V2 = SPK12{(a): d = ga"}(V2)

holds, then one can also compute a valid membership certificate. Therefore,
under Assumption 5.1, only group members (or the group manager manager)
can compute such a tuple.

5.4 The Basic Group Signature Scheme 103

Proof. We already know that signatures of the type SPKu and SPK12
are secure in the random oracle model. Hence, if one can compute a

signature V2, then one can compute a value a such that

d = g"" and therefore dg = gfl<"+1

holds. If one can further generate a signature V\, then one can also com¬

pute e-th root of aa +1 modulo n. This is a valid membership certificate

of a membership key.

5.4.4 Opening Signatures

Linking two signatures (g,d,V\,V2) and (g',d', V[, V2), i.e., deciding
whether these signatures have been issued by the same group mem¬

ber or not, is only possible by deciding whether the equality

log^^log^d' (modw)

holds. If one could decide this, then one could also solve the Decision

Diffie-Hellman problem. Solving the latter is widely believed to be in-

feasible. Thus, we conclude that signatures are anonymous and un¬

linkable. However, the group manager has an advantage: she knows

the relatively few possible values of log, d, namely the y's of the group
o

members, and can therefore perform this test. More precisely, given a

signature (g, d, V\, V2) of a message m, the group manager can find out

which one of the group members issued this signature by testing

for all group members P (here yp denotes discrete logarithm of P's

membership key zp to the base g). A proof of this fact consists of the

signer's membership key Zp, his commitment to this key, and of

SPK6{(a):zP = gaAd = gQ}(zp)-

Unfortunately, this method is impractical for very large groups. In the

next section we will present an extension that enables Maude to iden¬

tify signers directly.

104 Group Signature Schemes for Large Groups

5.4.5 Security Properties

Let us discuss the security properties of the scheme.

Signatures are unlinkable and anonymous: This property holds due to the

hardness of the Decision Diffie-Hellman problem (DDHP), as is

explained in previous paragraph. Furthermore, note that the sig¬
natures Vi and V2 do not leak useful information since their in¬

teractive counterparts are honest-verifier zero-knowledge.

Non-members cannot sign: This is Proposition 5.3.

Group members cannot sign on behalf ofother group members: Besides the

knowledge of a certificate on their own membership key, group
members do not have more information than non-members.

Thus, signing on behalf of another group member would require
a computation of the double discrete logarithm x' of z and then a

computation of the e-th root of 1 + ax (mod n). Both is assumed

to be infeasible.

The group manager cannotfalsely accuse members: Since the integer a has

large order in Z* and since ip(ri) is not smooth, the group manager
cannot compute a group member's secret key and thus is not able

to impersonate group members. Finally, because of the proof the

group manager must provide as evidence in the procedure open,

she cannot falsely accuse members.

5.4.6 Efficiency Considerations

With the following choices of the system parameters

t = 160, k = 64, A = 170, e = 4/3, |n| = 600, and e = 3,

a signature is about 2.5 Kbyte long and signing of messages or for veri¬

fying signatures require the computation of approximately 67'000 mod¬

ular multiplications with a 600 bit modulus (this corresponds to about

75 exponentiations with full 600 bit exponents). If an SPKi3 is used for

Vi instead of an SPK14, i.e., if e is large, a signature is less than 7 Kbyte
long and requires about 140'000 multiplications.

5.5 An Advanced Scheme 105

5.5 An Advanced Scheme

In this section we extend the group signature scheme of the previous
section such that it is possible to split the group manager into a mem¬

bership manager and a revocation manager. As an immediate conse¬

quence, the membership manager must be prevented from learning the

value y and the membership certificate. This can be solved by sending
the group manager only gy and by using a blind signature scheme for

issuing the certificate. Furthermore, the method for opening signatures
as described in Section 5.2 must be applied. This also makes the open¬

ing of signatures much more efficient.

5.5.1 System Setup

We now distinguish the two roles of the group manager and assign
them to the membership manager Maude and the revocation manager
Rose.

The membership manager Maude chooses

• an RSA public key («, e), where n — pq (the primes p and q are her

secret key),

• an element a E Z* (a should be of large multiplicative order mod¬

ulo both prime factors of n), and

• a cyclic group G = (g) of order n in which computing discrete

logarithms is infeasible (e.g., G could be a subgroup of Z*, for a

prime p with n\(p — 1)),

• an element h EG the logarithm to the base g of which must not

be known, and

• an upper bound A on the length of group members' secret keys
and a constant e > 1.

The revocation manager chooses a secret key p ER Z* and computes her

public key yR •= hp.

The group's public key is y.= (n,e, G,g, h,a, X,e,yR). It is published
together with the other system parameters.

106 Group Signature Schemes for Large Groups

Different from the previous scheme, the membership manager is only
required to prove that n = pq holds for two large primes p and q, that

g has order n, and that h and a are chosen pseudo-randomly. In this

scheme, this is enough to assure the group members that she cannot

compute their secret keys. For the other parameters, it is in the inter¬

est of the membership manager to choose them such that computing
certificates is hard without her help (she would be held responsible if a

membership key appears for which she cannot provide a commitment

of a group member). Finally, the revocation manager must prove that

she knows log,, yR. This can be achieved with a simple SPKi-type sig¬
nature.

5.5.2 Generating Membership Keys and Certificates

To become a group member, Arto

• chooses his secret key x ER {0,... ,
2A — 1},

• computes the value y—ax (mod n) and

• his membership key z--gv,

• and commits himself to z.

Since the membership manager should no longer learn y, certificates

must be issued with the blind RSA-signature scheme of Chaum [Cha84]
(cf. Section 2.8). This can be done as follows. Arto sends the group

manager a randomized y, namely

y-=f(y + l) (mod n) forrGRZ*,

together with z and his commitment to z. To convince Maude that z

is of the right form and that the value 1 + log z (mod n) is contained

in the randomized (blinded) value y, Arto has to provide her the two

signatures

. Uv=SPKX3{(f3): gt = (zgf}(z\\y)

. U2.= SPK12{(a): z = g?}{U{)

5.5 An Advanced Scheme 107

The second signature U2 assures Maude that z has the format of a mem¬

bership key and that Arto knows the corresponding secret key. The first

signature U\ proves that y is correctly randomized. After successfully
verifying all values obtained from Arto, Maude sends him the e-th root

v - yxlc (mod n) of y. From this Arto can compute his membership cer¬

tificate:

r r r
*

Arto stores x,y, and v securely.

5.5.3 Signing Messages

To sign a message m, Arto computes the values

• g =gr and z =g* for r ERZ*n

• ^i -yRgv and d2 -hu for u ER Z*n,

• V, = SPK7{(7,5): z = f A d2 = hs A dx = y{g^}(m),

• V2 =SPK14{(/3): zg = f}(V{), and

. V3=SPK12{(a): z=f}(V2),

The resulting signature of the message m consists of the tuple (z, g, d\,

d2, V\, V2, V3) and can be verified by checking the correctness of the

SPK's Vx, V2, and V3.

Proposition 5.4. In the random oracle model thefollowing holds. If one can

compute a tuple (signature) (z, g, d\, d2, V\, V2, V3) for a message m such

that

Vi = SPK7{(7, S):z = fAd2 = hsAdl = y{g^}(m)

V2 = SPKU{(P): 2i = f}(Vl)

V3 = SPKl2{{a): z = ,fQ}(V2)

holds, then one can also compute a valid membership certificate. Therefore,
under Assumption 5.1, only a group member (or the membership manager)
can compute such a tuple. Furthermore, the membership key of the group
member who originated the signature is ElGamal-encrypted in (d\, d2) under

the revocation manager's public key.

108 Group Signature Schemes for Large Groups

Proof Signatures of the type SPKu, SPKn, and SPK7 are secure in the

random oracle model. Hence, if one can compute V3 then one can also

compute an integer a such that

z = f

holds and therefore we have

*g = f+X.

If one can further generate V2, then one can also compute an e-th root

of aa +1 modulo n, i.e., a membership certificate. This proves the first

part.

From the properties of the SPf^-type signature Vi it follows that (d\, d2)

encrypts glo8s2. Because of V2 and V3, and under Assumption 5.1, this

is the membership key of the originator of the signature.

5.5.4 Opening Signatures

If the revocation manager wants to open a signature (z, g, d\, d2, V\, V2,

V3) of the message m, she decrypts z by computing d\/d^. From Propo¬
sition 5.4 we know that z must be the membership key of the originator.
To prove that z is indeed encrypted in d\ and d2, she computes

SPK6{(a): dlZ~l = d? AyR=-- ha}(z).

5.5.5 Security Properties

The security properties of this scheme are as follows.

Signatures are unlinkable and anonymous: Linking two signatures (z, g,

du d2, Vx, V2, V3) and (f, g', d[, d'2, V[, V2, V'^) would require
deciding whether

logjf = log^z' (mod n) or logyR ~ = logh j, (mod n)

holds. If this could be decided efficiently, then the DDHP could

be solved efficiently. Hence the two signatures are unlinkable.

5.6 A More Efficient Variant 109

Deciding whether a given signature (z, g, d\, d2, V\, V2, V3) origi¬
nated from a member having the membership key z — gy requires
the decision whether

log^z = log?, (mod n)

holds. Again, solving this efficiently implies solving the DDHP

efficiently. Thus signatures are also anonymous.

Non-members cannot sign: This is Proposition 5.4.

Group members cannot sign on behalfofother group members: This holds

due to the same reasons as for the previous scheme.

The group manager cannotfalsely accuse members: Since g has order n and

n is the product of two large primes, the membership manager

cannot compute secret keys of members and hence cannot sign
on their behalf. The revocation manager cannot falsely accuse

members since she could not provide such a proof as evidence in

the procedure open.

5.5.6 Efficiency Considerations

With the same system parameters as for the previous scheme, a sig¬
nature is less than 3 Kbyte long and the operations for signing mes¬

sages or for verifying signatures require the computation of approx¬

imately 72'000 modular multiplications with a 600 bit modulus (this

corresponds to about 80 exponentiations with full 600 bit exponents). If

an SPK\3 is used for V\ instead of an SPK14, i.e., if e is large, a signature
is less than 7 Kbyte and requires 147'000 multiplications. Compared to

the previous scheme, all of the numbers are slightly larger.

5.6 A More Efficient Variant

When analyzing the efficiency of the schemes described in the previous
two sections, one finds that the main part of the computations that are

needed for signature generation and verification as well as most parts
of a group-signature are due to the SPKi2-type signatures. To construct

a more efficient group signature scheme, it seems thus most promising

110 Group Signature Schemes for Large Groups

to replace the format for membership keys by one that does not use

exponentiation with the secret key of a group member. We therefore

propose the following format

/iXei+/2 (mod n)

where x is a group member's secret and the values e\, f\, and f2 are

system parameters. As before, a certificate is an RSA-signature of the

membership manager of this "message". This format leads to the fol¬

lowing assumption.

Assumption 5.2. Let n be an RSA-modulus with unknown factorization.
We assume that there exist two integers f\ and f2 in Z* and two small in¬

tegers e\ and e2 in Z*
{ll)

such that it is hard to compute values x and v such

that

ve2=f\xe'+f2 (mod n)

holds. Furthermore, we also assume it to be hard to compute such values when

already knowing other pairs (x1, v') satisfying the above equation.

Clearly, the difficulty of computing such a pair (x, v) relies on the hard¬

ness of the RSA-problem. Moreover, it depends also on the choices of

the values e\, e2, f\, and f2. For instance, for the choice ei = 2, e2 = 2, and

/i = 1, which is related to the Ong-Schnorr-Shamir signature scheme

[OSS84], it is not difficult to compute such pairs for any value of f2 as is

shown in [AEM87, PS87]. Generally, it is regarded as an open problem
to determine which types of polynomial congruences with composite
moduli are hard to solve [McC90b].

Furthermore, for some choices of e\, e2, f\, and f2, it is easy to compute
new pairs (v, x) from other pairs. For instance, if the equation ve2 =

fix61 + f2 (mod n) defines an elliptic curve, the addition-operation of

the algebraic group defined by the curve can be used to compute a new

pair from known pairs.

As a challenge, we propose the following parameters:

• ei = 5, e2 = 3,

• f\ = 1, and f2 such that its 3rd root is hard to compute.

A possibility to make it harder to forge membership certificates is to

modify the group signature scheme in such a way that solutions of the

5.6 A More Efficient Variant 111

polynomial equation are only accepted if they meet additional require¬
ments. For instance, by modifying the SPKi4-type signature V\, one can

efficiently prove that the secret key x is smaller than \/n (the techniques
for this are similar to those used for the SPK12 signatures).

Finally, let us remark that one could also use several polynomials si¬

multaneously, e.g.,

^i1" + /11 ve2n + fnxe = 0 (mod n)

v\20 + fnvf + f22xe* = 0 (mod n)

instead of a single modular polynomial. Such a certification scheme

would still yield an efficient group signature scheme.

5.6.1 System Setup

Again, we distinguish the two roles of the group manager. The mem¬

bership manager Maude chooses the following values:

• an RSA modulus n and two public exponents ei, e2 > 1, such that

e2 is relatively prime to <p(n) (the factorization of n is the member¬

ship manager's secret key),

• two integers f\, f2 > 1 whose ei-th roots and e2-th roots are not

known,

• a cyclic group G = (g) of order n in which computing discrete

logarithms is infeasible,

• an element h E G whose discrete logarithm to the base g is not

known.

The revocation manager Rose chooses her secret key p randomly from

Z„ and computes her public key yR-=hp.

The group's public key consists of y=(n,e\,e2,f\,f2, G,g,h,yR) and is

published together with the other system parameters.

To assure that all parameters were correctly chosen, the membership
manager and the revocation manager must provide exactly the same

proofs as in the system-setup of the previous section's scheme.

112 Group Signature Schemes for Large Groups

5.6.2 Generating Membership Keys and Certificates

To become a group member, Arto

• chooses x ER Z* and

• computes y=xl (mod n) and

As was the case in the scheme of the previous section, the membership
manager is not allowed to learn y and thus certificates must be issued

using the blind RSA-signature scheme. To do so, Arto computes

• y-^ihy + fi) (mod n) for r Gr Z*,

. U,.= SPK15{(f3): g9 = (zV2)'3'2 }(z), and

• U2 =SPK15{(a): z = gQ'1}(LZi)

and sends y,z, U\, and U2 to the membership manager. If U\ and U2
are correct, she sends Arto the "randomized" certificate

v—yxlei (mod n)

back. Arto de-randomizes this value and obtains his membership cer¬

tificate

v.= v/r = (fxy + f2)1/e2 (mod n).

