Prom. Nr. 3210

Transistorisierter Impulsgenerator für die Zeittaktzählung von Telefontaxen

Von der EIDGENÖSSISCHEN TECHNISCHEN HOCHSCHULE IN ZÜRICH

zur Erlangung

der Würde eines Doktors der technischen Wissenschaften genehmigte

PROMOTIONSARBEIT

vorgelegt von

ANDRÉ AUGUST JAECKLIN

dipl. El.-Ing. E. T. H. von Baden (Kt. Aargau)

> Referent: Herr Prof. H. Weber Korreferent: Herr Prof. E. Baumann

Juris-Verlag Zürich 1962

Leer - Vide - Empty

Meinem Vater

Leer - Vide - Empty

VORWORT

Die vorliegende Arbeit wurde am Institut für Fernmeldetechnik der ETH Zürich ausgeführt.

Besonderer Dank gebührt Herrn Prof. H. Weber, der mich bei der Lösung dieser Aufgabe wohlwollend unterstützt hat. Herrn Arno Müller möchte ich für die zahlreichen anregenden Diskussionen danken.

Ausserdem gilt mein Dank den Hasler Werken AG, Bern, für ihre finanzielle Unterstützung.

Leer - Vide - Empty

I	N	H.	A	L	т	S	V	E	R	\mathbf{Z}	Е	I	С	Н	N	IS	i.
---	---	----	---	---	---	---	---	---	---	--------------	---	---	---	---	---	----	----

PRC	TELLUNG	12	
1.1 1.2 1.3	Einleit Besteh Zeittak	ung ende Taxzählungen in der Schweiz stzählung	12 12 13
	1.3.1 1.3.2 1.3.3 1.3.4 1.3.5 1.3.6	Grundlage der Zeittaktzählung Historische Entwicklung Vor- und Nachteile der Zeittaktzählung Aufbau des Zeittaktsystems Anpassung an die Dreiminutenzählung Zeittaktgeneratoren	13 14 15 17 18 19
REL	AXATI	ONSOSZILLATOR	21
2.1	Lösung	gsprinzip	21
	2.1.1 2.1.2 2.1.3 2.1.4	Schwingungserzeugung Blockschema Toleranzen Symmetrie als Kompensationsmethode	21 21 23 23
2,2	Integra	itor	24
	2.2.1 2.2.2 2.2.3 2.2.4	Miller Integrator RC-Glied Hochohmige Eingangsstufe Integrationsverstärker	24 27 27 31
2.3	Steueru	ung des Integrators	32
	2.3.1 2.3.2 2.3.3	Steuerstufe Komparator und Flip Flop Stabilität der Referenzspannungen	32 32 33
2.4	Zusätz	liche Schaltungen	35
	2.4.1 2.4.2	Alarm Speisespannungen	35 36
	PRC 1.1 1.2 1.3 REI 2.1 2.2 2.3 2.4	PROBLEMS 1.1 Einleit 1.2 Besteh 1.3 Zeittah 1.3.1 1.3.2 1.3.3 1.3.4 1.3.5 1.3.6 RELAXATIO 2.1 Lösung 2.1.1 2.1.2 2.1.3 2.1.4 2.2 Integra 2.2.1 2.2.2 2.2.3 2.2.4 2.3 Steuern 2.3.1 2.3.2 2.3.3 2.4 Zusätz 2.4.1 2.4.2	PROBLEMSTELLUNG 1.1 Einleitung 1.2 Bestehende Taxzählungen in der Schweiz 1.3 Zeittaktzählung 1.3.1 Grundlage der Zeittaktzählung 1.3.2 Historische Entwicklung 1.3.3 Vor- und Nachteile der Zeittaktzählung 1.3.4 Aufbau des Zeittaktsystems 1.3.5 Anpassung an die Dreiminutenzählung 1.3.6 Zeittaktgeneratoren RELAXATIONSOSZILLATOR 2.1 Lösungsprinzip 2.1.1 Schwingungserzeugung 2.1.2 Blockschema 2.1.3 Toleranzen 2.1.4 Symmetrie als Kompensationsmethode 2.2 Integrator 2.2.1 Miller Integrator 2.2.2 RC-Gited 2.2.3 Hochohmige Eingangsstufe 2.3.1 Steuerstufe 2.3.1 Steuerstufe 2.3.1 Steuerstufe 2.3.2 Komparator und Flip Flop 2.3.3 Stabilität der Referenzspannungen 2.4 Intarm 2.4.1 Alarm 2.4.2 Speisespannungen

3.	STA	BILITÄT DES OSZILLATORS	37
	3.1	Temperaturabhängigkeit des Relaxationsoszillators	37
		3.1.1 Ganze Impulsperiode	37
		3.1.2 Eingangsstufe	38
		3.1.3 Integrationsverstärker	40
		3.1.4 Steuerstufe	42
		3.1.5 Komparator	44
		3.1.6 Temperaturstabilität der Gesamtschaltung	48
	3.2	Weitere Drifteinflüsse	52
		3.2.1 Zufällige Abweichungen	52
		3.2.2 Spannungsabhängigkeit	54
		3.2.3 Alterung der Schaltelemente	57
	3.3	Grenzen des Generators	58
4.	PRA	KTISCHE ANGABEN	60
	4.1	Konstruktiver Aufbau	60
	4.2	Bedienungsanleitung	61
	4.3	Messapparatur	62
5.	ZUS	AMMENFASSUNG	63
	ANH	IANG	64
	A.1	Eingangsimpedanz einer Transistorstufe	64
	A.2	Basis-Emitter-Diode	72
	A.3	Berechnung des Integrationsverstärkers	77
		A.3.1 Spannungsverstärkung	77
		A.3.2 Eingangsimpedanz	8 0
		A.3.3 Unterdrückung der Eigenschwingungen	81
	A.4	LITERATUR	86
		A.4.1 Bücher	8 6
		A.4.2 Zeitschriften	87

SYMBOLE

Gleichstrom-Symbole: Grosse Buchstaben Wechselstrom-Symbole: Kleine Buchstaben

- A Spannungsverstärkung (allg. Verstärker)
- A_(f) Dämpfungsgang eines Verstärkers
- A_e Emitterfläche
- A_{c} wirksame Fläche für Oberflächen-Rekombination
- B_(f) Phasengang eines Verstärkers
- β Transportfaktor
- γ Emitter-Wirkungsgrad
- D_n Diffusionskonstante der Elektronen
- D_n Diffusionskonstante der Löcher
- ΔK Temperaturkoeffizient von K in $\%_0/^{\circ}C$
- dK, δK Abweichung von K: |dK|, $|\delta K| \ll K$
- **E** Signalspannung am Eingang des Integrators
- E_{AV} Aktivierungsenergie der Akzeptoren
- E_{DL} Aktivierungsenergie der Donatoren
- E_Z Breite der verbotenen Zone
- e Ladung eines Elektrons
- f₀ Grenzfrequenz eines Transistors in Emitterschaltung
- h Planck'sches Wirkungsquantum
- I_B, i₁ Basisstrom
- I_C, i₂ Kollektorstrom
- I_D Durchlasstrom einer Diode
- I_E Emitterstrom
- I_{ns} Elektronen-Sperrstrom einer Diode
- I_{ps} Löcher-Sperrstrom einer Diode

j _D	Durchlass-Stromdichte einer Diode
j _{ns}	Elektronen-Sperrstromdichte
j _{ps}	Löcher-Sperrstromdichte
k	Boltzmann-Konstante
L _{ne}	Diffusionslänge eines Elektrons im Emittermaterial
^L pb	Diffusionslänge eines Loches im Basismaterial
m	Masse eines Elektrons
N _(x)	Störstellendichte
N _o	Bezugs-Störstellendichte
R _E	Emitterwiderstand
R _{in} , r _{in}	Eingangsimpedanz
RL	Lastwiderstand
S	Rekombinationsrate (Oberflächen-Rekombination)
ძ _b	Leitfähigkeit im Basismaterial
ď _e	Leitfähigkeit im Emittermaterial
Т	absolute Temperatur
ક	relative Temperatur
$T_1 = 300^{\circ}k$	Zimmertemperatur
$T_{O} = 2 \tau$	Periode des Relaxationsoszillators
t	Zeit
τ	Integrationsperiode
τ _n	mittlere Lebensdauer von freien Elektronen
τ _p	mittlere Lebensdauer von freien Löchern
U	Referenzspannung am Integratorausgang
U _o	Speisespannung (24 V)
U _{CB}	Kollektor-Basis-Spannung
U _{CE}	Kollektor-Emitter-Spannung

U _D	Diodenspannung
----------------	----------------

- U_K Kontaktspannung
- U_P Punch-through-Spannung
- V allgemeines Spannungspotential
- V₀ Bezugspotential (Early-Effekt)
- v Spannungsverstärkung einer Stufe
- w Dicke der Basisschicht
- x Breite der Sperrschicht im Basisraum
- x₀ Bezugsbreite der Sperrschicht im Basisraum

1. PROBLEMSTELLUNG

1.1 Einleitung

Unser heutiges Telefonnetz gleicht einem Rechenautomaten (Computer) von gewaltigem Ausmass. Seine Befehle sind allerdings in einem engen Rahmen festgelegt, und seine Rechenoperationen beschränken sich vorwiegend auf das Auffinden logischer Schaltwege. Besondere Merkmale dieses Computers sind einerseits die Steuerbarkeit der Rechenorgane von vielen Orten aus, anderseits die Selbstbedienung durch den ungeschulten Kunden.

Um die wirtschaftliche Existenz des Riesenautomaten zu sichern, soll jeder Kunde das Seine beitragen. Er entrichtet eine Telefongebühr. In der "Pionierzeit" der Telefonie zahlte man für jedes Gespräch eine Einheitstaxe (1880 - 87). Mit dem Bau längerer Leitungen und den damit verbundenen Investitionen drängte sich bald eine Differenzierung des Gesprächspreises auf. Die Grundlage für die Gebührenerhebung bildete von Anbeginn die Gesprächszeit. Als Zeiteinheit für Ferngespräche galten in der Schweiz ursprünglich 5 Minuten (seit 1887). 1890 wurde das Intervall auf 3 Minuten verkürzt. Diese Dreiminuten-Zählung hat sich bis heute durchgesetzt.

In einer stürmischen Entwicklung ist das Telefonnetz zu einem Riesenautomaten angewachsen, ohne Grenzen und ohne Hindernisse zu respektieren. Als einziges Ueberbleibsel aus der gemütlichen "guten alten Zeit" hat sich das Ortsgespräch erhalten, dessen Gesprächsdauer nach wie vor nicht beschränkt wird.

1.2 Bestehende Taxzählungen in der Schweiz

Zu Beginn der Entwicklung des schweizerischen Telefonnetzes entspann sich ein Konkurrenzkampf zwischen den drei Firmen Standard, Siemens und Hasler. Standard und Siemens belieferten anfänglich vor allem die grossen Stadtnetze, während sich Hasler ursprünglich auf die kleineren Landzentralen spezialisierte. Daraus resultierte eine Aufteilung des gesamten Netzes, die bis heute Gültigkeit besitzt.

Mehr oder weniger unabhängig entwickelte jedes Unternehmen einen eigenen Typ von Telefonzentralen. Ebenso entstanden verschiedene Systeme der Dreiminutenzählung.

Siemens: Ein Zenith-Uhrwerk gibt 1 sec-Impulse ab. Die zentral erzeugten Impulse werden an die einzelnen Verbindungsleitungen abgegeben und dort von einer Relais-Schaltung zu einem Dreiminuten-Signal verarbeitet.

- Standard: Eine zentral angeordnete FAVAG-Pendeluhr steuert zwei Nockenräder, die alle 2 sec resp. alle 36 sec einen Impuls aussenden. Je ein Sucher registriert die 2 sec - resp. 36 sec - Signale. Die Taxzählung wird eingeleitet, sobald vier 36 sec- sowie achtzehn 2 sec-Impulse aufaddiert worden sind. Bis der erste Sucher anläuft, verstreichen im äussersten Fall 2 sec. Die Toleranz der Pendeluhr ist vernachlässigbar.
- Hasler: Jeder Verbindungsleitung ist ein eigener Zeitschalter mit einem Dreiminuten-Uhrwerk zugeordnet. Dessen Einsatz erfolgt momentan. Für die Dauer der drei Minuten sind gewisse Toleranzen zulässig (siehe Abschnitt 2.1.3), was den Aufwand für den Zeitschalter wesentlich reduziert.

Alle diese Taxierungssysteme sind in den Jahren 1925 - 30 entwickelt und im schweizerischen Telefonnetz eingeführt worden. Sie haben sich in den vergangenen Jahrzehnten bewährt. Eine neue Zählmethode droht jedoch, die alten Systeme zu verdrängen.

1.3 Zeittaktzählung

1.3.1 Grundlage der Zeittaktzählung

Im Hinblick auf die fortschreitende Entwicklung des internationalen Telefonverkehrs drängt sich eine weitere Differenzierung der Telefontaxen auf. Die Zeiteinheit von drei resp. einer Minute ist zu grob.

Die schwedische Firma ERICSSON hat nun ein grundsätzlich neues Prinzip der Taxzählung entwickelt, das in verschiedenen europäischen Ländern bereits Eingang gefunden hat. Dem System soll nicht mehr die Zeit von 3 Minuten, sondern ein fester Geldbetrag (z. B. Fr. -. 10) als Zähleinheit zugrunde liegen. Ein Ferngespräch wird in diesem Falle mit einer kontinuierlichen Serie von sog. Zeittakten taxiert. Entsprechend der Taxzone ändert der Zeitabstand zweier Zeittakte.

Hauptvorteil dieses neuen Systems ist eine gerechte Taxierung der Ferngespräche. Für drei Gesprächsminuten wird nach wie vor derselbe Betrag erhoben. Jeder Bruchteil von drei Minuten verrechnet sich jedoch nur entsprechend seiner Dauer.

Dieser Vorteil kommt einerseits einer Verbilligung der Gesprächstaxen gleich, wie sie die schweizerische Telefonverwaltung ohnehin vorgesehen hat. Anderseits gibt die neue Zählmethode die Bahn frei für die Automatisierung des internationalen Verkehrs. Internationale Gespräche werden ja immer noch in den viel zu langen 3 Minuten-und 1 Minuten-Intervallen gemessen.

1.3.2 Historische Entwicklung

Der Gedanke der Zeittaktzählung wurde erstmals in Schweden aufgegriffen. Die Herren S.D. Vigren und A.H.Olsons hielten die Idee 1932 in einer Patentschrift fest³⁸⁾. Ein von der Generaldirektion des Schwedischen Fernmeldewesens ernannter Ausschuss für die Automatisierung des Telefonnetzes empfahl 1933 die Einführung der Methode in Schweden. Ab 1936 rüstete Schweden die automatischen Fernsprechämter mit der Zeittaktzählung aus. Schrittweise wurde die neue Zählmethode von 1937 an in Betrieb genommen.

Ursprünglich steuerte eine zentrale SAUTER-Uhr die ganze Zählung. Diese gab alle 10 Sekunden einen Impuls ab. Als zeitmessendes Organ war in jeder abgehenden Verbindungsleitung ein Schrittschalterrelais mit 36 Schritten angeordnet. Zu Beginn des Gespräches setzte die Messung der Periodenlänge ein. Ein Relaisübertrager gab für jede neuangefangene Periode eine Zählungsmarkierung ab. Neue Anlagen wurden in Schweden bis zum Jahr 1950 mit dieser Zeitzählungsmethode ausgerüstet. Das System ist immer noch in grossem Umfang in Betrieb.

Der Finne Dr. S. A. Karlsson hat der nordischen Elektrotechnikerversammlung in Kopenhagen im Jahre 1937 eine Modifikation der Methode vorgeschlagen. Als neues Element soll ein Zeittaktgeber eingeführt werden, der gleichzeitig verschiedene Impulsserien entsprechend den verschiedenen Taxzonen erzeugt. Dieser Generator ersetzt einerseits die 10 sec-Uhr; anderseits werden dadurch die individuellen Zeitimpulsspeicher in jeder Verbindungsleitung vermieden. Unter dem Namen Karlsson-Zählung wurde dieses System 1950 in Schweden eingeführt.

Die neue Methode der Taxzählung hat sich in Schweden mit grossem Erfolg durchgesetzt. Bald wurde sie auch von den übrigen Ländern in Skandinavien übernommen. Von Norden her hat die Zeittaktzählung ihren Siegeszug durch ganz Mitteleuropa fortgesetzt. Zumindest auf dem Papier ist auch die Schweiz von der schwedischen Neuerung bereits erobert worden.

1.3.3 Vor- und Nachteile der Zeittaktzählung

Vorteile:

Hauptvorteil des Zeittaktsystems ist eine Belastung des Abonnenten, die wirklich der Gesprächszeit entspricht. Ein Vergleich mit dem Dreiminutensystem ist in Fig. 1.3.5 dargestellt. Die Horizontale entspricht der totalen Dauer eines beliebigen Gesprächs. Der am Ende dieses Gesprächs verrechnete Betrag wurde auf die Dauer von 3 Minuten umgerechnet und vertikal aufgetragen. Bei Gesprächsbeginn soll der erste Zeittakt sofort erfolgen.

Ein weiterer wichtiger Vorteil der Zeittaktzählung ist die einfache Aenderung und Erweiterung der Taxzonen. Damit wird eine Grundlage geschaffen für die kommende Automatisierung des Auslandverkehrs.

