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Abstract

The objective of this thesis is the analysis and eventually the control of two different

types of populations of systems: populations of rational agents and populations of bi-

ological systems. The main challenge for both types of populations lies in their large

scale, which makes traditional single-system modeling and control methods computa-

tionally intractable and architecturally unfeasible. To overcome these difficulties, we

exploit global control signals that affect the whole population and are designed based on

aggregate information only.

More in detail, in the first part of the thesis we consider the problem of coordinat-

ing multi-user systems. The main challenge for this type of populations is that most

of today’s multi-user networks are large scale, with lack of access to local information

and consist of users with diverse requirements. Consequently, traditional distributed

optimization methods, that focus on a unique control objective and typically assume

that the users are cooperative, cannot be applied. On the other hand, a new distributed

control paradigm, where the infrastructure is kept simple and the agents make their

decisions independently (“selfishly”) is emerging. This new framework motivates the

interaction of control with game theory: control actions must in fact include economic

notions related to markets and incentives. In the first part of the thesis, we propose

a framework to implement this new paradigm in a scalable way by exploiting the ag-

gregative nature of many multi-user systems of practical interest, as demand-response

markets or social and traffic networks, to name just a few. Specifically, we derive control

schemes, either decentralized or distributed, that can be used to coordinate very large

populations of agents to a Nash equilibrium, that is, to a stable configuration where no

agent has incentive to unilaterally change its strategy.

In the second part of the thesis we focus on populations of biological systems. Specif-

ically, we consider populations of cells whose internal state is determined by a series of

stochastic reactions whose rate can be influenced by an external control signal, applied

to the whole population. The most prominent examples are gene expression reaction

networks, which are responsible for the fundamental operations of any living organism,

and whose rate can be influenced by means of light or concentration signals. In contrast

to the previous part of the thesis, biochemical reaction networks are natural systems

(instead of technological ones) and therefore are usually unknown and affected by high

levels of noise. Our main concern is the analysis and modeling of such systems. Recent

technological advancements have enabled researchers to observe populations with thou-
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sands of cells and have accurate recordings of the internal state of large samples over

time. These samples can be used to derive accurate statistics not only of the average

state of the cells in the population but also of higher order moments (as for example the

variance). As first result we propose a systematic procedure to infer a model of the un-

known population by exploiting the available external control signals and the population

measurements just described. Secondly, we use the identified model to study the range

of behaviors that such controlled stochastic biochemical reaction networks can exhibit

under different choices of the available control input. These are in fact the first two

fundamental steps needed to understand these systems and consequently be able to use

them, either as part of synthetic circuits or integrated in live organisms, for example for

drug synthesis or targeted medicine. Our theoretical results are validated with in-vivo

experiments on a light-inducible gene expression system.
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Sommario

Questa tesi si occupa di tematiche riguardanti l’analisi e il controllo di due differenti tipi

di popolazioni di sistemi: popolazioni di agenti razionali e popolazioni di sistemi biologici.

In entrambi i casi le popolazioni considerate sono composte da un numero molto elevato

di sistemi, pertanto tradizionali tecniche di controllo, basate su modelli specifici per ogni

singolo sistema, non sono né computazionalmente né tecnologicamente implementabili.

Per superare queste difficoltà, nella tesi viene suggerito l’utilizzo di un unico segnale di

controllo che influenza l’intera popolazione ed è basato solo su informazioni aggregate.

Più nel dettaglio, la prima parte della tesi considera il coordinamento di sistemi multi-

agente. Tali popolazioni sono solitamente caratterizzate da un elevato numero di agenti

con obbiettivi differenti e da una limitata disponibilità di informazioni locali, che sono

per la maggior parte private. Pertanto tradizionali metodi di ottimizzazione distribuita,

nei quali viene considerato un solo obbiettivo e gli agenti sono tipicamente cooperativi,

non possono essere utilizzati per il controllo di tali popolazioni. In contrapposizione

sta emergendo un nuovo paradigma di controllo distribuito, nato dall’interazione tra la

teoria dei giochi e del controllo, secondo il quale l’azione di controllo deve essere es-

ercitata tramite incentivi e prezzi a cui i singoli agenti reagiscono indipendentemente

(egoisticamente). La prima parte della tesi suggerisce come implementare questo nuovo

paradigma, per grandi popolazioni, sfruttando la natura aggregativa della maggior parte

dei sistemi multi-agente di interesse. Alcuni esempi di applicazione sono gestione della

domanda in mercati energetici, controllo di reti di interazione sociale o direzione del

traffico stradale. Nello specifico, il contributo di questa tesi è lo sviluppo di schemi di

controllo, decentralizzato o distribuito, che possono essere utilizzati per coordinare gli

agenti verso un equilibrio di Nash, ovvero verso una configurazione stabile di strate-

gie, nella quale nessun agente è incentivato a modificare il suo comportamento dato il

comportamento del resto della popolazione.

La seconda parte della tesi considera popolazioni di cellule il cui stato è determinato

da una serie di reazioni chimiche stocastiche. Nello specifico, particolare attenzione è

riservata a reti di reazioni la cui frequenza dipende da un segnale di controllo esterno, co-

mune a tutta la popolazione. Come principale esempio il lettore può considerare le reti di

espressione genica: queste reti sono alla base del funzionamento di ogni cellula e possono

essere influenzate tramite stimoli luminosi o chimici. Contrariamente alla prima parte

della tesi, i sistemi di reazioni biochimiche sono sistemi naturali (invece che tecnologici)

le cui dinamiche sono perlopiù sconosciute e solitamente affette da rumore. Il principale
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obbiettivo per tali popolazioni è pertanto l’analisi e l’identificazione di modelli matem-

atici, che possono essere usati per descrivere tali sistemi. Grazie a recenti avanzamenti

tecnologici è possibile osservare popolazioni composte da migliaia di cellule e ottenere di

conseguenza statistiche accurate non solo del comportamento medio della popolazione,

ma anche di momenti di ordine superiore (come ad esempio la varianza). Il primo ob-

biettivo di questa parte della tesi è proporre una procedura per l’identificazione e la

calibrazione sistematica di modelli matematici di reti biochimiche, sfruttando i segnali

di controllo a disposizione e le misure di popolazione sopra descritte. Il secondo obbiet-

tivo è quello di utilizzare i modelli identificati per analizzare i possibili comportamenti

della popolazione in risposta a diversi stimoli esterni. Questi sono infatti i primi due

passi necessari per la comprensione delle reti biochimiche controllate e quindi per il loro

utilizzo, sia come parte di circuiti sintetici sia integrati in organismi viventi, per esempio

per la sintesi di nuovi farmaci o nello sviluppo di cure personalizzate. I risultati teorici

di questa tesi sono affiancati da risultati sperimentali relativi ad una rete di espressione

genica sintetica implementata in cellule di lievito.
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Part I
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J̃ i(xi, x−i) : RNn → R, cost function of player i ∈ Z[1, N ] in a generic game
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ijx

j
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N
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j x
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Qi(x−i) ⊂ Rn := {xi ∈ X i | x ∈ C}
ΦP–B,ΦK,ΦM

(k) Picard-bannach (3.1), Krasnoselskij (3.2) and Mann (3.3) iteration

xibr(x
−i) ∈ Rn best response of player i ∈ Z[1, N ], as defined in (2.1)

xi ?(zi) ∈ Rn optimal response of player i ∈ Z[1, N ], as defined in (2.3)

z ∈ RNn := [z1; . . . ; zN ]

x(z) ∈ RNn vector of optimal responses as defined in (4.20)

A : Rn → Rn aggregation mapping for AAGs, A(z) := 1
N

∑N
i=1 x

i ?(z)

Aν : RNn → RNn extended aggregation mapping for NAGs, Aν(z) := Pνx(z)

I : RNn → RNn extended aggregation mapping for AAGs, I(z) := Ix(z)
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CHAPTER 1
Overview

The last decade has witnessed a shift in research interest from the analysis of single

systems, usually described in great detail, to the study of large populations of inter-

connected systems. This change of perspective is motivated by the emergence of a vast

range of applications where complex behaviors can only be explained as the aggregate

emergent behavior of a collection of many simple systems. Within this thesis we focus

on two types of such populations.

In the first part of the thesis, we consider populations of rational agents satisfying

two fundamental assumptions. Firstly, we suppose that the agents are egoistic in the

sense that their objective is to select, among a set of feasible strategies, the one that

maximizes their profit. Secondly, we assume that the agents have a collective influence

on each other, so that the well being of an agent (and consequently its best strategy)

depends on an aggregate of the strategies of the rest of the population (e.g., the average).

In the second part of the thesis, we consider populations of biological systems. In this

case, we assume that the individual systems are cells whose internal state is governed

by the same network of stochastic reactions. Each cell can therefore be seen as an

independent realization of a common, usually unknown, stochastic process.

The main challenge in the analysis of both types of populations is their size, which

could be of the order of thousands of systems making traditional single-system ap-

proaches unfeasible. Our objective is thus to provide a mathematical framework that

can be used to concisely and tractably describe and eventually control these large popu-

lations of systems. The fundamental assumption that we make, to guarantee scalability

of the proposed methods, is that we cannot design personalized control signals for each

system in the population. Instead, we rely on global control signals, that are designed

based on aggregate information only and affect the whole population. These global sig-

nals could be common incentives broadcast by a central operator, in the case of rational

agents, or external signals applied to the environment, in the case of biological systems.

