
DIsaETii <2X^&
Diss. ETH No. 11936

Concept and Design

of a Reconfigurable

Parallel Processing System

for Digital Audio

A dissertation submitted to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY

ZURICH

for the degree of

Doctor of Technical Sciences

presented by

Matthias Felix Rosenthal

Dipl. El.-Ing. ETH

born October 14, 1968

citizen of Diepflingen, BL

accepted on the recommendation of

Prof. Dr. A. Gunzinger, examiner

Prof. Dr. L. Thiele and Prof. Dr. E. Rathe, co-examiners

1997

Abstract

On the one hand, the signal processing of digital audio mixing consoles

requires a complex parallel computer architecture. On the other hand,

producing custom specific mixing consoles demands a high configura¬

tion flexibility. Combining these two topics, a new concept for an au¬

tomatic configuration of digital audio mixing consoles on parallel com¬

puter architectures is presented. The goal is to configure a cost-effective

and individually adapted system using a simple functional definition.

System and production costs are substantially reduced compared to

other concepts. The mixing console is defined in an audio processing

graph. Distribution of function modules, communication among proces¬

sors, synchronization of the graph and integration of realtime parame¬

ters build the main issues of mapping the graph onto the parallel archi¬

tecture. A configuration software performs this mapping automatically.

The implementation on the parallel computer MUSIC is described and

allows the verification of the concept. Hardware and software are dis¬

cussed in detail.

Zusammenfassung

Einerseits setzt die Signalverarbeitung innerhalb digitaler Audiomisch-

pulte eine komplexe, parallele Rechnerarchitektur voraus. Anderer-

seits verlangt die Produktion von kundenspezifischen Mischpulten

eine hohe Konfigurationsflexibilitat. Um diese beiden Aspekte zu ver-

einbaren wird ein neues Konzept zur automatischen Konfiguration

von digitalen Audiomischpulten auf parallelen Rechnerarchitekturen

vorgestellt. Ziel ist es, mittels einer einfachen, funktionalen Definition

ein kostengiinstiges und spezifisch angepasstes System zu konfigurieren.

Im Vergleich zu anderen Konzepten konnen auf diese Weise System-

und Produktionskosten wesentlich reduziert werden. Das Mischpult

wird in einem Graphen definiert. Verteilung von Funktionsmodulen,

Kommunikation unter den Prozessoren, Synchronisation des Graphen

und Integration von Echtzeitparametern bilden die Hauptbestandteile

fur die Abbildung des Graphen auf die parallele Architektur. Eine Kon-

figurationssoftware fiihrt eine automatische Abbildung durch. Die Im¬

plementation auf dem Parallelrechner MUSIC wird beschrieben und

dient zur Verifikation des Konzeptes. Hardware und Software werden

detailliert vorgestellt.

Preface

At the beginning of the MUSIC project, it was a challenge to build a

compact parallel computer, having a performance comparable to costly

and huge supercomputers. To achieve such a goal, the main processor

needs to be fast. Back in 1990, a digital signal processor was used as

main processor. This processor was chosen because of its remarkable

performance rather than for signal processing. The first applications

were training of neural networks, molecular dynamics, plasma physics,

and parallel computer graphics. When I joined the group, the idea

came up to use the MUSIC for a classical signal processing applica¬

tion: Digital audio processing. Processing a few digital audio channels

is possible on a personal computer. Processing several tens of channels,

however, requires a powerful parallel computer. First tests showed sat¬

isfying results. But soon an additional problem appeared: Changing the

functionality of the processing inherited a new allocation of tasks to pro¬

cessors by hand and a new, complicated routing of signals through the

system. This procedure was time consuming and difficult. Discussions

with partners in the industry showed that the problem for configuring

a mixing console is not new. More and more, high demands for a fast

and efficient reconfiguration are required. Before, audio mixing consoles

only worked in the analog domain and were configured by inserting the

appropriate analog circuit boards. With the transfer of audio to the

digital domain, a reconfiguration was equivalent with reprogramming

a parallel processor system including its interprocessor network. Do¬

ing this task by hand is not tolerable, because each system is custom

specific and has to be adapted.

It was likely to develop a concept for an automatic configuration
of a digital mixing console on a parallel processor system. This thesis

presents a possible solution.

Acknowledgments

I would like to express my sincere gratitude to my advisor Prof. A.

Gunzinger for his confidence in me and my work, and his assistance

during my years at the institute. Thanks to my associate advisors Prof.

L. Thiele and Prof. E. Rathe for co-examing and the numerous valuable

comments on this thesis.

Special thanks to all the members of the MUSIC group without

whom the synergy, necessary to come up with this work, would not

have exist. The corporation with Hansruedi Vonder Miihll and Peter

Kohler in hardware designs, and with Bernhard Baumle, Rene Hiisler,

and Martin Frey in software development was always excellent and with

great pleasure. The fruitful discussions during coffee-breaks and other

occasions together with members of the lab, including Rolf Sommer-

halder, Eduard Hiltebrand, and Roger Morel, were always helpful.
Thanks to the numerous students for their contributions during

their graduate work.

Finally, I want to thank my wife and best friend, Anella. Without

her help and encouragement this work would not have been possible.

Matthias Rosenthal

Contents

1. Introduction 1

1.1. Motivation 1

1.2. Digital Audio Processing 2

1.2.1. Parallel Computer Architectures 2

1.2.2. Parallel Programming 4

1.2.3. Dedicated and General Purpose Signal Processing 5

1.2.4. Load-Balancing and Optimal Assignment
5

1.2.5. Granularity 6

1.2.6. Communication 7

1.3. Outline of the Work 7

2. Digital Audio Processing 9

2.1. What is an Audio Mixing Console? 9

2.2. Digital versus Analog 12

2.3. Sampling Frequency 14

2.4. Market 15

2.5. System Requirements 16

2.5.1. Processing 16

2.5.2. Interprocessor Communication 17

2.6. Digital Audio Connections 18

2.7. Synchronization 20

3. Concept 21

3.1. Configurability 21

3.1.1. Mixing Model 22

3.1.2. Static and Dynamic Configuration 25

3.1.3. Pipelining 27

3.1.4. Orthogonality 28

3.2. Graph Mapping 30

3.2.1. Graph Partitioning 32

3.2.2. Assign and Optimize 35

3.3. Module Assignment 37

3.3.1. NP-Complete Problems 37

3.3.2. Bin-Packing Problem 39

3.3.3. Assignment using FFD Bin-Packing 44

3.4. Communication 47

3.4.1. Synchronous Communication 47

3.4.2. Network Topologies 47

3.5. Synchronization 53

3.5.1. Two Dimensional Channel Mapping 54

3.6. Parameter Processing and Communication 56

3.6.1. Synchronous and asynchronous tasks 57

3.7. Summary 59

Audio Signal Processing 61

4.1. Real-time Processing 61

4.2. Filter and Equalizer 62

4.2.1. Filter Types 63

4.2.2. Implementation 63

4.3. Dynamic Range Control 68

4.4. Manipulation in Time 71

4.5. Real-Time Controlling 72

4.5.1. Gain Factor Change 73

4.5.2. Filter Switch 73

4.5.3. Signal Selection 76

4.5.4. Delay Change 77

4.6. Summary 77

Implementation 79

5.1. Hardware-Platform MUSIC 79

5.1.1. MUSIC'S Architecture 80

5.1.2. Communication Principle 83

5.1.3. Synchronous Communication on MUSIC 84

5.1.4. Pipelining Communication 85

5.1.5. Synchronous Communication Controller 89

5.1.6. Memory Concept 91

5.1.7. Data I/O 92

5.2. Software 94

Contents vii

5.2.1. Console Definition 95

5.2.2. Module Implementation 98

5.2.3. Configurator 104

5.3. Summary 109

6. System Limitations 111

6.1. Configurations on MUSIC Ill

6.2. Comparison with available products 118

7. Conclusion 121

7.1. Results 121

7.2. Outlook 123

Bibliography 125

Vlll Contents

Chapter 1

Introduction

1.1. Motivation

In the recent years audio signals are being handled more and more in

the digital domain. Compact disc (CD) and digital audio tape (DAT)
formats are now widely accepted as being a very reliable and high qual¬

ity medium for reproducing music. With these systems it is possible to

store digital audio, the digitally sampled version of analog audio sig¬

nals, in an efficient and inexpensive way. There are many advantages
for using digital audio. As an example, the signal quality remains con¬

stant and the dynamic range can be enlarged using more bit per value.

Other problems like quantization noise and the demand for high proces¬

sor capacities are introduced. However, the improvements suppress the

doubts of the still large community which prefers analog audio. There

exists a great interest to minimize analog audio as much as possible.

Intentions are to digitize an audio signal directly behind an acquisi¬

tion device (microphone) and to convert it back to the analog domain

only for reproduction. Recording and mixing of audio signals are com¬

plicated and costly processes, particularly when done in the digital
domain. High signal processing demands exist for filtering and mixing.

For instance, a digital mixing console, which concurrently handles more

than 100 digital audio signals, uses several Gops1 of processing power

sustained. Such large scale audio processing systems require the realiza¬

tion of highly parallel architectures. The number of required processors

is in the range of 100. Apart from the hardware development, the pro¬

gramming of parallel systems is a complicated topic. A large number

of processors work on one big task, each is executing a single subtask.

Such concurrent programs are inherently more complex than sequential

109 Operations per Second

2 Chapter 1: Introduction

programs, running on only one processor. Additionally, when a paral¬
lel system is used for digital processing and mixing, high demands in

terms of flexibility are asked. The end-user, rather than the designer of

a high-end digital mixing console, defines the functionality, the amount

of channels, special features. As a result, the design of custom specific

mixing consoles is a key feature that needs to be satisfied.

1.2. Digital Audio Processing

When designing a system for processing digital audio both, hardware

and software aspects have to be taken into account. They are bouched

in the following areas:

- Flexibility: The hardware and software architecture need to be

open for a fast reprogramming to allow custom specific designs.

- Cost: The amount of hardware resources defines the price of the

system. For a parallel architecture it is primarily the number of

processors used, which must be held low. The system cost depends
on their optimal usage and on the efficiency of the software.

- Interactivity: Audio processing is a real-time application which

demands interactive modifications of sound by the user. The aim

is to find ways to integrate real-time controlling without loss of

signal quality.

The subject of this thesis is to integrate these three issues into a

parallel processor system. A wide range of parallel systems have al¬

ready been built for general purpose applications such as, video pro¬

cessing, training of neural networks, simulations of chemical reactions,
or weather prediction. Therefore, many problems which arise in parallel

systems are known and are subject of technical research. It is interesting
to adapt these problems for digital audio processing.

1.2.1. Parallel Computer Architectures

Parallel computers can execute applications faster than a single-

processor system. The aim is to let many processors work on the same

problem. Ideally, if an application is divided into p subtasks, each is

1.2. Digital Audio Processing 3

running on a separate processor, it finishes p times faster. However,

communication, synchronization and granularity of the subtasks pre¬

vent reaching such an optimal speedup. The feasible performance de¬

pends on the application and the system architecture. General purpose

parallel computers try to offer the best possible speedup for a large
field of applications. Flynn divides the various computer architectures

into four groups [Fly66, Fly72]:

- Single Instruction stream - Single Data stream (SISD) represents

the single-processor system.

- Single Instruction stream - Multiple Data stream (SIMD) are par¬

allel computers which run the same instructions on all processors

simultaneously. Each processor works on a different data stream.

- Multiple Instruction stream - Multiple Data stream (MIMD) are

parallel computers running different codes on each processor con¬

currently. MIMD computers are again subdivided into:

1. Single Program stream - Multiple Data stream (SPMD) ex¬

ecute the same program (not the same instruction) on all

processing elements.

2. Multiple Program stream - Multiple Data stream (MPMD)
run different codes and process different data on all process¬

ing elements.

- Multiple Instruction stream - Single Data stream (MISD) use a

single data stream which flows through a linear array of proces¬

sors executing different instruction streams. MISDs are special

purpose machines.

Digital audio processing - in professional audio applications - is

performed using a MIMD model. Each processor in the system has

its own program. The multiple data stream, which is communicated

among the processors, consists of a number of digitally sampled audio

channels. This model is also MPMD, since each processor runs its own,

distinct program.

4 Chapter 1: Introduction

Nevertheless, consumer systems are often built using dedicated

hardware in a SIMD model. Several processors perform the same in¬

structions on multiple audio streams. These systems, however, lack the

possibility of open configurations.

1.2.2. Parallel Programming

Regardless of the architecture of the target parallel computer, a paral¬

lel application must coordinate two or more program segments. There

are two fundamental programming models, which integrate such a co¬

ordination: control-flow and data-parallel [And91]. In the control-flow

model, the execution of the program is dictated by a control path and

does not depend on the availability of data. The synchronization of

intermediate results, which are used by other program segments, has

to be guaranteed solely by the program. For instance, if a code seg¬

ment A wants to send a message to a code segment B, A must be sure

that B is expecting its message. On the other hand, B has to rely on

A that it will send the message, otherwise it waits forever. If such a

synchronization does not work correctly, a deadlock occurs.

The data-parallel model requires the division of the data set into

separate partitions. Each partition is processed in parallel. The program

on each processor is identical in its functionality, but different data

partitions are processed. The program passes three phases: First, data

is partitioned and distributed, second, parallel processing is performed

and third, results are collected into a new, single partition. In this

model, deadlocks can not occur, if each processor contributes its part

of data.

Digital audio arrives synchronously in given intervals. The exact

time of data availability is known in advance. Using the periodicity of

digital audio, synchronization of program segments can be done follow¬

ing the data-parallel model: Program segments start their execution

with the availability of new data and have to complete before a new

set of data arrives. A task may not take a longer processing time than

the time between two audio samples. The end of this time is called

dead-line. All distributed tasks are distinct. They hardly alter during

operation. Filter coefficients or parameters may vary according to real¬

time manipulations.

1.2. Digital Audio Processing 5

1.2.3. Dedicated and General Purpose Signal Processing

The field of digital audio mixing consoles is divided into two areas. The

low-end market looks for inexpensive, preconfigured systems. The price

is an important factor in the decision process of the user. The high-end

market, however, demands individuality. Almost every user asks for

another special feature for his mixing console which is absolutely nec¬

essary and has to be realized without reduction in the functionality.

Such demands of users have to be taken into account at the very begin¬

ning of a new development. As a result, configurability is required for

the high-end market of digital audio mixing consoles while the low-end

market needs preconfigured, cost optimized systems.

Since digital audio processing is a dedicated application, the hard¬

ware architecture of the system can be specialized to run just this task.

Maximal performance can be reached this way. But it involves a reduc¬

tion in terms of flexibility. As a result, processing digital audio with a

parallel system can be done either with dedicated hardware or by using

general purpose digital signal processors (DSP). There are many dis¬

cussions what has to be used in which field of the audio world. The most

obvious differences are: First, using dedicated hardware is faster, using

DSPs offer more flexibility. Second, the design of integrated circuits

(IC), as it is necessary for dedicated hardware, demands high initial

costs. It is a reasonable solution if the corresponding market exists and

hundreds of systems can be sold. Consequently, dedicated hardware

is advisable for low-end systems, general purpose signal processors for

high-end architectures.

1.2.4. Load-Balancing and Optimal Assignment

Parallelism is used out of two possible motivations:

1. The time until an application finishes can be reduced by exploit¬

ing parallelism. In general, the more processors are applied, the

shorter it is.

2. Some applications have to be completed within a given time. If

a single processor can not provide the required performance to

compute the application within the given time, one needs as many

processors as necessary to finish before the given dead-line.

6 Chapter 1: Introduction

General purpose computers are built out of the first reason. The ap¬

plication stops running when the last subtask in the system has been

completed. The principle of the load-balancing is to balance the sub-

tasks on the processors in order to let each processor do approximately

the same work. It is an optimization procedure where the wait-time for

the processor with the biggest task is minimized. This way, the entire

application will finish in the least possible time. The more processors

we use, the faster the application finishes.

The second reason is important for digital audio. The time between

two audio sampling clocks defines the maximal computing time. It is

a constant processor capacity in terms of processing cycles that can

be performed within the given time. The principle of the optimal as¬

signment is to use the processing capacity of the processors as well

as possible. The goal is to finish the task before the given dead-line

and with a small number of processors. As a result, a parallel system

uses only a minimal number of processors and the total system cost is

optimized.

1.2.5. Granularity

The granularity or grain size is used as a measure to determine the size

of the basic subtask chosen for parallel processing. Often three types

of granularity are distinguished: fine grain, medium grain and coarse

grain [Hwa91]. Fine grain makes use of parallelism at instruction or

loop level. The grain size is typically small and does not exceed 500

instructions. Medium grain executes subroutines or small subprograms

in parallel. Coarse grain includes the parallel execution of big subpro¬

grams and independent programs.

Handling digital audio is a fine grain application. Within a period

of two audio samples, between 500 and 1000 instructions can be exe¬

cuted. The small number of possible instructions requires an optimal

implementation of the application. As a result, digital signal processors

are programmed directly in machine language since compilers are not

able to exploit the ability of DSPs to achieve three and more opera¬

tions in one processing cycle. The architecture of a DSP is dedicated

to implement signal processing algorithms straightforward. The lower

bound for the grain size is at instruction or algorithm level which is,

1.3. Outline of the Work 7

for example, a digital filter or a fast Fourier transformation (FFT).

1.2.6. Communication

A large variety of processor interconnection techniques exist. From the

hardware point of view architectures like global access, ring and multi¬

stage networks are common. Message-passing and shared memory build

the software interface to the hardware [Hwa91].
Parallel audio processing is performed by synchronously transmit¬

ting audio samples through the parallel system. The bandwidth of the

interprocessor network defines the possible amount of communicated

data and the number of audio channels, which can be used within the

system. For example to communicate 500 audio channels a transmission

bandwidth of 25MWord/s is necessary. Considering a system with over

50 nodes it is a critical issue to construct a network which supplies this

bandwidth. For the mixing of digital audio, broadcast capabilities of

the network are required. The time division multiplexed (TDM) bus is

the most frequently used communication architecture in digital audio.

Within the period of two audio samples a defined number of channels

is transmitted on a globally accessible bus. Ring networks and hierar¬

chical bus structures are possible alternatives.

1.3. Outline of the Work

Chapter 2 gives an overview for digital audio mixing. The audio

mixing console is introduced. The functionality, the market and differ¬

ences between digital and analog audio mixing consoles are illustrated.

Chapter 3 discusses the configuration concept. Based on the idea

of mapping a signal-flow graph on a parallel processing system, three

problems are examined: Module assignment, processor communication

and synchronization. Derived from heuristics of the bin-packing prob¬
lem (BPP) a system prediction is presented.

Chapter 4 analyzes the digital signal processing within a mixing

console. Modifications of the audio signal in the frequency-, dynamic-
and time-domain are described. A special section observes the real-time

controlling of processing modules.

Chapter 5 goes into the realization of the mixing-engine on the MU-

8 Chapter 1: Introduction

SIC parallel processing system. The hardware and the software archi¬

tecture is presented. All aspects of the configuration concept, described

in chapter 3, are included.

Chapter 6 shows the configuration results of the mixing-engine on

MUSIC. The expected performance is given based on the implemented
function library.

Chapter 7 concludes the achieved work and gives an outlook on

further activities.

Chapter 2

Digital Audio Processing

In this chapter the architecture and usage of audio mixing consoles are

discussed. A first section explains the principles of a mixing console. It

is followed by a section describing the differences between analog and

digital consoles. After a short summary of the worldwide market, the

processing and communication requirements are examined. A section

about digital audio data exchange concludes the chapter.

2.1. What is an Audio Mixing Console?

Figure 2.1: The audio mixing console typically builds the heart of an

audio recording studio.

As shown in Fig. 2.1 the audio mixing console is typically the center in

the recording studio. Audio acquisition and reproduction devices (mi¬

crophones, loudspeakers, recording devices, etc.) are connected through

one, two, or multichannel links. Within the mixing console, audio sig¬

nals are modified in real-time using manipulation devices on the control-

10 Chapter 2 Digital Audio Processing

desk (rulers, knobs, etc.). Modifications are performed in the frequency

domain, the dynamic domain, and the time domain of an audio signal.

The main purpose, the mixing itself, allows the routing of incoming

audio channels onto any outgoing audio channel.

Input

Strips

Mixing
Matrix

^——^~—&

R "L "L

\'"1// W v
\|n,3 /

R 4 R

_r _r _r
i * *

R

Input

Processing J

^^___^^__^^

SummingBusI

Sumn^ngBus2

^£_^£_—^gi±=ia°^j^^^

Output

Strips

^^~H* J~~^ — J~ -* ~^ —Out j

Output Processing

-*£-_**_-^ Summing Bus m

it^R-R-R

Figure 2.2: The basic functionality of an audio mixing console: The

input and output processing parts are conjoined by a summation matrix,

where each incoming signal is added by an adjustable factor.

This basic signal-flow in an audio mixing console is shown in Fig. 2.2.

In principle, it is a TV x M mixing matrix where TV incoming audio sig¬

nals are "mixed" to M outgoing audio signals. Incoming audio signals

first enter an input processing section. They can be modified by a set of

linear and nonlinear filters. One such processing path is called a strip.

Each strip is represented on the control desk by rulers and knobs ar¬

ranged in vertical columns. Thus, the amount of processing paths in a

mixing console is directly evaluated by counting the strips on the con¬

trol desk1. The mixing matrix, in the center of the signal-flow, allows

^his practice is used for analog consoles New consoles have a layered control-

2.1. What is an Audio Mixing Console? 11

the individual accumulation of every incoming audio signal onto M dif¬

ferent summing busses. Each summing bus produces a new audio signal

out of a collection of input signals. Although different types of summing

busses exist (main bus, auxiliary bus, etc.) their implementation is the

same. There are up 48 summing busses implemented in a large mixing

console. The factor, by which a specific signal is multiplied to such a

summing bus, can be controlled by a ruler in the strip. M output sig¬

nals go into an output processing section. Still, each output signal can

be modified before it reaches the output connectors of the console. A

common practice is to use some of the output signals again as input

signals. The signal-flow of Fig. 2.2 is extended and intermediate stages

are generated. Fig. 2.3 shows how the signal-flow is expanded. The size

vvvvv
5

e: ^e

DOOD

Figure 2.3: The extended model of a mixing console.

of the intermediate stages is not defined and may vary. When operating

with an analog mixing console, bypass cables are connected at the rear

of the console. Digital mixing consoles allow such routing procedures

in software.

The functionality of a strip is not precisely defined and differs from

implementation to implementation and within the console. In general,

five main function blocks are distinguished. Fig. 2.4 depicts the possible

components in a strip. The processing modules are, in some implemen-

desk where the number of strips on the desk is smaller than the number of physically

12 Chapter 2: Digital Audio Processing

IN Crossbar Switch

EQ DYN DELAY INS

TT

OUT

FADER

Figure 2-4: A strip consists of different function modules. Its sequence

can be altered during runtime with a crossbar module.

tations, connected to a crossbar switch. This allows to change the se¬

quential order of the modules in real-time. The equalizer module (EQ)
alters the signal in the frequency domain. Parts of the spectral represen¬

tation is increased or decreased, respectively, using high-pass, low-pass
and band-pass filters. The dynamic range of the signal is modified in

the dynamic module (DYN). Using a control system, the loudness of

the audio signal is measured and, according to a given characteristic,

the signal is manipulated with a certain gain factor. The delay mod¬

ule inserts a variable delay into the audio signal. External devices are

inserted into an audio signal using the insert device (INS). The last

module builds the main fader. All modules are regulated in real-time

using control devices on the control desk.

As mentioned above, a strip is configured according to individual

needs. Within one console a limited amount of different strips is imple¬
mented. For example, parts of the input processing section are equipped
with a special equalizer or some output strips have two faders imple¬

mented.

2.2. Digital versus Analog

Audio mixing systems can be divided into two generic classes: ana¬

log and digital. The distinction between these two classes lies in the

representation of the audio information. An analog system processes

a continuous stream, whereas a digital system handles the discretely

implemented strips.

