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The Approximation Problem of Electrical Filters

R. A.-R. AMER

Chapter I. Introduction

This work deals with the so called:

'Approximation problem of electrical filters'.

This problem can be stated in the following form:

Given two sets D and S of intervals on the positive %-axis:

D = {D1,D1 Da....,DND}

and S = {S1; S2, . .
., Sp, . . ., Sns}

(1)

using the terminology of electrical filter theory, the intervals Da and

Sp will be called 'pass-bands' and 'stop-bands' respectively;
and a class F of functions R(x) of the form:

*<*> = *<*>£§-• (2)

where: Pm(x) and Qn(x) are relatively prime polynomials of maximum

degrees m and n respectively,
and g(x) is a given fixed positive weight function defined in the

pass-bands Daand in the stop-bands Sp.

It is then required to choose a function R*(x) out of the class F such that

the expression:

max | R*(x) j

/I* _
xeD

/Q\

min | R*(x) \
v >

x eS

be a minimum, compared with the corresponding expressions for all

other functions R(x) in F.

To solve this problem the so called 'Exchange method' is used here in

combination with linear programming methods (or—in some special cases —

combined with solving an auxiliary eigenvalue problem).
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The exchange method has been successfully used for approximation of

continuous functions by polynomials [3]*), it has also been used (in combi¬

nation with linear programming methods) for approximation by rational

functions, and some examples were calculated by the author at the ER-

METH in Zurich

In the case of the approximation problem of electrical filters, the func¬

tion to be approximated is zero in some intervals (the pass-bands) and in¬

finity m some other intervals (the stop bands), therefore some modifications

are necessarily made in applying the exchange method

Chapter II. The Exchange Method

In order to describe the exchange method which is used for solving the

approximation problem of electrical filters the following definitions are

introduced, most of the terms used are taken from [3]

A. Definitions

1 The 'maximum deviation' and the 'extreme points' of a function

The maximum deviation A(R{xj) of a function R(x) of the form (2) is

defined by

max | R(x)
A(R{x)) = -^V,,,

tt
(4)

^ v '' mm | R(x) |
v '

x e S

The points at which I R(x) J assumes its maximum in D or its minimum in S

are called the extreme points of the function R(x)

2 The 'global optimal function' and the 'global T-deviation'

If the maximum deviation A* of a function R*(x) e F is such that

A* = A(R*(x)) =S A(R(x)) (5)

for all functions R(x) e F, then A* is called the global T-deviation**) and the

function R*(x) is called the global optimal function for the given filter problem

*) References used are indicated by numbers in square brackets

**) The letter T will be used as an abbreviation for «Tchebycheff»
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3. The 'local classes'

The class F is devided into a number of subclasses:

F0, F!, F2, . . ., Ff, . . ., FNf .

The subclass F0 consists of all functions in F which have either poles in D

or zeros in S; it is obvious that all such functions have an infinite maximum

deviation and therefore must be dropped out of consideration. The functions

of the classes F1: F2, . . ., FNp have then the following properties:

a) Qn(x) has a constant sign ODa in each pass-band Da .

b) Pm(x) has a constant sign asp in each stop-band Sp .

Either a positive or a negative sign may be chosen in each band; but since

the functions

are equivalent, it is allowed to prescribe the sign of Pm(x) in one of the stop-
bands and the sign of Qn{x) in one of the pass-bands. Throughout this work

the following choice is made:

Pm(x) > 0 in Sx,
(6)

Qn(x) >0 inD1.

It remains then to choose the signs dDa and asp in the remaining Nd + Ns — 2

bands; this gives a number of

tf„ = 2 <** + "«-*> (7)

possible sign-combinations. Each sign-combination defines one of the classes

F1( F2, . . ., FNp.
These classes will be refered to as the local classes.

4. The 'local optimal function' and the 'local T-deviation

If the maximum deviation Af of a function R/(x) e Ff is such that

At = A(Rf{x)) <A(R(x)) (8)

for all R(x) e Ff, then Af is called the local T-deviation for the local class Ff;
and the function Rf(x) is called the local optimal function of the local class Ff.

It is clear that the global optimal function for the filter problem is one of
the local optimal functions; namely that which has the smallest local T-de¬

viation.
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5. A 'discrete set' and a 'reference'

a) A discrete set (d, s) is a set of points:

d = xd0, xdlt . . ., xdr,
,
xd xdr e D

(9)
and s = xs0, xs±, . . ., xst, . . ., xsv xst e 6

having a total number oi [i -\- v -\-2 >w + « + 2.

b) A reference (d, s) is a discrete set consisting of a number of exactly
m + n + 2 points.

fi + v + 2 = tn + n + 2. (10)

6. The 'maximum discrete deviation' of a function

For a given discrete set, the expression

max
' R(x)

x e s

will be called the maximum discrete deviation of the function R(x) in the

discrete set (d, s).

7. The 'local discrete problem', the 'local discrete optimal function' and the

'local discrete T-deviation'

The local discrete problem is to construct a function R(/)(x) e Ff such that

its maximum discrete deviation, in a given discrete set (d, s), be a minimum

compared with these of all functions in the local class Ff; this function

R(f)(x) is then called the local discrete optimal function, and its maximum

discrete deviation is called the local discrete T-deviation for the local class Ff
in the discrete set (d, s):

^fM,s) = 8{diS)(R(f)(x)). (12)

8. A 'reference function', a 'leveled reference function' and the'reference deviation'

Let the points of a reference (d, s) be numbered according to their order

on the #-axis from left to right:

X\, X$, . . .
, Xj, . . .

, Xm+ n+2 )

given a function R(x), corresponding numbers 6j are then defined by:

0, = } R{Xi) i0VXied
(13)

— ljR(x3) for Xj e s
.



The Approximation Problem of Electrical Filters 11

A function R(x) with the property that the numbers dj have alternating

signs is called a reference function with respect to the reference (d, s). If these

numbers dj are also equal in absolute value, then the function R(x) is called

a leveled reference function with respect to the reference (d, s) and its maximum

discrete deviation in the set (d, s) is called the reference deviation.

The exchange method is based on the following theorems; these will be

proved in the Appendix.

B. Theorems

Theorem 1: // R(x) e Ff is a reference function with respect to the reference

(d, s), then:

i) The following relation is satisfied by all functions R(x) e Ff which are

not proportional to R(x):

min j R{x)

A(R(x)) > -^-=— (14)
max | R(x)
x e s

and

ii) // R(x) is not a local optimal function in Ff then:

min I R(x) )

A(R(x)) >Af>^^w~. (15)
max | R(x)
x e s

The corresponding theorem for the case of the local discrete problem is:

Theorem 1': // R(x) e Ffis a reference function with respect to the reference

id, s) which is included in the discrete set (d, s), then:

i) The following relation is satisfied by all functions R(x) e Ff, which are

not proportional to R(x):

min ) R(x) ]

a« .,(*(*)) >-^-=nT. (H')
'

max | R(x) \
x e s

ii) // R(x) is not a local discrete optimal function in Ff for the local

discrete problem of the set (d, s), then:

min ' R{x) j

6{di „(«(*)) > Md, s) > ^^=— • (15')
1 '

max R(x)
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Theorem 2:

i) // a function Rf(x) e Ff has a set of m + « + 2 extreme points such

that they build a reference with respect to which Rf(x) is a leveled reference

function, then the function Rf(x) is a local optimal function in Ff) and each

other local optimal function for the same local class is proportional to Rf(x).

ii) If a local optimal function Rf(x) e Ff satisfies the assumption:

Pm(x) and Qn(x) are relatively prime polynomials of maxi¬

mum degrees m and n respectively, such that at least one of (16)
them attains its maximum degree ,

then the function Rf(x) has at least m + n -\- 2 extreme points which contain

a reference (d, s) with respect to which Rf(x) is a leveled reference function.

The corresponding theorem for the case of the local discrete problem is:

Theorem 2':

i) A leveled reference function R(x) e Ff [with respect to a reference (d, s)
included in the given discrete set (d, s)] which has a maximum discrete deviation

equal to the reference deviation, is a local discrete optimal function in Ff.

ii) // a local discrete optimal function Rf(x) satisfies the assumption (16),
then there exists a reference

{d, s) C (d, s)

with respect to which the function Rf(x) is a leveled reference function with

a reference deviation equal to its maximum discrete deviation.

In order to obtain the global optimal function R*{x), which is one of the

Np local optimal functions:

RAx), R,(x), .... Rf{x), ..., RNF{x) ,

each one of these functions is constructed and the best one among them is

chosen (i.e. the local optimal function which has the smallest local T-de-

viation).
To construct one local optimal function Rf(x) (for the local class Ff),

the following exchange algorithm is used.

C. The Exchange Algorithm

The exchange algorithm is an iterative procedure in which the &-th

iteration consists of the following steps:

1. For the discrete set (rf(*'( sw) the local discrete problem is to be

solved; the result is—according to Theorem 2'(ii)—a leveled reference func¬

tion with respect to a reference included in (dw, sw).



(20)>a(*>.1))+1\s(*«*/(<*'*+

that:s^1'),1>,+(d<*settheinincludedis1»)+i<*

1),+(d(Sreferencethesinceandl'(ii)TheoremfromfollowsIts(ft+1)).1),+(i(A

settheforconstructedisFfof1\x)+R{kfunctionoptimaldiscretelocal

theiterationnexttheof1stepAta(*'.boundlowertheAf,T-deviation

localtheforyields,algorithmexchangetheofstepiteration&-thThe

Proof:

(19)<•.a<1><a<*><---<a<*'<a<*+1)

sequence:increasingtonicaly

mono-abuildAfT-deviationlocalthefora1*'boundslowerThe3:Theorem

theorem:

followingtheonbasedisalgorithmexchangetheofconvergenceThe

1)).+s(*1),+(d{kreferencetheofpointstheleastat

includesitthatsuchconstructedis+x))s(*+1),(d^setdiscretenextThe3.

2(i).theorembyjustifiedisthisF/;classlocalthefor

functionoptimallocalaastakenbecanRw(x)functiontheandstopped

becanF/classlocaltheforalgorithmtheenough,closeareboundstheseif

(18),A(Rw(x))<Af<a(*»

by:givenareA/T-deviation

localtheforboundloweraandupperan(ii)1theoremtoAccording

possible.aslargeasmadebetois

(17)
,RW{x)max

=or'
1)+xsd(kik).