Let us now explain what U\ and U2 actually mean to Maude. The sig¬
nature U2 shows that the element z is of the form ga'1 for some a Arto

knows. The signature Ui assures that y
= f362(fia6i + f2) (mod n) holds

for some /? Arto knows, and therefore she can conclude that y is cor¬

rectly randomized.

5.6.3 Signing Messages

To sign a message m on behalf of the group, Arto performs the follow¬

ing computations:

5.6 A More Efficient Variant 113

• dv=yrRgy for r ERZ*n,

• d2.=hr,

. Vv=SPK7{(e,0 :d2 = VAd1 = y&}(m),

. V2==SPXi5{(7,«J): d^gh = ylf2)(Vx), and

. V3:=SPKl5{(a,/3): dx = y*g^}(V2).

The resulting signature of the message m consists of (d\,d2, V*i, V2, V3)
and is valid if the three SKP's V\, V2, and V3 are valid.

Remark 5.1. The signatures V\ and V3 could be replaced by the single
signature

V3-.= SPK15.{(a,(3): d2 = ygg?1 A di = ha}(m)

by slightly extending the definition of the SPKis-type signatures.

Proposition 5.5. In the random oracle model thefollowing holds. If one can

compute a tuple (d\, d2, V\, V2, V3) ofa message m such that

Vx = SPK7{(e, 0 : d2 = ¥ A dx = y&}(m)

V2 = SPKi5{(7,u-): d{gh = yRV'2}(^i)

V3 = SPKl5{(a,(3): dx = y^}(V2)

holds, then one can also compute a valid certificate. Therefore, under Assump¬
tion 5.2, only a group member can compute such a tuple. Furthermore, the

membership key ofthe group member who originated the signature is ElGamal-

encrypted in (d\,d2) under the revocation manager's public key.

Proof. Signatures of the type SPKU, SPK\2, and SPK7 are secure in the

random oracle model. Thus, if one can compute V3, one can also com¬

pute a pair (a, (3) such that

di = yfsT

holds. Moreover, if one can compute the signature V2, one can also

compute a pair (7,5) such that

dhf2 = ylf2 and thus y^ = (yS/W2 =yfV

114 Group Signature Schemes for Large Groups

holds. Then we have either

fxa = 7 (mod n) and 662 = f\f3ex + f2 (mod n).

or, otherwise, one could compute the discrete logarithm of yR to the

base g. Since the latter assumed to be infeasible, the above must hold,
and therefore 6 is a valid certificate and 0 is the secret key of a mem¬

bership.

Finally, Vx and V3 together guarantee that the pair (dx,d2) is an ElGa¬

mal encryption of g^'1 (or, if it's not, one could compute the discrete

logarithm of yR to the base g), which is the membership key under As¬

sumption 5.2.

5.6.4 Opening Signatures

If the revocation manager Rose wants to open a signature (z, d,V\, V2,

V3) of the message m, she decrypts z by computing d\/d^ which corre¬

sponds to the membership key of the signer. To prove that z is indeed

encrypted in d\ and d2, Rose provides

SPKe{(a): djz"1 = d« A yR = ha}(z),

which she can do because a corresponds to her secret key.

5.6.5 Security Properties

The security properties of the last scheme of this chapter are as follows.

Signatures are unlinkable and anonymous: This is due to the same argu¬
ment as for the previous scheme, with the difference that we are

only given d\ and d2.

Non-members cannot sign: This is Proposition 5.5.

Group members cannot sign on other group members' behalf: Signing in the

name of a group member would require a computation of the dis¬

crete logarithm y' of z, the ei-th root of this y', and the e2-th root

of f\y' + f2 (mod n). This is assumed to be infeasible.

The group manager cannotfalsely accuse members: This is guaranteed in

the same way as for the previous scheme.

5.7 Extensions 115

5.6.6 Efficiency Considerations

For the choice

e-[= 5,e2 = 3,k = 160, and |n| = 600,

a signature is about 1.4 Kbyte long and the operations for signing for

verifying signatures require the computation of approximately 18'000

modular multiplications with a 600 bit modulus (this corresponds to

about 20 exponentiations with full 600 bit exponents). Signature gen¬
eration and verification are about four times faster, and a signature is

about half the size, compared to the two preceding schemes.

5.7 Extensions

In this section we consider how the functionality of the membership
and revocation managers can be shared among several entities such

that only defined subsets of these can issue certificates (or revoke group
members' anonymity) together. This reduces the risk of fraudulent an¬

onymity revocation and of issuing certificates to persons not entitled

to become group members. We also consider how the schemes can be

extended to generalized group signature schemes.

5.7.1 Sharing the Functionality of the Group
Manager

For the first scheme, more efficient solutions for sharing the function¬

alities of the group manager than general multi-party computation do
not seem achievable. We discuss the two other schemes.

The role of the revocation manager can easily be distributed amongst
several entities by sharing the revocation manager's secret key p among
them. For this, any secret sharing scheme can be used that allows the

share holders to jointly and securely compute bp for any element b EG.

This is discussed in Chapter 7.

The membership manager has two different but related tasks. Namely,
generating most of the parameters in the setup phase and issuing
membership certificates. For issuing certificates, one could use the

116 Group Signature Schemes for Large Groups

robust RSA threshold signature schemes proposed by Gennaro et al.

[GJKR96a, Gen96]. For the generation of the system parameters, either

a general multi-party protocol [GMW87a, Fra93, Can95], the scheme of

Boneh and Franklin [BF97], or a trusted party can be used. The lat¬

ter has the disadvantage that the party choosing the RSA-modulus n

could also issue certificates since he/she knows the factorization of n.

The first solution is not very efficient, but acceptable, since the system

parameters only need to be generated once.

5.7.2 Generalized Group Signature Schemes

One way to extend the group signature schemes presented in this chap¬
ter to generalized group signature schemes is to generate a separate

membership key for each coalition and then to share the corresponding
secret key among the group members belonging to that coalition. This

of course has the drawback that a group member has to store a (share of

a) secret key and a membership certificate for each coalition he belongs
to.

For the first certification scheme, where we have y
= ax (mod n), the

secret key x can be shared among the group members using a suitable

secret sharing scheme (cf. Chapter 7). Then all computations involv¬

ing x must be carried out by all these group members together. For the

second scheme, this would be the signature U2 and V3. The other com¬

putations could be carried out by any group member of the coalition.

For the second certification scheme, we have y
= xe2 (mod n). Here, x

can be chosen as the product of the shares, while y and the certificate v

can be known to all members of the coalition. Computing gx and gx'1
can then be achieved simply by repeatedly powering g with x, or xf.
This does not leak additional information about the shares.

A generalized group scheme with a fc-threshold authority-structure can

be also constructed in such a way that each member no longer has to

store information for each coalition he belongs to. However, this is

possible only at the cost that the length of a signature depends on k.

The idea is that a signature of the threshold group signature scheme

is defined to consist of at least k ordinary group signatures from dif¬

ferent group members. However, checking that the k signatures are

from different group members is not possible directly, since signatures

5.8 Comparison of the Different Group Signature Schemes 117

are anonymous. Thus, the signature of the threshold group signature
scheme must also contain a signature based on a proof that the random¬

ized membership keys are indeed different. This is indeed possible for

instance by providing the signature

SPK2{(a,(3):g = yaR(jf) for 1 < i < k, i < j < k,

where d\ and d\ are encryptions of membership keys provided as a

part of the group signatures as defined in Section 5.5 and 5.6. Since

k(k — l)/2 such signatures are necessary to prove that all membership

keys are different, this is rather inefficient.

If the threshold group signature scheme is based on the simple group

signature scheme in Section 5.5, there is a simpler way to verify that

the randomized membership keys are indeed different7: requiring the

signing group members to use the same g. Then the z, = g*'s are equal
if the y,'s are equal. This has the advantage over the solution above that

the extra SPK's can be omitted and thus signatures are shorter, but the

disadvantage that using the same g for all z,'s might leak information

about the membership keys.

5.8 Comparison of the Different Group Signa¬
ture Schemes

As mentioned before, the main difference between the group signature
scheme presented in this chapter and schemes previously proposed is

that all parameters of schemes in this chapter are independent of the

number of group members. In particular, the size of the group's public

key and the length of signatures, as well as all computations for any

operation do not depend on the size of the group. Furthermore, new

group members can be added without changing the group's public key.
The schemes even conceal the size or any other structure of the group.

However, removing members from the group is not possible without

changing the group's public key and therefore issuing new certificates

to all remaining group members. This is an advantage of the "tradi¬

tional" schemes such as those presented in the previous chapter. There,

7The scheme of Section 5.6 could be modified such that this approach would also

work.

118 Group Signature Schemes for Large Groups

adding and removing a group member can be achieved by modifying
only the group's public key; current members not involved can keep
their secret keys.

When considering generalized group signature schemes, the scheme

presented in the previous chapter has the advantage that each group
member needs to store only a single secret key, regardless of how many

coalitions he belongs to. However, the scheme completely reveals the

structure of the group.

5.9 Open Problems

The main open problems to study are the two Assumptions 5.1 and 5.2,

i.e., the difficulty of computing membership certificates without the

help of the membership manager. A further direction of new research

is to find other certification schemes, especially schemes the security of

which can be proven related to some well studied cryptographic prob¬
lems. Finally, it would be nice to find a method for excluding members

without modifying the group's public key and/or requiring that the

remaining members get new certificates.

Chapter 6

Payment Systems with

Passive Trustees

Anonymous digital payment systems are an important ingredient to

electronic commerce over computer networks such as the internet.

They allow customers to instantaneously pay goods. Furthermore, by
enabling anonymous payments, they protect the customer's privacy.
Unfortunately, anonymity also leaves the door open for the misuse by
criminals. Therefore, in order to investigate crimes, it must be possi¬
ble to revoke anonymity. In this chapter we present the an efficient

anonymous digital payment system satisfying this requirement. It can

be used either as on-line payment system or, with extensions, as an off¬

line payment system. The system builds on the primitives introduced

in Chapter 3. These primitives are used as signatures as well as differ¬

ent interactive protocols, i.e., as blind signature schemes, and protocols
whereby two entities share a secret key and then jointly compute an

SPK.

The work presented in this chapter appeared in [CMS97] and in parts
in [CMS96].

120 Payment Systems with Passive Trustees

6.1 Introduction

Anonymity of the participants is an important requirement for some

applications in electronic commerce, in particular for payment systems.
In most presently used payment systems the protection of the user's

privacy relies exclusively on administrative and legal measures. Using
cryptographic tools, in particular blind signature schemes [Cha84], it is

possible to design electronic payment systems that allow the customers

to remain anonymous (e.g., [Bra93, Cha85, CFN90, CPS94b, 0092]),
without affecting the other security requirements. However, while

protecting the honest customers' privacy, the anonymity also opens

the door for misuse by criminals, for instance for perfect blackmailing
[vSN92] or for money laundering.

Therefore, in order to make anonymous payment systems acceptable to

governments and banks, they must provide mechanisms for revoking
a participant's anonymity under certain well-defined conditions. Such

anonymity revocation must be possible only for an authorized trusted

third party or for a set of such parties. In this chapter we refer to trusted

third parties as trustees. In a concrete scenario a trustee would be a

judge or a law enforcement agency.

The concept of anonymity-revocable payment systems, sometimes called

fair payment systems, was introduced independently in [BGK95] and

[SPC95]. The customer's privacy cannot be compromised neither by
the bank nor by the payee, even if they collaborate, but the trustee or

a specified set of trustees can (in cooperation with the bank) revoke

a customer's anonymity. It is understood that the trustee(s) answer a

request only if there exists sufficient evidence that a transaction is not

lawful.

All previously proposed anonymity-revocable systems are either ineffi¬

cient because they are based on the cut-and-choose paradigm [BGK95,

SPC95], or they require the trustee's participation in the opening of

accounts or even in the withdrawal transactions [CPS95, CPS96, JY96,

SPC95]. From an operational point of view, it is an important require¬
ment that a trustee can be passive, i.e., that he need not be involved

in regular transactions or when a customer opens a new account. This

chapter is reports on the first efficient anonymous digital payment sys¬
tems satisfying this requirement.

6.2 Digital Payment Systems 121

After these results were been presented at ESORICS'96 (see [CMS96])
Frankel, Tsiounis, and Yung proposed a different, somewhat less effi¬

cient solution to this problem in [FTY96].

6.2 Digital Payment Systems

An electronic payment system consists of a set of protocols between

three interacting parties: a bank, a customer (the payer), and a shop
(the payee). The customer and the shop have accounts with the bank.

The goal of the system is to transfer money in a secure way from the

customer's account to the shop's account. It is possible to identify three

different phases: a withdrawal phase involving the bank and the cus¬

tomer, a payment phase involving the customer and the shop, and a de¬

posit phase involving the shop and the bank. In an off-line system, each

phase occurs in a separate transaction, whereas in an on-line system,

payment and deposit take place in a single transaction involving all

three parties.

The bank, the shop and the customer have different security require¬
ments. The bank wants a guarantee that money can be deposited only
if it has been previously withdrawn. In particular, double-spending of

digital money must be impossible. The shop, upon receiving a pay¬
ment in an off-line system, must be sure that the bank will accept the

payment. Finally, the customer must be sure that the withdrawn money

will later be accepted for a payment and that the bank cannot claim that

the money has already been spent (called a framing attack), i.e., falsely
accuse him of double-spending. Furthermore, the customer may re¬

quire that his privacy be protected, i.e., that payments are anonymous
and unlinkable. A payment is called anonymous, if the bank can by
no means find out which customer withdrew the money that a shop1
wants to deposit. Payments are called unlinkable if the bank cannot tell

whether two payments were made by the same customer or not. Un¬

linkability is a stronger requirement than anonymity. Payment systems

providing at least anonymity of payments, are called anonymous pay¬
ment systems. However, most anonymous payment systems provide
both, and, to grasp the difference, are sometimes said to provide perfect
anonymity.

Throughout, we assume that shops can not identify customers

122 Payment Systems with Passive Trustees

An anonymous digital payment system can be realized with blind

signature schemes. Upon charging the customers account, the bank

blindly signs a message (often a random number) for the customer.

The bank's signature makes this message a valid coin having an agreed
value. Different denominations can be realized by having the bank to

use a different public key for every denomination. The customer can

use the coin in a payment to a shop. Due to the properties of blind sig¬
nature schemes, the bank has no information on the coin (apart from its

denomination). Therefore, payments are anonymous and unlinkable.

