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Stunmary

We study renormalizable and non-renormalizable Euclideanquantum field theories from
the point of view of Wilson's renormalization group. We construct the tree expansion
of Gallavotti and Nicolö, for the general case of a scalar field theory. It is an expansion
of physical quantities in powers of the running coupling constants on all scales. These

running coupling constants obey recursion relations (the flow equations) involving similar
power series. We show that the tree expansion is finite to all ordere, even if the theory is
not renormalizable.

The ultraviolet problem is thus reduced (as far as perturbation theory is concerned)
to the problem of finding a Solution to the flow equations.

A naive way of finding a Solution is to solve the flow equations in a power series in
the running coupling constants on some fixed low energy scale (the renormalized coupling
constants). This way of soiVing the flow equations yields for renormalizable theories the
usual renormalizedperturbationseries: the BPH Theorem and the de Calan-Rhrasseau
n!-bounds can be proven with this method. For non-renormalizabletheories, however,
the naive way of solving the flow equations breaks down because of ultraviolet divergences.
Thisdoesnot mean that no Solutions exist: There can exist a Solution of the flow equations
which does not depend in a C00 way on the renormalizedcouplingconstants.

More can be said in a specific example of a non-renormalizabletheory: a $* theory
in four dimensionswith propagator 1/p2-*/1 (this inodel is similar to a <f>*+t theory, but
is technically easier to handle). In this case we solve the flow equations with a fixed point
ansatz, i.e., by setting all running couplingconstants equal to each other. The result
is that there does exist a non-trhrial fixed point A* (at negative coupling constant) as

predicted by a one-loop beta function calculation. We then re-write the flow equations
in an expansion around this fixed point. In this form the flow equationscan be solved in
a finite expansion in powers of X - X*, where X are the renormalizedcoupling constants.

This yields a two-parameterfamily of Euclideanquantum field theories expressed as finite

expansions.
Results beyond perturbation theory are obtained in the planar limit (the jV -» oo

Limit of a tr<^4 theory, where <p is an JV x JV matrix). In this limit the tree expansion is
not only finite to all ordere, but also convergent, and the above-mentionedtwo-parameter
family of theories can be rigorously constructed.



Riassunto

Studiamo teorie quantistiche euclidee dei campi, rinormalizzabili e non, dal punto di vista
del gruppo di rinormalizzazione di Wilson. Costruiamo lo sviluppo in alberi proposto da
Gallavotti e Nicolö, nel caso generale di una teoria di un campo scalare. Questo e uno

sviluppo di quantitä fisiche in potenze delle costanti d'accoppiamento effettive su tutte
le scale. Queste costanti d'accoppiamento effettive soddisfano relazioni di ricorrenza (le
equazioni di flusso) che pure contengono simili serie di potenze.

Mostriamo che lo sviluppo in alberi e finito a tutti gli ordini, anche se la teoria non e

rinormalizzabile. II problema ultravioletto e quindi ridotto (per quanto concernela teoria
delle pertnrbazioni) al problema di trovare una soluzione alle equazioni di flusso. Unmodo

ingenuo di trovarne una e di risolvere le equazioni di flusso in una serie di potenze nelle
costanti d'accoppiamento effettive su una scala a bassaenergia fissa (oweronellecostanti

d'accoppiamentorinormalizzate). Questo modo di risolvere le equazioni di flusso genera
la nota teoria delle perturbazioni rinormalizzata: il teorema BPH e i limiti n! di de Galan
e Rivasseaupossono essere dimostrati con questo metodo. Per teorie non rinormalizzabili,
invece, il detto modo di risolvere le equazioni di flusso fallisce a causa di divergenze ultra¬
violette. Ciö non significa perö che non esistano soluzioni: puö esistere una soluzione che
non dipende in modoC°° dalle costanti d'accoppiamentorinormalizzate.

Si puö dire di piü in un esempio concreto di una teoria non rinormalizzabile: una

teoria <f>* in quattrodimensionicon propagatorel/p2-*/2 (questo modello e simile a ^*+t,
ma e tecnicamente piu semplice da trattare). In questo caso risolviamo le equazioni di
flusso supponendo l'esistenzadi un punto fisso, cioe ponendo tutte le costanti d'accoppia¬
mento effettive uguali l'una all'altra nelle equazioni. II risultato e che un punto fisso A*

esiste effettivamente (a costante d'accoppiamentonegativa) ed e stabile nell'nltravioletto,
come lo suggerisce un calcolo di funzione beta a un cappio. Indi riscriviamo le equazioni di
flusso in uno sviluppo attorno a questo punto fisso. In questaforma le equazioni possono
essere risolte in uno sviluppo finito in potenze di A - A*, dove A sono le costanti d'accop¬
piamento rinormalizzate. In questo modo si costruisce una famiglia a due parametri di

teorie quantistiche euclidee espresse sotto forma di sviluppi in serie finiti a tutti gli ordini.
Possono essere ottenuti risultati al di la dellateoria delle perturbazioni nel limite pla-

nare (il limite JV -» oo di una teoria tr</>4 dove <f> e una matriceN x JV). In questo limite

lo sviluppo in alberi e non solo finito a tutti gli ordini ma anche convergente, e la suddetta

famiglia a due parametri di teorie puö essere costruita rigorosamente.



1. Introdnction

Wilson's renormalization group {23), [25] has brought new insight into renormalization

theory: the concept of relevant and irrelevantinteractions provided a new framework for
the underatandingof renormalizability. Instead of considering renormalization theory just
as a recipe for eliminating unwanted infinities one thinks as follows: let a theorybe defined
on a very small distance scale A_1 as a perturbation of a (Gaussian)free field. Expanding
about this free field one sees that only a finite number of interactions (the relevant ones)
survives in the effectivelow energy theory on somescale /*, the others beingsuppressed by
negative powers of |. Thus the theory has effectively only a few parameters as | -» oo

and to parametrizethe theoryone usually chooseseffectivelow energy coupling constants

(the renormalizedcoupling constants) as parameters.
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Fig. 1. Flow of couplingconstants in a renormalizable theory

FYom this point of view one looks at non-renormalizabletheories in the following way:
in the limit | -* oo the theory has a finite number of parameters;in other words, once

the renormalizedcoupling constants are given for the relevant interactions, everything is

uniquely determined.In particular, the value of the irrelevantcouplingconstants on scale

fi is determined.A non-renormalizabletheory is a theory where one insists to give a value



not only to the relevant couplingconstants on scale p but also to some irrelevant ones.