2 2 Digital versus Analog 13

sampled and quantized representation. The design of an analog mixing

console (AMC) is done directly according to the given basic signal-flow

of Fig. 2.2. The sequential processing parts of the input and output

sections are implemented in vertical strips. Analog filters and function

modules are implemented on printed circuit boards directly under each

strip. The summation matrix is realized by a number of horizontal sum¬

ming tracks. They go from one end to the other end of the console and

are accessible over the total width of the system. As a result, all audio

signals are propagated through the entire console. It inherits a difficult

analog circuit design on all boards. Noise and crosstalk can be reduced,

but hardly eliminated. The amount of summing busses is fix and given

by the number of summing tracks. There is no possibility of reconfig¬

uring the mixing matrix without exchanging the hard-wired summing

tracks. But, reconfiguring a single strip is equivalent with swapping the

analog strip board and can be easily performed.

Control Desk

Parameter

Audio raw-data

Input
Mixing Engine

J J

Audio raw-data

Output

Figure 2.5: Architecture of a Digital Mixing Console

If we look at a digital mixing console (DMC) (Fig. 2.5), the most

obvious difference to the analog counterpart is the clear division of

control-desk and mixing-engine. To provide compatibility, the control-

desk is designed similar to an AMC. The basic functionality is equal to

those of an AMC. The clear and distinct separation opens the oppor¬

tunity to divide the design and the implementation of a DMC into two

parts. The mixing-engine consists of a parallel signal processing archi¬

tecture with a sophisticated interprocessor communication network. All

signal processing is performed in real-time in this central unit. Audio

14 Chapter 2: Digital Audio Processing

data arrives in digital form via single or multichannel interfaces. The

audio sampling rate defines the processing time for the entire system.

The control-desk represents the interface to the user and provides the

complete supervision over the mixing-engine. Each processing function,

running on the mixing-engine, is directly controlled by a set of parame¬

ters. These are communicated between the two hardware parts through
a separate communication interface. The update rate of parameters is

not that critical and can be done much slower than the audio sampling
rate. But, the new parameter values need to be interpolated within the

mixing-engine to reach a smooth transition for each audio value.

This thesis concentrates on the concept and implementation of the

mixing-engine. The design of the corresponding control-desk is subject
to ergonomical and industrial aspects and will not be discussed further.

2.3. Sampling Frequency

The sampling frequency of the digitized audio signal is not defined pre¬

cisely. Several factors have influence for its selection. Foremost is the re¬

quirement that the sample frequency /s is at least two times the highest

signal frequency of interest. In practical applications this ratio should

be about 2.5 to avoid fold-over (aliasing) in the frequency domain. Low

sampling frequencies are desirable to lower data transmission band¬

width in processing systems. High frequencies are necessary for high

fidelity. Based on the fact that the human perception of sound is in the

spectrum below 20kHz the sampling frequencies are all below 50kHz.

Several standards are defined and used in commercially available sys¬

tems. The Audio Engineering Society (AES) has recommended 48kHz

for professional recording studio applications and 32kHz for broadcast

and transmission related applications such as digital audio broadcast¬

ing (DAB) and digital satellite radio (DSR) [McN84b]. Consumer prod¬

ucts, like compact disk (CD) and digital audio tape (DAT), sample at

44.1kHz. 44.056kHz is used for mixed video and audio data (VCR) in

order to synchronize the audio samples with video framing formats.

A digital mixing console is a strongly synchronous system. Digital
audio studios provide a master-clock, which defines the audio sampling

rate for the complete studio. Therefore, the mixing console works at

2.4. Market 15

this clock rate. If a device with a differing sampling clock is connected

to the mixing console, the digital audio data must be converted to the

master-clock. This is done using sampling-rate converters (SRC) at the

digital interfaces. Even if a device with the same sampling rate, but

with its own master-clock has to be connected, a SRC is required. This

case is known as a plesiochronous sampling-rate conversion [Rot95].
The processing time within the system varies with the sampling fre¬

quency and according to the field where the system is used. The shortest

processing time appears in professional audio applications where 48kHz

are used.

2.4. Market

The market for audio mixing consoles can be divided into three major

segments (low-end, medium, high-end). This division also corresponds

to the console sizes. The worldwide turnover for audio mixing consoles

is about 400Mio US$ per year. As shown in Tab. 2.12, the market vol-

System complexity low-end medium high-end

Number of strips 6-24 24-96 96-192

Price [thousand US$] 1-10 10-100 100-1000

Worldwide turnover [MIO US$] 140 130 120

Part of digital consoles ['/,] 30 20 20

Number of Processors (when digital) 1-5 5-25 25-100

Demand for configurability low low high

Table 2.1: The market of audio mixing consoles is divided into three

areas: low-end, medium, and high-end. The presented data is based on

estimations of the market for 1995.

ume in each segment is approximately equal. Most of the sold mixing
consoles still work analog and digital consoles make less than 30%. The

trend is clearly toward the digital domain. Small and medium sized mix¬

ing consoles are designed for a large low-price market. A configuration
is done once for a specific type of console, which then is sold thousands

2Data collected from personal conversations with associates in the industry.

16 Chapter 2: Digital Audio Processing

of times. Changing a configuration is equivalent to constructing another

type of console.

Other requirements exist in the high-end market: In this section the

user defines the architecture of the mixing console. Not only type and

amount of strips are to be defined, but also the inner functionality, like

filter types, insert points, additional modules, etc. The producer of a

large console must follow these demands. Based on this fact, a great

interest for a rapid mixing console configuration exists [LTP91].

2.5. System Requirements

Fig. 2.2 on page 10 reveals two topics for the implementation of a

mixing-engine: Processing and communication. The functionality of the

strips mainly require processing power. The summing or mixing matrix,
which combines the processing parts, demands high communication

support. The sampling frequency is an additional parameter which has

influence on the required hardware resources. The following calculations

are based on a sampling frequency of 48kHz, which corresponds to a

maximal processing time of 20.83/is. This is the highest sampling rate

for audio and sets the minimal processing time.

2.5.1. Processing

The size of an audio mixing console depends upon the number and

the complexity of the implemented strips. To evaluate the needed pro¬

cessing performance in detail, we examine the implementation of one

strip. Tab. 2.2 demonstrates an example of a mono audio strip. The

amount of processing cycles is given for each subfunction. Parameter

interpolation is included, which is necessary to eliminate perceptible

distortion.

Beside the functionality of the strip, high processing demands lie

in the implementation of the summing matrix. Consider a large digital

mixing console with 192 strips and 48 summing busses. The worst case

arises when every strip needs to be connected to each summing bus.

If we calculate two processing cycles for each connection point in the

matrix, which is a rather optimistic estimation, already 900Mips3 are

3Million Instructions per Second

2.5. System Requirements 17

Function Amount Cycles Total Cycles

IIR filter 2nd ord.

Dynamic range

Fader

Panorama

Delay

Insert

4

1

4

2

1

1

18

43

13

17

14

8

72

43

52

34

14

8

Total 223

Table 2.2: Typical processing requirements for a mono audio path given

in processor cycles on a Motorola DSP96002.

required at 48kHz. Fortunately, this case never appears, because of

a grouping of summing busses in the mixing console: Each strip can

only be connected to defined groups of busses. A processing estimation

for the summing matrix can hardly be made, since it depends on the

final design and the group size of summing busses. Large and complex

consoles use up to 25% of processing cycles for summation. A total of

around 300 cycles per strip results, when looking at Tab. 2.2.

Currently available digital signal processors (DSP) are running at

40MHz. The DSP, which was used in this thesis, is a Motorola DSP-

96002. It needs two processor clocks per instruction cycle and performs

around 400 cycles between two audio sampling clocks. More recent

DSPs are able to execute a processing cycle in one processor clock and

therefore perform up to 800 cycles at 40MHz processor speed. About

two complete strips can be implemented on the Motorola processor

while up to 3 or 4 strips can be handled by improved processors. Since

the size of a large mixing console varies from 100 to 200 strips, the

number of used processors is between 25 and 100. Note that this cal¬

culation does not include any processing overhead for communication

among processors, synchronization and data input/output.

2.5.2. Interprocessor Communication

The second topic of a mixing-engine is the data exchange between pro¬

cessing elements. Most communication support is demanded for the

mixing matrix. In general, every processor needs a certain amount of

18 Chapter 2: Digital Audio Processing

audio channels as input data and produces a number of new channels,

that need to be communicated to other processors. The amount of

transmitted data depends on the complexity of the configuration. The

worst case arises when all data produced on all processing elements has

to be communicated to all other processing elements. This case is called

all-to-all broadcasting. Several requirements for the network have to be

taken into account:

1. High bandwidth: Assume that at least one signal per strip goes

into the interprocessor network. For a system with 200 strips,

a minimal bandwidth of lOMWord/s is required at a sampling

frequency of 48kHz.

2. Concurrent communication and processing: Data communication

should work as independently as possible to relieve the processors.

3. Scalability: For a given configuration only the necessary number

of processors should be installed to optimize the total system cost.

It makes a scalable network necessary.

4. Short latency: The time when a signal enters the mixing con¬

sole until it reaches the output connectors should be as short as

possible.

The communication network of digital mixing consoles is often de¬

signed directly in hardware, because a software controlled communica¬

tion does not satisfy the strict requirements of speed or uses too much

processing power. As a result, the communication network becomes

very inflexible and changes in the digital data-flow of audio signals are

difficult.

2.6. Digital Audio Connections

Digital audio exchange with external devices is provided by two mainly

used connection standards. Both are defined by the Audio Engineering

Society (AES) and the European Broadcasting Union (EBU).

First, the AES/EBU digital interface is a two channel digital inter¬

face [AES92]. During one audio sample interval, one frame of digital

2.6. Digital Audio Connections 19

information is transported. It is divided into two subframes which con¬

tain the left and right audio channel of a stereo signal. Each subframe

consists of 32 bit of information. 24 bit are used for the raw audio sig¬
nal. 4 bit serve as a preamble. Apart from the information about left

or right channel, the receiver can reconstruct the sampling frequency
from the preamble. This way an extra link for the sampling clock can

be omitted. The last 4 bit of a subframe contain specific data, called

VUCP: A validity bit V, a user bit U, a channel-status-bit C and a par¬

ity bit P. The user bit can be applied for custom specific information.

192 frames together build one block. Within one block, 24 Bytes of

status information is serially transmitted using the channel-status-bit.

The sampling rate, channel mode (stereo, monaural, etc.), copy permis¬
sion and other specific data is encoded. The consumer format, named

Sony/Philips digital interface (SPDIF), is a slightly modified version

of the AES/EBU digital interface. Only the definition of the channel-

status-bit and the mechanical specifications of the connectors differ.

While AES/EBU uses the large symmetric XLR-Connector SPDIF uses

Cinch4 or optical links. The data rate is 3.072 Mbit/s at 48kHz sam¬

pling rate.

The second digital interface is the multichannel audio digital inter¬

face (MADI) [AES91]. MADI is used especially in professional audio

environments and allows the communication of up to 56 digital audio

channels through a coaxial or fiber-optic link. A minimal data rate of

86.016 Mbit/s is required. The standard demands to calculate with

a tolerance of 12.5%. A maximal data rate of 96.768 Mbit/s results.

Hardware components, used for the fiber distributed digital interface

(FDDI)5 [FDD92] standard, are applied to support this bandwidth.

They are called TAXI [AMD92] and include a 4/5-coding for error cor¬

rection. The MADI format is derived from the AES/EBU format. One

MADI frame consists of 56 AES/EBU subframes. Each of these mono

channels includes 32 bit: 24 bit of audio, 4 bit preamble and 4 bit

VUCP.

4Connector type invented by CINCH Connectors Inc., Elk Grove Village, Illinois

5FDDI allows a bandwidth of 100 Mbit/s.

20 Chapter 2: Digital Audio Processing

2.7. Synchronization

The mixing console has to provide a unique system latency. The time

when a signal enters the mixing console until it reaches the output

connectors can vary according to the different processing times for each

signal. The different latencies have to be synchronized to a single system

latency. Signals having a shorter latency have to be stored and held in

memory until they are synchronous with the signal having the longest

latency. Thus, the data values of all outgoing signals correspond to one

sampling time. A system latency of several milliseconds for recording
is accepted. A certain part of this time is used for analog to digital and

digital to analog conversion.

Chapter 3

Concept

What are the requirements for an adaptable and efficient configuration

of a mixing console on a parallel processor system? The basic signal-

flow of the console, as described in chapter 2, needs to be generalized.

A new mixing model is therefore introduced. The functionality of a

mixing-engine is characterized in a graph. The issue lies in mapping the

graph onto a parallel processor system. It leads to three major prob¬

lems: Module assignment, communication and synchronization. They

are examined in detail below.

3.1. Configurability

A digital mixing-engine can be designed and constructed directly by

programming each processor "by hand". A major problem arises, when

each sold mixing console differs from another. It must be possible to

configure the mixing console in a very short time. The desk can be

configured by inserting the corresponding strip modules. The mixing-

engine, however, demands an automatic configuration procedure. The

program of each processor in the core has to be produced by a con¬

figurator software with an integrated code generator. Several papers

propose concepts for the automatic configuration of an audio mixing-

engine [LTP91, LGTP91a, LGTP90]. But, their efficiency is not satis¬

fying. Precedence and communication constraints are mixed with load-

balancing of processors and do not exploit the periodicity of digital

audio. Additionally, system scalability is poor [LGTP91b] or not taken

into account [MK91].
A configuration concept needs a certain functional description of a

mixing-engine as input data. A mixing model is therefore introduced.

22 Chapter 3: Concept

3.1.1. Mixing Model

A digital mixing console can, in general, be described as a network

of signal paths, where audio processing modules (e.g., functions, algo¬

rithms) are combined. The summing busses build a crucial exception.

They expect inputs from each path of the processing section and cause

waste communication overhead among processors. Other implementa¬

tions of digital mixing consoles prefer a realization directly in hardware.

A fixed amount of summing busses is available in the system. Changes

in the signal-flow through these busses are hardly possible. A configu¬

ration is confined to exchange the functionality of processing sections.

The implementation style with separate summing busses and processing

sections still resembles the architecture of analog mixing consoles. But,

the realization of summing busses can be efficiently done as a proces¬

sor task. Fig. 3.1 shows the transformation into a general description.

Summing busses are integrated in processing modules. The advantage

here lies in the flexibility of the new description. It is most similar to a

directed acyclic graph (DAG).

^^^

vvvv

0

•4jfi."'"C^h°$7"^y~4iy^i W YA W j •ODOD
-OOOD

(a) Standard Model (b) New Model

Figure 3.1: The new model uses only audio connections and processing

modules. Summing busses are realized using processing modules.

3.1. Configurability 23

Definition: DAG A DAG is a directed acyclic graph G(V,E) with

a set of nodes V and a set of edges E. Each node v, V represents an

object (e.g., task, instruction, program) and each edge e — (vi,Vj) E

represents a data dependency.

The representation of a DAG is similar to the intermediary form used

by parallel compilers like the SR Programming Language [A093] or

SISAL [SG85, ODFB91]. SISAL (Streams and Iterations in a Single-

Assignment Language), for example, is a high level functional data-flow

language. It generates IF1 (Intermediate Form 1) which is a language

based on DAGs. The idea is to split the program into small pieces with

a finer granularity. Based on a high level programming language, par¬

allel compilers describe the program flow at instruction level. Digital

signal processing is extremely time critical. High level programming

languages, like C or Modula, lose a factor three to four in performance

compared to an implementation in machine code on a DSP. The opti¬

mized programming style in machine code is therefore still reasonable

for digital signal processing. How can the efficiency of optimized code

and the flexibility of a DAG be combined? One solution is increasing

the granularity of processing modules. Their size should be as big as the

implementation of a certain functionality requires. On the other hand,

when different combinations of modules are allocated to a processor,

the resulting processor load has to be high. If the modules are too large,

a good processor usage is not guaranteed.

Additionally, there is an important difference between a DAG and

the model shown in Fig. 3.1(b). To build the summing matrix the out¬

put of a specific node may feed several summing nodes. The new de¬

scription is called a directed acyclic audio graph (DAAG), shown in

Fig. 3.2.

Definition: Audio Channel Given a set of nodes V. An audio

channel c = {vs,va,Vb, -,vn) is a digital audio connection between

a source node va £V and a set of sink nodes A V. Data is transmit¬

ted from vs to (va,Vb,.. .,vn) G A through this channel periodically to

the master-clock.

24 Chapter 3: Concept

Figure 3.2: The description model for the configuration of a digital

mixing-engine is a DAAG. The main topic lies in finding an effi¬
cient solution of grouping processing modules A,B,..,G onto proces¬

sors Pi,P2,-,Pn considering processor capacity, communication and

synchronization.

Definition: Processing Module A processing module is a sequence

of processor instructions. After starting a module on a processor, it can

not be interrupted until the last instruction has finished. The time for

executing a module on a processor is constant
.

Definition: DAAG A DAAG is a directed acyclic audio graph

G(V, C) with a set of nodes V and a set of audio channels C. Each

node v, V represents a processing module. Each channel c =

(vs,va,vt,,...,vn) G C represents an audio channel.

A complex signal processing task is broken down into subtasks. Each

node stands for a processing module, which is implemented in opti¬
mized machine language. Every node receives data from a preceding

3.1. Configurability 25

node and sends at least one audio channel to one or several following

nodes. Therefore, every module has at least one incoming and one out¬

going connection. The data-flow principle is that every module can per¬

form its computation whenever input data is available on its incoming

connections. As the program execution is controlled by the availability

of data, the entire system is said to be data-driven. The squares indi¬

cate hardware input and output devices, they are marked with 'In' and

'Out', respectively. These are the only nodes that are dedicated sources

and sinks of the DAAG. In this model no computation is performed by

these devices. A DAAG has the following properties:

1. The graph has a defined number of inputs and outputs.

2. Any connection between modules is allowed.

3. All modules have at least one input and one output.

4. Loops are not allowed.

5. New data arrives at the input nodes periodically with the master-

clock

Problems arise in mapping this graph to the parallel processor ar¬

chitecture. If the capacity of the processors can be optimally used, the

cost of the resulting system is adapted for each graph individually.

3.1.2. Static and Dynamic Configuration

A primary condition for an optimal assignment is its predictability.

It is important to have all information about computation times, re¬

source requirements, precedence relationships and communication re¬

quirements of each module in advance. A module has a certain deadline

by which it must be completed. In general, all modules used in a di¬

gital mixing-engine are periodic tasks and the deadline complies with

the period of the given module. Consequently, only one execution time

for each module exists on a uniform processor system.

It is possible to perform a feasibility analysis to predict whether a

configuration is possible or not. The feasibility depends upon the pro¬

cessor capacity and the communication bandwidth of the interprocessor

26 Chapter 3: Concept

network. This analysis produces a schedule according to which tasks are

dispatched onto processors. We distinguish two major approaches for a

configuration of a digital mixing-engine:

- Static table-driven configuration: A static schedule (e.g., table,

sequence) is generated for each processor according to a feasibility

analysis. It is then used at runtime.

- Dynamic planning-based Configuration: Unlike the previous ap¬

proach, the feasibility is checked at runtime. Tasks arrive dynam¬

ically and are accepted only if there are enough processing and

communication resources for their execution.

A static table-driven configuration is applicable to systems perform¬

ing periodic processing. This approach is extremely predictable since

start and completion times of each module are known a priori to the

runtime schedule. Another advantage is a minimal runtime software

overhead on each processor because modules are executed according to

a fix schedule. However, any change of a module and its characteristic

requires a complete remake of a configuration and a new schedule has

to be generated for the entire system.

The dynamic planning-based configuration provides the flexibility

of dynamically allocating modules during runtime. A runtime schedule

on each processor exists and is periodically executed. If a new module

needs to be assigned, an attempt is made to create a new schedule that

contains the previous tasks as well as the new ones. If the attempt was

successful, the new schedule can be started. If it fails, the system takes

alternative steps. The feasibility checking and the generation of a new

schedule has to be made within the timing constraints of the system.

Thus, in a dynamic configured system, the overhead of dynamically

allocating modules is enormous and the utilization of the processors is

rather low. The advantages in terms of flexibility during runtime result

in a performance that is far from optimal.

3.1. Configurability 27

3.1.3. Pipelining

Since a DAAG is periodically executed according to a static schedule, it

can be pipelined through a parallel processor system. This way, shorter

intervals are applicable. Additionally, precedence relationships between

processing modules running on different processors do not have an in¬

fluence to the load of the processor. Two important criterions are used

to define the efficiency of pipelining. It is the latency L and the interval

time /.

(a) No Pipelining

•0^1^ .

; P2 C(t-1) :» D(t-1) , C(t) (* D{«) . C(t+1) -r-

P1 A(t) -* B(t) ~ A(»+1) * B(t+1) - A(t+2)

»

(b) Pipe lining

Figure 3.3: The mapping of a simple DAAG onto two processors with

and without pipelining.

Definition: Latency The latency L of a DAAG represents the re¬

quired time for processing the entire graph once on a parallel system.

28 Chapter 3: Concept

Definition: Interval Time The interval time I of a periodically pro¬

cessed graph is the time between two periods of the graph.

Definition: Pipelining A pipelining of a DAAG on a parallel system
is called pipelining, if the relation between the resulting latency and the

interval time fulfills I < L.

Fig. 3.3 shows the mapping of a simple DAAG onto two processors

with and without pipelining. The assignment of modules to processors

is (A, B) G Pi and (C, D) 6 Pi is the same in both cases. The interval

time of one master-clock I\ and the latency JDi is the same when no

pipelining is performed (Fig. 3.3(a)). Processor P2 has to wait for input

data from Pi. With pipelining a shorter interval time h is reached

(Fig. 3.3(b)). The processor P2 executes its processing modules without

considering precedence constraints during one master-clock.

The interval time for digital audio described in a DAAG is equiva¬

lent with the master-clock. When pipelining is applied, no wait time for

preceding processing modules exists. The full capacity of each processor

can be utilized during one master-clock.

3.1.4. Orthogonality

Suppose a static schedule of a DAAG is generated for a parallel pro¬

cessor architecture. The architecture consists of a number of processors

and an interprocessor communication network. If a module needs to

communicate with another module running on a different processor, the

interprocessor network has to establish a communication channel. If the

two modules are situated on neighboring processors, a direct commu¬

nication (nearest neighbor communication) between these processors is

possible. But, the distance of a processor-to-processor communication

depends on the complexity of the graph. The worst case arises when

every module has a connection with a module situated on the farest

processor in the network.

Another topic for the communication network is the implementation

of a mixing matrix, where summing busses are combined. It needs an

extremely high communication rate over the entire system. Processing

modules have to collect and add a large amount of audio channels. One

3.1. Configurability 29

module is responsible for a complete summing bus, as shown in Fig. 3.1.

Assuming that the processing modules, which are connected with one

or several summing busses, broadcast their data globally in the system,

the location, on which processor a summing module is running, can be

neglected.

For a fully routable system, that allows all interconnections between

two or more modules, each processor must be able to have access to

all data from all other processors. The architecture, that fulfills this

requirement is a broadcast network.

For a certain configuration it is necessary to bind only the needed

amount of processors in a system. This way system costs are individ¬

ually adapted and optimized for each configuration. Scalability of the

interconnection network is a condition to provide such optimizations.

In the case of a mixing-engine the interconnection network must

support both features, broadcast capabilities and scalability. Such a

network is called an orthogonal network and has the following proper¬

ties:

- The interprocessor network is a broadcast network

- The amount of processors is scalable

- The number of globally communicated audio channels does not

depend on the number of processors

n

en —.

c

CO

O

1

000000E -

Figure 3.4: On an orthogonal system, the amount of processors and

the number of communicated channels are independent. Scalability is

provided by a selectable number of processor.

30 Chapter 3: Concept

The last topic implies that the communication bandwidth does not

depend on the scalability. Fig. 3.4 depicts the orthogonality of commu¬

nicated audio channels and processing elements. The amount of commu¬

nicated channels is given by the network. It remains constant under the

assumption that the network performs the best possible communication

throughput. Therefore, the highest possible communication bandwidth

is provided even if only 2 processing elements are combined. The num¬

ber of PEs, however, is scalable to a maximum bounded by electrical

or mechanical characteristics.

3.2. Graph Mapping

Mapping a DAAG onto a parallel architecture can be performed in

respect to one or several constraints:

1. Minimal number of processors

2. Minimal communication cost

3. Minimal system latency

In general, these subjects are closely dependent on each other. For

example, the number of processors, the communication bandwidth and

the system latency vary depending on the location of processing mod¬

ules.