Nachteil:

Zwischen dem Einsatz eines Zeitimpulses und dem Beginn des einzelnen Gesprächs besteht keinerlei Zusammenhang. Die erste Periodenmarkierung tritt zu einem zufälligen Zeitpunkt während des Gesprächs auf. Falls ein Taximpuls mit Fr. -.10 bewertet wird, können zwischen zwei aufeinanderfolgenden Taximpulsen max. 90" verstreichen (Taxzone I: Fr. -.20/3 Min.).

Der Beginn der Taxzählung stellt ein ernsthaftes Problem dar, da im äussersten Fall eine volle Periode (z.B. 90") verstreichen kann ohne jede Taxierung.

Schweden behilft sich mit einem zusätzlichen Taximpuls bei Gesprächsanfang. Dafür wird der erste Zeittakt unterdrückt.

Für die Schweiz wurde vorgeschlagen, jeder abgehenden Verbindungsleitung einen Untersetzer 1:32 zuzuordnen (Fig. 1.3.1). Entsprechend muss der Zeittaktgeber rascher laufen. Damit wird die Zeitspanne zwischen Gesprächsbeginn und dem ersten Zeittakt vernachlässigbar klein. Eine spezielle Erzeugung des ersten Taximpulses erübrigt sich.

X₁..X_i..X_n Untersetzungsverhältnis entsprechend Taxzone Y Taximpulse pro 3 Minuten

Fig. 1.3.5 Vergleich der beiden Zählsysteme für die Frankentaxe

1.3.4 Aufbau des Zeittaktsystems

Für eine Zeittaktzählung sind grundsätzlich vier Elemente notwendig:

- a) Impulsgenerator als Herz des Systems.
- b) Kriterium über die der Verbindung entsprechenden Taxzone. Dieses wird von dem bereits vorhandenen Zeitzonenzähler (ZZZ) geliefert.
- c) Logische Steuerung des Untersetzungsverhältnisses entsprechend der Taxzone.
- d) Steuerbarer Untersetzer. Je nach Taxzone sollen mehr oder weniger Impulse pro Zeiteinheit abgegeben werden.

Das Prinzip der Zeittaktzählung ist hierdurch gegeben. Verschiedene Varianten sind bloss für die Anordnung der aufgeführten Elemente in den vorhandenen Stromkreisen sowie für den Aufbau des Untersetzers möglich.

Fig. 1.3.2 zeigt eine Methode, bei der jeder abgehenden Verbindungsleitung (VL) ein Untersetzer mit einstellbarem Untersetzungsverhältnis $1:X_i$ zugeordnet ist (alte schwedische Lösung).

Ein Untersetzer mit einstellbarem Untersetzungsverhältnis bedeutet Mehraufwand. In Fig. 1.3.3 sinddeshalb mehrere Einheiten mit festem Untersetzungsverhältnis separat angeordnet. Jeder Untersetzer soll einer beliebigen VL zugeordnet werden können. Der Impulsgenerator in Fig. 1.3.4 bildet eine Einheit mit dem Untersetzer für alle vorkommenden Taxzonen. Da die maximale Impulsperiode vorgeschrieben ist (Abschnitt 1.3.5), drängt sich ein weiterer Untersetzer für jede abgehende VL auf. Der logische Entscheid, welches Untersetzungsverhältnis massgebend ist, entspricht der bisherigen Festlegung der Taxzone. In den vorhandenen Stromkreisen muss sehr wenig geändert werden, was als besonderer Vorteil dieser letzten Variante gewertet werden darf.

Ein rein elektronisch aufgebautes Zeittaktsystem nach Fig. 1.3.4 vereinigt folgende Vorteile:

- a) Statt einer eigenen Uhr (System Hasler) benötigt die einzelne Gesprächsleitung nur noch einen Untersetzer.
- b) Wenn das Problem mit elektronischen Mitteln gelöst wird, verringert sich der Aufwand für Service und Wartung beträchtlich. Zudem sollen Halbleiterschaltungen eine lange Lebensdauer gewährleisten. Nur eine periodische Kontrolle des Zeitnormals wird wünschenswert sein und könnte automatisch erfolgen.
- c) Das neue System eignet sich sowohl für die Dreiminuten- als auch für die Zeittaktzählung. Dieser Umstand ist besonders wichtig, da er die sukzessive Umstellung von einem Zählsystem auf das andere erlaubt.

Die schweizerische Telefondirektion beabsichtigt die allgemeine Einführung der Zeittaktzählung, was der vorliegenden Lösung noch vermehrtes Gewicht verleiht.

1.3.5 Anpassung an die Dreiminutenzählung

Bei dem hohen Entwicklungsstand, den die Telefonautomatik heute erreicht hat, kann eine grundlegende Neuerung nur schrittweise eingeführt werden. Bevor allgemein zur Zeittaktzählung übergegangen wird, muss es möglich sein, die konventionelle Dreiminutenzählung (Fig. 1.3.0) durch Zeitimpulse zu steuern. Eine solche Lösung zeigt Fig. 1.3.1. Das ursprüngliche Zeitrelais in der abgehenden Verbindungsleitung (VL) wird ersetzt durch einen Untersetzer. Weitere Aenderungen der bestehenden Stromkreise sind nicht notwendig.

Der Untersetzer hat die Aufgabe, die grösstmögliche Zeitspanne zwischen Gesprächsbeginn und erstem Zeittakt zu verringern (siehe Abschnitt 1.3.3). Für dieses Intervall sind laut PTT bis zu 6 sec zulässig. Falls alle 3 Minuten die konventionelle Taxzählung ausgelöst werden muss, ergibt sich ein Untersetzungsverhältnis:

Periodendauer:

$$2^5 = 32$$
 (1.1)

$$T_0 = \frac{180}{32} = 5,625 \text{ sec}$$
 (1.2)

Bei Einführung der Zeittaktzählung dürfen weder die Gebühren pro 3 Minuten noch die Taxzonen verändert werden. Untenstehende Tabelle umfasst sämtliche zur Anwendung gelangende Tag- und Nachtarife. Die Dreiminuten-Taxen bilden eine einfache arithmetische Reihe. Für den zentralen Untersetzer ist jedoch die Zeit pro Fr. -.10 massgebend, die dem reziproken Wert der Gebühr entspricht. Wenn einige dieser Kehrwerte etwas korrigiert werden (Zahlen in Klammern), dann entsteht eine Folge von 5 sec - Einheiten, die praktisch realisiert werden könnte. 5 sec -Impulse eignen sich also sowohl für eine eigentliche Zeittaktzählung als auch für eine Zeittaktsteuerung der Dreiminutenzählung wie sie hier näher behandelt werden soll.

Gebühr pro 3 Min.	Zeit pro Fr 10
Fr20	90 "
30	60 "
40	45 "
50	36 " (35 ")
60	30 "
70	25,7 " (25 ")
1	18 " (20 ")

1.3.6 Zeittaktgeneratoren

Wie bereits erwähnt gab der erste Zeittaktgeber nur 10 sec - Impulse ab. Deren weitere Verarbeitung erfolgte in der individuellen Verbindungsleitung.

1950 wurde in Schweden ein zentraler Zeittaktgenerator geschaffen, der Relaisketten verwendete. Die Steuerung der Relaisketten erfolgte wiederum mit einer Sauter-Impulsuhr.

Die Betriebssicherheit der Relaiszeitketten entsprach den gestellten Anforderungen nicht. Deshalb ersetzte die schwedische Telefondirektion den Relaiszeittaktgeber 1953/54 durch einen rein mechanischen Impulsgenerator. Von der als konstant vorausgesetzten Netzfrequenz wird ein Synchronmotor angetrieben. Dieser setzt eine Nockenscheibenachse mit genau einer Umdrehung pro Minute in Bewegung. Jede Nockenscheibe entspricht einem Zeittakt.

Eine ähnliche Lösung kommt im Fernschreibverkehr (TELEX) zur Anwendung, wo sich die Zeittaktzählung restlos durchgesetzt hat. Da die Stabilität der Netzfrequenz den Ansprüchen nicht genügt, verwendet man einen Gleichstrommotor als Antrieb. In einem Röhrengerät wird die Drehfrequenz mit ihrem Sollwert verglichen und automatisch nachgeregelt. Die Frequenztoleranz des Motors, welcher wiederum eine Nockenscheibe antreibt, wird damit auf einige Promille reduziert.

Alle bisher besprochenen Zeittaktgeneratoren weisen mechanisch bewegte Teile auf, die einen regelmässigen Unterhalt erfordern. Dieser Nachteil kann durch eine elektronische Schaltung behoben werden, insbesondere wenn sie transistorisiert ist.

Wie wir gesehen haben, beträgt eine Impulsperiode rund 5 sec. Die Elektronik ist grundsätzlich eine schnelle Technik und arbeitet mit ms und µs. Langsame Vorgänge widersprechen ihrer Eigenart. Dies trifft in vermehrtem Mass zu für den gegebenen Oszillator, da strenge Forderungen an die Stabilität der langsamen Schwingung gestellt werden (Abschnitt 2.1.3). Besondere Aufmerksamkeit soll deshalb diesem Problem in den folgenden Ausführungen geschenkt werden.

2. RELAXATIONSOSZILLATOR

2.1 Lösungsprinzip

2.1.1 Schwingungserzeugung

Bevor eine Zeittaktzählung eingeführt werden kann, muss es möglich sein, die konventionelle Dreiminutenzählung mit Zeitimpulsen zu steuern.

Diese Zeitimpulse folgen sich in einem Abstand

 $T_{a} = 5,625$ sec (siehe Abschnitt 1.3.5)

Damit ist die Periodendauer des Impulsgenerators festgelegt (Fig. 1.3.1). Zur Schwingungserzeugung kommen folgende Oszillatorprinzipien in Frage:

a) Quarz .	erzeugt sehr rasche Schwingungen (minimale Untersetzung 10 ⁴) Stabilität sehr gut
b) LC-Oszillator	erzeugt rasche Schwingungen (minimale Untersetzung 10 ³) geforderte Stabilität kann erreicht werden.
c) Stimmgabel-Oszillator	erzeugt rasche Schwingungen (Untersetzung 10 ³) Stabilität gut
d) RC-Generator	kann langsame Sinusschwingungen erzeugen Stabilität schlecht
e) Relaxationsoszillator	erzeugt beliebig langsame Schwingungen geforderte Stabilität kann erreicht werden

Einzig der Relaxationsoszillator kann die gewünschten langsamen Schwingungen direkt erzeugen und erweist sich zudem als genügend stabil im gegebenen Fall. Dessen Aufbau soll daher an dieser Stelle diskutiert werden.

2.1.2 Blockschema

Ein Relaxationsoszillator zeichnet sich aus durch mindestens einen Umschlagspunkt pro Periode, an dem ein sehr rascher Kippvorgang auftritt. Die übrige Zeit wird beherrscht durch einen Ladevorgang (z.B. einer Kapazität), der die Perioden-

Fig. 2.1.1 Blockschema : Relaxationsoszillator

dauer bestimmt. Soll dieser Ladevorgang langsam erfolgen, dann muss der Ladungsspeicher gross sein. Ausserdem drängt sich eine Gleichstromkopplung für die ganze übrige Schaltung auf.

Den genannten Anforderungen genügt ein Miller-Integrator sehr gut. Durch den Miller-Effekt¹⁾ wird die Wirkung der Kapazität C in einem gegebenen R C-Glied stark vergrössert. In gleichem Masse steigt die zugehörige Zeitkonstante. Dank diesem Umstand kann erreicht werden, dass die Integrationsflanke unabhängig wird von den Verstärkungseigenschaften (siehe Abschnitt 2.2.1).

Fig. 2.1.1 zeigt das Prinzip der Schaltung³⁷⁾. An den Eingang des Integrators wird eine konstante negative Gleichspannung angelegt. In der Folge steigt dessen Ausgangsspannung linear an. Sobald das Signal ein bestimmtes Niveau erreicht, spricht ein empfindlicher Spannungs-Komparator an. Dieser kippt zwangsläufig einen Flip Flop. Ueber eine Steuerstufe ist der Flip Flop an den Eingang des Integrators zurück gekoppelt. Die Steuerstufe bewirkt nun, dass das konstante Eingangssignal das Vorzeichen umkehrt. Demzufolge muss die Ausgangsspannung am Integrator im gleichen Masse sinken wie sie vorher angestiegen war. Bei einem vorgegebenen negativen Niveau spricht der Spannungskomparator wieder an. Der Vorgang beginnt von neuem. Auf diese Weise entsteht eine symmetrische Haudachkurve. Das zweite noch unbenützte Ausgangssignal des Flip Flop wird als Nutzsignal (Rechteckimpuls) verwendet.

Der beschriebene Relaxationsoszillator kann aufgefasst werden als Analogierechner mit einem einzigen Rechenverstärker (Integrator). Die Steuerung des Rechenverstärkers ist digital. Schwierigkeiten für die Stabilität der Oszillatorfrequenz werden also nur von den analog arbeitenden Schaltelementen zu erwarten sein.

2.1.3 Toleranzen

Totale	Abna	hmebeo	lingu	ng PTT	Fabrikationstoleranz Hasler				Ì		
Zeit	Min.	Max.	Diff	erenz	Min.	Max.	Difi	ferenz	Toleranz- mittel- punkt	Abweichung vom Sollwert	
180"	+1"	+7"	6"	3, 26%	+3"	+5"	2"	1,09%	184"	+2, 18%	
360"	+1"	+13"	12"	3, 27%	+5"	+9"	4 "	1,09%	367"	+1, 91%	
540"	+1"	+19"	18"	3, 27%	+7"	+13"	6"	1,09%	550"	+1,82%	
720"	+1"	+25"	24"	3, 27%	+9"	+17"	8"	1,09%	733"	+1,77%	

Für die bestehende Dreiminutenzählung sind genau definierte zeitliche Toleranzen massgebend:

Diese Grenzen müssen unter folgenden Bedingungen eingehalten werden:

Speisespannung : U = 44...56 VTemperatur : $\sqrt[3]{e} = 0 ...40 C$ Drift : zeitlich unbeschränkt

Obige Tabelle zeigt, dass die zulässige Zeittoleranz wie erwartet unabhängig von der totalen Zeit ist. Der Toleranzmittelpunkt rückt jedoch mit wachsender Zeit dem Sollwert immer näher. Eine solche Definition der Toleranzen mag dem Zeitrelais mit Rutschkupplung entsprechen. Für einen Oszillator, der im Dauerbetrieb steht, hat sie jedoch wenig Sinn. Zur Einführung der Zeittaktzählung wäre deshalb eine Ueberprüfung dieser Toleranzen durch die Telefondirektion wünschenswert.

Massgebende Forderung an die Stabilität des Relaxationsoszillators ist die Fabrikationstoleranz Hasler, die eine Abweichung von max. 1,09% zulässt, resp. eine beidseitige Toleranz von \pm 0,5%. Für eine Schaltung mit Transistoren, welche von Haus aus sehr temperaturempfindlich sind, ist dies eine strenge Vorschrift. Die verlangte Temperaturstabilität wird daher den ganzen Aufbau des Relaxationsoszillators beeinflussen.

2.1.4 Symmetrie als Kompensationsmethode

Jeder Transistor ist gewissen Temperatureffekten unterworfen. Durch die Wahl von Silizium-Halbleitern werden störende Einflüsse des Reststromes weitgehend verringert. Nach wie vor ändern sich jedoch die Wechselstromparameter im gleichen Masstab. Geeignete Schaltungsmassnahmen können den Temperatur-Einfluss des einzelnen Transistors etwas einschränken. Eine spürbare Verbesserung bringt erst eine gegenseitige Kompensation. Als beste Kompensationsmethode erweist sich die Symmetrie, d.h. gleiche Elemente (z.B. Dioden, Transistoren), die symmetrisch geschaltet sind oder symmetrische Elemente, die gleich geschaltet sind.

Grosse Möglichkeiten bieten Kombinationen von PNP- mit NPN-Transistoren. Einerseits hat die Gleichspannung über der Basis-Emitter-Diode (BE-Diode) entgegengesetztes Vorzeichen und annähernd gleichen Temperaturkoeffizienten. Die Eingangsspannung eines Transistors kann auf diese Art konstant gehalten werden (siehe Abschnitt 2.2.4). Anderseits fliessen die Basisströme in entgegengesetzter Richtung und haben ebenfalls beinahe denselben Temperaturkoeffizienten. Dadurch können z.B. Aenderungen der Gleichstrom-Verstärkung (in Emitterschaltung) weitgehend verringert werden (siehe Abschnitt 2.2.3).

Eine weitere wichtige Kompensationsmethode ist die Zeitmessung in zwei Schritten, die entgegengesetzt gleich sind. Hat der erste Zeitabschnitt einen positiven Temperaturkoeffizienten, dann soll der zweite einen ebenso grossen negativen Temperaturkoeffizienten haben. Dieses Prinzip kommt bei der Erzeugung einer symmetrischen Hausdachkurve zur Anwendung. Bei einer Temperaturänderung verschiebt sich das Steuerspannungsniveau am Miller-Integrator etwas. Dadurch wird die eine Flanke des Hausdaches steiler, die andere Flanke aber entsprechend flacher. Die Summe beider Zeitabschnitte bleibt in erster Näherung konstant (siehe Abschnitt 3, 1.6).

An den obigen Beispielen zeigt sich, dass jedem störenden Effekt ein zweiter symmetrisch entgegengestellt werden kann. Voraussetzung ist allerdings, dass der störende Effekt nur in engen Toleranzen streut. Diese Streuungen der verschiedenen Temperaturkoeffizienten legen in unserem Falle die erreichbaren Grenzen der Stabilität fest (siehe Abschnitt 3.1.6).

