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Kurzfassung

Bis heute werden Roboter durch Gitter oder Lichtschranken vollständig
abgeschirmt um Unfälle zu vermeiden. Zukünftige flexible Roboter¬

arbeitsplätze sollen die Zusammenarbeit von Mensch und Roboter

im gleichen Arbeitsraum ermöglichen, womit sich eine flexiblere und

sinnvollere Aufteilung der Arbeit zwischen Mensch und Roboter

erreichen lässt. Um solche „kooperierende Roboter" zu ermöglichen,
braucht es unbedingt hochentwickelte Überwachungssysteme.

In dieser Arbeit wird eine Methode vorgestellt, welche eine un¬

sichtbare, frei definierbare und dynamisch der momentanen Situation

anpassbare Sicherheitszone um den Roboter auf eindringende Ob¬

jekte überwacht. Dazu wird das sogenannte „inverse Stereoprinzip"
verwendet, eine texturbasierte Stereomethode bei welcher die sonst not¬

wendige rechenintensive Korrespondenzanalyse durch die Generierung
und den Test einer Hypothese ersetzt wird. Objekte werden erkannt,
sobald sie durch die Trennfiäche zwischen den beiden Arbeitsbereichen

durchtreten. Dazu wird das Bild der einen Kamera in dasjenige Bild

transformiert, das die andere Kamera sehen würde, falls sich alle

Objekte in der Trennfläche befinden würden. Anschliessend wird das so

transformierte hypothetische Bild mit dem wirklichen Bild der anderen

Kamera verglichen. Für Bildbereiche, welche in den beiden Bildern

übereinstimmen, stimmt die Hypothese, womit sich dort ein Objekt in

der Trennfläche befindet.

Diese neue Methode wurde entwickelt hinsichtlich einer Verarbei¬

tung in Video-Echtzeit auf einer möglichst günstigen und kompakten

Hardware, um eine spätere Implementation in eine „smart camera" zu

ermöglichen.



IV Kurzfassung

Im ersten Teil dieser Arbeit werden die Anforderungen an ein solches

Überwachungssystem analysiert und bestehende Sensoren bezüglich de¬

rer Eignung für Sicherheitsanwendungen verglichen. Ein Schwerpunkt
der Arbeit wurde auf die Charakteristiken der verschiedenen Korrelati¬

onskriterien, deren Eignung für diese Methode und deren Einfluss auf

die Leistung des Gesamtsystems gelegt. Weiter werden geeignete Me¬

thoden zur Kalibration der Kameras und Transformation der Bilder

untersucht. Im letzten Teil der Arbeit werden die Resultate der erfolg¬
reichen Hardware-Implementation und einige mögliche Erweiterungen
zur Steigerung der Robustheit der Methode vorgestellt.



Abstract

Providing advanced robotic Systems with the capacity of sharing their

workspace with humans requires equipping them with an adequate

security System. For lack of sophisticated surveillance Systems, robot

workspace must currently be strictly separated from human workspace

by fences or light barriers.

A vision based security System that monitors an invisible but clearly

defined, dynamically adjustable safety envelope around the robot for

intruding objects is presented. A texture based Stereo vision method

that does not require a time consuming correspondence search, the

so-called "inverse stereo principle", is used. Objects are detected when

they penetrate the Separation skin between the two workspaces. To

detect objects in the Separation skin, one camera image is transformed

into the image the other camera would see if all objects were in the

Separation skin. This hypothetical image is subsequently compared to

the real image of the other camera. Corresponding regions belong to

objects situated in the Separation surface.

This new method was aimed at a processing at video rate on cheap,

compact hardware with the possibility of future implementation on a

smart camera.

In the first part of this thesis the requirements for a surveillance

System in robotics were analyzed and existing sensors were compared in

regard to security applications. Emphasis was placed on characteristics

of correlation criteria, the consequences for the system Performance and

the selection of a suitable method. Furthermore, methods of calibrat-

ing the cameras and transforming the images are investigated. Finally,
results of the successful hardware implementation and some possible
extensions for making the method more reliable are presented.
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Chapter 1

Introduction

Today it is almost impossible to imagine modern industry without

robots. Thanks to robots, the mechanization suitable for mass pro-

duction was supplemented by automation for medium or even small

batch size. In the future robots will not only be used in industrial en-

vironments, but also in service (industrial cleaning, household, aids for

handicapped [1]) and this will raise the requirements for robots and

their sensors.

Under some circumstances robots can be very dangerous to humans

near them because of their long, very strong arms and the rapid and

sometimes "unpredictable" movements. At present robot workspace
must therefore be strictly separated from human workspace. This is

usually done with fences or light-barriers around the robot.

In order to facilitate the robot's reacting in an intelligent way to

the environment, robots are given sensors which provide them with In¬

formation about the environment. Many sensors, including 2D-vision,
have left stages of research and are being applied in industry. Other

sensors, especially 3D-sensors, are still in their infancy. Robots still

lack sophisticated sensors and artificial intelligence, which facilitate ei-

ther fairly autonomous Operation even in unstructured environments or

showing cooperative behavior so that humans and robots can work in

the same environment.

Vision is one of the most powerful senses of living creatures, and

vision sensors have the advantage of being non-intrusive or even com-

pletely passive. Much research has been done in the field of vision. The

enthusiasm feit at the beginning was replaced by the insight that vision

is not only a powerful but also a very complex and difficult sense.
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An enormous drawback of vision Systems is that such huge amounts

of data have to be processed that a lot of vision algorithms cannot

be processed in video real time. In order to speed processing up, one

can either build faster processors, Systems with parallel processors and

specialized architectures for image processing, or apply new algorithms
that are geared to an efficient processing for a given hardware.

In order to facilitate Cooperation of robots with humans, real time

sensors which supervise the robot's workspace are necessary. Vision

proves to be very well suited for such an application, but its high
computational requirements are a severe drawback.

In this work a special, very efficient algorithm was combined with

an implementation on specialized hardware in order to attain video-rate

processing.
In the beginning of the thesis the requirements for a robot workspace

surveillance System are analyzed and known sensors which could be d for

supervision purposes are presented and rated. Then the new method,
called "inverse stereo principle", and the algorithms used are presented
in more detail. Various subpixel estimation methods for camera cali¬

bration were investigated and the Performance of the implemented cam¬

era calibration analyzed. Several spatial image transformation methods

are discussed and the Performance of inverse remapping with bilinear

interpolation presented. A main emphasis was placed on the correla¬

tion methods. Experiments with real images were carried out to find a

suitable correlation method and their computational requirements are

analyzed. Finally, various hardware platforms and implementation vari-

ants are discussed and the successfully implemented hardware Solution

and some results with the experimental System presented. To conclude,

possible extensions of the System and an outlook is given.



Chapter 2

Flexible Monitoring

Systems

Up to now, robots have been used mainly in industrial environments and are

usually separated by perimeter fences or light barriers from human workspace.

Future robots will be able to work in less structured environments and will

have the ability to cooperate with humans. For safe Operation, cooperating

robots must be equipped with a sophisticated security System. The industrial

environment, the speed of the robot and the staff working with the robots have

special requirements for a security System.

2.1 Security in Robotics

On the one hand, the introduction of industrial robots into dangerous
and harmful environments has reduced risks. On the other hand, in¬

dustrial robots themselves are a source of accidents. The powerful and

automatically moving manipulator which moves in a space outside the

machine body makes robots especially dangerous. In addition, its di-

rection, speed and sequence of movements cannot easily be predicted

by a worker.

Isaac Asimov has stated the "Three Laws of Robotics (1942)" [2] a

robot must obey in order to be no härm to people:

1. A robot may not injure a human being, or, through inaction, allow

a human being to come to härm.
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2. A robot must obey Orders given it by human beings except where

such Orders would confiict with the First Law.

3. A robot must protect its own existence as long as such protection
does not conflict with the First or Second Law.

The laws still hold true today and will be even more important in the

future, because robots and humans will work closer together than they
have so far.

Whereas the first part of the First law is very general, the second

part is more fictitious. The Second Law can be applied to robot teach-

ing situations, where a safety-system should prevent accidents due to

manipulation errors by an Operator.

Therefore a robot must be equipped with one or more of the following

safety measures, which prevent the Operator from coming in contact

with an operating robot:

• Enclosures and fences prevent humans from entering the robot's

workspace while it is in Operation and also prevent injuries by

'flying' objects released by a robot. The opening of the door of

the enclosure triggers a stop of the robot unless this mechanism

is bypassed. Fences have two severe disadvantages: they obstruct

the often necessary view to the robot and restrict access to the

robot. Theoretically, a complete enclosure of the robot is the safest

technique for providing safety. However, in practice the Situation

often arises that for maintenance work, teaching, testing or only to

adjust a misaligned object, an Operator must go near the robot,
and there is no mechanism to prevent this Operator from being
hurt.

• Ropes, railings and chains cannot really prevent humans from

entering the robots' workspace, but only aggravate it. It is a cheap
measure for harmless robots.

• Light barriers and safety mats detect the intrusion of humans

into the robot's workspace so that it can be stopped before any

härm occurs. Neither measures obstruct the view nor the access

to the robot and the robot is stopped automatically without the

intervention of the Operator. However, light-barriers allow only

plane Separation surfaces and safety mats only detect the feet and

give no Information about the entire body of the Operator. This

results in larger safety zones because it must be designed with

the worst case in mind. In addition, changing the dimensions
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of the workspace results in a new installation of the barriers or

mats. Light curtains must be positioned at a distance from the

dangerous zone, such that there is enough time to stop the robot

before a collision can occur. However, if this area is so large
that it is possible to stand between the curtain and the dangerous

machine, human-robot Cooperation is not possible. The reason for

this is that an object between the light barrier and the machine

cannot be detected and therefore the complete robot has to be

stopped and remain stopped until it is manually restarted.

• Collision detection sensors detect collisions after they have

occured or only a short time before. With capacitive sensors the

proximity of an object or a human body is detected such that

the robot can be stopped before a collision occurs. Cushions with

integrated pressure sensors detect a collision and at the same time

prevent any härm because of the cushioning effect. However, these

measures are only possible if the robot doesn't move too fast.

Because any collision results in an emergency stop of the robot,
this System is not suitable for cooperative robots.

• With camera surveillance it is possible to detect changes in the

workspace or objects intruding the workspace. There are vari¬

ous methods possible, from simple two-dimensional change detec¬

tion to sophisticated three-dimensional recognition of intruding

objects. Vision is the most versatile surveillance method, but also

the most complicated (see Chapters 3 and 4).

Analyses of accidents in Japan [3] and Sweden [4] showed that most

accidents occurred during the repair, maintenance or teaching of a robot

or while adjustments were being made in the course of normal Opera¬

tion. In part safety Systems were switched off due to negligence or to a

misunderstanding between two Operators, in other cases they had to be

switched off in order to teach or test the robot. It often happens that the

Operator misjudges the Situation (e.g. when the robot has stopped or

moves very slowly just before it begins to work again at normal speed)
and enters the robot workspace when the safety System is switched off.

Sugimoto concludes in [3] that "only when robots themselves are able

to detect the approach of humans and perform appropriate actions to

avoid accidents, will safety in the human-robot workplace be assured".
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2.2 Human Robot Cooperation

There are various applications where Cooperation between humans and

robots occurs.

2.2.1 Cooperative Production Systems

A short response time to changes in consumer preferences is expected
from modern manufacturing Systems. This results in shorter product

life, more frequent change of product parameters and more modeis of

the same product. In addition, there is the need to automate production

lines, which were too difficult to automate some years ago.

Fully automated manufacturing and cooperative Systems represent
two contrasting paradigms for automated production. While safety is

one of the major problems in cooperative Systems, it is often very dif¬

ficult to replace all human abilities by machines and fully automate a

production line. In addition, there are other serious drawbacks to fully
automated Systems, mainly from a human-oriented point of view.

In fully automated Systems human workers are eliminated as a source

of friction, and in case of machine failures they should intervene immedi-

ately and without making mistakes [5]. However, Operators only sitting
in front of a control panel observing and supervising the System risk to

get deskilled and loose experience of their job if they are only challenged
in cases of emergency or maintenance [6]. This is a real conflict of fully
automated Systems.

In addition, "as techniques and skills are created and advanced by

humans, and they are transferred from human to human", "if fully au-

tomatic unmanned Systems are realized, further progress of technique
and manufacturing technology stops" [7]. Nakazawa concludes that

"Manufacturing Systems of next generation should aim for the fusion

of automation technology and human abilities.".

Therefore Operators must have the opportunity to decide upon

process-parameters in order to develop comprehension for the process

which enables them to react in a flexible and adequate way in case of

unforeseen situations [8]. However, flexible task allocation where Op¬

erators can decide themselves and at any time about how the tasks

are divided results in close interaction between man and machine and

therefore a workspace surveillance System is necessary in order to avoid

accidents (see Figure 2.1).



2.2. Human Robot Cooperation 7

camera 1 ^^^-Mcamera 2

\VpDaseline ^
w* Jä^ZZZk safety

|envelope

Separation
skin

Figure 2.1: Workspace of a cooperating robot with a safety envelope:
human workspace is separated by the Separation skin from the robot

workspace.

2.2.2 Service Robots

Up to now robots have mostly been used in production, where it is

possible to enclose robots within a fence. However, if robots are used in

Service tasks, they must work in environments where humans work or

live. One can imagine many service tasks in which a robot could help
[1]:

• Commercial cleaning robots for hotel, office, hospital and in¬

dustry. A floor-cleaning robot could look like a conventional scrub-

bing machine, but without a human driver. Control and vision

must prevent the robot from colliding with humans and other ob-

stacles in its way.

• Paranurse and aids for handicapped people. A paranurse

could do more routine tasks such as serving meal trays and trans-

porting goods between different stations. Handicapped people
could be more independent thanks to a robot that can accomplish
certain tasks the person can no longer do [9].

• Various Services such as a gas-filling robot at a Alling Station,
household robots or robots for guard service become possible.
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For service robots working in the presence of humans, a sophisticated

security System is essential.

2.2.3 Increasing Safety of Traditional Robot

Systems

It is often necessary to manually adjust the robot, the material or an

auxiliary machine due to the misalignment of material, disrupted flow

of materials or failure in a peripheral machine
.
With a safety System,

personnel may work within the robot's working area during Operation
without any risk of injury. Even in traditional robot Systems such a Sys¬

tem increases productivity because collisions are prevented and emer¬

gency stops are reduced to an absolute minimum. In addition, teaching
of robots loses its danger.

2.3 Requirements for Monitoring System

An analysis of possible applications (especially in robotics) shows that a

flexible monitoring System should fulfill the following requirements [10]:

• Good machine accessibility: A monitoring system must not

hinder the Operators at work and must allow easy access to the

machine such that real Cooperation with the robot/machine is

possible. For robot maintenance and teaching, no bypassing of

the safety System nor removal and re-installation of the system
must be necessary (as is the case for fences).

• Simple adaptability: In modern manufacturing, product Para¬

meters very often change. This can result in a change of workspace
dimensions and robot cycle. In such a case a monitoring system
should need only very few adaptions.

• Allow cooperative work: It should allow an Operator to work

safely in close interaction with a robot.

• Flexible definition of workspace: It must be possible to arbi-

trarily define the boundary (= Separation skin) of the workspaces.
Plane Separation skins alone are not adequate for many applica¬
tions.

• Real time processing: Processing in real time allows for a fast

response time. The necessary safety distance (distance between

location where the intruding object is detected and the danger
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zone) is proportional to the response time and the objects speed

(Standard hand speed = 160 cm/s [10]). A short safety distance

reduces the space requirements and makes the system more flex¬

ible: the workspace boundary can be adapted more precisely to

the real danger zone and less space is wasted and Cooperation is

improved.

• Robust: The method must be highly immune to false triggers
such as high ambient light, shadows from other machines or people
and other radiation (e.g. visible, infrared, sonar) often present in

industrial areas: e.g. industrial strobe light, weld flash or other

photo-electric devices.

• Reliability: The system must be very reliable and must be hard

to bypass. In order to achieve this reliability, it must be possible to

perform a self-check of the System and to implement redundancy.

• No dangerous radiation: Because such a system works in the

proximity of humans, it must not radiate dangerous radiation such

as laser (danger for eyes) or strong electro-magnetic fields.

• Restricted space requirements: Floor space represents signif-
icant costs for manufacturing lines. Therefore a security system
should occupy little space for installation and it should allow for

a very compact installation of the supervised machines.

• Low costs: Both system costs and installation costs must be low.

Optical Systems usually need less installation than mechanical de¬

vices (e.g fences, doors).

2.4 Consequences for the Workplace

A robot workplace can profit in the following ways from a sophisticated
surveillance System:

• Human-robot Cooperation: With a sophisticated surveillance

system, real Cooperation between humans and robots becomes

possible. This facilitates more flexible production and automation

where fully autonomous production is not possible. In addition,

cooperative production has many advantages from an industrial-

psychological point of view.

• Increased safety: In contrast to today's safety Systems, a so¬

phisticated workspace monitoring system is also able to protect
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Operators working near the robot for teaching and maintenance

purposes; this is exactly where most accidents happen.

• Reduced space requirements: Because fencing is no loriger

necessary and the Virtual Separation between different workspaces
can be dynamically changed, there is less unused space and multi¬

ple robots or robots and humans can work in the same workspace.

• Reduced costs: Because changing production parameters,

teaching robots and maintenance do not require security-system

re-installation, less installation costs and costs associated with

machine standstill arise.

• Faster change of topology of manufacturing cell: The

change of the dimensions of the manufacturing cell can be done

by Software and need only minor re-installations.

In many robot applications, necessary human-robot Cooperation
must be restricted to a minimum for lack of sophisticated safety Systems.
This results in decreased productivity and a source of robot accidents.

2.5 Other Applications

A monitoring system which can detect objects intruding into an arbi-

trarily defined room is not restricted to use in robotics. Many other

areas such as protection of valuable goods, control of automatic doors

or elevators represent possible uses.

Because robot applications generally make the most demanding re¬

quirements, the main goal in this project will be to fulfill the require¬
ments of robotic applications.
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Sensors

Sensor technology plays an important role in robotics and will play an even

more important role in future robotic applications. Sensors used in robotics are

briefly presented and their applicability for use in security Systems discussed.

3D-vision sensors are discussed in Chapter 4-

Sensor technology plays a more and more important part in

robotics. Thanks to sensors, a robot is able to perceive its environment

and react in an appropriate way. Only with sophisticated sensors will

a robot be in the position to operate autonomously or in Cooperation
with humans. For example, with a vision sensor the location of an

object can be recognized and the robot can grab it without having to

be programmed for a specific object at a predefined location.

Sensors in robotics can be divided into two groups according to their

tasks:

• Intrinsic: This kind of sensor gets Information about the robot

itself such as position, angle, velocity or acceleration. They are

usually inside the robot and are used as inputs for the robot Con¬

troller. These sensors are not discussed in this work.

• Extrinsic: Extrinsic sensors get Information about the robot's

environment. The robot uses this Information for path planning,
navigation, collision avoidance and for doing its specific task.

Some sensor techniques commonly used in robotics for collision

avoidance and detection will be discussed briefly in the following.
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3.1 Tactile Sensors

Tactile sensors collect Information about the environment through di-

rect contact with objects within that environment. The simplest form

of a tactile sensor consists only of a single touch probe and provides only
the presence and the force of an object at the sensor. More sophisticated
sensors consisting of an array of sensing elements get additional infor-

mation about the shape, location and orientation of an object. Such a

sensor consists of materials where some material parameters (e.g. opti-
cal refractive index, resistance, dielectric constant) are a function of the

pressure in the material.

The Information of a tactile sensor is of a very local nature and the

sensing involves physical interaction which may result in a deformation

of the sensed object [11]. Such sensors play an important role in robot

grippers.

3.2 Proximity Sensors

Proximity sensors detect the presence of objects in the sensor's vicinity.
There are a variety of methods [1, 12].

3.2.1 Mechanical Sensors

The most common mechanical sensors are limit switches (micro-
switches), bumpers and safety mats.

Limit switches are one of the simplest and cheapest sensors. They
are used, e.g. as safety stops with slow moving robots. Use is restricted

to applications where the braking distance is smaller than the spring

length of the switch and the contact point is well defined.

Bumpers are usually used for moving vehicles and robot arms (colli¬
sion detectors) and consist of some cushioning supplied with sensors.

The sensors are used to signal if contact has been made along the

bumper. If the bumper is divided into Segments with individual sensors,

this Information can be used for navigation. Bumpers have disadvan-

tages: a collision has to occur before an object can be sensed and the

foam or spring of the bumper must be as thick as the braking distance

of the robot.

Safety mats [13] are put on the floor in the dangerous zone. They are

pressure sensitive and detect people in the danger zone. The most com¬

mon mats are based on a pneumatic principle. In contrast to mechanical
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guards which limit accessibility and visibility, they have the advantage
of rarely interfering with production and permitting free access to the

machine/robot for loading or unloading material and supervising the

process. It is possible to divide the mat into several individual mats

such that the active mats can be selected according to the action of the

robot.

The drawback of such safety mats is that only the feet are located and

no Information about the position of other parts of the body is available.

3.2.2 Field Based Sensors

These sensors are based on the fact that electro-magnetic fields are in-

fluenced by metal objects and electric fields are influenced by conductive

or dielectric objects. They emit a high frequency electro-magnetic field

or electric field and detect changes in this field. Typical sensing ranges

for inductive sensors are 0.8 to 60 mm, while for capacitive sensors the

maximal switching distance depends on the material (dielectric con-

stant) and varies between 5 and 20 mm [12].
Only capacitive sensors are suited to sensing the proximity of humans,

because in contrast to inductive sensors, organic materials can also be

detected. However, in order to protect the robot against collisions, the

whole body of the robot must be equipped with capacitive sensors and

the sensing distance is very short and this requires a short robot reaction

time.

3.3 Photo-electric Sensors

Photo-electric sensors consist of a light source and a light detector. In

order to overcome problems of ambient fighting, pulsed infrared light is

usually used. There are two common modes of Operation:

3.3.1 Detection of Reflected Light

The object is detected by the light it reflects. If no object is in the

vicinity of the sensor, no light is reflected. Usually, near-infrared is

used to reduce the effects of ambient fighting. The amount of reflected

light depends on the distance between sensor and object and the object's
surface characteristics. The sensor measures the reflected light and on if

it exceeds a given threshold it signals that an object has been detected.

If, e.g. a robot's gripper is equipped with such a short ränge sensor the
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robot can be stopped if the gripper moves towards an obstacle [14]. It is

mainly useful for local collision avoidance. It is not sensible to furnish

the whole surface of a robot with such sensors.

3.3.2 Detection of a Break of Light Beam

There are two common modes of Operation: either the beam is projected
to a facing photo-electric detector or it is reflected by a retro-reflector,
which facilitates having the emitter and detector in the same housing.
Both methods can detect an object on a straight line (spreading direc-

tion of light) by sensing a break of the beam. Light barriers (or light

curtains) are based on the same principle. They can be used to detect

objects or persons entering a danger area formed by planes (see Figure

3.1). If the light beam is interrupted, the sensor initiates a machine

stop. Restrictions associated with mechanical fencing can be removed

by using such invisible light curtains. However, due to the straight

spreading of light, only plane fencing is possible and a change of loca¬

tion requires new installation. In addition, attention must be paid so

that light emitted by the light barrier and reflected by an object does

not reach the receiver.

dangerous zone

sender

receiver

Figure 3.1: Light-bamer
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3.4 Microwave

Microwave sensors based on the Doppler principle sense the velocity of

moving objects; they are commonly used for automatic doors and intru-

sion detection. The disadvantage of such velocity sensors is that velocity

components tangential or lateral to the sensor are not measured, low

velocities are not accurately measured, small objects can be masked by

large ones because the reflected signal is proportional to the area of the

reflected object and interference from outside can occur [15]. Microwave

sensors can also cause problems in other electronic machines because of

the emission of high frequency electro-magnetic waves. Therefore it

has severe drawbacks for cooperative robot Systems with humans and

electronic equipment present.

3.5 Infrared Radiation Sensor

(Pyroelectric Sensors)

All objects with a temperature above absolute zero emit radiation. Py¬
roelectric sensors can be designed to be sensitive to the infrared ränge

where humans emit radiation. Such sensors are often used to detect in-

truders in an office or home environment. However, Standard light bulbs

or even robots emit infrared radiation in the human ränge. Further, ob¬

jects that have the same temperature as the environment (e.g. tools)
are not detected. Investigation [15] showed that pyroelectric sensors

would not work in a generic fashion.

3.6 2D Vision

In principle there are several methods by which a two-dimensional image
of the environment can be produced. It is possible to scan a scene with

a laser or an electron beam as in an electron microscope and measure

the reflected energy. However, the most common method is to produce
an image with a photo- or video-camera. Standard video cameras with

CCD sensors or MOS-photo-diodes (random addressable) sensors are

commonly used in machine vision. 2D vision has versatile applications
in machine vision: it is used for the inspection of manufactured parts,
measurement of location and dimension of parts for subsequent gripping
or for recognizing objects. It is also used for supervision purposes, where
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an object in a predefined zone must be detected and/or tracked: e.g.

traffic scene analysis, security installations, military reconnaissance.

3.6.1 Change and Motion Detection

The detection of moving objects and changing areas in images is a very

important task in Computer vision. Many applications such as traffic

control, remote wide area surveillance, target tracking or supervision

applications are based on it. The result of change detection algorithms
are usually further analyzed (e.g. motion prediction) to get final Infor¬

mation. By applying change detection, the amount of raw data can be

drastically reduced for subsequent high level processing, which only has

to process those regions where a change occurred.

Change detection can be made either at object or pixel level. Object
level change detection methods compare high level features which are

generally difficult to extract from real scenes. This makes such meth¬

ods computationally intensive. Pixel level change detection is usually
based on simple computation and therefore facilitates very fast change
detection, but is more prone to false triggers. Ideally a change detector

should detect only structural changes in the scene (motion, addition or

removal of objects). However, change detectors also detect changes in

fighting and shadows of moving objects outside the supervised zone.

Change detection algorithms either compare two consecutive frames

of a video sequence (inter-frame differencing) or the current frame with

a reference image (reference frame differencing). In the latter case the

reference image must be periodically updated in order to cope with low

frequency changes such as a change in illumination. There are several

schemes to try to guarantee that the image is only updated when there

is no (moving, additional) object in the scene.

The most straight-forward change detection method is simple dif¬

ferencing of two images (D(x,y) — I\{x,y) — I-2(x,y)). This method is

very susceptible to image noise. Better noise behavior shows methods

calculating a metric based on the neighborhood of a pixel such as mean,

variance or a parametric model of an image patch. However, all these

methods have the drawback of not only detecting moving objects but

also changes in fighting. In order to improve the robustness to change
in illumination, researchers have proposed several methods [16].