In the following considerations it is assumed that the parallel pro¬

cessor architecture is given and is orthogonal. The cost of such a system

is minimized with the minimal number of processors. Modules can be

executed on any processor. Therefore the sum of computation, that is

required by all modules, gives the lower bound of the needed proces¬

sors. This bound can hardly be reached because of the granularity of

the different processing modules. Nevertheless, the minimal number of

processors for a given DAAG is the primary requirement on an orthog¬
onal system. The final price and the acceptance of the mixing console

is dominated by this constraint.

Considering the system latency builds a secondary problem in the

assignment process and can be neglected under the following condition:

3.2. Graph Mapping 31

Figure 3.5: A configuration is performed by distributing groups of mod¬

ules onto processors. The optimal assignment is equivalent the mini¬

mum amount of hardware resources needed for a certain configuration.

Neglecting System Latency: A digital mixing-engine can have a

latency in the range of 1ms1. This time corresponds to almost 50 audio

samples. It means, an audio signal can be pipelined through 50 proces¬

sors until it reaches the output connectors of the system. Looking at

the signal flow of a mixing-engine (Fig. 2.2 on page 10) the number of

processing modules involved in one audio signal will not exceed 20. In

most implementations, minimizing the system latency can therefore be

neglected.

As a result, it is possible to concentrate on the assignment of pro¬

cessing modules without considering system latency. But, it has to be

guaranteed that the time limitation, as mentioned above, is not ex¬

ceeded. If an assignment results in a higher latency than the given

limitations, an optimization has to be performed.
Two different configuration approaches result, where the number of

processors and communication costs are involved:

1. Graph Partitioning: Consider partitioning and communication

costs together

1
Analog to digital and digital to analog conversion requires around 2ms. An

additional latency of 1ms is tolerable for processing.

32 Chapter 3: Concept

2. Assign and Optimize: Assign processing modules ignoring
communication costs and optimize communication costs only
when necessary

The first approach tries to partition the graph into equally sized

subsets taking all communication costs into consideration. The second

approach is a combination, which uses one algorithm to assign modules

on processors and another algorithm to optimize communicat ion costs

if necessary. Both approaches are discussed in the following sections. In

this work, the second approach was applied.

3.2.1. Graph Partitioning

The goal of the graph partitioning problem is to partition the vertices

of a graph in k roughly equal parts, such that the number of edges

connecting vertices in different parts is minimized. Formally, the fc-way

graph partitioning problem is defined as follows: Given a graph G ==

(V, C), create a partition V into k equally sized subsets Vi, V2,..., Vj,

such that Knl^ = 0 for i =fi j, and UtV, = V. The number of edges of C

whose incident vertices belong to different subsets has to be minimized.

A fc-way partition of V is commonly represented by a vector P of length

n, such that for every vertex v G V, P[v] is an integer between 1 and k,

indicating the partition to which vertex v belongs. Given a partition P,
the number of edges whose incident vertices belong to different subsets

is called the edge-cut of the partition.

The implementation of many parallel algorithms need an optimiza¬
tion of both, communication and processor costs. A possibility is the

solution of the graph partitioning problem, where vertices represent

computational tasks, and edges represent data exchanges. A fc-way

partition of the computation graph can be used to assign tasks to k

processors, and because it minimizes the edge-cut, the communication

costs are also minimized. Therefore, finding a partition with minimal

communication costs is equivalent with computing a minimum edge-cut
bisection P of a given DAAG G(V, C).

The fc-way partition problem is most frequently solved by recursive

bisection. It means, we first obtain a 2-way partition of V, and then we

further subdivide each part using 2-way partitions. After log k phases,

graph G is partitioned into k parts. Thus, the problem of performing

3.2. Graph Mapping 33

a fc-way partition is reduced to that of performing a sequence of 2-way

partitions or bisections. This scheme does not necessarily lead to the

optimal partition, but it is used extensively due to its simplicity.
A partitioning P can be obtained using various algorithms such as

(a) spectral bisection [PSL90, PSWB92, BS93], (b) geometric bisection

[MTTV93], and (c) combinatorial methods [KL70, Bar84, GL81]. Four

popular algorithms are described in the next sections. The first uses

spectral bisection, the other three algorithms make use of combinatorial

methods. Geometric bisection techniques are not described since these

methods are applicable only if coordinates are available for the vertices

of the graph.

Spectral Bisection (SB) In this algorithm, the spectral informa¬

tion is used to partition the graph [PSL90, BS93, HL93]. This method

is very expensive since it requires the computation of the eigenvector

corresponding to the second smallest eigenvalue (Fiedler vector). The

execution of the SB algorithm can be speeded up if the computation of

the Fiedler vector is done using a multilevel algorithm [BS93]. However,

even such multilevel spectral bisection (MSB) algorithms usually take

a large amount of computation time.

Kernighan-Lin Algorithm (KL) The Kernighan-Lin algo¬

rithm [KL70] is of iterative nature. It starts with an initial partition

of the graph. Each iteration tries to find a subset of vertices, from

each part of the graph, such that swapping them leads to a partition

with smaller edge-cut and hence with lower communication cost. If

such subsets exist, then the swap is performed and this becomes the

partition for the next iteration. The algorithm continues by repeating

this process. If it cannot find two such subsets, then the algorithm

terminates, since the partition is at a local minima and no further

improvement can be made by the KL algorithm. Each iteration of the

KL algorithm, as described in [KL70], takes 0(1^1 log |^j) time. Sev¬

eral improvements to the original KL algorithm have been developed.

One such algorithm is found by Fiduccia and Mattheyses [FM82]
that reduces the complexity to 0(|i?|), by using appropriate data

structures.

34 Chapter 3: Concept

The Kernighan-Lin algorithm has been found to be effective in find¬

ing locally optimal partitions when it starts with a fairly good initial

partition and when the average degree of the graph is large [BJ93]. If no

good initial partition is known, the KL algorithm is repeated with dif¬

ferent randomly selected initial partitions, and the one that yields the

smaller edge-cut is selected. Requiring multiple runs can be expensive,

especially if the graph is large.

Formally, the KL algorithm is applied as follows. Suppose P is the

initial partition of the vertices of the graph G(V, C). The gain gv of

one vertex v is defined as the reduction in the edge-cut if the vertex v

moves from one partition to the other. This gain is generally defined

by

gv= ^ U)(V,U)-]T W(V,U) (3.1)
(v,u)CAP[v}^Plu] (v,u)£CAP[v]=P[u]

where w(v,u) is the weight of edge {v,u). If gv is positive, then by

moving v to the other partition the edge-cut decreases by gv. If gv is

negative, the edge-cut increases by the same amount. If a vertex v is

moved from one partition to the other, then the gains of the vertices

adjacent to v may change. Thus, after moving a vertex, we need to

update the gains of its adjacent vertices.

Given this definition of gain, the KL algorithm proceeds by repeat¬

edly selecting from the larger part a vertex v with the largest gain and

moves it to the other part. After moving v, v is marked so it will not

be considered again in the same iteration, and the gains adjacent to v

are updated to reflect the change in the partition. The KL algorithm,
described in [FM82], continues moving vertices between the partitions,
until all the vertices are moved.

Graph Growing Partitioning (GGP) Another simple way of bi¬

secting a graph is to start from a vertex and grow a region around it,

until half of the vertices have been included (or half of the total ver¬

tex weight) [GL81]. The advantage of this scheme over KL is that if

the graph is connected, then the GGP algorithm produces connected

partitions. This may not be the case with KL, since initial partitions

are selected randomly, and KL might terminate at a local minima that

yields disconnected partitions.

3.2. Graph Mapping 35

The quality of the GGP algorithm is sensitive to the choice of the

vertex from which to start growing the graph, and different starting

vertices yield different edge-cuts.

Greedy Graph Growing Partitioning (GGGP) The graph

growing algorithm described in the previous section grows a partition in

a strict breath-first fashion. However, as in the KL algorithm, for each

vertex v we can define the gain in the edge-cut obtained by inserting v

into the growing region. Thus the vertex with the largest decrease (or
the smallest increase) in the edge-cut is inserted first.

As in the case of the GGP algorithm, this algorithm is also sensitive

to the choice of the initial vertex, however, this sensitivity is much

smaller.

Multilevel Graph Bisection (MGB) Multilevel graph bisection

algorithms reduce the size of the graph (i.e. coarsen the graph) by

collapsing vertices and edges. Then the smaller graph is partitioned,
for example with an algorithm as described above. Finally, the graph

is uncoarsed to construct a partition for the original graph. Such

multilevel schemes were primarily investigated to decrease the parti¬

tion time. Recently, a number of multilevel algorithms have been pro¬

posed [HL93, BJ93, KK95] that further refine the partition during the

uncoarsening phase. Good results are obtainable this way.

3.2.2. Assign and Optimize

This approach is a combination of two algorithms, one for assigning pro¬

cessing modules and, if the system cannot provide the required commu¬

nication bandwidth, another algorithm for optimizing communication

costs. The division into two algorithms works especially well for mixing

engines on orthogonal systems because

- the interprocessor communication bandwidth is constant and is

sufficient for most mixing engine configurations

- if the network is not able to support all communication require¬

ments of a specific graph, an optimization can easily be performed

Such an optimization is done by clustering:

36 Chapter 3: Concept

Clustering When a mixing-engine is described with a DAAG, then

the structure of the graph will be equivalent to the basic signal-flow
of a mixing-engine shown in Fig. 2.2. Processing-paths, which repre¬

sent strips on the desk, have minimal communication with the rest

of the system and can be grouped together. A larger module can be

formed out of this group and inserted in the graph. Then, the new

graph has less connections, since the communication can be performed

locally. Additionally, local communication within one module inherits

a smaller latency. As a result, clustering reduces global communication

bandwidth and latency. But, the size of the modules increases and leads

to a less optimal usage of the processors.

A complete configuration concept for a mixing-engine can be imple¬
mented in a configuration program. The following steps are performed

by the program:

1. Module assignment The modules of the DAAG are assigned
as well as possible to a minimal number of processors. Commu¬

nication costs and system latency are neglected.

2. Communication A communication through the interprocessor

network is established for every connection in the graph, where

modules run on different processors.

3. If the bandwidth of the interprocessor network can not satisfy
all communication requirements, small modules with low com¬

munication are grouped to larger modules and local connections

are applied within these modules. A new graph is built with the

new modules and a restart at step 1 is executed. The procedure
continues with step 4.

4. Synchronization To provide a unique system latency, a syn¬

chronization scheme is generated for modules, which have more

than 1 input connection.

With this approach three distinct problems, module assignment,

communication, and synchronization, are isolated in steps 1, 2 and 4,

respectively. An analysis of these topics follows.

3.3. Module Assignment 37

3.3. Module Assignment

Since all communication costs among modules are neglected in this

section, the assignment problem for a parallel system is reduced to a

multiprocessor assignment problem. These problems are known to be

NP-Complete.

3.3.1. NP-Complete Problems

In order to discuss configuration problems it is important to look at a

special part of problems in computer science: The NP-Complete Prob¬

lems. For our purpose, a problem can be described by a number of

parameters and by an explanation of the properties of a desired solu¬

tion. If we have a problem, that can be described in a mathematically

precise form, it is - in most cases - possible to find at least one al¬

gorithm that is capable of finding a solution. Such a solution is not

necessarily unique, only its properties need to be satisfied. We are in¬

terested to find an efficient algorithm for solving a problem. Efficiency

can be expressed by two main factors: First, how much time does this

algorithm need on a computer and second, what computing resources

are required.

The size of a problem varies with the amount of input data. Thus

the time for finding a solution for a specific problem grows by the size

of the problem. To measure efficiency of an algorithm one can look at

the time complexity function [GJ79]. It is the order 0(n) by which the

calculation time grows for the given amount of input data n.

Definition: Polynomial Computing Time If a problem can be

solved in a computing time, which is proportional to the size of the

problem and its time complexity function 0(n) is bounded by a polyno¬

mial, it is said to have a polynomial computing time.

Let an algorithm be efficient, when the problem can be solved in

polynomial computing time. All currently available computers work

deterministic and there are many problems which can be efficiently

solved on deterministic computers. We can classify these problems in a

set P:

38 Chapter 3 Concept

Definition: Deterministic Computer A deterministic computer

performs after each processing step exactly one possible action.

Definition: P The set of problems P represents the class of problems,

for which each problem x% G P can be solved in polynomial computing

time using a deterministic computer.

In contrast to P, there are problems, for which no known algorithm
exists for its solution in polynomial computing time using a del erminis-

tic computer. If the ability of a computer is extended with nondetermin-

ism, a polynomial computing time can be feasible for some problems.
We can therefore extend P to AT:

Definition: Nondeterministic Computer For a set of possible so¬

lutions S, a nondeterministic computer is able to choose the best solu¬

tion s, G S.

Definition: NP The set of problems NP represents the class of prob¬

lems, for which each problem y, G NP can be solved in polynomial

computing time using a nondeterministic computer.

Obviously, P G ATP and it seems that more problems belong to ATP

than to P. Practically, there exists no known proof that a problem

belongs to NP and not to P. In other words, the possibility exists

that P = NP and all problems in ATP can be solved in polynomial

computing time on a deterministic computer.

A large group of problems in A^P exists, for which no known ef¬

ficient algorithm exists for a deterministic computer nor a proof was

found, that they belong to P. This group is called NP-complete and all

such problems have one important property in common: If one of these

problems can be solved in polynomial compute time on a deterministic

computer, this must be possible for all other NP-complete problems.
It can be proven by transforming a problem yx G NP-complete into

the problem y} G NP-complete, for which a polynomial algorithm on

a deterministic computer exists.

3.3. Module Assignment 39

Let us take the classical traveling salesman problem as an example.
A finite set of cities is sufficiently connected by roads. The problem is

defined: Find the shortest route which stops at each city once. The size

of the problem is defined by the number of cities involved. The simplest

algorithm, which finds the optimal solution, is to test all possible routes.

If we want to solve the traveling salesman problem with 10 cities, this

would be a reasonable approach. But to test several tens of cities, it

already takes years on a supercomputer.

Multiprocessor assignment problems are NP-complete problems.

The input data of a multiprocessor assignment problem is in general

a list Ln = (Xi,X2,- -,Xn) of nonnegative numbers that have to

be grouped into blocks satisfying some given properties. Three major

assignment problems arise: The objective of the makespan scheduling

problem is to find a partition of Ln into m blocks so that the maximal

block sum is minimized over all such partitions. A related problem is

the partition problem, where an assignment of Ln into m is sought after

such that the difference between the maximal and the minimal block

sums is minimized over all blocks. Both problems have Ln and a fixed

number of blocks as input data. The third example is the bin-packing

problem. Here a partitioning of Ln into a variable number of uniform

sized blocks is sought [SSNB95]. Since this problem is of major interest

for the configuration of a digital mixing-engine, it is discussed in the

next section.

3.3.2. Bin-Packing Problem

The bin-packing problem (BPP) is equivalent to the problem of "pack¬

ing" a number of "weights" into a minimum number of "bins". It is

assumed that all bins have a uniform capacity and no single weight ex¬

ceeds this capacity. We note a complementary statement in the problem
of assigning a number of tasks on a set of processors. The minimum

number of processors needed for finishing all tasks within a given period
of time is sought.

Garey and Johnson [GJ79] proved that the BPP is NP-complete.
We note the non existence of an algorithm which finds the optimal solu¬

tion of the problem in a polynomial computing time. However, simple

heuristics already show satisfying results in a very short computing

40 Chapter 3 Concept

time. The most common algorithms, which are currently used for the

BPP, are:

- Next-Fit (NF): This is the easiest approach to the BPP. The first

item of an unordered set of items is assigned to the first bin. The

next item is then assigned to the same bin, when it fits. Otherwise

it is allocated to a new bin. This new bin is then used until one

of the next items again has to be assigned to a new bin.

- First-Fit (FF): Always beginning with the first bin each item

is allocated to the next bin, which has enough capacity for this

item. A new bin is only introduced if the current item did not fit

into one of the already tested bins.

- Best-Fit (BF): This algorithm is obtained from FF. The current

item is assigned to the bin for which the resulting capacity of that

bin is minimal.

- Next-Fit Decreasing (NFD): In this approach the items are first

organized in a decreasing order.Then the NF algorithm is applied.

- First-Fit Decreasing (FFD): Once again the items are sorted in

a decreasing order and then the FF algorithm is applied.

- Best-Fit Decreasing (BFD): The BF algorithm is applied after

having sorted the set of items in a decreasing order.

The first three approaches do not produce unique solutions, as the

set of items is randomly organized at the startup of the algorithm. They
are also called online packing algorithms since an a priori knowledge
of the complete set of items is not given and the items possibly arrive

in an unordered stream. The latter three algorithms are called offline

packing algorithms. The criterion for an algorithm as "good" or "not

good" differs for online and offline packing. For example the big (and

only) advantage of the NF algorithm is its dramatically small processing
effort.

Various algorithms, which are related with these fundamental BPP

heuristics, exist. For example Shor [Sho91] presents a derivation of the

online algorithm BF. Burchard et al. [BLOS95] introduce an offline

algorithm based on NFD and FFD.

3 3 Module Assignment 41

100

80

Use [%] 71 21

SUM(L) 514

A(L) 662

Abs loss 148

\V

400

PES l#l

600

(a) NF (b) NFD

"Tfr

Use [%) 94 55

SUM(L) 514

A(L) 542

Abs loss 28

200 400

PEs (#1

100

80

°L 60

800

^nffi

Use [%] 97 28

SUM(L) 514

A(L) 528

Abs loss 14

) 200 400

PES Ml

600

(c)FF (d) FFD

""""rt'nrmm

20

Use [%] 95 33

SUM(L) 514

A(L) 538

Abs loss 24

200 400

PES l#l

Use [%] 97 28

SUM(L) 514

A(L) 528

Abs loss 14

200 400 600

PEs [#l

(e) BF (f) BFD

Figure 3 6 The assignment of a uniform random set Ln with n = 1000

using different BPP heuristics

42 Chapter 3: Concept

To compare the performance of the different heuristics we first

define OPT(Ln) as the optimum solution value of the BPP for a

set Ln = (mi,ffi2, ••• ,mn) of processing modules. For our pur¬

pose OPT(Ln) denotes the minimum number of processors. Trivially,

OPT{Ln) is bounded by

n

^mi <OPT{Ln) (3.2)
«=i

and is the best solution after trying every possible assignment. Without

losing generality we assume the elements of Ln to be real numbers in

(0,1] and the processors have a uniform capacity c = 1. The worst case

performance ratio r(A) is specified as the smallest real number for a

heuristic algorithm A, with

A{Ln)
<r(A) (3.3)

OPT(Ln)

and A(Ln) as the solution value of needed processors for the algorithm
A. It can be shown, that NF(Ln) satisfies the upper bound

NF(Ln) < 2 OPT{Ln) (3.4)

The complexity to calculate NF{Ln) is simply 0(n), because for ev¬

ery element only one decision has to be made. Johnson, Demers and

Ullmann [JDU+74] proved that

FF(Ln) = BF(Ln) < ^ OPT(Ln) + 2 (3.5)

holds for all n when FF or BF is applied. In the same paper the

resulting worst case bounds for FFD and BFD are proven:

FFD{Ln) = BFD(Ln) <

y OPT{Ln) + 4 (3.6)

The time complexity for the last four algorithms is O(nlogn)2. For

arbitrarily large OPT(Ln) the constant term in 3.5 and 3.6 disappears.

Thus the asymptotic worst case performance ratio is used. It is defined

2It can be achieved applying a 2-3 tree data structure [AHU83]

3.3. Module Assignment 43

as the minimum real number r^ (A) such that, for some positive integer

k,

<mh)iT~(A) (3-7)

for all cases Ln and satisfying OPT(Ln) > k. Table 3.1 demonstrates

the asymptotic worst case performance ratios of the discussed heuristics

(from Coffman, Garey and Johnson [CGJ84]). The last three columns

show r„)00 for u — \,\,\. They refer to instances where the items in

Ln have values in (0,u\.

Algorithm Complexity Too rl/2,°o fl/3,oo fl/4,oo

NF 0(n) 2.00 2.00 1.50 1.33

FF 0(n log n) 1.70 1.50 1.33 1.25

BF 0(n log n) 1.70 1.50 1.33 1.25

NFD 0(n log n) 1.69 1.42 1.30 1.23

FFD 0(n log n) 1.22 1.18 1.18 1.15

BFD 0(n log n) 1.22 1.18 1.18 1.15

Table 3.1: The asymptotic worst case performance ratios of the classical

BPP heuristics are shown. The three columns on the right refer to lists

where the size of the elements are below |, | and \.

Obviously, if the grain size of the distributed items is smaller, the

utilization of bins is better. For FFD and BFD only 15% of the capacity
is lost in the worst case, when the distributed items are in (0, |]. Let

LU)„ denote lists, where the item sizes are in (0, u] and 0 < u < 1.

Bentley et al. [BJLM83] have reported an interesting behaviour of FFD

applied on lists Lu,n- Experimentally the absolute wasted space

n

EA(u,n) = A(L^n) -J2mi (3-8)
t=i

was measured for heuristic algorithms A. With FFD on lists L„)n and

0 < u < \, the amount of wasted space tends to be extremely small.

Even when packing over hundred thousand items the excess of bins

is mostly less than one bin! The experiments were done with up to

128'000 items in a list. Tests with different n's indicated an average

44 Chapter 3: Concept

loss of 0.7 bins not depending on n. Moreover, no excess of more than

1.3 bins was ever encountered, and the excess of less than 1 bin appeared
in roughly 75 percent of the time. The simulations show that the FFD

algorithm is an optimal algorithm for 3/4 of the tested cases. In the

next paper by Bentley et al. [BJL+84] a proof is given that the expected
amount of wasted space is bound by a constant number independent
of n. However, the constant upper bound presented there is of the

order 1010 and is shown to hold only when n > e100. So the difference

between experimental and theoretical results is enormous. Nevertheless,

the proof that there is a constant upper bound gives confidence in

the experimental results. A recent paper by Floyd and Karp [FK91]
investigates FFD under the assumption that the number of items has a

Poisson distribution and the sizes are in (0, |]. With these restrictions

an upper bound of 11.3 bins on the absolute excess of bins, independent
of n, was proven.

3.3.3. Assignment using FFD Bin-Packing

In a mixing-engine, the granularity, the size, and the amount of the

items are within a certain range. Usually only a small amount of dif¬

ferent items exists. For example, it is possible to build a mixing engine

only with an equalizer, a scale, and a summing function. They can be

chosen in any combination and therefore build a library for another

large list. Let Sx [Lu,n] denote the list Sx with x items taken from the

sublist LUt„ where n < x. It is interesting to verify the results of Bentley
et al. [BJLM83] for lists satisfying the following constraints:

- The used item sizes are within 0.05 < u < 0.5.

- The number of different items is small, 5 < n < 50.

- The number x of items is in the range 500 < x < 5000.

These constraints result, first, from the typical module size imple¬
mented on currently available DSPs, second, from the amount of dif¬

ferent modules currently used in mixing consoles and third, from the

size of large mixing consoles that are normally produced. Tab. 2.2 on

page 17 confirms the indicated ranges.

3.3. Module Assignment 45

2000

(a) x - 500 (b) x = 5000

Figure 3.7: The distribution of Sx [LU)„] over the PEs with n = 20 and

0.05 < u < 0.5. The absolute loss of PEs compared to the computational

sum over all modules is measured.

Since FFD uses small items to fill gaps left by larger items it is

natural to expect more wasted space when the granularity of the item

sizes is rather coarse. Because the item size is at least 0.05 the lost space

will increase with the number of distributed items. As an example, a

library of n — 20 items with random size in 0.05 < u < 0.5 is generated.

Fig. 3.7 shows a FFD assignment of a list Sx over the PEs with x = 500

and x = 5000. The utilization shows good results with a average load

around 98%. It seems that the excess of space grows linearly with x

and the average load remains constant.

Fig. 3.8 demonstrates the growth of lost space with different n's.

The lost space is qualified by the number of empty PEs when all gaps

in the system are collected. Two statements can be made from the

figures:

- The expected loss of PEs grows with x.

- The growth is flatter with a finer granularity.