An obvious problem with such a scheme is that money can in principle
be spent more than once. In an on-line system, double-spending can

be prevented by the bank by checking the record of previous deposits.
This requires that all deposit transactions (at least within the validity
period of the bank's public key) are stored by the bank. In an off-line

system, double-spending cannot be prevented, but it is possible to de¬

sign systems that allow the revocation of a customer's anonymity if the

money is spent more than once. This can be achieved by assuring that

the customer's identity is properly encoded in the signed message and

by having the customer answer a challenge message during the pay¬
ment in such a way that the customer's identity can be computed from

the answers to two different challenges. Alternatively, the anonymity
revoking mechanism we present herein could be used, but this is not

the main purpose of presenting the mechanism.

6.3 Anonymity Revocation by a Trustee

Anonymity revocation by a trustee means that, when the need arises,
the trustee can link a withdrawal transaction with the corresponding
deposit transaction. There are two types of anonymity revocation, de¬

pending on which kind of information is available to the trustee:

Withdrawal-based anonymity revocation: Based on the bank's view of a

withdrawal transaction, the trustee can compute a piece of infor¬

mation that can be used (by the bank or a payee) to recognize
the money when it is spent later. This type of anonymity revoca¬

tion can for instance be used in case of blackmailing. When the

owner of an account is forced to withdraw money and to transfer

it to an anonymous criminal, the account owner could secretly in-

6.3 Anonymity Revocation by a Trustee 123

form the bank and the trustee could be asked to compute a value

that can be put on a black list and linked with the money when it

is deposited. This corresponds to putting the serial-number of a

conventional bank-note on a blacklist.

Payment-based anonymity revocation: Based on the bank's view of a de¬

posit transaction, the trustee determines the identity of the per¬

son who withdrew the money. This may be needed, for instance,

when there is a suspicion of money laundering.

One of the security requirements of such a payment system is that the

trustee must be capable only of anonymity revocation, and cannot play
a different role in the system. In particular, the trustee must be unable

to forge money.

It it possible to distinguish three different approaches achieving the

above goals according to the type of the trustee's involvement.

1. The trustee is involved in every withdrawal. In such systems
[CPS95, JY96] the trustee plays the role of an intermediary dur¬

ing the withdrawal protocol and performs the blinding operation
on behalf of the customer. The trustee can then trivially revoke

the anonymity if needed.

2. The trustee is involved in the opening of accounts, but not in

transactions (e.g., [CPS96]). Such systems are potentially more

efficient because normally an account is used for many transac¬

tions.

3. The trustee is not involved in any of the protocols of the payment

system but is needed only for anonymity-revocation. In such sys¬

tems the customer proves to the bank in the withdrawal protocol
that the coin and the exchanged messages contain information,

encrypted under the trustee's public key, that allows the revoca¬

tion of anonymity. This can in principle be achieved by appli¬
cation of the well-known cut-and-choose paradigm, as described

independently in [BGK95] and [SPC95]. However, such a system
is quite inefficient as explained in Section 6.7

The goal of this chapter is to present an efficient anonymity-revocable

payment system that allows both types of anonymity revocation and

124 Payment Systems with Passive Trustees

in which, in contrast to the previously proposed efficient systems, the

trustee is completely passive unless he is asked to revoke the anonym¬

ity of a person. In particular, after initially publishing a public key, the

trustee need neither be involved in the opening of an account nor in

any withdrawal, payment, or deposit transaction.

6.4 An Efficient Anonymous Payment Sys¬
tem with a Passive Anonymity-Revoking
Trustee

In this section we describe the on-line payment scheme with a sin¬

gle denomination of coins. An extension to multiple denominations is

straight-forward. Extensions to off-line payment schemes are discussed

in Section 6.5.

Let us explain the underlying ideas of our scheme. The main compo¬

nents of a coin are a pair (hp,zp) satisfying zp = hx where x is the bank's

secret key, a signature (denoted W) based on a proof of this fact, and a

further signature (denoted V) needed to guarantee that anonymity re¬

vocation is possible. The signature W is given by the bank and the sig¬
nature V can be computed by the customer on his own. To achieve

anonymity, the signature W must be issued using a blind signature
scheme: during withdrawal the customer sends the bank a randomized

(or blinded) pair (hw, zw), the bank computes a signature corresponding
to W based on this pair, and the customer transforms this signature into

the signature IV. This is achieved by a subprotocol of the withdrawal

protocol and is explained in Section 6.4.2. The anonymity of a coin can

be revoked by the trustee if he can link pairs (hp,zp) and (hw, zw). This

is guaranteed by a mechanism explained in Section 6.4.5.

6.4.1 System Setup

To set up the payment system the bank chooses a finite group G of

prime order q such that computing discrete logarithms in G is infeasi¬

ble. Such a group is cyclic and thus every element (except the neutral

element) is a generator. Today the choice q « 2170 appears to be secure

unless the group has a special structure. Three elements g, gi and g2

6.4 Payment System with a Passive Trustee 125

are chosen by a publicly verifiable pseudo-random mechanism to as¬

sure that the discrete logarithms of none of these elements with respect
to one another are known. Finally, the bank chooses a secret key x Er Zq
and computes the public key y—gx- The bank publishes G, g, g\,g2, and

y-

The trustee randomly chooses his secret key r G Z* and computes and

publishes the corresponding public key yj—g\-

6.4.2 A Subprotocol: A Modified Blind Schnorr Signa¬
ture Scheme

As mentioned before, the pair (hp,zp) is obtained blindly by the cus¬

tomer in a subprotocol, referred to as protocol P (see Figure 6.1), during
which the bank sees only the pair (hw,zw). This protocol is an exten¬

sion of the blind issuing protocol for Schnorr signatures originated by
Brands [Bra93]. It is discussed here as an independent protocol (with its

own players, input and output parameters) because it is of independent
interest and because it will be reused later.

Protocol P takes place between two players A and B, substituted in the

withdrawal protocol by the customer and the bank, respectively. A's

input consists of the pair (g, y), where y = gx is B's public key, a secret

message m, a group element hw also known to B, and a blinding expo¬
nent a. If both players are honest, A's output of the protocol consists of

the pair (hp, zp) and the signature

W = (c,s) = SPK6{(a) :y = gaAzp = h°}(m)

which serves two purposes. On one hand, it is a (blind) signature by
player B of the message m. On the other hand, W also proves that the

pair (hp,zp) satisfies zp = hx, where x(= log y) is player B's secret key.

From B's point of view, the protocol P is the interactive protocol corre¬

sponding to the SPK

W = SPK6{(a) :y = g<*Azw = K}{m)

and is thus honest-verifier zero-knowledge. This protocol is turned into

a blind signature scheme by Player A by randomizing zw,tg,in,c,s with
7,8 and a. The exponent a that transforms (hw,zw) into (hp,zp), i.e.,

126 Payment Systems with Passive Trustees

Player A

(m,g,y,hw,a)
$

Player B

ig,x,hw)
$

zwt tgt lh

-y,8 ERZq
h -h"

rip -nw

ZP =zw

h^y5
tn=iahh;zp
c=X(g\\hp
c-c — 8 (mod q)

zw —hw
f ER Zq_
h =g?

zp\\h m)

s = f — ex (mod q)

s =s+ 7 (mod q)
W=(c,s)

verify W

(m,hp,zp,W)

Figure 6.1: The protocol P. It is in a blind signature scheme that allows

the customer to obtain W = (c, s) = SPK6{(a) :y=gaAzp = hp}(m). It

is also the core of the withdrawal-protocol.

randomizes (hp,zp), is chosen by player A before engaging in protocol
P.

The proof that the protocol P is a blind signature scheme, i.e., that B's

view (B(x), A(m,a,y))(g,hw) is statistically independent of A's output
[A(m,a, y), B(x)](g, hw) is similar to the proof of blindness for the blind

Schnorr signature protocol (cf. Section 2.8.2). Given any B's view con¬

sisting of (zw,hw, ig, th, f, c, s), and any signature (c, s) = SPK(,{(a): y =

ga A Zp = hp}(m) of a message m, let

7 = s — s (mod q),
8 = c — c (mod a),

6.4 Payment System with a Passive Trustee 127

= loShwhP = loSz„,zP (raodq),
= tgg^y6' and

~ lhnPzp-

It remains to show that t*g = tg = gsyc and t*h = th = hspzcv is satisfied:

f* = t £7l/ — (/+1+Xi = r/+S-S+X(C-e) — gS+XC f-S-XC
_ SyC _ £

and

i* fau'TyS _ ufa+ja+xSa p.r+s-s+x(c-c) US ~c i

lh — lhnp^p
~~ nw np

—

np^p
— Lh-

For both tg and f/, the last two equalities hold because s = f — xc

(mod q) and because (c,s) is a valid signature.

6.4.3 The Withdrawal Protocol

The actual withdrawal protocol, which uses protocol P as a subproto¬
col, is shown in Figure 6.2. It is based on a fair blind signature scheme
devised by Stadler [Sta96a]. The customer chooses a random expo¬
nent a which plays two different roles in the protocol. On one hand,
it serves as the blinding exponent (within protocol P) to transform the

pair (hw, zw) into the pair (hp, zp). On the other hand, it is used to com¬

pute hw as hw—g\ g2 and d as d-~y\. The SPK denoted as U proves
that the two exponents used in the computation of hw and d are indeed

the same. The value d can be interpreted as a Diffie-Hellman-type en¬

cryption of hp for the trustee and is stored by the bank for possible later

anonymity revocation.

For the computation of Lf we use the fact that by exchanging base and

input element of a discrete logarithm computation, the resulting dis¬

crete logarithm is inverted modulo the group order:

log,, Klgi = (log^/^gi)-1 (mod q).

The correctness of the withdrawal protocol follows from the correctness

of protocol P. The coin consists of the coin number c#, the values hp, zp,
W, and a signature

K

V:=SPKx{(a): -*=g?}(W)
gi

128 Payment Systems with Passive Trustees

Customer Bank

(g,y,8u82>yr) (g,x,gx,g2,yT)
1 1

Identification
»-

choose a random coin number c#

a ER ZJ
hw-=g\Xgi
d= fT
U-.= SPK6{(a): gl = (hw/g2)a AyT = da}

K, d, U
*. verify U

(c#,g,y,hw,a) (g,x,hw)
$ i

ProtocolP

±

(c#,hp,zp, W) debit the customer's

account

± ±

(c#,hp,zp,a,W) (d)

Figure 6.2: The withdrawal protocol in the on-line scheme. It uses the

protocol P as subprotocol.

that the customer computes before spending the coin. The pair V is

a signature based on a proof that hp equals g\g\ for some a known to

the customer. This prevents the potential attack that in protocol P, seen

as an independent protocol, player A could successfully choose hp as

hp = hawgb and zp as zp=z"wyb for some b / 0. Such an attack would allow

a cheating customer to avoid later anonymity revocation. However, the

customer can generate the signature V only if he chooses b — 0 in the

described attack, which is therefore not successful.

6.4.4 The On-line Payment Protocol

A coin can be spent by sending it to a shop which verifies the coin

and, if it is valid, passes the coin on to the bank. The bank checks the

6.4 Payment System with a Passive Trustee 129

database of all previously spent coins. (By including an expiration date
in the coin one can limit the size of this database.) If the coin is new

it is accepted and entered into the database, and the shop's account is

credited. The protocol is shown in Figure 6.3.

6.4.5 Anonymity Revocation

As already mentioned, there are two kinds of anonymity revocation,

namely withdrawal-based and payment-based revocation. The latter

can be achieved by letting the trustee compute the value

ihp/gxY = ^2Y = d

from an hp that is observed in a payment. Furthermore, the trustee

computes

Sp-.= SPKb{(a):d=(lAa AyT = g?}
ol

to assure that she computed d correctly. The value d can then be

searched for in the bank's revocation database containing the tran¬

scripts of the withdrawal transactions, including the values d.

Withdrawal-based anonymity revocation is achieved as follows. Given

the value d observed in a withdrawal transaction, the trustee computes

gid{T~l)=giga2 = hp

and the signature

Sw:=SPK6Ua) :^-=daAg2 = y*\{hp)
(gi '

to assure correctness. The value hp can be put on a black list for rec¬

ognizing the coin later when it is spent. The two types of anonymity
revocation are possible because

^K(g7))_1-lo^^log,2(g7) (d<7)

holds for every pair hw and hp generated during a legitimate with¬

drawal transaction.

130 Payment Systems with Passive Trustees

Customer Shop Bank

(gi,g2,c#,hp,zp,a,W) (g,y,gi,gi)
i i

(g.y.gi.ft)
i

4- 4- 4-

V:=SPKi{(a):/tp/gi=gf}(W)

c#, hp, zp, W, V

verify V and W

c#,fcp , zp, W, V

verify V and W

verify that c# was

not spent so far

credit Shop's account

Figure 6.3: The payment protocol in the on-line scheme. The customer,

the shop, and the bank are all on-line. It is assumed that if any verifica¬

tion fails the protocol is stopped and all three parties are informed.

6.4.6 Security Properties

We summarize how our on-line payment scheme achieves the required
security properties.

Payments are unlinkable and anonymous: Withdrawal and payment are

unlinkable because of the blindness of the subprotocol P. How¬

ever, although the blindness of protocol P is unconditional, i.e.,

information-theoretical, the anonymity of the payment scheme is

only computational because of the revocation parameter d. The

bank could link withdrawal and payment by testing whether

logVT d = log (hp/gi) (mod q),

holds. However, since the bank does not know log yj, this is

computationally infeasible. In particular, if the bank could decide

this, it could also solve the Decision-Diffie-Hellman problem.

6.4 Payment System with a Passive Trustee 131

Coins cannot beforged: In the random oracle model, forging coins with¬

out the help of the bank is as hard as computing discrete loga¬
rithms. Although it seems impossible that a customer cannot get
more than k valid coins from k interactions with the bank in a

withdrawal protocol, this cannot be proven to be as hard as com¬

puting discrete logarithms. This remains an open problem.

Double-spending is prevented: Since the payment is made on-line, the

bank can easily detect whether a coin has already been spent

by checking its database. Thus double-spending is not possible.
Note that this implies that the customer can not be falsely accused
of double-spending.

The anonymity can be revealed: Withdrawal-based and payment-based
revocation of the anonymity is discussed in paragraph 6.4.5.