Whereas this can be possible for finite A by tuning appropriately bare coupling constants,
divergences appear as £ -> oo. This phenomenoncan be understood by looking at Fig. 1
and Fig. 2. The picture of theSituation given by perturbation theoryof the renormalization
group is that there exists in the vicinity of the Gaussian fixed point a finite dimensional
manifold (tangential to the relevant directions) and an infinite dimensionalstable manifold

(tangential to the irrelevantdirections). For sake of clarityconsider onlya two-dimensional

picture: Ai is the irrelevant direction and A3 is the relevant one. In a renormalizable

theory, one sets the bare irrelevant coupling constant Ai_ = X\ = const (usually = 0), and
chooses the bare relevant coupling constant A2(A) in such a way that a renormalization
condition Aa(/<) = X% is satisfied, where X(p) is the effective coupling constant on some

physical scalep. To obtainXi(p) from Aj(A) and AJ one iteratesthe renormalization group
transformationas manytimes as needed to lower the cut-offfrom A to p. ForA -»oo (at
p fixed) we see that the bare coupling constant Aa(A) must be chosen doser and closer
to the stable manifold (crosses in Fig. 1) in order for the renormalization condition to be
satisfied. Moreover, we see that in the limit A -? oo, the theory lies inevitably on the
unstable finite dimensionalmanifold (Point A in Fig. 1).

For a non-renormalizabletheory one imposes renormalization conditions also for irrel¬
evant couplingconstants. In our example one sets Xi(p) = Af, X2{p) = Af. In this case

the bare coupling constants have to be chosen farther and farther away (crosses in Fig. 2),
giving rise to the ultraviolet divergences of non-renormalizabletheories.

This Interpretation of non-renormalizability provides a possible way of makingsense

of a non-renormalizabletheory: the property for an interaction to be relevant depends on

the fixed point one is expanding about. If one had another fixed point, some interaction
which was irrelevant at the Gaussian fixed point might becomerelevant at the new fixed

point (i.e. the other fixed point might be "ultravioletstable") and one could fix the value
of this interaction at the low energy scale p.

A typical example where this general heuristic discussion can be made concrete is the

c/>4 model in d dimensions, with Euclidean action

S = J(^Z(di>)3 + ^mi^ + g:<l>*:)ddx. (1.1)

The : t*4: term is irrelevant in more than four dimensionsand the renormalization group
teils us that the theory tends to a free field as the cut-off A is removed (at least if g is

small). This is in fact true for all g > 0 as was proven by Aizenman [1] and fröhlich [7|
using a lattice cut-off.
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Fig. 2. Flow of coupling constants in a non-renormalizabletheory

On the other hand, a one loop beta function calculation

p-^X(p) = eX[p) + ß2X(p)\ t = d-4, flt>0, (1.2)

where X(p) is the dimensionless runningcoupling constant, predicts the existence of a non¬

trivial fixed point Solution of the flow equationX[p) = -e//?a = A*(e) at negative ("wrong
sign") coupling. This fixed point is ultravioletstable, i.e. the :c^4: term becomes relevant
at A* and the theoryseems in fact to be renormalizable if expanded about this fixed point.

In fact, as it Stands, this argument is not very conclusive even at the perturbative
level: the perturbation theory of the beta function for non-renormalizabletheories does

not make sense: higher order coefficients are ultravioletdivergent. To see this consider the

iü-loop contribution to the vertex function r4(pi,p2,p3)p4), say at the Symmetrie point
p? = ps, p,py = -|pa,and suppose that L is so large that L{d - 4) > 2 but L(d- 4) < 4.

Then the infinite part of the correspondingFeynman graphs goes like

a.A^-^+aa/r'A1^-4'-2,
5

(1.3)



and while the first divergent term can be cancelled by a <i>4 counterterm,the second one

would require a #3 A<fj counterterm,which is not present in the Lagrangean. Thus, in terms
of the renormalizedcoupling constant with subtraction point p, the L-loop contribution
to Tt becomes

r4 = ¦ • ¦ + Afi+V-lL+l,(*-4,(«aiy - ?)&*+)-*+ finite) + • •

•, (1.4)

and the beta function can be computed by differentiatingthe running coupling constant

A(/*') = p'^-^Til?= p*1) with respect to \ap' at p' = p. Its L-loopcontibution is

ß(X) = ¦¦¦ + A(t+1)(-2aa(|)i("-4)-3 + finite) + • • • (1.5)

If L were even larger than j^, more divergent terms would appear in (1.3), and also

subleading divergences [^)L^d-^~*, (i)t(<*-4|-«( ..m voü\^ pfegu,, the beta function.
Generically, the beta function in d > 4 dimensions has divergent coefficients starting from
L-loop, where L is the Bmaliest integer satisfying L{d - 4) - 2 > 0. Optimistically [17],
[21], one can conjecture that a non-C00 beta function might exist non-perturbatively, but
it is only |{{e£] differentiablein the renormalizedcoupling constant.

Fortunately there is a way out from this problem, even in the framework of pertur¬
bation theory, the essential ingredient being the beta functional [9], [8] to be discussed
later.

Although all the above arguments are heuristic,they can be made rigorous in some
cases: first of all they can be made rigorous in perturbationtheory: renormalizable the¬
ories can be constrncted order by order in perturbation theory by parametrizingthem
by renormalizedparameters. This is the BPHZ theorem which could be re-proved using
the above arguments [19]. The fact that the theory has a finite number of parameters,
i.e. whatever the value of the (dimensionless) bare coupling constants (within limits) of
the irrelevant terms, one gets alwaysthe same theory (as A -» oo), is contained in [6] (see
also Section 5 of this thesis), in the perturbathre framework. We called this phenomenon
"perturbative triviality" because for c^4 theories in d > 4 dimensions it is a perturbative
version of the results of [1], [7].

Another case where one can make these arguments rigorous is in the jj expansion of

(4>3) theories. Here one can renormalize the theory recursively order by order in ^. Parisi

[17] treated ($2) in d > 4 dimensions in jr expansion and discussed the construction of
the ultraviolet stable fixed point at negative coupling. He obtained the result that, to
all ordere in jj, the Green'sfunctions are finite but not C00 in the renormalizedcoupling
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Fig. 3. Leading 4-point graph in the -jfr expansion

constant. The essentialfeatures of this phenomenoncan already be seen to secondorder in

jf-. To first order in -fr thefour point function is essentiallygiven by the graphsof the type
represented in Fig. 3; these graphs can be summedexplicitry(we do this in Section 4). The

resulting renormalizedfour point function is then analytic in the renormalizedcoupling
constant A for all A < 0, but the radius of convergenceat A = 0 shrinks to zero as the
external momenta tend to infinity, due to singularities on the positive real axis. This

implies that to order fa, when the four point function renormalizedto order ^ is put into
a bigger graph such as the one in Fig.4, the loop Integration gives the Feynman amplitude
a finite but singular behaviour at A = 0, typically with an asymptotic expansion of the
form

/(A) = J0(A) + A2/(rf-4)/1(A) + A4/^-4' /a(A) + ¦

••, (1.6)

where Jo, /i, h are C°° at A = 0, and logarithms appear in rational dimensions.

Whetherexpansionsof the form (1.6) can be valid beyond the ^ expansion is not clear.

