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Summary

We study renormalizable and non-renormalizable Euclidean quantum field theories from
the point of view of Wilson’s renormalization group. We construct the tree expansion
of Gallavotti and Nicold, for the general case of a scalar field theory. It is an expansion
of physical quantities in powers of the running coupling constants on all scales. These
running coupling constants obey recursion relations (the flow equations) involving similar
power series. We show that the tree expansion is finite to all orders, even if the theory is
not renormalisable.

The ultraviolet problem is thus reduced (as far as perturbation theory is concerned)
to the problem of finding a solution to the flow equations.

A naive way of finding a solution is to solve the flow equations in a power series in
the running coupling constants on some fixed low energy scale (the renormalized coupling
constants). This way of solving the flow equations yields for renormalizable theories the
usual renormalised perturbation series: the BPH Theorem and the de Calan-Rivasseau
nl-bounds can be proven with this method. For non-renormalizable theories, however,
the naive way of solving the flow equations breaks down because of ultraviolet divergences.
This does not mean that no solutions exist: There can exist a solution of the flow equations
which does not depend in a C*® way on the renormalized coupling constants,

More can be said in a specific example of a non-renormalizable theory: a ¢* theory
in four dimensions with propagator 1/p?~¢/2 (this model is similar to a ¢, theory, but
is technically easier to handle). In this case we solve the flow equations with a fixed point
ansats, i.e., by setting all running coupling constants equal to each other. The result
is that there does exist a non-trivial fixed point A* (at negative coupling constant) as
predicted by a one-loop beta function calculation. We then re-write the flow equations
in an expansion around this fixed point. In this form the flow equations can be solved in
a finite expansion in powers of A — A*, where X are the renormaliged coupling constants.
This yields a two-parameter family of Euclidean quantum field theories expressed aa finite
expansions.

Results beyond perturbation theory are obtained in the planar limit (the N — oo
limit of a tré* theory, where ¢ is an N x N matrix). In this limit the tree expansion is
not only finite to all orders, but also convergent, and the above-mentioned two-parameter
family of theories can be rigorously constructed.



Riassunto

Studiamo teorie quantistiche euclidee dei campi, rinormalizzabili e non, dal punto di vista
det gruppo di rinormalizzagione di Wilson. Costruiamo lo sviluppo in alberi proposto da
Gallavotti e Nicold, nel caso generale di una teoria di un campo scalare. Questo & uno
sviluppo di quantiti fisiche in potense delle costanti d’accoppiamento effettive su tutte
le scale. Queste costanti d’accoppiamento effettive soddisfano relasioni di ricorrenza (le
equagioni di flusso) che pure contengono simili serie di potenze.

Mostriamo che lo sviluppo in alberi & finito a tutti gli ordini, anche se la teoria non &
rinormalizzabile. Il problema ultravioletto & quindi ridotto (per quanto concerne la teoria
delle perturbasioni) al problema di trovare una soluzione alle equazioni di flusso. Un modo
ingenuo di trovarne una ¢ di risolvere le equasioni di flusso in una serie di potense nelle
costanti d’accoppiamento effettive su una scala a bassa energia fissa (ovvero nelle costanti
d’accoppiamento rinormalizaate). Questo modo di risolvere le equazioni di flusso genera
la nota teoria delle perturbazioni rinormaligzata: il teorema BPH e i limiti n! di de Calan
e Rivasseau possono essere dimostrati con questo metodo. Per teorie non rinormalissabili,
invece, il detto modo di risolvere le equazioni di fluseo fallisce a causa di divergenze ultra-
violette. Cid non significa perd che non esistano soluzioni: pud esistere una soluszione che
non dipende in modo C* dalle costanti d’accoppiamento rinormalizzate.

Si pud dire di pid in un esempio concreto di una teoria non rinormaliszabile: una
teoria ¢* in quattro dimensioni con propagatore 1/p*~/? (questo modello & simile a ¢4,
ma & tecnicamente pidl semplice da trattare). In questo caso risolviamo le equasioni di
fluszo supponendo Pesistensa di un punto fisso, ciod ponendo tutte le costanti d’accoppia-
mento effettive uguali 'una all’altra nelle equagioni. II risultato & che un punto fisso A*
esiste effettivamente (a costante d’accoppiamento negativa) ed 2 stabile nell’ultravioletto,
come lo suggerisce un calcolo di fungione beta a un cappio. Indi riscriviamo le equasioni di
flusso in uno sviluppo attorno a questo punto fisso. In questa forma le equazioni possono
essere risolte in uno sviluppo finito in potensze di A — A*, dove X sono le costanti d’accop-
piamento rinormalizzate. In questo modo si costruisce una famiglia a due parametri di
teorie quantistiche euclidee espresse sotto forma di sviluppi in serie finiti a tutti gli ordini.

Possono essere ottenuti risultati al di 13 della teoria delle perturbagioni nel limite pla-
nare (il limite N — oo di una teoria tré* dove ¢ & una matrice N x N). In questo limite
lo sviluppo in alberi & non solo finito a tutti gli ordini ma anche convergente, e la suddetta
famiglia 2 due parametri di teorie pud essere costruita rigorosamente.



1. Introduction

Wilson’s renormalization group {23], [25] has brought new insight into renormalization
theory: the concept of relevant and irrelevant interactions provided a new framework for
the understanding of renormalisability. Instead of considering renormalization theory just
as a recipe for eliminating unwanted infinities one thinks as follows: let a theory be defined
on a very small distance scale A~! as a perturbation of a (Gaussian) free field. Expanding
about this free field one sees that only a finite number of interactions (the relevant ones)
survives in the effective low energy theory on some scale g, the others being suppressed by
negative powers of %. Thus the theory has effectively only a few parameters as % — 00
and to parametrige the theory one usually chooses effective low energy coupling constants
(the renormalized coupling constants) as parameters.

»
A

W

//g/

Pig. 1. Flow of coupling constants in a renormalizable theory

From this point of view one looks at non-renormalizable theories in the following way:
in the limit f; — 00 the theory has a finite number of parameters; in other words, once
the renormalized coupling constants are given for the relevant interactions, everything is
uniquely determined. In particular, the value of the irrelevant coupling constants on scale
4 is determined. A non-renormalizable theory is a theory where one insists to give a value
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not only to the relevant coupling constants on scale g but also to some irrelevant ones.
Whereas this can be possible for finite A by tuning appropriately bare coupling constants,
divergences appear as % — 00. This phenomenon can be understood by looking at Fig. 1
and Fig. 2. The picture of the situation given by perturbation theory of the renormalization
group is that there exists in the vicinity of the Gaussian fixed point a finite dimensional
manifold (tangential to the relevant directions) and an infinite dimensional stable manifold
{tangential to the irrelevant directions). For sake of clarity consider only a two-dimensional
picture: A, is the irrelevant direction and A; is the relevant one. In a renormalisable
theory, one sets the bare irrelevant coupling constant A; = A{ = const (usually = 0), and
chooses the bare relevant coupling constant A3(A) in such a way that a renormalization
condition Aa(#) = A is satisfied, where A(p) is the effective coupling constant on some
physical scale p. To obtain A3() from Az(A) and A} one iterates the renormalization group
transformation as many times as needed to lower the cut-off from A to g. For A — oo (at
u fixed) we see that the bare coupling constant A3(A) must be chosen closer and closer
to the stable manifold (crosses in Fig. 1) in order for the renormalization condition to be
satisfied. Moreover, we see that in the limit A — oo, the theory lies inevitably on the
unstable finite dimensional manifold (Point A4 in Fig. 1).