In the case of population of rational agents we additionally investigate distributed con-

trol algorithms that require only local communications among the agents over a sparse

network.
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1.1 Outline and contributions

In the following we report a general overview of the material presented in the thesis.

We refer to Chapter 2 and Chapter 6 for a detailed introduction, literature review and

outline specific to populations of rational agents and biological systems, respectively.

1.1.1 Part I: populations of rational agents

To describe populations of rational agents satisfying the two assumptions mentioned

above, we use the setting of aggregative games which we introduce in Chapter 2. Specif-

ically, we focus on two classes of aggregative games that appear often in applications:

average aggregative games in which the cost function of each agent depends on the av-

erage of the strategies of the whole population and network aggregative games in which

the cost function of each agent depends on a convex combination of the strategies of its

neighbors in a given network. Our main objective, for both types of games, is to propose

scalable algorithms that the agents can use to update their strategies, in response to

the strategies of the rest of the population, and that guarantee convergence to a Nash

equilibrium (see Definition 2.1). We refer to this task as the coordination problem. In

Chapter 3 we review the mathematical tools needed to derive our theoretical results. All

the statements contained therein are known except for the technical result detailed in

Theorem 3.3.12. The main contributions of the first part of the thesis are in Chapter 4

and 5:

1. In Chapter 4, we suggest different types of algorithms (both decentralized and

distributed) that solve the coordination problem for populations of myopic agents,

that is, agents that update their strategies by solving the profit-maximization prob-

lem at every step. To the best of our knowledge these are the only algorithms avail-

able in the literature to coordinate populations of myopic agents playing aggrega-

tive games, with multidimensional and heterogeneously constrained strategies.

2. In Chapter 5, we review different types of algorithms that have been proposed

in the literature to solve the coordination problem for populations of boundedly

rational agents, that is, agents that update their strategies by taking a gradient step

of the profit-maximization problem instead of computing the maximizer. We then

propose an extension of these algorithms that can be used to solve the coordination

problem for populations of boundedly rational agents in the presence of coupling

constraints (i.e. for generalized Nash problems as in Definition 5.2).
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1.1.2 Part II: populations of biological systems

In the second part of the thesis we focus on populations of identical stochastic biochem-

ical reaction networks. In this case, the population behavior can be described by using

the so-called chemical master equation (CME). This is an infinite dimensional ordinary

differential equation that describes the evolution of the probability that any cell in the

population is in a given state over time. Solving the CME is in general very difficult.

Consequently, we review in Chapter 6 two approaches that have been proposed in the lit-

erature to approximate it: the finite state projection method and the moments equations.

The main contributions of the second part of the thesis are as follows:

1. In Chapter 8, we characterize the range of possible behaviors of stochastic biochem-

ical reaction networks when the rate of (some of) the reactions can be controlled

by an external signal. To this end, we propose to apply the tools of reachability

analysis, typical of control theory, to the system of moments equations approximat-

ing the CME. From a theoretical perspective, we extend the hyperplane method,

originally introduced in [GK91] for linear systems, to switched affine systems. We

also extend the finite state projection algorithm proposed in [MK06] to the case of

controlled reaction networks.

2. In Chapter 7, we review some results on parameter inference and experiment de-

sign and we combine them to propose an iterative characterization procedure to

systematically identify biochemical reaction networks from population data. In

Chapter 9 we demonstrate the utility of the proposed procedure by applying it to

an in vivo light inducible circuit implemented in yeast. To the best of our knowl-

edge this is the first study where parameter inference and experiment design have

been systematically applied to characterize a stochastic biochemical network from

population data.

1.2 Publications

The research of this thesis is interdisciplinary and was performed in close collaboration

with other theorists and experimentalists. In the following, we provide a list of publica-

tions, underlying the results of this work. The symbol ∗ denotes equal contribution.

1.2.1 Part I: populations of rational agents

The decentralized coordination algorithm for myopic agents proposed in Section 4.2 and

its application to plug-in electric vehicles were developed in collaboration with M. Colom-

bino, S. Grammatico and J. Lygeros and were published in:
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– F. Parise, M. Colombino, S. Grammatico and J. Lygeros. “Mean field constrained

charging policy for large populations of plug-in electric vehicles”, in Proceedings

of the IEEE Conference on Decision and Control (CDC), Los Angeles, CA, USA,

Dec 2014, pp. 5101–5106. [PCGL14]

– F. Parise, S. Grammatico and J. Lygeros. “On constrained mean field control for

large populations of heterogeneous agents: Decentralized convergence to Nash equi-

libria”, in Proceedings of the European Control Conference (ECC), Linz, Austria,

Jun 2015, pp. 3316–3321. [PGCL15]

– S. Grammatico∗, F. Parise∗, M. Colombino∗ and J. Lygeros. “Decentralized con-

vergence to Nash equilibria in constrained deterministic mean field control”. IEEE

Transaction on Automatic Control, accepted as full paper, to appear Nov. 2016.

Arxiv: http://arxiv.org/abs/1410.4421. [GPCL16]

The distributed coordination algorithms for myopic agents proposed in Section 4.3 and

4.4 and their applications to opinion dynamics and hierarchical demand response were

developed in collaboration with S. Grammatico, B. Gentile and J. Lygeros and were

published in:

– F. Parise, S. Grammatico, B. Gentile and J. Lygeros. “Network aggregative games

and distributed mean field control via consensus theory”.

Arxiv: http://arxiv.org/abs/1506.07719. [PGGL15b]

– F. Parise, B. Gentile, S. Grammatico and J. Lygeros. “Network aggregative games:

Distributed convergence to Nash equilibria”, in Proceedings of the IEEE Confer-

ence on Decision and Control (CDC), Osaka, Japan, Dec 2015, pp. 2295–2300.

[PGGL15a]

The decentralized coordination algorithm for boundedly rational agents with coupling

constraints proposed in Section 5.3 was developed in collaboration with B. Gentile, D.

Paccagnan, M. Kamgarpour and J. Lygeros and was published in:

– D. Paccagnan∗, B. Gentile∗, F. Parise∗, M. Kamgarpour and J. Lygeros. “Dis-

tributed computation of generalized Nash equilibria in aggregative games with

coupling constraints”. Accepted to IEEE Conference on Decision and Control

(CDC), Las Vegas, CA, USA, Dec 2016. [PPG+16]

– B. Gentile∗, F. Parise∗, D. Paccagnan∗, M. Kamgarpour and J. Lygeros. “Nash

and Wardrop equilibria in aggregative games with coupling constraints”. ArXiv:

https://arxiv.org/abs/1702.08789. [GPP+17]
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1.2.2 Part II: populations of biological systems

The methods presented in Chapter 8 were developed in collaboration with M.E. Valcher

and J. Lygeros and were published in a series of papers:

– F. Parise, M.E. Valcher and J. Lygeros. “On the reachable set of the controlled

gene expression system”, in Proceedings of the IEEE Conference on Decision and

Control (CDC), Los Angeles, CA, USA, Dec 2014, pp. 4597–4604. [PVL14]

– F. Parise, M.E. Valcher and J. Lygeros. “On the use of hyperplane methods to

compute the reachable set of controlled stochastic biochemical reaction networks”,

in Proceedings of the IEEE Conference on Decision and Control (CDC), Osaka,

Japan, Dec 2015, pp. 1259–1264. [PVL15]

– F. Parise, M.E. Valcher and J. Lygeros. “Reachability analysis for switched affine

autonomous systems and its application to controlled stochastic biochemical reac-

tion networks”. Accepted to IEEE Conference on Decision and Control (CDC),

Las Vegas, CA, USA, Dec 2016. [PVL16]

The characterization procedure proposed in Chapter 7 and the experimental results

described in Chapter 9 were carried out in collaboration with J. Ruess, A. Milias-Argeitis,

M. Khammash and J. Lygeros and were published in:

– J. Ruess∗, F. Parise∗, A. Milias-Argeitis, M. Khammash and J. Lygeros. “Iterative

experiment design guides the characterization of a light-inducible gene expression

circuit”. Proceedings of the National Academy of Sciences of the USA (PNAS),

vol. 112, no. 26, pp. 8148–8153, 2015. [RPMA+15]

1.2.3 Other publications

The following articles were published by the author during her doctoral studies but are

not featured in this dissertation.

