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Abstract

In this thesis, different aspects of a strain sensitive garment detecting
upper body postures are presented.

A reference measurement method to capture strain patterns in the
textile during different body postures was developed using an optical
motion tracking system. With this method, the feasibility of a body
posture recognition with a strain sensitive garment was shown. Ad-
ditionally, the strain patterns were used to define requirements for a
textile strain sensor.

In a collaboration with EMPA1, a strain sensor was developed which
was composed of a mixture of a thermoplastic elastomer and carbon
black particles (50wt-%). The sensor has a diameter of 315µm enabling
an unobtrusive integration into textile. The characterization showed
high linearity, a small hysteresis, and only a minor dependance on the
strain rate resulting in an error of 5.5% in strain. The working range
of the sensor was 70% strain.

Using the characterized sensor thread, a catsuit prototype was built.
A study was conducted with eight participants wearing the prototype
and performing a total of 27 upper body postures. Nearly a com-
plete recognition rate of 97% was achieved when the classification was
adapted to the individual participants.

In order to answer theoretical aspects like the robustness of a system
detecting the body posture by measuring the strain in a garment and to
find an optimal sensor positioning, a model of the garment was devel-
oped. An already published simulation method, which was developed to
simulate loose fitting clothing, was adapted to be used for tight-fitting
garments. The simulation results matched to a large extent the strain
patterns measured with the reference method.

Based on the simulation results, the sensor positioning was opti-
mized using Mutual Information Feature Selection and a Genetic Al-
gorithm. A small and a large sensor set (5 and 20 best sensor positions
respectively) were defined for further analysis.

1interdisciplinary research and services institution for material sciences and tech-
nology development within the ETH Domain
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Using these two sensor sets, a sensitivity analysis was performed
showing that

• An exact sensor positioning is not crucial. A shift of up to 11cm
from the optimal sensor position decreased the recognition rate
of the different body postures by less than 3%.

• Recognizing different body postures using a strain sensitive gar-
ment worked for different body proportions. The abdominal girth
was varied between 86cm and 111cm.

• The number of sensors should not be minimized. A sensor set of
20 sensors showed advantages over using 5 sensors when a sensor
fails and when the garment shifts at the waist level.

• A shift of the shirt at waist level caused the biggest drop in the
recognition rate (up to 30% for a shift of 3cm). Therefore, the
strain sensitive shirt should be fixed at waist level ensuring that
it moves less than 1cm.



Zusammenfassung

In dieser Dissertation werden verschiedene Aspekte eines dehnungssen-
sitiven Kleidungsstücks zur Messung der Oberkörperhaltung präsentiert.

Es wurde eine Referenzmessmethode entwickelt, mit der die Deh-
nungsverteilungen im Textil bei verschiedenen Körperhaltungen gemes-
sen werden konnten. Diese Methode basierte auf der Messung mit einem
optisches Trackingsystem. Damit konnte die Machbarkeit einer Hal-
tungsmessung mit Dehnungssensoren gezeigt werden. Zusätzlich wur-
den Anforderungen an einen textilen Dehnungssensor definiert.

In Zusammenarbeit mit der EMPA2 wurde ein Dehnungssensor ent-
wickelt, welcher aus je 50wt-% thermoplastischem Elastomer und Rus-
spartikeln besteht. Der Sensor zeichnet sich durch eine hohe Linearität,
eine kleine Hysterese und eine geringe Abhängigkeit von der Dehnge-
schwindigkeit aus. Dies führte zu einem Fehler von 5.5% bei einem
Arbeitsbereich von 70%.

Es wurde ein Prototyp aus einem ’Catsuit’ (einteiliges, enganlie-
gendes Kleidungsstück) und der Sensorfaser gebaut. Daraufhin wurde
eine Studie mit acht Teilnehmern durchgeführt, welche mit dem deh-
nungssensitiven Kleidungsstück 27 verschiedene Oberkörperhaltungen
einnahmen. Es wurde eine fast perfekte Erkennungsrate von 97% er-
reicht, wenn die Klassifikation an jeden einzelnen Teilnehmer angepasst
wurde.

Um theoretische Aspekte wie die Robustheit einer Haltungsmes-
sung mit textil integrierten Dehnungssensoren zu betrachten, aber
auch um eine optimale Sensorplatzierung zu finden, wurde ein Kleider-
Modell implementiert. Eine für lose sitzende Kleidung publizierte Me-
thode wurde angepasst, um sie für enganliegende Kleider verwenden zu
können. Die Simulationsresultate stimmten weitgehend mit den Deh-
nungsverteilungen aus der Referenzmethode überein.

Basierend auf den Simulationsresultaten wurde die Sensorpositio-
nierung mittels ”Mutual Information Feature Selection” und eines Ge-
netischen Algorithmus optimiert. Für weitere Analysen wurde ein klei-

2interdisziplinäre Forschungs- und Dienstleistungsinstitution für Materialwissen-
schaften und Technologieentwicklung innerhalb des ETH-Bereichs
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nes und ein grosses Sensorset (bestehend aus den 5 und den 20 besten
Sensorpositionen) definiert.

Mit diesen beiden Sensorsets wurden Sensitivitäts-Analysen durch-
geführt, die Folgendes zeigten:

• Eine exakte Sensorpositionierung ist nicht entscheidend für eine
gute Haltungerkennung. Eine Abweichung um bis zu 11 Zentime-
ter von der optimalen Sensorposition reduzierte die Erkennungs-
rate verschiedener Körperhaltungen um weniger als 3%.

• Eine Haltungserkennung mit einem dehnungssensitiven Klei-
dungsstück funktionierte für Körperproportionen mit einem Bau-
chumfang zwischen 86cm und 111cm.

• Das Sensorset sollte nicht minimiert werden. Wenn ein Sensor
ausfällt oder wenn das Kleidungsstück rutscht wurden mit 20
Sensoren bessere Resultate erzielt als mit 5 Sensoren.

• Ein Hochrutschen des Kleidungsstücks in der Taille verursachte
den grössten Abfall der Erkennungsrate (bis zu 30% bei einem
Verrutschen von 3cm). Deshalb sollte das Kleidungsstück an der
Hüfte oder Taille fixiert sein, so dass es weniger als 1cm rutscht.



1
Introduction

In this Chapter, the research objectives of this dissertation
are summarized.
Furthermore, an overview of different body posture and
movement measurement systems is given. In recent time,
portable systems emerged enabling new applications which
are summarized in this Chapter.
Research is heading towards integrating measurement sys-
tems into the clothing which has some major advantages
concerning comfort. A state-of-the-art of approaches to
combine electronics and textiles is given. The Chapter fin-
ishes with an outline of the thesis.
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1.1. Research Objectives

The goal of this thesis is to build and validate a measurement system to
recognize body postures. This is realized by measuring strain in a tight
fitting garment. With tight fitting clothing we assume a garment
which has in all directions a certain pre-stretch when the wearer is in
a normal, upright posture. When the wearer moves, the strain in the
garment changes. By measuring this changing strain, the system can
conclude back on the wearer’s posture.

In this thesis, different aspects of a strain sensitive garment rec-
ognizing body postures are covered. The work includes the following
contributions towards the goal of a textile body posture measurement
system:

• Reference measurement method: Using a reference method to ac-
curately measure strain patterns in the clothing, basic questions
can be answered: How much is the garment stretched while worn?
Do the strain patterns differ for different body postures?

• Strain Sensor: What are the sensor requirements for measuring
strain in textiles? Can a suitable strain sensor be found to measure
strain in the textile and what are the electrical properties of this
sensor (characterization)?

• Prototype: Is it possible to build a prototype with the strain sen-
sor? Can this prototype be used and how well can static postures
be detected?

• Sensor positioning optimization: Where on the garment should
the sensors be placed to achieve high recognition rates?

• Sensitivity analyses/ robustness of system: What happens if the
sensors are placed imprecisely, one of the sensors fails, or the shirt
moves? Does the method of recognizing the body posture with a
strain sensitive garment still work for a person with different body
proportions?

In the next two Sections, a state-of-the-art of aspects related to the
present work is given. 1) In Section 1.2, different approaches of body
posture and movement measurement systems are presented. There exist
stationary measurement systems which are used in sports and rehabil-
itation. In recent times, however, portable systems emerged enabling



1.2. Body Posture and Movement Measurement Systems 3

measurements independent of time and place. 2) As ”portable” does
not necessarily mean that the system is comfortable, there is a trend
to integrate electronics into the clothing. This enables an unobtrusive
measurement of user-related parameters while not interfering with the
user. In Section 1.3, approaches how to combine electronics and textiles
are presented.

1.2. Body Posture and Movement Measurement Sys-
tems

In the past, body posture1 and movement2 measurement (BPMM) was
limited - either in the number of joints to be measured or in the location
of the experiment:

• Goniometers measure the angle between two adjacent body seg-
ments [62]. Therefore, they allow joint measurements. However,
capturing the whole body by measuring single joints is difficult to
achieve. Also complex joints like the shoulder can hardly be mea-
sured by goniometers. Goniometers found their main application
in clinical joint measurements.

• There are different types of three-dimensional motion tracking
systems: optical (infrared), ultrasonic, and electromagnetic sys-
tems. They all have in common that they measure the three-
dimensional position of markers placed on the body. From these
marker positions, the body posture and movement can be re-
constructed. The systems are accurate up to 1mm, however, the
setup is stationary meaning that the location of an experiment
is restricted to a few square-meters. Motion tracking systems are
mainly used in clinical applications (gait analysis), professional
sports training, and in the movie and game industry (animation).

In recent time, new systems emerged which are portable and, there-
fore, not restricted to a single location. This opens the possibility of
longtime measurements which enables new applications in different
fields:

• Rehabilitation: Stroke patients with a paresis should get inten-
sive exercise therapy [98]. If they do additional exercising, the

1static
2dynamic
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positive effect might even be improved. However, home rehabili-
tation is often self-directed with little professional feedback [87].
A portable BPMM system could measure the quality and quan-
tity of exercise conduction and give a feedback to the patient.
Furthermore, the therapist would get an independent feedback
on the progress and performance of the patient.

• Prevention: Back pain is a widespread disease in developed
countries causing costs of more than $100 billion per year only in
the United States [54]. For prevention, physical exercise is recom-
mended [22]. A portable BPMM system could detect long periods
of immobile sitting or standing. It could also report the total phys-
ical activity during the day and, therefore, help preventing back
pain.

• Sports: During sports training, a portable BPMM system could
give feedback about the duration, intensity, optimality and dy-
namics of exercise conduction. This could help the user improving
and optimizing his or her workout (sports diary). Such a system
would not be restricted to professional training but could also be
an interesting system for hobby athletes.

Portable BPMM systems are based on different kind of sensors.

• Accelerometers: Hansson et al. [49] used accelerometers to mea-
sure joint angles. In [100] (Van Laerhoven et al.) and [68] (Martin
et al.) the accelerometers were attached to pants to detect ac-
tivities like walking and running. More recent, the influence of a
loose fitting textile on the classification result was investigated in
[50].
In the static case, accelerometers measure the gravitational ac-
celeration. This enables the reconstruction of the orientation of
3-axes accelerometers with an accuracy of about 1 degree [50].
Therefore, static body postures can be measured accurately by
attaching accelerometers to the body segments. However, in dy-
namic measurements, an inertial acceleration is measured addi-
tionally to the gravitation preventing an exact reconstruction of
the orientation. Therefore, accelerometers were combined with
gyroscopes and magnetometers. One example is the Moven sys-
tem [5] where 18 ”Attitude and Heading Reference Systems”
(AHRS) modules were combined to capture whole body move-
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ments. AHRS have an accuracy of better than 1 degree but are
several cubic centimeters in size.

• Piezoelectric film sensors: In [35] a glove was realized using piezo-
electric film sensors. The sensors were placed on the fingertips, on
the mid-finger joints and on the exterior side of the index finger.
The goal of this project was to replace a keyboard by the glove.
Piezoelectric film sensors have the advantage of being thin and
flexible, however, they react to several stimuli (pressure, bending)
complicating the interpretation of a signal change.

• Pressure sensors: Dunne et al. [33] measured shoulder and
neck movements with a textile piezo-resistive pressure sensor
(polypyrrole-coated polyurethane foam). The sensor registered
the pressure between skin and clothing. With this method they
could recognize maximal shoulder movements, however, no test
was performed to detect the foam reaction to shoulder movements
of varying magnitudes.

• Bending sensors:

– Toney et al. [97] used air-filled tubes in combination with
conventional pressure sensors to measure finger joint angles.
The tubes were mounted along the fingers. When the fin-
gers were bent, the volume of the cylindrical tube changed
and caused a signal change in the pressure sensor. With this
setup, an accuracy of about 3 degrees was achieved.

– A second approach is based on fiber-optic sensors. These
sensors measure the amount of light passing the optical fiber
which is proportional to the bend in the fiber. Fiber-optic
sensors were used in a pressure suit [14] and to measure the
seated spinal posture [32, 34].

• Ultrasound: SonoSensr (friendly sensors) is a commercially avail-
able system measuring the posture of the spine based on ultra-
sound distance measurements on the skin [3]. Pairs of sensors are
directly attached to the skin measuring the distance between the
sensors during movements.

• Strain gauges: Measuring upper limb movements with strain
gauges was published in [39] by using knit strain sensors and in
[45, 95] by using a conductive elastomer. In [44] a textile poten-
tiometer was built to measure strain caused by joint movements.
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1.3. Approaches to Combine Electronics and Textiles

Integrating measurement systems into the clothing has some major ad-
vantages over carrying such systems: clothing is personal, comfortable,
close to the body, and worn almost anywhere and anytime. Addition-
ally, clothing provides a large surface which can be used for sensing,
actuating and integrating processing power.

Textile integrated technology still is in its very beginning. In the
following, a brief state-of-the-art is given. The technologies are grouped
into the categories conductive fibers, electronic devices, and sensors and
actuators.

1.3.1. Conductive Fibers

For a textile interconnection of electronic devices or to connect sensors
and actuators, conductive fibers are used. There are different products
using a number of different materials. The products can be grouped
into three main approaches:

1. Thin conductive wires (diameter of several micrometers) are com-
bined to a multifilament to obtain a stable fiber (e.g. Bekaert [9]
or Aracon by Micro-Coax [10]). These fibers typically do not quite
have the textile feel, however, they have a good conductivity in
comparison to other conductive fibers (dependent on the conduc-
tive material and its diameter, e.g. BekinoxrVN/HT: 5− 15 Ω

m ).

2. A polymer thread is coated with a conductive material (e.g. Sta-
tex [12]). Often silver is used as it is eudermic and does not cor-
rode. These fibers have textile properties with a decreased con-
ductivity (e.g. SHIELDEX 235f34dtex 2 ply HC: 120 Ω

m ).

3. Thin conductive wires are combined with a textile fibre - either by
loosely combining them (e.g Ohmatex [11]) or by tightly enwind
the textile fibre with the wire (e.g. Zimmermann/ novonic [8]).

These products can be used like conventional threads and integrated
into the textile by traditional textile technologies like weaving, knitting,
sewing, or embroidering.

All of the above listed products are non-elastic. There exist only few
elastic conductive fibers (e.g. Zimmermann/novonic [8] and Ohmatex
[11]) whereas both examples use approach 3. of the list above: They
combine conductive wires with an elastic textile fiber. As the conductive
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wire is non-elastic, it is attached in a way that the elasticity of the
textile fiber remains.

1.3.2. Electronic Devices

There are only few approaches where electronic devices were integrated
into the textile. They can be split into the three following main ap-
proaches:

• Electronic devices with textile properties: Electronics which is in-
nately rigid is adapted to become textile properties like stretch-
able, drapeable, and soft. Some first approaches were presented
in [48, 66] where textile transistors and other logical components
are described. Using such textile logical components would enable
to really integrate a circuit inside the textile.

• Attach conventional electronics to the textile: Electronic devices
can be attached either as whole printed circuit board (PCB) as
in [50, 60] where small conventional PCB’s were attached or in
[61, 81] where flexible PCB’s were used. Another approach is to
attach single components as in [64] where interposers were used to
overcome the different pitches of the textile and the component.

• Integrate electronics into textile accessories: Instead of attaching
the electronics to the textile, fashionable textile accessory can
be used for ”hiding” the electronics. In [86], the electronics was
integrated into a button.

1.3.3. Sensors and Actuators

Several research projects aim for integrating sensors and actuators into
textiles. A brief overview is given in the following table. For function-
alities not listed in the table, conventional sensors and actuators have
to be used and attached to the clothing where the comfort of the user
is not affected.

Pressure Two conductive layers were separated by a spacer
foam to build a textile capacitance [74]. Conduc-
tive polypyrrole (PPy) coated polyurethane (PU)
foam was used in [33].
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Button SOFTswitch [13] has presented a keypad of con-
ductive fabrics with a thin layer of elasto resis-
tive composite that reduces its electric resistance
when compressed [79].

Strain Textile strain sensors were based on an elastomer
filled with conductive particles (e.g. carbon black)
[71, 95]. In [44] a textile potentiometer was pre-
sented.