2.2 Integrator

2.2.1 Miller Integrator

Fig. 2.2.1 zeigt den Aufbau eines Miller-Integrators aus einem Rechenverstärker (Verstärkung A) und einem RC-Glied. Wie eine solche Stufe wirklich arbeitet, ist aus dem Ersatzschema Fig. 2.2.2 ersichtlich²⁾.

Der Miller-Effekt¹⁾ vergrössert die wirksame Kapazität beträchtlich. Die Spannung über dieser fiktiven Kapazität wird linear verstärkt und erscheint als Ausgangssignal e_{t+1} .

Legt man einen Spannungssprung E an Fig. 2.2.2, so folgt die Signalspannung einem Exponentialgesetz (Fig. 2.2.3).

Fig. 2.2.1 Miller-Integrator : Schema

Fig. 2.2.3 Ausgangssignal des Integrators

$$R = \frac{R_0 R_{in}}{R_0 + R_{in}}$$
(2.1)

$$e_{(t)} = \frac{R}{R_{o}} E \left[1 - \exp\left(\frac{-t}{RC(1-A)}\right)\right]$$
(2.2)

$$\frac{de}{dt} = \frac{E \cdot A}{R_0 C(1-A)} \exp\left(\frac{-t}{RC(1-A)}\right)$$
(2.3)

für
$$|A| \gg 1$$
: $\frac{de}{dt} \approx -\frac{E}{R_0 C} \cdot \exp\left(\frac{-t}{RC(1-A)}\right) \approx -\frac{E}{R_0 C}$ (2.4)

notwendige Verstärkung:

Je grösser die Verstärkung A gewählt wird, desto mehr nähert sich die Flankensteilheit $\frac{de}{dt}$ einem konstanten Wert. Im Idealfall ($|A| \rightarrow \infty$) steigt das Signal $e_{(t)}$ linear an. Die Steilheit $\frac{de}{dt}$ wird nur noch von passiven Elementen bestimmt (2.4). Dieser Idealfall soll angestrebt werden, um von den Verstärkereigenschaften der Transistoren möglichst unabhängig zu werden.

Bedingung: Im Integrations intervall darf die Steilheit des Ausgangssignals $\mathbf{e}_{(t)}$ max $\mathbf{x}_{\infty}^{\prime\prime}$ abnehmen.

$$\frac{de}{dt}\Big|_{\tau} = (1-x) \frac{de}{dt}\Big|_{0}$$
(2.5)
in (2.3) einsetzen

$$\exp\left(\frac{-\tau}{\mathrm{RC}(1-\mathrm{A})}\right) = 1-\mathrm{x} \tag{2.6}$$

$$A_{\min} = \frac{T}{RC \cdot \ln(1-x)} + 1 \qquad (2.7)$$

Beispiel:
$$x = 2\%$$

 $\tau = 2,8 \text{ sec}$
 $C = 6 \mu F$
 $R = 0, 2 M Ohm$

Integrationszeit:

$$-A_{\min} = 115 = 41 \text{ db}$$
 (2.7a)

Bei genügend grosser Verstärkung bleibt die Steilheit des Signals $e_{(t)}$ in erster Näherung konstant. In diesem Fall gilt (Fig. 2.2.3):

$$\frac{\mathrm{d}e}{\mathrm{d}t}\Big|_{0} \approx \frac{\mathrm{d}e}{\mathrm{d}t}\Big|_{\tau} = \frac{\mathrm{U}}{\tau}$$
(2.8)

$$\frac{de}{dt}\Big|_{0} \approx -\frac{E}{R_{0}C}$$
(2.4)

$$\tau \approx -\frac{U}{E} \cdot R_{o}C \qquad (2.9)$$

Beispiel:
$$U = 6, 6 V$$

 $E = -2, 8 V$
 $R_0 = 0, 2 M Ohm regelbar$
 $C = 6 \mu F$
ganze Periode: $T_0 = 2T = 5,65 sec.$ (2.9a)

Das Integrationsintervall τ ist nur von passiven Elementen abhängig. Einzig die Eingangsimpedanz $R_{in}(2.1)$ des Integrationsverstärkers spielt eine Rolle (siehe Abschnitt 3.1.2).

2.2.2 RC-Glied

Ausschlaggebend für die Stabilität des Oszillators ist das dem Integrator vorgeschaltete RC-Glied (Fig. 2.2.1, (2.9)). Für den Integrationswiderstand R₀ kommt daher nur eine drahtgewickelte oder Metallfolien-Ausführung mit verschwindend kleinem Temperaturkoeffizienten in Frage.

Eine stabile Integrationskapazität C zu finden, ist ein schwierigeres Problem. Am besten eignen sich Kondensatoren mit einer Kunststoffolie als Dielektrikum (Polyester, Polyäthylen, etc.). Einen hochstabilen Polyester-Kondensator stellt die Firma Jensen, Kopenhagen, her.

2.2.3 Hochohmige Eingangsstufe

Zur Erzeugung der verlangten langsamen Schwingungen ist eine grosse Zeitkonstante notwendig. Der ohnehin hohe Integrationswiderstand (0, 2 M Ohm) soll durch eine noch viel grössere Eingangsimpedanz möglichst wenig beeinflusst werden. Hochohmige Transistorschaltungen sind an sich problematisch. Es existieren zwar Spezialschaltungen, bei denen die Eingangsimpedanz z.B. durch einen Mitkopplungseffekt erhöht wird. Ein solcher Kunstgriff verschlechtert jedoch die Stabilität, was im gegebenen Fall unzulässig ist. Ausserdem sind die meisten hochohmigen Transistorschaltungen wechselstromgekoppelt und nur im Tonfrequenzbereich anwendbar. Als stabile Eingangsstufe kommt einzig ein Emitterfolger in Frage, wie ihn Fig. 2.2.4 zeigt. Störend wirkt an dieser Stufe der Basis-Ruhestrom I_B , der über dem Integrationswiderstand R_o einen unerwünschten Spannungsabfall erzeugt.

Zwei komplementäre Emitterfolger (NPN-PNP-Kombination) können sich gegenseitig kompensieren (Fig. 2.2.5). Mit einem Drehwiderstand wird der Basis Ruhe-

Fig. 2.2.4 Integrator - Eingang : Emitterfolger

Fig. 2.2.5 Integrator - Eingang : Kompensierter Emitterfolger

Leer - Vide - Empty

Leer - Vide - Empty

strom abgeglichen. Die Rechnung zeigt, dass stark verschiedene Restströme die Stabilität kaum beeinflussen (siehe Abschnitt 3.1.2). Voraussetzung ist allerdings ein ähnlicher Temperaturgang der Stromverstärkung.

Sobald die Basisströme abgeglichen sind, fliesst nur noch der "Arbeitsstrom" durch den Integrationswiderstand. Jene Unsymmetrie, die der Spannungsabfall des Basis-Ruhestromes über dem Integrationswiderstand R_o erzeugte, ist eliminiert. Da eine exakt symmetrische Steuerstufe (Fig. 2. 2. 6: 1% Drahtwiderstände) dem Integrator vorgeschaltet ist, wird die erzeugte Hausdachkurve symmetrisch, sobald die Basisströme abgeglichen sind. Diese Konsequenz kann für die praktische Messung ausgenutzt werden, da der umgekehrte Schluss zulässig ist. Wenn ein symmetrisches Hausdach beobachtet wird, sind die Basisströme im Eingangskreis bis auf Bruchteile eines µA abgeglichen.

Die analytische Behandlung des kompensierten Emitterfolgers unter Abschnitt 3.1.2 wird zeigen, dass dieser alle gestellten Anforderungen erfüllt und sogar übertrifft.

2.2.4 Integrationsverstärker (Fig. 2.2.6)

Als Integrationsverstärker wurde ein dreistufiger, direkt gekoppelter Verstärker gewählt. Eine starke Gleichstrom-Gegenkopplung R_g über alle drei Stufen stabilisiert die Spannungsverstärkung (siehe Abschnitt A.3.1). Die Gegenkopplung muss mehr als Sicherheitsmassnahme gewertet werden, da sich eine eigentliche Verstärkungs-Stabilisierung nach Abschnitt 2.2.1 erübrigt.

Eine Wechselstrom-Gegenkopplung C_g über zwei Stufen unterdrückt allfällige Eigenschwingungen des Integrationsverstärkers, wie sie in der Nähe der Grenzfrequenz der Transistoren auftreten (siehe Abschnitt A.3.3).

Im Verstärker wechseln NPN- mit PNP-Transistoren ab. Dieser Umstand vereinfacht die Potentialverhältnisse in den einzelnen Verstärkerstufen. Ausserdem kompensiert die BE-Diode der ersten Stufe (NPN-Transistor) den Temperaturgang der BE-Diode der hochohmigen Eingangsstufe (PNP-Transistor). Das Gleichspannungsniveau am Eingang bleibt somit sehr genau konstant, und die Symmetrie der Hausdachkurve wird nicht nennenswert beeinträchtigt.

Verstärkerdaten:	Spannungsverstärkung	v	=	50 db
	Eingangsimpedanz (Wechselstromsignale)	r _{in}	=	1, 5 M Ohm inkl. Eingangsstufe
	Bandgrenze (-3db)	f	=	120 Hz.

2.3 Steuerung des Integrators

2.3.1 Steuerstufe (Fig. 2.2.6)

Ein Spannungssprung E, der abwechselnd in positiver und negativer Richtung wirkt, steuert den Integrator. Die Stabilität der Amplitude von E ist massgebend für die Präzision des Oszillators (2.9).

Im Wesentlichen besteht die Steuerstufe, die den Spannungssprung E erzeugt, aus einem Spannungsteiler mit Drahtwiderständen. Zwei komplementäre Transistorschalter legen an den Integrator abwechslungsweise ein Gleichspannungsniveau, das positiv bzw. negativ relativ zu dessen Eingangspotential ist. Die Schaltung wurde so dimensioniert, dass über dem leitenden Schalttransistor eine maximale Restspannung von 10 mV liegt.

Ein kleines Abgleich-Potentiometer P_3 bringt das Potential am Eingang des Integrationsverstärkers genau in die Mitte des Spannungsteilers. Differenzen der Vorwärtsspannung zwischen den verschiedenen Dioden werden dadurch eliminiert (zwei Dioden im Spannungsteiler; zwei BE-Dioden am Eingang des Integrators).

Die Funktion der Dioden im Spannungsteiler wird in Abschnitt 2.3.3 erläutert.

2.3.2 Komparator und Flip Flop (FF)

Das Ausgangssignal des Integrators (Hausdachkurve) soll sich zwischen zwei genau definierten Referenzspannungen bewegen. Aufgabe des Komparators ist es, diese Potentiale genau abzulesen. Er stellt eine grundlegende Schaltung für die Signalumwandlung analog-digital dar. Fig. 2.3.1 zeigt dessen Blockschema.

Wiederum ein Spannungsteiler mit Drahtwiderständen legt die beiden Potentiale fest, zwischen denen die Hausdachkurve schwanken soll (Fig. 2.2.6). Dieser Spannungsteiler soll niederohmig sein, da er im Umschaltmoment über einen Schalttransistor belastet wird.

Am positiven und am negativen Referenzniveau sitzt je ein Schalttransistor, der anspricht sobald das Integratorsignal die kritische Spannung erreicht. In diesem Moment wird die langsame Flanke des Hausdaches verstärkt und als Trigger auf einen

Fig. 2.3.1 Blockschema: Komparator mit Flip Flop

FF gegeben. Die Steuerung des FF ist insofern zwangsläufig, als sie bei einer beliebig flachen Integrationsflanke wirksam bleibt. Allfällige Störspitzen werden in einem RC-Tiefpass ($\Upsilon \approx 5$ ms) ausgefiltert.

Der FF gehört zum Messteil der Schaltung und muss besonders unempfindlich sein gegen Störimpulse. Es wurde deshalb auf jegliche Beschleunigungs- und Kopplungskapazitäten verzichtet (Fig. 2.2.6). Eine spezielle Gleichstrom-gekoppelte Triggerung ist notwendig: der Trigger hebt das Kollektorpotential statisch soweit an, bis die Basis des komplementären Transistors zu sperren beginnt. Damit setzt der regenerative Umkippvorgang ein.

Je ein nichtlinearer Verstärker belastet die Ausgänge des FF. Einerseits wird die Amplitude der Nutzimpulse verstärkt. Anderseits wirkt diese Stufe als Trennverstärker für Störimpulse.

2.3.3 Stabilität der Referenzspannungen

Zenerdioden stabilisieren die Speisespannung ($U_0 = 24$ V) des Oszillators (siehe Abschnitt 2.4.2). Trotzdem ändert sich diese in geringem Masse einerseits mit der Temperatur, anderseits mit der Batteriespannung (Toleranzen Abschnitt 2.1.3). Die Referenzspannungen E (Integratoreingang) und U (Integratorausgang) werden je über einen Spannungsteiler aus U_0 gewonnen. Also müssen die relativen Aenderungen von E und U gleich sein wie jene von U_0 . Da nur der Quotient $\frac{U}{E}$ eine Rolle spielt (2.9), kann eine langsame Aenderung der Speisespannung U_0 keinen Einfluss auf die Oszillatorperiode haben.

Der Bereich U, den das Ausgangssignal des Integrators durchläuft, umfasst im Wesentlichen die Potentialdifferenz des niederohmigen Spannungsteilers. Dazu addiert sich jedoch noch die Vorwärtsspannung, die über der BE-Diode des Komparator-Transistors liegt im Moment, da der FF kippt. Diese Zusatzspannung ist klein, da nur ein geringer Basisstrom fliesst. Es zeigt sich aber (Abschnitt A.2), dass der Temperaturkoeffizient gerade bei geringen Strömen gross wird.

- 33 -

Zur Kompensation wird für jeden Schalttransistor eine Diode (Stabistor) in den Spannungsteiler geschaltet, der die Referenz E erzeugt (Fig. 2.2.6). Dadurch ändern sich U und E wiederum gleichsinnig mit der Temperatur, und die Oszillatorperiode wird von einem weiteren Temperatureinfluss befreit.

2.4 Zusätzliche Schaltungen

2.4.1 Alarm (Fig. 2.4.2)

Um die Betriebssicherheit der Apparatur zu garantieren, soll eine Alarmschaltung jedes Aussetzen des Oszillators sofort melden. Es muss also ein elektronischer Schalter gebaut werden, der anspricht sobald die Uhr während einer vollen Periode keinen Impuls mehr abgibt.

Fig. 2.4.1 zeigt das Blockschema. Die Impulse, die der Komparator (Fig. 2.3.1) jede Halbperiode abgibt, triggern einen monostabilen Multivibrator. Dieser liefert Einheitsimpulse von ca. 0, 25 sec. Dauer, welche über eine Diode eine Kapazität C_a auf die Spitzenspannung aufladen. Der Kondensator C_a ist seinerseits konstant belastet durch einen hochohmigen Emitterfolger.

Im Normalbetrieb schwankt die Spannung über der Kapazität C_a im Bereiche -22 V...-10V. Sollte diese Spannung jemals auf -6 V sinken, dann spricht der Diskriminator an und löst ein Alarmsignal aus (z. B. Signallampe im vorliegenden Aufbau). Bei Alarm kann automatisch ein Reserveoszillator in Betrieb gesetzt werden. Eine solche Alarmmeldung tritt ca. 3 sec. nach einem allfälligen Betriebsunterbruch ein.

Fig. 2.4.1 Blockschema : Alarmschaltung

Die ganze Schaltung ist für eine Telephonzentrale mit 48 V Batterie-Speisung bestimmt. Der vorliegende Apparat ist bloss für 24 V resp. 12 V ausgelegt worden (Spannungsfestigkeit der Transistoren).

Mit Hilfe von Zenerdioden werden die gewünschten Spannungen gewonnen. Eine solche Schaltung stabilisiert die Speisespannung U_0 ausserdem gegenüber den grossen Schwankungen der Batteriespannung (44...56 V).

Weitere Details zeigt Fig. 2.4.2. Ein Transistor 0C80 wirkt als Quelle konstanten Stromes für den Abgriff bei -12 V. Dadurch werden die Zenerdioden Z_3 , Z_4 entlastet. 250 mW-Typen (OAZ 202) können den gestellten Anforderungen noch genügen. Es wurden 6V-Zenerdioden gewählt, da für diese Zenerspannung innerer Widerstand und Temperaturkoeffizient am geringsten sind.

Sollte jemals die Batteriespannung mit verkehrter Polarität angelegt werden, dann sperrt eine Diode (1N600) die gesamte Schaltung ab. Eine weitere Diode (OA95) bringt die Alarmlampe sofort zum Aufleuchten.

