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Abstract 

The emerging vehicle technologies, i.e. connected vehicle technology and autonomous driving 

technology, can be beneficial for traffic control and operations. They not only serve as new 

source of information, but also enable us to control and modify the trajectory of vehicles. 

Reinforcement learning is widely used to design intelligent control algorithms in various 

disciplines. This paper provides preliminary results on how the reinforcement learning methods 

perform in a connected vehicle environment.  

Keywords 

reinforcement learning, traffic signal control, connected vehicle technology, automated 

vehicles 

 

 



17th Swiss Transport Research Conference                                                                                                 May 17-19, 2017 

 ______________________________________________________________________________________________  

2 

1. Introduction 

Traffic signal control is an essential element in urban traffic control and management systems. 

Signal control strategies can be classified into fixed-time, actuated and adaptive signal control 

strategies. Fixed time signal control strategies, such as TRANSYT (Roberson, 1969), use 

historical data, and provides fixed signal timings despite the real traffic scenarios. Actuate or 

adaptive signal control strategies generally use real-time information, such as vehicle actuation, 

loop detector data or video camera data. These two types are more responsive to real traffic 

situations. However, the traditional data source for these two types of signal control strategies 

are roadside detectors, which are usually installed at a fixed location and cannot provide 

detailed information about the movement of individual vehicles. Thanks to the recent 

development in connected vehicle technology (i.e. vehicles that can communicate with each 

other and infrastructure to provide information on speed, location, etc.), it is now possible to 

track and control the movement of vehicles.  

The benefit of connected vehicles is two-fold. One the one hand, they provide real-time 

information on the speed, location, headway, etc., which can be used to develop better signal 

control strategies. On the other hand, wireless communication systems and automated driving 

can help advice drivers or control vehicles, providing a more flexible design of signal control 

strategies. Inspired by such benefits, connected vehicles has been attracting increasing attention 

in traffic signal control.  

Existing literatures can be classified as two categories. The first category is optimization-based 

algorithms. These type of literatures build optimization models of traffic dynamics, and aim to 

optimize the total vehicle delay, throughput, etc. Many works formulate the traffic signal 

control problem into an integer programming problems (He et al., 2012; He et al., 2014; Feng 

et al., 2015).  In two previous papers in our group, we designed a signal control algorithm for 

an isolated intersection. Guler et al. (2014) proposed a signal control strategy based on 

information provided by connected vehicles present in a traffic stream, and evaluated the 

benefits of this technology for different penetration rates. Yang et al. (2016) extends this work 

by considering automated vehicles and integrating trajectory planning of these vehicles to the 

proposed scheme. This extension further improves the performance indices by reducing both 

the delay and the number of stops. However, these category of traffic control models can be 

computationally expensive, and sensitive to modelling errors.   

The second category of traffic signal control strategies is based on machine learning methods. 

The most popular method in this category is reinforcement learning, which aims to optimize 

the control policy through a trial and error interaction with the environment. The general idea 

is to approximate the traffic dynamics, i.e. the relation between the total delay and the signal 
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timings using learning methods. Abdulhai et al. (2003) and Wiering (2000) proposed 

reinforcement learning for isolated intersections and urban network, respectively, using Q-

matrix learning. The algorithm in Wiering (2000) has been extended by Kuyer et al. (2008) and 

El-Tantawy et al. (2013) to consider the interaction between intersections.  Gilmore et al. (1993) 

proposed a neural network based adaptive traffic signal light controller without hidden layer.  

Pierre-Luc Grégoire et al. (2007) proposed a policy descent based reinforcement learning 

method to optimize traffic signal in a simple intersection. The reinforcement learning based 

methods is usually more responsive to real traffic situation, as it updates the approximation 

model with time. However, the aforementioned works this category did not consider the 

information of connected and automated vehicles. This paper aims to provide some results on 

how the reinforcement learning method performs using such information.  

