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Corrigenda: IPS Research Report No. 92-26

“Optimum Extrapolations of Wendland-Bruhn Iteration
for a Class of Nonnormal Linear Systems” by G.G.Groh

Corollary 2.3 on page 6 reads correctly:
Corollary 2.3 Primitive iteration for solving the prescaled system [8]:
QAQy = Qb with y=0Q""z (Q nonsingular),

is identical to Q?-eztrapolation of primitive iteration for solving the original system
P r g

Az =b (or to GRF with matriz Q?).

Proof: Let F = QAQ and f = Qb such that the prescaled system is Fz = f.
The primitive splitting F' = I + R induces the iteration:

y(k+1) — —Ry(k) + f.
The assertion is proved if we can put this into the GRF form with matrix Q2
Q%) = (1 - P 12® 4+ b = 0 2® — 042® + qb.
Upon multiplying by {2 we indeed obtain GRF with Q2:
2*t) = (B 1 Q2(p — Az®)),

This proof does not imply or assume convergence. O
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Abstract

Two extrapolations of an iterative scheme for solving dense linear systems
with nonnormal and nonnegative coefficient matrix A are investigated. By
assumption A = I + C where C has positive diagonal elements and constant
row sums equal to one. Wendland has obtained a stable and rather effec-
tive scheme with O(n?) complexity by Wielandt deflation of the dominant
eigenvalue of the corresponding singular Fredholm-Radon-Stieltjes boundary
integral equation which is approximated by such systems. A one-parameter
extrapolation is shown to converge for all values of the parameter in (0,2),
and the optimum parameter (leading to the stepwise fastest method) is deter-
mined. The proof suggests a n-parameter extrapolation which converges in
the same interval, the optimum method being stable and intrinsically highly
parallel. A comparison theorem states that its stepwise rate of converegence
is up to twice that of the original Wendland-Bruhn scheme, while “primitive”
iteration induced by the above splitting of A diverges in the generic case.
The second comparison theorem establishes the superiority of the optimum
n-parameter extrapolation over the optimum one-parameter extrapolation in
terms of asymptotic rate of convergence. The results are confirmed for the
faster n-parameter scheme in a three-dimensional problem of fluid mechan-
ics, although they make no reference to the approxlmatlon problem or to any
computed eigenvalue of the matrix.
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1 Int foduction

The development of robust and efficient general purpose iterative solvers is very
important in large-scale applications on vector and parallel machines [23]. The
present article is concerned with special purpose solvers, so the main theme is to
exploit specific features of the problem being solved. The continuous problem is
formulated as a singular Fredholm-Radon-Stieltjes integral equation of the second
kind, and the linear system to be solved is a (generally high-dimensional) approx-
imant thereof in a well defined sense of collocation. The underlying boundary
integral equation method (BIEM) is a standard tool in various branches of physics
and engineering, e.g., in fluid dynamics for predicting the subsonic characteris-
tics of general three-dimensional configurations. However, it is still desirable to
increase the efficiency and robustness of these methods, especially if they are to
be used in time-stepping computations for three-dimensional unsteady problems
where the discretized integral equations have to be updated and solved at every
_ time step (Vavasis [26], Chorin [5], Leonard [19], Sethian [24], Rokhlin [22], Groh
[11}). We analyze two extrapolations of an iterative method for solving linear
systems of a particular type which arise as approximants of certain boundary inte-
gral equations (Groh [9,10,11,12], Wendland [27,28], Vavasis [26]). The concept is
described in Hageman and Young [1, p.21] and is applied to successive overrelax-
ation (SOR) by Albrecht and Klein [1]. The basic method has been proposed by
Wendland [27] for nonnegative matrices (corresponding to convex boundaries) and
has been analyzed in the general case by Wendland and Bruhn [4,28]. A survey of
other, rather successful methods for this type of problems is given in Atkinson [2]
and in the recent article by Atkinson and Graham [3].

None of the methods in the literature seems to exploit one peculiar feature of |
the coefficient matrix, namely the property of constant row sums. In particular,
the notable preconditioning techniques introduced by Vavasis [26] for the conjugate
gradient method on the normal equations (CGNE) and for GMRES may reduce
the number of iterations in some cases by a factor of 20, but they are computa-
tionally more complex than the present schemes: Preconditioned CGNE requires
four, GMRES requires two matrix-vector multiplies per iteration. The number
of iterations is for both methods significantly larger than in the present scheme,
although this comparison is possibly unfair since no indication is made about the
precision in [26] and the exact solution is not known. Computational experience
in [26] is limited to rather small systems of dimension less than 323 whereas large-
scale applications often require dimensions of several thousands. A characteristic
property of our class of systems is the gradual loss of diagonal dominance with
increasing dimension, making it mandatory to consider larger examples.

The two-grid iterative schemes presented recently by Atkinson and Graham [3]
are backed by extensive functional analytic arguments given for the approxima-
tions of the boundary integral equations in two-dimensional potential problems.
The theory makes no difference between convez and concave corners of the bound-
" ary curve, although an intermediate scheme converges slowly in the presence of a



-concave and moderately sharp corner of about n/10. This behavior is in accor-
dance with the theory of Wendland [27,28], which is valid for (three-dimensional)
bodies with convez noncuspoidal corners only !. The final scheme of Atkinson and
Graham requires the exact solution of a linear system for each corner, twice during
every iteration. The dimensions of these “corner matrices” depend on the sharp-
ness of the corner in principle, and they appear to be similar to the dimension of
the coarse-grid system in practice. Empirical convergence rates are displayed for
a convex domain with convex interior angles (/2 and 7/5).
Krylov subspace methods which include CGNE and GMRES are reviewed by
Saad [23]. These iterative methods are viewed as quite effective general purpose
methods (especially for elliptic partial differential equations), although the pre-
conditioning techniques which made them popular may fail for matrices which are
not M-matrices 2. .
HIf the matrix is not Hermitian positive definite (SPD) the Lanczos biorthog-
onalization (BO) and the biconjugate gradient (BCG) methods can break down.
The schemes have been extended to cover these nongeneric cases by Gutknecht
[14] and can be considered as being safe methods for our systems which possess
none of the above features. Rokhlin [22] has given an ingenious way of multiplying
the coefficient matrix by a vector in O(n) steps for two dimensional problems; it
can be extended to three spacial dimensions.
Instead of applying general purpose solvers, we start with a scheme for which
Wendland and Bruhn have given a theoretical basis (for bodies with convex non-
cuspoidal corners), and which is simple and well adapted to the class of problems
.at hand. In particular, they have demonstrated in real-life applications that the
computational complexity of their scheme is O(n?), i.e. the number of iterations
needed for obtaining a desired accuracy is independent of the dimension n of the
system. This is in itself an important asymptotic complexity result aimed at in
[26, p.19]. When we accelerate the convergence of this method, we exploit the
above-mentioned structure of the coefficient matrix in a special case of practical
relevance (see Section 4).
’ The following analyses deal with the solution of the n-dimensional linear sys-