There is no known proof for this statement. But, the simulation can

give an order by which the excess of PEs grows. For this simulation,

a new library Lu<n was generated for each assignment. A rather rough

46 Chapter 3: Concept

30

0.

220

0 100 200 300 400 500 600
Used PEs

0 100 200 300 400 500 600

Used PEs

(a) n = 10 (b) n = 40

Figure 3.8: The expected loss of PEs grows with the amount of modules.

But, the loss is more predictable if the granularity of the items is finer.

Ten measurements are shown for each list Sx[LUt„] with 0.05 < u <

0.5. The sublist Lu,n contains 10 and 40 items with random weights,

generated for each Sx.

"0 100 200 300 400 500 600
Used PEs

200 300 400

Used PEs

600

(a) n = 10 (b) n = 40

Figure 3.9: For distributions, where Lu>n remains constant for all Sx,

the expected loss of PEs grows linear with x. Ten measurements are

shown for each list Sx[LUi„] with 0.05 < u < 0.5. The sublist Lu>n
contains 10 and 40 items with random weights, generated once.

3.4. Communication 47

scattering results and prevents to make a more precise statement. An

interesting behaviour is shown in Fig. 3.9: When the sublist LUi„ re¬

mains constant for all x, the expected loss of PEs seems to grow linearly

with x and consequently linearly with the amount of PEs. It can be as¬

sumed, that with a given sublist LU)„, the expected loss of PEs can be

ascertained for any x applying simulations with random generated Sx.

The following result can be obtained for the configuration of a mix¬

ing engine: If a mixing-engine has a homogeneous, parallel processor

architecture and a random configuration 5X[LU)„], where LU)„ denotes

a library of n modules and 0.05 < u < 0.5, then it is possible to eval¬

uate an expected loss of PEs for all x under the condition, that the

items in Sx are picked from LU)„ randomly. A usage factor arises which

indicates the average processor load for a given library.

3.4. Communication

3.4.1. Synchronous Communication

Within each clock cycle of the master-clock a new data value arrives

from every connected device. Simultaneously, a new data value must

be present at all outgoing channels. Consequently the communication

time for the interprocessor network is one master-clock period. This

time is 20.83^/s for professional audio. Arising out of this short time

the interprocessor communication needs to work as independently as

possible to relieve the processors.

Fig. 3.10 illustrates the overlapping of communication and process¬

ing. The communication starts with the beginning of the master-clock

while the processing is synchronized with the end of the communica¬

tion. To prevent data inconsistency, the processing has to take place

on a different data set than the communicated set (double-buffering).
Each communication going through the interprocessor network inherits

a pipelining of 2 data values in an audio channel.

3.4.2. Network Topologies

There are several possible network topologies, which can be applied

for a digital mixing-engine. To provide an orthogonal system the net¬

work has to supply broadcasting capabilities. Therefore, networks with

48 Chapter 3 Concept

Master-Clock Master-Clock Master-Clock

t
Sync

,,.,
Sync ,,t+2

1 1 1
Communication

"

Processing

C P 1 C

"""Buffer 1 Y Y

P j C j P

"""

""""Buffer 2

Figure 3.10' The communication starts with the master-clock The pro¬

cessing begins after the comunication cycle has finished. Communi¬

cation and processing use different buffers "C" and "P", which are

switched during the synchronization phase.

poor or complicated broadcast support like crossbar switches, multi¬

stage networks or mesh networks are inconvenient. The most reason¬

able topologies are shown in Fig. 3.11. Two main distinctions are made:

First, ring bus or common bus and second, a hierarchical network or a

non-hierarchical one.

Common Bus. A common bus offers the best broadcasting possi-

bilites of all network architectures. A node can produce its data directly

to all other nodes. To avoid network conflicts, an arbitration must be

made globally. In a synchronous system, where the nodes periodically

produce the same data patterns, it is possible to manage with a static

arbitration. Each node can produce data to the net at a predefined time.

Any change in the order of the data production needs a new global syn¬

chronization. The network is called a time division multiplexed (TDM)

bus, when a defined amount of communicated channels fit in the time

of one master-clock period. TDM busses are very common in digital

audio processing. A major drawback of a common bus is the limited

amount of nodes and the demand of short connection lengths of the

bus. For example a common bus implemented in a VME3 sized cabinet

3 Versa Module Europe, industrial standard

3 4 Communication 49

\ 1 1
IF IF IF IF IF IF

I t l 7 1 1
PE PE PE PE PE PE

IF IF

t »
PE PE

IF IF

t *
PE PE

E]

(a) Common Bus (b) Pipelined Ring Bus

f *""""*
. . .

I
. . ,

* T~~~* f 1 *

000000 000000
T i i * T i t T * iTi
PE PE PE PE PE PE PE PE PE PE PE PE

(c) Hierarchical Bus (d) Hierarchical Ring Bus

Figure 3.11: Bus Structures allowing broadcast capabilities.

allows us to combine a maximum of 21 boards. An extension of a high

speed common bus is due to its electrical characteristics impossible.

Considering the network security of a common bus, the network still

operates when one node stops working. Using special hardware com¬

ponents it is even possible to exchange one node while the network is

running. Such features are important in highly sensitive environments

like broadcasting studios. A loss of the audio signal can be fatal when

one node stops working.

Pipelined Ring Bus. A ring bus can be seen as a circular linear shift

register, where every node stores a data word. To apply a broadcast on a

ring bus, every data value has to proceed through the complete network

once. This implies a maximal latency of n clock cycles for a network

50 Chapter 3: Concept

with n nodes. For a synchronous communication, however, the latency

can be reduced, since the communicated data is pipelined through the

network. It requires that every node produces only one joined data block

and appends its block directly after its predecessor. If the next sending

node is not the direct neighbor, but is at a distance of x nodes, (x — 1)

empty slots appear in the data stream of the network.

©(b)©® ©©(£)©

© © © © ©©©(£)

Figure 3.12: During one communication cycle, every node sequentially

produces its data block to the ring bus.

Figure 3.13: The data-flow of Fig. 3.12 is shown, as it proceeds through

the network.

For example looking at an all-to-all broadcasting during one master-

clock cycle (Fig. 3.12), the first node begins to produce the first con¬

tiguous data block to the network. After the last value of this block

was passed to the second node, the next data block is produced by

the second node. As shown in Fig. 3.13, all communicated data travels

trough the network as a combined block.

One problem arises at the beginning and the end of a communica¬

tion cycle. The entire network pipeline has to be filled and emptied.

As an example, when a ring bus is used for digital audio with 60 nodes

and the communication performance is 500 audio channels, transmit¬

ted at 25MHz, filling and emptying decreases the bandwidth by almost

25%. 60 unused audio channels appear for each, filling and emptying!

To avoid this overhead, the communication cycles have to be pipelined

3 4 Communication 51

as well Fig. 3.14 demonstrates the communication time tc and the

synchronization time ts at the nodes. At the beginning of the commu¬

nication cycle the pipeline has to be filled. Except of the first node,

all other nodes have to wait The same effect arrives at the end of the

communication cycle. The first node has to wait until all other nodes

have finished communicating. The synchronization time ts is long. In

' ' t

2

3

t+1

I Communication H Synchronization

Figure 3.14- The communication and synchronization time at each node

for a globally synchronized ring bus.

t+1

I Communication IB Synchronization

Figure 3 15: The communication and synchronization time at each node

for a pipelined synchronized ring bus.

Fig. 3.15 ts is shorter and arrives consecutively at each node. The com¬

munication cycle starts individually at the nodes.

The important advantage of a pipelined ring bus is its scalability.

As only close neighbors are connected, very large ring bus architectures

at high clock rates are feasible. A major drawback lies in operation se¬

curity. In contrast to a common bus, the correct working of the network

depends on each single node. If one node gives up operation, the com¬

plete network stops working.

Hierarchical Common Bus A hierarchical bus gives the possibility

to reduce the hardware overhead for a parallel processor system, since

only one interface to the global interprocessor network is needed for a

52 Chapter 3: Concept

cluster of processors. Local interfaces within the cluster are less complex
than the global interfaces and can be realized more economically .

The

broadcast capabilities are comparable with a common bus, but more

processors can be reached. However, two aspects have to be considered

when implementing a hierarchical architecture:

- The bandwidth of the local bus has to be shared by all processors

in the same cluster.

- Data consistency has to be guaranteed within the cluster.

Normally, the local bus of a processor cluster is implemented as

shared memory. Any access of a processor to the interface results in a

arbitration with other processors. Only a limited amount of accesses

to the interface are possible within one master-clock. The number of

shared memory accesses per master-clock is, in general, equal to the

number of processing cycles on one processor. Therefore, the size of

a cluster depends on the type of processing modules that run on the

processors. If the modules use much data from the shared memory,

most of processing time is lost in arbitration of the local bus. Let a(/)
denote the ratio of shared memory access cycles m(f) versus processing

cycles p(f) for a processing module /:

If a reaches 1, processing and shared memory accesses are equal and

processing cycles are not the limiting factor within a cluster. For exam¬

ple in a summing module a(f) = 1/2 because for every channel that has

to be added two processing cycles are necessary. For modules, where

a(f) is close to 1, the cluster size has to reach 1, under the assumption,
that p(f) and m(f) use the same time on a processor.

Local data inconsistency can occur when a processor uses a channel,

which is produced by a processor of the same cluster. Take a module mi

on processor A, that needs a channel from a module m^ on processor B.

If a double buffer is used (Fig. 3.10) and A and B are in the same cluster,
it is not known a priori when the channel for module mi is produced

by rri2. Thus mi possibly gets an old channel, communicated over the

interprocessor network. There are two solutions for this problem: First,

3.5. Synchronization 53

the modules in a processor cluster are scheduled according to their

precedence constraints. Second, a triple buffer is implemented.

In the first case an a priori timing list of all functions in the clus¬

ter is needed. However, because of the shared memory arbitration the

predictability is not guaranteed. The second method, where read, write

and communication buffer are separated, is simpler (Fig. 3.16). The

three buffers switch after a communication cycle. The communication-

buffer becomes the new read buffer, the write buffer is going to be the

communication buffer and the old read buffer switches to a new write

buffer. This way, all data produced in one cluster is first communicated

through the network before it arrives in the read buffer.

t r\ t+1 n t+2

c Read Write

Buffer 1 \ V

Write C Read

Buffer 2 \ \
Read Write C

Buffer 3 r r

Work on Buffer Synchronization

Figure 3.16: Triple buffer for data consistency in a hierarchical bus sys¬

tem. Read, write, and communication is performed on different buffers

during one master-clock.

Hierarchical Ring Bus A hierarchical ring bus joins the properties

of a ring bus and a hierarchical common bus. Large systems with a

moderate hardware overhead are feasible. Like in a pipelined ring bus,

the operation security depends on each node.

3.5. Synchronization

Different path lengths in a graph need to be synchronized. Such a syn¬

chronization takes place, where several paths come together. Let mod¬

ules, that are located at a meeting point of paths, be called merging
modules.

54 Chapter 3: Concept

Figure 3.17: Different path lengths need to be synchronized at merging

modules. Here G is a merging module.

Thus data values of shorter paths need to be stored at merging

modules in a FIFO4 structured buffer. The longest path going into

the merging module defines the length of the buffer, where the data

values from shorter paths are stored. Since every communication cycle

of the interprocessor network corresponds to a master-clock, the FIFO

buffer turns out to be a history buffer of the last communications. The

implementation of FIFO buffers is a complicated and costly procedure,

when for every channel going into a module such a buffer has to be

realized. Therefore the implementation of a global history, where all

incoming data is stored, can reduce the processing overhead massively.

The next section discusses a solution with the example of a summing

module.

3.5.1. Two Dimensional Channel Mapping

The most important merging module in a mixing console is the sum¬

ming module, which is responsible for the summation of a complete

summing bus (Fig. 2.2). A summing module usually has the form of

large polynoms (Eq. 3.10), where the channels, that have to be summed,

depend on time and are weighted with a certain factor pi-

y(t) -Pi * xi(t - d\) + p2 * x2{t - d2) + ... + pn *xn(t-dn) (3.10)

4First In First Out

3.5. Synchronization 55

A straight forward implementation requires a FIFO buffering of every

summing channel. Another possibility is the storing of the channels in

a two dimensional block, where the channels appear as lines and the

columns as a history. This grouping and saving of data into the memory

should work autonomously without using processing power.

For example consider the implementation of Eq. 3.11. As shown in

Fig. 3.18, it is possible to address the input channels xt{t — di) directly

out of the memory.

y(t) =p0*x2(t- l)+pi * xA{t - 4) + p2 * z„_i(r - 3) (3.11)

<.'(iv&£?

3 4 5

2 3 4 5

2 3 4 5

2 3 t|» 5

2 3 4 5

n-2 n-1 n

n-2 n-1 n

n-2 n

n-2 n-1 n

n-2 n-1 n

t-1

t-2

t-3

t-4

t-5

Figure 3.18: Each row of the memory corresponds to one communica¬

tion, each column to a global channel. The input values Xi{t — dr) of

Eq. 3.11 are marked.

The realization on a DSP is similar to a standard FIR5 filter imple¬
mentation, where a multiply-accumulate instruction (MAC) is applied.
One extra processing cycle has to be inserted to get the offset ri; to

the correct data value in the right time slot (row) in the history. An

implementation on a DSP-96002 is shown as follows:

do #N,_end

fmpy d4,d6,dl fadd dl.dO

x:(rl+nl),d4 y:(r2)+,d6

move x:(rO)+,nl

_end

Hardware Loop N-times

MAC instruction

and fetch new x and p

Get new offset d

End Loop

5Finite Impulse Response

56 Chapter 3: Concept

Therefore, 2n instruction cycles are used for the summing of n time

dependent and weighted values on a DSP. The same concept can be

applied for any merging module. The processing overhead for the syn¬

chronization of audio channels remains constant and in general is one

extra processing cycle compared to an FIR implementation.

3.6. Parameter Processing and Communication

Each module running on the PEs allows the controlling of its behavior

in real-time. Therefore every module needs to receive a certain amount

of parameters directly from the desk. The communication concept de¬

scribed in section 3.4 defines a homogeneous communication of global
audio channels. No separate bus or connection is provided for the com¬

munication of parameters from the desk to the modules. To keep the

communication network as homogeneous as possible it is likely to trans¬

fer parameters through global audio channels. The update rate of pa¬

rameters is much slower than the global master-clock. It may take sev¬

eral milliseconds until a module operates with a new set of parameters.

Although there is no explicit rule what latency is allowed for parameter

communication, a maximum time of 10ms is convenient in professional

audio engineering. This time is required for the mixing of audio and

video data, since the period of a video signal is about 20ms. A simple

method for transferring parameters through global audio channels is

the time-multiplexing of audio channels. Instead of transferring audio,

each data value contains one parameter. Only a few audio channels are

necessary to communicate a large amount of parameters. For instance

the communication of 5000 parameters with an update rate of 10ms

demands 10 global audio channels, where every channel communicates

500 parameters.

A module needs to access its parameters directly. Therefore, pa¬

rameters are stored in the memory of the processor at a predefined

location. The same strategy as described in section 3.5.1 can be ap¬

plied. The channels, that transfer parameters, build a complete block

of parameters in the memory. The parameters appear in columns of

the audio history at a absolute positions and are refreshed with each

period of the ring buffer (Fig. 3.19). The address of each parameter can

3 6 Parameter Processing and Communication 57

be calculated in advance and integrated in every module. Clearly, the

depth of the channel history and the update rate of the parameters are

related. If 500 parameters are multiplexed on one audio channel, the

history within the memory has a depth of 500 values per channel.

Audio channel field Parameter field

r\

Ring

Buffer

V

2 3 4 5

2 3 4 5

2 3 4 5

2 3 4 5

2 3 4 5

11 6 1

12 7 2

13 8 3

14 9 4

15 10 5

t

t-1

t2

t3

t-4

Memory

Figure 3.19: Parameters are multiplexed on some audio channels and

appear in the memory at absolute positions

3.6.1. Synchronous and asynchronous tasks

Since the update rate of the parameters is slower than the audio sam¬

pling rate it is not useful to handle new parameters on every audio clock

cycle. A slower preprocessing task can prepare parameters for the fast

processing task running with the audio sampling rate. If 10 processing

cycles are used to manage a parameter and if it is done in a separate,

periodic preprocessing task once every 10ms, up to 50 parameteis can

be handled and an average of only 1 processing cycle per audio clock

is used. It is therefore useful to have tasks with different periods in

a mixing-engine. Also an event driven, asynchronous task is possible.

Such a task can act on events or changes of single parameters coming

from the desk. As a result we distinguish three different types of tasks:

- Definition: Synchronous Task A synchronous task S repre¬

sents a set processing modules mi E S. Its execution time te on

a processor p fulfills te < 4-, where fs is the audio sampling fre¬

quency. The task is processed during one master-clock.

58 Chapter 3: Concept

Definition: Buffer Synchronous Task A buffer synchronous

task B represents a set processing modules ml £ B. Its execution

time te on a processor p fulfills te < 1*4-, where I denotes the

length of a data buffer. During this time a complete buffer of

length I is produced.

Definition: Asynchronous Task An asynchronous task A rep¬

resents a set processing modules ml £ A. It is executed after an

external event appeared. Its execution time te on a processor p is

not limited.

Masfer-Clock

t 1 t+5 I t+6 I

"iSynchronous Task

Buffer Synchronous Task .Event .Event .Event

^^^^^^mm*^a^mm<mmmaMmmmssm*m^KmBms£Bm:'&sMM

Asynchronous Task (Parameter Task)

I Processing H Synchronization

Figure 3.20: Three different types of processing tasks can be imple¬

mented. They synchronize either with each master-clock or after several

master-clocks or according to an external event.

A synchronous task is the classical processing task which is repeated

every master-clock cycle. It is built out of a set of audio modules ac¬

cording to the configuration procedure described in section 3.2. The

cost of a processing cycle in such tasks is extremely high. Therefore

only the minimum amount of code is integrated in the task. Input and

output data are loaded and stored at predefined memory addresses. Pa¬

rameters, that control the task, are preprocessed by another task and

located at a defined position.

Buffer synchronous tasks are also periodic tasks, but they typically

work on a large data buffer or use more than one master-clock cycle to

finish. An example for such a task is a parameter task or a Fast Fourier

Transformation (FFT). The processing is done on a double-buffer dur¬

ing several master-clocks. At the end of the processing the produced

3.7. Summary 59

buffer is communicated as a standard audio channel through the com¬

munication network. In the meantime a new buffer is prepared. The

difference to the method of double-buffering described in section 3.4.1

lies in the buffer size. The processing time of a buffer synchronous
task defines the size of the double buffer. This.way it is possible to

break the limit of processing time given by the master-clock. A module

which includes a 1024 FFT can run more than 20ms until a new buffer

of 1024 values has to be ready. Of course, every communicated audio

channel needs to have valid data words on every master-clock. Conse¬

quently a buffer synchronous task always has to produce a complete
buffer.

Asynchronous tasks work independently in the synchronous system.

This can be a parameter task that is responsible to produce a complete
buffer of parameters. The task reacts on changes of parameters coming

from the desk and places its results in a buffer, a status field, where

changes can be made at any time. Although the buffer is communicated

through the communication network periodically, there is no need to

produce the entire buffer every time. Since the buffer is communicated

autonomously by the hardware, the communication overhead does not

influence the activities of the processor.

It is intended that one processor runs only one type of task. A

mixture of different task-types on one processor is possible. However,

this would result in a higher system software overhead. The fast reaction

time of the asynchronous task is bought with long synchronization times

and with a lower processor usage. But, in general, only one processor

in a full system performs an asynchronous task and the lower efficiency
is tolerable.

3.7. Summary

A concept for the static configuration of a mixing-engine is given. The

functionality of the system is described in a directed acyclic audio

graph. A DAAG with audio channels and processing modules results.

It is mapped onto the parallel processor system by sequentially per¬

forming module assignment, communication and synchronization. This

separation into three steps is possible under the condition that the in-

60 Chapter 3: Concept

terprocessor network is a broadcast network and the communication

bandwidth remains constant. If this bandwidth is not able to satisfy all

communication requirements, modules are grouped to larger modules

with local communication. This way, the granularity is increased and

global communication is reduced. However, the higher grain size results

in less used processing resources and in a higher number of processors.

For the task allocation, all communication costs are neglected. Mod¬

ules are assigned using the FFD bin-packing heuristic. It is shown, that

this algorithm shows extremely good results when used in digital audio.

The expected loss of processing cycles is even predictable when mod¬

ules are randomly distributed. It increases linearly with the amount of

PEs.

Different topologies of interprocessor networks with broadcast ca¬

pability are discussed and tested for the usage in digital audio. Amount

of processing elements, processor to network interfaces and communi¬

cation bandwidth are considered.

For the synchronization of different path length in the DAAG a

memory concept is presented. It allows the accumulation of time depen¬
dent audio channels with very low processing overhead. Additionally,

parameters for the real-time controlling of modules are communicated

using the same memory concept. They appear at predefined locations

in the processors memory.

Chapter 4

Audio Signal Processing

4.1. Real-time Processing

The number of signal processing modules in a digital mixing console

is not significantly high. There are several main modules with typical

functionalities used in the audio strips of the mixing console. A strip

may contain any number and combination of such modules. As the

designer of a digital mixing console is free to configure a strip according

to his needs, only a basic outline of a strip is given (Fig. 4.1).

Input
Proc.

Crossbar
Output
Proc.

-

'

, i i i ,

'

i

Filter

EQ
Dynamic
DRC

Delay Insert Scale

TT

Figure 4-1: A general strip consists of different function modules. The

sequential order can be altered during runtime using a crossbar module.

The main processing modules are connected to a crossbar switch.

The sequential order of the modules can be altered even during run¬

time. The input- and output-processing boxes in Fig. 4.1 represent a

fix configured combination of scale modules that allow a regulated in¬

coming and outgoing of signals. Since these sections are derivations of

a standard scale-module, they are not further examined.

Fig. 4.2 depicts three approaches of how an audio signal can be

manipulated. First, the spectrum of a signal can be modified by in¬

creasing or decreasing frequency parts. This task is performed by a

62 Chapter 4: Audio Signal Processing

Freq.!
Filter Time

y^ Delay

"A

y^ Dynamic

DRC, Scale,

Panorama

Figure 4-2: The manipulation of an audio signal is done in three direc¬

tions: frequency, dynamic and time.

filter or equalizer module. Second, the dynamical behaviour of a signal
can be controlled. This is done by regulating the volume automatically

according to the amplitude of an audio signal. Compression, expansion,

and limitation of the dynamic range are possible this way. A third ma¬

nipulation is done in time. By an adjustable delay, the arrival time at

the listener of a specific signal can be altered. Therefore, the perception

of this signal is modified in comparison to other signals. All these in¬

fluences are principly independent of each other. For example, changes
in the delay module do not alter the dynamic range of the signal. Mod¬

ifications in the scale module do not change the characteristic of the

filter/equalizer module. One restriction arises: As the dynamic range

control (DRC) module builds non-linear function, the frequency do¬

main is altered, too. Conclusively, the exact characteristic of the signal

depends on the position of the different modules in the strip. This is

one reason for the changeability of modules in the strip using a crossbar

module. The other purpose of the crossbar is to define the position of

the insert module. Hence, external devices are connected at a choosable

insert-point.

The various manipulation possibilities and the corresponding mod¬

ules are discussed.

4.2. Filter and Equalizer

A primary module in a strip is the digital audio filter. This module

makes changes in the spectral characteristic of the audio signal possible.

Apart from the standard low-pass and high-pass filters, there are several

4.2. Filter and Equalizer 63

other filters used for the modification in the frequency domain.

4.2.1. Filter Types

A variety of filter types are used for audio recording and broadcasting.

Fig. 4.3 shows the characteristic of each type in the frequency domain.

- High-pass (HP) and low-pass (LP) filters are the most popular

filters. They control the margins in the spectrum of an audio

signal. Second and fourth order filters are commonly used. The

cut-off frequency fc is adjustable in real-time.

- High frequency shelving (HFS) and low frequency shelving (LFS)
filters allow to increase or decrease the amplitude of a signal start¬

ing from the cut-off frequency fc by a factor Vrj.

- Peak filters allow to manipulate the amplitude at a defined fre¬

quency fc. Also the gain factor Vq and Q-factor can be modified

in real-time. Normally, several peak filters are combined and to¬

gether build an equalizer.