The organization of this paper is as follows. Section 2 gives a brief introduction to the 

reinforcement learning. Section 3 introduces the training and simulation environment. Section 

4 provides preliminary results. Section 5 concludes the paper.  
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2. Background on Reinforcement Learning 

Figure 1 Schematic figure for reinforcement learning 

 
 

 

  

Reinforcement Learning is a Machine Learning paradigm, by which a controller’s policy can 

be optimized through trial-and-error interactions with an environment. A schematic 

illustration is shown in Figure 1. By using a predefined reward function from the environment 

as feedback, the controller can learn which policies are effective and ideally converge to the 

most optimal policy. It has yielded interesting results, among which are outperforming 

humans in board games (Silver et al., 2016), computer games (Mnih et al., 2015) and RC 

helicopter control (Ng et al., 2006).  

The agent-environment interaction can be more formally described using the notation from 

Sutton and Barto (1998) which is as follows. At every time step t, the agent obtains a 

(potentially partial) representation of the state st ∈ 𝑆  of the environment. Given this state st, 

the agent will decide what the next action at at ∈ 𝐴 should be and forwards at to the 

environment. The environment then executes this action at leading to a transition to a new 

state st+1 ∈ 𝑆  , for which a reward rt+1 is given to the agent. The agent decides which action 

to take based on its policy πt, where πt(s, a) denotes the probability of taking action a when 

in state s. The ultimate goal of the reinforcement learning problem is to find the optimal 

policy π∗ which is defined as the policy that will yield the highest expected return Rt =

∑ 𝛾𝑘𝑟𝑡+𝑘+1
∞
𝑘=0 , which is defined as the cumulative future reward. Here, 𝛾 ∈ [0,1] is a 

discounting factor, which represents how myopic the agent is. If the agent is very myopic and 

only cares about the current reward, then 𝛾 = 0; otherwise if the agent takes fully 

consideration of the future 𝛾 = 1.  

The most common used reinforcement learning scheme is Q-learning. Q-learning is a value-

based learning algorithm. It attempts to predict the outcome of the value function Vπ(s), 

which maps a state s  and a policy π to a value representing how good it is to use this policy 
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and state. One function that is eligible as Value Function could be the expected return, such 

that 

Vπ(𝑠) = 𝐸𝜋(𝑅𝑡|𝑠𝑡 = 𝑠) = 𝐸𝜋(∑ 𝛾𝑘𝑟𝑡+𝑘+1

∞

𝑘=0

|𝑠𝑡 = 𝑠) 

We define the Q-value, also known as Action Value, Qπ(𝑠, 𝑎), as the value of taking action 𝑎 

in state  𝑠, while being subject to policy π, such that 

𝑄𝜋 = 𝐸𝜋(𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎 ) = 𝐸𝜋(∑ 𝛾𝑘𝑟𝑡+𝑘+1

∞

𝑘=0

|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎 ) 

Q learning algorithm aims to approximate this Action Value function with some mapping 

from state action pair to the expected Value. Then the optimal policy greedily follow the 

actions that gives the best Q-Values, assuming that the obtained Action Value function 

converges to the Action Value function of the optimal policy.  

The algorithm starts with a random initialisation of the Action-Value function and improves it 

iteratively, by executing a batch of state-action pairs and comparing the predicted expected 

return against the actual received return. It then corrects the parameters of the mapping such 

that it fits the actual obtained result better by for example using a Gradient Descent method. 

The mapping used for the approximation of the Action-Value function can be anything, such 

as a state-action-reward table, or an artificial neural network (ANN) in the case of the Neural 

Fitted Q-learning (NFQ) algorithm.  

We can perform the Action-Value function approximation using only short term future reward 

information, a principle known as Temporal Difference Learning, because the Value function 

satisfies the Bellman equation, shown in Equation 3. This is a common practice used in 

dynamic programming, also called bootstrapping.  

