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x Zusammenfassung

Zusammenfassung

In dieser Dissertation stellen wir einen Algorithmus zum Berechnen von ein¬

seitigen Grenzwerten vor. Das Bestimmen von Grenzwerten wird in einem

Computeralgebra-System in vielen Algorithmen benötigt, etwa beim Berech¬

nen endlicher Integrale oder aber um qualitative Informationen über eine

Funktion zu erhalten.

Der Algorithmus, der vorgestellt wird, ist sehr kompakt, einfach zu verste¬

hen und einfach zu implementieren. Zudem löst er das sogenannte Aus¬

löschungsproblem, unter dem andere, klassische Ansätze leiden. Der Schlüssel

liegt darin, dass eine Funktion als ganzes betrachtet in eine Reihe entwik-

kelt wird, und zwar in jenem Teilausdruck, der alle anderen dominiert. Mit

diesem Ansatz unterscheidet sich unser Algorithmus von allen anderen auf

Reihenentwicklung basierten Algorithmen, die normalersweise einen rekur¬

siven Ansatz über die Struktur der gegebenen Funktion verwenden. Hier

müssen bei allen Approximationen stets exakte Restglieder mitgeführt wer¬

den, damit das Problem der gegenseitigen Auslöschung von Termen gelöst
werden kann, und dies kann sich beim Berechnen von Grenzwerten unan¬

genehm bemerkbar machen (intermediate expression swell). Unser Ansatz

umgeht diese Probleme und eignet sich daher besonders zur Implementation
in Computeralgebra-Programmen.

Im ersten Kapitel werden ältere Ansätze diskutiert, welche immer noch die

Basis von in aktuellen Computeralgebra-Systemen eingebauten Grenzwert¬

berechnungsalgorithmen bilden. Danach präsentieren wir unseren Algorith¬
mus detailliert anhand von exp-log Funktionen und vergleichen ihn mit an¬

deren aktuellen Algorithmen und Ansätzen zur Berechnung von Grenzwerten

von exp-log Funktionen.

In einem weiteren Kapitel zeigen wir, wie der Algorithmus für weitere Funk¬

tionen erweitert werden kann. Diese Erweiterungen sind so gestaltet, dass

sie einfach in heutigen Computeralgebra-Programmen implementiert werden

können. Obwohl wir dabei einen sehr pragmatischen Ansatz verfolgt haben,
hat sich herausgestellt, dass sehr viele Funktionen damit behandelt werden

können.

Des weiteren stellen wir einen Algorithmus zur Berechnung von (verallgemei¬
nerten, hierarchischen) asymptotischen Reihen vor, der auf unserem Algorith¬
mus zur Berechnung von Grenzwerten aufbaut. Dieser Algorithmus wird kurz

diskutiert und an Beispielen demonstriert.

In einem letzten Kapitel gehen wir schliesslich auf spezielle Probleme bei der

Implementation in einem Computeralgebra-Programm ein und stellen eine

Implementation des Algorithmus in Maple vor. Diese Implementation wird

dann anhand von Beispielen mit Grenzwertalgorithmen in anderen Computer¬

algebra-Systemen verglichen.
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Abstract

This thesis presents an algorithm for Computing (one-sided) limits within a

symbolic manipulation System. Computing limits is an important facility, as

limits are used both by other functions such as the definite integrator and to

get directly some qualitative Information about a given function.

The algorithm we present is very compact, easy to understand and easy to im-

plement. It also overcomes the cancellation problem other algorithms suffer

from. These goals were achieved using a uniform method, namely by ex-

panding the whole function into a series in terms of its most rapidly varying
subexpression instead of a recursive bottom up expansion of the function. In

the latter approach exact error terms have to be kept with each approxima-
tion in order to resolve the cancellation problem, and this may lead to an

intermediate expression swell. Our algorithm avoids this problem and is thus

suited to be implemented in a symbolic manipulation system.

After discussing older approaches which are still prevalent in current Computer

algebra Systems we present our algorithm in the context of exp-log functions.

The algorithm is then compared with other approaches to compute limits of

exp-log functions.

We show then how the algorithm can be extended to larger classes of functions.

This extension has been designed in the spirit of symbolic manipulation Sys¬

tems, i.e., we have tried to find an algorithm which can easily be implemented
in today's Computer algebra Systems. Although a very pragmatic approach is

used for this extension, it turns out that many functions can be covered.

Furthermore we present an algorithm for Computing hierarchical asymptotic

series, which is based on our limit computation algorithm. This algorithm is

discussed and results are presented.

In a final chapter we focus on some particular problems which appear dur-

ing an actual implementation in a symbolic manipulation System. We show

an implementation of the algorithm in Maple and compare it on a set of

examples with other implementations of limit algorithms in other symbolic
manipulation Systems.
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1. Introduction

This thesis explores the problem of the automatic computation of a limit

within a symbolic manipulation System or, as they are called now, a Computer

algebra System. The concept of a limit limI_+:ro f(x) which describes the be-

haviour of a function f(x) as x approaches some limiting value xq is a classical

mathematical problem and is fundamental to mathematical analysis. For ex-

ample the differentiation rules are derived through a limiting process, and also

many other problems require the computation of limits in their Solution pro¬

cess. Examples are the computation of definite integrals or the determination

of the convergence of a series.

As a consequence, a tool to compute limits automatically is very useful in a

Computer algebra system and does increase its capability for doing analyti-
cal calculus. Indeed, all current general purpose Computer algebra Systems

(Axiom, Derive, Macsyma, Maple, Mathematica, MuPAD, Reduce)
offer a facility to compute limits. In particular, the limit computation facility
is used in symbolic manipulation Systems to evaluate definite integrals [89]
and definite sums. It is also used in the computation process to determine

discontinuities and singularities of functions and to maximize and minimize

functions. There are other applications such as the computation of closed

form formulas for formal power series [32] and the derivation of nested forms

and nested expansions of functions (see Section 4.1).

A facility to compute limits of a function is also very useful by itself. Ham¬

ming [35] said, concerning numerical computations, that "The purpose of

Computing is insight, not numbers". However, in contemplation of results

from a Computer algebra system exceeding one page, one may adapt Ham-

ming's Statement to "The purpose of symbolic computation is understanding,
not formulas". In [86], David Stoutemyer made the point that it may be diffi-

cult to interpret complicated expressions, and that one would therefore like a

symbolic computation system to be able to give quaiitative Information about

functions. As possible qualitative properties Stoutemyer lists among others

the determination of zeros, singularities and extrema, specification of bounds,
the determination of asymptotic representations as certain variables approach

infinity and of course the computation of limits.
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Strongly related to the computation of limits is the determination of the

asymptotic behaviour of a function through an asymptotic series or a nested

form, which both provide more information about a function than simply its

limit. Additionally, asymptotic series are a powerful tool to enhance numeri-

cal definite integration in a symbolic manipulation environment [26, 28] and

to perform average case analysis of algorithms [23].

Today's Computer algebra Systems are very powerful and can solve rather

complicated problems, such as the integration of elementary functions or the

factorization of polynomials over algebraic extension fields or Galois fields.

These Systems however are surprisingly poor if they have to solve the appar-

ently simple problem of Computing a limit. Many Systems even don't have the

expertise of a freshman calculus Student! Let us Iook at three examples.

The first one is passed to Reduce 3.6. The System cannot solve this problem
and returns the limit unevaluated, although the limit obviously is zero. We

will see in Section 2.3.1.1 why Reduce fails on this problem.

1: limit(x"7/exp(x), x, mfinity);

7

x

limit( ,x,mfmity)
exp(x)

The value of the following limit is 1 which can be obtained easily if the first

exponential is expanded. Axiom 2.0 however returns failed which means that

the limit does not exist ([40, p. 249]).

(1) ->limit(exp(x+exp(-x))-exp(x) , x='/,pluslnfmity)

(1) "failed"

Type: UnionC'failed", ..)

In the third example we try to determine the derivative of arccos(x) with the

help of the definition of a derivative. Maple V Release 3 returns the following
result:

> limrt((arccos(x + h) - arccos(x))/h, h=0, right);

Signum -i- arcsin(x) — arccos(x) I oo

Note that arccos(i) = 7r/2 - arcsin(:r) and thus the result returned by MAPLE

is 0 • oo which is indefinite. The problem is that Maple does not recognize

7r/2 — arcsin(x) - arccos(a;) to be zero. We will see in subsequent chapters

why the other two Systems fail on the first two examples.

The history of automatic algorithms for Computing limits goes back to the

very earliest Computer algebra Systems. The first program was presented by

Fenichel [21] in 1966. The algorithm was based on a number of heuristics to

apply the mathematician's classical "bag of tricks" for Computing limits, such

as the famous l'Hopital's rule. The approach was to program a Computer to
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behave as a freshman calculus Student. Similar programs have been presented

by Iturriaga [39] (1967), Wang [89] (1971), Laurent [46] (1973) and Harring-
ton [37] (1979). Some of these algorithms, or at least their ideas, are still used

in some modern Computer algebra Systems.

The next generation limit computation algorithms were no longer based on

heuristics. They used series expansions as the underlying concept. Zippel [95]
(1976) built his algorithm on top of Taylor series expansions and Geddes and

Gönnet [27] (1988) proposed to use a generalized series model. A slightly
extended approach was used by Salvy [71] (1991).

Dahn and Göring [20] showed that the problem of determining the limiting be-

havior of exp-log functions is Turing reducible to the zero equivalence problem
for constants. exp-log functions are those obtained from the constant 1 and

the variable x by means of rational Operations and the functions exp(.) and

log(|.|). This proof however is not a constructive one, i.e. does not induce an

algorithm to compute limits. The first complete limit computation algorithm
for exp-log functions has been presented by Shackell in 1990 [77]. This algo¬
rithm assumes the existence of an oracle which decides whether a constant

expression is zero or not. This algorithm has been extended to meromor-

phic [82] and Liouvillian [83] functions. None of today's Computer algebra

Systems, however, use implementations of these algorithms.

The algorithm which is presented in this thesis has the same scope as Shack-

ell's algorithm for exp-log functions, but overcomes some difficulties as the

techniques used are different. Our algorithm is tailored for the problem of

Computing limits and more suitable for the implementation in a Computer

algebra System, whereas Shackell's algorithm solves a more general problem,

namely the determination of a nested form of a given function. The two algo¬
rithms are compared in detail in Section 4.1. An extension of the algorithm
for functions more general than exp-log functions is given in Chapter 5. This

extension again is tailored towards a concrete implementation in a Computer

algebra System. Our implementation is compared with other algorithms on a

set of examples in Chapter 8.

To complete this introduction, we present two important issues related to

the computation of limits. In Section 1.1 we show that the zero-recognition

problem sets limits to the computability of limits, and in Section 1.2, the

limitations of numerical approximations of limits are discussed.

1.1 Limits of Computing Limits

The problem of Computing the limit of functions belonging to certain classes

is known to be unsolvable. This follows from the undecidability results for

the problem of zero recognition [59, 15]. Richardson has shown, that for the

class TZ which is the closure of the rational functions in Q(7r, In 2, x) under the
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apphcation of the sine, exponential and absolute value functions, the predicate
"E — 0" is recursively undecidable for E TZ. Consider now the limit

lim —^— with EeTZ. (1.1)
e-s-0 E + £

The result is 1 if E = 0, otherwise the limit of (1.1) is 0. Since the decision

E = 0 is not recursively decidable for all E TZ, the limit problem is also not

recursively solvable in general. This result seems to be very pessimistic at first

view, but it turns out that in practice the zero equivalence problem is a minor

issue as it can be "solved" using probabilistic or approximative methods, and

for the classes of functions which are most used in a Computer algebra System

such as exp-log functions or Liouvillian functions it can be reduced to the

zero equivalence problem of constant expressions. In the discussion of the

algorithm we therefore postulate the existence of an oracle to decide the zero

equivalence of functions (or constants, respectively).

1.2 A Numerical View of the Limit Problem

One may think that the problem of determining the limiting behaviour of a

function is a rather simple problem, since one only needs to look at the graph
of the function to immediately know approximately what the limit is. Looking
at the graph of the function is nothing eise than evaluating the function at

selected points in the neighbourhood of the limiting point. Consider the limit

lim ,,,,,,—-. (1.2)

We first plug in some values in the right neighbourhood of 0, as far as we can

approach 0 with Maple numerically.

> e := l/x-(ln(ln(ln(ln(l/x))))-l);

_

1
e :~"

,j.ln(ln(ln(ln(l/x))))-l

> evalf(subs(x=0.01, e));

.0001910870078

> evalf(subs(x=0.001, e));

.00005602749469

> evalf(subs(x=0.0001, e));

.00001246466308

> evalf(subs(x=10~(-10), e));

.217686941210~8
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> evalf(subs(x=10-(-100), e));

.4870365788 KT47

> evalf(subs(x=10~(-1000), e));

.156972834310-283

> evalf(subs(x=10~(-10000), e));

.3421606009 io~1640

> evalf(subs(x=10"(-100000), e));

.106696457510~7835

> evalf(subs(x=10"(-1000000), e));

Error, object too large

> plot(e, x=0..0.01);

0 00018-

0 00016-

0 00014 -

0 00012-

0 0001-

8e-05-

6e-05-

4e-05-

2e-05-

) 0 i>02 0 004 0 006

n

0 008 0 01

Figure 1.1. Plot of the argument of the hmit (1.2) around 0

If we look at the plot in Figure 1.1, we immediately can convince ourselves,
that the conclusion drawn from the numerical values is correct: The limit (1.2)
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really seems to be 0. This method of inspecting the function in the neighbour-
hood of the limiting point may easily be formalized. Looking at the plot is

similar to extrapolating the limiting value from a number of approximations.
Provided that the sequence of approximations tends to a limit, we can try

to accelerate the convergence by well known sequence transformation tech-

niques. Maple offers this technique in its evalf(Limit()) construct and uses

Levin's u-transform [47] to estimate the limit. MATHEMATICA contains the

package NLimit.m which uses either Wynn's epsilon algorithm [11] or Euler's

transformation1.

> evalf(evalf(Limit(e, x=0, right), 40));

.0002093055787 - .493003024010-50 /

Our Observation appears justified, although the complex part appearing in

that result may be surprising. The reason for this is, that for some arguments

x, the nested logarithms become negative and complex. In MATHEMATICA

the starting point of the sequence can be specified with the Scaie Option.
With a suitable starting point we get the result we expected.

In[l]:= «NumericalMath/NLimit .m

In[2]:= NLimit[l/x-(Log[Log[Log[Log[l/x]]]]-l), x -> 0,

Scale -> 1/100, Terms -> 20]
-12

Out[2]= 1.40806 10

Why do we need a tool for the exact computation of limits at all? Computing
limits seems to be an easy task and algorithms based on numerical approxi¬
mations seem to have potential! However, the remaining problem is that the

above limit is not 0, it is infinity!

> limit(e, x=0, right);

oo

Whenever the infinite is evaluated using finite samplings, it is possible that

the results returned are incorrect, and that is exactly what is happening in

this example. The iterated logarithms suppress the effect of 1/x so much, that

for x not too small, the expression is similar to l/x£~1 = xl~e whose limit is

zero as x goes to zero. As soon as e becomes greater than 1, the expression

Starts growing towards oo. This happens for x < e~e" « 0.429 • io-1656520

and thus one needs a very high resolution printer and eyes like a hawk to

determine the limit by simply looking at the plot.

Another problem with the numerical approach is that it may not be possible
to evaluate the function numerically due to overflow, and for the domain in

which it can be evaluated, the function may be badly conditioned and the

1For a good introduction to convergence acceleration of sequences we refer to the overview

article [93].
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floating point approximations may suffer from numerical cancellations. For

example, consider

lim (evi(x-e~e*)-eri(x)) ee*ex2,

whose limit is -2/^/tt. However, this function cannot be evaluated for x > 22

using Maple due to limits for the size of the exponent of a floating point

number2, and for x = 22 a precision of over 109 digits is necessary to

overcome the round off errors, which exceeds the maximal possible floating

point accuracy in Maple. For x > xq the floating point approximation of

erf (x - e~e*) — evi{x) is always zero if xo is the root of ex + In x - d In 10 where

d is the accuracy of the underlying floating point arithmetic, i.e., d —Digits
in Maple.

2The break point is different on non 32-bit machines, as the exponent of a floating point

number is restncted to one machine word
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2. Computing Limits: An Overview

In this chapter we recall the basic definitions concerning limits which can be

found in every introductory calculus text (e.g. [7]) and we show how math-

ematician's compute limits. We think that the latter is important in order

to compare the mathematician's approach with the computational one. The

limits we compute by hand in this section will later also serve as test exam-

ples for several limit computation algorithms. In the last part of this section

we look at some algorithms for Computing limits which try to implement this

mathematician's "bag of tricks" and highlight the problems they encounter.

This will lead us to the motivation for our algorithm.

2.1 General Definitions

Limits are particularly important for the description of the behaviour of a

function f(x) at the border of its domain (e.g., at infmity), as well as at

isolated singularities (e.g., sin(x)/x at x = 0). We assume that there exist

points in the domain of / in every neighbourhood of the limiting point xq. The

question of the behaviour of f(x) when ux tends to xo" leads to the question:
How would one have to dehne /(xo) such that f(x) becomes continuous at

x = xo? This leads to the following definition for the limit of a function.

Definition 2.1 (Limit of a function, [13, Section 2.1.4]) If x tends to

xo (x —> xq), the function y = /(x) has the limit a,

lim f(x) = a,
X—+X0

if there exist points x G dom(/),x ^ xo in every neighbourhood of xo, and

if for every arbitrary small e > 0 a number 6(e) > 0 exists, such that for all

x G dom(/) with 0 < |x — xo| < S(e) the inequality |/(x) — a\ < e holds.

This e-8 definition goes back to Weierstrass. Note that the definition does not

require that the function / is denned at x = xq . Moreover, in the case that /
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is defined at xo, the limit is not required to be f(xo)- Only if / is continuous

at xq G dom(/), then lim f(x) — J(xq) which follows from the definition.
X—^Xq

If the function f(x) is real valued and grows above every limit as x approaches

x0, we say that the function tends to infinity. More precisely:

Definition 2.2 If x tends to xq, the (real valued) function y = f(x) has the

non-real limit -t-oo,

lim f(x) = +oo,
X—VXq

if for every arbitrary large C a number 6(C) > 0 exists, such that for all

x G dom(/) with 0 < \x — x0\ < 6(e) the inequality f(x) > C holds. Similarly,
a function f(x) has the non-real limit —oo iflimx^xo —f(x) = +oo.

In other words, the graph of the function f(x) has to be above the levei of C

for every arbitrary large C, as soon as x is close enough to x0.

Similar definitions can be given if x tends to an non-real boundary point,

e.g., to real infinity. The number S(e) is then replaced by D(e) such that the

inequalities |/(x) - a\ < e or f{x) > C respectively hold for all x > D(e).

Furthermore, if for the limiting process only function values f(x) for x > x0 £

Ht should be considered, then we write x —> x£ and call

lim+/(x)=:/(4)

the right-hand limit of f(x) at x = x0. The left-hand limit /(xq) is defined

similarly. If the left-hand limit and the right-hand limit at x = xo agree,

then this is called the real (bidirectional) limit of f(x) at x = x0. If on the

other hand both the right-hand and the left-hand limit exist at x = x0 but

are different, then / has a discontinuity at x = x0 and the bidirectional limit

does not exist. The equation f(x£) = fix^) = /(x0) holds if and only if / is

continuous at xq.

These definitions can all be extended in the obvious way to function defined

on Kn, where, now, absolute values are replaced by Euclidean norms.

2.2 Mathematical Approach

Fortunately, for the computation of limits the general Definition 2.1 is used

very rarely. Mathematicians use a set of Standard limits and a coüection of

theorems such as l'Hopital's rule to derive the result. In the following we give
an overview over the most important techniques for Computing limits.

In most calculus books the description of these techniques is distributed over

several chapters, since the preconditions for their proofs are usually presented
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flrst. A rather complete presentation (although on a basic freshman level) can

be found in [58].

2.2.1 Compositum of Limits

The basic approach to compute limits is to reduce them to simpler ones,

eventually to so called Standard limits whose results are known. The reduction

is done recursively, i.e., the arguments of a function are replaced by their limits.

The following two lemmas State the conditions under which this basic rule is

applicable.

Lemma 2.3 (Composition of Limits) If the limits

lim f(x) =: j/o a,nd lim g(y) =: z0
x->xo y-*yo

exist, and if either g is continuous at i/o or / does not take on its limiting
value yo, then

lim g(f(x)) = lim g(y) = z0.
i-no y-*yo

Since a rational function is always continuous on its domain, the following
lemma can be deduced from the last one.

Lemma 2.4 (Algebra of Limits) Let R(fi(x),... ,fn{x)) be a rational

function in the fx and let for each i the limit

lim /,(x) =: yt, 1 < i < n

X—>Xo

exist, and let R(yi,..., yn) be deßned. Then

lim R(fi(x),...,fn(x)) =R{yi,-..,yn).
X—VXq

This lemma teils us that every subexpression of a rational function may be

replaced by its limit, if the resulting expression is defined. This defines an

algebra of limits which may be used to compute limits: The limit of a sum or

a product is the sum or product of the limits of the terms, and the limit of a

quotient is the quotient of the limits of the numerator and the denominator.

Note that this lemma may be generalized to arbitrary continuous functions R.

However, if R(yi,..., yn) is not defined, i.e., if it is an indefinite form such as

oo - oo, 1/0 or 0/0, then other rules must be applied. The rest of this section

is dedicated to this Situation.
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2.2.2 Transformations

If the limits yl of all the arguments of the function R exist but R(y\,..., yn)
itself is of indefinite form, then one might try to transform R into another

form R so that R(y\,. •. ,ym) is not indefinite. Possible transformations are

the normalization of a rational function into factored normal form, application
of the expansion rules for the exponential, logarithm and trigonometric func-

tions, or the inverse Operations of these transformations. However, there is no

strategy to choose those transformations which will succeed. Mathematical

intuition is recommended for a successful application of this method.

Example 2.5 Consider lim v/ln(;r + 1) - \/lnx. The limits of both terms
x—>+oo

of this sum are infinity and using the algebra of limits the form oo — oo is

obtained which is indefinite. By the following sequence of transformations we

obtain a quotient whose form is O/oo after replacing the numerator and the

denominator by their limits. Thus the limit is 0.

A~? TT A— i-
ln(x + l)-lnx

hm vln(x + 1)
- vlnx = hm = ==

z-H-°° x^+oo ^/\n(x + 1) + Vlna;

= lim J^I±3/*) =0,
*->+°° y/üi^+T) + \fhiX

Other examples requiring clever transformations will suggest themselves to

the reader.

2.2.3 Power Series Expansion

If R is a rational function, and if the transformation into factored normal form

still leads to the indefinite form § or ^ then an expansion of R into a power

series may cancel the zeros or the poles respectively and an inspection of the

leading term may reveal the limit.

Example 2.6 For the limit limx_»o +xx the algebra of limits leads to the

indefinite form 0/0, but if we expand the numerator in a power series and

divide it through by x, then the result becomes obvious.

.. (l+z)s-l l + sx + 0(x2)-l
hm = hm ^

= hm s + 0{x) = s.
x-+0 X x->0 X x->0

1
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Example 2.7 Another nice example is hmI_>i( \fx — l)/( 'y/x — 1). Direct

Substitution leads to the indefinite form 0/0, but power series expansion suc-

ceeds.

.. 3/5-1 y/m-1 ^ + Q(g2)
. ^+Q(£) m

hm —7=
= hm —. = hm -? —— = hm -j

—— = —.

x-nVi-1 e->o^/i+i-l £->o i-£ + 0(e2) Hoi+Off) n

Obviously, the power series approach may also be applied to other functions.

2.2.4 L'Höpital's Rule

L'Höpital's rule is the most famous rule to resolve indefinite forms. It was

discovered by Johann Bernoulli in 16941. It may be applied to limits which

lead to an indefinite expression of the form 0/0 or 00/00 when applying the

algebra of limits.

Lemma 2.8 (Bernoulli-de l'Hopital) Let f and g be two differentiable,
real valued functions on ]a, xq[ and let

lim f(x) = 0 and lim g(x) =0 or

lim f(x) — 00 and lim g(x) = 00,
I->IO~ X —»xo

—

and g'(x) ^ 0 for aJJ x in some interval ]b, xo[- Then we have

hm —- = hm —--

x-¥x0- g(x) x->x0- g (x)

provided that the limit on the right hand side exists.

The proof of this lemma is a nice application of the mean value theorem. Note

that if lim^-^x,, f'{x)/g'(x) does not exist, we are not entitled to draw any

conclusion about lim^-vx,, f(x)/g(x). Consider limx^oo fxf^- The limit of

both the numerator and the denominator is 00 and they are both differentiable.

If we want to apply l'Hopital's rule we must first determine the value of

'GFA de l'Hopital (1661-1704) was a French Marquis who was taught in 1692 in the

Calculus of Leibniz by Johann Bernoulli (1667-1748), a member of the famous Bernoulli

family They made a contract which obliged Bernoulli to leave his mathematical inventions

to de l'Hopital in exchange for a regulär compensation That is the reason why one of

the very important results of Bernoulli (made in the year 1694) was named according to

de l'Hopital, who pubhshed the result first in a book in 1696 After the death of de l'Hopital,
Bernoulli complained about de l'Hopital's "plagiansm" These facts have been resolved by
histonans based on the exchange of letters between the two [84]



14 2. Computing Limits: An Overview

limx_yoo i^cosx' ^ut tn^s one ^oes not exist; as tne denominator has arbitrary
large zeros at which the function is not defined. However, the original limit

limx_i.oo x+^"* exists nevertheless and its value is 1.

Example 2.9 Using l'Höpital's rule we can show that the exponential function

grows faster than every integral power. Let n G IN. Then we get

,.
xn

,

nxn~l
,.

n\x
,.

n!
lim — = hm =

...
= lim — = hm — =0

x—>oo ex x—¥oo ex x—>oo ex x—voo e1

after n applications of rHöpital's rule. f

Unfortunately, not every indefinite form 0/0 (or oo/oo) can be resolved with

this rule. It may happen, that lim^-^ f'(x)/g'(x) always leads to the same

indefinite form. The simplest example for this is lim^oo ex/ex.

A more complicated example is the limit

lim — where R = \ Jxl + 2x2(r2 + 1) + (r2 - l)2 + x2 + r2 - 1
x->o R v v

and r2 < 1 (taken from [5]). When l'Höpital's rule is applied, then the follow-

ing equality is obtained:

,.
x

,.
1

,.
R 1 1-r2

,.
R

hm — = lim
,

„ ln
= hm

,, ,,,
= hm —.

«o R x-K> dR/dx x^o xn
x +r +1 2 x->o x

N/x4+2x2(r2 + l)+(r2-l)2

A further application of l'Höpital's rule would bring us back to the original
function, and a blind application of l'Höpital's rule would lead to an infinite

loop!

Note, that if the limit exists, then the above equation contains the result (up
to the sign), namely

lim — = ±1
c->o R V 2

A numerical test shows that the limit is positive if 0 is approached from right
and negative otherwise.

With the help of l'Höpital's rule also other indefinite forms such as 0 • oo,

oo-oo, 1°°, oo° or 0° may also be resolved. They only have to be transformed

into a function which has the indefinite form 0/0 or oo/oo at the critical point.

If lirnj-^x,, f(x) = 0 and limx_+I0 g(x) = oo then f(x)g(x) has the indefinite

form 0 • oo at Xq and l'Höpital's rule may be applied either to f(x)/(l/g(x))
or to (l//(x))/p(x). If both linix-»;,;,, f(x) = oo and limx-vx0ö(x) = °° tnen

f(x) — g(x) has the indefinite form oo — oo which may be resolved using the

transformation
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f{x) - g{x)

_j i_
S(z) f(*)

/(z)g(x)

which leads to the indefinite form 0/0 at xo-

Example 2.10 If we apply this rule in the following example with /(x) = ^j
and g(x) = ^ for x -¥ 1, the indefinite form oo - oo is transformed to 0/0:

,. , ~ ^
, ,.

lnx-^ xlnx-x+1 0
hm — = hm =

— = hm
>i\£ — 1 lnx/ x->i x—^ lnx z-+i xlnx —lnx

\ /
x

Two applications of l'Höpital's rule lead to

,.
xlnx — x + 1 lnx - 1

hm —- = hm r
= hm -, j-

= -.

i-n xlnx-lnx x->ilnx + l-- z-n -*- + -% 2
X X X*

The indefinite forms 1°°, oo° or 0° may appear if the operands of a power

are replaced by their limits. These indefinite forms can also be resolved with

l'Höpital's rule, if the power f(x)9^ is converted into the exponential form

exp(<7(x) In /(x)). Then the indefinite form of the argument of the exponential
becomes 0 oo which can be resolved using l'Höpital's rule.

Example 2.11 As an example we compute lim xx. The function xx can be
x->0+

written as ex ln
x, and for the limit of the argument of the exponential we get

lnx -

lim x ln x = lim
—j—

= lim —^r- — lim —x — 0
x-+0+ x-vO+ - z->0+ K x->0+

X x^

and hence lim xx = 1 according to Lemma 2.3. f
x-yO+

2.2.5 Squeeze Theorem

The following lemma also has classical applications. Some mathematicians

call the method based on this lemma limit computation using inequalities.

Lemma 2.12 (Squeeze Theorem) Iffor the three functions f(x),g(x) and

h(x) the inequality f(x) < g(x) < h(x) holds in a neighbourhood of xq and if

\\mx^XQ f(x) = limx_>.I0 h(x) = a, then

lim g(x) = a.

X—>Xq
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Example 2.13 A very classical application of this theorem is the proof that

sina;
,„ _.

lim = 1. (2.1)
x->0 X

It is easy to conclude from a picture that sinx2cosx < § < ^sx• Starting with

this inequality we can bound the function S1£-x- between the two functions cos x

1
"*"

and —— whose limits are both 1.
COS X

The limit (2.1) could also be computed using the power series approach or

using l'Höpital's rule, provided that the derivative of sin(a;) is known. This

derivative can be obtained independently of the limit (2.1) if Euler's formula

for the trigonometric functions sin(x) is used and if the derivative of the

exponential function is known. f

2.2.6 Generalized Series Expansion

This approach is a generalization of the algebra of limits in the sense that the

arguments of a function are not replaced by their limits but by asymptotically

equivalent approximations. It is also a generalization of the power series ap¬

proach since a more general type of series is used, not necessarily a series in

x, but also in other functions such as e~llx. The problem is usually to choose

the right scale of expansion.

Example 2.14 As an example of this technique we compute the limit

üm
exp(exp(^(V>(x))))

x-++oo X

where ip(x) is the digamma function, defined to be r'(x)/r(x). In any math-

ematical handbook we can find the asymptotic expansion for ip(x) (e.g. [3,
(6.3.18)]) to be

1
„

/ 1
"

^(aj)=lna:__ + 0^_j (2.3)

and we see that the limit of ip(x) itself is oo. Next we can compute the asymp¬

totic approximations for exp(^(a;)) and exp(exp(^(a;))) by simple transforma-

tions.

exp(ip(x)) = xe~& e°^ = x 1- O ( - 1
2 \xj

exp(exp(^(z))) = exe-^e°{1/x) =exe-i(l + o(-}).

Finally, we replace x by the asymptotic form for tp(x) in the last approxima-
tion. Note that the asymptotic form of exp(V>(x)) has already been derived

above.
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exp(exp(^(x)))) = (s - I
+ o Q)) e-i (1 + O (^y))

and for the final result we get

exp(exp(tp(ip(x)))) /x = e~5 + 0

and the result of (2.2) is e~2.

1

Ina;

Our algorithm (and others) also follows the idea of generalized series expan-

sions, but the automatic execution of this approach has its own problems (cf.
Section 2.3.3). In Example 5.6 we will see how this particular problem is

solved with our algorithm.

2.2.7 Other Tricks

In this part we finally describe some techniques which are dimcult to classify.
The basic idea is to transform the limit problem (or parts thereof) into a

special form which is amenable to an application of the mean value theorem

or which defines the derivative of a function at the limit point. If for example
a function f(x) is differentiable in xo, then we know that

lim MzJM = f{xo)
x-+x0 X — Xq

and it may happen that this pattern appears in the expression whose limit is

to be computed, or that it may be transformed into this form.