- The notch filter is a special kind of a peak filter. It is used to

remove certain frequencies out of the spectrum. Therefore, it is

designed in a higher order.

4.2.2. Implementation

Filters can be implemented in a recursive or a non-recursive structure.

The two forms differ in the characteristic of the impulse response. Non-

recursive filters have a finite impulse response (FIR) and supply lin¬

ear phase transmission. The guaranteed stability and the linear phase

transmission are important advantages of FIR filters. The use of FIR

filters in digital audio systems is restricted due to the high process¬

ing power needed. Recursive filters have an infinite impulse response

(IIR) and can become instable with some coefficients. Due to the low

processing power they are still the most frequently implemented filter

structures in digital audio processing. The non-linear phase transmis¬

sion of IIR filters resemble the filter implementation in analog mixing

64 Chapter 4: Audio Signal Processing

(a) High-pass (b) Low-pass

dB

W
NY*

•IW t

//

(c) High Frequency Shelving (d) Low Frequency Shelving

dB

+15-

V0

f
M •

(e) Peak (f) Notch

Figure 4-3: The most used filter types for audio processing. Cut-off fre¬

quency fc, gain factor Vq and Q-factor are adjustable in real-time.

consoles, which also provide non-linear phase transmission. As a re¬

sult, audio specialists prefer IIR filters and accept the non-linear phase
behaviour as a special feature.

4.2. Filter and Equalizer 65

A Nth order digital filter can be represented by the equation

Y^) =R{z)_N{z) _

N(z)

where

and

X(z)
y '

D(z) 1 + D'(z)

N

N(z) = Y,"iZ~i
t=0

(4.1)

(4.2)

(4.3)
i=l

From Eq. 4.1 we can write

Y(z) = N(z)X{z) - D'{z)Y{z) = Ux{z) + U2(z) (4.4)

where U\(z) and U2{z) are two individual FIR filters [Ant93]. As shown

Figure 4-4'- An infinite impulse response (IIR) filter can be divided into

two individual FIR filter parts.

in Fig. 4.4, an IIR filter can be constructed by connecting two FIR filters

together. As an example, a 2nd order IIR filter has the form

Y(z) u, x ao + o,\z
1
+a2z

2

X(z) 1 + bi z"1 + b2z~2
(4.5)

Typically no higher classes than second-order IIR filters are de¬

signed for digital audio processing. The reason for this lies in the sensi¬

tivity of the filter-coefficients. Since the coefficients are quantized, small

errors are introduced in the amplitude and phase responses of the fil¬

ter [Jac86, Ant93]. As a result, these errors increase with the order

of the filter and become intolerable for large Ns. A possibility to over¬

come the coefficient quantization effects is to connect multiple first- and

66 Chapter 4: Audio Signal Processing

second-order filters in cascade or in parallel [Che96]. The cascade form

of several 2nd order filters is often found in digital audio processing. It

is represented by the equation

M —1 ,
— 2

The realization of a 2nd order filter on a digital signal processor

can be done in different ways. Only two are illustrated here. The most

obvious recursive form results out of Eq. 4.4 and has the structure

yn - a0xn + aia;n_i + a2x„_2 - bi2/n-i - b2yn-2 (4.7)

which is called Direct Form I. An implementation on a processor re¬

quires four delay units, five multiplications and four additions. A second

form can be achieved by defining

W^ =

l + bj + b2Z-^Z) (48)

and therefore

Y(z) = (a0 + a1z-1+a2z-2)W{z) (4.9)

With Eq.4.8 and Eq.4.9, the recursive form for wn and yn, respectively,

can be obtained

Wn = Xn - bl^n-l ~ b2Wn-2 (4.10)

Vn = a0wn + aiwn_i + a2wn_2 (4.11)

This form is called Direct Form II and its realization needs only two

delay units compared to the Direct Form I. Although two equations

have to be calculated, only one multiplier and one accumulator are

needed. Since, after wn is calculated, the same resources are used for

yn. More important is the fact that only two intermediate states have to

be stored for the Direct Form II. A DSP, in general, is able to perform

one multiplication, one accumulation and two data moves per cycle. The

data manipulation of the intermediate states wn-\ and wn-2 can be

done during the multiply-accumulate (MAC) instructions. This makes

it possible to implement the Direct Form II in only 7 processing cycles

on a DSP [Mot89].

4.2. Filter and Equalizer 67

The cascading of several second order filters can be realized even

more efficiently. After an initialization phase, only 5 instruction cycles

per filter are needed [Mot89].
Apart from the discussed forms there are other time domain ex¬

pressions such as the Transposed Form II, Gold&Radar, Kingsbury and

Zolzer. These structures provide better signal to noise ratios in fixed

point DSP implementations. However, the processing cost is in general

higher. Detailed considerations about different time domain expressions

can be found in [Zoe96].
A fundamental problem is to find an optimal approximation of the

coefficients in the form H(z) for a given transfer-function specification.
The problem is even more complex for IIR filters. Some filter approxi¬

mations have been found to be consistently useful and their characteris¬

tics is found in the literature. Common approximations for the low-pass

filters are [Lam79]:

- The Butterworth filter, characterized by a monotonically decreas¬

ing amplitude function of u> for u> > 0.

- The Chebyshev filter, characterized by an equiripple amplitude re¬

sponse in the passband and a monotonically decreasing amplitude

response in the stopband.

- The inverse Chebyshev filter, characterized by a monotonically

decreasing amplitude response in the passband and an amplitude

response in the stopband.

- The elliptic or Cauer filter, characterized by a equiripple response

in both, the passband and the stopband.

- The Bessel filter, characterized as having an optimally linear

phase response.

The approximations give coefficients for a transfer function H(s) in

the 5-domain. Finding the corresponding coefficients in the Z-domain

can be done using a suitable transformation. The Bilinear transforma¬

tion has shown good results:

'=~ (4-12)
Tz+1

v ;

68 Chapter 4: Audio Signal Processing

4.3. Dynamic Range Control

The dynamic range control (DRC) devices offer the multiplicative ma¬

nipulation of the audio signal. The dynamic range can be specified as

the difference between the loudest and the quietest passage of an audio

signal in dB1. The aim of such a module is to increase or decrease the

dynamic range in a prescribed way. Furthermore, the protection of sig¬

nal overload without introducing perceptible distortion is an important

task.

x(t)-
Delay

Control System

V(t) x(t)—<x>

P

I— Control System

-y(t)

(a) Feedforward control (b) Feedback control

Figure 4-5: Dynamic range control device implemented as feedforward
and feedback controlled system.

Fig. 4.5 depicts two principle arrangements of a DRC system. The

feedforward controlled DRC, as mainly used in the digital domain, has

a preliminary delay. The signal is measured in a side-chain, where a

corresponding gain factor p is calculated. The control system needs

a precisely specified control characteristic. The delay of d samples in

the main signal gives the possibility to react to fast changes in the

audio signal in advance and so, overshoots can be eliminated. The feed¬

back controlled DRC is used in conventional analog systems. The major

drawback of this structures is the possible introduction of overshoots

and distortion in the audio signal. The control system reacts with the

gain factor p after the signal is already at the output. Thus, short ex¬

cessive levels cannot be prevented because of the delay in the control

system. However, this feedback chain helps to keep the control system

Mezi-Bel

4.3. Dynamic Range Control 69

simple. An implementation in the analog domain is easier.

if S<L^>
S=0

. s=y^/
1 / S

1 S>l//'
i

1

Noise ,

Pate >

'Expander Gain .Compressor Limiter

*.

x[dB]

Figure 4-6: The dynamic range control characteristic covers five differ¬
ent sections.

As shown Fig. 4.6 DRC covers a signal manipulation in five parts of

the loudness of an input signal: Noise-gate, expander, gain, compressor

and limiter. The noise gate allows to mute or even suppress the signal

when it is below a certain level. Expander and compressor are used

to enlarge and shorten the dynamic range. A limitation of the signal is

given by the limiter section of the DRC. The gain section completes the

DRC curve and represents the multiplication by a constant factor. The

slope S has a constant value in each of these sections in the xy-level

diagram. Not all sections have to be implemented. One or more sections

can be omitted depending on the field, where the mixing console is used.

<x>— y(t)

P

xffl Delay .t
'V

•4 Level

Detect t
Time

Calc -j—

! Control System

Figure 4-7: The DRC control system.

The control system, shown in Fig. 4.7, consists of a level detector, a

70 Chapter 4 Audio Signal Processing

DRC characteristic (according to Fig. 4.6) and a time calculation sec¬

tion. For the limiter, a simple peak detector is sufficient to measure the

signal level. In all other cases, ms-detection2 or rms-detection3 may

be used, since it gives a better indication of loudness than peak val¬

ues [McN84a]. The level detector is adjustable with system specific time

constants. Depending on the audio signal, different transient constants

are used for attack time Ta and release time Tr of the control system.

The latter is also referred as recovery time or decay time. Fig. 4.8 de-

10

05-

Ta Tr

Figure 4-8: The behaviour of attack time Ta and release time Tr is

shown after a brusque level change in the signal. This system has no

preliminary delay. The resulting gam factor p is shown at the bottom.

picts the behaviour of a limiter control system and the resulting gain

factor p for an abrupt high-level to low-level change. This example

provides no preliminary delay. In some implementations also a hold

time Th is supported. It describes how long p remains constant after

the input level began to decrease. This way an oscillation of the con-

mean square

root mean square

4.4. Manipulation in Time 71

trol system can be prevented. There are several definitions for these

parameters found in the literature. An IEC recommendation specifies
the attack time for limiters as the time for an initial 6-dB overshoot

to be reduced to within 2dB of its final value [IEC73]. The conven¬

tional definition in professional audio processing determines the attack

time Ta as the time taken to achieve 63.2% of the total change of the

gain [McN84a]. The definitions for Tr and Th are exactly the same.

x(t) >

Main Signal

Delay
-*®—* y(*>
T

P

a(t)-

Key Input

Control System

Figure 4-9: Linked dynamic range control allows the regulation of a

signal with the loudness of another signal.

Another application of a DRC device is the linking of different audio

channels where the level of a channel is controlled by the level of another

one. There are different applications for such devices. For example, in

audio broadcast studios a musical signal can be regulated directly with

the voice signal of the speaker. The control chain and the main audio

chain are separated as shown in Fig. 4.9.

4.4. Manipulation in Time

After the modifications of the spectral and dynamic characteristic of

the audio signal the delay device offers the third direction of signal

manipulation as depicted in Fig. 4.2. It allows us to include a vari¬

able delay into an audio signal. This relatively new element became

important with the first digital mixing consoles, since a delay in the

analog field is rather complicated and costly compared to the digital
domain. The number of intermediate stored values and therefore the

delay time is controlled in real-time. Although the computational as¬

pect of this device is rather simple, its application can be powerful.

The human perception of signals with different delays is extremely sen¬

sitive. One task is the time compensation of different signals, as it is

72 Chapter 4: Audio Signal Processing

necessary, when a recording with a large number of signal acquisition

devices (microphones) is performed. Another application is the artificial

room modeling by installing a delay in every incoming signal. Finally,

delays in sound reinforcement applications allow a selective orientation

for the listener when the signals of the loudspeakers are individually

postponed.

4.5. Real-Time Controlling

The controlling of processing modules in real-time leads to a central

topic: Processing modules must be able to react on parameter changes
in a sufficiently short time and without introducing audible distortion.

A communication concept for transferring parameters from a control

device to a processing module was discussed in section 3.6. It is shown

that the update-time of parameters is about 10ms and considerably
slower than the audio sampling rate. This update-time is enough in

terms of real-time requirements in a recording studio. However, abrupt

changes of parameters can incur high steps in the amplitude of the audio

signal which leads to audible distortion. Especially the regulation of a

parameter directly, with the ruler on the control-desk, can provoke mas¬

sive changes of the parameter. This effect is called zipper-noise since,
with some imagination, the tugging up and down of a zipper produces
a similar sound. Other intolerable effects in the audio signal occur by

changing the characteristic of a filter. Altering parameters such as cut¬

off frequency or gain factor imply the switch to new coefficients for the

appropriate filter. Especially IIR filters can be extremely sensitive to

such changes and even become instable. A next problem arises when

more than one audio channel is available as input to a certain mod¬

ule. Switches from one input channel to the next produce unwanted,

perceptible clicks. Finally, adjustable delays, where the delay time can

be modified in real-time, can not be switched directly from one delay
to another without misshaping the original audio signal. As a conse¬

quence a solution that allows smooth transitions from one characteristic

to another must be found to eliminate these effects.

We can differentiate the following situations, where audible artifacts

can occur:

4.5. Real-Time Controlling 73

1. Abrupt changes of a gain factor

2. Switches between different filters

3. Selection of audio signals

4. Changes of a delay

The different effects are discussed in details in the following sections.

4.5.1. Gain Factor Change

An abrupt change of a gain factor p has to be interpolated. A simple

and powerful method is the filtering of p with a first order low-pass

filter. Fig. 4.10 demonstrates the behaviour of a scaled signal with and

without an interpolated gain factor.

The time-domain expression of the applied first order filter can be

written as

fc„ = (l-T)P„ + TVi (4.13)

where pn is the unfiltered gain factor and the time constant T satisfies

T < 1. The audio signal can then be scaled directly by the resulting

interpolated gain factor fcn. The performance of this method can be

expressed in terms of processing overhead, that is needed compared to

a non-interpolating solution. The realization of Eq. 4.13 requires one

delay element, two multiplication and one accumulation. A minimum

of three processing cycles are required on a DSP.

4.5.2. Filter Switch

There are many discussions to be found in the literature about switch¬

ing digital audio filters. Zolzer et al. [ZRB93] propose a filter switching
method by calculating up to 60 intermediate filters to get a smooth

transition from one filter to the next. This procedure, however, is very

expensive in terms of processing cycles. Direct switches between dif¬

ferent filter types turn out to be complicated. For example, the switch

from a low-pass filter to a peak filter is done by a first switch to the ideal

transfer function with H{z) — 1 and then change to the final filter. An¬

other variant can be achieved by a state vector transformation [RC85].
This approach is quite costly, too, and numerical problems can occur.

74 Chapter 4: Audio Signal Processing

0 0005 001 001S 002 0025 003 0035 004 0045 005

(a) Unfiltered gain change (b) Signal with unfiltered gain

035 004 0045 OOS

(c) LP filtered gain change (d) Signal with LP filtered gain

Figure 4-10: The gain factor is changed abruptly from 1 to 2 on a signal

of 150Hz, sampled with a frequency of 48kHz.

Probably the easiest way for a filter switch is to fade out the signal by

tuning the gain to zero, change to the new filter coefficients and finally

fade the signal in. Although this method provides good acoustic results

and requires only a minimum of processing overhead, the temporary

loss of the signal is intolerable. Close to this idea is the interpolation

by crossfading [MM94]. A filter switch is performed by calculating the

old and the new filter simultaneously. Then, using a crossfade function

f(t), the signal from the old filter is faded out while the gain of the

4.5. Real-Time Controlling 75

new signal is scaled by (1 — f(t)). The crossfade function f(t) can prin¬

cipally be any function f(t) with a smooth transition in the interval

from 1 to 0. However, it has to be considered that the new filter needs

a recovery time to become stable until it can be crossfaded with the

old filter. Good results were obtained by using f(t) = sin(t).

(a) Direct filter change (b) Filter change with crossfade

(c) Crossfading function

Figure 4-H'- The cut-off frequency of a 2nd order low-pass filter is

changed directly (a) and with a crossfading function (b) from 100 Hz

to 10 kHz. The frequency of the filtered signal is 1 kHz.

Fig. 4.11 depicts a filter switch between two low-pass filters with

the cut-off frequencies 100 Hz and 10 kHz, respectively. A direct switch

76 Chapter 4: Audio Signal Processing

x(t)-
IIR

Filter

IIR

Filter
new

IIR

Filter

cross

fade

IIR

Filter

IIR

Filter
•y(t)

Figure 4-12: One extra filter is used for the interpolation of n sequen¬

tially ordered IIR filters. The latency for an complete update is then

ntc where tc is the crossfade time.

leads to a high impulse in the 1 kHz signal. In this example a maxi¬

mal amplitude of over 160 instead of 1 is reached. The distortion can

totally be eliminated by crossfading. Of course, this variant is quiet

costly since two complete filters have to be calculated instead of one.

Filters in mixing-engines are mainly connected in a sequential order.

As an example, an equalizer consists, in general, of four IIR filters seri¬

ally connected. Therefore, processing cycles are reduced when only one

filter is interpolated at a time. This way one supplementary filter is

implemented and used for the interpolation of several connected filters

(Fig. 4.12). If n filters are switched it takes a maximum time ntc when

tc is the time for one complete crossfade. In Fig. 4.11 tc is 2ms which

is equivalent to 96 audio values with /s = 48kHz. Shorter crossfade

times turn out to be critical, because the new filter has to be stable

before it can be tuned in. For example, an equalizer section with four

individual IIR filters connected in series can be interpolated within 8ms

and needs a processing overhead of 25%. Compared to other implemen¬

tations [ZRB93] no extra processor is needed to prepare intermediate

filter coefficients.

4.5.3. Signal Selection

The selection of a signal out of a number of channels means to replace

the input-channel at a certain module with a new channel. This pro¬

cedure is also parameter controlled and performed in real-time. When

selecting an audio signal, audible distortion is added to the resulting sig-

4.6. Summary 77

nal. It originates from the brusque transition from one signal to another

at the exact switch time and can be perceived as a "click". Smoothing

the rest of the old signal and the beginning of the new signal at the

transition will remove this effect. The same crossfade algorithm can be

applied as described above. A simple fade-out/fade-in procedure may

be convenient, if a short break in the signal is acceptable. However, the

fading time should be sufficiently long, because the spectrum of the two

involved signals can be completely different. A minimum of 2 to 5ms

is ideal. The processing overhead for this method is low. The switched

signal needs one extra multiplication with a fading factor.

4.5.4. Delay Change

A delay, in principle, is a static element, which postpones the audio sig¬

nal for a certain time. Changing the delay will leave out samples, when

the time is shortened, and it will introduce new, nonexisting samples,

when the time is prolonged. It leads to a misshaped signal. Since during

the change the deformed audio signal is not of interest, a short break

in the signal is acceptable until the new delay is installed. Again, a

fade-out/fade-in procedure with a short pause can be applied because

of the tolerable loss of signal during change. The processing overhead

is one extra multiplication, as discussed above.

4.6. Summary

Audio signal manipulation in a digital mixing console is performed

in three different characteristics of the signal: The frequency domain,

the dynamic range and the delay time. The corresponding processing

modules are digital filters, dynamic range control devices and variable

digital delays. The design and implementation of each module type

on digital signal processors is presented. All processing modules are

controlled in real-time. Since the update-time of parameters is slower

than the audio sampling time, four concepts for interpolating real-time

parameters are introduced. They eliminate perceptible distortion due

to abrupt changes of gain factors, switches between different filters,

selections of audio signals as input to a processing module and changes

in digital delays. The concepts include simplicity and low processing

78 Chapter 4: Audio Signal Processing

overhead when used in a digital mixing console.

Chapter 5

Implementation

5.1. Hardware-Platform MUSIC

The digital audio mixing-engine, described in this thesis, has been de¬

veloped using the MUSIC1 parallel computer. This system was built at

the Electronics Laboratory of the Swiss Federal Institute of Technology

(ETH) [GMS+92b, GMS+92a]. The MUSIC project started in 1990. A

parallel computer with a processing performance comparable to large

supercomputers was developed. The first application running on this

system was the simulation of neural networks [Mue93]. Other appli¬

cations like molecular dynamics [SGB+93, SMPvG94] and image pro¬

cessing [BKG95] were successfully implemented. All these applications

are realized based on the standard MUSIC programming model. It is

a SPMD2 model with asynchronous communication among the proces¬

sors. This model, however, cannot be used in digital audio processing.

Nevertheless, using the MUSIC as a platform for a digital mixing-engine

is still ideal because of the following reasons:

- Its main processor is a floating-point digital signal processor.

- The interprocessor network is not a fix implementation. It can be

modified and adapted to individual needs.

- The system is fully scalable.

The advantage of using the MUSIC lies on one hand in the existing

hardware that supplies all requirements in terms of parallelism, type

of processor and scalability. On the other hand, the communication

network is only given in its electrical characteristics of a ring bus. It

still allows any implementation of specialized protocols.

1
Multiprocessor System with Intelligent Communication

2 Single Program Multiple Data

80 Chapter 5' Implementation

This section first describes the hardware architecture of MUSIC.

Then the communication principle and the new synchronous commu¬

nication on MUSIC is explained. Discussions about the implemented

memory concept and digital data I/O conclude the section.

5.1.1. MUSIC'S Architecture

Figure 5.1 gives an overview of the MUSIC hardware. As an example,

a system with two processor boards and one I/O board is shown. The

system is scalable and allows any combination and number of boards.

Three processing elements fit on a standard board (22cm by 23cm) and

up to 63 PEs can be connected together in a regular 19 inch rack. The

power consumption of a fully assembled system is around 700 watts.

A special I/O board contains one PE and a separate interface with an

own communication controller. This opens the opportunity to connect

hardware modules directly to the interprocessor network. Apart from

the initialization of the communication controller no further processing

is required for this I/O node. Fast data throughput is therefore guaran¬

teed, which is required by real-time applications such as audio or image

processing.

Interprocessor Network

r —

_,
_ _ _ ,1

k cc » CC *> CC •>- CC «$* CC

1

4»h CC *$»- CC *- CC
il

i

i * * * *
1

1 J *
PE PE PE PE

FIFO

PE PE PE

t 4
1 I J j 1 I/O Slot I 1 1 I _._l

- T

- t

1
1

--

Processor Board I/O Board'
.

T "

Processor Board i

Figure 5.1: The MUSIC hardware architecture.

Each board also encloses a manager (Inmos T805 Transputer) con¬

nected to the host interface of the DSPs. It is responsible for data and

program code up-loading and down-loading, respectively. Also time

5.1. Hardware-Platform MUSIC 81

measurements are performed using the transputer. Managers of dif¬

ferent boards are connected trough their transputer links and form a

standard transputer network. One Transputer is also connected with a

host computer, which is a personal computer or a workstation. Via a

transputer link adaptor or a SCSI interface data and program code is

exchanged between host computer and MUSIC. A small kernel is run¬

ning on the host computer and is responsible for the operation of the

MUSIC system.

In Fig. 5.2 the main MUSIC board is shown. Three processing el¬

ements are arranged vertically on the board. Processor and commu¬

nication controller of each PE are recognized. The board manager is

located on top of the board.

Fig 5.3 demonstrates the block diagram of a single PE. It consists of

a DSP, memory and a communication controller. The Motorola DSP-

96002 is the main processor. It runs at 40MHz and is able to perform

up to three floating point instructions per cycle. Two clock periods are

necessary for one instruction cycle. It results a peak performance of

60 MFlops. The DSP provides two 32 Bit wide parallel bus interfaces.

One is used as host interface to the board manager. The other interface

connects the memory to the DSP. Four memory blocks are directly

accessible. Two blocks of Static RAM (SRAM), 128 kWords each, serve

as program and fast data memory. The other two blocks consist of dual-

ported video RAM (VRAM), 256 kWords each. They also provide the

interface to the interprocessor network. According to the data-flow to

and from the interprocessor network they are called "producer" and

"consumer" memory. The used VRAM is divided into two areas. One

is random accessible dynamic RAM (DRAM). It builds a matrix of

512 x 512 memory locations and is addressed by the DSP. However,

the access time is rather slow, compared with static RAM. The other

area is serial access memory (SAM), a linear shift register with up to

512 data locations. It can be arranged either as input or as output port

and it has the same size as one line in the DRAM part. The VRAM

architecture allows to copy a complete line of the DRAM part into the

SAM and vice versa within a very short time.