Fig. 4. Leading six-point graph in the j, expansion

At this stage we shouldpoint out that Symanzik [21] (see also [18]) proposed a method
of renormalizing non-renormalizabletheories which,although leading to expansionsof the
type (1.6), seems to be radically different from the ones discussed here. Unfortunatery, his

paper is still quite mysterious.
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Fig. 5. A simpleexample of a graph with renormalons

Going back to the problem of constructing non-trivial fixedpoints avoiding ultraviolet
divergencies, progress has been made in [6], [7], using the methods of Gallavotti and Nicolö
[9], [8]. They introduceda beta functional

/^AM = /W')}V>,), (1.7)

for renormalizable theories (actually with a discrete renormalization step). This type
of flow equation has many advantagesover (1.2): the coefficientsof ß in perturbation
theory can be constructed with renormalizedFeynman graphs without overlapping diver¬
gences and without "useless" [3] counterterms. Moreover the perturbationseries has only
"instanton-" and no "renormalon-n factorials" [13], [14], [3]. These properties can be seen

in a typical example: the graph of Fig. 5. In four dimensions, the renormalizedampütude
of such a graph can be estimatednotingthat for large momentumthe subgraph £-\goes
like p2 In j^-, where p is the subtraction point. The ampütude at zero momentum of a

graph with n such subgraphs goes Like

/, (^iVJVc-'q»-!)!, (1-8)

This factorialis called "renormalon",in contrast to the "instanton'' n factorialin the »tb
order perturbationcoefficient Coming from the number of graphs with n vertices. Let us

consider the Situation more closely: the unrenormalizedampütudeof-CX is

A{p2) = CA3+ C,p2 In ^+ finite, (1.9)

(for simpücitywe work in the massless theory). The divergent terms are compensated by

8



mass and wave function renormalization counterterms

CA2 + C3p2 In ^. (1.10)

For each value of the loop momentump in the graph of Fig. 5 one can decompose the
wave function renormaüzation counterterm in a "useful" part Cap2 In ~r and a "useless"

part Cjp3 In JJJt. The useful part exactly cancels the divergent part of A(p2) and is aü we

need to get a finite graph. The useless part is what we have to take along with the useful

part in order to preserve locaüty, i.e., to keep the counterterm of the form (1.10). It is
not only useless but also a nuisance since it is exactly this useless part that produces the
renormalons.

In the tree expansionone expands in power of the running coupling constants instead
of the renormalizedconpüngconstants. The contribution of the subgraph to the running
wave function renormaüzation constant on scale p is

«w=apr Afp3) = C3 In ^+ finite. (1.11)

The idea is to consider separately each loop momentumsüce and to write, for p2 « p3,
A(p2) = Ar{p3)+p>8Z{p)\ Au(p2) is then the amplituderenormalizedwith useful subtrac-
tion only. The price to pay is that one getfl additional graphswith vertex p2SZ(p), i.e., one
has an expansionin power ofthe coupling constants on all scales. These couplingconstants
obey flow equations(involving all couplingconstants), and the renormalonsreappearif one
solves the flow equationsby expressing the running coupling constants in a power series

in the renormalizedcouplingconstants. The whole combinatoricsof the decompositionof
contributions Coming from all scales and subgraphs comes out naturalry if one looks at the

problem from the point of view of the renormaüzation group transformation, as will be

explained in Section 2.

For the planartheory (the N -* oo limitof a tr<tS4 theory where $ is an JV x N matrix),
the series defining (1.7) is convergent (for planar theories there are no instanton factorials,
i.e., the number of (unlabelled) FBynman graphs with n vertices grows as const" [16], |2|).
Thus the Gallavotti-Nicolö method provided a natural proof of BPHZ, of the n!-bounds
of de Galan and Rivasseau [3], and of the existence of the wrong sign <f>\ planarthory [13],
[20], which is asymptotically free.

It then turned out [6], [4], [5] that the beta functional is still finite (i.e. admits a

perturbation series in the coupüngconstants around zero with finite coefficients) for non-

9



renormaüzable theories (in contrast to the beta function), and we come to the Contents of
this thesis.

The tree expansion (i.e., the expansion of the "effective potentials" or the Schwinger
functions in powers of the running coupling constants on allscales) and the beta functional
are introduced in Section 2. In Section 3 the relation between the effective potentials and
the more Standard Schwinger functions is explained.Theformalism is illustrated by two

simple examples,the Gaussian modeland the JV -»oo limitof (<f2)2 (the spherical model),
in Section 4.

The core of the work is Section 5 where the proofof finiteness(and convergence, in
the planar thory) of the tree expansionand the beta functional is presented. The proofis
for the general case of a scalar field theory, as in [6], but we adopt the method used in [4]
which is probably simpler.

Section 6 is the summary of the perturbative results obtained in [6] (n!-boundsfor
the general case of a renormaüzable theory, "perturbative triviaüty").

In Section 7 we construct a non-trivial fixed point for the </i4-theory withpropagator
l/p»-«/2 which has, as <f>*+t, a non-renormalizablepower counting, but is more tractable

being in an integer number of number of dimensions.
Of couree the resulting theory has no chance of being a relativistic quantum field

theory for at least two reasons: first, in large JV theories, scattering is suppressedby a

factor j, and one gets a generaüzedfree field, that can however have a rieh mass spectrum.
Second, even if a Eucüdeantheory could be constructed beyond this^ expansion, it could

hardly be made unitary: Gawe/fakiand Kupiainenhave construeted a </>J theorybeyond the
planar approximation [10] (at least in the hierarchical model) and seem to have evidence
that Osterwalder-Schraderpositivity is broken, and no continuation from Euclidean to
Minkowski space is thus possible.

Nevertheless our result shows that one can cope with the difficulty mentioned above
of a beta function which is not finite in perturbationtheory for a non-trivial example (the
N -*oo Limit of (<P) ) where this difficulty is present (unlike the spherical model).

Similar results have been obtained by Gawedski and Kupiainen [11], [12]. They con-

sider the two-dimensionalGross-Neveu model with j</p2-< propagator, and analyze the
flow of the füll effectivehamiltoniansrather than focussing on the coupling constants.

A probably more physical appücationof our methods is the «-expansion [24], [25] in
the Statistical mechanics of critical phenomena. However, although the general idea will

work, one has to modify the way one introduces the cut-off in order to handle theories
with anomalous dimensions. In fact aü modeis considered so far (the spherical model, the

planartheory with singular propagator, the Gross-Neveu model with singular propagator,

10



as well as the newly constructed [15] Wilson fixed point in infrared hierarchical <^4) have
trivial wave functionrenormalization, and no anomalous dimensions.

A natural framework to treat rigorousty (at least in the planarapproximation)theo¬
ries with non-trivial wave function renormalization has in fact already been provided by
Wilson himself: it goes under the name "exact renormalization group" and can be found

in Chapter 11 of [25], and was studied in more detail by Wegner [22].