,R(k){x)|min

expression:Theiii)
eSx

.|i?(*'(x)|min=IRw(xs)I1):+s(*ofxspointoneleastatand

Dxe

,\RW(x)|max=|RW(xd)|1>:+d<*ofxdpointoneleastatForii)

1>).+s<*

1),+(dikreferencethetorespectwithfunctionreferenceaisRW(x)i)

that:suchchosenis

reference

atheseofoutthendetermined,

areRW(x)functiontheofpointsminimumandmaximumlocalThe2.
reference

ninimum

.Rw(x)

be:functionthisLet

13FiltersElectricalofProblemApproximationThe
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The function R^ + 1)(x) is—according to Theorem 2'(ii)—a leveled refer¬

ence function with respect to a reference included in (i(* + 1), s(ft + 1)), and

has a reference deviation equal to df(d^ + l\ s(* + 1)).
At step 2 the reference (d{k + 2\ s(* + 2)) is constructed and the number

a'* + ^ is calculated. According to condition (iii) for the choice of (d^ + 2), s(* + 2))
it must be that:

a(* + 1) >6f(Sk+l\s(k + 1)). (21)

From relations (20) and (21) it follows that:

a<* + 1)>aw.

It is thus proved that the lower bound aw for Af is always raised after

each iteration step of the exchange algorithm; but it is not proved that the

upper bound A(R^(x)} is lowered; thus, a complete convergence proof is

not established.

However, it has been practically found that a number of 3 to 5 iteration

steps was sufficient to get the local optimal function within a permissible
tolerance.

Chapter III. The Local Discrete Problem

The local discrete problem —obtained from the exchange algorithm
which has been discussed in Chapter II—is to be solved in the present

chapter.

Restatement of the problem:

Given a local class Ff of functions

«<*)=*(*>-££;.
which have the following properties:

a) Pm{x) has a constant signers^ in the stop-band Sp, (} — 1,2, ...,Ns,

b) Qn(x) has a constant sign crca in the pass-pand Da,a = 1,2,..., Nd,

and a discrete set (d, s):

d = {xd0, xdL, . . ., xdr, . . ., xd^} ,

s = {xs0, xs1, . . ., xst, . . ., xsv} .

with a total number of points

/i + v + 2>m-\-nJt-2.
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It is then required to construct a function Rf(x) e Ff such that its maximum

discrete deviation in the set (d, s) satisfy the relation:

6{d}S)(Rf(x)) < d{diS)(R(x)) for all functions R(x) e F,.

In order to solve this problem for the general case, where the number of

pass- and stop-bands No + Ns may be greater than three, linear programm¬

ing methods will be used. For the special case of three bands (ND + Ns = 3),
another method can be used, in which the local discrete problem is expressed
as an eigenvalue problem which is to be solved using a simple iterative

process.

The next part A of this chapter deals with the eigenvalue problem;
the linear programming method is discussed in the second part B.

A. The Eigenvalue Problem

In this part the local discrete problem is solved by directly constructing

the local discrete optimal function R/(x). In this case the given discrete set

(dk, sk) must be a reference (dk, sk) having a number of p, + v + 2 =

m + n + 2 points.
The function Rf(x) is expressed in the form:

m

«/(*) =^— = -M^- w

u = o

where: p0{x), p^x), . . ., pt{x), . . ., pm(x)
and qa(x), q^x), . . ., qk(x), . . ., qn{x)

are suitably chosen basis functions, such that:

pi{x) = a polynomial of degree i,

qk(x) = (llg(x)) x a polynomial of degree k.
(23)

According to theorem (2'ii), the function Rf{x) must be a leveled reference

function with respect to the reference (dk, sk); let the reference deviation be

equal to 1/A2. The following equations are then satisfied by Rf{x) at the

points of the reference:

Rf(xdT)= (-I)'-IM, r = 0,l,...,p )

and Rf{xst) = - (- l)i • X
,

t = 0, 1 ,v j
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where / is the order of the point xdr (or xst) among the points of the refe¬

rence on the #-axis. Or, using the representation (22) for Rf{x):

and

(- 1)' • (i q{xdr)) = A • (I fi(xdr))
- (- l)i (f,}(xst)) =A-(i?(*s«))

(25)

which can be written in the following matrix form:

0 i m 0 k n

0

r 0 qdrk

t*

0

t pSti 0

V

So

it

r)k

0 i m 0 k n

0

r pdri 0

/j,

0

t 0 qstk

V

(26)

&

rjk

where pdri = pi(xdr) ,

qdrk = (— l)3' qk(xdr)

pstt =- — (— \y pi{xst)

qstk = ?ft(*s{)
(27)



The Approximation Problem of Electrical Filters 17

or in partitioned-matrix form:

0 ; m W 'M
.

/ (/«*) I o \ / s

(ps) 0 / \ r, / \ 0 (qs) I \ tj
(28)

where the matrices: {pd), (ps), (qd), (qs) have the elements given in (27).
The local discrete problem is thus reduced to the eigenvalue problem in

(28). A solution of the first problem must also be a solution of the second

one; but in order that a solution of the eigenvalue problem may be a correct

solution for the local discrete problem, it must satisfy the following two

conditions:

i) The eigenvalue X must be as large as possible, and

ii) the corresponding eigenvector (f, ~rj) must yield a function R(x),
according to (22), such that:

%M=R{x)eFf- (29)

In the general case of more than 3 bands, it may be necessary to go

through the eigenvectors one after the other, each time checking if the

corresponding function R(x) lies in the required local class or not.

However, due to the following theorem, in the case of 3 bands the situa¬

tion is much more simple. A filter consisting of 3 bands may be either a

band-pass or a band-stop filter; the following discussion applies to a band¬

pass filter (a band-stop filter can be discussed similarly).

Theorem 4 (proof in the Appendix): For a band-pass filter the global optimal
function has the following two properties:

a) All its zeros lie in the pass-band.
b) It has m + 1 extreme points in the pass-band and n + 1 extreme points

in the stop-bands, such that these m -f n -\- 2 extreme points build a reference
with respect to which the function is a leveled reference function.

This theorem simplifies the problem in the following way:

1. Since we can choose the positive sign for Pm(x) in the first stop-band
and for Qn(x) in the pass-band, it follows from the first part (a) of the theo¬

rem that Pm(x) has a constant sign (— l)m in the second stop-band. There¬

fore, it is sufficient to go through the exchange algorithm —as explained in

Chapter II with the only exceptions that the discrete set (dk, sk) must be

a reference—for only one local class, namely that defined by:

Pm(x) > 0 for x eS1

Qn(x) > 0 for x 6 D
,

(- l)m-Pm(x) >0 for#eS2

(30)
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2. The second part (b) of the theorem allows the choice of the reference

(dk, s*) for each step of the exchange algorithm, such that the number of

points in dk and s* are:

^ + 1 = w + 1 and v + 1 =n + 1
. (31)

In the following it will be shown how this simplifies the problem.

According to (31), the matrices (fid) and {qs) have a square form; by

proper choice of the basis functions pt(x) and qic{x), these matrices have

inverses:

(fid)-1 and {qs)'1 respectively.

Equations (28) can thus be written in the form:

(pd)-1 | 0 \ / 0
'

(qd) \ I ? \ / ?

0 ' (qs)'1 J \ (ps) 0 J \ T] j \ r)

or:

0 I (pd)'1 (qd) \ / 1 \
_

/ 2
'

(qs)-1 (ps) | 0 1 \ V J \V

which can be written:

0 I (D) \ I 1 \ II

(S) 0 / \ n / \ r,

(32)

(33)

where (D) = (^(f)"1 {qd)

and (S) -(?s)-i (/>*).

This is equivalent to:

(D) n = * I

and (S) | = X-~ri

which leads to the following two eigenvalue problems:

{DS)1 = A2-1 (34 a)

and (SD) ^ = A2 • ~r\. (34 b)

Let the matrix (DS) be iterated on a suitable vector |(°> (each time

normalizing the last component to the value 1); this defines the following

sequence of vectors:

|(0); |(1); |(2)( _ _( 1(4^

For this iteration process the following theorem will be proved:
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Theorem 5:

a) The iteration process:

|(ft> = l/(At*>)« • (£>S) |<*-1> (35)

where (A(ft))2 is determined such that the last component of |(*> be equal to 1,

yields the numbers (A(ft))2 which converge to the largest eigenvalue A| of the

matrix (DS) and the vectors J'*1 which converge to the corresponding eigen¬
vector |.

b) The function R(x) defined by:

R{x) = ALM. (36)

where

% = (1/A.) • (S) | (37)

is ^e required solution for the given local discrete problem.

Proof: The following two points are at first proved:

a) // the problem (32) has an eigenvalue A (with a corresponding eigen¬
vector (f, rj)), then A2 is an eigenvalue for the matrix (DS); the corresponding
eigenvector is ^.

This can be proved in the same way in which (34 a) has been deduced

from (32).

(5) If the matrix (DS) has an eigenvector | whose eigenvalue is A2, then the

vector (|, rj) with rj = (1/A) (S) £ is an eigenvector, having an eigenvalue A,

for the problem (32). Equations (24) are then satisfied by the function R(x)
which is defined by the eigenvector Q, 17) according to (22).

This can be proved by substitution in (32); the function R(x) satisfies

then the equations (24) because these are equivalent to (32).

Proof of a): The convergence proof of the iteration process (35) is

established by proving:

i) The eigenvalues of the matrix (DS) are all real; and the largest eigen¬
value Af is positive*).

ii) The other eigenvalues A2 (/ ^ 1) satisfy the inequality:

- ).\ < A2 < A2. (38)

*) The numbers A can assume imaginary values.
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To prove i) examine (32) in its original form (25); it is then clear that

if X is an eigenvalue, then also — X; namely if X corresponds to the eigen¬
vector (|, ~r\), then —X corresponds to the eigenvector (|, —"??); and since

the matrix in (32) is real, therefore its eigenvalues are either real or pure

imaginary numbers.

From this fact and (ft) above, it follows that the eigenvalues of the

matrix (DS) must be all real.

Further, if the local discrete problem has a solution, then (32) has at

least one real eigenvalue; and from (a) it follows that the matrix (DS) has

at least one positive eigenvalue; i.e. its largest eigenvalue is positive.

To prove ii) the cases where (38) is not satisfied are shown to be impos¬
sible; these are:

iia) An eigenvalue X] = X\ (a larger eigenvalue X] > X\ can not exist

since X\ is assumed to be the largest).
In this case it follows from (/?) that the corresponding functions R^(x)

and Rw(x) are both leveled reference functions having the same discrete

T-deviation. From theorem l'(i) it follows that these functions must be

proportional (in this case they are identical). This means that the eigen¬
vectors corresponding to the eigenvalues A;2 and X\ are the same; i.e. these

eigenvalues are actually one and the same eigenvalue.

iib) An eigenvalue — a2 < — X\ (a real).

If the corresponding eigenvector is £ (which must be real), then accord¬

ing to (/?), the function:

R^ = ^wBw> where ^ = (i/«)-(S)l

satisfies the equations:

($, p(Xdr))

i(rj,q{xdr))

and

(I P(*St))

± \\i a
,

r — 0, 1, . .
,
m

i(rj,q(xsf))

It follows that the real function:

= ± )' «
,

t = 0, 1, . . .,
n

.