Temperature A textile temperature sensor was realized in [64]
by measuring the resistance change in a copper
wire (Rwire = R0(1 + αmetal ·∆T )).

Electrodes Textile electrodes were realized by embroidering
[57], weaving [31, 85], or knitting [80, 85] a con-
ductive thread.

Display Textile displays can be realized using an electro-
luminescent paste [76]. This paste is illuminated
by applying a high-frequency voltage.

Heating When applying a current to a textile conductive
thread, the textile is heated according to P =
U · I. Companies selling heating textiles are e.g.
novonic [8] and SOFTswitch [13].

Cooling EMPA has developed a cooling vest based on
aquatic evaporation [75].

1.4. Outline

Chapter 2 describes a reference measurement method to measure strain
in the textile. This method was used to gain insight where and by how
much clothing is stretched during different body postures. It was also
used to define requirements for the textile strain sensor.

In Chapter 3, a textile strain sensor is presented which was developed
in collaboration with EMPA. Furthermore, the sensor properties are
discussed.

Using the strain sensor described in Chapter 3, a prototype setup was
built. With this prototype, an experiment was performed showing that
27 upper body postures can be recognized almost perfectly when a
user-specific training is used. This is shown in Chapter 4.
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Chapter 5 presents a model that can be used to calculate the strain in
an elastic, tight fitting clothing. This model was used to optimize the
sensor positions using a Mutual Information Feature Selection method
and a Genetic Algorithm. This optimization is described in Chapter 6.

In Chapter 7, different sensitivity analyses were performed like e.g. the
robustness of the sensor placement and an upwards shift of the clothing
at the waistline.

The dissertation finishes with conclusions in Chapter 8.
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2
Reference

Measurement
Method∗

In this Chapter a reference method to measure strain in tex-
tiles is presented. This enables an accurate determination of
how and by how much clothing is stretched at different body
postures. The method is based on measuring marker posi-
tions by using an optical tracking system. Recommendations
on the markers and camera setup are given. The accuracy of
the method and some general results on the measured strain
patterns are presented.

∗based on [72]
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2.1. Introduction

As introduced in Chapter 1, the goal of this thesis was to build a
prototype which can recognize upper body postures by measuring strain
in the textile. However, so far it was not clear, where and how much
strain appears during different body postures. Therefore, a reference
method to measure strain in a textile was developed and is presented
in this Chapter.

In the first part of this Chapter, the reference measurement method
is described. As we focused on measuring the upper body posture, the
method is presented exemplarily for measuring textile strain in the back
region of a person. However, the method can also be used for other ma-
terials on other body regions and is not restricted to measuring textiles
on the back (The same method was later used to measure the skin de-
formation in [82].). The output of the method is the measured strain
pattern. In the second part of this Chapter, example strain patterns of
three postures are shown.

2.2. Method

2.2.1. Choice of Measurement System

For measuring the strain pattern in a garment, a motion tracking sys-
tem was utilized. These systems measure the three-dimensional position
of markers. Usually, such systems are used for gait analysis [19, 42, 51]
or for animating human models [18, 67] by measuring the skeleton
movement with markers placed on the skin or the garment. In the pre-
sented method, the markers were attached to a garment. By looking at
the varying distance between two markers, the strain in the garment
was calculated.

There exist different motion tracking systems [108] (optical, mag-
netic, and ultrasonic). An optical system (VICON 370 [6]) was chosen
for the following reasons:

• Optical tracking systems use several infrared (IR) cameras to
measure the three-dimensional position of reflective markers. Re-
flective markers are passive elements (cable free). This has the
advantage that more markers can be used than in active systems
(magnetic, ultrasonic) which results in a better resolution of the
final strain pattern. In theory, the number of passive markers is
not restricted, however, in practice it is limited by the resolvable-
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ness of the system and the reconstruction algorithm.
• The system can be used with markers as small as several millime-

ters. This is an advantage when placing many markers. Further-
more, very small and light markers do not influence the strain
pattern in the textile in contrast to bigger markers or active ele-
ments.
• Amongst the different 3D motion tracking methods, the optical

(IR) is the most accurate one. It has an accuracy of up to 1mm
[36].

A disadvantage of the optical system is occlusion, which means that
markers can be covered for example by an arm preventing the record-
ing of this marker. The location data of the occluded marker is lost.
However, occlusion can be minimized by an optimal arrangement of the
cameras.

2.2.2. Measurement Setup

Optical motion tracking systems use a variable number of (at least
two) infrared, stroboscopic cameras and passive, reflective markers. In
a darkened room, the emitted IR-light is reflected by the markers, so
that the cameras record only the markers, minimizing the necessary
image processing. By knowing the exact position of the cameras, it is
possible to reconstruct by triangulation the location of each marker
that was detected by at least two cameras (see Fig. 2.1).

Figure 2.1. The marker location can be reconstructed by knowing the

distance d between the cameras and the angles α and β (triangulation).

In the present work, the focus was on upper body postures. As
strain was only expected on the back and the sides of the body, the
cameras were arranged behind the subject to minimize occlusion. A
VICON 370 system [6] with 5 cameras was used and it was set up
in the configuration shown in Fig. 2.2. One camera was positioned in
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the middle, at a height of 155cm and a distance of 150cm. This was
a trade-off between the resolution (the resolution decreases with the
distance) and still covering a large area (also while bending forward).
The remaining four cameras were placed symmetrically on the sides,
as far apart from each other as possible (80cm, 155cm respectively)
minimizing the triangulation error.

(a) (b)

Figure 2.2. Arrangement of the cameras. Fig. 2.2(a): front view;

Fig. 2.2(b): top view.

2.2.3. Type of Markers

Usually, reflective spheres are used as markers with the reconstructed
marker location corresponding to the sphere center. However, using
spheres might not be preferable when measuring strain in a plane as this
results in a constant offset of the reconstructed location (see Fig. 2.3).
This offset can produce an error which is dependent on the bending
of the back. In contrast, the reconstruction point of flat markers lies
in the plane of the back such that the marker position can directly be
used for the calculation of strain.

In order to verify whether the same accuracy can be achieved with
a flat marker as with a sphere (independent on the bending error),
the accuracy of the markers shown in Fig. 2.4 was compared. The
markers shown in Figs. 2.4(a) and 2.4(b) are commercially available
[4] and are used for facial tracking. The marker in Fig. 2.4(c) was
self-made by cutting circles out of a self-adhesive reflective material
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reconstructed

point

sphere

offset

flat

marker

Figure 2.3. The offset is shown which results by using 3D markers.

(3MTMScotchliteTM High Gain Reflective Sheeting 7610). The mark-
ers had a diameter between 3mm and 6.5mm.

(a) (b) (c)

Figure 2.4. Different marker shapes which were compared: 3
4
-sphere

(Fig. 2.4(a)), hemisphere (Fig. 2.4(b)), circle (flat) (Fig. 2.4(c)).

The markers were placed in rows on a cardboard with a spacing s of
5cm. Several measurements were carried out, varying the orientation of
the cardboard (no bending of the cardboard). The results showed that
the measured distance between the markers varied at the most 0.6mm
(max(si)−min(si) with si being the spacing at sample i). This means
that the accuracy was better than 1mm (error of less than 2% for a
marker distance of 5cm). This is in accordance to the literature ([36]:
VICON 370 mean abs. error of 0.94mm). No difference in the accuracy
and the reconstruction rate was observed between the different markers.
Therefore, a 6mm circular marker was chosen for the measurements
(Fig. 2.4(c)).
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2.2.4. Garment and Marker Placement

For the tight-fitting garment, a custom-made catsuit was used. It was
adapted to the subject so that it was pre-stretched by about 10% in
the normal upright posture. The textile used was elastic in both direc-
tions (course and wale, meandering path and sequence of stitching in
knitting) and consisted of 95% viscose and 5% elasthan.

The markers were arranged in the back region of the garment in a
grid with a spacing of 5cm (see Fig. 2.5). This resulted in 89 markers.

Figure 2.5. Photograph of the marker arrangement.

2.2.5. Experiment

An experiment to measure the strain pattern at different body postures
was conducted with one subject (male, 26 years, body height 190cm,
chest circumference 102cm, weight 80kg). The person was sitting on a
chair without backrest during the whole experiment. A measurement
cycle always started in the upright posture (see Fig. 2.6). This was at
the same time the reference posture for the strain pattern calculation.

For each posture, a measurement cycle was performed. The subject
started in the upright posture and moved to a certain posture. In this
posture, he stayed for some seconds and moved back to the upright
posture. This was repeated three times. The measured postures are
listed in Table 2.1.

2.2.6. Post Processing

The output of the VICON motion tracking system was a stream (50Hz)
of the marker positions [2]. From this data, the strain pattern be-
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Figure 2.6. Reference posture (upright sitting).

Table 2.1. Sitting upper body postures measured with the reference

method.

Sitting Postures

Rotation of trunk to the right
to the left

Bending trunk sidewards to the right
to the left

Lifting shoulders both shoulders
Slumped shoulders over hip

Bending trunk forward
bending (keeping arms along trunk)
bending (arms down)
strong bending (arms along trunk)

Arm postures
arms to the front
arms to the sides
arms overhead

tween two postures (with the upright posture being the reference (see
Fig. 2.6)) was calculated according to the three following steps:

1. In a first step, 10 time frames of the reference and the posture to
be compared were chosen. The frames were chosen at a point of
time when the measured person did not move (verified by visu-
alizing the marker positions). By averaging each marker position
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over these frames ( 1
10

∑10
i=1 pi), measurement inaccuracies were

reduced resulting in an accuracy of the marker distance of about
0.5mm.

2. In both postures, the distance of each marker to all neighbouring
markers was measured. These distances were defined as dreference
in the reference posture and dposture in the posture to be com-
pared. The relative change between these two distances and,
therefore, the strain was calculated by:

strain =
dposture − dreference

dreference
· 100[%]. (2.1)

3. This calculation was done in horizontal, vertical, and both diag-
onal directions separately.

2.3. Results

During the whole experiment, on average 94% of the markers were re-
constructed. Therefore, only about 6% of the markers were occluded.
At these positions, no strain could be calculated. However, by selecting
time frames with minimal occlusion, this was not an issue: For most
postures, time frames with zero to three occluded markers were selected
(97% to 100% reconstruction rate) except for the bending forward pos-
tures where more markers were occluded.

In the experiment described in Section 2.2.5, measurements of dif-
ferent sitting postures were performed. The subject adopted the sitting
posture for several seconds and straightened then up, back to the up-
right posture. In the following, three examples of these measurements
are discussed, namely lifting the shoulders, bending the back and mov-
ing the arms forward. The results of the other postures are attached in
Appendix A.

In all charts in Figs. 2.7 to 2.9, the color range covers strain values
from −20% (dark blue) to +20% (dark red). Zero strain is shown in
green. The asymmetric outer shape of the strain pattern in Figs. 2.8 and
2.9 is due to a missing marker so that no strain could be calculated at
this position. As mentioned in Section 2.2.6, the strain was calculated
separately in the horizontal and vertical direction. In order to get a
better resolution, the 5cm-grid was linearly interpolated resulting in a
grid of 1cm.

When lifting the shoulders (see Fig. 2.7), no significant strain was
measured in horizontal direction in the lower back (Fig. 2.7(b)) whereas
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in the upper back, there was a negative strain of up to −20%. This
seems reasonable as lifting the shoulders anatomically moves them to-
gether while the lower back stays at about the same width. In vertical
direction (Fig. 2.7(c)), the measured strain was up to 11% on the sides,
which is caused by a prolongation of the side of the body when lifting
the shoulders.

(a) (b) (c)

Figure 2.7. Measured strain pattern (in [%]) in the back side of the garment

while lifting the shoulders. For a smoother pattern, the strain values were

linearly interpolated. Fig. 2.7(a): measured posture; Fig. 2.7(b): strain in

horizontal direction; Fig. 2.7(c): strain in vertical direction.

For the bending posture (Fig. 2.8), a strain of up to 17% in the
lower back in vertical direction (Fig. 2.8(c)) was observed. In horizontal
direction (Fig. 2.8(b)) we encountered strain in the upper back for

(a) (b) (c)

Figure 2.8. Measured strain pattern (in [%]) in the back side of the garment

while bending forward. For a smoother pattern, the strain values were linearly

interpolated. Fig. 2.8(a): measured posture; Fig. 2.8(b): strain in horizontal

direction; Fig. 2.8(c): strain in vertical direction.
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which not only the change in the back position was responsible but also
a shoulder movement. The shoulders and also the arms moved forward
when the back was bent. When comparing Fig. 2.6 to Fig. 2.8(a), this
arm and shoulder movement while bending the upper part of the body
can be registered.

To verify that the strain in the upper back in Fig. 2.8(b) was caused
by an arm and shoulder movement, the posture of holding the arms to
the front was captured. As expected, it can be seen in Fig. 2.9 that the
arms provoke a strain in the upper back region. Strain of 15% to 20%
was measured in the upper back in horizontal direction (Fig. 2.9(b)).
In vertical direction (Fig. 2.9(c)), a strain of about 7% was measured
in the lower back.

(a) (b) (c)

Figure 2.9. Measured strain pattern (in [%]) in the back side of the garment

while moving the arms forward. For a smoother pattern, the strain values

were linearly interpolated. Fig. 2.9(a): measured posture; Fig. 2.9(b): strain

in horizontal direction; Fig. 2.9(c): strain in vertical direction.

2.4. Discussion and Conclusions

A method to measure strain patterns in garments during different body
postures was presented. The method was based on measurements using
an optical motion tracking system. Reflective markers were attached
to a garment in a rectangular grid of 5cm. When moving the body,
the markers shift relative to each other. From this shift, the strain was
computed using Equation 2.1.

For the markers, 6mm circles of reflective adhesive tape were chosen.
Compared to sphere markers, flat markers have the advantage that
the reconstructed point lies in the plane of the garment such that a
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direct calculation of the strain was possible. The precision of the marker
distance when using the 6mm circle markers was better than 1mm.
With a marker distance of 5cm, the achieved accuracy of the strain
patterns was better than 2% ( 1mm

50mm = 0.02).
During the experiment, 94% of the markers were reconstructed (5

cameras were used). This could be improved by using more cameras.
The cameras should be arranged such that marker occlusion is mini-
mized during the whole experiment.

Several measurements were performed with a single subject.
Thereby, we concentrated on the back region while the person took
different sitting postures. Based on these measurements, the following
points were identified:

• In the back region of the garment, strains of up to 20% were mea-
sured.
• For the measured postures, distinct strain patterns were identified

indicating the feasibility of a body posture measurement using
textile integrated strain sensors. As a generalization, the following
correlations between movements and strain in the garment can be
given (see Fig. 2.10):

vertical:
bending sidewards/

lifting shoulders

diagonal:
rotating torso

bending
forward/ torso

rotations

arm
movements

shoulder
movements

Figure 2.10. Regions of strain for characteristic movements.
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– The region in the upper back is stretched in horizontal di-
rection when the shoulders move forward.

– Arm movements cause mainly strain in the armpit region.

– Bending forward causes strain in vertical direction, mainly
in the lower back region.

– Strain in diagonal direction on the back and the side of the
torso is measured when rotating the torso.

– Bending sidewards and lifting the shoulders causes strain on
the side of the torso in vertical direction.



3
Textile Strain Sensor∗

This Chapter focuses on a novel carbon filled elastomer sen-
sor which was developed in collaboration with EMPA. After
presenting the sensor material and its attachment to the tex-
tile, the properties of the sensor thread are addressed. Beside
the relaxation behaviour, hysteresis, and ageing effects, the
properties after several washing cycles are also discussed.

∗based on [71]
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3.1. Introduction

As shown in the last Chapter 2, measuring strain in a textile requires
a strain sensor with a measurement range of at least 20%1. Therefore,
commercially available strain gauges based on a metallic foil pattern
(typical measurement range of 1% strain) cannot be used and new
technologies need to be developed.

Beside a suitable electric characteristic like e.g. linearity and sta-
bility, some additional properties are required for a sensor measuring
strain in a textile:

• The measurement range of the sensor must be at least 20% strain
plus a certain pre-stretch of the textile.
• The sensor must have textile stress properties. This means that

the force needed to stretch the sensor must be in the same range
as the counter-force of the fabric. To have a convenient wearing
comfort, force in the textile should not exceed 2N measured in a
5cm band [56].
• It is important that the sensor property is not influenced by bend-

ing.
• The sensor should be washable.

In this Chapter, a carbon black filled elastomer sensor which was
developed in collaboration with EMPA, Switzerland is presented. The
sensor material and its attachment to the textile are described. This is
followed by an electrical characterization of the sensor.