Some are based on the fact that small illumination changes (e.g.

shadows, clouds) can be closely modeled as a change in the average

pixel value over an affected region and therefore texture is preserved.
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Therefore the Performance is improved if the original images or the

resulting difference image are highpass filtered (e.g. Sobel-filter) [17,
18] or only the sign of the sobel-filtered images are compared [19].
Another category of approaches is based on a shading model

I(x, y) = L(x, y) r(x, y)
h in*enf^ L: aiumination

r: reflectance

and the fact that the reflectance remains constant if illumination

changes. Skifstad and Jane proposed in [16] a method that divides

the intensity values of the two images

h{x,y)
=

Li(x,y) ri{x,y)

h(x,y) L2(x,y) r2(x,y)

and then calculates the variance in an image region of 5 x 5 pixel. If the

scene did not change, the quotient of the reflectance values equals one

and, under the assumption of constant illumination within the region,
the resultant variance is zero. In [20] Fu and Chang proposed a method

also based on the shading model, but using moment invariants and

therefore reducing the amount of divisions. Both methods have about

the same Performance.
After the change detection, some object tracking or matching, Sta¬

tistical methods [21], or other high level image processing are usually

performed.
Since all these methods are based on 2D vision, no Information

about the object's distance from the camera is available and therefore

all changes, including those very far away and outside the supervised

zone, are detected. Such changes must be eliminated with an additional

processing step.

3.6.2 Object recognition

In order to make change detection more reliable and possibly to get
Information about the distance of an object from the camera, it is pos¬

sible to include some object recognition. If objects and their dimensions

are know, it is possible to derive the approximate distance. If the ob¬

ject recognition algorithm is only performed in regions where changes
occurred, necessary computation is reduced.
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Chapter 4

3D Vision Methods

We live in a three-dimensional world, but technical cameras. like our eyes,

produce only a two-dimensional image of the environment. There are several

methods for collecting 3-dimensional data. These methods are rated in regard

to application in a security system.

In the process of projecting the real three-dimensional scene onto

an image plane, the third dimension, the distance from the objects to

the camera, is lost. The field of three dimensional vision deals with

the reconstruction of the lost depth information. Automatic inference

of depth information has proven to be a complex and difficult process.

Human vision is based on a combination of various effects, whereas ar-

tificial vision methods mainly use only one of the effects such as texture

gradient, dimensional or binocular perspective, time of night, effects

of occlusion or Variation in surface refiectivity. The methods used to

obtain 3D data can be grouped into active and passive vision.

4.1 Active Vision

A method is called active if energy is projected into the scene to be im-

aged. The information carried by this energy is transformed by the scene

and received by the sensor. The depth information lies in the change
the emitted energy underwent. Active methods are adequate for use in

restricted and controlled environments: e.g. inspection, localization or

identification in industry [22]. In active methods the correspondence
problem (see See. 4.2.1) is inherently solved, which makes these meth¬

ods less computationally intensive. Most active sensors emit either light,
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microwaves or ultrasonic waves. Microwaves (RADAR) have the longest

wavelength (1 GHz -> Ars30cm; 25 GHz -> A^ 1.2 cm) and therefore

the obtainable resolution is restricted. In addition, strong microwave

radiation is harmful to humans. Ultrasonic waves have a slightly shorter

wavelength (20 kHz -» A?sl.5cm; 50 kHz —>• A« 0.6 cm) but the mini¬

mum beam angle is relatively large. In contrast, light has the advantage
of having a much shorter wavelength, being focused to a much narrower

beam and that less technical surfaces show specular reflection. Various

light sources, such as bulbs, LEDs or lasers, are used depending on the

application. Methods that only measure relative length, like interfer-

ometry, are not discussed here.

4.1.1 Ultrasonic Sensors

Ultrasonic sensors produce a high frequency sound wave (above 20 kHz)
and use triangulation, time of fiight or phase shift measurement to col¬

lect ränge information. By measuring the Doppler shift in the frequency
of the reflected wave, the velocity of a moving object can also be deter-

mined. For many applications (e.g. focus control in cameras) ultrasonic

sensors are well suited and very cost-effective due to the simple construc-

tion. Depending on the application, a wide or narrow beam is preferred.
With a wide sonar beam (« 90°) a safety aura around a robot can be

built with only a few transducers. An object in this aura can be de¬

tected and its distance measured by the reflected sonar energy. Narrow

beams (« 10° - 30°) are used for mapping an environment because of

the higher angular resolution obtained.

However, especially for indoor robot applications, specular reflec-

tions are a serious problem. If the direction of beam propagation is not

close to perpendicular to the smooth surface of an object, the beam

is specularly reflected and probably bounces around the room. Conse-

quently, no echo or multiply reflected echo is received and an object is

not detected at all or is estimated to be at a completely wrong distance.

A smooth surface is defined as one having texture irregularities less than

a quarter wavelength of the ultrasonic frequency (« 3 mm for 25 kHz);
most technical surfaces therefore produce specular reflections. A Solu¬

tion to this problem is using a wide beam, but this has the drawback

that the resolution decreases in angle and distance. Another drawback

of ultrasonic sensors is the quite low resolution due to the relatively

large beam angle (> 10°).
Due to specular reflections and the wide beam angle, ultrasonic sen-
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object

P3

Figure 4.1: Active triangulation

sors are less suited to generating ränge maps. They are better suited to

detecting objects in a safety aura around a robot.

4.1.2 Laser Telemetry

In laser telemetry, the distance to an object is obtained from the time

light needs to travel from the transmitter to the observed object and

back to a receiver. There are two versions of laser telemetry. (1) In

pulsed laser telemetry the time of the light pulse travel is measured. (2)
In phase modulation telemetry a modulated laser beam is emitted and

the phase of the emitted beam is compared with the received beam; the

phase shift is a function of the distance. A precision of about 0.5 - 1 cm

can be reached. A 3D description of an entire scene could be produced

by scanning. As a consequence such sensors are quite slow and need

mechanical parts for the deflection of the beams. Thanks to progress in

micro-mechanics, integrated laser deflection devices are now available.

However, good receivers are much more difficult to integrate.

4.1.3 Triangulation

Triangulation represents a simple trigonometric method for calculating
the distances and angles needed to determine the object's location. All

active triangulation methods have at least one thing in common: a light
source P2 and a sensor P\ are pointed at the same point P3 in space and

form an imaginary triangle. If the distance between the transmitter and

detector (baseline) and the orientation angles a and ß are measured, the

object distance d can be calculated (see Fig. 4.1). A major drawback

light source
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of all triangulation methods (active and passive) is the Situation where

points illuminated by the light source cannot be seen by the camera or

vice versa (so-called occlusion or missing parts).

Laser-Scanning

In laser ränge sensors a laser beam is aimed at the scene to be im-

aged and the reflected beam is captured with a camera with a one- or

two-dimensional array detector (e.g. CCD). If the distance between the

camera and the laser source and the position of the laser spot on the

sensor is known, the distance of the object can be calculated by trian¬

gulation. In order to obtain three-dimensional information for an entire

scene, the scene is scanned. Either the entire sensor (laser and detector)
can be moved mechanically, the laser and received beam can be deflected

by separate mirrors, or only the laser is moved and a static camera with

a two-dimensional sensor array is used. The main drawback consists in

the fact that moving mechanical parts are involved.

Structured Light

It is possible to project a pattern onto the scene instead of a Single

point. There are various methods that differ in the projected pattern.

The projection of a plane of light onto a scene results in a Single line

in the resulting image of a camera. By analyzing this image, three-

dimensional data of the points on this line can be obtained by simple

triangulation. By sweeping the plane over the scene, a three-dimensional

representation of the entire scene is produced. In order to decrease the

time needed to acquire the 3D image, it is possible to project a bündle of

planes or a grid, such that a disperse depth-map is obtained. However,
the main problem caused by the simultaneous projection of multiple

light planes is resolving the correspondence between the projected light¬

plane and the image of the light-planes, as ambiguities can arise.

A Solution to this problem is coding the different light planes by
means of Gray code [23, 24] or color [25]. In order to produce 2 coded

light stripes, only n patterns are projected, coding each line with a Gray
code of n bit (see Fig. 4.2). The input images are binarized depending
on whether or not a pixel belongs to the illuminated region in order

to extract the projected code. After the n planes have been projected,
each stripe is coded with a n-bit code. The only constraints on the

scene are that the surface reflectance must be high enough and that the

projected light must be stronger than the ambient fighting. Because
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LCD-pattern-projector /~7| video-camera

\ light stripe

\ world coordinate

\ i2 system

monitor

Figure 4.2: Example of a range-sensor with structured light

only simple Operations are needed, fast processing can be achieved with

adequate hardware [26]. Color coding has the advantage to require only
one pattern to be projected, but its disadvantage is that strongly satu-

rated colors in the scene make the identification of the coding difficult.

However, because multiple images are used to generate one depth im¬

age, it is not suited to applications where depth images at video rate

are necessary.

4.1.4 Shape from Shading

The image intensity of an object is a function of the object's surface-

reflectance and orientation, the position and intensity of the light source

and the position of the viewer. Provided the other parameters are given,
the object's position can be estimated from one image. In case of mul¬

tiple images with varying position, wavelength or polarization of the

incident light source, the reflectance map and the orientation of a sur¬

face can be estimated as well. This method is strongly limited by the

fact that the fighting must be completely controlled and it is most use-

ful in applications where the fighting can be modeled by a Single point
source.

4.2 Passive Vision

Passive vision only uses the ambient light reflected by the scene. It is

an adequate method for open Spaces (e.g. geodesy) and less controUable
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environments (e.g. manufacturing hall). Passive methods have the ad-

vantage of producing no detectable signature and freeing the sensors

from signal interference with other sensors, which is very important, if

several sensors work close together. There are a number of techniques
that provide three-dimensional information from a scene.

Several methods use only a Single static visual image, such as "shape

from (known) texture" and "distance from (known) target size". In

"shape from texture", 3D information is obtained by analyzing the dis-

tortion a pattern undergoes through the imaging process. Because these

methods need some a priori knowledge about the scene, they are not

practical for the unconstrained scenes that are found in industrial envi¬

ronments.

In the "swept focus" technique a Single lens with a very short depth
of field is focused at different distances (or a fixed focus lens is used and

the sensor moved) and the image is analyzed to get its in-focus areas at

various distances. In spite of the fact that this method is not computa-

tionally intensive, it is not suited for many real time application because

it requires many (depending on the attainable resolution) images.

However, with two (or more) distinct views of the same scene, more

reliable 3D information can be produced by triangulation without any

a priori knowledge.

4.2.1 Stereopsis

The basic principle of stereopsis is to take images from different view¬

points and triangulate the ränge using the position of identical scene

features from different viewpoints [27]. The most difficult and time

consuming task is solving the correspondence problem, namely, identi-

fying features in the images taken from different viewpoints as images
of identical features in the scene. The features can be divided into low-

and high-level features:

• Low level features: local intensity, magnitude or direction of

intensity gradient. The most direct approach is to compare the

image intensity. However, this only yields reliable results if the

"intensity constancy constraint" is fulfilled: this implies that an

object point produces the same intensity in all images. Because of

different cameras, frame grabber and viewing angle this is seldom

true. Therefore either a mean or variance normalized correlation

method is used, or, instead of intensity, a derived measure such as

the gradient is used (see also Chap. 8). Correlation on low level
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Figure 4.3: Triangulation in passive stereo-vision (corresponding
points are located on the epipolar line).

features results in dense depth maps, but requires extensive com-

putation because of the huge amount of potential correspondences
which have to be checked.

• High level features: line segments, lines, corners, other gec-

metric features or entire objects. First the high level features

are extracted and parameterized. Subsequently these features are

matched. High level feature matching is advantageous in that the

extracted stable symbolic tokens do not presume the "intensity

constancy constraint" and the correspondence search is less com-

putationally intensive than for low level features, because the high
level features are less frequent than image pixels. On the other

hand, such methods only produce sparse depth maps.

It often happens that a feature in one image is matched by more than

one feature in the other image. In order to reduce such ambiguity,

(semi-) global constraints, such as the assumption of smoothness of the

disparity map, are used. With such an additional constraint the number

of ambiguous matches can be decreased. After the corresponding points
have been established, the distance between the two locations in the

images of the corresponding feature (= disparity) is calculated, and

this is a measure of depth.
Stereopsis has two main problems: the occurrence of false and am¬

biguous matches and the huge amount of computational power which

is used for searching for corresponding points. As a consequence, "real
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time" stereo vision for robot applications is very difficult to achieve.

In order to make stereo vision amenable to real time, researchers have

made several assumptions:

• Ideal lens: an ideal image process without any kind of distortion

is assumed. This can be approximated with very good lenses with

long focal lengths. However, with wide-angle lenses the effect of

(radial) distortion is so dominant that it must be corrected.

• Epipolarity: Identical cameras with identical focal lengths and

with coplanar alignment are assumed. This results in the ability

to reduce the correspondence search to a one-dimensional search

along a scan-line. This drastically reduces computation and makes

hardware implementations much easier.

• Identical camera/digitizers: only with the use of identical cameras

and digitizers, does the "intensity constancy constraint" hold true.

Research in the field of "real-time" stereo vision is very active. The

expression "real time" does not determine a fixed speed, it only implies

that all necessary processing has to be completed within given time

limits. Some 'real time' Systems that have been realized are sketched in

the following:
• A stereo imager based on the extraction and matching of line segments

with a Performance of about 12 3D images with approximately 100

segments per second was presented in [28]. The system consists of an

array (3x36) of FPGAs1 for edge detection and tracking and a Cluster

of DSPs2 for segment matching and false segment match elimination.

Thanks to the correlation algorithm, no constraints on the camera setup

are necessary and the method is robust to differences in the response

of the cameras to illumination. However, the method supplies only

sparse depth maps and, for scenes with a higher density of line segments

(>100), the Performance of the system decreases.

• A system producing dense depth maps but at an even slower speed

is presented in [29]. The correspondence search is based on intensity

correlation in a 5x5 window and subsequent elimination of false matches

by assuming a smooth disparity map. In order to reach the "real-time"

Performance, the following assumptions were made: identical cameras,

lenses and frame-grabbers are used and the cameras are parallel aligned
such that the epipolar lines coincide with the scan lines. To achieve this

high speed a Datacube has been used.

1 Field Programmable Gate Array
2
Digital Signal Processor
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• A fast correlation module for stereo vision and object tracking is pre¬

sented in [30]. It is based on binary correlation of the sign of Laplace-
of-Gaussian (LoG) filtered images. The dedicated LoG convolver makes

video rate convolution of an image possible and the correlator can pro¬

duce 36 binary correlations in an 32x32 window in parallel within 100

fis. It is a very versatile system, useful at various combinations of speed
and resolution: e.g. 16x20 stereo disparities plus confidence at a dis¬

parity ränge of 32 steps are calculated at a video rate of 30 frames/s.
• In [31] a system that combines change detection algorithms with stere¬

opsis was implemented. In a first step, areas where a change occurred

are detected. Subsequently a correspondence search is performed only in

those areas in order to determine the 3-D position of moving objects. As

long as only a small amount of the image changes, the amount of com-

putation is decreased. However, changes far away from the interesting
zone as well as shadows are detected by the change detection algorithm
and trigger the 3-D analysis. In industrial environments, where neither

the background nor the fighting can be controlled, this is a considerable

drawback because it drastically increases the computation requirements.

4.2.2 Stereo from Motion

Stereo from motion is similar to stereopsis in many ways. It can be di-

vided into two categories: (1) the camera moves and the environment is

steady, (2) the camera is steady and the imaged objects move. In both

modes an object is viewed from different viewpoints and therefore the

distance can be calculated by triangulation. The first step in motion

analysis is usually computation of optic flow, which is similar to the

correspondence problem. It differs from stereopsis in that the search

is not constrained (any movement is possible) unless the time between

two consecutive images and the velocity of the movement is small, in

which case the search is constrained by a prediction of the flow. By
partitioning the movement of the camera into many small steps, the

correspondence problem gets easier to solve [32]. For surveillance pur-

poses it is possible to use a steady camera which calculates the image
flow and calculates the position of moving objects. However, if no ad¬

ditional information about an object is available, it is not possible to

calculate its distance because a slow moving small object near the cam¬

era cannot be distinguished from a fast moving large object far from

the camera.
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Chapter 5

Inverse Stereo Principle

Passive stereo vision has many advantages, but it is so computationally in¬

tensive that image processing at video rate is very difficult and expensive to

implement. The proposed "inverse stereo principle" is much better suited

to some applications, because it is much less computationally intensive than

conventional stereo vision. The idea behind this approach and the necessary

algorithms are presented in this chapter.

Only a three-dimensional remote sensing system is able to fulfill

the requirements of a flexible monitoring system (see Chapter 2). The

scene must be remotely sensed because a monitoring system must nei-

ther obstruct the view nor hinder the Operators from their work. Only
a 3-dimensional remote sensor makes an arbitrarily defined and dy-

namically adaptable workplace boundary possible. Passive 3D vision

methods do not emit radiation and multiple Systems do not interfere

with each other: these are advantages over active vision. And in con¬

trast to structured light approaches, it is not necessary to grab a series

of images and therefore processing at video rate is only a question of

available Computing power, processing hardware and algorithms. In ad¬

dition, there is no härm for humans as there is in strong laser scanning

Systems.

Apart from its many advantages, passive stereo vision has one crucial

drawback: it is very computationally intensive because of the necessary

search for corresponding points. Therefore processing at video-rate is

at the very limit of today's Computing power and only expensive Super¬

computers can cope with this computational load. In order to arrive

at near real time, many researchers had to impose restrictions such as
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human robot workspace

workspace

flexible

definition of

Separation surface >

dynamic
definition ^ \

Figure 5.1: Workspace of cooperative robot with Separation envelope

exact parallelism of cameras (in order to achieve epipolar lines parallel
to scan-lines) and the use of telelenses to reduce lens distortions. How¬

ever, such restrictions and the Supercomputer requirement make use in

industrial environments more difficult.

5.1 Idea

In many security applications, attention is focused on a small area in 3D

space, e.g. in order to detect objects located in or entering the workspace
of a robot. Therefore if one is interested in whether an object is at a

specific location, it is inefflcient to first produce a complete description
of the scene and then analyze it for objects at specific locations.

In this thesis a method that overcomes these drawbacks is presented

[33, 34]. It is a purposive method in that attention is focused on the

location which is to be supervised and in that the low level image

processing algorithm directly produces the desired result as Output.
This simplifies processing.

In order to supervise a robot and to allow cooperative work between

a human worker and the robot, the robot is wrapped in a safety envelope

consisting of a Separation skin defined between the two workspaces and

supervised for objects intruding the robot's workspace. The system then

gives an alarm whenever an object penetrates the Separation skin. The

proposed method makes a flexibly defined and dynamically adjustable

safety envelope possible. As illustrated in Fig. 5.1 it is possible to define
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Horopter

left camera / 7 z* \ \ rl9ht camera

Figure 5.2: Horopter of a camera setup

the safety envelope as any shape and to change the shape according to

the space requirements of the robot such that as much space as possible
is available for human workers.

This method is much less computationally intensive than conven-

tional stereopsis since the correspondence search is replaced by the gen-

eration and verification of a hypothesis, so that we can see if points of

interest are located at a predefined surface. This method is related to

the horopter idea and therefore the horopter principle is introduced in

the following.

5.1.1 Horopter

There is, for two non-parallel cameras with parallel adjusted scan-lines,
a locus of points in space (so-called horopter) which produces zero dis¬

parity between the two cameras and therefore results in corresponding

images for both cameras (see Fig. 5.2). All objects located at the

horopter come to identical locations in the images (because disparity
is zero) and can therefore easily be extracted by zero disparity filters

(ZDF). ZDFs could be used to extract objects in the horopter of a stereo

camera rig [35] and play an important role in binocular gaze holding [36].
However, this horopter only exists if there is no rotation around the

x- and z-axis of the cameras in respect to each other and in the case of

an ideal perspective projection. Because the geometry of the horopter

depends on the camera parameters and the setup of the two cameras,

it is fixed for a given camera setup.

An appropriate transformation of one of the images allows us to change
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comparison
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analysis

0
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Figure 5.3: Flowchart of Stereopsis: a complete SD description is first

produced and then compared with the safety envelope.

the geometry (form, distance from camera) of the horopter and to define

a pseudo-horopter of any geometry. In this way, a Virtual horopter was

laid on the ground in order to detect obstacles on a road in [37]. In

addition, with an appropriate transformation, the multiple restrictions

on the camera setup are no longer necessary.

5.1.2 The Method

As illustrated in Fig. 5.3, in stereopsis, the disparity map is first gener-

ated by a search of corresponding points (= points in the distinct images

resulting from identical points in the object space). Given the camera

model and this disparity map, the 3D description of the scene is then

produced. In order to recognize the objects entering the workspace, the
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Figure 5.4: Flowchart of Inverse Stereo Principle: a hypothetical im¬

age is produced and compared with the real image of the other camera.

calculated object coordinates must be compared with the description of

the safety envelope.
In contrast, in the "inverse stereo principle", there is no need for a cor¬

respondence analysis (see Fig. 5.4). A hypothetical disparity map is

generated using the camera model and a 3D description of the Sepa¬

ration skin (= location of hypothetical objects). Given this disparity

map one of the camera images is geometrically transformed into the

hypothetical image the other camera sees under the assumption that all

objects are located within the Separation skin (= pseudo-horopter). In

order to extract objects located within the Separation skin, the hypo¬
thetical image has only to be compared with the real camera image.
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5.2 Algorithms

Figure 5.5 illustrates the basic principle with a simple scene consisting
of three boxes of which one is located within the Separation skin. The

most important algorithms are presented in the following in the order

of execution.

object in

Separation
skin

- Separation
skin

Setup with stereo camera rig
and two objects outside and one

within the Separation skin.

m

s a

^
0 a3 i

3B m

Left and right images of the three

objects.

The left image is transformed into

a hypothetical right image (trans-
lation about d in the case of

coplanar cameras).

The hypothetical image is com¬

pared with the real right image.
The big white object is at identi¬

cal positions because it is located

within the Separation skin.

The white object within the Sepa¬

ration skin produces high correla¬

tion values and can be extracted

by an appropriate threshold of

the correlation values.

Figure 5.5: Basic principle
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with a non-parallel setup cameras can be adjusted such that Ac = Al .

Geometrie Image Transformation

In the first step, one of the images is transformed to produce a pseudo-

horopter which eoineides with the supervised safety envelope, i.e. the

image is geometrically transformed such that the hypothetical image
eoineides with the real camera image for all points at the Separation
skin. This transformation determines the geometry of the safety enve¬

lope. Any safety envelope that results in an unambiguous transforma¬

tion could be defined. In addition, with the same transformation, lens

distortion can be corrected and all geometric parameters of the camera

setup (position and orientation) included. This has many advantages:

• wide angle lenses (often used due to restricted space) and inex-

pensive lenses with increased distortion can be used. This reduces

system cost and broadens the application ränge.

• the camera setup is not restricted by the algorithm in contrast to

many stereo vision Systems which require parallel adjusted cam¬

eras. This, for instance, allows for the setting up of cameras such

that the common viewing ränge (Ac) is maximized (see Fig. 5.6).

Correlation

After one image has been transformed into the hypothetical image, the

real image is compared with this hypothetical image. Because calcu-

lating the difference between the images is not reliable and is too sus-

ceptible to noise, the images are compared by two-dimensional image
correlation. A similarity (or dissimilaxity) measure is computed for each

'point' (including its neighborhood) of both images.
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Segmentation

Objects located within the Separation skin correspond to regions with

a high similarity measure. Since the correlation method was chosen

such that it is mainly a function of the correspondence and translation

of two templates, objects can be extracted with simple thresholding.

However, due to noise, there will be erroneous pixels that lead to small

non-existent objects or holes in objects. Thresholding with hysteresis
or morphological Operators could be used to eliminate isolated pixels
and very small objects. The most common morphological Operators,

dilation and erosion with a 3x3 neighborhood, are defined as follows:

k

Dilation(a;, y) — max I(x + i, y + j) (5.1)
i,j=-k

k

Erosion(x,y) = min I(x + i,y + j) (5.2)
i,j——k

Dilation and erosion have the disadvantage of only eliminating lonely

high or lonely low pixels. Combined Operators also exist: the so-called

opening (erosion before dilation) and closing (dilation before erosion)

Operators. An Operator that deletes all Clusters that are completely
within a rectangle of (2e — 1) x (2e — 1) pixels ("clusterlet elimina¬

tion") performs much better than these Operators. This Operator can

be mathematically described as [38]

h(i,j) = u0 V i,j : -e < i, j < e if (5.3)

f(-e,j) = f(e,j) = f(i,-e)

= f(i, e) = u0 V i, j : -e < i,j < e

An Operator that is easier to implement in hardware but produces better

results than opening and closing is based on a majority decision and is

described for the binary image I(x, y) as follows:

M{Xt y)
=

( i if TT~k H* + i,v+i)> V2 (2* + D2 (5-4)
v '*' \ 0 otherwise

v ;

In Figure 5.7 the results of various morphological Operators on a very

noisy thresholded image are presented.

Interpretation

In order to make the results from image segmentation more reliable and

robust, it is useful to include additional data (e.g texture intensity) in
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Figure 5.7: Results of various morphological Operators on a binarized

image with high noise

a subsequent process or to perform an image sequence analysis to make

use of the dependence of subsequent images. A high level algorithm
could calculate size, position or shape of detected objects.
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5.3 Software Implementation

As a first step the method was implemented using the image processing

development system KHOROS1. Several correlation and image trans¬

formation methods were implemented in order to test their suitability.

Necessary resolutions of the data in the various processing steps were

also evaluated in these tests. All the results of the investigations pre¬

sented in the following chapters were obtained by using this Software

implementation.
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KHOROS is a registered trademark of Khoral Research, Inc., New Mexico.



Chapter 6

Camera Calibration

The camera rig needs to be calibrated in order to calculate the necessary image

transformation. Various camera modeis and calibration methods are discussed

and the method used is presented in detail. In addition, various subpixel

estimation methods are presented and an analysis of the accuracy achieved is

given.

In order to get the relation between an object and the correspond¬

ing image point (i.e. its coordinates), the imaging process is described

by a mathematical model. In this application, this model is used to

determine the necessary transformation for a given safety envelope.
These model parameters are determined in the calibration. There

are various calibration methods and camera modeis suited to different

applications. For this application a calibration method that meets the

following criteria is needed:

• Accuracy: overall accuracy should be better than 0.2 pixel1 for

off-the-shelf wide-angle lenses. In order to achieve this accuracy,

1This accuracy depends on the translation tolerated by the correlation but not on

the camera resolution unless the image is subsampled before the correlation. On the

one hand it is of no use if the calibration accuracy is Orders of magnitude smaller than

other introduced errors. On the other hand, the errors introduced by the calibra¬

tion should not be larger than errors introduced by the camera noise (S equivalent

position uncertainty < 0.15 pxl) and image transformation (£ < 0.2 pxl). The cali¬

bration error can be split into two components, one of which is in the direction of the

epipolar line and the other of which is perpendicular to it. The component parallel
to the epipolar line only changes the location of the safety envelope, whereas the

other component adds to the other errors. Because the calibration is performed on

images with füll resolution, the calibration error is divided by two.
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Figure 6.1: Definition of coordinate Systems

the model should include lens distortion and the target must be

measured with subpixel accuracy.

Versatility: the method should be usable for a variety of camera

Setups and lenses, using off-the-shelf CCD cameras.

Autonomous Operation: The calibration procedure should not

require any Operator Intervention such as providing an initial guess

for certain parameters or selecting calibration targets in the cam¬

era images. An Operator without special knowledge of calibration

should be able to calibrate the setup.

Efficiency: Calibration is done at the time of installation of the

system and therefore need not be done in real time.