For a non-renormaligable theory one imposes renormaligation conditions also for irrel-
evant coupling constants. In our example one sets X (p) = AR, Ay(p) = A§. In this case
the bare coupling constants have {0 be chosen farther and farther away (crosses in Fig. 2),
giving rise to the ultraviolet divergences of non-renormaligable theories.

This interpretation of non-renormalizability provides a possible way of making sense
of a non-renormalizable theory: the property for an interaction to be relevant depends on
the fixed point one is expanding about. If one had another fixed point, some interaction
which was irrelevant at the Gaussian fixed point might become relevant at the new fixed
point (i.e. the other fixed point might be “ultraviolet stable®) and one could fix the value
of this interaction at the low energy scale p.

A typical example where this general heuristic discussion can be made concrete is the
¢* model in d dimensions, with Euclidean action

5= f(%Z(M)’ +3m?¢? + g:4%:) dis. (1.1)

The : ¢%: term is irrelevant in more than four dimensions and the renormalization group
tells us that the theory tends to a free field as the cut-off A is removed (at least if ¢ is
small). This is in fact true for all g > 0 as was proven by Aizenman [1] and FrShlich |7]
uging a lattice cut-off.




Pig. 2. Flow of coupling constants in a non-renormalisable theory

On the other hand, a one loop beta function calculation
d
pMB) = AW+ BM?,  e=d-4, F>0, (12)

where A(p) is the dimensionless running coupling constant, predicts the existence of a non-
trivial fixed point solution of the flow equation A(u) = —e/f3 = A*(e) at negative (“wrong
sign®) coupling. This fixed point is ultraviolet stable, i.e. the : $*: term becomes relevant
at A* and the theory seems in fact to be renormaligable if expanded about this fixed point.

In fact, as it stands, this argument is not very conclusive even at the perturbative
level: the perturbation theory of the beta function for non-renormaligable theories does
not make sense: higher order coefficients are ultraviolet divergent. To see this consider the
L-loop contribution to the vertex function ['4(p1,pa,ps,p4), say at the symmetric point
v? = p?, pip; = —p?, and suppose that L is so large that L(d —4) 2 2 but L(d - 4) < 4.
Then the infinite part of the corresponding Feynman graphs goes like

a4 AL(d-4) + a2p2AL(d—q—-2’ (1.3)
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and while the first divergent term can be cancelled by a ¢* counterterm, the second one
would require a ¢ A¢ counterterm, which is not present in the Lagrangean. Thus, in terms
of the renormalized coupling constant with subtraction point , the L-loop contribution
to I'y becomes

Te=-- +/\L+'p"("+”(d"4|(ag(p2 _ “2)AL(4—4)—2 +ﬁnite) T (1-4)

and the beta function can be computed by differentiating the running coupling constant
A(p') = '(" 4)1‘4(;:’ %) with respect to Iny' at p’ = p. Its L-loop contibution is

ﬁu)___m+A(L+1)(_2ag(%)t,(d—4)—2 +finite) + - (1.5)

If L were even larger than z%;, more divergent terms would appear in (1.3), and also
subleading divergences (A)Z(4-4)-4, (4)LUd-41-8  would plague the beta function.
Generically, the beta function in d > 4 dimensions has divergent coefficients starting from
L-loop, where L is the smallest integer satisfying L{d ~ 4) — 2 > 0. Optimistically [17],
[21], one can conjecture that a non-C*™ beta function might exist non-perturbatively, but
it is only [$=3] differentiable in the renormalized coupling constant.

Fortunately there is a way out from this problem, even in the framework of pertur-
bation theory, the essential ingredient being the beta functional [9], [8] to be discussed
later.

Although all the above arguments are heuristic, they can be made rigorous in some
cases: first of all they can be made rigorous in perturbation theory: renormalizable the-
ories can be constructed order by order in perturbation theory by parametriging them
by renormalized parameters. This is the BPHZ theorem which could be re-proved using
the above arguments [18]. The fact that the theory has a finite number of parameters,
i.e. whatever the value of the (dimensionless) bare coupling constants (within limits) of
the irrelevant terms, one gets always the same theory (as A — 00), is contained in [6] (see
also Section 5 of this thesis), in the perturbative framework. We called this phenomenon
“perturbative triviality® because for ¢4 theories in d > 4 dimensions it is a perturbative
version of the results of [1], [7].

Another case where one can make these arguments rigorous is in the § expansnon of
(¢ 2) theories. Here one can renormalize the theory recursively order by order in 4. Parisi
[17] treated (¢’) in d > 4 dimensions in § expansion and discussed the construction of
the ultraviolet stable fixed point at negative coupling. He obtained the result that, to
all orders in 4, the Green’s functions are finite but not C* in the renormalized coupling
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Pig. 8. Leading 4-point graph in the } expansion

constant. The essential features of this phenomenon can already be seen to second order in
#: To first order in J the four point function is essentially given by the graphs of the type
represented in Fig. 3; these graphs can be summed explicitly (we do this in Section 4). The
resulting renormalized four point function is then analytic in the renormalized coupling
constant A for all A < 0, but the radius of convergence at A = 0 shrinks to zero as the
external momenta tend to infinity, due to singularities on the positive real axis. This
implies that to order §fy, when the four point function renormalized o order # is put into
a bigger graph such as the one in Fig.4, the loop integration gives the Feynman amplitude
a finite but singular behaviour at A = 0, typically with an asymptotic expansion of the
form

I(A) = Ip(A) + A3 L (A) + AW E-H L) + -, (1.6)

where Iy, Iy, B, ..., are C* at A = 0, and logarithme appear in rational dimensions.
Whether expansions of the form (1.6) can be valid beyond the § expansion is not clear.

Pig. 4. Leading six-point graph in the § expansion

At this stage we should point out that Symansik [21] (see also [18]) proposed a method
of renormalizing non-renormaligable theories which, although leading to expansions of the
type (1.6), seems to be radically different from the ones discussed here. Unfortunately, his
paper is still quite mysterious.