Further developments and applications of the presented methods

– S. Grammatico, B. Gentile, F. Parise and J. Lygeros. “A mean field control ap-

proach for demand side management of large populations of thermostatically con-

trolled loads”, in Proceedings of the European Control Conference (ECC), Linz,

Austria, Jun 2015, pp. 3548–3553. [GGPL15]

– S. Grammatico, F. Parise and J. Lygeros. “Constrained linear quadratic deter-

ministic mean field control: Decentralized convergence to Nash equilibria in large
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populations of heterogeneous agents”, in Proceedings of the IEEE Conference on

Decision and Control (CDC), Osaka, Japan, Dec 2015, pp. 4412–4417. [GPL15]

– L. Möller, B. Gentile, F. Parise, S. Grammatico and J. Lygeros. “Constrained

deterministic leader-follower mean field control”, in Proceedings of the American

Control Conference (ACC), Boston, MA, USA, Jul 2016. [MGP+16]

Identification of biological and ecological systems

– F. Parise, J. Lygeros and J. Ruess. “Bayesian inference for stochastic individual-

based models of ecological systems: A pest control simulation study”. Frontiers in

Environmental Science, vol. 3, no. 42, 2015. [PLR15]

– F. Parise, J. Ruess and J. Lygeros. “Grey-box techniques for the identification

of a controlled gene expression model”, in Proceedings of the European Control

Conference (ECC), Strasbourg, France, Jun 2014, pp. 1498–1503. [PRL14]

Identification of a model for the tide in Venice

– F. Parise and G. Picci. “System identification for tide prediction in the Vene-

tian lagoon”, in Proceedings of the European Control Conference (ECC), Zurich,

Switzerland, Jul 2013, pp. 2994–2999. [PP13]

– F. Parise and G. Picci. “Identification of high tide models in the Venetian lagoon:

Variable selection and G-LASSO”, in Proceedings of the IFAC World Congress,

Cape Town, South Africa, Aug 2014, pp. 10385–10390. [PP14]
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Part I

Populations of rational agents:

Aggregative games
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CHAPTER 2
Introduction

In the first part of the thesis we focus on populations of rational agents that are egoistic,

profit maximizing and have a collective influence on each other. Some examples of

applications are as follows.

– Energy markets : as a result of the introduction of renewable and distributed power

generation, energy supply is becoming more and more unpredictable. To compen-

sate for such uncertainty and to guarantee the required balance between energy

demand and production, it has been suggested to regulate the energy consumption

by shifting the demand of flexible loads (demand response) or by adjusting the

price of the energy based on the instantaneous energy demand (dynamic pricing).

Such real-time coupling of supply and demand requires the development of new

control architectures that are able to coordinate the energy needs of large pop-

ulations of consumers, by means of a distributed and hierarchical infrastructure

[MCH13, CLLV14, BB14, KMC12].

– Economics : as exemplified by the recent financial crisis, the fit net of inter-

linkages that connects major and minor financial institutions makes the current

economy highly complex and to a large extent unpredictable. Local intercon-

nections among the agents allow shocks to propagate and amplify, potentially

affecting the whole economic system. As stated in a number of investigations

[AG00, FPR00, AOTS15], the study of distributed models that can describe, and

eventually predict, these highly complex phenomena is of paramount importance

for the safe regulation of the economic system. The use of game theoretical mod-

els to describe competitive behavior in economics has a long standing tradition,

starting from the renowned Cournot model.

– Opinion dynamics : with the establishment of social media as a major commu-

nication channel, the study of opinion formation in social networks is becoming

more and more relevant for interpreting crowd behavior and social trends. Since

the seminal work of De Groot [DeG74], many researchers have derived models

that can explain how phenomena as consensus, polarization or fragmentation can

emerge when people are repeatedly updating their opinions by communicating one
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with each other [HK02]. These models can be used to study the effect of ru-

mors [AO11, For05], advertisement [MJB14] or innovation diffusion mechanisms

[AOY11], and can have substantial repercussions on strategies for product market-

ing, political campaigning or online advertising pricing.

– Traffic: interactions among agents may arise from the use of a common resource

or infrastructure. The classical example is a road transportation network in which

the travel time of each agent, from its origin to destination, depends on the number

of players that are on the road at the same time. These type of models can be

mathematically described by congestion games [Ros73]. While the learning dynam-

ics and equilibria properties of these systems have been characterized, the control

problem of how to intervene on the system in order to reduce the price of anarchy

(e.g. tragedy of the commons) is still a challenging question [Rou05, JT04].

– Medicine: It is well known that cells influence one with each other, both via short

and long range interactions [WB05]. Modeling and possibly controlling these net-

works of interactions could have a huge effect on the way traditional medicine is

understood. In [DPK+15], for example, it is shown how the quorum sensing mecha-

nism, used by cells to sense the population density, can be employed to detect liver

cancer at very early stages. In a much larger scale, models of human interaction

networks can also be used to study the spread of diseases, thus opening the possibil-

ities for the design of more efficient prevention and vaccination campaigns [NPP16].

Even though quite disparate, all the applications previously described have two main

features in common:

- Property 1: they involve very large populations of agents that have a collective

influence one on each other and are egoistic in the sense that each agent aims at

achieving a desired objective, regardless of the interest of the other agents (e.g.,

minimize its energy bill, select the best opinion, maximize the profit or the cell

growth, reduce infection or travel time, etc.).

- Property 2: the state of each agent depends on the aggregate effect of the state of

the other players, rather than on one-to-one interactions. For example, in energy

markets the price is determined by the overall energy consumption, in traffic the

congestion level depends on the total number of cars and in economics the well-

being of a firm depends on the overall state of the interacting firms.

The main objective of the first part of the thesis is to present a framework that can

be used to describe and eventually control these types of systems. Specifically, we aim at

exploiting the aggregative nature of these applications to derive coordination algorithms

that are distributed and scalable, allowing for the analysis and control of very large

populations.
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2.1 The aggregative game framework

The standard setting to describe populations of agents that, as detailed in Property 1,

influence each other and are profit-maximizing is the one of non-cooperative game theory.

Among the vast class of non-cooperative games, according to Property 2, we focus on

games played by a population of N ∈ N agents, that satisfy the following fundamental

assumption.

Aggregative game: each player i ∈ Z[1, N ] is not subject to one-to-one interac-

tions, but is influenced only by an aggregate σi of the other players strategies (i.e.,

the aggregate strategies of a possibly agent-dependent subset of the population).

Mathematically, an aggregative game is a game G in which each agent aims at selecting

a strategy/action xi ∈ Rn that belongs to the set of admissible strategies X i ⊂ Rn and

minimizes a given cost function J i(·, ·) : Rn × Rn → R, according to the following

optimization problem

G =

 xibr(x
−i) := arg min

xi∈Rn
J i(xi, σi(x))

s.t. xi ∈ X i
∀ i = 1, . . . , N, (2.1)

where x := [x1; . . . ;xN ] ∈ RNn is the vector composed by the strategies of the whole

population and x−i := [x1; . . . ;xi−1;xi+1; . . . ;xN ] ∈ R(N−1)n is the vector of all the

strategies except for xi. The key feature of aggregative games is that the cost of each

player is a function of 2 arguments, J i(s1, s2), where s1 is always the strategy of player

i, s1 = xi, and s2 is a, possibly agent-specific, function of the strategies of the whole

population s2 = σi(x), which could depend on xi as well. In generic games, on the

other hand, the cost function of player i is a function of N arguments, that we denote

as J̃ i(x1, . . . , xN) or for brevity J̃ i(xi, x−i), with slight abuse of notation1. Note that a

strategy is an n-dimensional vector with real entries, that is xi ∈ Rn. The best strategy

that a player i can play, when the strategies of the other players are fixed to x−i, is called

in game theory the best response (BR) and is here denoted by xibr(x
−i). Note that in

aggregative games, the best response depends on the strategies x−i of the other players

only via the aggregate quantity σi(x). For example, in dynamic pricing, the electricity

cost is proportional to the overall energy demand, so that σi(x) =
∑N

j=1 x
j =: σ(x) for

1The notation J̃ i(xi, x−i) : Rn×R(N−1)n 7→ R should not be confused with J i(xi, s2) : Rn×Rn 7→ R,

in fact x−i ∈ R(N−1)n while s2 ∈ Rn. In the thesis, the symbol J̃ is used to denote the cost function of

a generic game, while J is reserved for aggregative games, that is for games with the structure given in

(2.1). We finally stress the fact that the cost function of player i is thus obtained as the composition of

the function J(s1, s2) : Rn × Rn 7→ R with s1 = xi ∈ Rn and s2 = σi(x) : RNn → Rn.
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all i ∈ Z[1, N ]. In the following, we refer to the mapping σi(·) : RNn → Rn as the

aggregator function.

A set of strategies in which each agent is playing the best response to the strategies

of the other players is called a Nash equilibrium and has the fundamental property that

no agent can benefit from unilaterally changing its strategy.

Definition 2.1 (Nash equilibrium (NE)). Given N cost functions {J i : Rn×Rn → R}Ni=1,

N aggregator functions {σi : RNn → Rn}Ni=1 and ε > 0, a set of strategies {x̄i ∈ X i}Ni=1

is an ε-Nash equilibrium for (2.1) if, for all i ∈ Z[1, N ], it holds

J i
(
x̄i, σi(x̄)

)
≤ min

xi∈X i
J i
(
xi, σi([x̄1; . . . ;xi; . . . ; x̄N ])

)
+ ε.

If the above inequality holds for ε = 0 then {x̄i ∈ X i}Ni=1 is a Nash equilibrium.

Under mild assumptions on the constraint sets, cost and aggregator functions, it is

possible to show that the aggregative game (2.1) admits at least a Nash equilibrium.

Proposition 2.1.1 (Existence of a Nash equilibrium). Assume that for each agent

i ∈ Z[1, N ] the constraint set X i is convex and compact and the cost function xi 7→
J i(xi, σi(x)) is convex and continuously differentiable in xi for each x−i. Assume that

f i(x) := ∇xiJ
i(xi, σi(x)) is continuous in x. Then the aggregative game in (2.1) admits

at least one Nash equilibrium.