6.1 Coordinate Systems

Several coordinate Systems are usually involved in the imaging process

(see Fig. 6.1 for their definition):

• The world coordinate system (xw, yw, zw) in which the safety en¬

velope is described.

• The robot coordinate system which usually eoineides with the

world coordinate system.

• The camera-centered coordinate system (xc,yc,zc) which is ori-

ented such that the x-axis is parallel to the scan-lines and the

z-axis eoineides with the optical axis of the camera and points
towards the scene. The origin of the camera-centered coordinate-

system eoineides with the optical center (= perspective center) of

the camera.
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• The image plane coordinate system (xi,yt) in which the metric

image plane coordinates are given. It is a two dimensional coor¬

dinate system that is coplanar with the x-y-plane of the camera

coordinate system, but is translated by / in the z-direction in

order to coincide with the sensor plane.

• The framegrabber coordinate system (#/,j//) in which the pixel
coordinates are given. This coordinate System has the same orien¬

tation as the image coordinate system but is translated and scaled

such that the origin eoineides with the upper left-hand corner of

the image and the pixels come to lie on integer positions.

6.2 Pinhole Camera Model

The simplest camera model is the parallel projection model. However,
this is only useful if the object distance is much larger than the ob¬

ject dimensions. A more precise and more frequently used model is the

"pinhole camera model". It is based on an ideal perspective imaging

process, modeling the lens as a pinhole and is based on the collinearity

constraint, where object point (P), image point (Pu) and the camera

center (O) lie on a straight line (see Fig. 6.2).
In the following, the "pinhole camera model" is derived. Let

{xw,Uw, zw) represent the 3D coordinates of an object point P in world

coordinates and {xc,yc,zc) represent the same point in the camera-

centered coordinate system (see Fig. 6.2). The world coordinates of

point P are transformed into the camera coordinate system by a ro-

camera center 0 >X"

yc / \ ,.

Image plane/
V 0,

\ /

\ "Xpu(xf.yf)

p
^^ Pfrc.yc.zc)

P(xw>ywizw)

Figure 6.2: Camera geometry with perspective projection
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tation and subsequent translation2. The relationship between the two

coordinate Systems is given by:

Xc T\\ rn ri3 Xyj t-x

Vc = r2i r22 r23 Vw + ty

.

zc
. _

r3i r32 r33 Zw [ u \
xw

= R Vw + T .

%w

(6.1)

In the next step the point is transformed from the three-dimensional

camera coordinates to ideal (undistorted) image coordinates {xu,yu).
This transformation is an ideal perspective projection:

/ and yu = f
Vc

(6.2)

In the equations above the following parameters are used:

R the 3x3 rotation matrix (rttJ), expressed in world coordinates. It

defines rotation around the x, y and z-axis (3 degrees of freedom).

T the translation vector (tx, ty,tz), expressed in the camera centered

coordinate system.

f the effective focal length, also called the camera constant. It de¬

fines the scaling of the image.

In the next step the metric image coordinates (xu,yu or x^,yd wiit

considering lens distortions) are transformed into the frame-grabber c<

ordinates (Xf,Yf) by scaling and cropping (translating by (Cx,Cy)):

when

>er co-

Xf =
,/ xu -j- L>x
dx

Yf = Tyu + Cy (6.3)
ay

with d' = d,
Nn:

N;fx

2It is also possible to first translate and then rotate the point; T is then expressed
in world coordinates, whereas here T is expressed in camera-centered coordinates.
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where

(Xf, Yf) row (Xf) and column (Y)) represent the number of the im¬

age pixel in the Computer frame memory

{Cx,Cy) coordinates of the true image center (so-called piercing

point), expressed in frame-grabber coordinates

dx center to center distance (or pixel spacing) of adjacent CCD

sensor elements in x-direction (scan line). This measure is

calculated from sensor specifications. It is usually not equal
to the sensor element size due to fill-factors less than 100%!

dy center to center distance of adjacent CCD sensor elements

in y-direction

Ncx number of sensor elements in x-direction

Nfx number of pixels in a line as sampled by the Computer. In

case of pixel-synchronous sampling, Nfx is equal to iVCI.

sx uncertainty image scale factor that is to be calibrated. dx

and dv are usually not known with absolute precision. True

sensor spacing is expressed as dx = -^- sdx and dy = sdy.
The factor s is a scaling of the entire image and has the

same effect as a change of the focal length and therefore can

be included in /. Consequently only the factor sx must be

introduced as additional parameter.

Combining Equations (6.1), (6.2) and (6.3) leads to the following equa¬

tions that transform world coordinates into pixel coordinates (distor¬
tions ignored):

v
sx r\\xw + r\2yw + ri3zw + tx . .

Xf
=

-p- / : : TT + Cx (bA>
dx r3ixw + r32yw + r33zw + tz

y _
J_ f

r2\Xw + r22yw + 7-23.2«; + ty . .

dy r3\xw + r32yw + r33zw +tz
v
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This set of equations may be expressed in matrix form, using homoge-
neous coordinates3:

Pi =
wXf
wYf
w

= M

xw

Vw

^w

1

(6.6)

with M =

rii/g+Cxrai r12f^+Cxr32 r13f^-+Cxr33 f^tx+Cxtz
r2ifj- + Cyr3i r22/ j- + Cyr32 r23fj- + Cyr33 f^-ty + Cytz

r3i r32 r33

The parameters R and T are called extrinsic parameters (6 degrees of

freedom) and the parameters /, dx, dy, sx, Cx, Cy intrinsic parameters.

6.3 Geometrical Lens Distortions

Imperfections in the design and assembly of cameras and their lenses

lead to a variety of aberrations which affect image color, intensity, focus

or geometry. For geometrical measurements camera distortion is a main

concern because it directly affects the position of image features. The

formulae for the pinhole camera must therefore be extended by a distor¬

tion term. Since only the distorted coordinates (x<j, yd) are observable

and one is usually interested in the undistorted coordinates (xu,yu),
correction is expressed as a term S(x, y) which is added to the observ¬

able distorted image coordinates (xd, yd) to produce the undistorted

coordinates (xu, yu):

xu = Xd + 6x(xd,yd)

Vu = yd + Sy{xdlyd)

(6.7)

(6.8)

3The use of homogeneous coordinates is advantageous because perspective trans-

formations can be expressed with the usual matrix algebra. In homogeneous co¬

ordinates a single component itself has no geometric meaning. The position of a

point is defined by some quotient of the homogeneous components. Therefore a

scaling of these coordinates does not change the position of the point. A point in

three-dimensional space is defined in homogeneous coordinates as follows:

P=[XY Z]T -> P = \pXpY pZ p]T ,

where p is any real scale factor. In order to get the point coordinate from homoge¬
neous coordinates, all the components must be divided by the last component (p) of

the coordinate.
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To calculate the non-observable distortion-free coordinates, various dis¬

tortion parameters are determined during calibration. All distortions

are expressed in the metric camera-centered image coordinate system4.
The three main sources of distortion are presented in the following.

Radial Lens Distortion

Radial distortion is strictly Symmetrie around the optical axis and

causes an inward or outward displacement of the image points from

their ideal position. A positive radial displacement is referred to as bar-

rel distortion (a in Fig. 6.3), a negative one as pineushion distortion (b
in Fig. 6.3). The radial distortion of a perfectly centered lens obeys the

following equation [39]:

Stadial = KiQ3d + K2Qd + K3Q?d H (6.9)

where Qd = \/xrf + v\ *s *ne distance from the prineipal point of the im¬

age plane and «i, k2, k3 are the coefficients of the radial lens distortion.

Ignoring terms of an order higher than 3, the radial lens distortion is

expressed by

Qu = Mi + Kieä) (6-10)

or in Cartesian coordinates as

xu = Xdil + Kitä + yj)) (6.11)

yu = yd{i + Ki(xd + yd))

Decentering Distortion

Non-colinearity of the optical center of lens elements results in decen¬

tering distortion. This distortion has both radial and tangential com¬

ponents, which are described by the following expressions [39]:

(^decentering radial = 3 (j\ Q2 + j2Q4 -| ) Sin((f> - fo)

^decentering tangential = 3 (jlQ2 + j2Q4 H ) COs((j) - </>n) (6.12)

4It is also possible to apply the correction on the framegrabber coordinates, but

because the lens distortions does not depend on the pixel dimensions, the correction

is usually applied on the metric camera coordinates.
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where </>o is the angle between the positive x axis and the axis of maximal

tangential distortion. In Cartesian coordinates and by ignoring terms

of an order higher than 3, Eq. (6.12) can be rewritten as

«Wentering x
= Plfa2 + y2) + 2p2Xy

<*decentering y
= 2piXy + p2(x2 + 3y2) . (6.13)

Thin Prism Distortion

Thin prism distortion arises from imperfections in the lens as well as

camera assembly (e.g. slight tilt of the image sensor). This type of

distortion got its name from the fact that it can be adequately modeled

by the adjunction of a thin prism to the optical system and is expressed
as

#thin prism radial = {i\Q2 + i2Q4 -\ ) sin(0 - <f>i)

^thin prism tangential
= (hQ2 + «204 H )«>s(0-0i). (6.14)

In Cartesian coordinates along the u and v axis and ignoring terms with

an order higher than 3 it is expressed by

"thin prism x
= ^ll,*E i 2/ /

<*thin prism y
= S2(x2 + y2) . (6.15)

Radial lens distortion is usually the most important distortion compo¬

nent. The correction of radial lens distortion is more important for wide

angle lenses (short focal length) than for telescopic lenses, as it increases

with shorter focal length.

Figure 6.3: Effect of radial lens dis¬

tortion for negative (a) and positive

(b) distortion parameter k
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6.4 Calibration Methods

There are a huge variety of calibration methods and it goes beyond the

scope of this thesis to give more than a short overview. A good overview

of calibration methods is presented in [40].
Emphasis will be placed on methods used in robotics. Calibration meth¬

ods will be divided into three groups according to the optimization
methods:

6.4.1 Linear optimization

The nonlinear Equations (6.4) and (6.5), characterizing the transforma¬

tion from 3D to 2D, can be treated as a linear set of equations if lens

distortion is ignored and the coefficients5 of the homogeneous transfor¬

mation matrix (Eq. (6.6)), instead of the real geometric parameters of

the model, are regarded as intermediate unknown parameters. There¬

fore, the over-determined linear system can be solved by a non-iterative

least Squares method such as singular value decomposition (SVD) [41].
If necessary, it is possible to recover the geometric camera parameters
from the transformation matrix [42].
Besides the fact that distortions cannot be treated, the accuracy poten-

tial is limited in noisy situations. This is due to the fact that the number

of unknowns (11) is larger than the degree of freedom (6 exterior and 2

internal parameters) and therefore the unknown parameters are linearly

dependent. In the presence of noise, such redundant parameterization
can lead to a good fit even for an erroneous combination of parameters.

6.4.2 Füll Scale Nonlinear Optimization

It is possible to calculate the parameters of any arbitrarily complex
camera model covering many types of distortions with an iterative op¬

timization algorithm. However, a good initial guess is crucial because

otherwise iteration may end up with a bad Solution (local instead of

global minimum). Therefore such methods violate the demand for au-

tonomous calibration. In addition, the interaction between the distor¬

tion parameters and the external parameters can lead to divergence or

to false Solutions unless the process of iterations is properly designed

m

5One of the 12 components should be set to a fixed value because the homogeneous
transformation matrix is only determined up to a scaling factor. Therefore only 11

parameters must be determined.
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6.4.3 Two Step Methods

Two step methods are a combination of the previously mentioned meth¬

ods. These methods involve a direct Solution for most of the parameters

and either some iterative Solution for the remaining parameters or an

iterative Solution for all parameters, using the direct Solution as an ini¬

tial guess. Because the approximate Solution is used as an initial guess,

the number of iterations is reduced and the optimal Solution is reliably

reached. The chance of finding only a local optimum is strongly reduced

compared to methods with a manually provided initial guess. Tsai [40]
and Weng [43] presented two different approaches. In this project an

extension of Tsai's camera calibration [40] was used and it will be de¬

scribed in more detail in the following section.

6.5 Modified Tsai's Camera Calibration

In order to use a two step method, the mathematical model must be

decomposed into two sets of parameters, one that can be solved using a

direct algorithm and a second set that is solved by nonlinear optimiza¬

tion. In Tsai's calibration the "radial alignment constraint" (RAC) is

used to establish this decomposition.
The radial alignment constraint6 results from the Observation that

the vectors OtPd, 0%PU and PozP (see Fig. 6.2) are parallel to each

other. Poz is the intersection point of the camera coordinate z-axis

with the plane parallel to the image plane and going through object

point P. It is important that not only OtPu but also 0%Pd is parallel to

P0ZP, because only Pd is observable. The point O must be known in

advance and this is not trivial since the framegrabber center does not

usually coincide with the lens center. However, since only a first guess

of the model parameters is computed, taking the framegrabber center7

proves to be sufficient. The radial alignment constraint is equivalent to

OtPd x PozP = 0, where x is the vector outer product. Therefore

{xd,ya) x (xc,yc) = xdyc-ydXc = 0 (6.16)

Substituting xc,yc from Eq. (6.1) and replacing x<j = j-x'd yields the

6For more detailed information about the radial alignment constraint and its

proof refer to [40, 44].
7Consequently Cx = l/2Ncf,Cy = y2Ncy.
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following equation:

xd
—{r2ixw-\-r22yw+r23zw-rty) = yd(ruxw+r12yw+r13zw+tx) (6.17)

with x'd = dx(Xf - Cx)

yd = dy{Yf - Cy) .

By rearranging the terms, the following over-determined System of lin¬

ear equations with the unknowns sxrn/ty, sxr\2/ty, sxr\3/ty, sxtx/ty,
r2i/ty, r22/ty, r23/ty is obtained:

VdiXWl ydiVwi ydizw\ ydi ~xdlxWl ~xdiywi —xdizwi

VdnXWn ydnVwn VdnZw„ Vdn ~xdnXwn ~xdnVwn ~xdnZWr>

tySxrn
t^Sxru
t^s^u
ty SXtX

tylr2i
C1r22

dn

(6.18)

i/r23
_

The parameters tx,ty, sx and the 3D rotation matrix R are determined

from these intermediate parameters (see [40] for a detailed description).
In a second stage an approximation of the effective focal length / and

the position tz are determined by solving the following over-determined

linear equation system:

»•213:«,! + r22yWl + r23zWl + ty -ydl

f
(6.19)

r2\xWn + r22yWn + r23zWn + ty -yd„

yd!{r3ixWl +r32yWl + r33zWl)

Vdn(r3ixWn + r32yWn + r33zWn)

Equation 6.19 is derived from Eq. (6.5) with k = 0 and substituting

Vd = dy(Yf - Cy).
Subsequently /, tz and K\ are determined by minimizing8 the sum of

Squares of errors of the nonlinear Equations (6.4), (6.5) and (6.12). The

8A modified Levenberg-Marquardt algorithm of the "minpack-project" (Argonne
National Laboratory) is used.
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Solution received so far may be poor because the estimation of the image
center (Cx,Cy) may be inaccurate and therefore the "radial alignment
constraint" may not hold true.

To improve the Solution, a better estimation of the image center

should be used. One possibility is to search for a better estimation of

the image center by minimizing the residual error of the radial align¬
ment constraint, Eq. (6.17). This step has to be done before /, Tz and

Kl are determined.

However, the method presented above has the disadvantage of provid-

ing a non-optimal Solution because by using the "radial alignment con¬

straint" only the tangential components of the points have been utilized

and the radial components were completely discarded [43]. Therefore

Tsai's method was modified by including a füll optimization which cal¬

culates and improves all parameters of

^(Xf-Cx)(l + Klr2) = /'"*» +'121h. +!!,*.+t,

sx r31xw + r32yw + r33zw + tz

dy{Ys - Cy)(l +
nxr2)

= f»
+»+r*»+tv

(6.21)VK f V'K '
r31xw + r32yw + r33zw + tz

V '

where r = J((Xf - Cx)^ + ((Yf - Cy)dyY
V sx

using the approximate Solution of the previous steps. This optimization

is done in two steps. In the first step, all the points except those near

the image center are used for the optimization. In the second step, the

optimization is performed using all image points. The results of the

calibration are presented in Chapter 6.7.

6.6 Subpixel Target Localization

For calibration, a set of targets with known positions in world coordi¬

nates and their corresponding image coordinates must be provided. The

calibration should yield subpixel resolution and therefore the targets are

measured with subpixel accuracy. Two different targets are mainly used

for subpixel localization:

• Circular targets, where the center is measured by binary or grey-

level centroid estimation or by elliptical contour fitting. One gen-

eral problem with centroid-based techniques is that projection will

cause the centroid to shift unless the object is coplanar with the
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image plane. Using grey-level centroid estimation, irregularly il¬

luminated patterns may cause a shift of the location. Detailed

information about centroid estimation is found in [45] and [46].
• Corners of Square- or diamond-shaped targets. Because the Cor¬

ners of the shapes are measured, there is no error induced by
perspective projection. In addition, such targets are very robust

to irregularly illuminated patterns because the subpixel position
is locally estimated.

In order to measure the corner points, straight lines are fitted

through the edges and the intersection of each two such lines yields
the corner points. In case there is strong nonlinear distortion, the

edges cannot be approximated by lines and an approximation with

polynomial curves9 should be used.

For the above mentioned reasons, diamond-shaped targets were chosen

as fiducial marks the calibration. Since edge estimation with subpixel
resolution is the most important task in target localization, subpixel
estimation methods will be presented in more detail.

Subpixel or super-resolution estimation methods are used to

estimate the position of an image feature (e.g. edges) to greater

precision than that attainable within the restriction of discretisation.

All methods use some filtering, model fitting, image reconstruction or

interpolation techniques applied on the grey-level values defined at

discrete locations. Common to all methods is that the edge location

is first located to pixel precision. All subpixel estimation methods are

based on the fact that the edge position is identical to the inflexion

point of the edge profile. This follows from the fact that the point

spread function (PSF) of the imaging process is Symmetrie around its

intensity axis and the object intensity profile is Symmetrie around the

(straight) edge location (see proof in [47]).

A subpixel estimation method for the purpose of target localization

should fulfill the following requirements: It should

• be applicable to edges of any direction.

• yield good results for ramp edges of different widths (blurred
edges !) and not only for ideal step edges.

• be invariant to multiplicative and additive changes in image in¬

tensity.

9The polynomial should be of adequately low degree such that noise is not mod¬

eled.
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• be insensitive to noise. Therefore methods using derivatives (e.g.
interpolation or center of mass of gradient Operator) are disadvan-

tageous.

• have inexpensive implementation. Therefore closed form Solutions

are preferable because they simplify calculation and reduce com¬

putational load.

In the following, several subpixel edge estimation methods are discussed.

6.6.1 Subpixel Edge Detection by Interpolation

Due to the fact that the inflexion point cannot be determined with linear

interpolation, the subpixel location is assumed to be the intersection of

the linearly interpolated intensity values10 with the mean value of the

ramp (= (Itop + hottom)/2). Itop and hottom are the mean grey-level
values at either side of the edge. Because interpolation is sensitive to

noise, lowpass filtering of the image data should be considered. This

method yields the best Performance for smooth linear ramp edges.

6.6.2 Parametric Curve Fitting

An intensity edge can be reconstructed by fitting an appropriate para¬

metric model to the sampled grey-level data. The (subpixel) location of

the edge is equal to the inflexion point of this fitted curve. The following
curves have been used to model edges [46, 47]:

• Polynomials: A polynomial curve or surface is fitted to the image
data f(x, y) in the neighborhood of the edge in a least Squares

sense:

n

p(x, y) = y^ajj-xsin(f> + ycos(j>)% = p(a, 0) . (6.22)
i=0

By minimizing \f(x, y)-p(x, y)\, the parameters of the model edge
are obtained. The angle and direction of the edge are then derived

from this model. Because a füll polynomial model (degree of free-

dom equal to number of supporting values) can model anything

including noise, a model of a lower degree is used [46].

10 In practice there is no need to interpolate the entire profile and the edge position
can be calculated directly from the two discrete intensities on either side of the

subpixel edge position.
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• Sigmoids: The parameters a, ß, a and b of the equation

ax+ß
_

i

^)---^ß—7 + b (6-23)

•

are determined by nonlinear least Squares optimization. The in¬

flexion point is given by —ß/a.

Arctangent: In the same way the arctangent function

A{x) = a atan(ax + ß) (6.24)

can be fitted to the sampled image data.

Cubic Splines: By fitting a spline, a smooth curve can be con-

structed from noisy points. In [47] polynomials of degree 3 were

fitted. However, any other function differentiable up to the second

order can be used as well.

Tests performed in [47] showed that the cubic spline interpolation yields
the best results (according to maximal error), followed by the sigmoid
method. However, all curve fitting methods are computationally inten¬

sive because they involve some non-linear optimization. ***

6.6.3 Edge Detection by Image Reconstruction

A sampled edge can be reconstructed using the sine (sin(27rx)/(27rx))
function. However, because of the slow decrease of the sine function,

many terms are required in the summation. By reconstrueting11 a low¬

pass filtered signal using the Gaussian reconstruction function

2

G{x) = 7h^' (6'26)

Performance in the presence of noise is increased and the computational

expense decreased [46]. The subpixel edge position is obtained by calcu-

lating the center of mass of the (discrete) derivative of the reconstructed

signal. The a of the Gaussian filter should be chosen such that the re¬

constructed signal has no ripple; in the simulations a = 0.7 was chosen.

It is important that the Support region is chosen large enough and that

the area of the boundary decay is excluded for the calculation of the

11 For realization, it is sensible to reconstruet a discrete image with an appropriate

high resolution.
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Figure 6.4: Model of a one-dimen- Figure 6.5: Model of a

sional edge profile two-dimensional edge profile
on unit circle

subpixel position.

According to tests presented in [46], results obtained with Gaussian

reconstruction are much better than those obtained with polynomial

fitting.

6.6.4 Moment-Based Edge Detection

All moment-based edge detectors fit a parametric model edge to the

empirical edge data such that some moments are preserved. The main

advantage of moment-based subpixel estimations is that they are en-

tirely based on Integration, which is advantageous over derivative type

detectors because this reduces the effect of uncorrelated noise. The

methods presented in the following differ in the moments used.

Tabatabai-Mitchell Operator

There are two versions of this Operator: a one-dimensional and a two-

dimensional one. In the one-dimensional case the parameter h\,h2,pi
and p2 = 1 - pi of the model (see Fig. 6.4) are calculated such that the

following moments are preserved

1
"

m, = -^iJ=piÄi+p2/i2 * = 1,2,3. (6.26)
n

j=i

In [48] it is shown that the subpixel position is invariant to grey-level
offset and scaling. In addition, it is shown theoretically that noise and

lowpass-filtering12 of the edge profile moves the expected edge towards

Nevertheless it is useful to lowpass-filter noisy images.
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the center of the estimation window. Image blurring produces a similar

effect on the edge position.
The one-dimensional method can be extended to a two-dimensional

Operator. The Operator is applied on a grid of 69 pixels approximating
the area of a unit circle. The model edge (see Fig. 6.5) is defined over

a unit circle with two brightness values h\ and h2 separated by the line

y sin tf> + x cos <f> = g . (6-27)

The first three sample moments are calculated over the unit circle (D)

*• = -// /l(a;» V)dxdy = KPi + h\p2 i = 0,1,2,3 (6.28)m.

where p\ and p2 are the fraction of the circle covered by intensity h\

and h2, respectively. The integral becomes a weighted sum if I(x, y) is

constant over one pixel. Analog to the one-dimensional Operator, edge

parameters are calculated by preserving the moments. The additional

direction of the edge is calculated using the first geometric moments in

the x and y directions. For a proof and derivation of this Operator refer

to [48].

Zernike Moment-Based Edge Detection

Zernike moments are special moments that use the circular polynomials
of Zernike

Vmn{Q,<l>) = Rnm{Q)e>m+ (6.29)

(n-|m|)/2 2s

with iw.)= e
/
Jr (w

11
*—* t n. A- \m.\ \ In — m

S al (?L±M - X(!L^ -

X

which are orthogonal in the inferior of the unit circle. These moments

depend on the image data and properly chosen Zernike moments can

be used to describe edges [49]. To calculate the Zernike moments Anm,
the neighborhood of an image pixel is mapped onto the inferior of a

unit circle13 {f(x, y) = mapped image) and then projected onto a set

of complex polynomials

Anm = ^ I I f{x,y)V;m{Q,<t>)dxdy (6.30)

x2+y*<l

A neighborhood of any size can be mapped onto the unit circle.
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^EE/(^) / V;m(ß,<p)dxdy (6.31)
x y

p(x,y)

where p(x, y) is the area of pixel (x, y) within the unit circle. For discrete

images the moments Anm can be expressed as convolution with a kernel

Mnm, which is calculated according to Eq. (6.31). The step edge is

defined as shown in Fig. 6.5. Using the polynomials

Voo = 1 Vn =x + jy (6.32)

V20 = 2x2 + 2y2-l

the Zernike moments Aqo, -^li and A2q are obtained by convolving the

image elements with the mask.

The edge parameters are calculated by preserving the three moments.

For further information and a proof see [49].

6.6.5 Maximum Likelihood Edge Estimation

The likelihood of all possible edge patterns $, is calculated in a region
Q around the edge

m*i] = ^^e~^ZniHX'V)^,(X'y))2 (6-33)

and the most likely edge yields the subpixel position. Results presented
in [50] show that this method is considerably superior to the Tabatabai-

Mitchell Operator under moderate and high noise conditions (SNR =

AH/a < 10) and comparable at low noise. However, the edge pattern
can only be calculated if the PSF14 and the shape of the edge are known

a-priori. The assumption of a wrong edge shape especially deteriorates

the result considerably: when a step edge is assumed the RMS error of

0.04 pxl increases to 0.1 pxl for a ramp width of 3 pxl or even 0.4 pxl
for one of 6 pxl.

6.7 Results

Most step estimation methods make some assumptions about the form

of the edge. The most restricting are the moment-based and maximum

14Point Spread Function of the imaging process.



6.7. Results 57

Figure 6.6: Continuous

simulated edge profiles, pro¬

duced by filtering an ideal

step edge with a Gaussian

lowpass with a = O.Ol, 0.4,

0.8, 1.2, 1.8, 2.2 (w = width

of ramp in pxl).

2 4 6 8 10 12

pixel number

likelihood methods, since they assume the edge to be an ideal step edge
or a ramp of defined width. However, real edges are always ramp-shaped

edges of various steepness due to diffraction and blurring. Especially in

camera calibration for 3D applications there will most likely be some

blurring since targets at different distances will usually not be in focus

at the same time.

Because all Operators produce erroneous results if the edge is not

entirely within the support region, the allowed ramp width is restricted

because of the limited support region on which the Operators are applied
to.

Therefore it is important to know the sensibility of various methods

to non-ideal edges. First, some of the methods were tested for sys-

tematic errors by Simulation with noise-free edge profiles of different

ramp widths, then the Operators were applied to real images of different

blurring.