(I />(*))
(% ?(*))

Rreal(x)

has a maximum discrete T-deviation d(Rreai(x)) which satisfies the inequality

S(Rreal(x)) = 1/d2 =g 1/A? = d(RW(x)) (39)
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and since R<v(x) is a leveled reference function it follows that (39) can be

satisfied only if the functions are proportional, which means that the eigen¬
vectors corresponding to — a1 and A\ are proportional; i.e. these are one

and the same eigenvalue; but this is impossible.

Proof of b): The function R(x) defined in (36) is, according to (/?), a

leveled reference function with respect to the given reference. Its reference

deviation is 1 /A2; and no other leveled reference function with respect to the

same reference have a smaller or equal reference deviation, since then and

from (a) there would be for the matrix (DS) an eigenvalue that does not

satisfy the inequality (38).

It remains only to prove that the function R(x) actually lies in the re¬

quired local class as defined in (30):

i) At first we prove that no poles of R(x) can lie in the pass-band.

Assume that the function R(x) has a pole at the point xp e D. A new

function R'(x) is then constructed by shifting the pole in xp to a new

position xp':

R'(X) = Q(X) . R(x) (40)

where

By proper choice of b and xp' it can be reached that:

[ q(x) [ < 1 for x e D

and ! q(x) | > 1 for x eS .

The function R'(x) has thus a maximum discrete deviation which is smaller

than that, 1/Af, of the original function R(x). There must exist therefore

a local optimal function which has a still smaller maximum discrete devia¬

tion ; and since this must be a leveled reference function with respect to the

given reference (Theorem 2'ii), equations (24) [and (32)] are thus satisfied

with a larger value for A = A\. From (a) it follows that the matrix (DS) has

an eigenvalue A\ > A\ which is impossible, since A\ is the largest eigenvalue.

Our assumption that a pole of R(x) lies in the pass-band is thus proved to be

false.

ii) Since the function R(x), which has been proved in i) to be a con¬

tinuous function in D, has m + 1 alternating signs at the points xdr e D,

it follows that its m zeros must be all real and lie inside the pass-band.
Conditions (30) are thus satisfied by this function (after multiplication by

a suitable factor = ±1), which means that R(x) lies in the required local

class.

(41)
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The Algorithm: The basis functions pt(x) and qk(x) defined in (23) are

chosen such that the polynomials in these functions have their zeros in the

pass-bands and in the stop-bands respectively, and such that the polyno¬
mials pm(x) and that one in qn[x) have their zeros in roughly estimated

positions for the zeros and poles of the function R(x).
The exchange algorithm is then started with a reference (rf(°>, s(°>) con¬

sisting of a number of m + 1 points in D and a number of n + 1 points in S.

As explained in Chapter II, each iteration step of the exchange algorithm
leads to a local discrete problem, which is to be solved using the following

procedure:

1. The matrices (D) and (S) are calculated*) out of the matrices (pd),

(ps), (qd) and (qs) defined in (27).

(D) = (pd) --{qd), (S) = (qs)-* (Ps) .

The product-matrix is then constructed: (DS) = (D) (S).

2. A suitable vector |(°> is then chosen; this can be either the vector £
from the previous exchange step, or (at the beginning) the vector |<°> =

(0, 0, . . ., 0, 1) is chosen which is justified by the special choice of pm{x).

The eigenvector £ belonging to the largest eigenvalue X\ of the matrix (DS)
is calculated using the iteration:

|<*> = [\jX(k)Y- (DS)!'*'1* (42)

where A'*' is chosen such that the last component of £<*> be equal to 1.

According to Theorem 5 this process must converge such that.

£<*>- f and X{h)->h-

3. The local discrete optimal function R(x) is constructed according to

equations (36) and (37).
The exchange algorithm is then continued by calculating the local

maximum and minimum points of the function R(x) and choosing a new

reference as explained in Chapter II. It can be easily shown that the new

reference contains m + 1 points in D and »+ 1 points in S, so that the

resulting local discrete problem can be solved using the above process.

An ALGOL program**) for solving the approximation problem of a band-

filter using the above method has been constructed and tested on the

ERMETH by calculating the following example.

*) These matrices can be calculated directly without inverting (pd) and (qs)

**) The ALGOL programs are available on request at the Institute of Applied
Mathematics at the ETH in Zurich
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An example (band-pass filter):

The filter requirements:

stop-band Sj! 0 < x < 1.5
,

pass-band D: 2 < x < 4
,

stop-band 52: 5 < x .

The class F of functions:

yx Qt(X)

Basis functions:

p0{x) = 1 q0(x) =\x ,

Pi(x) = (x - 3) qt{x) = ]/* (* - 6) ,

p,{x) = (x - 3)2 - 1/2 9l(x) = J/ * (* - 6) (* - 1) ,

£,(*) = (x - 3)3 - 3 (* - 3)/4

TTw reference (dw, s<°>):

i(°': xd0 = 2 x^ = 2.5 *d2 = 3.5 #<23 = 4
,

s<°>: #s0 = 1.5 xst = 5 #s2 = 7

JAe solution of the first local discrete problem defined by the reference

(dw, i(°>) was obtained after 5 iteration steps (42). The following local

discrete optimal function was obtained (Figure 1):

r{x) =
Aim.
(y> ?(*))

where f = (- 0.003 122 29, - 0.033 8401, 0.175 690, 1)

and >? = (- 1.015 29 ,-0.105 459, -0.328 843).

The maximum discrete deviation d(R(x)) = 1/Af = 0.016 5720.

The first exchange step yielded the new reference (rf*1', s*1)):

dw: xd0 = 2 %<f
x
= 2.376 66 xd^ = 3.440 66 xd3 = 4

,

s*1): xs0 = 1.5 «! =5 xs2 = 7.786 42
.

The upper and lower bounds for the T-deviation A *
were given:

a(i) = 0.016 5720 < A* < 0.019 0032 = A(R(x)) .

N. B. The number 1/Af is generally smaller than the lower bound a'1'.
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RMk

Figure 1

The local discrete optimal funktion R(x)
The dashed curve in the pass band represents the function R(x) to the scale marked

on the vertical at x = 4

o Reference points

The second local discrete problem (for the reference (i*1', s(1))) yielded the

local discrete optimal function

r>{x) = JtM.
(rj q(x))

where |' = (- 0 010 0617, - 0 024 1942, 0 197 815, 1)

and ??' = (- 1 Oil 85, - 0 103 647, - 0 332 477)

The maximum discrete deviation d(R'{x)) =- 1/A{2 = 0 017 4711

The second exchange step gave for A* the following upper and lower

bounds

<x<2> = 0 017 4711 < A* < 0 017 4753 = A(R'(x))
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The function R'(x) was thus accepted as the required solution for the approx¬

imation problem of the given filter. This function has the following zeros

and poles:

Zeros: 2.085 74, 2.860 71 and 3.855 71;

Poles: 1.341 56 and 5.346 69.

B. The Linear Programming Method

This part deals with the general case of a filter having more than 3 bands

(ND + Ns > 3). In Chapter II it has been found that for the construction

of the global optimal function, each one of the 2<N£> + A's-2) local optimal
functions are to be calculated using the exchange algorithm which decom¬

poses the problem into a number of local discrete problems. In Part A of this

chapter the local discrete problem has been expressed as an eigenvalue
problem, which could be easily solved in the case of a band-pass or a band-

stop filter. However, in the case of more than 3 bands it is much more diffi¬

cult to obtain the solution of the eigenvalue problem which gives a function

R(x) that lies in the required local class given in the local discrete problem.
In this part B this algebraic problem is decomposed into a number of linear

problems; namely linear programming problems.

In the local discrete problem there is given:

a) A discrete set (d, s)

d = {xd0, xdlt . . ., xdr, . .
., xdp}

and s = {xs0, xslt . .
., xst, . .

., xsv}

such that the total number of points in (d, s) be:

/i-\-v + 2>m + n + 2.

b) A local class Ff of functions R(x) = g{x) • Pm{x)jQn{x) such that:

sign(Pm(x)) = aSfj for x eSp

and sign(Qn(x)) = aDa for x e Da .

It is then required to construct the local discrete optimal function R(x) e Ff
which has the smallest maximum discrete deviation in (d, s).

In order to solve this problem a sequence of linear programs is construc¬

ted in the following way:

(43)
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1. Construction of a linear program:

For a given number / it is required to construct a function R(x) e Ff
which satisfies the following conditions:

| R(xdr) < I, sign(Qn(xdr)) = o-Do( (xdr e DJ

and R(xst) j > Ijl, sign(Pm(xst)) = aSfs {xsteSp) \ (44)

for r = 0, 1, . . ., fj, and t — 0, 1, . . ., v .

{i.e. the maximum discrete deviation of R(x) is to be < I2).

Using for R(x) the representation:

R(x)
(f />(*))

(»? ?(*))

the conditions (44) can be written:

<ll < J&P[*dr))_
(rj, q(xdr))

ffA»' (yi> q(xdr)) > o r = 0, 1, fl

I <
[y, qjxst)) <l

(45)

(£. />(**))

<ty
• (?, jS(*s»)) > 0 * = 0, 1, ...,*

where #dr 6 Z>a and ^St £ S^

which is equivalent to the system of inequalities:

oDx [-(?, p(xdr)) +l-(rj, q{xdr))] > 0

<*d*
• [(I- ?(^r)) +l-(y, q(xdr))] > 0 r = 0, 1, . .

where xdr e Z>a
and

<ty
• [I (I ${xst)) - (i q{xst))] > 0

<*sp
• [Z • (I. P(xst)) + & ?(**))] 5: 0 / = 0,1,..

where *S( 6 Sg .

Since the problem is homogeneous in | and r) the solution of the above

inequalities can be always chosen such that it satisfies the additional

inequalities:
— 1 < ii < 1 i = 0, 1, . .

.,
m

, ]
| (46 b), (47 b)

and — 1 < ^fc < 1 £ = 0, 1, . . .,
»

. J

(46 a)
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The system of inequalities (46 a) and (46 b) is said to be consistent if there

exists a vector (f, r/) whose components do not all vanish, such that it satisfies

these inequalities; otherwise the system is said to be inconsistent.

To examine the consistency of the above system and to construct a

solution vector (if consistent), a new variable £ is introduced and the

system (46) is extended to:

Y(xdr) = ODa
• [- (I, p{xdr)) +1- (n, q(xdr))] + G{xdr) £ > 0

Y*(xdr) = <TDa [0, p(xdr)) + I • (r), q(xdr))] + G(xdr) t, > 0

Y(xst) = aSp [I (I, p(xst)) - (i q(xst))] + G(xst) £ > 0 } (47a)

Y*(xst) = as/, [I (f, p(xst)) + ft, q{xst))] + G(a:s,) • £ > 0

(%(f r e Da and xst e S^) .