Proof. This is a sub case of the more general Proposition 5.1.2. We report here a

proof for completeness. Let us start with an equivalent characterization of the Nash

equilibria. A set of strategies {x̄i}Ni=1 is a Nash equilibrium if and only if, for each

i ∈ Z[1, N ], x̄i ∈ arg minxi∈X i J
i(xi, σi([x̄1; . . . ;xi; . . . ; x̄N ])). Since for each i ∈ Z[1, N ]

and for each x−i the function xi → J i(xi, σi(x)) is convex, by the minimum principle

[SPFP10, Eq. (5) and (15)] we can equivalently state that {x̄i}Ni=1 is a Nash equilibrium

if and only if x̄i = ΠX i(x̄
i − f i(x̄)) for each i ∈ Z[1, N ] or, in compact form, if and

only if x̄ = ΠX 1×...×XN (x̄ − f(x̄)), where ΠY(·) denotes the projection operator onto Y .

The projection operator onto a convex and compact set is continuous. Therefore the

function x → ΠX 1×...×XN (x − f(x)) is a composition of continuous functions and it is

itself continuous. Moreover, it takes value in the convex and compact set X 1× . . .×XN .

Consequently, by [Sma74, Theorem 4.1.5(b)] (see also Section 3.2.1) it admits at least

a fixed point x̄ which is then a Nash equilibrium.

In the rest of the thesis we focus on the two following types of aggregative games.

2.1.1 Average aggregative games (AAG)

In an average aggregative game (AAG) each agent has the same aggregator function,

which coincides with the average (or the sum) of the strategies of the population. Math-

ematically, σi(x) = 1
N

∑N
i=1 x

i =: σ̄(x). Examples of average aggregative games arise for
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instance in demand-response applications, where the agents are coupled via the cost of

electricity or in traffic applications, where the travel time depends on the total amount

of cars driving on a given street.

2.1.2 Network aggregative games (NAG)

Network aggregative games (NAGs) are an extension of average aggregative games to

games in which the agents interact through a network (Fig. 2.1). Contrary to AAGs, in

NAGs each agent has a different aggregator function that is obtained as an agent specific

convex combination of the players strategies, σi(x) :=
∑N

j=1 Pijx
j where

∑N
j=1 Pij = 1.

The agent-specific coefficient Pij ∈ [0, 1] denotes the relevance of the strategy of agent

j to agent i, Pij = 0 implying no influence. The matrix P ∈ RN×N , whose components

are the weights Pij, is known in graph theory as the weighted adjacency matrix of the

network. The set of agents N i = {j ∈ Z[1, N ] | Pij 6= 0} is the set of neighbors of

agent i. Without loss of generality we assume that the weights are normalized so that∑N
j=1 Pij = 1.

xi? xj?

(· · ·)

(· · ·)

Pij

Figure 2.1: Scheme of a network aggregative game.

The framework of NAGs can be used to model for example opinion dynamics, eco-

nomics or resource allocation problems.

2.2 Problem statement

One of the main challenges in aggregative games, and games in general, is to characterize

and eventually control the evolution of the players strategies when the game is repeated

iteratively, that is, when the agents are allowed to iteratively modify their strategies in

response to the current population state. Algorithm 1 illustrates the general algorithmic

structure that we consider in the thesis: at each iteration k the agents synchronously

13



update their belief zi(k) on the aggregate state σi(k), by either communicating with their

neighbors or with a central operator, and consequently update their strategy xi(k+1).

Algorithm 1: Coordination Scheme in Aggregative Games

Initialization: Set k = 0. Each agent i has initial state xi(0).

Iterate:

Communication

Each agent receives an aggregate information, ai(k), on the state of the population

either by communicating with the neighbors or with a central operator;

Estimation

Based on the received information each agent produces a local estimate

zi(k) = Φ(k)

(
ai(k), z

i
(k−1)

)
of the aggregate state σi(x(k));

Strategy update

Each agent updates its strategy: xi(k+1) = Γ(k)

(
xi(k), z

i
(k)

)
.

A fundamental property of Algorithm 1 is that the strategy updates are executed

locally by each agent, based only on the most recent information received from the

neighbors or from the central operator. This is a mandatory requirement for all the ap-

plications described above: for privacy reasons agents may not be willing to share their

local constraints with a central coordinator, for security reasons distributed algorithms

are more reliable than centralized solutions and finally, for computational reasons, they

are preferable in applications involving very large populations.

The scheme summarized in Algorithm 1 can be interpreted in two different ways.

The iterations k could be repetitions of the game over time2. For example, in opinion

dynamics the agents change their opinion over time by communicating more than once

with their friends or, in traffic applications, agents learn their best route from home to

work by repeating the coordination game day after day. On the other hand, in tech-

nological applications these iterations could be implemented before the game begins to

coordinate the agents to a set of strategies of interest. The game is then played once

and every agent plays only the strategy obtained at convergence of the algorithm. For

example, in demand response, Algorithm 1 could be implemented remotely to coordinate

the charging schedule of a fleet of electric vehicles for the following day.

2This concept should not be confused with the game theoretical concept of repeated games. Here, in

fact, the objective of each agent is to find a Nash equilibrium of the single stage game given in (2.1). In

other words, we assume that the agents do not take into account the impact of their current actions on

the future actions of other players.
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In both cases, our objective is to solve the following coordination problem.

Coordination problem: Given the game primitives and given the information

structure, select the estimates and strategies update laws (Φ(k) and Γ(k)) such that

the set of strategies {xi(k)}Ni=1 converges to a Nash equilibrium.

2.2.1 Myopic versus boundedly rational agents

According to the set of admissible strategies update laws Γ(k) we distinguish two classes

of coordination problems.

– Case of myopic agents: in many games the type of strategy update law used

by the agents is fixed a priori (i.e. cannot be decided by the system operator).

Consequently, the only degree of freedom that can be exploited to solve the coordi-

nation problem is the design of the estimate update law. To model such cases, we

consider a scenario in which the agents are myopic and they select as next strategy,

at every step of Algorithm 1, the one that minimizes their cost, given their current

estimate of the state of the population. This type of agent behaviour is referred to

as “best response” and has been hypothesized to be descriptive of the real agent

behaviour in many studies3 [GM91, Mat92, HCW98]. Mathematically, the best

response corresponds to the strategy update law

xi(k+1) := arg min
xi∈X i

J i(xi, σi(x(k))). (2.2)

Note that to evaluate (2.2) the agents need to know the real aggregate state σi(x(k)).

Since such requirement is unrealistic in large population games, we assume instead

that the agents use the alternative strategy update law

xi(k+1) := arg min
xi∈X i

J i(xi, zi(k)), (2.3)

3As mentioned in the previous section Algorithm 1 can be interpreted in two different ways. In the

first case the iterations k are repetitions of the game over time: in this case the assumption of myopic

agents is natural in the sense that agents have an incentive to best respond at every step, since their

action at each step is actually implemented. In the second case, on the other hand, the iterations k

are implemented before the game begins to coordinate the agents strategies. In this case there is less

incentive for an agent to play the best response at each iteration, as the only action that is actually

implemented is the one reached at convergence. Nonetheless, best response behaviour could be induced

if the algorithm is stopped by the central operator after a random number of iterations. In other words,

if the agents do not know when the iterations will stop (and hence when is that the strategy that

they report will actually be implemented) then they have an incentive in correctly reporting their best

response at every step.
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which we refer to as the optimal response mapping (see also Section 4.1). Note

that in (2.3) the agents evaluate their cost function using as second argument an

estimate zi(k) ∈ Rn instead of the real aggregate state σi(x(k)), as this is in general

unknown. The design of good estimate update laws is the focus of Chapter 4. In

the case with central operator, we are going to impose that such estimates are the

same for every agent, so that zi(k) = z(k) ∈ Rn for all i ∈ Z[1, N ]. Consequently, the

signal z(k) can be seen as an incentive broadcast by the central operator and the

proposed coordination scheme can be thought of as an incentive design scheme.

– Case of boundedly rational agents: For the purpose of solving the coordination

problem, fixing the update law to the optimal response given in (2.3) is quite

restrictive. Moreover, in applications where the agents have limited computation

capabilities, solving an optimization problem at each algorithmic step may not

be feasible. Consequently, in Chapter 5, we relax this constraint and consider

coordination problems where the choice of the strategy update law is normative

instead of descriptive (i.e., the strategy update law is not decided by the agents but

by a central coordinator). We note that nonetheless, the global objective of the

central operator is still only that of ensuring convergence to a Nash equilibrium.

In other words, the central operator is a benevolent controller that does not seek

its own interests nor some social interest (e.g., the central operator could be a

regulator in an economic market)4. In the following, we consider gradient steps

updates of the type

xi(k+1) := ΠX i(x
i
(k) − αk∇xiJ

i(xi(k), z
i
(k))). (2.4)

These update laws usually depend on a parameter αk (i.e. the step length) which

may need to be centrally coordinated and in general result in a suboptimal choice

for the updated strategy xi(k+1). For this reason we refer to agents using these

update laws as boundedly rational. It is important to underline that, even though

during the iterations of the algorithm the updates may be suboptimal, due to the

imposed suboptimal update law, we devise schemes that guarantee convergence

to a Nash equilibrium. Therefore, even though the agents do not have the au-

thority of selecting their updates they are still guaranteed to reach at convergence

the strategy that minimizes their cost function, given the strategies of the other

players5. Consequently, for applications where only the strategy at convergence is

implemented (as in demand response schemes), both the myopic and boundedly

4We refer to Section 10.1.2 for a discussion on the case when the central operator seeks a social

optimum instead.
5Note that the setting of boundedly rational agents is different from the one of cooperative agents.