6.7.1 Performances on Ideal Edges

Artificial edge profiles are produced by convolving an ideal step edge
with a Gaussian lowpass of varied a (see Fig. 6.6). This lowpass modeis

the effects of diffraction and blurring due to out-of-focus edge patterns.
The discrete pixel values are then obtained by sampling the continuous

edge profile. The sampling by the CCD sensor is simulated by sam¬

pling with a finite pulse (Integration over pixel area) instead of an ideal

impulse:

/•P+//2

I(p) = I I(x)dx with fill-factor / = 0... 1
. (6.34)

Jp-f/2
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Tabatabai 1D Tabatabai 2D

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

edge position [pxl]
linear interpolation (9 pxl)

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

edge position [pxl]

Zernike 9x9

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

edge position [pxl]

Polynom fitting

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

edge position [pxl]

0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

edge position [pxl]
linear interpolation (13 pxl)

i -0.4 -0.3 -0.2 -0,1 0.1 0.2 0.3 0.4 0.5

edge position [pxl]
Zernike 13x13

0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

edge position [pxl]

Gaussian reconstruction

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

edge position [pxl]

Figure 6.7: Error of estimated edge position for various ramp widths

(in pxl) as a function of true edge position (notice the different scalings
of the error-axis !)
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In Figure 6.7 the errors of the estimated subpixel position of the

tested methods are plotted against the true edge position15. Two dif¬

ferent effects are visible:

• steep ramp edges (ramp width < 2 pxl, steepness > 100 inten¬

sity levels/pxl) produce position errors with a sinusoidal shape,
which results from under-sampling of the true edge. Such steep

edges were only observed in the y-direction (orthogonal to scanline

direction) for analog cameras16 when the camera settings are such

that diffraction is minimal. Performance for such edges depends
on the capability of reconstructing sparsely sampled signals. The

Gaussian reconstruction and the Zernike methods show the best

Performance for steep edges, with a maximum error of less than

0.08 pxl for the extremely steep edges. Linear interpolation yields
moderate error, whereas Tabatabai's methods yield the worst re¬

sults, with an error of more than 0.15 pxl.

• with smooth ramps the problems that either the real edge
does not agree with the assumption of an ideal step edge as a

model for Zernike's and Tabatabai's methods or that part of the

ramp is outside the support region of the method may arise.

Both problems result in a shift of the estimated edge position
towards the center of the support region for smooth ramps, which

eoineides with the effect of lowpass filtered edge profiles derived

theoretically in [48]. Therefore in the case of smooth ramps the

model of model-based methods should be changed or the support

region of reconstruetion-based methods enlarged.

Enlarging the support region of moment-based methods also

improves the result for smooth ramp edges and is easier to

implement than an adaption of the model. The improvements
result from the fact that by mapping an enlarged support region
onto the unit circle the ramp gets scaled, which makes it steeper
and therefore its shape closer to that of the ideal model edge.
The results indicate that as a rule of thumb the support region
should be three times the ramp width (compare results of 9 and

13 pixel-wide regions for Zernike's moments methods).
Both the linear interpolation and the Gaussian reconstruction

with large support regions produce very good results for smooth

15Equal to the edge position of the ideal simulated edge.
16This is due to the limited bandwidth of the signal path in analog cameras and

framegrabbers. Digital cameras can produce such steep edges in both directions.
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ramps. The Gaussian reconstruction yields good results because

it is not model-based and is only based on the fact that the

subpixel position is identical to the inflexion point. Linear

interpolation anticipates smooth linear ramps and yields good
results as long as the entire ramp is inside the support region (see
worse results for a support region of 9 pixels).

The results of the Gaussian reconstruction are better than those ob¬

tained by other methods. The Gaussian method has the advantage of

not needing a model edge and therefore this method is valid for all edge

patterns. In addition, the lowpass filter characteristic of the Gaussian

reconstruction results in good noise suppression. However, the main

disadvantage is the great computational load due to the fact that a

two-dimensional part of the image must be reconstructed. This method

is especially suited to applications where high precision is needed and/or
the edge shape is not known a priori.
It was not further evaluated in this project because of the great com¬

putational load.

6.7.2 Influence of Noise

The data presented so far was produced using synthetic data without

noise. However, real images have noise from various sources:

• Shot noise of CCD sensor.

• Thermal noise of camera and framegrabber amplifiers.

• Noise induced by line jitter, which depends on the local derivative

of the image signal in the scanline direction. As a consequence

noise is especially high at edges perpendicular to the scanline and

therefore edge location is greatly influenced by this noise source.

With pixel-synchronous grabbing, line-jitter is reduced but not

eliminated.

In order to measure the subpixel position error induced by noise, a series

of 'identical' real images were taken and analyzed. The total grey-level
noise17 of the images proved to have approximately a Gaussian distri-

bution with a Standard deviation er — 1.

Table 6.1 presents the mean Standard deviation of all measured corners

(x, y) and of the center of the fiducials (ex, cy) obtained with the various

17A "noise-free" image was produced by averaging about 100 images and the noise

was then defined as the difference of the individual images to the averaged image.
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Method

lin. inter¬

polation

Tabatabai

1 D

Tabatabai

2D

Zernike

9x9

Zernike

13 x 13

RMS error x 0.0178 0.0187 0.0258 0.0224 0.0247

RMS error y 0.0043 0.0068 0.0085 0.0089 0.0126

RMS error ex 0.0106 0.0111 0.0115 0.0113 0.0113

RMS error cy 0.0016 0.0026 0.0031 0.0027 0.0032

a) Results with Square calibration targets

Method

lin. inter¬

polation

Tabatabai

1D

Tabatabai

2D

Zernike

9x9

Zernike

13 x 13

RMS error x 0.1346 0.1651 0.0239 0.0229 0.0261

RMS error y 0.1310 0.1638 0.0175 0.0131 0.0151

RMS error ex 0.0262 0.0383 0.0151 0.0171 0.0188

RMS error cy 0.0209 0.0343 0.0070 0.0058 0.0058

b) Results with diamond shaped calibration targets

Table 6.1: Position errors of real images (with noise):
two-dimensional methods produce slightly better results with dia¬

mond-shaped fiducials.

methods. It is obvious that the x-position has a higher error than the

y-position. This is due to the fact that line jitter only influences edges
perpendicular to the scanline, whereas only shot noise and thermal noise

influence edges along both axes in a similar way.

The linear one-dimensional interpolation and the one-dimensional

Tabatabai method were evaluated on a profile along the x- or y-axis.
This yields good results as long as the edges are parallel to either the

x- or y-axis. In the case of diamond-shaped fiducials this is no longer
true and the results deteriorate as can be seen in Table 6.1.

6.7.3 Performance on Real Images

At a second stage the accuracy of real calibration targets using real

camera images was investigated. For that, a calibration target was fit¬

ted on a linear robot and a series of images was taken with consecutive

images being separated by about I/20 of a pixel in the y-direction. The

targets have a size of 30x30 mm which corresponds to 64x64 pxl in

the image. A ground truth for the target positions was fitted to the

measured image coordinates of the target points by linear regression.
Since the target is moved linearly, this produces a reliable ground truth

against which the measured positions are compared. In order to test the
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maximal residual of

one image series

x y

all image series

x y

mean incremental step 1.3% 0.04% 8% 0.8%

absolute value 0.1 pxl 0.1 pxl lpxl 1 pxl

fiducial width 0.1 pxl 0.1 pxl 0.35 pxl 0.3 pxl

Table 6.2: Maximal deviations of calculated ground truths for each

tested method and differently blurred image series.

influence of blurred images1 on the subpixel estimation, image series

with different focus settings were produced and analyzed. The ramp

steepness (intensity step per pixel) was manually measured. The steep-

ness of ramps in the y-direction was shown to be approximately 60% to

80% higher because of reasons mentioned earlier in this chapter.

In Table 6.2 the residuals of this ground truth (start value and incre-

ment) among the different methods and image materials are presented.
It can be seen that the residuals of one image series with different meth¬

ods is much smaller than those among different images series. This

shows that the various subpixel estimation methods produce consistent

results and that the main source of errors of the ground truth is differ¬

ent blurring and slight changes in the scaling of the images (-> fiducial

width) and inexactness in producing the image series (-* error of abso¬

lute position is larger than error of relative fiducial widths). The larger
relative errors in the x-direction are due to the much smaller translation

in the x-direction. Figure 6.8 shows the position error in relation to the

calculated ground truth as a function of ramp-steepness.

In all results presented so far, 16 subpixel positions were estimated

along each edge of the Squares. The accuracy of the subpixel estimation

depends on the number of subpixel estimations carried out per edge.
From Figure 6.9 it can be seen that more than 16 subpixel estimations

produce only minor improvements of accuracy.

6.7.4 Conclusion

It can be seen that the discussed subpixel estimation methods do not

perform very differently and there is no method that is the best for all

applications. Although the Gaussian reconstruction seems to outper-

form other methods, it has the drawback of being much more compu-

Blurring reduces ramp-steepness
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Figure 6.8: RMS (in x- and y-direction) of position error (reference
is calculated ground truth) as a function of method and blurring (i.e.

ramp steepness [Aintensity/pxl]).

a 0.12

5 10 15 20 25 30

number of subpixel estimations

Figure 6.9: RMS position er¬

ror and position Variation for dif¬

ferent number of subpixel estima¬

tions per edge (all values given in

pixel)

tationally intensive.

However, the most important difference exists between 1D and 2D meth¬

ods, which should be used for edges of arbitrary direction. The good
results of the linear interpolation methods with large support regions
are only obtained as long as the edges are perpendicular to either axis

or the linear profile is laid perpendicular to the edge. The profile val-
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ues must then be obtained by resampling, which increases the compu¬

tational load. The same holds true for the 1-dimensional Tabatabai

method.

In the implementation, the Zernike method with a support region of

13x13 was chosen because it performed well in relation to necessary

computation.

6.8 Implementation

6.8.1 Calibration Pattern

In order to be able to calibrate all parameters of the camera model

(including uncertainty scale factor sx) a non-coplanar set of calibration

points must be provided. Either a pattern with non-coplanar points
or a pattern with coplanar points that is moved to several heights can

be used. Whereas the first needs only one image and facilitates easier

manipulation during calibration, the latter is easier to fabricate and

was used in this project.
If the parameter sx is known exactly (e.g. from an earlier non-coplanar

calibration), it is possible to use only a coplanar set of points, which

simplifies the calibration procedure. However, in this case it is very

important that the plane with the calibration pattern is not parallel to

the image plane19.
In both, the coplanar and non-coplanar calibration, the world coor¬

dinate system should be positioned such that the world coordinate

origin is set away from the origin and y-axis of the camera centered

coordinate system. This so that ty ^ 0, which avoids treating the case

of ty = 0 specially.

A pattern of 360 mm x 480 mm with 6x8 Square white fiducials

of 33 x 33 mm on a black background was produced. The precision
of the targets is better than 0.1 mm. For non-coplanar calibration

the calibration pattern is positioned at three different heights by using
different distance pins (0, 50, 100 mm). The cameras are positioned
about 1 m above the calibration pattern. The 1/2 cameras are equipped
with wide angle lenses of a focal length of 10 mm.

19In the case of a calibration pattern parallel to the image plane, the values of

focal length and distance to the pattern cannot be resolved since both parameters

scale the image in the same way.
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The camera focus was set such that the middle calibration plane
was slightly out of focus and the lens aperture was set such that no

brightness clipping arises, which would very much deteriorate the results

of the subpixel target estimation.

6.8.2 Automatic Target Localization

Manual selection of targets in an image is labor-intensive and prone to

error. Therefore an automatic procedure where only the search win¬

dow must be manually selected was implemented. The program then

searches the Square- or diamond-shaped targets and calculates the sub¬

pixel position of their corners.

In the initial phase, edge points of the Squares are found by applying
a kind of linear high pass filter along a grid of the image. Then a spe¬

cial search algorithm Clusters and sorts the edge points belonging to a

Single fiducial. The initial guess for the four corner points is produced

by calculating the intersection points of the straight lines fitted through
these edge points by a least Squares approximation.

Subsequently the edge position is determined with a subpixel estimation

method along each edge at several positions. The final corner points are

the intersection of the lines fitted to these subpixel edge points.

6.9 Results

In order to judge the accuracy and to compare different calibration

methods with each other, an adequate measure is needed. A measure to

indicate the attained accuracy of a calibration must not be influenced by

change of focal length, object distance or stereo baseline. Weng et. al.

[43] have proposed a new measure for calibration error which overcomes

these problems. This measure, the normalized stereo calibration error

(NSCE), is the ratio of the lateral error in 3D space and the Standard

deviation of the lateral digitization noise:

NCE = NSCE=-£ (*.-».)2 + (».-y«)a
. (6.35)

Lateral error is defined as the distance between the backprojected

points (x,,y,,i,)20 and the known coordinates of the calibration tar-

20All coordinates expressed in the camera-centered coordinate System
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gets (xl,yl,zl), projected onto the xy-plane of the camera-centered co¬

ordinate system. In order to derive lateral digitization noise, imagine

projecting each image pixel back onto a plane (z = zt) coplanar to the

image plane and going through the backprojected point. This area in-

dicates the uncertainty due to sampling at this distance. The uniform

digitization noise in this rectangle of a x b has a variance of

(a2 + b2)/12 = z2(C-^)2 + (£f)2)/12 (6.36)
Jdx jdy

where rsp is the attainable subpixel resolution (/, sx, dx, dy according
to Section 6.2).
For Systems with only one camera the NSCE is not directly applicable,
as z, cannot be calculated from the image data. Therefore (xl,yt,zt)
is evaluated as the back-projection of the image point onto the plane
z = zt, and therefore zx — zt.

The calibration was performed using three planes with calibration

targets at different heights. Usually two of the planes provide the

calibration points and one the test points. Five subpixel estimation

methods (linear interpolation, Tabatabai's moment-based methods and

the method based on Zernike moment) were used. In addition, two

different targets, square-shaped targets with their edges approximately

parallel to the image boundary and diamond-shaped targets, were used.

The following can be concluded from the calibration:

• The subpixel methods using one-dimensional profiles parallel or

perpendicular to the scanline yield good results only when the

edges are also adjusted along the image boundary. Therefore these

simple methods cannot be used with diamond-shaped fiducials.

• Calibration results using diamond-shaped fiducials are slightly
better than those with the square fiducials (only in the case of

two-dimensional edge estimation !).

• The best accuracy of the test pattern is produced for the test-

pattern between the two calibration planes. This shows that the

calibration patterns should be positioned in about the same area

as the camera model, for which the calibration was performed,
is intended to be applied. However, additional error is relatively
small.
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selected

Test-pattern

lin. inter¬

polation

Methods

Tabatabai Tabatabai

1D 2D

Zernike

9x9

Zernike

13 X 13

highest 1.71 1.52 2.19 1.91 1.86

middle 1.17 1.07 1.72 1.46 1.26

lowest 1.68 1.44 1.66 1.42 1.53

all 1.12 1.02 1.67 1.38 1.16

difference 46% 42% 27% 31% 48%

Results with Square calibration targets

selected

Test-pattern

lin. inter¬

polation

Mel

Tabatabai

1D

,hods

Tabatabai

2D

Zernike

9x9

Zernike

13 x 13

highest 7.07 3.46 1.77 1.68 1.38

middle 5.31 2.10 1.62 1.41 1.38

lowest 6.89 2.52 1.94 1.60 1.48

all 5.79 1.91 1.28 1.06 0.98

difference 33% 65% 20% 19% 7%

Results with diamond-shaped calibration targets

Table 6.3: Normalized Calibration Error (NCE) for various methods

• When all the patterns were included in the calibration and the

accuracy of all calibration patterns measured, the errors were

reduced by about 25-40% and 0-35% for diamond- and square-

shaped fiducials respectively. This is due to the fact that the

parameters were optimized for the test-points, too.

In Table 6.3 the NCEs of the performed camera calibration are given.
In addition, the image plane error is presented in Table 6.4. This is the

difference between the measured image plane coordinate and the projec¬
tion of the world coordinate onto the image plane, using the parameters

of the camera model.

The NCE value obtained with our calibration is about the same as

Weng et. al. [51] reported for the calibration for a wide angle lens21

when only radial distortion was considered and a subpixel resolution of

0.2 pixel was assumed.

21Wide angle lenses (short focal length) usually have higher distortions. Therefore

they normally produce worse results than long focal lenses if lens distortion is not

perfectly modeled (— uncorrected systematic errors).
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selected

Test-pattern

lin. inter¬

polation

Tabatabai

1D

Methods

Tabatabai

2D

Zernike

9x9

Zernike

13 x 13

highest

0.14

0.07

0.34

0.13

0.07

0.35

0.18

0.10

0.46

0.18

0.09

0.42

0.15

0.08

0.43

middle

0.10

0.05

0.25

0.09

0.05

0.23

0.14

0.07

0.37

0.12

0.06

0.36

0.10

0.06

0.31

lowest

0.14

0.06

0.30

0.13

0.06

0.30

0.14

0.07

0.39

0.13

0.07

0.31

0.14

0.06

0.31

all

0.09

0.05

0.16

0.08

0.04

0.16

0.13

0.07

0.20

0.11

0.06

0.19

0.09

0.05

0.15

Results with Square calibration targets

selected

Test-pattern

lin. inter¬

polation

Tabatabai

1 D

Methods

Tabatabai

2D

Zernike

9x9

Zernike

13 x 13

highest

0.57

0.19

1.46

0.28

0.09

0.54

0.14

0.06

0.33

0.14

0.08

0.38

0.11

0.06

0.38

middle

0.43

0.30

1.48

0.17

0.09

0.44

0.13

0.07

0.29

0.11

0.06

0.32

0.11

0.05

0.29

lowest

0.56

0.46

2.03

0.20

0.13

0.68

0.16

0.07

0.34

0.13

0.06

0.32

0.12

0.05

0.24

all

0.47

0.35

1.06

0.15

0.10

0.36

0.10

0.05

0.16

0.09

0.05

0.16

0.08

0.05

0.16

Results with diamond-shaped calibration targets

Table 6.4: Absolute mean value, Standard deviation and maximal im¬

age plane error (in pixel) for various methods



Chapter 7

Transformation

Image transformation is used to generate the hypothetical image. First the

necessary transformations are derived for a plane and elliptical safety enve¬

lope. In the second part the possible transformation methods and their suit-

ability are discussed.

7.1 Geometrie Transformation

A spatial transformation is a mapping function that defines a geometric
relation between each. point in the input and Output image. The map¬

ping function can either be speeified by an analytic expression such as

an homogeneous transformation matrix (affine and perspective trans¬

formation), polynomial expressions (e.g. distortion correction), or by
a dense grid of control points resembling a 2-D spatial look-up table

(LUT), which defines any arbitrary mapping function.

In this application geometric transformation is used to transform one of

the images into the hypothetical image, given the camera model and an

analytical description of the safety envelope. For an arbitrary form of a

safety, envelope the image may be transformed by back-projecting every

point of one image plane onto the Separation skin and projeeting the

resulting point in world coordinates onto the other image plane. How¬

ever, this procedure is only necessary for geometries where no closed

Solution for the transformation exists. For plane and pieeewise plane

safety envelopes a closed form Solution for the transformation can be

derived.
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left camera

image

(distorted)

Av

right camera

image

(distorted)

undistort distort
"C

undistorted

image

spatial B

transformation

undistorted

image

Figure 7.1: Transformation from right to left image

The entire transformation from the right to left camera image is

broken down into the following steps (see Fig. 7.1):

A: transformation from distorted to undistorted coordinates of the

right camera

B: spatial transformation according to safety envelope from right to

left image

C: transformation from undistorted to distorted image coordinates of

the left camera.

The transformation from distorted to undistorted image coordinates is

a nonlinear transformation. Therefore it cannot be included in homo¬

geneous image transformation and will be treated separately.
In order to calculate the distorted image coordinates (C), the equation

Qu = £?d(l + Klßd)

must be solved for ßd which results in a cubic equation.

1
. -Qu

(7.1)

Qöd+ ~ Qd +
K K

= 0

(7.2)

ßd+ p 9d+ q = o
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This cubic equation in ßd can be solved with the Cardan method [52].
Depending on the determinant

the following real valued Solutions are obtained:

D>0: ßd = s + t with s = yJ-q/2 + y/D

t — -p/3s
(7.4)

D < 0 : ßd = 2^>cos((y> + 4tt)/3) with ß = y/-p3/27
cosip = —q/2ß .

7.1.1 Plane

It is possible to derive an algebraic description of the transformation

for a plane safety envelope. The arbitrarily positioned cameras are de¬

scribed by the homogeneous matrices Mi and M2 for the perspective
transformation of the world-coordinates (X, Y, Z) into the image coor¬

dinates (61,62):

W\U\

W\V\ = MX

"

X
'

Y

z
62 =

W2U2

W2V2 = M2

'

X
'

Y

z
W\

1
w2

1

61

The plane E is described by

E : aX + bY + Z = d
.

Substituting Z from Eq. (7.6) into Eq. (7.5) yields

61 = Mi

X

Y

d-aX-bY

1

(7.5)

(7.6)

(7.7)

Combining the coefficients of X and Y we get a new transformation

matrix describing the projection of a point on the plane E given by
two-dimensional coordinates (X, Y):

6i=Pi

X

Y

1

(7.8)
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an - ai3a au - ai3b ai4 + ai3d X

61 = «21 — a230, a22 - a23b a24 + a23d Y
. (7.9)

031 - 0,330- a32 - a33b a34 + a33d J |_ 1

For any given image coordinate (ui,v-y) the world-coordinate (Pß) on

the plane E projecting onto (ui,v\) may be calculated by Computing
the inverse of the Square matrix P\:

'

wX
'

PE= wY =Pi16i . (7.10)
w

Calculating the projection of this point Pe onto the other image plane
is straightforward:

-1
62 = P2P£ = P2Pi 61 =

Pll Pl2 P\3

P21 P22 P23

P31 P32 P33

&1=P&! . (7.11)

Given this affine perspective homogeneous transformation the images
of the two cameras may be transformed into one another.

7.1.2 Ellipsoid

A general ellipsoid with center (Zx,Zy,Zz) and axis (A,B,C) is de¬

scribed by

^ '*> ^2 <» Zz)2{Px — %x) {Py
.0 T

B

Zyf
,

(Pz
1 (7.12)

The corresponding transformation is non-linear and therefore cannot

be expressed in matrix form. The transformation is produced by back-

projecting every pixel onto the ellipsoid and projecting the resulting

point onto the image plane of the other camera. A point on the line

of sight going through the perspective point and an image point is de¬

scribed in parametric form in camera-centered coordinates by

CP =

^x

ty
tz

+ t

(Xf - Cx)dx/sx
(Yf - Cy)dy

f

(7.13)

Since the ellipsoid is given in world coordinates, CP must be transformed

from camera-centered to world coordinates:

'P = -R- + tR
-1

(Xf - Cx)dx/sx
(Yf - Cy)dy

f

"T +rV (7.14)
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source image destmation image

Figure 7.2: Forward transformation by ^-corner mapping

where R~1 is the inverse of the rotation matrix.

Substituting Px,Py,Pz in Eq. (7.12) with WP, the resulting equation

may be solved for t. Substituting the obtained Solution for t in Eq.

(7.14) yields the image point back-projected onto the ellipsoid.

7.2 Mapping Methods

The general mapping function can be given in two forms: either map¬

ping the input coordinate onto the Output (forward mapping) or vice

versa (inverse mapping). For both methods at least one of the images

(destination for forward mapping, source for inverse mapping) must be

temporarily stored in order to facilitate arbitrary transformations.

7.2.1 Forward Mapping

Forward mapping consists of copying each input pixel onto the Output

image at positions determined by the mapping functions

[u,v] = [U(x,y),V(x,y)] . (7.15)

Because the pixels are mapped from the set of integers to the set of

real numbers1, some additional mechanism is needed to cope with this.

Most straightforward is rounding the coordinates [u, v] to the nearest

integer, which is called "nearest neighbor transformation". However,

this results in missing values (holes) in the Output image in the case

of magnification or aliasing effects in the case of minification. Aliasing

arises when some input pixels are discarded due to sparse point sam¬

pling. These artifacts are eliminated by transformation methods such

as area sampling or supersampling.

except m case of purely translation and rotation with a multiple of 901
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source image destmation image

Figure 7.3: Inverse transformation

Forward transformation is useful when the input image must be read

sequentially or when it does not reside entirely in memory (e.g. image

minification). It is disadvantageous in that in case of area or supersam-

pling the value of the destination pixel is not available until all neigh-

boring pixels are transformed, which imposes a need for an additional

accumulator array.

7.2.2 Inverse Mapping

The inverse transformation maps each Output coordinate onto the input

image via coordinate mapping

[x,y] = [X(u,v),Y(u,v)] . (7.16)

The value of the input image at point [x, y] is then copied to the

output image. As in the forward transformation, the coordinate [x, y]
is real-valued and therefore an interpolation stage must be introduced.

By using inverse mapping, no holes arise in the output image, but

nevertheless aliasing and blocking still occur. Analog to forward

mapping, blocking and aliasing effects can be eliminated by more

sophisticated sampling schemes.

Inverse mapping guarantees that all output pixels are computed and

this is advantageous in that interpolation occurs in the input image
which is a more convenient approach because no weighted summation

in the output image is necessary and the destination pixels are directly
calculated from the source image.

Whether forward or inverse transformation is a better choice also

depends on whether a magnification or minification is predominant, on

whether the scaling is uniform and on the hardware on which it is im¬

plemented. Spatial transformations and image resampling are discussed

more accurately in [53].
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source image destination image source image destination image

Figure 7.4: Adaptive area sam- Figure 7.5: Supersampling
pling

7.3 Eliminating Blurring and Aliasing

With simple point-to-point sampling without interpolation, artifacts

such as blocking, aliasing and jagged lines arise. There are several

methods for eliminating these artifacts. A simple extension of the point

sampling method in inverse mapping eliminates blocking and jagged
lines, but not aliasing: instead of taking the value of the pixel nearest

to the transformed point, the value is interpolated using the neighbor-
ing pixels. In the following more methods are presented and in Table

7.1 the transformation methods and their characteristics are listed.

7.3.1 Area Sampling

In area sampling2, instead of Single points, Square patches resembling
the pixels are transformed into arbitrary quadrilaterals (see Fig. 7.2).
In forward mapping the contributions of such quadrilaterals to each

output pixel are summed up in an accumulator array3 in order to cor-

rectly integrate the values contributed by the different source pixels. In

inverse mapping the output pixel is a weighted sum of the input pixels
covered by the projected quadrilateral. The weights are evaluated by
an intersection test according to the pixel area covered by the quadri¬
lateral. Thanks to the weighted sum, aliasing is eliminated but avoiding
holes in forward mapping is bought at the price of blocking, since the

same input value is applied to many output pixels.
The blocking effect can be resolved by two methods, as presented in the

following sections.

2Also called "four-corner-mapping".
3 Usually implemented as memory in conjunction with read-modify-write memory

access.
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7.3.2 Adaptive Area Sampling

Blocking in forward transformation can be eliminated by adaptive area

sampling, where the input pixel is subdivided into smaller areas until

the size of the transformed quadrilateral reaches some acceptably low

limit (e.g. one pixel size)4. The intensity value of each sub-area is

evaluated by interpolation.

7.3.3 Supersampling

The use of a supersampling grid is similar to adaptive area sampling
but without the need of intersection tests. With supersampling more

than one sample per pixel is transformed. The number of supersamples
should also be chosen adaptively according to local scaling.
In forward transformation the values of the supersamples are accumu-

lated into the appropriate output pixel. In the case of magnification a

low number of supersamples may result in missing values.

In inverse transformation the value of the output pixel is calculated by

averaging the interpolated values of the supersamples. If the number

of supersamples is not chosen high enough, aliasing could arise because

of discarded input pixels.