‘tems and make no reference to the approximation problem or to any computed
eigenvalue of the system matrix (Sections 6, 7 and 8). They are valid for systems
stemming from any area of application, as long as the structure of the coefficient
matrix is the one specified above (cf. also Section 4). Incidentally, this struc-
ture also insures that the matrix is nonsingular. The n-parameter extrapolation
coincides with the point Jacobi iteration for the optimum values of the extrapo-
lation parameters. Stability in the neighborhood of the optimum, convergence
and comparison results with respect to the Wendland-Bruhn scheme and the one-
parameter extrapolation will be established. A weak point of the latter scheme

'Kral and Wendland developped new invariant definitions of the Fredholm radius for noncom-
pact operators in [18], with the aim of extending the validity of Green’s representatmn formula to
bodies with concave corners (cf. also Sections 3 and 5).

2An M-matrix is a real square matrix with nonpositive off-diagonal elements and a nonnegative
inverse [25,29)]. \



will further be identified by an indirect determination of the spectral radius of the
iteration matrix, and without actually computing the dominant eigenvalue. Our
final scheme is very simple to code and has a substantially lower computational
complexity than the above methods. It is also intrinsically highly parallel and
vectorizable. In particular, the present article makes a case for the point Jacobi
method for solving the given class of linear systems, as long as no diagonal element
of C is extremely close to the machine epsilon. In these latter critical cases, a rule
is given for the choice of suboptimal but stable values of the parameters.

In Section 9, the accelerating effect of the optimum n-parameter scheme is
demonstrated in a three-dimensional fluid mechanical problem formulated in Groh
[12]. The boundary surface is a parallelipiped and thus weakly convex with con-
vex corners, leading to systems for 16 to 1936 or more unknowns. Optimum
n-parameter extrapolation is indeed twice as fast as Wendland-Bruhn iteration
for obtaining the translative hydrodynamic (added) masses within a prescribed
precision. Other shapes are treated in Groh [12] as well, and they demonstrate
the good performance even of the basic Wendland-Bruhn scheme in the presence

“of convex corners.

2 Some elementary facts on iterative methods

We compile in this section some terminology and elementary facts of relevance
for the subsequent analysis. Note in particular that the RF iteration method
[29, p.74] was redefined in [15, p.22]. We shall keep the former definition of RF
which is in line with the Richardson’s method and its stationary variant. For
the latter, straightforward iteration we use the adjective “primitive”, since it is
based on the “primitive” splitting of the coefficient matrix of the linear system:
A = identity matrix + remaining matrix.

Definition 2.1 We call (G, g)-iteration the fized point iteration for x = Gz + g:
M) = @2 4 g (k=0,1,2,...), 1)
where (%, g € R" and G € R™*™ are given real vectors and a matriz, respectively.

Definition 2.2 We call a (G, g)-iteration for Az = b primitive if it is induced by
the primitive splitting A=1—G, i.e., if G=1— A and g=2>.

Definition 2.3 Q-eztrapolation of a (G, g)-iteration is the algorithm:

z(k+1) — an(k) +gn (k = 0,1,2,..-) (2)
Gqg = QG + (I - Q) : (3)
go = Qg, : | (4)

for a matriz @ € R [1].



" Definition 2.4 An w-eztrapolation of a (G, g)-iteration is the wl-eztrapolation of
the same iteration with some eztrapolation parameter w € R [1], [15].

Definition 2.5 A GRF method or stationary generalized Richardson’s method for
Az = b is the algorithm:

2*) = 20 L b - 42%)) (R =0,1,2,...) (5)
where 0} € R™*™ is a nonsingular diagonal matriz [29].

For @ = I, GRF reduces to primitive iteration. For } = D! with
D = diag(a;1,a32,---,8.,), GRF reduces to (point) Jacobi iteration. GRF with
general nonsingular matrix are called residual correction methods, with the un-
derlying idea that  ~ A~1. '

Remark 2.1 Q-extrapolation depends upon some (G, g)-iteration (to be called the
“basic” iteration) while GRF depends only upon the system Az = b and .

The following theorem elucidates the formal relationship between (2-extrapolation
and GRF methods. '

Theorem 2.1 Q-eztrapolation of a (G, g)-iteration for solving a linear system
Az = b is identical to GRF with matriz Q if and only if the (G, g)-iteration is

primitive.
Proof: Let be a (G, g)-iteration for solving Az = b with nonsingular 4:
g+ = Gz® 4 g. g (6)
By definition of the Q-extrapolation we obtain: |
y**) = Gay™® + go =y + 2 [(Gy™® + g) — V)] (7)

This is the residual correction form of the extrapolation. It will be a GRF method
- if and only if the residuals are identical:

(Gy™® + g) —y™® = b — 4y™, (8)

Explicitly:
(A-—T+G)y® =b-g. (9)

- These linear systems cannot be satisfied by all of the iterates y(*) unless
A-IT+G=0andb-g=0.0

Corollary 2.1 Primitive iteration for solving the preconditioned system [8,23,26]:
QAz = Qb, (10)

is identical to Q-extrapolation of primitive ileration for solving the original system
Az = b (or to GRF with matriz Q). |