11



2. The tree expansion and the beta functional

In this section we introduce the tree expansionand the beta functional for a general scalar
field theory as in [6]. We work in perturbation theory and postpone the discussion of the

planar theory, where the expansionsare convergent, to a later section.
We consider a perturbationof a free field <f>, a Gaussian random field with mean zero

and covariance

in d-dimensionalEucüdeanspace-time. We introduce a scale decompositionof <f> by writing

#= E <t>U). (2-2)

where $(J) are independent Gaussian Gelds with mean zero and covariance (in momentum
space)

#M= £ {/(pVtV)" /(W^)}. (2-3)
where /(p2) is some cut-off function, e.g.,

/l>2)=e-"1, (2.4)
and 7 > 1 is some fixed scale factor (7 = 2, say). We have the scaling relations

Ci(x,y) = 1Wc°(1>x,jy), (2.5)

.pU>^r.plo)fy.)/§*/, (2.6)

andthebounds(a' = n(s|r)'', |<1 = £/,.)
ß *»

|3'C*(0,x)\ < Cl(W-**--W<-°*i'>4. (2.7)

The model is defined by introducing a cut-off on scale 7" and taking as interaction a

Potential of the cut-off field <^w = £*=_„^:
ViNH<t>-N) = Y, r'{a)N*«(mOa[^N), (2.8)

a

12



where a runsover a finite set. We choose as "interactions" 0a'

<V1» = /:(**(*))':«<*, ^(2') = 0,
ÄW= /:^{*),afc, <r(2) = -2,
OM)= /:m*-dx, <r(4) = rf - 4, (2.9)

öarW = /:^(x)M:«ia:, <r(2i) = [d - 2)t - d,

where cr(a) is the dimension of 0a, so that Aa(JV) are the dimensionless bare coupling
constants. One could also add any finite numberof higher derivative interactions oruneven

interactions, with only notational complication.
FbUowing Wilson [23], we introduce "effective potentials" through the recureive defi-

nition

VW^*)= -lnJJfc+1 exp(-K(^>(^fc+,))> (2 10)
A = -co,...,JV- 1,

where Ek+i denotesIntegration over the distribution of ^<fc+1). We expand Vik) in powers
of the field8:

V(*>(^)= £) (vM(xlt...,xm) :^*(x,).. ^*(xm):. (2.11)

With our choice (2.9),the kerneis VJ,*1 in (2.11) will be Eucüdeaninvariant distributions,
non-vanishingonly if m is even. In the next section we discuss how the effective potentials
Kffc> are related to the Schwinger functions. The result is that the kerneis V^\xi,...,xm)
are essentiallySchwinger functions with an infrared cut-offon scale 7*. Thereforesolving
the ultraviolet problem of the theory is equivalent to finding a sequence of bare coupling
constants A«(JV) such that the resulting 7'*', with k fixed, remains finite when the cut-off
is removed (JV -> oo).

The inain idea in the renormaüzation group program is that the füll flow of \/W
(see (2.10)) is actuaUy governed by a finite number of degrees of freedom, the relevant

Operators. We thus want to keep track of a finite number of running coupling constants

Xa(k) defined by

£7-<,(")fcAa(*)a»(^fc) = LkVW{^k), (2.12)
a

13



where Lk is a projector onto the space spanned by {0u}a=a, a 2t. Specifically, Lk acts
as a ünear Operatoron expressions of the form (2.11) according to (m even)

Lkfv(Xl,x3) :4£k{*i)4&'{xa):4zids2 (2.13)

= V(0) flz(^) +^lV)|p,=o<M^*)-
Not all coupüngconstants in (2.7) are relevant (relevant means c(a) < 0) with respect

to the Gaussian fixed point, but we keep them all because they can becomerelevant with
respect to some other fixed point or, more generally, to some other Solution of the flow
equation (2.10).

The next step is the tree expansionwhich is an expansion in powers of all A0's of the
effective potentials. It is based on the cumulant expansion for the irrelevant part of K<fe):

V(*) = ^7-'(«»l*A(,(fc)ö<,(^*)
a

+ (1-L*)gt^^fl(v(fc+1» Vi**»).
This expansion generates by iteration terms of the type (it < A < /)

7-2,d-4»'A4(j)2Aa' Ek+lEk+7 ¦ ¦ ¦ £„_,(1 - Lk_,)
El (Eh+l. ..*y-,(l-Lj-tWif:*<:,/ :*4:),/ :(&V)3),

(2.14)

(2.15)

(we have used j5f (•) = Ek(),EkLk = Lk-iEk,LI = Lk). These terms can be efficiently
labeüed by trees 8. For instance, the term (2.15) is labelled by the tree depicted in fig. 1.
In general the tree expansion is given by the following expression:

V^=LkVW+ r'-L^.fth.a) TJ Xa!{hi), (2.16)
«X« ^ ' i «ndpoints

where, if 8 is a tree, h = (hv)vet are integer labeis of the branching points V of 8
with hv> < hVrr if V < V" in the ordering of 8. The endpoints i of 8 are given labeis

14
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Fig. 6. A simpletree

a,- € {2*,2,4,...,2t}, and Ä, is the label assigned to the branching point to which the

endpointt is connected. The not V0 is given the frequencylabel k of the effective potential,
and the sum in (2.16) is over all non-trivial trees 8 (the trivial tree is the one without

branches), frequencyassignmentsh and endpoint labeis a. The combinatorial factor n{8)
is

»(«). %*»/!, (2.17)

where $v is the number of subtrees into which 8 branches at V. Fig. 7 shows a general
tree with root V0 and first branching point Vi.

hv"

v0 "vl

Fig. 7. A general tree
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The tree coefficients V„B(8,h,ci)can be computedby the foUowing recursive formnlae: if
8 = 0O is the trivial tree,

V«n(Öo,/.vo,a)= r"{a)kv"Oa(^), (2.18)

and if 8 branches at the first branching point Vi into trees 0, 8„

V„„(tf,h,o)=Ehv(i+1 • .^Kt_,(<-L/,Kj_,)
C{vU»iM.«x).- • ¦.vu*»*»«.)). (2'19)

hr&r being the restrictionof h,a to 0r, r = 1 s.

Note that (2.16) is an expansionin powers of all running couplingconstants A„(fc) and
that the only cut-off dependence arises from the fact that the sum in (2.16) is restricted
to hy < JV, V € 8, so that the cut-off can be removed simpty by ignoring this restriction.
The crucial Observation will be that allsums over momentumscales h are tonvergent order
by order in Xa(h)\

If we act with Lk on (2.10) in cnmulant expansion

7(t) = E^~"£*+'^(fc+l)'"-'V(fc+l1)' (2.20)

and insert (2.16) on the right-hand side, we get a recursion relation between the running
coupling constants (the flow equationof the coupüngconstants)

Aa(*) = 7-'(a)A„(* + l)- T 'jJffißaVMllKAhi), (2.21)

fevj=fc+l

where, again, the prime means that we sum over all non-trivial trees. The beta functional
coefficients ßa(8,h,a) are defined by

V (2.22)
= LkEk+l (^„»(u,, in, a,),..., v«a(ö„h„a,)).

Again, the cut-offis removed by summing overhin (2.21) without the restrictionhv < JV.
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If we expand VIfB(9,h,a)in power of the fields

r m

v„»(»,li,a)= Y, / v„m{9,h,as*u-,*m)¦¦l[t-hn'iY, (2.23)
m •" i=l

we can computethe kerneis V„a as sums over Feynman graphs:

V«ii(i',h,a;xi,...,j:m)= Y, V«n,G(>9,li,a;xi)...,Xm), (2.24)
G couipatiblt

with »,o

where the sum is over all Feynman graphs with m externa! Lines and n vertices,if 8 has n

endpo'mts, which are compatiblewith 8,a. A graph G is said to be compatiblewith8,a if
the following two conditions are satisfied:

(a) For»' = 1,..., n, the itb vertex is an 0ai insertion,i.e., it has coordination number
2 if a<=2,2',and r = 2,4,...,2t if a, = r.