7.4 Interpolation Methods

In order to retrieve image intensity at an off-grid position, image re¬

construction or interpolation is needed. Ideal signal reconstruction is

performed with the sine function. However, this is not practical, be¬

cause it uses an HR filter defined by a slowly converging infinite sum.

Therefore either windowed sine functions resulting in a finite sum or

other interpolation techniques approximating a lowpass are used.

All methods discussed in the following assume that the inverse trans¬

formation is used. The methods differ in the quality of the result and

the computational cost.

4The input must be adaptively resampled because uniformly sampling the in¬

put does not guarantee uniform sampling in the output image for non-affine (e.g.
perspective) mappings.
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Method forward

scaling > 1

mapping

scaling < 1

inverse mapping

scaling > 1 scaling < 1

Point-to-point

sampling (no
interpolation)

holes aliasing blocking aliasing

Point-to-point

sampling with

interpolation

— — no blocking aliasing

Area sampling blocking no aliasing blocking no aliasing

Adaptive area

sampling
no blocking no aliasing — —

Supersampling blocking no aliasing — no aliasing

Supersampling
with interpola¬
tion

no blocking — no blocking no aliasing

Table 7.1: Overview of transformation methods and their reaction to

scale changes

7.4.1 Nearest Neighbor Interpolation

The nearest neighbour algorithm5 is the simplest interpolation method.

The value of the target point is set to the value of the point dosest to

the calculated exact position. It needs the least computational power

of all interpolation methods as the Output pixel is the function of only
one input sample without further computation. However, this simple
method leads to errors such as:

• blocking: since magnification is achieved by pixel replication, the

image gets a blocky appearance.

• aliasing effects: minification by sparse pixel sampling leads to

aliasing effects.

Therefore this method is not suited to applications where high quality
is needed.

7.4.2 Bilinear Interpolated Transformation

With bilinear interpolation the target value is computed by linear

interpolation in the x- and y-directions. The interpolated value is

5Other names denoting this method are: box filter, sample-and-hold-function,
Fourier window.
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a weighted sum of the four pixels nearest to the transformed pixel

position according to:

I(x,y) = (l-Ax)(l-Ay)I(x0,yo)

+ (l-Ax)AyI(x0,y0 + l) (7.17)

+ Ax(l-Ay)I(x0 + l,y0)

+ AxAyI(x0 + l,y0 + l)

where x, y £ TZ

xq, j/o nearest integers to x, y, rounded towards -oo

I(i,j) value of pixel at location i, j

A^Ay = x-x0, y-yo-

7.4.3 Higher Order Interpolation

Interpolation by higher degree polynomials calculate the pixel value by

fitting a surface of n order on the (n + 1) nearest pixels to the exact

pixel location. Because polynomials of even degree are space variant6

[53], usually only polynomials of odd degree are used. Experiments in

[54] showed that cubic interpolation produces better results than win¬

dowed sine or linear interpolation. Apart from reconstrueting the image
with the sine function, a lowpass filtered image could be reconstructed

with Gaussian reconstruction.

However, interpolation by higher order polynomials and by windowed

sine functions all need more source data points (up to 36 pixels for win¬

dowed sine interpolation) to calculate a Single interpolated pixel than

bilinear interpolation. This increases both the necessary memory band-

width and the Computing power. Therefore these interpolation methods

are not further considered here.

7.5 Measures to Simplify Transformation

The intersection test for determining the weights for area mapping is

very Computing intensive and difficult to implement in hardware. In su¬

persampling, many points must be transformed and interpolated, which

also increases the necessary Computing power. However, if some a priori
information about the mapping is available, the transformation can be

6This is due to the fact that the number of sampling points on either side of the

interpolated point always differs by one.
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Figure 7.6: Bilinear interpolation for a scaling invariant transforma¬
tion

simplified and the necessary computation reduced.

The transformation for the "inverse stereo algorithm" has the following
characteristics on the basis of the most appropriate camera setup and

smooth safety envelope:

• the scaling is « 1 and therefore the transformed quadrilateral has

about the same size as a pixel.

• the geometric distortion and rotation is small such that the trans¬

formed quadrilateral remains in rectangular form.

• the center of the pixel transforms to the center of the quadrilateral.

This results in the transformed quadrilaterals being approximated by
a rectangle approximating a pixel. Therefore the Computing intensive

intersection tests are no longer necessary and the weights can be cal¬

culated as a function of the transformed center of the pixel (x,y). The

partial areas in Fig. 7.6 corresponding to the weights are expressed as

a function of A^ and Aj, as

AA = (dx - Ax)(dy - Ay) = (1 -

Ab = AX(dy - Ay) = AX(1 - Ay)

Ac = (dx - AI)AS/ - (1 - Ax)Aj,

AD = AxAy = A^y .

AsXl-A.)

(7.18)
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If dx and dy are set to 1, these factors exactly coincide with the weights
of bilinear interpolation for position (x,y). Additionally, under the

above mentioned assumptions, supersampling is analogous to bilinear

interpolation since the number of samples within one pixel area are

proportional to the area of this pixel covered by the transformed pixel.
With this simplification the Computing is decreased thanks to having
eliminated the intersection test and having reduced the number of

points which must be transformed per pixel (1 instead of 4).
This simplified method behaves like true point sampling with bilinear

interpolation for scalings > 1 (no blocking). However, for scalings
< 1/2, some pixels are likely to be completely discarded, whereas for

scalings > 1/2 all source pixels contribute to the output pixels, but with

wrong weights. The errors of the weights are small for scalings only

slightly smaller than one.

From the above it can be seen that the conditions stated at the

beginning of this chapter can be relaxed and scalings greater and

slightly smaller than one are acceptable.

So far it has been assumed that the weights are real numbers. The

cost for hardware increases very much with the precision of the weights,
especially for a real-time implementation in hardware.

However, for many applications, discrete weights with reduced reso¬

lution still produce reasonable results. The resolution necessary for

obtaining sufficient results strongly depends on the application, the

enlargement factor and the image material: transforming smooth im¬

ages with minification or moderate magnification needs low resolution,
whereas magnification of high-frequency images needs a higher resolu¬

tion of the interpolation weights. Visible blocking7 disappears when the

quantization q\, of the interpolation weights is chosen according to

qb < 1/scaling . (7-19)

In order to get quantitative data about the errors introduced by bilinear

interpolation, the following experiments were performed:

• An image was scaled with bilinear transformation with and with¬

out quantization of the weights. The error introduced by weight

quantization compared to true bilinear transformation was mea¬

sured for various scaling factors.

Two or more pixels having erroneously the same value.
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Figure 7.7: Errors introduced

by scaling with various resolu-

tions of the interpolation factor.

1.2 1.4 1.6 1.8

translation (pxl)

Figure 7.8: Errors intro¬

duced by translation with vari¬

ous resolutions of the interpola¬
tion factor.

• An image was translated by fractions of pixels and compared with

the camera image8 with the same amount of translation. With this

procedure the error introduced by transformation is measured.

For both scaling and translation it is true that the Standard deviation

of the intensity-difference introduced by weight quantization is propor¬

tional to the quantization step. The measured Standard deviation a,

which is a function of the high frequencies in the image, was o « 7 for

nearest neighbor transformation and u « 1.5 for a quantization step
of 1/4. For translations and reciprocal scaling factors that are a multi¬

ple of the quantization step, bilinear interpolation with discrete weights
produces the same result as true bilinear interpolation.

However, more relevant for this application is the influence of the

quantization on the correlation measure. In the case of scaling, the im¬

age transformed with discrete weights was correlated with that produced
with continuous weights. In the case of translation, the transformed im¬

ages were correlated with the original camera images. The calculated

mean value of the correlation measures of an image were compared to

the correlation measures received when correlating two images trans¬

lated by a certain amount of pixels. In Figure 7.7 and 7.8 the error

introduced by the transformation is specified by the amount of transla¬

tion that produces the same dissimilaxity value.

8The image series for the correlation tests that consists of a sequence of real

images (not shifted by calculation) shifted by fractions of pixels was used.
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It can be seen that the transformation with a quantization step of 1/g
introduces only a small additional error compared to true bilinear inter¬

polation. Therefore in the hardware implementation the quantization

step of the interpolation weights was chosen to be l/g. For compara-

tive reasons, the equivalent translation of Gaussian reconstruction (the
camera image was filtered with the same Gaussian filter that was used

in the reconstruction) is given additionally in Fig. 7.8.

7.6 Change of Image Resolution

In order to obtain high precision, calibration was performed using im¬

ages of higher resolution than those used in the monitoring System. This

had to be taken into account in the transformation and the values for d'x
and d' were chosen accordingly. Because the transformation is applied

on a single frame with half resolution in the y-direction of a füll video

image, d'y = 2dy is used.

After the image is transformed, the images are subsampled in the x-

direction such that the following processing steps work on images with

equal resolution in the x- and y-directions, which is especially important
for filters. In order to prevent aliasing effects, the images are subsam¬

pled by averaging every two pixels.

7.7 Alternative Calculation of

Transformation

Besides deriving the transformation from the camera model, it is pos¬

sible to determine the necessary transformation directly from an image
of the Separation skin. For planar safety envelopes, and when ignoring

distortions, it is especially easy. The transformation for a plane of any

orientation is a affine-perspective transformation:

SXa an «12 «13 Xb

sya = «2i a22 a23 yb

s «31 a32 «33 1

(7.20)

If the corresponding coordinates of at least 4 points are known in both

pictures, the parameters a^ of the transformation can be calculated by

a least Squares method.



Chapter 8

Correlation

Correlation is a very important but also a very computationally intensive al¬

gorithm. First the various correlation methods and the requirements are pre¬

sented. Then the correlation methods are rated according their characteristics

and the results of our own investigations.

Correlation algorithms produce a measure for the similarity (accord¬
ing to defined criteria) between two signals (or images). Common to all

methods is that it is not possible to calculate the similarity measure of a

single point, but only of the neighborhood of a point1. There are many

correlation methods that vary in characteristics and in computational

requirements.

8.1 Correlation Methods

In the following the correlation between two templates, r(xr, yT) and

s(xs,ys), is calculated, where r and s are sub-images of a given di-

mension of two images. u and v denote the coordinates relative to the

sub-image, the so-called correlation window.

Correlation methods may consist of optional pre-processing (filtering) in

order to extract special low level features such as edges or to emphasize
some frequency ränge of the image (low-pass or high-pass filters). The

correlation methods will be classified according to their pre-processing.

Low-pass filtering is not treated as a special preprocessing and can be

added to all correlation methods.

1 Methods for symbolic template matching are not treated here.
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8.1.1 Correlation on Brightness Images

There are a variety of correlation algorithms that can be applied directly
to the intensity values. Many similarity measures (see Table 8.1) are

based on direct or cross correlation (CCF):

window

^2^r(Xr + u^yr + v) s(x* + u,ys + v) . (8.1)
u v

However, CCF is not useful in applications with real non-preprocessed

images because it very much depends on the brightness of the images
and produces the highest score in bright image regions. Therefore

several normalized cross-correlation functions were proposed.

In the normalized cross-correlation function (NCC) [55], the cor¬

relation is normalized with the mean of the signal energy in the two

correlation Windows and therefore is invariant to multiplicative inten¬

sity changes in either window2. However, it is still sensitive to addi¬

tive changes in brightness. A correlation function that is invariant to

additive and multiplicative intensity changes, the zero mean cross cor¬

relation (ZNCC) [56], is obtained by subtracting the mean intensity
value of the corresponding correlation window from all intensity values.

This algorithm is also called variance normalized correlation since the

normalizing factor is the geometric mean value of the intensity values.

Subtracting the local mean value is equivalent to high-pass filtering and

therefore this method has similar characteristics as methods with high-

pass prefiltered images (see Section 8.1.2).
Another correlation function was introduced by Moravec [57]. It

is similar to ZNCC with the advantage of decreased computational

requirements owing to the elimination of the Square root. In addition,

replacing multiplication in the denominator by addition has advantages
in the case of limited resolution or for hardware implementations.

Another group of correlation functions are the dissimilarity measures

based on the subtraction of the intensity values (see Table 8.2). There

are two basic measures, the sum of squared differences (SSD)

5Zlt2 [r(Xr + u,yr + v)- s(xs + u,ys + v)] (8.2)
U V

2Nevertheless, real (not computationally scaled) dark images may produce lower

similarity measures because the SNR is usually lower than for bright images.
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Name Definition

NCC

Normalized

cross correla¬

tion

T

^r(u,v) s(u,v)
u,v

\

T T

J2r2(u,v)^2s2(u,v)
u,v u,v

ZNCC

Zero mean nor¬

malized cross

correlation

T

^[r(u,v) - f][s(u,v) - s]
u,v

\

T T

u,v u,v

MOR

Correlation ac¬

cording to

Moravec

T

u,v

T T

]T [r(u, u) - f]2 + ]T[s(u,i;) - s]2
u,v u,v

NISH

Binary correla¬

tion according
to Nishihara

T

^T,ni(u,v)-sbi(u,v) (rb,sb = ±l)
u,v

Table 8.1: Correlation criteria based on cross correlation: high simi¬

larity produces high correlation values.

and the sum of absolute differences (SAD).

^2^2\r(xr + u>yr + v) ~ sixs + u,ys + v)\ (8.3)
U V

These two dissimilarity measures are often used, because they are

realizable with low hardware costs or Computing power3. However, both

measures are very sensitive to intensity changes. Therefore some modi¬

fied difference measures were proposed: the local mean value scaled and

the zero mean value versions.

3Whereas the SAD requires less resources in hardware implementation and less

Computing time for many microprocessors, the SSD can be implemented more ef-

ficiently than the SAD in modern DSPs since addition and multiplication can be

computed in parallel (MAC Operation).
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Name Definition

SSD

Sum of squared
differences

T

Y^[r(u,v) - s(u,v)}2
u,v

ZSSD

Zero mean sum

of squared dif¬

ferences

T

J2 [[r(u, v)-f}- [s(u, v) - s]]2
u,v

LSSD

Locally scaled

sum of squared
differences

T

^ \r(u,v) - -s(u,v)
u,v

2

ZNSSD

Zero mean nor¬

malized sum of

squared differ¬

ences

T

53 Wr(u' v)-f}- [sK v) - s]}2
u,v

\

T T

J2 [r(u, v) - f]2 ^ [*(«, v) - s}2
u,v u,v

SAD

Sum of absolute

differences

T

Y\r(u,v) - s(u,v)\
u,v

ZSAD

Zero mean sum

of absolute dif¬

ferences

T

^2\[r(u,v)-f] - [s(u,v)-s]\

LSAD

Locally scaled

sum of absolute

differences

T

Y^\r(u,v) - -s(u,v)
u,v

NSAD

Normalized

sum of absolute

differences

T

^2\r(u,v) - s(u,v)\
u,v

\

T

Y^r(u,v)
u,v

T

Y^s(u,v)
u,v

Table 8.2: Correlation criteria based on sum of squared and absolute

differences: these dissimilarity measures produce low values (>0) for

good correspondence.
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A combination of the ZSSD with the normalizing term of the ZNCC is

the normalized zero mean SSD (ZNSSD, developed at INRIA [58]).

8.1.2 Correlation on High-pass Filtered Images

Instead of applying a correlation function that is robust in regard to

intensity changes it is possible to preprocess the image data in order to

suppress undesirable frequency parts of the signal. This usually makes

the use of simpler correlation functions possible. By applying a zero-

mean high-pass filter such as the zero-mean Laplacian Operator

-1 -1 -1

-1 8 -1

-1 -1 -1

all correlation functions become inherently robust in regard to addi¬

tive intensity changes, since filtering with a (zero mean) high-pass sup-

presses the DC component of the signal. Because multiplicative in¬

tensity changes still influence the correlation measure, correlation on

high-pass filtered images should be combined with correlation criteria

which are invariant to brightness scaling4. In addition, the correlation

gets more sensitive to position error between the templates because the

emphasis of the correlation is placed more on the rapidly changing parts
of the image. Highpass-based methods usually have low Performance for

small templates and strong noise [59].

8.1.3 Correlation on Direction Images

The application of correlation functions on the direction of the intensity

gradient is very promising, as this makes the methods inherently robust

to additive and multiplicative intensity changes [60]. Therefore, the

correlation function itself must no longer be robust in regard to offset

or scaling and one of the very simple correlation functions (SSD, SAD)
can be used5:

DSAD = ^^|(r(xr + u,yr + v)-s(xs + u,ys + v)\c (8.5)
U V

4The criteria must not be robust in regard to the sign of the values, because this is

a property of the image and is no result of brightness scaling. This especially applies
to locally scaled correlation criteria, where the factor r/s must not take negative
values. In case of different signs of f and s, this factor must be set to 1.

5 The use of more sophisticated functions is not sensible and even deteriorates the

results.
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DSSD = JJ |(r(ir + u, yr + ») - «(i, + u, j/, + »)|c2 (8.6)
U V

where | |c is the smallest absolute difference in direction, the cyclic dif¬

ference.

8.1.4 Binary Correlation

Nishihara proposed in [61] a binary correlation. The binarization is

done by filtering the image with the Laplace of Gaussian6 (LoG) filter

k

£ c(i,j)f(x + i,y + j) (8.7)

and using the sign (+1,-1) as binary information. Because of the

high-pass filter the result becomes robust in regard to additive inten¬

sity changes and the binarization makes it robust in regard to intensity

scaling. The main advantage is the small computational requirements
of the binary correlation (only 1 bit !). However, pre-filtering with the

LoG is very costly due to the large filter kerneis (up to 29 x 29). Con-

sequently, the method is very promising for object localization, where

the pre-processing is done only once per image, whereas the binary cor¬

relation is done for every potential template position. This advantage is

not relevant for template matching where both LoG filtering and binary
correlation is done only once. Nack proposed another binary correla¬

tion method, which Aschwanden [59] modified in order to improve the

results. The binarization is done with an adaptive threshold on the high-

pass (Roberts Operator) filtered image. Experiments in [59] showed that

Nack's correlation is outperformed by Nishihara's correlation.

8.2 Requirements

There are two main areas of application for correlation that make dif¬

ferent requirements on the correlation methods:

6Also known as Marr-Hildreth or Mexican-Hat Operator.

LoG(x,y)

with c(i, j)
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• In template matching an absolute measure for the correspon¬

dence of two templates is calculated. Because the result depends
on a Single value, it is important that the measure depends only
on the image characteristics relevant for correspondence in a given
application.

• With template registration the position of a template in an

image is calculated. For that, the correlation measure is computed
for various template positions in the image and the maximum

similarity value yields the estimated template position. In contrast

to template matching, only the relative correlation value is used

and a scaling or offset of all correlation values7 does not influence

the final result.

Correlation measures have to cope with the fact that two templates
are never identical8 due to noise and other irregularities. Depending
on the application, "correspondence" is differently defined and this

leads to different requirements being placed on the correlation method.

For one application, invariance in regard to rotation, smoothing or

change of mean brightness is important whereas another application
requires correlation criteria that is sensitive to these characteristics.

Consequently, there is no Single, "best" correlation for all applications.

The correlation measure is a function of many image characteristics.

In the following the characteristics influencing the correlation measure

are discussed with regard to the implementation of the inverse stereo

algorithm.

• Noise: The images contain noise from different sources:

— shot noise of the CCD sensor

— thermal noise of the amplifiers

— quantization noise of the AD-converter

— noise resulting from line jitter, which is proportional to the

local gradient in scanline direction.

— noise induced by geometric transformations

7E.g. resulting from a global offset or scaling of the intensities of one or both

images.
8This is why simple differencing is not useful for template matching or registra¬

tion.
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To examine the influence of noise, noise is modeled as additive zero

mean Gaussian noise. Experiments have shown that total noise is

approximated by this model. Noise of a high-contrast image with

minimal camera gain9 proved to have a Gaussian distribution with

<7«1.2.

Since noise is always present in real images, all correlation meth¬

ods must have a high immunity to image noise.

• Blurring: Two cases must be distinguished: blurring which is

equal in all stereo images and blurring which differs between an

image pair. The same amount of blurring in both pictures has a

similar effect as a lowpass filter and increases the tolerable dispar¬
ity (—» increases thickness of Separation skin), whereas different

amounts of blurring decrease the similarity.
The differently blurred images result from different lenses and fo¬

cus settings, and mainly from different distances of an object to

the cameras and scaling in image transformation10. The latter two

effects occur only with non-coplanar cameras, where the same ob¬

ject might be in focus for one camera but out of focus for the

other. Since the distance of an object to the individual cameras is

similar (thanks to a small baseline in relation to object distance)
and wide angle lenses with a large depth of focus are used, the

difference in blurring between individual stereo images is small.

• Scaling: It is likely that an object is a different distance away

from the cameras of a stereo-rig and therefore will be differently
scaled. This is a problem in common stereo imaging Systems and

requires correlation methods which are insensitive to scaling.
An advantage of the inverse stereo principle is that different scal¬

ings are corrected for objects located at the safety envelope. How¬

ever, the scaling difference of an object increases with its distance

from the Separation skin. This results in a slight change of scal¬

ing for objects within the Separation skin but not exactly at the

Separation surface. This change of scaling is very small: e.g. for

a stereo baseline of 470 mm, an object distance of 1 m and a

thickness of the Separation skin of 50 mm, this results in a scaling
difference of less than 1%.

Therefore correlation criteria for the "inverse stereo principle"

9High gain amplifies shot noise.

10The blurring difference might be decreased by the spatial scaling of one image
if the less blurred image is enlarged or increased in the other case.
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must only tolerate a slight difference in scaling, which makes the

use of simpler methods possible. An additional decrease of the

similarity measure resulting from scaling difference is even desir-

able for objects outside the Separation skin.

• Rotation and perspective distortion: In template matching
for general stereo methods the correlation must be invariant to ro¬

tation11 and scaling. Because the geometric transformation of the

inverse stereo method corrects any rotation and perspective dis¬

tortion between the cameras for objects at the Separation surface,
the correlation need not be invariant to rotation.

• Change of brightness: Different settings of the lens aperture,

different gain of amplifiers and AD-converters and different reflec-

tion angles of an object to the cameras may result in multiplicative

change of brightness. In addition, different offsets of the amplifiers
and AD-converters result in an additive change. Therefore corre¬

lation methods must be robust in regard to such brightness differ¬

ences between the stereo images. However, the correlation method

need not be fully invariant to multiplicative changes of brightness
since the difference in reflection factor (except in the case of spec¬

ular reflection) and of the other parameters are bounded by phys-
ical restrictions or camera adjustments (similar aperture and gain
for all cameras). Consequently, a correlation method that is only
to some extent invariant can show an even better Performance
because templates with completely different brightness but sim¬

ilar information in the higher frequencies produce low similarity
values.

• Translation: When two identical templates are translated

against each other, the similarity measure decreases. This de¬

crease of the similarity measure is a function of the translation

and the shape of this function (see Fig. 8.1) depends on the cor¬

relation criterion used. The most suitable shape depends on the

application:

- coarse-fine or subpixel template registration needs a well-

known function such that the subpixel position can be esti¬

mated from correlation values in the neighborhood.
- template matching either needs a very narrow rectangular

shape such that only exactly positioned templates produce

nIt is possible to correct rotation by image registration and consequently the

correlation does not need to be rotation invariant.
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-3-2-1 0 1 2

translation

Figure 8.1: Two ideal shapes
of correlation functions: the tri¬

angle-shaped function represents a

well-defined function, which can be

used for estimating the translation

from the correlation value. In con¬

trast, the rectangular function pro-

vides no quantitative information
about the translation.

high correlation values or a wide rectangle when templates
shifted by some amount should still be classified as corre¬

sponding.

However, the previously mentioned shapes do not occur in real-

ity. In the "inverse stereo algorithm" a correlation criterion with

a shape that allows for adjusting the required ränge of tolerated

translations is necessary. This should be either a rectangle-shaped
function width adjustable width or a triangle-shaped one where

the tolerated translation is chosen by a threshold. The capability
of a correlation method to separate templates according to their

translation against each other will be called "Separation capabil-

ity".

Influence of brightness changes on other irregularities:
The same amount of correspondence (e.g. same translation, scal¬

ing, blurring) could produce different correlation values depend¬

ing on the mean brightness common to both templates (= "com¬

mon brightness"). For example. brighter images produce a higher

dissimilarity measure when using SAD correlation on grey-level

images, because the difference between neighboring pixels is also

scaled by the global scaling in brightness. A correlation method

that depends on the mean brightness of an object results in the

thickness of the Separation skin varying with the brightness of the

object, which is intolerable.

8.3 Behavior on Unwelcome Influences

In order to decide on the correlation method most suited to the "in¬

verse stereo algorithm", the robustness in regard to unwelcome influ-
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ences must be analyzed. Some were analyzed theoretically, others by
simulations and some could be taken from experiments carried out by
Aschwanden [59]. Due to the fact that the Performance of correlation

methods depends on the image material, the absolute Performance can

only be predicted with exact knowledge about the expected scenes.

8.3.1 Brightness

Since in the "inverse stereo algorithm" the absolute correlation value

is used, neither a common change in brightness of both images nor

a change of brightness of one camera should alter the correlation

measure.

The theoretical reaction to additive and multiplicative change in

brightness is given in Table 8.3. We make a distinction between

Criteria

pre-pi

LP

ocessing

HP

con

offset

invar

imon

scaling

iant to

dif

offset

Terent

scaling

NCC X no yes no yes

NCC x yes yes yes yes

ZNCC X x yes yes yes yes

MOR X X yes yes yes no1

NISH BIN yes yes yes yes

SAD, SSD X yes scaled no no

SAD, SSD X yes scaled yes no2

DSAD, DSSD DIR yes yes yes yes

ZSAD, ZSSD X X yes scaled yes no3

LSAD, LSSD X no scaled no scaled

LSAD, LSSD X yes scaled yes scaled

NSAD X no yes no no

NSAD x yes yes yes no

ZNSSD X yes yes yes no4

ZNSSD X yes yes yes no4

LP = no pre-processing or lowpass filtering, HP = highpass filtering
DIR = direction image, BIN = binarization by sign of LoG filtering
1}

a scaling of 10% (LP) or 20% (HP) is tolerable

2) for SSD a scaling of 10% is tolerable

3) for ZSSD a scaling of 10% (LP) or 20% (HP) is tolerable

4)
a scaling of 10% (LP) or 20% (HP) is tolerable

Table 8.3: Behavior of correlation methods to brightness changes
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the case where the same change of brightness occurs in both images

("common") and when only one image is changed in brightness

("different"). A correlation criterion can either be robust in regard to

brightness changes, change unsystematically or the result can be scaled

by the same amount as the brightness of the image that has been

scaled. That a decrease of brightness also decreases the signal-to-noise
ratio12 (SNR) and that therefore brightness scaled images may produce
worse correlation measures, even for correlation criteria which are

theoretically immune to brightness changes, is not taken into account.

8.3.2 Noise

Robustness in regard to noise mainly depends on the prefilter and on

the size of the correlation kernel. In general, large kerneis and lowpass-
filters reduce noise whereas highpass-filters emphasize noise since noise

is usually high frequency (see Table 8.4).

8.3.3 Blurring and Scaling

Blurred images result in a smoothed correlation function14 and therefore

in an increased tolerance for translation of one template against the

other. This effect is dominant for highpass-based and zero-mean criteria

since this reduces the available image information in addition to the

reduction resulting from blurring. The results of experiments carried

out in [59] are presented in Table 8.4.