3.1.1. Related Work

Measuring strain in textile is addressed by different research groups.
Farringdon et al. [39] built a knitted strain sensor which was integrated
into a jacket and was used to measure upper body movements. Gibbs et
al. designed a textile potentiometer to measure joint movements [44].
In [63] a thin layer of polypyrrole (using chemical vapor deposition)
was applied on the fabric substrate at low temperature (−26◦C). With
this configuration, a measurement range of up to 50% strain and a
gauge factor (∆R·l0

R0·∆l , l0 and R0 are the initial length and resistivity
respectively, ∆l and ∆R the change in length and resistivity) of 80

1Throughout this thesis, strain is defined as strain = l−l0
l0

· 100[%], where l is

the current length and l0 the initial length of the sensor.
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was achieved. Das et al. investigated ethylene-vinyl acetate (EVA) and
ethylene-propylenediene rubber (EPDM) composites for sensor appli-
cations [30]. Such carbon composite materials show high dependance on
the strain rate: When doubling the strain rate, the resistivity was also
doubled at the maximal measured strain of 30%. An elastomer/carbon
black-composite (CE) was used by Tognetti et al. to measure arm and
finger movements. This sensor showed an overshooting of 30% in the
resistivity and a relaxation time of several minutes [65, 95, 96].

When using thermoplastic elastomer (TPE) based composites, no
curing is necessary (unlike e.g. CE). Therefore, such polymers are inter-
esting when developing strain sensors [26, 27, 70, 93]. In [27], Cochrane
et al. presented a sensor of a thermoplastic elastomer filled with carbon
black (27.6vol-%). They focused on noncyclic strain sensing and looked
at influences of temperature and humidity on the resistance. The sensor
showed a dependance of the resistance on the humidity (up to 40% in
resistance) but not on the temperature (less than 10% up to a relative
humidity of 70%). In this dissertation a similar composition (50wt-%/
32vol-% carbon black) was used. However, the focus was on the charac-
terization of the sensor’s dynamic behaviour, as sensors integrated into
textiles are exposed to repeated strain cycles.

3.2. Sensor Design

3.2.1. Sensor Material and Manufacturing

For the development of the strain sensitive conductive fiber, EMPA
used a mixture of a TPE (thermoplastic elastomer) and carbon black
particles. No curing is necessary when using TPE based composites and
thermoplastic processing technology can be used for shaping. The TPE
material was SEBS-Block copolymer THERMOLAST Kr (FD-Series),
Compound No. TF7-ATL produced by KRAIBURG TPE GmbH, Ger-
many. The carbon black powder was ENSACO 250 produced by TIM-
CAL, Belgium. The density of the TPE was 0.89 g

cm3 and 1.8± 0.2 g
cm3

of the carbon black powder. The primary particle size and the spe-
cific surface area of the carbon black powder were 54nm and 65± 5m

2

g
respectively.

For the fibre manufacturing, TPE pellets were filled in an electri-
cally heated torque rheometer (Rheomix 600, Fisher Scientific, Ger-
many) with roller blade configuration. After melting the thermoplastic
part of the TPE, carbon black powder was added and subsequently
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homogenized and dispersed into the polymer during 1 hour at 180�.
The rotation speed was constant (10rpm) during the whole procedure.

After compounding, the fibre was produced by using a capillary
rheometer (Rosand RH 7, Malvern Instruments, Germany) and an ex-
trusion die with an orifice of 300µm in diameter. The composite mate-
rial was preheated and -compacted in the cylinder of the rheometer for
2min and a pressure of 0.5MPa at 180� before extruding with speed
of 3.5mm/min. Because of die swelling, the fibre diameter increased to
315µm.

In a previous investigation [92], different contents of carbon black
were added to the TPE polymer to study the electromechanical proper-
ties of the fibres. Fig. 3.1 shows the influence of the carbon content on
the mechanical (tensile strength) and the electrical (resistance) prop-
erties of the extruded fibre.

As expected, varying the content of carbon black in the com-
pound influences the mechanical and electrical properties. Above a cer-
tain amount of carbon black (40wt-%), a yield point occurs in the
mechanical stress strain curve of the sensor fibres (at 20% strain).
The electrical behaviour of the fibre changes too. For low filling
levels of carbon black (30wt-%) the resistivity curve can be sepa-
rated into four sections as described by Flandin et al. - initiation
(I), reversible (II), re-coverable damage (III) and depercolation (IV)
[40]. As the same resistivity occurs at different strains in a range
of 100% strain, the 30wt-% compound was not suited for our ap-
plication. Fibres with a carbon black content around 40wt-% show
a plateau in the electrical resistivity (10%) which changes to a con-
tinuous increase for higher filling levels (50wt-%). A further increas-
ing of the filling level results in a brittle fibre which is unaccept-
able for sensor applications. Therefore, a 50wt-% composite (1.21 g

cm3 ,
32vol-%) was used to produce the textile strain sensors in this study (see
Fig. 3.2(a)). This filling level results in a resistance of approximately
700Ω/cm at a sensor diameter of 315µm.

3.2.2. Sensor Attachment to Textile

The sensor was designed to measure strain in textiles. Therefore, the
sensor thread described in Section 3.2.1 (see Fig. 3.2(a)) needed to be
integrated or attached to a textile before characterization. We realized
this attachment with a silicone film (Dow Corning 732) (see Fig. 3.2(b)).
Silicone was used for the following reasons:
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Figure 3.1. Influence of the carbon black filler content on the mechanical

(Fig. 3.1(a)) and the electrical (Fig. 3.1(b)) properties of the extruded fibre

with a gauge length of 5cm. In Fig. 3.1(b), the four regions described by

Flandin et al. [40] are shown for a filling level of 30wt-%.

• Silicone is very elastic (maximal strain of 540%, Dow Corning
732). Further advantageous properties of silicone can be found in
[1].

• Silicone builds a good bonding to textiles: When removing, the sil-
icone (tensile strength 333.6psi (= 2.3MPa), Dow Corning 732)
tore before it detached from the textile. This means that the con-
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(a)

2cm

sensor thread

electrical connections
(conductive epoxy CW2400)

attachment to textile
with silicone film

textile connection
to measurement system

(b)

Figure 3.2. Fig. 3.2(a): Sensor thread after extrusion. Fig. 3.2(b): Sensor

thread attached to the textile with a silicone film.

nection between the textile and the silicone could withstand more
than 2.3MPa.

• When stretching the sensor material described in Section 3.2.1
alone, it experiences a permanent plastic deformation: The sensor
lengthened by about 28% when a strain of 80% was applied and
did not return to its original length. Therefore, the sensor material
alone has a reduced working range of the applied stretch minus
the permanent deformation ( 1.8

1.28 = 40.6%). However, when the
sensor is attached to the textile using silicone, the sensor is forced
back almost to its original length and, therefore, has a larger
working range of more than 70% (= 1.8

1.05 , see Section 3.4.1).

For connecting the sensor to a measurement system, a SHIELDEXr

yarn (235f34dtex 2-ply HC) was used. This nylon yarn is silver coated
and has a resistivity of 120Ω/m. In order to keep the elasticity of the
textile, the thread was sewn using an elastic stitch. For the connec-
tion between the sensor and the silver coated yarn, a conductive epoxy
(CW2400, CHEMTRONICS CIRCUITWORKS) was used.

In Fig. 3.3 the assembling of the sensor is shown. It comprised the
following steps:

1. In a first step, the sensor was temporarily attached to the tex-
tile using adhesive tape. Thereafter, the textile was attached to
a cardboard with fixing pins under light tension in order to pre-
vent shifting when using the conductive glue and to prevent the
building of ripples when applying silicone.
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2. The sensor was then connected to the conductive thread using
conductive epoxy (see Fig. 3.3(a)). This step needed a drying
period of 24 hours.

3. In a next step the sensor was attached to the textile with silicone
using a palette-knife (see Fig. 3.3(b)). The silicone needed some
hours to cure.

4. After having removed the adhesive tape and the fixing pins, the
textile strain sensor was finished (see Fig. 3.3(c)).

(a) (b) (c)

Figure 3.3. Assembling of the textile strain sensor. Fig. 3.3(a): Connecting

the sensor to the conductive thread using conductive epoxy. Fig. 3.3(b): At-

taching the sensor to the textile using silicone. Fig. 3.3(c): Sensor attached

to the textile.

3.3. Measurement Setup

Several cyclic strain measurements (extension - retraction) were per-
formed in order to characterize the sensor. For these measurements, the
sensor thread was attached to the textile as described in Section 3.2.2.
The sensor length was always 2cm. This is the same length as used in
the prototype in Chapter 4.

The strain was applied to the sensor using a strain tester
(Zwick/Roell DO-FB0.5TS). The resistance was measured in parallel
with a multimeter HP34401. If not specified differently, the measure-
ments were done at a speed of 200mm/min which corresponds to a
strain rate of 16%/sec (sensor length 2cm). The waiting times at max-
imal and minimal strain were 3sec.

The following measurements were taken. For each of these measure-
ments, a different sensor was used.
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increasing range The measurement range was slowly increased (steps
of 10%) starting with a range of 10% up to a range of 100% strain.
With this experiment, insight was gained on the influence of the
measurement range on the sensor characteristics.

decreasing range Starting with applying a strain of 80%, the range
was decreased in steps of 20%. This measurement should confirm
that the characteristic curve (= strain-resistivity characteristics)
only depends on the maximal strain applied and remains constant
for arbitrary (smaller) strains.

varying speed The strain rate was varied between 50mm/min and
600mm/min (50, 100, 200, 400, and 600mm/min). This mea-
surement gave information about an influence of the strain rate
on the sensor characteristics.

waiting times of 2 minutes The waiting times at maximal and min-
imal strain was increased to 2min in order to see the relaxation
behaviour of the sensor.

long-term cycling (16 hours) The sensor was permanently cycled
for 16 hours. This showed whether there is a change in the char-
acteristics of the sensor while in permanent use.

long-term measurement (2 months) During two months, the char-
acteristics of the sensor was measured once a week in order to find
ageing effects of the sensor.

washing test The sensor was washed 8 times at 30� in a washing
machine using a conventional cleaning agent (no fabric softener).
After each washing cycle, the characteristics of the sensor was
measured. This trial shows whether the sensor endures this pro-
cedure and the properties change due to washing.

All measurements were done with the sensor attached to two dif-
ferent textiles (486 Meryl (88% PA, 12% lycra, knitted) and Keller
AG 88018 (49% PA, 51% EL, woven)) which have different elasticities.
The Meryl textile is about three times more elastic than the weave from
Keller AG. However, the sensor characteristics were the same with both
textiles so that the kind of textile is not considered in the following Sec-
tions.
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3.4. Results and Discussion

In the following section, the textile integrated sensor thread is char-
acterized. The following sensor properties were examined: relaxation
behaviour, hysteresis, sensitivity, dependency on strain rate, longterm
cycling, ageing, and washability. We did not look at influences by tem-
perature and humidity as this is covered in [27] where a similar sensor
was used. They found a dependance of the resistance on the humidity
(up to 40% variance in resistivity) but not on the temperature. As our
sensor is protected with a silicone film (so far only on one side, however,
a thin layer of silicone could be put down on the fabric before attaching
the sensor to protect it from both sides), we expect the influence of the
humidity to be eliminated.

3.4.1. Relaxation Behaviour

In Fig. 3.4(a), the resistance over time is shown for a cycling strain. The
upper plot depicts the applied strain. The sensor was cycled between
0% and 80% strain at a speed of 200mm/min and waiting times at
minimal and maximal strain of 2 minutes. In the lower plot the mea-
sured resistance is shown which varied between 2kΩ and 19kΩ (for a
sensor length of 2cm).

It is apparent that this sensor has a small relaxation: When the
strain is kept constant at 80%, it relaxes by 1.5kΩ (see Fig. 3.4(a))
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Figure 3.4. Response of sensor to a given strain (sensor length 2cm).

Fig. 3.4(a): waiting time 2 minutes. Fig. 3.4(b): waiting time 10 seconds
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while the total range is 17kΩ. This results in an inaccuracy of 8.8%
caused by the relaxation.

For strains lower than 10% it can be seen in Fig. 3.4(b) that the
resistance does not follow the applied strain. It stays at the resistance
level which corresponds to a strain of about 10%. This is caused by
a temporary deformation of the textile due to the large strain applied
(marked as ”textile deformation” in Fig. 3.4(b)) which reduces to about
5% after some hours. This is not an issue when measuring strain in
a garment as the textile is pre-stretched when worn and the sensor,
therefore, is used in the working range only.

3.4.2. Hysteresis

A resistance vs. strain plot is shown in Fig. 3.5 for an applied strain
of 80%, indicating a linear rise in resistance when applying strain and
only a small hysteresis: The maximal hysteresis error is ±3.5% (7%)
in strain at 16kΩ. The mean hysteresis error over the working range is
±2.25% (4.5%) in strain.

A system with hysteresis is defined as a system whose output does
not only depend on the current input but also on the history of the
input. Typical causes for hysteresis are friction and structural changes
in the material [41]. However, so far it is not clear whether these effects
account for the hysteresis in the present sensor.

The temporary deformation of the textile, which was described in
Section 3.4.1, can also be seen in Fig. 3.5. In this plot it appears as a
plateau at low strains.
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Figure 3.5. Response of sensor to a given strain illustrated as a resistance
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3.4.3. Sensitivity δR
δl in Different Working Ranges

In this Section it is analyzed whether the sensitivity of the sensor re-
mains stable when the sensor is used in different strain ranges. Two
tests were conducted where a variable strain range was applied, the
first one without pre-stretching the sensor before the test, the second
with the pre-stretch.

In Fig. 3.6, an increasing strain was applied to the sensor without
pre-stretching it. It can be seen that the sensitivity changes with each
increase in strain. Within each of these regions, the sensitivity remains
stable, however, at different values. Therefore, dependent on the max-
imal strain applied, the strain sensor has a different sensitivity.
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Figure 3.6. Applying an increasing strain to the sensor without pre-

stretching it (sensor length 2cm). The sensitivity of the sensor changes.

In Fig. 3.7, a pre-stretch of 80% (extension - retraction cycle to 80%
strain) was first applied to the sensor (black curve). After that, different
smaller strains were applied (60%, 40%, and 20%). The Figure shows
that the sensitivity (slope) of the sensor remains stable: The sensor
has a sensitivity δR

δl of 1.14 kΩ
mm (= 16kΩ

14mm = 229 Ω
% strain ). Therefore,

the sensor needs to be pre-stretched to its full working range before
its first usage so that the sensitivity becomes stable. This also means
that during usage, no larger strain than the pre-stretch value should be
applied.

To show that a pre-stretched sensor remains stable over a longer
period of time, smaller strains (20%, 40%, and 60%) were applied to
a sensor 24 hours after a pre-stretch to 80%. The result was the same
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Figure 3.7. Applying a pre-stretch of 80% to the sensor (black curve) fol-

lowed by different smaller strains (sensor length 2cm). The sensor sensitivity

remains constant. We call this the pre-stretched case, which means that the

sensor is stretched to its full range before any other (smaller) strain is applied.

sensitivity in all measurements (as in Fig. 3.7) confirming that a pre-
stretching ensures stable sensitivity.

During the PhD, around 100 sensors were measured showing all
similar characteristics (the resistance did not vary more than 10%).
During these measurements, no failures occurred when a strain of up
to 80% was applied. When applying a strain of 100% around 20% of the
sensors failed and only a minority of the sensors still worked at 150%
strain. Therefore, we specify the range of the sensor to be between 0%
and 80% strain (working range of 70% when the textile deformation is
considered, see Section 3.4.1). This results in a sensitivity of 1.14 kΩ

mm

and a gauge factor (∆R·l0
R0·∆l ) of ∼ 20 at a sensor length of 2cm.

Failures usually occurred while stretching the sensor for the first
time. Once stretched to a certain amount without breaking, the sensor
worked reliably afterwards. Typically two types of failures appeared:
The sensor either failed due to a rupture of the sensor thread at one of
the ends of the sensor (at the transition to the epoxy) or as cracks in
the conductive epoxy such that the connection between the sensor and
the conductive thread failed.

3.4.4. Dependency on Strain Rate

The dependency on the strain rate is shown in Fig. 3.8. The strain
velocity was increased from 50mm/min to 600mm/min (50, 100, 200,



3.4. Results and Discussion 35

400, and 600mm/min). This increase in speed shows a marginal rise
in resistance (+2kΩ at 80% strain). The maximal error increases from
±3.5% to ±7.5% when doing a linear approximation over all five mea-
sured speeds and using a range of 80% strain. The mean error increases
from ±2.25% to ±5.5%.
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Figure 3.8. Sensor characteristics at different measurement speeds (50, 100,

200, 400, and 600mm/min, sensor length 2cm).

3.4.5. Longterm Cycling

The sensor was cycled for 16 hours at a cycling rate of ∼ 250 cycles
hour ,

resulting in a total of ∼ 4000 cycles in order to verify the stability of
the sensor properties. The maximum and minimum resistance values of
the first 8 hours are shown in Fig. 3.9. It can be seen that the minimal
resistance shows a marginal increase of about 0.5kΩ. This increase is
probably caused by a slowly increasing textile deformation (see Sec-
tion 3.4.1). Also the first step at the beginning is caused by textile
deformation, however, when the sensor is pre-stretched as described in
Section 3.4.3, this step is reduced from 1kΩ to less than 0.5kΩ. The
maximal resistance decreases in the first half an hour by 1kΩ (6%).
This phase is followed by a slow increase of the maximal resistance ap-
proaching the initial level. Therefore, the sensitivity of the sensor ( δRδl )
can be assumed to be widely constant with time.
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Figure 3.9. The sensor was cycled for 16 hours whereas the maximum and

minimum resistance values of the first 8 hours are shown.