Mathematicians use quite a variety of rules and tricks which depend on in-

tuition and experience, and it does not seem to be obvious that the task of

Computing limits can be implemented in a general algorithm. Laurent [46]
stated, in his article concerning the problem of determining the transforma-

tions which lead to a form on which general techniques succeed, that "the

Problems of this kind are so various, that we might think there is no algo¬
rithm or general method at this level. At this point only his ßair and his

experience will guide the mathematician." Nonetheless, incorporating the

mathematician's classical "bag of tricks" into a computational method for

Computer algebra Systems has been studied. We look at these methods in the

next section, and will also illustrate the problems these approaches have.

To support Laurent's Statement we close this section with an advanced limit

example. This example grew out of the tests we generated for our algorithm,
and it turned out that it was easier to solve this problem using the techniques
of our algorithm than using a classical approach.
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Example 2.15 Consider the limit limx-yoo e^{x — l/ex)jei(x) where en is the

n times iterated exponential function. Let us first set up the following two

inequalities:

(o) e~c < 1 - | if 0 < c < 1

(b) e~c < \ ifc>0

Using the above two relations, we can dehne the following ones:

ei(x-e-x) = exe-e~xi< ex{l-e-x/2) = ex-1/2

e2(x - e~x) < exp(ex - 1/2) = e2(x)e-1/2 (< e2(i)(l - 1/4)

e3(x - e~x) < exp(e2(x) - e2(x)/4) = e3(x) exp(-e2(x)/4)

< e3(x)4/e2(x) < e3(x)/2

e4(x - e~x) < exp(e3(x) - e3(x)/2) = e4(x) exp(-e3(x)/2)

< e4(x)2/e3(x)

and consequently we get the final inequality

Q ce4(x-l/e*) ^

2

e4(x) e3(x)

and hence the above limit tends to 0.

2.3 Computational Approach

There has been an interesting evolution concerning limit computation pro-

grams over the last twenty years. The first algorithms pioneered by Paul

Wang [90] use heuristic methods and try to simulate the techniques we have

described in the last section. The next generation Systems were based only
on series expansions, namely power series as in [95] and generalized series

expansion as in [27, 71]. The latter approaches sufFer from the problem of

cancellation, which we will describe in the last section of this chapter. The

algorithms proposed by John Shackell [77, 80] and our approach overcome this

final difficulty.

It is surprising, though, that many commercially available Computer algebra

Systems still use limit computation algorithms which are based on the heuris¬

tic ideas of the very early approaches. To demonstrate the difliculties and

Problems of these algorithms we thus can still use some of today's Computer

algebra Systems as a reference.
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2.3.1 Heuristic Approach

Fenichel [21] has studied automating the computation of hmits and provided
some basic routines for Computing two sided hmits in the FAMOUS2 Sys¬

tem The class of problems solved by his program is restncted to piecewise

analytical functions Indefinite forms are resolved only by using l'Hopital's
rule The algonthm was specified through a collection of rules It seems that

Fenichel got discouraged in his effort to study the mechanization of hmits by
the undecidabihty results of Richardson [59, 60], which prove that there is

no decision procedure for some classes of hmit problems (see Section 11) It

turns out however that this result is not a reason to throw in the towel as

heuristic methods exist which "solve" the zero equivalence problem reason-

ably well in practice We think that it is very challenging to implement an

algonthm whose only restnction is the undecidabihty result of Richardson as

all current implementations of hmit algonthms have still other deficiencies

Iturnaga [39] worked on one sided hmits in his thesis In addition to l'Hopi¬
tal's rule for resolving indefinite quotients, he uses some asymptotic analysis
to resolve indefinite forms of quotients of polynomials Essentially he replaces
those polynomials by their leading terms, a technique which is easy to outfox

This program was wntten in Formula Algol

Wang [89] provided in his thesis a hmit computation facihty called DELIM-

ITER3, which he needed for the evaluation of some definite Integrals DE-

LIMITER is also a heuristic program wntten for Computing hmits of real or

complex analytic functions, which uses several approaches For the special
case of rational functions a fast special routine is provided Composition of

hmits is used for hmits of continuous functions Comphcated expressions are

reduced by replacing them with asymptotically eqmvalent and simpler ones

Other techniques which are used are l'Hopital's rule and heunstics for the

companson of Orders of infinity L'Hopital's rule is only applied lf the func¬

tion does not contain exponential functions whose arguments tend to ±oo In

some cases, power series are also used to obtain the hmit This algonthm is

the basis of the current hmit Implementation in the Macsyma System

The main emphasis of the DALI4 program wntten by Laurent [46] is on trans-

formations (cf Section 2 2 2) in the case that the function has an indefinite

form at the hmit point The methods which are applied after the transforma-

tions are truncated Taylor series expansions (with rational coefficients) and

simple compansons of Orders of infinity The latter only distinguishes between

the three classes powers, exponentials of a power and loganthms of a power

Harrmgton [37] implemented a symbohc hmit evaluation program in MODE-

Reduce [38] Besides l'Hopital's rule to resolve indefinite forms, he uses the

2Fenichel's Algebraic Manipulator for On-hne USe

3DEfimte LIMIT EvaluatoR

4Determination Automatique des Limites
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power senes approach and a companson of Orders of infinity The companson

of Orders of infinity is not as complete as in Wang's algonthm, but improved

over the DALI approach The functions are identined and ordered according
to the scale

lnlnx -< Ina; -< < e1/x
xn

where x -> 0 Additionally, special transformations and simphfications are

performed before a particular method is applied

All these algonthms are based on heunstics and consequently fail on those

examples where the heunstic does not succeed Furthermore, l'Höpital's rule,
which is used by all these programs, has lts own difficulties Finally, some

rules borrowed from mathematicians are applied without testing (or without

having the abihty to test) whether the preconditions are met on which these

rules are vahd These problems are discussed next

2.3.1.1 L'Höpital's rule may not terminate

One problem with l'Höpital's rule is, that for some functions lt may not ter¬

minate The simplest example is probably hmx_>+00 ex/ex ([21, p 52]), and

another one is hmT_++00(e + l)x /ex ([90, p 462]) Since one cannot decide for

a given function whether the apphcation of l'Höpital's rule will eventually suc¬

ceed, a heunstic is needed to decide when to stop using the rule In Macsyma

the number of applications is controlled through the variable LHOSPITALLIM

which is set to four by default Harnngton only performs three applications
in his Implementation, but then he asks the user whether to continue or not

Mathematica and Reduce apply l'Höpital's rule a fixed number of times

which cannot be changed by the user The hmit hm^-n-oo xn/ex = 0 may

be used as a black box test to figure out whether a given algonthm is based

on l'Höpital's rule and how often lt is applied at most In Reduce 3 6 and

Mathematica 2 2 this bound is three

1 limit(x~3/exp(x), x, infinity),

0

2 limit(x"4/exp(x), x, infinity),

4

x

limit ( ,x, infinity)
exp(x)

In[l] = Limit[x"3/Exp[x], x -> Infinity]
0ut[l]= 0

In[2] = Limit[x~4/Exp[x], x -> Infinity]
4

x

Out[2]= Limit[--, x -> Infinity]
x

E

All these heunstics are unsatisfactory because they may stop the computation

when further applications of l'Höpital's rule would succeed lt is also does not
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help to leave this bound under user control, because the limit may be part of a

larger computation, and the user may not realize that the whole computation
failed due to a unresolved limit.

2.3.1.2 Two ways to apply l'Hopital's rule

Another problem with l'Hopital's rule is that there are two ways it may be

applied, corresponding to the two cases in Lemma 2.8. If f(x) and g(x) tend

both to 0 (or both to oo), then we can apply l'Hopital's rule either to the

quotient f(x)/g(x) or to f(x)~1/g(x)~1. This distinction is in particular im-

portant if f(x) tends to 0 and g(x) to oo, since then l'Hopital's rule may be

applied either to f(x)/g(x)~1 or to f{x)~l /g(x). Pursuing all possibilities
in breadth first search manner would lead to an exponential growth of the

run time and hence a heuristic is needed to decide which branch should be

executed. Note that with wrong branch decision the algorithm may not ter-

minate. Consider the following example where we use the heuristic to take

the version of l'Hopital's rule where both the numerator and the denominator

of the quotient tend to zero.

XX X

lim ln(z) x = lim -, => lim ^ => lim 5 => • • •

x^o ^ohr1^) *->o_m-2(x) x^021n"3(x)

In this example, another choice of the branches would succeed, as we have

seen in Example 2.11.

2.3.1.3 Growth of expressions

Computing the derivatives when applying l'Hopital's rule on an expression

may increase the size of the problem. It has been shown in [16] that there exist

expressions whose representation (in a certain measure) requires 0{n) space,

but whose fc'th order derivative requires O \n{nfl.^2)) space. If l'Hopital's

rule is applied too often the expressions become intractable, and this is another

reason to bound the number of applications of l'Hopital's rule. The heuristic

of Wang is to stop the process if the size of the function grows for three

consecutive applications of l'Hopital's rule.

2.3.1.4 L'Hopital's rule may be wrong

Another problem is that l'Hopital's rule may be wrong [8] if it is not applied

properly. The particular problem in the context of a Computer algebra system

is that it may be difficult to discover that lim f'(x)/g'(x) does not exist. Let

us consider the following problem [85]:

i sin 2x + x

lim ——-. : -.

x-y+oo esm x ^cos x sm x _|_ xj

Both the numerator and the denominator tend to +00 as x -¥ +00, and both

are differentiable. Hence l'Hopital's rule may be applied. We will use Maple
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to perform the necessary Steps. Since f'{x) and g'(x) contain trigonometric
functions, the quotient f'(x)/g'(x) is simplified before it is passed to limit.

> f := sm(2*x)/2+x:

> g := exp(sin(x))*(cos(x)*sin(x)+x):
> limit(f, x=inf mity) , limit(g, x=inf mity);

00, 00

> e := diff(f,x)/diff(g,x):
> simplify(normal(e, expanded));

cos(x)e smo

2 cos(x) + cos(x) sin(x) + x

> limit(",x=infmity);

0

Since the latter limit exists and is zero, limx^+oo f(x)/g(x) is also zero ac-

cording to Lemma 2.8. However, this is not true, since f(x)/g(x) = e~s'nx

and its limit is indefinite and bounded between 1/e and e. MAPLE obtains

this result as it does not use l'Höpital's rule to compute limits.

> limit(f/g, x=infinity);

e-1
.. e

What went wrong in the above derivation? The problem is, that in fact

limx_n-oo f'(x)/g'(x) does not exist, since g'{x) has zeros in every neighbour-
hood of +oo, and hence we were not entitled to apply l'Höpital's rule. The

simplification Step however normalized the fraction and removed the term

cosz from both the numerator and the denominator. The new denominator

is bounded away from 0 and tends to +oo, hence the limit of the normal¬

ized quotient exists and is zero. This (automatic or optional) cancellation

of removable singularities is a difficult problem in today's Computer algebra

Systems [87]. It usually leads to more concise results, but, as we have just

seen, may also be the source of errors. It is not easy to handle this type of

Problems correctly in general [18].

2.3.1.5 Difficulty detecting continuity
All the heuristic algorithms mentioned in this section apply the rule

lim f(g(x)) = /( lim g(x)),
X —>Xo X —>XQ

which follows from Lemma 2.3 on the composition of limits. As we have seen

in Section 2.2.1, this rule is only valid if / is continuous at lim.x->xog(x).
Unfortunately, it is rather difficult to decide in a Computer algebra System

whether a function is continuous or not at a given point. Note that the limit

facility should not be used on f{g(x)) to answer this question in this particular
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Situation. Some Systems are simplistic and assume continuity if nothing eise

is known. As a consequence, wrong results may be returned. We give two

examples here. The first one is limx^oMi which is undefined. The right-
hand limit at 0 is 1 and the left-hand limit is 0. We use the special Limit.m

package [4] written in Mathematica. It seems that the code does not realize

the discontinuity at x = 0 and simply replaces x with 0 in \x] which then

simplifies to 0.

In[l] := «Calculus/Limit .m

In[2]:= Limit [Ceiling[x] ,
x -> 0]

Out [2]= 0

In[3]:= Limit[Ceiling[x], x -> 0, Direction -> -1] (* from above *)

Out [3]= 0

Another example which is more difficult, and which is done incorrectly by
almost all Systems, is the limit on branch cuts of the principal value of

multi-valued functions such as the Square root. Let us consider the limit

limx_>0+ arctan(2i - x). The limit of the argument of the arctan lies on the

imaginary axis, where arctan is discontinuous. The correct result is

lim arctan(2z - x) = arctan(2z) — k = i arctanh(2) - it = (i In 3 — 7r)/2,
x-+0+

which can be verified with numerical approximations. Macsyma, Mathe¬

matica and Axiom however return the wrong result.

(cl) limit(atan(2*(-l)-(l/2)-x), x, 0, plus);
(dl) 7.1 atanh(2)

In[l]:= Limit[ArcTan[2*(-l)"(l/2)-x], x -> 0, Direction -> -1]

0ut[l]= I ArcTanh[2]

(1) ->limit(atan(2*(-l)-(l/2)-x), x=0, "right")
+ +

(1) atan(2\|- 1 )

Type: Union(0rderedCompletion Expression Integer,...)

The problem is that these Systems test for continuity using a Taylor series

expansion of arctan(x) at x = 2t. All three Systems return for this series

a result which indicates that arctan(:r) is continuous at x = 2i, although
numerical approximation of arctan(x) in the neighbourhood of x = 2« shows

that all Systems define the line [i,ooi) as branch cut for arctan(:r). This

particular problem is discussed in detail in Section 7.4.

2.3.2 Power Series Approach

Zippel [95] proposed an algorithm which is not based on heuristics, but rather

on the concept of univariate power series expansion. In order to compute the
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limit of f(x) at xo, the power series of f(x) at xo is computed. This power

series only exists, if f(x) is continuous at x — xq, hence only two-sided limits

are considered with this approach. With a linear or a bilinear transformation

x0 can be transformed to the origin and thus we may assume xq = 0. If f(x)
has the power series expansion

f(x) = c0 xeo + a xei +

at x = 0, then the limit of f(x) is 0 if e0 > 0, c0 if e0 = 0 and ±oo if e0 < 0.

The sign of the latter result depends on the sign of c0, on eo and, in case that

e0 is odd, on the direction 0 is approached.

One major advantage of this approach over the heuristic ones is that it is

quite easy to incorporate new functions. As soon as the underlying series

model gets updated the limit facility can profit thereof. For the heuristic

approach however, all the heuristics concerning for example transformations

need to be updated. Further changes are then normally needed at various

other places in the System.

The type of series Zippel considered may also contain logarithmic singularities
in their coefficients (similar to Maple's series model), but the problem of

higher order essential singularities is ignored. He considers "the complete

incorporation of the higher class essential singularities in a power series System

to be one of the most difficult of all the problems".

Also, with this restriction it may happen that a function is analytic at the

expansion point but contains some subexpressions which have essential singu¬
larities there. The straightforward series expansion algorithms hence fail. An

example is

pCSCX
lim ——. (2.4)
t-)0ecotI

Both the numerator and the denominator contain essential singularities at

x — 0 since both csca; and cotx have a pole of order one at the origin.

> series(exp(csc(x))/exp(cot(x)), x);

Error, (in series/exp) unable to compute series

However, if the function in (2.4) is simplified, i.e. if the two exponentials are

combined, then the two poles cancel and a Taylor series expansion can be

computed without problems.

> combine(exp(csc(x))/exp(cot(x)), exp);

csc(x)—cot(x)

> series(", x);

1 + \X+lx2 + ^x3+0(xi)
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The leading term is 1 and thus the result of (2.4) is also 1. Note that again
heuristics would be necessary to perform the right transformations, and more-

over not all problems can be solved with such an approach.

Zippel proposed another technique to handle essential singularities, namely
to allow a power series be multiplied by an essential singularity. For the

example (2.4) the series of both the numerator and the denominator become

ecscx = 6(«-'+i.+ 3fe«1+0(.8))=el/. fl + ix+L^+0(x3)\

ecotx = e(x-1-lx-3Lx3+0(x5))=el/x fl_^x+}_x2+0{x3)\
When the two series are divided, the essential singularities cancel and we

obtain the expected power series.

As Zippel has pointed out, this technique is extremely dangerous if it is not

applied properly, since the essential singularity terms dominate the power

series, unlike the logarithmic terms. A straight forward computation with

essential singularities would yield the "power series"

*
= 1 _ el/* x + eVx X2+Q (e3/x x3\

1 + ie1/1 \ /

which, although formally valid, is completely foolish.

We mention these ideas since they form the basis of the generalized series

approach which is discussed next and which is the basis of our algorithm.

Additionally, we want to note that our algorithm manages to perform the

necessary transformation automatically on limx_>o ecscx/ecotx and finally also

computes the power series of eCSCI_cotx (cf. Example 5.3).

2.3.3 Generalized Series Approach

The algorithm proposed by Geddes and Gönnet [27] is based on the unifying

concept of series expansion. In order to overcome the limitations inherent in

Zippel's approach, they defined the concept of hierarchical series. A hierar-

chical series of a function f(x) is a sum of terms of the form

f{x) = si{x) hi(x) + s2{x) h2{x) + •

where each s^x) is a generalized power series and each ht(x) is a canonical

representation of an essential singularity. It approximates the function f(x)
in a right-neighbourhood of 0. As a consequence only one-sided limits are

considered. A generalized power series is a Puiseux series whose coefficients

may be (bounded) functions, and the /it's are strictly ordered according to

their growth, i.e.
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Vfc]N : lim'^yUo.
x->o \ht(x)\

An extension of this approach was used by Salvy [71] in his thesis. He used

asymptotic series expansion of the form

f(x) = ai(x) <ptl (x) + a2(x) y%2{x) +

where the tpt are functions from an asymptotic scale 5 = {fl}i^i and the

at(x) are bounded functions. S is called an asymptotic scale, if

limM=0 for i<j.
x-vx0 |tpt(x)|

This latter approach is implemented in the Maple package gdev [70] (which
Stands for generalized development).

All limit algorithms in this class are based on the idea of expanding the func¬

tion into a kind of generalized series and then of examining the leading term.

For the series expansion an algorithm similar to Algorithm 2.16 is used, which

expands the function inside out (or bottom up if we look at the expression
tree representation of the function).

Algorithm 2.16 Bottom Up Recursive Algorithm

series(e)
if e = J2er> RETURNQ>eries(e,))
elif e = I] er» RETURN(n series(e,))

elif e = /(z-)->- xo := limit(,z);
s := series(z);
if f(x) has essential singularity at x = xq —>

RETURN(HandleEssentialSingularity(/, a;0, s))
elif f(x) has a pole at x — xo ->

RETURN(HandlePole(/, x0,s))

eise RETURN( £ fW(x0)(s-x0)k/kn
Wo /

fi

fi

The problem this algorithm may run into is called the cancellation problem [77,
p. 617]. If the algorithm is Computing the series expansion at a node in the

expression tree of the given function it may happen that all terms computed
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vanish and that the algorithm keeps calling forever for new terms of the series

of the arguments. This obviously happens if the sub expression which is

expanded is identically zero, as e.g. for sin2 x + cos2 x — 1 or even simpler
for ex — ex. These cases can be caught with a test for zero equivalence.

Unfortunately, the cancellation problem may also appear if the function which

is expanded is not the zero function.

Example 2.17 Consider the following limit problem which we try to solve

using a generalized power series approach:

hm ex (sin(l/x + e_x) -sin(l/:r)). (2.5)

The arguments of the two sin functions both tend to zero at x = +oo and thus

these subexpressions can directly be expanded into their power series. This

leads to the expression

-Vi~ 6x* "" 120x5 "•" • •

V )

which needs to be expanded further. The powers in x dominate the series

expansions of the two sin functions. In the difference however, all these terms

cancel out. If we compute the difference of the two sin functions in a straight-
forward manner, we will never get an answer. Let us demonstrate this be-

haviour with the gdev package, which uses the generalized series approach.

> gdev(sin(l/x + l/exp(x)), x=mfinity, 4);

G)+B^)+(-^)+(°(i))
> gdev(sin(l/x), x=infinity, 4);

> gdev(sin(l/x + l/exp(x)) - sin(l/x), x=inflnity, 4);

The last answer returned by gdev is correct, since the asymptotic power series

of sin(l/:r + e~x) -sin(l/aj) at x = +oo is indeed 0 + 0x_1 +0x~2 +0x~3 +
0x~4 + ••• although the function is not zero. One can also say that the

two series expansions of sin(l/:r + e~x) and sin(l/x) are equal for the first n

terms for any finite n. The information that the arguments of two functions

were different is lost at this point, i.e. if only the first n terms of the series

expansions of the two sin functions are available.
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However, if we know that the dominant terms all cancel out, then we can

cancel them by hand and obtain the expansion

'' (si"<;+ <=">" si"<;>)Ä (' - h+h - nb + )+ 0(e~*>

for our function. As a consequence the result of (2.5) is one. However, auto-

matically realizing that all dominant terms cancel out is not a trivial task.

Problem (2.5) could directly be resolved if we expand the first sin function

and collect the terms appropriately. We then get the function

ex sin(l/x) (cos(e_I) - 1) + ex cos(l/x) sin(e_I)

whose generalized series expansion can be computed with the help of gdev.

> gdev(exp(x)*sin(l/x)*(cos(exp(-x))-l), x=infmity);

\ 2xex) V \x3exj)
> gdev(exp(x)*cos(l/x)*sin(exp(-x)) , x=infmity);

Note that the expression has been broken up in such a way that the two

series can be expanded in their appropriate asymptotic scales. However such

a Solution can only be generalized into a heuristic and is thus disqualified
for obvious reasons. Furthermore, not all functions can be expanded like the

sin function. The latter approach would therefore fail if we replaced the sin

function with the Gamma function in example (2.5). f

With this example we have demonstrated that it is not always that easy to

find the right entry in the asymptotic scale in which the series expansion has

to be performed. The problem is aggravated by the fact that a wrong choice of

the expansion of a particular subexpression may only be detected at a higher
level in the expression tree, and the series expansions of the subexpressions
would thus have to be redone. Furthermore there is the additional problem
of detecting cancellation. The gdev procedure simply gives up if more than a

bounded number of terms cancel.

Shackell [77, 80] proposed an algorithm which resolves this problem. The basic

idea of his Solution is that each series expansion contains in its last term the

whole rest of the series. In other words, a series expansion is no longer an

approximation of a function but rather just another representation for it. No

information is ever lost and the cancellation problem, once detected, can be

resolved. The detection of the cancellation problem is done with the help of

zero equivalence tests. For more details we refer to Chapter 4.
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Our Solution solves this problem by simply steering clear of it. We do not take

any precautions for the case that the cancellation problem may show up, as

in Shackell's approach, but rather operate in such a way that the cancellation

problem never appears. Recall that we ran into the cancellation problem in

Example 2.17 since the expansion of the sin functions was performed in terms

of x instead of e~x. Roughly speaking, there are always several possible forms

in which a function can be expanded. It turns out that these functions can

be ordered according to their growth: / -< g if and only if In |/| = o(ln \g\),

e.g. x < ex. The cancellation problem only appears if a function is expanded
in terms of a function which is too small. In our algorithm we expand the

whole function always in terms of the largest possible scale entry. We denote

this as the "most rapidly varying" subexpression. If necessary, this process

may be applied again to the leading coefncient of this series. However, as a

consequence, the cancellation problem can never appear and so our approach
overcomes the dimculties inherent in the generalized series approach.
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3. Algorithm for Computing Limits of exp-log
Functions

In this chapter we will present our algorithm for Computing limits. As we out-

lined at the end of the last section, we also use a series expansion approach,
but we first determine the most rapidly varying term, on which we perform
the expansion. However, we have not yet specified how this order is defined

and which class of function can be treated with this approach. It turns out

that Hardy fields are the natural domain in which to work. In the first section

we thus recall some facts from the theory of Hardy fields. A more compre-

hensive overview can be found in the papers of Rosenlicht [67, 68, 69] and

in [79]. For the rest of the chapter we will then restrict our view to exp-log
functions (defined below). After a discussion of the current State of deciding
zero equivalence in this particular function field we will present the details of

the algorithm and of the proof of its termination. In Chapter 5 we will discuss

how the algorithm can be extended to other function classes.

3.1 Hardy Fields

We shall consider real functions of a real variable x which are defined in a

semi-infinite interval x > x0 £ M. Let K. be the set of all these functions.

We can define an equivalence relation on K. as follows: Let /i and fc be two

elements of /C which are defined for x > xi and x > X2 respectively, then

/i is said to be equivalent to J2 if there exist an x0 > max(xi,X2) so that

/a (x) = /2 (x) for all x > xq- The equivalence classes of /C with respect to this

equivalence relation are called the germs of functions at +oo. We identify a

germ of functions at +00 with any representative member, and we will thus

refer to germs as functions. The derivative of a germ / is the equivalence class

formed by the derivative of any element of g. It is obvious to see that this

definition of the derivative ofgerms is well-defined, that is, that the derivatives

of two functions in the same germ are also in the same germ.

Definition 3.1 (Hardy field [10, p. V.36]) A Hardy ßeld is a set ofgerms
of real-valued functions on positive halflines in IR that is closed under differ-
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entiation and that forms a ßeld under the usual addition and multiplication
of germs.

If H is a Hardy field and f GH*, i.e. / is a non-zero dement of H, then H con-

tains an element 1//. This implies that f(x) ^ 0 for x IR sufficiently large.
Since /' £ H, / is differentiable for x sufficiently large, therefore continuous,
and thus / is either always positive or always negative or zero. The same

holds for /' £ ~K hence each / is ultimately monotonic. As a consequence, for

each / 6 T-L, limx_>+oo f(%) exists and is either a finite constant in fft or ±oo.

Examples of simple Hardy fields are Q and IR, i.e., function fields where

all functions are constants and where the derivatives of all functions are the

constant function zero. The following theorems allow us to extend a given
Hardy field. The proof of the second theorem is due to M. Singer and can be

found in [67].

Theorem 3.2 (Robinson [66]) Let U be a Hardy ßeld, / £ H[x] with

/ ^ 0. Let y be the germ of a continuous, real-valued function on a positive
half line such that f(y) = 0. Then %{y) is a Hardy field.

Theorem 3.3 (Singer) Let U be a Hardy ßeld, f,g £ U[x\ with g^O. Let

y be the germ of a differentiable, real-valued function on a positive half line

such that y' = f(y)/g(y). Then V.{y) is a Hardy ßeld.

As a consequence, IR(:r) (x' = 1) is a Hardy field, and exponentials (y' == ye')
and logarithms (y' = e' je) of elements can be added to a Hardy field as well.

The field which is obtained from K(:r) by closing it under the Operations

/ -> exp(/) and / -> log |/| is called £-field (or logarithmico-exponential
field or field of exp-log functions for short) and was investigated by Hardy
himself [36]. Since ab = eb]na, C also contains real powers of positive elements.

Hardy proved that every C function is ultimately continuous, of constant sign,
monotonic, and tends to ±oo or to a finite real constant as x -> +00 [36, p. 18].

3.1.1 Valuation

Let a,b £ W, then we write o x feif a(x)/b(x) tends to a non-zero, finite

limit. The relation x is an equivalence relation onH*. Let us denote the

equivalence class of a £ %* as u(a) and the set of all equivalence classes of

%* as Y = {v(a) | a £ %*}. T is an Abelian group under the multiplicative
Operation inherited from W. Furthermore, the set T is totally ordered due

to the relation i/(a) > v(b) if limx_,.+00 a(x)/b(x) — 0. This Observation is

summarized in the following theorem:
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Theorem 3.4 (Rosenlicht [67, Theorem 4]) Let % be a Hardy ßeld.

Then there exists a homomorphism (a canonical valuation) v from %* onto

an ordered Abelian group with i/(l) = 0, such that

(1) ifa,b£ W, then v{ab) = u(d) + v{b);

(2) ifa G V.*, then v(a) > 0 if and only if \imx^.+:x, a(x) Et;

(3) ifa.be U* anda + 6 £ U*, then v(a + b) > mia(v(a),v{b)) with equality

ifV(a)?u(b);

(4) ifa,b £ V.* and v(a),v{b) ^ 0, then v{o) > u{b) if and only if v{a') >

v(b>);

(5) ifa,be W and v(o) > v(b) £ 0, then v{a') > u(V).

From (1) follows directly that for any a G 7i*, v{a~l) = —v(a), and together
with (2) we see that v(a) < 0 if and only if a(x) tends to ±oo, that v{a) > 0

if and only if a(x) tends to zero, and that v(a) = 0 if a(x) tends to a non-zero

finite limit as x -> +00. Furthermore, (3) can be extended to the whole % if

we define u(0) = +00. Note that (4) follows directly from l'Höpital's rule (cf.
Lemma 2.8) for a; -> +00.

3.1.2 Comparability Classes and Rank

We can now define the measure of growth we will use in our algorithm. It

is the notion of a comparability class as it was introduced in [68]. Nonzero

elements a and ß of an ordered Abelian group are called comparable if there

exist positive integers m,n so that m\ct\ > ß and n\ß\ > a. This relation

defines an equivalence relation on the set of non-zero elements of a ordered

Abelian group.

Let us now apply this definition on the Abelian group T. Two functions in U*

are comparable if m\u(f)\ > \v(g)\ and n|i/(#)| > \v(f)\. Translated back to

the Hardy field H we get the definition that two non-zero elements / and g of

H with f,g —} +00 are called comparable if there exist positive integers m and

n so that v(jmjg) < 0 and u(gn/f) < 0, i.e., limI_>+00 f(x)m/g{x) = +00

and \imx^,+00g(x)n/f(x) = +00. In other words, / and g have both to

be bounded above and below by suitable integral powers of the other. For

this translation we used the fact that v{fm) = mv(f) and v{gn) = nv{g)
according to Theorem 3.4 (1). This definition may be extended to the whole

7i* by specifying firstly that ±f and ±1// are in the same comparability

class, and secondly, that all a with v{a) — 0 form their own comparability
class (following the Convention of Shackell [79]). The comparability class of /
is denoted by t(/). If / and g both tend to +00, then we call y(f) greater
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than 7(3) if / is greater than any power of g, i.e. v{f) < pv(g) for all p 6 IN.

We additionally specify that 7(1) is the lowest comparability class. Thus 7 is

defined on the whole W and the comparability classes are totally ordered.

We also use the notation / >- g for f(f) > -y(g) and we will say "/ is more

rapidly varying than #". Furthermore we write / x g if / and g are in the

same comparability class, and / < g if j(f) < 7(5).

Examples:

e" y X'"

x2
ex >- {e*f

ex x ex+e-
^

^
cx+e~

e' y e

The number of different comparability classes of H* minus one is called the

rank of 7i. For example, the Hardy field JR(x,\nx,ex) has rank 3. The

comparability classes are 7(1), 7(2), 7(lnx) and ~y(ex).

We show next how the valuation and the comparability classes are related

to each other. The following lemma is an extended version of Proposition 4

in [68].

Theorem 3.5 (Shackell [79, Lemma 1]) Let libea Hardy field, a,beH*
with v{o),v(b) ^0. Then

(1) u(a'/a) = u{b'/b) if and only if 7(0) = 7(6);

(2) u(a'/a) > v{b'/b) if and only if -y{a) < 7(6);

(3) u(a'/a) > v{V/b) if and only if 7(0) < 7(6).

To be precise, (3) appeared as Proposition 1 in [69] and is an obvious conse-

quence of (1) and (2).

The above theorem together with Theorem 3.4 (4) and (5) gives us a nice way

to compare the comparability classes of two functions.

Lemma 3.6 Let U be a Hardy field with ffi, C U and f,g G U* with

"(/),"(0)?*O. Then

(l)f<9 if and only if lim ||fgj| = 0;
X—>+<X>
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(2) f 1 g if and only if Jjm^ &gfj| G Et;

(3) f x g if and only if Jun^ £|gg| G Et*.

Proof. The result follows directly as a consequence of Theorems 3.5

and 3.4 (4) and (5). For example for (2) we have / < g if and only if

"(/'//) > "(ff'/ff) ^ an<3 orüV if "(ml/l) > i^(ln j^|) which holds by defini-

tion if limx_>+0O In |/(x)|/ In \g{x)\ G Et.

For clarification purposes we State a direct proof for (1). Let us assume

that both / and g ultimately tend to +oo. / -< g holds if and only if

"(ff) < "(/p) for all p G IN. By definition this holds if limx_,.+00 f(x)p/g{x) =

limx_»+O0 epin(/(^))-in(s(^)) = o and this is true if ]n(g) - pln(/) = ln(j)(l -

pln(/)/ln(g)) ultimately tends to +oo. As ln(p) already ultimately tends to

+oo only the sign of lim^+oo 1 — p\n(f(x))/\n(g(x)) must be positive, i.e.,
the relation ln(/)/ln(#) < 1/p must ultimatively be satisfied for all p G IN.