Proof: Let F = QA and f = Qb such that the preconditioned systemis Fz = f.
The primitive splitting ¥ = I + R induces the iteration:

z*+1) = _Re™ 4 f. (11)
The assertion is proved if we can put this into the GRF form with matrix
2@+ — (I — F)z® 4+ f =2®) 4 (f — Fz®) = 2 1 Qb — 42¥).  (12)
This proof does not imply or assume convergence. [
Corollary 2.2 Primitive iteration for solving the scaled system [8}:
AQy=>b with y=Q"z (0 nonsiﬁgula’r), (13)

is identical to Q-extrapolation of primitive iteration for solving the original system

Az = b (or to GRF with matriz Q).
Proof: The primitive splitting AQ = I + R induces the iteration:
y &+ = —Ry™ 1+, (14)

The theorem is proved if we can convert this iteration into an iteration for the.

z-values which has GRF form:
Q12+ = _RO1z®) 4 b= (I — AQ)Q 2™ + b= Q 1z®) + (b 4z¥). (15)

Upon multiplying both sides by Q2 we obtain indeed the GRF iteration with matrix
) for the unscaled system:

25+ = 2B L (b — Az®). (16)

This proof does not imply or assume convergence. O |

Corollary 2.3 Primitive iteration for solving the prescaled system [8]:
QAQy=Qb with y=0'z (Q nonsingular), - (17)

is identical to (I-extrapolation of) primitive iteration for solving the original sys-
tem Az = b (or to GRF wzth matriz I). Eztrapolation and GRF are degenerate

in the case of prescaling.

Proof: Let F = QAQ and f = Qb such that the prescaled system is Fz = f.
The primitive splitting F = I + R induces the iteration:

y*+) = Ry 4 1. )
The assertion is proved if we can put this into the GRF form with matrix I:
Q12+ = (7 - )20 4 Qb = 07 '2® — 042*) + Qb. - (19)
Upon multiplying by Q' we indeed obtain GRF with I or primitive iteration:
2+ = z(k) + (b— Az®)) = (I — A)z® +b. (20)
This proof does not imply or assume convergence. [

~ Example 2.1 In our subsequent analysis, the Wendland- Bruhn iteration will play
the role of the basic (G, g)-iteration which will not be pmmztwe Thus its
Q-eztrapolation and GRF will be dzﬁ’erent

6



3 Continuum case: integral equations

In this section we introduce briefly the types of integral equations which lead to
the large linear systems considered. ‘

Potential flow in the domain R_ around a rigid, impermeable body R, with
boundary § is described by the classical Neumann problem for the disturbance
potential ¢ € C*(R-) with the boundary condition [13,17]:

(9(({;;2})) - -a@gf;(p) wes). (21)

The velocity of the undisturbed flow is Vo, = V&, where &, is basically a
harmonic function in a domain containing R, US in its interior [9]. In order to avoid
the discretization of the unbounded, three-dimensional region R_, this problem is
reformulated as an integral equation on the boundary § [6,9,13,17,20]. Methods
of this type are called boundary integral equation methods (BIEM) and panel
methods, by the aerodynamicists. In one of these formulations ¢ is represented
for P € R_ by the potential of a double layer with density u:

HP) = =5 @K (@ P)is, =~ f a2 (N as,

where the dipole kernel K (¢; P) has the important property that K (¢; P)dS, is
the solid angle subtended by dS, at P. The kernel is weakly singular for Lyapunov
surfaces ® § (cf. [11,13]). Thus the integral of K over a closed surface S for a point
PE€ Sisequal to 27 if S has a unique tangential plane at p (Gauss’ formula):

§ K(@p)dS, =2 (pe S). | (23)

This property is independent of the shape of the surface and is topologically in-
variant. The total velocity potential _ = & _ + ¢- on S is the unique solution
of the following integral equation on the boundary for p € S where the tangential
plane is uniquely defined (see [9] for a simple derivation): :

®_(2) = ~5- §8 (OK(g:)dS, +28(p) (p€ S). (24)

A low-order collocation of this equation leads to a large system of linear equations
(see Section 4). This form is valid for Lyapunov surfaces [11] and is adequate, as
long as the collocation points are not corner points [28].

Gauss’ formula leads to the following regularized integral equation:

(o) = 1= 1) - 2_IK(5:2)dS, + 2u(p) (pES).  (25)

3This class of surfaces contains the “roughest” surfaces with a cohtinuo_usly turning tangent
plane. In two dimensions, the corresponding kernel derived from the logarithmic potential is
bounded for Lyapunov curves and leads to the analogous interpretation as subtended angle in the
plane. - :



- Regularized versions of the integral equations and related integrals [11] are of
relevance by virtue of the numerical smoothing effect they provide to their ap-
proximations. Moreover, primitive iteration of these systems is equivalent to the
stable and rather efficient iteration proposed by Wendland and Bruhn [4,27,28].
This functional iteration exploits the fact that the reciprocal spectrum of the inte-
gral operator in (24) is contained in the real interval (—1,1] and that the dominant
eigenvalue (one) is simple. Note, however, that the integral operator is essentially
nonnormal and is only compact if S is a Lyapunov surface [11]. If S contains convez
corners, it is noncompact but has finite Fredholm radius [28]. If § contains concave
corners, new concepts are needed for defining the Fredholm radius and the theory
of the fundamental Green’s representation formula is not yet completed [18]. The
method has been made more forgiving with respect to unfavorable discretizations
in [10] on the basis of empirical and numerical information [20]. That theoretical
analysis involves only the inhomogeneity ®,, and not the integral operator.