Mit den obigen Ausführungen sind die wesentlichsten Punkte des Relaxationsoszillators qualitativ erläutert worden. Für das genaue Verständnis aller Vorgänge ist jedoch eine quantitative Analyse unumgänglich, wie sie im folgenden Kapitel durchgeführt wird.
3. STABILITÄT DES OSZILLATORS

3.1 Temperaturabhängigkeit des Relaxationsoszillators

3.1.1 Ganze Impulsperiode

Mit Hilfe von Gleichung (2.2) kann die Halbperiode der Hausdachkurve exakt berechnet werden (vgl. Fig. 2.2.3):

$$\tau = -RC(1-A)\ln(1 - \frac{UR_0}{EAR})$$
(3.1)

Es gilt:

Unter Vernachlässigung kleiner Grössen zweiter Ordnung lässt sich (3.1) vereinfachen:

$$\tau = -\frac{U}{E} \operatorname{RC} \left[1 - \frac{1}{A} \left(1 - \frac{U}{2E} \right) \right]$$
(3.2)

Beachte, dass laut Definition: A < oE < o

Die Ableitung von (3.2) nach der Temperatur ergibt folgendes Resultat:

$$\frac{1}{\tau} \frac{d\tau}{d\vartheta} = \frac{1}{U} \frac{dU}{d\vartheta} - \frac{1}{E} \frac{dE}{d\vartheta} + \frac{1}{A^2} \left(1 - \frac{U}{2E}\right) \frac{dA}{d\vartheta} + \frac{1}{R} \frac{dR}{d\vartheta} + \frac{1}{C} \frac{dC}{d\vartheta}$$
(3.3)

$$\Delta T_{0} = \Delta U - \Delta E + \frac{1}{A} \left(1 - \frac{U}{2E}\right) \Delta A + R + \Delta C$$
(3.3a)

aus (2.9a): $\Delta T = \Delta T_0$ (3.4)

Alle Terme in (3.3a) stellen Temperaturkoeffizienten dar, die abgesehen von der Temperatur dimensionslos sind. Aus diesem Grunde eignen sie sich für die nachfolgende Rechnung sehr gut.

Die beiden letzten Summanden von (3.3a) beziehen sich auf die Temperaturkoeffizienten von passiven Elementen, die bereits in Abschnitt 2.2.2 diskutiert worden sind. Ihr Beitrag zum Temperaturgang muss als Materialeigenschaft hingenommen werden.

Die verbleibenden Terme enthalten die Variation der Referenzspannungen U und

Fig. 3.1.1 Steuerstrom des Integrators

E sowie der Verstärkung A. Diese Grössen können durch die Art der Schaltung weitgehend beeinflusst werden. Ihrem Temperaturverhalten soll deshalb spezielle Aufmerksamkeit geschenkt werden.

3.1.2 Eingangsstufe

Das Schema eines einfachen Emitterfolgers zeigt Fig. 2.2.4. Die Grösse der wechselstrommässigen Eingangsimpedanz ist durch folgende Beziehung gegeben (Abschnitt A.1):

$$r_{in} = h_{11} + \frac{h_{21} + 1}{\frac{1}{R_E} + h_{22}}$$
 (A.1)

Untersucht man den Temperaturgang für einen Emitterfolger, dann zeigt sich, dass der Temperaturkoeffizient von h_{21} immer dominiert.

Die Vorgänge im Relaxationsoszillator spielen sich so langsam ab, dass die Wechselstrom-Impedanz nur im Umschaltmoment zur Geltung kommt (vgl. Abschnitt 3.2.1). Während der ganzen Integrationsperiode sind jedoch nur die gleichstrommässigen Arbeitsbedingungen ausschlaggebend. Die wirksame Eingangsimpedanz r_{in} wird deshalb einzig durch den Basisstrom I_R bestimmt (Fig. 2.2.4).

Die Strom I_B stört den Integrationsvorgang. Seine Wirkung kommt einem Shunt parallel zum Integrationswiderstand R_o gleich. Der schädliche Basisstrom I_B ist gegeben durch I_E

$$I_{\rm B} = \frac{I_{\rm E}}{H_{21}}$$
 (3.5)

Eine Kompensationsschaltung (Fig. 2.2.5) kann die Wirkung des Basis-Ruhestromes aufheben. Im Idealfall wird die gleichstrommässige Eingangsimpedanz unendlich gross. Es fliesst nur noch ein äusserst geringer Steuerstrom I_s am Eingang des Integrators. Aus Fig. 3.1.2 ersehen wir. dass ein Steuerstrom von $\pm 0,03 \,\mu$ A zur

<u>Fig. 3.1.2</u> Steuerstrom vert. Masstab: $0,02 \mu A/cm$

Speisung des ganzen Relaxationsoszillators genügt.

Zum Steuerstrom I_s kann sich ein Gleichstrom I_o addieren, der als Kompensationsfehler der Eingangsstufe aufzufassen ist. Falls nur der Gleichstromanteil betrachtet wird, erhalten wir (Transistoren T_3 , T_4 in Fig. 2.2.5):

$$I_0 = I_{B4} - I_{B3}$$
 (3.6)

Die exakte Rechnung zeigt, dass für den Temperaturgang von I_o der Emitterstrom I_E als konstant vorausgesetzt werden darf. Nur der Temperaturkoeffizient der Gleichstrom-Verstärkung muss berücksichtigt werden. Falls für die Temperatur $\vartheta = \vartheta_o$ vollständiger Abgleich vorausgesetzt wird ($I_{B3} = I_{B4} = I_B$), folgt aus (3. 5/6):

$$\frac{\mathrm{dI}_{\mathrm{o}}}{\mathrm{d}\vartheta} \approx \mathrm{I}_{\mathrm{B}}(\Delta \mathrm{H}_{213} - \Delta \mathrm{H}_{214}) \tag{3.7}$$

Fig. 3.1.1 zeigt einen gemessenen Temperaturgang des totalen Steuerstromes I_s+I_o . Im Intervall $0^0...40^{\circ}$ C vergrössert sich der Differenzstrom I_o :

$$\frac{dI_o}{d\vartheta} \cdot \delta \vartheta = \delta I_o = 0,24 \,\mu A$$

Dieser Strom entspricht einem Shunt von 12 MOhm parallel zum Integrationswiderstand ($R_0 = 220$ kOhm). Wir wählen zwei Transistoren, die gleichzeitig die extremsten Temperaturkoeffizienten und die ungünstigsten Stromverstärkungen bei $I_E = 100 \,\mu A$ aufweisen.

	Min.	Mittelwert	Max.
H ₂₁	12		31
ΔH_{21}	1, 5 %0/ ⁰ C		5%0/ ⁰ C
$\mathbf{I}_{\mathbf{E}}$		100 μA	

Dann errechnet sich aus (3. 5/6) die mögliche Aenderung des Gleichstromes I_0 zwischen 0^0 und 40^0 C:

$$|\delta I_0| = 0, 0...1, 17 \,\mu A$$
 (3.7a)

Wie sich diese Stromänderung auf die Oszillatorperiode auswirkt, soll in Abschnitt 3.1.6 erklärt werden.

3.1.3 Integrationsverstärker

Entsprechend seiner Funktion (Fig. 2.2.1) muss der Integrationsverstärker eine ungerade Anzahl Stufen haben. Drei Stufen können der Linearitätsbedingung (2.7a) gerade genügen. Um eine Abweichung der Periodendauer $\frac{\delta T_0}{T_0} = 1\%_0$ hervorzurufen, ist nach Gleichung (3. 3/4) folgende Verstärkungsänderung $\frac{\delta A}{A}$ zulässig:

$$\frac{\delta A}{A} = A(1 - \frac{U}{2E})^{-1} \cdot \frac{\delta T_0}{T} = 20\%$$
 (3.8)

A = 400 siehe Fig. A.3.6
U = 6,6 V
E = -3,2 V
$$\left. \frac{1}{5} \right\}$$
 siehe Abschnitt 3.1.5

Der Verstärker ist ziemlich unempfindlich auf Aenderungen der Verstärkung. Trotzdem soll der Integrator durch Gegenkopplung stabilisiert werden. Für die Wahl der Gegenkopplungsart muss man berücksichtigen, dass beim Integrationsverstärker hochohmiger Eingang und Spannungsverstärkung wichtig sind (siehe Abschnitt 2.2.1).

a) Gleichstrom-Gegenkopplung über eine Stufe:

Jeder Emitterwiderstand stellt eine Serie-Serie-Gegenkopplung über die betreffende Stufe dar³⁶).

Die Spannungsverstärkung für eine Stufe errechnet sich aus Fig. A.1.3:

$$v = \frac{u_2}{u_1} = -\frac{h_{21}R_L}{h_{11}+R_E(h_{21}+1)}$$
(3.9)

Vernachlässigungen:

$$1 \ll h_{21}$$

$$h_{11} \ll R_E h_{21} \text{ starke Gegenkopplung}$$

$$v \approx -\frac{R_L}{R_E}$$
(3.9a)

Wie gewünscht wird die Spannungsverstärkung bei starker Gegenkopplung unabhängig von den Transistorparametern. Nach (A.1) steigt auch die Eingangsimpedanz an mit R_{r} .

b) Gleichstrom-Gegenkopplung über 3 Stufen:

Aus der Netzwerk-Theorie folgt, dass eine Gegenkopplung über mehrere Stufen viel wirksamer ist als mehrere Gegenkopplungen über je eine Stufe¹³⁾. Eine Serie-Gegenkopplung R_{σ} über 3 Stufen (Fig. A.3.1) entspricht den gestell-

Eine Serie-Gegenkopplung R_g über 3 Stuten (Fig. A.3.1) entspricht den gestell ten Anforderungen sehr gut.

Das Ersatzbild einer einzelnen Verstärkerstufe darf nach Fig. A.1.3 aufgezeichnet werden. Fig. A.3.2 zeigt das vollständige Ersatzschema für den dreistufigen Integrationsverstärker mit Gleichstromgegenkopplung.

Die Berechnung des Ersatzbildes Fig. A.3.2 ergibt eine kräftige Stabilisierung der Spannungsverstärkung (Berechnung in Abschnitt A.3.1). Ausserdem wird die Eingangsimpedanz stark erhöht, ohne dass die Gegenkopplung deren Wert stabilisiert (Abschnitt A.3.2).

c) Frequenzabhängige Gegenkopplung: siehe Abschnitt A.3.3

d) Temperaturabhängigkeit der Periodendauer

Die Temperaturabhängigkeit der Oszillatorperiode von der Spannungsverstärkung ergibt sich aus (3.3a) und (A.30):

$$\Delta T_{OA} = \frac{1}{A} \left(1 - \frac{U}{2E}\right) \Delta R \tag{3.10}$$

Fig. 3.1.3 Ausgangssignal des Integrators (Hausdachkurve)

Fig. 3.1.4 Unsymmetrische Hausdachkurve

numerisch mit den Daten von (3.8) und (A.30):

$$\Delta T_{oA} = -0,005 \% 0/^{\circ}C$$
 (3.10a)

3.1.4 Steuerstufe

Die beiden komplementären Transistoren T1, T2 der Steuerstufe haben die Aufgabe, die Signalspannung E abwechslungsweise in positiver und negativer Richtung über den Integrationswiderstand R_0 zu legen (Fig. 3.1.5,vgl. auch Fig. 2.2.6). Die wirksame Signalspannung wird durch die Restspannung U_{CE} des leitenden Transistors verfälscht.

Beide Dioden des leitenden Transistors sind in Vorwärtsrichtung gepolt (Fig. 3.1.6). Die Vorwärtsspannungen U_{CB} und U_{EB} kompensieren sich. Der Spannungsteiler an der Basis der Schalttransistoren wurde so dimensioniert, dass die Differenzspannung U_{CE}

Fig. 3.1.5 Steuerstufe : T1 leitet, T2 sperrt

Fig. 3.1.6 Leitender Schalttransistor

der beiden Dioden einerseits möglichst gering wird, anderseits dass U_{CE} bei beiden Transistoren etwa entgegengesetzt gleich gross ist. Solange Transistor T2 sperrt, erhält er allerdings eine etwas grosse Basis-Emitterspannung.

Messung: BCZ 11 : $U_{CE1} = -2,9 \text{ mV}$ 2N 1417 : $U_{CE2} = +3,4 \text{ mV}$

Die Restspannung U_{CE} ist nur wenig temperaturabhängig, da sich auch die Temperaturkoeffizienten der beiden Dioden in Fig. 3.1.6 kompensieren.

Der Aufbau des Referenz-Spannungsteilers ist durch den Komparator bedingt und soll in diesem Zusammenhang diskutiert werden (Abschnitt 3.1.5).

- 44 -

3.1.5 Komparator

Ein drahtgewickelter Spannungsteiler gibt die Referenzspannung U (Fig. 2.2.6), welche die Ausgangsamplitude des Integrators festlegen soll. Zu dieser Referenzspannung addiert sich die Basis-Emitter-Spannung U_{BE} des Transistors T9 bzw. T10 im Schaltmoment. U_{BE} ist temperaturabhängig (Fig. A.2.3). Damit die Oszillatorperiode T_0 trotzdem stabil bleibt, muss die Signalspannung E in gleichem Masse von der Temperatur abhängen (2.9), was durch zwei Stabistoren (S 320G in Fig. 2.2.6) im Spannungsteiler der Steuerstufe erreicht wird. Mit Hilfe des Stromes im Stabistor kann der gewünschte Wert des Temperaturkoeffizienten eingestellt werden (Fig. A.2.2).

Jene Temperaturvariation der Oszillatorperiode ΔT_{ou} , die von den Referenzspannungen U und E herrührt, soll hier näher untersucht werden.

Aus (3.3a):
$$\Delta T_{ou} = \Delta U - \Delta E$$
 (3.11)

Das exakte Eingangssignal erhalten wir aus Fig. 3.1.7. Es muss unterschieden werden zwischen einer Eingangsspannung E_1 für die ansteigende und E_2 für die abfallende Flanke der Hausdachkurve. Mittels eines Potentiometers können E_1 und E_2 abgeglichen werden (x in Fig. 3.1.7).

$$-E_{1} = \frac{R_{1}(1-x)+R_{2}}{2(R_{1}+R_{2}+R_{3})} (U_{0}-2U_{D}) + U_{D1} + (U_{BE5}-U_{EB6})$$
(3.12)

$$-E_{2} = \frac{R_{1}(1+x)+R_{2}}{2(R_{1}+R_{2}+R_{3})} (U_{0}-2U_{D}) + U_{D2} - (U_{BE5}-U_{EB6})$$
(3.13)

Substitution:
$$U_{D} = \frac{1}{2} (U_{D1} + U_{D2})$$
 (3.14)

Falls E_1 und E_2 nicht gleich sind, wird die Hausdachkurve unsymmetrisch. In erster Näherung bleibt jedoch die Oszillatorperiode konstant (Abschnitt 3.1.6, Fig. 3.1.3). In diesem Fall ist nur der Mittelwert von E_1 und E_2 massgebend für die Gleichung (2.9):

$$-E = \frac{1}{2} (E_1 + E_2) = \frac{R_1 + R_2}{2(R_1 + R_2 + R_3)} (U_0 - 2U_D) + U_D$$
(3.15)

$$-E = \frac{R_3}{R_1 + R_2 + R_3} (E' + U_D)$$
(3.15a)

mit:
$$E' = \frac{R_1 + R_2}{2R_3} U_0$$
 (3.16)

$$\frac{U_{\rm D}}{E^{\prime}} \ll 1 \tag{3.17}$$

und:

Daraus errechnet sich der Temperaturkoeffizient von E:

$$\Delta E = (1 - \frac{U_D}{E'}) \Delta U_0 + \frac{U_D}{E'} (1 - \frac{U_D}{E'}) \Delta U_D$$
(3.18)

Der Temperaturgang der Speisespannung U_0 ist durch die verwendeten Zenerdioden (OAZ 202) gegeben. In Fig. 3.1.9 ist die Abhängigkeit des Temperaturkoeffizienten von der Zenerspannung nach Angaben von Philips aufgetragen.

Fig. 3.1.7 Eingangssignal E₁, E₂

- 46 -

Fig. 3.1.9 Temperaturkoeffizient von Zenerdioden (Philips OAZ-Reihe)

Analog kann das exakte Referenzsignal U aus Fig. 3.1.8 errechnet werden:

$$U = 2(U' + U_{EB})$$
 (3.19)

Substitutionen:

$$U' = \frac{r_2}{2(r_1 + r_2 + r_3)} U_0$$
(3.20)

$$U_{EB} = \frac{1}{2} (U_{BE9} + U_{EB10})$$
(3.21)

Aus den Gleichungen (3.19...21) lässt sich der Temperaturkoeffizient der Referenzspannung U berechnen:

$$\Delta \mathbf{U} = (1 - \frac{\mathbf{U}_{\mathbf{EB}}}{\mathbf{U'}}) \ \Delta \mathbf{U}_{0} + \frac{\mathbf{U}_{\mathbf{EB}}}{\mathbf{U'}} (1 - \frac{\mathbf{U}_{\mathbf{EB}}}{\mathbf{U'}}) \ \Delta \mathbf{U}_{\mathbf{EB}}$$
(3.22)

Aus (3.18), (3.22) folgt mit (3.11):

$$\Delta T_{ou} = \Delta U - \Delta E = \left(\frac{U_D}{E'} - \frac{U_{EB}}{U'}\right) \Delta U_0 + \frac{U_{EB}}{U'} \left(1 - \frac{U_{EB}}{U'}\right) \Delta U_{EB} - \frac{U_D}{E'} \left(1 - \frac{U_D}{E'}\right) \Delta U_D$$
(3.23)

Die Gleichung (3.23) ist symmetrisch für die sich kompensierenden Dioden ${\rm U}^{}_{\rm D}$ und ${\rm U}^{}_{\rm FB}.$

Numerische Werte

(siehe Messungen in Fig. A.2.1...3 und Fig. 3.1.9 sowie Widerstandswerte in Fig. 2.2.6)

		Min.	Mittelwert	Max.
Spannungen:	U		24 V (Rechenwe	ert)
	ບັ		6,64 V	
	יט		3, 12 V	
	Е		-3,20 V	
	E'		+3,84 V	
	UFB	0, 15 V		0, 25 V
	UD	0,35 V		0,40 V
Temperatur- koeffizienten:		- 0,8mV/ ⁰ C		- 6,8 mV/ ⁰ C
	dU _{EB} d∿	- 1,8 mV/ ⁰ C		- 2,2mV/ ⁰ C
	 d♪	- 1,3 mV/ ⁰ C		- 1,4 mV/ ⁰ C

Für extreme Werte der obigen Tabelle ergibt (3.23):

$$\Delta T_{ou} = -0, 20 \dots -0, 38 \%_0 / {}^{0}C \qquad (3.24)$$

Der Komparator liefert den grössten Beitrag an den Temperaturkoeffizienten der Oszillatorperiode.