It remains to argue that a customer cannot circumvent the re¬

vocation. A customer can circumvent revocation if he succeeds

in getting a signature W = SPKb{(a) : y = ga A z'p = h'p}(m) for

a h'p = gigj the corresponding d does not appear in the bank's

database. In the withdrawal protocol, the customer receives

tg = gr and ih — (g\ g2)T. From these two group elements the cus¬

tomer must compute the value t'h = (gig^Y for including it into

to argument to the hash function. If the customer had an efficient

algorithm to do this, he could also solve the Diffie-Hellman prob¬
lem (DHP) efficiently. We therefore conclude that this attack is

not feasible.

Let us briefly describe how the customer could solve the DHP

given such an algorithm. Let the algorithm output g[on input gi,

g2, a, and th, where r = log y. ih (mod q). (The group element g[

allows the customer to compute the desired t'h.) Let g be the base

of the DHP and yi and y2 the two public keys. For solving the

DHP, the customer has to compute the element z such that

logs z = log^ yi logx y2 (mod q)

holds. This he can do using the above algorithm with the inputs

gj = ylr g2 = gy~ '", a, and tn = y2, where a is randomly chosen

from Z*. The output of the algorithm will be the element z as can

easily be seen.

132 Payment Systems with Passive Trustees

6.4.7 Efficiency Considerations

A coin in the proposed scheme consists of two group elements, two

hash values, and two numbers smaller than q. If the group G al¬

lows for a compact representation of its elements, the signatures can

be quite short. For instance, elements of an elliptic curve with or¬

der q over a field of cardinality close to q can be represented by two

field elements. Hence for q « 2170, the total signature length is roughly
61og2 q + 256 « 1300 bits. This could be reduced further to about 1000

bits by a compressed representation of group-elements and by using
the same challenge for the proofs V and W.

6.5 Extensions to Off-line Payments

In an off-line system, double-spending can only be detected after the

fact, but it cannot be prevented. Detecting double-spending is triv¬

ial, but identifying the cheating customer requires an additional mech¬

anism in the protocols. In the presented system, a natural solution

appears to be to involve the trustee for exposing double-spenders.
This solution is unsatisfactory from an operational point of view when

many instances of double-spending occur. We describe a modified pay¬
ment protocol in Section 6.5.1 that allows the bank to identify double-

spenders without the trustee's help.

In Section 6.5.2 we discuss the use of tamper-resistant hardware (called
observer in this context) for preventing double-spending in off-line sys¬

tems. As of today there exist no absolutely tamper-proof components,
so such devices must be combined with the techniques for identify¬
ing double-spenders discussed before. In contrast to off-line systems
without observers, it is acceptable to involve the trustee for identifying
cheaters because the breakdown of an observer can be considered a rare

event. However, it is also possible to use the technique of Section 6.5.1

in an observer-based system.

6.5.1 Enabling the Bank to Identify Cheaters

The payment protocol of Figure 6.4 allows the bank to identify double-

spenders, but the anonymity of honest customers is not compromised.

6.5 Extensions to Off-line Payments 133

Customer Shop

(hp,zp,W,tp,rp,a)
i

(8>y>8i>82)
i

4- 4-

hp, Zp, W, tp

verify W

cP = X(82\\%\\tP\\IDshop\\cnt\\W)
cp

sp — rp -cpa (mod q)
sp

verify gl'ihp/gxY'^tp
V.= {cp,sp)

i
4-

(hp,zp,W,tp,V,cnt)

Figure 6.4: The payment protocol in the off-line scheme. The signature
V = SPKx{(a) : hp/gi = g2}{IDShop\\cnt\\W) is now jointly computed

by the shop and the customer.

The basic idea is to redefine the signature V and to make use of the

following fact that was already used in a similar way in [Bra93] for

the purpose of identifying double-spenders. If the value t = gr gen¬
erated by the signer for issuing a Schnorr signature (or in a message-

dependent SPK) is used for signing more than one message, it is easy to

compute the secret key from the two signatures. Let (ci,si) and (C2,S2)
denote the two distinct signatures and let y = gx. If

gSlyCl = t^gS2yC2

then we have Si + Ci* = S2 + C2X (mod q) and hence

_

si - s2

C2-C1
(mod q).

This fact can be used when forcing the customer to use the same value

tp = g2F in every potential payment of a given coin. This is achieved

by having the customer choose and store rp during withdrawal and by
including tp instead of the coin number c# in the signature W. Fur¬

thermore, the argument to the hash function in V contains informa-

134 Payment Systems with Passive Trustees

withdrawal

payment

deposit
±

observer
,

<U>
,

customer
(i)

bank,

(ii[)
, ,

(iv)
,

,

(v)
,

shop

Figure 6.5: The customer needs the help of the observer for carrying out
withdrawal and payment transactions. For each coin the observer only
participates once in a payment transaction; hence multiple spending of

a coin can be prevented.

tion about the shop and the withdrawal transaction, where the latter

is achieved by including W which contains a hash-value of tp, hp, and

zp. The counter cnt is included in the hash value because otherwise the

shop could deposit a coin twice and, in reply to bank's objection, blame
the customer of having it spent twice (at the same shop).

When a coin is spent more than once, the bank can compute the value a

that served as the customer's secret key in the payment protocol. Then

the bank can identify the customer by computing d = yaT.

6.5.2 Observers Can Prevent Double-spending

It is quite unsatisfactory that in anonymous off-line payment schemes

the multiple spending of coins can only be detected but not prevented.
Chaum et al. [Cha92] proposed as a solution the use of so-called ob¬

servers, which are small tamper-resistant hardware devices that are is¬

sued by the bank to every customer. Transactions can only be carried

out in cooperation with the observer (see Figure 6.5). In particular, the

observer keeps a list of active (withdrawn but not yet spent) coins and

refuses to cooperate in spending a coin a second time, i.e., it cooperates

only in spending coins contained in its list of active coins.

The following requirements guarantee the customers' privacy (for a

more detailed discussion see [CP94]):

6.5 Extensions to Off-line Payments 135

Observer

(a)

Player A in P

{g,y,K,zw,ih£,i,°~)
-\r

h — h"

7
—7S

^p
— ^zv

hr=ii

tiw, zw, tn

"p,zp, *h
hp-=h\
7 —7S

h--=t{h1zsp
^r

(K) (hp,zp,th)

Figure 6.6: In the observer-based system, the computation of hp, zp,
and f/, within protocol P must be performed jointly by customer and

observer. The modified protocol P is referred to as protocol P„.

• The observer must not be able to communicate with anyone ex¬

cept the customer. In particular, the observer must not be able to

establish a subliminal channel to the bank.

• Even if the bank can get hold of an observer and read all data

stored in it, the bank must be unable to trace payments. Note that

this implies that the observer must not have an internal clock.

In Figure 6.5 the communication between observer, customer, bank and

shop is illustrated. Because each customer's observer is unique, the

bank could link the communications (ii) and (iii) with (i). In order to

satisfy the conditions stated above, the communication (iv) must be un¬

linkable with communications (i) to (iii).

We now describe how the on-line payment scheme presented in Sec¬

tion 6.4 can be turned into an observer-based off-line scheme. Let w

and yo'—gi1 denote the observer's secret key and public key, respec¬

tively. (Note that each observer has its own secret key/public key pair.)
The basic idea is that the customer and the observer share the value a

such that neither of them alone knows a. More precisely, a is replaced
by the product da modulo q, where a is chosen (and kept secret) by the

observer, and a is chosen by the customer. All operations involving a

136 Payment Systems with Passive Trustees

in the on-line protocol now require the observer's cooperation. Hence

the observer is able to prevent double-spending. Furthermore, the cus¬

tomer must prove to the bank during the withdrawal of a coin that the

value a is indeed shared with the observer.

Figure 6.6 shows the modifications in the subprotocol P. The parame¬
ter a occurs in the computation of hp, zp, and th. The observer obtains

only values (hw, zw, and tn) which the bank already knows; hence no

relevant information is leaked to the observer. The resulting subproto¬
col is called P„ in which the parameter a replaces player A's input a in

protocol P.

Figure 6.7 describes the withdrawal protocol. After the identification,
the customer and the observer jointly compute the values hw and d.

Then they jointly construct the two SPK's

li1.= SPKi{(a): ^=y0Q}

and

Ur.= SPK6Ua): ^ = g? Ayr = da\
.

L g2 J

The protocol that the customer and the observer carry out to compute
the signatures Ui and U2 is the interactive protocol corresponding to

the two signatures

U[:=SPK1{(a):hw = yZ}

and

U'2:=SPK6{(a) :hw = glAyT = da}

and is honest-verifier zero-knowledge. Using this protocol the cus¬

tomer can compute the signatures LTi and U2. The signature U2 is iden¬

tical to the signature U in the on-line scheme and convinces the bank

that d is formed correctly. The signature U\ convinces the bank that

the observer is indeed engaged in the protocol, because the knowledge
of both log(hayft) y0 (because of Ui) and loggi hw/g2 (because of U2) im¬

plies the knowledge of log y„ (= u>), the observer's secret key. Since

the bank knows that the observer does not deviate from the protocol it

knows that the customer alone cannot know the value log,, ,„ gi.

6.5 Extensions to Off-line Payments 137

Observer Customer Bank

(yo,gi,yr) (g,y,gug2,yT) (g,x,gi,g2,yT,y0)
ir

a ER z;

-b- ir
start identification

K =8\

d=y\

1/a

choose c#

I*a Er Z*n

hm, d

h,f2ERZ*

h =8?

hr h, td

K ^h\J,Ag2
d=ds

ri,r2ERZ*

t, -P'V1
li -»i yo

h=hgrt,td=iddr2
ci =^(yo\\K/gi\\h)

c2=^(g1\\d\\hw/g2\\yT\\t2\\td)

C\,C2

§\ =(fi — c\/a)/u) (mod q)
§2 =?2 — c2/d (mod q)

Si, s2

Si =Si/fl + ri (mod q)
s2 =s2/ct + r2 (mod a)

Ui=(cx,sx),U2=(c2,s2)

hw, d, Ui, U2

(«) (c#,g,y,hw,a)

verify U\ and U2

(g,x,K)

(K)

i
Protocol P„

4-

ir

(c#,hp,zp,W)
debit account

(K,d) (c#,hw,hp,Zp,a,W) (d)

Figure 6.7: The withdrawal protocol in the off-line system with ob¬

server.

138 Payment Systems with Passive Trustees

The following equation shows that the signatures U\ and U2 computed
in the withdrawal protocol of Figure 6.7 are indeed valid. We have

y0 i i — yo nw — yo nw —

V&2'
—

,/i„(fi-ci/^)/ai;ci/a
_ ./i Ji/H-Cx/(Si) cxl(M)

_

— ifo 61 nw —

y0 51 61
—

= M" = y??iv' = h

and hence the verification equation for U\ holds. For LZ2 we show only
that dSlycj = td is true. Showing that gSi(hw/g2)C2 = t2 holds is analo¬

gous. We have

ds*yC2 = dS2l*+r2ycj = d^d^-^l^y02 =

= drH(h~C2l&)yC2 = dr2d?2y~C2yC2 =

= drHd = td

and thus also the verification equation of U2 holds.

An important point in the construction of these two signatures is the

additional randomization (blinding) performed by the customer using
the random values n and r2- This prevents the bank from computing a

using Si and si (or S2 and §2) in case the bank learns the values s\ and

s2. This could happen for instance when the observer is returned to the

bank or when the bank knows the seed of the pseudo-random number

generator used by the observer.

At the end of the withdrawal protocol the observer and the customer

store hw for the purpose of identifying the coin later in the payment

protocol (shown in Figure 6.8).

The payment protocol is very similar to the protocol in Figure 6.4, ex¬

cept that the observer and the customer jointly compute the signature
V. It is essential that the communication between the customer and

the observer is unlinkable with the communication between the shop
and the customer, so that neither the bank nor the observer obtains use¬

ful information about the correspondence of withdrawal and payment
transactions. This is achieved by randomizing (blinding) the values rp,

Cp, and sp. The protocol between the customer and the observer is the

interactive protocol corresponding to the SPK

v-a*,{<«): (*ff=*?}•

6.5 Extensions to Off-line Payments 139

Observer Customer Shop

(gi,a) igi,g2,c#,hu,,hp,zp,a,W) (g,y,gi,g2)
-b- -k-

verify W

c#, hp, z„, W

reject if coin is not

on list of active coins

fp Er Zq

h =g{ I

tp-i;gr2(hp/g^"

cP=^(|llg2||fP||IDstop||cnt||W)

cp =cp
— 8P (mod q)

Sp - fp — £p& (mod q)

Sp =asp + rp (mod q)

delete coin from list

verifyg2P(hp/gi)c" = fp

V=(cp,sp)
i

(hp,zp,W,cnt,V)

Figure 6.8: The payment protocol in the observer-based off-line sys¬

tem. At the end of the protocol the shop possesses the signature
V = SPKi {(a): hp/gl = &}(IDShop\\cnt \\W)

140 Payment Systems with Passive Trustees

and is therefore also honest-verifier zero-knowledge. Using this proto¬
col the customer can compute the signature V. Since the observer will

carry out this protocol only once for a given hw and therefore only once
for a given a, the customer cannot double-spend a coin.

The correctness of the protocol in Figure 6.8 can be seen as follows:

8?(JJ = 8?'^'\%)' =

rh

'gl
t'd'W = WQf =

= tp

and therefore the verification equation of the signature V holds. Here

we used the fact that hp = gigf.

6.5.3 Security properties

In this paragraph we discuss the security properties of both the

observer-based and the non-observer-based off-line schemes.

Payments are unlinkable and anonymous: This holds for the same reasons

as for the on-line system.

Coins cannot beforged: For both off-line system we have the same situa¬

tion as for the on-line system.

Double-spending is detected: In both off-line systems the customer and

the shop jointly compute the signature V of a message that in¬

cludes W. Different payments yield different such signatures.
Thus the bank can detect a double spending it finds different

signatures V of messages containing the same W. In the non-

observer-based system the bank can identify a double-spender as

described in Section 6.5.1.

In the observer-based system double-spending is not possbile be¬

cause of the observer. However, if a malicious customer suc¬

ceeded to break the observer and thus to double-spend, the bank

can still detect it. To identify a double-spender the bank requires
the help of the trustee. Since breaking the observer is assumed to

be hard, this can be considered to be a rare event.

6.6 Sharing the Revocation Capability Among Several Trustees 141

The anonymity can be revealed: This is true for same reasons as for the

on-line system.

The customer can not befalsely accused of double-spending: To accuse a

customer of double sending, the bank must show two different

signatures V. The ability of the bank to do this when the cus¬

tomer spent a coin only once, implies the ability of the bank to

forge such signatures which is assumed to be infeasible.