4 Discretized case: the class of linear systems

The n-dimensional systems (I + C)z = b which approximate an integral equation
of the type presented in Section 3 for n — co are defined as:

1 , .
i ~ 57?/5, K(gp)dS, (i,jeT,={1,2,...,n}), (26)
zi = _(p), bi=2%(pi), (27)

where the nodes p; are approximate centroids of the panels S; and must not be
corner points. They will be characterized in the following with respect to properties
which can be considered independent of the approximation problem. In particular,
no related spectral information from A = I + C is employed. The characterization
is restricted to the matrix A; the issue of the inhomogeneity vector b has been

discussed in [10], cf. also Section 3. :
‘ The matrix is of the form A = I + C with C bearing the finite-dimensional
expression of Gauss’ formula (23), the row sum conditions:

Yoai=1 | (i € 1,). (28)

€Iy

This is the paramount property which the whole study is based upon. It expresses
the closedness of the discretized boundary surface for arbitrary shapes. Further,
C is assumed to be a nonnegative matrix:

Cij Z 0 (2,] € In) (29)

. This property reflects the convexity of the boundary surface (Section 3). Otherwise
the matrix C is typically full and may be general for the following analysis. If C
is interpreted as approximant of the singular double-layer integral in the sense
of Section 3, then the diagonal elements c;; can be called the contributions of the



- singularity, and the spectral properties discussed by Wendland and Bruhn [4,27,28]
hold in the absence of concave corners (see Section 3). In particular, C' will be
nonnormal * and not Hermitian positive definite, but dxagonally dominant if the
contributions of the singularity do not vanish:

i >0 (i € T,). (30)

We define these contributions (which do not follow from the definition of the
improper integral) through the row sum conditions (28):

ci=1- ¢ (2,5 € 1,.). (31)

i

Note that the diagonal dominance becomes weaker with i increasing dimension n of
the system in the cases of application where an integral equation is approximated.
Precisely in these apphcatlons the dimension is typically large, i.e., it may be
several thousands.

For this class of matrices, the use of the maximum norm is obviously most
adequate:

”C“w = max Z | cij |= m,_ar'x z cij = 1. (32)

It is immediately apparent that dlvergence of the primitive iteration

e* ) = _cz® 4 b (33)

is possible. Not only is the above norm equal to one but the spectral radius of C
is equal to one since C admits the invariant vector (1,1,. ., 1)T by virtue of (28).
This follows from equation (31) and the Main Theorem of Perron and Frobenius
[25, p.30] for C > 0 and irreducible (generic case). Although the danger that the
spectral radius of C increases if any entry of C increases (by approximation and
roundoff errors) is banned by the above definition of the diagonal elements (up
to the error in evaluation of the sum), the component of the iteration errors in
direction (1,1,. l)T will not be damped. In some cases; this may lead to the
formation of cycles (finite sets of vectors containing an mﬁmte number of iterates,
see the example in Section 9). For solving large systems, other effective iterative
methods have therefore to be considered.

5 Wendland-Bruhn iteration

5.1 The original method

Wendland [27] has proposed the following (G, g)-iteration for solving Az = b sub-
Ject to the restrictions dictated by Fredholm-Radon theory, which he has applied

4The integral operator is only normal (even self-adjoint) for the circle and the sphere.



to the integral equations for the case of convex boundaries when (30), (31) hold:

2 = Gypz® + gy, (34)
1 1

Gws = ;(I-0)=1I-34, (35)
1

This method is the %-extrapola,tion of primitive iteration for Az = b and will
play the role of the basic iteration for our subsequent extrapolations (see Example
2.1). Wendland and Bruhn [4,28] have shown that the scheme is stable and con-
vergent with O(n?) complexity, i.e. the number of iterations needed for achieving
a desired accuracy (not just precision) is independent of the dimension n of the
system. Moreover, this number is rather small in many applications, making this
scheme useful in large-scale problems, although convergence is slowed down in the
presence of corners, or if the added mass of the immersed body for the computed
flow is large [12]. |

The declared purpose of this article is to accelerate (by extrapolatlon) the
convergence of this iteration method which we call WB iteration or simply WB.

5.2 Another derivation of WB iteration

The WB iteration scheme of Section 5.1 can be obtained from the regularized
integral equation (25):

1
(k+1) Zcu[“’(k) (k) 2bi (i,5 € T,). (37)
J#i

The regularizing brackets [z; ) _ gk)] have a smoothing effect since roundoff does
not pose a problem even for n =~ 10° — 10* in usual single-precision arithmetic on
most machines. The information “j # i” is redundant but suggests that the values
of diagonal elements c; may be 1gnored

Upon carrying out the multiplications through the brackets and using equation
(31), WB iteration (36) is reproduced. It is also possible to formulate WB iteration
without destroying the brackets in the residual correction form (7) as well as its
{)-extrapolation to be derived in Section 7.

6 Optimum w-extrapolation of WB

The most straightforward way of accelerating the convergence of WB iteration
(36) is by w-extrapolation (Section 2):

20 = Goz® 4 g, \ (38)
G, = (1 - 5;-) 1-2c, 1 (39)
w



For w = 1 we have WB iteration, i.e. G; = Gwp and g; = gwg. We characterize
this scheme in the following theorem. :

Theorem 6.1 The w-eztrapolation of WB iteration is stable and convergent for
w € (0,2) in the sense of the operator mazimum norm:

_J1-wem <1 fwe(0,wn),
QL R Bl At (41)
where: 9
Wn = T o Cm = nenil(cu) (42)

The optimum value, which minimizes the norm of the iteration matriz, is w* = w,,.
It yields G» = (14 ¢m) H(emI — C) and:
g =] 1—-c¢
- G, = m.
I .