3.1.6 Temperaturstabilität der Gesamtschaltung

Die Temperaturabhängigkeit der Oszillatorperiode wurde ausschliesslich auf Grund von Gleichung (3.2) bzw. ihrer vereinfachten Form (2.9) untersucht. Vorausetzung war eine symmetrische Hausdachkurve (Oszillogramm Fig. 4.2.1).

Dies bedeutet für den Integrator, dass positives und negatives Eingangssignal gleich gross sind:

Sobald dieser Abgleich nicht mehr stimmt, wirkt über dem Integrationswiderstand eine zusätzliche Spannung $\delta E. \delta E$ setzt sich zusammen aus der Differenz zwischen E_1 und E_2 sowie dem Spannungsabfall, den der Eingangsgleichstrom I_0 über R_0 erzeugt (Abschnitt 3.1.2, Fig. 2.2.5):

$$\delta \mathbf{E} = \frac{1}{2} (\mathbf{E}_1 - \mathbf{E}_2) + \mathbf{R}_0 \mathbf{I}_0$$
(3.25)

Setze die Eingangssignale E_1 , E_2 ein (3.12/13):

$$\delta E = + \frac{R_1 \cdot x}{2(R_1 + R_2 + R_3)} (U_0 - 2U_D) - \delta U_D + R_0 I_0$$
(3.25a)

Substitution:
$$\delta U_{\rm D} = \frac{1}{2} (U_{\rm D1} - U_{\rm D2}) + (U_{\rm BE5} - U_{\rm EB6})$$
 (3.26)

Abgleich
$$E_1 = E_2$$
:

$$\frac{R_1 \cdot x}{2(R_1 + R_2 + R_3)} = \frac{\delta U_D}{U_0 - 2U_D}$$
(3.27)

Solange die Schaltung für E und I_o abgeglichen ist, verschwindet der ganze Ausdruck (3.25a). Dies darf nur für eine bestimmte Temperatur $\vartheta = \vartheta_0$ vorausgesetzt werden. Für den Temperaturgang des Oszillators muss jedoch die Variation von δE berücksichtigt werden. Aus (3.7) und (3.25...27) erhalten wir:

$$\frac{d\delta E}{d\vartheta} = + \frac{\delta U_D}{U_0 - 2U_D} \left(\frac{dU_0}{d\vartheta} - \frac{2dU_D}{d\vartheta} \right) - \frac{d\delta U_D}{d\vartheta} + R_0 I_B (\Delta H_{213} - \Delta H_{214}) + I_0 \frac{dR_0}{d\vartheta}$$
(3.28)

Numerischer Wert mit den grössten Streuungen aller Grössen (siehe Tabellen zu (3.7a) und (3.24)):

$$\frac{d\delta E}{d\vartheta} = 0 \dots 6, 9 \text{ mV}/^{O}C \qquad (3.28a)$$

Der Hauptanteil in (3.28a) wird durch die Aenderung des Steuerstromes I₀ in der Eingangsstufe hervorgerufen (Abschnitt 3.1.2).

Wirksame Asymmetrie-Spannung &E:

$$\delta \mathbf{E} = \frac{\mathbf{d} \, \delta \, \mathbf{E}}{\mathbf{d} \, \boldsymbol{\vartheta}} \cdot \, \boldsymbol{\vartheta}^{\boldsymbol{\vartheta}} \tag{3.29}$$

Die Spannung &E addiert sich zur Steuerspannung E (Fig. 2.2.5).

Da die Steuerspannung nach jeder Halbperiode ihr Vorzeichen wechselt, wird der Absolutwert des wirksamen Steuersignales einmal um δE vergrössert, das nächste Mal um denselben Betrag verkleinert. Gleichung (2.3) gibt einen linearen Zusammenhang zwischen Steuersignal und Steilheit der Hausdachkurve. Jede Differenzspannung δE wird also die eine Flanke steiler, die andere flacher machen. Die Abweichung der Kurvenform zeigt Fig. 3.1.3. Trotzdem die Dauer der einzelnen Halbperioden verändert wird, bleibt die Periode T₀ des Relaxationsoszillators näherungsweise konstant.

Der absolute Wert der Flankensteilheit einer Hausdachkurve ist in Fig. 3.1.4 aufgetragen. Durch einen Kompensationsfehler δE wird die eine Flanke um den Betrag y steiler, die andere um denselben Betrag flacher. Aus (2.4) und (2.9) ergibt sich:

$$y = \tau \cdot \delta \frac{de}{dt} = \delta E \cdot \frac{U}{E}$$
(3.30)

Es entstehen die kleinen Zusatzzeiten δ_1 und δ_2 (Fig. 3.1.4), die sich gegenseitig kompensieren. Die Veränderung der totalen Periode δT_0 kann mit Hilfe des Strahlensatzes abgeleitet werden:

$$y^2 \ll U^2$$
: $\delta T_0 = \delta_1 - \delta_2 = 2T \frac{y^2}{U^2}$ (3.31)

Mit (3.30) und (2.9a) erhalten wir aus (3.31):

$$\frac{\delta T_{0}}{T_{0}} = \left(\frac{\delta E}{E}\right)^{2}$$
(3.32)

•

Das Steuersignal E darf somit 10% ändern (mit beliebigem Vorzeichen) bis die Oszillatorperiode 1% grösser wird. Nach (3.32) hat die Abweichung von der Periode T_0 die Form einer flachen Parabel. Aufgabe des Abgleichs ist daher, den Scheitel dieser Parabel in die Mitte des verwendeten Temperaturbereiches zu legen.

Alle Grundlagen zur Berechnung des Temperaturganges, den wir von der Gesamtschaltung erwarten können, sind somit vorhanden. Die Aenderung der Oszillatorperiode mit der Temperatur setzt sich zusammen aus einem linearen Term (3.3a) und einem quadratischen Term (3.32).

Relative Aenderung der Periodendauer:

$$\frac{\delta T_{o}}{T_{o}} = \Delta T_{o} \cdot \delta \vartheta + \left(\frac{\delta E}{E}\right)^{2}$$
(3.33)

Numerische Berechnung (maximale Streuung) linearer Term:

.

$$\Delta T_{O} = (\Delta U - \Delta E) + \frac{1}{A} (1 - \frac{U}{2E}) \Delta A + \Delta R + \Delta C \qquad (3.3a)$$

$$\Delta T_{ou} = \Delta U - \Delta E = -0, 20 \dots -0, 38 \% / C$$
 (3.24)

$$\Delta T_{OA} = \frac{1}{A} \left(1 - \frac{U}{2E}\right) \Delta A = -0,005 \% / {}^{O}C$$
(3.10a)

Philips Drahtwiderstände:

$$\Delta R = + 0,05 \dots + 0,14 \% / C$$

Philips Polyesterfolien-Kondensatoren:

$$\Delta C = + 0, 12 \dots + 0, 19 \% / C$$

Hieraus folgt:

$$\Delta T_{0} = + 0,13... - 0,22 \%_{0}/^{0}C$$
 (3.34)

-

quadratischer Term:

$$\frac{\delta T_{o}}{T_{o}} = \left(\frac{\delta E}{E}\right)^{2}$$
(3.32)

$$E = -3,20 V$$
 Tabelle zu (3.24)

$$\frac{\mathrm{d}\,\delta\,\mathbf{E}}{\mathrm{d}\,\mathbf{v}} = 0\,\ldots\,6,9\,\mathrm{mV}/^{\mathrm{O}}\mathrm{C} \tag{3.28a}$$

Mit Hilfe der Gleichung (3.33) ist es unter Zuhilfenahme der numerischen Werte aus (3.28a/34) möglich, einen Stabilitätsbereich zu berechnen, innerhalb dem sich die Oszillatorperiode bewegen muss (Fig. 3.1.10). Für die Rechnung wurde angenommen, die Schaltung sei bei $\vartheta_0 = 20^{\circ}$ C abgeglichen worden. Der Stabilitätsbereich genügt den in Abschnitt 2.1.3 gestellten Forderungen. Insbesondere ist kein Temperaturgang denkbar, der den Bereich in Fig. 3.1.10 von einem Extrem zum andern durchläuft.

Der experimentell bestimmte Temperaturgang der Oszillatorperiode liegt genau innerhalb des errechneten Toleranzbereiches.

3.2 Weitere Drifteinflüsse

3.2.1 Zufällige Abweichungen

Die Dauer der einzelnen Oszillatorperiode ist statistischen Schwankungen unterworfen. Solange keine äusseren Einflüsse auf die Schaltung wirken, kann nur jene Zeit schwanken, die verstreicht vom Moment da die Hausdachkurve das Referenzpotential U' an T_9 bzw. T_{10} erreicht bis der Flip Flop kippt. Die grösstmögliche Schwankung der einzelnen Oszillatorperiode kann höchstens einen Bruchteil der Zeitverzögerung δ t betragen.

Unter folgenden Vereinfachungen kann &t abgeschätzt werden (Fig. 3.2.2):

- Ausgangsstufe des Integrators (T_8 in Fig. 2.2.6) wird als ideale Stromquelle betrachtet. Der Strom steigt linear mit der Zeit an.

aus Fig. 2.2.3:
$$I = \frac{U}{R_{FS}} \cdot \frac{t}{\tau}$$
 (3.35)

- Der Referenztransistor (T₉, T₁₀ in Fig. 2.2.6) habe eine ideale Basis-Emitter-Diode (U_{BE} = 0). Ausserdem gelte: $H_{21} \gg 1$

Aus der Schaltung Fig. 2.2.6 lässt sich der Kollektorstrom des Referenztransistors berechnen, bei dem der Flip Flop kippen wird: $I_{Ckrit} \approx 230 \mu A$. Mit (3.35) ergibt sich aus Fig. 3.2.2 für die Zeitverzögerung δ t:

$$\delta t = I_{Ckrit} \cdot \frac{\gamma}{U} \left(\frac{R_{E8}}{H_{21}} + R_E \right)$$
(3.36)

Mit den Schaltelementen in Fig. 2.2.6 und (2.9a) erhalten wir für T 10 ($H_{21} = 30 \dots 200$):

	s t = 31	47 ms
Messung:	ბ t =	32 ms

Die statistischen Schwankungen der Oszillatorperiode müssen etwa eine Grössenordnung kleiner als die Zeitverzögerung &t sein, was mit dem experimentellen Befund übereinstimmt.

Fig. 3.2.0 Streuung der Oszillatorperiode To

- 53 -

Fig. 3.2.1 Drift der Oszillatorperiode Stabilisierte Jensen - Kondensatoren

Gemessene Abweichungen vom Mittelwert der Periode zeigt die Statistik von Fig. 3.2.0 ($\delta t' \approx 1 \text{ ms}$).

Diese zufälligen Abweichungen ("Jitter") sowie Alterungserscheinungen der Schaltelemente (Abschnitt 3.2.3) bestimmen die Stabilität der Schaltung über lange Zeit ("long term drift"), wie sie in Fig. 3.2.1 dargestellt ist.

3.2.2 Spannungsabhängigkeit

Die an die Schaltung angelegte Batteriespannung U_B kann in ziemlich weiten Grenzen variieren (Abschnitt 2.1.3). Ein Zenerdioden-Filter gleicht diese Batterieschwankungen aus (Fig. 2.4.2).

Die Schaltung in Fig. 2.4.2 ist so dimensioniert, dass beim Abgriff -6V keine Leistung verbraucht wird. Jener Strom, der beim Abgriff -12V benötigt wird, soll durch den Transistor T24 geliefert werden. Unter diesen Voraussetzungen gilt das Ersatzschema von Fig. 3.2.3 zur Berechnung der Speisespannungs-Stabilisierung:

- U_{Z} totale Spannung von 4 idealen Zenerdioden Z_{1} 4
- R_{7} totaler dynamischer Widerstand von $Z_{1...4}$
- $\mathbf{R}_{\mathbf{I}_{-}}$ totaler Belastungswiderstand

Aus Fig. 3.2.3 errechnet sich die Speisespannung U.:

$$U_{o} = R \left(\frac{U_{Z}}{R_{Z}} + \frac{U_{B}}{R_{B}} \right)$$
(3.37)

Fig. 3.2.2 Stromgesteuerter Referenztransistor

Fig. 3.2.3 Stabilisierung der Speisespannung U_0

mit:
$$\frac{1}{R} = \frac{1}{R_Z} + \frac{1}{R_L} + \frac{1}{R_B}$$
 (3.38)

Vereinfachung:

$$R_L, R_B \gg R_Z$$
 (3.39)

$$U_{0} \approx U_{Z} + U_{B} \frac{R_{Z}}{R_{B}}$$
(3.37a)

Stabilisierung der Speisespannung U.

$$\frac{\mathrm{dU}_{\mathrm{o}}}{\mathrm{dU}_{\mathrm{B}}} = \frac{R}{R_{\mathrm{B}}} \approx \frac{R_{\mathrm{Z}}}{R_{\mathrm{B}}} \tag{3.40}$$

Die Abhängigkeit der Oszillatorperiode T_0 von der Batteriespannung U_B errechnet sich analog zur Temperaturabhängigkeit in (3.3a) resp. (3.23):

$$\frac{1}{T_{o}} \cdot \frac{dT_{o}}{dU_{B}} = \left(\frac{U_{D}}{E'} - \frac{U_{EB}}{U'}\right) \frac{1}{U_{o}} \frac{dU_{o}}{dU_{B}}$$
(3.41)

mit (3.40):

$$\frac{dT_{o}}{T_{o}} = \left(\frac{U_{D}}{E'} - \frac{U_{EB}}{U'}\right) \frac{R}{R_{B}} \cdot \frac{dU_{B}}{U_{o}} \qquad (3.42)$$

numerische Werte:

Dynamischer Widerstand OAZ 202 bei 20 mAR' = 4....6 Ohm(Exemplarstreuung) $R_Z = 4R' = 16...24$ OhmTotale Zenerspannung $U_Z = 24$ V

Fig. 3.2.4 Spannungsabhängigkeit der Oszillatorperiode

Mit den Widerstandswerten in Fig. 3.2.3 ergibt die Aenderung der Oszillatorperiode für $dU_{B} = 1$ V:

$$\frac{dT_{o}}{T_{o}} = 0,02...0,15\%$$
(3.43)

In Fig. 3.2.4 ist die Abhängigkeit der Oszillatorperiode über den ganzen Spannungsbereich aufgetragen. Die Aenderung der Periodendauer ist so gering, dass neben den statistischen Schwankungen kaum eine eindeutige Spannungsabhängigkeit festgestellt werden kann.

In ähnlichem Masse ist die Oszillatorperiode T_o gegenüber transienten Schwankungen der Batteriespannung stabilisiert.

3.2.3 Alterung der Schaltelemente

Der drahtgewickelte Integrationswiderstand R_0 wie auch die Widerstände in den Spannungsteilern Fig. 3.1.7/8 dürfen als alterungsstabil bezeichnet werden. Für die Integrationskapazität C wurde ein Typ ausgewählt, der nur geringe Alterungseffekte aufweisen soll (s. Abschnitt 2.2.2).

Die Vorwärtscharakteristik einer Diode wird durch Oberflächeneffekte kaum beeinflusst, wie sie bei Halbleitern im Laufe der Zeit auftreten (vgl. (A.22)). Es ist also nicht zu erwarten, dass sich die Diodenspannung stark verändern wird.

Der am stärksten alterungsempfindliche Parameter bei Transistoren ist die Stromverstärkung H_{21} . Im digitalen Teil der Schaltung wurden alle Stufen so stark überdimensioniert, dass eine Aanderung der Stromverstärkung keine Rolle spielt. Im analogen Teil hingegen (Eingangsstufe, Integrationsverstärker) beeinflusst H_{21} die Länge der Oszillatorperiode T_0 .

Integrationsverstärker: 10% Alterung von h₂₁ (siehe Abschnitt A.3.1)

schlimmster Fall:
$$\frac{dT_0}{T_0} = 0,02\%_0$$
 (A.31a)

Eine solche Veränderung der Periodendauer liegt innerhalb der Messgenauigkeit.