Vπ(𝑠) = 𝐸𝜋(∑ 𝛾𝑘𝑟𝑡+𝑘+1
∞
𝑘=0 |𝑠𝑡 = 𝑠) =  𝐸𝜋(𝑟𝑡+1 + 𝛾Vπ(𝑠𝑡+1)|𝑠𝑡 = 𝑠) 

Q-learning is an off-policy Temporal Difference (TD) control algorithm, meaning that it can 

approximate the Action-Value function of a policy while following a different policy. This 

allows the method to explore while still approximating the Action-Value function for the 

policy considered most optimal, i.e. the greedy policy. It does so by using the most optimistic 

Action-Value as feedback for the parameter adjustment, instead of using the expectation of 

the Action-Value assuming policy π, represented by a sum of state-action values weighted by 

the probabilities of taking those actions under policy π. This can be seen in the following 

update rule, 
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Q(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼(𝑟𝑡+1 + 𝛾argmax𝑎(𝑄(𝑠𝑡+1, 𝑎𝑡)) − 𝑄(𝑠𝑡, 𝑎𝑡)) 

The variable 𝛼  represents the learning rate, so it controls the step size of the parameter 

adjustment that will be taken. We can see that by using the update rule as defined in Equation 

4, the Action-Value function that the mapping approximates will be the Action-Value 

function corresponding to the optimal policy, regardless of what policy is actually followed 

during the training. To control the policy that is used during the training it is common to use 

an exploration parameter ϵ with 0 ≤ ϵ ≤ 1 which defines the probability with which one of 

the suboptimal actions is taken.  

We use two types of mappings to approximate the Action-Value function, namely an artificial 

neural network and a state-action-reward table. 

2.1. Q matrix 

Q matrix is a matrix, where each row represents each state, and the column value represents 

each action. By discretizing all infinite state dimensions into a finite set of bins we obtain a 

finite set of ns possible states. This is a straightforward representation, as one can read the Q 

value directly from this matrix. Q matrix learning is a straight forward method. However, with 

the number of states increases, it is hard to represent the Q matrix.  

 

Table 1. The lay-out of an Action-Value Table 

2.2. Q network  

A more powerful way to approximate Q value is through artificial neural network (ANN). 

Figure 2 shows an example of the neural network. The input layer (in red shade) for the 

reinforcement learning consists of the actions and states; and the output layer (in green shade) 

represents the reward. The intermediate layers are called hidden layers. We calculate the 

values of a node in a layer as the output of a nonlinear activation function, whose input is the 

linear combination of all the nodes in the previous layer. Therefore each layer consists certain 

nonlinearity. With the depth of the network increases (i.e. more layers), we can represent 

more nonlinearity, and theoretically more complex functions. Commonly used activation 

functions include ReLU, sigmoid, etc. However, it is hard to see which topology and 
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activation function work the best. In this preliminary test, we tested the ANN with no hidden 

layer, one hidden layer and two hidden layers. The activation function is sigmoid, i.e.  

f(x) =  
1

1 + 𝑒𝑥
 

 

Figure 2 A example of neural network 

 
 

 

Source: http://cs231n.github.io/neural-networks-1/ 

 

2.3. Application to traffic signal control   

We compute the vehicle delay as the different between the actual arrival time and the virtual 

arrival time. In order to punish large delays, we use the negative sum of the squared delays of 

all cars currently approaching or waiting for the intersection, instead of total delay, as the 

reward value. Since it is negative, it effectively works as a punishment value instead of a 

reward value. We used the sum of squared delays to favor many small delays over few large 

delays, thereby encouraging the controller to be fair to all road-users. As the states that we 

pass to the controller, we use the sum of squared delays on the North and South approaches, 

the sum of the squared delays of the East and West approaches, the phase that is currently set 

on the traffic lights and the duration for how long this phase has been set. The two actions of 

the controller are simply defined by setting green to the North and South approach or setting 

green to the East and West approach.  
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3. Simulation Settings 

In this paper, a simple intersection of two bi-directional streets and two phases is considered.  

Each direction has one lane. We call the left- and right- going direction as E and W respectively, 

and the upward and downward direction as S and N, respectively. This simple intersection is 

used as an initial building block. The traffic signal is assumed to be able to communicate with 

vehicles to receive information of the real-time speed and location. To ensure that the 

interaction is still safe we built-in 4 seconds of yellow between two different phases during 

which the lights cannot be switched. The red time and the green time for each phase will be 

decided using the reinforcement learning based algorithm. We use the Simulation of Urban 

Mobility (SUMO, Krajzewicz et al., 2012) as the microscopic traffic simulator, which can be 

called from Python scripts using the interface TraCi. We use the tools for reinforcement 

learning provided in the machine learning package PyBrain (Schaul et al., 2010) to train 

controllers, which could control the current traffic lights through the TraCi interface.  

