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Abbreviations
B cell	� B lymphocytes
bp	� Base pair
BSA	� Bovine serum albumin
Ca	� Capillary number, in formula 

Ca = ηV/γ
cDNA	� Complementary DNA
C–F bond	� Carbon–fluorine bond
C–H bond	� Carbon–hydrogen bond
ddPCR	� Droplet digital PCR
ddPRA	� Droplet digital PRA
DNA	� Deoxyribonucleic acid
dNTP	� Deoxynucleotide
DoF	� Degree of freedom
dPCR	� Digital PCR
DTT	� Dithiothreitol
E. coli	� Escherichia coli
EDTA	� Ethylenediaminetetraacetic acid
EGFR	� Epidermal growth factor receptor
HDA	� Helicase-dependent amplification
L. monocytogene	� Listeria monocytogene
LAMP	� Loop-mediated isothermal 

amplification
LCR	� Ligase chain reaction
MDA	� Multiple displacement amplification
MDA	� Multiple displacement amplification
MMLV RT	� Moloney murine leukaemia virus 

reverse transcriptase
mRNA	� Messenger RNA
NASBA	� Nucleic acid sequence-based 

amplification
NGO	� Non-governmental organisation
NGS	� Next-generation sequencing
PCR	� Polymerase chain reaction
PDMS	� Polydimethylsiloxane

Abstract  Droplet-based microfluidic technologies have 
proved themselves to be of significant utility in the perfor-
mance of high-throughput chemical and biological experi-
ments. By encapsulating and isolating reagents within 
femtoliter–nanoliter droplet, millions of (bio) chemical 
reactions can be processed in a parallel fashion and on 
ultra-short timescales. Recent applications of such technol-
ogies to genetic analysis have suggested significant utility 
in low-cost, efficient and rapid workflows for DNA ampli-
fication, rare mutation detection, antibody screening and 
next-generation sequencing. To this end, we describe and 
highlight some of the most interesting recent developments 
and applications of droplet-based microfluidics in the broad 
area of nucleic acid analysis. In addition, we also present a 
cursory description of some of the most essential functional 
components, which allow the creation of integrated and 
complex workflows based on flowing streams of droplets.

Keywords  Microfluidic · Droplets · Digital PCR · Next-
generation sequencing · Single-cell RNA sequencing · 
Diagnostics
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PFO	� Perfluorooctanol
PM	� Polymerase
PMMA	� Poly(methyl methacrylate)
PoC	� Point-of-care
Poly(dT)	� Poly(deoxythymidylic)
qPCR	� Real-time PCR
RAM	� Ramification amplification method
RCA	� Rolling circle amplification
RNA	� Ribonucleic acid
RNA-seq	� RNA sequence analysis
RPA	� Recombinase polymerase amplification
RT-PCR	� Reverse-transcription PCR
SARS	� Severe acute respiratory syndrome
SLR	� Synthetic long-read
ssDNA	� Single-stranded DNA
STAMPs	� Single-cell transcriptomes attached to 

microparticles
UMI	� Unique molecular identifier
UV	� Ultraviolet
V	� Velocity of the continuous phase
VH	� Heavy-chain
VL	� Light-chain
γ	� Interfacial tension
η	� Viscosity of the continuous phase

1  Introduction

Emulsions (or collections of isolated droplets surrounded 
by a continuous and immiscible carrier fluid) have long 
been used in chemical and biological experimentation, 
with the millions of contained droplets serving as isolated 
vessels in which reactions or assays may be performed 
(Fig.  1a) (Griffiths and Tawfik 2006). The use of bulk 
shear forces, although efficient in making large numbers of 
droplets on short timescales, generates polydisperse drop-
let populations that prohibit quantitative experimentation 
(Huebner et al. 2007; Pekin et al. 2011; Juul et al. 2012). 
Conversely, and as will be shown subsequently, flow-
based microfluidic systems can be used to generate simi-
larly large numbers of droplets, but with an unprecedented 
degree of control over droplet size. These features com-
bined with the facility to adjust the chemical or biological 
payload at will make microfluidic droplets highly promis-
ing vehicles for large-scale biological experimentation.

An important application of droplet-based microfluidic 
systems is in the analysis of nucleic acids. Indeed, recent 
developments have seen the establishment of robust and 
high-throughput genotyping assays and expression analy-
sis at the single-cell level (Macosko et al. 2015; Zeng et al. 
2010; Turchaninova et  al. 2013; Eastburn et  al. 2013). A 
key feature in this respect is the ability to perform rapid 
DNA amplification (via the polymerase chain reaction or 

PCR) within millions of individual droplets in a parallel 
fashion (Tewhey et al. 2009; Markey et al. 2010; Hindson 
et  al. 2011). Droplet-based PCR involves the partition-
ing of a large reaction volume into millions of smaller 
volumes, which statistically will either be empty or will 
contain a single copy of target DNA. Subsequent thermal 
cycling of all droplets within a sample yields signal only 
in droplets that originally contained DNA. Accordingly, 
quantitation is ensured via a simple process of counting. 
This feature combined with reduced reagent consump-
tion and efficient heat transfer, engenders a range of 
experiments (such as rare mutation detection and bias-free 
amplification) that are simply not possible in other formats 
(Kalinina et al. 1997). The realisation of formats for drop-
let-based PCR (Griffiths and Tawfik 2006; Williams et al. 
2006; Nakano et  al. 2003) has had an immense impact 
on single-molecule PCR (Kumaresan et  al. 2008; Diehl 
et al. 2006) and has already become a critical component 
of next-generation sequencing technologies (White et  al. 
2009; Margulies et  al. 2005). At a basic level, the utility 
of droplet-based microfluidic systems in biological experi-
mentation stems from the ability to control and manipu-
late droplets in a passive, reproducible and rapid fashion. 
Indeed, and unsurprisingly, such platforms have also been 
used to good effect in many other applications, including 
nanomaterial synthesis (Lignos et al. 2016), kinetic analy-
sis (Lignos et al. 2015; Bui et al. 2011), drug delivery (Xu 
et  al. 2009), high-throughput screening (Sjostrom et  al. 
2013) and single-cell analysis (Brouzes et al. 2009).