3.4.6. Ageing

In order to show the longterm-stability of the sensor signal, the mea-
surements were repeated once a week during two months. During this
time, only a minor increase in the sensor signal of less than 1kΩ at an
applied strain of 80% was found (see Fig. 3.10).
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Figure 3.10. Repeated measurements during 2 months (one measurement

per week, sensor length 2cm, measurement speed 200mm/min), showing a

minor increase in the sensor signal of less than 1kΩ at an applied strain of

80%.
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3.4.7. Washability

The strain sensor was washed 8 times (over a period of 2 months) at
30� in a washing machine using a conventional cleaning agent. During
this procedure, the sensor signal increased by less than 1kΩ at an ap-
plied strain of 80% (see Fig. 3.11). This is the same increase as caused
by the ageing effect in the same period of time (see Fig. 3.10). There-
fore, the washing had no influence on the sensor properties. One reason
for this durability is the attachment of the sensor using silicone. This
protectes the sensor against many factors.
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Figure 3.11. The sensor properties remained stable also after 8 washing

cycles.

3.5. Conclusions

In this Chapter, a strain sensor was presented with a working range
of 70% strain. Conventional strain gauges (based on a metallic foil
pattern) reach a higher linearity but at a very reduced working range
of less than 1%.

Due to this large measurement range and the fiber-shaped form
(diameter of 0.315mm), this sensor has the potential to be fully in-
tegrated into textiles. Thereby, it has to be assured that a restoring
force is present, forcing the sensor back to its original length. This is
necessary, as the sensor material alone experiences a permanent plas-
tic deformation when stretched (see Section 3.2.2) which results in a
smaller working range and different sensor properties. In this thesis,
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the restoring force was achieved by using silicone to attach the sensor
to the textile.

Different characteristics of the sensor were presented and are sum-
marized in the following. These properties qualify the sensor for strain
measurement in a garment.

• widely linear resistance vs. strain characteristic over a working
range of 70% strain,
• a small hysteresis and a minor dependance on the strain rate re-

sulting in a total mean error of ±5.5% in strain,
• stable sensor properties while in continuous usage,
• no ageing effect,
• a high sensitivity of 1.16kΩ/mm (sensor length 2cm) and a gauge

factor of ∼ 20,
• thread-like shape,
• washable.

Before usage, the sensor needs to be pre-stretched to 80% in order
to get a stable sensitivity.



4
Posture Classification

Experiment∗

A prototype of a strain sensitive clothing was built using the
strain sensor presented in the previous Chapter. Experimen-
tal data obtained with this prototype was used to classify a
selection of 27 upper body postures. The following Sections
present the prototype setup, the experimental protocol, the
classification method, and its results. With this prototype,
the feasibility of detecting 27 upper body postures with a
strain sensitive garment was verified on eight subjects.

∗based on [69]
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4.1. Method

4.1.1. Prototype

Using the strain sensor described in Chapter 3, a prototype of a clothing
recognizing upper body postures was built (see Fig. 4.1). 21 sensors
were attached to the back region of the garment (see Fig. 4.2). It will be
shown in Chapter 7 that placing more sensor than minimally necessary
increases the robustness of the result. The sensors were fixed to the
textile using silicone as described in Section 3.2.2. For the garment,
a commercially available catsuit (one-piece, tight-fit garment) with a
front zipper (medium-sized) was used.

textile stretch
sensors

interconnections
to data acquisition unit

central data
acquisition unit
(attached at the

front side)

Figure 4.1. Architecture overview of a prototype recognizing upper body

postures using strain sensors.

The sensors were connected to a small data acquisition unit, which
digitized (four 8-channel MAX147, 12bit) and transmitted the mea-
sured signal to a PC via Bluetooth (MSP430F149, BlueNiceComIII).
These connections to the data acquisition unit were realized with a
SHIELDEXr yarn (235f34dtex 2-ply HC) (see Section 3.2.2). A
graphical user interface was implemented which visualized the mea-
sured strain values and stored the data into a file. An overview of the
setup is given in Fig. 4.1 [73].
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Figure 4.2. Placement of 21 strain sensors.

4.1.2. Experimental procedure

A set of frequently used body postures covering the degrees of freedom
in trunk and arm movement were defined. This initial set was adapted
to cover both sitting and standing postures resulting in a final set of 15
sitting and 12 standing posture classes (see Fig. 4.3). Tab. 4.1 summa-

Figure 4.3. Visualization of the sitting and standing upper body postures

included in the study.
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Table 4.1. Sitting and standing upper body postures included in the study.

The postures are visualized in Fig. 4.3.

Base Posture Class

Standing upright - arms relaxed

Sitting Postures Class

Rotation of trunk
1 to the right
2 to the left

Bending trunk sidewards
3 to the right
4 to the left

Lifting shoulders
5 right shoulder
6 left shoulder
7 both shoulders

Slumped 8 shoulders over hip

Bending trunk forward
9 with bent back
10 with straight back
11 bending maximally,

hands beside the feet

Forced upright 12

Arm postures
13 arms to the front
14 arms to the sides
15 arms overhead

Standing Postures Class

Rotation of trunk
16 to the right
17 to the left

Bending trunk sidewards
18 to the right
19 to the left

Lifting both shoulders 20

Slumped 21

Bending trunk maximally for-
ward

22 hands approaching toes

Forced upright 23

Extending arms to the front 24

Squatted 25 maintaining straight
back

Flexing torso sidewards
26 to the left
27 to the right
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rizes the posture set that was considered in the study. An additional
base posture was defined as standing upright with relaxed arms along
the body axis. This posture was used for a very basic adaptation of the
prototype to the user.

Eight male participants aged between 26 and 31 years were in-
cluded in the study. The mean body height was 179cm, standard devi-
ation (SD) 4.1cm. The mean chest circumference was 95cm (SD 4cm)
and the waist circumference was 84cm (SD 4.1cm).

The participants were instructed to assume the different postures
for approximately two seconds in a predefined sequence while wearing
the garment prototype. A picture was shown to the participants to indi-
cate each posture, however, the postures were not explained or trained
beforehand. Each posture was repeated three times and the whole set
of postures was recorded twice, such that each posture was recorded six
times in total (repetitions 1 to 3 and 4 to 6 are referenced as set 1 and
2 respectively). The complete data set included 1296 postures from the
27 posture classes and eight participants.

The strain sensor values were acquired using a central data acqui-
sition unit attached at the waist level (see Section 4.1.1), recording
at a sampling rate of 33.5 Hz. The postures were labelled during the
recordings.

4.1.3. Classification methodology

The strain data of all 21 garment-sensors was used as feature set for the
posture classifications. In a pre-processing step, the strain values were
adapted to each wearer: The mean value of each sensor during base
posture was subtracted from each participant’s data set. This method
compensated for the variable body compositions and hence a variable
pre-strain in the garment among the different participants.

The influence of the degree of user adaptation on the classifica-
tion result was evaluated. A user-specific training of the classifier was
compared to a training and testing that included sensor data from all
users and to a subject-wise leave-one-out split representing a new user
scenario.

All classifications were performed on every sample of the data with
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a Näıve Bayes classifier:

selected class = argmaxcj{p(cj |S)} (4.1)

= argmaxcj{p(cj)
n∏
k=1

p(sk|cj)},

where cj is a class j, sk the value of sensor k, n the number of sensors,
and S the values of all sensors. A sample was labelled with the class cj
that achieved the highest posterior probability p(cj |S). A normal distri-
bution of the sensor values was assumed so that p(sk|cj) was calculated
according to:

p(sk|cj) =
1

σkj
√

2π
e
−(sk−µkj)

2

2σkj , (4.2)

where µkj and σkj were the mean and standard deviation of sensor k
in class j.

A 6-fold cross-validation procedure was used to split training and
testing data for the user-specific and all-users evaluations. The splitting
procedure was designed to use each repetition of the posture only once
for testing. For the new-user evaluation the data was sliced according to
the number of study participants into eight iterations. For each iteration
the data from seven of eight participants was used for training and the
left out data set for testing.

To compare classification results with unequal number of test ob-
servations in each class, a normalized accuracy measure was used. The
classification result was derived as mean of the class-relative accuracies
(normalized accuracy):

nAccTotal =
1
NC

NC∑
i=1

Recognizedi
Relevanti

, (4.3)

where NC is the total number of classes, Recognizedi and Relevanti
are the number of correctly identified and the total number of observa-
tions in class i respectively.

4.2. Results

In the user-specific classification an accuracy of 0.97 was achieved with
minor confusions of the classes 9 (bending forward with bent back), 10
(bending forward with straight back) and 25 (squatted) only.
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We analyzed the influence of training-testing partitioning by re-
ducing the number of cross-validations from 5 to 2 and consequently,
reducing the number of training observations from 80% to 50%. The
accuracy dropped to 0.8. From this result we concluded that differences
exist between the two consecutive posture recording sets (repetitions
1 to 3 compared to repetitions 4 to 6) but only minor variability within
each set. Possible reasons for this result are 1) accurate repetition of
the postures within each set but slightly different postures between the
sets, 2) not enough variance in each set since three repetitions were per-
formed only, 3) sensor inaccuracies and 4) movements of the clothing
in comparison to the skin.

Figs. 4.4 and 4.5 show the all-user and the new-user classification
results respectively (actual class in rows, predicted class in columns).
The plot is obtained from the confusion histogram matrix by normal-
izing each row by the row sum (number of relevant observations for
the corresponding class). While the all-user analysis achieved a perfor-
mance of 0.84, the performance dropped for the new-user evaluation
to 0.65. A summary of these classification results is shown in Fig. 4.6,
including the minimal and maximal results achieved.

The matrix plots in Figs. 4.4 and 4.5 show that certain similar
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Figure 4.4. Confusion matrix of the all-user classification of 27 postures.
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Figure 4.5. Confusion matrix of the new-user classification of 27 postures.
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Figure 4.6. Summary of the classification performances.

postures could not be discriminated. Two types of error were evident:
1) Confusions appeared between the corresponding sitting and stand-
ing postures, e.g. postures 13 and 24 (extending the arms to the front
while sitting and standing). 2) Similar postures could not be differen-
tiated like e.g. postures 9, 10 and 25 (bending the trunk forward with
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a bent and a straight back and squatted). Therefore, the same analysis
was repeated for the sitting postures only (postures 1 to 15). The re-
sults increased from 65% to 74% for the new-user classification. Hence,
this indicates that a posture classification is feasible for many (not too
similar) classes even for new-users, however, sitting and standing can
hardly be distinguished with the current setup.

4.3. Conclusions

With the presented prototype, a study was performed where 29 sitting
and standing postures were classified. From this study, the following
can be concluded:

• The method of detecting body postures by measuring the strain
in the clothing works for a user-specific training. An accuracy of
97% was achieved when doing a user-specific classification.

• When doing a user-independent training, the classification rate
dropped to 65%. Mainly, similar postures could not be differenti-
ated. This indicates that a used-dependent training is necessary.

• The test subjects did not report any discomfort caused by the
strain sensors. Therefore, the attachment of the sensors using
silicone is suitable for textile applications.
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5
Simulation of Strain

in Tight-Fitting
Clothing

In the last Chapter 4, a strain sensitive garment proto-
type with intuitively placed sensors was presented. However,
there might be better sensor positions. Therefore, in the fol-
lowing two Chapters a method to optimize the sensor posi-
tioning is introduced.
With an animatable body model, different body postures were
created. A cloth model was then applied to these postures,
enabling the calculation of the strain in the clothing. In the
subsequent Chapter 6 a method is presented to derive the
optimal sensor position from the calculated strain patterns.
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5.1. Introduction

In order to calculate the strain pattern in the clothing, three steps were
necessary which are described in this Chapter:

• Body Scan: Four 3D scans of the torso of one person were
recorded. This step is described in more detail in Section 5.2.1

• Animation: One of the scans (basic posture) was animated
using 3ds Max (Autodesk, San Rafael, USA). The other three
scans were used for validation. These steps are described in Sec-
tions 5.2.2 and 5.2.3. There were several reasons for building an
animatable model instead of scanning the user in several postures.

– There exist methods to build animated body models using
some body parameters [25, 89] which could even replace the
single scan. This is more convenient for the user than taking
several scans.

– An animated body model enables a clear definition of even
small changes in the body posture difficult to achieve when
scanning the person.

• Cloth simulation: A cloth simulation was performed enabling
the calculation of strain patterns in the clothing for the different
postures. A particle model which is described in Section 5.3 was
used to simulate the clothing. The calculated strain patterns were
utilized to optimize the sensor positions (see Chapter 6).

Basic Posture

Animation

Arbitrary Posture Cloth Simulation Optimal Sensor Position

Figure 5.1. Data flow for optimizing the sensor position: scan of a person,

animation, cloth simulation, optimization of sensor position.
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5.2. Animated Body Model

5.2.1. Body Scan

To achieve an accurate body model, the torso of one person was
scanned. Four different postures were measured whereas one posture
(basic posture, see Fig. 5.2) was animated and the three remaining
postures (see Fig. 5.3) were used for validation of the animation. An
animated body model has the advantage that the strain pattern of
arbitrary postures can be simulated without rescanning the person.

For scanning, the OSCAR scan system developed at ETH Zurich
[47] was used. This is an active capture system consisting of four digital
cameras. Each camera reconstructs part of the surface by using a light
pattern. By using several cameras, the whole surface can be assembled.
Also other methods could be used to generate a body model like e.g.
[25, 89, 90].

Each of the upper body scans consists of around 150’000 triangles
which results in elements of the size of 5− 10mm2.

Figure 5.2. Scan of the upper body; basic posture.

(a) (b) (c)

Figure 5.3. Scan of the upper body; Fig. 5.3(a): bent posture, Fig. 5.3(b):

arms forward, Fig. 5.3(c): lifted shoulders.
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5.2.2. Animation

To animate the body model, 3ds Max 8 (Autodesk) was used. The
basic posture scan (see Fig. 5.2) was animated so that the three other
posture scans (see Fig. 5.3) were reproduced as accurate as possible.
The following parameters were optimized:

• skeleton: Like in a real body, animatable body models contain
a skeleton [78, 106]. By moving the ”bones”, the corresponding
surface also moves. The skeleton has to be defined once whereas
the number, size, and shape of the bones can be varied. In this
thesis, 16 vertebrae were used so that the flexibility of the spine
could be ensured (see Fig. 5.4(a)). To prevent the abdominal re-
gion from collapsing, so called fins were used (see Fig. 5.4(b)).
In order to better control the shoulder region, bladebones were
modelled with a user-defined shape.

• skinning: In order to also move the skin when the skeleton is
animated, the skin has to be attached to the skeleton. This pro-
cedure is referred as ”skinning”. In 3ds Max, two regions have to
be defined on the skin for each bone. The region above the bone
is only influenced by that particular bone. In the adjacent region
the surface can be influenced by several bones. The amount of
the effect is weighted by the distance to the bone. The skinning
can be done automatically by 3ds Max. Only few regions (mainly
in the armpit region) were adapted manually.

bladebones

vertebrae

(a)

fins

(b)

Figure 5.4. Skeleton of the animated torso using 3ds Max.
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5.2.3. Validation

A skeleton and skinning were applied to the basic posture scan to get
an animated body model. This animated model was then altered to
get the postures of the three other scans (see Fig. 5.3). The similarity
of the animated postures and the scans was determined by calculating
the distance between the two surfaces (see Fig. 5.5). This distance cal-
culation was realized by intersecting the normal vectors of the scanned
surface with the surface of the animated model (see Fig. 5.6). vtk [7]
was used to determine the similarity of the two surfaces.

Figure 5.5. Validation of the animated scan: Comparison between ani-

mated and scanned postures.

The resulting mean error was 3.5mm whereas the maximal error
was 2cm. The mean error was calculated as

e =
1
n

n∑
i=1

di, (5.1)

where n was the number of points (corner points of the elements) of
the scanned model and di the distance to the animated surface in each
point (see Fig. 5.6). In order to verify the influence of this error on the
simulated strain pattern, a cloth simulation (see next Section 5.3) was
performed with both models - the scanned surface and the animated
model. The difference between these two simulated strain patterns was
on average 2% in strain.
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Figure 5.6. Distance measurement for comparing the animated model to

the scanned surface of the same posture. This was done by intersecting the

normal vectors of the scan with the surface of the animated model.

5.3. Cloth Simulation

The cloth simulation problem was addressed by the textile and the com-
puter graphics community. However, they focused on different aspects
of the same problem: While the textile community was interested in the
mechanical behaviour of textile, the computer graphics community fo-
cused on geometric structures resembling cloth. In literature, the many
different approaches of cloth modelling are summarized according to
the following categories [20, 77]:

• Peirce Model [55, 91]: The textile community approached cloth
modelling from a mechanical engineering point of view and tried
to understand the mechanical properties of textiles: The Peirce
Model describes the geometric relationships among yarn cross-
ings (low-level structure). Also, they measured and modelled the
mechanical behaviour of cloth and studied tensile, bending, and
shearing properties.