(b) G has two types of internal Lines: hard Lines (coming from the trnncatedexpec-
tations Efc) and soft Unes (coming from Wick reordering). If we draw a bubble around
each set of vertices correspondingto subtrees of 9, then the hard Unes should connect all
bubbles containedin any bubble.

Fig. 8 shows a graph which is compatiblewith the tree of Fig. 6. The d'e recall that
the third vertex is an Or insertion.

d/ \d

Fig. 8. A graph compatiblewith the tree of Fig. 6
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3. Schwinger functions

There are three ways of calculating the correlation (Schwinger)functions given the effective

potentials. The first one is the most straightforward and is described in [8]: the Schwinger
functions are expanded in a sum of Schwinger functions calculated in the ensemble gen-
erated by the effectivepotentials. This method is not very convenient, since it requires
some extra work to show the convergenceof these expansions. In the second method one

expresses the Schwinger functions in terms of the limit k -» -oo of V'fc). Thus uniform (in
k) bounds on V,fc| are sufficient to control the Schwinger functions. Moreover Schwinger
functions with an infrared cut-off on scale 7* are obtainable directly from VW, so that
the construction of V,fc|, with k fixed, provides a Solution of the ultravioletproblem. The
third method is more conceptualty important. It shows that one can recover all Schwinger
functions from the Schwinger functions of the VW ensemble for any Single 7c.

Let us now describe the three methodsin more detail:

1) The idea is to write

<*(*!)• ^(xm)>= Y <^,fc',(xi)-^,fc"l(xm)>, (3.1)
Äl'"*Tm

and the expectations on the right-hand side can be computedtaking as interaction V'fc|,
where k = max ki.

i=l m

2) The second way of Computing Schwinger functions is based on the Observation
that VW is the generating functional of the amputated connected Feynman graphs with
infrared cut-off propagatore. 1b prove this we start from the definition of VW

V<fc)(^*) = -In Jexp j-K(*)(^ + <?) - ^,(?"»<?)}H (3.2)

where Q = C^ - C$k= 4(/(p2/72ff) - /(p2/73*)) and we have written out expücitly
the functional integral for clarity, neglecting $ independent contributions to V'*). We

change variables:

$ = t<k + $
V<*>(^fc) = k(*-k>Q-1^) (3.3)

-lnyexpJ-VWW-^.Q^^+ JQ-1^*,^)}^,
18



and get the generating functional of the connected, Q-amputated Schwinger functions and
infrared cut-off provided by the propagatorQ on scale 7*.

The connected Schwinger functions are thus generatedby the functional

W(J) = JjmJ-KW(<JJ) + «J, QJ)). (3.4)

3) The third method shows that the whole Information is actually contained in every

Single V'*'. Consider the generatingfunctional

W[J) = lny*exp{-VW(^)- $(+<»,C*«^«)+ {j,*&")} H, (3.5)

and introduce the momentumdecomposition

Q<H _ 0<k + Q

Writingagain the functional integral expücitly

W(J)= ln|exp|-VW(^*+ J) + (7,^fc + *)
(3.6)

we look for a change of variables which elim'inatesthe coupling of the source J to the high
energy field <j. The right choice is

fa = t-QJ,

so that, after some algebra,

IV(J) =-I(J,QJ>ln/exp{-Vl*)(^1 ' (3.8)
where j = C^N[C^k)~1J. What this says, graphically, is that the Schwinger functions
of V'fc' are given by all Feynman graphs, except for the fact that the external lines are

low frequencypropagatorsC-k instead of fuU propagatoreC-N. The action of the factor
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C^N(C^k)~l in the definition of J is just to amputate the C^k propagatoreand replace
them by C^w propagatore. For the graph with no vertices (a single Une) the discussion
has to be done separetely: the first term on the right-hand side of (3.8) compensates the
error in the zeroth order contribution of the functional integral:

- J(J, QJ) + & J, C±kJ) = J(J,C*»J). (3.9)
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4. Illustrative examples

(a) The Gaussian case. In the Gaussian model V<w> = / V,lN)(x-y)^N{x)^"(y)dxdy
one can computeVW expücitly from the definition

<-y»H*»)= Ek+l ¦ ¦ ¦ ENe-v'KW'K (4.1)

since all Integration« are Gaussian.The result is that then V,fc| is again Gaussian:

v«(fs») = Jvj'H*- y)^k{*)^k{y), (4-2)

and, if VJK' is Eucüdeaninvariant, VJk' is given in Fourier space by

W*'(p2)"1 = V3W(pV+ C^(p2) - &»{?), (4.3)

where, again,

is the cut-offpropagator.
In dimensionless notation

[7fM=f^Vf)i (4-5)

weget

,7<V)-1= f(fc-W,^fH^-^P3)-1+ pi(/(p272(*-A") " /(P3)), (4-6)

with convergenceto the "high temperature" fixed point

öJ~"V) = j^pä) = /'(°)_1 + 0{jf), (p2 - 0), (4.7)

if U\Nt ^ o, and to the massless Gaussian

^-"V)- a-L + f_ /(pa)
- *? +W), (P3-0), (4.8)
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UU(N-[0)=ap1+ O{p*),a>0.
This behaviourcan of course already be seen in the space of the running coupling

constants. The flow equationscan be deduced from (4.6) at p2 = 0:

M*)-' = f'-M* + r1 +/'(0)(7-2- 1), (4.9)
A3(*)-2A3,(fc) = 7-4A3(fc + l)-JA3.(fe+1) + f"(0)(7-4 - 1), (4.10)

with coupling of scale k only to scale k+1 (this is a consequenceof the fact that only trees
with one branchingpoint contribute in the Gaussian case). The behaviourof theSolutions
of (4.9), (4.10) is shown in Fig. 9. The axis A3 = 0 is the line of massless fixed points.

77
Fig. 0. The flow of the coupling constants in the Gaussian case

(b) The spherical model. Let «f(x) = (^(x),...,«^„(x)) be a real n-component scalar fleld.
The theory is given by the action

S = nJ(Wft+ $?+ %{PT)d*x, (4.11)

and we are interested in the limit n -* oo of this model. The momentumdecomposition is
written for the free propagator

Wi-fw (4.12)
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and the relation between effective potentials is given formally in terms of the finite (as
f» -+ oo) quantities «<*) = £V,fc' by

„(*>(.*,<*) = _ jj^LEk+l ...Ehexp-ni/<h>(^), (4.13)

where Ej is the Integration over the distribution of <f>^^, a Gaussian with covariance

i(/(P2/'T3y)-/(p2/'J2,y-1,))/P3. (4-14)
The Feynman rules to construct the graphs are the same as the ones of the n = 1 theory,
except for factors of n to some power a factor of n~l for each propagator, a factor n for
each Vertex, and a factor n for each trace over 0(n) indices in closed loops.