The constants G(xdr) and G(%st) are positive weight-numbers for which

the following values are chosen:

G{xdr) = \p2{xdr) + I2 • q*{xdr)

and G(xst) = ]/q*{xst) + V p2{xst) .

(48)

This choice has the following geometrical meaning:
If the hyperplanes

Y(xdr) = 0, Y*(xdr) = 0 and Y(xst) = 0, Y*(xst) = 0

are represented in the cartesian space f0, £x, . . ., |m, t]o, . .
., rjn, £ then

these will all have an inclination of 45° to the £-axis.

Figure 2
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In this geometrical model the points (|, rj, f) which satisfy the inequali¬
ties (47a) lie in the convex cone C<m + "+3' built by the intersection of the

half-spaces (47 a); its vertix is the origin. The points which satisfy the

inequalities (46a) [and thus correspond to functions R(x) which satisfy
conditions (44)] lie in the convex cone C\m + n+i) built by the intersection

of the cone C<w + "+3' with the hyperplane £ = 0. The cone C<m + "+2> will

be refered to as the feasible cone; its size depends on the value of I and for

different values of I the corresponding feasible cones obey the relation:

C(m + „+2) c cj» +
» + S) for ;2<Zi_ (49)

The feasible cone and the relation (49) are illustrated by the Figures (3 a)
and (3b) respectively:

Figure 3 a Figure 3 b

The feasible cone

In order to investigate the consistency of the system (46 a) the following
linear program is solved:

To determine values for f„, |t, . .
., |m,rja, rji, . . .,rj„, £

maximizing the objective function: Z = — £ (50)

subject to the constraints: (47a) and (47b).

The relation between the consistency of the system (46 a) and the solu¬

tion of the linear program (50) is given by the following theorem:
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2. Theorem 6:

The system of inequalities (46a) is consistent (and has a solution (|, rj)),
if and only if the linear program (50) has an optimal solution (f, r\, f) ^ 0.

Proof:

i) If the linear program (50) has an optimal solution (|, r/, t), then since

(£, rj, £) = 0 is a feasible solution, the value of £ must be either zero or

negative. From this and since (£, ~r), f) satisfies the inequalities (47a) it

follows that the system of inequalities (46a) has a solution (f, rj).
a _.

ii) If the system (46a) is consistent having a solution (f, 'rj) then
*

*

(£, rj, 0) is a feasible solution for the linear program (50). The optimal

solution of (50) must be, therefore, such that t, < 0.

—
-

-*• -t
If C = 0, then (f, r\, C) = (f, 7j, 0) is an optimal solution of the linear

program.

If C < 0, then it follows from (47 a) that not all components of | and »5
can vanish.

From the above discussion it is seen that the solution of the linear pro¬

gram (50) defines a function R(x) which satisfies the conditions (44) for a

given value of I if such a function exists; if not then this is indicated by the

result that the linear program has the only optimal solution (|, 7j, Q = 0.

The aim of the algorithm outlined below is to get a value for I such that

the system (46a) be just consistent. The solution of the corresponding linear

program defines a function:

*(*) = 4^®- (51)

where (£, rj, f), (C ^ 0) is the optimal solution of the linear program (50).
The function R(x) is then the required local discrete optimal function.

3. Outlines of the algorithm:

The algorithm that uses the linear programming method for solving one

local discrete problem, obtained from the exchange algorithm as described

in Chapter II, consists of the following steps:

0. A value /„ is chosen for / at the beginning such that l\ be a roughly
estimated value for the local T-deviation of the given local class.

1. For the chosen value of I the corresponding linear program as defined

in (50) is solved. This leads to one of the following situations:
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a) The optimal solution is (£,tj, £) = 0; in this case the inequalities

(46a) are inconsistent (Theorem 6)—the feasible cone Cilm + n + 2) consists

then of only one point namely the origin—a greater value for I is thus to be

chosen and the corresponding linear program is solved.

b) An optimal solution is obtained such that the corresponding function

R(x) gives for the local discrete T-deviation:

an upper bound 8 = max | R(xdr) \ / min | R(xst)

and a lower bound /? = max (min ! R(x) | / max j R(x) ) .

(d, s) = (&, s) x e d x e s

(52)

If the bounds d and (i are not close enough to one another then the algorithm

goes to step 2 for the choice of a smaller value for /. In the situation b) the

feasible cone Cjm + "+2) has a considerable size.

c) An optimal solution is obtained such that the corresponding function

R(x) gives two bounds 6 and /3 for the local discrete T-deviation [according

to (52)], such that they are practically equal. The function R{x) is then a

practically leveled reference function with respect to the reference (d, s)
and can thus be accepted as a solution for the local discrete problem.
Situation c) corresponds to a narrow feasible cone C,(w, + B + 2).

2. A new value for / is chosen as follows:

A possible choice is such that lz = d [given by (52)], this has the advan¬

tage that the linear program of the next step has always an optimal solution

different from 0, but then the convergence to the required solution of the

local discrete problem is too slow. However, it was practically found that the

relation between the values of k and the values of Ct given by the optimal
solutions of the corresponding linear programs is almost a linear relation,

so that for the linear program i the following choice can be made for k:

i = l: p < l\ <

i^2: h =
fc-i

Ci-2 — C«-l

(53).

With this new value for I step 1. above is then repeated.

It was found, by numerical experiments, that a total number of 3 to 6

linear programs was sufficient to obtain a solution for the local discrete

problem.

N. B. For the calculation of the bounds 8 and /3 the values of the function

R(x) at the points of the given discrete set are needed; these can be directly
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calculated from the values of

Y(xdr), Y*{xdr) r = 0,l,...,p

Y(xst), Y*(xst) t = 0, 1, . . .,
v and C

given by the optimal solution of the linear program:

31

R{xdr)

Wxst) =

Y*(xdr) - Y(xdr)

Y*(xdr) + Y{xdr) - 2 • G(xdr) • £

Y*(xst) - Y(xst)

Y*(xst) + Y(xst) - 2 • G(xst) I

I.

I.

(54)

4. The Simplex Algorithm:

In order to solve the linear program (50), the simplex algorithm is used

in its direct form as described in [4].
The inequalities (47 a) are written in the form of a table:

-fo

-ft

- £m

- Vo

- Vk

- Tjn

where: ioi x, e d: ph2,-i = - P,,2, =

Ik, 2;-l
= ?*, 2;

=

and for x}es: fih 2,-i
= Pt, 2,

=

Ik, 2;-l
= —

Ik, 2;
=

z = Y{*,) = Y*(*i) =

0 pa, 2j-i pa, 2,

0 Pt, 2)-l Phil

0 Pm, 2;-l pm, 1j

0 iO, 2)-l ?0, 2j

0 Ik, 2;-l Ik, 2)

0 in, 2J-1 in, 2j

1 - G(xi) - G(x})

0 0 0

(55)

CTfla
• pi{Xj)

— oDa-l- qk{xt)

— aSfl-1- pi{xj)

asp qic{xj) .

(55')
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If an initial solution (|°, rj°) is known from a previous linear program,

then the above table is transformed in the following way:

1. The variables f« and r\h are expressed in the form:

St = # + <5f< i =0, 1, ...,»

and rjt = rji + drjk k = 0, 1, . . .,
n

.

By substitution in the table (55) this is modified as follows:

The zeros in the last row, with the exception of that in the column Z,

are replaced by the constant elements:

m n

K = - Z £° •«.,»- Z n* «»+! + *,. (56b)
t = 0 A ^0

{«„_„ is the general element in the table which lies in the row u—the rows

being numbered from 0—and in the column v—the column 0 is the column

of the variable Z). The row variables fo, £i, • •
•, £m, f]o, fji, • ., r\n are then

replaced by the new variables

#fo. <5£i. • • •> <5fn». dr]0, drj!, . . ., drj„ .

2. If any of the elements b'v (= am + n+s<v) are found to be negative
then the following transformation must be also made, since it is required to

have positive (or zero) elements in the last row before the simplex algorithm
can be started:

C = C° + <5f • (56c)

This replaces the elements b'v of the last row by the new elements

K = b'v-^-am + n + ^. (56d)

The value of f° is chosen according to:

C° = max(6>m+H + 2j„) . (56e)
V

From the fact that the elements am + n + 2:V
are all negative it follows that

the new elements bv in the last row will be all > 0. At the end of the trans¬

formations (56a-e) the table has the variables

<5!o. dSi, ., dim, drjo, drjlt . . ., br\n, d£

written on the left. These transformations are done for the following purpose:

i) To remove the zeros in the last row, which cause the problem to be

seriously degenerated; in fact if no initial solution (|°, rj0) is given, then to

remove the degeneracy, any initial solution may be assumed.

(56 a)
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0000

-<5f,

vS+in%-i1?+1-f?1

0000

0

1-

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

6

0

1-

6

0

i

6

0000

=k+Xfn+l—k+1+mX=*«•=X,

(57)

.,n.0,1,.=£

1,...,m0,
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i) The A.T.-step
Let the pivot element be in the row upiv and in the column vpiv, i.e. the

element aupiVt vpiv
of the table which is assumed to have the following form:

Uupi

Vvpiv Vv

dupiv, vpiv dupiv,

Clu, vpiv • &U, V (59)

The variable UuPlv is expressed in terms of the variable Vvptll and the other

variables Uu {u ¥" upiv) by solving the equation in the column vpiv for

Uupiv The variables Vv (v ^ vpiv) are then also expressed in terms of

Vvptv and Uu (« 7^ upiv) so that the table will have the new form:

Vvpiv

Uu

Uupiv

clu, vpiv

vv

&upiv, vpiv • CluPiv,

Clu, V (59')

where. auptv,vpiv 'laupiv,vpiv

and

"upiv, V

u, vpiv

upiv. vlaupiv,vp,viv -r vpiv)

au, vt>ivlaup>v, vptv (M "^ Up)

,
V U, vpiv upiv, VI upiv, VplV

(ti ^z upiv and 7' 7^ vpiv) .

(59")
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ii A) The first stage of the simplex algorithm
(The Elimination of the free variables):

Since the variables d£i (i = 0, 1, . . ., m), drjk (k = 0, 1, . . ., n) and d£
are allowed to assume either positive or negative values (they are called the

free variables) they must be removed from the left side of the table by a

number of m + n -\- 3 A.T.-steps, in each of which the pivot element is

chosen as follows*):

1. Pivot row:

Among the rows which still have a free variable the one having the largest
absolute value for the element «„ 0

is taken as the pivot row upiv.
2. Pivot column:

The following characteristic quotients Q are to be considered:

(i) For variables of type Y or Y* written at the top of the table; let

Y(x)) be at the top of the column v, then the corresponding characteristic

quotient is

Q(Y{Xj)) = am + n+3tJauPlVtV. (60i)

(ii) For variables of type X or X* corresponding to variables <5ft or drjk
written at the top of the table; let (5f« be at the top of the column v, then

the two characteristic quotients are to be considered

Q{Xt) = (1 - £> - am + n+ttV)l(- aup*«J 1
f (60 ii)

and Q[X*) = (\+g + am + n+ltV)lauptViV. \

(iii) For the two variables X and X* corresponding to a variable diji

(or drjk) written in the pivot row

Q(Xt) = 1 - £

and Q(X*t) = - 1 - |» .