Eingangsstufe: 10% Alterung von H₂₁

Aus (3.5/6) folgt eine Aenderung des Differenzstromes I₀ (Fig. 2.2.5):

$$\frac{dI_{o}}{I_{B}} = \frac{dH_{21}}{H_{21}}$$
(3.44)

Für den schlimmsten Fall ((3.5), Tabelle zu (3.7a)):

$$dI_{o} = 0,83 \,\mu A$$

Mit (3.25) und (3.32) erhalten wir:

$$\frac{\mathrm{dT}_{\mathrm{o}}}{\mathrm{T}_{\mathrm{o}}} = \left(\frac{\mathrm{dI}_{\mathrm{o}}\mathrm{R}_{\mathrm{o}}}{\mathrm{E}}\right)^2 \tag{3.45}$$

numerische Werte:

Für die extremen Fälle in der Tabelle zu (3.7a):

$$dI_0 = 0, 32 \dots 0, 83 \mu A$$

Mit E = $-3, 2V, R_{0} = 220 \text{ k}\Omega$ beträgt die Aenderung der Oszillatorperiode:

$$\frac{dT_{o}}{T_{o}} = 0,5...3,2\%_{o}$$
(3.45a)

Die Eingangsstufe stellt somit den einzigen Teil der Schaltung dar, der in geringem Masse alterungsempfindlich ist. Durch einen nachträglichen Symmetrie-Abgleich der Hausdachkurve kann eine allfällige Alterung vollständig auskompensiert werden.

3.3 Grenzen des Generators

Die Oszillatorperiode wurde in Abschnitt 2.2.1 berechnet:

$$T_{0} = \frac{2UR_{0}C}{-E}$$
 (2.9/9a)

U und E sind durch die Schaltung gegeben (Fig. 2.2.6). Hingegen können R_0 und C im Prinzip beliebig vergrössert werden. Die Exponentialkurve $e_{(t)}$ wird lediglich verflacht (Fig. 2.2.3), ohne dass dabei die Linearität der Hausdachkurve beeinträchtigt wird.

Einer Verlängerung der Periode T_0 steht nur die geforderte Stabilität im Wege. Als Anhaltspunkt setzen wir voraus, dass die errechnete Stabilität von T_0 (Fig. 3.1.10) im gegebenen Temperaturbereich nur $\pm 1\%$ verschlechtert werden dürfe. Vergrösserung von R_o:

Je grösser der Integrationswiderstand R_o gewählt wird, desto empfindlicher reagiert die Schaltung gegenüber dem unerwünschten Steuer-Gleichstrom I_o der Eingangsstufe (Fig. 2.2.5). Für den schlimmsten Fall von (3.7a) ergeben (3.25/32) mit der zulässigen Toleranz von T_o (Abgleich bei $\Phi_o = 20^{\circ}$ C vorausgesetzt):

$$R_{o_{max}} = 0,8 M Ohm$$

 $T_{oR_{max}} = 20 sec$

Eine Möglichkeit, diese Grenze des Generators zu sprengen, besteht in der Auslese einzelner Halbleiter. Die Stabilität der beschriebenen Schaltung bleibt mit allen Herstellungstoleranzen der Elemente innerhalb der berechneten Grenzen von Fig. 3.1.10. Wird jedoch ein ausgelesenes, genau komplementäres Transistorpaar in der Eingangsstufe des Oszillators verwendet (T3, T4 in Fig. 2.2.6), dann verringert sich der errechnete Streubereich der Stabilität um einen Faktor 2...3. Ohne die Stabilität zu beeinträchtigen, darf der Integrationswiderstand R_0 und damit die Oszillatorperiode T_0 entsprechend vergrössert werden. Die Auslese der Transistoren bezieht sich auf die Stromverstärkung H₂₁. Ebenso erwünscht ist ein ähnlicher Temperaturkoeffizient der Stromverstärkung von T3, T4.

Vergrösserung von C:

Eine erhöhte Integrationskapazität C beeinflusst die Schaltung in keiner Weise. Einzig die Hausdachkurve wird flacher. Entsprechend vergrössert sich die Zeitverzögerung δ t im Umschaltmoment (Abschnitt 3.2.1). Falls angenommen werden darf, dass die statistischen Schwankungen höchstens im gleichen Mass wie δ t wachsen, wird die relative Stabilität der Oszillatorperiode nicht beeinträchtigt. In diesem Falle setzen nur die äusseren Temperaturschwankungen der Oszillatorperiode eine Grenze:

$$T_{oC_{max}} \approx 1 \min$$

Obiger Relaxationsoszillator eignet sich also nicht nur als Geber stabiler 5 sec-Impulse sondern auch zur Erzeugung weit langsamerer Vorgänge.

4. PRAKTISCHE ANGABEN

4.1 Konstruktiver Aufbau

Der ganze Apparat wurde in ein Normalgehäuse der Firma IGEZET eingebaut (210 x 210 x 148 mm). Die Schaltung ist unterteilt in eine Anzahl gedruckter Plättchen ("Print"), die parallel zur Frontplatte ins Gehäuse eingeschoben werden können. Die Stecker aller Plättchen sind verschlüsselt, was eine Verwechslung zweiter Print unmöglich macht. Die Unterteilung des Schemas in einzelne Blöcke, die den gedruckten Plättchen entsprechen, ist in Fig. 2.2.6 und Fig. 2.4.2 angedeutet.

Eine Zwischenwand teilt das ganze Gehäuse in zwei Hälften. Direkt hinter der Frontplatte sind die empfindlichen Elemente der Schaltung angeordnet. Mit der Zwischenwand bildet dieser Teil ein abgeschlossenes System. Dadurch wird eine Abschirmung gegenüber plötzlichen Temperaturschwankungen erreicht (Temperaturschock Fig. 4.1.0). Die Umgebungstemperatur hat auf den Rechteckgenerator nur geringen Einfluss (Fig. 3.1.10), da sich alle temperaturabhängigen Elemente gegenseitig kompensieren. Voraussetzung für diese Kompensation ist gleiche Temperatur an allen Punkten der Schaltung, was dank der erwähnten Zwischenwand mit guter Näherung erreicht wird.

Fig. 4.1.0 Temperaturschock, geringe Transiente dank Spezialgehäuse

Die wichtigsten Schaltelemente, die sich gegenseitig kompensieren, sind zwei Stabistoren (S 320G) im Spannungsteiler des Eingangssignales E und die beiden Referenztransistoren T9, T10 (Fig. 2.2.6). Beide Dioden und beide Transistoren wurden gemeinsam in einen Aluminium-Block eingebaut, um gleiche Temperatur unter allen Umständen zu garantieren.

Im Gehäuse für den Rechteckgenerator wurde Platz für zwei weitere Prints offen gelassen. An diesen Plätzen können zusätzliche Schaltungen untergebracht werden. Beispielsweise wird sich die Notwendigkeit aufdrängen, die Rechteckspannung in Impulse gegebener Form und bestimmter Leistung umzuwandeln. Ausserdem kann eine Schaltung vorgesehen werden, die im Falle eines Alarms sofort eine Ersatzapparatur einschaltet.

4.2 Bedienungsanleitung

Das Gerät ist für eine Batteriespeisung mit 48 V vorgesehen (Toleranzen in Abschnitt 2.1.3). Falls die Polarität der Gleichspannung verwechselt wird, leuchtet beim Einschalten die Alarmlampe auf. Die Schaltung selber wird durch die falsche Polarität der Spannung nicht beschädigt (Fig. 2.4.2).

Mit den Potentiometern P 1...3 kann der Rechteckgenerator abgeglichen werden. Dieser Abgleich muss in der nachstehenden Reihenfolge stattfinden:

Potentiometer P3 (innerhalb des Gehäuses) gleicht die Grösse der beiden Steuersignale E_1 , E_2 ab (Fig. 2.2.6). P3 soll so eingestellt werden, dass der Absolutwert der Spannung zwischen Steckerkontakt 9) des Plättchens "RC" und 8) resp. 9) des Plättchens "St-Ko" gleich ist (ca. 0,4V). Beachte, dass das Impedanzniveau am Messpunkt auf Print RC sehr hoch liegt. Es soll mit einem Röhrenvoltmeter ($R_{in} \approx 10$ MOhm) gemessen werden. Die beiden zu vergleichenden Spannungen haben verschiedene Polarität.

Die Grösse der abgeglichenen Spannungen wird durch Alterung kaum beeinflusst. Der Abgleich mit P3 muss daher nur bei der ersten Inbetriebsetzung durchgeführt werden.

Potentiometer P2 ("Symmetrie" auf Frontplatte) gleicht den Steuerstrom der Eingangsstufe ab (Fig. 2.2.5). P2 muss bei mittlerer Temperatur (ca. 20° C) so eingestellt werden, dass die Hausdachkurve symmetrische Flanken hat. Je genauer die Symmetrie des Oszillogrammes ist (Fig. 4.2.1), desto besser wird die Temperaturstabilität des Generators. Es ist eine Prüfbuchse vorgesehen, über die das Hausdach-Signal auf einen KO gegeben werden kann (hochohmiger Ausgang: 1 M Ω).

Fig. 4.2.1 Hausdachkurve vert. Masstab:2V/cm

Fig. 4.2.2 Nutzsignal des Integrators (Rechteck) vert. Masstab : 10 V/cm

Potentiometer P1 ("Periode" auf Frontplatte) dient zur Einstellung der gewünschten Periodendauer. Falls der vorhergehende Abgleich mit P2 und P3 in Ordnung ist, wird die Symmetrie der Hausdachkurve durch P1 nicht beeinflusst. Eine abschliessende Kontrolle der Symmetrie ist jedoch empfehlenswert.

Das Nutzsignal am Ausgang des Generators ist in Fig. 4.2.2 dargestellt.

4.3 Messapparatur

Die Periode des Rechteckgenerators wurde mit einer relaisgesteuerten Messuhr bestimmt (Synchron-Chronoskop, Fabrikat FAVAG). Die Speisespannung für den Synchronmotor wurde von einer Quarzuhr abgeleitet (Frequenzabweichung $\leq 10^{-6}$). Um den Einfluss der Anzugs- und Abfallzeit des Schaltrelais zu reduzieren, wurden pro Messung 10 Perioden des Rechteckgenerators abgezählt (56 sec).

5. ZUSAMMENFASSUNG

In Schweden ist ein neues Zählsystem für Telefontaxen entwickelt worden. Diese sogenannte Zeittaktzählung weist gegenüber der herkömmlichen Dreiminutenzählung verschiedene Vorteile auf und soll deshalb in der Schweiz eingeführt werden.

Vorschläge für eine elektromechanische Lösung dieses Problemes existieren bereits. Um die Unterhaltskosten möglichst klein zu halten, gibt die Generaldirektion der PTT jedoch einer elektronischen und insbesondere einer transistorisierten Schaltung den Vorzug.

Die Entwicklung eines zentralen Zeittaktgebers stellt das Hauptproblem der ganzen Anlage dar. Von diesem "Herz" des Systems hängen sämtliche Einnahmen der Telefondirektion ab. Daher werden grosse Anforderungen an seine Betriebssicherheit wie an seine Stabilität gestellt.

Der Abstand zweier Zeittakte beträgt einige Sekunden. Da die Elektronik grundsätzlich eine schnelle Technik ist, müssen zur Erzeugung dieser langsamen Schwingungen besondere Mittel und Wege gefunden werden.

Als bestes Schaltungsprinzip eignen sich hierzu Relaxationsvorgänge. Ein solcher Relaxationsoszillator ist aufgebaut worden. Durch verschiedene Kunstgriffe konnte einerseits eine vergrösserte Zeitkonstante im zeitbestimmenden Glied erreicht werden. Anderseits gelang eine Erhöhung der Stabilität auf ± 0,5% über den ganzen Temperaturbereich. Damit steht der Weg offen, die Zeittaktzählung ausschliesslich mit Transistorschaltungen aufzubauen.

ANHANG

A.1 Eingangsimpedanz einer Transistorstufe

In vielen Schaltungen ist eine hohe Eingangsimpedanz wichtig (Abschnitt 2.2.3). Diese lässt sich für kleine Signale aus dem H-Ersatzbild (Fig. A.1.1) berechnen. Im praktischen Fall sind gewisse Vereinfachungen des Ersatzschemas gestattet (Fig. A.1.2, A.1.3).

Die höchste Eingangsimpedanz weist die Kollektorbasisschaltung auf ($R_{C} = 0$):

Aus Fig. A.1.2:
$$r_{in} = h_{11} + \frac{h_{21} + 1}{\frac{1}{R_E} + h_{22}}$$
 (A.1)

Falls die h-Parameter der Emitterschaltung auf die Basisschaltung umgerechnet werden, ergibt die maxiaml erreichbare Eingangsimpedanz ($R_E \longrightarrow \infty$, h_{11} vernachlässigt):

$$r_{in}_{max} = \frac{1}{h_{22b}}$$
(A.2)

Es zeigt sich, dass die Ausgangsimpedanz in Basisschaltung h_{22b} eine Grenze setzt für die Eingangsimpedanz in Kollektorschaltung. Der Parameter h_{22b} muss möglicht geringe Werte annehmen, damit eine hohe Eingangsimpedanz erreicht werden kann. Im Folgenden soll daher die physikalische Struktur der Ausgangsimpedanz in Basisschaltung näher untersucht werden.

Definition:
$$h_{22b} = \frac{dI_C}{dU_{CB}}$$
 (A.3)

Für den Kollektorstrom dürfen wir näherungsweise schreiben³):

$$I_{C} = -\beta \cdot \gamma \cdot I_{E}$$
 (A.4)

Wir setzen die von Hunter³⁾ berechneten Ausdrücke für Transportfaktor β und Emitterwirkungsgrad γ ein (Hochstrom-Injektion vernachlässigt). Für einen PNP-Transistor mit abrupten PN-Uebergängen erhält man:

$$I_{C} = -I_{E} \left(1 - \frac{w^{2}}{2L_{pb}^{2}} - \frac{sA_{s}w}{A_{e}D_{p}} - \frac{\sigma_{b}w}{\sigma_{e}L_{ne}} \right)$$
(A.5)

- 65 -

Fig. A.1.1 H - Ersatzbild für die Emitterschaltung

Fig. A.1.2 Praktisches Ersatzbild für hochohmige Schaltungen

Fig. A.1.3 Praktisches Ersatzbild für niederohmige Schaltungen

Daraus folgt:

$$h_{21} = \left(\frac{w^2}{2L_{pb}^2} + \frac{sA_sw}{A_eD_p} + \frac{\sigma_bw}{\sigma_eL_{ne}}\right)^{-1}$$
(A.6)

Die drei Terme in (A.6) bedeuten der Reihe nach Volumen-Rekombination, Oberflächen-Rekombination, Emitter-Wirkungsgrad.

(A.5) eingesetzt in (A.3) ergibt:

$$h_{22b} = \frac{I_E}{w} \cdot \frac{dw}{dU_{CB}} \left(\frac{w^2}{L_{pb}^2} + \frac{sA_s \cdot w}{A_e \cdot D_p} + \frac{\sigma_b \cdot w}{\sigma_e \cdot L_{ne}} \right)$$
(A.7)

Geringe Volumen-Rekombination (Term $\frac{w^2}{2L_{pb}^2}$ verschwindet):

$$h_{22b} = \frac{I_E}{w \cdot h_{21}} \cdot \frac{dw}{dU_{CB}}$$
(A.7a)

Volumen-Rekombination dominiert:

$$h_{22b} = \frac{2I_E}{w \cdot h_{21}} \cdot \frac{dw}{dU_{CB}}$$
(A.7b)

Solange vorausgesetzt werden darf, dass der prozentuale Anteil der Volumen-Rekombination in (A.6) konstant bleibt, gilt:

$$\mathbf{h}_{22b} \sim \frac{\mathbf{I}_{\mathbf{E}}}{\mathbf{w} \cdot \mathbf{h}_{21}} \cdot \frac{\mathbf{d}\mathbf{w}}{\mathbf{d}\mathbf{U}_{\mathbf{CB}}}$$
(A.7c)

Genau dasselbe Resultat erhält man für einen Transistor mit stetig dotiertem PN-Uebergang, da nur die Koeffizienten der einzelnen Terme von (A.6) ändern.

Ziel der vorliegenden Untersuchung ist, ein möglichst geringes h_{22b} zu erhalten. Gleichung (A. 7) erlaubt Rückschlüsse auf die notwendigen Transistoreigenschaften. Je nach Arbeitspunkt dominiert der eine oder andere Term. Es werden jedoch umfassende Kenntnisse über Materialeigenschaften und innere Struktur des Transistors gefordert, wie sie bei kommerziellen Transistoren nie erhältlich sind. Im praktischen Fall muss man sich deshalb darauf beschränken, die Abhängigkeit der Ausgangsimpedanz h_{22b} von den elektrischen Daten zu diskutieren.

a) Stromabhängigkeit von h_{22b} ($U_{CB} = const.$)

Gleichung (A.7c) kann reduziert werden auf

$$h_{22b} \left| U_{CB} = \text{const.} \right| \sim \frac{I_E}{h_{21}}$$
 (A.8)

Diese Beziehung wurde experimentell verifiziert. Im normalen Anwendungsbereich stimmt die Linearität recht gut.

b) Spannungsabhängigkeit von h_{22b} (I_E = const.)

Der Zusammenhang (A. 7c) vereinfacht sich auf

$$h_{22b} \Big|_{I_E = \text{const.}} \sim \frac{1}{\mathbf{w} \cdot \mathbf{h}_{21}} \cdot \frac{d\mathbf{w}}{d\mathbf{U}_{CB}}$$
 (A.9)

Die Gültigkeit von (A.9) soll in den folgenden Ausführungen näher untersucht werden. Dominierende Rolle in (A.9) spielt die Basisschicht-Dickenmodulation $\frac{dw}{dU_{CB}}$, auch Early Effekt³⁰⁾ genannt.