In the current review, we aim to survey recent devel-
opments in the use of droplet-based microfluidics for 
nucleic acid analysis, first highlighting key areas where 
such microfluidic tools have had significant effect and 
secondly proposing related applications where micro-
fluidic technologies may have impact in the short to 
medium term. We also note that although essential back-
ground knowledge, such as the manner in which droplets 
are formed and manipulated, will be introduced, more 
detailed and comprehensive analyses of droplet-based 
microfluidic systems can be found elsewhere (Niu and 
deMello 2012; Oh et al. 2012; Choi et al. 2012; Baroud 
et  al. 2010; Kelly et  al. 2007; Shembekar et  al. 2016; 
Price and Paegel 2016; Collins et al. 2015).

2 � Droplet‑based microfluidics

2.1 � Droplet generation and unit operations

Emulsions formed using bulk shear forces on the mac-
roscale have long been used to good effect in areas such 
as polymer chemistry (Ugelstad et  al. 1973), cosmetic 
formulations (Linn and West 1989) and complex food 
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systems (Garti 1997). Despite their utility, the challenges 
associated with controlling droplet size, composition and 
size distributions are immense, making their use in quan-
titative experimentation demanding. Conversely, droplets 
(with volumes ranging from femtoliters to nanoliters) can 
be generated in a variety of ways within microfluidic sys-
tems. Critically, passive strategies that leverage geomet-
rical variations of fluidic structures can be used to trans-
form arbitrary volumes of fluid into defined sub-nanoliter 
droplets at kHz to MHz rates (Shim et al. 2013).

At a simple level, the most common strategies for droplet 
production involve the use of cross-flow structures (T-junc-
tions) (Thorsen et al. 2001), flow-focusing geometries (Anna 
et  al. 2003), co-flow structures (Umbanhowar et  al. 2000; 
Cramer et  al. 2004) and step emulsification (Sugiura et  al. 
2001; Kobayashi et al. 2005). In planar, chip-based systems 
immiscible aqueous and oil streams confined within micro-
fluidic channels are brought together via external pressure 
(typically using syringe or pressure pumps),1 with droplets 

1  For the systems described herein, the discrete (droplet) phase is 
aqueous in nature and surrounded by an immiscible (oil-based) carrier 
phase. That said, the only requirements for establishing robust droplet 
flows are that the continuous phase should preferentially wet the chan-
nel surface and the surface tension at the fluid/fluid interface should be 
sufficiently high to avoid destruction of droplets by shear.

(or plugs) being formed at the point of confluence. Although 
the droplet generation mechanism is quite different in each 
these geometries, all involve the establishment of an inter-
face between co-flowing, immiscible fluids, followed by 
self-segregation of one of the fluids into droplets that are sur-
rounded by the other fluid. Interestingly, variations on the 
above strategies have been used to good effect (Ding et al. 
2014; Dangla et al. 2013). For example, Dangla et al. (2013) 
exploited gradients of confinement to realise highly robust 
droplet formation (Fig. 1b). Using this method, droplets are 
formed due to curvature imbalance along the interface, with-
out the need for shear associated with continuous phase flow. 
This means that droplet size is primarily determined by the 
gradient geometry and is insensitive to fluid properties. 
Unsurprisingly, such a “pump-free” droplet generation 
method (Fig.  1b) has wide ranging utility and potential in 
point-of-care or point-of-use applications.

Control of droplet size is of obvious importance when 
performing quantitative experiments; however, the ability 
to “load” droplets with multiple reagents at user-defined 
concentrations is even more critical. Introduction of the 
dispersed phase through a branched inlet channel allows 
for the direct combination of multiple laminar streams 
just prior to droplet formation (Song et al. 2003), with the 
relative concentration of each reagent being defined by the 

Fig. 1   a Physical and chemical variables in droplet-based experi-
ments: (1) Temperature can be controlled over wide ranges, ena-
bling PCR in emulsions; (2) Hydrophobic substrates or ligands can 
be delivered through the oil phase into aqueous droplets; (3) Water-
soluble components can be delivered through nanoscale droplets or 
swollen micelles, allowing the regulation of biochemical processes; 
(4) Internal pH can be altered, for example, by the delivery of ace-
tic acid; (5) Photocaged substrates and ligands can be introduced 
into the droplets during emulsification and photoactivated at later 
times. Adapted from Ref. (Griffiths and Tawfik 2006) with permis-

sion, copyright© 2006 Elsevier. b Device geometry and mechanism 
of drop formation through confinement gradients. Such an approach 
allows high-throughput production of controlled emulsions. Images 
show an emulsion containing droplets with variable payloads but con-
stant size. Adapted from Ref. (Dangla et  al. 2013) with permission, 
copyright© 2013 PNAS. c 1-million droplet array for dPCR contains 
one droplet generator, 256 splitters and a 27 mm × 40.5 mm view-
ing chamber. Adapted from Ref. (Hatch et al. 2011) with permission, 
copyright© 2011 RSC
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associated volumetric flow-rate ratios (Guo et  al. 2012). 
Notably, this strategy has been effective in creating drop-
let barcodes, in which co-encapsulation of multiple fluo-
rophores spectrally encodes droplets and yields uniquely 
identifiable signatures (Ji et  al. 2011; Gerver et  al. 2012). 
The passive production of droplets is simple, quick and 
efficient, however, limited in its ability to independently 
manipulate droplets in a dynamic and bespoke manner. In 
this respect, active methods show clear utility in creating 
user-defined droplets in a “droplet-on-demand” fashion. 
Common actuating sources for such purposes include pneu-
matic pressure (Unger et  al. 2000; Willaime et  al. 2006; 
Zeng et  al. 2009), mechanical forces (Kim et  al. 2012), 
electrical fields (Link et  al. 2006), magnetic fields (Vek-
selman et  al. 2015), acoustic waves (Collins et  al. 2013), 
optical traps (Lorenz et  al. 2006) and thermal gradients 
(Baroud et al. 2007). For example, Rane et al. (2015) used 
a pneumatic valve-based architecture to assemble combi-
national populations of enzyme-substrate droplets. Specifi-
cally, 650 unique combinations were programmed and gen-
erated in a droplet train in a highly reproducible manner. 
However, it should be remembered that active methods typ-
ically produce droplets at low generation frequencies and 
require the use of complex control equipment. Accordingly, 
the choice of droplet generation method should be made on 
the basis of the specific experimental requirements.