Out of these characteristic quotients only those which have an opposite
sign to «„£,„, o are calculated and the one having the smallest absolute value

is chosen; this belongs either to one of the variables Y (or Y*) or to one of

the variables X (or X*):

(a) If the characteristic quotient Q(Y(xj)), belonging to the variable Y(xj)
written at the top of the column v, is chosen then the column v is taken

as the pivot column vpiv.
(b) If Q(Xi) (or Q(X*)) is chosen, then the column corresponding to the

variable Xt (or X*) is added to the table and taken as the pivot column

vpiv.

*) The general term m the table is assumed to be aM| „,
where u is the number of

the row w = 0, 1, . ,m + « + 3 and v is the number of the column v = 0, 1, .., Ncoi.

(60iii)
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This column is calculated from the rest of the table in the following

way:

(bl) If the variable <5f, (corresponding to Xt (or X*)) is at the top of the

column v, then:

(61 bl)

Column Xt: a j.
= — a m = 0. 1 m 4- n 4- 2

w, vpiv U, V > * » ' '

am+n+3, vpiv
==

'

S, am + »+3, d

Column Xf: ««, vf»v
= a«,v « = 0, 1

,
W + « + 2

am+ n+3, vpiv
~ ^ T ?i "T" ^m + n+3, »•

(b2) If (5fi is written in the pivot row, then:

Column Xt: aM vpn,
— 0 for all u =£ upiv

aupiv,vpiv := ^> am + n+S, vpiv
=

* S,

Column X*: aH> vpw
= 0 for all u ^ upiv

aupw,vpiv
~ ^> am+n+3, vpiv

==
* "T s,

(61 b2)

iiB) The second stage of the simplex algorithm

(The actual simplex stage):
The free variables are now at the top of the table and the actual simplex

algorithm can begin with the following rules for the choice of the pivot
element:

1. Pivot row:

The row with the most negative element «„ 0
is chosen; if none of the

elements aM_ 0 (u — 0, 1, . . .,
m + n + 2) is negative then the simplex

algorithm is at its end.

2. Pivot column:

The same characteristic quotients as given by (60i) and (60ii) in the first

stage are considered (with the only exception, that if a variable Xi (or X*)
is in the pivot row then the corresponding characteristic quotient is not

considered). Out of these only the positive characteristic quotients are cal¬

culated and the smallest is chosen. The pivot column is determined, and if

necessary added to the table, in the same way as in the first stage.
In order to avoid an unnecessary increase in the number of columns of

the table, the following rules are to be followed: After each A.T.-step, if the

variable that newly comes to the top of the table is an Xi (or X*), then:

a) If this comes to the top of the last column, then this last column is to

be cancelled.

b) If it comes to the top of another column, then this is replaced by the

last column in the table with the variable at its top.
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In this way the variables X and X* are allowed to stay only at the left

of the table which keeps the total number of columns less than 2 (/j, -j- v + 2) +
m + n + 3; actually, the total number of columns in most of the cases is

equal to 2 (// + v + 2) + 1.

At the end of the simplex algorithm, the optimal solution of the linear

program (50) is read from the table in the following way:

a) The variables that are written at the left side of the table are put equal to

zero.

b) The variables written at the top of the table are given the values of the

last elements in their columns.

The values of the variables

d&

dr/k

Y(x3), Y*(x})

and Z

for the optimal solution of the linear program (50) are thus all defined.

5. The problem of degeneracy:

The type of degeneracy encountered here is that two or more of the

calculated characteristic quotients become equal to zero, so that the pivot
column be always chosen in their columns and the value of the objective
function Z remains constant which means that the simplex algorithm never

arrives to an end. This type of degeneracy can occur in one of the following
situations:

1. At the beginning of the first simplex-algorithm in the first exchange
step, if the initial solution

("to, -o) = o

is chosen. This situation can be avoided if any roughly estimated initial

solution is taken.

2. During the simplex algorithm, if the m + n + 3 variables at the left

side of the table become all of the type Y or Y*, then the characteristic

quotients calculated for the other variables of the same type must be all

equal to zero [because the current solution given by the table in this situa¬

tion must be (£, jy, f) =0].
However, it was practically found in all such situations that the charac¬

teristic quotients have very small values instead of zeros (due to the round¬

off errors made during the previous A.T.-steps). Thus, it was possible to

continue the simplex algorithm as usual as if no degeneracy had occured.

i = 0, 1, . . .,
m

k = 0, 1, . . .,
n

j = 1, 2, . . ., fj, + v + 2
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If, however, it is not possible to choose an initial solution different from 6

(to avoid the first situation), or if the round-off errors do not save the second

situation, the following method can be used:

1. The elements of the last row are stored to be used later.

2. The columns for which the characteristic quotients are zero are

determined (let these be called the degenerated columns); their zero elements

in the last row are then replaced by positive numbers (these are thought to

be multiplied by a common factor e which will be later put equal to zero).

3. The simplex algorithm is continued as before with the exception that

the pivot column is to be chosen only among the degenerated columns;

as long as such a pivot column can be found.

4. If no pivot can be found among the degenerated columns (this must

happen after a finite number of A.T.-steps, since the first element in the last

row is always increased and a maximum value must be reached), the follow¬

ing is then done:

a) The elements of the last row are replaced by their original values

stored by step 1. (This is equivalent to putting e equal to zero.)

b) The pivot column is then chosen by the usual simplex algorithm (this
must be one different from the degenerated columns), and the simplex

algorithm is continued.

6. An example:

The results obtained for a filter with 2 pass-bands and 3 stop-bands are

discussed here. The 8 local optimal functions were calculated. The final

results are given by curves for these functions together with their zeros and

poles. The exchange steps required to obtain the best local optimal function

(i.e. the global optimal function) are also discussed.

The filter requirements:

stop-bands pass-bands

St: 0 < x < 1
Dx: 1.3 < x < 2

S2: 2.5 < x <4
£>2: 4.5 < x < 6

S3: 6.5 < x

The class F of functions:

R(x) = -j^--

(m = 5, n = 4, g(x) = 1/| x) .
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The following choice was made for the basis functions: [The zeros of pi(x),
with the exception of pl{x), lie in the pass-bands; and the zeros of qic(x) lie

in the stop-bands]:

P,{x) = 1

py{x) = (x - 3.65)

p.z{x) = (x - 1.65) (x - 5.25)

p3{x) = (x - 1.65) (x - 4.719 66) (* - 5.780 33)

pi(x) = (x - 1.402 65) (* - 1.897 45) (x - 4.719 66) (x - 5.780 33)

ps(x) = (% - 1.402 65) (s - 1.897 45) (* - 4.600 48) (x - 5.899 52)

(x - 5.25)

9«(x) = [''%
?x(*) = |/* (* - 3.25)

?8(*) = ]fx (x - 3.25) (x - 8.034 44)

?,(*) = \rx {x - 0.809 02) (x - 3.25) (* - 8.034 44)

gt(x) =. j/x (* - 0.809 02) (x - 2.719 66) (a: - 3.780 33) (x - 8.034 44) .

The local classes: The number of local classes for the given number of

pass- and stop-bands is given by

NP = 2^D + Ns-n
= 8 •

these are defined by the following sign-distributions (the local T-deviation

for each local class is also given in the table):

local class oSl aDl CTss °D, °s,
the local

T-deviation

Fx + 1 + + + + 1 0.0901

P* + 1 + + + — 1 0.0690

P3 + 1 + + — + 1 0.1389

P, + 1 + + — — 1 0.1098

F„ + 1 + — 1 + I + 1 0.2597

Ps + 1 + — + 1 — 1 0.0806

F, + 1 + 1 — I — I + 1 0.3802

F, + 1 + _1 0.1587

In order to obtain the global optimal function (the local optimal function

for the local class F2) the following exchange steps were used:
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The first exchange step: A discrete set with the following points was

chosen (their number exceeds by 3 the number required for a reference, i.e.

m + n + 2 = 11):

in D-l'. xd0 = 1.3

in D2: xd3 = 4.5

xd1 = 1.65 xd2 = 2

xd. 4.875

inSx: xs0 = 0.5 xs± = 1

inS2: xs2 = 2.5 xs3 = 3.25

xst = 4

inS„: xs* = 6.5 a:sb = 13xds = 5.625 xd6 = 6

For the first simplex algorithm the following choice for I was made

/„ = 0.25
.

The initial solution (f°, rj°) = 0 was chosen; the resulting simplex algorithm
was thus degenerated at the beginning and the method described above for

the treatment of the degeneracy was used. At the end of the simplex algo¬
rithm the function in Figure 4 was obtained. This is an almost leveled

Figure 4

The first local discrete optimal function

o: Points of the first discrete set
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reference function with respect to a reference consisting of 11 points con¬

tained in the discrete set as seen in Figure 4.

The second exchange step: The maximum and minimum points (including
those at the ends of the intervals) of the function obtained from the first

exchange step were calculated; then out of these the following discrete set

was chosen (which is actually a reference)

xs0 =1 xs1 = 2.5 xs2 = 3.475 xs3 =4 xst = 6.5 xsb = 8.25

xd0 = 1.3 xdx =1.6 xdt = 2 xd3 = 4.5 xdt = 6
.

For this discrete set the local discrete problem was again solved, which needed

a number of 4 simplex algorithms to obtain the function shown in Figure 5.2.

This function was taken as the local optimal function of the local class F2.
The local optimal functions for the other local classes were also calculated in

the same way; the results are shown in Figures 5.1-5.8 and prove clearly
that the local optimal function of F% is the global optimal function for the

given filter.

Discussion of the results:

The local optimal functions obtained have the following features which

have no similar in the classical case of a low-pass (or a high-pass) filter or in

the case of a band-pass (or a band-stop) filter:

1. Complex zeros or poles. Actually, the global optimal function has a pair
of complex zeros.

2. Zeros or poles that lie between pass- and stop-bands. The third best local

optimal function R^x) has a pole between the first pass-band and the

second stop-band.
3. Negative zeros or poles. For example the function R^x) has a negative

zero, and the function Rt(x) has a negative pole.

4. The ends of the intervals are not necessarily extreme points of the local

optimal functions. (For each local optimal function there are exactly 11

extreme points as shown in Figure 5.) The end of the first pass-band and the

beginning of the second stop-band are not extreme points for the local opti¬
mal function Rx(x); the first pass-band may be extended to x = 2.045 and

the second stop-band may begin in x = 2.16 and the same local optimal
function will be obtained.