Pig. 6. A simple example of a graph with renormalons

Going back to the problem of constructing non-trivial fixed points avoiding ultraviolet
divergencies, progress has been made in [6], [7], using the methods of Gallavotti and Nicold
[9], [8]. They introduced a beta functional

BgA) = PO ), (1)

for renormalizable theories (actually with a discrete renormalization step). This type
of flow equation has many advantages over (1.2): the coefficients of § in perturbation
theory can be constructed with renormalised Feynman graphs without overlapping diver-
gences and without “useless” [3] counterterms. Moreover the perturbation series has only
“instanton-" and no “renormalon-n factorials” {13), [14], [3]. These properties can be seen
in a typical example: the graph of Fig. 5. In four dimensions, the renormalized amplitude
of such a graph can be estimated noting that for large momentum the subgraph 9 goes
like p? In 5;, where g is the subtraction point. The amplitude at zero momentum of a
graph with n such subgraphs goes like

ﬁn ~8 4y L a0 1\
[, 5y dtp~ uiern-y, (18)

This factorial is called “renormalon”, in contrast to the “instanton” n factorial in the ntb
order perturbation coefficient coming from the number of graphs with n vertices. Let us
consider the situation more closely: the unrenormalized amplitude of -9. is

]
A(p?) = C1A? + Cap* n %7 + finite, (1.9)

(for simplicity we work in the massless theory). The divergent terms are compensated by
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mase and wave function renormalization counterterms
2 A?
CiA? + CypPIn Pl (1.10)

For each value of the loop momentum p in the graph of Fig. 5 one can decompose the
wave function renormalisation counterterm in a “useful” part C3p%hn %,’» and a “useless”
part Cyp?In ﬁ;. The useful part exactly cancels the divergent part of A(p?) and is all we
need to get a finite graph. The useless part is what we have to take along with the useful
part in order to preserve locality, i.e., to keep the counterterm of the form (1.10). It is
not only useless but also a nuisance since it is exactly this useless part that produces the
renormalons,

In the tree expansion one expands in power of the running coupling constants instead
of the renormalized coupling constants. The contribution of the subgraph to the running
wave function renormalisation constant on scale p is

d

6Z(p) = e A(p*) =C;n :—: + finite. (r.11)

pr=p?

The idea is to consider separately each loop momentum slice and to write, for p? » p3,
A(p?) = Ap(p?)+p*62(p); Ar(p?) is then the amplitude renormalized with useful subtrac-
tion only. The price to pay is that one gets additional graphs with vertex p?6Z(g), .., one
has an expansion in power of the coupling constants on all scales. These coupling constants
obey flow equations (involving all coupling constants), and the renormalons reappear if one
solves the flow equations by expressing the running coupling constants in a power series
in the renormalised coupling constants. The whole combinatorics of the decomposition of
contributions coming from all scales and subgraphs comes out naturally if one looks at the
problem from the point of view of the renormalization group transformation, as will be
explained in Section 2.

For the planar theory (the N — oo limit of a trg* theory where ¢ is an N x N matrix),
the series defining (1.7) is convergent (for planar theories there are no instanton factorials,
i.e., the number of (unlabelled) Feynman graphs with n vertices grows as const™ (16, [2]).
Thus the Gallavotti-Nicold method provided a natural proof of BPHZ, of the n!-bounds
of de Calan and Rivasseau (3], and of the existence of the wrong sign ¢} planar thory (13},
[20], which is asymptotically free.

It then turned out [6], [4], [5] that the beta functional is still finite (i.e. admits a
perturbation series in the coupling constants around zero with finite coefficients) for non-
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renormalizable theories (in contrast to the beta function), and we come to the contents of
this thesis.

The tree expansion (i.e., the expansion of the “effective potentials® or the Schwinger
functions in powers of the running coupling constants on all scales) and the beta functional
are infroduced in Section 2. In Section 3 the relation between the effective potentials and
the more standard Schwinger functions is explained.The formalism is illustrated by two
simple examples, the Gaussian model and the N — co limit of (47 ’)’ (the spherical model),
in Section 4.

The core of the work is Section 5 where the proof of finiteness (and convergence, in
the planar thory) of the tree expansion and the beta functional is presented. The proof is
for the general case of a scalar field theory, as in [6], but we adopt the method used in [4]
which is probably simpler.

Section 6 is the summary of the perturbative results obtained in [6] (n!-bounds for
the general case of a renormalizable theory, “perturbative triviality”).

In Section 7 we construct a non-trivial fixed point for the ¢§-theory with propagator
1/p3~¢/? which has, as ¢}, ,, a non-renormalisable power counting, but is more tractable
being in an integer number of number of dimensions.

Of course the resulting theory has no chance of being a relativistic quantum field
theory for at least two reasons: first, in large N theories, scattering is suppressed by a
factor 4 and one gets a generalized free field, that can however have a rich mass spectrum.
Second, even if a Euclidean theory could be constructed beyond this § expansion, it could
hardly be made unitary: Gawedzki and Kupiainen have constructed a ¢4 theory beyond the
planar approximation [10] (at least in the hierarchical model) and seem fo have evidence
that Osterwalder-Schrader positivity is broken, and no continuation from Euclidean to
Minkowski space is thus possible.

Nevertheless our result shows that one can cope with the difficulty mentioned above
of a beta function which is not finite in perturbation theory for a non-trivial example (the
N — o0 limit of (4?’)2) where this difficulty is present (unlike the spherical model).

Similar results have been obtained by Gawedzki and Kupiainen [11], {12]. They con-
sider the two-dimensional Gross-Neveu model with y/p3—¢ propagator, and analyze the
flow of the full effective hamiltonians rather than focussing on the coupling constants.

A probably more physical application of our methods is the e-expansion [24], [25] in
the statistical mechanics of critical phenomena. However, although the general idea will
work, one has to modify the way one introduces the cut-off in order to handle theories
with anomalons dimensions. In fact all models considered so far {the spherical model, the
planar theory with singular propagator, the Gross-Neveu model with singular propagator,
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as well as the newly constructed [15] Wilson fixed point in infrared hierarchical ¢3) have
trivial wave function renormalization, and no anomalous dimensions.