The latter condition however is only met if limx->+oc\n(f(x))/\n(g(x)) = 0.

D

Lemma 3.7 Let Hbea Hardy ßeld, f,gri* with u(f),u(g) # 0, then

"(/) = "(ff) = 7(/) = 7(ff)-

Proof. From Theorem 3.4 (4) follows that u(f) = u(g) if and only if v(f') —

v{g'). Thus, u(f) — v{g) implies v(f')-v(f) = v{g') — v{g) which is equivalent
to v(f'I'/) = v{g'jg) according to Theorem 3.4 (1). The latter equation is

true if and only if *y(f) = ~y(g) as stated in Lemma 3.5.

Lemma 3.8 Let U be a Hardy Reld, f,g e H* with u(f),v(g) ^ 0 and

f'/f + g'/gen*. Then

7(/ff) <max(7(/),7(0))

with equality ifj{f) # 7(5).

Proof. Theorem 3.5 implies that f(fg) < max(-j(f),'y(g)) if and only if

<L3Ti£) = "(/'//+ ff'/ff) > mm{v{f'lf),u{g'lg)) and the latter relation

holds according to Theorem 3.4 (3), with equality if v(f'/f) ^ Kff'/ff)> which

is equivalent to -y(f) ^ j(g). O

The next lemma is well known from calculus and can be proven using l'Höpi-
tal's rule. We prove it here in the context of Hardy fields using the theorems

stated above.
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Lemma 3.9 Let H be a Hardy ßeld, f,g e*H* with u(f) ^ 0 and v(g) < 0,

then

0)7(ln|/|)<7(/), and

(2) l(e9) > l(g),

where In |/| and e9 are in an extension ßeld T-L\ D H.

Proof. (1) According to Theorems 3.5 and 3.4, 7(/) > 7(ln|/|) if and only

if «/(/'//) < «/((/'//)/ In l/D) = «/(/'//) + 1/(1/ In |/|), thus we have to show

that f(l/ln|/|) > 0, but this holds since u(f) ^ 0.

(2) Similarly we have 7(3) < f(e9) if and only if v(g'/g) > v(e9 g'/e9) = v(g'),
and the latter is true if ^(l/<?) > 0, but that is what the precondition v(g) < 0

asserts. O

In the subsequent sections we will restrict our attention to the field of exp-log

functions. An extension of the algorithm to other Hardy fields is discussed in

Chapter 5.

3.2 Zero Equivalence

In order to compare two comparability classes we must be able to decide

whether u(f) > v(g). This problem is also called the dominance problem [60].
Dahn & Göring [20] have shown that for exp-log functions this problem is

Turing reducible to the problem of deciding zero equivalence for exp-log con-

stants. However, they did not give an algorithm for this reduction. That is

what Shackell has done in [77] and what we will do in the next section.

There is a somewhat simpler problem than the dominance problem, namely

the problem of deciding whether a given exp-log function is identically zero.

This problem is called the identity problem, and it is also Turing reducible to

the identity problem of exp-log constants.

Hardy showed in [36], that a non-zero exp-log function has only a finite number

of real zeros. Richardson [60] and Macintyre [49] showed how to bound the

number of zeros. If the function is zero at more points than the bound allows,

then it must be the zero function. However, this algorithm is not a very

practical one since firstly the bound may be rather large and secondly the

methods involve differentiating the given expression to a high order, which

can cause the size of the expression to grow rapidly [16].

Another perhaps more practical approach, which is based on the use of the

structure theorems of Risch [65, 12], is to determine all algebraic dependencies
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between the basic functions making up the given function The problem is

thus reduced to the algebraic case However, the structure theorem computa-
tions are also quite difficult A similar approach based on differential algebra
methods has been presented by Shackell [76, 81]

Thus, for solving either the dominance problem or the identity problem for

exp-log functions, zero equivalence must be decidable for exp-log constants

Unfortunately, for the identity problem of exp-log constants ltself, no Solu¬

tion is actually known at the present time The zero equivalence of exp-log
constants is decidable lf Schanuel's conjecture is true D Richardson [62, 63]
presented an algonthm which solves this problem and which (eventually) ter-

minates, unless lt is working on a counter example to Schanuel's conjecture

As a consequence, we assume that the constants can somehow be handled In

particular, we postulate the existence of an oracle which can determine the

sign of exp-log functions Note that lf the function is non-zero, then lts sign

can be determined in practice by successive approximations [60], e g , using

interval anthmetic

3.3 The MrvLimit Algorithm

We have the matenal available to present an outline of our algorithm now

Let / C be an exp-log function whose (one sided) limit is to be computed
We assume that we can always access the functions in C in the form of an

expression tree, i e
,
a tree whose leaves are either x or are elements of Q,

and whose nodes are labeled with rational Operations or with the functions

exp or log Note that expressions and functions are not equivalent, since every

function may be represented by many different expression trees, in the context

of a Computer algebra system however, every function is normally given as one

particular expression By some abuse of notation we speak of an expression

when we mean the function lt represents

In order to compute the limit of / we flrst look at all the subexpressions (sub-
nodes) of the expression tree of / We then determine those in the greatest

comparability class and call them the set J? of most rapidly varying subex¬

pressions Let u> be an exp-log function which is in the same comparability
class as the elements in /? and let us assume that u> > 0 and that ui tends to

0 We rewnte all the elements in Q in terms of u> and other expressions of

lower order The expression / can then be rewntten so that all subexpressions

except uj are in a lower comparability class than u> ltself

The rewntten function is then expanded as a senes in u around u = 0+ This

senes expansion has the form

c0weo+ciwei+ + 0(we"), (3 1)

where for all i we have e, 6 C C R and e, < eI+1, and the most rapidly

varying subexpression of every ct is in a lower comparability class than u
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Moreover, the leading coefficient cq must not be 0. C is the constant field of

the function class under consideration, in our case C — const(£) is the set of

exp-log constants.

Once we have found the series approximation (3.1), we can use the same

arguments as in the power series approach (Section 2.3.2). If the leading

exponent eo > 0 then the limit of / is 0 (remember that w -»• 0). If e0 < 0

the limit is ±oo where the sign depends on the sign of Co- If eo = 0 finally,
then the limit of / is equivalent to the limit of the leading coefficient cq .

In

this case the algorithm is applied recursively to Co (unlike in the power series

approach where the leading coefficient is a constant).

During the process of the series expansion (and not only at the end of it) we

must assert, in some particular situations, that the leading coefficient of the

series expansion of a subexpression is not zero. Otherwise wrong results may

emerge (see Section 7.2 for examples). This is one Situation where the postu-

lated oracle for testing zero equivalence is used in our algorithm. Furthermore,
the oracle is used to compare elements in C.

Let us recall the particular steps of our algorithm to compute the limit of f(x)
as x tends to xq.

(1) Determine the set Ü of the most rapidly varying subexpressions of f(x)
(see Section 3.3.1). Limits may have to be computed recursively in this

step (cf. Lemma 3.6).

(2) Choose an expression uj which is positive and tends to zero and which is

in the same comparability class as any element of Q. Such an element

always exists. Rewrite the other expressions in fi as A(x) loc where A(x)
only contains subexpressions which are in lower comparability classes

(Section 3.3.2).

(3) Let f(u>) be the function which is obtained from f(x) by replacing all

elements of J? by their representation in terms of u>. Consider all ex¬

pressions independent of u as constants and compute the leading term

of the power series of f(u) around u = 0+ (see Section 3.3.3).

(4) If the leading exponent eo > 0 then the limit is 0 and we can stop. If

the leading exponent eo < 0 then the limit is ±oo. If we only have to

solve the dominance problem, we can stop in this Situation as well. The

sign is defined by the sign of the leading coefficient co, which can be

computed in a similar manner. If the leading exponent eo = 0 then the

limit is the limit of the leading coefficient c0. If Co £ C we must apply
the same algorithm recursively on Co-

In the following sections we describe these steps of the algorithm in more

detail. When executing step (2), new expressions may be generated whose

comparability class do not appear in the set of the comparability classes of all
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the subexpressions of f{x). Furthermore, the limit facility is used recursively
at several places in the algorithm. In Section 3.4 we will prove that the

algorithm does terminate nevertheless.

3.3.1 Computing the Most Rapidly Varying Subexpressions

In this section we show how to determine the set of most rapidly varying

subexpressions of a given function f(x). This set is denoted by mrv(f(x)). If

f(x) does not depend on x at all, then we set mrv(f(x)) — {}. The relation

"to be a subexpression" will be used rather often and thus we define the

following notation: If h(x) is a subexpression of g(x) we write h(x) < g(x).

Definition 3.10 (mrv-set)

{} ifxii f(x)

'g{x) | g(x) < f{x) A ($ h(x) < f{x) : h{x) y g(x))\

As the mrv set depends on the form of the expression which represents the

function f(x), mathematically equivalent expressions may have different mrv

sets.

Definition 3.10 implies that all the elements in J? = mrv(f(x)) are in the

same comparability class. Let 51,52 G fi be two subexpressions of f.gi£Ü

implies that $ h < / with h y g\, thus g2 ^ gi- We can similarly conclude

<?i Ü! 92 if we interchange gi and 52, therefore gi{x) x 92(1).

As all elements in a mrv set are in the same equivalence class, we allow the

notation mrv(f(x)) x g(x) and mean that g(x) is in the same equivalence
class as any element of mrv(f(x)), provided that the latter is not empty,

or that otherwise g(x) £ C. The next Observation also follows directly from

Definition 3.10.

Fact 3.11 Let f(x) be a function. Then

V 9(x) < f(x) => mrv(f(x)) >z g(x).

Since f(x) < f(x) it follows that mrv(f(x)) >z f(x).

In order to determine the set of most rapidly varying subexpressions of f(x)
we must look at all subexpressions of f(x) and pick up those in the highest

comparability class. As the comparability class of a product cannot be greater

mrv(f(x)) =
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than the classes of its factors, it is enough to investigate only the factors of a

product. Even if 7(06) = 7(0) = 7(6) it is enough only to record a and b in

the mrv set, since if we rewrite both a and b in terms of u, the product ab

gets rewritten as well. For a sum the story is slightly more complicated, but

it turns out, that 7(0 + b) < max{'y(rnrv(a)),'y(mrv(b))) and thus it is also

sufficient only to look at the terms of a sum. This leads to Algorithm 3.12 for

Computing the set of most rapidly varying subexpressions of a given function

Algorithm 3.12 Computing the mrv set of /

mrv(/ : exp-log function in x)
if x *J / ->• RETURN( {} )
elif f = x -> RETURN( {x} )
elif f = gh -> RETURN( max(mrv(g),mrv{h)) )
elif f = g + h -> RETURN( max(mrv(g),mrv{h)) )
elif f = gc Ac ec ->• RETURN( mrv(g) )
elif f = \ng -> RETURN( mrv\g) )
elif / = e3 ->•

if lim^-j.+og9 = ±00 ->• RETURN( m&x({e9},mrv(g)) )
eise RETURN( mrv(g) )
fi

The function max() computes the maximum of two sets of expressions which

are in the same comparability class, i.e. max() compares (two elements of) its

argument sets and returns the set which is in the higher comparability class

or the union of both, if they have the same order of Variation.

The rule for mrv(\n g(x)) is in accordance with Lemma 3.9. If u(g(x)) ^ 0 then

ln<7(:r) -< g(x) and thus mrv(lng(x)) = mrv{g(x)). Otherwise, if v(g(x)) = 0

then the limit of lng(x) is finite as well and "/(g(x)) = f(lng(x)) = 7(1) and

both g(x) and \ng(x) will never appear in any mrv set. It is hence enough to

search for the most rapidly varying subexpression within g(x).

The case where the argument is an exponential e9'x' is the only difficult one.

If v(g{x)) > 0 then 7(e9'x') = 7(1) and mrv(e9^) = mrv(g(x)). If however

u(g{x)) < 0, then -){e9(x)) > -y(g(x)) (cf. Lemma 3.9 (2)) and mrv{eg{x)) =

max({e9'1'},mrv(g{x))), i.e. it is either {e9^} or mrv(g(x)) or the union of

both. The following examples illustrate these three possibilities:
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mrv(ex+1/x) = {ex+llx}

mrv [ ex+e
°

) = {e~e*}

mrv ( ex+e
*

) = {ex+e *,ex}.

For the computation of the mrv set of e9'x' we have to determine the limiting
behaviour of the argument g(x). This is a recursive call to the limit facil-

ity. However, the algorithm does not enter into an infinite loop, since g(x)
is a smaJier expression than e9^x\ which by itself is a subexpression of the

expression whose limit is currently being computed. Thus the size of an ex¬

pression (e.g., height of the expression tree) is an upper bound for the number

of iterations.

_x2

Example 3.13 As an example we compute the mrv set of / = ex+e
. The

limit of x + e~x is +oo and we therefore must compare / with an dement of

mrv(x + e~x ). For the latter we get

mrv Ix + e~x ) = max (mrv(x),mrv (e~x ))

= max({:z:},{e-*2})={e-*2}
where max refers to the relation -<. The comparison of / with e~x is done ac-

cording to Lemma 3.6 by Computing the limit of the quotient of the logarithms
of the two functions,

In 6X X ~\~ ~~x 1 G~x
lim — — = lim r— = lim — = 0

x-»+oo \ne~x x->+oo —x2

2

and hence mrv(f) = {e~x }.

Further examples:

mrv

mrv

mrv

mrv

mrv

(e"+e_I) = {e-x}

(e*2 +ze* + Ä) = {e*2}

(e*(e±+«-*-e±)) = {ex,e~x}

(ln(2;2 + 2ee3x3"'1)) = {e<3*3""}

(^T^) = {x}

From the structure of Algorithm 3.12 to compute the mru-set we can deduce

the following lemma:
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Lemma 3.14 Let f(x) be an exp-log function with x < f(x) and let Q =

mrv(f(x)) be the set of most rapidly varying subexpressions of f(x). Then

for every g(x) Q

(1) g(x) = x or g(x) = eh^ with h(x) -> ±oo;

(2) the sign of g(x) is 1, i.e. g(x) > 0;

(3) i/(9(s))#0;

foo
ifg(x) = x or g(x) = eh^ A h(x) > 0

0 ifg(x) = eh^ and h(x) < 0

(5) g(x) t x;

(6) ifg(x) — eh(x) then mrv(h(x)) < g(x);

(7) g(x) G mrv(g(x)) C Q.

Proof. Statement (1) follows directly from the structure of the algorithm.
The only results which are returned from the procedure are either the empty
set or sets which contain x or eh^x\ Statements (2), (3) and (4) are simple

consequences thereof. Statement (5) is a consequence of Fact 3.11 as x < f(x)
implies mrv(f(x)) (x g{x)) > x. Statements (6) and (7) are consequences of

the Definition 3.10 of the mrv set itself.

In the outline of the algorithm we said that we choose an expression which

is positive and tends to zero and which is in the same comparability class

as i? = mrv(f(x)). We see now that such an element always exists. Let

g(x) 6 Ü. If g(x) — x then we can set u; = x_1, and if g{x) = eh^ then we

can set lj = g(x) if h(x) < 0 and u = e~h^ x fl otherwise. From Lemma 3.14

it follows that for such a choice of u>, u > 0 and lü -> 0.

To complete the explanation of Algorithm 3.12 it remains to show how to

compare two mrv sets, as this is needed to compute the maximum of two

sets. Since all elements of a mrv set are in the same equivalence class, it is

enough to compare Single representatives of each set only. By Lemma 3.14 (3)
we can simply apply Lemma 3.6 and compute the limit of the quotient of

the logarithms of the two. We will prove in Section 3.4 that this recursive

approach must terminate.

From Fact 3.11 it follows that x <\ f(x) implies mrv(f(x)) y x. In other

words, 7(2:) is the smallest comparability class which can be returned when

Computing mrv(f(x)), provided that x < f(x). However, if x mrv(f(x))
then it may happen that f(x) does not have a power series expansion in

u = l/x around u> = 0+. The simplest example for this is f(x) — \nx. This
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issue could be resolved if we use a more general tool than power series for

the series expansions in ui. One possibility would be to use generaiized power
series as defined in [27] in this Situation. We will see in Section 3.3.4 how this

issue is resolved in our algorithm.

Example 3.15 As we know now how to determine the mrv set of a function,

we can demonstrate how the algorithm proceeds on a simple example which

does only lead to mrv sets with one element which do not have to be rewritten

and where the power series in u can be computed. Let us compute lim f(x)
X —»-f-oo

for

pl/x-e~x _
„1/x

In Chapter 8 we will see what some other Computer algebra Systems return

on this problem (see example (8.1)).

The set of most rapidly varying subexpressions of f(x) is {e~x} and we replace
e~x by u and get (e1^x~ÜJ — exlx)jio. The series thereof around <j = 0 is

_el/x . w0 +
1
el/x . ^1 _

1
el/x . w2 + 0(lj3)

The leading term is -e1//x • uj° and the leading exponent is 0. Thus,

lim f(x) = lim -e1/x,
X—f+oo x—>+oo

i.e. we have to apply the algorithm recursively to the leading coefncient —ellx.

Although the result is obvious now, let us follow the steps of the algorithm.
Next we compute mrv(—e1'1) = mrv(l/x) = {x} and set u> = 1/x. The series

of-e" = -1-oj + 0(w2) and thus lim f(x) = -l. f
X—>+oo

3.3.2 Rewriting Functions in the Same Comparability Class

If the set ü of most rapidly varying subexpressions of a given expression u

contains more than one element, then we must rewrite all of them in terms

of a Single one, w, which is in the same comparability class than Ü. We have

just seen that any element in Q can be designated to be w or 1/w. Therefore

it is enough to show that all elements in ü can be rewritten in terms of a

particular one in ü. It turns out that this rewriting process is rather trivial

in our context.

We show next how to rewrite / in terms of g where / and g are two elements

in i? = mrv(u). We assume that x & fi and that both f = es and g = el

are exponentials. The case where x ü is discussed in Section 3.3.4. From

Lemma 3.14 we know, that / > 0, g > 0, / G mrv(f) and g mrv(g).
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According to Lemma 3.6, l\mx^+00 s/t = c £ fft* as -y(f) = 7(5). As a

consequence and since /,j>0we can rewrite / as A gc where

A = — = e]nf-clng = es~ct. (3.2)
9C

When Computing A we have to compute c as the result of another limit. We

will show in Section 3.4 that these recursive limit calls also cannot lead to an

infinite recursion.

In the next lemma we show that A -< g. Unfortunately, as we will see in

Example 3.17, the condition A < g is not strong enough. What we really
need is mrv(A) -< g in order to have the guarantee that mrv^) -< u> in the

series expansion (3.1) of u in terms of u.

Lemma 3.16 Let f,g be two exponentials so that f x g, /,g > 0 and let

A = eln/-clns where c= lim r1. ThenA^g.

Proof. According to Lemma 3.6 we must show that lim j1^- = 0:

In A In / — c In g ,

In /
lim — hm = hm c = c-c = 0.

x-v+oo \ng x->+oo \ng 1-++00 mg

D

Example 3.17 Let us compute the limit of u = 1/e x+e *-exasx-> +00.

The set of most rapidly varying subexpressions of u is

Q = mrv(u) = mrvl —— - ex) = <e~x+e *,ex,e~x \
.

e-x+e ( J

Let us choose u = e~x+e
*

to be the representative of this equivalence class

and let us rewrite e~x in terms of u. According to the rule (3.2) we get, with

/ = e~x and g = e~x+e *,

A = e-x-(-x+e~*) =e-e-_

However, if we rewrite / = e~x in terms of Ag1, then /, the expression we

want to eliminate, is reintroduced as a subexpression of A. It seems that this

choice for u is not very clever. From this Observation we will derive a condition

on to so that the rewritten expression disappears completely and does not get
reintroduced inadvertently.

Let us try next to rewrite the elements in ü in terms of u = e~~x. The

function ex can simply be rewritten as l/w. In order to rewrite e~x+e
*

we

set / = e~x+e and g = u> = e~x and again apply the rewrite rule with
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A = eln^~lns = e~x+e~x+x = ee~"
_

Note that with this choice of ui, f <fi A. If we replace in u every instance of

/ by Au1, then we get

« = 7- - - = (-+T - l) "-1 (3.3)
Au> u> \ee )

which no longer contains / as a subexpression.

The expression (3.3) can be seen as the series expansion of u in terms of u>. This

series, however, is not a proper power series. Although 'y(A) — 7(1) < f(u),
the leading coefficient l/A — 1 is in the same comparability class as lj, which

can be shown by Computing the limit of the quotient of the logarithms of

l/A — 1 and u (recursively using our algorithm with u — e~x):

..

ln|l/A-l|
,.

ln(l-e-e_I)
,. ln(e-x (1 + 0(e~x)))

hm —:—j—:—L = hm
—^

— hm —- - —

x->+oo In |u;| x-t+oo —x x-v+oo —x

-x + 0(e-x)
, m,

= lim i
= leR*.

x->+oo —X

As a consequence, the powers of u don't necessarily dominate the coefficients

of the series (3.3). The conclusion, that the limit of u is -00 as x -> +00

according to the negative leading exponent and to the negative sign of the

leading coefficient is therefore wrong.

The series does not meet the conditions stated in equation (3.1) since

mrv(l/A - 1) = mrv(A) = {e-1} x lü.

However, if we rewrite A in terms of u as well, then we finally get the series

u = = -1 + - o; + 0(üj2)

and the correct result, which is — 1. f

In the above example we met two problems. First, it may happen due to a

unlucky choice of w that the rewritten expressions recurs inside of A. Fur-

thermore, it is not guaranteed that mrv(A) -< u and thus further rewriting

may be necessary. The source of both problems is that for two expressions in

the mrv-set, one is a subexpression of the other.

In the next lemma we show under which conditions on / and g we can rewrite

/ in terms of g such that mrv(A) -< g. The problems illustrated above cannot

occur if these conditions are met.

Lemma 3.18 Let u be a function such that x & ü = mrv(u), let f = es and

g = e* be in ü, and let A = es~ct with c= lim f. Then
x—>+oo

l
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(mrv(f) = {/}) A (mrv(g) = {g}) => mrv(A) -< g. (3.4)

Proof. If A is a constant the implication (3.4) obviously holds, so let us

assume that A is an exponential. Furthermore, mrv(f) = {/} and mrv(g) =

{g} holds if and only if mrv(s) -< / and mrv(t) -< g, and thus the left hand

side of (3.4) implies max(mrv(s),mrv(t)) -< g, and we see that

mrv(A) C {A} U mrv(s - et).

Together with the facts mrv(s - et) < max(mrv(s),mrv(t)) and A -< g

(Lemma 3.16) we can conclude that mrv(A) -< g. D

Note that the other direction does not hold. A counterexample for this is

/ = ex+1/I+e
*

and g = ex+e
*

where A = exlx and thus mrv(A) -< g but

mrv(f) = {/,e~x} and mrv(g) = {g,e~x}. However, a slightly weaker form

for the other direction is proven in the next lemma.

Lemma 3.19 Let u be a funetion such that x £ Q = mrv(u) and let f = es

and g = e* be in Q and A = es~ct with c = lim f. Then
S-++OO

mrv(f) ^ {/} A mrv(g) = {g} =$ mrv(A) = mrv(s) x g.

Proof. mrv(f) ^ {/} implies mrv(s) x g and mrv(g) — {g} implies
mrv(t) -< g. As a consequence mrv(s — et) = mrv(s). Equality holds, since

the most rapidly varying subexpressions in s cannot cancel with those in t.

Together with Lemma 3.16 we get mrv(A) — mrv(s). O

If we rewrite / in terms of g with mrv(f) ^ {/} and mrv(g) = {g} then

mrv(A) — mrv(s) — fnrv(f)\{f}. This leads to the following strategy for

rewriting all elements in J7.

Let u be an dement of the set of all the expressions which do not have a

subexpression in i?, i.e. let u> G ü with mrv(u>) = {u}. We can then rewrite

all elements in Q in terms of u. These elements are eliminated one by one.

An element / £ Q which contains a subexpression g J? has to be rewritten

before g is rewritten.

Let uo = u and 1?, = mrvi^). Then ul+\ is obtained from ur by rewriting

/, G ilt in terms of u, where /, is chosen such that for all f E Qt with

/ 7^ fn U is not a subexpression of /. This condition on /, is equivalent to

|wru(/,)| = max \ \mrv(f)\ f G Ot > which is easily tested in a program.
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According to Lemma 3.18 and Lemma 3.19 we have ül+\ — Ql\{fl) U {u/}.
Eventually we obtain Qn = mrv(un) = {w} for n = \ü\ and the rewriting of

u is complete.

Up to this point we have discarded the limiting behaviour of u> itself. Thus

if it turns out that lj = eh —> +oo, then we set u> = e~h and Substitute u by

1/u in un. The following lemma concludes the recent observations.

Lemma 3.20 Let fl = mrv(u) with x & fl. Then we always can rewrite all

elements in fl in terms ofu = eh where

(1) to oi 1/ui Q and u> -> 0;

(2) mrv(u) = {u>}, which implies that mrv(h) -< fl.

Example 3.21 In this example we want to compute

u
x .-i+fc

lim — ex + x, (3.5)
i->+oo n*

where h = e~x^1+e *). The set of most rapidly varying subexpressions is

{2 = {e-'+h,e-tfx,h,ex,e-'} .

We choose u = e~x and then rewrite all the elements in fl "from left to right",
namely

fx=e-x+h = ehuj

f2 = e-TTK = ex-x/{1+h)u

f3 = h = ex-x^1+e~^ij

/4=e* = u-1

h = e~x = w

and the starting expression is transformed into

eü,ex-./(i+w) ex-x/(l+We'-/'1+">) eu,e"e^x/(1+U)
«5 = } ,,, , uo

1/W + X.

(ex-x/(l+w))2w
'

We now have mrv{u^) = {lo}. The series of U5 in u is

2 + (3/2x2 + 3)w + 0(w2)

and the result of (3.5) is 2. In Chapter 8, example (8.18) we will see how some

other Computer algebra Systems behave on this problem. f
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It is important to note that the exponential A — es~ct must never be expanded
into a product of exponentials, because this would reveal functions of higher
classes, for example es = / x g and e~ct = g~c x g. mrv(es e~ct) x g and

the important fact that mrv(A) -< g would be lost. Termination of the whole

algorithm would also no longer be guaranteed. Consider, e.g., / = e~x^l+l/x\
which might be rewritten as / = Ae~x with A = e^-^/(i+i/^)_ \ye have

mrv(A) -< /, but as soon as A is expanded, we get A = ex / and are back at

Square one. The argument s - c t of the exponential however can be simplified
without consequences.

3.3.3 Series Expansion

In this section we will prove that the power series in the most rapidly varying

subexpression w at u = 0+ always exists, provided that x £ ü. The treatment

of the case x £ fi is deferred to the next section. Let us assume that u> is

an exponential and that we have rewritten the set ü of most rapidly varying

expressions according to Lemma 3.20 in terms of lü.

Theorem 3.22 Let / be an exp-log function with mrv(f) = {to}, u> -> 0 and

ui = eh with mrv(h) -< u>. Then the power series of f in to at u> = 0+ exists

and has the form X^o c^uj£' w^ü mrv(ci) ~< u and ei £ C.

Proof. The proof is performed inductively over the expression tree of /. The

conditions are obviously satisfied if / does not depend on to or if / = u;.

For the induction step we have to show that the sum or the product of two

series sj and S2 and the exponential, the logarithm and the inverse of a series

s is also a series with coefficients whose mrv set is in a lower comparability
class than to, provided that the same condition holds for the series s. s\ and

For the sum and the product of two series it is obvious that the series exists,
since the new coefficients are built from the coefficients of the series of the

arguments by means of multiplication and addition only. The condition on

the coefficients is also preserved since mrv(ab) X max(mrv(a),mrv(b)) and

mrv(a + b) ^ max(mrv(a),mrv(b)).

Next we consider the case of the series of the inverse of g in the case that the

the series of g in uj exists. Let the latter one be

Series(#, u) = c0 o/° + q wei H .

The series of the inverse of g is given by

1
°°

Series(l/3,w) = -w"60 ^(-l)fc#fc
c°

k=0
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where # = q/co u/1_e° + C2/c0uje2~eo H .
This series exists, provided that

the leading coefficient c0 ^ 0. With the help of the oracle for deciding zero-

equivalence this condition has to be asserted. The condition on the coefficients

is also preserved since they are also generated from the coefficients c% and 1/co
by means of multiplication and addition only and since mrv(l/co) = mrv(co).

Next we discuss the series expansion for e9 where the series of g exists. The

leading term of the series of g must satisfy eo > 0. For, if e0 < 0, g would tend

to ±oo as u -» 0, i.e. as x -> +oo, and thus mrv(e9) = max({e9},mrv(g)).
mrv(g) is obviously uj, so let us compare e9 with w by Computing the limit of

the quotient of their logarithms.

lim = lim lim — uje° + — uei + = ±oo
i->+oo lnu; i-++oou->o+ h h

since mrv(h) -< uj according to the hypothesis of the theorem and mrvfa) -< u

according to the induction hypothesis, and we would have e9 y uj, which is a

contradiction.

If eo > 0 then the series of e9 is given by

Series (g, w)h
Series(e3,a;) = >J

fc=0

and the problem is reduced to addition and multiplication of series. For the

case eo = 0 we get
oo

, k

Series(es,w) = eco Y %-

with ip — ci u>ei + C2UJ62 + In order to establish the conditions on the

coefficients we only have to show that mrv(ec°) -< u. From limI_).+00 f- —

lim^-^+oo lim„_>0+ £T^: = 1 follows that f(ec°) — f{e9). Furthermore we

know that e9 ^i uj as mrv(f) = {w}, i.e., e9 would otherwise have been rewrit-

ten as a power of uj. From this and the fact that mrv(ec°) C {ec°}Umrv(co) it

follows that mrv(eCo) -< uj. Again note, that the condition mrv(ec°) -< uj only
holds for the expression ec°, i.e. this exponential must also not be expanded.

Expanding ec° may produce functions in higher comparability classes.

The last case is the series of In g.

Series(ln(</),ü;) = Series (ln(co weo + ci wei H ),w)

= In Co + e0 In w + Yj
fc=i

Due to the precondition, lnw simplifies to h and the above is a power series,

provided that c0 ^ 0. This latter condition must be asserted again with the

help of the oracle.
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Concerning the condition on the coefficients of this series we know from the

induction hypothesis that mrv(h) -< w and from the definition of the set of the

most rapidly varying subexpressions, it follows that mrv(lnco) = mrv(co) -<

uj, which completes the proof. D

3.3.4 Moving up in the Asymptotic Scale

In the previous sections we have always postulated that x £ ß, because then

all elements in Q are exponentials (cf. Lemma 3.14) which simplifies both the

rewriting and the series expansion step. Although the difficulties with the

rewriting step for the case that x e ü could be resolved by setting x = eln x,

the real problem is that we are not able to distinguish the comparability
classes below 7(2). If we apply our algorithm to a function where the compa¬

rability classes of all the subexpressions are lower than 7(2), then the leading
coefficient of the series in 2; will always be identical to /. An example is

/ = lnx = ln(elni) where we get the series lnxu;0 = / if we would expand it

in terms of u> — e~Xnx. In the following we show how this problem is treated

by our algorithm.

The idea is that we move up one level in the asymptotic scale, i.e., we go from

x to ex. This is based on the following lemma:

Lemma 3.23 Let f(x) andg(x) be two exp-log functions and let lim f(x) =
x—+oc

a and lim g(x) = +00 then

lim f{g(x)) = a.

x—>-+oo

Proof. The Statement follows at once from the theorem on the continuity of

composite continuous functions and from the fact that exp-log functions are

ultimately continuous for x —> +00. Q

In our case we choose g(x) = ex. If we replace x by ex in the given expression

f(x), the limit remains the same. However, if we want to use our algorithm
on the transformed expression, we need to show that the ordering of the

comparability classes is not changed.

Lemma 3.24 Let f(x), g{x) and v(x) be exp-log functions with lim v(x) =
x—*+oo

+00. Then,

f{x) x g(x) => f(v{x)) -< g(v{x)).