It may be a serious loss of time to calculate all the local optimal func¬

tions whose number NP may be very large (Np = 2(JVfl+JVs_2) increases

exponentially with the total number of pass- and stop-bands). But on the

other hand, if the best function has complex zeros or poles the problem of

realisation of the electrical filter becomes more complicated and it may be

found more convenient to realise a second or a third best filter with no complex
zeros or poles.
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Figure 5.1

The local optimal function Rx(x)
Zeros: -0.767 202; 1.409 23; 1.972 79; 4.691 27; 5.819 47 -Poles: 0.834 102; 2.282 79;

3.723 50; 6.829 08 - Maximum deviation: zl, = 0.0901 - o: Extreme points
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Figure 5.2

The local optimal function R2(x) (= the global optimal function)
Zeros: 1.37643; 1.880 65; 5.814 67; (4.479 14 ± 0.491 382i) - Poles: 0.663 276; 2.782 75;

3.892 37; 6.745 84 - Maximum deviation: At — 0.0690 = A* - o: Extreme points
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Figure 5.3

The local optimal function R3(x)
Zeros: -92.6175; 1.38927; 1.878 49; 4.699 04; 5.803 41 - Poles: 3.427 32; 7.154 67;

(1.188 04 ± 1.407 36 i) - Maximum deviation: As = 0.1389 - o: Extreme points

Figure 5.4

The local optimal function Rt(x)
Zeros: 1.385 10; 1.881 67; 4.629 82; 5.326 63; 5.900 12 -Poles: -0.440 082; 3.277 47;

(5.736 03 ± 1.009 19 i) - Maximum deviation: At = 0.1098 - o; Extreme points
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Figure 5.5

The local optimal function Rs{x)
Zeros: -0.459 010; 1.592 40; 5.466 57; (3.666 47 ± 1.072 98 i)
2.798 79; 3.796 23; 7.037 98 - Maximum deviation: zl5 = 0.2597

Poles: 0.743 846;

o: Extreme points

Figure 5.6

The local optimal function Re(x)
Zeros: 1.49827; 4.69431; 5.82621; (1.86146 ± 0.617 012 i) -

2.638 61; 3.776 05; 6.800 00 - Maximum deviation. A. = 0.0806 -

Poles: 0.871 519;

o: Extreme points
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Figure 5 7

The local optimal function R7(x)
Zeros- -0.038 517, 1614 91, 5 159 71, (7 331 12 ± 0 782 56 i) - Poles 0 520 06,

3 303 15, 6 814 87, 7 973 17 - Maximum deviation A, = 0 3802 - o Extreme points
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Figure 5 8

The local optimal function R%{x)
Zeros 1348 97, 1588 87, 1 894 33, 4 711 72, 5 803 56 - Poles- 3 394 63, 7 673 39,

(1 522 69 ± 0 216 137 i) - Maximum deviation A% = 0 1587 - o. Extreme points
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Chapter IV. Mixed-Integer Programming Methods

In the preceding chapters the approximation problem of an electrical

filter with more than 3 pass and stop bands has been solved by calculating
each one of the Nf local optimal functions seperately, and then among these

the global optimal function has been chosen In this chapter the possibility
of directly determining the global optimal function with the help of mixed-

integer programming is studied The exchange algorithm as discussed in

Chapter II, can not be expected to converge here, in fact, it has to be modi

fied in the following way in order that it delivers the required result

1. The modified exchange algorithm

The ft-th iteration of the modified exchange algorithm consists of the follow¬

ing steps

1 For the discrete set

(d s)<*> = {dm, s(*))X] u (^<fc», s<*))A u • • • U (<*<*>, s(*))/ (k) (62)

corresponding to the local classes

FwFu >FV*>» <63>

the following global discrete approximation problem is to be solved

1
To choose a function R^(x) e F2 \j F2 \j \j FN

such that its maximum discrete deviation in the set

(d, s)<*> be a minimum

(64)

The resulting global discrete optimal function must be one of the local

discrete optimal functions, let it be that of the local class Ff, [this must not

necessarily be one of the local classes (63)]

2 The local maximum and minimum points of the function if(*)(t) are

determined, then the new reference (d^k +1), s(*+ 1>)/ and the number a}*' are

determined in the same way as in step 2 of the exchange algorithm discussed

in Chapter II It is obvious that the global T-deviation A* satisfies the

inequality

<4*> <A* <A(RW(x)) (65)
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If these bounds are close enough to each other, then the function R^(x)
is practically the global optimal function.

3. a) If the local class Ffj in which the function R(k>(x) lies is one of the

local classes (63), then replace the set (d<*>, s^)fj by the new set (Sk + J>, s<* +1»)/
obtained in step 2; the remaining sets are left as they are. This defines the

new discrete set:

(d,s, (A+l)
_ {d{ + 1) s(*+1))/, u (d (k+i) .(ft + lh

«»A«rc 0(* + 1) =6{k)

and (rf(* + 1,),s<* + 1>)/,= (rf<*\sw),1

also a<* + 1>
= a<*>

>f, u
•

(^(* + Di s|/i + 1))/;u---u (^~Ti', s
(A+l) .(*+l)i

/(a(* + 1')

for /, # /^

(66 a)

b) If the local class Fft is not one of the local classes (63), then let this be

the new local class Ff ,k + x, (= Ffl). The set (i(*
bined to the set (d, s)(*' to get the new discrete set:

+ i) ,(* +s<*+ 1')/» is then com-

(d, s)<s + 1»
= (d<k + 1\ s^k +\ u (^* + 1), sl" + \ u • • •

where 6{k + 1)
= 0<*> + 1

a«^

(rf(A+l) „(*+!)

)/(a<* + 1)' (rfl*+^,S(* + J))/

also a<* + 1>
= a<*>

1,2, . . .,dik) .

(66b)

With this new discrete set (66a) or (66b) step 1 above is then repeated.

At the beginning of the algorithm, the numbers a'j0', a^0), . .
., aj%, are

given all the value zero; a discrete set (<£(0), s<0)) is chosen for a start and

then left out in the following exchange steps.
The total number 6m of sets required can be one or more sets but a too

large number near the maximum number Nf = 2(iVc +iVs_2) is not to be

expected (in the example mentioned at the end of this chapter it was found

that one set was sufficient; the maximum possible number is Nf = 4).
It is easily seen that this exchange algorithm leads to the required result ;

in fact, using the same considerations as in Chapter II, it is obvious that the
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numbers <x(1), a(2),
,
a'*1, defined by

a<*> = max (a<*>, »<*>, ,«}*>, , «#>,) (67)
/

build an increasing sequences of lower bounds for the global T-deviahon

The total number of exchange steps, required to obtain the global optimal
function, is in any case not greater than the sum of the numbers of exchange
steps required to get the local optimal functions of the 0'*' local classes in

(63), each function being obtained seperately using the exchange algorithm
of Chapter II

2. The global discrete approximation problem

In order to solve the global discrete approximation problem (64) as defined

in step 1 of the modified exchange algorithm, a number of mixed-integer
programs are used in a way similar to that discussed in Chapter III B for

the solution of the local discrete problem using linear programming*)
The mixed-integer program for a given discrete set (d, s)(ft) and a given

number I is constructed m the following way
•

The given discrete set (d, s)'*1 is devided into a number of subsets

xDlt xDz, xD
, xDN }

(68)
and xSlt xS2, %Sp, , xSN J

such that the points of (d, s){h) which he in Dx build the subset xDa and

those which he in Sp build the subset xSp With the given initial value for /

(which is determined in a similar way as in Chapter III-B) the following
inequalities are constructed

- / < ,(f' t{,x\\- < I for all xexDtKj xDzU u xDh
n(tj, q(x)) A-D

and — I < \t ii < I for all x e xS1 \j xS2 u • • • \j xSN .

(69)

*) It may be a faster method (but more complicated), to use at the beginning one

•mixed-integer program with the given initial value for / in order to determine a local

class Fj in which the global optimal function i?(*)(#) is expected to he, then for this

constant local class Fj a number of linear programs as explained in Chapter III-B are

used to get an exact value for / then at the end a second mixed-integer program is used to

check if for this new value of / the function RW{x) actually lies in the local class Fj
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These are equivalent to the following system, if the function R(x) defined

by the vector (£, rj) is to lie in one of the local classes Fj, F2, . . ., FNp:

for all x e xDx:

- {1 ?(*))

and 0, p{x)) + /(q, q{x)) > 0

for all x 6 xS1:

and l(i, p{x))

- (??, q{x)) > 0

for all x 6 xDa:

either

- (1 p(x)) + 1(7,, q(x)) > 0

and (|, p{x)) + l(ji, q(x)) > 0

for all x e xSg:

either

Ki p(xd -

and l(i, p{x)) +

(rj, q(x)) > o

where a = 2, 3, . .,iVfl

and (3 = 2, 3, ...,NS.

or

(f, ?(x)) - z(i ?(*)) > o

and - (|, £(*)) - /(^, q(x)) > 0

or

and - l(i, p(x)) - (rj, q(x)) > 0

In order to choose the proper inequalities, for the points in the pass-
bands Da (a > 2) and for the points in the stop-bands Sp (fi > 2), out of the

above system (70) and to construct a solution for these, a number of

ND + Ns — 2 integer variables are introduced

Qd,> Qd,>-- QdNd and &v 0s,- •
• Qsns

and a variable f is introduced in the same way as in Chapter III-B. The

following mixed-integer program is then solved:
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To determine values for: £, rj, £

ofla (a = 2, 3, ..., Nd)

and gsp (0 = 2, 3, . . ., ATS)

maximizing the objective-junction: Z = — f ,

subject to the following restrictions:

al) /or «// * e aZV

y = - (?, ?(*)) + /(i ?(*)) + G(x) • £ > 0

and Y* = (£, p(x)) + /(^, ?(*)) + G(x) £ > 0

where G(*) = | j52(*) + I2 f{x) .

a2) for all x e xSx:

Y = 1(1 p(x)) - (i q(x)) + G(x) • C > 0

and Y* = iQ, p(x)) + (rj, q(x)) + G(x) • £ > 0

where G(*) = ] /2 ^2(*) + q2{x) .

a3) /or a/Z * e %£>a (a = 2, 3, . .
., ND):

Y =-(l P(x)) + l(r), ?(*)) + G(x) £ + K(x) •

gDoi > 0

and 7* = (£ ?(*)) + l(rj, q(x)) + G(*) £ + K(*) qDcc > 0

y = (f, p(x)) - /(i £(*)) + G(x) £ 4- tf(*) • (1 - eDa) :> 0

and y* = - (I p(x)) - l(r), q(x)) + G(x) £ + K(x) • (1 - qdJ > 0

where G(x) = J p2{x) + /2 q2(x)

and #(*) = 2 / • JJ | ?*(*) .