A natural framework to treat rigorously (at least in the planar approximation) theo-
ries with non-trivial wave function renormalization has in fact already been provided by
Wilson himself: it goes under the name “exact renormaligation group® and can be found
in Chapter 11 of [265], and was studied in more detail by Wegner [22].
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2. The tree expansion and the beta functional

In this section we introduce the tree expansion and the beta functional for a general acalar
field theory as in [6]. We work in perturbation theory and postpone the discussion of the
planar theory, where the expansions are convergent, to a later section. ‘

We consider a perturbation of a free field ¢, a Gaussian random field with mean gero
and covariance

=1 1 in(z-n)
Clz,9) = (ZT)‘/ pge' dp (2.)
in d-dimensional Euclidean space-time. We introduce a scale decomposition of ¢ by writing
(-] ) '
4=y ¢, (22)
y==c0

where () are independent Gaussian fields with mean sero and covariance (in momentum
space)

&it0) = o3 {16/ - 167 ), (23)
where £(p?) is some cut-off function, e.g.,
) =e", (24)
and 7 > 1 is some fixed scale factor {7y = 2, say). We have the scaling relations
Ci(z,y) = 14-MCy/z, vy), (25)
) 38t (o) (5 ) 44525, (2.6)

and the bounds (8" = [J( 3'37)“‘, =5 l)
B ¥

18'C(0, 2)] < Cy {142+ Msg-Crvlel, @7

The model is defined by introducing a cut-off on scale 7¥ and taking as interaction a
potential of the cut-off field ¢<¥ =y ¢(9):

VIO (<N) = 3~ =tV 2 (N)0a(427), (28)
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where a runs over a finite set. We choose as “interactions” O,:

Ox(9) = [ :(06(2))" : d, o(2) =0,
0:(¢) = [ :4(z)?:dz, o(2) = -2,
04(¢) = [ :4(z)*:dx, o(d) =d -4, (2.9)

Ox(9) = [ :(z)*:dz, o(2t) = (d - 2)t - d,

where o(a) is the dimension of O,, 80 that A,(N) are the dimensionless bare coupling
constants. One could also add any finite number of higher derivative interactions or uneven
interactions, with only notational complication.
Following Wilson (23], we introduce effective potentials® through the recursive defi-
nition
V(k)(¢5k) = —InExp1 up(_v(k+ll(¢$k+l))’

2.10
=-00,...,N-1, (2.10)

where Ey4; denotes integration over the distribution of ¢!*+1). We expand V (¥) in powers
of the fields:

V) (k) = i /V,S,"’(z,,...,z,,.) :95%(zy) - $<K(zpm):. (2.11)
m=0

With our choice (2.9),the kernels V" in (2.11) will be Euclidean invariant distributions,
non-vanishing only if m is even. In the next section we discuss how the effective potentials
V(%) are related to the Schwinger functions. The result is that the kernels vk Nzy,...,Zm)
are essentially Schwinger functions with an infrared cut-off on scale 4*. Therefore solving
the ultraviolet problem of the theory is equivalent to finding a sequence of bare coupling
constants A,{N) such that the resulting V(*), with k fixed, remains finite when the cut-off
is removed (N — 00).

The main idea in the renormalisation group program is that the full flow of V(¥)
(see (2.10)) is actunally governed by a finite number of degrees of freedom, the relevant
operators. We thus want to keep track of a finite number of running coupling constants
Aq(k) defined by

Z 7N (k) Ou (65F) = LV (B} (gSH), (2.12)

13



where Ly is a projector onto the space spanned by {0} w=2 2.2t Specifically, Lg acts
as a linear operator on expressions of the form (2.11) according to (m even)

m NP ifm>2t
Lk[V(X) .'l;[!.#sk(z.).k— {V(O)Om; ﬂ2<m_<_2t

n [ Via1,22) 64(a1 )44 2a): o (2.13)
= V(O 044 + 507 V)| ,_ Oa (6<%,

Not all coupling constants in (2.7) are relevant (relevant means o(a) < 0) with respect
to the Gaussian fixed point, but we keep them all because they can become relevant with
respect to some other fixed point or, more generally, to some other solution of the flow
equation (2.10).

The next step is the tree expansion which is an expansion in powers of all A, 's of the
effective potentials. It is based on the cumulant expansion for the irrelevant part of V(¥);

vk = Z 7_°(a'kl\a(k) oa(¢'<‘k)
00 (_l)‘»-—l (2'l‘)

Ef,, (V(k+1),m’y(k+|)) .

+(1 - L) 5

&=

This expansion generates by iteration terms of the type (k < & < j)

7240 () A Bi1 Erga - Bny(1 — Lp—y)

Ef (Eh"l'l cee Ej.—](l - LJ—[)E?.(I :¢4:,I :¢4:),f :(6¢)’) , (2.15)

(we have used Ef (-} = Ex(-),ExLr = Li—1Ex, L} = Li). These terms can be efficiently
labelled by #rees 6. For instance, the term (2.15) is labelled by the tree depicted in fig. 1.
In general the tree expansion is given by the following expression:

Vi) = Ly 4 ; ';qlﬂv,,.(a,n,g) I[ Aai(h), (2.16)
(A Y'Y 1 en roints
hv,=k of 8

where, if 6 is a tree, h = {hy)ves are integer labels of the branching points V of 4
with hye < hyn if V! < V" in the ordering of 8. The endpoints 1 of # are given labels

14




Fig. 8. A simple tree

o; € {2,2,4,...,2t}, and h; in the label assigned to the branching point to which the
endpoint 1 is connected. The root V; is given the frequency label k of the effective potential,
and the sum in (2.16) is over all non-trivial trees § (the trivial tree is the one without
branches), frequency assignments h and endpoint labels a. The combinatorial factor n(f)
is

n(f) = J]s sv, (2.17)
€

where sy is the number of subtrees into which @ branches at V. Fig. 7 shows a general
tree with root V, and first branching point V).

Qn

Fig. 7. A general tree
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The tree coefficients Vren (8, h, @) can be computed by the following recursive formulae: if
8 = 6 is the trivial tree,

an(oo,hvo,a) = ,y—olu”lv., Ou (¢S’I—Vn) ’ (2'18)
and if 8 branches at the first branching point V; into trees 4,,...,0,,

Vien(8,h,a) =E’lv(.+1 ot E’lv,—l(l - th,—l)

EI.—. (an(gl;hh a_l)v “e Vtu\(an hn Qh]) ’ (2‘19)

h,,a, being the restriction of hya to 8, r=1,...,8

Note that (2.16) is an expansion in powers of all running coupling constants A,(h) and
that the only cut-off dependence arises from the fact that the sum in (2.16) is restricted
to hy < N,V €4, so that the cut-off can be removed simply by ignoring this restriction.
The crucial observation will be that all sums over momentum scales h are convergent order
by order in Aq(h)!

H we act with Lj on (2.10) in cumulant expansion

00 ¢ 1)s—-1
V(k)=§=_“( ?! EE, (VIH), L ke, (2.20)

and insert (2.16) on the right-hand side, we get a recursion relation between the running
coupling constants (the flow equation of the coupling constants)

Na(K) = 7@k +1) - gj —;ﬂa(vh_)llx.,.(h.). (221)
kvo

kvl =k-+1

where, again, the prime means that we sum over all non-trivial trees. The beta functional
coefficients Bo(¢,h, a) are defined by

Zv—a(u)kﬂa(o, h,a) Oy (¢$k)
= LxBrit (Veen(01,B1,2),- - -, Vien(80, hay 0,)) -

(2.22)

Again, the cut-off is removed by summing over h in (2.21) without the restriction Ay < N.
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If we expand Vi.o(8, b, a) in power of the fields

m
Vien{0,h,0) = Z/Vun(ﬂ,h,g; TiyeeeyZm) :H Pt (=:):, (2.23)
m =1
we can compute the kernels V., as sums over Feynman graphs:

Vien(0,b, @;21,...,2m) = Z Vien,c(0,h, 25 21,. .., Zm), (2.24)

@ compatible
\d 1

where the sum is over all Feynman graphs with m external lines and n vertices, if # has n
endpoints, which are compatible with #,a. A graph G is said to be compatible with 8,a if
the following two conditions are satisfied:

(a) Fori = 1,...,n, the s*k vertex is an O, insertion, i.e., it has coordination number
2ifa;=2,2"andr=2,4,...,2 fa; =r.