Proof. Since f(x) -< g(x) we know that limx_>.+00 \^(ll — 0. The quotient

,° r( itself is also an exp-log function, which we name u(x). Since both u(x)
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and v(x) are exp-log functions, with lim v(x) = oo, we can apply Lemma 3.23
x—>oo

to get

\nf(v(x))
lim -—

.

,,
= lim u(v(x)) = lim u(x) - 0

i-n-oo \ng{v(x)) i->+oo x->+oo

which is equivalent to f(v(x)) -< g(v(x)). D

If we replace x by ex the expression may be simplified as In x gets transformed

to In ex = x. It is not necessary to perform this simplification, as it will be

performed automatically during the series expansion. We would then have

lü — e~x and the series expansion of lnex — ln(l/u;) would become x as well.

We repeat this Substitution procedure until we eventually get an expression

/„ which contains ex as a subexpression. Then ex Qn = rnrv{fn) and hence

we can apply our algorithm, i.e. we know how to rewrite the elements in ün

(Lemma 3.20) and the power series of /„ in u = e~x exists (Theorem 3.22),
with coefficients in a lower comparability class than ex.

Example 3.25 Let

_

ln(ln x + In In x) - In In x

ln(lnx + In In Ina;)

and let us compute lim fix), mrv(f) = {x} and we move up one level in
x->+oo

the scale. We get

_

\n(x + 1di) - Ina;

ln(a; + In Ina;)

Again mrv(fi) = {x} and thus we move up a further level and obtain

_

ln(ex + x) - a;
x

h~
ln(e*+lnar)

6 '

Now the most rapidly varying subexpression is mrv(f2) = {ex}. We set

lü — e~x and rewrite f% as

ln(w_1 + x) — x
_1

ln(a;_1 + Ina;)

whose power series at w = 0+ is

,

x2 + 21na; 2a;4 + 31n(a;)a;2 + 31n(a;)2a; + 61n(x)2 9 „, ,,

/a = i-__w + 6,/;
^^ + 0(^).

Thus, lim / = 1. f
x—^+oo
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3.4 Proof of Termination

In every iteration step of the algorithm one comparability class is eliminated.

However, due to rewriting and to the series expansions new expressions which

may form new comparability classes may be introduced, and termination is

therefore not obvious. Additionally, the limit procedure is used recursively
to compare two mrv sets and it must be shown, that the algorithm does not

enter into an infinite loop.

In the next section we will show that the global iteration will terminate pro¬

vided that the mrv set can always be computed, i.e. provided that the recur-

sive calls will not lead to an infinite recursion. The verification of the validity
of this assumption is given in Section 3.4.2.

3.4.1 Global Iteration

In every iteration step of the algorithm, the largest comparability class is

eliminated. To prove that this process is monotone, i.e., that it finally leads

to an expression whose mrv set is empty, we define the size of an expression
which bounds the number of comparability classes which may ever evolve

during the limit computation process. The size of a function / is an upper

bound the number of iterations which the algorithm will perform at most to

compute the limit of / as well as for the rank of a Hardy field which contains

/•

The size of a function / is defined to be the cardinality of the set J? which

contains all the possible candidates of mrv expressions and moreover all the

active exponentials and logarithms, i.e. exponentials and logarithms whose

argument depend on x:

Size(/(x)) = |s(/(x))
The definition of the set S is similar to the definition of the Maple function

indets. Algorithm 3.26 shows how to compute the set S of a given exp-log
function /. This procedure is very similar to Algorithm 3.12 presented on

page 39.

The size of an expression is always integral and nonnegative. If it is zero,

then the expression does not depend on x and is constant. The size of an

expression may therefore be used as a variant function to prove termination

of the global iteration. In every iteration step u>, one of the most rapidly

varying subexpressions, is eliminated and cannot appear as a subexpression
of the leading coefficient which is followed up. As u is an active exponential,
the size of the leading coefficient is smaller, provided that the series expansion
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Algorithm 3.26 Computing S to determine the size of an expression

S(/ : exp-log function in x)
if x $ f -> RETURN( {} )
elif f = x -» RETURN( {x} )
elif f = gh -> RETURN( S(p) U S(/i) )
elif f = g + h -» RETURN( S(ff) U S(h) )
elif / = gc -*• RETURN( S(g) )
elif f = \ng -> RETURN( {lnö}uS(ö) )
elif / = e9

fi

-> RETURN( {e9} U S(g) )

step and all the necessary Operations described in the last sections do not

increase the size of the expression. As a consequence, the following three

claims have to be shown:

1. The size of an expression is not increased by the rewriting process.

2. The size of a rewritten function u is not increased by the series expansion,

provided that x £ mrv(u).

3. When moving up an expression u one level in the scale (if x £ mrv(u))
and taking the leading coefRcient of the series expansion, the size thereof

is smaller than the size of u.

These three Statements are proven in the following three subsections.

3.4.1.1 Rewriting Process

Whenever a set of mrv expressions contains more than one element, all el-

ements can be rewritten in terms of a Single one according to Lemma 3.20,

provided that all elements in the mrv set are exponentials. Let f = es and

g — e* be two elements in ü = mrv(ui) with mrv(g) = {g} such that for

all m 6 S\{f}, f ^ m. Then / is rewritten as f — A gc where A — es~ct,
c = lim s/t and mrv(A) C J?\{/} U {u}. If every occurrence of / in u, is

replaced by A gc, then the exponential / disappears and the size is reduced

by one. On the other hand, the new expression A which is introduced may

increases the size by at most one. As a consequence, the rewriting process

does not increase the size of the whole expression and Size(ut_(_i) < Size(ut).

More formally, we can State, that if an expression u, contains both / and g,

then their portion in the size of ut is

S(f)VS(g)\= {f,g}uS(a)US(t)\ = l+ {g} U S(a) U S(t) ,
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since / $ s and / -fi t. The latter follows from the condition mrv(g) = {g}
which implies mrv(t) -< g. If / is replaced by Agc in u, then the portion of

the transformed / and of g in the size of u,+i becomes

S(A-gc)\JS(g)\ = \s(A)US(g)\ < \{A,g}öS(s)uS(t)\ = l+\{g}uS(s)lJS(t)
with equality if A is active. The overall size of an expression containing / and

g cannot be increased due to rewriting / in terms of g.

If A is not an active exponential, rewriting reduces the size of the expres¬

sion. For example, when rewriting / = e2x in terms of g = ex~l, A becomes

e2x-2(i-i) _ e2 jf tne argUment is simplified. If the argument is not simplified,
A is active and the size of the transformed expression remains the same.

It is very important to rewrite the elements in ü by an element which is also in

fl. If the elements would be rewritten by a function of the same comparability
class which does not appear in J?, then the size of the expression could increase

and termination would no longer be guaranteed in general. However, the size

of the expression does not grow if it is rewritten in terms of the inverse of

an element in J? which does not appear in ü itself. f — eh can be rewritten

in terms of its inverse simply as / = 1 • (e~h)~l and this process does not

change the size of the expression.

3.4.1.2 Series Expansion
When all the elements in ü — mrv(u) have been rewritten in terms of lj =

eh 6 J7, where u> tends to zero, then the series of u in terms of u> is computed.
The leading coefncient is the new expression potentially to be followed up.

We show next that the size of the series of u in terms of w is not greater than

that of u. This implies that the size of the leading coefficient is smaller, as u

itself does not appear as a subexpression of it.

The size of a series is defined to be the size of the (possibly infinite) set of

terms, i.e.

Size (j S(Cl) U 5(w)
i=0

According to this definition the size of the series of a constant is larger than

that one of the constant itself. Thus, for our analysis, we consider every

constant c as the expression c-lo°. This approach does not change the overall

size of u as w already appears as a subexpression of u.

We will show that Size(Series(u, u>)) < Size(u) by induction over the expression

tree of u. To begin, u and every constant c • w0 is by itself a series whose size

is equal to the size of the expanded function.

For the arithmetic Operations between two functions g\ and g-z we have to

show, that
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Size(Series(<7i,a;)) < Size(gi) A Size(Series((72,^)) < Size(<72)

=> Size(Series(ßi *g-2,v)) < Size(</i *<?2)

where * Stands for addition or multiplication. This however follows from our

definition of 5 as the coefficients of a sum or a product of two series are

constructed from the old coefficients by means of addition and multiplication

only. Note that the size of the series can indeed get smaller if, e.g., terms in

a sum cancel out.

Let us assume that the series of the expression g is

Series(#, u) = c0 ue° + ci cjei H

and that Size(Series(g, w)) < Size(g). To complete the induction step, we need

to show that

Size(Series(/(9),w)) < Size(/(ff))

holds for / being the inverse, the exponential and the logarithm. We mark

the use of the induction hypothesis with (J).

As we have seen in Section 3.3.3, the series of the inverse of g has the form

1
°°

l/5 = -W-e°£(-l)fc<^
k=0

where # = ci/cowei_e°+C2/cowe2-e°H—, and wesee that only multiplication
and addition of series are used to compute the inverse; hence the size of the

resulting series will not be larger than the size of the series of g. More formally,

we get

Size(Series(l/#,u;)) = Size(iuTeo Y(-l)h$k )

= \S(c0) U S(u) U S(#)

Q S(ct) U S(w)
i=0

= Size(Series(<7,u;))

< Size(g) = Size(l/5)

which proves this case.

As we have seen in the proof of Theorem 3.22, the series of the argument of

an exponential must start with a leading term whose exponent is positive or

zero. The series of the exponential can thus be written as

exp(g) — exp(c0 + C\ u>ei +c2ue2 H )

= exp(c0) exp(ci u/1 + ci a/2 H )

exp(co)^—,
fc=0
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where ip = c\ wei + C2 ojC2 H and where Co may be 0. If x <3 cq then we have

Size(Series(exp(g),w)) = Size I exp(c0) V]—

= 5(exp(co))US(^)|

= 1+ (5(c0)u5(^))\{exp(c0)}

< 1 +

(/)

(js(c)US(u;)
z=0

= 1 + Size(Series(,g,o;))

< 1 + Size(g) = Size(exp(g))

which completes the proof of this case. Otherwise, if x jd c0 we have

Size(Series(exp(5),a;)) = Size exp(c0) \] TT

k=0

= \sw \J S(Cl) U S(u)
i=i

= Size(Series(<?,ai))

< Size(g) < Size(exp (<?)).

Note that the size of the series is even smaller than the size of the expanded

function in this case.

Example 3.27 Consider the function f = e
x+e *e whose size is

Size(/)= {f,e-*,e-xlnx,\nx,x} = 5.

mrv(f) = {e x inx} and the series of / in w = e
-,
— x In x

IS

1 f„-^4
, ,3Series(/,w) = e~x + (e~x) u+- (e~x) w2 + -

(e"1)
u3 +

and the size of this series is \{e~x,u, Ina;, x}\ = 4. In this example the size of

the series gets reduced although x <3 c0. The reason is that the new leading
coefficient eCo has already appeared as a subexpression of /. The size of

the leading coefficient e~x is two in this case as the expression In x gets also

eliminated together with the most rapidly varying subexpression w. f

The series of the logarithm of a series has the form

k=l

ln(#) = ln(c0) + e0 In cj + ^
k
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where <£ is defined as above. At first sight, two new expressions appear in this

series which potentially increase the size, namely lnco and Ina;. The rest can

again be reduced to multiplication and addition of series. Since to = eh is an

exponential (whose argument is real), lnw can be replaced by h and so this

logarithm disappears. Note that S(h) C S(w). If cq depends on x, we have

Size(Series(ln(3),u;)) = Size I ln(c0) + e0 In to + y^
k — 1 rf.k

(_l)*-i $'

fc=l

5(ln(c0)) U 5(e0) U S{h) U 5(<?)

= 1 +

< 1 +

US(c)USM \0n(co)}
V=0

oo

|J S(Cl) U S(u)
i=0

1 + Size(Series(p,u;))

(')
< H-Size(g) = Size(ln(g));

otherwise, the size of In c0 is zero and we obtain

Size(Series(ln(<7),u;)) Qs(c)US(u;)US(lnw)
2=o

= Size(Series(5,u;))

< Size(g) < Size(lng)

and again the size of an expression gets smaller when expanded as a series in

U).

3.4.1.3 Moving Up in the Scale

If x G ü — mrv(u) then we move up one level in the scale and continue

to work with u\, which is obtained from u by replacing x through ex. This

process increases the size of u by at most one and by exactly one if no sim-

plifications are performed, e.g., if lnex is not simplified to x. Let us assume

that Size(ui) = Size(u) + 1. Then ex mrv{u\) and we can proceed with the

algorithm as usual. We will show that the size of the leading coefficient cq of

the series of u\ in terms of u> = e~x is smaller than that of u.

Let us first assume that u does not contain any active logarithm. Then

mrv{u) — {x} and the series of u\ in u> = e~x can be computed directly,

as the arguments of all exponentials which are going to be expanded have to

tend to zero and no logarithms ever have to be expanded. The coefficients

will be constants whose size is zero and the size of the leading coefficient is

thus smaller than that of u.

If u does contain active logarithms, then we can show that the size of the

series of ui is smaller than the size of u\. As the size of a function does
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not get increased by series expansion as we have seen in Section 3.4.1.2, it is

enough to show that at least at one point during the series expansion the size

gets reduced. We claim that at least one active logarithm is eliminated when

expanding u\ in terms of uj, from which the result follows.

Let us look at an active logarithm ln<? in u whose argument does not con-

tain further active logarithms. What can its argument g look like? It

cannot contain active logarithms, and it also cannot contain an exponen-

tial whose argument goes to ±oo, because this exponential would have to

contain further active logarithms since x 6 mrv(u). Consequently, simi-

larly to the first case above, g can be expanded into a series whose coeffi-

cients do not depend on x. The size of the leading coefficient of this series

of g is thus zero and according to the logarithmic case in Section 3.4.1.2,

Size(Series(ln(/,u;)) < Size(lng). Since subsequent series expansions do not

increase the size of their argument, Size(Series(ui,u;)) < Size(ui) and as a

consequence Size(Series(uj,w)) < Size(u). The size of the leading coefficient

of the series of U\ in lo is therefore smaller than that of u, which completes
the proof.

3.4.2 Recursive Calls

In the previous section we have seen that the global iteration terminates,

provided that the computation of the mrv sets can always be performed.
The procedure which determines the mrv set of a given function u needs

to compute limits to compare two subexpressions. Furthermore, once the

set of most rapidly varying subexpressions has been determined, its elements

must be rewritten. In this rewriting step we have to compute the limit of

the quotient of their logarithms. It is the task of this section to show that

these recursive calls do not lead to infinite recursions. We will show that the

size of the arguments of these subsequent limit calls is smaller than the size

of the function u whose limit is currently being computed. We use the same

definition for the size of a function as in the last section. The chain of recursive

limit calls must terminate, when the size of the argument is zero, as then the

expression passed to limit is a constant.

From Lemma 3.14 we know that the candidates to be compared are always

exponentials or equal to x and that the comparison is done by Computing
the limit of the quotient of the logarithms of the two candidates. Let f < u

and g < u be two subexpressions of u which have to be compared, then the

following three cases may be distinguished:

(1) / = x and g = x

(2) / = es and g = e*

(3) / = es and g = x.
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In the first case nothing needs to be done as / and g are in the same compa-

rability class.

Let us consider the second case where both / and g are exponentials. The

logarithms of / and g can be simplified to s and t, respectively, and we get

Size (l^) = Size (-) = \s(s) U S{t)

< {es,e'}US(s)US(t) = S(es) U S(e') < Size(u).

The first inequality holds since es < t and e* < s would imply es < s which

is a contradiction. Note that whenever an exponential is compared with the

most rapidly varying subexpression of its argument, then we have / <3 g or

g < f and thus es < t or e* < s. In this case however the above inequality
also holds and the size of the quotient of the logarithms of / and g is smaller

than the size of u.

Let us now look at the third case, which turns out to be the most difficult

one. To compare / = es and g = x we must compute lim sj ln(x). The size
X—f+OO

of s/ ln(x) is clearly smaller than the size of u if \n(x) <1 s, since then we get

Size ( -^ ] = Size (~) = Size(s) < Size(es) < Size(u).
V In g ) \ In x )

Otherwise, if ln(a;) fd s, the size of the argument passed to limit is equal to

the size of /, which, in turn, may be equal to the size of u, i.e.,

Size (-?-) = S{s) U {lnx} = 1 + Size(s) = Size(es) < Size(u).

Let us investigate what happens when we compute the limit of s/lnx. First

mrv(s/ In x) is determined. mrv(\nx) = {x} and so mrv(s/In x) = mrv(s)
and thus only mrv(s) needs to be computed. This computation however does

not pose further problems, since

Size(s) < Size(es) < Size(u).

Let us first assume that x £ mrv(s). Then w mrv(s) is an exponential and

the series of s/ln(a;) in u can be computed. According to Section 3.4.1.2 the

size of the leading coefficient of this series is smaller than the size of s/ In x and

so also smaller than the size of u. It may thus be processed further without

problems if necessary.

If, on the other hand, x mrv(s(x)), then we must move up one level in

the scale and compute the limit of s(ex)/x. We have already shown that the

size of the leading coefficient of the series of s(ex)/x in <j is smaller than that

of s/ln(:r), provided that the mrv sets of s(ex)/x can be computed. This

computation might, however, lead to an infinite recursion. As an example
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consider the computation of mrv(ex). According to Algorithm 3.12 we first

have to compare ex with mrv{x) = {x} which is a comparison of type (3)
with s = x. Since lnx ^zj s we determine mrv(s) = {x} and have to move up

one level and end up with the function ex jx. Computing the mrv set thereof

requires the determination of mrv(ex) first and we are in a loop.

However, we do not have to compute the mrv set if we move up one level.

We can rather derive it directly from mrv(t) by simply moving it up as well.

As x £ mrv(s), the elements in mrv(s(ex)/x) can be rewritten in terms of

u> = e~x. Rewriting of the elements in mrv(s(ex)/x) requires further limit

calls, but now all elements of the mrv set are exponentials. Furthermore, as

ln(x) ^5 s,

Size(s(ex)/x) = 1 + Size(s(x)) = Size (y^-) < Size(u).

As a consequence the size of the arguments for those limit calls in the rewriting

step (which are of type (2)) are smaller than Size(u) and do not lead to further

Problems. The size of the leading coefficient of the series expansion of s(ex)/x
in terms of w is smaller than that of s(ex)/x and hence smaller than the size

of u. Therefore, it can also be processed by further iterations if necessary

without problems.

3.5 A Complete Example

In the previous sections our examples have demonstrated single aspects of the

algorithm, but in this section we want to go through a complete example. We

compute the limit of

/ = In In (xexe* + 11 - expexp I lnlnx H— I

for x ->• +oo. The example is taken from [64].

In a first step we have to determine the set of most rapidly varying subexpres-
sions of /. For the first term this means Computing the mrv set of xexe*.

mrv(x) = {x}, and in order to compute mrv(exe ) we first have to de¬

termine the limiting behavior of xex. To compute mrv(xex) we compare

x and ex, that is we compute the limit of lnx/x. This limit is 0 and so

ex y x. As a consequence mrv{ex) = {ex}, mrv(xex) = {ex}, xex -> oo and

mrv(exe*) = {exe"}. Finally we have to compare x and exe*. The quotient
of the logarithms of the two is m(x)/(xex) = ]j!f-e~x and tends to 0. Thus

exe* y x and mrv (lnln (xexe* + l)) = {exeI}.

Let us now turn to the second term of /. The argument of the inner exponen-

tial of the second term tends to infinity and so we compare exp(ln In x 4- 1/x)
with mrv(ln In x 4- 1/x) = {x}. The mrv set of the quotient of the logarithms
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of the two is {x} and we expand this quotient into a series in terms of u — e
x

after having moved up one level:

lnlnx + 1/x lnx + u> Ina; 1
~> = 1— uj.

lnx x xx

The leading coemcient of this series tends to zero and thus x y elnlnx+1/x and

mr«(exp(lnlnx + 1/x)) = {x}. For the outer exponential we therefore have

to compare expexp(lnlnx + 1/x) with x. Again, x is in the mrv set of the

quotient of the logarithms and we move up one level and compute the series

in terms of u — e~x:

exp
(in in x+^) exp(lnx + w) 1

2 ,v
.

— ~> —— = 1 + w + - u;2 + 0{lj3),
lni x 2

which shows that expexp(lnlnx + 1/x) x x.

At this point our algorithm has determined that mrv(f) = exe and it has

derived the following order on the subexpressions of /:

exex y ex y {x,expexp(\nlnx+l/x)} >- exp(lnlnx + 1/x). (3.6)

Now we can start eliminating comparability classes. The size of / is 9, so at

most 9 iterations are necessary. We first expand / in terms of u\ = e~xe* and

get

In In (a^f1 + l) — exp exp (In In x + 1/x) =

(ln(lna: + xe') - exp exp (In Ina; + 1/x)) +
+^

ux + O (u^) .

Since the leading exponent is zero we continue with the leading coemcient

whose size is 7. (It is left as an exercise to the reader to figure out why the size

got reduced by 2.) According to the Information available in relation (3.6), the

most rapidly varying subexpression of ln(lnx + xex) — exp exp (In Ina; + 1/x)
is ex and we set 0J2 = e_x- For the series we get

ln(lna; + xlj^1) — exp exp (In In x + 1/x)
In x

— (In x + x — exp exp (In In x + 1/x)) H u>2 + O (^22) •

The size of this series is 6 and thus the size of the leading coemcient is 5. We

could now directly expand the leading coemcient into a series in x to get the

result, but let us strictly follow the rules of the algorithm. As the mrv set

of the leading coemcient is {x, exp exp (In Ina; + 1/x)} we move up one level.

The leading coefficient becomes

x + ex — exp exp (in x 4- e x)
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and the mrv set becomes {ex,exp(exp(ln:r + e~x))} We set u>3 — e~x and

rewrite the second exponential in the mrv set in terms of lo3 (the hmit of the

quotient of the logarithms of the two has already been computed) The series

of the transformed expression in W3 is

- + — I ÜJ3 +0(u>32)

As the leading exponent of the series is positive, the hmit of / for x -> +00

is 0

With the above approximation we also found an asymptotic approximation
for / at x = 00

In x
„

f\nx\

f*--2x- + 0{-)
In Chapter 6 we will look at this apphcation of our algonthm in more detail
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In this chapter we compare our algorithm with two other approaches which

have been proposed in the literature. First we will discuss the nested forms

and nested expansions which have been proposed by Shackell [78]. A nested

form is just another form of writing a function which corresponds to the first

term of an asymptotic series. This form allows one to read off the limit eas-

ily. The algorithm to convert a function into its nested form is a bottom

up algorithm. A given function is converted recursively into a normal form.

Since cancellations may occur during this normalization process, all Informa¬

tion about the function must always be kept available. If cancellation occurs,

then the right scale of expansion is found with the help of the zero equiva-
lence oracle. The oracle is applied to the function which is obtained by setting
all subexpressions which are in a larger comparability class than the poten-
tial scale of expansion to zero. The normal form is defined such that this

Substitution is always possible.

Secondly, we briefly discuss the ghost and shadow approach also introduced

by Shackell in [83]. This algorithm is based on the same ideas as the nested

form algorithm. Instead of replacing subexpressions with zero, projection onto

a shadow field is used. This method is also based on the idea of asymptotic
series expansion. A function is expanded into its asymptotic T expansion
where T contains all the different comparability classes.

4.1 Nested Forms

The nested form of a function is a normal form for elements in a Hardy field

which either tend to infinity or to zero. Nested forms have been introduced

by Shackell in [78]. When he was implementing an algorithm for Computing
asymptotic approximations in Miranda [52] using a generalized power series

approach he encountered the cancellation problem. His answers were first

estimate forms [77] which he subsequently replaced by the nested forms. For

an overview article on nested forms we refer to [80]. The following deflnition

is a minor variant of Shackell's. The notation lk is used for the fc-th iterated

logarithm and e^ for the fc-th iterated exponential.
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Definition 4.1 (Nested Form) Let T be a Hardy ßeld and let 0 be a

positive element in T. A nested form for <j> is a ßnite sequence {(el, s,, m„

dt, (/>,), i = 1, ..., k} ofk elements, k > 0, which has the followingproperties:

(a) For each i, et {—1,1}; st and mt are non-negative integers, dl is a

non-zero real number and <p% is another element of a Hardy ßeld;

(b) <fi - (j)0 and for i = 1,..., k : <$>%-\ = e^; (/m, (x) ,<j)l);

(c) 4>% -< Im, (x) for i = l,..., k;

(d) 4>k tends to a positive constant, i.e. 4>k = c + £ with c > 0 and £ -> 0 as

x -> +oo;

(e) Vi : 1 < i < k : d,>OVs,=0;

(f) Vi : 1 <z<fc : st =0=> ^ = 1;

(gj 4^1orsfc=0ormfc = 0.

Condition (e) implies that the argument of the exponential always tends to

infinity. Condition (g) can be motivated by the fact that in the case that

dk = 1 and Sfc > 0 and vtik > 0 the expression

4>k-x = e*J (lmk (x)<t>k) = ees[ {lmk {x){c + 0)

can be converted to

e^_! (/mi_i(x)c ei(lmk (x) 0)

where of course exp(Zmi (x) £) must be written as a nested form. Condition

(c) is satisfied for the above nested form as

lim W^¥Sr= Um ¥^4= lim *
= 0.

x->+oo m(lmk-l(x) ) x-++oo ClmL (X) x->+oo c

Up to the representation of <j>k, the nested form of a function is unique. Once

a function / has been converted into nested form, its limit is apparent. If

k = 0 then the limit is c, and if si > 0 and ei = 1 or si = 0 and d\ > 0 then

the limit is +oo, otherwise the limit is zero.

A nested expansion for a function / G T is a sequence of nested forms n}

so that ni is a nested form for / and if n3 = {{£Jl,sJl,m]l,djl,(j)jl), i =

l,...,kj}, j > 1, then n3+L is a nested form for \(j>3,k} — lim^fcj. The

finite partial expansions {n\,..., n3} give successively finer estimates of the

asymptotic growth of / in the same way as the partial sums of an asymptotic

expansion do.

For example, the nested form of the function / = ln(r(r(x)))/ex is
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{(1,1,0,1,0h), (1,0,1,1,012)}
where 0i2 = 1 - £i •

Rewritten in usual mathematical notation we obtain

=

e}(xe£(lnx{l-6}))=e*

ln(r(r(a:)))_.w_.Wl__M
, lU

_ Ins(1_{i)

The limit of \n(r(r(x)))/ex is +oo as s\ — 1 and e\ = 1. The next term

of the nested expansion of / is {(1,0,1,-1,02i)}> i-e. £i = ln-1(x)02i with

02i = 2 — £2, and so on. We will see this example once more in the next

chapter as Example 5.5 where we show, how an extension of our algorithm
handles this problem.

In [78] it has been proven that / has a nested expansion if it belongs to a

Rosenlicht field T. Additionally, the existence of a nested form implies that

the computation of a nested form for / T is Turing reducible to the problem
of Computing limits in J7. This seems somewhat surprising since a nested form

contains much more Information than a limit.

Lemma 4.2 Let T be a Rosenlicht ßeld and let us assume that we have an

oracle which determines the limit at +00 for any element f £ T. The nested

form of a function f T can then be computed if it exists by performing
arithmetic in T and Consulting the oracle only.

Proof. If the limit of / is finite and non zero (which can be checked using
the oracle), the nested form of / is simply lim / + (/ - lim /). Otherwise the

nested form of / has the form

/ = oe\ (lm(x)d4>)
with lm{x) > 0, s,m IN, d 6 M* and e £ {1, -1} and where o is the sign
of /. Let us further assume that v{f) < 0 which can be tested using the limit

oracle. If v{f) > 0 then we first determine the nested form of /_1 and derive

the nested form for / by adjusting e and d. As o holds the sign of / we assume

further that / > 0.

Since / > 0 and u(f) < 0 which implies e = 1 we can write

hU) = lm(x)d4>

h+i(f) = d/m+i(x)+ln0

h+i(f) ,
,

hi0
= d +

lm+l{x) lm+l(x)

As 0 -< lm (x) it follows that

d{s,m)= lim *s+l(/) =dJR*. (4.1)
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In other words, we have to determine integer parameters s and m so that (4.1)
is satisfied. One could search for such parameters systematically using a Can-

tor enumeration of IN2, however a more efficient algorithm can be formulated.

From the definition of d(s, m) follows that

d(s, m) = 0 => d(t, m) — 0 V t > s and d(s, n) = 0 V n < m

d(s,m) = oo =>• d(s,n) = oo V n > m and d{t,m) = oo V t < s.

Thus, if we look for s and m in the ränge s > so and m > mo and if d(so, mo) =

0 then the search can be restricted to s > so and m > mo; if d(so,m0) = oo

then s > so and m > mo is implied; and if finally d(so, mo) £ M* we are done.

Algorithm 4.3 performs this search for an expression / which tends to oo.

Algorithm 4.3 Computing the nested form of / G T

NestedForm(/) =

s := 0; Isf :— /; m :— 0; Imx := x;

{Isf = Zs(/) and Imx = /m(x)}
d:= lim ;^-

while d — oo or d — 0 do

if d = oo —> s:=s + l; Isf :=\n(lsf)
elif d = 0 —> m:=m+l; /mx := ln(/ma;)
fi

d:= lim -^L

a

od

{den*}

The existence of a nested form for / implies that Algorithm 4.3 terminates.

For Computing the parameters s and m, s + m + l inquiries of the limit oracle

are necessary. To get the nested form of / Algorithm 4.3 has to be applied

recursively to ls(f)/lm{x)d until an expression is obtained whose limit is finite

and non-zero. ü

A direct implementation to compute nested forms for exp-log functions can

be derived from the algorithm described in [77] which computes the estimate

form of a function. An estimate form is also a normal form for functions

which is not as powerful as nested forms but similar enough to allow us to

easily adapt the algorithm. We have successfully implemented this algorithm
in Maple. We will first recall the basic ideas and steps of this algorithm and

then compare it with our algorithm from the point of view of practicability
for Computing limits.
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4.1.1 Algorithm for Computing Nested Forms

The basic idea of the algorithm presented in [77] is that the expression tree of

the function is converted into a nested form from the bottom to the top. At

the leaves of the expression tree we have constants which are already in nested

form and the unknown x, whose nested form is {(1,0,0,1,1)}. Furthermore,

algorithms to compute the nested form of the exponential, the logarithm and

the inverse of a nested form are given as well as algorithms to compute the

nested form of the sum and the product of two nested forms.

Expressions which tend to zero play a special role in this algorithm and are

called z-sums. For example f is a z-sum in <f>k = c + £. A z-sum is a sum

of z-prods, and a z-prod is a product of z-terms. A z-term is either a nested

form which tends to zero, e.g., a nested form with e < 0, or a z-function. A

z-function is a function which tends to zero and which is applied to arguments
which also tend to zero. For exp-log functions we have z-functions which

encode the shifted exponential function at x = 0, the logarithm at x = 1 and

a shifted inverse at x — l.1 There are also z-functions which represent the tail

of the series expansion of a z-function.

zexp0(x) = ex - 1, zexpjx)

zlog0(z) = ln(l+:r), zlogn(x)

zinv0(a;) = 1 - j^, zinvn(x)

for n > 0.

The basic Operation which is used in order to perform the arithmetic Opera¬

tions on nested forms is the conversion of a z-sum Z into a nested form. This

process is called z-expansion and is done, roughly speaking, by expanding the

z-sum into a series and by taking the leading term as a new nested form.

The crucial point however is that this expansion has to be performed in the

right asymptotic scale due to the cancellation problem. As a consequence the

comparability classes of all the nested form-like z-terms2 which appear in Z

are determined and ordered in a first step. If there are several z-terms which

are in the same comparability class, then Z has to be rewritten.

Once the comparability classes of all z-terms have been determined and are

all distinct, the correct comparability class to perform the expansion is de¬

termined. Let us assume that the comparability classes of the z-terms are

wi -< lü2 ~< • •' *< Wf %k is defined to be the expression being obtained from Z

by replacing all z-prods which are in a higher comparability class than Wfc by
zero, and in particular Z = Zr. Due to the special form of the z-terms, this

1Additional z-functions must be added if the field of functions is extended, e g a function

zsin(a;) = sin(x) and zcos(x) = cos(x) — 1 (cf [75])
2 For a precise defimtion we refer to [80] where the set of nested form-like terms is called

the set V(Z)

= i(zexPn-l(x)-ff)
= i(zl°gn-l(*)-t) (4.2)

= ifzinvn_i(x) -xj
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Substitution is always possible. In order to find the right comparability class

in which the series expansion has to be performed, we go through the expres-

sions Zi, Z2,... and determine whether they are zero or not using the oracle

for deciding zero equivalence. If Zk is zero, then we know that some positive

powers of any w* with i > k must appear in the asymptotic expansion of Z, as

Z itself is not identically zero. Let k be the smallest index such that Zk 7^ 0,

then the series can be computed in terms of v — Uk and no cancellations will

appear.