(43)

Proof: We determine the interval of w in which ||G, | € (0,1). First we assume
w < 0 and obtain:

[Gul = max 3= |(1-5) 8~ e (44)
- ?z%fmn{(l-@% 30} )
= l-w>1 (46)

Next we assume w > 0 and have to study three cases with respect to the diagonal

elements of G, ‘
w w
Ti(w) = (1 - 5) = 5 Gty | (47)

occurring in:

||Gw||oo = f}é%:({z ‘_gcij + |7 I} . (48)
J#i

(a) 7: > 0 (z € Z,) : This is the case if

2 . . ’ 2
w < I'I'E; (2 € In), e, wlwy= 1+ CM. (49)

Then (48) can be written as:

|Gulle = Iggx(l —we;) =1-wep. (50)
In order to minimize the norm, we insert the largest possible value wjy, of w:

2¢m
=1- =1- . 51
HGWMHOO 1-wmen =1 1+ cy ( )

11



The requirement |G, || € (0,1) is fulfilled for w € (0,wp].
(b) : <0 (i € I,,) : This is the caseif

> 3 €. > w, = . 52
w_1+cﬁ (ie€l,), te, ww pn (52)
‘Now (48) becomes:
w w w
_ M1-c)=(1=-2= Zen s =w—1. 53
“GwHOO %%3{2(1 C") (1 2) + 26"} w ( )

We would have ||G, |l € (0,1) for w € (1,2), but the last inequality implies
W € [Wm,2) since ¢,, < 1. In order to minimize |G|/« in this case, we insert the
smallest possible value w,, of w:

1-cp
|Gulle = wm — 1= Tre <1. (54)

It can be verified that ||G.,, |le < ||Gunllo, because this inequality reduces to the
inequalities 0 < ¢, < cy. The provisional optimum value w* of the parameter w
in cases (a) and (b) is therefore wpn.

(c) Some 7; > 0 while 7, < 0 (I # i): This case can happen for w € [wp,wWm).
Consider the zeros of 7;(w):

2

;= . 55
| R (55)
They define M < n — 1 disjoint (open) subintervals A, in [wp,wm):
(W, wm] = U Xu' (56)
ue{l,2,....M}

If w,, and wys are simple extrema of the w;, then M =n-—L The A, induce 2M
subintervals of Z,.: ‘

T.(A,) = {i € T, : sga[n(w)] = £L,w € A,}. (57)

Then the maximum can be split up:

[Gulleo = max{Si (@), 5-()}, (58)
where g | |
Su(w) = max {50 -+ (@)1}, (59)

and p(w) is that particular subscript for which w € Au(). Si can be made more
explicit: ‘

w w
_ ~ Y1+ e) + (1 - e 60
5, (w) ieIﬂﬁi{(”)){l 2(1 + ¢i) + 2(1 Cu‘)} (60)
= max {1l -we;}=1- wc,’;(A“(‘,)), (61)

€24 (Auw))
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where

C:‘(A“(“’)) T:ielf(llikl,}(u))(cii)' B (62)
w w
- = =14+ =(1+ci)+ (1 —ci }
S-(w) iez{l}m)){ +o(tea)+ 51 —e)p (63)
= max —1}=w-1. 64)
‘i€I+(A“(w)){w } @ ( )

These expressions imply:
Si(w) <1 for w € (WprywWm). (65)

However, the slope ¢} (A,w)) of Si(w) is a function of the subinterval A,). In
this case |G, || Would jump at some of the w;, i.e., the operator norm would a
discontinuous function of the extrapolation parameter. We show that this cannot
happen since the slopes are all equal to ¢, in the interval of interest. Indeed,
i € T, (A,(v)) means that 7;(w) > 0 by definition, and that w satisfies w < w;. But
Wy, is the largest of all the w; since ¢, is the smallest of the c;;, and the inequalities
w < w; < wy, hold for w € [wpr,wm). Thus each index set I, (A,()) contains that
particular subscript i, € Z, for which ¢; i, = ¢m. But this implies: '

iezil(l}llrj(u))(c,,) = E’Ie]lzil(ci,') for w € [war,wWm). (66)
The assertion ¢} (A,) = ¢y, is herewith proved.

As a result, the range of validity of the expression |G|l = 1 — we, derived
in case (a) has been extended from (0,wy) to (0,wy). In fact, the case w = wm
is also covered, since the representation ||G, |l = w — 1 for w € [wm,2) coincides
~ with that in (0,w,,): ' :

1= Wl = — 1, i€ W= 67
WnCm = W i.e | w e (67)
- The optimum value of w in (0,2) is therefore wp,:
l—c
Go,|lo=wm—1= =, o 68
Gl = 0m =1 = T (69

Corollary 6.1 Wendland-Bruhn iteration (36) or its equivalent (37) correspond
to w =1 € (0,wy) and are convergent in the sense of the above theorem.

7 Optimum Q-extrapolation of WB

The proof of Theorem 6.1 suggests that an extrapolation with n parameters w;
might converge “faster” than w*-extrapolation, since all rows of the iteration ma-
trix G with Q = (wy,ws,...,w,) are treated exactly the same way. In contrast,
the optimum parameter w* = w,, makes vanish only one diagonal element of G-
in the generic case. As it will turn out, the choice of the w; is indeed optimal in
the sense of stepwise convergence rate, but the resulting scheme will be faster than
- w*-extrapolation in terms of the asymptotic convergence rate (see the Comparison

Theorems in Section 8).
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" Consider an Q-extrapolation of Wendland-Bruhn iteration with diagonal ex-
_ trapolation matrix o

2640 = Goz® + ga, (69
Go = OCwp+(I-Q)=1I- %QA, (70
g = Sgws, (71

Q= diag(wi,ws,- .- @n)- | - (72
Then the following theorem holds:
Theorem 7.1 Q-eztrﬁpolation of WB iteration is stable and convergent for:
w; €(0,2), = diag(wi,ws,...,wn), (73)

in the sense of the operator mazimum norm. In particular, for alli:

_ max;er, (1 — wici) <1 if w; € (0,w]], 74
IGallo = { max;er, (w; —1) <1 ifw; € [v],2), (74)
where
P (75)
w: = .
o l4ci

The norm of the iteration matriz is minimized by @ = Q* = diag(w], w3, ... W),
and:

l1-c¢
oo — m. 76
Gl = 1 (76)
~ In the neighborhood (0 < & < 1) of this minimum it is given by:
| |Galleo +6cu  if wi =w] — €,
= ; ¢ 77
”GQ(E)“co { ”GQ‘HOO + £ ) 2f w; = w: + €. ( )

Proof: We verify that for w; € (0,2) we have [|[Gal|le € (0,1).