• Continuum mechanics/ Finite Element Model (FEM) [15, 24,
37, 38, 43, 107]: Low-level structural models turned out to be
too complex to model cloth drape [20]. Therefore, FEM-based
methods were used by the textile community for simulating cloth
drape. In FEM, mechanical equations are applied to single mesh
elements of the discretized surface (triangles or quadrangles).

• Geometric Approaches [77, 105] : The computer graphics com-
munity is interested in a model looking like cloth not necessarily
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being an exact mechanical approximation. Therefore, they im-
plemented geometric approaches where the folds in a cloth were
approximated by geometric curves and surfaces.

• Physically Based Approaches [21, 28, 59, 84, 94, 99, 101, 104]:
Physically based approaches can be divided into ”Mass and
Spring Models”, ”Elasticity-Based Models”, and ”Particle Mod-
els”. In these techniques, cloth models are represented as triangu-
lar or rectangular grids, with points of finite mass at the intersec-
tions. The forces or energies are calculated for these points in re-
lation to its neighbour points (local interactions). Although these
approaches were developed by the computer graphics community
and, hence, were not optimized for accuracy, they approach the
accuracy of Finite Element Models: In 2005 Volino et al. [104]
presented a particle model as accurate as a nonlinear first-order
Finite Element Model [102].

In this thesis, the particle model of Volino et al. [104] was used to
simulate strain in the garment. As this model was optimized for simu-
lating wrinkles in loose fitting garments, the algorithm was adapted to
simulate strain in a tight fitting garment.

5.3.1. Particle Model

A particle model was used for simulating the strain in a tight fitting
clothing. In particle models, the surface is discretized and considered
as a bunch of points. Each of these so called particles has an assigned
position, velocity, acceleration, and mass. They are locally connected so
that triangles or quadrangles emerge. As only these local connections
are considered in the model, it is possible that the simulation converges
not to a global but to a local minimum.

The cloth model of P. Volino [104] was chosen for calculating the
strain pattern in a garment. This is a force based particle model which
works on triangles. Using triangles instead of quadrangles has the ad-
vantage that the shape of the surface to be modelled can be chosen arbi-
trarily, whereas with quadrangles, step-like borders cannot be avoided.
Another advantage of this model is its accuracy: It is equivalent to a
nonlinear first-order finite element model [102].

The simulation is performed in two main steps: 1) In each triangle,
the strain is calculated enabling the identification of the force acting on
the neighbouring triangles (this Section). 2) By integrating these forces
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(F = m · dẍ), the new particle positions is determined (Section 5.3.2).
This corresponds to one iteration step and is repeated until the changes
in the particle positions are small.

Model of P. Volino [104]

The strain in each triangle at the current time step is calculated by
comparing the triangle to the original, undistorted triangle. The orig-
inal triangle is described by 3 2D points (ua, va), (ub, vb), (uc, vc) (see
Fig. 5.7). The corresponding coordinate system is defined as (1, 0, 0)
and (0, 1, 0) and relates to the directions of the threads in the garment
to be simulated (e.g. weft-warp in a woven textile). In order to find
the deformed thread directions u and v, the transformation matrix A
is calculated. A transforms the undistorted triangle into the deformed
triangle (Pa, Pb, Pc),

(Pa Pb Pc) = A ·
((

ua
va

)(
ub
vb

)(
uc
vc

))
. (5.2)

From A u and v can be calculated using A = (u v). This results in
the thread directions u and v shown in Equation (5.3) and (5.4) for
the deformed triangles.

u =
(vb − vc)Pa + (vc − va)Pb + (va − vb)Pc
ua(vb − vc) + ub(vc − va) + uc(va − vb)

(5.3)

v =
(uc − ub)Pa + (ua − uc)Pb + (ub − ua)Pc
ua(vb − vc) + ub(vc − va) + uc(va − vb)

(5.4)

From this, the current in-plane strain ε can be calculated according to
Equation (5.5).

εuu = |u| − 1 εvv = |v| − 1 εuv =
|u + v|√

2
− |u− v|√

2
(5.5)

(u , v )a a

(u , v )b b

(u , v )c c

Pa

Pb

Pc

A
(1,0,0)

(0,1,0)

u

v

Figure 5.7. Left: Original, undistorted triangle; Right: deformed triangle.
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The general viscoelastic stress(σ)-strain behaviour is a function of the
strain in different directions and its first derivatives:

σuu(εuu, εvv, εuv, ε′uu, ε
′
vv, ε

′
uv)

σvv(εuu, εvv, εuv, ε′uu, ε
′
vv, ε

′
uv) (5.6)

σuv(εuu, εvv, εuv, ε′uu, ε
′
vv, ε

′
uv)

As viscosity was neglected in the present model, the following formu-
lae result to calculate the stress σ from the strain ε (isotropic, linear
material):

σuu =
E

1− µ2
· (εuu + µ · εvv)

σvv =
E

1− µ2
· (εvv + µ · εuu) (5.7)

σuv =
E

2 · (1 + µ)
· εuv

whereas µ is the so called poisson’s ratio (contraction in one direction
when the sample is stretched in the other direction) and E the Young’s
modulus.

µ = −
∆x
x0
∆y
y0

= −εxx
εyy

(5.8)

From the stress σ, the force (Fa, Fb, Fc) in each corner (particle) of the
element can be calculated according to Equation (5.9).

Fa =
1
2

[((vc − vb)σuu + (ub − uc)σuv)
u
|u|

+ ((vc − vb)σuv + (ub − uc)σvv)
v
|v|

]

Fb =
1
2

[((va − vc)σuu + (uc − ua)σuv)
u
|u|

(5.9)

+ ((va − vc)σuv + (uc − ua)σvv)
v
|v|

]

Fc =
1
2

[((vb − va)σuu + (ua − ub)σuv)
u
|u|

+ ((vb − va)σuv + (ua − ub)σvv)
v
|v|

]

This model was validated with a ”virtual” tensile test in [104]. For a
strain up to 50%, the accuracy was better than 1% when measuring
along arbitrary directions.
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5.3.2. Numerical Integration

The output of the particle model described in the last Section are
the forces Fi in each particle. By using Newton’s equation of motion
Fi = mi · ẍi and one, respectively two integration steps, the particle
velocity ẋi and position xi of the next time step are calculated. For this
integration, the semi-implicit Euler method of the first order was used
(Equation (5.10)). As in this thesis a static simulation was performed
where computation time is not critical (not real-time), the choice of the
integration method was not crucial. For better readability, the subscript
i was removed:

ẋt+dt = ẋt +
1
m
· F (xt, ẋt) · dt (5.10)

xt+dt = xt + ẋt+dt · dt,

where m is the particle mass. In comparison to the explicit Euler
method, the ”new” velocity ẋt+dt is used to calculate the ”new” posi-
tion xt+dt. Explicit Euler: xt+dt = xt + ẋt · dt. If computation time is
not an issue, the accuracy can be improved by reducing the time step
dt.

5.3.3. Collisions

So far, the particle model (Section 5.3.1) and the subsequent numerical
integration (Section 5.3.2) were described. However, the body model
is not included so far: The garment would neither stop at the body
model nor would it be influenced by the garment itself. Therefore, so
called ”collision detection” is required to restrict the garment to stay
”outside” the body model. Typically, two types of collisions are added
to the model:

• Self collisions are collisions of the clothing with itself, e.g. wrin-
kles (see Fig. 5.8). Self collisions are not an issue when modelling
a tight-fitting clothing and were, therefore, neglected.

• Collisions between the garment and the body model (see
Fig. 5.9) need to be considered in order to achieve an interaction
between the body and the clothing. If neglected, the garment
would ”fly” through the body model.

In order to eliminate collisions, two methods are described in liter-
ature [29]:
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body model

garment

Figure 5.8. Self collision: ”Collision detection” methods avoid clothing from

intersecting with itself in simulations.

body model

garment

Figure 5.9. Penetration of the garment into the body model is prevented

by using ”collision detection”.

• Mechanical and dynamic reactions: After a collision, the
forces of the particles are adapted, e.g. using a repulsive force
between the particle and the surface of the body [16].

• Geometric reactions: Position and velocity of the particle are
directly changed in order to simulate the effect of a collision [53].

In the case of a mechanical reaction, a force function has to be de-
fined which increases with a decreasing distance between the particle
and the surface of the object. This ensures that the particle is pushed
back when approaching the skin, preventing a penetration. However,
large forces emerge when the clothing is close to the skin which de-
creases the numerical stability of the simulation. Therefore, a geometric
approach was implemented:

Similar to [53], in each time step and for each particle, it is verified
whether the particle crossed the body surface during the last time step.
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If the line between the actual position xt and the position of the parti-
cle in the last time step xt−dt intersects with the human body surface,
there was a collision in the last time step. In the case of a collision, the
particle is temporarily set back to the position p where it penetrated
the body (see Fig. 5.10(a)) and the velocity is recalculated so that an
elastic impact results. The components −→n and

−→
t of this new velocity

−→v t,new can be damped separately. A damping of the tangential veloc-
ity
−→
t simulates friction between the textile and the human body. The

normal component −→n was completely damped (set to zero) in our im-
plementation in order to prevent instabilities (a bounce back can cause
oscillation and cause instability). The new position xt,new can then be
calculated by adding the new velocity −→v t,new to the penetration point
p.

p

xt-dt

xt

n

t

xt,new

vt,new

(a)

p

xt-dt

xt

xt,newvt,new

q

nq

(b)

Figure 5.10. Fig. 5.10(a): When a collision is detected, the particle is

temporarily set back to position p and a new velocity −→v new is calculated

assuming a perfect elastic impact, so that the new position of the particle is

xt,new. Fig. 5.10(b): If the new position xt,new is still inside the body, xt,new

is shifted to position q.

In a second step, it is verified whether the penetration into the body
could be prevented and the new position xt,new is outside the body. This
is done by looking for the closest point to xt,new on the surface (q, see
Fig. 5.10(b)) and checking the direction of its normal vector −→nq (An
angle between −→nq and xt,newq of less than 90◦ means that the particle
is inside the body. Otherwise it is outside.). If the particle is still inside
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the body, it is set to position q. This approach can be summarized as
follows:

1. ∀ particle, if xt−dtxt ∩ body surface 6= ∅

• −→v t,old +−→n =
−→
t , −→v t,new = a · −→t + b · −→n , where a and b are

damping factors of the tangential and normal component
respectively

• −→x t,new = −→p +−→v t,new · xtp|−→v t|

2. if −→v t,new · −→n q < 0

• xt,new = q

5.3.4. Sewing

Inspired by the real assembly of clothing, simulated garments are built
by ”stitching” several sewing patterns together: The patterns are ar-
ranged around the body model and external forces are defined at the
border of the patterns so that always two particles approach each other
(see Fig. 5.11). One can imagine these forces to be caused by virtual
elastic threads. As soon as the seams are closed, the particles are defined
to stay together for the remainder of the simulation.

There are several methods for garment sewing (e.g. [103]), however,
these methods were designed for nonelastic clothes. In the approach

(a) (b)

Figure 5.11. Sewing of the patterns. A virtual force is defined between

corresponding particles.
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of Volino et al. [103], forces are applied to the border particles. This
works fine when the textile is nonelastic. However, if applied to elastic
garments, a stabile simulation could only be achieved by cumbersome
fine-tuning of the parameters. The following problems appeared:

• Simulation became instable: The forces steadily increased un-
til they were larger than the forces in the clothing. This caused
the corresponding particles at the seam approaching each other.
However, when the seam was closed, the force was still larger than
in the garment and was only slowly damped. This resulted in a
overshooting of the particles or in instability.

• Seam never closed: The forces never became large enough to
overcome the elastic forces of the clothing, so that the seam did
not close.

Hence, an algorithm was implemented which manipulates directly
the velocities of the particles. The algorithm works in two phases:

1. Calculate velocity correction: A velocity correction
−→
dẋ is

added to the velocities of two particles a and b which are sewn
together. This correction is calculated as

−→
dẋ =

−→
dx

dt ·N
, (5.11)

where
−→
dx is the vector between particles a and b (xb−xa) and dt

is the duration of one iteration step. Parameter N is the number
of time steps which is used to close the seam. This number is
continuously decreased during the simulation.
The velocity correction is then added to the current velocity of
particle a and subtracted from the velocity of particle b.

2. Keep common position: As soon as the distance between par-
ticles a and b is below a certain limit, these particles change to a
second phase. The goal of this phase is to keep the common posi-
tion. This is done by manipulating the velocity and the position
of the particles:

velocity: The mean velocity of two corresponding particles a and
b is calculated by weighting the velocities with their masses
ma and mb:

−→̇
x a,b,mean =

ma ·
−→̇
xa +mb ·

−→̇
xb

ma +mb
(5.12)
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This velocity is applied to both particles a and b.

position: Particle a is set to the position of particle b and vice
versa. Thereby, the patterns first overlap, however, this is
balanced during the next iterations as larger internal forces
result. That way, the particles converge to a common posi-
tion.

5.3.5. Fix Points

With the procedure described so far, the patterns are not attached to
the body model at all. Therefore, the textile will converge so that it is
not stretched in vertical direction. It can even happen that the patterns
move upwards until the body model is undressed (e.g. when the arms
show upwards) as this minimizes the force in the patterns. This can
be prevented by attaching the textile at the waistline and the arms as
shown in Fig. 5.12. Additionally, one particle at the shoulder and armpit
respectively was fixed. This prevents the result to strongly depend on
the initial placing of the patterns which can happen as particle models
look for a local and not a global solution.

Figure 5.12. Points where the patterns were attached to the body model.

The fixation at the sleeves and the waistline was added to prevent slipping,

at the shoulder and the armpit to be independent of initial conditions.

The fixation was realized by manipulating the velocities similar to
the approach described in Section 5.3.4 with the difference that point b
is a fix point on the body model and, therefore, has no velocity assigned.
This implies that the second step ”keep common position” was changed
to setting the velocity of particle a to zero and the position to xb. Point
b of the body model was not changed.
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5.3.6. Other Forces

5.3.6.1. Gravitation

In general, gravitation has only a minor influence on the strain in a
textile. This influence increases with a higher elasticity (smaller Young’s
modulus E) or a bigger self-weight of the textile. The force acting on
a particle i can be calculated as

FGi = mi ·G, (5.13)

where G is the gravitational constant G = (0, 0,−9.81)ms2 and mi the
mass of particle i. The force FGi was added to the force in each particle.

No influence was observed in the results when adding FGi so that
the gravitation was not considered in the model.

5.3.6.2. Mechanical Damping

Mechanical damping works against the movement of the particle and
depends on the velocity ẋi of the particle:

FDi = −D · ẋi (5.14)

When using mechanical damping, the system can reduce kinetic energy,
which e.g. helps reducing periodic oscillations. This increases the sta-
bility of the model, however, does not alter the result. FDi was added
to the force in each particle.

5.3.6.3. Bending Forces

Bending forces have been neglected in the described model as they
do not influence the result when the clothing is tight fitting. These
forces are only important when looking at wrinkles and the dynamic
behaviour of loose fitting clothes.

5.4. Simulation Process

5.4.1. Input

Body model The preparation of the body model was described in
Section 5.2. Using this animated body model, different body pos-
tures were created and utilized as an input to the cloth simulation.
As the cloth simulation described in the last Section 5.3 does not
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require a closed mesh (dependent on the collision method), the
”holes” at the arms and the hip were left open.

Pattern To simulate strain in a shirt (upper body), six pattern parts
were used: a front part, a back part and a front and back piece
respectively for both sleeves. These patterns were prepared once
in a pre-processing step using 3ds Max : 1) In a first step, the
border line of the pattern was defined (e.g. by importing a photo-
graph of a real pattern and tracing its border). 2) A mesh of the
area defined by the border line was created. The mesh consisted
of triangles as this was required by the particle model described
in Section 5.3.1. It was important to make sure that border lines
which were sewn together had the same number of border parti-
cles, such that a unique seaming was possible. This was realized
by defining equidistant points on the border lines before build-
ing the mesh (see Fig.5.13). In Table 5.1, the number of particles
and triangles of each pattern are given. The single mesh elements
(triangles) had a side length of about 1.5cm.

Figure 5.13. Border line of a pattern with defined equidistant points. This

information was used for building a mesh of the pattern.

In a next step, the patterns were arranged around the body model
(see Fig. 5.14), so that the body model was inside the clothing
when closing the seams. Attention had to be paid to keeping
the patterns in the x-y-coordinate plane as the particle model
described in Section 5.3.1 assumes the initial pattern to be limited
to two dimensions. Therefore, the patterns should not be rotated.
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Table 5.1. Number of particles and triangles of the used meshes.

pattern number of particles number of triangles
front 780 1442
back 777 1446

right sleeve front 320 589
right sleeve back 288 526
left sleeve front 320 589
left sleeve back 292 534

Figure 5.14. Initial arrangement of the patterns.

Define seams and fix points As a last input, the seams and the fix
points were indicated. The seams were defined by specifying pairs
of particles to be sewn together. For the fix points, the border
points to be fixed were indicated together with the point on the
body model where it was attached to.

5.4.2. Simulation

In Fig. 5.15 the data flow during the simulation is shown. The trape-
zoidal boxes are the inputs described in Section 5.4.1, square boxes are
functions in the simulation program.