Subsequent to their generation, droplets need to be 
manipulated in ways that mimic the standard analytical 
procedures used on the bench top. Fortunately, a wide range 
of (both passive and active) functional components have 
been presented for operations that include droplet merging 
(Niu et  al. 2008; Deng et  al. 2013; Mazutis and Griffiths 
2012; Akartuna et al. 2015), dilution (Niu et al. 2011; Sun 
and Vanapalli 2013), dosing (Abate et al. 2010; Chen et al. 
2008), splitting (Link et  al. 2004; Gao et  al. 2016), pair-
ing (Ahn et al. 2011; Bai et al. 2010), sorting (Baret et al. 
2009; Nam et  al. 2012; Cao et  al. 2013), trapping/releas-
ing (Wang et al. 2010; Korczyk et al. 2013; Courtney et al. 
2017), counting (Boybay et  al. 2013; Yesiloz et  al. 2015; 
Kim et al. 2012) and incubation (Huebner et al. 2009; Wen 
et  al. 2015). An instructive example in this respect was 
reported by Hatch et al. (2011), who used successive bifur-
cations to split single droplets into 256 daughter droplets in 
a rapid and passive fashion (Fig. 1c). Using such a strategy, 
over one million droplets (that are either empty or contain 
one copy of target DNA) could be generated in 2–7 min. 
Droplet populations formed in this manner could be sub-
sequently packed into on-chip storage chambers and ther-
mally cycled for digital PCR analysis (Hatch et al. 2011). 
Conversely, Eastburn et  al. (2013) reported a powerful 
and robust (active) method, termed picoinjection, which 
utilises a pressurised microchannel and periodic electric 
field to inject a controlled volume of reagent into a moving 

droplet. Picoinjection has proved to be immensely useful in 
a range of complex, droplet-based assays, being compatible 
with common biological reagents such as nucleic acids and 
enzymes.

The ability to link functional components within inte-
grated and sequential workflows has been a key reason 
why droplet-based microfluidic systems have proved so 
advantageous in biological experimentation (Brouzes et al. 
2009; Pan et al. 2011; Cho et al. 2013). Put simply, com-
plex chemical and biological assays can be performed in a 
rapid and efficient manner. In this respect, Lan et al. (2016) 
assembled an elaborate workflow that leverages short-read 
DNA sequencing to obtain long and accurate sequence 
reads (Fig.  2a). Central to this process was the use of 
unique barcodes to label long-DNA molecules, thus allow-
ing short-reads of breakage fragments to be accurately 
reassembled. Functional operations within such a work-
flow included droplet generation, thermal cycling, splitting, 
pairing/merging, incubation, triple-droplet pairing/merging, 
splitting, pinched-flow size sorting, and secondary thermal 
cycling. Significantly, such an approach enables accurate 
sequencing up to 10 kb, and opens up new opportunities for 
the identification of rare mutations inaccessible to conven-
tional sequencing.

2.2 � Droplet stability

In most situations, it is desirable that droplets maintain their 
size and composition over extended periods of time. Long-
term stability of droplets is almost exclusively facilitated 
by the use of appropriate surfactants, which act to inhibit 
droplet coalescence by stabilising the interface between 
the immiscible phases. Surfactant molecules are normally 
mixed into the continuous phase, and upon contact with the 
discrete phase self-organise at the interface.

An excellent review of droplet surfactants can be 
found elsewhere (Baret 2012), providing a comprehen-
sive discussion of surfactant selection. However, in the 
current context, some key issues are worthy of discus-
sion. First, although many oils and organic solvents can 
be used as carrier fluids in droplet-based microfluidic 
systems, when performing nucleic acid assays choices are 
somewhat restricted due to biocompatibility requirements 
and the need to exclude biological impurities. Mineral 
oils and perfluorinated oils (such as HFE-7500, FC-40 
and FC-70) are most two frequently used. When using 
mineral oils droplets can be efficiently stabilised by Span 
80 (sorbitan monooleate) and Abil EM 90 (a non-ionic, 
silicone-based emulsifier) (Williams et al. 2006; Schütze 
et  al. 2011; Bian et  al. 2015). Nevertheless, due to the 
prevalence of fluorinated oils as carrier fluids (because of 
their excellent biocompatibility and high gas permeabili-
ties), fluorosurfactants (perfluoropolyethers containing 
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Fig. 2   a Complex microfluidic droplet workflows enable long and 
accurate DNA sequencing reads via barcoding short-read fragments. 
Left: Schematics and false-coloured images of devices. Right: Car-
toons of molecular processes occurring inside droplets. First stage 
(top): Single templates are encapsulated into droplets by a flow-
focusing drop maker. Inside each droplet PCR or MDA is used to 
amplify the single template. Second stage (middle): a split-merger 
is used to add transposases and precisely adjust template concentra-
tions. Template droplets are injected on the left side, split at junc-
tion (1) so that 1/10th of the droplet continues to pair with a reagent 
droplet generated on-chip at (2), with the pair merging at the chan-
nel expansion (3). Inside droplets, the transposase reaction fragments 
templates and adds adaptors to each fragment. Third stage (bottom): 
The device used for attaching barcodes to DNA fragments. Template 
droplets (1) and barcode droplets (2) are injected into the device 
where they pair with each other and a large PCR reagent droplet gen-
erated on-chip (3). The three droplets merge at the electrode (4) and 
are split into smaller droplets for thermal cycling (5). Inside droplets, 
barcodes are spliced onto fragments by overlap-extension PCR. Scale 
bars are 100 µm. Adapted from Ref. (Lan et  al. 2016) with permis-
sion, copyright© 2016 Springer Nature. b A summary of develop-
ments in (next-generation) sequencing. Data are based on throughput 
metrics for the different platforms since their first instrument ver-
sion came out. Results are visualised by plotting throughput in raw 