While in both case the central operator can design the update laws of the agents, in the latter the

objective of the central operator is to steer the agents to a configuration that minimizes a social cost

function instead of steering the agents to a Nash equilibrium. This means that in the cooperative setup

the performance at convergence could be arbitrarily unfavorable for a single agent. This is not the
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rational schemes can be applied. For the case of bounded rationality, a number of

different gradient schemes guaranteeing convergence to Nash equilibria in AAGs,

either using a central operator or local communications, have been proposed in the

literature [CLLV14, KNS12, PKL16, KNS16]. In Chapter 5 we focus on a gener-

alization of these methods to aggregative games with global constraints coupling

the strategies of the agents.

A scheme of the contributions of Part I of the thesis is given in the following table.

Game Communication Myopic agents Boundedly rational agents with

structure structure (Chapter 4) coupling constraints (Chapter 5)

AAG central operator Sec. 4.2 Sec. 5.3

NAG distributed Sec. 4.3 (Sec. 10.1.1)

AAG distributed Sec. 4.4 (Sec. 10.1.1)

Table 2.1: Scheme of the contributions in Part I. An extension of the decentralized

algorithm proposed in Section 5.3, for AAGs with coupling constraints, to distributed

NAGs and AAGs is suggested in the concluding Section 10.1.1.

2.3 Related work

Before delving in the technical details of Chapter 4 and 5, we discuss in this section

some connections of the class of aggregative games considered in this thesis with other

games typically found in the literature. To this end, we start by summarizing the most

important features of the framework considered in this thesis.

1. large populations : we are interested in algorithms that are computationally efficient

for very large populations;

2. aggregative nature: the cost function of each agents depends on the strategy of the

other players via the aggregator function, which could be agent-dependent;

3. multidimensional and constrained strategies : the strategy of each player is a mul-

tidimensional vector that must satisfy some local constraints;

4. distributed solutions : we are interested in algorithms that can be implemented

distributedly, so that local constraints and cost functions remain private.

case here, where the agents are always guaranteed to converge to a strategy that minimizes their cost

function, given the strategies of the other players. Part of the reasons motivating our work is that such

type of guarantees might make the agents more willing to participate (i.e. allow the central operator

to design their strategy update law) in coordination schemes with guaranteed convergence to a Nash

equilibrium instead of a social optimum.
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Aggregative games

Aggregative games were originally proposed in the economic literature [Jen10, Kuk04]

to model games in which each agent has the same aggregator function. In this com-

munity, particular attention has been devoted to the study of the simultaneous best

response dynamics, which are the learning dynamics of a population of myopic agents

that select at each iteration the best strategy (i.e. the BR) given the current population

state. Mathematically, xi(k+1) = arg minxi∈X i J
i(xi, σ([x1

(k); . . . ;x
i; . . . ;xN(k)])). Results

have been derived mainly for the case of scalar strategies or scalar valued aggregator

functions σ : RNn → R, under suitable monotonicity assumptions [Jen10, CH12].

Average aggregative games, on the other hand, have recently attracted attention in the

control community, mainly motivated by demand-response coordination problems. Lim-

ited to the case of boundedly rational agents, distributed algorithms have been suggested

in [CLLV14, KNS12] and more recently in [PKL16, KNS16].

Network games

The main difference between the standard literature on network games [Gal10] and

NAGs is that, in the latter, the interaction among the players is not one-to-one but

has an aggregative structure. In this respect, the models that are most related to the

work proposed here are described in [JZ14]. Therein, results are derived for a scalar

version of the model presented in Section 4.3. Differently from the standard literature

on network games, we focus on games where the strategies are multidimensional (so

that in most cases it is not possible to apply the ordering arguments in [JZ14]) and

constrained (specific types of constraint sets are considered in [BK15]).

Population games

Population games [San10] describe games played among a finite number of populations,

each containing an infinite number of homogeneous players, with discrete action sets.

Here, on the other hand, we focus on a single population with a large but finite number

of players that have continuous strategies sets.

Mean field games

AAGs have some features in common with the class of mean field games. The latter are

stochastic dynamic games where the cost of each agent depends either on the average

[HCM07] or on the whole distribution of the strategies in the population [LL07, BFY13].

Differently from our setup, in mean field games it is typically assumed that the agents

are homogeneous [LL07] or that they have access to the parameter distribution of the

population [HCM07, BP13] (in [KC10] the authors suggest a method to estimate this dis-

18



tribution from neighboring data). Moreover, the strategy set is typically unconstrained.

Results are derived in the limit of infinite number of players by exploiting the so-called

mean field approximation. We note that results on mean field games cannot be applied

in our setting as we consider deterministic games with heterogeneous players that do

not have access to the parameter distribution of the population and whose strategies are

constrained by private convex sets.

Monotone games

Under some technical assumptions, certain classes of aggregative games can be seen as a

specific case of monotone games, which are games whose Nash equilibria can be described

as the solutions of a monotone variational inequality [FP03]. The literature on monotone

games is vast, see e.g., [BT97, Pav07, FK07, SPFP10, ZF16]. Most of the algorithms

proposed for monotone games however use variants of the gradient update law given in

(2.4) and are therefore suited only for populations of boundedly rational agents.

Distributed optimization and potential games

Most of the algorithms used in this thesis, as well as in the previously cited references,

are algorithms that are well known in the fields of fixed point iterations, distributed

optimization or variational inequality problems [BT97, FP03, Ber07, BC10]. In this the-

sis, however, they are used to distributedly coordinate the agents to a Nash equilibrium

(which can be seen as a “minimum” of N coupled optimization problems) instead of co-

ordinating them to a minimum of a single cost function (as typically done in distributed

optimization). This difference vanishes in the case of potential games [MS96].

Definition 2.2 (Potential game). Consider a game Gp composed by N agents with

generic cost function J̃ i(xi, x−i) ∈ C1 and strategy xi ∈ X i ⊂ Rn. The game Gp is

termed potential if there exists a potential function S(x) : RNn → R, S(x) ∈ C1, such

that for all i ∈ Z[1, N ], x−i ∈ X−i and zi, yi ∈ X i it holds

J̃ i(zi, x−i)−J̃ i(yi, x−i) = S([x1; . . . ;xi−1; zi;xi+1 . . . ;xN ])−S([x1; . . . ;xi−1; yi;xi+1 . . . ;xN ])

or, equivalently, for all i ∈ Z[1, N ] and x−i ∈ X−i

∇xi J̃
i(xi, x−i) = ∇xiS(x).

An immediate consequence of this definition is in fact that

xibr(x
−i) := arg min

xi∈X i
J̃ i(xi, x−i) = arg min

xi∈X i
S(x),

therefore, for each agent, minimizing the cost function is equivalent to minimizing the

global potential function S(x). Consequently, each global minimizer of S(x) is a Nash
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equilibrium [MAS09, Section II.A]. For these games, standard distributed optimization

tools can be used to find a global minimizer of S(x) and thus a Nash equilibrium.

For example, one can show that the sequential BR dynamics, which are the dynamics

obtained when every agent sequentially updates its strategy as its BR to the strategies

of the other players, converge under mild assumptions.

Sequential best response dynamics

xi(k+1) = arg min
xi∈X i

J̃ i(x1
(k+1), . . . , x

i−1
(k+1), x

i, xi+1
(k) , . . . , x

N
(k)) ∀ i ∈ Z[1, N ] (2.5)

Intuitively, the sequential BR dynamics converge, in the case of potential games,

because each step leads to a decrease in the potential function S(x) towards its global

minimum, which is a Nash equilibrium. To see this, one can note that each step can be

rewritten as xi(k+1) = arg minxi∈X i S(x1
(k+1), . . . , x

i−1
(k+1), x

i, xi+1
(k) , . . . , x

N
(k)). More formally,

one way to prove this statement is by noticing that, in the case of potential games, the

sequential best response dynamics coincide with the nonlinear Gauss-Seidel algorithm

to minimize S(x) over X1×N := X 1 × . . . × XN , see for example [BT97, Chapter 3, Eq.

(3.13)]. The conclusion then follows from [BT97, Chapter 3, Proposition 3.9].

Proposition 2.3.1 (Convergence of the sequential best response dynamics). Suppose

that S(x) : RNn → R is C1 and convex and that the sets X i are non-empty, compact

and convex for all i ∈ Z[1, N ]. Furthermore suppose that for each i ∈ Z[1, N ], the cost

function J̃ i(xi, x−i) : Rn → R is strictly convex in xi for each x−i ∈ X−i. For any

initial condition x(0) let x(k) be the sequence generated by the sequential best response

dynamics. Then every limit point of x(k) minimizes S(x) over X1×N and is therefore a

Nash equilibrium of the potential game Gp. If additionally S(x) is strictly convex then

x(k) converges to the unique minimizer of S(x).