The shop is assured ofthe validity ofcoins: This is by definition of the va¬

lidity of coins, i.e., if the sigatures W and V are valid, the bank

must accept the coin.

Finally, for the observer-based system it remains to show that the ob¬

server (even when the bank gets hold on it later) cannot infringe the

customer's privacy. This is argued in Section 6.5.2.

6.6 Sharing the Revocation Capability

Among Several Trustees

To achieve higher security against fraudulent anonymity revocation,

the revocation capability can be shared among several trustees such

that only predefined subsets of the trustees are able to cooperatively
revoke a customer's anonymity. In Chapter 7 it is shown how the revo¬

cation capability can be shared using a secret sharing scheme with this

access structure and r as the shared secret. Furthermore, procedures
are discussed that enable the trustees to jointly revoke the customers'

anonymity.

6.7 Comparison with Other Schemes with Pas¬

sive Trustees

In this section we compare our on-line scheme with the cut-and-choose

based approaches and the recent proposal of [FTY96].

We sketch the scheme of [SPC95] (which from an conceptual and effi¬

ciency point of view is similar to the scheme of [BGK95]). In order to ob-

142 Payment Systems with Passive Trustees

tain a blind signature of a message m, the customer prepares 2K blinded

messages, each of which contains m encrypted with the trustee's public
key as well as a session identifier encrypted with the trustee's public
key. K is a security parameter. These encryptions are probabilistic (i.e.,
the text is padded with a random string before encryption) in order

to prevent decryption by an exhaustive search over a small set of pos¬
sible values. To check that these messages are properly formed, the

bank chooses a random subset of K blinded messages and asks the cus¬

tomer to open all of them, where "open" means presenting the random

padding used for encrypting the session identifier. For the purpose of

possible later anonymity revocation, the bank stores the corresponding
K encryptions of m. Then it blindly signs the remaining K messages
that were not opened. Such a coin (a blind signature for the message

m) is valid if the bank's signature is valid and if it can be verified that

m was correctly encrypted for the trustee.

In such a system, withdrawal-based revocation can be achieved by
asking the trustee to open the encryptions of m which the bank ob¬

tained and stored during the withdrawal protocol. Payment-based an¬

onymity revocation can be achieved by asking the trustee to decrypt
the encrypted session ID contained in each of the K components of

the signature. The probability that a dishonest customer manages to

escape payment-based or withdrawal-based anonymity revocation is

V (2jf) ~ 2~2KV7rK. To achieve reasonable security, K should be at least

20. Each of the K components consists of a random padding string and
a public-key encrypted value. In order to achieve the same security
level as in our scheme, the lengths of these two values must be at least

64 and 768 bits, respectively. This results in a total signature length of

close to 17,000 bits, which is about 13 times longer than coins in our

scheme (see Section 6.4.7).

The scheme presented in [FTY96] is based on Brands' payment system
[Bra93] and on so-called "indirect discourse proofs." Two such proofs
are used to convince the bank and, independently, the shop that the

trustee can revoke the anonymity of a coin. Technically, an indirect dis¬

course proof consists of an ElGamal encryption [ElG85a] of either the

customer's identity (for payment-based revocation) or a unique part of

the coin (for withdrawal-based revocation), and a proof that the correct

value is encrypted. Conceptually, this technique is similar to that de¬

scribed in this chapter, but the system of [FTY96] is less efficient. For

instance, coins in [FTY96] are approximately twice as long.

Chapter 7

Sharing and Diverting the

Capability of Anonymity
Revocation

The schemes presented in the previous three chapters have in common

that a trusted third party is able to revoke the anonymity of other par¬

ties. In the group signature schemes, it is the group (or revocation)

manager who can find out which group member signed a message. In

the payment systems, it is the trustee who can reveal a payer's identity.
In both scenarios, customers/group members have to trust this third

party not to reveal their identity at will. This risk can, on one hand,

be reduced by sharing this revocation-ability among several third par¬

ties such that only designated subsets of them can jointly reveal iden¬

tities. On the other hand, the risk of fraudulent anonymity-revocation
can also be weakened if a customer/group member can choose a third

party he trusts such that only "his" third party is able to reveal his iden¬

tity. Of course, it is possible to combine both approaches. This chapter
describes realizations of them.

Subsequently, by customers and trustees we always also mean group
members and revocation managers, respectively.

144 Sharing and Diverting the Capability of Anonymity Revocation

7.1 Provable Encryption

The way to share and/or divert the capability of anonymity revocation

depends strongly on how the original single trustee obtains this capa¬

bility and what operations she must perform for revocation. Therefore,

we review how our schemes achieves the trustee's ability to revoke the

anonymity of customers (or group members).

Since the trustee should be passive in all our schemes, the customer

has to provide information that is encrypted for the trustee and which

allows her to (later) reveal his identity by a simple decryption. Further¬

more, the customer must provide a proof that he indeed encrypted this

information1. In the group signature schemes, this is done exactly as we

describe it here. In the payment schemes, however, a slightly different

method is used.

We assume a group G of prime order q. Let h be a generator of G,

x Gr Z* be the secret key of the trustee, y-hx be her public key, and let

m E G decode the revocation information that is encrypted for her.

We distinguish two cases according to whether the customer uses the

original ElGamal encryption scheme or its variation2.

I: 1. choose r Gr Z* and compute A—hr and B—yrm.

2. provide a proof that m is encrypted in the pair (A, B):

Vv=SPK6{(a) :A = ha A Bjm = yQ}.

II: 1. choose r Er Z*q and compute A~yr and B—hrm.

2. provide a proof that m is encrypted in the pair (A, B):

Vlv=SPK6{(a) :A = ya A B/m = ha}.

To revoke a customer's anonymity, the trustee simply needs to decrypt
the pair (A, B). This requires her to compute A1/* in case I, and Ax

in case II. Furthermore, she often ought to prove that she decrypted
correctly, i.e., that she did not deliver a wrong identity. This proof can

be given with the signature

Uv=SPK6{(a): y = ha A B/m = Aa}(m)

1Frankel et al. [FTY96] call this an "indirect discourse proof."
2The variation is obtained by interchanging the roles of the base h and the trustee's

public key y (cf. Section 2.5.3).

7.2 Sharing the Capability of Anonymity Revocation 145

in case I, and with

Ulv=SPK6{(a): y = ha A A = (B/m)a}(m)

in case II. Finally, we remark that providing Ui or Un does not require
computations with x~l.

7.2 Sharing the Capability of Anonymity
Revocation

In this section, we consider a method of sharing the revocation-

capability among several trustees, say T\,... ,Tn, such that only de¬

fined subsets of them can revoke the anonymity of a customer. The set

of all such subsets is denoted by T C 2^Tu-'T"^ and called access struc¬

ture, borrowing terminology from secret sharing.

The basic idea is to share the original trustee's secret key x among the

n trustees with a secret sharing scheme for the access structure T. Thus

y — hx remains the public key that is used for encryption by the cus¬

tomers and with respect to which the signature U\ or Un is provided.

As we saw in the previous section, decryption of the revocation infor¬

mation requires only an exponentiation of a group element with either

x or x"1 and a single division. Furthermore, the signature Ui (or Un)
must be computed. Hence, the secret sharing scheme must allow these

operations to be performed efficiently and without the trustees getting
to know the shares of other trustees of the secret x. Solutions for thresh¬

old access structures are described in the following subsection. For gen¬
eral access structure, however, there seem to exist no solutions other

than using general multi-party computation.

One thing to consider in multi-party computations are adversaries. It

is assumed that all adversaries cooperate to be stronger. One distin¬

guishes them according to their assumed power:

• Eavesdropping adversaries are honest during execution of the pro¬

tocol, but try to get as much information as possible. In particular
they try to get hold on the secret key x.

• Halting adversaries are eavesdropping adversaries that may stop

participating during protocol execution.

146 Sharing and Diverting the Capability of Anonymity Revocation

• Malicious adversaries are eavesdropping adversaries that may ar¬

bitrarily deviate from the protocol.

7.2.1 Threshold Access Structures

For access structures with threshold t and n trustees, a realization can

for instance be based on Shamir's secret sharing scheme [Sha79] over

Z*. The secret key x can be shared using and Feldman's or Pedersen's

verifiable secret sharing schemes [Fel87, Ped92]. If powering with x_1

is necessary, the trustees have also to compute shares of x~l during the

setup of the system. This can for instance be done using results de¬

scribed in [CDM97]. Efficient solutions for powering a group element

with x (or x~l) are described in [GJKR96b, Gen96]. Furthermore, to de¬

vise a protocol for distributed computation of the signatures U\ and U\\
the techniques presented in [GJKR96b, Gen96] for DSA can be applied
.
In both cases I and II one can tolerate e\ < t < n eavesdropping ad¬

versaries, e2 < t < (n + l)/2 halting adversaries, and e3 < t < (n + l)/2
malicious adversaries.

7.2.2 Using Publicly Verifiable Secret Sharing

An alternative way to share the revocation capability is to use pub¬
licly verifiable secret sharing schemes [Ped92, Sta96a, Gen96]. Roughly
speaking, such a scheme works as follows. First, the secret is shared

with a suitable ordinary secret sharing scheme. The shares obtained in

this manner are encrypted for the designated participants such that it is

still possible to verify that the encrypted information is indeed a valid

share.

Using such a secret sharing scheme, the customer simply shares the

revocation-information m among the trustees according to some access

structure T. This has the disadvantage that, instead of a single encryp¬

tion, we have one encryption per trustee. (In our applications, this

would lead to larger coins and larger group signatures, respectively.)
The advantage is that each customer could choose his own access struc¬

ture (possibly within some policy-defined constraints).

In this scenario, one has to care only about halting and malicious adver¬

saries among the trustees: The trustee needs only to correctly decrypt

7.3 Diverting the Capability of Anonymity Revocation 147

the shares, provide them and prove that they were indeed the shares

encrypted for them. Thus, to revoke a customer's anonymity, one only
needs enough honest trustees to form a qualified set.

7.3 Diverting the Capability of Anonymity Re¬

vocation

In this section, we consider the second possibility to reduce the cus¬

tomer's risk of fraudulent anonymity revocation. We assume that there

are n trustees Ti,... , T„, where y, = hUi (i = 1,... ,n) are their public
keys and the w,'s their individual secret keys. The customer can now

choose which trustees he trusts and then enable only them to revoke his

anonymity. If the customer does not mind that others get to know who

"his" trustees are, he can just announce them and then prove that he

encrypted the revocation-information m for them. However, the cus¬

tomer may not want to divulge whom he trusts. It is this latter case we

will consider in the remainder of this section.

The customer sets up some trust structure T C 2f1,-'"l, such that r con¬

tains at least the set S of "his" trustees. This structure has a rather dif¬

ferent meaning than an access structure of secret sharing. We require
T to be monotone. In applications, the structure T might be fixed, or

chosen within some policy-defined constraints.

Now the customer has to prove that he encrypted the information

m E G for all trustees corresponding to some set in T without stating
which set. Thus, the more sets T contains, the less information is re¬

vealed about which set is the set of trustees that are trusted by the

customer. Using a similar idea as for the generalized group signature
scheme presented in Chapter 4, the customer can provide this proof as

follows. (We only consider encryption according to case I, although the

procedure can easily be adapted for case II.)

• for i G Schoose r, Gr Z* and compute Al.= hr' and B^.-y^m

• for /' G" J> choose r} ErZ* and m) ER G and compute A].=hr' and

B,.= y;m;

148 Sharing and Diverting the Capability of Anonymity Revocation

• compute the signature

V^SPKnUflu... ,an): V (A A = ha- A Bjm = y°') }(m)
Ser T.eS

The properties of the signatures of the type SPKn, ensure that it is not

possible to find out which set of trustees the customer trusts. We refer

to Chapter 4 for technical details and how the customer can compute
Vh

To enable the trustees not trusted by the customer to recognize this fact,

the string fhj could be set to a fixed default string.

Of course the two methods of reducing the risk of fraudulent anonym¬

ity revocation can be combined. One way of doing so is to share the

secret keys u>/ of this section among several trustees as described in the

previous section. This would lead to a trust-structure the elements of

which are sets of access-structures, since each Wj is shared according an
access-structure.

To combine the other method of the previous section that uses a verifi¬

able secret sharing scheme, one would choose n public-secret key pairs,
share the secret keys using a publicly verifiable secret sharing scheme

(with different access structures each time), and then prove that m is

encrypted with respect to some of these chosen public keys.

Chapter 8

Concluding Remarks

The group signature schemes and payment systems described in this

thesis all build on a common framework. It consists of different meth¬

ods to prove knowledge and properties of secret discrete logarithms of

publicly known values. This framework allows a comprehensive and

compact description of our schemes and it is hoped that it will be useful

for designing other cryptographic systems as well.

In the area of group signature schemes the contribution of this thesis

is twofold. First, the model of group signature schemes is extended to

generalized group signature schemes and a realization thereof is pre¬

sented. This new model allows the definition of sets of group members

such that only these sets can collectively sign messages. This is in con¬

trast to previously proposed models in which every group member is

able to sign a message on the group's behalf.

Second, the first group signature schemes are proposed in which the

length of signatures and the size of the group's public key do not de¬

pend on the group's size. This has not been achieved by the previously
known schemes and is a crucial property in cases the number of group

members is large.

The security of the new schemes is based on some new cryptographic
assumptions which are a subject of further study. Furthermore, the

search for other assumptions that allow the construction of more effi¬

cient schemes or can be well founded is an interesting challenge. With

150 Concluding Remarks

respect to generalized group signature schemes suited for large groups,
we were not able to find a fully satisfactory solution.

In the area of payment systems the first schemes are presented in which

a customer's anonymity can be revoked by a passive entity (called

trustee). More precisely, this entity needs not to be involved in any

protocol other than those for revocation and the initial setup of the sys¬
tem. An on-line scheme and two off-line schemes are described, one of

which uses so-called observers to prevent double-spending.

Bibliography

[AC97] Masayuki Abe and Jan Camenisch. Partially blind signa¬
tures. In The 1997 Symposium on Cryptograpy and Informa¬
tion Security, Fukuoka, Japan, January 1997. The Institute

of Electronics, Information and Communcation Engineers.
SCSI97-33D.

[AEM87] Leonard M. Adleman, Dennis R. Estes, and Kevin S.

McCurley. Solving bivariate quadratic congruences in

random polynomial time. Mathematics of Computation,
43(177):17-28, January 1987.