bases versus read length. Adapted from Ref. (Nederbragt 2016) under 
a CC BY license. c Principle comparison between two commercial 
synthetic long-read sequencing platforms. Left: Illumina’s TruSeq. 
Genomic DNA templates are fragmented into 8–10 kb pieces. They 
are then partitioned into a microtitre plate, such that there are around 
3000 templates in a single well. Within the plate, each fragment is 
sheared to around 350  bp and barcoded with a single barcode per 
well. The DNA can then be pooled and sent through standard short-
read pipelines. Right: 10X Genomics’ emulsion-based sequencing. 
With as little as 1 ng of starting material, the GemCode can partition 
arbitrarily large DNA fragments, up to ~100 kb, into micelles (also 
called “GEMs”) along with gel beads containing adapter and barcode 
sequences. The GEMs typically contain ~0.3× copies of the genome 
and 1 unique barcode out of 750,000. Within each GEM, the gel bead 
dissolves and smaller fragments of DNA are amplified from the origi-
nal large fragments, each with a barcode identifying the source GEM. 
After sequencing, the reads are aligned and linked together to form 
a series of anchored fragments across a span of ~50 kb. Unlike the 
Illumina system, this approach does not attempt to get full end-to-end 
coverage of a single DNA fragment. Instead, the reads from a single 
GEM are dispersed across the original DNA fragment and the cumu-
lative coverage is derived from multiple GEMs with dispersed—but 
linked—reads. Adapted from Ref. (Goodwin et al. 2016) with permis-
sion, copyright© 2016 Springer Nature
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hydrophilic head groups), such as perfluoropolyether-
polyethylenoxide triblock copolymers, have proved to 
offer exceptional long-term stabilisation of droplets in a 
range of situations. Second, droplet size plays a critical 
role in emulsion stability, with the existence of thermo-
dynamically and kinetically stable regions with respect to 
droplet radii (Kabalnov 2001). Indeed, although fluoro-
surfactants can stabilise droplets (with diameters on the 
tens of microns scale) for weeks at room temperature 
(Holtze et  al. 2008), unless absolutely essential droplets 
should be processed and assayed on the shortest appro-
priate timescales. Put simply, when droplets are in close 
proximity for long periods of time (e.g. when packed 
in an incubation chamber) undesirable mass transfer 
between droplets will occur to some extent due to phe-
nomena such as Ostwald ripening, phase partitioning, 
bilayer diffusion or micelle-mediated transport (Webster 
and Cates 1998; Calderó et  al. 1998; Skhiri et  al. 2012; 
Chen et al. 2012; Gruner et al. 2015; Debon et al. 2015). 
That said, controlled molecular transport between drop-
lets can in fact open up new and unexpected opportunities 
(Gruner et al. 2016). In the current context, recent studies 
suggest that additives (such as Bovine Serum Albumin) 
can decrease diffusion rates by forming barrier layers, 
and can also maintain high enzymatic activities (when 
performing droplet PCR) through competitive adsorption 
on surfactant layers (Gruner et  al. 2015; Courtois et  al. 
2009; Zhang and Xing 2007). It should also be noted that 
although mineral and fluorinated oils are both compat-
ible with droplet PCR, their physical and chemical dif-
ferences define particular limitations and advantages. 
These are compared and summarised in Table 1. Finally, 
it must not be forgotten that control of channel surface 
properties is critical in ensuring efficient generation and 
processing of droplets (Bashir et  al. 2014). Although 
more detailed discussions of this issue can be found else-
where (Debon et  al. 2015), it is necessary for channels 
made from hydrophilic materials (such as glass) to made 
hydrophobic through silanisation and typical for natu-
rally hydrophobic surfaces (such as PDMS and PMMA) 
to be treated with fluoroalkylsilanes prior to experimenta-
tion (Köster et al. 2008).

3 � Droplets and next‑generation sequencing

3.1 � Next‑generation sequencing

Next-generation sequencing (NGS) is a commonly used 
umbrella term describing ultra-high-throughput sequenc-
ing methods (Behjati and Tarpey 2013). Such methods 
allow nucleic acid sequencing at rates of thousands of 
gigabases per week and at a cost of less than a dollar per 

gigabase, and have revolutionised genetic and genomic 
science.

Several distinct NGS platforms are commercially 
available (such as those offered by Illumina, Roche and 
Life Technologies). Although metrics such as cost per 
run, cost per base, error rate and throughput are important 
when evaluating performance, the read length and num-
ber of reads per run are perhaps most useful when judg-
ing sequencing capacity (Levy and Myers 2016). Since 
2012, an annual comparison of available sequencing plat-
forms (based on these two factors) has been presented by 
Lex Nederbragt at the University of Oslo, with data from 
July 2016 illustrated in Fig. 2b (Nederbragt 2016). Cur-
rently, Illumina’s Hiseq platforms lead the field in terms 
of throughput and unsurprisingly dominate the sequencer 
market share. That said, most mainstream NGS systems 
make use of short-read lengths, which yields limita-
tions in the resolution of structural mutations and ability 
to perform de novo sequencing (Treangen and Salzberg 
2012). Accordingly, NGS technologies capable of long 
reads (such as those provided by Pacific Biosciences and 
Oxford Nanopore) are becomingly increasingly impor-
tant, although still in the early stages of development. 
Finally, it should be noted that extended read lengths 
can be accessed indirectly via synthetic long-read (SLR) 
sequencing methods, which leverage short-read sequenc-
ing data to generate synthetic long reads via partitioning, 
label indexing and remapping techniques (Kuleshov et al. 
2014). SLR methods are compatible with existing short-
read sequencing platforms and have already shown utility 
in the recovery of missing sequences, haplotype phasing 
and transcriptome analysis (Li et  al. 2015; Amini et  al. 
2014; Tilgner et al. 2015).

3.2 � Droplet partitioning

A number of NGS methods make use of microtiter plates 
to partition samples (Amini et al. 2014; Adey et al. 2014). 
For example, haplotype determination can be achieved by 
dilution of samples into 384-well plates prior to sequenc-
ing library preparation (Fig. 2c) (Kuleshov et al. 2014). A 
key feature of “dilution haplotyping” is the fact that the 
low concentration of molecules per partition reduces the 
probability that a contained DNA molecule has an over-
lapping sequence with another. Unfortunately, dilution 
methods based on microtiter plates are instrumentally 
complex and limited in their partitioning capacity. To 
address these limitations, researchers from 10X Genom-
ics and Stanford University have recently transformed 
haplotyping analysis (and many other applications) by 
using droplet-based microfluidics to achieve large-scale 
partitioning in a rapid and efficient manner (Zheng et al. 
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2016a). Specifically, a double-cross-junction was used to 
construct phased sequencing libraries from ng inputs of 
high molecular weight DNA. Hydrogel beads can then be 
used as barcode delivery reagents, to allow the controlled 
loading of individual barcodes into droplet partitions. 
This core technology platform has since been refined to 
enable the generation and analysis of more than one mil-
lion droplet partitions using over four million barcodes 
and the integrated sequencing of up to 104 (single) cells 
(Fig. 2c).