8.4 Segmentation Capability

For the "inverse stereo algorithm" it is important that the correlation

algorithm not only produce a high score for two exactly coinciding

templates, but a translation between the templates below a given
amount should also produce high similarity values. In addition, it must

be possible to adjust the tolerated translation (by means of prefilters or

thresholds) in order to adapt the method to various applications. The

possibility of segmenting an image into regions with disparities below

and above a given limit is especially important. Therefore it is very

12The dependency of the SNR on brightness very much depends on the camera

characteristics (dynamic ränge, amplifiers) the images were produced with.

14 =i correlation value in function of disparity.
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Method noise scaling blurring

intensity
based

best Performance good Performance good Performance,

slightly worse for

zero-mean and mean

scaled methods.

highpass
based

worst results up to

kernel size of 17x17;

slightly better for

larger kerneis

absolute worst

results15

worst results

NISH depends on w,

medium Perfor¬
mance for w = 5,
eise worse

bad Performance, es¬

pecially for low and

high w.

worst results for

w > 6, medium

Performance for

w < 6.

DSAD slightly worse than

LP-based

good Performance for

medium sized ker¬

neis; slightly worse

for small kerneis

medium results

Table 8.4: Behavior of correlation methods in regard to noise, image

scaling and blurring.

important to know the behavior of the correlation measure in regard
to translations.

On the one hand this knowledge allows us to decide on the most

suitable correlation method and on the other hand one can see whether

a certain thickness of the Separation skin (= tolerated translation) is

possible. We can also determine which correlation parameters must be

used and what segmentation-error is to be expected.

8.4.1 Experimental Setup

The dependency of the correlation criteria on the translation must be

evaluated for subpixel values and not only for discrete pixel translations

since

• the tolerated translation of most criteria is between 0 and 2 pixel

• it must be possible to set the thickness of the Separation skin to

values which correspond to subpixel values

Due to the fact that slight misalignment leads to completely misaligned edges.
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* *

Figure 8.2: Textured pattern used for experiments (original scale)

• the various correlation criteria can be better rated if the transla¬

tion function is not only known for discrete values.

Therefore a series of images shifted against a reference image in sub¬

pixel increments was produced by fitting a synthetic pattern of medium

texture (see Fig. 8.2) on a linear robot. In this way a series of 700

images16, shifted against one another by ~ 0.04 pxl, was produced. In

order to reduce noise in the images, five images of the same translation

were averaged17.
The middle image of this series was taken as a reference and cor¬

related with all images from which the histogram, the mean value and

the Standard deviation were calculated. All the correlation criteria dis¬

cussed in Section 8.1 with the optional lowpass filter (3x3) were used.

8.4.2 Definitions

Since the correlation values depend on the properties (texture intensity,
image frequency, ...) of an image, which vary within the image, a single
correlation value is not meaningful and therefore a Statistical analysis of

the correlation values of an entire image must be performed. However,
since the histogram of the correlation values is not strictly Gaussian, the

quality of the segmentation cannot be analyzed with only the knowledge
of the Statistical values (mean, Standard deviation) Therefore the fol¬

lowing new measures, based on the histogram of the correlation values,
are introduced:

16Size of the images: 630x470 pixel, 8 bit intensity.
17Such that the Standard deviation of the noise was reduced from er s; 1 2 to

«0 6.
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Figure 8.3: Definition

of new measures for a

Single detection-rate: the

segmentation-error is de¬

fined as the difference from

an ideal segmentation; the

10/90%-disparity is the dis¬

parity ränge where the de¬

tection-rate increases from
10 to 90%.

The detection-rate is defined as the percentage of pixels with a

correlation value above a given threshold (T), which corresponds
to pixels classified as being within the Separation skin (disparity
between hypothetical and real image below a given limit). It is

given as a single percentage for one image (d). For a correlation

criteria with Gaussian distribution it is expressed as

DR(d)
1

H(c)dc
c=T V2n Ud JT

I 1 _
2 f ^2o-d e-fdt

l(x- /zd)2
OO _

e ad dx

The detection-rate function is defined as the detection-rate in

function of the disparity for a given threshold T (see Fig. 8.3).
With this measure it is possible to estimate the quality of segment¬

ing an image at a given disparity (= "segmentation-disparity")
with the corresponding threshold value. The segmentation-

disparity D50 is defined as that disparity where the detection-rate

reaches 50% for a given threshold (T).

The segmentation-error is a measure for the wrongly segmented

pixels for a given threshold (= segmentation-disparity) and all

disparities and is illustrated in Fig. 8.3. The segmentation-error
function is defined as the segmentation-error as a function of the

disparity at which the images are segmented. For correlation cri-
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teria with Gaussian distribution it is expressed as

D50 dmax

SE(D50) = Ad 2(1 - DR(d)) + Ad 2 DR(d) . (8.9)
d=0 d=D5o

• The 10/90%-disparity is the disparity for an increase of the

detection-rate from 10% to 90%. This measure is not used in

the analysis and for a linear detection-rate it is just I6/5 of the

segmentation-error.

Experiments have shown that the sobel-direction correlation

(DSAD), the ZNSSD method and mainly the correlation criteria on

highpass filtered images produce a histogram which is almost Gaussian

such that the above defined measures could be calculated using the Sta¬

tistical values or the histograms. However, the locally scaled versions

of SSD (LSSD, LSAD) and NSAD produce, even on highpass filtered

images, wrong results when using the Statistical values.

In the following these measure are discussed using the best (DSAD)
and worst (NSAD with highpass) correlation method concerning their

capability of segmenting images according to their disparity (called
"segmentation-capability").
For all methods the mean correlation value linearly increases with dis¬

parity in a ränge near zero disparity (see Fig. 8.4). The size of this

ränge and the Standard deviation depend on the correlation method

and prefiltering. A high ratio of the derivative of the mean in function

of the disparity to the Standard deviation

5mean(disparity)

Sdisparity ,

1Q.
a(disparity)

is important for a good segmentation-capability. The densely grouped

histograms with their long tails towards positive values and the fact

that they overlap to a great extent are the reasons for the high Standard

deviation and segmentation-error of the HP-NSAD correlation (see Fig.

8.4). This is also represented by the fact that there is no threshold where

the detection-rate goes from 100% to 0% and therefore the minimal

segmentation-error is very high (> 0.15).

In the following the relation between the histograms, the detection-

rate functions and the segmentation-error is discussed in relation to the
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Figure 8.4: Histogram, mean value and Standard deviation of correla¬

tion values, detection-rate and segmentation-error for NSAD correlation

on highpass filtered images (HP-NSAD).

DSAD correlation (see Fig. 8.5). The histograms of the DSAD corre¬

lation are less densely grouped than those of HP-NSAD and Standard

deviation is smaller, which is also represented by smaller segmentation-
error. In the plot of the mean and Standard deviation it can be seen

that the gradient of the mean as a function of the disparity is almost

constant up to 3 pxl, whereas the Standard deviation linearly increases

in this ränge, which results in an increase of the segmentation-error.

The segmentation-error is approximately in inverse proportion
to the gradient of the detection-rate and reaches very high val¬

ues if the detection-rate does not converge to 0% for large dis¬

parities. It can be seen that segmentation-errors up to « 0.1

show a very good segmentation-capability (see the detection-rate for

Z>50=1 pxl, which crosses 50% limit at l.Opxl in Fig. 8.5). For larger

segmentation-disparities the tail of the detection-rate gets longer and

the segmentation-error increases very fast. A segmentation above 1.5 pxl

(segmentation-error > 0.3) gives intolerable results (see Section 11.2.2).
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Figure 8.5: Histogram, mean value and Standard deviation of corre¬

lation values, detection-rate and segmentation-error for sobel-direction

correlation with lowpass prefiltering (DSAD).

To conclude, segmentation-errors below 0.2 show a good segmentation-

capability, whereas segmentation-errors larger than 0.3 show bad Per¬

formance. This is not a hard threshold because the segmentation-
error slightly depends on the shape of the detection-rate function (e.g
very small but tolerable detection-rate for large disparities increases the

segmentation-error) and on the image material.

8.4.3 Influence of Prefilters

Most correlation methods may be applied to either intensity or highpass
filtered images. The SAD correlation also works on the direction of

the intensity gradient (DSAD). For all these methods the images can

be optionally prefiltered with a lowpass-filter. An exception to this

scheme is the binary correlation according to Nishihara (NISH), where

the images are filtered with a Laplace of Gaussian filter (LoG) with a

different parameter w (see Section 8.1.4).
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Figure 8.6: Comparison of detection-rates and segmentation-errors for
intensity-based correlation criteria and correlation on direction images
with and without lowpass filtering.

Lowpass prefiltering has a similar effect for all correlation methods

on intensity images. As an example, the effect of a 3x3 lowpass on SAD

correlation is shown in Fig. 8.6. It can be seen that a lowpass decreases

the curvature and gradient of the segmentation-error function. For small

segmentation-disparities the segmentation-error is slightly higher, but

for larger disparities the segmentation-error is significantly lower be¬

cause the detection-rate converges faster to 0%.

The effect of lowpass prefiltering with the DSAD method (lowpass be¬

fore sobel filter) is greater than with methods on intensity images, but

smaller than with methods on highpass filtered images. The improve-
ment of a lowpass filter is significantly above a segmentation-disparity
of 1 pixel, as can be seen in Fig. 8.6.

All methods on highpass filtered intensity images (see Fig. 8.7) show
an increase of the curvature and gradient of the segmentation-error func¬

tion and some decrease of the error for small disparities. The dissim¬

ilarity criteria which suppress the mean value (LSAD, LSSD, NSAD)
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Figure 8.7: Segmentation-error for NCC and ZSSD correlation with

and without highpass filtering for various kernel sizes.

show a worsening of the behaviour with highpass filtering.
A lowpass prefilter in conjunction with highpass based correlation

methods improves the segmentation-capability by increasing the gra¬

dient of the detection-rate function and converging to 0% while the

method without lowpass filtering does not.

However, highpass-based methods do not show a consistent behavior in

regard to lowpass filtering and may be split up into three groups with

almost identical behavior:

• The methods based on cross-correlation (NCC, ZNCC, MOR)
and the normalized zero-mean difference measure (ZNSSD) show

the highest improvement although they show acceptable results

without a lowpass prefilter. The gradient and curvature of the

segmentation-error function is decreased and the flat zone (zone
of very low error) is increased as can be seen in Fig. 8.8.

• SAD, SSD and its zero-mean versions show a slight improvement
with additional lowpass filtering.

• The locally scaled and normalized difference measures (LSAD,
LSSD, NSAD) show a slight improvement, but the minimal

segmentation-error is still very high because no detection-rate

reaches 100% for any disparity.

In the binary correlation according to Nishihara (NISH) the images
are filtered with LoG filters, which show a combination of lowpass and

highpass characteristics. In the segmentation-error plots in Fig. 8.11 it

can be seen that small w shows a behavior like highpass based methods

with small segmentation-errors for low disparities and a sharp point of

inflection. With large w, the lowpass characteristics predominate with
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Figure 8.8: Comparison of detection-rates and segmentation-errors for

highpass-based correlation criteria with and without lowpass filter.

their smoother point of inflection at higher disparities, which is due to

the fact that a dominant lowpass characteristic makes the correlation

more tolerant to translations as can be seen in the plot of the mean and

Standard deviation in Fig. 8.9 and in the example images in Fig. 8.10.

This phenomenon holds for all kernel sizes, but the degree increases

with smaller kernel size.
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Figure 8.9: Mean value and Standard deviation of correlation values

for binary correlation according to Nishihara

w = 2 w = 4 u> = 6

Figure 8.10: Sign of LoG filtered images (before correlation) with dif¬

ferent parameters w.

8.4.4 Behavior of the Various Correlation Criteria

In the followmg the behavior of all correlation methods with optional

lowpass filters will be discussed based on the results obtained with a

correlation kernel size of 9x9.

In Figures 8 12 and 8.13 the segmentation-error for correlation meth¬

ods on intensity images with optional lowpass prefiltering are presented
In the relevant ränge of segmentation-errors (0 ... 0.3) the methods can

be divided into three groups:

• DSAD18 shows the best Performance.

• the correlation based on normalized cross-correlation (NCC,

18Although DSAD belongs to highpass based methods, it is shown here to ease

comparison
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Figure 8.11: Comparison of detection-rates and segmentation-errors

for binary correlation with LoG prefiltering (NISH).

ZNCC, MOR) and the normalized difference measures (ZNSSD,
NSAD) show a good behavior with tolerable segmentation-error

up to a segmentation-disparity of 0.9 - 1.0 pixel.

• the difference measures without normalization terms (SAD,
ZSAD, LSAD, SSD, ZSSD, LSSD) still show tolerable Performance

up to segmentation-disparity of 0.7 pixel.

Except for DSAD an additional lowpass filter decreases the difference

in Performance for the various methods.

In Figures 8.14 and 8.15 the segmentation-errors of correlation cri¬

teria on highpass filtered images are presented. It is easily seen that the

difference between the various correlation methods is much larger than

for the intensity based methods. The methods can be divided into five

groups:

• DSAD shows the best segmentation-capability and is only sur-

passed by the second group for segmentation at small disparities

(up to 0.55 and 0.85 pxl for correlation with and without lowpass

prefiltering, respectively).
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Figure 8.14: Comparison of segmentation-errors of all correlation

methods on highpass (3x 3) filtered images.
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Figure 8.15: Comparison of segmentation-errors of all correlation

methods on highpass filtered images with lowpass prefiltering (3x 3).
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Figure 8.16: Comparison of segmentation-errors for all methods with

kernel size of 13x 13.

• The methods based on cross correlation (NCC, ZNCC, MOR)
and the normalized zero-mean difference measures (ZNSSD) show

good Performance, especially for small disparities.

• The SAD and SSD and its zero-mean versions show a medium Per¬

formance at small disparities and are not well suited to disparity

segmentation.

• The locally scaled and normalized difference measures (LSAD,
LSSD, NSAD) show very bad Performance and should not be used

for disparity segmentation together with highpass filters.

In Figure 8.16 the same segmentation-errors, but for a kernel size

of 13x13, are presented. It can be seen that an increased kernel size

has a similar effect as lowpass filtering and the ordering of the corre¬

lation methods remains the same. The segmentation-error functions of

the various correlation methods on intensity images get more densely

grouped with larger kernel sizes.

It is interesting to see that lowpass prefilters in conjunction with

small kerneis only improve the behavior of bad methods, whereas good
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Figure 8.17: Segmen¬
tation-error plots for
sobel-direction correlation

(DSAD) with kernel sizes

between 5x 5 and 13x13 pxl
with and without lowpass

prefiltering.

methods (especially DSAD, see Fig. 8.17) even get slightly worse.

Large kerneis on highpass based correlation methods enlarge the flat

zone of the segmentation-error function and decrease the minimal

segmentation-error. In contrast to intensity based methods, lowpass
filters in conjunction with highpass filtering improve the behavior for

all kernel sizes. The improvement by an increase of the kernel by 2 pxl
outperforms that of an additional lowpass for small kerneis, whereas

large kerneis a lowpass prefilter is advantageous.
In summary, one can say that the difference between the highpass

based methods is larger than that between the intensity based methods.

The order of the methods concerning the segmentation-capability is

the same for all prefilters with one exception: NSAD performs well on

intensity images, but very poorly on highpass filtered images.
In Figure 8.17 the detection-rate of DSAD correlation with all kernel

sizes and with optional lowpass prefilter is presented in order to give a

basis on which to choose the appropriate correlation parameters. It can

be seen that correlation with small kerneis shows better Performance
when applied to raw images instead of lowpass prefiltered images. For

a kernel size of 9x9 it is advantageous to use a lowpass prefilter for

segmentation-disparities above 1 pxl.

8.4.5 Influence of Filtering Correlation Results

The result of the correlator may be filtered with a lowpass or median

filter (3x3). In this way Standard deviation is reduced and therefore

the Performance is improved in respect to segmentation.
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Correlation on Intensity Images
For small correlation kerneis the segmentation-capability is improved,
but with large kerneis (> 11x11) filtering has no effect. The Perfor¬

mance increase of lowpass filters exceeds that of median filters. In

general, filtering the correlation results is advantageous compared to

prefiltering for small kerneis (up to 7x7) with segmentation at small

disparities (up to 0.6 - 1.0 pxl depending on the method).

Correlation on Highpass Filtered Images
For most correlation criteria the filter has a similar effect as for intensity

images. For SAD, SSD and their zero-mean versions (ZSAD, ZSSD) the

improvement is only visible up to a kernel size of 9x9. For the locally
scaled and normalized difference measures (LSAD, LSSD, NSAD) the

median filter produces much better results than the lowpass filter and

for large kerneis (larger than 9x9) the lowpass filter even worsens the

results.

8.5 Dependence on Object Size

Correlation methods calculate a measure for correspondence for an im¬

age area and not a single pixel. Therefore small objects are suppressed

by the correlation and the algorithm is incapable of detecting small ob¬

jects. In general, large correlation kerneis and lowpass filtering suppress

small objects to a higher degree (see Fig. 8.18) than small kerneis. This

is due to the fact that the region within the object where pixels are

influenced by non-corresponding pixels of the background is larger for

large kerneis.

In order to measure the smallest detectable object, images with ob¬

jects of different sizes were correlated. These images were synthetically

produced by inserting image areas of different sizes into a background

image. The background has a disparity of 2 pxl and the inserted ob¬

ject image originates from two real camera images, grabbed at the same

camera position. In this way two images which resemble as much as pos¬

sible real camera images (with real camera noise) were produced. The

threshold for the binarization was chosen such that 50% of the pixels
with a differential disparity of 0.8 pxl were classified as corresponding.
The results are presented in Fig. 8.18.
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8.6 Required Computational Resources

The computational resources required for a correlation method are

very important since the algorithm must be processed at video rate.

The required resources very much depend on the hardware used and

code optimization. In Table 8.5 an estimation for implementation on

a DSP and for a hardware implementation is given. The estimation

for the DSP is only a rough estimation of the number of MAC19

cycles per image. Partial sums20 were temporarily stored (see Section

10.1.5) and computation for address calculation, loop controls and

initializations is ignored. Calculating the Square roots and dividing

19Multiply and accumulate: multiplications, shifting and addition can be pro¬

cessed in parallel.
20For CCF, NCC, SSD, SAD, DSAD, NSAD, NIS and for calculating mean value

in ZNCC, MOR, ZSSD, ZSAD, LSSD. LSAD.
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by the normalization term was avoided by adequately multiplying the

threshold21 and divisions were counted as 6 MAC Operations. The

zero-mean and mean scaled correlation criteria need much higher

computational resources because the correlation measures in a window

depend on the mean value for that window (f, s) and therefore the

calculation of the sum cannot be optimized by calculating partial sums.

Method

"CCF

SSD

SAD

CCFH

NCC

DSAD

NISD

LSSD

ZSSD

LSAD

ZSAD

NIS

MOR

ZNCC

ZNSSD

HW

low

very low

very low

low

high
low

medium

high
medium

high
medium

medium

very high

very high

very high

Computing power on DSP

"TÖ1

10.5

10.6

10.9

1.6

135.1

144.5

159.9

160.1

160.2

Table 8.5: Necessary computation (in Mega MAC Operations) on a

signal processor (DSP) for an image of 378x286 pixel and estimated

resources for hardware implementation (HW).

8.7 Conclusion

It can be seen that the correlation performs very well on the direction

of the sobel intensity gradient (DSAD). It is robust in regard to bright¬
ness changes, has a medium robustness in regard to other unwelcome

infiuences, a good segmentation-capability, low computational require¬
ments and is very well suited to hardware implementation. Therefore

the DSAD correlation with lowpass prefiltering was chosen for the hard¬

ware implementation.

VÄB ~

>T => A2> BCT2



Chapter 9

Texture Analysis

Correlation inherently needs texture. Some possible measures for texture in¬

tensity are discussed and the minimal necessary texture intensity is analyzed.

Image correlation inherently needs a spatial grey-level Variation, also

called texture. In the case of weak texture, incorrect correlation results

are obtained:

• zero mean normalized correlation (ZNCC, MOR, ZNSSD) and

correlation methods working on highpass filtered images produce

higher dissimilarity values1 in weakly textured regions because the

"texture" introduced by noise, which is different in both pictures,
outweighs the real texture.

• correlation methods working directly on intensity images tend to

yield low dissimilarity values even when the patterns do not really
match, but have a similar grey-level value.

Whereas the former may lead to missed objects, the latter may lead

to false alarms of the surveillance system. A stereo vision system only
functions reliably if either it is certain that the scene has enough texture

or that the system itself measures the existing texture and reacts in an

appropriate way in the case of weak texture. In the "inverse stereo prin¬
ciple" it is intended to either permanently measure the texture and/or
to project an artificial texture onto the scene, since high texture in un-

structured industrial scenes can not be guaranteed.

1Lower similarity values, respectively.
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Texture

Measure

scale

factor

relative

std dev

error

6.2 / 12.2

error

6.2 / 18.5

Std dev 7x7 1.0 0.125 0.003 0

Std dev 3x3 0.9 0.275 0.19 0.044

Kirsch compass 17 0.42 0.44 0.216

Sobel 6.8 0.525 0.53 0.32

Prewitt 4.7 0.525 0.53 0.32

Roberts 2.3 0.56 0.54 0.36

.Prewitt Compass 4.2 0.6 0.55 0.35

Laplace 2.6 0.72 0.65 0.5

Table 9.1: Data of texture measures: mean value, relative Standard

deviation and resulting discrimination error

In order to test if the correlation measure at a specific point is reli¬

able and to specially treat regions with weak texture, we must have

an adequate texture measure and must know the minimally tolerable

texture.

9.1 Texture Measures

The local variance (or Standard deviation a — y/var) is a good basis for

measuring texture intensity. However, the variance var has quadratic
terms and depends on the mean value /x of the image intensities I(m, n):

var = 2^ (I(min) ~ P) (9-1)
i,j=l..m,n

with a = > I(m,n)
.

mn
^ '

i,]—l..m,n

Therefore the calculation of the local variance requires a lot of hard¬

ware resources. Gradient Operators represent another measure and are

easier to calculate. In addition, it is more appropriate to use a gradient

Operator to measure texture for gradient based correlation criteria.

In order to compare the various texture measures (local variance and

gradient Operators) the texture of random noise patterns with different

Standard deviation was measured. As shown in Table 9.1, the mean of

the gradient Operators are proportional to the local Standard deviation,
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Surface type mean value relative std. dev.

White paper 1.7 0.20

Brown paper 3.0 0.20

Dark jeans fabric 5.6 0.15

Light jeans fabric 8.8 0.17

Human hand 7.4 0.30

Carpet 18.0 0.15

Table 9.2: Measured local variance and relative Standard deviation

(o-/u) of real materials.

but the variance of the local Standard deviation is smaller than that

of the gradient Operators. When segmenting an image into regions of

weak and strong texture, as must be done in the texture analysis, mea¬

sures with low Standard deviation show better Performance. However,

the Standard deviation of gradient Operators is reduced by subsequent

lowpass filtering. In order to illustrate the abstract texture intensities,

the local variance of some sample surfaces is given in Table 9.2.

However, in spite of a high local variance (or gradient), correlation

on gradient images do not work correctly if the derivative or direction

of the image intensity is constant. Therefore when applying such

correlation methods, the image must additionally2 be tested for

Variation of the direction or derivative.

9.2 Required Texture

For gradient based correlation, texture is inherently required to calcu¬

late a reliable local gradient3 (magnitude or direction). Texture directly

competes with (uncorrelated!) image noise and in the case of low tex¬

ture compared with the image noise, the gradient is mostly a function

of the present noise. This results in weak texture producing higher

dissimilarity values than strong texture (see Fig. 9.1).
The qualitative insight that the ratio of the variances of texture and

noise is crucial for a reliable correlation was experimentally verified. An

2Only a Variation in the direction/derivative is not sufficient, as this is likely

because of image noise.

3In contrast, intensity based correlation only gets more tolerant to slight mis-

alignments in the templates.
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Figure 9.1: Histograms of correlation values of weak and strong tex-

tures (low and high texture to noise ratio, respectively) for various dis¬

parities.

experiment similar to that for investigating the separation-capability

(see Section 8.4.1) was used. It differs in that a series of artificial pat¬
terns with different texture intensity and image noise was used. Patterns

with a texture with a Standard deviation a = 5... 70 were combined

with Gaussian noise of Standard deviation a = 1... 20. The mean Stan¬

dard deviation in a 7x7 neighborhood was used as measure for texture

and noise. In Figure 9.2 the segmentation-error for DSAD correlation

is plotted as a function of the texture to noise ratio (Standard devia¬

tion) for various segmentation-disparities. It is clearly seen that neither

texture or noise but rather their ratio is decisive for the segmentation

capability.
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Figure 9.2: Segmentation error in function of texture to noise ratio

(standard deviation measured in 1 xl window): it can be seen that the

segmentation error is only a function of the texture to noise ratio and

is independent of texture or noise alone.

9.3 Methods for Coping with Weakly
Textured Scenes

Because the existing texture in relation to the total image noise (math-
ematically the ratio of the signal and noise variances) is the deciding
property of an image and not the absolute texture strength of a scene,

it is possible to either increase texture or decrease image noise.

9.3.1 Increase Texture

A strong texture can be produced either by special high textured clothes

and paintings or by actively projecting an artificial texture onto the

scene. Equipping the environment with high textured objects is often

unfeasible (e.g. human skin!) or very expensive. The projection of an
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artificial texture onto the scene (either a random noise field [62]4 or

randomly frequency-modulated sine waves [63]) is more suitable. Since

CCD sensors are highly sensible in the infrared band, it is possible to

project the patterns with infrared such that the patterns are invisible

to humans.

9.3.2 Decrease Noise

Any noise source (see Section 8.2) could be reduced in order to increase

the signal to noise ratio of the image:

• increase ambient fighting in order to reduce shot noise, i.e. the

signal to noise ratio is increased

• improve camera and frame grabber circuits

• use a digital camera where the CCD sensor is directly coupled
with the A/D Converter in order to eliminate noise induced by

jitter

• increase the resolution of the AD Converter to decrease quantiza¬
tion noise.

When reducing the system noise, the necessary texture for reliable cor¬

relation is reduced.

a Standard slide projector was used to project the patterns



Chapter 10

Hardware

Implementation

The "inverse stereo algorithm" was successfully implemented at video-rate on

a dataflow processor. First the required computational requirements are esti¬

mated and some hardware architectures are discussed in regard to implemen¬

tation of the "inverse stereo algorithm" at video rate. In the second part a

detailed description of the implementation of the algorithm is given, starting
with a description of the hardware platform "PRIMASPEED".

10.1 Estimation of Required

Computational Resources

In order to decide upon the best hardware platform, it is important to

know what kind of Operations and which Computing Performance are

required for implementation. In addition, the required memory band-

width is also of great concern.

In this section the necessary computation load for this algorithm is esti¬

mated. However, this data should only be used to estimate the minimal

necessary Performance, because the peak Performance of processors can¬

not be fully exploited because of the following reasons:

• limited memory bandwidth; this may be a bottleneck especially
for image processing.
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• a significant part of the processing power is used for program

overhead (counters, conditions, branches)

• discrepancy between hardware and algorithms: e.g. a DSP opti-
mized for multiply-and-accumulate (MAC) Operations could never

reach its peak Performance if the algorithm has only a few MAC

Operations.