+|Ti|}, [Ti=1—e—;i(1+ci,-)]. (78)

|Galle = max {z %o,
J#i
We consider two cases with respect to the sign of 7; for all i: Indeed, the user
can manipulate the values of the w; at will, and it appears useless to try all
- combinations of the inequalities. Instead, the points w = (w1, w2, .- ,w,)T will be
restricted to the hyperoctants at w* = (v}, w3, .. ,w:)T defined by w; < w} and
w; > w! forall i € T,.
(a) ; > 0 (i € 1,,) : This is the case if 0 < w; < w!. Then (78) becomes:

Wi

= - c,-,-)] =1 e min(w) <1. (79)

€Ly

1Galleo = max |7 +

14



(b) 7 <0 (i € I,,) : This is the case if w} < w; < 2. Then (78) becomes:

1Galleo = max [—Ti + %(1 — c,-i)} = Iiré%i((w,-) —-1<1. (80)
Clearly the norm is minimized by the choice w; = w! and has the same value given
n (76), as can be verified. Next we investigate the behavior of the norm in the
corresponding neighborhood of the optimum point (w},w3,...,w:)T.

(c) Let wi(e) = w! +€ (0 < e < 1). In terms of the index sets Z; similar to
those introduced in the proof of Theorem 6.1, we have Z_ = I,,, and by direct

calculation:

1—ci 1-cm
= _ ) 81
(Gogle = max (1) +e =122 e ”

(d) Let w;(e) = w? — € (0 < € « 1). Similarly as in case (c), we have T, = T,,,
and:

— ¢y -
1Gae)lle = (i e + ec,,) = 1 n z: +ecy. O (82)
Corollary 7.1 The Q*-eztrapolation is identical to (point) Jacobi iteration for the
original system Az = b under consideration. By the above theorem it is safe to
choose the acceleration parameters w; below the optimum values w? which corre-
spond to Jacobi iteration. Further extrapolation by a diagonal matriz does not lead
to a new scheme for the particular class of systems considered, while in general
the extrapolated Jacobi iteration is called Jacobi overrelazation (JOR) [29].

Proof: Gg. =1 — D™'A = Gjecori and ga» = Db = G yocop; With D = Q*/2. This
result does not simply follow from Theorem 2.1, since Wendland-Bruhn iteration
_1s not primitive for Az =b: Gwp =1 — %A. Primitive iteration has the iteration
matrix Gprimitive = I — A (see Example 2.1). Checking the last statement is
straightforward: By ();-extrapolation of Jacobi iteration with some diagonal 2,
the matrix * is multiplied by €,, i.e. each parameter w! is multiplied by w; ;.
But since the w! are already optimal, it follows that w,; = 1 foralli € Z,. O
Recovering the well known Jacobi iteration after such efforts may appear dis-
appointing. However, it should be noted that this method has been recognized as
being faster than a method (WB) specifically taylored to fit the class of problems
to be solved. The information concerning the safe side of the optimal values is
also of immediate practical interest in critical cases where some c;; = 0, implying
w! ~ 2. As a rule, one can safely choose w; € (w,,,w?) for those i € Z,,, with
w; — w; being sufficiently large compared to the machine epsilon. We had success
by setting the critical w; to the next smaller w; if the latter was not itself critically
close to 2. If it was, then both have been set the next smaller wi, and so forth (cf.

Remark 8.2 and Section 9).

8 Comparison theorems

We are considering the stepwise convergence rate since the norms [|G*|| and the
average rate vary erratically with k,, even for small systems [25, p.63]. We also
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~avoid using spectral information on the generally high-dimensional matrices (in
the sense of actually computing estimates of eigenvalues). However, the special
structure of the matrices involved will allow us to infer sufficient spectral infor-
- mation to establish a comparison theorem in the sense of the asymptotic rate of

convergence.

Definition 8.1 The stepwise convergence rate of a (G, g)-iteration (in the mazi-
mum norm) is the average rate of convergence for one iteration (k, =1):

Reo(G) = — 10 [|Glco- (83)

Definition 8.2 The asymptotic convergence rate of a (G,g)-iteration is defined
as the negative logarithm of the spectral radius p(G) of the iteration matriz G:

R,(G) = —log p(G). (84)

- Theorem 8.1 (First Comparison Theorem) In terms of stepwise rate of con-
vergence, §¥*-eztrapolation is about twice as fast as Wendland-Bruhn iteration if
€ = min;ez, (c;;) 18 small. The rates are independent of the dimension n of the
linear system, and c,, is typically small if the system is an approzimant defined by
(26), or if n is large. Primitive iteration induced by the primative splitting of A 1s
- divergent in the generic case. 2

A

Proof: For arbitrary dimensions n < oo Theorems-2-end-4-imply:

R.(Ca) = ——log(ilj’l), | (85)
Ro(Gws) = Ru(G1)=—log(1 - cn). (86)

Degenerate extrapolation with = I is the Wendland-Bruhn scheme. In large-
scale problems with n > 1 the row sum conditions imply the gradual loss of
diagonal dominance, and in the limit: '

lim ¢, = 0. (87)

n-— 00

In this case, the ratio becomes:

Ro(Ga) _, log(1+cm) _
Rw(GWB) log (1 - Cm)

a2
1 €m | ‘m e
1+ —" . (88)
1+ 4 Sy
Thus far, only the number of iterations has been tackled. However, Q*-extrapolation
is twice as fast since the cost per iteration for both methods is the same. The mul-

tiplication Q*A with diagonal Q* has to be performed only once before starting
the iteration. Divergence of the primitive iteration (33)is explained in Section 4.0

Example 8.1 In approzimation problems, n = 1000 and c,, ~ 0.001, yielding( a
ratio of about 1.999. This prediction will be verified in the next section.

16



The following lemma from Perron-Frobenius theory is the basis of the Second
Comparison Theorem (for a proof, cf. [25, p.31]).

Lemma 8.1 If a nonnegative matriz G = (G;;) > 0, (4,7 € I, = {1,2,...,n}),
18 trreductble, then either
3 Gy =p(G) forallie I, ' (89)
J€Tn
or

min (Z GU) <p(G) < max (Z GU) . (90)

€In In JEITL

Theorem 8.2 (Second Comparison Theorem) In terms of asymptotic rate
of convergence, (*-extrapolation is faster than w*-eztrapolation in the generic case
of irreducible iteration matrices, i.e., the second inequality is strict:

_l=cy
T 1+ec,

(91)

r.nin(Z( Gn))<P(Gn)<P(G ) = |Gur

1€l, ‘€T

The spectral radius of Gq. is contained in a disc centered at the origin of the
complez plane.