Furthermore, if a z-function f(x+y) is to be expanded in terms of v then it may

happen that x only depends on z-terms which are in a smaller comparability
class than v and that y contains a positive power of v. In order to be able to

apply the expansion rules (4.2) to compute the power series of /, the function

must be expanded, i.e. the x and the y term of f(x + y) must be separated.

Special expansion rules are given in [77, Lemma 23].

Once this Separation has been done, the z-functions which contain a positive

power of v in their argument can be expanded using the expansion rules (4.2).
The leading term of a z-function with index n — 1 is obtained if it is expressed
in terms of the z-functions with index n. Eventually Z can be written as

Z = vr{H + 77} with j] —> 0. In a similar way, H can be expanded and finally
Z will be transformed into Z = v\x v^2 v^ {c + (} where c is a nonzero

finite constant, £ is a z-sum and v\ y vi > > vm. This form for Z can be

converted into a nested form by multiplying the nested forms i;[' and c + £

together.

4.1.2 Comparison

The main difference between the algorithm to compute a nested form and our

algorithm is that in Shackell's approach no terms of any series approximation

can ever be discarded. The remaining higher order terms of any series ap¬

proximation always have to be retained. The reason for this is that Shackell's

algorithm operates on the expression tree of a given function recursively from

the leaves up to the root. In order to be able to resolve cancellation problems
at higher levels in the expression tree all the Information for every subexpres-
sion must be available. No Information can ever be neglected in this approach.
As a consequence the nested forms tend to become bigger and bigger during
the recursive process and this is a significant disadvantage. Our algorithm,

however, can discard the tail of every series expansion as it only needs the

leading term. The Information which is stored in the tail of the series expan¬

sion is no longer needed (in order to determine the limit). As a consequence

the size of the expression tends to get smaller at every step, a characteristic

we could use to prove termination.

3There is a typographic error in the expansion rule for zinv„(a; + y). The term £/n(x, y)
must be added and not subtracted.



4.1 Nested Forms 69

To illustrate this point let us look at the size of the nested form of

„x . „z-e

ee /e

which turns out to be 1 + ( where £ is the following z-term:

zexp0 ( e^1 (x|l + Ci + zlog0 (

e^l(x{\ + Ci}) -zlog0 (-zlog0(zexp1(-e^1(x)))e^"1(a;{H-Ci})) x
-l

)

with

zlog0(zlog0(-:re2 l{x))e1 l(x))
c,i =

X

Computing the limit of a function using the nested form approach provides a

typical example of an algorithm which suffers from the problem of intermediate

expression swell as the size of the result we finally are interested in, namely the

limit of the function, is very small. This problem is one of the most serious

Problems Computer algebra algorithms can encounter and should whenever

possible be avoided.

Another problem which aggravates this Situation is the problem of sim-

plifying z-sums. Once a z-function has been expanded to order n it is

very expensive to figure out whether it can be combined together with

other terms into an expansion of smaller order. As the complexity of such

a simplification step is exponential to the size of the expression, it can-

not be done in practice, and as a consequence the expressions get larger
than they have to be. Consider the computation of the nested form for

e1//x — (e1/* — l)/(e1//x). The algorithm proceeds as follows: First the

nested forms of the numerator and the denominator of the quotient are de-

termined, i.e. e1/,x - 1 = x_1{l + zexp^l/z)} and ellx = 1 + zexp0(l/x).
The inverse of the latter is 1 — zinvo(zexp0(l/x)) and the quotient becomes

x_1{l+zexp1(l/a;)—zinvo(zexp0(l/a;))—zexp!(l/a;)zinvo(zexp0(l/a;))} which
tends to zero. Thus the nested form of e1//x - (e1/* - l)/(e1//x) is

1 j_ mn m -

I zexpi(*)
4.

zinv°(zexp°(x))
l
+ zexPo(-j x- x

+

x (4.3)
'

X

If the function first is normalized however, then another, more complicated
nested form results. We compare the two nested forms with a Maple package

we implemented to compute nested forms. The implementation follows the

description in [77] and was adjusted to nested forms where necessary. L(n)
denotes the n times iterated logarithm, i.e. L(0) = x, and NF(0, c, £) denotes

c+C-

> e := exp(l/x)-(exp(l/x)-l)/(exp(l/x)):
> JSnestform[Input](e);
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NT?
(n

1 i
x

zmv°(zexP°(rfö)))
_

zexPi(rföl)
INI" I U, 1, i(Q)

-+-

L(Q) L(Q)

zexPi(rfö))z'"v°(zexPo(7Tö))) / i \
+ L(Ö)

+ zeXP0 VL(Ö) ;

> JSnestform[Input](normal(e));

NF (o, 1, - zinvo (zexp0 (^)) + ^ + 2=kkl

zexPi(rföl)
_

zinvo(zexPo(rfö)))
_

0
zmvo (zexp0 ( rföj ) ) zexPl (^ )

1,(0) L(O)
Z

1,(0)

zinv0(zexp0(rföT))zexp1(riöT)\
+

m )

A sequence of transformations can be applied to equation (4.3) to see that the

two representations are indeed equivalent. However, the point is that such

a simplification is difficult to perform automatically. Remember, that nested

forms are only unique up to the representation of the z-sum £ in 4>k

As z-sums are difficult to simplify, it may happen that zeros remain unsim-

plified as huge expressions. If such a zero appears inside another expression,

there can be little chance to detect and remove it. The treatment of these

hidden zeros implies a lot of unnecessary work. Consider again the above

example. The function SAdd adds, and the function SSubtract subtracts two

nested forms. L(n) Stands for the n-times iterated logarithm.

> JSnestform[SSubtract](

> JSnestform[SAdd](JSnestform[Input](1+1/x),"").
> ");

NF (0,1;2-°(^(rk)) + zinVQ (zexpo (^
,
_vn

/ 1 \ 1 9 ,,nvo(«exp0(zfey))zexp1(Ifey)
+
zexp0 ^xföj j

~

Ttö)
~ z

L(ö)
+ z

z,(o)

> normal(JSnestform[Output]("), expanded);

X + l

> JSnestformClnput](");

1
NF 0,1

L(0)

We see that the first result contains a large hidden zero, but as long as it does

not appear as an isolated term, the zero equivalence oracle cannot be applied.
Such hidden zeros slow down the Z-expansion.

The representation of the z-sums also depend on the order the terms of a sum

are summed up, and it is not possible to decide easily which order will return
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the simplest representation. Consider the normalized form of our example
function:

(ei/*)2 _ ei/x + !

ei/i

Once the terms of the sum of the numerator have been converted to nested

forms, they can be summed up in three different ways:

> JSnestform[SAdd](JSnestformClnput](exp(l/x)~2),
> JSnestformClnput](-exp(l/x)+l));

NF
(o

1 L_
_

zexPl(^) +

zexn
(-*) ]

iMr iu, i, L(0) L(0)
+-

zexp0 yj^) J I

> JSnestform[SAdd](JSnestform[Input](-exp(l/x)),
> JSnestformClnput](exp(l/x)"2+l));

NF (o, l,zexp0 (j^y) -

zexp0 (^j
> JSnestform[SAdd](JSnestformClnput](1),
> JSnestformClnput](exp(l/x)"2-exp(l/x)));

NF (o 1 -i- + 2zexp'(rfe) _

z^Pi(rfö))\

In some cases the z-functions got expanded to a certain degree, in others they
did not get expanded. Note also, that for the first and the last ordering a Z-

expansion is computed, while for the second order no Z-expansion is necessary.

Note, that a normalization of the input does not necessarely resolve the above

problem. The terms of the sum could appear as arguments of a z-function /
for which no expansion rule is known, e.g. /(*i +*2) + /(*3) —/(*i) — fih + ts).
As soon as this function is expanded, the hidden zeros may appear.

These examples demonstrate, that different representations of the z-sums may

lead to complicated, unsimplified expressions and to hidden zeros. As a con-

sequence the computation of a Z-expansion becomes a very expensive step in

this algorithm.

Z-expansion requires that the comparability classes of the argument are de-

termined and ordered. In contrast to our approach however, Z-expansions
are always only applied on subexpressions. Our algorithm, however, operates
on the expression as a whole and always compares the comparability classes

of all subexpressions. In Shackell's algorithm this Situation only occurs if a

Z-expansion of the given function must be computed. However, it turns out

that due to the intermediate expression swell the algorithm to compute nested

forms breaks down even though potentially less comparisons have to be per-

formed. As a consequence, our algorithm usually runs faster than Shackell's.

Computing the limit of exlx - (exlx — l)/{el^x) for x ->• +oo our algorithm is

more than two times faster, and for Computing the limit of ee /ee as

x tends to +co our algorithm is more than five times faster than the nested

)



72 4. Related Work

form algorithm. These timings give an indication only, as it is difficult to

specify a fair set of examples. Note also that for most examples we tested,
the trivial implementation 4.3 for Computing a nested form using our limit

facility MrvLimit runs faster than the direct implementation of the nested

form algorithm in Maple.

Another difference of the two approaches is the complexity of the code of

our implementations. The source code for Shackell's algorithm is about three

times larger than the code we used for our algorithm.

Although the overall approaches of these two algorithms are different, the

algorithm to compute nested forms uses some techniques which have their

counterparts in our algorithm and vice versa. For example, when expanding
a z-term Z in terms of w we first have to separate the arguments of any

z-function f(x + y) in the case that x only depends on z-terms which are

in a smaller comparability class than u. In terms of our notation a similar

Separation has to be applied in the case that mrv(y) = u and j(x) — 7(1+2/) <

w (note that in our Situation x and y do not necessarily tend to zero). We

simply expand / into the Taylor series around u> = 0 in this Situation and so

automatically perform the Separation of the arguments.

Another similarity is the determination of the right scale in which the series

expansion has to be performed. In Shackell's algorithm this is done by setting
to zero all z-prods which are in a greater comparability class than ui% for

a certain i and then by testing whether this expression is zero. The zero

equivalence test for Zk (i.e. for the first function which is not zero) is also

performed by our algorithm, but in another context. When Computing the

power series in terms of the most rapidly varying subexpressions uj >- u>k,

the leading exponent is zero and the leading coefficient is non-zero, which

is confirmed using the oracle for deciding zero equivalence. However, the

leading coefficient of the series in terms of u>j for j > k will be Zk, and so the

same zero equivalence test is done. The difference between the two approaches

concerning the search for the right entry in the asymptotic scale is that we are

searching from the most rapidly varying subexpression down to the correct one

in our algorithm, whereas Shackell searches from the smallest comparability
class up to the correct one.

Probably the most important difference between the two algorithms is that

Shackell's algorithm really solves a much more complicated problem than

merely Computing limits, namely the computation of a nested form which

contains Information about the asymptotic behaviour of the given function.

This normal form allows, for example, the computation of the nested expan¬

sion of the compositional inverse of the nested expansion of a given function

/ [73]. The conclusion of this comparison is that our approach is better suited

for Computing limits, in particular with a symbolic manipulation System, and

that Shackell's algorithm has its own applications.
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4.2 Ghost and Shadow Approach

The ghost and shadow approach is an extension of the algorithm to compute

nested forms, and it is presented in [83, 82]. The ghost and shadow approach is

an extension over nested forms as it runs in any asymptotic field [83]. The most

interesting property of asymptotic fields is, that a real Liouvillian extension

of an asymptotic field is also contained in an asymptotic field [83, Theorem

5]. This way, limits of Liouvillian functions can be computed.

However, the algorithm is similar to the nested form algorithm. The step of

replacing comparability classes by zero during the Z-expansion in the nested

form algorithm is replaced by the projection of the function onto a shadow

field. The shadow of a function with respect to a given comparability class is

obtained if all subexpressions of equal of higher growth are replaced by zero,

and the ghost is the difference of the function and its shadow. Cancellation

between shadows is also detected using a zero-equivalence algorithm.

Once the proper comparability class has been identified, an asymptotic series

expansion is performed in this and lower comparability classes. This step is

similar to the expansion in terms of the most rapidly varying subexpression
in our algorithm.

The ghost and shadow approach is also a bottom-up recursive algorithm. As

a consequence, the tails of all series expansions have to be retained in closed

form - a property we identified to be problematic for the nested form approach.
As soon as an implementation of the shadow and ghost approach is available,

a comparison is possible.

The ghost and shadow approach however is very interesting from a theoret-

ical point of view as it allows to extend the field of functions to Liouvillian

functions, i.e., limits can be computed in a field given by a tower of extension

of the basic constants by integrals, exponentials and real algebraic functions.

It is a topic of further research whether these ideas can be combined with our

approach.

What we will present in the the next section only shows how our algorithm can

be extended to functions which fit into the model of our algorithm. It turns

out, that almost all functions available in a symbolic manipulation System

(e.g. trigonometric functions, error functions, gamma functions, etc.) can

be covered with our algorithm, and thus, from a practical point of view, our

algorithm is very interesting and already got implemented in several Computer

algebra Systems.
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In Chapter 3 we described our algorithm for exp-log functions. In this chapter
we investigate how we can extend the algorithm to work on a wider class of

functions. Thereby we try to follow the lines of the algorithm for exp-log
functions, i.e. we investigate, which of the properties of exp-log functions,
which are needed by our algorithm, are also satisfied by other functions, or

how other functions might be rewritten such that they can be covered by our

algorithm. It turns out, that with this approach, surprisingly many functions

can be handled.

Other algorithms have been presented which allow to compute limit for general
classes of functions, e.g. for meromorphic functions [82] and for Liouvillian

functions [83]. If the latter algorithm works over some function field, this

field can be extended by any real Liouvillian extension, i.e. an exponential,
an integral or an algebraic extension. These algorithms are very interesting
from a theoretical point of view, but they still await their implementation in

a Computer algebra System.

Let T denote a field of germs of functions at xq in which limits can be com-

puted with our algorithm for x -> xo and let / 6 7. In the first section we

show that if g can be expanded into an (asymptotic) power series at the limit

of / (which may be infinity), then our algorithm can also compute limits in

T{g o /). In the next section we show how to deal with elements g o f which

have an exponential or a logarithmic singularity at the limit of /. We close

this chapter with a definition of the Mrv% field in which we can compute lim¬

its with our algorithm and show which requirements of the algorithm prevent

us from extending the function class which can be handled further.

5.1 Tractable Functions

Let us assume that T is a field of germs of functions in x at xq in which we can

compute limits at x = x0 with our algorithm and let / T. In this section

we show that our algorithm can be extended to handle the computation of

the limit of g o / for x —¥ xq , provided that g is a function which is tractable

at the limit of /.
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Definition 5.1 A function f(x) is tractable at x = o from the right or from

the left ifit does not have an essential singularity at a and ifit can be expanded

into a (one sided, asymptotic) power series at a, i.e. if for w > 0 the power

series

fix)

f{a + w)

f(a - w)
/( IM

= c0 we° + Cl ur
*
+ •

for a finite a from the right
for a finite a from the left

for a — +oo

for a = -oo

exists with cx <D,et M and et+i > e,.

Note that we allow real exponents in the power series expansion, not just

integer or rational ones. To say that the power series is computable means

that we have an algorithm to effectively compute the coefficients c, and the

exponents et. Examples of tractable functions are analytic and meromorphic
functions. Note that the derivative of a tractable function is also tractable at

x = a. Moreover, if g is assumed to be tractable at the limit of /, then the

(one sided) limit of g o f exists and is either finite or ±oo. This limit can be

computed provided that the leading term of the series of g at the limit of /
is known, that the limit of / can be determined and, in case that the latter is

finite, that the sign of f(x) — a can be determined, where a is the limit of /.

Let us discuss now how we have to extend our algorithm in order to be able to

compute the limit of functions which contain g{f(x)) as a subexpression. Since

g is assumed to be tractable at the limit of / we can define mrv(g(f{x))) =

mrv(f(x)). As a consequence, g(f{x)) cannot appear in any mrv set and thus

we do not have to discuss how to rewrite g(f(x)) in terms of another element

in the same comparability class. Moreover, the tractabihty of g at the limit of

/ also implies that g(f(x)) can be expanded into an asymptotic power series

at the limit of f(x).

However, since we are eliminating the comparability classes according to their

order, it may happen that g has not to be expanded at o (where a is the limit

of /) but rather has to be expanded at a function whose limit is a. Such a

Situation occurs if mrv(g{f(x))) > ü where

o — / 7(f(x) ~ a) if a 1S nnrte
""

\ l{f{x)) if a is ±oo

The series expansion of f(x) in terms of u rnrv(g(f(x))) then has the form

Co + h(ijj) with h(u) = Ciu>61 + 0(u;e2), where e\ > 0 and uj >- mrv(co) >z

fi >- 7(1) and Co -> a. Thus, we have to be able to expand g(c0 + h(uj)) into

a power series in terms of u. The Solution is the same as in the exp-log case,

namely to expand g(c0 + h(io)) into its Taylor series at u = 0, i.e.

Series(5(c0 + h(w)), w) = g{co) + g'{co) h(u>) + ^-^- h{u)2 + .
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This expansion is a proper asymptotic series as mrv(g^(co)) = mrv(co) -< w,

as the derivatives of # are tractable as well.

What remains to be shown is that the extended algorithm still terminates.

Termination as proven in Section 3.4 uses the size of a function as a variant

function. Thus, we only have to extend the definition of this size appropri-

ately. We recall that the size is a measure for the number of comparability
classes which may emerge out of the expression during the rewriting and the

series expansion steps. It is defined as the size of the set S containing all

the expressions which potentially may be contained in an mrv set. Since a

tractable function never appears in any mrv set, we can still use the same

definition for the size of a function and simply define S(g(f(x))) — S(f(x)).
It is easy to see that termination is still guaranteed then.

Examples of functions which are tractable at a finite argument are all trigono-
metric functions, r(x), ^(x)1, £(x)2, erf(:r), Si(a;)3 and some Bessel functions.

arctan(x) is additionally tractable at x = ±oo. The functions dilog(x)4,
W(x)5, Ci(a;)6 are tractable for finite positive arguments, and Ei(z)7 is

tractable for finite real arguments not equal to zero.

Example 5.2 We are able now to show how our algorithm computes the limit

lim ex (sin(l/x + e_x) -sin(l/x)), (5.1)
x—y+oo

which we introduced in Example 2.17. The set of most rapidly varying subex-

pression is {ex,e~x}. If we replace e~x by u we obtain

- (sin(l/x + w) - sin(l/x)). (5.2)
to

Now we have a Situation where mrt>(sin(l/a; + w)) — u> >- -){l/x + w) = f(x)
and we have to expand sin(l/:r + cj) into its Taylor series at w = 0,

sin(l/i + w) = sin(l/z) + cos(l/a;) u - sm^lJx^ u* + 0{w3) (5.3)

and the series expansion of (5.2) becomes

.....o
sin(l/:r)

, cos(l/x) 2 sin(l/a;) 3 4. ^

cos(l/:r) u°
K-L-L üj1 y—- üj2 + —^-7—^ uA + 0(w4). (5.4)
2 6 24

^(x) is the digamma or zero'th polygamma function defined as r'(x)/r(x) The n'th

derivative of ip(x) is the n'th polygamma function

2C(X) is the Riemann Zeta function

3Si(x) is the sine integral defined as J _

sm(t)/tdt

4dilog is the diloganthm function and defined as dilog(x) = J lnt/(l — t) dt

5W(x) is Lambert's W function defined as the pnncipal branch of the Solution of

W(x)ew(*) = x. See [19] for a reference

6Ci(x) is the cosine integral defined as 7 + lnx + J (cost — l)/tdt

7Ei(x) is the exponential integral defined as | e' Itdt
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The leading term of (5.4) is cos(l/x) • u>° and so the limit (5.1) is one, which

could be derived with a further iteration on cos(l/x). %

If we have extended the function field by a tractable function, then we can

always close the new function field by the exponential and the logarithm func-

tions. Our algorithm can compute limits in this closed function field, as the

computation of the most rapidly varying subexpression as well as the series

expansion is always computable.

As an example we can now explain how our algorithm solves the limit

lim^-j.o ecscx/ecotx, which we have already met in Section 2.3.2. Both, the nu-

merator and the denominator have an essential singularity, but both, csc(a;)
and cot(x) are tractable at x = 0. We have realized that the power series

approach can only solve this problem if we simplify the function first using a

heuristic, although ecscx /ecotx is analytic at x — 0. In this particular example
the combination of the two exponentials would do the job. Let us look how

our algorithm solves this problem.

Example 5.3 Let us compute the limit

lim e——. (5.5)

Let us first assume that zero is approached from the right. The set of most

rapidly varying subexpressions is {ecscx ,ecotx} and we have to rewrite one in

terms of the other. Let us first choose u = e~cotx. ecscx can then be written

as ecscx-c°tx tjj-1 and e«>tx ag u-i_ -jhe rewritten function becomes

and the leading coefficient of the series in u is ecsc x cotx. Conversely, if we

choose w = e~
csc

x, the rewritten function becomes

w-1

pCOt X—C5CX,

and the leading coefficient of the series in u is l/ecotI cscx. The same result

is obtained if zero is approached from the left.

We see, that our algorithm automatically performs the transformation we have

proposed in Section 2.3.2. The most rapidly varying subexpression of both

gCSCX-COtl an(J -jygCOtx-CSCX jg y, ag tne ^mjt 0f Cgc x _ CQt x ^ zer() rp^ J^gj.

limit is computed recursively by a simple series expansion. Therefore both

leading coefficients ecscx-cotx and i/ecotx-cscx can directly be expanded into

a power series around x = 0 and the limit (5.5) turns out to be 1. f
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5.2 Essential Singularities

If the argument of the function / tends to a limit o as x -> xo at which

/ is not tractable, then it cannot be expanded into a power series and the

algorithm cannot be applied without modification. This happens for instance

if the function / has an essential singularity at a. In this section we show

how exponential and logarithmic singularities can be handled. The idea is

not to change the algorithm but rather to rewrite / into a function where

the singularities appear explicitly and which contains only tractable functions

besides of exponentials and logarithms.

If / only contains a logarithmic singularity at o, then we are in a special
Situation. The coefficients of the (asymptotic) power series of f(a + w) at

uj = 0 are not constants then but rather depend on ln(w). However, when-

ever f(a + w) is expanded in the context of our algorithm in terms of ui,

u> = eh is an exponential and thus ln(u;) gets simplified to h and no longer
depends on u>, and furthermore, mrv(\n(u>)) = mrv(h) -< u> according to

Lemma 3.20. We met the same Situation already for the series expansion of

the logarithm function in Section 3.3.3. We denote a function / to be semi-

tractable at a, if the coefficients of the asymptotic power series of f(a + u>)
only depend on ln(w). The derivatives of semi-tractable functions are semi-

tractable at a as well. Concerning termination we must add that out of a

semi-tractable function two comparability classes may evolve, and in order

to be able to specify an upper bound for the number of iterations we have

to dehne S(f(g(x))) — S(g(x)) U {ln(g(x))} in case that / is semi-tractable.

Examples of semi-tractable functions are Ei(x) at x = 0, ijj(x) at x = +oo,

dilog(x) at x = +00 and at x — 0+, Ci(a;) at x = 0 and some Bessel functions

at x = 0+.

All other essential singularities cannot directly be handled by our algo¬
rithm. However, if we succeed in isolating the essential singularities in a

pre-processing step, then the limit becomes solvable. The transformed ex-

pression has to be composed of semi-tractable functions only, composed with

exponential and logarithm functions. For all functions which have essential

singularities, such a transformation has to be provided for each point where the

essential singularity occurs. The error function erf(x) for example, which has

an essential singularity at x = +oo, may be transformed to 1—erfs(a;)/ exp(a;2)
where erfs(:r) = (1 - erf(a;)) exp(x2) is tractable at x = +oo.

We give below a list of possible transformations for functions which have

essential singularities at +00:

erf(x) -> l-e-x2erfs(z) (5.6)

Ei(as) -) exEis(x) (5.7)

r(x) -> en<x) (5.8)

W(x) -> W.(lnar) (5.9)
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C(*) -» £(0 (5.10)

Ai(i)* -> ^e-2/3^(^^)-1/2Ais(x) (5.11)

Bi(i)t ->• e2/3V? (tta/S)-1'2 Ais(z) (5.12)

li(a:)* -> xEis(lna;) (5.13)

where erfs, Eis, rs, etc
,
are (semi-)tractable functions which are defined by

those transformation rules. Obviously, several transformations are possible to

isolate an essential singulanty for a given function at a particular point. For

example, r(x) at +oo could also be transformed with

r(x)-> exlnx e~x ta{x) (5.14)

at x = +oo where ts(x) is tractable, but obviously different from Fs(x)

For Ei(x) and erf(x) the following transformations might be used to separate
the essential singularity at x = —oo

Ei(ar) -> exEis(x) (5.15)

erf(x) -»• -l + e-x2erfs(-;r) (5.16)

In order to apply the algorithm to these new tractable functions fs(x). their

asymptotic power series expansion has to be known. For the above examples,
these power series at x = +oo are

-.« - £fa^G)'

°° /l\fc+1
Eis(z) = £*! f-J = aT1+:r-2 + 2ar3 + 0(arl) (5.18)

Ai,W = ,-^ + |»,-_|»|^/» + 0<O (5,9)

Cs(x) = l + x-|n2+a;-ln3+a;-ln4+0(x-ln5) (5.20)

r-i/ \ n i\
ln2?r lnx 1

_,
1

_, _.
_

= . ,„„,..

rs(x) = (lna:-l)i + — — + —x
x
- — x~3 + 0(x 5) (5.21)

12 288

Ws(a;) = x-lnx + lnxx"1+ -\nx(\nx-2)x-2 + 0(x-3) (5.23)

*Ai(a;) is the Airy wave function Ai, [3, (10 4 1)]
^Bi(x) is the Airy wave function Bi, [3, (10 4 1)]
*li(x) is the loganthmic integral, [3, (5 1 3)]
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Note that rs(x) and Ws(x) are actually semi-tractable.

For the semi-tractable functions fs(x) we must also be able to compute the

Taylor series of f$(g(x)) in case that mrv(g(x)) y j(g(x)), and the derivatives

are therefore needed.

2

erf's(x) =
—j= + 2 erfs(:r) x

y/TT

Ei',(i) = --Ei.(a?)
x

w'(a° =

TTvrÄT)
rs'{x) = i>(x)

Since C(x), r(x) and ip(x) do not satisfy an algebraic differential equation, the

derivatives thereof cannot be expressed in terms of these functions themselves.

However, the derivatives still exist and are tractable.

We close this section with some examples which demonstrate how our limit

algorithm computes limits of expressions which contains functions with es¬

sential singularities. The behaviour of other algorithms on these problems is

shown in Chapter 8.

Example 5.4 The following example illustrates this pre-processing step for

an easy problem. Consider

lim Ei(x + e~x)e~x x.

X—^+00

The argument of the exponential integral tends to +oo as x -¥ +oo and we

transform the function using the rule (5.7):

Ei(x + e~x) e~x x -* ex+e~x Eis (x + e~x) e'x x =: u.

mrv(u) = {e~x,ex+e x} and we set u = e~x. The second element in mrv(u)
becomesex+e

*

=e"oj~1. After the rewriting step we must expand eu Eis(x+

lj) x into a series at w = 0+. Note that we have mru(Eis(a;+ti;)) x u> >- 7(i+w)
and thus Eis(a; + u>) has to be expanded into a Taylor series in u> at w = 0,

although x by itself tends to +oo. With (5.25) we get for the series expansion
of u

x — 1

Series(eu' Eis(a; + w) x,u) = Eis(x) x + lj + —— w2 + 0(u3).
2x

The leading term is Ei5(:r)x whose most rapidly varying subexpression is

x. After moving up one level we have to compute the series expansion of

Eis(l/w)/ü;. We can now use the series expansion (5.18) and get

oo

Series(Eis(l/aO/w,w) = ^fc!a;fc = 1 +u + 2w2 + 0(w3)
fc=0

(5.24)

(5.25)

(5.26)

(5.27)
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and hence lim Ei(z + e x)e x

x = 1.

Example 5.5 In this example we compute the limit

lim hivmR.
x—>+oo ex

Since the argument of the inner Gamma function tends to infinity we rewrite

it to er'(x\ The limit thereof is infinity as well (cf. with the asymptotic

expansion (5.21)) and our original expression gets transformed to

\n(r(r(x))) \ner^r'<x)^ rs{er^)
y —

=; U

ex ex ex

For Computing the mrv set we must compare er'^ with ex. The leading term

of the asymptotic series of the quotient of the logarithms of the two is In x

and thus er'^ y ex and we set er"^ — 1/wi. ln(l/o;i) thus becomes rs(x).
The series expansion of the rewritten function u in terms of u>\ is

gW
=

ln(lM)-l -1+Q(1)=Wzl -1+Q(1).
ex ex ex

As a consequence v(hi(r(r(x)))/ex) < 0. In order to determine the sign of the

leading coefficient we have to continue the iteration with the leading coefficient

(rs(x) - l)/ex. The most rapidly varying subexpression thereof is ex and the

leading coefficient of the series in u>2 = e~x is Z^(a;) — 1. Strictly following the

path of the algorithm we have to move up one level since mrv(rs (x) — 1) = {x}.
The series of rs(ex) — 1 in w3 = e~x is

£(l/ws) - 1 = (ln(lM) - 1) W3-1 + O(l) = (x - l)^-1 + 0(1)

as ln(l/w3) = — In (0)3) = x. When moving up the leading coefficient x — 1 once

again and expanding it into a series we get a series with leading coefficient

one. Therefore {rs(x) — l)/ex is ultimately positive and

,.

m(r(/»))

hm

v v v "'
- +00.

1—>+oo ex

Example 5.6 In this example we want to solve the dominance problem be-

tween x and exp(exp(exp(t/>(i/>(i/>(£)))))), i.e. we want to compute the limit

lim
.

x->+ oo X

This example is mentioned in [72] as an example which has to be performed
in a very general asymptotic scale. Since ip(x) is semi-tractable at x = +00,
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no pre-processing is necessary. The most difficult step in this example is

the computation of the mrv set of u where u = exp(exp(e^))/x with / =

ip(%p(rp(x))). mrv(f) = {x} and according to Algorithm 3.12 we have to

compare es with x to determine mrv(e^). This is done by Computing the limit

of f/\n(x). To determine this limit we must move up one level and expand
the series in terms of u = e~x. The leading term thereof is tp(ip(x))/x-uj0 and

we have to move up a further level. The leading term of the series expansion
of the latter leading coefficient in terms of u> = e~x is ip(x)cj -4 0 and as a

consequence e* < x and mrv(e^) = {x}.

i J
We similarly get mrv(ee ) = {x} and it remains to compare ee with x.

This is done by Computing the limit of ee /ln(:r). The leading coefficient of

the series after moving up the first time is ee jx. The mrv set thereof

however is {ee
*

,x} as the limit of e^W* / ]n(x) is 1. Thus, we have

to move up once again and rewrite the first element of the latter mrv set in

terms of the second one which leads to the leading coefficient ee ~x after

the series expansion. The mrv set thereof is {e^x\x} as i/>(z)/'\n(x) tends

to 1. We move up once more and rewrite the elements in the mrv set and get

g(e,Mi/")-*_1)/u; The gerieg expansion thereof is e-1/2 + e_1/2/24 • w + 0{üß)
J

and thus ee and x are in the same comparability class. As a consequence

fe^ \ f ./1
S = mrv(u) = mrv I I = < x, ee >.

Since x £ S we have to move up one level and as \S\ — 2 we must rewrite the

second element in terms of ex. The limit of ee / ln(:r) is e-1/2 as we have seen

above and the rewritten function u in terms of u = e~x becomes

/ etCH+ iV")))} -1/2

V )"e
x

l-e'1'2

The series of ui at lj — 0 is

/ eV>(V>(*)>\ _l/2

Series(Ul,W) = e^ )~'
'

wi--1/a + O {^~U2)

and since 1 — e_1//2>0we have

.«(*<*<*)))

ee
lim = 0.

x->+oo x

Example 5.7 This is an example where cancellations would appear in two

different comparability classes if a classical algorithm based on generalized
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series expansions were applied. Moreover, it shows how functions are handled

which do not satisfy a differential equation.

lim
F (* + e~X + llF^ ' F^x + e~X) ~^

(5 28)
*->+oo e~x (lnx)2

After the pre-processing step we have to compute the limit of

^

er,(»+«-*+«-'i">) _er.(x+e-) _^{x)

e~x (Ina;)2

The size of this function is eight as both rs and tp are semi-tractable, and

S{u) = Lr-(x+'~x+e~r'l')\er-l'+e-'\e-r-M,e-',x,]nx,

In (x + e~x + e~ ß(x)) ,
In (a; + e~x) j.