The transition from microtiter plate to droplet-based 
formats has also impacted high-throughput cellular 
assays. For example, DeKosky et  al. (2013) recently 
developed a method able to preserve heavy-chain (VH) 
and light-chain (VL) antibody pairing information when 
performing high-throughput immune repertoire sequenc-
ing. The authors were able to partition single B cells into 
spatially isolated compartments, whilst at the same time 
inserting poly(dT) magnetic beads as barcodes. Cells 
could be lysed, with mRNA captured on the magnetic 
beads and then reverse transcription and emulsion VH–
VL linkage PCR performed. After this complex sequence 
of operations, linked transcripts were finally subjected 
to NGS. Initially, four PDMS slides each containing 

170,000 wells (with each well having a volume of 125 
pL) were designed to concurrently accommodate and 
process 68,000 B cells (with a 95% probability of there 
being only one cell per well). In each experimental run, 
over 50,000 single B cells could be deposited and ana-
lysed. Subsequently, the same team replaced the well-
based strategy with a droplet-based microfluidic system 
(DeKosky et  al. 2014). This direct upgrade enabled the 
high-throughput processing of over one million single B 
cells per experiment. The schematic procedures for both 
workflows are shown in Fig. 3.

3.3 � Droplet‑based nucleic acid amplification

Amplification is a prerequisite for the vast majority of 
nucleic acid assays. The polymerase chain reaction (PCR), 
the first in vitro nucleic acid amplification technique, was 
introduced by Mullis et al. (1986) over three decades ago, 
and is still to this day the preferred approach for most 
amplification-involved procedures. Conventional PCR is 
performed using bulk thermal cyclers, where Peltier effect 
thermoelectric heating is used convert electrical energy into 
a temperature gradient (Bell 2008). Almost all conventional 
thermal cyclers possess large thermal masses, which result 

Fig. 3   A Well-based high-throughput sequencing of an antibody rep-
ertoire. (a) B cell populations are sorted for desired phenotype. (b) 
Single cells are isolated by random settling into wells (56 μm diam-
eter) printed in PDMS slides (170,000 wells/slide); 2.8 μm poly(dT) 
microbeads are also added to the wells (average 55 beads/well). (c) 
Wells are sealed with a dialysis membrane and equilibrated with lysis 
buffer to lyse cells and anneal VH and VL mRNAs to poly(dT) beads. 
(d) Beads are recovered and emulsified for cDNA synthesis and link-
age PCR to generate an ~850-base pair VH–VL cDNA product. (e) 
Next-generation sequencing is performed to sequence the linked 
strands. (f) Bioinformatic processing is used to analyse the paired 
VH:VL repertoire. Adapted from Ref. (DeKosky et  al. 2013) with 

permission, copyright© 2013 Springer Nature. B droplet-based high-
throughput sequencing of an antibody repertoire. (a) An axisymmet-
ric flow-focusing nozzle isolated single cells and poly(dT) magnetic 
beads into emulsions of predictable size distributions. (b) Single-cell 
VH and VL mRNAs annealed to poly(dT) beads within emulsion 
droplets. (c) poly(dT) beads with annealed mRNA were recovered by 
emulsion centrifugation to concentrate the aqueous phase (left) fol-
lowed by diethyl ether destabilisation (right). (d) Recovered beads 
were emulsified for cDNA synthesis and linkage PCR to generate an 
~850-base pair VH–VL cDNA product. (e) Next-generation sequenc-
ing analysis. Adapted from Ref. (DeKosky et al. 2014) with permis-
sion, copyright© 2014 Springer Nature
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in high power requirements and relatively slow heating and 
cooling rates. Unsurprisingly, a large number of microflu-
idic approaches have been developed for PCR over the past 
20 years to address these limitations. Although, highly suc-
cessful in allowing amplification to be performed in a rapid 
and efficient manner (Woolley et al. 1996; Kopp et al. 1998; 
Easley et al. 2006), batch and continuous flow approaches 
do not drastically change how PCR is used by experimen-
talists to generate biological information. Conversely, the 
adoption of droplet-based formats for PCR over the recent 
years has begun to transform the application and utility of 
PCR in complex biological experiments (Williams et  al. 
2006; Diehl et al. 2006). In addition to obvious advantages, 
such as reduced reaction times, minimal sample consump-
tion and contamination-free operation, other intriguing fea-
tures such as massively parallel operation, high amplifica-
tion sensitivities and reduced amplification bias have begun 
to fundamentally change how biologists view and use the 
reaction (Tewhey et al. 2009; White et al. 2009; Nishikawa 
et al. 2015).

Droplet-based PCR can be carried out in various micro-
fluidic formats, which are broadly categorised as being 

either on-chip or off-chip (Kiss et al. 2008). For example, 
early studies by Schaerli et al. (2009) used a radial micro-
fluidic device, containing concentric temperature zones, to 
perform single-copy amplification in 160 pL-volume drop-
lets (Fig. 4A). Batch on-chip microfluidic systems can be 
created by fabricating integrated chambers that trap or hold 
large numbers of droplets subsequent to their production. 
As previously described, Hatch et al. (2011) showed an ele-
gant example of such a format, where over a million drop-
lets containing PCR mix were packed into a microfluidic 
chamber for both thermal cycling and real-time product 
detection. Interestingly, the majority of droplet-based PCR 
assays have incorporated off-chip amplification, whereby 
PCR droplets are generated on-chip using standard proto-
cols and then collected and amplified in standard PCR reac-
tion tubes. Such an approach is interesting since it lever-
ages the ability of microfluidics to generate large numbers 
of defined droplets on short timescales and the convenience 
of using commercial formats or instruments for thermal 
cycling [rather than more involved approaches to thermal 
control (Sgro et al. 2007) (Hettiarachchi et al. 2012)]. The 
interested reader is directed to Table 2, which summarises 