Figure 3 Intersection layout 

 
 

 

 
Source: http://sumo.dlr.de/wiki/Simulation/Traffic_Lights 
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4. Results 

4.1 Constant Demand 

4.1.1 Q-network approach 

For the first simulations we have used a constant demand of 120 vehicles per hour on the E and 

W approaches and 60 vehicles per hour on the N and S approaches. This is relatively low, but 

we have to keep in mind that initially the controllers are no smarter than random controllers. In 

Figure 4 we can see the sum of the delay of all cars waiting for or approaching the intersection 

versus time for different network lay-outs. The result for our learning controller is plotted in 

orange and the result of the traditional naive fixed time controller is shown in grey and red. The 

thick orange and red lines are smoothed fits of the real data, which is shown in the background 

in light-orange and grey. We observe that the controller with the neural network Action-Value 

function approximation does not perform well when using a network with one or two hidden 

layers. When using a linear combination as Action-Value function approximation the results 

stay more reasonable at first, but then diverge as well.  

Figure 4 The sum of delay of the cars currently approaching or waiting for the intersection 

versus time for different network lay-outs. 

 
 

 

(a) No hidden layers.                 (b) One hidden layer.            (c) Two hidden layers 

 
 

We also observe that in the beginning the controller was switching between the phases with a 

very high frequency. This is inefficient because the frequent phase transition does not encourage 

platooning and leads to a larger proportion of lost time. Of course we can’t expect the controller 

to perform well right away, because it has barely had time to learn. To guide the controller to 

policies that we expected to be desired we introduced some constraints on the phase duration. 

We set the minimum phase duration to 10 seconds, and the maximum phase duration to 60 

seconds. Furthermore an action could only be taken every 10 seconds, which is also more 

practical in real-life applications because it provides the system with plenty of time to perform 
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computations. The results after this constraint are shown in Figure 5. We can see that these 

constraints do keep the total intersection delay bounded to reasonable values, but that it still 

does not improve over the fixed time controller.  

Figure 5: The sum of delay of the cars currently approaching or waiting for the intersection 

versus time for different network lay-outs, using the phase duration constraints.  

 
 

 

(a) No hidden layers.                 (b) One hidden layer.            (c) Two hidden layers 

 
 

 

There is a general perception that the Q-learning algorithms with neural network function 

approximations are very hard to train requiring a lot of specialized knowledge and data 

(Grégoire et al., 2007). On the other hand, the highly nonlinear system may requiring more 

nonlinearity in the neural network, i.e. deeper, more input variables and with a larger variety of 

activation functions. This is taken as future research.  

4.1.2 Q matrix approach 

Because three of the 4 dimensions in our state space have an infinite domain, we first need to 

discretize these dimensions into a finite set of bins. After this discretization we have a finite set 

of possible states which we can concatenate into a list. We can then combine the finite set of 

states and actions into a so-called Action-Value Table, as described in Section 3.1.2. For the 

state discretization we initially used five bins for the delays bounded by [0, 200, 400, 600, 800,1] 

and six bins for the phase duration bounded by [0, 12, 24, 36, 48, 60,1]. The six phase duration 

bins were an error and should have been seven bounded by [0, 10, 20, 30, 40, 50, 60,1], since 

that is a one to one mapping for all states that it can take when using the phase duration 

constraint. We fixed this later when doing simulations for the non-constant demand pattern. 

The total intersection delay of the controller with the Action-Value Table are shown in Figure 

6a and 6b, without and with the phase duration constraints respectively. The performance of 

the fixed time controller is again plotted for reference in grey and red. We can see this controller 
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also remains within reasonable bounds without the phase duration constraints, which the 

Action-Value Network controller did not. The performance of the controller however is still 

worse than the fixed time controller. 

Figure 6: The sum of delay of the cars currently approaching or waiting for the intersection 

versus time without constraints (top) and with constraints (bottom). 