[AF96] Masayuki Abe and Eiichiro Fujisaki. How to date blind

signatures. In Kwangjo Kim and Tsutomu Matsumoto, ed¬

itors, Advances in Cryptology — ASIACRYPT '96, volume

1163 of Lecture Notes in Computer Science, pages 244-251.

Springer Verlag, 1996.

[And95] Ross Anderson. The classification of hash functions. In

P. G. Farrell, editor, Codes and Cyphers — Cryptography and

Coding IV, pages 83-94. The Institute of Mathematics and

its Applications, 1995.

[AV96] Ross Anderson and Serge Vaudenay. Minding your p's
and q's. In Kwangjo Kim and Tsutomu Matsumoto, ed¬

itors, Advances in Cryptology — ASIACRYPT '96, volume

1163 of Lecture Notes in Computer Science, pages 26-35.

Springer Verlag, 1996.

[Bab85] Laszlo Babai. Trading group theory for randomness. In

Proceedings of the Seventeenth Annual ACM Symposium on

152 Bibliography

Theory ofComputing, pages 421^129, Providence, Rhode Is¬

land, 6-8 May 1985.

[BC86] Gilles Brassard and Claude Crepeau. Non-transitive

transfer of confidence: a perfect zero-knowledge interac¬

tive protocol for SAT and beyond. In Proc. 27th IEEE Symp.
Found. Comp. Sc, pages 188-195,1986.

[BC89] Gilles Brassard and Claude Crepeau. Sorting out zero-

knowledge. In Jean-Jacques Quisquater and Joos Vande-

walle, editors, Advances in Cryptology — EUROCRYPT '89,

volume 434 of Lecture Notes in Computer Science, pages 150-

154. Springer Verlag, 1989.

[BCC88] Gilles Brassard, David Chaum, and Claude Crepeau. Min¬

imum disclosure proofs of knowledge. Journal ofComputer
and System Sciences, 37(2):156-189, Oct. 1988.

[BDP97] Antoon Bosselaers, Hans Dobbertin, and Bart Preneel. The

RIPEMD-160 cryptographic hash function. Dr. Dobb's Jour¬

nal, pages 24-28, January 1997.

[BF97] Dan Boneh and Matthew Franklin. Efficient generation
of shared RSA keys. In Burt Kaliski, editor, Advances in

Cryptology — CRYPTO '97, volume 1296 of Lecture Notes in

Computer Science, pages 425-439. Springer Verlag, 1997.

[BFL91] Joan Boyar, Katalin Friedl, and Carsten Lund. Practical

zero-knowledge proofs: Giving hints and using deficien¬

cies. Journal of Cryptology, 4(3):185-206,1991.

[BG92] Mihir Bellare and Oded Goldreich. On defining proofs of

knowledge. In Ernest F. Brickell, editor, Advances in Cryp¬

tology — CRYPTO '92, volume 740 of Lecture Notes in Com¬

puter Science, pages 390-420. Springer-Verlag, 1992.

[BGK95] Ernie Brickell, Peter Gemmel, and David Kravitz. Trustee-

based tracing extensions to anonymous cash and the mak¬

ing of anonymous change. In Proceedings of the Sixth An¬

nual ACM-SIAMs, pages 457-466. Association for Com¬

puting Machinery, January 1995.

Bibliography 153

[BL90] Josh Benaloh and Jerry Leichter. Generalized secret shar¬

ing and monotone functions. In Shaft Goldwasser, edi¬

tor, Advances in Cryptology — CRYPTO '88, volume 403 of

Lecture Notes in Computer Science, pages 27-35. Springer-

Verlag, 1990.

[Bla79] George Robert Blakley. Safeguarding cryptographic keys.
In Proceedings of the National Computer Conference 1979, vol¬

ume 48 of American Federation of Information Processing So¬

cieties Proceedings, pages 313-317,1979.

[Bla83] Richard E. Blahut. Theory and Practice of Error Control

Codes. Addison-Wesley, Reading, 1983.

[Ble96] Daniel Bleichenbacher. Generating ElGamal signatures
without knowing the secret key. In Ueli Maurer, editor,

Advances in Cryptology — EUROCRYPT '96, volume 1070

of Lecture Notes in Computer Science, pages 10-18. Springer

Verlag, 1996.

[Blo85] Rolf Blom. An optimal class of symmetric key generation

systems. In Thomas Beth, Norbert Cot, and Ingemar Inge-
marsson, editors, Advances in Cryptology — Proceedings of
EUROCRYPT 84, volume 209 of Lecture Notes in Computer
Science, pages 335-338. Springer-Verlag, 1985.

[BM88] Laszlo Babai and Shlomo Moran. Arthur - Merlin games:

A randomized proof system, and a hierarchy of complex¬

ity classes. Journal of Computer and System Sciences, 36,

1988.

[Boy89] Colin Boyd. Digital multisignatures. In Henry J. Beker

and Fred C. Piper, editors, Cryptography and Coding, pages

241-246. The Institute of Mathematics and its Applications
Conference Series, Oxford University Press, 1989.

[BP96] Joan Boyar and Rene Peralta. Short discreet proofs. In Ueli

Maurer, editor, Advances in Cryptology—EUROCRYPT '96,

volume 1070 of Lecture Notes in Computer Science, pages

131-142. Springer Verlag, 1996.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are

practical: A paradigm for designing efficient protocols. In

154 Bibliography

Firsf ACM Conference on Computer and Communication Secu¬

rity, pages 62-73. Association for Computing Machinery,
1993.

[BR96] Mihir Bellare and Phillip Rogaway. The exact security
of digital signature - how to sign with RSA and Rabin.

In Ueli Maurer, editor, Advances in Cryptology — EURO¬

CRYPT '96, volume 1070 of Lecture Notes in Computer Sci¬

ence, pages 399-416. Springer Verlag, 1996.

[BR97] Mihir Bellare and Phillip Rogaway. Collision-resistant

hashing: Towards making UOWHFs practical. In Burton

S. Kaliski Jr. editor, Advances in Cryptology — CRYPTO '97,
volume 1294 of Lecture Notes in Computer Science, pages

470^84. Springer Verlag, 1997.

[Bra93] Stefan Brands. An efficient off-line electronic cash system
based on the representation problem. Technical Report
CS-R9323, CWI, April 1993.

[Bra97] Stefan Brands. Rapid demonstration of linear relations

connected by boolean operators. In Walter Fumy, edi¬

tor, Advances in Cryptology — EUROCRYPT '97, volume

1233 of Lecture Notes in Computer Science, pages 318-333.

Springer Verlag, 1997.

[Cam] Jan Camenisch. The group signature scheme of Park, Lee,

and Won is not secure. Unpublished manuscript.

[Cam97] Jan Camenisch. Efficient and generalized group signa¬
tures. In Walter Fumy, editor, Advances in Cryptology —

EUROCRYPT '97, volume 1233 of Lecture Notes in Com¬

puter Science, pages 465-479. Springer Verlag, 1997.

[Can95] Ran Canetti. Studies in Secure Multiparty Computation and

Applications. PhD thesis, Weizmann Institute of Science,

Rehovot 76100, Israel, June 1995.

[CD97] Ronald Cramer and Ivan Damgard. Linear zero-

knowledge: A note on efficient zero-knowledge proofs
and arguments. In Proceedings of ACM STOC '97, pages
436-445. ACM press, 1997.

Bibliography 155

[CDEH+96] James Cowie, Bruce Dodson, R. Marije Elkenbracht-

Huizing, Arjen K. Lenstra, Peter L. Montgomery, and Jorg
Zayer. A world wide number field sieve factoring record:

On to 512 bits. In Kwangjo Kim and Tsutomu Matsumoto,

editors, Advances in Cryptology—ASIACRYPT '96, volume

1163 of Lecture Notes in Computer Science, pages 382-394.

Springer Verlag, 1996.

Ronald Cramer, Ivan Damgard, and Ueli Maurer. Span
programs and general secure multi-party computation.
Technical Report RS-97-28, Basic Research in Computer
Science, University of Aarhus, November 1997.

Ronald Cramer, Ivan Damgard, and Berry Schoenmakers.

Proofs of partial knowledge and simplified design of wit¬

ness hiding protocols. In Yvo G. Desmedt, editor, Advances

in Cryptology — CRYPTO '94, volume 839 of Lecture Notes

in Computer Science, pages 174-187. Springer Verlag, 1994.

[CEvdG88] David Chaum, Jan-Hendrik Evertse, and Jeroen van de

Graaf. An improved protocol for demonstrating posses¬
sion of discrete logarithms and some generalizations. In

David Chaum and Wyn L. Price, editors, Advances in Cryp¬
tology — EUROCRYPT '87, volume 304 of Lecture Notes in

Computer Science, pages 127-141. Springer-Verlag, 1988.

[CFN90] David Chaum, Amos Fiat, and Moni Naor. Untraceable

electronic cash. In Shafi Goldwasser, editor, Advances in

Cryptology — CRYPTO '88, volume 403 of Lecture Notes in

Computer Science, pages 319-327. Springer Verlag, 1990.

[CFPR96] Don Coppersmith, Matthew Franklin, Jacques Patarin,

and Michael Reiter. Low-exponent RSA with related mes¬

sages. In Ueli Maurer, editor, Advances in Cryptology— EU¬

ROCRYPT '96, volume 1070 of Lecture Notes in Computer
Science, pages 1-9. Springer Verlag, 1996.

[CGMA85] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch

Awerbuch. Verifiable secret sharing and achieving simul¬

taneity in the presence of faults. In Proc. 26th IEEE Symp.
Found. Comp. Sc, pages 383-395,1985.

[CDM97]

[CDS94]

156 Bibliography

[CH89] R.A. Croft and S.P. Harris. Public key cryptography and

re-usable shared secrets. In Henry J. Beker and EC. Piper,
editors, Cryptography and Coding, pages 189-201. The Insti¬

tute of Mathematics and its Applications Conference Se¬

ries, Oxford Science Publications, 1989.

[Cha83] David Chaum. Blind signatures for untraceable payments.
In David Chaum, Ronald L. Rivest, and Alan T. Sherman,

editors, Advances in Cryptology — Proceedings of CRYPTO

'82, pages 199-203. Plenum Press, 1983.

[Cha84] David Chaum. Blind signature systems. In David Chaum,

editor, Advances in Cryptology — CRYPTO '83, page 153.

Plenum Press, 1984.

[Cha85] David Chaum. Security without identification: Transac¬

tion systems to make big brother obsolete. Communications

of the ACM, 28(10):1030-1044, October 1985.

[Cha87] David Chaum. Demonstrating that a public predicate can

be satisfied without revealing any information about how.

In Andrew M. Odlyzko, editor, Advances in Cryptology —

CRYPTO '86, volume 263 of Lecture Notes in Computer Sci¬

ence, pages 195-199. Springer-Verlag, 1987.

[Cha91] David Chaum. Zero-knowledge undeniable signatures. In

Ivan Bjerre Damgard, editor, Advances in Cryptology— EU¬

ROCRYPT '90, volume 473 of Lecture Notes in Computer Sci¬

ence, pages 458^164. Springer-Verlag, 1991.

[Cha92] David Chaum. Achieving electronic privacy. Scientific
American, pages 96-101, August 1992.

[Che94] Lidong Chen. Witness Hiding Proofs and Applications. Ph.D.

Thesis, DAIMIPB - 477, Computer Science Departement,
Aarhus University, August 1994.

[CLR92] Thomas H. Cormen, Charles E. Leiserson, and Ronald L.

Rivest. Introduction to Algorithms. MIT Press, Cambridge,
1992.

[CMS96] Jan Camenisch, Ueli Maurer, and Markus Stadler. Dig¬
ital payment systems with passive anonymity-revoking

Bibliography 157

trustees. In Elisa Bertino, Helmut Kurth, Giancarlo

Martella, and Emilio Montolivo, editors, Computer Security
— ESORICS 96, volume 1146 of Lecture Notes in Computer
Science, pages 33-43. Springer Verlag, 1996.

[CMS97] Jan Camenisch, Ueli Maurer, and Markus Stadler. Dig¬
ital payment systems with passive anonymity-revoking
trustees. Journal of Computer Security, 5(l):69-89,1997.

[Coh93] Henri Cohen. A Course in Computational Algebraic Number

Theory. Number 138 in Graduate Texts in Mathematics.

Springer-Verlag, Berlin, 1993.

[COS86] Don Coppersmith, Andrew Odlyzko, and Richard

Schroeppel. Discrete logarithms in GF(p). Algorithmica,
1:1-15,1986.

[CP93] David Chaum and Torben Pryds Pedersen. Wallet

databases with observers. In Ernest F. Brickell, editor, Ad¬

vances in Cryptology — CRYPTO '92, volume 740 of Lecture

Notes in Computer Science, pages 89-105. Springer-Verlag,
1993.

[CP94] Ronald J. F. Cramer and Torben P. Pedersen. Improved
privacy in wallets with observers. In Tor Helleseth, editor,
Advances in Cryptology — EUROCRYPT '93, volume 765 of

Lecture Notes in Computer Science, pages 329-343. Springer-
Verlag, 1994.

[CP95] Lidong Chen and Torben Pryds Pedersen. New group sig¬
nature schemes. In Alfredo De Santis, editor, Advances

in Cryptology — EUROCRYPT '94, volume 950 of Lecture

Notes in Computer Science, pages 171-181. Springer-Verlag,
1995.

[CPS94a] Jan L. Camenisch, Jean-Marc Piveteau, and Markus A.

Stadler. Blind signatures based on the discrete logaritm
problem. In Alfredo De Santis, editor, Advances in Cryp¬
tology — EUROCRYPT '94, volume 950 of Lecture Notes in

Computer Science, pages 428-432. Springer Verlag Berlin,
1994.

158 Bibliography

[CPS94b] Jan L. Camenisch, Jean-Marc Piveteau, and Markus A.

Stadler. An efficient payment system protecting privacy.
In Dieter Gollmann, editor, Computer Security — ESORICS

94, volume 875 of Lecture Notes in Computer Science, pages

207-215. Springer Verlag, 1994.

[CPS95] Jan Camenisch, Jean-Marc Piveteau, and Markus Stadler.

Faire Anonyme Zahlungssysteme. In F. Huber-Waschle,

H. Schauer, and P. Widmayer, editors, GISI95, Informatik

aktuell, pages 254-265. Springer Verlag Berlin, September
1995.

[CPS96] Jan Camenisch, Jean-Marc Piveteau, and Markus Stadler.

An efficient fair payment system. In 3rd ACM Confer¬
ence on Computer and Communicatons Security, pages 88-94,

New Delhi, March 1996. Association for Computing Ma¬

chinery.