Each PE has its own communication controller (CC), which is re¬

sponsible for the data-flow between the PE and the interprocessor net-

82 Chapter 5 Implementation

Figure 5 2: The main MUSIC board. Three PEs, each includes DSP,

SRAM, DRAM and CC, are arranged vertically. The board manager,

an Inmos T805, is located on top.

work. The CC is implemented in an FPGA3 Xilinx XC3090 It fetches

data from the SAM of the producer VRAM and writes arriving data

into the SAM of the consumer VRAM. The CC transmits data from

the PE to the network independently as long as there is valid data

in the SAM left. If the producer SAM is empty, an interrupt is gen¬

erated at the DSP. The processor initiates a transfer from a specified

Field Programmable Gate Array

5.1. Hardware-Platform MUSIC 83

CC
from prev
PE

Interprocessor Network \ to next

PE

J \ 1
Control

Producer SAM Consumer SAM

Producer

VRAM

256 kWrds

Consumer

VRAM

256 kWrds

Prog.
SRAM

128kWrds

Data

SRAM

128kWrds

Port A
DSP

Port ' i I I |
DSP Host
Interface

MC9S002 DSP Memory Bus

Figure 5.3: The layout of one processing element.

row of the DRAM part to the SAM. Then the CC can insert the next

512 values into the data stream of the interprocessor network. If the

consumer SAM is full, the CC also interrupts the processor and the

same procedure works in the other direction. Thus the processor is

able to concentrate mainly on its program while data is communicated

trough the network. The interrupt time is short. A VRAM transfer

from or to the SAM is performed in one instruction, which lasts 200ns.

5.1.2. Communication Principle

The interprocessor network is a pipelined ring bus architecture. All data

communicates trough the entire network and passes every node in the

ring once (Fig. 5.1). The bus is 40 bit wide: 32 data bit and 8 token bit.

The tokens are produced by the CCs and contain a unique identification

of every node. This way a CC recognizes its own values, after they have

traveled trough the network. Such values are outdated and removed

from the bus. It is done by marking this data as invalid and a token

with value 0 is passed to the next node. If a CC does not remove his data

from the bus, the the next node will recognize this value as valid and will

pass it again to the next node. The network will be blocked immediately

because a CC may not overwrite a value with valid token. To keep

track of the position, the valid data values are counted by the CC.

The standard implementation of the MUSIC allows an asynchronous

84 Chapter 5: Implementation

communication of a three dimensional data space a maximum size of

214 x 214 x 210. One counter is implemented for each dimension. Before

a communication cycle starts, a new data space is defined and the

controllers are initialized. The standard communication principle on the

MUSIC is called intelligent communication (IC). Further discussions

about IC are found in [Mue96].

5.1.3. Synchronous Communication on MUSIC

The implementation of an audio mixing-engine on the MUSIC required

a redesign of the communication controller. A new synchronous com¬

munication controller (SCC) was designed in the same FPGA of the

MUSIC processing element and works at 25MHz. It is able to transfer

a maximum of 512 data values of 32 bit within one master-clock cy¬

cle. In contrast to the normal MUSIC communication, the transferred

data field can be interpreted as a one dimensional set of global audio

channels. As depicted in Fig. 5.4, the communication model is an all-

to-all broadcasting where every processor produces only one part, but

consumes all communicated channels. These parts are called producer

window and consumer window, respectively.

PE PE PE

Prod Windows ^c"
^CXA

Communication and Merging

Cons. Windows E*3S
PE PE PE

HBCSiLa

Figure 5-4'- The synchronous communication on the MUSIC is an all-

to-all broadcasting communication.

Let a communication cycle be the time representation of a defined

master-clock period (Fig. 5.5). It is denoted by A, B,.... On the rising

> 1 Hardware-Platform MUSIC 85

Master-Clock t t+3

Comm Cycle

Figure 5.5: A communication cycle is a time representation of a defined

master-clock period.

edge of the master-clock a new communication cycle is initiated. The

first node produces a contiguous block of global audio channels - its

producer window - to the network. The neighboring node on the right

passes this first block with a delay of one network clock to the third

node. At the same time it also consumes this data into his memory.

After the second node has transmitted the last data word of the first

block, it begins to produce its data block right behind the first block.

In the meantime the third node transmits the first and the second

data block, again delayed with a network clock. It also copies it into

his memory. Thus all data values communicate through the network

strictly ordered, beginning with the first value and ending with the

last.

5.1.4. Pipelining Communication

As mentioned in section 3.4.2, filling and emptying a ring bus reduces

communication bandwidth and should be avoided. In the MUSIC sys¬

tem each node consumes its data directly after the output of a node

(Fig. 5.6).

L N1 -i-»

ffl
N2 --» N3

CLII

Figure 5.6: Each nodes consumes its own data directly after the output.

To use the full bandwidth, communication cycles can be interleaved.

It requires that two successive communications are nested withm one

master-clock. On the other hand, a non-interleaved communication does

not take advantage of the full communication bandwidth because the

86 Chapter 5 Implementation

ring bus has to be filled (but not emptied) during one master-clock. But,

each communication cycle is coherent and the software management

is easier. As an example, consider a pipelined ring bus with 3 nodes.

Node one produces 1 value, node two produces 2 values, and node three

produces 3 values (Fig. 5.7). The two possible communication methods

Communication Cycle A B C

1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3

/ \ N
Node 1 Node 2 Node 3

Figure 5.7: Example: In a system with three nodes 1, 2, and 3 values

are produced by node one, two, and three. It is repeated every commu¬

nication cycle.

are explained in the following paragraphs.

Non-interleaved Communication Non-interleaved communica¬

tion is applied, when one coherent communication cycle is performed

within one period of the master-clock. Fig. 5.8(a) depicts a non-

interleaved communication on MUSIC. During master-clock t data from

communication cycle A is transferred, during master-clock (t + 1) data

from communication cycle B. A processor calculates new data from

communication cycle A while B is transferred. The new data will then

be part of communication cycle C. The ring bus is filled during each

master-clock. For a system with n nodes, n unused channels appear

in the data stream. The MUSIC can have up to 63 nodes installed. A

theoretical maximum of 520 communication channels are possible at a

network frequency of 25MHz and 48kHz sampling frequency. Therefore,

the efficiency of a full MUSIC system with non-interleaved communi¬

cation and 63 nodes is 87% or better, depending on the number of

nodes. The communicated data is serially copied into the SAM of each

PE. During the network synchronization, a SAM/RAM transfer is per¬

formed. The entire contents of the SAM is then copied into a row of the

DRAM part. The transmitted data appears ordered in the local con¬

sumer memory. Each row corresponds to one defined communication

cycle. The consumer memories of all PEs have the same data values at

5 1 Hardware-Platform MUSIC 87

Master Clock t t+1 t+2

NetworkCycle 12 3 4 5 6 7 8 9 10 1112 13 14 15 16 171819 202122232424

PE 1

PE 2

PE 3

1 2 2 3 3 3

i—I—I—I—i—I—I—i—i—

1 2 2

I 1 1 1 1 1 H

3 3 3

12 2 3 3 3

2 2 3 3 3

H 1 1 1 1 1 1—

1 2 2 3 3 3

-I h

12 2 3 3 3

2

-t 1 1 H

1 2 2

—I—I—t-

1 2 2

Data from communication cycle Net Sync

(a) During one master clock one communication cycle is transmitted

PE1 PE2 PE3

1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3

1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3

1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3

1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3

(b) The local consumer memory of each PE

Figure 5 8 Non-Interleaved communication on MUSIC

the same positions The management for accessing the data is simple

This advantage is bought with a less usable bandwidth

Interleaved Communication Interleaving means, that two succes¬

sive communications cycles X and Y are mixed during one master-

clock Fig 5 9(a) depicts the communication After a filling the pipeline

during master-clock t the full bandwidth is utilized (apart from the net¬

work synchronization time) However, during master clock (t+ 1) data

from communication cycles A and B is transferred, during master-clock

(t+2) data from communication cycles B and C, etc As a result, at each

node parts from two successive communication cycles are transferred

A processor has to calculate data before it is communicated V\ hen

communication cycle B and C is transferred through the network, a

Chapter 5 Implementation

Master Clock t t+1 t+2 t+3

NetworkCycle 1 2 3 4 5 6 7 8 9 101112 1314 1516 17 18192021222324 24

PE 1

PE 2

PE 3

i—I—I—I—i-

1

1 2 2

1 1 1 1 1 1 h-

12 2 3 3 3

i 1 1 1—

12 2 3 3 3

12 2 3 3 3

! 1 1 1

H 1 1 1 K

12 2 3 3 3

H 1 1 1

12 2 3 3 3

s
12 2 3 3 3

H 1 1 1—

12 2 3

H 1 1-

1 2 2

H h-

1 2 2 3 3 3 1 2

Data from communication cycle s Net Sync

(a) During one master clock two successive communication cycles are

transmitted

PE1 PE2 PE3

I D I

c

C

B

B I A |

I A I

1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3

1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3

1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3

1 1 2 2 1 2 2 3 3 3

(b) The local consumer memory of each PE

Figure 5 9 Interleaved communication on MUSIC

PE can process new data from communication cycle A The resulting

data will then be part of communication cycle D Thus, applying an

interleaved communication requires to store two communication cycles

at each processor The latency through the entire system is prolonged

The local consumer memory of each PE is depicted in Fig 5 9(b) Each

row contains data from two successive communication cycles (except of

the last node) The column, where communications X and Y switch in

the memory is different on each PE and depends on the producer part

of each PE

The current implementation on MUSIC operates with a non-

mterleaved communication This is done because of the following rea-

5.1. Hardware-Platform MUSIC 89

- The complexity of the software is drastically reduced compared

to an interleaved solution.

- The hardware controller becomes less complex.

- The lower efficiency is tolerable.

5.1.5. Synchronous Communication Controller

The synchronous communication controller (SCC) is configured once

before the first communication cycle has started. Each processor writes

four data values into the register file of its SCC (Fig. 5.10). The first

send part

receive start

receive end

F L node ID

Figure 5.10: The configuration parameters of the communication con¬

troller.

value is an identification word. It is appended to each data value pro¬

duced by this node. The SCC examines the ID and recognize its own

data values after they have traveled once through the net. 6 bit con¬

tain a unique node ID. Two special bit are used to mark the first (F)
and the last (L) node of the ring. The node, which has the F bit set,

starts the communication always at the rising edge of the master-clock.

The last node appends the L bit to each of its produced data values.

The other nodes will then determine the end of the communication

cycle after the last value with the L bit set has passed. The next two

configuration words define the consumer (receiver) window. The start

and end position, respectively, is specified. 10 bit are used for 512 au¬

dio channels. The last configuration word defines the producer (sender)
window. Only the amount of channels to produce is indicated, since

the start position of the producer window is given implicitly: During a

communication cycle, every node begins to produce its data when the

first empty channel arrives from the neighbor at the left.

90 Chapter 5: Implementation

global signals

from prev.
PE

ID in
^&» ID Controller

ID out

net
data in Multiplexer

net

data out

Window

Generator

Register
File

Processor

Interface

from producer
VRAM

processor ,

data i
interrupt
signals

•hr

VRAM
control

to next

PE

j to consumer
"

VRAM

Figure 5.11: The functionality of the synchronous communication con¬

troller.

The architecture of the SCC, implemented in the FPGA on the

MUSIC, is shown in Fig. 5.11. Its main functionality is a large data

multiplexer. It decides, whether data values from the neighbor on the

left are passed to the next node or if new values from the own PE are

inserted into the data stream of the ring network. Two global signals are

used by the network. One is the network clock running at 25MHz. Each

SCC is transmitting data synchronously to this clock. The second global

signal is the master-clock. Is has a clock rate of 48kHz and is generated

by the audio interface board. Other clock rates, for example 44.1kHz

or 38kHz, are also possible. The register file contains the configuration
data for the controller, as described above. The window generator builds

the heard of the controller. Based on the values in the register file, it

determines, if the currently transmitted values are in the consumer

window. In this case, a copy is then stored in the consumer VRAM. To

arbitrate producing, the ID controller checks the F bit which indicates

5.1. Hardware-Platform MUSIC 91

the data block of the first node. Then it informs the window generator

when the first invalid data word from the left neighbor appears. It

means that all preceding nodes have transmitted their data values and

this node can start to produce. The multiplexer is then switched and

values from the PE are inserted in the data stream. After the last value

of the own producer VRAM has been transmitted, the multiplexer is

switched back. Again, it transmits data from the left neighbor until the

communication cycle has finished. The ID controller checks each ID.

Valid values are copied into the own VRAM. In the case where the ID

is from the own node, an ID with value 0 is passed to next node, to

indicate an invalid datum.

5.1.6. Memory Concept

The video memory of the PE is able to exchange data at high clock rates

through the SAM. Additionally, the depth of the SAM is large enough

to store all global audio channels. Therefore, with the end of a com¬

munication cycle a SAM-DRAM transfer is executed in the consumer

memory and a copy of the entire SAM is placed into a specific row of

the DRAM part. For the next cycle a new line is used. As a result,

a cyclic ring-buffer appears in the consumer memory. It has a history

of the last 512 communications (Fig. 5.12). Each line corresponds to

CC
Interprocessor Network

to next
PE

A

I Producer SAM

Producer

VRAM

I ConsumerSAM I

Consumer

VRAM

Cyclic
Ring-Buffer

I 4

Figure 5.12: In the consumer memory the communicated channels are

stored in a cyclic ring-buffer, where all data of the last 512 communi¬

cations is accessible.

one master-clock, each row to one channel. Discussions about the prac¬

tical usage of this memory concept for digital audio are described in

92 Chapter 5: Implementation

section 3.5.1 and 3.6.

5.1.7. Data I/O

The MUSIC system offers good data input and output capabilities. Be¬

side the standard processor board, a separate I/O-board was designed

which allows to connect peripheral devices directly to the interprocessor

network [Ros94]. A separate SCC is controlling the data exchange with

CC

Interprocessor
Network

CC

to next

PE

1

|
A 1

- %
Ctrl

FIFO

4 kWrds

FIFO

4 kWrds
PE

FIFO Connector Processor Connector

(a) I/O-Board

FIFO Connector Processor Connector

Multip exer ?

$ 1 t
AES/
EBU

D/A A/D

^2

FIFO Connector Processor Connector

MADI Out

100MBlt/s

MADI In

100MBlt/s

(b) Quad Audio Interface (c) MADI Interface

Figure 5.13: The I/O-board of the MUSIC system provides a FIFO con¬

nector for direct access to the interprocessor network through a separate

communication controller. The processor connector is used for initial¬

ization and control of peripheral devices.

the network. The architecture of the I/O-board is shown in Fig.5.13(a).
Two 96 pole connectors supply the interface to the hardware extension

5 1 Hardware-Platform MUSIC 93

modules. To provide fluent data transfer 4 kWords of FIFO memory

is implemented. It is located in both directions from and to the MU¬

SIC network. The processor connector is used by the processor on the

I/O-board for initialization and control of the extension module.

Figure 5.14: The MUSIC I/O-board. One standard PE is horizontally

arranged, the board manager is located in the middle. On the left, a

separate SCC and FIFO memory can be recognized. Two connectors at

the bottom build the interface to an extension module.

The implementation of a mixing-engine on the MUSIC system re¬

quired the design of two audio specific hardware modules. One is a

quad audio interface (Fig.5.13(b)) [IK94]. It can be configured as a

four channel analog audio interface. Two channels are also accessi¬

ble as an AES/EBU digital interface4. Additionally, a serial inter¬

face (RS232) provides the possibility to transfer parameters from the

control-desk to the MUSIC. The I/O-board processor collects param¬

eters directly from the serial interface via the processor connector.

The second hardware module is a multichannel audio digital interface

(MADI) (Fig.5.13(c)) [RS94]. Using this standard, up to 56 digital au¬

dio channels are connected through a coaxial or fiber-optic link. The

"Two channel digital interface according to a standard of the Audio Engineering

Society (AES) and the European Broadcasting Union (EBU)

94 Chapter 5: Implementation

implemented components are compatible to the FDDI standard and

have a maximum throughput of lOOMbit/s. The two digital audio con¬

nection standards, AES/EBU and MADI, are introduced in section 2.6.

5.2. Software

The configuration software includes two main approaches:

- A console definition describes the functionality of a mixing con¬

sole. Modules are chosen from a library and placed in a directed

acyclic audio graph (DAAG, section 3.1.1). The resulting graph

represents a full model for the entire mixing-engine. Only the

qualitative operation of the modules is known. Their exact im¬

plementation is hidden.

- The objective of the module implementation is to create new or

to replace existing modules. With a defined software interface the

new modules are integrated in the module library and are used

for a new console definition.

The two approaches are independent and dont influence each other.

For example a module can be altered because of a some reason. If it is

changed but is already used by a certain console definition a recompi-

lation generates the code for the new mixing-engine. Fig. 5.15 depicts

\ /
Console
Definition) Graph

Module

Library <
Module

mplementation

1
V \ \ N

Configurator
Module assignment, Communication. Synchronization,

Parameter Integration, Code Generation

^———~L*-— S \

pi P2 P3 P4 ... Pn

Figure 5.15: The console definition and the module implementation pro¬

vide two approaches for the design of a mixing-engine. The configurator

produces a code segment for every processor in the system.

the complete software architecture. The configurator builds the main

5 2 Software 95

software part All aspects of mapping a DAAG to the parallel s\ stem

are integrated in this software block As described in chapter 3, these

elements are module assignment, communication and synchronization

Additionally, the communication of real-time parameters is integrated

The output of the configurator is a program code for e\ery processor

in the system

This architecture offers a typical object-based approach Modules

appear as objects and are combined in the graph Objects and graph

together form a data-driven program and are used as input data for

the configurator Like in classical object-oriented languages, the ob

jects itself hide their inner functionality They are said to be encapsu

lated [Boo91] The interface to each module is defined in such a way

as to reveal as little as possible about its inner workings [CY91] Con

sequently, the interface to an audio processing object is provided only

by connecting audio channels and real-time parameters to the module

(Fig 5 16)

Parameter

*- Audio raw data

£ Output

Figure 5 16 A module communicates only through audio and parameter

channels

In the next sections the three blocks of Fig 5 15, console definition,

module implementation and the configurator are examined

5.2.1. Console Definition

The issue of this part is the specification of the DAAG To supply a

simple representation, the graph is described in plain ASCII text form

Each processing module defines its inputs and outputs The links in the

graph are represented by a unique identification number Modules, that

use a channel as input or output, add the representing number to their

input or output list, respectively A list of parameters which control the

module concludes the description of one module The specification of a

Audio raw data -

Input]

96 Chapter 5: Implementation

complete graph with n nodes is done in n lines.

HW

A (out: 2; in: 1; par: 9);

B (in: 2; out: 3; pax: 8, 22);

C (in: 2,4; out: 5; par: 13);

$HW (in: 3,5; out: 1,4);

HW

Figure 5.17: The representation of the DAAG is done in a definition

file in plain ASCII text form. Each line describes the connections of
one node in the graph.

As an example, the description of a graph with 3 nodes is demon¬

strated in Fig. 5.17. Any identification number for a channel can be

chosen under the restriction that it is unique in the graph. A chan¬

nel can be used as input more than once. But, only one module may

produce this channel. Hardware devices are described the same way as

processing modules. They are the only dedicated sources and sinks of

the entire graph. Although only one line is used for their specification,

they may appear twice in the graph, as input and output devices. Ad¬

dress handles of parameters, which control the real-time behaviour, are

integrated for each module.

The syntax of the console definition file is described using the Ex¬

tended Backus Naur Formalism (EBNF)5. The EBNF descriptions,

used in this thesis, operate with the meta-symbols shown in Fig. 5.18.

Fig. 5.19 defines the syntax of the console definition file. The goal is

to specify a graph with a minimal amount of information. Three types

of connectors (in, out, par) can be attached to every module. Their

5This syntax description was introduced by Niklaus Wirth in his article:

"What can we do about the unnecessary diversity of notation for syntactic defi¬

nitions" [Wir77].

5.2. Software 97

"..." : terminal symbols

[...] : option: occurs at most once

{...} : repetition: any number of times, including zero

(...) : grouping

I : exclusive or

: increasing list

Figure 5.18: Meta-symbols of the Extended Backus Naur Formalism.

descriptor = module "(" connector {";" connector} ")" ";"

module = identifier 1 ("$" identifier)

connector = con_type [list]

con_type = "in" I "out" 1 "par"

list = ":" number {"," number}
identifier = letter { letter 1 digit }
number = digit { digit }
letter = "A" ... "Z" 1 "a"

... "z"

digit = "0" ... "9"

Figure 5.19: The EBNF syntax for the console definition file.

order is of no importance. For in and out a list of identification numbers

is indicated. With the connector par addresses of real-time parameters

are defined. It is a list of address handles. Their values correspond with

the address handles from the control-desk. A scale module, for example,
is directly associated with a control device on the desk by this handle.

The list size for each connector is defined in a separate module definition

file. It is examined later. Hardware devices are handled the same way

as processing modules. However, these nodes are marked with a '$'.

The definition file, as shown in Fig. 5.17, can be written directly

using a text editor. To simplify this work, a graphical front-end soft¬

ware was designed. It allows to draw a DAAG on a workstation using
a pointing device (mouse). In Fig. 5.20 a snapshot of this graphical
user interface is shown. Modules are selected from a library and are

placed as icons in a window. Connections between nodes are drawn

with arrows. Hardware devices are symbolized by dedicated icons. The

resulting definition file is then used by the configurator.

98 Chapter 5: Implementation

9«aS$$5«Mefi£9BS2esa5£S£':

2; y

I I 1
CD

pe« m«9 11,12

CD
pan runs 31,32; pnkjmn 41.42)

I

k*92 |

I I

inkH |

CZJ

I

\rw \r^ Vn* "V^

r~\ 1 1 n cz
rpu' | rent j rpul | kvul

I I 1 I
5> y y y

CD

S>

.Kite as I a

C* !=« t=<
»AfiS*1.1 I UES.U | Pf6«l,3 I

Figure 5.20: Instead of writing a console definition in plain text mode

a graphical user interface on a workstation allows to draw the DAAG

using a pointing device.

5.2.2. Module Implementation

During runtime a processing module should use as less processing cy¬

cles as possible. To save cycles it is inevitable to optimize especially

that part of the module, which runs periodically to the master-clock.

Therefore, each module is divided into three program parts: A setup,

runtime and conversion code. Fig. 5.21 depicts the data-flow between

these parts. The setup code is called once to prepare data for the run¬

time code. All information of the console definition file is prepared in

that part. The runtime code is executed periodically to the master-

clock. According to the setup-buffer it processes digital audio data.

The conversion code is running on a separate processor where a pre¬

processing of real-time parameters is performed. It receives parameters

directly from the control-desk and converts them to real-time parame¬

ters. A discussion about the three code segments follows.

5 2 Software 99

Console

Definition

Setup

Setup Buffer

Audio In

s

\

I Desk
I Parameter

Conversion

Runtime *» Audio Out

Figure 5.21: A processing module consists of a setup, runtime and

conversion code. While the setup code is run once before startup, the

runtime and conversion code are called periodically with a period-

time (PT).

Setup code: A consequent register management is necessary when

code segments are embedded in a hierarchical software structure. The

standard method is to store the contents of registers on the memory

stack before using them. It guarantees the correct behaviour of pro¬

gram parts that lie in a higher hierarchy level. After completion of a

code segment, the used registers are restored by getting the old regis¬

ter values from the stack. This overhead becomes intolerable for small

program parts which use many registers.

As a solution for this problem, a setup code is implemented for

every module. It is called once after system startup. During that time,

memory addresses of audio channels and parameters are stored in a

setup-buffer. Addresses of filter tables, intermediate buffers and other

module specific information are saved in the buffer, too. Instead of using

a dynamic stack, like in a classical high level programming environment,

the static setup-buffer is used. Every time the runtime code is called,

it initializes registers directly from the setup-buffer. With this method,

costly memory managements like register saving, stack handling, etc.

can be totally omitted. As depicted in Fig. 5.22, the hierarchy of the

entire software consists of two stages: A main program and the called

modules. Every module is responsible for the initialization of registers.

When a module is executed, it accesses its part of the setup-buffer

100 Chapter 5 Implementation

(\

\j

A

MAIN

no registers
used

B

C

setup-buffer

• begin

Figure 5.22: Modules initialize registers directly from a prepared setup-

buffer. Register savings can be totally left out.

directly. The main program is repeated synchronously to the audio

master-clock. It contains a list of modules that are called within one

master-clock cycle. Since no registers are used in this code segment,

their manipulation within modules does not affect the main program.