* ^d

a4) /or atf x e xSp (/? = 2, 3, . . ., iVs):

y = 1(1 p(x)) - (rj, q(x)) + G(x) £ + K(x) ^ > 0

y* = /(£ £(*)) + (i ?(*)) + G(*) • £ + if (*) •

^ > 0

Y = - 10, p(x)) + (i ?(*)) + G(x) £ + K(x) (1 - ^) > 0

and y* = - Z(£ £(*)) - (^ q(x)) + G(*) • f + K(x) (1 - QSfi) > 0

where G(*) = ] I2 p2(x) + q2{x)
m

and K{x)=2l-£\pi{x)]
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b) gDa = 0 or 1 a = 2, 3, ...,
ND

and QSp = 0 or 1 0 == 2, 3, . . .,
iVs

and

c) | |«
'

< 1 i = 0, 1,2, . .
.,
m

and | rjicl < 1 A = 0, 1, 2, . . .,
n

.

The following Theorem 7 defines the relation between the optimal
solution of the mixed-integer programming problem (71) and the optimal
solutions of the Nf possible linear programs (50).

Theorem 7: The mixed-integer programming problem (71) has an optimal
solution:

S, n.Z; Qd,>qd,< -'Qdnb; qs,< dss.- •> hNs

if and only if the linear program (50) defined by the sign-distribution:

[ + 1 if QDa = 0 I

oDa = ^
[ <x = 2, 3, . .

.,
ND

-1 if eBa = l

f +1 if qsp = 0 ]

<rsB = |
^

[ j8 = 2, 3, . . .,
N;

- 1 if pB„ = 1
s

(72)

has an optimal solution: £, r), £, such that — £ is the largest among the Nf

values for — f of the optimal solutions for the NF possible linear programs (50).
The proof of this theorem follows directly from the following Lemma:

Lemma: A choice of the integer variables in (71) subject to the conditions b) in

(71) reduces the inequalities a) in (71) to the inequalities (47 a) of a linear

program (50) for which the sign-distribution is defined according to (72) by the

choice of the integer variables.

Proof of the Lemma:

1. The inequalities al) and a 2) in (71) are the same as those in (47 a) for
the same points x.
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2. For the inequalities a3):

(i) // qdx = 0, then the first two inequalities in a3) become:

- (I ft*)) + KV: ?(*)) + GW • C > 0

and (l p(x)) + l(7j, q(x)) + G(x) f > 0

which are the corresponding inequalities in (47 a) for Od^ = + 1. The third

and fourth inequalities: Y > 0 and Y* > 0 can be cancelled since they
follow directly from the inequalities (73i) in the following manner:

From - 0, p{x)) + l(fj, q(x)) + G(x) • f > 0 it follows that:

Y* = - (I p(x)) - l(rj, q(x)) + G(x) C + K(x)

>-2l-fi, q(x)) + K(x) .

Substituting for K(x) it follows:

Y* ^ K(x) -2l.fi, q(x)) = 21- (jr\ qk(x) j - JJ rjk qk(x)\ :> 0

since rj satisfies the conditions c) in (71) [or (47 b)].

Similarly, from (?, p(x)) + l(r,, q{x)) + G(x) f > 0 it follows that

Y >0.

(ii) // qdx = 1, then the last two inequalities in a3) become:

(I ?(*)) - /(^. ?(*)) + G(x) • C > 0

and - (£, p(x)) - 1(7,, q(x)) + G(x) • £ > 0

which are the corresponding inequalities in (47 a) for aDa = — 1. The first

and second inequalities: Y > 0 and Y* > 0 can be cancelled since they
follow directly from the inequalities (73ii); namely Y > 0 follows from the

first and Y* > 0 follows from the second inequality.

3. For the inequalities a 4):
It can be similarly shown that:

(i) // Qsp — 0, then they are equivalent to the two inequalities:

-
-

\
-,

\ (74i)
and 1(1 p(x)) + (rj, q(x)) + G(x) f > 0 J

which are the corresponding inequalities in (47 a) for asp = + 1.

(73i)

(73ii)
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(ii) // Qsp = 1, then the inequalities a4) are equivalent to:

- Kl ?(*)) + (I ?(*)) + G(x) C > 0 ]
-.._>.» f (74u)

and - l(t p(x)) - (,, q(x)) + G(x) f > 0 J

which are the corresponding inequalities in (47 a) for asp = — 1.

Proof of Theorem 7:

Since each possible choice for the values of the integer-variables [subject
to conditions (c) in (71)] reduces the inequalities (a) in (71) to the inequali¬
ties (47 a) of one of the linear programs (50), and since the inequalities (c)
in (71) are the same as those of (47 b) of the linear program (50), and the

objective function is the same in both problems [the linear program (50)
and the mixed-integer program (71)], it follows that the optimal solution

of the mixed-integer program must have the same values for f, jj, f as those

of the optimal solution for one of the linear programs (50), namely for the

linear program (50) whose optimal solution has the largest value for the

objective function — f.
From Theorem 7, and Theorem 6 of Chapter III-B, it follows that:

a) If there exists in any of the local classes Flt Fit . . ., FNp a function

R(x] _
lAl
(n, <?(*))

which satisfies the conditions (69), then such a function is given by the

vectors £ and rj of the optimal solution of the mixed-integer program; at the

same time this function is chosen out of the local class which is most liable

to contain a solution for the global discrete approximation problem (since
the solution with the largest value for — f is chosen by the mixed-integer

program).

b) If it is not possible to construct a function R(x) which satisfies the

conditions (69), then the mixed-integer program has the optimal solution

(£, V> f) = 0- In this case, the mixed-integer program is to be newly solved

with a larger value for /.

In order to solve the mixed-integer program (71), an algorithm given by
R. Gomory [6] was used. However, it was found that the time needed to solve

one mixed-integer program was too long to make this method of any practical
advantage over that given in Chapter III-B.

The method (described in this chapter) is hoped to become useful if

another mixed-integer programming method is developed, which consumes

less calculating time (perhaps by making use of the fact that the integer
variables are, in this special case, restricted to the special values 0 and 1).
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3. An example

The approximation problem of the following filter was solved using the

mixed-integer programming method.

Filter requirements:

pass-bands

Dx: 0.5 < x < 1.5

D2: 4 < x < 4.5

The class F of functions:

R(x) =

stop-bands

St: 2 < x < 3.5

S2: 5.5 < x

RWk

PM

(V* G,(*))

4, n = 3 and g(x) = 1/j x)

Figure 6

The global optimal function R*(x)
o: Extreme points
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The global optimal function:
After two exchange steps, in each of which one mixed-integer program

consumed from 4 to 6 times the calculating time for one equivalent linear

program, the global optimal function R*{x) shown in Figure 6 was obtained.

The global T-deviation A * (the maximum deviation of the global optimal

function):

A* = 0.0308.

From Figure 6 it is seen that the global optimal function has a number

ofm + « + 2 = 9 extreme points; these build a reference with respect to

which the function R*(x) is a leveled reference function. The second pass-

band contains only one extreme point and it can be extended to x = 4.65

without changing the global optimal function R*(x).
The zeros and poles of R*(x) are:

Zeros: 0.658 436, 1.393 76, 4.099 27 and 4.596 08,

Poles: 2.146 33, 3.341 99, and 5.888 86
.

Appendix. Proofs of Theorems 1, 2 and 4

Theorem 1: // R(x) e Ff is a reference function with respect to a reference

(d, s), then:

i) The following relation is satisfied by all functions R(x) e Ff, which are

not proportional to R(x):

min | R(x)

A(R(x)) > -^—— (H)
max I R(x) \
x e s

and

ii) If R(x) is not a local optimal function in Ff, then:

min I R(x)

A(R(x)) >Af> -^=~— • (15)
max

]
R(x)

x e s

Proof:

Let a function R(x) e Ff be such that:

min R(x)

A{R{x))<^---~ (75)
max R(x)
x e s
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then by multiplication of R(x) by a suitable factor a, it can be reached that

for R(x) = a-R(x):

for all xed: \ R(x) I < R(x) \

and for all x e s: [ R(x) J ;> R(x) .
I

Using the relations (76), *Y w?7/ be proved that in a number of m + n + 1

points ki (the meaning of wt and « is defined in Chapter I) the following is

satisfied:

R(Xl) = R(xt) i = 1, 2, . . .,
m + n + 1 (77)

or: g(i,) 5^-=g(i0^5(;,)
0»(*i) 0»(*,)

£)»(*.) • £>rc(*i) - J*m(^) ' 8n(^t)
_ q

Qn(Xi) Qn{Xi)

i.e. the polynomial Am + n(x) = Pm(x) Qn{x) — Pm{x) • Qn(x) (78)

whose maximum degree is m + n has a number of m + « + 1*) zeros;

it follows that Am+n{x) must identically vanish, which means that the two

functions R{x) and R(x) are identical.

The functions R(x) and R(x) are thus proportional if relation (75) is

satisfied. This proves the first part i) of the theorem. The second part ii) is

proved by replacing R(x) by a local optimal function for the local class Ff in

relation (14).
It remains only to prove (77). For this purpose, relation (75) is used to

prove that the two curves:

r(*)=_^L and y(x) = JMfL (79)
Qn[x) Qn(x)

have a number of m + n + 1 *) points of intersection xi (i — 1, . . .,

m + n + 1)- This can not be proved directly since the curves r(x) and r(x)
are not continuous; the proof consists of the following steps:

*) The points xt are either different, or there can be among them some points
which are to be doubly counted [this can occur only in the case of equality in (75)] such

that their total number remains at least m + n + 1 For such a double point x} it will

be proved (footnote page 59) that the two curves "r(x) and r(x) have a common tangent;
from this it is easily seen that in a double point xj

A(xj) = 0 and A'(x,) = 0
.
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1. The two curves r(x) and r(x) are transformed into the curves (f>(x) and

<f>(x) on the surface of the cylinder whose axis is the x-axis [a curve <f>(x) on the

developed surface of the cylinder is shown in the lower part of Figure 7].

This transformation is defined by:

and

sm<j>(x)

cos<^(%)

Pm{x)

Vp2m(x) + esw

0»M

Vm*) + Qi(*)

(80)

This defines the continuous curves <f>(x) and <f>(x).
2. Since the functions R(x) and R(x) belong to the same local class Ff

[i. e. Pm{x) and Pm(x) have the same sign in the stop-bands, and Qn(x) and

Qn(x) have the same sign in the pass-bands], therefore:

in Da: if ODa — + 1, then both curves <f>(x) and (j)(x) lie in the

neighbourhood of the line 0 = 0;

and if <Tca =
— 1, then both curves (f>(x) and <f>(x) lie in the

neighbourhood of the line <f> = n;

in Sp : if asp = + 1, then both curves <f>(x) and <f>(x) lie in the

neighbourhood of the line <j> = nj2;

and if asp =
— 1, then both curves <f>(x) and <f>(x) lie in the

neighbourhood of the line <f> = 3 ?r/2.