(b) G has two types of internal lines: hard lines (coming from the truncated expec-
tations Ef) and soft lines (coming from Wick reordering). If we draw a bubble around
each set of vertices corresponding to subtrees of #, then the hard lines should connect all
bubbles contained in any bubble.

Fig. 8 shows a graph which is compatible with the tree of Fig. 6. The 3 recall that
the third vertex is an 0y insertion.

Pig. 8. A graph compatible with the tree of Fig. 6
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3. Schwinger fanctions

There are three ways of calculating the correlation (Schwinger) functions given the effective
potentials. The first one is the most straightforward and is described in [8]: the Schwinger
functions are expanded in a sum of Schwinger functions calculated in the ensemble gen-
erated by the effective potentials. This method is not very convenient, since it requires
some extra work to show the convergence of these expansions. In the second method one
expresses the Schwinger functions in terms of the limit k — —co of V(*), Thus uniform (in
k) bounds on V*) are sufficient to control the Schwinger functions. Moreover Schwinger
functions with an infrared cut-off on scale 4* are obtainable directly from V(*¥), so that
the construction of V''¥), with k fixed, provides a solution of the ultraviolet problem. The
third method is more conceptually important. It shows that one can recover all Schwinger
functions from the Schwinger functions of the V(¥) ensemble for any single k.

Let us now describe the three methods in more detail:

1} The idea is to write

<H(z1)-- $(zm) >= z; < #*h(zg) - ) (zm) >, 3.1

| Syorr 48

and the expectations on the right-hand side can be computed taking as interaction V¥,

where k = max k;.
1,...m

=
2) The second way of computing Schwinger functions is based on the observation
that V{¥) ig the generating functional of the amputated connected Feynman graphs with
infrared cut-off propagators. To prove this we start from the definition of V (*)

Vg = - [exp (VYW +9)- 43D} G2

where @ = CS¥ — <k = ;—2( F(0* (") - f(9*[1**)) and we have written out explicitly
the functional integral for clarity, neglecting ¢ independent contributions to V{*). We
change variables:
$=0+4
VIH(g<k) = §(6<F,Q714%F) (33)
~In fexp{-V(9) - §(4,Q719) + (@14%,9)} 4,




and get the generating functional of the connected, Q-amputated Schwinger functions and
infrared cut—off provided by the propagator @ on scale 4*.
The connected Schwinger functions are thus generated by the functional

W(I) =, lim_(-V®(QJ) +4(4,Q))). (3.4)

3) The third method shows that the whole information is actually contained in every
single V(®_ Consider the generating functional

W) =tn [exp{ V(N - J(9SH,CNG) 4 (65N} 04, (35)
and introduce the momentum decomposition
CSN = sk 4 Q.
Writing again the functional integral explicitly

W(J) =l / e«p{—w"wf* +8)+(,6<* + )

. (3.6)
- H (O - 36,0719 | 24405,

we look for a change of variables which eliminates the coupling of the source J to the high
energy field §. The right choice is

b =¢<F+QJ

bam§-QJ (3.7)

so that, after some algebra,

W) = ~4(0) +1n [ expf V4SH) 1 J0h, ()44 + (0,4 Do,
(38)

where J = CSN(CS*)-1J. What this says, graphically, is that the Schwinger functions
of VI¥) are given by all Feynman graphs, except for the fact that the external lines are
low frequency propagators C'<¥ instead of full propagators C<¥. The action of the factor
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CSN(C<k)~! in the definition of J is just to amputate the CS* propagators and replace
them by CS¥ propagators. For the graph with no vertices (a single line) the discussion
has to be done separetely: the first term on the right-hand side of (3.8) compensates the
error in the geroth order contribution of the functional integral:

-7, Qj) + ’}(jycskj) = %(J’CSNJ)' (3.9)
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4. Hlustrative examples

(a) The Gaussian case. In the Gaussian model V(¥) = [ VN )z - y)¢<¥ ()$<¥ (y) dz dy
one can compute V %) explicitly from the definition

VIS 2 By - Bye V), (4.1)
since all integrations are Gaussian. The result is that then V*! is again Gaussian:
V) = [V s - pHa)ost), (42
and, if V,W) is Euclidean invariant, V,(") is given in Fourier space by
Vi)t = VIN(E) 1 + SN (p?) - OSH(p?), (43)

where, again,
M) = /) (84

is the cut-off propagator.
In dimensionless notation

) = R ), (45)
we get
UP() = PR PR (AN - [0), (49)
with convergence to the *high temperature” fixed point
e = g =107 H00), (Po0, (49)
if US™! £ 0, and to the massless Gaussian

Uﬂ(—m)(pz) = a4 fa— f(P’) = ap? + 0(})4), (pg - 0)’ (4'8)
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i UNI(0) = ap?® + O(p*), a > 0.
This behaviour can of course already be seen in the space of the running coupling
constants. The flow equations can be deduced from (4.6) at p? = 0:

Aa(k)~! =gk + 1)1 + £(0) (77 - 1), (49)
Aa(k)~ha (k) = 7™ da(k + 1) 2hge(k + 1) + f#(0) (4 - 1), (4.10)

with coupling of scale k only to scale k+ 1 (this is a consequence of the fact that only trees

with one branching point contribute in the Gaussian case). The behaviour of the solutions

of (4.9), (4.10) is shown in Fig. 9. The axis A; = 0 is the line of massless fixed points.
Nl

2 R Y

Pig. 9. The flow of the coupling constants in the Gaussian case

(b) The spherical model. Let §(z) = (¢1(z), ..., $u(z)) be a real n-component scalar field.
The theory is given by the action

5=n [(0d7 + F+ §@P) ¢, (411)

and we are interested in the limit n — oo of this model. The momentum decomposition is
written for the free propagator

~ (6% (4.12)
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and the relation between effective potentials is given formally in terms of the finite (as
n — co) quantities v!¥) = Ly by

y(E <k = Jim 2By - Epexp —notM(g<h), (4.13)
where E; is the integration over the distribution of $U), a Gaussian with covariance

L5067 /#) ~ 10 1)) g2, (414)

The Feynman rules to construct the graphs are the same as the ones of the n = 1 theory,
except for factors of n to some power: a factor of n~! for each propagator, a factor n for
each vertex, and a factor n for each trace over O(r) indices in closed loops.