Runtime code: The functionality of a processing module is imple¬
mented in the runtime code. It is optimized and written in DSP machine

language. Applying the prepared setup-buffer, all register savings are

ignored. The runtime code fetches his data from the setup-buffer one by

one using a global pointer and initializes the needed registers directly.
The pointer is incremented each time a value is taken. After completion

of the runtime code, the global pointer points to the beginning of the

next segment in the setup-buffer and is used by the next module.

Consider a simple module which multiplies a signal with a gain fac¬

tor p. The functionality and the corresponding program in machine

language is depicted in Fig. 5.23. The overhead of data moving is still

extensive. The functionality of the module is implemented in one pro¬

cessing cycle (line 6). Register initializations need five cycles, because

each value has to be accessed indirectly. It means, an address register
first has to be loaded which then allows to get the needed value. Due

to the architecture of the MUSIC not more than one external memory

access per cycle can be performed6. The complete module uses 8 pro-

5
Only one external port of the DSP is connected to the memory.

5.2. Software 101

X[n]

P—*®

' •

Y[n]

1:move

2:move

3:move

4:move

5:move

6:fmpy.s

7.-move

8:rts

y:(r5)+,n3

y. (r5)+,r2

y:(r5)+,r4

y:(r3+n3),d0.1

y:(r2),dl.s

dl.dO.dO

d0.s,y:(r4)

&X[n] -> n3

ftp -> r2

AY[n] -> r4

X[n] -> dO

p -> dl

p*X[n] -> dO

Result -> Y[n]

Figure 5.23: The runtime code of a scale module is shown. The initial¬

ization of all registers is performed using one global pointer (r5).

cessing cycles on a Motorola DSP 96002. The module completes within

400ns, if one cycle is used per memory access and the DSP is running

at 40MHz.

Conversion code: The desk, connected to the MUSIC, transmits

real-time parameters in a linear range 0 < x < MAX into an input-

buffer of size n. A dedicated processor performs the conversion from

the input-buffer into a runtime-buffer of size m. Each module can have

Input Buffer X1 X2 X3 X4 hi
t

Runtime Buffer Y1 Y2 Y3 Y4 Ym

Figure 5.24: The conversion code transforms linear parameters from

an input buffer into a runtime buffer. A module specific algorithm is

applied.

its own conversion algorithm between a linear parameter x and a cor¬

responding parameter y used by the runtime code. For example, a scale

module needs an exponential conversion to take the perception of the

human ear into account. The size of input values n is not necessar¬

ily equal to the size of runtime values m. Filter changes, for exam¬

ple, depend on several input values (cutoff frequency, gain, Q). The

corresponding runtime value, however, is only one absolute entry of a

filter-table. The parameter conversion is performed each time an input

102 Chapter 5: Implementation

value changes and it works as an asynchronous task on the runtime-

buffer (see section 3.6.1). The concept for communicating the runtime

buffer through the interprocessor network is described in section 3.6. It

is transferred periodically and multiplexed to one or several global au¬

dio channels. Given from the size of the consumer memory, 512 values

are transmitted using one audio channel. A refresh frequency of 10ms

results for a sampling frequency of 48kHz.

Module definition: Corresponding to the console definition file, de¬

scribed in section 5.2.1, a separate module definition file exists. Infor¬

mation about processing requirements, number of connectable channels

and type and order of parameters is stored in this file. It is used by the

configurator. The syntax of the module definition file is similar to the

console definition file. It is described in Fig. 5.25 using the Extended

Backus Naur Formalism (EBNF).

descriptor ~ module "(" connector {";" connector} ")JI

"[" cycles "]" ";"

module = identifier 1 ("$" identifier)

connector = (con.type [list.size]) 1 con.num 1 "SYNC"

list_size = ":" (number 1 "[]")

cycles = (number ["+" con_type "*" number]) 1 node_number

con_type = "IN" 1 "OUT" I "PAR"

con_num = "NUM.IN" 1 "NUM.OUT" 1 "NUM.PAR"

node.number = "n" + number

identifier = letter { letter 1 digit }
number = digit { digit }
letter = "A"

...
"Z" I "a"

... "z"

digit = "0" ...
"9"

Figure 5.25: The EBNF syntax for the module definition file.

The following information is encoded in this file:

- The order of each connector (IN, OUT, PAR) is defined, when

the module is called from the main program. This way no fix

order is required in the console definition file.

- The list_size specifies the amount of channels or parameters at

5.2. Software 103

each connector. Open lists are marked with ' []'. In this case,

the module allows to connect an undefined amount of channels

or parameters.

- The number of connected channels or parameters can be indi¬

cated by con_num (NUM.IN, NUM.OUT, NUM_PAR). It is necessary

for modules which have an open list-size.

- The exact number of processing cycles is given. If the number

of cycles depend on the number of a specific connector type, a

multiplier is added (con_type "*" number).

- In case of a hardware module the exact position of this node in

the ring bus must be known. Since no processing cycles have to

be indicated for hardware modules the place is used to define the

nodejiumber.

- With SYNC the module gets a synchronization list. For each in¬

put channel a number defines the relative distance to that input

channel, which has the longest signal path from the source until

now. It is equivalent to the size of an intermediate FIFO buffer

for each input channel (see section 3.5).

Consider the example discussed in the previous section and shown

in Fig. 5.17. The corresponding module definition file is represented in

Fig. 5.26. Except of module C, all modules require exactly one input

A (IN, OUT, PAR) [12];

B (IN, OUT, NUM.PAR, PAR:[]) [27+ PAR * 11];

C (IN:2, OUT, PAR, SYNC) [32];

$HW (IN:2, 0UT:2) [nO];

Figure 5.26: The module definition file of the example, shown in

Fig. 5.17.

and one output channel. Module B allows an open list of parameters.

As an example, the amount of filters in an equalizer module can be

specified by the number of parameters. The amount of processing cycles

is depending on the amount of parameters. Variable processing times

104 Chapter 5: Implementation

are possible this way. The hardware device HW is located at position 0

and requires two inputs and outputs, respectively. Because module C

has two inputs, the configurator will insert a synchronization scheme

(delay list) for each input at the position SYNC.

With the described module definition file, the configurator can per¬

form a brief error check. Too many connected channels or parameters

at a specific module are recognized.

5.2.3. Configurator

To make use of the connection-oriented model of the DAAG, the con¬

figurator is written in C++. It is compiled using the g++ compiler on a

SUN workstation in order to keep the program as portable as possible.
An object class is defined where all necessary information of process¬

ing modules is stored. Amount and identification numbers of input and

output channels are collected from the console definition file. The re¬

maining information like time requirements and rules for calling the

module is fetched from the module definition file and is also integrated

in the object class. According to the configuration concept, described

in chapter 3, the following steps are then performed: Modules are as¬

signed using the FFD bin-packing heuristic, communication channels of

the interprocessor network are allocated and a synchronization scheme

is generated for modules, that use more than one input channel. The

steps are discussed in detail in the following paragraphs.

Module Assignment: The FFD algorithm, discussed in section 3.2,

is implemented for module assignment. Therefore, modules are grouped
in a list with decreasing order of computing times. Then, always begin¬

ning with the first processor, each module is allocated to next processor,

which still has enough processing capacity for this module. A new pro¬

cessor is only introduced if the current module did not fit onto one of

the already tested processors.

Communication: First, a local connection is established for mod¬

ules that run on the same processor and dont need a global connection.

Modules with equal computing time can still be exchanged among pro¬

cessors to find as many local connections as possible. Then, it is checked

5.2. Software 105

if there are enough global audio channels available for the remaining

connections in the graph. If not, the optimize procedure is called which

clusters small modules to larger units that have local connections. Oth¬

erwise, every remaining connection of the graph is set to one global
audio channel.

Since the interprocessor network of the MUSIC allows only one pro¬

ducer window and one consumer window for each node, every PE has

to produce one coherent data block of ordered audio channels. Every

processing module has to produce the next global channels behind the

channels of the preceding processing module. Therefore, after having

assigned all modules to PEs, a remapping has to be done where the

identification numbers of the used channels have to be reallocated in

increasing order. Beginning with the first processor a renumbering of

the produced channels is performed to get to a strongly increasing order

(Fig. 5.27). To correspond with the new identification numbers of the

|9|3|8| |6|2 7|4| 1. 5| |1 |2|3| |4|5 6|7| 8

i

9

t , , i i. L .

PE1 Pi12 PEE3 PE1 PE=2 PE3

(a) Before reordering (b) After reordering

Figure 5.27: Channels are reordered to get strictly increasing channel

numbers for the complete network.

output channels, the input channels of every module are set to the new

values, too. All identifications numbers in the network are still unique.

Every node produces exactly one coherent data window and consumes

all transmitted channels.

Synchronization: Different path lengths in the DAAG are synchro¬
nized. Therefore, the entire graph is analyzed. It is necessary to know

the exact distance of every node from the source nodes, the hardware

nodes, of the graph. It is assumed that the incoming audio data is syn¬

chronous at all hardware connections. The entire graph is sought from

the source nodes to the output nodes. If the search algorithm meets a

106 Chapter 5: Implementation

junction node, an intermediate synchronization is made for this node.

A synchronization scheme is inserted and the distance of this junction
node is set to the longest distance of all connected paths. Reaching
the output nodes, all nodes are set to the same distance, the longest

distance found in the graph.

Code Generation: The configurator produces a C-program for ev¬

ery PE in the system. It may be surprising to generate a high level

C-code instead of the DSP machine language, since a program written

in C on a DSP loses approximately a factor of 3 to 4 in the performance.

However, it will be shown that for this special case the performance of

a C-program is equivalent to the machine code and even supports bet¬

ter debugging facilities. Corresponding to the three code segments of

each module, the generated program is divided into three parts: A setup

code, a periodic runtime code for each processor and a conversion code,

running on a separate processor.

Again, consider the example shown in Fig. 5.17. The setup code con¬

sists of two procedures and is shown in Fig. 5.28. One is the initialization

code for the hardware module (HW). It is executed once by the processor

on the MUSIC I/O-board where the hardware device is connected to.

Later, during runtime, the hardware module runs autonomously. As re¬

quired in the module definition file, shown in Fig. 5.26, HW is allocated

at node 0. The three processing modules (A, B, C) are assigned to the

processor at node 1. The identification numbers of the output channels

are renumbered in increasing order, following the output channels of the

previous node. The address handles of parameters are directly inserted

as absolute memory addresses of the DSP. Module B also requires the

number of parameters. It is calculated and inserted by the configurator.
The synchronization scheme for module C is equivalent to the length of

the FIFO buffer, which has to be implemented for each input channel.

Channel 1 (channel 4 before renumbering), comming from the module

HW, is stored in a FIFO buffer of length 1.

A runtime procedure exists for each processor (Fig. 5.29). It is an

endless loop. Every module is called in the same order as in the setup

code. Compiled to the DSP machine language this code segment is

simply a list of jumps, where subroutines are called. No data regis-

5.2. Software 107

void setup.HWO

HW(/*in*/

/* Node: 0 */

2,3,

/*out*/

}

0,1);

void setup_code_0()

{

init_audio_blocks();

/* Node: 1 Load: 93 */

init_B(/*in*/ 4,

/out*/ 2,

/*num_par*/ 2,

/par 8,22*/ 269488133, /* direct address */

269495301); /* direct address */

init_C(/*in*/ 4,1,

/out*/ 3,

/par 13+/ 269490693, /* direct address */

/*SYNC*/ 0,1);

init_A(/*in*/ 0,

/out*/ 4,

/*par 9*/ 269488645); /* direct address */

Figure 5.28: The setup code for the example, shown in Fig. 5.17.

void runtime_code_0()

i

for (;;) {

B();

CO;

A();

Sync_with_master_clock();

}

}

Figure 5.29: The runtime code for the example, shown in Fig. 5.17.

108 Chapter 5: Implementation

ters are used and therefore register savings can be left out. At the

end of one iteration, a synchronization with the master-clock is per¬

formed (Sync_with_master_clock()). The modules initialize their reg¬

isters according to the prepared setup-buffer. The runtime code is the

only program segment generated by the configurator which is time crit¬

ical. Every cycle of this code lowers the processor capacity. Therefore

it is interesting to compare the compiled runtime code with the same

code written in machine language. Fig. 5.30 shows the compiled run¬

time code. The compiler has produced a list of "jumps to subroutines"

(jsr), which cannot be further optimized. The implemented C-code has

therefore the same performance as a handwritten version in machine

language.

Fruntime_code_0

L28

jsr FB

jsr FC

jsr FA

jsr FSync_with_master_clock

jmp L28

Figure 5.30: The translation of the runtime code into machine language,

generated by the C-compiler.

The processing requirements of the runtime code can be integrated
into each module. One extra instruction, which necessary to call the

module (jsr), is added. No extra processing calculation is then needed

for the runtime code.

There is one possibilities to optimize the runtime code. One large

program could be generated by combining processing modules auto¬

matically. Instead of the jump list (Fig. 5.29) one large machine code

consisting of the assigned modules would result. This optimization is

not implemented on the MUSIC.

The third segment is the conversion code. It runs on an extra pro¬

cessor where all parameters of the entire system are preprocessed. This

segment is executed whenever parameters are changed.

5.3. Summary 109

void conversion_code()

{

convert_B(/*num_par*/ 2,

/par*/ 8,22);

convert_C(/*par*/ 13);

convert_A(/*par*/ 9);

}

Figure 5.31: The conversion code for the example, shown in Fig. 5.17.

5.3. Summary

The implementation of a mixing-engine is shown. The hardware plat¬
form MUSIC has been modified and adapted for audio processing. The

new communication concept allows the transmission of up to 512 digital
audio channels within the system. It is shown, that the ring bus archi¬

tecture of MUSIC offers on one hand a scalable system with maximum

of 63 connected nodes and comfortable I/O capabilities. On the other

hand, disadvantages when applying a ring bus in digital audio are dis¬

cussed. They arise in terms of less usable bandwidth (empty channels)

compared to a common bus.

The implemented software covers the configuration concept as de¬

scribed in chapter 3. Two approaches allow a reconfiguration: First, the

optimized programming of digital signal processors is provided. The

encapsulation of processing modules permits functional modifications

and the integration in existing systems. Second, the high level definition

of a mixing-engine is supplied by drawing the corresponding DAAG. A

compilation of these inputs generates the code for a new mixing-engine.

110 Chapter 5: Implementation

Chapter 6

System Limitations

6.1. Configurations on MUSIC

The question arises, what are the possible configurations on MUSIC?

In general, the number of processors and their usable performance limit

the processing demands of a configuration while the bandwidth of the

interprocessor network confines the communication requirements. The

most important measure for the size of a configuration is the number of

implementable strips. It is difficult to quantify the processing demands

of a strip. A typical implementation is given in Tab. 2.2. But, since any

reconfiguration is allowed, substantial differences may occur. However,

this strip is taken for a raw estimation of the performance of MUSIC

when used as a mixing-engine.
The number of summing busses, more precisely, the number of sum¬

ming busses a strip may be connected to influences the size of a con¬

figuration. This parameter defines the dimension of the mixing matrix

(Fig. 2.2) and therefore most communication needs. Industrial imple¬
mentations perform a clustering of summing busses. This way, a strip

can only be connected to some clusters of summing busses and the

extent of communication can be regulated. However, for the following
calculations always a fully connected mixing matrix is assumed and the

number of summing busses is used as a variable.

Several system constraints are given by hardware components and

processing modules :

Pmax ' Maximal number of processor

fp: Processor frequency

fs: Audio sampling frequency

112 Chapter 6 System Limitations

fc: Communication frequency

cpv. Clocks per instruction

is: Instructions per strip

ib'. Additional instructions per summing bus for each strip

g: Grain size of processing modules

lm: Number of memory locations for one communication

tSync'- Synchronization time communication/processing

cSync'- Number of global channels for synchronizing communica¬

tion/processing

An additional parameter can be seen as a constant for the special case

when communication costs are ignored. It is the processor usage factor.

Usage factor of processor. The usage factor uv(g) is depending on

the grain size g of the used processing modules.

Load[%] A

50--

25--

10 15 Module

Figure 6.1: On the MUSIC, 17 modules are implemented. The percent¬

age of their processing requirements shown.

Fig. 6.1 shows the processing demands or the grain size, respectively,

of the different modules on MUSIC. A base library of 17 modules is

implemented. All modules use less than 50 percent of processing cycles

that can be performed during one audio sampling period. It is required

6.1. Configurations on MUSIC 113

20

15

0.

^•10

E
LU

100 200

Used PEs
300

100

£.95

90

85,

\ « I ^ **• »''""„* «% -V

100 200

Used PEs
300

(a) Configuration prediction (b) Mean Load of PEs

Figure 6.2: Simulations of random configurations using the imple¬

mented modules on MUSIC show a linearly increasing loss of PEs.

Fig. 6.2(b) depicts the mean load. 45 simulations are shown, between

100 and 1500 modules are assigned.

for good results when FFD bin-packing is applied (section 3.3.3). Three

quarter of the modules need less than 20 percent of processing cycles.

Performing random assignments with FFD bin-packing and apply¬

ing the module library leads to results as shown in Fig. 6.2. The loss

of PEs grows linearly, as stated in section 3.3.3. The average load of

PEs is in the range between 92% and 98% for all performed simula¬

tions (Fig. 6.2(b)). Using more processors the scattering is smaller and

the expected load is in the neighborhood of a constant. In this imple¬

mentation, it is 96.5% and the resulting usage factor is therefore set to

up(#) = 0.965. If the grain size of modules remains constant, we can

write up(g) = u*p = constant.

Maximal number of strips. Let the maximal number of strips

Smax be the measure for the size of a configuration. Smax(b,g) can be

written as a function of summing busses 6 and grain size of processing
modules g

Pmax / \

* Up(9):{b,9) =
^
fs cpi(i3 + ibb)

(6.1)

114 Chapter 6: System Limitations

— 48kHz non interpolated
- - 48kHz interpolated

--44.1kHz non interpolated

44.1kHz interpolated

i 1 1 i 1 1 1 1 i

5 10 15 20 25 30 35 40 45

Summing Busses B

Figure 6.3: The maximal number of strips S^ax (b) on the MUSIC with

63 processors as a function of summing busses b. With and without in¬

terpolation refers to a parameter interpolation at each connection point

in the mixing matrix.

To compute only the processing performance it is assumed, that all

communication requirements can be satisfied by the interprocessor net¬

work. Consequently, modules do not need to be grouped and the grain

size remains constant. Under this condition the usage factor is set to

up (g) = u^ = constant and

s*max(b)=ff* jrR**u*p ^
fa Cpt(la + IbO)

The DSP-96002, used in the MUSIC system, is running at fp = 40MHz,

has a cpi of 2, and allows a maximum of pmax = 63 processors. The pro¬

cessing requirements for one typical strip are is — 223 cycles (Tab. 2 2).

Using interpolation within the matrix has a major influence, because

the amount of processing cycles at each connection point varies. The

demands for the summing matrix are at least ib = 2 instructions per

connection (section 3.5.1), when no parameter interpolation is prac-

120

100

80

V)
a.

55 60

40

20

6.1. Configurations on MUSIC 115

ticed. Applying a first order low-pass interpolation increases the cost

to ib = 5 instructions per connection (section 4.5.1). Combining these

constraints leads to some maximal configurations on MUSIC. As an

example, if 16 summing busses are implemented and the summing ma¬

trix is fully connected, extra 32 processing cycles per strip are necessary

(without interpolation). Taking the usage factor up of 0.965 for one pro¬

cessor, as calculated above, a maximum of 99 strips on MUSIC results

at fa = 48kHz. With Eq. 6.2 the maximal number of strips is depicted

in Fig. 6.3. S^ax(b) is shown for the sampling frequencies 48kHz and

44.1kHz. Note, that for these calculations the communication costs are

not taken into account.

Maximal number of global audio channels. To evaluate the

usable communication bandwidth the maximal number of global au¬

dio channels Cmax is introduced. The communication frequency is

fc = 25MHz. A theoretical maximum of 520 global channels results at

48kHz sampling clock. A consumer system with 44.1kHz sampling clock

has 566 channels. But, the serial access memory of the MUSIC process¬

ing element is able to store only lm =512 channels during one sampling
clock (section 5.1.1). For a small number of PEs lm limits Cmax. Using

more PEs another factor is responsible for Cmax- Since non-interleaved

communication is used in the MUSIC implementation (section 5.1.4),
not the full bandwidth is utilized (Fig. 6.4 and Fig. 5.8(a) on page 87).
A full system can combine p = 63 PEs in a VME sized cabinet. For such

Usable global channels

Master-Clock i / \ t+1 t+2

k
Non-usable
Channels

Figure 6.4: Non-interleaved communication on MUSIC. c3ync and p

nonusable audio channels appear during synchronization and because

of non-interleaved communication.

a system 63 global channels are lost. Additionally, the synchronization

tSync has to taken into account. It is the time used for a SAM/DRAM

116 Chapter 6: System Limitations

transfer in the video memory. This time can be expressed in a number

of global audio channels c3ync, which can not be used. It is evaluated

by

Csync = ^ * tsync * fc \V.o)

and depends on the communication frequency fc of the network. The

factor 2 appears, since taync is needed for both, producer and consumer

memory. The used video memories of have tSync = 200ns, which results

in csync = 10. Cmax is then evaluated by

Cmax{p) = \ L_(v +
C) .

v
+

c
>k_l (6-4)

I jT (P ^ CSync) P
^ CSync * i 'm

For a full MUSIC system 447 global channels are usable at 48kHz and

493 at 44.1kHz sampling clock.

Minimal number of global audio channels. The minimal num¬

ber of audio channels Cmin is reached when only the mixing matrix is

communicated globally and all strips perform their inner communica¬

tion locally on the processors. It is assumed, that every channel which

goes into the mixing matrix is broadcast on the interprocessor network

and occupies a global channel. Additionally, each strip uses at least one

global channel as input. Input and output strips use a minimum of two

en

a

*»^«»ft| Output Strip | P
Sum

Figure 6.5: Minimum global communication requires one input and one

output per strip.

global audio channels (Fig 6.5) and Cm,„ is simply

Cmin(b,g) = 2 * Smax(b,g) (6.5)

It depends on the number of summing busses and the grain size of the

distributed modules. It indicates an absolute lower bound of communi¬

cation requirements.

6.1. Configurations on MUSIC 117

Predicting the effectively used global channels for any configuration

is not possible. It depends on the complexity of the signal-flow graph.

Maximal and minimal amount of global channels, as calculated above,

are upper and lower bounds. Cmax(p) depends on the number of pro¬

cessors and Cmin(b, g) on the number of summing busses and the grain

size of the processing modules. If the maximal number of global chan¬

nels is not enough to implement a specific graph, modules are grouped

to save bandwidth (section 3.2). As a result, instead of increasing the

network bandwidth, the processor load is decreased. Consequently a

higher grain size g and a lower usage factor up(g) results. How much

up(g) declines can not be evaluated in advance.

What is the limiting factor for a large mixing console on MUSIC, the

communication bandwidth or the amount of processors? To perform an

estimation on this question, the amount of additional global channels

per strip can be computed.

Additional global channels per strip. This value is denoted by

Cs and indicates how many global channels per strip remain when

the minimal amount of global channels are occupied. Cs is used as a

criterion, how fine the granularity of a strip can be.

Smax{b,9)

It is a theoretical value to indicate the amount of remaining global

channels per strip when the minimal amount of global channels is used.

Suppose that the usage factor does not decline and has a constant value

of u^, we can combine Eq. 6.2 and Eq. 6.5 and get

Cs = ^h ~ 2 (6.7)

Tab. 6.1 shows the maximal configurations for 8, 16, 24, and 32 sum¬

ming busses. C^ signifies that an average of more than 2 global channels

is left per strip under the condition that only the minimal number of

global channels are occupied and the usage factor is a constant u*. It

implies that each strip can be divided at least into two pieces even when

all processing resources are used. Thus, it must be supposed that the

processing resources and not the communication bandwidth are the

118 Chapter 6: System Limitations

6 8 16 24 32

Smax(b)

C*s

105

2.25

99

2.52

93

2.80

88

3.08

Table 6.1: Maximal configurations on a full MUSIC at 48kHz sampling

rate. The maximal number of strips S^ax (&) and the additional global
channels per strip Cg are computed with Cmax = 447global audio chan¬

nels and a constant usage factor u* of 0.965.

limiting factor. Nevertheless, constructing a configuration, where the

communication bandwidth is the restricting factor is always possible.