Thus we expect to get the result after at most eight iterations.

The set of most rapidly varying subexpressions of u is

(u) = {er'('+'~x+e~r,l')),er'^+e"Ke-r'^}mrv{

and we rewrite all elements in terms of the last one, which tends to zero and

which we call u\:

The rewritten expression becomes

en(x+e-*+^)-n(x)w-i _er.(x+e-«)-r,(x)Wi-i _i){x)
U\

e~x (Ina;)2

and we have a cancellation between er,(x+e *+vi)-r,(x) and er'^xJre x)~r°(x).

The leading term of the difference of these two functions vanishes. With the

derivative (5.27) for rs(x) the series expansion of u\ in wi becomes

(er»<*+«_I)-r'(-)(l+ rs'(a: + e-a;)u,1+0(u)?))-er'<a!+<!"I»-r-<*>)u,l-1-V(»)
Ul ~

e-(]ni)2

.r.(,+.-)-r.(x) r,'(a+e-)-y.(») , n,, ,
n

hTilz + U^We-* (In x)

eJ5('+«~I)-^(;')^,(g+e-x)-^(g)
e-'(lnx)2

+ 0(^l).

The mrv set of the leading coefficient of the above series expansion is {e~x}
and we expand it into a series in u>2 — e~x. Note that we have cancellations

between rs(x + w2) and rs(x) and additionally between tp(x + u}%) and ip(x).
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_

er'(*+u'2)-r»(',)V»(:B+U)2)-V'(x)
U2 -

waflnx)2

(l+^'(x)u;2+O(^))(V'(x)+V-,(x)a-2+O(w|))-0(i)
U2 (In i)2

= ^(a)ffy(a)+o(^)

The mru set of the latter leading coefficient is {x} and we thus move up one

level and expand it in U3 = e~x.

^(lM)+^(l/o>3)2
u3 =

5
x1

= l + -^W3+0(^32)
and the limit of (5.28) is one. We needed only three iteration Steps instead of

the possible eight. The size of a function generally significantly overestimates

the number of comparability classes which may evolve out of it, but does

provide an upper bound. f

5.3 MrVH fields

As a result of the ideas presented in the last two sections we are now able to

specify the class of function in which our algorithm can compute limits. We

call a function field T an MrvH field if it has all the properties required for

our algorithm to compute lim f{x) for / G T.
X—¥XQ

Definition 5.8 A ßeld T of germs offunctions at x0 is an MrVH ßeld if

(1) T is a Rosenlicht field;

(2) if f(g(x)) T then g(x) T and one of the following holds

(a) f = exp, and if g(x) tends to inünity then g(x) IR,

(b) f is ultimately semi-tractable, i.e. computable semi-tractable, at

the limit ofg(x), and the coefficients ofthe series have to be in T,

(c) f(9(x)) can be transformed into an expression which only contains

functions of types (a) and (b);

(3) An oracle is available in T to decide zero-equivalence for any f G T.

(4) /eJ can be represented in ßnite terms as an expression tree.
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A Rosenlicht field is a Hardy field which also contains any real power of any

positive element and which has finite rank [79]. It might be useful to consider

real powers of positive elements and not only rational ones. Note that even if

V. has finite rank it may happen that the rank of the new field obtained by

adding real powers of any element may be infinite (see e.g. [82]). To prevent

such a Situation we require the Hardy field to contain real powers and to be

of finite rank.

Our algorithm cannot work in Hardy fields of infinite rank since we must be

able to specify the largest comparability class, which is not possible in a Hardy
field of infinite rank in general. Furthermore, a Hardy field of infinite rank

may contain functions with essential singularities which cannot be transformed

into any finite exp-log function [9].

The condition that an MrvW. field T has to be a Hardy field implies that the

limit for / 6 jF exists and furthermore that the comparability classes in T

can be compared.

The condition that an MivH field T has to be a ßeld implies that the series

expansions can always be performed. If the series is computed in terms of lo,

then the coefficients, which are elements in T, have to be invertible.

An example of functions which are not contained in a Hardy field and as

a consequence cannot be handled with our algorithm are functions which

have oscillating essential singularities, such as the trigonometric functions at

x = ±oo or r(x),ip(x) and Ai(x) at x = —oo. If the field contains such

functions it may no longer be possible to compare comparability classes. For

example exsmx oscillates between the two comparability classes 7(eT) and

7(1). The latter problem could be resolved using a variant of interval calculus.

The comparability class of a subexpression could be described by an interval

of the smallest and the largest comparability class the function may belong
to.

More difficult is to decide whether the coefficients of the series expansions are

defined in a neighbourhood of infinity if J- is not a field, i.e. to decide whether

they do not have arbitrary large zeros. Consider

lim e~x.
i->+oo cosa;

If we take e~x as most rapidly varying subexpression then the series expansion
in terms of u = e~x is l/cos(a;)u;. As the leading coefficient however has

arbitrary large zeros, this limit is not defined. In practice it is difficult to

decide whether the leading coefficient is defined for arbitrary large x. Shackell

proposed in [75] to use an interval calculus approach. With this method our

algorithm could be extended to work over domains which are not fields as

well.

MtVH fields are a proper subset of Rosenlicht fields. An example i& Q —

TR(x, r(x + e~x sina;)) which is a Hardy field of finite rank but which is not
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contained in any MrYH field (see [82]). It is not easy to decide automatically
that Q is a Hardy field.

Piecewise semi-tractable functions are also contained in an MrvH field as they
are ultimately semi tractable. Examples are |i|, [xj, \x], [x], xaax(fi(x),
f2(x)), mm(fi(x), f2(x)) and others. In practice, these functions are also

transformed during the pre-processingstep. For examplefor max(/i(x), /2(x))
it is decided whether fi(x) or /2(x) is ultimately larger and the max function

is replaced by the larger one.

In an MrvH field we must also be able to decide zero equivalence. This

problem is central to symbolic computation involving transcendental func¬

tions [59, 60, 15, 55, 41, 22, 81] and to handle it in practice a number of

partial algorithms have been suggested.

One method is based on evaluations of the function / at a number of points.

Mathematically, this can be viewed as a homomorphism from the function field

containing / onto some field on which the zero-equivalence problem can be

solved. There are two obvious choices for the latter field, namely a finite field

of integers or the pseudo field of floating point numbers. The former choice has

been developed in detail by Martin [51] under the name of hash coding, and

has been extended in many directions [29, 30, 54, 74]. The mapping onto the

field of floating point numbers has been investigated by Oldenhoeft in [57]. If

an upper bound of necessary point evaluations is not available, or if this bound

is beyond practical borders, the result is a probabilistic algorithm for deciding
zero equivalence. Such an algorithm is always right if the answer returned

says that the expression is not zero, but may be wrong with a probability
e > 0 in the other case.

Note, that in many cases the zero equivalence problem of functions can be

reduced to the zero equivalence problem of constants, provided that the func¬

tions satisfy an algebraic differential equation over the constants.

An attractive alternative to solve the zero equivalence problem for constants is

to assume Schanueis conjecture [6]: If z\,..., zn are complex numbers which

are linearly independent over the rationals, then {z\,..., zn,ezi,...,eZn} has

transcendence rank at least n. It has been shown for larger and larger sets

of constants, that the zero equivalence problem is decidable provided that

Schanuel's conjecture is true [17, 61, 62, 63].



88



6. Asymptotic Series

As a byproduct of the limit computation algorithm we obtain an algorithm
for Computing asymptotic series. We discuss some aspects of this algorithm in

this chapter. Note that this algorithm has already been presented in [31]. As

it is based on the same ideas as the MrvLimit algorithm, we call the algorithm
for Computing asymptotic series MrvAsympt.

Definition 6.1 (Asymptotic Series) An asymptotic series at inünity of a

function f which is defined in a neighbourhood of inßnity is a series of the

form

f(x) =cnpi{x) +c2>P2{x) + + ck ifk(x) +r(x) (6.1)

where the c; £ IR are constants and \imx^+00r(x)/ipk{x) = 0. The ipi are

functions of an asymptotic scale S which is a set of real-valued functions

defined in a neighbourhood of inünity which is totally ordered according to

the relation i < j => (pj(x)/(pi(x) -» 0 as x -> +oo.

Asymptotic series of this form are also said to be of Poincare type. More gen-

eral expansions are obtained if the coefficients d are allowed to be functions.

An example of an asymptotic scale is {xk \k TL}. From the asymptotic scale

S we expect that it is as expressive as possible, i.e. one should immediately see

the behavior of the function / at infinity when looking at its asymptotic se¬

ries. Very expressive elements are nested exponentials, as e.g. ex In x
or ee

However, not all functions can be expanded into an asymptotic series in such

a scale. For example

/ = exp(exp(e7(l-l/x))) (6.2)

= exp (exp (ex (1 + x'1 + x-2 + • • • + x~k + )))

= exp(eeVT/*eeI/*2...e<^fc...),
can neither be expanded into a sum of simple exp-log functions nor be rep-

resented as an infinite product of simple exp-log functions. The only scale in

which this function can be expanded easily is a scale which contains / itself,
and then the asymptotic series is 1 • /. Note that these considerations led to

the definition of nested forms and nested expansions in [79].
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6.1 The MrvAsympt Algorithm

Let / be a pre-processed element of an MrvH field. We first determine ü —

mrv(f). If x £ Q then we move up one level by replacing x by ex and compute

the asymptotic series for f(ex). The asymptotic series for f(x) can then be

obtained by moving back, i.e. by replacing x by ln(a:). If x £ fl we choose

lj\ — eh so that wi x J7, ui\ -» 0 and u)\ or l/u\ fl. f is then rewritten and

expanded in terms of wi. The result is an asymptotic series with coefficients

which are in smaller comparability classes than u>\. Then we can recursively

expand these coefficients one by one into their asymptotic series in terms of

their most rapidly varying subexpressions. We stop the recursion as soon

as the coefficients are constants and stop the iteration as soon as we have

computed enough terms for the approximation. A typical Situation for the

computation of the asymptotic series of a function / is shown in the following

diagram.

mrv(f) — u)\

cn wj" + c12 üj{" + c13 u?3 + O«4)

mrv(cn) = uii -< u}\

C21W221 +c22u422 +0(ue223)

mrv(c2i) =u>z
mrv(c22) = u>4 ^ ui2

C3lU>331+C32LJe332 c4i^41+0(a;4e42)

Note that in this artificial example the first two terms of the asymptotic series

for C21 form an exact representation for c2i, and therefore the O-term has

been omitted. The first four terms of the asymptotic series for / become

((c3i^31 +c32u^2) ^ + {cn^T1 +0(ljI*')) u?>) wj", (6.3)

or in expanded form

„ , ,«31 , ,«21 , ,«11 1
r. „

, .«32, ,«21 , ,«11 I .,
, ,«41 , ,e22 , ,eil _i

f) (. ,«42 , ,«22 ,«11 \

C31 ÜJ3 U)2 Wj + C32 W3 Lü2 U>i + C41 ÜJ4 ÜJ2 U>^ + C (UJ4 UJ2 Wj ) ,

(6.4)
where C3i,C32,C4i S 1R. In this particular example we had to expand the

coefficient c22 into a series as well since the series approximation of c2i was
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an exact one. We prefer to present the result in the following examples in

factored form (6.3).

In [83], the series (6.4) is called an asymptotic T-expansion with T — {«4, U3,

W2, wi} (provided that 7(0)4) < 7(^3), i.e. the elements in T must be strictly
ordered according to their growth).

Example 6.2 As an example let us look again at the function

/ = (sin (l/x + e~x) - sin (l/x)) (6.5)

which we have already seen in Example 2.17 and 5.2.

The mrv set of / is {e~x} and so w\ = e~x. The rewritten expression is

sin(l/x+a;i)-sin(l/a;) and the series expansion thereof in u\ is cos(l/a;) u>\ —

sin(l/a;)/2u;2 + 0(w\). Next we compute recursively the asymptotic series

expansion of the first coefficient cos(l/a;) = cos(w2) and get 1 — l^wf+O^I)-
The final asymptotic series thus becomes

(sin (l/x + e~x) - sin (l/x)) « (1 - JL_
+ JLj + O (J_)) e~x. (6.6)

If we look at some further examples we realize, that although effective for some

functions, the algorithm produces rather useless results for other functions.

'(*•--4) - ! +
;
+ £ + £+<>(?) <6T)

r(* + ifa)-r(*)
a i

1 1
+ 0f_J_V6S)

Ina; 2a; Ina; 12a;2 Inx \a;4 Ina;/

6 1
er^ (6.9)

r(ex) r{ex)

r(x) « r(x) (6.10)

The algorithm constructs the asymptotic scale which it uses on the fly ac¬

cording to the comparability classes which evolve out of the given function.

In example (6.10) the most rapidly varying subexpression of r(x) = er'^

turns out to be r(x) itself. If we take r(x) as the representative of this com¬

parability class and include it into the asymptotic scale, then the asymptotic

expansion of r(x) becomes simply l-T(x). Although in example (6.9) the re¬

sult is also identical to the input, the algorithm has done a little bit more. The

most rapidly varying subexpression of er^/r(ex) has been identified to be

er(x) which tends to infinity. The coefficient of the series expansion in terms
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of er(x) js \/r(ex) = e-r»'eI' which is equivalent to its most rapidly vary-

ing subexpression. The asymptotic scale in which (6.9) has been expanded

is S = [er^,r(ex)]. Note that for functions containing essential singulari-

ties, the appearance of the scale depends on how the essential singularities are

isolated during the pre-processing step.

Although the expansions (6.9) and (6.10) are correct and valid results of our

algorithm, we would like the algorithm to use more expressive scales if possi-

ble. In other words, the set of most rapidly varying subexpressions Q should

be rewritten in terms of an element which is not necessarily in J? itself but

rather in some normalized form. As all elements in fl are exponentials when

they are rewritten, the following idea to dehne a normalized representative

might be used. From any exponential in ü we compute the leading term c\ <pi

of the asymptotic series of its argument and dehne u = eVl to be the normal¬

ized representative of J?. According to Definition 6.1 this function is in the

same comparability class as all elements in ü. For example, the normalized

representative of{r(a:)} isexlnx as r(x) = er3^ and the leading term of the

asymptotic series of rs(x) is :r Ins (cf. (5.21)). However, as a consequence of

this choice for u, termination is no longer guaranteed, since in Section 3.4.1.1

(proof of termination) we assumed explicitly that w or 1/w £ ß. Consider for

example

/ = c«V(i-i/*). (6.ii)

The most rapidly varying subexpression of / is / itself and its normalized

representation is ee*. If we rewrite / in terms of ee we become

/1=ee*^1-1/x)-e"-ee*.

The leading coefficient of the series of /i in u = e~e* is cu = ee''l(l-llx)~e
.

mrv(c\\) = {cu} and the normalized representation thereof is ee'lx. If we

rewrite cu we get

f2 = e*-/(l-l/x)-e*-e*/x . ge-/s.

The normalized representatives of the comparability classes of the subsequent

leading coemcients are mrv(c2i) x e6*/1 ,mrv(c3i) = ee'' lx
,... ,mrv(cki) =

x I k

ee 'x
,...

and the asymptotic series after k steps is

cfc+1)1e^"---eeI/xeeX

and obviously this recursion does not terminate. The reason is that the size of

/ gets never reduced during the expansion process. The size of / is Size(/) =

|{eeI/(1-1/,x',ex,a;}| = 3 but the size of the rewritten function /i is Size(/i) =

|{eeX'/(1-1/'x'-e*,ee*,ex,a;}| = 4. As the leading coefficient of the series of /i
in u! does not depend on w its size is smaller than the one of /i and turns

out to be three, i.e. the leading coefficient of the series expansion of f\ has

the same size as /. The leading coefficient of the series of $2 1S also three and

so on. As we see, the size does not get reduced and the recursion will never

terminate.
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In order to guarantee termination of the recursion of the MrvAsympt algo¬
rithm we test whether the size of an expression grows due to the rewriting in

terms of the normalized representative of the mrv set J? or not. If it grows

then we use an element out of ü to rewrite the elements in Q.

However, a growth of the size of a function due to the rewriting step does not

necessarily imply that the algorithm does not terminate if it is continued. This

may be a temporary effect. As a consequence we allow the specification of an

upper bound up to which the size may grow due to all rewriting steps along
the computation of the asymptotic series. If this bound is set to zero then a

growth of the size due to the rewriting step is never allowed. If this bound is

positive however, then a growth is allowed and the bound is reduced by the

difference of the sizes of the original and the rewritten function. The reduced

bound is then applied for the asymptotic expansions of the coefficients.

Let us demonstrate the behaviour with the help of the r(x) function. The

growth-bound can be passed as fourth (optional) argument to the MrvAsympt

function. Other than this change, the interface of MrvAsympt is identical to

that of Maple's asympt command. If the growth-bound is set to two, then

the normalized representative ex
ln x is used for the comparability class of r(x).

In order to expand the leading coefficient ein(r(x))-xlni as well5 the growth-
bound has to be set to at least three, and then we get the usual asymptotic

expansion of r(x).

> HrvAsympt(GAMMA(x),x,2,0);

r(x)

> MrvAsympt(GAMMA(x),x,2,2);

In r(x) — x ln x px ln x

> MrvAsympt(GAMMA(x),x,2,3);

v^x-l/2 + ^;r-3/2+0(;r-5/2)j e-xexinx

Another nice feature of the growth-bound is that for functions which can

be represented as an infinite asymptotic product, the MrvAsympt command

computes the first few terms of this product if the growth-bound is set and

keeps the rest in closed form. For the function (6.11) we get

> MrvAsympt(exp(exp(x)/(l-l/x)),x,l,4);
( r4r—e*-^-4-4\ 4 4 sl e*
igi-i/x i x2 «5 e^e^c e

However, if a representation in a normalized scale is neither possible as an

asymptotic sum nor as an asymptotic product, the algorithm has to take an

expression out of the mrv set as an entry in the asymptotic scale. The growth-
bound has no effect in such a Situation. We have already seen an example of

such a function in (6.2).

> MrvAsympt (exp(exp(exp(x)/(l-l/xW),x, 1,5) ;
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e

Example 6.3 In this example we present further results of the MrvAsympt

algorithm. Note that none of these problems can be solved with Maple's

asympt command, as the algorithm being used there also suffers from the

cancellation problem.

Note as well that example (6.13) is the series expansion of (6.9) but with a

positive growth-bound. Example (6.16) has already been discussed in Exam¬

ple 5.6. The asymptotic expansions of example (6.17) and (6.18) differ due to

the different growth-bound.

> Asympt := proc(e) e = MrvAsympt(args) end:

> Asympt((exp(sin(l/x+exp(-exp(x))))-exp(sin(l/x))), x, 4); (6-12)

sin(l/x+e-e*) sin(l/x) _
1 +

x

~

2x^ +
^ \x^)

> Asympt(exp(GAHHA(x))/GAMHA(exp(x)), x, 2, 2); (6.13)

St = (-k (ßX)1/2 - tot (e*)~1/2 + ° ((eX)-3/2)) ^ *~xeZ er(x)

> Asympt((3-x+5-x)-(l/x), x, 3); (6-14)

(3x + 5x)l/- = 5 + | (c-s)ln5-l„3 + (_£ + 0ß)) (e_x)21n5-21n3

> e3 := x -> exp(exp(exp(x))):
> Asympt(e3(x)/e3(x-l/e3(x)), x, 3); (6.15)

-l/ee
ZT- = 1 + ex ee

+ (l(e*)2(e'*)2+0((e°)>e^)) (e«'")"2
> Asympt(exp(exp(Psi(Psi(x)))), x, 3); (6.16)

e*(+(.» / _1/2
1 e~1/2 25 e~xl2

„
( 1

ee = e
1/2 + — + ——

—z— +O

24 Ina;
'

1152 In2x \\^xy

> Asympt(GAMMA(x+exp(-x))-GAMMA(x), x, 4); (6-17)

r(x + e-*)-r(x) = {]nx-±-T& + m* + o&))e-*r(x)

> Asympt(GAHMA(x+exp(-x))-GAHMA(x), x, 2, 2); (6.18)

r(x + e~x) - r{x) =

((V^rlni) ar^+^lnx + CKl)) x~3/2) {e~x)2 exlnx

1
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6.2 Hierarchical Series

In this section we describe another form for representing the resulting asymp-
totic series, which arises if we slightly change our algorithm. After having
determined the normalized representative u of the set of most rapidly varying
subexpressions of /, / is rewritten and expanded in terms of u, for example,

according to the diagram on page 90 the series

cn wen + c12 u/12 + eis wei3 + 0{coe") (6.19)

is computed. However, this is also an asymptotic series, although of a more

general type than that defined in Definition 6.1, as the coefficients are not

constants. As an ordinary asymptotic series can be obtained from (6.19) by

expanding the coefficients into asymptotic series recursively as well, we call

such a series a hierarchical series. Hierarchical series have several advantages
over conventional asymptotic series.

First, the result provides more Information. Consider the function / =

sin(l/ar + exp(—x)). The ordinary asymptotic series of Poincare type is

^°>l-6 + üh+0{^) <6'20»

whereas the hierarchical asymptotic series of / is

f(x) * sin(l/x) + cos(l/z) e~x - ]- sin(l/x) (e~x)2 + O ((e"x)3) . (6.21)

The first series is nothing eise than the asymptotic series of the leading term

of the second series. The rest of the Information inherent in (6.21) is lost

in (6.20).

Another advantage is that it may be possible to compute some levels of a

hierarchical series on functions which are difficult to expand in a regulär se¬

ries. This happens, for example, for functions where the form of the regulär
asymptotic series depends on relations between the parameters which are not

specified. An easy example is

f = el/x+e-*2(e"-ehn _gl/x_

where a and b are real constants.The hierarchical series thereof is

f « el'x(eax - ebx) e~x2 + -—(eax - ebx)2 (e"*2)2 + O ((e^2)3)
whereas the conventional asymptotic series depends on the sign of o — b:

l (-l-J-^ + 0(£))(e*)6e-x2 iffc>a.
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Finally, if a function / can be expanded into an infinite asymptotic product,
then the hierarchical series will expand the first factor and encode the product
of the rest into the coefncient. Further factors can be obtained by expanding
the coefncient into further hierarchical series.

The problem of termination of the algorithm to compute hierarchical series is

obviously not an issue, as only the most rapidly varying comparabihty class

is used. In other words, termination is under user control.



7. Implementation

The Maple code of an implementation of our algorithm for Computing limits

of exp-log functions can be found in Appendix A. In this chapter we focus on

some particular problems which appear during an actual implementation in

a Computer algebra system. The emphasis will thereby be on the underlying
series facility. We also discuss the problem of zero recognition from an imple¬
mentation point of view, as well as the problem of branch cuts. Finally we

briefly discuss the implementation of the limit routine as it is available in the

regulär Maple system.

7.1 Series Computation

We required in Section 3.3 that the underlying series model must be able

to represent power series which contain arbitrary real constants as exponents.

Puiseux series are not powerful enough. This is not only a theoretical subtlety.
For easy limit computations this power is already needed. Consider

lim (3x+5x)1/s. (7.1)
x—»+oo

First this problem is transformed to

/ln(eln(3)x+eln(5)x\\
lim exp

—i '-
. (7.2)

The set of most rapidly varying subexpression is {eln^x,ela^x}. If we set

u = e-ln(3)z the above expression can be rewritten as

exp ('°"/"
+ ('M'°5/'°'>) (?3)

whose series is

5 +
j» (JnB/lnS-l _ 5fo - !)

Jl In 5/ In 3-2
+ Q

/ 31n5/ln3-3\ (74)
x 2x2 \

'

which agrees with the result (6.14) we obtained in Example 6.3. The exponents

cannot be represented by rationals, hence the above series is not a Puiseux

series. By the way, the result of the limit of (7.1) is 5.
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7.1.1 Models to Represent General Power Series

Since Maple does not support such a general series facility, we had to build

our own as the basis for our limit implementation. These series approxima-
tions cannot be stored in a dense representation as the exponents are not

enumerable. The series must be represented as an ordered collection of terms

where each term consists of a coefficient and of its corresponding exponent.
There are two basically different approaches which may be used here.

7.1.1.1 Truncated Power Series

One possibility is to implement algorithms to work with truncated power

series. Truncated power series are approximations to the actual series as they
only contain a finite number of terms. They can be represented, for example,
as a finite list of terms. If a truncated series does not contain all nonzero

terms of the exact power series, the representation must encode the order of

the truncation. This is usually done by adding a term with the order of the

truncation, whose coefficient has the form 0(1). Almost all existing Computer

algebra Systems provide facilities for the manipulation of truncated power

series.

If a series approximation of a function is computed, the user has to specify,
in advance, how many terms the result should contain, or alternatively, which

truncation order the result should have. However, the series expansion is

usually performed recursively bottom up (cf. Algorithm 2.16) and it is difncult,
if not impossible, to specify up to which order (or how many terms of) the

intermediate approximations have to be computed. Terms may be lost due

to cancellations in the addition Operation, and the order may be reduced by
division or differentiation. A well known example is sin(tan(x)) — tan(sin(:r)),
which has to be expanded in Maple up to order eight to get one significant
term. If one decides after looking at the result that more terms are needed, the

whole series computation has to be restarted from the beginning. The search

for the leading term of a series is thus usually done by subsequently Computing
the series up to the order 1, 2, 3, etc., until the result finally contains at least

one non zero term.

The advantage of the truncated power series approach is that emcient algo¬
rithms exist to perform the series arithmetic. Multiplication of two Taylor
series (over certain coefficient fields) of order n for example can be done with

0(n lnn) coefficient multiplications using the fast Fourier transform (FFT).
Division can also be performed with the same complexity using Newton's

method [48]. Provided that this fast arithmetic is available and that every

series Operation on series with n terms can be performed with ö(n log n) co¬

efficient Operations the sequential search for the leading term of a series uses

0(Y1=\ n\ogn) = 0(m2 logm) coefficient Operations if we have to compute

m series approximations to get a non trivial term.
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The asymptotic behaviour can be improved if we double the approximation
order after every failure when looking for the leading coefficient. Then the

overall asymptotic cost for Computing the leading term is 0(m lnm) with

the fast arithmetic. However, if the fast multiplication is not available, then

0(m2) Operations are needed to get the leading coefficient.

Another disadvantage of the truncated power series approach, besides the

a priori specification of the truncation order, is the complexity of the code

for the series Operations. If the domain of the exponents is not enumerable,
then an efficient coding of the multiplication Operation, for example, is rather

complicated.

7.1.1.2 Infinite Power Series

The second approach is to use inßnite power series instead of truncated ones.

With this model one creates power series, performs various Operations on

them and at the end asks for any number of terms of the result. With this

approach one overcomes the difficulty that the number of terms which have

to be computed is often not known in advance. Terms are only computed if

they are needed. Unnecessary work is prevented.

Infinite series are traditionally represented by a rule which allows one to gen¬

erate the terms as necessary. Operations on these series will generate new

series whose rules are constructed out of the old ones. The rule may, for ex¬

ample, be a function / : IN -»• C from the natural numbers to the coefficient

domain C to generate the n'th coefficient (provided that the set of exponents

is enumerable) or the n'th term. Another possibility is to represent an infinite

series as an ordered pair consisting of the leading term (coefficient and expo-

nent) and of a rule to generate the rest of the series as another ordered pair. If

in either case the rule is represented as an expression, then obviously it must

not be evaluated but rather be held in an unevaluated form. This technique
of evaluating an expression only when it is needed is called lazy evaluation.

Its fundamental idea is to construct a value when it is to be used rather than

when it is defined.

For both representations it is necessary to have on-line algorithms for manip-

ulating series, i.e. algorithms which produce the terms of the series one by one

and in order, and which do not require the number of terms to be specified in

advance. Knuth [44, Section 4.7] presents a few on-line algorithms for power

series. Various implementations of infinite Taylor series have been described

in the literature. The function model is used in [56, 34] and the lazy evalu¬

ation model in [14, 91, 2, 50]. Many series Operations have extremely simple
on-line algorithms if infinite series are implemented using lazy evaluation.

The asymptotic behaviour of the run time of these algorithms is normally
worse than that of the explicit approach. Most of the on-line algorithms use

0(n2) coefficient Operations to compute terms up to order n. Semi on-line

algorithms, which may double the number of terms on demand, have a better
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run time behaviour. They are normally also based on Newton's algorithm. In

our context of Computing limits this sub-optimal efficiency is not a problem,
since we are only interested in the leading coefficient of a power series and

hence this approach is about as efficient as the explicit approach based on the

efficient arithmetic.

The infinite power series approach has one major problem: it is not possible
to decide in general whether a series is zero or not. If it is zero, then the search

for the first nonzero coefficient may not terminate. This Operation is needed

when Computing the inverse or the logarithm of a series. However, it is an

error in these two cases if the argument is zero, and an infinite loop may hence

be a tolerable outcome. In our context of Computing limits this problem is not

an issue. We postulated an oracle for deciding zero equivalence of expressions

anyway, and hence one can assert at the time a series is generated that it is

non-zero and thus contains at least one non-trivial term.

In the remaining part of this section we describe an implementation of infinite

general sparse power series in Maple using the lazy evaluation approach.

7.1.2 Lazy Evaluated General Sparse Power Series in Maple

To simulate delayed evaluation in Maple we use the new unevai type1 which

may be specified for parameters of procedures. If a formal parameter has

this type specincation, then the actual argument is not evaluated when the

procedure is called. We use this feature for representation purposes only
and define a procedure lazyseries which returns unevaluated. It is similar

to an unevaluated function call, with the only difference that the second ar¬

gument is not evaluated. A power series is thus represented as an object

lazyseries(head, tail, x) where head is the first term of the series, tail the de¬

layed rest of it which, when evaluated, generates an object of the same type,
and x is the expansion variable. Terms are represented as lists consisting of

the coefficient and of the corresponding exponent. The evaluation of the tail

of a power series can be enforced using the eval command. Additionally, we

define the constructor MakeSeries and the selectors Head, TaiP and Var. The

empty series is represented by the special symbol NIL.

> lazyseries := proc(Head, Tailruneval, x:name) 'procname(args)' end:

> MakeSeries := proc(Head, Tail:uneval, x:name) lazyseries(args) end:

> Head := proc(p) op(l,p) end:

> Tail := proc(s) Option remember; eval(op(2,s)) end:

> Var := proc(p) op(3,p) end:

If a facility such as unevai is not available (as in older versions of Maple),
delayed evaluation can be simulated using procedures. The evaluation of an

expression expr is delayed by the construct () —> expr and evaluation can be

1 Available since Release 4 of Maple V.

2The reason for the Option remember will be explained later.
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enforced by executing this procedure. This approach is used in the Maple

implementation of infinite streams described in [34].

As an example let us define the power series for ex. We first define a procedure

expfrom(n, x) which constructs the power series of ex starting with the n'th

term. The first term of the series of expfrom(n, x) is xn/n\ and its tail is the

power series of ex starting with the n + l'th term.

> expfrom := (n, x) -> MakeSenes([l/n', n] , expfrom(n+l, x), x):

We then define the power series for ex which simply is expfiom{Q,x). Notice

that its evaluated tail is again a power series object starting with the term

x and containing another unevaluated tail. The procedure PrintSeries prints
the series in a conventional notation.

> e := expfrom(O.x);

e := Iazyseries([l,0],expfrom(l,a;),x)

> Tail(e);

lazyseries([l, 1], expfrom(2, x), x)

> PrintSeries(e);

l + x+ix' + ix' + ls' + ^+O^)
A simple and useful construct for the manipulation of power series is the

mapping of a function over all terms of a given series. Applications of such

a map function are the Operations ScaJe and Shift which multiply a series by

a constant or by a power of the expansion variable respectively3. Similarly,

integration (Int) and differentiation (Diff) of power series can be implemented.