We can thus evaluate the kernels in the expansion of v(*) in the fields:

M= 5 [ 2 w

m=1

(#(z1) - $(z2)) - ($Zam—1) - $(zam)) d1 - - - dTam

summing the Feynman graphs which do not vanish in the n — oo limit. We do this for
the two and four point functions, which can be computed with the graphs of Fig. 10.

From now to the end of this section we switch to the more standard notation y =
7%, A = 9¥ and write v (-, p) instead of v{*)()). The lines in Fig. 10 represent “hard”
propagators

Qualr?) = 2 (/%) - F(5° %)) (u1)

{we have no soft propagators here because we do not Wick order in this explicit calculation).
It is convenient to pass to one-particle irreducible (1PI) functions on scale u, denoted
T'3m(-, &), given by the graphs of Fig. 11. The kernels v3(-, ) can be computed from the
IPI functions on scale p by the following relations: In momentum space we have for the
two point function

va(p?, ) = Ta(p?, %) — Falp?, 42)Qua (0% )Ta (9%, %)
+Ta(?, 1) Qua (P?)F3 (9%, %) Qua (p")Ta(p?, %) + - -

- 2 l
=L )
= Qua(p?) ' Ta(p?, ) ' Qua () - Qua(p?) ",

Ta(p?, 1) = Fa(p®, %) + Qua (v*) 1,

(4.18)
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Fig. 10. Graphs contributing to the 2- and 4-point functions

where ['; is the sum over all non-trivial 1PI graphs with two (amputated) external lines.
Traditionally one defines T'; by adding to I'; the free inverse propagator Q;g (the bare
2-point vertex). The four-point function can be recovered from its 1PI part by noting that
the external lines in the four point graphs in Fig. 10 can be resummed to

Q- +2— + - = va(s?, 1)Qua(p?), (4.19)

yielding the result

4
ve(pr,-.- ;Phﬁ) = H(l + 'h(P?,I‘]QuA(P?))FA(Pl,- 1 Pay ),

1=1

(4.20)
pr+---+pa=0,

and we see from the graphs of Fig. 11 that I'y depends on the external momenta only in
the combination (py + pa)? = (ps + pa)?.

By the analysis of Section 3, the 1PI functions converge as g — 0 (kK — —o0) to the
(amputated) 1PI Schwinger functions (Euclidean vertex functions) of the theory. In this
context we can see this simply diagrammatically, noting that the graphs of Fig. 6 are exactly
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the graphs contributing to the vertex functions and that, for p — 0, Qua — 2 f(p?/A%),
the (UV cut-off) propagator.

The 1PI functions on acale g, T'2(p?, i), T'4(p?, ), can be evaluated quite explicitly
by summing all the graphs or, equivalently, by solving the integral equations (Fig. 12)

D, p) =mi + % _/ ry '(q’,u)(%gq + Qi (7),

4 (4.21)
Tu(p,m) =20 - % / 5@ 05 (0 - 0, W) g a (s, ),

where the “full propagator” (the sum of all two-point bubbles in Fig. 12) is equal fo I';!,
as one can easily seen by summing a geometric series as in (4.18).

Pig. 11. One-particle irreducible 2- and 4-point graphs

Il

@ - —.
O - X &

Pig. 12. Graphical representation of the integral equations (4.21)
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To construct a massive theory we impose renormalization conditions at g = 0 (i.e.,
on the vertex functions) and at zero momentum

1‘2(0, 0) = 1")2

T4(0,0) = . (4.22)

Then the relation between renormalized and bare quantities can be computed by taking
(4.21) at zero momentum and setting g = 0, and noting that by the first of (4.21), [5 is
of the form @} + const:

et A‘Q[ q’f"(q’;A’) Tt 4/’

, 2 (423)
=25t 4+ j (q, @ m,) d'q/(2x)%,
and the vertex functions are given by
T3(p?,0) = m? + P f~(p?/A%),
(4.24)

Ly, 007 =271+ § | (Ta(g?,0)"'Ta((p - ¢)*,0)~" - 1‘2(4’,0)_’)""1
(2x)

In the renormalizable case 4 < d < 6 the integrals in (4.24) diverge as A — 0o as C1A%~2
and CaA%-4 respectively, where C}, C; are (f-dependent) positive constants, but choosing
A%t X = —6C7! <0, rm,A"’A_-‘—mm‘2 = C;1Cy one obtains finite A, m3?, and
vertex ﬁnctlons (17]

rg(pn,ﬂ) = m’+p’,

PO(P 0)— =)\t +§(4ﬂ’)"d/3lF(4-d 1; 5.;—%)—1]m""1‘( ) (4.25)

where F is Gauss’s hypergeometric function, which is analytic in the cat p? plane € \{p? <
—4m?} and whose large p? asymptotics can be computed from the analytic continuation
formula

P54, 158 8) = IR () T (14 48) T

4m’

(4.26)

m_'."F (2 1 13 iv
In the same ﬁay one can compute all effective potentials startmg from I'3(p?, 1), Ta(p?, 1)
given by (4.18), (4.20) with f(p?/A?) replaced by f(p?/A?) — f(p*/1?) and m?, X replaced
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by the (dimensional) running coupling constants m?(u), A(s). These running coupling
constants are related to the ones defined in Section 2 by a finite renormalization (at each
fixed u), by (4.22).

Thus we have seen that, due to existence of an ultraviolet fixed point, one can construct
a two-parameter family of theories. That this can be done also in the planar theory is the
content of the next sections.
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5. Piniteness of the tree expansion

The effective potentials, expressed as power series in the fields can be brought to the form
(2.11)

Ve - Z /V,L")(zl,...,zm):¢5"(a:1)~~-¢5"($m):dtx-"dzm (5.1)

m=0
m even

by a formal partial integration of a sum of Wick monomials in $<* and 3¢=<*. We therefore
assume that V,{¥' € V,(IR9™), where

vl(mdm) ={V € sr(mdm)

V(zl,...,zm) = Z V{,..,k..,j‘.)(zl,...,zm)
{hikigiHzy (5.2)
H 3"6(1:,'.. - zk-‘):v{l;.kni;} € Llloc(m'dm)}'

=1
Moreover Vi) will always be Euclidean invariant.

The kernels V;{*) can be computed in tree expansion (2.16) as power series in the
running coupling constants Aq(k), which obey the recursion relation (2.21). The aim of
this section is to prove that (2.16),(2.21) are finste order by order in A, and convergent for
the planar theory.