6.2. Comparison with available products

Tab. 6.2 shows a comparison of commercially available digital mixing
consoles with the mixing-engine, implemented on MUSIC1. Of course,

a comparison is restricted for signal processing and configuration capa¬

bilities, only. The number of strips is comparable for all products. A size

configuration with different numbers of strips is possible in most im¬

plementations manually. Data about the time for such a configuration
is not available. In contrast to such manual configuration capabilities,
the automatic configuration on MUSIC takes less than 10 minutes.

Moreover, the MUSIC implementation is the only one, which allows

a functionality configuration like changing, implementing or removing

processing modules.

Data collected from product brochures and personal conversations

MUSIC ETH6..100M96002Floatauto
min
10

<

yes

D940 Studer32..96M56002Fixman•>:§400-1000

Cantus StageTec32..96AD21060Floatman•o
o
p400-800

MC-80 Lawo32..96M96002Floatman•-0
o
p300-1100

OXF-R3 Sony00

Alpha
DEC

Floato
p

t

o
p800

Axiom SSL32..96ASICFixman•>;
o
P400-1100

Capricorn Neve32..96ASICFixman•^>
o
p300-700

StripsDSPType ProcessingConfiguration
SizeTime

ConfigurationConfiguration Functionality
US$]
[1000
Price

s
o

3
re

re
s

<§
re

i

3

re

s

a

a
re

o
re

3
O
Co

3.
a

119productsavailablewithComparison6.2.

120 Chapter 6: System Limitations

Chapter 7

Conclusion

7.1. Results

The division of a digital audio mixing console into mixing-engine and

control-desk allows to concentrate on each part separately. This work

has investigated methods for implementing a mixing-engine on a paral¬
lel processor architecture. It has been confirmed that a mixing-engine

can be implemented separately on a parallel computer system. Since

high demands in terms of flexibility and cost optimization exist for

such a processing system, a concept for an automatic configuration is

proposed. It allows to compile an audio mixing-engine in a high-level

environment. This way, profitable and user specific designs are attained.

Problems dealing with parallel programming are completely hidden and

the designer can concentrate on architectural issues. The implementa¬

tion time for a new design can be kept extremely short which again
reduces cost in the industrial production process.

Model A new model for a general description of an audio mixing
console is presented (section 3.1.1). It is called a directed acyclic audio

graph (DAAG) and allows to characterize multichannel audio process¬

ing in a graph, where processing modules are combined in a network of

audio channels.

The parallel computer architecture fulfills two conditions: It is scal¬

able in the number of processors and has an interprocessor network with

broadcast capabilities. Such an architecture, which provides both fea¬

tures, is called orthogonal (section 3.1.4). The flexibility of connecting

only the needed amount of processors and the communication require¬

ments of the mixing matrix are combined this way.

122 Chapter 7: Conclusion

Graph Mapping Mapping a DAAG onto an orthogonal architec¬

ture in order to minimize the total system cost becomes the main issue.

This assignment problem is known to be NP-complete and can not be

solved within polynomial computing time. But, on one side the typical

signal-flow in an audio mixing-engine, which allows a raw separation

into processing and communication, and on the other side the period¬

icity of digital audio helps to split the problem of the optimal task to

processor assignment into three distinct problems: Module assignment,
communication and synchronization.

To perform an optimal module assignment, heuristics of the bin-

packing problem are investigated for their usage in the field of digital
audio (section 3.3.2). Applying FFD bin-packing is shown to be a suit¬

able assignment algorithm. The used processor capacity is predictable,
if a small library of processing modules is used. The implemented li¬

brary on MUSIC reaches 96.5% expected processor load (section 6.1).
The synchronization of different path lengths in the graph and the com¬

munication of real-time parameters is performed using a new memory

concept (section 3.5).

Algorithms For the interpolations of real-time parameters, efficient

algorithms were developed (section 4.5). All possible artifacts, which

occur in a digital mixing-engine, are eliminated.

Hardware Implementation The implementation of the presented

concept on the MUSIC proves its efficiency. The hardware of the MU¬

SIC was adapted to fulfill the requirements of orthogonality and digital
audio data exchange. A new synchronous interprocessor network was

realized (section 5.1.3). An I/O-board for MUSIC and two digital audio

interfaces were designed (section 5.1.7).

Software Implementation The developed software allows the auto¬

matic configuration of a mixing-engine on MUSIC. A mixing-engine is

created easily by specifying its definition graph. A graphical user inter¬

face was programmed for this purpose (section 5.2.1). Since algorithms
are encapsulated in modules, their implementation and the definition

of the graph are isolated and can be performed independently. New

7.2. Outlook 123

or existing algorithms are programmed or modified in minimal time.

These features hardly incur an overhead in terms of processing power.

A syntax for the graph description (section 5.2.1) and for the module

description (section 5.2.2) is presented. It is used as an interface to the

configurator, the main software part. It performs the assignment and

generates program codes for each processor (section 5.2.3).

With the presented concept and its realization in a prototype, it has

been shown, that an automatic configuration of a mixing-engine is fea¬

sible and allows a fast adaption of digital mixing consoles. It optimizes

the costs of each system and reduces costs in the production process.

As a result, this work is the basis for an industrial product. Such a

product is currently in development.

7.2. Outlook

The presented concept is intended to be used in a industrial environ¬

ment for custom specific system designs. It helps the producer of a

mixing console to offer cost optimized and individual systems for the

professional user. However, the flexibility and the short time of a recon¬

figuration opens the opportunity to use this concept not only for a fac¬

tory configuration. A new scenario is conceivable where a digital audio

mixing console is configured just before a new recording session starts.

This means, the console is composed or adapted every time before it

is used. Only two reasons are given to show, why this consideration is

innovative:

- Some recording or broadcast sessions demand special processing.
This can be an unusual filter characteristic or an additional rever¬

beration module. If it is practicable to specialize a mixing console

only for such a session, new possibilities of audio signal processing

are introduced and music can be made more attractive.

- The hardware cost of a mixing console is high. It is necessary to

utilize the system efficiently. Audio engineers, who operate with

the system, mostly have knowledge over one type of mixing con¬

sole. Operating with a different kind of mixing console introduces

124 Chapter 7: Conclusion

costly learning procedures. If the possibility exists to configure
the console exactly to that type, which the operator knows, its

utilization is optimized and costs can be reduced.

As a result, this work is probably only one step towards a new area

in audio recording studios. The hardware of digital audio processing

systems will be more and more transparent for an adaption to individ¬

ual needs. Apart from the factor cost, flexibility will be the important

element.

Apart from digital audio processing, fast reconfiguration procedures

are also required for a large variety of other systems. For example auto¬

matic production processes, telephone switchboards, base stations for

mobile communication, computer network routers, etc. have to be con¬

figured before being installed. This procedure requires high demands

in terms of time and manpower. Similar concepts, as described in this

work, are feasible and help to build such systems more economically.

Bibliography

[AES91] AES Recommended Practice for Professional Digital Audio En¬

gineering - Serial Multichannel Audio Digital Interface (MADI).
AES technical paper (ANSI S4-43-1991), AES10, 1991.

[AES92] AES Recommended Practice for Professional Digital Audio En¬

gineering - Serial Transmission Format for two-channel Linearly

Represented Digital Audio. AES technical paper (ANSI S4-40-

1992), AES3, 1992.

[AHU83] Alfred Aho, John Hopcroft, and Jeffrey UUman. Data Structures

and Algorithms. Addison-Wesley, 1983.

[AMD92] AMD Datasheet. TAXIchip Integrated Circuits

Am7968/Am7969, 1992.

[And91] G. Andrews. Concurrent Programming: Principles and Practice.

Benjamin/Cummings, Redwood, CA, 1991.

[Ant93] Andreas Antoniou. Digital Filters, Analysis, Design and Appli¬

cations. McGraw-Hill, 1993.

[A093] G. Andrews and R. Olsson. The SR Programming Language.

Benjamin/Cummings, Redwood, CA, 1993.

[Bar84] Earl R. Barnes. An algorithm for partitioning the nodes of a

graph. SIAM Journal of Algebraic Discrete Methods, 3(4):541-

550, December 1984.

[Ben88] K. Blair Benson. Audio Engineering Handbook. McGraw-Hill,

New York, 1988.

[BJ93] T. Bui and C. Jones. A heuristic for reducing fill in sparse

matrix factorization. In 6th SIAM conf. of Parallel processing

for scientific computing, pages 445-452, 1993.

[BJL+84] J. Bentley, D. S. Johnson, F. Leighton, C. McGeoch, and L. Mc¬

Geoch. Some Unexpected Expected Behavior Results for Bin-

Packing. In Proceedings 16th Ann. ACM Symp. on Theory of

Computing, pages 279-288. Association for Computing Machin¬

ery, 1984.

126 Bibliography

[BJLM83] J. Bentley, D Johnson, F. Leighton, and C McGeoch. An Ex¬

perimental Study of Bin-Packing. In Proceedings 21st Ann.

Allerton Conference on Communication, Control and Comput¬

ing, pages 51-60, Urbana, 111, 1983. University of Illinois.

[BKG95] B. Baumle, P. Kohler, and A. Gunzinger. Interactive Parallel

Rendering on a Multiprocessor System with Intelligent Com¬

munication Controllers. In Jose Fortes, Edward Lee, and Teresa

Meng, editors, Proceedings of the Parallel Rendering Symposium

(PRS'95), October 30-31 1995.

[Ble78] B. Blesser. Digitization of audio: a comprehensive examination

of theory, implementation and current practice. Journal of Au¬

dio Eng. Soc. (AES), 26:739, October 1978.

[BLOS95] A. Burchard, J. Lieberherr, Y. Oh, and S. Son. New strategies

for assigning real-time tasks to multiprocessor systems. IEEE

Transactions on Computers, 44(12):1429-1442, Dec. 1995.

[Boo91] Grady Booch. Object-Oriented Design with Applications. Ben¬

jamin/Cummings, 1991.

[Boo94] Grady Booch. Object-Oriented Design with Applications, 2nd

Ed. Benjamin/Cummings, 1994.

[BS93] Stephen T. Bernard and Horst D. Simon. A fast multilevel

implementation of recursive spectral bisection for partitioning
unstructered problems. In Sixth SIAM conference on Parallel

Processing for Scientific Computing, pages 711-718, 1993.

[CGJ84] E. G. Coffman, M. R. Garey, and D. S. Johnson. Algorithm

design for computer system design, chapter Approximation Al¬

gorithms for Bin-Packing - An Updated Survey, pages 49-106.

Springer, New York, Wien, 1984.

[Che96] W. Chen. Performance of cascade and parallel IIR filters. Jour¬

nal of Audio Eng. Soc. (AES), 44:148-158, 1996.

[CL91] E. G. Coffman, Jr. and G. S. Lueker. An Introduction to the

Probabilistic Analysis of Packing and Partitioning Algorithms.

Wiley & Sons, New York, 1991.

[CW85] L. Cardelli and P. Wegner. On understanding types, data ab¬

straction, and polymorphism. ACM Computing Surveys, 17,

1985.

[CY91] Peter Coad and Edward Yourdon.

Prentice-Hall, 1991.

Object-Oriented Analysis.

Bibliography 127

[ERA95] Hesham El-Rewini and Hesham H. Ali. Task scheduling in mul¬

tiprocessor systems. IEEE Computer, pages 27-37, Dec. 1995.

[ERLA94] H. El-Rewini, T. Lewis, and H. Ali. Task Scheduling in Parallel

and Distributed Systems. Prentice Hall, Englewood Cliffs, N.J.,

1994.

[Fal94] Emanuel Falkenauer. A hybrid grouping genetic algorithm for

bin packing. Technical report, Brussels, 1994.

[FD92] E. Falkenaur and A. Delchambre. A genetic algorithm for bin

packing and line balancing. In IEEE Robotics and Automation,

pages 1186-1192, France, May 1992.

[FDD92] FDDI physical layer protocol. Technical report, 1992.

[FK91] S. Floyd and R. Karp. FFD bin packing for item sizes with

distributions on [0,1/2]. Algorithmica, 6:222-240, 1991.

[Fly66] M.J. Flynn. Very high-speed computing systems. Proceedings

of the IEEE, 54(12):1901-1909, November 1966.

[Fly72] M.J. Flynn. Some computer organizations and their effec¬

tiveness. IEEE Transactions on Computers, C-21(9):948-960,

September 1972.

[FM82] C. M. Fiduccia and R.M. Mattheyses. A linear time heuristic for

improving network partitions. In 19th IEEE Design Automation

Conference, pages 175-181, 1982.

[GBF+96] A. Gunzinger, B. Baumle, M. Frey, M. Klebl, P. Kohler,

R. Morel, and M. Rosenthal. Programming Environment for a

High-Performance Parallel Supercomputer with Intelligent Com¬

munication, pages 25-32. John Wiley &: Sons, 1996.

[GJ79] Michael Garey and David Johnson. Computers and Intractabil¬

ity - A Guide to the Theorie of NP-Completeness. W. H. Free¬

man Co., San Francisco, 1979.

[GL81] A. George and J. W.-H. Liu. Computer solution of Large Sparse

Positive Definite Systems. Prentice Hall, Englewood Cliffs, N.J.,

1981.

[GMS+92a] Anton Gunzinger, Urs Miiller, Walter Scott, Bernhard Baumle,

Peter Kohler, and Walter Guggenbiihl. Architecture and real¬

ization of a multi signalprocessor system. In Jose Fortes, Ed¬

ward Lee, and Teresa Meng, editors, Proceedings 1992 Applica¬
tion Specific Array Processors, pages 327-340. IEEE Computer

128 Bibliography

Society Press, August 4-7, 1992, Berkeley, California 1992. In¬

vited paper.

[GMS+92b] Anton Gunzinger, Urs Miiller, Walter Scott, Bernhard Baumle,

Peter Kohler, Johann vonder Miihll, Rene Husler, Florian

Miiller, Wilfred van Gunsteren, and Walter Guggenbiihl.

Achieving super computer performance with a DSP array pro¬

cessor. In Robert Werner, editor, Supercomputing '92, pages

543-550. IEEE/ACM, IEEE Computer Society Press, Novem¬

ber 16-20, 1992, Minneapolis, Minnesota 1992.

[Gra76] R. Graham. Computer and Job Shop Scheduling Theory, chapter

Bounds on the Performance of Scheduling Algorithms, pages

165-227. John Wiley and Sons, New York, London, Sydney,

1976.

[GY92] A. Gerasoulis and T. Yang. A comparison of clustering heuristics

for scheduling dags on multiprocessors. Parallel and Distributed

Computing, pages 276-291, 12 1992.

[HL93] Bruce Hendrickson and Robert Leland. A multilevel algorithm

for partitioning graphs. Technical report, 1993.

[Hu61] T. C. Hu. Parallel sequencing and assembly line problems. Op¬

erations Research, 9:841-848, 1961.

[Hwa91] Kai Hwang. Advanced computer architecture, parallelism, scal¬

ability, programmability. McGraw-Hill, New York, 1991.

[IEC73] IEC. Automatic gain control devices. IEC Recommendation,

268-8:20-22, 1973.

[IK94] M. Isler and M. Klebl. Audiointerface fur MUSIC, 1994. Diplo-

marbeit, WS93/94, Institut fur Elektronik, ETH.

[Jac86] Leland Jackson. Digital filters and signal processing. Kluwer,

1986.

[JDU+74] D. Johnson, A. Demers, J. Ullman, M. Garey, and R. Graham.

Worst-case performance bounds for simple one-dimensional

packing algorithms. SIAM Journal on Computing, 3:299-325,

1974.

[JDU+75] D. Johnson, A. Demers, J. Ullman, M. Garey, and R. Graham.

NP-complete scheduling problems. Computer and System De¬

sign, 10:384-393, 1975.

Bibliography 129

[KA96] Y. Kwok and I. Ahmed. Dynamic critical-path scheduling: An

effective technique for allocating task graphs to multiprocessors.

IEEE Trans, on Parallel and Distributed Systems, 7(5):506-521,

May 1996.

[KK95] G. Karypis and V. Kumar. Multilevel graph partitioning and

sparse matrix ardering. In Intl. Conf. on Parallel Processing,

1995.

[KL70] B. W. Kerninghan and S. Lin. An efficient heuristic procedure

for partitioning graphs. The Bell System Technical Journal,

1970.

[Lam79] H.Y. Lam. Analog and Digital Filters. Prentice Hall, Englewood

Cliffs, N.J., 1979.

[LGTP90] Ken Linton, Lee Gould, Stephen Terepin, and Alan Purvis. Op¬

timising massive parallel architectures for real-time digital au¬

dio. In 89th Audio Engineering Society Convention, Los Angeles,

USA, September 1990.

[LGTP91a] Ken Linton, Lee Gould, Stephen Terepin, and Alan Purvis. On

the re-allocation of processing resources for digital audio signal

processing. In IEE Colloquium on "Digital Audio Signal Pro¬

cessing", page 7/1, May 1991.

[LGTP91b] Ken Linton, Lee Gould, Stephen Terepin, and Alan Purvis. A

scalable hybrid multiprocessor for real-time digital audio signal

processing. In IEE Colloquium on "Digital Audio Signal Pro¬

cessing", page 9/1, May 1991.

[LM87a] Edward Lee and David Messerschmitt. Static scheduling of syn¬

chronous data flow programs for digital signal processing. IEEE

Transactions on Computers, C-36(l):24-35, January 1987.

[LM87b] Edward Lee and David Messerschmitt. Synchronous data flow.

Proceedings of the IEEE, 75(9): 1235-1245, Sep. 1987.

[LTP91] Ken Linton, Stephen Terepin, and Alan Purvis. Taskforce

scheduling strategies for digital mixing consoles. In 90th Au¬

dio Engineering Society Convention, Paris, February 1991.

[McN84a] G.W. McNally. Dynamic range control of digital audio signals.
Journal of Audio Eng. Soc. (AES), 32:316-327, 1984.

[McN84b] G.W. McNally. AES Recommended Practice for Professional

Digital Audio Applications - Preferred Sampling Frequencies.

Journal of Audio Eng. Soc. (AES), 32:781-785, 1984.

130 Bibliography

[MK91] Ch. Musialik and Th. Knaeple. A user configurable digital audio

mixing console for broadcast applications. In Convention of

Audio Eng. Soc. (AES), number 3043, 1991.

[MM94] Th. Meier and M. Muheim. Audioverarbeitung auf MUSIC,

1994. Diplomarbeit, SS94, Institut fur Elektronik, ETH.

[Mot89] Motorola Inc. DSP96002 IEEE Floating-Point Dual-Port Pro¬

cessor User's Manual, 1989.

[MT90] S. Martello and P. Toth. Knapsack problems: algorithms and

computer implementations. Wiley, cop., New York, 1990.

[MTTV93] Gary L. Miller, Shang-Hua Teng, W. Thurston, and Stephen A.

Vavasis. Automatic mesh partitioning. In Sparse Matrix Compu¬
tations: Graph Theory Issues and Algorithms, New York, 1993.

Springer.

[Mue93] Urs A. Mueller. Simulation of Neural Networks on Parallel Com¬

puters, volume 23 of Series in Microelectronics. Hartung-Gorre,

Konstanz, Germany, 1993. Ph.D. Thesis at the Swiss Federal

Institute of Technology (ETH), Zurich.

[Mue96] Hansruedi Vonder Muehl. Concept and Implementation of a

Scalable Architecture for Data-Parallel Computing. Series in Mi¬

croelectronics. Hartung-Gorre, Konstanz, Germany, 1996. Ph.D.

Thesis at the Swiss Federal Institute of Technology (ETH),
Zurich.

[ODFB91] R. Oldehoeft, D.Cann, J. Feo, and A. Bohm. The SISAL 2.0

Reference Manual. Technical Report, Lawrence Livermore Na¬

tional Laboratory, December 1991.

[PSL90] Alex Pothen, Horst D. Simon, and Kang-Pu Liou. Partitioning

sparse matrices with eigenvectors of graphs. SIAM Journal of

Matrix Analysis and Applications, ll(3):430-452, January 1990.

[PSWB92] Alex Pothen, Horst D. Simon, Lie Wang, and Stephen T.

Bernard. Towards a fast implementation of spectral nested dis¬

section. In Supervomuting '92 Proceedings, pages 42-51, 1992.

[RC85] R. Rabenstein and R. Czarnach. Stability of recursive time-

varying digital filters by state vector transformation. IEEE Sig¬

nal Processing, 8(l):75-92, Feb. 1985.

[RKGT95] M. Rosenthal, M. Klebl, A. Gunzinger, and G. Troster. A

freely configurable audio mixing-engine with automatic load-

balancing. In Convention of Audio Eng. Soc. (AES), number

3979, 1995.

Bibliography 131

[Ros94] M. Rosenthal. Multi I/O Board for MUSIC. Technical report,

Institut fur Elektronik, ETH, Zurich, 1994.

[Rot95] Fritz Rothacher. Sample-Rate Conversion: Algortithms and

VLSI Implementation, volume 44 of Series in Microelectronics.

Hartung-Gorre, Konstanz, Germany, 1995. Ph.D. Thesis at the

Swiss Federal Institute of Technology (ETH), Zurich.

[RS94] A. Rhomberg and R. Schweikert. MADI Interface fur MUSIC,

1994. Studienarbeit, WS93/94, Institut fur Elektronik, ETH.

[SG85] S. K. Skedzielewski and J. Glauert. IF1 - an intermediate Form

for Applicative Languages, manual M-170, Lawrence Livermore

National Laboratory, July 1985.

[SGB+93] W. Scott, A. Gunzinger, B. Baumle, P. Kohler, U.A. Miiller,

H. Vonder Miihll, A. Eichenberger, W. Guggenbiihl, N. Iron¬

monger, F. Miiller-Plathe, and W. F. van Gunsteren. Parallel

molecular dynamics on a multi signalprocessor. In Computer

Physics Communication, volume 73, pages 65-86, 1993.

[Sho86] P. Shor. The average case analysis of some on-line algorithms

for bin packing. Combinatorica, 6:179-200, 1986.

[Sho91] P. Shor. How to pack better than Best Fit: Tight bounds for

average-case on-line bin packing. In 32nd Symposium on Foun¬

dations of Computer Science, pages 752-759. IEEE, 1991.

[Sin87] J. Sinclair. Efficient computation of optimal assignments for dis¬

tributed tasks. Journal of Parallel and Distributed Computing,

4:342-363, 1987.

[SMPvG94] W. Scott, F. Miiller-Plathe, and W. F. van Gunsteren. Molecular

dynamics study of the mixing and demixing of a binary lennard-

jones fluid. In Molecular Physics, volume 82, 1994.

[SSNB95] J. Stankovic, M. Spuri, M. Di Natale, and G. Buttazzo. Implica¬

tions of classical scheduling results for real-time systems. IEEE

Computer, 28(6):16-25, June 1995.

[Stu91] J. R. Stuart. High quality digital audio. In IEE Colloquium on

"Digital Audio Signal Processing", page 1/1, May 1991.

[Wir77] Niklaus Wirth. What can we do about the unnecessary diver¬

sity of notation for syntatic definitions. Communications of the

ACM, 20(ll):822-823, 1977.

132 Bibliography

[Zoe89] Udo Zoelzer. Entwurf digitaler Filter fiir die Anwendung im

Tonstudiobereich. PhD thesis, Techn. Univ. Hamburg-Harburg,

1989.

[Zoe96] Udo Zoelzer. Digitale Audiosignalverarbeitung. Teubner,

Stuttgart, Germany, 1996.

[ZRB93] U. Zoelzer, B. Redmer, and J. Buchholtz. Strategies for switch¬

ing digital audio filters. In Convention of Audio Eng. Soc.

(AES), number 3714, 1993.

Curriculum Vitae

14.10.1968 Bom in Liestal near Basel

1975-1980 Primary school in Allschwil

1980-1984 Progymnasium in Allschwil

1984-1987 Gymnasium am Kohlenberg in Basel

1987 Matura Typus B

1987-1993 Swiss Federal Institute of Technology Zurich (ETH)

1993 Diploma in Electrical Engineering (Dipl. El.-Ing. ETH)

1993-1996 Research Assistant, Electronics Laboratory, ETH Zurich