> Map : = proc(f, p)
> if p = NIL then NIL

> eise MakeSenes(f(Head(p)), Hap(f, Tail(p)), Var(p))
> fi

> end:

> Scale := proc(c, p) local t; Hap(unapply([c*t[1] ,t[2]] ,t), p) end:

> Shift := proc(n, p) local t; Map(unapply([t[1],n+t[2]],t), p) end:

> PrintSeries(Shift(-1, Scale(120, e)));

120- + I20 + 60x + 20x2 + 5x3 + x* + 0 (x5)
X

v

Next we define an on-line program to add two power series which may con-

tain arbitrary real exponents. For comparing the exponents we use Maple's

Signum function as an oracle. Note that if the two leading exponents of the

arguments are equal then the new coefficient which is generated may be zero.

3We use the unapply construct in the defimtions for ScaJe and Shift since Maple does

not support nested lexical scopes If lt did, then e g ScaJe could be defined as

> Scale := (c, p) -> Map(t -> [c*t[l] ,t [2]]
, p):
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If we enforced a sparse representation, the sum of the two tails would need

to be returned in this case. This however is dangerous and may lead to infi¬

nite loops. For example, if the exponent of the second term of the series for

s = cos2(a;) + sin2(x) were inspected, the addition routine would enter into

an infinite loop, since the sum of all corresponding coefficients is zero. As

a consequence we allow zero terms to appear in a series, but the exponents

must still be strictly increasing. A positive side effect of this approach is that

the potentially expensive test for zero equivalence is delayed until it is really

needed.

> Add := proc(f, g)
> local hf, hg, s, x;

> if f = NIL then g

> elif g = NIL then f

> eise ASSERT(Var(f) = Var(g));
> hf := Head(f); hg := Head(g); x := Var(f);

> s := signum(0, hg[2] - hf[2], 0) ;

> if s = 1 then MakeSeries(hf, Add(TaiKf), g), x)

> elif s = -1 then MakeSeries(hg, Add(f, Tail(g)), x)

> elif s = 0 then

> MakeSenes([hf[l] +hg[l], hf[2]], Add(Tail(f), Tail(g)), x)

> eise ERRORCOracle cannot compute the sign of ', hg[2]-hf [2])

> fi

> fi

> end:

The second arguments to MakeSeries in the procedure Add are recursive calls,

but since the evaluation thereof is delayed they do not lead to infinite recur-

sions.

The multiplication of two power series can be defined recursively as well. Let

f{x) = /o xd° + F{x) and g(x) - g0xe° + G{x), then

fix) g{x) = fo9oxdo+eo + foxdo G(x) + g0xe° F(x) + F(x) G{x).

Only the multiplication between F(x) and G{x) is a recursive call. The other

multiplications are shifts and scalings. Also, the addition between the leading
term and the rest is not a series addition, but rather a series concatenation.

> Mult := proc(f,g)
> local hf, hg, fO, gO, dO, eO;

> if f = NIL then NIL

> elif g = NIL then NIL

> eise ASSERTCVar(f) = Var(g)):
> hf := Head(f): hg := Head(g):
> fO := hf[l]; gO := hg[l]; dO := hf[2]; eO := hg[2] ;

> MakeSeries([f0*g0, dO+eO],

> Add(Add(Scale(fO, Shift(d0, Tail(g))),
> Scale(gO, Shift(eO, Tail(f)))),

> Mult(TaiKf), Tail(g))
> ).

> Var(f)

> )

> fl

> end:
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One problem with this defimtion is the normal Order reduction of expressions

which is implied by the lazy evaluation For example, the expressions Tail(f)
and Tail(g) will be executed twice lf the tail of a product is evaluated This

may have bad consequences lf the evaluation of the tail of / or g is very

expensive In order to prevent multiple evaluations of the tail of a series, we

save all ever computed results in the remember table of the procedure Taii by

adding Option remember to it4 Access to elements in the remember table can

be done in Maple in constant time In order to prevent the remember table

from getting filled up, it is cleared whenever a new function is expanded into

a series lf we assume that the power series f(x) and g(x) have already been

computed up to n terms, 1 e lf the n — 1 tails can be computed m constant

time, then the cost for multiplying f(x) and g(x) up to n terms is 0(n2)

7.1.3 Fixed Point Definitions

It is by now a classic exercise ([44, Exercise 4 7 4] and [2, Exercise 3 49]) to

compute power series for elementary functions which satisfy a simple differ-

ential equation The on-hne program may be denved directly from the corre-

sponding defining integral equation For example, the exponential function is

defined by the equation

es(x) = es(*0) +
f es(t) ^0 dt (?5)

The following procedure for Computing the exponential es(x) at Xq = 0 is

almost a one to one translation of equation (7 5)

> Exp = proc(s) local h, sO,

> h = Head(s),

> lf h[2] > 0 then sO = 0 eise sO = h[l] fi,

> MakeSeries([exp(sO), 0], Int(Mult(Exp(s), Diff(s))), Var(s))

> end

> PrintSeries(Exp(HakeSeries([l,l], NIL, x))),

Notice that in the defimtion of the tail of es the expression es is recursively
used To prevent the procedure Exp from bemg called recursively with the

same arguments, we could add Option remember to it A better Solution would

be to Substitute the expression Exp(s) m the defimtion by the result ltself, l e

to "hard code" this recursion

From another point of view one can also say that es^x^ is defined as the fixed

point of the equation (7 5) The concept of defining a power series as a fixed

point of a mappmg from the set of power series onto the set of power series

can also be offered as a construct by ltself Obviously, not all mappmgs will

See the defimtion of Tail on page 100
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generate a power series. Only mappings which do not perform Operations

on their argument, but rather simply include it in a new structure which is

returned as the value of the map, can be used. Moreover, the leading term

of the result must not depend on the argument, as otherwise the power series

cannot be "bootstrapped". The idea of such a fixed point Operator has first

been mentioned in [14, 91].

The implementation of a fixed point Operator in Maple is rather trivial. The

map F is simply applied to a local, anonymous power series p. The result

is then assigned to p, thus producing the fixed point, or, in other words,

automatically hard-coding the recursion.

> FixedPoint := proc(F:procedure) local p;

> p := F(p)
> end:

This simple implementation presumes that no procedure working on power

series tests whether the argument is a power series object. The implementa¬
tion would otherwise have to be slightly more complicated. Furthermore, the

procedure should assert that the leading term of p does not depend on p itself.

Let us define the power series for ex and for sin(:r) at x = 0 using the fixed

point Operator defined above. The series of ex is defined as the series whose

zero-order term is e° = 1 and whose higher-order terms are given (recursively)
by the integral of the series for ex. A similar statement holds for sin(s).

> FixedPoint(e -> MakeSenes([l,0] , Int(e), x));

lazyseries([l, 0], Int(p), x)

> PnntSenesC");

1+x+\x2+r3 + hx4 + ^öx5+°^
> FixedPoint( sin -> MakeSeries([l,l], Int(Int(Scale(-l,sin))), x));

lazyseries([l,l],Int(Int(Scale(-l,p))),:r)

> PrintSenesC, 5);

x-lx3 + Wox5-5Lx7+3dmx9 +0^

The p in the unevaluated parts of both results refers to the whole series itself.

It is an exported local name and thus unique. If p were not unique, then the

fixed point Operator would not work as stated above.

The procedure to compute the exponential of a series looks similar. Addition-

ally, if the leading exponent of the argument is negative, then the sign of the

leading coefncient has to be computed. If it is zero, the exponential of the tail

of the argument is computed, otherwise an error is issued. This is an example
where a zero test must be performed during a series expansion.
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Not all fixed point definitions need to be based on Integration. As an example

we present a fixed point definition of power series division which is based on

power series shifting, although multiplication and division have nice integral
based fixed point definitions, namely

f{x)-g(x) = FixedPoint(p->/(0)ff(0) + yp.(^ + ^dx)
f(x)/g(x) = FixedPoint (q -> /(0)/p(0) + Jq • (Jj& - ^j dx^j ,

provided that /(0) ^ 0 and g(0) j= 0. This condition can easily be established

by shifting f(x) and g(x). Notice the nice symmetry between the multiplica¬

tion and the division! However, the fixed point definition for the division we

give next is more efficient. Let f(x) — /o xd° +F(x) and g(x) = <?o xe°+G(x),
then

f(x)/g(x) = FixedPoint f q -> ^a;d°-e° + — x-e°(F(x) - G(x) q) | .

V 5o 9o /

An implementation of this rule is presented below. Since Maple does not

support nested lexical scopes, the desired behaviour must be simulated by

substituting global names with the actual local values.

> Divide := proc(f, g)
> local hf, hg;
> lf g = NIL then ERR0R('division by zero')

> elif f = NIL then NIL

> eise ASSERT(Var(f) = Var(g)):
> hf := Head(f): hg := Head(g):
> FixedPoint(subs(['fO'=hf[1],'g0'=hg[l],'dO'=hf[2],'e0'=hg[2],
> >F'=f.'G'=g],
> q -> MakeSeries([fO/gO, dO-eO],

> Scale(1/gO,
> Shift(-e0,

> Add(TaiKF), Scale(-1, Mult(TaiKG), q)))
> )

> ),

> Var(F)

> )

> ))

> fi

> end:

As a final example let us compute the power series expansion of (7.3) using

the infinite general power series facility we have just presented.

> ln(w) := -ln(3)*x:

> Series(exp((ln(l/w+(l/w)-(ln(5)/ln(3))))/x), w);
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lazyseries([5,0],
Int(Mult(p,Diff(

lazyseries([ln(5),0],
Scale(l/x,Tail(

lazyseries([ln(5) x, 0],
Int(Mult(Diff(P),Inv(P))),
t"))),

w)))),
w)

The small p comes from the fixed point definition of the exponential and

Stands for the whole series, whereas the capital P comes from the fixed point
definition of the logarithm and Stands for the series of the argument of the

logarithm.

> PrintSeries(Map(t -> [normal(t[1]),t[2]], "), 3);

U;ln(3) 5 (x-l)w^'"(3) / 3MSi_3\
5 + 5 -- ^ + o(«;3'»(3) J)

x 2 x2 \ )

Notice that the result of the series construction already contains the leading
coefficient of the result, which is the only information we need in the context

of Computing limits. The simplification of the coefficients has only been done

to get the same result as in (7.4).

It is a nice feature of this lazy evaluation implementation that although the

routines work for power series with arbitrary real exponents, this fact has to

be respected by the addition Operation only when comparing the exponents

(besides of some elementary functions which have to check the sign of the

leading exponent of the argument). The code can thus be made very generic
and can be parameterized by the coefficient domain of the power series as well

as by the set of exponents.

The first power series facility based on a lazy evaluation scheine is described

by Norman [56]. It was implemented in Scratchpad, the predecessor of the

Computer algebra System Axiom. Further descriptions of this implementation
and in particular of the fixed point Operator can be found in [14, 91]. A

Lisp implementation of infinite streams is presented in [2]; this has also been

adapted for Mathematica [50]. Delayed evaluation for streams was already
introduced into Lisp in 1976 [24]. The Lisp dialect Scheme has deiay and

force commands to simulate delayed evaluation, whereby the results of force

are memorized, i.e. remembered. Delayed evaluation was also inherent in

Algol 60's call by name parameter passing mechanism [45]. An example of a

language with füll lazy evaluation is Miranda [52].

7.2 Zero Recognition

As we have discussed in Section 5.3 we have to postulate an oracle for decid-

ing zero equivalence to solve the limit computation problem. We have also
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seen that this problem can be solved for some function classes. For others,

probabilistic methods may be used. From an implementation point of view,

the question appears to be how to incorporate these techniques for deciding
zero equivalence into a Computer algebra System. The question in particular
is where the decision is made about which test is applied for a given function.

Many approaches to answer this question have been tried (see also [33]).

Maple, and other Computer algebra Systems like it, all have a general rep-

resentation for mathematical formulas called expressions. All these Systems

provide a built in simplifier which is automatically applied to every expression
created. But, since simplification is expensive in general, not all simplifications
are done automatically, and this is a potential source for problems. Many er-

roneous result returned from a Computer algebra System are caused by a zero

which was not recognized as such. Consider the following limit taken from [5].

11111 —/2 I ö V',u/
"-o y/l + cj sin x + vi - o> cos2 x - 1

Derive returns the correct result 2/(1 — 2 cos2x), which can be found after

one application of rHöpital's rule. Let us look how the Computer algebra

Systems Maple, Mathematica, Macsyma, Axiom and Reduce behave on

this example:

Maple V Release 3:

> limit(w/(sqrt(l+w)*sin(x)"2+sqrt(l-w)*cos(x)"2-l), w=0);

0

Mathematica 2.2:

In[l]:= Limit[w/(Sqrt[l+w]Sin[x]-2+Sqrt[l-w]Cos[x]-2-l), u->0]

0ut[l]= 0

Macsyma 418.1:

(cl) limit(w/(sqrt(l+w)*sin(x)"2+sqrt(l-w)*cos(x)"2-l), w, 0);

(dl) 0

Axiom 2.0:

(1) ->limit(w/(sqrt(l+w)*sin(x)"2+sqrt(l-w)*cos(x)~2-l), w=0)

(1) 0

Type: Union(OrderedCompletion Expression Integer,...)

Reduce 3.6:

1: limit(u/(sqrt(l+w)*sin(x)"2+sqrt(l-w)*cos(x)"2-l), w, 0);

0
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The problem encountered here is that none of the Systems have recognized
sin2 x + cos2 x - 1 to be zero Reduce and probably Macsyma reduce the

problem to the expression u/(sin2 x + cos2 x - 1) using Lemma 2 4 and decide

(erroneously) that the result is zero, the other Systems, which are based on

series expansion, compute the stränge Taylor series

1 sin2 x - cos2 x 2 r..
,. ._ _,

—ö <*> ö 7, öw +0(lüö) (7 7)
sin x + cos2 x — 1 2(sin x + cos2 x - l)2

and conclude from the leading term that the limit is zero

The problem (7 6) appears as a sub-problem when Computing the limit

hm
.

=

6

. (7 8)
z-c+oo vi + e-x sm^(i/x) + VI - e~x cos2(l/r) - 1

with our algorithm, but only Mathematica and Maple V Release 3 re¬

turn (the wrong result) 0 for this example, all other Systems either return

unevaluated or "fail" or run forever For Illustration purposes we took the

simpler problem (7 6) Maple V Release 4 however returns the correct result

of limit (7 8) It is the limit of the leading coefficient 2/(1-2 cos2(l/x)) which

is obtained lf the argument of (7 8) is expanded in terms of e~x

> limit(exp(-x)/
> (sqrt(l+exp(-x))*sin(l/x)"2+sqrt(l-exp(-x))*cos(l/x)"2-l),
> x=infmity),

-2

One approach to solve this zero recognition problem in general is to make

the built in automatic simphner very powerful, in particular powerful for the

recognition of zeros This Solution turns out to be very mefflcient Moreover,
the simphfier must always first analyze the mput expression to decide which

simplification rules have to be applied It must also know which rules are

available, which is a senous problem when we consider extending the System

Some Computer algebra Systems offer all kinds of options and flags that al-

low the user to teil the simphfier how to do things differently To solve the

limit (7 6) in Macsyma, one might automatically convert all trigonometric

expression mto exponential form and exphcitly use the limit algorithm which

is based on Taylor series (thmit) Since all the trigonometric functions are

converted to exponential form, the hidden zero is detected by the automatic

simphfier through an application of the expand function

(c2) exponentialize true$

(c3) tlimit(w/(sqrt(l+w)*sin(x)"2+sqrt(l-w)*cos(x)"2-l), w, 0),

2 7.1 x

4 '/.e

(d3)

4 •/.! x
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The REDUCE System has a global simplifier which is applied automatically
and whose behaviour can be modified by setting flags and by defining new

simplification rules.

2: for all x let sm(x)~2+cos(x)"2=l;

3: limit(w/(sqrt(l+w)*sin(x)"2+sqrt(l-w)*cos(x)~2-l), w, 0);

2

2

2*sin(x) - 1

Both Solutions are unsatisfactory as there is no protection from getting wrong
results. The chance of getting a correct one depends on the user's knowledge
about the flags offered by the System and on the user's intuition about which

flags are needed to solve a particular problem correctly. If a limit is computed
within a larger computation, the user has no chance to figure out where to

support the System as he does not see which expression was not recognized to

be zero.

Most Systems offer very powerful simplification routines in addition to the gen-

eral purpose simplifier. For example, in Maple there is a procedure radsimp
to simplify expressions containing radicals, and many other special purpose

simplification routines. As it is too expensive to apply all available simpli¬
fication routines on every expression, Maple supports a parameterized zero

equivalence testing approach. Whenever the System has to decide whether an

expression is zero, the procedure Testzero is called. This is an environment

variable which is initially set to normal(x) = 0 (normal is Maple's simplifier
for rational functions), but which may be overwritten by an arbitrary func-

tion which returns a boolean result. (Since Maple may remember previously
computed results, we must restart a new session to show how it works).

> restart;

> Testzero := e -> evalb(normal(convert(e, exp)) = 0):

> limit(w/(sqrt(l+w)*sin(x)~2+sqrt(l-u)*cos(x)"2-l), w=0);

2

sin(x)2 - cos(ar)2

Macsyma allows one to overwrite the simplifier which is used when Comput¬

ing a Taylor series by assigning the variable taylor_simpliüer. The problem
with these approaches is still that success depends on the power of the simpli¬
fier being used. If the simplifier is not able to recognize a zero, wrong answers

may be returned, and, furthermore, without any indication that they may be

wrong! At least, the Maple approach allows one to install a Testzero proce¬

dure which issues a warning when zero equivalence cannot be decided. The

user would then get at least an indication that the result could be wrong. Un-

fortunately, not all Maple library functions make use of the Testzero facility.
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> restart;

> Testzero := proc(e) Option remember; local t;

> t := testeq(e) or (Nonnalizer(e) = 0);

> lf t = FAIL then t := false;

> printf("/.a is assumed to be non zero\n', e)

> fi;

> t

> end;

> limit(w/((l+w)*2-(l/4)*(2~Ü/2)+2)-(8+6*2-(l/2))-(l/2)), w=0) ;

2*2"(l/4)+2"(3/4)-(8+6*2~(l/2))~(l/2) is assumed to be non zero

0

As the expression Maple has claimed to be nonzero is in fact identically zero,

the result of this computation is wrong. The correct result can be found by
assigning an improved zero test to Testzero.

> restart;

> Testzero := e -> evalb(readlib(radnormal)(e)=0):
> limit(w/((l+v)*2-(l/4)*(2-(l/2)+2)-(8+6*2-(l/2))-(l/2)), h=0) ;

1 23/4

2 v/2 + 2

The most convincing Solution is called the domain based approach. The idea

is that the procedures to compute e.g. power series over a field F are param-

eterized by a collection of functions implementing the Operations which can

be performed in every field, and in particular also a (zero) equivalence test.

Such a collection is called a domain. This idea has been pioneered by the

Axiom [40] System and has been adopted by Systems such as Gauss5 [53] and

others [1, 96].

Every domain, e.g. the one for elementary functions, can offer the best test

for zero equivalence. If the System is extended with a new domain, the special
knowledge about zero recognition enters into the domain definition and no

central simplifier needs to be updated.

Although Axiom seems to use this approach, the result on the limit (7.6)
is wrong. The reason is, that the procedure zero? defined in the domain

Expression, to which sin2 x+cos2 x — 1 belongs, is not a strong zero equivalence
tester. This means that the answer from zero? that a function is non-zero may
be wrong. A better test could be obtained if the expression which is tested

for zero equivalence is first normalized. For that purpose we have defined our

own domain MyExpression (MYEX) which overwrites the two methods zero?

and = from the Expression domain. All the other Operations are inherited

from the domain Expression

(1) ->w/(sqrt(l+w)*sin(x)-2+sqrt(l-w)*cos(x)"2-l) :: MYEX INT;

Type: MyExpression Integer

5Gauss is implementd on top of MAPLE as a package called Domains
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(2) ->limitC/., v=0)

2

(2)
2 2

sin(x) - cos(x)

Type: Union(OrderedCompletion MyExpression Integer,...)

This problem will hopefully be fixed in a future version of Axiom.

7.3 The Properties of w

Whenever a series is computed in terms of u, the domain of computation
is extended by the symbol u> and the System has to be tought about the

special properties of u>. In particular this is the property that In u> is equal to

the argument of the exponential u. If this Information is not passed to the

System, then hidden zeros may remain unrevealed. Consider

In (i _ i"(g-0+M«)

lim —i '-. (7.9)
x-y+oo x

The most rapidly varying subexpression is ex, which is replaced by a/_1. This

implies that lnw = -x. The series expansion of the argument of (7.9) at

u) — 0 is

> PrintSeries(Series(ln(l-Qn(l/v/x-l)+ln(x))/x)/x, w), 1);

ln| 1 {
ln(u;)-ln(l)-ln(a)'

'

+0(w)

When we look at the leading coefficient of this series and keep in mind that

Ina; = —x and that x is real and positive, i.e. that In(l/:r) = — ln(a;), then

we see that the argument of the logarithm is zero, and that this series is

not defined. In order to compute the correct result, we have to pass the

knowledge about ln(u>) into the series computation facility, in particular into

the zero recognizing tool.

In Maple, we could redefine the Testzero environment variable which is called

within the Series facility to perform the necessary transformations. The So¬

lution we chose for our implementation is to störe the values of ln(w) and

ln(l/w) into the remember table of In directly.

> ln(w) := -x: ln(l/u) := x:

> Testzero := e -> evalb(normal(e,expanded)=0):
> PrmtSeries(Series(ln(l-(ln(l/w/x-l)+ln(x))/x)/x, w), 2);

-l + -w + 0(w2)

The unknown u must obviously not be a global name, for the limit code would

otherwise not be reentrant! The result of (7.9) turns out to be -1.
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7.4 Branch Cuts

If we extend the problem domain from the real axis onto the complex plane,
then we must be careful, since many Standard functions become multi-valued.

Familiär examples are

\[z, In z, aresin z, arecos z, aretan z, aresinh z, arecosh z, aretanh z, zl'n.

These functions cannot be defined continuously on the complex plane. It

is conventional in Computer algebra Systems to represent these functions as

single-valued functions by choosing arbitrary lines of discontinuity, which are

also called branch cuts. Branch cuts begin and end at branch points. They

are singularities around which neither branch of the function can be repre-

sented by a Taylor nor by a Laurent series expansion. As a consequence,

these single-valued functions are normally not analytic throughout the whole

complex plane; rather, they have discontinuities across their branch cuts, but

they sill may be tractable. For example, the conventional branch cut for the

complex logarithm functions lies along the negative real axis [3, (4.1.1)]. As

a consequence, lim ln(-l + xi) = m and lim ln(—l — xi) = -ni.
x->0+ x-¥0+

Most Computer algebra Systems just ignore the existence of branch cuts when

Computing series expansions and return results which are only valid in cer-

tain regions of the complex plane. As an example we show the Taylor series

expansion of such a function on its branch cut in MACSYMA.

(cl) taylor(sqrt(-l+x),x,0,2);
2

'/.i x '/.i x

(dl)/T/ */.i +
. . .

2 8

This result is only valid on one side of the branch, namely if the imaginary

part of x C^sx) is greater or equal to zero, but the System gives no indication

that the result is only valid under this proviso. As a consequence, a limit

computation based on this series facility may be wrong as well.

(c2) limit(sqrt(-l-x*'/.i), x, 0, plus);
(d2) U

Note that almost all Computer algebra Systems return an incorrect result on

the above limit problem. A notable exception is DemVE.

We have solved that particular problem by using a sign function for complex

expressions within the coefneients of a series. This sign function is named

csgn in MAPLE and defined as follows:

{1
if Sfcr > 0 V (3fcr = 0 A 3x > 0)

-1 if 9fa < 0 V (3fcr = 0 A %x < 0)
0+ if x - 0
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With the help of that function the series may be formulated depending on the

location of the expansion variable relative to the branch cut. Note that only

straight branch cuts can be resolved with this technique. The series model of

Maple allows the coefficients to depend on the expansion variable x, if their

growth is less than polynomial in x. This condition is satisfied, since csgn(x)
is piecewise constant. As a side effect, Maple6 also knows that the Taylor
series expansion on a branch cut does not exist, since the coefficients of Taylor
series must not depend on the expansion variable.

> taylor(sqrt(-l+x*I), x = 0);

Error, does not have a taylor expansion, try seriesO

> series(sqrt(-l+x*I), x = 0, 2);

e-l/2/cSgn(/(-l+/x))7r _ i je-l/2/csgn(/(-l+/z))7r + q / 2\

Note that even if only straight branch cuts are involved, the series approxi-
mation generated by an inaccurate series facility is not only wrong "half of

the time", but rather this problem may accumulate as the following example7
shows.

> Ez := (z-I)/((z-I)-2)-(3/2) + (z+I)/((z+I)~2)-(3/2):

> series(Ez, z=0, 2);

f-J e3/2 / csgn(/ (z2-2/z-l)) n

+ j g3/2 7 csgn(7 (z2+2/z-l)) iA +

(-2 e3(/2 7 csgn(; (z2-2/2-i)) f
_ 2 e3/2 ' cssn(7 (*2+2/2-i)) A z + 0 (z2\

Within this answer four results for different regions are encoded, depending
on the choice for z, i.e. the choices for the csgn values, namely

-2 + 0{z2) for Äz>0A(-K3z<l)
2 + 0(z2) for SRz<0A(-l < 3z < 1)

4iz + 0(z2) for (5Rz >0A9z< -1) V(9h:<0A3z > 1)
-4iz + 0{z2) for 0Rz>OAQz>l)V(3?z<OASz< -1)vSRz = 0

(7.10)
All Systems which return a result for this series expansion8 return the one

which is only valid in the last region specified in (7.10), e.g. in Macsyma we

get

(cl) taylor((z-7.i)/((z-y.i)-2)-(3/2)+(z+y.i)/((z+Xi)-2)-(3/2),z,0,3);
3

(dl)/T/ - 4 #/.i z + 8 */.i z +
. . .

tThe value at x = 0 is arbitrary defined to be zero. This definition may be changed

using the environment variable _EnvsignumO.
6Since Release 4 of Maple V.

7The example is taken from [5] where the limit of Ez for r = 0 is discussed.

8Axiom 2.0, Macsyma 418.1, Maple V Release 3 and Mathematica 2.2.
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If we additionally considered the region of convergence for this series, then the

result would be even worse, because the series only converges for the first two

regions in (7.10) and for the last region, if z is on the imaginary axis only.

The algorithm which computes the leading term must be prepared for the

Situation that the coefficients may contain sign functions. It must resolve

them by inspecting the limiting behaviour of their argument. Moreover, the

zero equivalence test which is called within series may get a function which

contains csgn functions, which must be resolved. As an example consider

x->+ooX (1 + (1/x -l)l/*-l)
V ' '

which can be rewritten in terms of exponentials and logarithms. After moving

up one level in the scale, the series of ui/(l + exp(ln(u> — 1) (ui — 1))) has to be

computed. If we take into account, that the series expansion is done on the

branch cut and that the coefficients may depend on the csgn function, then

we get the following result with Maple's series command

> senes(w/(l+exp(ln(w-l)*(w-l))),w,2);

: 777 rrr— W + O (tu2)
l -|- eI csgn(/(ui-l))7r

V /

Note that the denominator of the leading coefncient is zero most of the time,

except for u> = 1, in which case the value of the leading coefficient depends on

the definition of csgn(0). On the other hand, we know that u> tends to zero

and so the series is meaningless, since again a zero has not been recognized.

We see two ways to resolve this problem in Maple. One possibility would be

to extend the assume facility in Maple [92] with a new property Arbitrary-
Small and to extend the whole System to consider this property. The function

csgn(7 (w — 1)) should then automatically simplify to -1 if w has this property.

Since this would need an update of the whole library, it is a rather unpractical

approach.

The Solution we have implemented is again to put this extra Information

about uj into the zero equivalence test by overwriting the environment variable

Testzero. If the function which is passed to Testzero contains sign functions

which depend on the expansion variable cj, then these sign functions are re-

placed by their limits as u goes to 0+ before the function is tested for zero

equivalence.

> restart;

> Testzero := proc(e) local el;

> if has(e.w) then el := limit(e,«=0,right)
> eise el := e

> fi;

> evalb(normaKel) = 0)

> end:
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For the above expression we now obtain the following series:

> series(w/(l+exp(ln(w-l)*(w-l))),u,2);

eI csgn(7 («,-!))»• (_j csgn(/ («, _ 1)) « + 1)
T V '

If the sign functions in the leading coefficient of this series are replaced by -1

we get the expression -l/(i k + 1) which is the result of (7.11).

To close this section we give some other examples of directional limits on

branch cuts which are solved correctly with our series model.

> Limit(sqrt(-l+x*I), x=0, left) = limit(sqrt(-l+x*I), x=0, left),

> Limit(sqrt(-l+x*I), x=0, right) = limit(sqrt(-l+x*I), x=0, right);

lim V-1 + Ix = -I, lim V-l + Ix = I
x—vO- x->0+

> limit(arctan(2*I+x), x=0, left), limit(arctan(2*I+x), x=0, right);

-1^+1/ln(3),i,r+^Jln(3)

7.5 Computing with Parameters

Another general source of bugs in Computer algebra algorithms is when a result

depends on certain conditions which must be met by the involved parameters.

Some Computer algebra Systems either return a result which may become

wrong on specialization, or refuse to compute anything. We again take an

example out of [5].

> V := l/sqrt(r-2+(z-I)-2)+l/sqrt(r-2+(z+I)"2):
> Ez := -diff(V.z);

-

l 2,2-2/ 1 2Z-2I

Z:~2 (r2 + (z- J)2)3/2
+

2 (r2 + (z + /)2)3/2

> limit(Ez, z=0, right);

0

This result is only correct for r > 1, not in general. Our implementation of

series gives a note to the user whenever it makes assumptions about condition

on the parameters which cannot be resolved. This way, the user gets at least

a hint that the Solution returned is only valid under some provisos, but in

general this problem is not easy to solve, and a variety of approaches have

been discussed and implemented [18].

> HRV[Limit](Ez, z=0, right);
PROVISO: N0T(r-2-l,negative)

0

Once we know this, we might specify additional Information about the vari-
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ables and then either get the correct result or further provisos. Assumptions
about unknowns may be specified with the assume facility in Maple [92].

> assume(r"2 < 1, r, real);

> HRV[Limit](Ez, z=0, right);

2

(1 _ r-2)3/2

Such knowledge is for example needed within series, when one has to decide

whether the expansion point is on a branch cut or not, and that is also what

happened in the above example for the fractional power.

In the environment of Computing limits with our approach, we may encounter

sometimes a special Situation which we will discuss next. Consider the example

,. ,
/ x(x + l) 1

*->+oo l In (ex + eln x ex ) lnx

2 2

The most rapidly varying subexpression is ex and we set u = e~x
.
The

series in u of the argument of the outer logarithm in (7.12) is

1 x(x + l)
„,

.

+ —5 + O(üj)
lux ln2:r + :r2

V

If the series of the logarithm thereof is computed, we must compute the sign
of t^—h

.
xix+. K in order to decide whether we are on the branch cut or

in x in x+x^

not. The sign of this function can be decided to be 1 if we know that x > 1.

Unfortunately, such a bound above which the sign can be computed is difficult

to specify in advance. But we know that x is the variable which approaches
infinity, and hence only the value of the sign for x —¥ +oo is relevant. A.gain,
this information about the unknown x must be communicated to the sign test

which is called in the series computation facility.

Again two approaches seem to be natural for a MAPLE realization. First, a

new property, such as ArbitraryLarge, for the assume facility could be defined,
but as we have already discussed, such global changes imply that a lot of code

must be updated. The easier Solution is to dehne also an environment variable

for Computing the sign of a function. If the zero equivalence test is already
offered as an environment variable, it seems to be natural to also offer an

environment variable for Computing the sign of an expression, since these

two tasks are related anyway. In the code in Appendix A, this environment

variable is called _EnvSIGNUM.

7.6 The limit Routine in the Maple Library

In this last section we would like to add some information about the implemen-
tation of our algorithm which is available in the Maple distribution version

(7.12)
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through the limit command. The main difference of this implementation with

the algorithm presented in the appendix is that Maple's limit facility is built

on top of Maple's series function. This series model however only Supports
Puiseux series, i.e. the exponents are restricted to be rationals. Real expo-

nents are converted to a rational approximation. This works fine in most of

the cases, but examples where this simplification fails can be constructed. An

example is

lim (Beta(x + e-x,x + e_x)-Beta(a;,a;)) e(1+21n2)x yß = -4 ln2vAF

which returns 0 in Maple V. The correct result is computed by our imple¬
mentation which is based on a general power series facility:

> (Beta(x+exp(-x),x+exp(-x))-Beta(x,x))*exp((l+2*ln(2))*x)*sqrt(x):
> MRV[Limit](", x=infinity);

1/2
- 4 Pi ln(2)

We decided to built limit on top of the existing series facility and not to build

our own series tool, since then the limit tool can profit from extensions made

in the series facility. However, we hope that eventually Maple itself will offer

a more general series facility.