We note that the sequential BR dynamics do not comply with the structure of Al-

gorithm 1, since the agents are required to update their strategies one at the time in a

sequential order. For large population games one would prefer a scheme where all the

agents update their strategies simultaneously (which in the case of potential games is

equivalent to the nonlinear Jacobi algorithm minimizing S(x), see [BT97, Chapter 3, Eq.

(3.12)]).

Simultaneous best response dynamics

xi(k+1) = arg min
xi∈X i

J̃ i(x1
(k), . . . , x

i−1
(k) , x

i, xi+1
(k) , . . . , x

N
(k)) ∀ i ∈ Z[1, N ] (2.6)
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Unfortunately, the potential game structure is not sufficient to guarantee convergence

of the simultaneous best response. The main reason is that, while each step of the se-

quential best response is guaranteed to decrease the value of the potential function S(x),

the same is not true for a step of the simultaneous best response dynamics. Conver-

gence of the latter has been proven in [BT97, Chapter 3, Proposition 3.10], under the

assumption that there exists γ > 0 such that the mapping R(x) = x − γ∇S(x) is a

block contraction (see Definition 5.1). This result can be generalized to games that are

not potential under a similar block contraction condition (see [BT97, Section 3.5.6] and

Section 5.1.1). The main contribution of the first part of the thesis is to propose alter-

native decentralized and distributed schemes that guarantee convergence to an almost

Nash equilibrium, by using simultaneous updates, for generic aggregative games (i.e.,

not necessarily potential) and for mappings that are not necessarily block-contractions.

A detailed review on potential games is given in [San10, DHZ06]. We finally note

that the important class of congestion games is a subclass of potential games [MS96].
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CHAPTER 3
Mathematical Preliminaries

In this chapter we present mathematical tools and results that are used in Chapter 4

and Chapter 5. Throughout the thesis we assume to work in a finite dimensional Hilbert

space HS, defined by the scalar product 〈x, y〉S := x>Sy, with S = S> � 0. Most of

the definitions and propositions can be extended to more general spaces, see for example

[Ber07] or [Chi09]. All the sets are considered to be non-empty.

3.1 Regularity properties

In the next definition we summarize some regularity properties for single valued opera-

tors.

Definition 3.1 (Monotonicity properties [FP03, Definition 2.3.1]). Consider the Hilbert

space HS defined by the matrix S = S> ∈ Rn×n, S � 0. A mapping f : Rn → Rn is

1. Strongly monotone (SMON) in HS if ∃ ε > 0 such that

(f(x)− f(y))> S (x− y) ≥ ε ‖x− y‖2
S , ∀x, y ∈ Rn;

2. Monotone (MON) in HS if

(f(x)− f(y))> S (x− y) ≥ 0, ∀x, y ∈ Rn;

3. Anti-monotone (AMON) in HS if −f(·) is MON in HS. �

Note that in the more general Banach spaces the terminology (strongly) accretive is

used instead of (strongly) monotone (e.g. [Ber07, Definition 1.14]). Here we always use

the latter since we work in Hilbert spaces. Intuitively, the concepts of MON and SMON

operators generalize the concepts of non-decreasing and increasing functions from R to

Rn.

Definition 3.2 (Regularity properties). Consider the Hilbert space HS defined by the

matrix S = S> ∈ Rn×n, S � 0. A mapping f : Rn → Rn is
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1. Lipschitz [Ber07, Definition 1.6] in HS if ∃ L > 0 such that

‖f(x)− f(y)‖S ≤ L ‖x− y‖S , ∀x, y ∈ Rn;

2. a Contraction (CON) [Ber07, Definition 1.6] in HS if ∃ δ ∈ [0, 1) such that

‖f(x)− f(y)‖S ≤ δ ‖x− y‖S , ∀x, y ∈ Rn;

3. Non-expansive (NEX) [BC10, Definition 4.1 (ii)] in HS if

‖f(x)− f(y)‖S ≤ ‖x− y‖S , ∀x, y ∈ Rn;

4. Firmly non-expansive (FNE) [BC10, Definition 4.1 (i)] in HS if

‖f(x)− f(y)‖2
S≤ ‖x− y‖

2
S − ‖f(x)−f(y)−(x−y)‖2

S , ∀x, y ∈ Rn;

5. Strongly pseudo contractive (SPC) [Ber07, Definition 1.13(a)] in HS if Id− f is

SMON in HS, that is,

(x− y − f(x) + f(y))> S (x− y) ≥ ε ‖x− y‖2
S , ∀x, y ∈ Rn.

�

CON FNE
SPC

x
x

2
�x

2
�x�2x

NEX

|x|

Figure 3.1: Relation among regularity properties and simple scalar examples. We note

that FNE+SPC implies CON and that the concept of SPC mapping, as given in Def-

inition 3.2, is different from the one of pseudo contraction defined in [BT97, Section

3.1]. For example f(x) = −2x is SPC but is not a pseudo contraction and the pseudo

contraction given in [BT97, Figure 3.1.1 (b)] is not SPC.

Note that the regularity properties of a mapping are strictly related to the consid-

ered Hilbert space. Therefore, the choice of a proper Hilbert space (i.e., norm) is critical.
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Figure 3.1 illustrates the relations among the properties given in Definition 3.2. Con-

tractiveness is a powerful property, frequently used in the game theoretical literature,

however it usually leads to quite restrictive assumptions on the game primitives. This is

the reason why, in the following, we consider different generalizations of this property.

The simplest generalization is the class of NEX mappings. Among NEX mappings of

particular interest is the class of FNE mappings, that includes for example the met-

ric projection onto a closed convex set ΠX : Rn → X ⊆ Rn [BC10, Proposition 4.8].

Intuitively, FNE mappings are mappings that are NEX along certain directions and

CON along others. A second different generalization of CON mappings is that of SPC

mappings, which (contrary to NEX and hence CON and FNE mappings) are not neces-

sarily continuous. SPC mappings are interesting because computing their fixed points

is equivalent to computing the zeros of a SMON mapping (since x = f(x) if and only if

x− f(x) = 0 and I − f is SMON by definition) and many results have been derived in

the literature for the latter problem.

In the technical proofs we make use of the following equivalent characterizations of

FNE and MON mappings.

Lemma 3.1.1 ([BC10, Proposition 4.2]). A mapping f : Rn → Rn is FNE in HS if and

only if ‖f(x)− f(y)‖2
S ≤ (x− y)> S (f(x)− f(y)) , ∀x, y ∈ Rn. �

Lemma 3.1.2 ([GPCL16, Lemma 1]). If f : Rn → Rn is MON and g : Rn → Rn is

SMON in HS, then f + g is SMON in HS. �

Lemma 3.1.3. Consider a mapping f(y) : Rn1+n2 → Rm where y = [ xz ] , x ∈ Rn1 , z ∈
Rn2. The mapping f is Lipschitz if and only if there exists L̄ > 0 such that ‖f(y1) −
f(y2)‖Im ≤ L̄(‖x1 − x2‖In1

+ ‖z1 − z2‖In2
) for all y1, y2 ∈ Rn1+n2.

Proof. Given the equivalence of norms in finite spaces, a mapping f is Lipschitz if and

only if it is Lipschitz in the Euclidean norm. We therefore prove the statement for S = I,

without loss of generality. If f is Lipschitz, then there exists L > 0 such that for all

y1, y2 ∈ Rn1+n2 :

‖f(y1)− f(y2)‖ ≤ L‖y1− y2‖ = L
√
‖x1 − x2‖2 + ‖z1 − z2‖2 ≤ L(‖x1− x2‖+ ‖z1− z2‖).

If there exists L̄ > 0 such that ‖f(y1)− f(y2)‖ ≤ L̄(‖x1 − x2‖+ ‖z1 − z2‖) then

‖f(y1)− f(y2)‖ ≤ L̄(‖y1 − y2‖+ ‖y1 − y2‖) ≤ 2L̄‖y1 − y2‖.
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Regularity of affine mappings

We next present necessary and sufficient conditions to characterize the regularity prop-

erties in Definitions 3.1 and 3.2 in the case of affine mappings.

Lemma 3.1.4 (Regularity of affine mappings). Given an affine mapping f : Rn →
Rn defined as f(x) := Ax+ b, for some A ∈ Rn×n and b ∈ Rn, the following statements

hold:
f is NEX (CON) in HS ⇐⇒ A>SA− S 4 (≺) 0 ⇐⇒ ‖A‖S ≤ 1 (≤ δ)

f is FNE in HS ⇐⇒ 2A>SA 4 A>S + SA

f is (S)MON in HS ⇐⇒ A>S + SA < (�) 0

Proof. This is a classical result. The proof, which would be identical in the case of

linear mappings, is reported for completeness. The mapping f is a CON in HS if and

only if there exists δ ∈ [0, 1) such that ‖Ar − As‖S ≤ δ‖r − s‖S ∀r, s ⇔ ‖A(r −
s)‖S ≤ δ‖r − s‖S ∀r, s ⇔ ‖Ax‖S ≤ δ‖x‖S ∀x ⇔ ‖A‖S ≤ δ ⇔ ‖Ax‖2

S ≤ δ2‖x‖2
S ∀x ⇔

x>A>SAx ≤ δ2x>Sx ∀x ⇔ x>(A>SA − S)x ≤ (δ2 − 1)x>Sx ⇔ x>(A>SA − S)x ≺ 0.