The dimension {degree of oonvergencé) of a Wick monomial of degree m with ! gra-
dients is defined by

otm,f) = —d+ 45 2m 41 (53)

The main result of this section is the following

Theorem 5.1. Ifd > 2 and t > [432], i.e. the theory is barely renormalizable or not
renormalizable, then
(i) Let fi,..., fm be S(RY)-test functions, and 8 a non-irivial tree. Then

Vnn(ayhyg;fh“-yfm) = ; V;'en.(h}(othrg;ahflr'-la‘mfm) (5.4)
i}

o<i;<3
alm,y " [L121
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where Vien 1.3 € Yo(R?™) and

/Ax o lV,,n_{z‘.}(O,zg,...,zmndzg---dzm
2X-XAm

< an(a)c— 9,1'1""0 dist{0,A3,...,0, |n’—"("‘ E; :Dhvy (55)
A v b)) (¢ _ 1))
Vﬁ’o

(%5) The beta functional coefficients are bounded by

186, b2} < G5a(e) JT By ko) (¢ = 1)m)1 (5.6)
\y> 1

where n > 2 s the number of endpoints of ; A,,..., A, are cubes in RY with side size
yMvo; dist(0,Ag,...,Am) s the length of the shoriest graph connecting 0,43,...,Am;
Vo s the root of 6, V) is the first branching point, and, for V € 6, V' is the branching
point immediately preceding V (see Fig. 2); Co = Co(d, 1, ) ¥s a positive constant, and C;
is the constant appearing in (2.7); n(0) és defined in (2.17). The factor ((t — 1)n)! s not
present in the planar theory.

Discussion. By a barely renormalisable theory we mean a theory such that any additional
term to the Lagrangean makes it not renormalizable. Examples of barely renormalizable
theories are ¢4, ¢3, but also ¢4,,. Not covered by the theorem are superrenormalizable
theories such as ¢4. The exponential decay factors 7~ #(dv—hv:} (recall that ky < hy:)
allow us to sum over all h. There are at most const™ trees # with n endpoints with given
labels a. We have thus the following result: The n*® order term in the expansions

v =Y v (5.6)
Aa(k) = 77o@ )\ (k+1) + ; Pan(k)A® (5.7)
|n[22
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(in the potation A" = u na(k)) is bounded uniformly in the cut-off:

a,

VELfrye s fm) = ;}VL‘SZ..{,f,(a“n, cees 8 fm) (58)

; /; XX A IV'S:ZI-('\')(O’ZZ""’z"')léndza'“dz"‘
[a[En JB2x- XA

< (¢~ DA% e~ FAHO B Bm)y=elm{:D)K(5.)
Bun(K)A™ < CPM%((¢ ~ D)t (5.10)

In the planar theory, where the factor ({t — 1)n)! (coming from the counting of Feynman
graphs) does not appear, the series (5.6), (5.7) converge absolutely for small ||A][co.

Proof of the Theorem. The proof is in three steps. First, we prove that the operator
1 — Ly generates irrelevant terms with “good” bounds. The second step is an estimate
on Feynman amplitudes and the third is an estimate on the sum over all Feynman graphs
compatible with a given tree.

1st step. For ¥ € Vo(IR%™) (i.e., an Euclidean invariant function times § functions) we
define the weighted norm

19l = [17(ess-..,smlleotsee)ay .. dz (5.11)

where p > 0.

Proposition 5.3. Let V € V3(IR*™) and

(1 - L) [ V(@1 ., 2m) :4H(z1) - 65 (2m):

(5.12)
- f Veeulz1, -, 2m) :655(21) - 65%(m): \

Let also d> 2,¢ > [45]. If V has a zero of order | in momentum space, i.e., if for some
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{l}2, with Ll =1,
V(fiyeo s fm) =P (0" fiy.... 0 fm), 7 € Vo(R™), (5.13)

then

(s) If (m,1) = (2,0), (2.1), (2,2), (4,0), (6,0), ..., (2t,0),

Vl'tll(fly-”yfm) = g Vrﬂl,{l"}(a‘lfh""a,.‘fm)y Vl'en.{‘{} € vo(mdm)’

l‘ilgs

i'i='n:n
(5.14)

v 1yt
[Penial, < GY=1P 1, .15

vhere ey =15fm >4, and len =3 fm =2.

(%) If (m, 1) is not one of the pairs mentioned in (i), then Ve, = V.

Remark. (1 — Ly) transforms Wick monomials of dimension a(m, I} into Wick monomials
of dimmension ¢(m, lren). The condition ¢ > [;25] implies that all relevant operators are
included in the list of (i) and thus o(m,ley) > 1, i.e, (1 — Ly) generates only irrelevant
operators.

Proof. (ii) follows from the definition of L. To prove (i), we discuss separately the case
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m = 2: we prove (A, p, v are Lorents indices)

a)4$m$2t,l=0,V=V

NSRS 9i TRV AN - IS
BWm=21=0,V = f?

Vsl 12) = Frenrun 1230000, [Pcniago, < ()W
m=2,1=1,V(fi,f2) =V(f1,8:f2)

Veen(f11£2) = Veeno (f1,028,80 f2), || Vren, wl, < ( ) %1,
dm=2,1=2,V(fi,fa) = V(f,,a;o,.f,)

Veen(f1, f2) = Veenw(1,028680 f3),  [Pren], < ||V||p

The most complicated case is b), which we prove explicitly. The other cases are proven
exactly the same way, but are simpler. By the Taylor remainder theorem (with z9; =
%3 — 21),

Veen(f1, f3) = / V(21,22) f(31){fa(22) = falm1) — 55,00 fa(51) - §5, 75,8000 fo(1)}
/ ar! “)2 (i)3 / V(21,23) fi(21) fa(tza + (1 - )z,) dz1dz;

f al! —t) ‘—7/"( 1 )75 B0 fi(20)0035By fo(72) dzrdza

(5.16)
This proves b) with '
1 -t 2
Ol (LT T (5:17)
The bound is
t (-t A ¢
lIVren.Ap.ullp < / dl/ dt o v (o, %)z zhs¥| el
¢ (5.18)

1
< (,—,)3IIVIIp.
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where we have used

1 ol=| 2
/ dt(1 — t)?|g]Perlslt = erlel =3 / duule ™ < FCM' (5.19)
0 0

2nd step. We want now to estimate inductively tree coefficients V (4, h, @) using the recur-
sion relation (2.19). Recalling that ExLx = Li_.; Ex, we can write this relation as

V(0,h,2) = Bnv, - Eny, -1 BE,, (vm.(al,h,,g_,),...,v,e..(o.,h.,g.)),
Vien(6,h,0) = (1 - L""o W (8,h,qa),

(5.20)

and we focus on the contribution Vg of a single graph G compatible with 8, a, with sub-
graphs G,,...,G, corresponding to 8y,...,0,. We estimate Vz by simple power counting
and then use Proposition 5.2 to estimate Vien .