The simulation starts with applying external forces (e.g. gravita-
tion) and adds to these external forces the internal forces which are
calculated according to the particle model described in Section 5.3.1
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Figure 5.15. Data flow during the simulation.

by using the current strain. This is followed by a numerical integration
(Euler, see Section 5.3.2) of the forces which results in new velocities
and positions of the particles. The new positions are then tested for
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collision with the human body model (see Section 5.3.3). In a last step
the sewing and fix points are applied to the particles (see Section 5.3.4).

This sequence is repeated until the seams are closed plus a user
defined number of follow up steps in order to let the textile approach the
body and balance the forces in the garment. In the simulation results
presented in this thesis, 500 follow up steps were used which turned out
to be more than sufficient. Other constants used in the simulation are
summarized in Table 5.2. The parameters do not have an influence on
the result but need to be tuned in order to get a stable simulation. Also
they are related to each other, e.g. if the Young’s modulus is increased
by a factor k, the time step has to be decreased by

√
k for the simulation

to remain stable (as x ∼ F · dt2 ∼ E · dt2 using Equations (5.10) and
(5.9)).

Table 5.2. Constant parameters used for the simulation.

Parameter Value
Gravitation neglected

particle mass 111µg
Young’s modulus 200 mN

mm2

time step 7.7µsec
poisson coefficient 0.0

damping 25· time step (192.5 kg
sec )

5.4.3. Calculation of Strain

The output of the simulation are the deformed patterns (front, back,
four sleeve parts) (see Fig. 5.15). The body model is not altered.

In a last step, the strain in the back pattern is calculated1. This
is done the same as in the particle model (Equations (5.2) to (5.5)),
taking the upright ”normal” posture (Fig. 5.2) as the undistorted mesh
and the animated as the deformed one.

In Fig. 5.16 some examples are shown (bending forward, holding
arms forward, lifting shoulders). The strain is calculated in horizontal
and vertical direction.

1The strain is calculated in the back pattern only as the focus of this thesis is
to measure upper body postures. Of course the strain in the other pattern can be
calculated accordingly.
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5.5. Results

The simulation results shown in Fig. 5.16 were compared to the ref-
erence measurements described in Section 2 (see Fig. 5.17). To allow
a better comparison, the border of the simulated region was added in
Fig. 5.17.

When comparing e.g. the bending forward posture (Figs. 5.16(a)
with 5.17(a)), the strain patterns look similar: They both have a strain
in horizontal direction in the upper back region and a vertical strain in
the lower back. The strain values in the lower back are similar, however,
in the upper back they differ by about 5% (20% in the simulated versus
15% in the reference measurement). As it was not verified whether the
postures of the simulated and the real person were exactly the same, it
is assumed that this difference in the strain value is caused by slightly
different postures. The difference of 5% strain in the upper back in
horizontal direction can be explained by a stronger forward movement
of the shoulders in the model.

In the example where the arms are hold forward (Figs. 5.16(b) and
5.17(b)), the absolute strain values in horizontal direction are the same
(20%) in the simulation and the measurement. However, there is a
difference of about 10% in strain in vertical direction at the sides of the
body.

When lifting the shoulders (Figs. 5.16(c) and 5.17(c)), the strain in
vertical direction is about 10% in the simulation as well as in the mea-
surement. In horizontal direction, there is strain of zero and smaller in
both patterns. The negative strain is larger in the measurement, how-
ever, as the strain sensor cannot measure negative strain, this difference
is not relevant.
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(a)

(b)

(c)

Figure 5.16. Calculated strain distributions for bending forward

(Fig. 5.16(a)), holding arms forward (Fig. 5.16(b)), and lifting shoulders

(Fig. 5.16(c)). Strain in horizontal direction is shown on the left, strain in

vertical direction on the right.



5.5. Results 71

(a)

(b)

(c)

Figure 5.17. Measured strain distributions with the optical method de-

scribed in Section 2 for bending forward (Fig. 5.17(a)), holding the arms

forward (Fig. 5.17(b)), and lifting the shoulders (Fig. 5.17(c)). Strain in hor-

izontal direction is shown on the left, strain in vertical direction on the right.

Overlayed is the border of the simulated pattern so that the strain can be

better compared to Fig. 5.16.
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5.6. Conclusions

In this Chapter a simulation method was shown to calculate the strain
distribution in a tight-fitting clothing. Six pattern parts were used to
cover the upper body - a front part, a back part, and four sleeve parts
(a front and a back piece for each arm).

A particle model published by P. Volino [104], which was originally
designed for simulating loose-fitting clothing, was used. With some ad-
justments in the seaming process, the model was adapted to be used
for tight-fitting clothing.

By comparing the simulation results to the reference strain mea-
surement described in Section 2, it was shown that the strain patterns
were similar, however, that the absolute strain values differed up to
10%. We assumed that the postures were not exactly the same as this
was not ensured.



6
Optimization of

Sensor Placement

Finding sensor positions leading to a maximal recognition
rate is important when designing a strain sensitive gar-
ment for detecting different body postures. In this Chapter,
a method is shown to find the most relevant sensor positions
on the back. The analysis is based on the simulation results
presented in the previous Chapter 5.
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6.1. Introduction

When recognizing body postures by using the strain values of textile
integrated strain sensors, the positioning of the sensors is important to
achieve a high recognition rate. Two methods are presented to find the
most relevant sensor positions. The methods are based on the simula-
tion results shown in the previous Chapter and are shown exemplarily
for one example.

6.2. Methods

The problem of finding an optimal set of sensors can be regarded as a
feature selection problem with the features being the simulated strain
values (∼1500, 777 strain values in horizontal and 777 in vertical direc-
tion, see Table 5.1). From this feature set, the best ones (best sensor
positions) should be determined.

There exist many different feature selection methods which can be
categorized into two different approaches: Filter and wrapper methods
[58]. The basic difference is the goal of the optimization. Filter methods
optimize the features - they choose the features with the best quality
measure - whereas wrapper methods optimize the system as a whole
(classification result). They try to find those features which lead to the
best classification result.

• Filter Methods: Filter methods rate each feature independent
of the subsequent classification. The features with the highest
rating are selected. Filter methods can be split into three methods
[83]:

1. Max-Dependency: Find a feature set S with m features xi,
which jointly have the largest dependency on the target class
c.

2. Max-Relevance: Each feature is rated individually without
considering the other features. This approach has the draw-
back that several highly correlated ”good” features can be
selected although they give no additional information. Ex-
amples are Mutual Information, ANOVA, Kruskal-Wallis.

3. Min-Redundancy: Additionally to an individual rating, the
correlation between the features is considered. Therefore, the
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concurrent selection of highly correlated features can be pre-
vented. An example is the Mutual Information Feature Se-
lection (MIFS) Algorithm.

• Wrapper Methods: Wrapper methods select a subset of fea-
tures depending on the classification result. Therefore, they use a
search algorithm to find a feature set leading to an optimal clas-
sification result. This method optimizes over the whole search
room, however, depending on the search algorithm, not neces-
sarily the global optimum (maximal recognition rate) is found.
Examples for search algorithms are the Genetic Algorithm (GA)
and Simulated Annealing.

In this thesis, a filter and a wrapper method were used for op-
timizing the sensor positions. For the filter method, the MIFS algo-
rithm was used which includes the correlation between features (Min-
Redundancy). Including the correlation is necessary for this problem as
neighbouring sensors are highly correlated. For the wrapper method, a
Genetic Algorithm was used.

6.2.1. Input Data for the Optimization

For optimizing the sensor positions, simulated data as described in
Chapter 5 was used. The strain pattern of ten different body postures
was calculated. The used body postures and the strain patterns are
visualized in Appendix B.

For a given posture, the simulation resulted in a unique strain pat-
tern (also in several runs). Therefore, one data set was available per
posture (class) and noise was added to simulate variation in the data.
An equally distributed noise of±5.5% was added. This value was chosen
as the total mean error of the sensor was ±5.5% as shown in Chapter 3.
The biggest portion to this amount of error was caused by the hystere-
sis and the dependance on the strain rate as can be seen in Fig. 3.8.
If an equal distribution of the strain rate is assumed, every path in
Fig. 3.8 is passed equally often and also the recorded resistance values
for a given strain appears approximately equally frequent. Therefore,
an equal distribution of the noise was selected. After adding the noise,
negative strain values were set back to 0% as the physical strain sensor
cannot measure negative strain. In order to prevent problems in the
subsequent calculations (when setting values to zero, a mean and stan-
dard deviation of zero is possible causing problems in the Näıve Bayes
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classification (Equation 4.1)) normally distributed noise was added to
the zero values.

That way, an additional set of 99 strain patterns was generated for
each posture, resulting in 100 samples per posture. Therefore, a total of
1000 samples was used for the optimization, equally distributed among
the ten classes. This data set was used for both optimization methods
(MIFS and GA).

6.2.1.1. Data Reduction

For the Genetic Algorithm it turned out that using all 1500 features
resulted in a computationally expensive algorithm. The reason was
probably a weak optimum so that the algorithm converged slowly. Ad-
ditionally, a time-consuming leave-one-out cross-validation1 was used.
Therefore, the data was reduced. In Section 7.2, it will be shown that a
shift in the sensor positioning of up to 11cm reduced the classification
result by less than 3%. This small drop indicates that taking an equally
distributed subset of the sensors is valid.

For reducing the data, neighbouring sensor positions on the back
were combined. This was realized by selecting an equally distributed
subset of the potential positions (see Fig. 6.1). To each original sensor
position pi, the closest position of the subset was assigned building
virtual regions around each point of the subset. The mean strain value of
each region was then assigned to the position of the subset. Thus, beside
data reduction, this step also filtered the data. The data reduction can
be summarized as follows:

1. Select an equally distributed subset si of the sensor positions pi.

2. Assign each potential sensor position pi to the closest subset sen-
sor position si.

• For each pi find the closest si
• Assign pi to the closest si: Si = {Si, pi}

3. For each si, the mean strain value of all assigned sensor positions
pk is calculated: strainsi = 1

size(Si)

∑size(Si)
k=1 strainpk

1leave-one-out cross-validation: The data is split into (n − 1) training and one
test sample where n is the number of samples. Every sample is used once for test-
ing so that n classification steps are necessary. In a last step, the mean of the n
classification results is taken.
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Figure 6.1. The reduced set of potential sensor positions (si, shown in red)

is shown in relation to the total set of simulated positions pi.

In Fig. 6.2, the sensor numbers of the subset are shown for further
reference.

Note: The data reduction was applied before adding noise (directly
to the 10 simulated postures), in order not to refilter out the noise.
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Figure 6.2. The defined sensor numbers of the reduced set of potential

sensor positions are shown. The numbers shown in Fig. 6.2(a) represent the

sensors in horizontal direction, in Fig. 6.2(b) the ones in vertical direction.

6.2.2. Mutual Information Feature Selection (MIFS)

MIFS is a feature selection algorithm which examines the informa-
tion value of the feature and also considers the correlation between
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the features [17]. This should prevent the selection of similar (highly
correlated) features.

The information value of each feature is calculated using mutual
information. The mutual information between a class and a feature is
calculated as

I(c, f) = P (c, f)log(
P (c, f)
P (c)P (f)

), (6.1)

where P (c) is the probability of a certain class c, P (f) is the probability
of feature f , and P (c, f) is the joint probability of f and c. Using I(c, f),
the mutual information of a feature f can be calculated by summing
(discrete case) over all classes c (the set of all classes c is defined as C):

I(C, f) =
∑
c

I(c, f) (6.2)

From this value, the weighted Mutual Information (MI) between
the feature and all already selected features is subtracted which is cal-
culated as

I(Fs, f) =
∑
fs

I(fs, f), (6.3)

where fs is one selected feature and Fs are all selected features.
The features with the highest weighted difference between Equation

(6.2) and (6.3) are selected according to the following procedure [17].
This is called MIFS algorithm.

1. F is a set of all features, Fs a set of the selected features (empty
at the beginning).

2. Calculate I(C, f) for each feature f ∈ F .

3. Find the first feature:

• Find f which maximizes I(C, f).

• Remove f from F : F = {F¬f}
• Add f to Fs: Fs = {Fs, f}

4. Find further features:

• Calculate I(f, Fs) for all f .

• Find f ∈ F which maximizes I(C, f)− β · I(Fs, f)

• Remove f from F : F = {F¬f}
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• Add f to Fs: Fs = {Fs, f}

5. Repeat step 4 until the number of required features is selected.

β is a weighting factor of the correlation between the features. The
bigger β, the more is the MI penalized by the correlation between the
features. In literature, β is usually chosen between 0 and 1. For the
results described in section 6.3.1, a β of 0.4 was used.

6.2.3. Genetic Algorithm

The Genetic Algorithm was first mentioned in 1975 by Holland [52].
Since then it has evolved to a popular search algorithm which is classi-
fied as a global search heuristic. As indicated by its name, the algorithm
was inspired by the principle of natural evolution:

• The information to be optimized is coded in a gene-like string of
ones and zeros,

• and ”child” populations emerge by inheritance, mutation, selec-
tion, and crossover.

The fittest children survive and can build new populations. With
this principle, the population gradually improves until an optimum is
reached. The decision of who survives is based on a fitness function
which can be an arbitrarily chosen function. In the present problem
of sensor position optimization, the fitness function was chosen to be
the recognition rate of the body postures (Näıve Bayes classifier (Equa-
tion 4.1) with a leave-one-out cross-validation where each sample was
once used for testing) corrected by the weighted number of selected
sensors [88]. This correction was added for the GA to select a minimal
set of sensors. The weighting factor was chosen as 0.01 so that a good
classification result was preferred over a minimal set of sensors:

”fitness = leave-one-out classification result - 0.01 * number of se-
lected sensors”.

The Genetic Algorithm has some major advantages over other
search algorithms:

• By looking at populations, the algorithm works in parallel on a
set of potential solutions. Therefore, the chance of finding a global
maximum is increased.
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• Beside a fitness function, no other additional information is re-
quired.

• GAs use probabilistic transition rules [46], contributing to the
algorithm’s robustness.

A weakness of the GA is that it can converge to a local maximum.
Once converged, the population can only find better solutions by mu-
tation (random search) which scans the search space slow compared to
inheritance and crossover of populations [23].

Genetic Algorithms have quite a big number of parameters one can
influence. However, the mechanism of a GA is so robust, that in our
analysis the result was stable for a wide range of parameters. Therefore,
the choice of parameter was not a crucial factor. In this thesis, the
following parameters were used (only the most important parameters
are shown):

number of individuals: In each generation step, the population size
was 60 individuals.

number of generations: 70 generation steps were performed.

method for crossing: In each generation step, the crossing between
individuals was performed with a ”mask”-method. This means
that a random mask (containing ones and zeros) was generated
of the length of an individuum. Wherever the mask contained
a one, the genes of one parent individuum were taken, where it
contained a zero, from the other parent.

reinsertion method: In order to prevent loosing good individuals,
usually the best parent individuals survive (instead of only the
children). There are different methods whereas in this thesis the
”(µ + λ) - strategy” was used. This is a method where all indi-
viduals of the parent and the child population are put together
and the best half is chosen for further inheritance.

mutation rate: The mutation rate was chosen such that on average
one gene per individual and generation was mutated.

Further information about Genetic Algorithms can be found in [46].
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6.3. Results and Discussion

6.3.1. Mutual Information Feature Selection

In Fig. 6.3, the selected sensor positions are shown when selecting the
best 4, 6, 8, and 10 features according to MIFS. From this it can be
seen that the sensors in the armpit region in horizontal and vertical
direction are the most relevant ones (see Fig. 6.3(a)). When selecting
more sensors, sensors in vertical direction on the side of the body are
selected additionally to the ones in the armpit region (Fig. 6.3(b)). For
the results in Fig. 6.3, a β of 0.4 was used.
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Figure 6.3. Result of the MIFS algorithm (β = 0.4) when selecting 4, 6,

8, and 10 sensor positions ((a), (b), (c), and (d) respectively). Therefore,

the sensor positions in the armpit region are the most relevant ones (see

Fig. 6.3(a)).
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Using the selected best sensor positions, a classification was per-
formed based on the data described in Section 6.2.1. In Fig. 6.4, the
recognition rates for different β and number of sensors are shown us-
ing a Näıve Bayes classifier (Equation 4.1) with a leave-one-out cross-
validation. This Figure shows that with the first four selections, a fast
improvement of the recognition rate is achieved. After that, the im-
provement slows down until with 10 sensor positions a recognition rate
of almost 100% is achieved for all β between zero and one. For more
than 10 sensor selections, the recognition rate remains at 100% except
for a ”beta” of one where a small decrease can be noticed. The reason for
this decrease is an overvaluation of the correlation between the features
meaning that minimizing the correlation between features is weighted
more than a ”good” feature with a high Mutual Information. Selecting
features with a low information value can lower the recognition rate.
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Figure 6.4. Recognition rates for different β and number of sensors.