For reasons of comparison, the Computing time used on a ultraSPARC-

station is given in addition.

In order to allow for estimating the required Computing power for ar-

chitectures which perform several Operations in parallel (e.g. address

calculation, addition and multiplication), these Operations were treated

separately. The following assumptions were made for the estimation of

the computational requirements:

• Calculation intensive functions (e.g. argument of sobel-gradient,
remapping coordinates for transformation) are calculated in ad-

vance and stored in look-up-tables (LUT).

• Intermediate results are temporarily stored in off-chip memory, if

more than four Operations can be saved by storing one value.

• The memory data-width is 8 bit except for the mapping table

memory which is 24 bit wide.

• It is assumed that the camera images are already in the memory.

If the image data must first be read from the A/D Converter and

written to memory by the DSP, this results in additional compu¬

tation.

• The computation necessary for loop counters, conditions and

branches was not considered (so-called "program overhead").

In the followmg sections x denotes the image width and y the image
height in pixels.

10.1.1 Image Transformation

For the following analysis of the necessary Operations it is assumed that

the mapping coordinates and the interpolation factors for the image
transformation are provided in a precalculated table. Since any arbi¬

trary transformation is allowed, there is no possibility of precalculating
some terms in order to speed up the transformation.
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First, the next value of the coordinate table, containing a pointer to

the upper left pixel of the source quadruple and the interpolation coef¬

ficients, is read. Then the addresses of all four pixels are calculated and

the pixels read from memory

5 xy Memory accesses.

The interpolation coefficients are extracted from the packed data by

shifting1. Subsequently the four pixels Iij are scaled with the interpola¬

tion factors (u, v) and are summed up in order to calculate the bilinear

interpolated result2:

/ = ((u/n + (8 - u)/12)« + (u/21 + (8 - u)/22)(8 - «))/64 (10.1)

6 xy Multiplications
5 xy Additions

3 xy Shift Operations.

10.1.2 Subsampling

Both, the transformed and the camera image are subsampled (see
Section 10.4.3). The subsampling is done by averaging every two pixels.
It is assumed that the transformed image is subsampled following the

transformation, such that no additional memory access is necessary.

xy Memory accesses

2 • xy/2 Additions

2 • xy/2 Shift Operations
2 • xy/2 Memory accesses.

10.1.3 Lowpass Filtering

In order to suppress noise, both subsampled images are lowpass filtered.

Lowpass

1 2 1

2 4 2

1 2 1

1

2

1

+ 2 •

1

2

1

+

1

2

1

(10.2)

The sums of the columns of the filter are calculated in advance,

temporarily stored in a register and used for all three columns, which

1Assuming that a shift Operation is more efficient than a memory access.

2
Interpolation coefficients are each two bits.
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results in the following reduced computation:

2 • 3(y — 2) x/2 Memory accesses

2 2(y - 2) x/2 Additions

2 (y — 2) x/2 Shift Operations

Subsequently for every output value the three column-sums are added

and divided by 16

2 • 2(y - 2)(x/2 - 2) Additions

2-2(y- 2)(x/2 - 2) Shift Operations

10.1.4 Sobel Filtering

Both the left and right images are sobel filtered. In order to calculate the

direction and magnitude of the sobel-gradient, the images are convolved

with the two masks

1 2 1

0 0 0

-1 -2 -1

1 0 -1

2 0 -2

- 0 -1

and the results are used as addresses into the LUT to read the

precalculated direction and magnitude values. In order to reduce the

computation, the same method as for the lowpass filter is applied. This

results in the following number of Operations for the calculation of the

column-sums:

2 3 (y — 2) x/2 Memory accesses

2 3 (y - 2) x/2 Additions

2 • (y — 2) x/2 Shift Operations.

Then for each pixel the two convolutions, as a weighted sum of the

precalculated column sums, are calculated.

2 • 3 (x/2 -2)(y- 2) Additions

2 (x/2 -2)(y- 2) Shift Operations

Subsequently the results are scaled3 in order to produce the LUT

address and the values are read from the LUT:

3See Chapter 10.4.5
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2-2(x/2-2)(y-2)
2-3(a:/2-2)(y-2)
2-2(x/2-2)(y-2)
2- (a:/2-2)(y-2)

Absolute values

Logic Operations
Shift Operations

Memory accesses.

In order to reduce the number of output values which must be written

to memory, the cyclic difference of the direction is already calculated at

this stage.

A„ ,y) = min(\cj>i - 4>r\,\\4>i - 4>r\ - cycle\) (10.4)

2(x/2-2)(y-2)
2(x/2-2)(y-2)
(x/2-2)(y-2)

xy/2

Additions

Absolute values

Comparisons

Memory accesses

10.1.5 Correlation

The cyclic direction differences are summed up in a (2k + l)2 neigh¬
borhood around each pixel (x,y). In order to decrease the number of

Operations, new sums are calculated using previously calculated sums

in the following way:

new kernel

using value

of old kernel

new column

using value

of old column

+

1 1 1 1 1

4 _(;_»- -j ~[_

i r i t i

i i i t f

t -|— r -i -i~

4 _r* u 4 -i-

-'

u

+

The calculation of the initial line of column-sums results in the following
number of Operations:

(2k-1) x/2 Additions

2k x/2 Memory accesses.

Calculating the correlation of the entire image (including the new

column-sums) leads to the following Operations :
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(2 (x/2 - 2k) + 4k) (y - 2k) Memory accesses

(4 (x/2 -2k) + 6k-l)(y- 2k) Additions.

10.1.6 Texture Analysis

For the texture analysis the magnitude of the sobel gradient is used

Magnitude = yjs* + S2
. (10.5)

It is also precalculated and stored in the same LUT as the direction.

Since Sx and Sy were scaled, this scaling must be reversed by appropri-

ately shifting the magnitude. Subsequently the magnitude is lowpass
filtered (see Section 10.1.3) to reduce its variance.

y x/2 Shift Operations

(3 (y — 2) + 1) x/2 Memory accesses

2(y-2)(x- 2) Additions

(y - 2) (Sx/2 - 4) Shift Operations

10.1.7 Segmentation

First the image is thresholded and saved as a packed (16 bit words)
binary image in memory.

yx/2 Memory accesses

yx/2 Comparisons

yx/2 Shift Operations

yx/32 Memory accesses

In the second step small Clusters are eliminated (see Section 5.2,

Eq. (5.4)). It is assumed that the algorithm stores intermediate results

in the processor registers (Operations used for initialization are ignored).

2/l6 (2e + 1) (x/2 - e) (y — e) Memory accesses

3 (2e + 1) (x/2 - e) (y - e) Shift Operations

(3 + 2e) (x/2 - e) (y - e) Additions

(x/2 — e) (y — e) Comparisons
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The total required Computing power for an image size of 756x286

and a correlation kernel of 9x9 pxl is presented in Table 10.1. Because

addition, multiplications by a power of two, comparisons, shift and

logic Operations are of similar complexity, they were summed up to

"arithmetic Operations".

10.2 Hardware Architectures

There are various possible hardware architectures for an implementation
of the algorithm. In order to choose adequate hardware the following
considerations must be taken into account:

• as in most image processing algorithms, a huge amount of data

must be processed.

• processing must be performed at video rate and the data (images)
comes from the video-camera or frame-grabber synchronous to the

camera clock.

• there are relatively few Operations performed per data and mostly

integer arithmetic (typical for low-level algorithms).

• all pixels of an image are processed with the same Operations.

Image processing Operations are often divided into low level and high
level functions. Although there is no exact definition for low level and

high level image processing, and it slowly drifts as technology changes,
a rough distinction can be made in the following way:

• Low level functions operate on pixel level and all pixels in an

image are treated with the same algorithm. Owing to their regu-

larity they are usually well suited to a hardware implementation.

Typical for low level algorithms realized in Software is that the

number of Operations used for addressing and loop control is on

the same order or even larger than those used to calculate the

algorithm.

• High level functions usually work on features of an image and

therefore the Operations needed to execute the algorithm outper-
form those for addressing and loop control.

There are a variety of processor architectures. Here they will be divided

into control-flow and data-flow processors:
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• Control-flow is the most often used architecture, either as von

Neumann or Harvard architecture. The existence of a program

counter, an Instruction Controller and memory to störe data and

programs is typical. Since all input data and program code is read

from memory and all results written to memory, memory access

is often the bottleneck of such processors.

• In dataflow-processors processing is initiated by the availability
of data and described by dataflow-graphs. If there is no individual

data but a sequential stream (like images from a camera) there

is no need for explicit Operators for each datum as in the clas¬

sic dataflow principle, and the data-stream can directly flow from

one processing element to the next. If all data-streams flow syn-

chronously to a global clock, such a processor is called synchronous
dataflow processor.

Since the data-stream can flow through any number of processing
elements (PE) without being stored in memory, the memory bot¬

tleneck of control-flow processors is eliminated. The PEs are usu¬

ally functions realized in hardware, but might also be common pro¬

gram controlled processors. Dataflow processors are mostly used

for signal and image processing. However, dataflow-processors are

usually not well suited to data dependent computations.

In the following some widely known processor architectures used for

signal and image processing are discussed. However, it goes beyond
the scope of this thesis to give an extensive overview and to analyze the

implementation of the "inverse stereo algorithm" on other architectures.

10.2.1 High Performance Processors

There are mainly two processor types, the RISC processors and the digi¬
tal signal processors (DSP). DSPs are especially designed for signal pro¬

cessing which uses lots of multiply and accumulate (MAC) Operations.

However, the availability of a MAC Operation is not advantageous for

the implementation of the "inverse stereo principle", as only few multi¬

plications are used. Furthermore no floating point arithmetic is needed,
because all data are integers and most multiplications are by powers of

two and therefore realizable by shift Operations. On the other hand,

separated data and program buses, fast internal memory (e.g. ADSP-

21060 has 4 Mbit on-chip SRAM) and versatile address generators (e.g.
used for delay lines) could drastically increase the Performance since the
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algorithm is very memory intensive.

Even two years after the Start of this project there are still no Single

processors on the market with a high enough Performance for the en¬

tire algorithm. Today's single-DSPs all have a Performance below 100

MIPS4.

In recent years high Performance RISC processors such as DEC

Alpha (1992) and the superscalar processors MIPS R80005 (1992),
R10000 (1996) and ultraSPARC6 (1996) came to market (see Table

10.2). The DEC Alpha yields only about half of the necessary compu¬

tational power and the other high-performance processors could only
provide the indicated Performance if the algorithm can be programmed
such that all units are constantly used to capacity. In addition, since

the algorithm uses only integer arithmetic, the relevant processing power
is reduced to a peak Performance of 400 Mega integer Instruction per

second for the ultraSPARC.

Because neither DSP nor RISC processors can produce the necessary

Performance, only a multi-processor Solution is possible.

10.2.2 Multi-processor Systems

With multi-processors, the processing power is ideally multiplied, but

memory access and communication often decrease the processing power
such that it does not linearly increase with the number of processors.

Multiprocessors either share memory or each processor has its own

local memory. In shared memory multiprocessors, the inter-processor
communication is done by using the common memory, but each

processor can use only a fraction of the total memory bandwidth.

Consequently, for programs with high data I/O, memory access is the

bottleneck and slows the whole system down.

With local memory each processor has füll access to its memory.

For inter-processor communication and system I/O there is a data-

communication network that can have two different topologies: systolic
array with point to point connections between the individual processors

or connection through a bus. At the beginning of each processed image,
the results of the last cycle and the new image must be communicated

4One DSP-instruction consists of a multiplication, addition and shift Operation.
Consequently the SHARC (ADSP-2106x) has 40 MIPS but 120 MFLOPS.

5MIPS Technology Inc.

6Registered trademark of SPARC International, Ine; based upon an architecture

developed by Sun Microsystems, Inc.
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Single processors

DEC alpha 233 MIPS

RIO 000 800 MIPS 2 floating point and 2 integer units

ultraSPARC 1000 MIPS 4 integer, 3 floating point units and a

graphical processor

Multi processors

TMS320C80 250 MFLOPS consists of 4 fixed-point DSPs and one

RISC

MUSIC 3.78 GFLOPS 63 DSP960027; intelligent communica¬

tion

GigaBooster 1.16 GFLOPS 7 DEC alpha; intelligent communica¬

tion

CNAPS0 1280 MIPS SIMD9 Computer on custom chip con-

taining 64 MAC-processors
iWARPlu 20 MFLOPS

per node

processors with hardware supported

message passing (320 MBytes/s per pro¬

cessor);
Connection-

Machine-511

— MIMD12 machine; 1 to 16 384 RISC

processors

Table 10.2: Performance of some Single and multi-processors

to each processor.

In Table 10.2 the Performance and some characteristics of some multi¬

processors are presented. Unlike conventional multi-processor Systems
where communication is controlled by the processors and decreases the

system Performance, GigaBooster13 and MUSIC14 [65] have "intelligent

communication", where data communication is controlled by a hardware

Controller that relieves the processor from this work.

Dataflow Multiprocessors
In dataflow processors data is not stored between the processing steps

7DSP96002 by Motorola, 20 MIPS, 60 MFLOPS peak Performance
8Fixed-point arithmetic (16 bit), by Adaptive Solutions, Inc.

9SIMD = single instruction multiple data
.

10By INTEL Corporation, based on hardware and Software design developed at

Carnegie Mellon University .

nBy Thinking Machines Corporation .

12MIMD = multiple instruction multiple data
.

13Commercial name of Alpha7 [64].
14Developed at the Electronics Lab, ETH Zürich.
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but flows directly from one processing element (PE) to the next. The

processing elements are most often hardware-implemented algorithms
but may also be common program-controlled processors.

There are many processors based on the data-flow principle. The com¬

mercial MaxVideo-250 and MaxPCI from Datacube consist of a cross-

point switch (up to 3 GByte internal bandwidth) to interconnect the

PEs (Statistical, histogram, LUT processors and ALU) with a total Per¬

formance of up to lO'OOO MIPS. In addition, there are daughter-cards
available for image warping and neighborhood Operators. In Section 10.3

the hardware of PRIMASPEED15 is presented in more detail, since the

workspace supervision system was implemented on this processor.

10.2.3 Conclusion

The necessary computation can only be provided by multiprocessor

Systems. Shared memory multiprocessors are not suitable due to the

, memory bottleneck. Multi-processors with local memory and, advanta-

geously, with "intelligent communication" have the necessary computa¬
tional power but they are not economically sound since a considerable

percentage of the power is used for program overhead. Therefore the

System was implemented on a dataflow processor.

Datacube's processors have the disadvantage of requiring an additional

module for neighborhood Operators. An image warper is available, but

with mapping functions restricted to first and second order polynomi¬
als16. PRIMASPEED was chosen as the platform for the implementa¬
tion because 3x3 filters can be implemented onto the base-board and

custom-designed FPGAs and daughter-boards can be used.

10.3 Architecture of PRIMASPEED

The inverse stereo algorithm is implemented on the PRIMASPEED17

hardware, a synchronous dataflow processor. It is a commercial

successor of the image processing system SYDAMA-2 (SYnchronous
DAtaflow MAchine), which was designed and built at the electronics

laboratory at ETH Zürich [66, 67]. PRIMASPEED is an add-on

15PRIMASPEED is a product of LEUTRON VISION AG, Glattbrugg, Switzer-

land .

16Such that the necessary undistortion and redistortion of the image is not possi¬
ble.

17Formerly also called PC-SYDAMA.
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Figure 10.1: Overview of PRIMASPEED architecture (direct access

from host (EISA bus) to video memory is not shown in this figure).

card for personal Computers, especially designed for low level image

processing at video rate.

The systolic array is synchronous (clocked with the pixel clock)
and consists of 3 processing elements (PE) and 3 video memories

(VMEM), which are all connected to the video bus and the address-

and data-bus of the RISC (see Fig. 10.1 and Table 10.3). The video

bus is multiplexed (2:1) in order to reduce the physical bus width

and consists of an integrated crossbar-switch allowing for connecting
each input to all (even multiple) Outputs. Filters (e.g. 3x3 lowpass,

highpass, sobel), look up tables (up to 2 x 9 bit inputs) or custom

designs can be implemented on the FPGA. For functions which are too

complex for implementation on an FGPA, two custom-modules may be

added.

Owing to the functions programmed in hardware, there is no need to

fetch and decode commands, to read and write intermediate results or

to have loop controls, all of which reduce the necessary hardware.

PRIMASPEED is programmed with the use of a special monitor

(PRIMON), which is an adapted Version of SYMON [68, 69], the mon¬

itor for the low level part of SYDAMA-2. On the one hand PRIMON

allows for the configuration of the systolic hardware (set crossbar switch

to configure video-bus, set parameters of PEs, video-memory and cus-
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Video-memory:
512 KByte VRAM (8 bit, 1 input, 1 Output), window-

generator

VMEM

Processing element (PE):
2 inputs (10 bit) and 1 output (12 bit)10
XC4005 or XC4008; SRAM-based, configuration down-

loaded at system startup, reloadable between two image
frames.

256 KByte usable e.g. for look-up-tables (LUT)
8 KByte x 9bit; used for delay-lines19 and

neighborhood-operators

I/O:
FPGA:

SRAM:

FIFO:

Processor (RISC):
R3051 Controller for dataflow processor; usable for high-level

processing thanks to direct access to VRAM.

Table 10.3: Some data about PRIMASPEED.

tom modules) in an easy way. On the other hand, it allows for the

definition of static dataflow graphs, which can be changed at video-rate

to program complex algorithms.

10.4 Implementation of

Stereo Principle"

the "Inverse

The entire algorithm was successfully implemented on PRIMASPEED

and on an additional custom module, which was built during this work.

The spatial image transformation and the lowpass filtering was imple¬
mented in this module, which consists of two FPGAs, SRAM, VRAM

and two FIFO memories. Figure 10.2 shows the dataflow graph of the

algorithm and the allocation of the individual functions to the hard¬

ware resources. The entire algorithm is processed at video-rate (50 im-

ages/sec), with a pipeline delay of 40 ms. The result is either a binary

image or a transition-coded image for subsequent image Interpretation.
In the next section some possibilities for the implementation of the

spatial transformation in hardware are analyzed. In the following sec-

18Each two bits can be individually connected.

19This is used if one image was delayed against another, e.g. by neighborhood

Operators.
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Figure 10.2: Dataflow graph of "inverse stereo algorithm" with allo-

cation to hardware modules on PRIMASPEED.
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tions the implementation of all algorithms is presented in detail.

10.4.1 Implementation Possibilities of Image
Transformation

The module for spatially transforming images has to satisfy the follow¬

ing requirements:

• transformation in real time (50 fields/sec; see Section 10.4.3)

• arbitrary transformation possible (including distortion correction)

• switchable between different transformations (safety envelopes)
during Operation

• image resampling with bilinear interpolation or better.

Because the SRAM of the PEs are too slow for an implementation of

bilinear interpolation and the PRIMASPEED has too few PEs to im-

plement all necessary functions on it, we decided to build a custom

module for image transformation. In the following, several possibilities
for implementation are discussed20.

Arbitrary Mapping with DSP

With a digital signal processor (DSP) it is possible to calculate any

transformation and distortion correction in real-time 21, but with the

price of huge processing power. In Table 10.4 the estimated compu¬

tational power for a perspective-affine transformation is presented.
When taking into account that a division needs 6, a Square root

10 and the cubic root 37 MAC23 cycles24, this results in a total

20Methods that make only bilinear mapping possible (there are VLSI chips cal¬

culating bilinear mapping at video-rate, e.g. TMC2301) were not discussed, since

they facilitate neither perspective transformations nor distortion correction, which

are both very important for this application.
21Instead of using a DSP it is possible to build a custom hardware (VLSI) which

calculates just the necessary mapping function at the required speed. Because no

such hardware existed, this Solution was not considered any further.
22 Division by powers of two were not counted as divisions.
23MAC = multiply and accumulate.

24The cycle numbers are given for an implementation on a SHARC ADSP-21000

DSP [70], using single precision floating point calculation.

• Division calculated with iterative convergence algorithm needs 6 cycles.

• Square roots calculated with Newton-Raphson iteration with initial seed from

ROM based table needs 10 cycles.
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Algorithm ADD MULT DIV22 roots memory

Undistortion 22 33 0 0 -

Transformation 66 66 11 0 -

Distortion 33 33 11 22 -

Resampling 66 55 0 0 44

Total 187 187 22 22 44

Table 10.4: Estimated computational power for a perspective-affine

transformation with correction of radial distortion (in MOPS).

necessary computational power of about 880 Mega MAC Operations

per second25. This exceeds the Performance of today's fastest DSP,
the TMS320C80, by factors. Therefore it is inevitable that we use a

multi-DSP system, which increases system cost and programming effort.

Using Texture Mapping of Graphics-Processors

In the past years many 3D graphics-processors with fast hardware sup-

ported texture mapping facilities came to market. Applying a texture

onto an arbitrary surface in 3D-graphics is analog to the transformation

used in the "inverse stereo principle". Therefore it is possible to con-

struct a 3D surface (consisting of triangles) which corresponds to the

necessary image transformation when that image is applied as texture

to the rendered surface. An approximation of the distortion correction

can also be included.

The core of some of these graphics-processors is also available such that

it can be used for a custom VLSI design of a spatial transformer.

Using Mapping Table

Since the calculation of the mapping coordinates is very computation¬

ally intensive, the necessary computation is drastically reduced if the

coordinates are precalculated and stored in mapping tables. Conse¬

quently, the transformation is reduced to reading the addresses with

• Cubic root calculated with the power approximation using pseudo extended-

precision arithmetic needs 37 MAC cycles.

25 It is assumed that the additions can always be calculated in parallel to a multi¬

plication; an additional 1000 Mega MAC Operations would be used for the transfor¬

mation of an elliptical safety envelope.
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the interpolation coefficients from memory and to calculating the in¬

terpolated pixel value. In order to allow for dynamically changing the

transformation, different maps may be precalculated and stored.

Hybrid Solution

The largest part of the computational power is used for distortion cor¬

rection (see Table 10.4). Since the distortion remains constant for a

camera setup, it is more economically practical to precalculate the dis¬

tortion factors and störe them in a look-up-table26. In order to calculate

the undistorted coordinates

xu = xd(l + Kl(x2d + y'd)) = XdXu (10.6)

Vu = Vd(l + Ki(x2d + Vd)) = Vd Au

the factor Xu(xd,yd) is stored in a LUT, which saves 2 multiplications
and one addition. Even 59 MAC Operations are saved in the calculation

of the distorted coordinates when the Solution Xd(xu,yu) of the cubic

equation

Qu = Qd(l + K\Q2d) = ßdT—r r (10.7)
Xd(xu,Vu)

yd = Xd(xu,yu)yu

is stored in a LUT. Using the values xu and yu rounded to the nearest

integer value introduces only small errors27 but drastically reduces the

size of the required LUT. Consequently, Xd(xd,yd) must only be stored

for integer values. This method results in a necessary computational
power of 230 Mega MAC Operations and might be implemented with a

TMS320C80.

Continuous Coordinate Map Update

Taking into account that the transformation will hardly change every

field but at most several times per second, it is possible to combine

26Instead of combining the distortion correction on the coordinate level, it is pos¬

sible to combine the three transformations on the image level. However, this has the

disadvantage that 3 (instead of 1) bilinear interpolations must be calculated, which

not only increases the computation but also the introduced errors.

27For «i « 10-3 and a sensor size of 6.5 mm (756 pxl) x 4.8 mm (572 pxl),
rounding results in a maximal error of 0.2 /im w 0.025 pxl.
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the previous two methods. During the period in which the transformer

reads the mapping coordinates from one memory block, a DSP can

calculate the coordinate table for the next transformation and störe it

in another memory bank. There is no need for the DSP to calculate

the transformations in real time, but the transformer can switch to the

newly calculated mapping table as soon as the DSP has finished. The

DSP may calculate the transformation with or without LUT for the

distortion correction, depending on the necessary updating cycle. With

a 50 MIPS DSP (e.g. TMS320C54x), this results in almost 10 Updates

per second28.

Conclusion

The fully DSP based transformation was not considered any further be¬

cause of the huge computational power. Although the hybrid Solution

needs much lower processing power, it still has the drawback that for

arbitrary transformations a multi-DSP system must be used. At the

time when the decision about implementation took place, 3D graphics

processors with hardware supported texture mapping were announced,
but not available.

Therefore a mapping-table based transformer with multiple switchable

tables was implemented. With this implementation it was possible to

demonstrate arbitrary, switchable transformations with distortion cor¬

rection. In addition, it is possible to calculate or reload new mapping
tables by the RISC of the PPJMASPEED during Operation.

10.4.2 Implementation of the Transformation

Module

The transformation module is capable of transforming the images at

video-rate and interpolating subpixel values by bilinear interpolation.
The transformer uses precalculated mapping tables and can switch be¬

tween up to 15 stored tables at field-rate.

These tables consist of the address to the upper left source pixel (17
bit) and two 3 bit wide interpolation weights. In order to facilitate the

reloading of these tables during Operation (from file or directly calcu¬

lated by the RISC) with a high bandwidth, video-ram (VRAM) was

used to störe these tables. This simplifies the arbitration between read-

accesses of the transformer and write-accesses of the RISC, because the

28Less than two Updates per second for elliptical safety envelopes.



138 Chapter 10. Hardware Implementation

MULT

1...8

L A"

MULT

1...8

^

Figure 10.3: Block diagram of bilinear interpolation circuit (clocked
with double pixel dock rate)

transformer needs to initiate a new read transfer of RAM data to the

serial access memory of the VMEM only every 256 pixels; new data is

then available at every transition of the serial clock. Between these read

transfers the RISC has füll access to the parallel databus of the VMEM,
such that it can access the VRAM during more than 90% of the time.

In addition, connecting the serial data bus to the transformer and the

parallel data bus to the RISC bus simplifies the hardware.

In order to make the transform of each field possible, a ping-pong mem¬

ory is used such that the new image is stored in one memory bank while

the previous image is transformed, reading the data from the other

bank. Because of the bilinear interpolation four source pixels must be

read to produce one transformed output pixel. Because with FPGAs

and off-the-shelf SRAM it is not possible to read 4 values within 60

ns29, the image memory was built from two banks read in parallel to

increase memory access bandwidth; in one bank the even and in the

other the odd pixels are stored. In this way a read-access bandwidth of

60 MByte/s is reached.

There are two address generators in the transformer module, one pro¬

duces the write addresses and the other generates the four read addresses

from the address in the mapping table. The values of the source data

pixels are then fed to the bilinear interpolation circuit at the double

pixel clock rate. Owing to the restricted resolution of the interpolation

weights (3 bit), the multiplication by the weight can be implemented by

using only adders which add differently shifted pixel values. The block

diagram of the bilinear interpolator is presented in Fig. 10.3.

The transformer is controlled by two finite State machines. The master

29The output propagation delay and setup time of the fastest FPGA from XILINX

are together «10.5 ns, and consequently the read-access time of an SRAM must be

below 4.5 ns.
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is clocked with the pixel clock and generates all necessary signals except

those that control the write access of the RISC, which are generated by
a State machine clocked with the RISC clock.