We can thus evaluate the kerneis in the expansion of »W in the Gelds:

»,fc,(*>E idnr/«4S(«.,...,*9m)
(f(x.) ¦ $[x2)) ¦ ¦ ¦ (<?(sam-i) ¦ f(x3m)) dxi - • dx3m

(4.15)

summing the feynman graphs which do not vanish in the n -» 00 limit. We do this for
the two and four point functions, which can he computed with the graphs of Fig. 10.

From now to the end of this section we switch to the more Standard notation p =

7*, A = 7* and write «a(-)fa) instead of v3k\). The lines in Fig. 10 represent "hard"
propagatore

<?*A(P3) = p^(/(P3/A3) - /(p3/>3)) (4.17)
(we have no soft propagatorehere becausewedo not Wickorderin this expücit calculation).
It is convenient to paus to one-particle irreducible (1PI) functions on scale p, denoted

r3fn(-,/j), given by the graphs of Fig. 11. The kerneis va(-,/*) can be computed from the
1PI functions on scale p by the foüowing relations: In momentum space we have for the
two point function

f2(p3,M) = f3(p3,M3) - f302^2)QpA(p2)fa(p2,u2)
+ f,(p3,p3)Qß,{p3)t,(rVWMiy)f8(pV)+

= <?(.A(p2)-,r3(p2,/J)-1<?pA(p2)-1 - QmO2)-1,
r3(p2)u)= f3(p2,„2)+<?M(p2)-1,
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Q.

Fig. 10. Graphscontributing to the 2- and 4-point functions

where f3 is the sum over all non-trivial 1PI graphs with two (amputated) externa! fines.
TraditionaUyone defines T3 by adding to fa the free inverae propagator Q~l (the bare

2-point vertex). The four-point function can be recovered from its 1PI part by notingthat
the external Unes in the four point graphs in Fig. 10 can be resummed to

%- * &®~ + •• • = *1?,M*iir), (4.19)

yielding the result

4

vt{pi,...,p*,p) = J[{l + V2{p3,p)Q„K[p3))T4(pi,...,pt,p),
Pl+ -+P4=0,

and we see from the graphs of Fig. 11 that T4 depends on the external momenta only in

the combination (pi + pa)2 = (P3 + P4)2-
By the anah/sis of Section 3, the 1PI functions converge as p -* 0 (k -» -co) to the

(amputated) 1PI Schwinger functions (Eucüdean vertex functions) of the theory. In this
context we can see this simplydiagrammatically, notingthat the graphsof Fig. 6 are exactly
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the graphs contributing to the vertex functions and that, for p -> 0, (?^A -? p/(p2/A2),
the (UV cut-off) propagator.

The 1PI functions on scale p, T2{p*,p), Tt[p3,p), can be evaluated quite expücitly
by summing all the graphs or, equivalently, by solving the integral equations (Fig. 12)

?-•(?.?)= *$ + %fTy{q3,p)^+ Q-ßL(p>),
U^p)= A0 - V/r3,(?2,/i)rä1((p-g)2,M)^|rr4(p2)M), (4.21)

where the "füll propagator" (the sum of all two-point bubbles in Fig. 12) is equal to rj1,
as one can easily seenby summing a geometricseries as in (4.18).

Fig. 11. One-particle irreducible 2- and 4-point graphs

= —* +

Fig. 12. Graphical representation of the integral equations (4.21)
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To construct a massive theory we impose renormalization conditions at p = 0 (i.e.,
on the vertex functions) and at zero momentum

W)=m3,
r4(o,o)= A. '

Then the relation between renormalizedand bare quantities can be computedby taking
(4.21) at zero momentum and setting p = 0, and noting that by the first of (4.21), r3 is
of the form Q~l + const:

m2-'
(4-23)

A"1=Vl^/U-MWA2)+ >n2)^/(2^
and the vertex functions are given by

ra(p2,0)= m2 + p2/-'(p2/A2),
1^,0)-' = A-' + i/(ratf.orTaKp- g)2,0)-» - ^(^.O)"3)^. (4M)

In the renormaüzable case 4 < d < 6 the integrals in (4.24) diverge as A -»oo as C\kA~3
and CsA*-4respectively, where &., C3 are (/-dependent)positive constants, but choosing
X0A.d-* — A* = -6C,-1 < 0, moA-2 — m'3 = C^Ci one obtains finite A, m2, and
vertex functions [17|

A-aOO

JW.OHm'+p2,
r4(p3,0)-1= A-» + J(4,r)-''/2[F(4f*) 1; |; ^) - l]md-4r(i^),
where F is Gauss'shypergeometricfunction, which is analytic in the cut p2 plane€ \{p2 <
-4m2} and whose large p2 asymptoticscan be computed from the analytic continuation

formula

n^M;&)= ^^(4^)^(1+ ^)^ {426)
_

1 m'p/l 1.<.._4fn, ^J^pS"'^'1»?' Tr>'

In the same way one can compute all effective potentials starting from T^p3,p), T^p3,p)
given by (4.18), (4.20) with /(p2/A2) replaced by /(p2/A2) -f[f/p3) and m2, A replaced
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by the (dimensional) running coupling constants m3(p), X(p). These running coupling
constants are related to the ones defined in Section 2 by a finite renormalization (at each
fixed p), by (4.22).

Thus we have seen that, due to existence of an ultravioletfixedpoint, one can construct
a two-parameter family of theories. That this can be done also in the planartheory is the
content of the next sections.
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5. Finiteness of the tree expansion

The effective potentials, expressedas power series in the field» can be brought to the form

(2.11)

V<*>= T [Vik)(x1,...,xm):^k{xl)-^k{xm):dxl-dxm (5.1)
m=0 /m=0
m «Ten

by aformalpartial Integration of a sum of Wickmonomialsin c^-fe and cty-*. We therefore
assume that V4,fc| e VaOR*"), where

Mndm)={v€S'{WLim)V(xi,...,xm)= V %*.,,'.>(*l,.••,*».)

Ö «''*(** - **),Vu,**}e llMim)Y
1=1 J

(5.2)

Moreover vffl will always be Eucüdeaninvariant.
The kerneis Vm '

can be computed in tree expansion (2.16) as power series in the

running coupUng constants Xa{k), which obey the recursion relation (2.21). The aim of
this section is to prove that (2.16),(2.21) are finite order by orderin A, and convergent for
the planar theory.

The dimension (degree of convergence) of a Wick monomialof degree m with l gra-
dients is defined by

o(m,l) = -d+~^m+ l (5.3)
The main result of this section is the following

Theorem 5.1. If d > 2 and t > |^jp], i.e. the theory is barely renormalizable or not

renormalizable, then

(i) Let fi,...,fm be S(Md)-testfunctions, and6 a non-trivial tree. Then

v„n(e,h,gnfr,...,fm)= V Vtn.lU)VXa;#'fi,...,#-fm) (M
ri \«

0<l(<3

<T|m>£,.MI>'
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where ?„„.{.¦<} E Vo{Mdm) and

I IVna.ftiß,X3,..., Xm)\dX2 ¦ ¦¦ dxm

< CJn(fl)e-T(L^v,,di't'0-A'--A»>7-,''mE<M)** (s 5)
TT 7-J(kv-k„.)((t_i)n)!

f«ij TAe beta functional coefficients are bounded by

\ß(8,h,s)\ < CSn(8) [T 7-*(»"-*r')((I_ ,»! (5.6)

wAere n > 2 t« the numberof endpoints of 8; A3,...,Am are cubes in Htld with side size

7~fc<o; dist(0, A3,...,Am) is the length of the »hortest graph connecting 0,A3,...,Am;
Vb ii the not of 8, Vi is the firtt branching point, and, for V 6 8, V is the branching
point immediatelypreceding V (see Fig. 2); Co = Co(d, t, 7) is a positive constant, and C3
m the constant appearing tn (S.7); n(8) is defined in (2.11). The factor ((t - \)n)\ is not

present tn the planartheory.