6.3.2. Genetic Algorithm

The Genetic Algorithm was applied 60 times (60 runs) to the reduced
data set described in section 6.2.1. The improvement in the recognition
rate is shown in Fig. 6.5 for 10 exemplary runs. From this plot it can be
seen that a fast improvement is achieved: After about 20 generations,
all runs achieve an optimal result of 100% recognition rate.

The result of the Genetic Algorithm was not ONE optimal result,
but different combinations of ”good” sensors. In Fig. 6.6, the number of
occurrences of each sensor position over all 60 runs are shown whereas
the numbers on the x-axis corresponds to the sensor numbers shown
in Fig. 6.2. It is apparent that five sensor positions (5, 46, 53, 85, and
95) are selected in almost all runs. Additionally to these five sensors,
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Figure 6.5. Improvement of Genetic Algorithm (ten example runs). The

algorithm improved quickly in the first 10 generations.

a varying set of other sensors is chosen in order to achieve the 100%
recognition rate. In Fig. 6.7, all selected positions are represented by
a red (horizontal measurement direction) and green (vertical measure-
ment direction) point. The cumulative number of selections of each
position is encoded in the size of the points.

From these plots, the relevant sensor positions can be determined:

• In horizontal direction, the most important sensor positions
are in the middle level of the back, particularly on both sides of
the body close to where the sleeves are attached.

• In vertical direction, two distinct positions are on both sides in
the armpit region. Additionally, it is also important to measure
in the lower back region (lowest row of sensors).

In Fig. 6.8, the different selected combinations of sensor positions
are shown for 60 runs of the GA. From this it can be seen that some
sensor positions complete one another, meaning that often at least one
of them is selected. This indicates, that there is no perfect position but
good sensor regions as it was implicitly assumed in Section 6.2.1.1 when
the data was reduced. Examples of such completing sensor positions are
shown in Table 6.1.

In Fig. 6.9, the recognition rate for a varying amount of most fre-
quently chosen sensor positions is shown. It can be seen that with
five and more sensors, an almost perfect classification result can be
achieved.
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Figure 6.6. This plot shows the number of selections of each sensor position

(corresponding to the numbers introduced in Fig. 6.2) during 60 runs of the

GA.
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Figure 6.7. All selected sensor positions by the Genetic Algorithm during

60 runs. The size of the points corresponds to the number of selections. In

Fig. 6.7(a), the selected sensors in horizontal and in Fig. 6.7(b) in vertical

direction are shown.
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rithm. The numbers on the y-axis represent the sensor positions as shown in

Fig. 6.2. The red line splits the sensors arranged in horizontal direction (1-49)

from those in vertical direction (50-98). Along the x-axis, different runs of

the GA are shown.

Table 6.1. Sensor positions where often at least one of them was selected

and their occurrence (in %) in 60 runs of the GA.

Sensor numbers Appearance during 60 runs (in %)
4, 5 98.3

46, 47 95
53 - 55 93.3
95, 96 95
50, 85 96.7
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Figure 6.9. Recognition rate when selecting the best x sensors.

6.4. Conclusions

When comparing the results of the MIFS and the GA algorithm, they
were quite similar. Both of them found the most relevant sensor po-
sitions to be in the armpit region, in both - horizontal and vertical -
direction. Therefore, both of them can be used for optimizing the sensor
positions on a strain sensitive clothing. However, there are also some
differences and restrictions for each method:

MIFS MIFS reached the highest possible recognition rate, however,
the quality of the result depends on the choice of β: If β is chosen
”too large”, uncorrelated sensor positions are selected (including
”bad” positions) which can lead to a decrease in the recognition
rate after a first increase. If β is chosen ”too small”, correlated
sensors are selected such that the sensor set is not minimal. These
effects were not very distinct in the presented results (see Fig. 6.4)
as the sensor set was reduced to 98 positions before selection (see
Section 6.2.1.1). With the original 1500 positions, these effects
can be better seen (see Fig. 6.10).
In return, the MIFS was computationally fast (The MIFS used
about ten seconds on a Pentiumr4 CPU 2.8GHz, the GA 20
hours on a Sun Fire X4600 2.8GHz. Both implementations were
not optimized for speed.).

GA The GA always found a result with 100% recognition rate. Adding
the corrections to the fitness function as described in Section 6.2.3
reduced the selected number of sensors by a factor of about two
to three (the number of selected sensors decreased from around
20 to 30 down to 10) while keeping the 100% recognition rate.
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Figure 6.10. Recognition rate using MIFS when applying it to the original

feature set of 1500 sensor positions.

From this result, the number of sensors could further be reduced,
however, resulting also in a slightly lower recognition rate (trade-
off). With 5 sensors, a recognition rate of 98.4% was achieved (see
Fig. 6.9). When further reducing the number of sensors, a large
drop was found (92.6% for 4 sensors). Hence, at least five sensors
should be used in order to achieve a high recognition rate.
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7
Sensitivity Analyses

using Simulated
Strain Patterns

In the previous Chapter, an optimal set of sensors was de-
termined for one subject leading to recognition rates of al-
most 100%. However, what happens if the sensors are placed
differently, one of the sensors fails, or the shirt moves? Does
the method of recognizing the body posture with a strain sen-
sitive garment still work for a person with different body
proportions? These questions are answered in this Chapter.
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7.1. Introduction

In this Chapter, several sensitivity analyses are presented to show the
robustness of recognizing the body posture with a strain sensitive gar-
ment. In Section 7.2, the sensitivity of the sensor placement is analyzed.
This is followed by an analysis on the influence of sensor failures on the
classification result (Section 7.3). One of the major issues when using
a strain sensitive clothing is a good fixation of the clothing at the arms
and the hip. In Section 7.4, an upwards shift of the garment at the
waist level is analyzed. In the last Section 7.5, it is shown whether the
method of recognizing the body posture with a strain sensitive garment
works for a person with different body proportions.

For the analyses, a small (5 sensors, Fig. 7.1(a)) and a large (20
sensors, Fig. 7.1(b)) set of sensors was used. The positions are the 5,
respectively 20 best sensor positions according to the Genetic Algo-
rithm (see Section 6.3.2).
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Figure 7.1. Best sensor positions according to the Genetic Algorithm (see

Section 6.3.2). In this Chapter, the 5 (Fig. 7.1(a)) and the 20 (Fig. 7.1(b))

best sensor positions were used.

The same data as described in the Section 6.2.1 was used: The
data set included 1000 samples from ten different posture classes (100
samples per class). In all examinations of this Chapter a Näıve Bayes
classifier (Equation 4.1) was utilized to categorize the data.

For better comparison of the different influence factors, the relative
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change of each analysis was calculated:

relative change =
cr(original)− cr(adapted)

cr(orignal)
, (7.1)

where cr(original) is the classification result of the original analysis,
and cr(adapted) the classification result when one of the parameters is
changed.

7.2. Sensitivity of Sensor Placement

7.2.1. Method

With the Genetic Algorithm, the optimal sensor positions were cal-
culated (see Section 6.3.2). However, it is not clear how accurate the
sensors need to be placed on the garment in order to achieve the ”best”
possible recognition rate. Therefore, the influence of the sensor place-
ment on the classification result was analyzed. For this analysis, the
five best sensors were used (see Fig. 7.1(a)). Each of the sensors was
shifted separately between 1cm and 11cm, while the other sensors were
held constant. They were shifted in eight directions (see Fig. 7.2, x1 -
x8). Where possible, the strain value at these positions was calculated
by interpolation (less directions were used for border points) and the
classification results were determined. A leave-one-out cross-validation
was used, using the shifted sensor values for training and testing. In a
last step, the mean value of these classification results was taken:

sensor shift [cm]

x1
x2 x3

x4

x5x6

x7

x8

s

Figure 7.2. Positions where the sensor was shifted to (x1 - x8). The shift

was varied between 1cm and 11cm.
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mean recognition rate =
1
n

n∑
i=1

cr(xi), (7.2)

where n is the number of neighbours, cr the classification result when
using the shifted sensor position xi.

7.2.2. Results and Discussion

In Fig. 7.3, the classification result is shown in relation to the shift in the
sensor placement. It can be seen, that even a quite large shift of 11cm
causes a drop in the recognition rate of less than 3% (relative change
of 0.03) when using a Näıve Bayes classifier to distinguish between ten
postures. These results show that the influence of the exact positioning
has a much lower influence on the classification result compared to
other effects (e.g. shift of the shirt as presented in Section 7.4). This
indicates that the positioning of the individual sensors is not the most
limiting factor.
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Figure 7.3. Recognition rate when shifting the sensor position. The sensors

shown in Fig. 7.1(a) were shifted (sensor numbers 5, 46, 53, 85, and 95 in

Fig. 6.2).

7.3. Effect of Sensor Failure on Classification Result

7.3.1. Method

Although the sensors worked reliable during usage (Chapters 3 and
4), it can happen that they fail. One of the main reasons is an over-
stretching of the sensor: If the sensor is stretched to more than 80%,
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the probability of breaking increases. A second reason is the connec-
tion between the sensor and the textile thread (see Fig. 3.2(b)): It can
happen that cracks appear in the conductive glue causing a failure of
the connection. Out of this reason, the effect of sensor failures on the
classification result was analyzed. This was done on the 5 and 20 best
sensors (see Fig. 7.1). All combinations of sensor failures were consid-
ered resulting in 31 combinations

number of combinations =
n∑
k=1

(
n
k

)
(7.3)

for the 5 best sensors (n = 5), respectively 1’048’575 for the 20 best
sensors (Equation 7.3, n = 20). The mean, standard deviation, and
minimal and maximal values of the classification results were calcu-
lated.

Two different classification strategies were performed:

1. The reduced set of sensors was used for training and testing
(leave-one-out cross-validation). This simulates the case when the
shirt is retrained after a failure showing whether the shirt can still
be used with the broken sensor(s) without any replacement.

2. The training was performed on the sensor set without any failures,
the testing on the reduced set while the strain value of broken sen-
sors was set to zero. Setting sensor values to zero was done under
the assumption that broken sensors can be recognized. Training
on the full set and testing on the reduced sensor set corresponds
to the more realistic case (than 1.) of a sensor failure during usage
and no retraining of the shirt.

7.3.2. Results and Discussion

In Figs. 7.4 and 7.5, the mean recognition rate, its standard deviation,
and the minimal and maximal recognition rates are plotted against
the number of failures. In Figs. 7.4(a) and 7.5(a), the five best sensor
positions are used for the analysis while the 20 best sensor positions
are employed in Figs. 7.4(b) and 7.5(b).

The last data point in these Figures always has a value of 10%. The
reason is that a classification with zero sensors (all failed) leads to a
random recognition resulting in 10% correct classifications (10 classes).

The analysis in Fig. 7.4 shows the results when the reduced set
of sensors is used for training and testing. It can be seen, that the
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Figure 7.4. The mean recognition rate, its standard deviation, and the

minimal and maximal recognition rates are plotted against the number of

failures. The reduced set of sensors was used for training and testing. In

Fig. 7.4(a), the five best sensor positions were used for the sensor failure

analysis, in Fig. 7.4(b) the 20 best sensor positions.

recognition rate drops fast when five sensors are used (Fig. 7.4(a)): The
first failure causes a drop of 3.6% in recognition (from 98.4% to 94.8%),
the second failure a drop of another 9% (94.8% to 85.8%). This means
that when using five sensors, each sensor is important. On the other
side, when a set of 20 sensors is used (Fig. 7.4(b)), the classification
rate drops much slower. It still can drop quite fast (see the minimum
values in Fig. 7.4(b)), however, the mean value decreases slowly: Ten
sensor failures still result in a mean recognition rate of 88.4%.

Therefore, a larger sensor set than minimally necessary to achieve a
good recognition rate should be placed on the garment so that a shirt
with broken sensors can still be used after a retraining.

In Fig. 7.5, the results of a failure during usage are shown. The
classifier was trained on the data containing all 5, respectively 20 sensor
values and tested on the data where the strain values of the broken
sensors were set to zero. In comparison to Fig. 7.4, the recognition rate
drops much faster. However, again the drop is much slower per sensor
failure when using more sensors. The relative changes are summarized
in Table 7.1. Even if the same percentage of sensors fail (4 when using
20 sensors compared to 1 when using 5), the recognition rate is better
when using 20 sensors. This can be explained by the larger redundancy
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Figure 7.5. The mean recognition rate, its standard deviation, and the

minimal and maximal recognition rates are plotted against the number of

failures. The classifier was trained on all 5, respectively 20 sensors and tested

on the data where broken sensors were set to zero. In Fig. 7.5(a), the five

best sensor positions were used for the sensor failure analysis, in Fig. 7.5(b)

the 20 best sensor positions.

Table 7.1. Relative changes in the recognition rate when one sensor fails.

rel. change without retraining with retraining
5 sensors 0.037 0.185
20 sensors 0.0123 0.0065

in the sensor data so that less information is lost compared to using
only 5 sensors.

Therefore, to prevent large drops in the recognition rate due to
sensor failures while in usage (no retraining), the set of sensors should
not be minimized.

When looking at the maximal and minimal values in Fig. 7.5(b)
there is a large range. This means that some sensors can fail without
reducing the recognition rate. On the other hand, the recognition rate
can drop down to e.g. 50% if the best six sensors fail. With a retraining,
the recognition rate can be improved to 80% (see Fig. 7.4(b)) and the
garment can still be used with an acceptable recognition rate.
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7.4. Upwards Shift of Shirt at Waistline

7.4.1. Method

Shifting of the shirt is a crucial factor restricting the accuracy of a
posture recognition with strain sensitive clothing. Therefore, the influ-
ence of an upwards shift at the waist level is discussed in this Section.
New simulations were performed as described in Chapter 5 with the fix
points at waistline (see Section 5.3.5) defined higher at the body (shift
of 1cm, 2cm, and 3cm). A shift of 2cm is visualized in Fig. 7.6. Based
on the new simulation results (strain values), the recognition rate was
calculated for the small and the large sensor set (see Fig. 7.1).

The sensor positions were kept constant on the shirt, meaning that
they also shifted upwards with the clothing.

A Näıve Bayes classification was performed, using the original strain
values for training and the ones after the upwards shift for testing.

upwards
shift

Figure 7.6. Visualization of a shift of 2cm of the shirt at the waistline.

7.4.2. Results and Discussion

In Fig. 7.7, the influence of the shift is shown for shifts up to 3cm.
It can be seen that when only five sensors are used, the recognition
rate drops by more than 30% when the shirt moves by 3cm. Even for
a smaller shift of 1cm, the recognition rate drops by 10%. However, if
more sensors are placed the recognition rate is generally higher, con-
firming the statement of Section 7.3 that a larger than a minimized
sensor set should be chosen. When using 20 sensors, the drop can be
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reduced to 1.7% (98.3%) for a shift of 1cm. The relative changes are
summarized in Table 7.2 Therefore, additionally to using a not min-
imized set of sensors, it is recommended to fix the shirt at the waist
level such that it moves less than 1cm.

Table 7.2. Relative changes in the recognition rate when the shirt shifts at

waist level.

rel. change shift of 1cm shift of 3cm
5 sensors 0.088 0.336
20 sensors 0.017 0.215
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Figure 7.7. Classification results for a shift at the waistline of up to 3cm

for the small and the large sensor set (see Fig. 7.1).

To obtain a deeper insight into the reason of the drop in the recog-
nition rate, the recognition rates for each posture are shown in Figs. 7.8
and 7.9. It can be seen that some of the postures are still recognized
almost perfectly (e.g. posture 1, 2, 4, 8, and 9, see Appendix B) whereas
e.g. postures 3 or 6 cannot be recognized at all. This seems reasonable
as the postures which could not be recognized tend to be those with
the major strain in vertical direction in the lower back. When shifting
the shirt upwards, these strain values are changed and the recognition
fails. On the other hand, the postures still recognized well are basically
those incorporating the arms (arms forward, arms upwards). Postures
of the arms result predominantly in strain in horizontal direction in the
upper back, which is not influenced by an upward shift of the shirt, so
that these postures can be recognized.
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Figure 7.8. Recognition rate of each posture using the 5 best sensors

(Fig. 7.1(a)). Fig. 7.8(a): Shift of 1cm, Fig. 7.8(b): Shift of 2cm, Fig. 7.8(c):

Shift of 3cm.
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Figure 7.9. Recognition rate of each posture using the 20 best sensors

(Fig. 7.1(b)). Fig. 7.9(a): Shift of 1cm, Fig. 7.9(b): Shift of 2cm, Fig. 7.9(c):

Shift of 3cm.

7.5. Does Posture Recognition Still Work for Differ-
ent Body Proportions?

7.5.1. Method

To show that recognizing different body postures with a strain sensitive
garment is not restricted to a standardized body, the abdominal girth
of the body model was altered from 86cm to 111cm (see Fig. 7.10(a)).
With this body model, the same 10 postures as with the original model
were generated and used for calculating the strain patterns (the result-
ing strain distributions are shown in Appendix D).

A classification was performed using the same sensor positions as
for the standardized body (see Fig. 7.1). The strain values calculated
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with the adapted body model were used for training and testing (leave-
one-out cross-validation).

(a) (b)

Figure 7.10. Fig. 7.10(a): body model with a bigger abdominal girth (used

in this Section); Fig. 7.10(b): original body model for comparison.