Ein im aktiven Gebiet arbeitender Transistor kann durch zwei gegeneinander geschaltete Dioden dargestellt werden (Fig. A.1.4). Beinahe die gesamte angelegte Spannung muss über der in Sperrichtung gepolten Basis-Kollektor-Diode liegen. Ein PN-Uebergang kann eine solche Spannung nur dann aufnehmen, wenn er eine entsprechende Raumladungsschicht aufbaut. Dies bedeutet, dass in einem begrenzten Bereich sämtliche Störstellen isoliert sind. Das Material wirkt ähnlich wie eine intrinsic-Schicht (physikalisch reiner Halbleiter). Im Gegensatz zum verunreinigten Halbleiter mit freien Ladungsträgern kann sich in dieser isolierenden Sperrschicht eine beträchtliche Feldstärke aufbauen.

Eine analoge Uebergangsschicht wird zwischen Basis und Emitter entstehen (Fig. A.1.4). Diese Zwischenschicht ist jedoch sehr dünn gegenüber der Kollektorsperrschicht. Zudem ist sie ausschliesslich stromabhängig, solange der Transistor leitet. Sie hat deshalb keinerlei Einfluss auf die Dicke der Basisschicht.

Je nach Grösse der angelegten Spannung wird sich die Raumladungsschicht zwischen Basis und Kollektor verändern. Den analytischen Zusammenhang gibt das Gesetz von Poisson:

$$-\frac{d^2 V}{dx^2} = \frac{V_0}{x_0^2} \cdot \frac{N(x)}{N_0}$$
(A.10)

Die Sperrschicht wird bei steigender Spannung sowohl in das Kollektormaterial als auch in die Basis hinein wachsen. Für den Early-Effekt ist jedoch nur jener Anteil der Reumladungsschicht von Interesse, der den Basisraum verändert (Fig. A.1.4).

Fig. A.1.6 Linearer PN - Uebergang

Aus (A.10) folgt, dass die Verteilung der Störstellen $N_{(x)}$ (Dotierung) eine wesentliche Rolle spielt. Pritchard²⁹⁾ zeigt ein sehr einfaches Verfahren zur Berechnung des Early-Effektes für eine beliebige Dotierung.

In der Praxis treten vor allem zwei Fälle auf:

1. Abrupter PN-Uebergang (Fig. A.1.5)

Der Kontakt in einem legierten Transistor darf mit guter Näherung als abrupter PN-Uebergang aufgefasst werden. Der Early Effekt für diese idealisierte Verteilung beträgt:

$$\frac{dw}{dU_{CB}} = -\frac{x_0}{2} V_0^{-1/2} \cdot U_{CB}^{-1/2}$$
(A.11)

$$\frac{\mathrm{dw}}{\mathrm{dU}_{\mathrm{CB}}} \sim \mathrm{U}_{\mathrm{CB}}^{-1/2} \tag{A.11a}$$

2. Linearer PN-Uebergang (Fig. A.1.6)

Für alle Anwendungen in schnellen Schaltungen ist der diffundierte Transistor sehr wichtig. Die Störstellenverteilung eines diffundierten PN-Ueberganges hat exponentiellen Charakter²⁹⁾. Es zeigt sich jedoch, dass sich die Sperrschicht selten im stark gekrümmten Teil der Exponentialen befindet. Die Rechnung mit einer linearen Störstellenverteilung gibt die physikalischen Gegebenheiten meistens genügend genau wieder³¹⁾. Zudem ist für den Early-Effekt nur der Zuwachs dw wichtig (Fig. A.1.4). Eine Linearisierung des Problems ist also in vermehrtem Masse gerechtfertigt.

Die Basisschicht-Dickenmodulation ergibt für eine lineare Dotierung:

$$\frac{dw}{dU_{CB}} = -x_0 (18 V_0)^{-1/3} \cdot U_{CB}^{-2/3}$$
(A.12)
$$\frac{dw}{dU_{CB}} \sim U_{CB}^{-2/3}$$

Die Spannungsabhängigkeit von h_{22b} (A.9) soll für einen diffundierten Transistor mit linearem PN-Uebergang geprüft werden. Setze für die Wandstärke w der Basisschicht den wirklichen Wert ein (Fig. A.1.4):

$$w = w_0 - x \tag{A.13}$$

Vom betreffenden Transistortyp sei bekannt, dass seine Spannungsfestigkeit durch den Punch-through-Effekt gegeben ist⁹⁾. Dies bedeutet, dass die Kollektor-Sperrschicht bei der höchsten zulässigen Spannung bis auf die Emitter-Sperrschicht durchgreift (w=0). Sobald ein solcher Durchgriff stattfindet, muss die Spannung über dem Transistor zusammenbrechen. Auf einem Kennlinienschreiber kann die Punchthrough-Spannung U_D gemessen werden.

Aus (A.13) erhalten wir mit (A.12):

$$w = w_{o} \left[1 - \left(\frac{U_{CB}}{U_{P}} \right)^{1/3} \right]$$
 (A.14)

Mit der Verringerung der Bassisschichtdicke wird auch die Stromverstärkung h_{21} beeinflusst. Experimentell ergibt sich ein linearer Zusammenhang zwischen Spannung U_{CB} und Stromverstärkung h_{21} solange die angelegte Spannung genügend unterhalb der Durchbruchspannung liegt:

$$h_{21} = h_{210} \left(1 + \frac{U_{CB}}{U_{21}}\right)$$
 (A.15)

$$h_{210}$$
 extrapolierte Stromverstärkung für $U_{CB} = 0$

Mit (A.14) und (A.15) kann die Spannungsabhängigkeit der Ausgangsimpedanz h_{22b} berechnet werden, wenn man folgende Korrektur berücksichtigt: Die für den Early-Effekt massgebende Spannung wird unterstützt durch die Kontaktspannung U_K. Die Grösse der Kontaktspannung zwischen N-dotiertem und P-dotiertem Material entspricht annähernd der Breite der verbotenen Zone⁶. Die Basis-Emitter-Spannung bildet ihrerseits eine Raumladungsschicht. Dieser ohnehin geringe Effekt soll in die Kollektorsperrschicht eingerechnet werden:

$$U_{CB} = U_{CE} + U_{K} \tag{A.16}$$

Die Abhängigkeit der Ausgangsimpedanz h_{22b} von der angelegten Kollektor-Emitter-Spannung U_{CE} wurde bei einer Reihe von Transistoren mit linearem PN-Uebergang untersucht.

Beziehung (A. 9) liefert mit guter Näherung dieselbe Spannungsabhängigkeit von h_{22b} (Fig. A.1.7). Die Gleichungen (A.12a) und (A.14...16) wurden unter folgenden Annahmen verwendet:

Punch-through-Spannung	$U_{\mathbf{p}} \approx 53 V$
Verdoppelung der Stromverstärkung h ₂₁₀	$U_{21} \approx 40 V$
Kontaktspannung (Si)	$U_{K}^{-} = 1,2V$

Die berechnete Kurve von h_{22b} wurde so aufgetragen, dass für $U_{CE} = 5 V$ der gemessene mit dem berechneten Wert übereinstimmt.

Derselbe Zusammenhang zwischen Ausgangsimpedanz h_{22b} und angelegter Spannung U_{CE} wurde für legierte Transistoren untersucht. Auf eine analoge Art und Weise kann auch dieses Resultat verifiziert werden.

Wie die obigen Erläuterungen und Messungen zeigten, hängt die Grösse der Ausgangsimpedanz h_{22b} sehr wesentlich vom Arbeitspunkt des Transistors ab. Um die theoretisch erreichbare Eingangsimpedanz $r_{in_{max}}$ möglichst hoch zu treiben (A.2), soll die angelegte Spannung U_{CE} gross und der Emitterstrom I_E gering sein.

Praktisch ist $\mathbf{U}_{CE}^{}$ durch die Spannungsfestigkeit und $\mathbf{I}_{E}^{}$ durch den Reststrom begrenzt.

Fig. A.1.7 Ausgangsimpedanz h_{22b}

Im leitenden Zustand weist die BE-Diode einen Spannungsabfall auf. Dieser Spannungsabfall ist einerseits durch den Strom, anderseits durch die Materialeigenschaften gegeben.

Soll ein Transistor als präziser Schalter verwendet werden, dann stört diese Diodenspannung. Noch mehr stört aber die Temperaturabhängigkeit der Diodenspannung. Für den Relaxationsoszillator wird es notwendig sein, beide Effekte zu kompensieren (Abschnitt 3.1.5). Es ist daher unumgänglich, die physikalischen Zusammenhänge zu untersuchen, welche dem Spannungsabfall über der Diode zugrunde liegen.

Strom-Spannungs-Charakteristik

Für die Strom-Spannungs-Abhängigkeit gibt Shockley¹¹⁾ das bekannte Exponentialgesetz an:

$$I_{D} = (I_{ps} + I_{ns}) \left[\exp(\frac{e U_{D}}{kT}) - 1 \right]$$
 (A.17)

Im Durchlassgebiet gilt für die Diodenspannung

$$U_D \gg \frac{e}{kT} = 25 \text{ mV bei } T_1$$

was zur Vereinfachung von (A.17) führt:

$$I_{D} = (I_{ps} + I_{ns}) \exp(\frac{eU_{D}}{kT})$$
(A.17a)

Der exponentielle Verlauf von (A.17a) wurde an Ge- und Si-Stabistoren untersucht (Fig. A.2.1). Stabistoren sind Dioden mit geringer Sperrspannung, die speziell entwickelt wurden als Gleichspannungsreferenzen. Bis zu grossen Strömen, wo sich ein thermisch induzierter Widerstand bemerkbar macht, verlaufen die Kurven in Fig. A.2.1 linear. Zu beachten ist die geringe Exemplarstreuung der Stabistoren.

Temperaturabhängigkeit der Dioden

Zur Untersuchung der Temperaturabhängigkeit der Diodencharakteristik (A.17a) müssen vor allem die Restströme I_{ns} , I_{ps} physikalisch erklärt werden. Shive¹²

Fig. A.2.1 Vorwärtsspannung von Dioden

findet für die entsprechenden Dichten der Restströme j_{ns} , j_{ps} :

$$j_{ns} + j_{ps} = 2e\left(\frac{2\pi mk}{h^2}\right)^{3/2} \cdot T \cdot \left(\frac{D_n}{\sqrt{D_n \tau_n}} exp(-\frac{E_Z - E_A V}{kT}) + \frac{D_p}{\sqrt{D_p \tau_p}} exp(-\frac{E_Z - E_D L}{kT})\right)$$
(A.18)

Da die praktischen Auswirkungen des Ausdruckes (A.18) nur abgeschätzt werden sollen, dürfen die folgenden Vernachlässigungen gemacht werden:

Beweglichkeit von Löchern und Elektronen gleich $\mu_n = \mu_p$ Lebensdauer von Löchern und Elektronen gleich $\tau_n = \tau_p$ Aktivierungsenergie von Akzeptoren und Donatoren gleich⁷) $E_{AV} = E_{DL}$

73 -

Substitutionen:

$$C^{-1} = 4A_{D} \left(\frac{2\pi_{mk}}{h^{2}}\right)^{3/2} \left(\frac{eku_{n}}{\tau_{o}} T^{-3,9}\right)^{1/2}$$
(A.19)

$$I_{ns} + I_{ps} = (j_{ns} + j_{ps}) A_D$$
 (A.20)

$$\mathbf{E}_{\mathbf{Z}} - \mathbf{E}_{\mathbf{DL}} = \mathbf{e} \left(\mathbf{V}_{\mathbf{Z}} - \mathbf{V}_{\mathbf{DL}} \right) \tag{A.21}$$

Zur Berechnung der Vorwärtsspannung einer Diode müssen in (A.17a) die Einstein'sche Relation³⁾ und die empirischen Formeln für die Beweglichkeit^{7,12)} sowie die Lebensdauer²⁸⁾ von Ladungsträgern in Silizium eingesetzt werden. Mit (A.18... 21) und den obigen Vernachlässigungen ergibt sich:

$$U_{\rm D} = V_{\rm Z} - V_{\rm DL} + \frac{kT}{e} \ln (I_{\rm D} C T^{-0, 05})$$
 (A.22)

Für die Temperaturabhängigkeit der Diodenspannung U_{D} erhält man:

$$\frac{dU_{D}}{dT} = \frac{dV_{Z}}{dT} - \frac{dV_{DL}}{dT} + \frac{k}{e} \left[\ln (I_{D}CT^{-0,05}) - 0, 05 \right]$$
(A.23)

Die Aktivierungsspannung V_{DL} ist gering gegenüber der Potentialdifferenz V_Z der verbotenen Zone und wächst nur wenig mit der Temperatur⁷). Der Anteil $\frac{dV_{DL}}{dT}$ darf deshalb vernachlässigt werden. Ebenso verschwindet der konstante Summand in der eckigen Klammer von (A.23) gegenüber dem Logarithmus, selbst wenn die gesamte Streuung des Exponenten von T^{28} berücksichtigt wird. (A.23) reduziert sich auf:

$$\frac{dU_{\rm D}}{dT} \approx \frac{dV_{\rm Z}}{dT} + \frac{k}{e} \ln \left(I_{\rm D}CT^{-0,05}\right)$$
(A.23a)

Beide Terme in (A.23a) sind negativ. Für die Temperaturabhängigkeit der verbotenen Zone existieren verschiedene Theorien^{33,34)}, die aber auf unbewiesenen Annahmen beruhen. Alle Messungen^{33,35)} ergeben jedoch eindeutig, dass die Breite der verbotenen Zone in der Nähe der Zimmertemperatur linear abnimmt mit T.

Fig. A.2.2 Temperaturkoeffizient von Ge-Stabistoren

Fig. A.2.3 Temperaturkoeffizient von BE-Dioden

- 75 -

Numerische Abschätzung des Temperaturkoeffizienten $\frac{dU_D}{dT}$

Annahmen: Diodenstrom $I_D = 10 \text{ mA}$ aktive Diodenfläche $A_D = 0, 1 \text{ mm}^2$ (Kreis mit $d \approx 0, 4 \text{ mm}$) Temperatur $T = 300^{\circ}\text{k}$ Lebensdauer²⁸) $T_0 = 10^{-7} \text{ s}$ (Elektron) Für Si und Ge gilt^{33, 35}): $\frac{dV_Z}{dT} = -0, 3...-0, 5 \text{ mV/}^{\circ}\text{C}$

Aus (A. 19/23a) errechnet sich der Temperaturkoeffizient

$$\frac{\mathrm{dU}_{\mathrm{D}}}{\mathrm{dT}} = -1, 1 \dots -1, 3 \,\mathrm{mV}/^{\mathrm{O}}\mathrm{C}$$

Der gemessene Wert bei $I_D = 10$ mA stimmt sehr gut mit der Theorie überein (Fig. A.2.2):

$$\frac{\mathrm{dU}_{\mathrm{D}}}{\mathrm{dT}} = -1, 3 \dots -1, 5 \mathrm{mV}/\mathrm{^{O}C}$$

Die Gleichung für den Temperaturkoeffizienten (A. 23a) ergibt eine logarithmische Abhängigkeit vom Diodenstrom I_D . Experimentell kann dieser Zusammenhang sehr schön verifiziert werden (Fig. A. 2. 2). Abweichungen von der Geraden ergeben sich einerseits bei hohen Strömen, wo eine unerwünschte Erwärmung des Kontaktes auftritt. Anderseits soll der Diodenstrom I_D nicht in die Grössenordnung des Sperrstromes absinken, da sonst die Vereinfachung (A. 17a) nicht mehr gilt (Fig. A. 2. 2, kleinster Strom).

Der Gradient, mit dem der Temperaturkoeffizient $\frac{dU_D}{dT}$ bei steigendem Diodenstrom abfällt, lässt sich aus (A.23a) berechnen. Falls I_D um eine Zehnerpotenz ansteigt errechnet sich:

$$\Delta \frac{dU_{\rm D}}{dT} = -0, 2 \, {\rm mV}/{\rm ^{O}C}$$

Messung:

$$\Delta \frac{dU_{\rm D}}{dT} = -0, 4 \, \mathrm{mV}/^{0} \mathrm{C}$$

...

Diese Diskrepanz zwischen Rechnung und Messung kann dadurch erklärt werden, dass C (A.19) nicht konstant ist. Eine Vergrösserung des Stromes I_D wird die aktive Diodenfläche A_D und die Lebensdauer der Ladungsträger \mathcal{T}_O etwas verändern. Im praktischen Fall soll je eine BE-Diode durch einen Stabistor kompensiert werden (Abschnitt 3.1.5).

Es wurde deshalb auch der Temperaturgang der BE-Spannung der verwendeten Transistoren gemessen und in Fig. A.2.3 aufgetragen.

Die genaue Wirkungsweise der Temperaturkompensation ist in Abschnitt 3.1.5 beschrieben.