Proof: The lemma is applicable to (—G.+) > 0 and (=Ggq-) > 0. Indeed, direct
inspection of the matrix elements for 7,j € Z, yields:

(Gor)ii = %SU, | (92)
Gu)s = -5 <0 igts, (93)
(Gp)s = 0, ' (94)
(Ga)ij = -—l_f"ciiso if i+ J. )

Observe that all row sums of (—G,+) > 0 are equal to || — Gyl = |G|l This
iteration matrix is irreducible in the generic case, and Lemma 8.1 says that all row
sums are equal to the spectral radius. In the case of (—Ggq+) > 0, irreducibility is
again assumed, and the lemma yields:

min (Z (—Gn.)ij) < p(~Ga-) < max (Z (—Gn.)z.j) . (96)

I, | : :
€n \ jeTn ® \jeIn

But since the spectral radius is not sensitive to the sign change, the same inclusion
holds for the original iteration matrix. Finally, the equality of the norms and their
common value follow from Theorems 6.1 and 7.1.0

Remark 8.1 The problem remains to determine efficiently whether a large square
mairiz of the above type is irreducible or not. In the present approzimation prob-
lems, one is inclined to doubt the reducibility in the generic case.
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Remark 8.2 The lower bound for the spectral radius p(Gq-), given by the above -
theorem, is easy to compute from the data; it gives an indication on how slow the
convergence possibly might be. '

The Second Comparison Theorem establishes the superiority of Q*-extrapolation
over w*-extrapolation. Further, it exhibits a weak point of the latter scheme,
namely its slow convergence for matrices C' with small c¢,,. This is due to the
fact that the spectral radius of G, is actually equal to |G+ |- Indeed, one can
verify that z; = (1,1,...,1)T is eigenvector to the eigenvalue —(1 +cm) (1 —tm),
and this expression is close to —1 for ¢,, = 0. In other words, the zero-frequency
component of the errors is damped very weakly if ¢, is. small.

If Cinim = Cm 15 close to zero, the corresponding extrapolation parameter w;,, =

* = 2(1 + ¢n)7! is close to the upper boundary of the interval (0, 2), beyond
whlch the convergence of the )-extrapolation is not guaranteed by Theorem 7.1
(although the conditions given therein are sufficient but not necessary). In this
case, the critical parameter can be redefined as:

R ). 97
i, = max (o)) (o7)

If this value is still too close to 2, the redefinitions can be continued in the obvious
way. This empirical rule appears to improve the asymptotic rate of convergence
which is higher than that of the basic scheme (cf. Section 9).

~ Notice that Gershgorin’s Theorem is not very useful for the iteration matrices
at hand since these do not have a strongly weighted diagonal. In particular, one
may observe that z is a generalized eigenvector of the matrix pair (Ga; I — ) to
the eigenvalue one:

(Ga)ar = (I - D)as. | (98)

This suggests applying also an extension of Gershgorin’s Theorem to the matrix
Gq-— M\(I —Q*). Unfortunately, the Gershgorin radii are too large to be of any use,
and the Gershgorin circles are not disjoint. Therefore, the well-known Gershgorin
Separation Theorem can not be used for deciding whether p(Gq- ) < p(Gwg) holds,
and we have to be content with the result of the First Comparison Theorem. The
only useful result from the classical Gershgorin Theorem appears to be the fact
that the matrices of the form 4 = I + C considered in this article are always
nonsingular. This is an immediate consequence of equations (29),(30) and (31).

9 Numerical evidence

Consider, for example, the linear system (I+C(¢))z, = b with the following matrix
C(¢), € € (0,1), and exact solution z; = (1,1,.. ST

Oe) = b= 2z, (99)

ot OO O b=
Owr= Mm O

orirata iy QO b
gt © | o=
-
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- The matrix is-nonnormal and has the appropriate structure. Many of the relevant
quantities can be obtained by simple inspection or hand calculation, and MATLAB
is useful for performing more extensive tasks such as the eigenvalue problems of
the various iteration matrices. Instead of displaying that material,we make a
few comments on the behavior of the three iterative schemes, first for ¢ = 1/16
and then for the critical case ¢ = 0. Primitive iteration with starting vector
z{® = 0 produces the 2-cycle of iterates z® ¢ {0,2z,} for k = 0,1,..., instead of
converging. Wendland-Bruhn iteration converges as fast as the Q*-extrapolation
(point Jacobi), but the number of iterations producing the solution within machine
‘epsilon depends sensibly upon the particular starting vector. For a few vectors
chosen at random or near the exact solution, they vary between 1 and 18, and
are 14 — 19 for Jacobi iteration. Finally, w*-extrapolation requires six times more
iterations in some cases, namely 50 — 120. This example is a hard test for the
latter scheme, since the solution z; (an eigenvector of A = I + C to the eigenvalue
two) lies precisely in the subspace of “zero-frequency” errors which are damped
weakly by the scheme. Indeed, the dominant eigenvalue of G- is —15/17 =~ —1.
Thus the ratio of the asymptotic convergence rates appears to be a good estimate
of the actual ratio:

R,(Gq.) logp(Gqg-) log0.4433

R,(G,.) logp(G..)  log0.8824 — ‘
Observe that the iteration matrices of both methods have the same maximum
norm. Therefore, the stepwise convergence rates are not able to predict the ob-
served difference in speed. The First Comparison Theorem should be interpreted
with care, keeping in mind that it concerns upper bounds of the spectral radii.
In the critical case ¢ = 0, one has ¢, = ¢; = 0 leading to wj = 2 ¢ (0,2). This

‘simulates also ¢, & €maeh, Where Emach is the machine epsilon. The corresponding
spectrum of the iteration matrix is:

spec(Gq-) = {—0.4575, 0.1740 + 0.2895i, 0.1095}. (101)