The curve r(x) and the corresponding curve <f>(x) on the developed surface of

the cylinder are shown in Figure 7; the m + n + 2 reference points are

marked by small circles, and the corresponding points («*, <£(#*)) are also

marked in the lower part of the figure.

(81)

3. From the fact that R(x) is a reference function with respect to the

reference (d, s), it follows that the points with x = Xk (the abscissas of the

reference points) on the lines defined by (81) must be situated successively

on opposite sides of the curve <j>{x); as shown by the arrows in Figure 7.

4. From the relations (75) it follows that the points (#*, <f>{xk)) on the

curve </>(x) are situated closer to the lines defined by (81) than the corres-
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ponding points (xk, <f>{xk)) on the curve c/>(x) ; i.e. these m + n + 2 points

of the curve <j>[x) lie relative to the curve tf>(x) in the directions of the arrows

(Figure 7).

5. From 4. and since <£(#) and <f>(x) are both continuous curves on the

surface of the cylinder, it follows that between each two successive reference

points xk and xk+1 there must be either a point of intersection of the two

curves: (xi, <j>t) or two points: (ki, <j>t) on the curve <j>(x), and (x(, fa + n)

on the curve <f>{x).

T(x)k

Figure 7

The curves r(x) and <f>(x)

o: reference points; forbidden regions hatched
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In both cases the functions r(x) and r(x) have the same value at the point xt

Relation (77) is thus satisfied in the m + n + 1 *) points °%%, this completes
the proof of Theorem 1

Theorem 1': is the discrete case of Theorem 1 and can be proved in exactly
the same way

Theorem 2:

i) // a function R/(x) e F/ has a set of m -f- n -f- 2 extreme points, such

that they build a reference (d, i) with respect to which Rf(x) is a leveled reference
function, then the function Rf(x) is a local optimal function in Ff, and each

other local optimal function for the same local class is proportional to R/(x)

n) If a local optimal function Rf(x) e Ff satisfies the assumption

Pm{x) and Qn{x) are relatively prime polynomials of
maximum degrees m and n respectively, such that at least

one of them attains its maximum degree,

(16)

then the function Rf(x) has at least m -f n + 2 extreme points which contain a

reference (d, s) with respect to which Rf(x) is a leveled reference function

Proof

(i) Since Rf{x) is a leveled reference function with respect to the refer¬

ence (d, i) and the points of this reference are extreme points of Rf(x),
therefore

max Rf(x) mm R/(x)

A(R(x)) = -"'"
„,-;—

= -^—-r— (82)
v v '' mm

Rf(x)
max Rf(x) K '

x e s x e s

From part n) of Theorem 1 it follows then, since the inequality (15) can not

be satisfied, that Rf(x) must be a local optimal function tn Ff From part l)
of Theorem 1 it follows directly that all other local optimal functions in Ff
must be proportional to Rf{x)

*) In the case of equality in (75) the curve <j>(x) can coincide with <j>(x) at some

reference points For each point x} of this sort (with the exception of the first and the

last points of the reference) there is

either a) at least one point of intersection for $(x) with <j>(x), different from Xj, which

he between the preceding and the succedmg reference points

or b) a common tangent for the two curves ij>{x) and (j>(x) at the point xj In such a

double point Xj it is easily proved that the curves 7(x) and r(x) have a common

tangent
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(ii) Let Rf(x) be a local optimal function which satisfies assumption (16)
but its extreme points do not build a reference with respect to which Rf{x) is a

leveled reference function; or in other words, there is at most a number of

m + n -f- 1 points Xk (numbered according to their order on the %-axis

from left to right) such that:

a Rf(xic)

(- l)fc -l for xkeD

i

(-1)4 for xic^S

where I2 = A(Rf(x))

and a = a suitable factor
.

(83)

It can be shown, by constructing a function R^x) e F/ which has a maximum

deviation smaller than I2, that the function R/(x) is not a local optimal
function in Ff.

The function R^(x) is constructed in the following way:

1) A set of points Xk is chosen such that:

Xk < X/c < Xk+1 . (84)

The number N of these points is less by one than the number of the points

Xk', i-e. N < m + n.

2) A polynomial Bm+n{x) of maximum degree m -\- n is then defined by:

Dm+n\X) — ^±2#(X — Xk) (85)

(the sign will be later chosen). Since the polynomials Pm{x) and Qn{x)
satisfy the assumption (16), two polynomials Un(x) and Vm(x), of maximum

degrees n and m respectively, can be determined such that:

Bm+n{x) = Un{x) Pm{x) — Vm(x) • Qn(x) .

3) The function Rx(x) is then defined by:

Pm(x) + X Vm{X)
M*)

Qn(x) + X Un(x)
g{x)

(86)

(87)

To prove that Rx{x) can be constructed such that its maximum deviation is

smaller than Is, consider the difference

R,(x) - R,{x) = - g(x)
X Bm+n(x)

Ql(*) + * Qn(x) Un(x)
(88)
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By the choice of a suitable sign in (85) it can be reached that:

1 Rx{x) | < | Rf(x) | for x in the neighbourhood*) of any of

the points JteZ)

, , , (89)
and I Rx(x) \ > j R/(x) j for x in the neighbourhood*) of any of

the points ~xkeS

and by taking A small enough, the points at which j Rx{x) | assumes the

value of its maximum in D or the value of its minimum in S, can be kept in

the neighbourhoods*) of the points ~xk .
From (89) it follows then that:

A(R,(x)) < A(Rf(x)) = IK (90)

Theorem 2': is the discrete case of Theorem 2, and can be proved in ecaxtly
the same way.

Theorem 4: For a band-pass filter the global optimal function R(x) has the

following properties:

a) All its zeros are real and lie in the pass-band.

b) It has m + 1 extreme points in the pass-band and n -\- 1 extreme points
in the stop-band, such that these m + n -f- 2 extreme points build a reference

(d, s) with respect to which R(x) is a leveled reference function.

Proof:

al) The assumption (16) of Theorem 2 is satisfied by the polynomials P(x)
and Q(x) of the global optimal function R(x).

If assumption (16) were not satisfied then the polynomial P(x) must have

a degree less than m, so that a new function R(x) = a(x — x0) • R(x) which

lies in the class F could be constructed such that [by proper choice of a and

x„* *) ] it has a smaller maximum deviation than that of the function R(x);
which is impossible since R(x) is a global optimal function.

a2) The function R(x) has no complex zeros or poles:
From point 1 above it follows that R(x) is a leveled reference function

with respect to a reference (d, s) consisting of m + n + 2 extreme points

*) Or more exactly in the interval:

Xk--[ < x < X]c (for k j= 1, N)

or x < x1 (k = 1)

or xf, < x (k = N) .

**) Take vor x0 the middle point of the interval.
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(Theorem 2n) From the definition of a reference function (in Chapter II)
it follows that a reference function, in the case of a band-filter, must have a

total number of at least m + n + 1 real zeros and poles inside the bands The

function R(x) can thus have no pairs of complex zeros or poles

a3) The function R(x) has a number of m real zeros which he all in the

pass-band •

From points 1 and 2 above it is seen that R{x) must have a number

of m real zeros In order to prove that all these zeros lie in the pass-band D,

assume that a zero lies m x0 outside D Consider then the new function

R(x) = a • -jpA . R{X) (91)
X x0

this is also a function that belongs to the class F, and by proper choice of a

and the new position of the zero x0 *) it can be reached that

A(R(x)) < A(R(x)) (92)

but this is impossible since R(x) is a global optimal function

b) From point 1 of proof a) and Theorem 2, it has been proved that R(x)

is a leveled reference function with respect to a reference (d, s) consisting of

m + n + 2 extreme points of R(x) It remains now to prove that exactly
m -f- 1 extreme points he in the pass-band and n + 1 extreme points he in the

stop-band

bl) Let a function d(x) be defined by

\ R(x) for xeD

6(x) = (93)
( - ljR{x) for xeS

Consider the variation of the sign of 6(x) as x goes through the bands S1: D

and 52 from left to right on the %-axis, the intervals lie [numbered from left to

right ft = 1, 2, , %) are defined such that

i)iiUiiU • u Ini = Sj u D u S2

n) 6(x) has a constant sign in any interval lie

m) 6(x) has opposite signs in any two successive intervals Ik and I/t + i-

(94)

*) If the ends of the pass-band are the points* x — b and x = c, then choose x0

such that the four points x0, x0, b and c build a harmonic range [i e the double ratio

(x0, i?0 b, c) = — 1] The factor a can be then chosen such that the rational function

q(x) = a{x — ~x0)j(x — x0) has an absolute value

< 1 for all x e D

q(x)
'

_'
> 1 for all x s S
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The number ni of these intervals must be such that:

m + n + 2<ni<m + n-\-3. (95)

The first inequality follows from the existance of the reference (d, s); the

second inequality must be satisfied since the number of zeros of the function

6(x) can not be greater than m + n [because it is equal to the total number

of zeros and poles of R(x) which lie in the pass- and stop-bands].

b2) The pass-band consists of exactly m -f- 1 intervals Ik-

Since no zeros of R(x) can lie between the pass-band and either of the

stop-bands, and using a similar construction to that of foot-note page 62 it

is easily shown that no poles of R(x) can lie between the stop-bands, therefore

R(x) must have the same sign [i. e. d(x) must change its sign] as x goes from Sl
to D and from D to S2. From this and since 6(x) has m zeros in D, it follows

that the pass-band consists of exactly m + 1 intervals Ik-

b3) From each interval Ik choose a point Xt such that:

6(xk) = max ( 6{x) ) k = 1, 2, . . ., m . (96)
xe lie

This defines a number of «j points Xk, at which 6(x) has alternating signs,
and from which a number of m + 1 points lie in the pass-band. From (95)
it is seen that the number ni can be either equal tom-\-n-\-2ormJrnJr3.

In the first case the reference (d, s) consists of exactly the m + n + 2 points
Xk', in the second case either the first or the last one of the points Xk is

excluded to obtain the m -\- n + 2 points of the reference [since the function

6(x) must have alternating signs and I 0(x) I must assume its maximum at

the points of (d, s)]. The reference (d, s) consists in both cases of exactly
m + 1 points in the pass-band and n -\- 1 points in the stop-bands.
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ZUSAMMENFASSUNG

Das Approximationsproblem der elektrischen Filter wird mit Hilfe eines

modifizierten Austauschverfahrens auf eine Folge von diskreten Problemen

zuriickgefuhrt. Das diskrete Problem im Falle eines Bandfilters wird durch

ein dazu aquivalentes Eigenwertproblem gelost. Im allgemeinen Fall von

mehreren Sperr- und Durchlassbereichen werden die Methoden der linearen

Programmierung verwendet, um die lokal optimalen Funktionen zu be-

stimmen. Unter diesen wird dann die Losungsfunktion herausgegriffen. Die

direkte Bestimmung der Losungsfunktion kann auf ein ganzzahliges lineares

Programm zuruckgefuhrt werden.
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