7.5.2. Results and Discussion

The classification results are plotted in Fig. 7.11 up to the best 20
sensors. This can be directly compared to Fig. 6.9 which contains the
values calculated for the original body proportions.

0 5 10 15 20
20

30

40

50

60

70

80

90

100

Number of Sensors

R
ec

og
ni

tio
n 

R
at

e 
[%

]

Figure 7.11. Recognition rate when selecting the best x sensors.
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When comparing these two Figures, they look similar. The recog-
nition rates of the original body proportions are even slightly lower,
particularly when using 3 sensors (89.7% vs. 72.6%). Therefore, the
method of recognizing different body postures using a strain sensitive
garment worked for a tested range of the abdominal girth of 86cm to
111cm.

20 best sensors 5 best sensors
adapted body posture 100.0% 98.5%
original body posture 99.9% 98.4%

relative change (Eq. 7.1) 0.001 0.001

Additionally, from the similar recognition rates it can be concluded
that the same sensor positions can be used as calculated for the original
body model, meaning that the optimization of the sensor positions has
to be done only once for a specified set of body postures.

However, the strain sensitive garment should be trained on each
person separately: When using the strain values of the original model
for training and the ones calculated with the adapted body model for
testing, the recognition rate drops to 80.8% when using the best 20
sensors, respectively to 73.8% for the best five sensors.

7.6. Conclusions

In this Section, several sensitivities of the model were analyzed. From
these analyses, the following conclusions can be drawn:

• The exact positioning of the sensors is not a critical factor when
detecting body postures with strain sensors. A shift of up to 11cm
of a single sensor reduces the recognition rate by less than 3%
(relative change of 0.03).

• The sensor set should not be minimized such that sensor failures
do not have a major effect on the classification result: When using
20 sensors, the relative change of one sensor failure was reduced to
0.0065 compared to 0.185 when using 5 sensors (with retraining).

• The shirt should be fixed at the waist level in a way that it moves
less than 1cm. Otherwise, postures incorporating bending of the
back (in any direction) cannot be recognized: A shift of 3cm of
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the shirt at waist level caused a relative change in the recognition
rate of 0.215 (20 sensors).

• Using a strain sensitive garment to recognize the body posture
worked for different body proportions: The abdominal girth was
varied between 86cm and 111cm (relative change of 0.001). The
same sensor positions can be used which has the advantage that
the optimization has to be done only once for a specified set of
body postures.
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8
Conclusions

8.1. Achievements

Recognizing different body postures with textile integrated sensors en-
ables an unobtrusive posture detection not interfering with the user.
This allows longtime-measurements and opens new applications in
sports, rehabilitation, or prevention. By continuously measuring the
posture of the wearer, an immobile sitting posture could be detected
and a feedback given. This could help preventing back pain. Also re-
habilitation exercises could be monitored enabling a feedback on the
performance.

The goal of this thesis was to build and validate a textile approach
of recognizing the body posture. Measuring the strain in the garment
for detecting the body posture appeared to be a promising approach.
Textile strain sensors were slowly emerging whereas other sensor tech-
nologies were far away from being ”textile” like e.g. accelerometers or
bending sensors.

During the PhD studies, the following contributions have been made
to approach the goal of a textile body posture measurement system:

• A reference measurement method was developed to measure
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strain patterns in the clothing. The precision when using 6mm
circle markers was better than 1mm. With a marker distance of
5cm, the achieved accuracy of the strain patterns was better than
2% ( 1mm

50mm = 0.02). This reference measurement method enabled
the determination of how and by how much clothing is stretched
at different body postures. Furthermore, requirements for the tex-
tile strain sensor were defined.
Using this method, the following conclusions were drawn:

– Different strain patterns were measured implying that a
body posture detection by measuring strain is feasible.

– The strain sensor should cover a measurement range of at
least 20% plus a certain pre-strain. However, as even larger
strain can appear, the sensor range should be larger or it
should be protected against overstretching. Furthermore, the
elastic force of the sensor should be in the range of the textile
it is used for and it should be washable.

• A textile strain sensor was developed together with EMPA. The
sensor consists of a thermoplastic elastomer and is filled with
50wt-% carbon black. It was attached to the garment with a sil-
icone film which resulted in a working range of 70% strain. The
sensor properties of this garment attached strain sensor were stud-
ied: The relaxation behaviour, hysteresis, strain rate dependency,
longtime cycling behaviour, and ageing effects were characterized
with a strain tester and a multimeter. The total mean error was
±5.5% in strain. The sensor was washed 8 times which neither
influenced its electrical properties nor its visual appearance.

• A prototype was built by attaching 21 strain sensors to the gar-
ment. This prototype was used for an experiment where 27 upper
body postures were recognized. It turned out that a user-specific
training is necessary. This resulted in a recognition rate of 97%.

• A model to describe the strain in the garment for different body
postures and body proportions was developed. It was based on
an already published model [104] but had to be adapted in order
to work with tight-fitting garments.

• Using simulation results of this model, the sensor positioning was
optimized using Mutual Information Feature Selection and a Ge-
netic Algorithm. A minimal sensor set of 5 sensors and a set of
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20 sensors were selected to be used for further analyses. It was
shown that better results can be achieved with the larger sensor
set. The most restricting factor turned out to be a shifting of the
clothing at waist level (relative change in the recognition rate of
up to 0.336). Therefore, it should be ensured that the garment
does not shift when detecting body postures with strain sensors.

In conclusion, this thesis shows the feasibility but also limits of
recognizing body postures with a strain sensitive garment.

8.2. Outlook

In this PhD thesis, a prototype of a strain sensitive garment to detect
body postures was presented. This prototype has the basic function-
ality, however, there are still many improvements required in order to
achieve a reliably functioning product. Some aspects where further re-
search is necessary, are discussed in the following paragraphs.

• So far, the sensor was attached to the textile with a silicone film.
This is not satisfactory for mass production. Therefore, a full in-
tegration into the textile is necessary. When integrating the pre-
sented sensor into the textile, it has to be assured that a restoring
force is present, forcing the sensor back to its original length. Also
the connecting ”cables” to the hardware need to be integrated
and the electrical contacting to the sensor should be examined to
become mass producible.

• Using a simple linear approximation, the strain sensor had an
error of ±5.5%. By using a more advanced model, a further re-
duction of this error is possible.

• A further research topic is to proceed from static postures to dy-
namic movement measurements. This would require that a dis-
tinction between all possible body postures is possible (not ”only”
27 as tested in Chapter 4). However, so far it is not clear whether
each possible posture has a unique strain pattern. This would first
have to be confirmed.

• It was shown that a shifting of the garment at the waist level
caused the largest drop in the recognition rate. Therefore, designs
or methods need to be developed to prevent or minimize this
shifting.
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• So far, the functioning of the prototype was shown in a study
where 8 persons performed 27 upper body postures. More appli-
cation oriented studies can be conducted e.g. in sports or reha-
bilitation.

• Body posture detection with strain sensors is limited in the accu-
racy (e.g. shifting). Also tight-fitting garments is not everyone’s
cup of tea. Therefore, it might be better finding other methods
(e.g. using accelerometers [5, 50]) and putting more effort in their
textile integration. First approaches can be found e.g. in [48].



A
Strain Patterns
Measured with

Reference Method

In Chapter 2, a reference strain measurement method was
presented using an optical tracking system. The measured
strain patterns are shown in this Appendix.
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(a) (b)

Figure A.1. Rotation of trunk to the right. Fig. A.1(a): strain in horizontal

direction, Fig. A.1(b): strain in vertical direction.

(a) (b)

Figure A.2. Rotation of trunk to the left. Fig. A.2(a): strain in horizontal

direction, Fig. A.2(b): strain in vertical direction.

(a) (b)

Figure A.3. Bending trunk sidewards to the right. Fig. A.3(a): strain in

horizontal direction, Fig. A.3(b): strain in vertical direction.
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(a) (b)

Figure A.4. Bending trunk sidewards to the left. Fig. A.4(a): strain in

horizontal direction, Fig. A.4(b): strain in vertical direction.

(a) (b)

Figure A.5. Lifting both shoulders. Fig. A.5(a): strain in horizontal direc-

tion, Fig. A.5(b): strain in vertical direction.

(a) (b)

Figure A.6. Slumped. Fig. A.6(a): strain in horizontal direction,

Fig. A.6(b): strain in vertical direction.
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(a) (b)

Figure A.7. Bending trunk forward (keeping arms along trunk). Fig. A.7(a):

strain in horizontal direction, Fig. A.7(b): strain in vertical direction.

(a) (b)

Figure A.8. Bending trunk forward (arms down). Fig. A.8(a): strain in

horizontal direction, Fig. A.8(b): strain in vertical direction.

(a) (b)

Figure A.9. Bending trunk strongly forward (keeping arms along trunk).

Fig. A.9(a): strain in horizontal direction, Fig. A.9(b): strain in vertical di-

rection.
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(a) (b)

Figure A.10. Arms to the front. Fig. A.10(a): strain in horizontal direction,

Fig. A.10(b): strain in vertical direction.

(a) (b)

Figure A.11. Arms to the sides. Fig. A.11(a): strain in horizontal direction,

Fig. A.11(b): strain in vertical direction.

(a) (b)

Figure A.12. Arms overhead. Fig. A.12(a): strain in horizontal direction,

Fig. A.12(b): strain in vertical direction.
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B
Simulated Strain

Patterns

In this Chapter, the data used for the optimization of the
sensor positions (Chapter 6) is visualized. Always the body
posture used for the simulation and the calculated strain pat-
terns (in horizontal and vertical direction) are shown.
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(a) (b)

Figure B.1. Posture 1: Bending forward. Fig. B.1(a): Simulated posture.

Fig. B.1(b): Calculated strain pattern in horizontal and vertical direction

respectively.

(a) (b)

Figure B.2. Posture 2: Arms to the front. Fig. B.2(a): Simulated posture.

Fig. B.2(b): Calculated strain pattern in horizontal and vertical direction

respectively.
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(a) (b)

Figure B.3. Posture 3: Lifting shoulders. Fig. B.3(a): Simulated posture.

Fig. B.3(b): Calculated strain pattern in horizontal and vertical direction

respectively.

(a) (b)

Figure B.4. Posture 4: Bending to the right. Fig. B.4(a): Simulated posture.

Fig. B.4(b): Calculated strain pattern in horizontal and vertical direction

respectively.

(a) (b)

Figure B.5. Posture 5: Bending to the left. Fig. B.5(a): Simulated posture.

Fig. B.5(b): Calculated strain pattern in horizontal and vertical direction

respectively.
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(a) (b)

Figure B.6. Posture 6: Rotation to the left. Fig. B.6(a): Simulated posture.

Fig. B.6(b): Calculated strain pattern in horizontal and vertical direction

respectively.

(a) (b)

Figure B.7. Posture 7: Rotation to the right. Fig. B.7(a): Simulated pos-

ture. Fig. B.7(b): Calculated strain pattern in horizontal and vertical direc-

tion respectively.

(a) (b)

Figure B.8. Posture 8: Arms to the side. Fig. B.8(a): Simulated posture.

Fig. B.8(b): Calculated strain pattern in horizontal and vertical direction

respectively.
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(a) (b)

Figure B.9. Posture 9: Arms upwards. Fig. B.9(a): Simulated posture.

Fig. B.9(b): Calculated strain pattern in horizontal and vertical direction

respectively.

(a) (b)

Figure B.10. Posture 10: Slumped posture. Fig. B.10(a): Simulated pos-

ture. Fig. B.10(b): Calculated strain pattern in horizontal and vertical direc-

tion respectively.
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C
Simulated Strain

Patterns after Shift of
Shirt at Waistline

In this Chapter, the data used for the analysis in Section 7.4
(Upwards Shift of Shirt at Waistline) is visualized for a shift
of 3cm. Always the calculated strain patterns (in horizontal
and vertical direction) are shown.
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Figure C.1. Posture 1: Strain pattern while bending forward (see

Fig. B.1(a)) after shirt moved upwards by 3cm. left: horizontal, right: vertical

Figure C.2. Posture 2: Strain pattern while holding arms to the front (see

Fig. B.2(a)) after shirt moved upwards by 3cm. left: horizontal, right: vertical

Figure C.3. Posture 3: Strain pattern while lifting the shoulders (see

Fig. B.3(a)) after shirt moved upwards by 3cm. left: horizontal, right: vertical
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Figure C.4. Posture 4: Strain pattern while bending to the right (see

Fig. B.4(a)) after shirt moved upwards by 3cm. left: horizontal, right: vertical

Figure C.5. Posture 5: Strain pattern while bending to the left (see

Fig. B.5(a)) after shirt moved upwards by 3cm. left: horizontal, right: vertical

Figure C.6. Posture 6: Strain pattern while rotating to the left (see

Fig. B.6(a)) after shirt moved upwards by 3cm. left: horizontal, right: vertical

Figure C.7. Posture 7: Strain pattern while rotating to the right (see

Fig. B.7(a)) after shirt moved upwards by 3cm. left: horizontal, right: vertical
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Figure C.8. Posture 8: Strain pattern while holding the arms to the side

(see Fig. B.8(a)) after shirt moved upwards by 3cm. left: horizontal, right:

vertical

Figure C.9. Posture 9: Strain pattern while holding the arms upwards (see

Fig. B.9(a)) after shirt moved upwards by 3cm. left: horizontal, right: vertical

Figure C.10. Posture 10: Strain pattern while slumping (see Fig. B.10(a))

after shirt moved upwards by 3cm. left: horizontal, right: vertical



D
Simulated Strain

Patterns for Different
Body Proportions

In this Chapter, the data used for the analysis in Section 7.5
(Does Method Still Work for Different Body Proportions?)
is visualized. Always the calculated strain patterns (in hor-
izontal and vertical direction) are shown.
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Figure D.1. Posture 1: Strain pattern while bending forward (see

Fig. B.1(a)). left: horizontal, right: vertical

Figure D.2. Posture 2: Strain pattern while holding arms to the front (see

Fig. B.2(a)). left: horizontal, right: vertical

Figure D.3. Posture 3: Strain pattern while lifting the shoulders (see

Fig. B.3(a)). left: horizontal, right: vertical
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Figure D.4. Posture 4: Strain pattern while bending to the right (see

Fig. B.4(a)). left: horizontal, right: vertical

Figure D.5. Posture 5: Strain pattern while bending to the left (see

Fig. B.5(a)). left: horizontal, right: vertical

Figure D.6. Posture 6: Strain pattern while rotating to the left (see

Fig. B.6(a)). left: horizontal, right: vertical

Figure D.7. Posture 7: Strain pattern while rotating to the right (see

Fig. B.7(a)). left: horizontal, right: vertical
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Figure D.8. Posture 8: Strain pattern while holding the arms to the side

(see Fig. B.8(a)). left: horizontal, right: vertical

Figure D.9. Posture 9: Strain pattern while holding the arms upwards (see

Fig. B.9(a)). left: horizontal, right: vertical

Figure D.10. Posture 10: Strain pattern while slumping (see Fig. B.10(a)).

left: horizontal, right: vertical
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Glossary

Symbols

Name SI Unit Meaning

A transformation matrix
c class
C all classes c
D kg/s damping
d m distance between two cameras in an optical track-

ing system
dreference m distance between two markers in the reference

posture
dposture m distance between two markers in the posture to

be compared
dx m change in particle position in one iteration step
dt sec time step
E N/m2 Young’s modulus
F N force
F a set of features
Fa, Fb, Fc N force in a particle
FDi N damping force of particle i
FGi N gravitation force of particle i
Fs a set of selected features
f feature
fs selected feature
G m/s2 gravity
I(c, f) mutual information between class c and feature f
l0 mm initial length of the sensor
∆l mm change in length of the sensor
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m,ma,mb kg particle mass
N number of time steps for closing a seam
NC total number of classes
Pa, Pb, Pc particle position of the deformed triangle
P (c, f) joint probability of feature f and class c
P (c) probability of a certain class c
P (f) probability of a feature f
R0 Ω initial resistivity of the sensor
∆R Ω change in the electrical resistivity
U, V directions of the deformed triangle (correspond-

ing to the original directions of the thread in the
textile)

ua,b,c, va,b,c particle position of the original triangle
xa, xb particle positions
ẋa, ẋb particle velocity
xt particle position at time t
β weighting factor
ε ·100% strain
σ N/m2 stress
µ poisson’s ratio

l0 and R0 are the initial length and resistivity respectively, l and R
the length and resistivity at maximal strain)
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Acronyms and Abbreviations

AHRS Attitude and Heading Reference Systems
BPMM body posture and movement measurement
CE conductive elastomer
ECG electrocardiogram
EL elastomer
EMPA interdisciplinary research and services institution

for material sciences and technology development
within the ETH Domain

EPDM ethylene-propylenediene rubber
EVA ethylene-vinyl acetate
FEM Finite Element Model
GA Genetic Algorithm
IR infrared
MI Mutual Information
MIFS Mutual Information Feature Selection
PA polyamide
PCB printed circuit board
PPy polypyrrole
PU polyurethane
SD standard deviation
SSP simulated strain patterns
TPE thermoplastic elastomer
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