Fig. 4   a Design of a radial PCR device. The device contains an oil 
inlet (A) that joins two aqueous inlet channels (B1 and B2) to form 
droplets at a T-junction (C). The droplets pass through the inner cir-
cles (500 μm wide channels) in the hot zone (D) to ensure initial 
denaturation of the template and travel on to the periphery in 200 μm 
wide channels where primer annealing and template extension occur 
(E). The droplets then flow back to the centre, where the DNA is 
denatured and a new cycle begins. Finally, the droplets exit the 
device after 34 cycles (F). Adapted from Ref. (Schaerli et  al. 2009) 
with permission, copyright© 2009 ASC. b ddPCR enables the abso-
lute quantitation of nucleic acids from a sample in a high-throughput. 
The process includes three steps: on-chip droplet generation, off-chip 
droplet incubation and on-chip detection of fluorescence. Adapted 
from Ref. (Hindson et  al. 2011) with permission, copyright© 2011 
ACS. c Workflow of centrifugal step emulsification without associ-

ated dead volumes. The system is located on a spinning disc and con-
sists of an inlet chamber (i), a channel (ii) which connects the inlet 
to a nozzle, and a droplet collection chamber (iii). The inlet chamber 
is located closer to the centre of rotation than the droplet collection 
chamber and both chambers are equipped with an air vent. Step 1: the 
inlet chamber is filled with oil. Step 2: during centrifugation, the oil 
flows to the radial outer droplet collection chamber. Step 3: a sam-
ple is introduced to the inlet. Step 4: the sample is emulsified during 
centrifugation by step emulsification, and some sample remains in the 
inlet channel. Step 5: oil is filled into the inlet. Step 6: during cen-
trifugation, the oil flows to the droplet collection chamber pushing the 
remaining sample through the nozzle which enables the production 
of droplets with zero dead volume. Adapted from Ref. (Schuler et al. 
2015) with permission, copyright© 2015 RSC
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representative droplet-based PCR studies over the past 
decade.

It should be remembered that nucleic acid amplification 
is not limited to PCR, with a large number of alternative 
amplification methods being developed in the interven-
ing years (Fakruddin et al. 2013). These include the ligase 
chain reaction (LCR) and isothermal amplification methods 
such as rolling circle amplification (RCA), loop-mediated 
isothermal amplification (LAMP), recombinase polymer-
ase amplification (RPA), helicase-dependent amplification 
(HDA), ramification amplification method (RAM), mul-
tiple displacement amplification (MDA) and nucleic acid 
sequence-based amplification (NASBA). Almost all of 
these basic techniques have been successfully transferred 
to droplet-based microfluidic formats (Zanoli and Spoto 
2012). Isothermal amplifications are particularly attrac-
tive since they are characterised by short reaction time and 
require only simple thermal control architectures. These 
features suggest significant potential for use in point-of-
care diagnostic applications. For example, LAMP has been 
shown to be rapid, accurate, and cost-effective in the diag-
nosis of infectious diseases such as severe acute respiratory 
syndrome (SARS), malaria and African trypanosomiasis 
(Mori and Notomi 2009; Poon et al. 2004; Surabattula et al. 
2013; Njiru et al. 2008). Critically, LAMP analysis can be 
performed simply by visual inspection or through the use of 
a smartphone camera (Tomita et  al. 2008; Damhorst et  al. 
2015). Recently, Rane et  al. (2015) demonstrated an inte-
grated device for digital LAMP, combining droplet gen-
eration, incubation (amplification) and real-time detection. 
Using such an approach, more than one million droplets 
could be processed in less than 2 h in a continuous manner.

4 � One drop at a time: high‑throughput nucleic 
acid assays

4.1 � Single‑molecule genomic screening

Droplet digital PCR (ddPCR) is quite possibly the most 
important microfluidic technology to have been commer-
cialised in recent years (Fig. 4b) (Hindson et al. 2011), and 
refines the concept of digital PCR (dPCR) proposed in the 
late 1990s (Vogelstein and Kinzler 1999). Unlike conven-
tional quantitative PCR (qPCR) methods, dPCR achieves 
quantitation by portioning a large sample volume into 
many smaller volumes that statistically contain no more 
than one copy of target DNA. dPCR is particularly robust 
for the detection of rare nucleic acid samples, the investi-
gation of rare mutations in complex backgrounds and the 
identification of small differences in expression levels. 
That said, early embodiments dPCR were limited by the 
method of sample partitioning, which often involved the 

use of microtiter plates (Vogelstein and Kinzler 1999), bulk 
emulsions (using beads, emulsion, amplification and mag-
netics - BEAMing) (Dressman et al. 2003) or microfluidic 
chamber arrays (Ottesen et al. 2006). Hindson et al. (2013) 
have compared ddPCR with qPCR in the microRNA quan-
tification, with results indicating that ddPCR yields signifi-
cantly greater precision and improved “day-to-day repro-
ducibility” over qPCR. Such superior metrics suggest that 
ddPCR will continue to play an important role in molecu-
lar diagnostics of genetic diseases (Debrand et  al. 2015), 
cancers (Mehrian-Shai et al. 2016; Watanabe et al. 2015), 
infectious diseases (Bian et al. 2015; Trypsteen et al. 2016) 
and prenatal diagnosis (Orhant et al. 2016). For example, 
epidermal growth factor receptor (EGFR) mutation is an 
important target for many cancer therapies, with the status 
of the EGFR mutation being closely related to the thera-
peutic effect of EGFR inhibitors, such as monoclonal anti-
bodies and tyrosine kinase inhibitor (Lièvre et  al. 2006; 
Gazdar 2009). Siravegna et  al. (2015) comprehensively 
combined BEAMing, ddPCR, NGS and bioinformatics 
analyses to genotype colorectal cancers and dynamically 
monitor clonal evolution during treatment with the EGFR-
specific antibodies Cetuximab and Panitumumab. Results 
revealed the colorectal tumour genome adapts dynamically 
to intermittent drug schedules, and provides a molecular 
explanation for the efficacy of “rechallenge therapies” 
based on the EGFR blockade. Such a methodology has 
significant implications for the development of person-
alised cancer treatments and the dynamic monitoring of 
disease progression and response to therapy. Put simply, it 
eliminates the difficulties associated with repeated sample 
acquisition, and removes temporal and spatial bias in sam-
ple selection.

ddPCR allows for the simultaneous detection of multiple 
targets through the use of multi-colour detection schemes, 
with further expansion of target numbers being achieved 
by varying parameters that control PCR efficiency (Zhong 
et  al. 2011). Accordingly, in multiplex ddPCR, multiple 
mutations can be detected in a single experiment; a feature 
particularly valuable when assaying clinical samples (Taly 
et al. 2013). Much work has recently focused on improving 
ddPCR, in terms of detection sensitivity (Miotke et al. 2014) 
and sample volume limitation (Petriv et al. 2014), but there 
is little doubt that ddPCR is rapidly becoming a “standard” 
component in highly sensitive genomic screening.