The equivalence for NEX can be proven in a similar fashion, by setting δ = 1. The

mapping f is FNE in HS if and only if ‖A(x− y)‖2
S ≤ ‖x− y‖

2
S−‖A(x− y)− (x− y)‖2

S

for all x, y ∈ Rn. Equivalently, we get (x− y)>A>SA (x− y) ≤ (x− y)> S (x− y) −
(x− y)> (A− I)> S (A− I) (x− y) for all x, y ∈ Rn, that is A>SA 4 S−(A−I)>S(A−
I) = S − A>SA + A>S + SA − S ⇔ 2A>SA 4 A>S + SA. The mapping f is SMON

in HS if and only if there exists ε > 0 such that (x − y)>A>S(x − y) ≥ ε ‖x− y‖2
S =

ε(x − y)>S(x − y) for all x, y ∈ Rn, that is equivalent to 1
2

(
A>S + SA

)
< εS. Since

S � 0, the latter matrix inequality is equivalent to
(
A>S + SA

)
� 0. An analogous proof

with ε = 0 shows that the mapping f is MON in HS if and only if A>S + SA < 0.

3.2 Fixed points

In Chapter 4 we illustrate how the coordination problem for large populations of myopic

agents can be solved by finding the fixed point of a suitable mapping. In the following,

we denote a generic fixed point by the symbol z̄ for consistency with the notation used

in Chapter 4.

Definition 3.3 (Fixed point). A point z̄ ∈ Rn is a fixed point for the mapping f : Rn →
Rn if z̄ = f(z̄). �

Fixed point problems are ubiquitous in mathematics and engineering and conse-

quently conditions guaranteeing their existence, uniqueness and algorithms to compute

them have been extensively investigated. In the interest of space we report here only the

results that are needed in Chapter 4 . We refer to [Ber07, Chi09, BC10, BT97, Sma74],

for a more comprehensive survey of fixed point theory.
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3.2.1 Existence and uniqueness

The main existence result that we use is a generalization of Brouwer fixed point theorem

as reported in the next lemma.

Lemma 3.2.1 (Schauder [Sma74]). Consider a continuous mapping f : X → Y , where

X ⊆ Rn is convex and Y ⊆ X is compact. Then f admits a fixed point z̄ = f(z̄). �

This result can be refined if the mapping f(·) possesses one of the regularity properties

presented in Definition 3.2. Specifically, if one assume that the mapping is a CON then

it is possible to prove existence and uniqueness without any assumption on the domain

and codomain.

Lemma 3.2.2 (Banach theorem [Ber07, Theorem 2.1]). Consider a mapping f : Rn →
Rn. If f is a CON then it admits a unique fixed point z̄ = f(z̄). �

Unlike CON mappings, NEX mappings may have more than one fixed point (e.g.

the identity mapping f(x) = x is NEX but not a CON and has infinitely many fixed

points). The same is true also for the subclass of FNE mappings (e.g. the projection

operator onto a convex and compact set is FNE [BC10, Proposition 4.8] but not a CON

and has infinitely many fixed points). On the other hand, SPC mappings maintain the

uniqueness property.

Lemma 3.2.3 (Chidume 1987). Consider a mapping f : X → X, where X ⊂ Rn is

compact and convex. If f is SPC then it admits at most a unique fixed point z̄ = f(z̄).

If f is continuous and SPC then it admits a unique fixed point z̄ = f(z̄).

Proof. This is a classical result, reported for completeness. Suppose by contradiction

that there are two fixed points z̄1 = f(z̄1), z̄2 = f(z̄2). Then by definition of SPC, there

exists ε > 0 such that

‖z̄1 − z̄2‖2
S ≤

1

ε
(z̄1 − f(z̄1)− z̄2 + f(z̄2))>S(z̄1 − z̄2)

=
1

ε
(z̄1 − z̄1 − z̄2 + z̄2)>S(z̄1 − z̄2) = 0.

Hence z̄1 = z̄2. Existence of a fixed point under the continuity assumption follows from

Lemma 3.2.1.

3.2.2 Fixed point iterations

Finding the fixed point of a mapping f is in general a very difficult task. However, if

the mapping f has one of the regularity properties given in Definition 3.2, one can use

known fixed point algorithms that aim at iteratively constructing a sequence {z(k)}∞k=1

such that z(k) → z̄ = f(z̄).
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Picard-Banach iteration

The simplest fixed point iteration is the Picard–Banach iteration

z(k+1) = f
(
z(k)

)
=: ΦP–B

(
z(k), f

(
z(k)

))
, (3.1)

which is obtained by simply applying the operator f(·) iteratively to an initial point z(0),

so that

z(1) = f(z(0)), z(2) = f(f(z(0))), . . . , z(k) = fk(z(0)),

where fk denotes the kth functional power of the mapping f(·), which is recursively de-

fined as fk := f ◦ fk−1, f 1 = f . Even though quite simple, the Picard–Banach iteration

is at the core of many of the algorithms suggested in game theory to coordinate the

agents strategies to a Nash equilibrium [MCH13, HCM07]. Not surprisingly, the suffi-

cient conditions needed to guarantee its convergence are however quite restrictive. We

summarize them in the next two lemmas.

Lemma 3.2.4 ( [Ber07, Theorem 2.1] ). If the mapping f : Rn → Rn is a CON then the

Picard–Banach iteration (3.1) converges from any initial point z(0) ∈ Rn to the unique

fixed point z̄ = f(z̄) with geometric rate, that is ‖z(k) − z̄‖ ≤ δk‖z(0) − z̄‖. �

Lemma 3.2.5 ( [GR84, Theorem 15.1]). If the mapping f : X → X, with X ⊆ Rn

closed and convex, is FNE then the Picard–Banach iteration (3.1) converges from any

initial point z(0) ∈ X to a fixed point of f , if such a point exists. �

One of the main objective of Chapter 4 is to suggest the use of alternative, slightly

more complex, fixed point iterations, whose convergence can be guaranteed under weaker

conditions. We report them in the following.

Krasnoselskij iteration

According to the previous lemma the Picard-Banach iteration converges if f is a CON

or if it is FNE. Those results cannot be generalized to the case of NEX mappings; for

example, z 7→ f(z) := −z is NEX, but not a CON, and the Picard–Banach iteration

z(k+1) = f(z(k)) = −z(k) oscillates indefinitely between z(0) and −z(0). In this case one

can use the Krasnoselskij iteration

z(k+1) = (1− λ)z(k) + λf
(
z(k)

)
=: ΦK

(
z(k), f

(
z(k)

))
(3.2)

that selects as next vector z(k+1) the convex combination of the previous vector z(k) and

f(z(k)), according to a fixed parameter λ ∈ (0, 1), thus introducing a memory.

Lemma 3.2.6 ( [Ber07, Theorem 3.2]). If a mapping f : X → X is NEX, with X ⊂ Rn

compact and convex, then the Krasnoselskij iteration (3.2) where λ ∈ (0, 1), converges,

for any initial condition z(0) ∈ X, to a fixed point of f . �
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Note that CON and FNE mappings are special cases of NEX mappings, hence the

previous lemma guarantees convergence also for these cases. Finally, the Krasnoselskij

iteration is also guaranteed to converge in the case of SPC mappings, if these are Lipschitz

and the parameter λ is sufficiently small.

Lemma 3.2.7 ([Ber07, Theorem 3.6]). If a mapping f : X → X with X ⊂ Rn compact

and convex is Lipschitz in HS with constant L and SPC in the same space HS with

constant ε, then the Krasnoselskij iteration (3.2) where λ ∈ Λ := (0, a) and

a =
2ε

L2 − 1 + 2ε

converges, for any initial condition z(0) ∈ X, to the unique fixed point z̄ = f(z̄). More-

over, ‖z(k) − z̄‖ ≤ qk‖z(0) − z̄‖, with

q =
√

(1− λ)2 + (λL)2 + 2λ(1− λ)(1− ε).

Proof. This proof follows the lines of [Ber07, Theorem 3.6] and is here reported, for
convenience, using the notation of this thesis. Consider the auxiliary mapping g(x) =
(1− λ)x+ λf(x). We are going to show that, under the given assumptions, g is a CON
in X with rate δ = q ∈ [0, 1). The conclusion then follows from Lemma 3.2.4.

‖g(x)− g(y)‖2S = (1− λ)2‖x− y‖2S + λ2‖f(x)− f(y)‖2S + 2λ(1− λ)(f(x)− f(y))TS(x− y)

≤ (1− λ)2‖x− y‖2S + λ2L2‖x− y‖2S + 2λ(1− λ)(1− ε)‖x− y‖2S
≤ [(1− λ)2 + λ2L2 + 2λ(1− λ)(1− ε)]‖x− y‖2S = q2‖x− y‖2S .

Note that the quantity q is well defined since (1−λ)2+λ2L2+2λ(1−λ)(1−ε) is the sum of

three non-negative terms (one can assume ε < 1 without loss of generality). To guarantee

that g(x) is a CON we need to impose q < 1. However, q2 = λ2(L2− 1 + 2ε)− 2λε+ 1 <

1⇔ λ(L2 − 1 + 2ε)− 2ε < 0⇔ λ < a.