The pre-processing step can be extended in the usual Maple manner. If

the function / needs to be pre-processed, i.e. if it contains essential singu-
larities in its domain of definition, then the user must supply a procedure

limit/preprocess/f. This procedure is then called from within limit with the

actual arguments of / and it has to return the pre-processed function (where
all the essential singularities are captured in exp-log functions, and all other

functions are tractable, i.e. can be expanded in a power series). The argu¬

ments are passed as expressions in the variable limit/X and the limit is taken

as limit/X approaches 0 from the right.

Example 7.1 As an example we extend the System by the function ERF

which is the error function

ERF(a;) = - / e~'2 dt.
k Jo

In order to instruct Maple how to expand ERF(x) into a series, it is enough
to define the derivative of ERF(x). This is done by a definition of procedure

diff/ERF.

> 'diff/ERF' := (e,x) -> 2/sqrt(Pi)*exp(-e~2)*diff(e,x):
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Next we define how to pre-process this new function. If the argument tends to

infinity, then the function has an essential singularity which we isolate. The

tractable part is defined to be the function ERFs.

> 'limit/preprocess/ERF' := proc(e)
> local lim;

> lim := limit(e, 'limit/X'=0, right);
> if lim = infinity then 1 - ERFs(e)/exp(e"2)
> elif lim = -infinity then -1 + ERFs(-e)/exp(e"2)
> eise ERF(e)

> fi

> end:

Additionally, we must instruct Maple about how to expand the tractable

part ERFs(x) into a series. The series facility of Maple is extended through
the same mechanism, i.e. also by assigning a procedure to series/ERFs. Note

that the argument of ERFs always tends to +oo. Due to our model it may

happen that the series of the argument has the form cq + c\ wei H
,
with the

leading coefficient not constant but rather tending to infinity as well, Ihough
less rapidly than w. As a consequence we must distinguish two cases within

the series expansion of ERFs(x).

> 'series/ERFs' := proc(e, x)

> local eO, s, k;

> eO := series(e,x);

> if not type(eO, 'series') then RETURN(FAIL) fi;

> ASSERT(op(2,eO)<=0);
> if op(2,e0) = 0 then

> s := series((l-ERF(eO))*exp(eO"2), x);

> eval(subs(ERF=(v -> l-ERFs(v)/exp(v~2)), s));
> eise # (5.17)

> series(l/sqrt(Pi)*
> sum((-l/4)-k * (2*k)< /k' /e0"(2*k+l), k=0..iquo(0rder-l,2))
> + 0(l/eCTOrder), x)

> fi

> end:

The extension is now complete and limit knows about the new function

ERF(:r). The only thing Maple does not know yet is the relation to other

MAPLE function in order to be able to test for zero equivalence. This can be

achieved by redefining Testzero accordingly.

> Testzero := subs(T=eval(Testzero), proc(e) T(subs(ERF=erf, e)) end:

> limit(exp(x)*exp(x~2)*(ERF(x+l/exp(x))-ERF(x)), x=infmity);

_2_

1

Example 7.2 The following example is slightly more complicated and shows

how additional knowledge can be added to the limit facility through the pre-

processing transformation. We teach Maple to handle Bessel functions whose

order tends to infinity. According to [3, (9.3.7)] we have
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e*(tanh a-a) / ~

Ufc coth a \
JJi/secha) ,

1 + > r

V27ri/tanha \ fe "
/

for v -> oo through real positive values. a is assumed to be fixed and positive.
The definition of the Uk is given by a recursion in [3, (9.3.10)]. We can pass

this information into the limit computation by defining the procedure pre-

process/mrv/Besseü. The arguments are given as expressions in the variable

limit/X, and the limit is taken for limit/X towards zero from the right side.

We directly access the procedures defined in the limit library code.

> alias(PreProcess = 'limit/mrv/PreProcess'):

> alias(MrvLeadTerm = 'limit/mrv/MrvLeadTerm') :

> alias(Sign * 'limit/mrv/Sign'):
> 'limit/preprocess/BesselJ' := proc(n.e)
> local lte, ltn, alpha;
> lte := MrvLeadTerm(PreProcess(e));

> ltn := HrvLeadTerm(PreProcess(n));

> lf ltn[3] < 0 and lte[3] < 0 and traperror(Sign(ltn[l])) = 1 then

> # A&S [3]: 9.3.7

> alpha := arcsech(MrvLimit(PreProcess(e)/PreProcess(n)));

> alpha := convert(alpha, In);

> lf signum(O,alpha,0) = 1 then

> exp(n*(tanh(alpha)-alpha))/sqrt(2*Pi*n*tanh(alpha))*
> BesselJs(alpha,n)
> eise .Range
> fi

> elif lte [3] < 0 then .Range # Signal for oscillatmg functions

> eise BesselJ(n,e)

> fi;

> end:

Together with the definition for series/BesselJs and after some simplifications
we obtain

lim J{e2+1)x{2ex)e2xy/x= .

*^>°° y/2-KVe2 - 1
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8. Comparison

In this section we compare different algorithms for Computing limits which

are offered by the currently available Computer algebra Systems. Such a list of

examples is useful as a benchmark to test further limit algorithms, but it also

shows the power and the weaknesses of today's Computer algebra Systems.

This comparison shows in particular that some of today's commercially avail¬

able Computer algebra System still use methods based on the ideas presented
in Section 2.3. In particular, we tested the following limit algorithms:

MrvLimit: This is our algorithm as it is described in this thesis. We used

the version which is presented in Appendix A. It is built on the lazy
evaluated general sparse power series facility described in Section 7.1.2.

Another implementation of this algorithm is available through the limit

command in Maple V since Release 3 (cf. Section 7.6).

JSLimit: This algorithm refers to our implementation of Shackell's algorithm
to compute nested forms. The limit of a function is read off its nested

form. Note that the implementation is restricted to exp-log functions.

glimit: This is a function out of the Maple gdev package for asymptotic

expansions written by B. Salvy [70]. glimit is using a generalized series

approach. We used the 1994 version which runs in Maple V Release

3 and which is available through ftp from ftp.inria.fr in the directory

/IJVRIA/Projects/aigo/programs/gdev.

Mathematica: Mathematica offers two limit functions, one in the kernel

and one in the package Calculus/Limit.m. The kernel limit function is

based on heuristics, whereas the limit package uses a generalized series

expansion approach. The latter has been written by V. Adamchik [4]
and is a development version for the evaluation of limits which may

replace the algorithm in the kernel in the future. The limit package
is available in every Mathematica installation since Version 2.1 and

can be loaded with the command «Calculus/Limit.m. We used the

version available in Mathematica 2.2.

Macsyma: Macsyma also offers two limit functions: limit and tlimit. limit

uses a heuristic approach as described in [89, 90] whereas tlimit calls limit
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with a flag indicating that Taylor series have to be used as first heuristic

whenever possible. We ran the tests with Macsyma Version 418.1. If

nothing special is mentioned in the footnotes, the limit command was

used.

Derive: The limit algorithm in Derive is based on heuristics. We tested

Derive Version 2.6.

Axiom: Axiom's limit function is based on a power series approach. We ran

the tests with Axiom Release 2.0a.

Reduce: The limit package of Reduce is based on heuristics. For non-

critical limits a power series approach is used, and to resolve singularities

l'Höpital's rule is applied. A limited amount of bounded arithmetic is

also employed where applicable. This package has been implemented

by L. Kameny [42]. We tested the limit facility available in Reduce

Version 3.6.

We must admit that the test examples we choose are rather difncult and in

particular test the behavior of the algorithms on cancellations and essential

singularities. The examples (8.1-8.8) are all examples which lead to the can-

cellation problem if the general power series algorithm is applied directly. For

the examples (8.5-8.8) this can be seen if the quotient of the two exponentials
is combined into an exponential of a difference. That is also the reason why

gdev and AXIOM give up on most of these examples.

The example (8.9) is taken from Hardy [36]. He used it to describe the dif-

ficulty of finding an asymptotic scale. The only scale in which this function

can be expanded is a scale which contains the function itself.

The problem (8.15) has been chosen randomly and does not contain special

trapdoors. Its result is obvious. It is surprising however that most of the

Systems cannot solve this problem. Finally, note that the test (8.18) has been

discussed in Example 3.21 and (8.19) in Example 3.25.

The kernel limit function of Mathematica could not solve any of the Prob¬
lems. It returned unevaluated for all examples, most times after an error

message indicating that an indeterminate expression of the form oo - oo was

encountered. We only present the results of the Calculus/Limit.m package.

lim ex \exlx-e
'

- el/x ) = -1 (8.1)

lirn^e* (£/*+'-'+'"* _ ei/x-e-x\ _ x ^ 2)

lim e'"'~'VC1"1/*) _ c«' = +00 (8.3)
x—>+oo
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.. p(«x/(l-l/*» .(^/(l-l/x-lnf!)-1"*1»))
lim e - e = —oo

X—>+00

„x+e~*

lim
x—>+oo ge

lim

= +00

x-v+oo eCe"

lim
X—»+00

-r
= +00

^-
= 1

lim
X—J-+ 00 ex-e~

lim (lnx)2eVlnx(lnlna:) e />/i = 0
x—>+oo

lim
lnx (in (xex - x2)) 1

+°° lnln(x2+2ee3l3,ni) 3

lim (>e~*/(«-*+«"2*1) -e^/2; = -exp(2)
->+ 30 \ /

lim (3X + 5x)1/x = 5
->+oo

lim x/lnfxlnxln2/'na:U+oo
->+oo \ /

x—>+oo

2 1n(x°+x) In lnx

lim
x—*-+cxi e1

:10 In x In In x

= +00

exp('e5/2x-5/7+21/8x6/11+2x-8+54/17x49/45y

lim 4/9 ^
=-

'—
= +00

I-f+°° In (in (-In (4/3*-*/")))7/a

exp(4a;e~x/(l/ex + l/exp(2a;2/(x + 1)))) - ex
_

x—>+oo

exp

(ex)4

^e-x+e-2*^/(x+i> j
_lim

x—>+oo

x/(l +e—) .'.
...

x+ e
—/(1+e—)

ge g l +,,-x/(l + e x) ge
lim

_

ex + z = 2
x->-+cx) (e-x/(1+e ))2

lnfln x + In In x) — In In x
,

hm —r-r;
—— In x = 1

x-H-00 ln(lna: + lnlnlnz)

/ lnln(x + elnxlnlnx) \
lim exp ,

. ,
, :—-r — e

x->+oo l In In In (ex +x + \nx) I

(8.4)

(8.5)

(8.6)

(8.7)

(8.8)

(8.9)

(8.10)

(8.11)

(8.12)

(8.13)

(8.14)

(8.15)

(8.16)

(8.17)

(8.18)

(8.19)

(8.20)
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MrvLim JSLlM GLlMIT Math Macs Derive Axiom Reduce

8 1 -1 -1 uneval -1 -1 -1 failed uneval

82 1 1 uneval 0 1 1 failed u neval

83 oo oo uneval 0 —oo oo failed uneval

84 —oo —oo uneval ()2 uneval o6 failed uneval

85 oo oo uneval l oo uneval7 failed uneval

86 oo oo oo e~e uneval o6 failed o4

87 1 1 1 e"e uneval uneval7 failed o4

88 1 1 1 oo 1 1 failed uneval

89 0 0 0 oo 05 uneval 0 uneval

8 10 1/3 1/3 1/3 o3 uneval o6 failed uneval

8 11 -e2 -e2 0 0 uneval o6 failed uneval

8 12 5 5 5 e 5 o6 failed 1

8 13 oo oo oo o2 oo oo failed oo

8 14 oo oo uneval 1 l5 uneval' 1 uneval

8 15 oo oo uneval o4 uneval o6 o4 uneval

8 16 1 1 1 0 1 o6 failed uneval

8 17 1 1 1 0 1 o6 failed uneval

8 18 2 o1 oo 0 uneval uneval7 o4 o4

8 19 1 1 1 i uneval uneval7 failed uneval

8 20 e e e i uneval o6 failed uneval

Table 8.1. Comparing difFerent limit algonthms and packages on exp-log functions

The current Implementation exhausts all memory on this example as the intermediate

results get too large
MATHEMATICA returns Indetermmate which represents a numencal quantity whose

magnitude cannot be determined

After issuing some error messages MATHEMATICA exits with the message Out of

memory

Stopped after several hours

Only when usmg tlimit Macsyma returns unevaluated when using Jimit

The problem cannot be solved and a Memory füll message appears

The function has been transformed into another, more comphcated form
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It is difficult to compare timings as the Systems behave so differently, i.e. run

for ever or return unevaluated immediately. Maple used less than 20 seconds

on a Sun4 for the twenty exp-log examples with both implementation, i.e.

with the library version and with the version given in the Appendix.

The results on Example (8.18) are very interesting. They show that a result

may not be correct, even if it is returned by three different Computer algebra
Systems!

The second collection of problems contains limits of functions in more difficult

function fields. The emphasis is again on the cancellation problem for the

first ten examples, on which glimit gives up, as expected. Again some of the

examples have already been discussed, namely test (8.32) in Example 5.5 and

test (8.35) in Example 5.6.

The limit function in the kernel of Mathematica could not solve any of

these limits and returned unevaluated for all of them, sometimes after error

messages indicating that an indeterminate expression was encountered or an

essential singularity was found during the series expansion of the r function.

We therefore only present the results of the Calculus/Limit.m package. This

package however seems to have many implementation bugs. We have reported
them to Wolfram Research Inc.

In order to compute these limits in Reduce, the specfunc package has to be

loaded first. Reduce and in particular Derive are rather poor on these

special functions in contrast to the exp-log problems. It seems that special
functions are not incorporated that well in these Systems. This may be an

indication that the algorithm which is using heuristics is difficult to extend.

The MrvLimit algorithm used here is an extension over the one presented
in the Appendix A which preprocesses functions with essential singularities.
The limit function in Maple V Release 4 returns the same results except

for the test (8.25). This problem cannot be solved as the underlying series

facility is not powerful enough and thus Maple's limit returns unevaluated.

The Maple V library version of our algorithm needed 16 seconds to solve the

special limit problems and the version based on lazy evaluated series used 35

seconds on a Sun4.
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lim e* fsin(l/x + e-x)-sin(l/a; + e-x2)') =1 (8.21)
x—>+oo \ /

^m^e6* (esin(1/x+e_cI) -esin(1/x)) = 1 (8.22)

lim (erf(x - e~e) - erf(x)) ee* e^ = —2/V^F (8.23)
x—>-f-oo

lim (Ei(x-e-eX)-Ei(x))e-xee* x =-1 (8.24)
X—f+OO

Jhn^ e(ln2+1) x (C(x + e~x) - C(x)) = - In 2 (8.25)

lim ex(r(x + e_x)--r(x)) = +oo (8.26)

lim exp(F(x - e_x) exp(l/x)) - exp(r(x)) = +oo (8.27)
x—»+oo

lim (r(x + l/r(x))-.T(x))/ln(x) = l (8.28)
x—»+oo

lim x (r(x - l/r{x)) - r{x) + ln(x)) = l (8.29)

fr(x + i/r(x))-r(x) „. ,\
,

1
.„ n.hm —i

,

— -

cos(l/x) x lnx = — 8.30
x->+oo ^ lnx / 2

y '

lim
r(s + l)

- e- (V+1/2 + x*-1'3/^) = +oo (8.31)
x-»+oo v2tt \ '

lim ln(r(r(x)))/ex = +oo (8.32)
x—y+oo

lim exp(exp(i/'(V'(a;))))/a; = exp(-l/2) (8.33)

lim exp(exp(^>(ln(x))))/x =exp(-l/2) (8.34)
X—J-+00

lim exp(exp(exp(V#W>(x))))))/x = 0 (8.35)

lim J2x(x)ex(21"(2+V3)-v^)^= / 1

(836)

max(x,ex)

hm
,

v ' ;
= -1 8.37

x->+oo ln(min(e-x,e-e ))
v
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MrvLim GLlMIT Math Macs DERIVE Axiom Reduce

8 21 1 uneval oo uneval o8 failed uneval

8 22 1 uneval —oo uneval o8 failed uneval

8 23 -2/>/i uneval 0 uneval uneval o9 uneval

8 24 -1 uneval —oo uneval4 0 o9 uneval

8 25 -ln(2) uneval uneval1 uneval uneval 0" uneval

8 26 oo uneval 02 uneval uneval failed o12

8 27 oo uneval o3 uneval uneval failed o12

8 28 1 uneval o2 ()S uneval failed o12

8 29 1/2 uneval o2 o5 uneval failed o12

8 30 -1/2 uneval o2 o5 uneval failed o12

8 31 oo oo —oo —oo o8 failed o12

8 32 oo uneval 0 oo6 uneval failed {)12

8 33 e-1^ l

el/2 \l-fe uneval o9 failed o12

8 34 e-V2 1

e"2
1/Ve O7 o8 failed o12

8 35 0 uneval oo uneval o9 failed ()12

8 36
1 / 2

2 Y TTV'ä
uneval uneval uneval ?10 failed uneval

8 37 -1 uneval uneval uneval uneval —oo uneval

Table 8.2. Comparmg difFerent limit algonthms and packages on general functions

1 After some error messages from Senes

2 After some error messages which say that a local variable in the CaJcuJus/Ijmit
package does not have appropriate bounds

3 After some error messages the empty list {} is returned as result

4 MACSYMA asks here whether exp_int(inf) is positive, negative or zero Independent
of the answer, lt returns unevaluated

5 The System error Bind Stack overflow, Caught fatal error or Unrecoverable

error was lssued

6 Only when using thmit The hmit command causes a System error

7
Only when using thmit The Jimit command returns unevaluated

8 The problem cannot be solved and a Memory füll message appears
9 Stopped after several hours

10 A question mark means that the limit is undefined

11 AXIOM does not know the Riemann Zeta function
12 The system error Binding Stack overflow, restarting... was lssued
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9. Conclusions

We have presented a new algorithm for Computing limits of exp-log functions.

The algorithm overcomes the cancellation problem other algorithms suffer

from. The algorithm is very compact, easy to understand, easy to prove and

easy to implement. This goal was achieved using a uniform method, namely
to expand the whole function into a series in terms of its most rapidly varying

subexpression. This way, the size of the problem is reduced in every iteration

step and the size of the intermediate expressions are kept under control. In

this point our algorithm differs substantially from the bottom-up algorithms
which solve the cancellation problem. As a consequence, our algorithm is in

particular suited to the implementation in a symbolic manipulation system.
For particular limits, our algorithm may even be used as straight forward

technique to compute the result using paper and pencil.

We have also shown how the algorithm can be extended to handle special
functions. We have used a practical approach which tries to rewrite functions

so that all essential singularities are captured by exponentials and logarithms
only. This allows us to apply the algorithm for exp-log functions directly,

provided that the underlying series facility is powerful enough.

As an underlying tool our algorithm uses a series computation facility which

must support arbitrary real exponents. We have shown an implementation
of a lazy evaluated model within the Maple system. The task of analyzing
the comparability classes of a function and the series computation facility
are nicely separated with our algorithm. When Computing a series we never

have to worry about comparability classes as e.g. new ones may never evolve.

Whenever a series has to be computed, it is guaranteed, that the function

can be expanded into a power series. The only relation between the actual

asymptotic scale in which the expansion is performed and the series facility is

the value of lnw.

As a byproduct of the algorithm for Computing limits we have described an

algorithm for Computing asymptotic expansions. The asymptotic scale which

is used is thereby determined on the fly.

The algorithm has already been extended recently by van der Hoeven [88, 64]
in order to expand Solutions to polynomial equations into asymptotic series



130 9. Conclusions

as well as to handle differentiation, Integration, functional composition and

inversion. The basic technique which is used is multiseries, which is equivalent
to our hierarchical series. Moreover, instead of calculating the most rapidly

varying subexpression of the whole function a reduced basis is gradually com-

puted. This way unnecessary order comparisons are avoided. As we have seen,

such a reduced basis is also computed implicitly by our algorithm.

Our algorithm is available through Maple's limit function since Maple V Re¬

lease 3. When we have compared our algorithm with the algorithms available

in other commercially available Computer algebra Systems we have discovered,

that almost all of these algorithms still use heuristics to solve the limit prob-
lem. As a consequence they badly fail on the examples we tested. We think

that we have filled a gap with our algorithm and expect that it will soon be

implemented in other Systems.

The exp-log Version of our algorithm is already available in MuPAD [25]
Version 1.2.2. It has been implemented by F. Postel [94] and does replace a

previous Version which was built on top of a Puiseux series facility, i.e. which

was a member of the class of algorithms described in Section 2.3.2. Also for

the REDUCE System it was planned to extend the limit computation facility

using our approach [43].



A. Maple Code for Computing Limits of

exp-log Functions

The following module contains the Maple code to compute limits of arbitrary
real exp-log functions. It is written for Maple V Release 4. The code assumes

that there exists a procedure Series which computes a series approximation of

a given function as well as a procedure LeadTerm which determines the leading
term of a given series. The latter procedure accepts a second argument which

controls the search for the leading term in the case that the leading coefficient

is zero. If the leading exponent is larger than the second argument then the

search is stopped.

The procedure MODULE provides modules in Maple and allows Information

hiding. The objects (procedures and variables including environment vari¬

ables) which are declared to be local to this module cannot be accessed from

outside. Only those objects which are explicitly exported are visible outside

the scope of the module. They are stored into a table (package) whose name

is the name of the module.

#

# Limit Computing facility for exp-log functions

# Copyright 1994 D. Gruntz, Wissenschaftliches Rechnen, ETH Zürich';
*

MODULE(MRV,
# Exported procedures

[Limit],
# Local procedures and variables

[HrvLeadTerm, Mrv, Max, Compare, Rennte, Sign, MoveUp, MoveDoim, Simplify,
ResolveCsgn, ResolveSignum, PROVISO, AssumePositive, ClearAssumption,
ClearRememberTable, x, _EnvPreProcessCsgn, .EnvLimitW, _EnvLimitWinv]

)

# Environment Variables:

# Testzero : used within series (cf. Section 7.2)

# .EnvSIGNUM : used to resolve Signum expressions (cf. Section 7.4)

Limit := proc(e::algebraic, limpoint::equation, direction::name)

local z, zO, r, eO, el, X;

z := lhs(limpoint); zO •= rhs(limpoint);
if zO = infinity then eO := subs(z= x, e):

ellf zO = -infinity then eO := subs(z=-x, e):
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elif nargs = 3 and direction = left then eO :» subs(z=zO-l/x, e)

eise eO := subs(z=zO+l/x, e)

fi;

.EnvSIGNUM := proc(e) local s;

s := Signum(0, Limit(e, x=infmity), 0):

lf s = 0 then s := l/signum(0, Limit(l/e, x=inf mity) ,
0) fi;

s

end:

Testzero := subsCTESTZERO' = eval(Testzero), proc(e) local eO, el, e2, t, X;

eO := e:

el := select(has, mdets(e0, {specfunc(anythmg, 'csgn') ,

specfunc(anything, 'Signum')}), {x,_EnvLimitW});

lf el <> O then AssumePositive(X);

for t in el do

lf op(0,t) = csgn then

e2 := ResolveCsgn(subs(_EnvLimitW=_EnvLimitWinv,op(l,t)), X);

lf type(e2, integer) then eO := subs(t = e2, eO) fi

elif op(0,t) Signum then

eO := subs(t = ResolveSignumCsubsC.EnvLimitW^EnvLimitWinv.opd.t)), X), eO)

fi

od;

eO := eval(eO);

ClearAssumption(X)
fi;

TESTZERO (eO)

end):

ClearRememberTable(MrvLeadTerm); ClearRememberTable(Hrv);

el : MrvLeadTerm(Simplify(eO));

lf testeq(el[3]) then r : expand(el[1])
elif Signum«), el[3], 0) = 0 then r :» expand(el[l])
elif signum(0, el[3], 0) = 1 then r := 0

elif signum(0, el[3], 0) » -1 then r := Sign(el[l])*inflnity
eise ERR0R('cannot determine the sign of ', el[3])

fi;

r

end: # Limit

MrvLeadTerm := proc(e::algebraic)
# returns the leading term c0*w"e0 of the series of e m terms of the most rapidly
# varying subexpression w. The results has the form [cO, v, eO].

local eO, el, e2, e3, mO, subspat, Wmv, s, t, W, X;

Option remember;

eO : e;

el := select(has,

indets(e0, {specfunc(anything, 'csgn'), specfunc(anythmg, 'Signum')}), x) ;

lf el <> {} then AssumePositive(X);

for t in el do

lf op(0,t) = csgn then e2 : = ResolveCsgn(op(l,t), X);

lf type(e2, integer) then eO :- subsCt - e2, eO) fi

elif op(0,t) Signum then

eO := substt = ResolveSignum(op(l,t), X), eO)

fi

od;

eO := eval(eO): ClearAssumption(X)
fi;

lf not has(eO, x) then RETURN([eO,1,0]) fl;

lf nargs « 2 then mO := seleet((t,e) -> has(e, t), args[2], eO);

lf mO = {} then mO := Hrv(eO) fi;

eise mO := Mrv(eO);

fi;
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lf member(x, mO) then RETURN(MoveDo!m(HrvLeadTerai(MoveUp(eO), MoveUp(mO)))) fi;

AssumePositive(W); _EnvLimitW : = W;

subspat := Rewrite(mO, V);

Winv : = subs( map( x->(op(2,x)=op(l,x)), subspat ), W );

e3 := op(Winv);
lf Sign(e3) = 1 then subspat := subs(W=l/W,subspat): Winv := 1/Winv: e3 := -e3 fi;

ln(l/W) .= -e3; ln(W) : = e3; .EnvLimitWinv := Winv;

el := eval(subs(op(subspat), eO));

lf not has(el, W) then e2 : = el: e3 := 0:

eise e2 : = LeadTerm(Series(el, W), 0); e3 := e2[l][2]; e2 := e2[l][l];

fi;

lntl/W) : = 'ln(l/W)'. ln(W) := 'ln(W)':

e2 : = eval(subs(W = Winv, e2));

s : = Signum«), e3, 0);

lf not type(s, integer) then s := testeq(e3);
lf s = true then s := 0; e3 := 0

elif s - false then s := 1

eise ERRORCcould not decide zeroequivalence of ', e3)

fi

fi;

ClearAssumption(W);

lf s <> 0 then RETURN( [e2,Winv,e3] ) fi;

MrvLeadTerm(e2)

end: # HrvLeadTerm

Mrv := proc(e)
local c, d, m;

Option remember;

lf not has(e, x) then {}

elif e = x then {x}

elif type(e, '»') then Hax( Mrv(op(l,e)), Mrv(subsop(l=l, e)))

elif type(e, '+') then Hax( Mrv(op(l,e)), Mrv(subsop(l=0, e)))

elif type(e, '"') then

lf not has(op(2,e), x) then Mrv(op(l,e)) eise Mrv(exp(ln(op(l,e))*op(2,e))) fl;

elif type(e, 'ln(algebraic)') then Mrv(op(e))
elif type(e, 'exp(algebraic)') then c := Mrv(op(e)); m := MrvLeadTerm(op(e));

lf m[3] < 0 then d : = CompareCe, c[l]);

lf d - '>' then {e} elif d = '<' then c eise {e} Union c fi

eise c

fi

elif type(e, function) and nops(e)=l then Mrv(op(e))
elif type(e, function) and nops(e)=2 then Max( Mrv(op(l,e)), Mrv(op(2,e)))
eise ERROR('unknown expr'.e)
fl

end: * Hrv

Hax := proc(f, g)
local c;

lf f = {} then g

elif g = <} then f

elif f intersect g <> O then f Union g

elif memberCx, f) then g

elif memberCx, g) then f

eise c : = CompareCf [1] ,g[l]) ;

lf c = '>' then f elif c '<' then g eise f Union g fl

fl

end: # Hax
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Compare : = proc(f, g)
local Inf, lng, c, s;

if type(f, exp(anythmg)) then Inf := op(f) eise Inf := ln(f) fi;

vf type(g, exp(anythmg)) then lng := op(g) eise lng := ln(g) fi;

c := MrvLeadTermClnf/lng); s := Signum«), c[3], 0);

if s = -1 then '>'

elif s 1 then '<'

elif s = 0 then ''

eise ERRORCsign could not be determied')

fi

end: # Compare

Rennte := proc(m: :set(exp(algebraic)), W::name)

local f, g, A, c, mO, subspat:

if nargs = 3 then g := args[3]
eise g := mCl] ;

for f in m do if length(f) < length(g) then g : f fi od

fi;

mO : = sort(convert(m, list), (a,b)->evalb(nops(Mrv(a)) >= nops(HrvCb))));
subspat : = MULL:

for f in mO do c := MrvLeadTerm(op(f)/op(g));
ASSERT(c[3]=0, 'Elements must be in the same comparability class');

c : = c[l], A := exp(op(f)-c*op(g)); subspat : subspat, f = A*W"c;

od;

[subspat]
end: # Rewrite

MoveUp := proc(e)
eval(subs([ln(x)=x, x=exp(x)J, e))

end: # HoveUp

MoveDown := proc(e)

eval(subs([exp(x) = x, x = ln(x)], e))

end: # MoveDown

Simplify = proc(e)
if type(e, {' + ','*','function'}) then map(Simplify, e)

elif type(e, '*') then

if has(op(2,e),x) then expCln(Simplify(op(l,e)))*Simplify(op(2,e)))
eise Simplify(op(l,e))"op(2,e)
fi

eise subs(E=exp(l), e)

fi

end: # Simplify

ResolveCsgn : = proc(e, X::name)

local eO, el, lt;

lt := 1;

eO := HrvLeadTerm(e); lt := lt * e0t2]"e0[3]:
el := csgn(subs(x=X,eO[l]));
while not type(el, 'integer') and has(el, x) do

eO := HrvLeadTerm(eO[l]); lt := lt * eO[2]_eO[3]:
el :- csgn(subs(x=X,eO[ll))

od;

if Re(subs(x=X, e0[l]))=0 then

if not assigned(_EnvPreProcessCsgn) then

if Re(subs(x=X, e)) 0 then

el

eise .EnvPreProcessCsgn :« Order;

eO := ResolveCsgnCe - e0[l]*lt, X);
if eO UNKNOWN then PRQVIS0(e,' is pure imaginary'); el

eise eO

fi
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fi

eise

.EnvPreProcessCsgn :» _EnvPreProcessCsgn-l;
if _EnvPreProcessCsgrt > 0 then procname(e - eO[l]*lt)
eise UNKNOWN

fl

fii

eise

if type(el,'integer') then el eise FAIL fi

fl

end: # ResolveCsgn

ResolveSignum :- proc(e, X:.najse)

local eO, el;

eO := MrvLeadTerm(e);
el .= signum(subs(x = X,eO[l]));
while has(eO[l], x) do

eO := MrvLeadTerm(eO[l]);
el .- signum(subs(x = X,eO[l]))

od,

el

end: # ResolveSignum

Sign := proc(e)
local sig,

if not has(e, x) then sig .= signumCO, e, 0);

if sig = 0 then ERRORCe must not be zero')

elif type(sig, integer) then sig
eise ERROROcannot compute the sign of',e)
fi

elif typeCe,'*') then map(Sign, e)

elif e = x then 1

elif type(e, 'exp(algebraic)') then 1

elif type(e,'*f) then

if op(l,e) = x then 1

elif Sign(op(l,e)) = 1 then 1

eise Sign(HrvLeadTerm(e)[1])
fl

elif type(e, function) or type(e,
'
+ ') then

Sign(MrvLeadTerm(e)[1])
eise ERRORCcannot compute the sign of ', e)

fl

end: # Sign

AssumePositive := proc(e)
global 'property/object';
readlib('assume'):

'property/object'[ e ] := RealRange(OpenCO), infmity):
end: # AssumePositive

ClearAssumption := proc(e)
global 'property/object';
'property/object'[ e ] := evalnOproperty/object' [ e ]):

end: * ClearAssumption

ClearRememberTable :- proc(p: .-procedure)
assign(p, subsop(4=NULL, op(p)))

end:

PROVISQ := procO lprintCPROVISO: ',args) end:

AssumePositive(x):

END(HRV):
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