10.4.3 Subsampling and Packing

In order to get a short reaction time, the entire System works with fields

(50 fields/sec) instead of frames. A field has only half the resolution in

y-, but füll resolution in the x-direction compared to a frame. How¬

ever, when applying the sobel filter, the geometric resolution in both

directions should be equal. Therefore the fields are subsampled in the

x-direction by averaging every two subsequent pixels on a scanline. In

addition, in this way the computation of the subsequent algorithms is

reduced. The subsampling was performed after the transformation to

reduce errors introduced by the transformation.

The PRIMASPEED is designed to process fields with füll resolution

in the x-direction. Therefore working with subsampled images exploits
the hardware only partly. Consequently it is much better to pack two

subsampled stereo images into one image by interleaving the pixels on

one line. This reduces the two data-streams to a single one and sim-

plifies the generation of neighborhoods for filters. In the subsequent

algorithms this is appropriately taken into account.

10.4.4 Lowpass Filtering

As for all two-dimensional filters and neighborhood Operators it is nec¬

essary to delay the data stream to have access to data that occurred

earlier in the data sequence, i.e. pixels with lower x- or y-coordinates.
In PRIMASPEED the delay-line is implemented with one FIFO of fixed

length, clocked at the double pixel clock rate. As such the data is avail¬

able after one and two image lines and a neighborhood of 3 rows and any

number of columns30 can be produced. Since the input data consists of

two interleaved images (transformed left and right image), a kernel of

the following form, which calculates the filter values of the two images

alternately is used.

1 - 2 - 1

2 - 4 - 2

1 - 2 - 1

30The number of columns depends on the number of registers used to produce
additional delay.
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The implementation of this filter needs low hardware resources because

the Single weights as well as the column weights are powers of two and

therefore the multiplications and the division by 16 are realized by shift

Operations31.

10.4.5 Image Correlation

The correlation consists of two neighborhood Operations, implemented
in two separate FPGAs:

• calculation of the direction of the sobel gradient

• calculation of SAD-correlation on direction values.

First the images are filtered with two kerneis applied to the same neigh¬
borhood32 to produce the sobel-gradient in the x- and y-directions. The

angle of the sobel gradient is then calculated by

tp = atan2(Sx,Sy) (10.9)

which is precalculated for all values and stored in a look-up-table.

Reduction of LUT Width

The ränge of both gradients is -1020 to +1020 (= 10 bit plus 1 sign bit).
In order to reduce the size of the LUT from 4 MWord to 256 KWord, the

resolution of the gradients is reduced. Because just ignoring the least

significant bits leads to large errors for small gradients, both gradients
are scaled according to the common largest absolute value such that

the two most significant bits get 0 and can be left out. The error in¬

troduced by this scaling and reduction of resolution is smaller than 0.5°.

Reduction of Direction Resolution

In order to decrease the hardware complexity of the correlator, the

direction resolution should be reduced before (in the LUT) or after

the direction subtraction. In order to determine the error as a result

of that reduction in resolution, the segmentation-error of correlations

with various resolutions was investigated33.
It is advantageous to reduce the resolution after calculating the direc-

31 In hardware implemented by appropriate wiring.
32
Consequently only one delay-line is necessary.

33The same image material as for the investigations about the correlation methods

was used[71], see Chapter 8.4.1.
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Reduction before differencing Reduction after differencing

0.15 0.2 0.25 0.3 0.35 0.4

Disparity
3.1 0.15 0.2 0.25 0.3 0.35 0.4

Disparity

Figure 10.4: Segmentation-error in function of disparity and different
resolutions of direction difference (1,2,3,4,5,7 bit) for 5x5 correlation

kernel (the lower the error at a specific disparity the better the method).

tion difference. In this way almost the same Performance is obtained as

when reducing the resolution before calculating the difference but with

a resolution increased by 1 bit. In Figure 10.4 the segmentation-error
as a function of the disparity for various resolutions is shown for the

correlation with a 5 x 5 kernel. It can be seen that there is no significant
improvement for resolutions > 4 bit when reducing after differencing
or > 5 bit when reducing before differencing. The required resolution

is even lower for larger correlation kerneis since the quantization noise

is filtered out to a higher extent: a resolution of 3 bit and 4 bit,
respectively, is sufficient. The difference in Performance is for the

following reason: A difference smaller than 180°/2n (n = resolution

of direction difference in number of bits) always results in a difference

of 0 if the reduction is made after the subtraction. However, when

the resolution is reduced before subtraction, the LSB of the result is

undefined, which results in higher dissimilarity values for corresponding
regions. This effect is quite noticeable up to a resolution of 3 bits

(=tt/8); in corresponding pictures 95% (85%) of the direction difference

are smaller than 7r/4 (< n/8).
From the fact that a resolution of the direction of 8 and 7 bit (reduction
before differencing!) produces the same result, it can be seen that

a resolution higher than 7 bit does not increase Performance. The

difference is only noticeable at a direction resolution of less than 6 bit.

This eoineides with the fact that the direction difference information

(resolution: 7 bits) is superimposed with noise having a mean value of

approximately 7r/16 (= 3 bit).
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The value stored in the LUT consists of the direction (8 bit) and

magnitude (4 bit) of the sobel gradient, which is used for the texture

analysis. However, the magnitude must be multiplied by the inverse of

the scaling factor (0, 2 or 4) in order to undo the scaling of the gradi¬
ents.

In the next step the cyclical difference of the direction is calculated,
its resolution reduced from 7 to 4 bit and it is summed up in a 9x9

neighborhood. The reduction in resolution is necessary because of the

restricted width of the FIFO. However, examination showed that a re¬

duction34 to 3 bit is tolerable.

The neighborhood is again produced with the FIFO, but as the data

width is only 4 bit, it can be enlarged to 9x9. The correlation value

is produced by summing up all difference values of this neighborhood.

Subsequently this value is thresholded to produce the binary image.

10.4.6 Image Segmentation

As a first step in the segmentation the correlation value and the tex¬

ture intensity are thresholded to produce binary signals. Unfortunately
these signals are noisy such that measures must be taken to reduce

spikes resulting from noise. Therefore, the binarization is followed by a

filter to eliminate lonely pixels and very small pixel Clusters which do

not belong to objects (see also Section 5.2). The majority decision algo¬
rithm was implemented because it produces good results and is easier

to implement in hardware than the "clusterlet elimination" algorithm.
It is implemented with a FIFO to generate the 3x3 neighborhood (up
to 9x9 possible), an adder to add the values and a comparator to decide

whether the pixel is set to 0 or 1. The same procedure is carried out

for the binary signal representing the texture intensity. It is done in

the low level part in order to reduce the computation at the high level

image processing, which extracts objects within the Separation skin.

Due to the fact that it is more economic for a high level algorithm to

work on a transition coded representation of a binary image than on

the image itself, the binarized and filtered image is transition coded.

In the current system a high level image Interpretation is not imple¬
mented. However, a simple algorithm which produces an alarm if an

object is within the Separation skin was implemented completely on the

low level part of the PRIMASPEED. For that, the neighborhood of the

majority decision was increased to 7x7 in order to suppress small ob-

The reduction should be performed after and not before differencing.
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jects. Then the number of pixels in one field is counted and an alarm

is given, if the number exceeds a predefined limit.

10.5 Resources Used

For a realization in hardware the hardware resources used are more

appropriate than the computational power. Therefore in Table

10.5 the hardware resources which are used for implementation on

PRIMASPEED using programmable devices are presented. The num¬

ber of gate equivalents is an approximation according to the percentage
use of the FPGAs. The video RAM is calculated for 8 mapping tables.

Algorithm gate count SRAM VRAM FIFO

Transformation 8000 512 KByte 5 MByte —

Lowpass 2000 — — 2 KByte
Sobel-direction 3500 256 KByte — 2 KByte
Correlation 2000 — — 2 KByte
Texture Analysis 2000 — — 2 KByte

Segmentation 1500 — — (2 KByte)
Transition-coding 2000 32 KByte — —

Total 21000 800 KByte 5 Mbyte 10 KByte
Approx. Si-area 9 mm2 900 mm2 — 12 mm2

Table 10.5: Hardware resources for implementation on

PRIMASPEED. Approximate number of gate equivalents accord¬

ing to FPGA utilization. Estimated Silicon area for an implementation
with a 0.5 jiCMOS-process (with macro-cells).
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Chapter 11

Implementation and

Tests

In this chapter some considerations about the system setup and the results of

the tests of the implemented workspace monitoring system are presented.

11.1 Geometrie Setup

Besides the correlation method, the geometric setup determines the Per¬

formance of the system. With an adequate setup, the supervised area,

as well as the thickness of the Separation skin, can be tailored.

The thickness of the Separation skin depends on the translation toler-

ance (see Chapter 8), the baseline of the stereo cameras and the distance

to the surface. For coplanar cameras, the thickness of a coplanar Sepa¬

ration skin is calculated according to
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tilt angle ßL

baseline b

common viewing ränge = supervised area Ac

Figure 11.1: Experimental setup with safety envelope

with D = disparity tolerance

b = baseline of stereo cameras

/ = focal length
z = distance to Separation skin

dx = pixel spacing (in x)
Ac = supervised area

s = width of sensor .

From Equation (11.1) it can be seen that for a given supervised area Ac,
the thickness of the Separation skin decreases with smaller focal length

/ and pixel spacing dx and larger baseline b and sensor area s. Because

of the dependence on distance, non-coplanar Separation skins have a

variable thickness.

In order to maximize the usable viewing area of the cameras, the

cameras can be tilted such that their viewing areas overlap to a higher

degree. However, for tilted cameras and non-coplanar camera Setups

Eq. (11.1) no longer holds true and the thickness depends on the

tilt-angle of the cameras and is a function of its location (see Fig. 11.3).
In Figure 11.1 the surface thickness and the common viewing area as
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Figure 11.2: The plot on the left-hand side shows the thickness of

the Separation skin (minimal, mean and maximal distance) for a seg¬

mentation-disparity of 0.7 pxl as a function of tilt-angle for an object
distance of 0.8, 1.6 and 2.4 m with a baseline of 150, 300 and 450 mm,

respectively. The plot on the right-hand side shows the exploitation of
the camera image (common viewing ränge Ac/viewing ränge of a Single

camera Al/r) as a function of tilt angle.

y-axis [mm] x-axis [mm]

Figure 11.3: Calculated thickness of Separation skin as a function of

position for tilt angle of 4° ,
a distance of 2-4 m o,nd a baseline of

450 mm with a segmentation-disparity of 0.7 pxl.

a percentage of the viewing area of a Single camera are presented as a

function of the tilt-angle.

The definition of the safety envelope must meet several restrictions:

• The entire surface must not be obstructed by the robot or other

objects. In case this is not possible, a multi-camera approach may
be useful.
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B
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• Both cameras must view the surface from the same side and under
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baselme

this surface

is not visible

-Nr«
visible by both

cameras

object may
enter here

safety envelope

Figure 11.4: Because the ver-

tical surface is not seen by cam¬

era L, an object may enter the

protected zone at this side of the

safety envelope without being de¬

tected. This is solved by the

safety envelope represented by the

dashed line.

old safety

envelope \

new safety
envelope

Figure 11.5: When the safety

envelope has changed, the object
is unintentionally included into

the protected zone. In order to

prevent this, the safety envelope
should be changed in small steps.

a viewing angle which is larger than the critical angle («70°; see

Section 11.2).

It must not be possible to enter the protected zone by another

way than through the Separation skin (see Fig. 11.4).

When the safety envelope is dynamically changed, one must take

care to change it smoothly enough such that no objects get unin¬

tentionally included in the protected zone (see Fig. 11.5).

It must be taken into account that a Separation skin tilted against
the System base has a reduced thickness and consequently the

maximal allowed speed of objects is reduced.

11.2 Experimental Data About the System

The data of the geometric setup of the experimental system is given
in Table 11.1. In the following the results of some analysis with this

system and problems are presented.

Velocity = frame-rate x thickness of Separation skin.
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Characteristic value

Resolution of camera [pxl] 756x581

Used image size (field) [pxl] 378x256

Images/sec 50

Focal length of lenses 10 mm

Mean viewing distance 800 mm

Baseline 152 mm

Tilt angle of cameras ß 4°

95%-Segmentation-disparity (D95%) 0.7 pxl
Thickness of safety skin (dc) at 700 mm « 7.2 mm

Thickness of safety skin (dc) at 800 mm « 9.4 mm

Thickness of safety skin (dc) at 900 mm « 11.2 mm

Maximal velocity1of objects at 800 mm 0.45 m/s

Table 11.1: Data of experimental system (thickness given for a Sepa¬

ration skin perpendicular to the axis of symmetry of the system).
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Figure 11.6: Segmentation-error and chosen threshold as a function

of segmentation-disparity for sobel-direction correlation for all kernel

sizes.

11.2.1 Thickness of Separation Skin

In the following, the thickness of the Separation skin with the DSAD

correlation with a 3x3 lowpass prefilter is analyzed. Besides the pa¬

rameters of the geometric setup (see Eq. (11.1)), the thickness of the

Separation skin is a function of the correlation method and the threshold

used for binarization. The threshold for binarization may be chosen by

using the plot of the segmentation-error and the corresponding thresh-
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Figure 11.7: Detection-rate for sobel-direction correlation with kernel

size 9x9.

old in Fig. 11.6. It should be taken into consideration that for a given

segmentation-disparity only 50% of the pixels are above the thresh¬

old. However, with the help of the detection-rate plot in Fig. 11.7, a

threshold can be selected for which a given percentage of the pixels are

detected at a given disparity.
The data presented so far in the segmentation-error and threshold

plots were produced with experiments using images with reduced noise

(five images were averaged) and without geometrically transforming the

images. Therefore the thickness of the Separation skin was additionally
evaluated with real images from the system and compared with the

thickness estimated from the segmentation-error plots (see Table 11.2).
It can be seen that the data corresponds very well (low deviation),
except for the smallest threshold, which may be due to the noise

introduced by the spatial transformation.

11.2.2 Slope of Separation Skin and Object

So far it was assumed that the Separation skin is approximately perpen¬

dicular to the axis of symmetry (or parallel to the system base). In this

case the thickness of the Separation skin is equal to the tolerated trans¬

lation (Ttoi = dc) in the direction of the axis of symmetry. However,

9x9

1.5 2 2.5

Disparity [pxl]
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%of

1 max

disparity Thickness and deviation to measured data

95% 50%
dc = 550 mm dc = 650 mm dc = 750 mm

[mm] [%] [mm] [%] [mm] [%]
11.3 0.4 0.6 2.5 -21.3 3.5 -15.3 4.7 -15.0

15.0 0.6 0.8 3.5 0.1 4.9 2.7 6.5 -7.3

18.4 0.7 1.0 4.4 1.2 6.2 -3.2 8.2 -2.9

21.9 0.9 1.2 5.5 -0.5 7.7 -2.6 10.2 -2.3

25.1 1.0 1.4 6.4 2.3 8.9 -4.0 11.8 -6.5

28.4 1.1 1.6 7.3 2.6 10.2 -1.8 13.5 -0.2

Table 11.2: Thickness of Separation skin and deviation from measured

data at three different heights. Threshold is given as percentage of max¬

imal possible value Tmax.

with a Separation skin tilted by angle 7 against the base, its thickness

is reduced to

dg = <2ccos7 . (11-2)

This results in a reduced probability of detecting objects with surfaces

not parallel to the Separation skin. Experiments carried out with the

experimental setup showed that the safety envelope can be tilted up

to 70° against the System base, but with the consequence of reduced

thickness (« 1/3). With this extreme angle only objects which enclose

an angle of less than 15° with the safety envelope could be detected.

Objects entering the protected zone may enclose an arbitrary angle
with the defined safety envelope. If the object surface is tilted by u>

against the safety envelope, which is parallel to the ground plane, the

detectable zone of the object is reduced to that portion of the object
surface which is within the Separation skin and projected onto the cam¬

era plane. For an object tilted about one axis by w, the detectable

object area is reduced by the factor 1/tanw.
If the object surface remains perpendicular to the axis of symmetry,

but the safety envelope is tilted, as in the following experiment, the

detectable object area (= d) is reduced because of the reduced thickness

of the Separation skin and the projection onto the image plane to

sin 7 sin 7

In Figure 11.8 it can be seen that an object is well detectable up to an

angle of 50° with highest thresholds, but the detected zone of the object
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Figure 11.8: Detected zone of objects with different slopes and pro¬

cessed with different thresholds (in % of maximal value). Width of theo¬

retical detectable object area is given in the images and corresponds very

well with the measured data.

gets very small. A threshold above 25% results in erroneous segmented

pixels (see image with a — 50° and threshold = 25.1% in Fig. 11.8) and

is therefore not applicable.
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left image correlation result

transformed image result

Figure 11.9: Camera images and results of a hand situated in the

safety envelope The back of the hand is not detected because it is outside

the Separation skin.

11.2.3 Problems

Besides the restrictions which must be met by the geometrical setup and

by the definition of the safety envelope, the scene itself must fulfill some

conditions. Not only low texture (see Chapter 9), but also repetitive
texture may lead to errors.

To give a feeling for such errors, and to show that not only artificial

surfaces show repetitive patterns, an example is given in Fig. 11.10. It

can be seen that different fingers produce a very similar image, such

that two non-identical fingers are classified as corresponding. This ef¬

fect is intensified by the fact that the human hand has low texture, but

a strong intensity change from dark to bright at all fingers (owing to

shadow). In addition, in Fig. 11.9, an example where the hand is within

the Separation skm is presented.
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transformed image result

Figure 11.10: Camera images and results of a hand situated out¬

side the safety envelope. As may be seen in the overlay of the left and

transformed right image, two different fingers have a very similar image

which results in high correlation values.

A similar problem occurs with objects that have a monotone intensity

change such that the direction of the intensity gradient is very similar

in a large area. Since the DSAD algorithm only compares the direction,

such an object may result in low dissimilarity values even if the intensity
itself does not correspond. A Solution may be to additionally include

the intensity into the correlation as discussed in Section 12.4.

Under- or over-exposed images with image areas bound to the minimal

or maximal intensity value also result in erroneous results. If both im¬

ages have regions with constant values, these regions erroneously corre¬

spond since there is no image noise which reduces the correlation value

for two non-corresponding areas like, e.g. well-exposed white paper.

However, if only one image is over-exposed, objects could be missed.
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11.3 Assessment of the Method

Using the "inverse stereo method" for a monitoring system has many

advantages and some disadvantages. The following advantages make

this method more promising for surveillance applications than usual

stereo methods:

• the correction of lens distortions can be included in the transfor¬

mation, which is an inherent part of the method and therefore this

uses no additional Computing power.

• the camera setup is not restricted by the algorithm since the trans¬

formation can include any translation or rotation. Therefore the

cameras can be set up such that the common viewing area is near

100%.

• since the image is transformed such that the hypothetical image

corresponds to the real image for objects at the Separation sur¬

face, not only the position but also the orientation and scaling of

such objects is the same in both images. This is advantageous in

that the correlation method need not be invariant to scaling and

rotation. The fact that objects outside the Separation skin could

have different scaling is even an advantage.

• because no correspondence search is necessary, a real time imple¬
mentation of the inverse stereo algorithm requires less resources

than that of traditional stereo methods.

• the method proved to be highly immune to changes in brightness,
which mainly results from the correlation method.

On the other hand the method has some drawbacks:

• since only objects within the Separation skin are detected, no infor¬

mation about objects before or behind the safety envelope is avail¬

able. This imposes a problem at system start and whenever the

Separation surface is changed. Therefore whenever the workspace
is enlarged, the safety envelope must be smoothly changed such

that no objects are missed.

• fast objects could be missed, if they pass the safety envelope be¬

tween two consecutive images.

• since only object surfaces which intersect the Separation skin are

detected, pointed or narrow objects which enter the protected zone

with their narrow side have only a very small detectable area and
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could be missed by this system. However, that is also a problem
with conventional stereo Systems.

• if the Separation skin and the object surface have a large intersec¬

tion angle, the detectable object zone gets smaller and an object
could be missed.

• since an object must have a minimal size (see Section 8.5) to be

detected, small objects might enter the protected zone without

the knowledge of the supervision system.

• low texture may lead to 'invisible' objects and repetitive patterns
to false alarms.
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Possible Extensions

Many possible improvements that would make the system more robust and

widen its application ränge exist. Possibilities with multiple cameras and mul¬

tiple surfaces and the use of color in image correlation are presented. Further,

a VLSI integration is discussed.

12.1 Multi-camera Systems

Up to now a system with two cameras has been analyzed and imple¬
mented. Like in stereo vision where multi-camera approaches result

in a more robust correspondence search [63, 72, 73, 74], in the "inverse

stereo algorithm" multiple cameras make the verification of the hypoth¬
esis more reliable. Especially with periodic patterns the probability of

erroneously matching the repeated pattern with the original pattern is

reduced with an increasing number of cameras.

In addition, multiple cameras make it possible to look behind obstacles

of one camera (see Figure 12.1). Although an object cannot impede the

sight to an unambiguously defined safety envelope unless it is within

the protected area, the surface may be impeded by known obstacles

or the robot. In such situations multiple cameras could guarantee the

visibility of all safety envelopes.
The most important advantage of a multi-camera setup is the decrease

in geometric restrictions imposed on the definition of safety envelopes.
To guarantee the visibility of the entire safety envelope, the angle be¬

tween the Separation skin and the camera direction is restricted, which
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Figure 12.1: Setup to cope with

obstacles in field of view: area

A is not visible by camera 1, but

visible by the other two cameras,

whereas area B is only visible by
cameras 1 and 2.

Figure 12.2: Setup to enhance

flexibility in defining safety en¬

velopes: surface A is not visi¬

ble by camera 3 but by cameras 1

and 2 whereas area B is visible by
cameras 1 and 2 but not by cam¬

era 3.

decreases the flexibility in defining safety envelopes. With multiple cam¬

eras the safety envelope can be divided into different patches separately

obeying the angle condition for an individual camera pair (see Figure

12.2).
Moreover, the supervised zone can be enlarged with multiple non-

overlapping views.

The necessary hardware resources (or Computing power) is scaled by a

factor (n — 1), where n is the number of cameras.

12.2 Multi-Surface System

In the application mentioned so far (robot workspace supervision) it is

possible to switch between different safety envelopes in order to adapt
the workspace, but only one safety envelope is active for a defined

workspace. However, it is possible to use multiple safety envelopes in

order to retrieve additional information. These safety envelopes can

either be switched sequentially or, with an extension of the hardware,

multiple surfaces can be active simultaneously. Whether multiple safety

envelopes are calculated sequentially or in parallel depends on the veloc¬

ity of the moving objects and the timing constraints for the algorithm.
In the following some new applications based on this multi-surface ap¬

proach are listed.
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Spatial Scanning

By using a series of safety envelopes with different distances to the cam¬

eras, a defined space can be scanned and a three dimensional description

produced.

Detection of Moving Direction

With two safety envelopes not only the presence of an object but also

its direction of movement can be calculated by evaluating where it was

first detected. In a system which controls an automatic door or elevator,
it is possible to recognize whether a person moves towards the door or

away from it.

Spatial Object Tracking
An object can be tracked in space by dynamically defining a Separation
skin before, after and at the position where the object was last found.

If the object moves it will be detected by either the nearer or farther

Separation skin such that the direction of motion can be determined.

Then for the next cycle the Separation skins are moved into the direction

the object has moved.

12.3 Detecting Objects Outside the

Separation Skin

Instead of detecting the presence of objects within the Separation skin

it is possible to detect objects which are outside the Separation skin. In

this case the Separation skin must be placed such that the generated

hypothesis becomes true for the entire background. In this way, e.g.

the floor can be supervised for objects having a height above a certain

limit (see Fig. 12.3).

12.4 Using Color Images

Although our world is very colorful, color images are seldom used in

image understanding. Up to now color was mainly used in image seg¬

mentation and texture Classification, but very rarely in stereo vision.

Experiments have shown that color alone is not sufficient for humans to

develop a three-dimensional impression of a scene, but it has a support-

ing effect. Most important for developing a 3D impression is the local
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Figure 12.3: Detection of objects above the floor

intensity Variation, which is very rauch correlated between the three

color Channels. This is also reflected in the fact that the human eye has

108 grey-level sensitive rods and only 6.5 106 color sensitive cones.

Recently some researchers have used color information for template

matching and stereo vision:

• With a Photometrie stereo algorithm using color and luminescence

information, it is possible to get local (one pixel!) shading infor¬

mation in the presence of specular and diffuse reflection [75].

• In [76, 77] the dissimilarity measure (sum of squared differences)
has been extended to color images by using the Euclidean distance.

It could be shown that the results were as good as or slightly better

than those produced without color information. This has mainly
two reasons: there is slightly more information available and since

the dissimilarity measure is calculated from three (highly corre¬

lated) images with superimposed uncorrelated noise, the amount

of noise is reduced.

• In [78] color is used as an additional characteristic besides sign and

orientation of the intensity gradient in the search for correspond¬

ing edges. Thus the number of possible edge-correspondences is

reduced, which reduces the necessary computation for subsequent
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analysis. Using colors results in a significant improvement for edge
based algorithms.

Color information may be used in different ways in area based correla¬

tion:

• extension of dissimilarity measures to color images, using the Eu¬

clidean distance:

SSDcol = (Äx - R2)2 + (Gi - G2)2 + (Bi - B2)2 (12.1)

• combination of a high-pass based correlation criterion with a

(color) dissimilarity measure. Two templates are classified as cor¬

responding only if both correlation measures produce a high score.

In this way templates with similar high-frequency structures but

very different color or intensity are not erroneously treated as cor¬

responding. However, a similar procedure can also be applied to

grey-level images.

• instead of calculating two correlation criteria, it is possible to ex-

clude those image areas from the correlation which definitely do

not correspond. Thus the entire image is partitioned into patches
and for every patch a measure of the color difference calculated.

This method has the advantage of reduced computation since this

new measure is only calculated for patches and not for every pixel.

However, the use of colors not only slightly increases the robustness

of the system, but also increases computation and hardware resource

requirements:

• Because it is necessary to use a 3-chip camera (one chip for each

color) the system costs are drastically increased. The use of a

3-chip color camera is important because color CCD chips with

integrated color filters have reduced spatial resolution and the in¬

tensity information shows errors because the intensity is retrieved

from the color information.

• The computational load is tripled for color dissimilarity measures

and even higher for combined correlation criteria. When color in¬

formation is used to exclude very dissimilar image areas from sub¬

sequent correlation, the computation load is only slightly higher.

To sum up, one can say that color may be used and improves the ro¬

bustness of template matching, but the additional expenditure must be

compared to the expenditure and improvement gained by using multiple
cameras.
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12.5 VLSI Integration

Implementation of the algorithm in hardware has shown that the

logic needs less than 20000 gates. Therefore the logic can easily
be implemented on a VLSI chip (area < 9 mm2 for 0.5 p,m CMOS-

process). The implementation of the FIFO on the same chip requires
about an additional 11 mm2. As the CMOS process used for logic
implementation is not well-suited for implementation of the SRAM

(necessary area sa 900 mm2), it is not economically sound to implement
the SRAM on the same chip. However, the entire system can be

implemented on a multi-chip-module (MCM). In order to eliminate the

VRAM, it is advantageous to use the circuitry for texture mapping of

3D-graphic (see Section 10.4.1) chips. In this way the entire system
can be implemented in a single case for small baselines or multiple
cameras with integrated processing for multi-camera Systems with large
baselines. Such a "smart camera" Solution has the advantage of being
versatile and inexpensive.
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