A.3 Berechnung des Integrationsverstärkers

A.3.1 Spannungsverstärkung

Unter der Voraussetzung, dass bei allen Transistoren $h_{21} \gg 1$, ergibt die Berechnung des Ersatzschemas nach Fig. A.3.2 folgendes Resultat für die Spannungsverstärkung:

$$A_{u} = \frac{U_{5}}{U_{8}} = \frac{r_{L7}}{R_{E5}} \left(\frac{R_{g} + R_{E5}}{R_{E7}} + 1 \right) \frac{1}{B}$$
(A.24)

Substitution (vgl. Fig. A.3.2):

$$B = 1 + \frac{R_{g} + R_{E5}}{R_{E5} \cdot R_{E7}} \cdot \frac{r_{i50} \cdot r_{i6} \cdot r_{i7}}{h_{215} \cdot h_{216} \cdot h_{217}} \cdot \frac{1}{r_{L5} \cdot r_{L6}} \left(1 + \frac{R_{E7} \cdot r_{L6}}{(R_{g} + R_{E5})r_{i7}} \left(1 + \frac{h_{117}}{R_{6}} \right) \right)$$
(A. 25)

B stellt einen Korrekturfaktor dar, der für starke Gegenkopplung nahezu 1 wird (Vernachlässigung (A. 28)):

$$B \approx 1 + \frac{R_g}{R'}$$
(A. 25a)

Eingangswiderstand der einzelnen Stufen:

$$r_{i50} = R_{E5} h_{215} + h_{115}$$

$$r_{i6} = R_{E6} h_{216} + h_{116}$$

$$r_{i7} = R_{E7} h_{217} + h_{117}$$
(A.26)

Fig. A.3.1 Integrationsverstärker : Schema

<u>Fig. A.3.2</u> Integrationsverstärker (ohne C_g) : Vereinfachtes Ersatzschema

- 78 -

Totaler Lastwiderstand der einzelnen Stufen :

$$\frac{1}{r_{L5}} = \frac{1}{R_{C5}} + h_{225} + \frac{1}{r_{i6}}$$

$$\frac{1}{r_{L6}} = \frac{1}{R_{C6}} + h_{226} + \frac{1}{r_{i7}}$$

$$\frac{1}{r_{L7}} = \frac{1}{R_{C7}} + h_{227}$$
(A. 27)

Vernachlässigungen:

$$R_{E5}, R_{E7} \ll R_g$$
(A. 28)
$$B = 1$$

Die Spannungsverstärkung vereinfacht sich zu:

$$A_{u} \approx -\frac{R_{g} \cdot r_{L7}}{R_{E5} \cdot R_{E7}}$$
(A. 29)

Numerische Transistordaten (mittlere Messwerte):

	2N1417(T ₅ ,T ₇)	BCZ11 (T6)
h ₁₁	4,3 kOhm	1, 2 kOhm
h ₁₂	$1, 1 \cdot 10^{-3}$	$0, 3 \cdot 10^{-3}$
h21	60	30
h ₂₂	$27 \cdot 10^{-6} / Ohm$	35 · 10 ⁻⁶ /Ohm

Mit diesen Werten und den in Fig. A. 3.1 verwendeten Schaltelementen ergibt die Rechnung (A. 29):

 $A_u = 57 \text{ db}$ Messung: $A_u' = 52,5 \text{ db}$

Stabilität der Spannungsverstärkung

Der einzige Transistorparameter, den Gleichung (A. 29) noch enthält, ist h_{227} (in r_{L7}). Dieser Parameter ist nur einer geringen Alterung unterworfen. Höchstens die Temperaturabhängigkeit von h_{227} muss berücksichtigt werden. $\frac{1}{h_{227}}$ hat einen

ähnlichen Temperaturkoeffizienten wie ein Kohlewiderstand, sodass man diesen Term nicht gesondert zu betrachten braucht.

Ausser R_{E5} bestimmen ausschliesslich Kohlewiderstände die Spannungsverstärkung in (A.29). Der Temperaturkoeffizient des Drahtwiderstandes R_{E5} werde vernachlässigt.

Für den Temperaturkoeffizienten der Stromverstärkung folgt aus (A. 29):

$$\Delta A = \Delta R = -1\%_0/{}^{\circ}C \tag{A.30}$$

ΔR relativer Temperaturkoeffizient eines Kohlewiderstandes

Die Veränderung der Spannungsverstärkung durch die Alterung der Transistoren (Abnahme von h_{21}) soll für den schlimmsten Fall untersucht werden. Am stärksten ist A_u abhängig von h_{216} ($R_{E6} = 0$). Mit (A.24...27) erhalten wir:

$$\frac{dA}{A_{u}} = \frac{B-1}{B} \cdot \frac{dh_{216}}{h_{216}}$$
(A.31)

Für die übrigen Transistoren erhalten wir dieselbe Formel (A. 31) mit einem zusätzlichen Korrekturfaktor, der die Stabilität der Spannungsverstärkung um ein Mehrfaches erhöht.

Zahlenbeispiel:
$$\frac{dh_{216}}{h_{216}} = 10\%$$
 Alterung von T6aus (A. 31): $\frac{dA}{A_u} = 0, 4\%$ Verstärkungsänderungmit (3.8): $\frac{dT_o}{T_o} = 0,02\%$ Aenderung der Periode (A. 31a)

Diese Stabilisierung gegenüber Alterungseffekten darf als sehr gut bezeichnet werden.

A.3.2 Eingangsimpedanz

Unter der Voraussetzung, dass bei allen Transistoren $h_{21} \gg 1$, berechnet sich die Eingangsimpedanz des Verstärkers zu:

$$\mathbf{r}_{i5} = \frac{\mathbf{R}_{E5}\mathbf{R}_{E7}}{\mathbf{R}_{g} + \mathbf{R}_{E5}} \cdot \frac{\mathbf{r}_{L5}\mathbf{r}_{L6}}{\mathbf{r}_{i6}\mathbf{r}_{i7}} \cdot \mathbf{h}_{215}\mathbf{h}_{216}\mathbf{h}_{217} \cdot \frac{1}{D}$$
(A.32)

Substitution (vergleiche Fig. A.3.2 und die Gleichungen (A.25...27)):

$$D = \frac{1}{B} \left[1 + \frac{R_{E7}}{R_g + R_{E5}} \cdot \frac{r_{L6}}{r_{i7}} \left(1 + \frac{h_{117}}{R_7} \right) \right]$$
(A.33)

D ist wiederum ein Korrekturfaktor, der sich wenig von 1 unterscheidet.

.

Vernachlässigungen:

$$\frac{1}{R_{C5}} + h_{225} \ll \frac{1}{r_{i6}}$$
$$\frac{1}{R_{C6}} + h_{226} \ll \frac{1}{r_{i7}}$$
$$R_{E5} \ll R_g$$
$$D \approx 1$$

Die Eingangsimpedanz vereinfacht sich unter diesen Voraussetzungen zu:

$$r_{i5} = \frac{R_{E5}R_{E7}}{R_g} h_{215}h_{216}h_{217}$$
 (A.34)

Mit den Transistordaten von Abschnitt A.3.1 und den in Fig. A.3.1 verwendeten Schaltelementen ergibt die Rechnung für (A.32):

> $r_{i5} = 1, 1 \text{ MOhm}$ Messung: $r'_{i5} = 0, 7 \text{ MOhm}$

Durch die Gegenkopplung R_g wird die Eingangsimpedanz des Integrationsverstärkers sehr stark erhöht. Die Grösse der Eingangsimpedanz bleibt jedoch unstabilisiert.

A.3.3 Unterdrückung der Eigenschwingungen

Der dreistufige Integrationsverstärker arbeitet linear und ist durchwegs gleichstromgekoppelt. In der Nähe der Grenzfrequenz f_0 der Transistoren wird die Verstärkung komplex (BCZ 11: $f_0 \approx 20$ kHz). Neben einem Verstärkungsabfall stellt sich eine beträchtliche Phasendrehung ein (Fig. A.3.7). Der Verstärkerausgang ist über die Integrationskapazität C auf den Eingang zurückgekoppelt, was bereits für mittlere Frequenzen einen Kurzschluss bedeutet. Sobald der totale Phasenwinkel des dreistufigen Verstärkers ein Vielfaches von 2π beträgt (Verstärkung $A \ge 1$), können sich Eigenschwingungen erregen. Bei jedem mehrstufigen Integrationsverstärker müssen besondere Massnahmen zur Unterdrückung solcher Schwingungen getroffen werden.

Die beste Massnahme ist eine frequenzabhängige Gegenkopplung C_g , welche die Nutzverstärkung (Gleichstrom) nicht reduziert. Zur Verhinderung von Schwingungen muss die Gegenkopplung den Charakter einer Bandbegrenzung haben. Da jedoch jede Kapazität C_g eine zusätzliche Phasendrehung hervorruft, können neue Eigenschwingungen durch die Gegenkopplung selber erregt werden.

Anhand eines zweistufigen Verstärkers soll die Wirkung einer Zusatzkapazität C_g untersucht werden (Fig. A.3.3...5). Bei tiefen Frequenzen weist der Verstärker keine Phasendrehung B auf (resp. B = 2π). Wir setzen voraus, dass die Grenzfrequenz von T7 sehr hoch ist und deshalb für die nachfolgenden Untersuchungen keine Rolle spielt.

Die Wirkung eines einfachen kapazitiven Shunt als Bandbegrenzung ist in Fig. A.3.3 dargestellt¹³⁾. Amplituden und Phasengang weisen darauf hin, dass eine Stabilisierung des Integrationsverstärkers möglich aber nicht unbedingt zu erwarten ist.

Fig. A.3.4 zeigt eine kapazitive Gegenkopplung, bei welcher der "Miller-Effekt" ausgenutzt wird (vgl. Abschnitt 2.2.1). Wie bei einem phasennacheilenden Netzwerk¹³⁾ entstehen zwei Knicke in der Dämpfungskurve:

$$\frac{1}{f_1} = T_1 = (1-v)C_g \cdot R_{in}$$
(A.35)

$$\frac{1}{f_2} = T_2 = C_g \cdot R_{C6}$$
(A.36)

$$\frac{1}{f_3} = T_3 = C_g \cdot R_{E7}$$
 (A.37)

v = -30 Spannungsverstärkung des Transistors T6

Oberhalb der Frequenz f_1 wirkt die Gegenkopplung wie ein kapazitiver Shunt ("einfacher Bruch"¹³⁾, Fig. A.3.3). Sobald die Frequenz f_2 erreicht wird, ändern die Verhältnisse grundlegend. Einerseits fällt die Phasendrehung des Transistors T6 dahin; anderseits wirkt C_g nicht mehr als Shunt, sondern als Seriekapazität, welche die Stufe T6 kurzschliesst. Das Signal gelangt unverstärkt und ohne Phasenkehrung an die Basis von T7 (Fig. A.3.4).

Fig. A.3.4 Kapazitive Gegenkopplung über 1 Stufe

Fig. A.3.5 Kapazitive Gegenkopplung über 2 Stufen

Sobald die Grenzfrequenz der Basisschaltung von T6 erreicht wird, tritt eine zusätzliche Abschwächung des Signals ein. Dieser Effekt ist jedoch für die hier besprochene Gegenkopplung unwichtig und wurde in Fig. A.3.4 vernachlässigt.

Das ganze System erfährt oberhalb der Frequenz f_2 (A.36) eine zusätzliche Drehung der Phase $\Delta B = -\pi$. Der Integrationsverstärker kann durch C_g in Fig. A.3.4 anstatt stabiler noch schwingungsanfälliger werden.

Durch einen Kunstgriff ist es möglich, den Miller-Effekt anzuwenden, ohne den Phasenwinkel bei hohen Frequenzen zu verändern (Fig. A.3.5). Dieses Resultat wird dadurch erreicht, dass bei hohen Frequenzen ($f > f_3$) C_g einen Kurzschluss darstellt und das Signal über C_g direkt auf den Emitter von T7 gelangt. Die Spannung über der Basis-Emitter-Diode von T7 hat gegenüber Fig. A.3.4 die entgegengesetzte Phasenlage, so dass die Phasenkehrung von T6 auch oberhalb der Frequenz f_3 (A.37) beibehalten wird. Ausserdem wird jede Phasendrehung eliminiert, die T6 oberhalb der Grenzfrequenz f_0 in Emitterschaltung liefern würde (Fig. A.3.7).

Durch Zuschalten einer Kapazität C_g ist ein phasennacheilendes Netzwerk entstanden (Fig. A.3.5). Da dieses eine nahezu phasenreine Dämpfung ermöglicht, eignet es sich sehr gut zur Stabilisierung des Integrationsverstärkers.

Messung: Mit den Schaltelementen in Fig. A.3.5 erhalten wir:

 $f_1 = 21 \text{ Hz} \quad \text{aus} \quad (A.35)$ $f_3 = 21 \text{ kHz} \quad \text{aus} \quad (A.37)$ Kritisches Gebiet für Eigenschwingungen: $f > f_0 \approx 20 \text{ kHz} (\text{Grenzfrequenz BCZ 11})$

Dämpfung: 30 db (Fig. A.3.6) Reduktion der Phasendrehung : 65⁰/Dekade (Fig. A.3.7)

Fig. A.3.7 Phasengang des Integrationsverstärkers

- 86 -

.

A.4 Literatur

A.4.1 Bücher

Einführung in die Fernmeldetechnik	AMIV 1954
Pulse and Digital Circuits	McGraw Hill 1956
Handbook of Semiconductor Electronics	McGraw Hill 1956
Transistors: Principles, Design and Application	Van Nostrand 1960
Transistorschaltungen	Vorlesung
Elektronische Halbleiter	Springer 1956
Physik der Halbleiter	Akademie 1958
Halbleiterprobleme	Vieweg 1955
Ueber die Grenzen der elektrischen Belastbarkeit von Flächentransi- storen	Habilitations- schrift
Diskussion von Störstellenverteilun- gen verschiedener Transistortypen und Aufstellung von Konstruktions- unterlagen	Juris 1958
Electrons and Holes in Semiconduc- tors	Van Nostrand 1950
Semiconductor Devices	Van Nostrand 1959
Gegengekoppelte Systeme und Einschwingvorgänge	Vorlesung
	Einführung in die Fernmeldetechnik Pulse and Digital Circuits Handbook of Semiconductor Electronics Transistors: Principles, Design and Application Transistorschaltungen Elektronische Halbleiter Physik der Halbleiter Halbleiterprobleme Ueber die Grenzen der elektrischen Belastbarkeit von Flächentransi- storen Diskussion von Störstellenverteilun- gen verschiedener Transistortypen und Aufstellung von Konstruktions- unterlagen Electrons and Holes in Semiconduc- tors Semiconductor Devices

21)	Proc. IRE	42	6/54 p. 914	Webster	On the Variation of Junction-Transistor Current Amplification Factor with Emitter Current
22)	Proc. IRE	46	6/58 p. 990	Bemski	Recombination in Semiconductors
23)	Physica	20	1954 p. 1041	Stevenson	Measurement of Re- combination Veloci- ties at Ge-Surfaces
24)	J. Electronics & Control	5	6/58 p. 514	Deb, Daw	On the Lifetime and Diffusion Constant of the Injected Carriers and the Emitter Effi- ciency of a Junction Transistor
25)	Physical Rev.	87	1952 p. 835	Shockley Read	Recombination of Holes and Electrons
26)	Proc. IRE	44	1/56 p. 72	Moll, Ross	Dependence of Transi- stor Parameters on Distribution of Base Layer Resistivity
27)	Techn. Mitt. PTT	34	11/56 p. 441	Hauri	Zur Frage der Ab- hängigkeit der Strom- verstärkung von Tran- sistoren vom Emitter- strom
2 8)	J. applied Physics	30	11/59 p. 1981	Sandiford	Heat Treatment Centers and Bulk Currents in Si-PN-Junctions
29)	Semiconductor Products	2	8/59 p. 31	Pritchard	Transition Capacitance of PN-Junctions
30)	Proc. IRE	40	11/52 p. 1401	Early	Effects of Space- Charge-Layer Widening in Junction Transistors
31)	Zeitschrift f. Physik	139	1954 p. 599	Kleinknecht Seiler	Einkristalle und PN- Schichtkristalle aus Si
32)	Proc. IRE	46	6/58 p. 973	Shockley	Electrons, Holes and Traps
33)	Phys. Rev.	8 2	6/51 p. 900	Fan	Temperature Dependence of Energy Gap in Semi- conductors

34) Phys.	Rev.	105	2/57 p. 441	Vassileff	Electron Self Energy and Temperature Dependence of Effec- tive Masses in Semi- conductors (n-Type Ge, Si)
35) Phys.	Rev.	109	3/58 p. 695	Braunstein	Intrinsic Optical Absorption in Ge- Si Alloys
36) Techn PTT	. Mitt.	38	6-7/60 p. 185	Hauri	Transistorverstär- ker mit Gegenkopp- lung
37) Electr	onics	25	12/52 p. 114	Brunner	Low Frequency Function Generator
38) Schwe schrif	d. Patent- t		Nr. 87348	Olson Vigren	Anordning för auto- matisk tidzonräkning

LEBENSLAUF

Am 27. Juni 1933 wurde ich in Berlin geboren. Meine Jugendzeit verbrachte ich in Baden (AG), wo ich auch die Volksschule durchlief. 1952 schloss ich an der Realabteilung der Kantonsschule Aarau mit der Maturität ab. Nach Absolvierung der Vorstudienpraxis erfolgte 1953 mein Eintritt in die Abteilung für Elektrotechnik der Eidgenössischen Technischen Hochschule. Ich unterbrach 1957 mein Studium zu Gunsten eines mehrmonatigen Studienaufenthaltes bei der Firma National Cash Register Co. in Dayton, Ohio, USA, wo ich in die digitale Transistortechnik eingeführt wurde. 1958 diplomierte ich an der Abteilung für Elektrotechnik der Eidgenössischen Technischen Hochschule.

Vom Herbst 1958 bis zum Frühjahr 1961 war ich als wissenschaftlicher Mitarbeiter am Institut für Fernmeldetechnik tätig. Dort ist die vorliegende Arbeit unter den Auspizien von Herrn Prof. H. Weber entstanden. Nun habe ich bei der Firma Hasler AG, Bern, die Aufgabe übernommen, ein praktisch verwendbares Zeittaktsystem aufzubauen, das vom beschriebenen Impulsgenerator ausgeht.