6.50. (100)

In the complex plane, the first three eigenvalues define the vertices of a triangle,
and the last eigenvalue is close to the origin. The spectral radius is p(Gas) =
0.4575 < 0.489 = p(Gwsp). We apply the empirical rule (97) and redefine the
critical parameter to be equal to the next smaller parameter:

8
Wy pyle 1= Wy = i 1.6. (102)
This leads to the following spectrum:
spec(Gas,, ) = {—0.3924, 0.2515 & 0.25905, 0.0894}, (103)

and to the smaller spectral radius p(Gq:_, ) = 0.3924. The application of the rule
has also made the triangle less excentric with respect to the origin. The ratio of
asymptotic convergence factors is:

R,(Ga:,) _1og0.3924
R,(Gwgp) ~ log0.489

~ 1.31. | (104)
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Interestingly, the predictions of the First Comparison Theorem are rather well
satisfied if the linear system is an approximant of a boundary integral equation
introduced in Sections 3 and 4. In this case, some spectral properties of the integral
operator -are mapped by the approximation to spectral properties of the matrix
C, which are not exploited by the present analysis. In order to appreciate the
difficulty in dealing with those spectral properties, one should note that the type
of the approximation in Equation (27) changes with the distance | p; —p; | between
the panels. For large distances, the dominant term of the multipole expansion
typically yields sufficient accuracy, and the matrix C is obtained at much lower
cost (for more technical details, see [12]). This difficulty is avoided by Bruhn
and Wendland [4] by assuming that the integrals over the whole boundary S are
computed with arbitrarily high accuracy, e.g., as limits of Stieltjes sums.

The latter situation occurs in the following numerical example computations
with various dimensions n for the broadside-on translation of a parallelipiped (side
lengths 1,1,0.5) , i.e. in a case where the discretized boundary surface has convex
corners and the integral operator approximated by the matrices C is not compact
[12]. The corresponding finite Fredholm radius induces relatively large off-diagonal
elements far from the diagonal in C in comparison to smooth surfaces. Note that
diagonal dominance becomes weaker with increasing n. The stopping criterion
was based upon a desired precision (not accuracy) of hydrodynamic (added) mass
to at least four decimals: This is equivalent to the requirement in the integral
equation with some other precision (whereby only the effective number of itera-
tion is changed). Computations with and without (optimum) (*-extrapolation of
Wendland-Bruhn iteration with dimensions n = 16, 30, 90, 182, 462, 870, 1936
were performed. The rule (97) has not been used since the contributions ¢;; of
the singularity of the integrals were always much larger than the machine epsilon
(Example 8.1). In fact, no critical case with ¢, = Emach Was ever encountered in
the approximation problems. The numbers of iterations varied between 9 and 12
for (*-extrapolation and between 22 and 25 for the basic Wendland-Bruhn itera-
tion, yielding ratios between 2.08 and 2.5 (equally for the CPU times). Thus the
theoretical value 2.00 for n > 90 is well confirmed.

10 Discussion

Our results are valid for a nonnegative diagonally dominant coefficient matrix A
with positive real diagonal entries and constant row sums equa.l to unity. The
eigenvalues of A are known to have nonnegative real parts (zero is not an eigen-
value, i.e. the matrix is nonsmgular) In the approximation setting, the diagonal
dominance becomes typically weaker with increasing dimension n of the system.
Such matrices are not necessarily nonnegative definite unless they are also Hermi-
tian (Varga [25, p.24]). This last property is definitely not assumped in our analysis,
and is not given in the applications to integral equations. A is not normal in the
generic case (Young [29, p.85], Henrici [16]).

The results are based upon a norm rather than the spectral radius and are
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~-thus expected to be pessimistic: The condition of stepwise norm convergence is
sufficient but not necessary for actual convergence. Also, we are not particularly
interested in considering average rates of convergence (for k, iterations) neither,
since an asymptotically faster method (for k, iterations) can in practice be slower,
depending upon the particular starting vector (Varga [25, p.62]). We prefer operat-
ing with stepwise rates (k, = 1) and accept possibly pessimistic or weaker results.
A notable example (n = 2) in Varga [25, p.67] shows that an indiscriminate use
of the asymptotic convergence rate can give quite misleading information (cf. also
Young [29, p.88]). A good asymptotic convergence rate can be spoiled in practice
by a bad stepwise or average convergence rate in the beginning or intermediate
phases of the iterative process. In Varga’s example; asymptotic analysis predicts
about one hundred iterations while the actual number of iterations is larger than
918. There is recent work in this vein, by Eiermann et al. [7], where the authors
are not primarily interested in minimizing the spectral radius for some definite
reason, and by Nachtigal et al. [21], where estimates of eigenvalues are avoided
in the use of a modified Richardson iteration. Nevertheless, it would be useful to
know those values of the extrapolation parameters w; in (72) which minimize the
spectral radius of the iteration matrix (70).

It should be noted that the convergence history of GMRES type methods ex-
hibits three phases of iteration: beginning with sublinear rate, intermediate with
linear rate, and asymptotic with superlinear rate. Thus in these methods, exclu-
sive ésymptotic- analysis is also expected to be optimistic since the convergence
is typically fastest in the asymptotic phase. This remark is of relevance in the
approximation setting, where the required accuracy of the iterative solution is
considered in relation to the discretization error and the error due to the potential
. flow model (for a discussion, see [12]).

All three phases are covered, although in a weak sense, by the concept of step-
wise convergence rate k, = 1. In application codes, robustness often has higher
priority than ultimate speed, and pessimistic predictions are then taken more seri-
ously by users than optimistic ones. The example computations in approximation
problems confirm that the predictions based upon the stepwise rate are good and
on the safe side. In other problems, the stepwise convergence rate might be mis-
leading (see the first example in Section 9).

Note that the convergence of extrapolated methods is not a trivial issue if the
basic method is nonsymmetrizable (generic case)[15, p.21]. Numerical experiments
indicate that Q-extrapolation is also a good choice in the more general case where
C is not nonnegative.
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