4.2 � Single‑cell genomic and transcriptomic 
investigations

Cells are the elementary structural, functional, and biologi-
cal units in living organisms, with the physiological func-
tions of multicellular organisms being realised through 
individual cells. It is widely acknowledged that a seemingly 
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homogeneous cell population will differ significantly in 
terms of size, genetic variants and expression patterns at 
single-cell level, resulting from the inherent stochasticity 
of biological processes (Elowitz et  al. 2002) and stimu-
lation by the external microenvironment (Liberali et  al. 
2015). Accordingly, the ability to identify cell-to-cell vari-
ations within a given population is critical in understand-
ing clonal evolution in cancer (Greaves and Maley 2012), 
immune dysfunction (Proserpio and Mahata 2016) and 
somatic mutations (Xu et al. 2012). In this respect, single-
cell genomics aims to enrich our understanding of genetics 
by engendering the study of genomes at the cellular level.

A technical prerequisite for DNA or RNA sequencing 
of single cells is the efficient physical isolation of large 
numbers (>103) of discrete cells, in a manner that allows 
each cell to be interrogated on an individual basis (Gawad 
et al. 2016). Normally, cells obtained from blood or solid 
tissues are processed (via methods such as enzymatic dis-
sociation, density gradient centrifugation and fluorescence-
activated cell sorting) to yield a single-cell suspension, 
which is then delivered into the microfluidic system. Cell 
isolation in microfluidic systems can be used most easily 
achieved using traps, droplets or micromechanical valves. 
For example, the commercially available Fluidigm C1 plat-
form provides an integrated and automated solution for sin-
gle-cell genomics, leveraging control of pneumatic valves 
(that deflect under pressure to disrupt fluid flow within 
a microchannel) to perform single-cell capture, lysis, 
mRNA release, RT-PCR and cDNA amplification. Such an 
approach allows the parallel analyse up to 800 cells in an 
automated fashion.

Two recent studies describing single-cell RNA sequenc-
ing methods using droplet-based microfluidics [termed 
Drop-seq (Macosko et  al. 2015) and InDrop (Klein et  al. 
2015)] have attracted significant attention in the biological 
community due to their ability to barcode RNA and ana-
lyse mRNA transcripts in an efficient, cost-effective and 
high-throughput fashion (Fig. 5). Unsurprisingly, these two 
approaches share much similarity in methodology, since 
they exploit droplet-based tools developed in the Weitz 
laboratory at Harvard University. Both utilise microfluid-
ics to load single cells and single microbeads (containing 
a unique barcode) together with lysis buffer into drop-
lets. Subsequently, released mRNAs from a given cell are 
labelled with a unique code prior to droplet breakup and 
pool amplification. mRNAs are converted to cDNAs by 
RT-PCR, followed by library preparation, sequencing and 
data analysis. Critically, all sequencing data, though carried 
out in batch, can be traced back to its “cell-of-origin” and 
“gene-of-origin”. The Drop-seq method uses solid micro-
particles, with oligonucleotide codes covalently linked to 
the particle surface, whilst InDrop technology uses hydro-
gel beads, with code release being driven by UV activation. Ta
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For the interested reader, a more detailed comparison of 
the biochemical procedures (including transcript coverage) 
can be found elsewhere (Picelli 2016). That said, from a 
technical perspective, some comment on co-encapsulation 
efficiencies is worthwhile. Random (passive) loading of 
beads, cells and DNA molecules into droplets obeys Pois-
son statistics under normal circumstances (Collins et  al. 
2015). To ensure a >95% probability that a given droplet 
contains no more than one cell, the average occupancy 
should not be larger than 0.1 cells per droplets. Under such 
conditions, most droplets (90.5%) will be empty, with 9% 
containing a single cell. Accordingly, both Drop-seq and 
InDrop utilise dilute cell suspensions to ensure single-cell 
encapsulation, whilst leveraging the ability of microfluidic 
droplet generators to make droplets at high speed. Interest-
ingly, the InDrop method utilises close-packed ordering 
(Abate et al. 2009) to beat Poisson constraints, with almost 
100% droplets receiving gel beads, and over 90% of cell-
loaded droplets containing exactly one cell and one bead. 
This approach involves the use of close packed, deform-
able particles to allow insertion of a controllable number 
of particles into every droplet. It should also be noted that 
the basic Drop-seq methodology could in future make use 
of inertial focusing and ordering to drastically increase the 
number of droplets containing a single cell and bead (Mar-
tel and Toner 2014). Considering current co-encapsulation 
efficiencies, the InDrop methodology should be well-suited 
for clinical applications, where cell availability is often 
limited. Interestingly, 10X Genomics have recently tested 
single-cell RNA-seq on their GemCode platform using 
similar workflows, and reported a cell capture efficiency 
of ~50% and analysis of eight samples in parallel (Zheng 
et al. 2016b).

Besides global single-cell RNA-seq, the principle of 
bead-barcoding and droplet-isolation has also used for tar-
geted transcriptomic sequencing. As noted, DeKosky et al. 
(2013, 2014) sequenced immune receptor repertoires with 
the preservation of pairing information (between heavy 
and light-chain antibodies). These chains contain variable 
domains and their pairing relationship controls cellular 
functionality. Compared to Drop-seq, an additional step of 
re-emulsifying mRNA-captured beads to perform RT-PCR 
and linkage PCR is necessary. In this respect, the authors 
have recently published a detailed protocol of the entire 
workflow (McDaniel et al. 2016).

The encapsulation and isolation of single cells in a 
drop-by-drop fashion has opened up new opportunities for 
cost-effective and ultra-high-throughput single-cell genetic 
studies in applications such as whole-genome amplification 
(Fu et  al. 2015), chromatin profiling (Rotem et  al. 2015) 
and PCR-activated cell sorting (Eastburn et al. 2014), with 
microfluidically produced droplets playing a key role. 
Finally, it is worth noting that thermosensitive hydrogel 

droplets are interesting vehicles for novel experimenta-
tion (Leng et al. 2010; Kumachev et al. 2011). For exam-
ple, hydrogel droplets can be generated in oil at elevated 
temperatures and cooled to form gel particles downstream. 
Such gel particles can be washed and handled in aqueous 
buffer, allowing molecular exchange of substances through 
diffusion. Hence, unlike conventional aqueous droplets 
that require sophisticated operations to dose or remove 
reagents, gel droplets may be processed by immersion in 
appropriate media or dialysate. This innovation has opened 
up new possibilities for designing highly complex bio-
logical workflows in genetic analysis (Novak et  al. 2011; 
Zhang et al. 2012; Geng et al. 2014).