 
 

  

(a) Without phase duration constraints.            (b) With phase duration constraints 

 
 
4.2. Varying demand 

For constant demand patterns there are well-known methods to find near-optimal fixed time 

control cycles. Therefore the main motivation for adaptive controllers are intersections with 

dynamic demand patterns, since for those demand patterns the performance of a fixed time 

controller really breaks down. Because of this we decided to evaluate the performances on non-

constant demand patterns next. We specifically chose a demand pattern in Figure 7.  
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Figure 7 Demand Patter 

 
 

 

 
 

In Figure 8 we can see the running average of the arrival delay, taken over the last 10 vehicles 

that have arrived at their destination. We can see that in the constrained scenario the learning 

controller outperforms the fixed time controller, but that there does not seem to be any 

improvement over time. The unconstrained scenario however shows improvement over time 

but thus far has not improved a lot over the performance level of the fixed-time controller after 

four days of training.  

Figure 8: The running average of the vehicles’ arrival delay, taken over the last 10 arrived 

vehicles for the Action-Value Table controller using the non-constant demand function. 

Without constraints (left) and with constraints (right). 

 
 

  

(a) Without phase duration constraints.            (b) With phase duration constraints 
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5.3 Varying penetration rates 

When all vehicles are known to be connected vehicles, i.e. vehicles that can send and receive 

data, it is possible to use intersections without traffic lights and let the vehicles communicate 

among each other or with a central controller to determine an order for passing through the 

intersection. However since the transition to intelligent or connected vehicles likely will not 

happen overnight but gradually, it is interesting to see how smart intersections with traffic lights 

perform under different penetration rates of connected vehicles. 

To do so we have also ran simulations with penetration rates of 80%, 60% and 40%, using the 

constrained discrete controller. To simulate different penetration rates we generated cars to be 

of type ’Simple’ or ’Connected’with the corresponding probabilities. The delay information 

that is passed as the state to the controller is then computed only from the delays of the 

connected vehicles. The reward that we used as feedback however did contain the full 

information on the delays from all cars in the simulation. The results of this in combination 

with a constrained controller are shown in Figure 9. 

Figure 9: The running average of the vehicles’ arrival delay, taken over the last 10 arrived 

vehicles for the constrained Action-Value Table controller, for different penetration rates. 

 
 

  

(a) 80% Connected vehicles.   (b) 60% Connected vehicles.   (c) 40% Connected vehicles. 
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5. Conclusion and Discussion 

5.1 Neural Fitted Q-learning 

Like anticipated in literature, we also experienced a lot of difficulties with fitting an ANN on 

the Action-Value function. Employing constraints on the phase duration did help to keep the 

traffic jams below reasonable lengths but it is hard to say whether the trained network had any 

hand in the performance in those simulations. It might be that the performance here is due 

purely to the constraints, which we also see in the simulations with the discrete controller. 

5.2 Matrix based Q-learning 

The matrix based controller on the other hand was a lot more robust, the intersection delay 

never blew up like it did in the simulations with the unconstrained Action-Value Network. 

Furthermore in the simulations with the non-constant demand functions we saw that there was 

a large performance gain over the fixed time controller when we used the phase duration 

constraints. We do however suspect that this performance gain should be mostly attributed to 

the constraints that we imposed, but nevertheless it performed much better on the varying 

demand scenario and can thus be considered more adaptive than the fixed time controller. From 

traffic engineering theory on fixed time controllers we know that in heavily congested situations 

it is more efficient to use long green phases. Since the constrained controller is likely to use 

longer phases than the traditional controller, it is therefore not a surprise that during the peak 

hours it performed much better. However when we look at the results from the unconstrained 

controller which sometimes used even longer phase durations, we can also conclude that the 

regularization that is implied by the constraints that we used on the phase duration is also an 

important factor.  

5.3 Future work  

The results do not seem to be promising in this series of simulations. There are several 

explanations and future directions. First, the traffic states, reward function should be chosen 

more carefully. More definitions need to be tested. Second, as the dimension of traffic states 

may increase to quite high, it is necessary to handle the complexity by neural network. 

However, the topology of the neural network should be scrutinized.   
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