Proposition 5.3. Let G be a graph compatible with 8, a, and d > 2, ¢ > [3%5]. Then

Vr:n,G(a,hyﬁ; fls seny fm) = an,G,{‘;}(av hs @ ah fli oo ’alm fm)v [5'21)
1;123
o(m )" [L])>1

where Vnn.G,{l;) € Vo(]R“"') and
1Pren. .00 (0, Y g, < CF-mprom DIl TT oy htemedlbvhr) (5.2
1 Ves
V>€Vo

where n 15 the number of endpoints of 6 (and of vertices of G) and my is the number
of ezternal lines of the subgraph Gy of G corresponding to the subiree 6y of 6 with first
branching potnt V. C and c' are positive constants.

Proof. The proof is inductive. We use (5.19) and compute the contribution of G to
V(9,h,2) from the contributions of the subgraphs G, ..., G, of G to V(8;,h;,q,),...,
V{d,,h,,a,) (see Fig. 8).
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Fig. 8. The setting of the inductive proof: the graph G contributing to the tree ¢
has subgraphs G,, ..., G, corresponding to the subtrees 8,,...,8,

Some of the 6;’s are trivial trees. They contribute to the computation of V¢ a factor
y-elaby, by (2.18). Assume now inductively that the proposition holds for the non-
trivial trees in the list 6,,...,0,. Then V¢ is given by a generalised convolution of the
kernels V;;, with propagators on scale hy,:

Vel hya f1,..., fm) = [ Vieng, - Vren.G, H ¢ (%i,25)

£
- . (5.23)
C<hv i) T5 iz i ..
%}) (= z:)g (ﬂ=)r= z

For the trivial trees 8y, Vien,G is replaced by y-?(e-)avy in (5.23). After replacing Vren.c,,
r=1,...,8, by Vien c,.1;) (using (5.21)), and integrating over the internal vertices, Vi
becomes an expression of the form (we suppress the 8, h, a-dependence):

Volfiyeroy fm) = E Vo, (8" fiy ..., 0 fm) (5.24)
|‘i1‘S3
and, to estimate ||Vg|| §Caqras WE DOtE that

8
Tndist zg < 4™ Z dist zg, + 7" |z - 23], (5.25)

r=1 <i.)>€T
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where z¢ is the set of points associated with those vertices of G which are connected with
external lines, and T is some tree subgraph of hard lines of G connecting Gy, ...,G,. For
the propagators and their gradients we insert the bounds (2.7) (note that there are at most
6 derivatives acting on each propagator):

|8°Ch(2i,2)] < Cy(tyte-2+ Mk eCr7 2ia)
e (, (5.26)

1010 (3 2)] < AL yfd-2sln.
We keep the exponential decay factor eC27*l2i—| only for (5,5) € T. This allows us to

. . . . . _ 1
integrate over the internal vertices. The result is (with C; = b X 7_2)

Wotlyoppn € 3 sl Eiammm)r T it
(g W1

CPme=m py=Lyuts=1ihry HIIV....,G,.W,II;c,.,nv, (5.27)
r=

< BEm—matn=Dm, ,—otm.[l)}hx, Vu, ,,(§+c'mv)(m-—h..,),
>Vi
where || = E|l.-|, m, is the number of external lines of G,, and B;, B; are positive
s
constants. For 8, trivial, lle’GE{‘gr,}" Josrtn is replaced by y~°(a:)bvy  with same
bound. We then apply Proposition 5.2 to estimate Vp g 41,3

||Vnn,G,(l§}|| %c"’hvo S g’,—hvﬂlpl_m."VG’“‘}"%Cg’yh"l

e N0 —(L4e'my )by =hys
< Gotn-m vy o(m i) .JJ, g+ mr )by —hyr) (5.28)
3

< C"""""-h%”(m-"’l) JI’ 1—‘_%+c'ﬂh~)‘bv-hl-l)
>Va

Here ¥ 41,y are the terms in (5.24) giving Veew g, (i) under the action of (1 - Ls,, ). In
the last step of (5.28) we used

_d-2
T 4(d+1)

d-2

5 >0,  (5.29)

o(m,|i"[) > max(1,-d +

m)>3+¢cm, ¢
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and choosed C > B;. Proposition 5.3 is thus proven.

3rd step. There are less than const™((t — 1)n)! unlabelled Feynman graphs with n vertices
having coordination number less than or equal to 2t. or the planar theory [16], [2], this
number is reduced to const™.A simple combinatorial argument (see |8}, Appendix F) shows
that an unlabelled graph with n vertices can be labelled in at most C’gn(ﬂ)expS‘g‘ my

ways to be compatible with a tree § such that for all V € 8, the subgraph Gy corresponding
to V has my external lines; 6 can be chosen as small as desired. We can thus sum over all
graphs the bounds of Proposition 5.3:

“Vren, TRICA WD) “ % Car¥o < Cgu(o),’hvnd(m.z )] VII' ,,—%(h‘._a,..), (5.30)

>Va

with § = ¢’Inv, Cp = constCsC%*. The claim of the theorem follows by restricting the
integration in || - || to the domain Ag X --- X Ap.




6. Perturbative solutions of the flow equation

In the previous sections we have seen how to formulate a renormalizable or non-renormalis-
able theory with the ultraviolet cut-off removed: the effective potentials (and the Schwinger
functions) are expressed in terms of the running coupling constants on all scales, and these
obey a recursion relation. What remains to do is to solve this recursion relation.

In this section we shortly discuss a “perturbative® solution of the recursion relation.
The result is the usual renormalized perturbation theory (with a finite number of coun-
terterms) which is divergent for non-renormalizable theories. For renormalizable theories
one gets nl-bounds as a by-product. The discussion is rather sketchy. For details see [6].

It is natural to solve the recursion relation (2.21), which we write as

Aalk) = 71 a(k +1) - (), (61)

in a power series in A4(0), the “renormalised coupling constants”. This is accomplished
by using the Duhamel formula

Aa(K) = 1(*2,4(0) + kz—:l iR ) (62)

and iterating (BL*!()) is second order in A) — we insert (6. 2) for the Ay(k) appearing in

(_) This recursive solution of the flow equations ( “renormalised perturbation theory®)
is timte to all orders for renormalisable theories, i.e., if all #(a) < 0. If however, for some
a, o(a) > 0, this perturbative solution is divergent at all sufficiently large order, as the
dangerous factor 4°{®) puggests.

Another way of finding a perturbative solution to (6.1) is standard in the theory of
dynamical system with hyperbolic fixed points: for the irrelevant directions o(a) > 0 one
should give initial conditions at the scale of the cut-off k = N, i.e., the natural parameters
of the theory should be {A4(0)}s(aj<0; {Aa(N)}o(a)>0- Thus, instead of (6.2), we iterate

Aa(k) = 77 (21*2,(0) + E yE-Rgtlr),  ola) <0
=0 (6.3)

N-1
Aa(k) = y-ola¥=k)) (N) - Z; yo(@B-kgh) (3),  o(e)>0
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