[Cra97] Ronald Cramer. Modular Design ofSecure yet Practical Cryp¬

tographic Protocol. PhD thesis, University of Amsterdam,

1997.

[CS97a] Jan Camenisch and Markus Stadler. Efficient group sig¬
nature schemes for large groups. In Burt Kaliski, editor,

Advances in Cryptology — CRYPTO '97, volume 1296 of

Lecture Notes in Computer Science, pages 410^124. Springer

Verlag, 1997.

[CS97b] Jan Camenisch and Markus Stadler. Proof systems for gen¬

eral statements about discrete logarithms. Technical Re¬

port TR 260, Institute for Theoretical Computer Science,

ETH Zurich, March 1997.

[Cv90] David Chaum and Hans van Antwerpen. Undeniable sig¬
natures. In Advances in Cryptology — CRYPTO '89, vol¬

ume 435 of Lecture Notes in Computer Science, pages 212-

216. Springer-Verlag, 1990.

[CvH91] David Chaum and Eugene van Heyst. Group signatures.
In Donald W. Davies, editor, Advances in Cryptology— EU¬

ROCRYPT '91, volume 547 of Lecture Notes in Computer Sci¬

ence, pages 257-265. Springer-Verlag, 1991.

Bibliography 159

[Dam88] Ivan Bjerre Damgard. Collision free hash functions and

public key signature schemes. In David Chaum and

Wyn L. Price, editors, Advances in Cryptology — EURO¬

CRYPT '87, volume 304 of Lecture Notes in Computer Sci¬

ence, pages 203-216. Springer-Verlag, 1988.

[Dam94] Ivan Bjerre Damgard. Practical and provable secure re¬

lease of a secret and exchange of signatures. In Tor Helle-

seth, editor, Advances in Cryptology — EUROCRYPT '93,

volume 765 of Lecture Notes in Computer Science, pages 200-

217. Springer-Verlag, 1994.

[Dam95] Ivan Bjerre Damgard. Practical and provable secure re¬

lease of a secret and exchange of signatures. Journal of
Cryptology, 8(4):201-22,1995.

[dB90] Bert den Boer. Diffie-Hellman is as strong as discrete log
for certain primes. In Shafi Goldwasser, editor, Advances

in Cryptology — CRYPTO '88, volume 403 of Lecture Notes

in Computer Science, pages 520-539. Springer-Verlag, 1990.

[DBP96] Hans Dobbertin, Antoon Bosselaers, and Bart Preneel.

RIPEMD-160: A strengthened version of RIPEMD. In Di¬

eter Gollmann, editor, Fast Software Encryption, volume

1039 of Lecture Notes in Computer Science, pages 71-82.

Springer Verlag, 1996.

[DDFY94] Alfredo De Santis, Yvo Desmedt, Yair Frankel, and Moti

Yung. How to share a function securely. In Proc. 26th ACM

Symposium on Theory of Computing (STOC), pages 522-533,

1994.

[DH76] Whitfield Diffie and Martin E Hellman. New directions

in cryptography. IEEE Trans, on Information Theory, IT-

22(6):644-654, Nov. 1976.

[Dob96] Hans Dobbertin. Cryptanalysis of MD5 compress. Pre¬

sented at the Rump-session of EUROCRYPT '96, may
1996.

[ElG85a] Taher ElGamal. A public key cryptosystem and a

signature scheme based on discrete logarithms. In

160 Bibliography

George Robert Blakley and David Chaum, editors, Ad¬

vances in Cryptology — CRYPTO '84, volume 196 of Lecture

Notes in Computer Science, pages 10-18. Springer Verlag,
1985.

[ElG85b] Taher ElGamal. A public key cryptosystem and a signa¬
ture scheme based on discrete logarithms. IEEE Trans, on

Information Theory, IT-31(4)469^72, July 1985.

[Fel87] P. Feldman. A practical scheme for non-interactive verifi¬

able secret sharing. In Proc. 28th IEEE Symp. Found. Comp.
Sc, pages 427-437,1987.

[FFS88] Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge
proofs of identity. Journal of Cryptology, 1:77-94,1988.

[F097] Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero

knowledge protocols to prove modular polynomial rela¬

tions. In Burton S. Kaliski Jr. editor, Advances in Cryptology
— CRYPTO '97, volume 1294 of Lecture Notes in Computer
Science, pages 16-30. Springer Verlag, 1997.

[Fra93] Matthew K. Franklin. Complexity and Security ofDistributed
Protocols. PhD thesis, Columbia University, 1993.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Prac¬

tical solution to identification and signature problems. In

Andrew M. Odlyzko, editor, Advances in Cryptology —
CRYPTO '86, volume 263 of Lecture Notes in Computer Sci¬

ence, pages 186-194. Springer Verlag, 1987.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable
and witness hiding protocols. In Proceedings of the Twenty
Second Annual ACM Symposium on Theory of Computing,
pages 416-426, May 1990.

[FTY96] Yair Frankel, Yiannis Tsiounis, and Moti Yung. "Indirect

discourse proofs:" Achieving efficient fair off-line e-cash.

In Kwangjo Kim and Tsutomu Matsumoto, editors, Ad¬

vances in Cryptology — ASIACRYPT '96, volume 1163 of

Lecture Notes in Computer Science, pages 286-300. Springer
Verlag, 1996.

Bibliography 161

[Gen96] Rosario Gennaro. Theory and Practice of Verifiable Secret

Sharing. PhD thesis, Massachusetts Institute of Technol¬

ogy, May 1996.

[GJKR96a] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and

Tal Rabin. Robust and efficient sharing of RSA functions.

In Neal Koblitz, editor, Advances in Cryptology — CRYPTO

'96, volume 1109 of Lecture Notes in Computer Science, pages

157-172, Berlin, 1996. IACR, Springer Verlag.

[GJKR96b] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and

Tal Rabin. Robust threshold DSS signatures. In Ueli Mau¬

rer, editor, Advances in Cryptology— EUROCRYPT '96, vol¬

ume 1070 of Lecture Notes in Computer Science, pages 354-

371. Springer Verlag, 1996.

[GKR97] Rosario Gennaro, Hugo Krawczyk, and Tal Rabin. RSA-

based undeniable signatures. In Burt Kaliski, editor, Ad¬

vances in Cryptology — CRYPTO '97, volume 1296 of Lec¬

ture Notes in Computer Science, pages 132-149. Springer

Verlag, 1997.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryp¬

tion. Journal ofComputer and System Sciences, 28(2):270-299,

April 1984.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The

knowledge complexity of interactive proof systems. In

Proc. 27th Annual Symposium on Foundations of Computer
Science, pages 291-304,1985.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald Rivest. A

digital signature scheme secure against adaptive chosen-

message attacks. SIAM Journal on Computing, 17(2):281-

308, April 1988.

[GMW87a] Oded Goldreich, Silvio Micali, and Avi Wigderson. How

to play any mental game or a completeness theorem for

protocols with honest majority. In Proc. 19th Annual ACM

Symposium on Theory of Computing (STOC), pages 218-229,

1987.

162 Bibliography

[GMW87b] Oded Goldreich, Silvio Micali, and Avi Wigderson. How

to prove all NP statements in zero-knowledge and a

methodology of cryptographic protocol design. In An¬

drew M. Odlyzko, editor, Advances in Cryptology —

CRYPTO '86, volume 263 of Lecture Notes in Computer Sci¬

ence, pages 171-185. Springer-Verlag, 1987.

[G094] Oded Goldreich and Yair Oren. Definitions and properties
of zero-knowledge proof systems. Journal of Cryptology,
7(l):l-32,1994.

[Gol95] Oded Goldreich. Foundations of Cryptography (Frag¬
ments of a Book). Available via the internet, Departement
of Computer Science and Applied Mathematics, Weiz-

mann Intitute of Science, Rehovot, Israel, February 1995.

[Has88] Johan Hastad. Solving simultaneous modular equations
of low degree. SIAM Journal on Computing, 17(2):336-341,

April 1988.

[HMP95] Patrick Horster, Markus Michels, and Holger Pe¬

tersen. Meta-message recovery and meta-blind signature
schemes based on the discrete logarithm problem and

their applications. In Josef Pieprzyk and Reihanah Safavi-

Naini, editors, Advances in Cryptology — ASIACRYPT '94,
volume 917 of Lecture Notes in Computer Science, pages 224-

237. Springer Verlag Berlin, 1995.

[JY96] Markus Jakobsson and Moti Yung. Revokable and ver¬

satile electronic money. In 3rd ACM Conference on Com¬

puter and Communicatons Security, pages 76-87, New Delhi,
March 1996. Association for Computing Machinery.

[Knu81] Donald Ervin Knuth. The Art of Computer Programming,
volume 2 — Seminumerical algorithms. Addison-Wesley,
second edition, 1981.

[Kob94] Neal Koblitz. A course in number theory and cryptography.
Springer-Verlag, second edition, 1994.

[KP97] Joe Kilian and Erez Petrank. Identity escrow. The¬

ory of Cryptography Library, Record Nr. 97-11,

Bibliography 163

http: //theory, lcs .mit.edu/~tcryptol, Au¬

gust 1997.

[KPW96] Seung Joo Kim, Sung Jun Park, and Dong Ho Won. Con¬

vertible group signatures. In Kwangjo Kim and Tsu¬

tomu Matsumoto, editors, Advances in Cryptology — ASI¬

ACRYPT '96, volume 1163 of Lecture Notes in Computer Sci¬

ence, pages 311-321. Springer Verlag, 1996.

[Kra86] Evangelos Kranakis. Primality and Cryptography. Wiley-
Teubner Series in Computer Science, 1986.

[Kra94] Hugo Krawczyk. Secret sharing made short. In Douglas R.

Stinson, editor, Advances in Cryptology— CRYPTO '93, vol¬

ume 773 of Lecture Notes in Computer Science, pages 136-

146. Springer-Verlag, 1994.

[Lai92] Xuejia Lai. On the Design and Security of Block Ciphers, vol¬

ume 1 of ETH Series in Information Processing. Hartung-
Gorre Verlag Konstanz, 1992.

[LL97] Chae Hoon Lim and Pil Joong Lee. A key recovery attack

on discrete log-based schemes using a prime order sub¬

group. In Burt Kaliski, editor, Advances in Cryptology —

CRYPTO '97, volume 1296 of Lecture Notes in Computer Sci¬

ence, pages 249-263. Springer Verlag, 1997.

[LLJ93] A.K. Lenstra and H.W Lenstra Jr. The Development of the

Number Field Sieve, volume 1554 of Lecture Notes in Mathe¬

matics. Springer Verlag, 1993.

[LM91] Xuejia Lai and James L. Massey. A proposal for a new

block encryption standard. In Ivan Bjerre Damgard, ed¬

itor, Advances in Cryptology — EUROCRYPT '90, volume

473 of Lecture Notes in Computer Science, pages 389-404.

Springer-Verlag, 1991.

[LM93] Xuejia Lai and James L. Massey. Hash functions based

on block ciphers. In Rainer A. Rueppel, editor, Advances

in Cryptology — EUROCRYPT '92, volume 658 of Lecture

Notes in Computer Science, pages 55-70. Springer-Verlag,
1993.

164 Bibliography

[Mau94] Ueli Maurer. Towards the equivalence of breaking the

Diffie-Hellman protocol and computing discrete loga¬
rithms. In Advances in Cryptology — CRYPTO '94, volume

839 of Lecture Notes in Computer Science, pages 271-281.

Springer Verlag, 1994.

[McC90a] Kevin McCurley. The discrete logarithm problem. In

Carl Pomerance, editor, Cryptology and computational num¬
ber theory, volume 42 of Proceedings of Symposia in Applied
Mathematics, pages 49-74. American Mathematical Society,
1990.

[McC90b] Kevin McCurley. Odds and ends from cryptology and

computational number theory. In Carl Pomerance, editor,

Cryptology and computational number theory, volume 42 of

Proceedings of Symposia in Applied Mathematics, pages 145-

166. American Mathematical Society, 1990.

[Men93] Alfred Menezes. Elliptic Curve Public Key Cryptosystems.
Kluwer Academic Publishers, 1993.

[Mic96] Markus Michels. Comments on some group signature
schemes. Technical Report TR-96-3-D, Departement of

Computer Science, University of Technology, Chemnitz-

Zwickau, November 1996.

[MU096] Masahiro Mambo, Keisuke Usuda, and Eiji Okamoto.

Proxy signatures for delegating signing operation. In

3rd ACM Conference on Computer and Communicatons Secu¬

rity, pages 48-57, New Delhi, March 1996. Association for

Computing Machinery.

[MvOV97] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Van-

stone. Handbook ofApplied Cryptography. CRC Press, Boca

Raton, FL, 1997.

[MW] Ueli Maurer and Stefan Wolf. Lower bounds on generic
algorithms in groups. Manuscript.

[MW96] Ueli Maurer and Stefan Wolf. On the complexity of break¬

ing the diffie-hellman protocol. Technical report, Institute

for Theoretical Computer Science, ETH Zurich, April 1996.

Bibliography 165

[Nat93] National Institute of Standards and Technology. NIST

FIPS PUB 180: Secure hash standard, May 1993.

[Nat94] National Institute of Standards and Technology. NIST

FIPS PPU 186: Digital signature standard, May 1994.

[NR93] Kaisa Nyberg and Rainer A. Rueppel. A new signature
scheme based on the DSA giving message recovery. In

First ACM Conference on Computer and Communication Se¬

curity. Association for Computing Machinery, 1993.

[NY89] Moni Naor and Moti Yung. Universal one-way hash func¬

tions and their cryptographic applications. In Proceedings
of the Twenty-First Annual ACM Symposium on Theory of
Computing, pages 33^13, Seattle, Washington, 15-17 May
1989. ACM.

[Odl94] Andrew M. Odlyzko. Discrete logarithm and smooth

polynomials. In Gary L. Mullen and Peter Jau-Shyong
Shiue, editors, Finite Fields: Theory, Applications and Al¬

gorithms, volume 168 of Contemporary Mathematics, pages
269-278. American Mathematical Society, 1994.

[Oka93] Tatsuaki Okamoto. Provable secure and practical iden¬

tification schemes and corresponding signature schemes.

In Ernest F. Brickell, editor, Advances in Cryptology —

CRYPTO '92, volume 740 of Lecture Notes in Computer Sci¬

ence, pages 31-53. Springer-Verlag, 1993.

[Oka97] Tatsuaki Okamoto. Threshold key-recovery systems for

RSA. In Mark Lomas and Serge Vaudenay, editors, Secu¬

rity Protocols Workshop, Paris, 1997.