Discussion. By a barely renormalizable theory we mean a theorysuch that any additional
term to the Lagrangean makes it not renormalizable. Examples of barely renormalizable
theories are <f>\, <f>l, but also <#}>4. Not covered by the theorem are superrenormalizable
theories such as «£4. The exponential decay factors <j-!(h"-*v.l (recaU that hy < hy)
allow us to sum over aü h. There are at most const* trees 8 with n endpointswith given
labeis q.. We have thus the following result: The n*h order term in the expansions

V^^VeiftA» (5.6)
11

*«(*) = 7-"(a,A<,(* + 1)+Y ßa.n(k)XB (5.7)
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(in the notation A" = TTna{k)) is bounded uniformlyin the cut-off:

Vm-,-Jrn)= TVlkl{h](d>>fu...,d'"fm) (5.8)

£ [ |VJ,*U-)(0,xa)...,xm)|A-ix3 -dxm
|,JrrB./A,x-xAm

< C"((t- l)n)!||AHS,c-T«Ldto*<0'A» &-)7-*K{'-})fc(5.9)
T ß«,n(k)Xa < C"I|A||S,((*- 1)«)! (5.10)
|n|=n

In the planar theory, where the factor ((f - l)n)! (coming from the countingof Feynman
graphs) does not appear, the series (5.6), (5.7) converge absoluter/ for small \\X\\oo-

Proof of the Theorem. The proof is in three steps. First, we prove that the Operator
l - Lk generates irrelevant terms with "good" bounds. The second step is an estimate
on Feynman ampUtudesand the third is an estimate on the sumover all Feynman graphs
compatiblewith a given tree.

Ist step. For V e Vo(lR<lm) (i.e., an Euclidean invariant function times 6 functions) we

define the weighted norm

Wh= f |V(x,,..., xm)\eW> *~)dx7 ¦dxm (5.11)

where p > 0.

Proposition5.2. Lei V <= "V3(JjrVm) and

xm):^*(x,)-- ^k(xm):
(5.12)

= jVna(xl,...,xm):^k{x1)-^Xm):
Lei also d > 2, t > [3=3-]. IfV has a zero of order l in momentumspace, i.e., if for some

[l- Lk) jV(xu...,xm):^k(xi)-^k(xm):
= fvna(xl,...,xm):^k{x1)-^k(xm):
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{/.}£. mth £,. |/,| = f,

v(/i,...,/ro) = ^'Vi,...,ö'-/m), v €%(»*"), (5.13)

then

(i) If{m,l)= (2,0), (2.1), (2,2), (4,0), (6,0),..., (2t,0),

V«a(/,,...,/m)= V V«»^^'/,,...,3»«/m), ?«,<!.> € VofIR*»),
|.<|<3

£,..=.„„
0.14)

HU(fc}|,<(J)I~-,|iaf £.15)

»Aere /„„ = 1 if m > 4, and /„n = 3 if m = 2.

(ii) If(m,l) is not one ofthe pairs mentioned in (i), thenV„B = V.

Remark. (1 - Lk) transformsWick monomials of dimensiono(m, l) into Wick monomials
of dimension <r{m,lna). The condition t > [j2^] impües that all relevant Operators are

included in the Ust of (i) and thus tr(m,/ren) > 1, i.e, (1 - Lk) generates only t'rrefetxjfit

Operators.

Proof. (ii) foüows from the definition of Lk. To prove (i), we discuss separately the case
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m = 2: we prove (A, p, v are Lorentz indices)

o)4 < m < 2t, l = 0, V = V
n

V«n(/l,...,/m) = J
b)m = 2, l = 0, V = V

1

v„n(/1,...,/m) = £^.i(/„...,aA/<-,...,/m), |«Ä»,4|,<i|ia.
1=2 ¥

v„Muh)= lUW/iAV,/»), ||<Ua,«4 < (J)3l|v||,.
c)m = 2f/=llK(/,,/,)= ^(/,f«A/a)
vren(/i,/2) = V™..Ah,dxdM), \vna„v\p < {j)'\\v\\p.

d)m = 2,1= 2, V{fuh) = V{fuaxdßh)
Vnn{fl,h)= VMAfuMp9*h), ||*U„|, < ^WHp.

The most complicated case is b), which we prove expücitly. The othercases are proven
exactly the same way, but are simpler. By the Taylor remainder theorem (with X31 =

X3-X!),

V„»(/i,/a) = j V(x1,x3)/(xi){/a(x3)- /3(x,) - x&dVMxi)- ^i^id^f^Xi)}
= T '"^IT"(i) / V(JC».**)A(iC»)/»(««a + (1 - Qxjdxtdx*

= f dt{-~^-r7 j V(^-,^)^1x§1x5l/,(xl)f9x<9»a„/3(xa)dxydx*
(5.16)

Thisproves b) with

?«„,>„, = jf* dt^-t-1fV(^, ^)4i«&«5». (5-17)

The bound is

||Vreu.A^||P < j dxfdtiO2-|V(0,x)xAx"x"|eplI"
^ (J)Vn„

(5.18)
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where we have used

f1 dt{\ - 02|x|VM«= «HV iM duu3e~« < 4«'1*1. (5.19)
JO Jo P3

Snd step. We want now to estimate inductively tree coefficients V(9,h, a) using the recur-

sion relation (2.19). RecaUing that EkLk = Lk^Ek, we can write this relation as

V(8,h,a) = E^-E^El^(vnu(81,lii,a1),...,Vtm{8„h„at)\,
Vna(8,h,&) = (l-Lhva)V(8,h,a),
and we focus on the contribution Vq of a single graph G compatiblewith 8, a, with sub-

graphs Gi,...,G, correspondingto 8i,..., 9,. We estimate Va by simple power counting
and thenuse Proposition 5.2 to estimate Vlfli>G.

Proposition 5.3. LeiGbea graph compatible with 8, a, andd>2,t> [3=7]. Then

Vtta,G{8,h,s.\fu...,fm)= T lln.o,(i(}(',i,K»'7i,-.«'"W (5-21)&
*l™£,.|'«l)>t

»Aere V„.o,n,) € Hb(K*") and

F™aO,(i*}(».k,a.-)|si. »v„ <C2tB-n7^<r(m'El'-l»TT 7-<i+«'"»-')(Av-*v.Ji (5.22)
2 1

vefV>V0

tnAere n ts the number of endpoints of 8 (and of vertices of G) and my is the number

of external Unes of the subgraph. Gv of G corresponding to the subtree 8v of 8 with first
branching point V. C and c' are positive constants.