5 � Outlook

Over the past decade, the development of droplet-based 
microfluidic technologies has occurred at a startling pace, 
with a focus on establishing of functional operational com-
ponents (for droplet processing) and discovering applica-
tions where the features of such systems may be used to 
the best effect. Based on their ability to perform complex 
experimental workflows in a robust fashion, the next dec-
ade will undoubtedly see the commercialisation of many 
platforms for defined biological applications, delivering 
microfluidics not only to research laboratories, but also 
to hospitals, clinics and health NGOs. New functions and 
opportunities will continue to emerge, but research efforts 
will also continue to focus on improving and integrating 
existing modules to deliver reliable solutions. To finish, we 
speculate on two (seemingly dissimilar) developments that 
may occur over the short-medium term.

5.1 � Portable droplet‑based microfluidics 
for point‑of‑care diagnostics

The demand for rapid, accurate, inexpensive and con-
venient point-of-care (PoC) systems for infectious disease 
diagnostics and wellness monitoring is significant. Ideal 
diagnostics should be both simple in their structure and 
portable, whilst ensuring that predefined questions can 
be answered in a quantitative, low-cost and rapid manner. 
Whilst droplet-based microfluidic systems offer a direct 
route to such quantitative diagnostics, their implementa-
tion for PoC nucleic acid analysis is far from simple. For 
example, fluid manipulation is a key concern in formats, 
which need to be cheap, robust and small. In this respect, 
syringe pump-free systems [which utilise manual droplet 
generation (Dangla et al. 2013) or centrifugal microfluidics 
(Schuler et  al. 2015)] are particularly interesting. Moreo-
ver, isothermal amplification methods will be preferable 
to more traditional thermocycling techniques (Zanoli and 
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Spoto 2012). To this end, Schuler et  al. (2015) recently 
demonstrated a system that utilises centrifugal step drop-
let generation, and is thus pump- and tubing-free (Fig. 4c). 
Using such an approach, the authors were able to perform 
isothermal ddPRA on-chip and quantify L. monocytogene 
DNA in food samples, reducing the time-to-result by four-
fold when compared to the gold-standard tests. Moreover, 
Cao et  al. (2016) showed a significant enhancement of 
fluid control in centrifugal microfluidics by introducing a 
novel two degrees of freedom (2-DoF) centrifugal micro-
fluidic platform, which allows complex fluidic control in a 

direct manner, requiring no external components. Such an 
advance suggests new possibilities for the use of centrifu-
gal microfluidics in PoC applications.

5.2 � Large‑scale integration to answer complex or 
unknown questions

Whilst PoC devices provide maximum accessibility to 
end-users, droplet-based microfluidic technologies have 
shown their true mettle in addressing comprehensive and 
complex biological questions. Although, and as we have 

Fig. 5   a Drop-seq. A custom-designed microfluidic device joins 
two aqueous flows before their compartmentalisation into discrete 
droplets. One flow contains cells, and the other flow contains bar-
coded primer beads suspended in a lysis buffer. Immediately fol-
lowing droplet formation, the cell is lysed and releases its mRNAs, 
which then hybridise with primers on the microparticle surface. The 
droplets are broken by adding a reagent to destabilise the oil–water 
interface, and the microparticles collected and washed. The mRNAs 
are then reverse-transcribed in bulk, forming STAMPs (single-cell 
transcriptomes attached to microparticles), and template switching 

is used to introduce a PCR handle downstream of the synthesised 
cDNA. Adapted from Ref. (Macosko et  al. 2015) with permission, 
copyright© 2015 Elsevier (b) InDrops. Cells are encapsulated into 
droplets with lysis buffer, reverse-transcription mix, and hydrogel 
microspheres carrying barcoded primers. After encapsulation primers 
are released. cDNA in each droplet is tagged with a barcode during 
reverse transcription. Droplets are then broken and material from all 
cells is linearly amplified before sequencing. UMI unique molecu-
lar identifier. Adapted from Ref. (Klein et al. 2015) with permission, 
copyright© 2015 Elsevier
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seen, such systems have allowed experiments inacces-
sible on the macroscale to be performed in an automated 
and integrated manner, we have only scratched the sur-
face in terms of their ultimate potential. For example, 
droplet-based platforms have already been integrated with 
“machine learning” algorithms to allow the intelligent syn-
thesis of a range of high quality nanomaterials for appli-
cation in display and photovoltaic technologies (Maceic-
zyk and deMello 2014; Reizman and Jensen 2016). Such 
approaches leverage the ability of microfluidic systems 
to perform the chemistry/biology in an efficient manner 
and real-time detection to extract information on ms time-
scales. Machining learning methods will almost certainly 
impact biology in a similar way within the short term. As 
control architecture is refined, the sophisticated operations, 
shown for example in Fig. 2a, will no longer be the privi-
lege of a few expert microfluidic laboratories, and droplet-
based microfluidics will quickly become a basic tool used 
by any experimental scientist. Even though significant 
successes in system automation have been made (such as 
the Fluidigm C1 platform), the automated and large-scale 
control of droplet networks integrating multiple functional 
components remains a daunting challenge, requiring the 
robust understanding and harnessing of nonlinear and 
multi-phase fluid dynamics. In this respect, valuable pro-
gress has already been made in areas such as bubble logic 
(Prakash and Gershenfeld 2007), control logic (Weaver 
et al. 2010) and electric circuit analogy (Oh et al. 2012). 
Moreover, a recent study describing the “random design” 
of microfluidic systems is of particular interest (Wang 
et  al. 2016). In this approach, a library of thousands of 
random microfluidic chip designs was synthesised. The 
behaviour of each design was then simulated using finite 
element analysis, with users able to access structures 
suited to given tasks. We anticipate this type of interac-
tion could form the basis of future microfluidic platform 
development. Indeed, through the collection and assimila-
tion of user-generated data, machine-learning algorithms 
will allow the creation of entirely new microfluidic tools. 
Unsurprisingly, we feel that the future of droplet-based 
microfluidics is an exciting one.

Acknowledgements  The authors thank Tobias Wolf for the help of 
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