[0092] Tatsuaki Okamoto and Kazuo Ohta. Universal electronic

cash. In Joan Feigenbaum, editor, Advances in Cryptology
— CRYPTO '91, volume 576 of Lecture Notes in Computer
Science, pages 324-337. Springer-Verlag, 1992.

[0093] Kazuo Ohta and Tatsuaki Okamoto. A digital multisigna-
ture scheme based on the Fiat-Shamir scheme. In Hideki

Imai, Ronald L. Rivest, and Tsutomu Matsumoto, editors,
Advances in Cryptology — ASIACRYPT '91, volume 739 of

166 Bibliography

Lecture Notes in Computer Science, pages 139-148. Springer-
Verlag, 1993.

[OSS84] H. Ong, Claus P. Schnorr, and Adi Shamir. Efficient sig¬
nature schemes based on polymonial equations. In G. R.

Blakley and David Chaum, editors, Advances in Cryptology
— CRYPTO '84, volume 196 of Lecture Notes in Computer
Science, pages 37-46. Springer Verlag, 1984.

[Pap94] Christos H. Papadimitriou. Computational Complexity.

Addison-Wesley, Reading, 1994.

[Ped92] Torben Pryds Pedersen. Non-interactive and information-

theoretic secure verifiable secret sharing. In Joan Feigen-
baum, editor, Advances in Cryptology - CRYPTO '91, vol¬

ume 576 of Lecture Notes in Computer Science, pages 129-

140. Springer Verlag, 1992.

[Pet96] Holger Petersen. Digitale Signaturverfahren aufder Basis des

diskreten Logarithmusproblems und ihre Anwendungen. PhD

thesis, Technische Universiat Chemnitz-Zwickau, 1996.

[Pet97] Holger Petersen. How to convert any digital signature
scheme into a group signature scheme. In Mark Lomas

and Serge Vaudenay, editors, Security Protocols Workshop,

Paris, 1997.

[PH78] Stephen C. Pohlig and Martin E. Hellman. An improved

algorithm for computing logarithms over GF(p) and its

cryptographic significance. IEEE Trans. Inform. Theory, IT-

24:106-110, January 1978.

[PLW95] Sung Jun Park, In Sook Lee, and Dong Ho Won. A practi¬
cal group signature. In Proceedings of the 1995 Japan-Korea

Workshop on Information Security and Cryptography, pages

127-133, January 1995.

[Poi96] David Pointcheval. Les Preuves de Connaissance et leurs

Preuves de Securite. PhD thesis, Universite de Caen, 1996.

[Pol75] John M. Pollard. A monte carlo method for factorization.

bit, 15:331-334,1975.

Bibliography 167

[Pol78] John M. Pollard. Monte Carlo methods for index computa¬
tion (mod p). Mathematics of Computation, 32(143):918-924,

July 1978.

[Pom85] Carl Pomerance. The quadratic sieve factoring algorithm.
In Thomas Beth, Norbert Cot, and Ingemar Ingemarsson,
editors, Advances in Cryptology — Proceedings of EURO¬
CRYPT 84, volume 209 of Lecture Notes in Computer Science,

pages 169-182. Springer-Verlag, 1985.

[Pre93] Bart Preneel. Analsyis and Design of Cryptographic Hash

Functions. PhD thesis, Katholieke Universiteit Leuven,

1993.

[PS87] John M. Pollard and Claus P. Schnorr. An efficient solution

of the congruence x2 + ky2 = m (modn). IEEE Transactions

on Information Theory, 33(5):702-709, September 1987.

[PS96] David Pointcheval and Jacques Stern. Security proofs for

signature schemes. In Ueli Maurer, editor, Advances in

Cryptology — EUROCRYPT '96, volume 1070 of Lecture

Notes in Computer Science, pages 387-398. Springer Verlag,
1996.

[Riv92] Ron Rivest. The MD5 message-digest algorithm. RFC

1321, April 1992.

[RSA78] Ronld Rivest, Adi Shamir, and Leonard Adleman. A

method for obtaining digital signatures and public-key
cryptosystems. Communications of the ACM, 21(2):120-126,

February 1978.

[Sch91] Claus P. Schnorr. Efficient signature generation for smart

cards. Journal of Cryptology, 4(3):239-252,1991.

[Sch96] Bruce Schneier. Applied Cryptography. Wiley, New York,

second edition, 1996.

[Sha79] Adi Shamir. How to share a secret. Communications of the

ACM, 22(11):612-613, November 1979.

[Sha90] Adi Shamir. IP = PSPACE. In 31st Annual Symposium on

Foundations of Computer Science, volume I, pages 11-15, St.

Louis, Missouri, 22-24 October 1990. IEEE.

168 Bibliography

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and

related problems. In Walter Fumy, editor, Advances in

Cryptology — EUROCRYPT '97, volume 1233 of Lecture

Notes in Computer Science, pages 256-266. Springer Verlag,
1997.

[Sim91] Gustavus J. Simmons. An introduction to shared secret

and/or shared control schemes and their applications. In

Gustavus J. Simmons, editor, Contemporary Cryptology: The

Science of Information Integrity, pages 441-497. IEEE Press,
1991.

[SPC95] Markus Stadler, Jean-Marc Piveteau, and Jan Camenisch.

Fair blind signatures. In Louis C. Guillou and Jean-

Jacques Quisquater, editors, Advances in Cryptology — EU¬

ROCRYPT '95, volume 921 of Lecture Notes in Computer Sci¬

ence, pages 209-219. Springer Verlag, 1995.

[Sta96a] Markus Stadler. Cryptographic Protocols for Revocable Pri¬

vacy. Ph.D. Thesis, ETH Zurich, 1996. Diss. ETH

No. 11651.

[Sta96b] Markus Stadler. Publicly verifiable secret sharing. In Ueli

Maurer, editor, Advances in Cryptology—EUROCRYPT '96,
volume 1070 of Lecture Notes in Computer Science, pages
191-199. Springer Verlag, 1996.

[Sti92] D. R. Stinson. An explication of secret sharing schemes.

Designs, Codes and Cryptography, 2:357-390,1992.

[Sti95] Douglas R. Stinson. Cryptography: Theory and Practice. CRC

Press, 1995.

[TW87] Martin Tompa and Heather Woll. Random self-

reducibility and zero knowledge interactive proofs of pos¬
session of information. In 28th Annual Symposium on Foun¬

dations of Computer Science, pages 472-482, Los Angeles,
California, 12-14 October 1987. IEEE.

[vHP93] Eugene van Heyst and Torben Pryds Pedersen. How to

make efficient fail-stop signatures. In Rainer A. Rueppel,
editor, Advances in Cryptology— EUROCRYPT '92, volume

Bibliography 169

658 of Lecture Notes in Computer Science, pages 366-377.

Springer-Verlag, 1993.

[vSN92] Sebastiaan von Solms and David Naccache. On blind sig¬
natures and perfect crimes. Computer & Security, 11(6):581-
583,1992.

[WP90] Michael Waidner and Birgit Pfitzmann. The dining cryp¬

tographers in the disco: Unconditional sender and recip¬
ient untraceability with computationally secure service¬

ability. In Jean-Jacques Quisquater and Joos Vandewalle,
editors, Advances in Cryptology — EUROCRYPT '89, vol¬

ume 434 of Lecture Notes in Computer Science, page 690.

Springer Verlag, 1990.

Leer - Vide - Empty

Index

(ci)iS> 8

T, see access structure

z;,io
zm,w

9i, 8, see hash function

f(n), 10

£GRX,9

a\\b,8
c[i], 8

MA(x\y), 8

«(•), 6

0(0,6

(s),io
0(0,6

[A(y),B(z)](x),7
(A(y),B(z))(x),7
<>(•), 6

access

black-box, 8

oracle, 8

access structure, 44,145

adversary
eavesdropping, 145

halting, 145

malicious, 146

anonymity revocation, 75, 122,

141

fraudulent, 85,115,141,145

payment-based, 123,129

withdrawal-based, 123,129

anonymous payment system,
see payment system

anonymous signature, 75

authority structure, 74

authorized coalition, 74

bank, 121

black-box access, 8

blind

computationally, 30

statistically, 30
blind signature scheme, 29,48

of Schnorr, see Schnorr

RSA, see RSA

challenge, 23,50

cmpl, 46, 57

coalition, see authorized coali¬

tion

collision resistant, 43

strong, 43

weak, 43

commitment, 23,50

computationally blind, see

blind

cracking algorithm, 38

customer, 121

DDHP, see Decision Diffie-

Hellman problem
dealer, 45

172 Index

dec, 20, 89

Decision Diffie-Hellman prob¬
lem, 15,103,104,108

Decision-Diffie-Hellman prob¬
lem, 130

deposit phase, 121

DHP, see Diffie-Hellman prob¬
lem, 131

Diffie-Hellman

key exchange, 20

problem, 15

digital payment system, see

payment system

digital signature algorithm, see

DSA

digital signature scheme, see

signature scheme
discrete logarithm, 12

discrete logarithm problem, 13

DLP, see discrete logarithm
problem

double discrete logarithm, 91

DSA, 28,146

ElGamal

encryption scheme, 113

encryption scheme, 22, 76,

85,107,114,144

signature scheme, 27

enc, 20,89

ERP, see e-th root problem
e-th root

of a discrete logarithm, 91

problem, 18

Euclidean algorithm, 11

existential forgery, 25

exponentiation, 11

FACTORING, see integer fac¬

torization problem

fraudulent anonymity revoca¬

tion, see anonymity re¬

vocation

gen, 20, 23,25, 29,45

generalized group signature
scheme, see group

signature scheme

generator, 10

invulnerable, 38

group, 9

cyclic, 10

group manager, 74

group signature scheme, 74,
71-118

generalized, Z4

simple, 74

threshold, 82

hash function, 43

identification protocol, 23

in, 63

index, 13

index tuple, 15

indirect discourse proofs, 142

integer factorization problem,
16

interactive protocol, 7,35

inverse, 9,11

invulnerable generator, 38

Jacobi symbol, 19

knowledge extractor, 34,39

Legendre symbol, 18

membership certificate, 89,101,

107,112

membership key, 89

Index 173

membership manager, 75, 89,

105,106, 111, 112,115

modular inverse, see inverse

observer, 134

one-way, 43

opening of signatures, see ano¬

nymity revocation

oracle access, 8

order

of a group, 9

of an element, 10

payment

anonymous, 121

unlinkable, 121

payment phase, 121

payment system, 119-142

anonymity-revocable, 120

anonymous, 121

off-line, 121

on-line, 121

perfect anonymity, 121

prj, 9,38, 69

private key, 19

probabilistic encryption
scheme, 20

proof of knowledge, 34,64
of a representation, 51

of a discrete logarithm, 50

of a double discrete loga¬
rithm, 92

of a root of a discrete loga¬
rithm, 96

prv, 23

public key, 19,49

public key encryption, 20, 20-

22

ElGamal, see ElGamal

RSA, see RSA

QNR, see quadratic non-residue
QR, see quadratic residue

QRP, see quadratic residuosity
problem

quadratic non-residue, 18

quadratic residue, 18

quadratic residuosity problem,
18

qualified subset, 44

random oracle model, 26

rec, 45, 56, 80

representation, 15

representation problem, 15

response, 23,50

revocation manager, 75,89,105,

108, 111, 114,115

revocation of anonymity, see an¬

onymity revocation

RP, see representation problem
RSA

blind signature scheme, 30

encryption scheme, 21

problem, 18

signature scheme, 99

signature scheme, 26,110

RSAP, see RSA problem

salting, 22

Schnorr

blind signature scheme, 31,

125

identification protocol, 23

signature scheme, 28

secret key, 19,49

secret sharing, 44,55,82

ideal, 45

perfect, 45

scheme, 45,115
scheme of Shamir, 46

174 Index

threshold scheme, 44,46, 82

verifiable, 46

selective forgery, 25

shop,121
sig, 25,89

signature scheme, 25

based on proofs of knowl¬

edge, 47-70, 78, 80,

92-99

blind, see blind signature
scheme

for a group, see group signa¬
ture scheme

of ElGamal, see ElGamal

of Schnorr, see Schnorr

RSA
,
see RSA

simple group signature
scheme, see group

signature scheme

smooth, 13

SPK, see signature scheme

based on proofs of

knowledge
SPKi, 50, 50, 58, 60, 62, 76-78,

84, 101, 106, 127, 130,

133,136,138,139

SPK2, 51, 52-54,56, 70,117

SPK3,53,53,55,81,83,84,86

SPKi, 54, 54, 76, 78

SPK5,56,67-69,76

SPK6, 57, 57, 58, 61, 78, 79, 81,

103, 108, 114, 125, 126,

128, 129, 131, 136, 144,
145

SPK7, 58, 58, 59-61, 64, 97-99,

107,108,113

SPKs, 63, 64,66,67,69, 70

SPK9, 64,69,69, 70, 77, 79

SPKW, 78, 78, 80,84

SPKU, 80,80,82,84,86,148

SPKl2, 93, 93, 95, 102,103,106-

109, 111, 113

SPKl3, 96, 97, 98, 102, 104, 106,

109

SPKM, 98, 98, 99,102-104,107-

109, 111, 113

SPKi5,99,112,113

square and multiply, 11

statistically blind, see blind

tamper-resistant hardware, see

observer

threshold group signature
scheme, see group

signature scheme
threshold secret sharing

scheme, see secret

sharing scheme
total break, 25

trust structure, 147

trustee, 122

unlinkable payment, see pay¬
ment

unlinkable signatures, 30, 75

ver, 23, 25, 29,45, 89

withdrawal phase, 121

witness, 6

witness hiding, 38

witness independent, 38

witness indistinguishable, 37

zero-knowledge, 36

honest-verifier, 37,64,93,97

Curriculum Vitae

1968 Born on April 25,1968 in Chur, Switzerland.

1974-82 Primarschule at Langwies, Sekundarschule at Arosa.

1982-87 Kantonsschule Graubiinden (Gymnasium) at Chur: Matura

Typus C.

1988-93 ETH Zurich, Dept. of Electrical Engineering: Dipl. EL-

Ing. ETH.

1989 Internship at Schmid Femmeldetechnik, Zurich, Switzerland.

1990-91 Full-time and later part-time position as El.-Ing. ETH at Mar-

tignoni Electronics AG, Zurich, Switzerland.

1993-98 Teaching and research assistant in Prof. U. Maurer's "Infor¬

mation Security and Cryptography" group at ETH Zurich.