Proof. The proof is inductive. We use (5.19) and compute the contribution of G to

V(0,h,a) from the contributions of the subgraphs Gi,...,G, of G to V(9i,hi,sti),...,
V(-5„h.,f2,)(seeFig.8).
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G
G2

GsVo v,

Fig. 8. The setting of the inductive proof: the graph G contributing to the tree 8
has subgraphs Gt,...,G, correspondingto thesubtrees8l:...,8,

Some of the 9,'s are trivial trees. They contribute to the computation of Va a factor

^-<r1«i)kv,)^ (2.I8). Assume now inductively that the proposition holds for the non¬

trivial trees in the list 9i,...,8,. Then Va is given by a generalised convolution of the
kerneis Vo, with propagatoreon scale hy,:

VG(9,h,ffi/,,...,fm)= fv„0,Gt.-Vna.a. TT Cfc^(s,-,xy)
JT* . (5.23)

TT ct^.^,«,) fj/,(«,) JT^e
<»,J> 1=1 r=l
soft

For the trivial trees 8r, V„n,G is replaced by <|-»(«r)fcv, m (5.23). After replacing V««,«,,
r = 1,...,«, by <7re01c,.{ii} (using (5.21)), and integrating over the internal vertices, VG
becomes an expression of the form (we suppress the 0,h,a-dependence):

Vo(/,,...,/„.)= YVa,iU}i^fi,..;af'M (5.24)
Ä

and, to estimate ||Vg|| .c »v, i we note that

7*^dist xG < t*^ ]Tdist xGp +^ Y |x< - x,|, (5.25)
r=i <i.j>er
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where xq is the set of points associated with those vertices of G which are connectedwith
external Unes, and T is some tree subgraph of hard Unes of G connectingG\,..., G,. For
the propagatoreand their gradients we insert the bounds (2.7) (note that there are at most
6 derivatives acting on each propagator):

|3'C*(x,-,xy)| < Ci(/hWj9+l,"*eCl1"'*'-^l
|a'c<fc{x,-, «y)| < ^IL^^+i'ii*. (5,26)

We keep the exponential decay factor eGli \**-*t\ only for (i,j) e T. This allows us to

integrate over the internal vertices. The result is (with C\ = max . »*',,)
0<K6 1 - 7"3 '

l^wlaWn* E 7^-3Ke:=.—-)*e;=j"')i-i'i]^

op—btv«-" ĵgi<u*,^»,i|cwn <5-27)

< jBm,-mgi3e»-l)mP_-«T(m,|l|)*r1 TT _(^+«'mv)(kv-kv')

where |/| = £|tV|, mr is the number of external Unes of Gr, and J?i, jBj are positive
constants. Ibr 8r trivial, ||i^eB_G ,|<rjj.|Jic »„, is replaced by ^-«»Klfcv^ wjtj, gamg

bound. We then apply Proposition 5.2 to estimateV^^o^i.j:

< (n^tn-m^-fcr.fftm.lJ'l)TT 7-(i+«'m.-)l.fcv-*v") , .

< ^»»-m^-ftK,^!»..!/'!) TT ^-Ij+e'mi )(hv-*r<)

Here Pc.{j,} are the terms in (5.24) giving V„a.ai{i't} under the action of (1 - Lkvn)- In
the last step of (5.28) we used

<r(m,|/"l|)>max(l,-(f+^mr)>l + c'rr.r> c'= ^L2-> 0, (5.29)
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and choosed C > B3- Proposition 5.3 is thus proven.

Srd step. There are less than constn((< - l)n)! unlabelled Feynman graphs with n vertices

having coordination number less than or eqnal to 2t. or the planar theory [16], [2], this
number is reduced to const".A simple combinatorial argument (see [8], Appendix F) shows
that an unlabelled graph with n vertices can be labeUed in at most C$n[8)exp8 J] my
ways to be compatiblewitha tree 9 such that for allV € 8, the subgraph Gv corresponding
to V has my external Unes; 6 can be chosen as small as desired. We can thussum over all

graphs the bounds of Proposition 5.3:

||V„ni{.j}(0,h,a;Ol ic„.r. < Cy^^^EM» TJ «,-*(»«-*.¦•), (5.30)

with 6 = cMn7, Co = constCjC3*. The claim of the theorem follows by restricting the
integration in || • || to the domain A3 x • • x Am.
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0. PerturbativeSolutions of the flow eqnation

In the previous sections we have seen how to formulatea renormaüzable or non-renormaliz¬
able theorywiththe ultravioletcut-offremoved: the effective potentials (andthe Schwinger
functions) are expressedin terms of the running coupling constants on all scales, and these

obey a recursion relation. What remains to do is to solve this recursion relation.
In this section we shortly discuss a "perturbative" Solution of the recursion relation.

The result is the usual renormaUzed perturbation theory (with a finite number of coun-

terterms) which is divergent for non-renormalizabletheories. For renormaüzable theories
one gets ni-bounds as a by-product. The discussion is rather sketchy. For details see [6].

It is natural to solve the recursion relation (2.21), which we write as

Aa(*) = 7-*,a)A«(* + i)-/#'{*), (6.1)

in a power series in A<»(0), the "renormaUzed coupUng constants". This is accomplished
by using the Duhamel formula

A„(*) = 7*(a)fcA«(0) + f1 <f<a»fc-*W>(A) (6.2)

and iterating (/0i,fc,(A.) is second order in A) — we insert (6.2) for the Xa(k) appearingin
ßla'(A). This recureive Solution of the flow equations("renormaUzed perturbation theory")
is finite to all ordere for renormalizable theories, i.e., if all <r(a) < 0. If however,for some
a, o[a) > 0, this perturbative Solution is divergent at aü sufficiently large order, as the

dangerous factor t0'"' suggests.
Another way of finding a perturbative Solution to (6.1) is Standard in the theory of

dynamical System with hyperboüc fixed points: for the irrelevant directions tr(o-) > 0 one

should give initial conditions at the scale of the cut-off k = N, i.e., the natural parameters
of the theory should be {Aa(0)}<,(„i<0, {Ao(JVr)}ff(a)>0.Thus, instead of (6.2), we iterate

fc-i

A.(Jb) = 7"(a,*Aa(0)+ T 7'(«)(*-*l/5(thjif (A), a(a) < 0

Xa(k) = 7-ff(o)(W-fc,Att(JV)- y 7-<0«*-*>piÜlf (i). <"» > o.
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Cnrrknlnm vitae

18.11.1958 Nato ad Aarau

1964-1969 Scuole elementari a Muralto

1969-1974 Ginnasio cantonale a Locarno

1974-1977 Liceo cantonale a Locarno terminato nel lugüo 1977

con l'ottenimento dellamaturitä tipo C

1977-1982 Studi di fisica al Politecnico federale di Zurigo
terminati nel settembre 1982 con l'ottenimento del diploma.
Lavoro di diploma "Statistische Mechanik von Mischungen"
presso il Prof. Dr. W. Hunziker

1982-1986 Assistente presso l'Istituto di fisica teorica
del PoUtecnicofederale di Zurigo
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