Note that in order to select a value of λ that guarantees convergence one needs to

know the Lipschitz constant L of f . If this is not known one can resort to a iteration

varying parameter, as discussed next.

Mann iteration

The most general fixed point iteration that we consider is the Mann iteration

z(k+1) = (1− αk)z(k) + αkf
(
z(k)

)
=: ΦM

k

(
z(k), f

(
z(k)

))
, (3.3)

which is a Krasnoselskij iteration where the fixed parameter λ is substituted by a

sequence of parameters (αk)
∞
k=0 such that αk ∈ (0, 1) ∀k ≥ 0, limk→∞ αk = 0 and∑∞

k=0 αk =∞.
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Lemma 3.2.8 ([Ber07, Theorem 4.11] ). If a mapping f : X → X is Lipschitz and SPC

with X ⊂ Rn compact and convex, then the Mann iteration in (3.3) converges, for any

initial condition z(0) ∈ X, to the unique fixed point of f . �

Lemma 3.2.9 ([Ber07, Fact 4.9, p.112] ). If a mapping f : X → X is NEX with X ⊂ Rn

compact and convex, then the Mann iteration in (3.3) converges, for any initial condition

z(0) ∈ X, to a fixed point of f . �

To summarize, if we consider a Lipschitz mapping f : X → X with X compact and

convex the following pairs of regularity conditions and fixed point iterations guarantee

convergence to a fixed point z̄ = f(z̄).

Picard–Banach Krasnoselskij Mann

1. CON X X X
2. NEX X X
3. FNE X X X
4. SPC X∗ X

∗ with λ ∈ Λ as defined in Lemma 3.2.7.

Table 3.1: Conditions on regularity properties and iterations that ensure convergence to

a fixed point.

3.3 Variational inequalities

In Chapter 5 we illustrate how Nash equilibria can be equivalently characterized in

terms of solutions to a suitable variational inequality. We then exploit this knowledge

to suggest decentralized and distributed algorithms to solve the coordination problem

in the case of boundedly rational agents. To this end, we use some known results on

existence, uniqueness and convergence to solutions of variational inequalities, that we

briefly recap in this section. We refer the reader to [FP03, BT97] for a comprehensive

review. We note that in this section, as well as in Chapter 5, we assume to work in the

finite dimensional Hilbert space HI , instead of a generic space HS.

Definition 3.4 (Variational inequality (VI)). Consider a set X ⊆ Rn and an operator

f : Rn → Rn. The variational inequality problem VI(X , f) is the problem of finding a

vector x̄ ∈ X that solves

f(x̄)>(x− x̄) ≥ 0 ∀x ∈ X .

The set of vectors that solve the VI(X , f) is denoted by SOL(X , f). �
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Connection with convex optimization

Variational inequalities are a generalization of convex optimization problems. In fact,

let

x̄ ∈ arg min
x∈Rn

J(x) (3.4)

s.t. x ∈ X .

By using the minimum principle [FP03, Section 1.3.1], one can show the following state-

ment.

Proposition 3.3.1. (Minimum principle) Consider the optimization problem in (3.4)

and assume that J : Rn → R is C1 on an open superset of the closed and convex set

X ⊆ Rn. Then any local minimizer x̄ of (3.4) must satisfy

∇xJ(x̄)>(x− x̄) ≥ 0 ∀x ∈ X . (3.5)

If, additionally, the function J(·) is convex then x̄ is a global minimum of (3.4) if and

only if it satisfies (3.5). �

Intuitively, this result says that a point x̄ ∈ X is a minimum of J if by taking any

feasible step (i.e., a step that leads inside the set X ) the objective function can only

increase (because the gradient of J has a positive component in that direction). See

Figure 3.2.

Figure 3.2: Illustration of the minimum principle, the set X is in blue and the dotted

lines are the contour plot of J(x). A) The point x̄ is a minimizer of J in X because

∇xJ(x̄)>(x− x̄) ≥ 0 for all x ∈ X or equivalently the angle between x− x̄ and ∇xJ(x̄)

is less than 90◦. B) The point x̄ is not a minimizer of J in X because there exists x ∈ X
such that the angle between x− x̄ and ∇xJ(x̄) is more than 90◦.

The following conclusion is then immediate.
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Corollary 3.3.2 (Equivalence of VI and convex optimization). Consider the optimiza-

tion problem in (3.4), assume that J : Rn → R is C1 and convex and that X is closed

and convex, then

x̄ ∈ arg min
x∈X

J(x) ⇔ x̄ ∈ SOL(X ,∇xJ).

�

In other terms, the previous corollary says that whenever the operator f of the

VI(X , f) is the gradient of a convex function J , then the set SOL(X , f) can be found

by applying standard optimization tools to the problem arg minx∈X J(x). A necessary

and sufficient condition for the existence of a function J such that f(x) = ∇xJ(x) is

∇xf(x) = ∇xf(x)> for all x, as in that case ∇xf(x) would be the Hessian of J(x) [FP03,

Theorem 1.3.1]. A necessary and sufficient condition for such a J to be convex is that

the operator f(x) = ∇xJ(x) is MON. If the operator f is additionally SMON, then J is

strongly convex. This implies that the minimizer of (3.4), and consequently the solution

of VI(X , f), is unique. In Section 3.3.1 we show that SMON implies uniqueness of the

solution of a VI, even when f is not a gradient operator.

Connection with fixed point theory

Another interesting characterization of the solution of a variational inequality is in terms

of fixed points, see Figure 3.3.

Figure 3.3: Illustration of VI and fixed point equivalence. A) The point x̄ ∈ SOL(X , f)

because f(x̄)>(x − x̄) ≥ 0 for all x ∈ X or, equivalently, the angle between x − x̄ and

f(x̄) is less than 90◦ for all x ∈ X . Equivalently x̄ = ΠX [x̄ − f(x̄)]. B) The point

x̄ 6∈ SOL(X , f) because there exists x ∈ X such that the angle between x− x̄ and f(x̄)

is more than 90◦. Equivalently, x̄ 6= ΠX [x̄− f(x̄)].

Many algorithms for solving VIs are indeed fixed point algorithms, similar to those

described in Section 3.2.2.
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Proposition 3.3.3. (Fixed point equivalence) Suppose that X ⊆ Rn is closed and con-

vex. Then, for any f : Rn → Rn

x̄ ∈ SOL(X , f) ⇔ x̄ = ΠX (x̄− f(x̄)).

Proof. This is a classical result. See for example [FP03, Proposition 1.5.8] or [BT97,

Chapter 3, Proposition 5.1].

Karush-Kuhn-Tucker (KKT) conditions

Consider again the optimization problem (3.4) and assume that the set X can be

parametrized as follows

X = {x ∈ Rn | h(x) = 0, g(x) ≤ 0}, (3.6)

for suitable C1 functions h : Rn → Rl and g : Rn → Rm. To derive the following

statements we need to assume that the set X is regular enough. In the literature, a large

number of conditions that ensure regularity of a constraint set have been derived under

the name of constraint qualification (CQ) conditions. In the following, we use one of the

most general, which is known as Abadies CQ [FP03, Section 1.3.1]. Since verifying this

property can be tedious, we report in the next lemma some sufficient conditions that

ensure its validity.

Lemma 3.3.4. (Constraint qualification [FP03, Section 3.2]) Let X be given by (3.6),

where the functions h : Rn → Rl, g : Rn → Rm are C1, and x̄ ∈ X . Let I(x̄) :=

{i ∈ Z[1,m] | gi(x̄) = 0} be the set of active inequality constraints at x̄ and define the

following CQs.

1. [ACQ: Abadie CQ] The tangent cone of X at x̄, which is defined as

T (x̄;X ) :=

{
v ∈ Rn | lim

ν→∞

xν − x̄
τν

= v, ∃{xν ∈ X}∞ν=1 → x̄, ∃{τν ∈ R>0}∞ν=1 → 0

}
is equal to the linearization cone of X at x̄, which is defined as

L(x̄;X ) := {v ∈ Rn | v>∇xhj(x̄) = 0, ∀j ∈ Z[1, l], v>∇xgi(x̄) ≤ 0, ∀i ∈ I(x̄)}.

Mathematically, T (x̄;X ) = L(x̄;X ).

2. [MFCQ: Mangasarian and Fromovitz CQ] The gradients {∇xhj(x̄), j ∈ Z[1, l]}
are linearly independent and there exists d ∈ Rn such that d>∇xgi(x̄) < 0 for all

i ∈ I(x̄), d>∇xhj(x̄) = 0 for all j ∈ Z[1, l].

3. [LICQ: Linear independence CQ] The gradients {∇xhj(x̄), j ∈ Z[1, l]}∪{∇xgi(x̄), i ∈
I(x̄)}, are linearly independent.
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4. [SLCQ: Slater CQ] The functions hj(x) for all j ∈ Z[1, l] are affine and gi(x)

for all i ∈ Z[1,m] are convex. The gradients {∇xhj(x), j ∈ Z[1, l]} are linearly

independent and there exists a point xS ∈ X such that h(xS) = 0 and g(xS) < 0.

Then

LICQ(x̄) ⇒ MFCQ(x̄) ⇒ ACQ(x̄)

SLCQ ⇒ MFCQ(x̄) for all x̄ ∈ X

�

Remark 3.1. Note that while ACQ(x̄), MFCQ(x̄), LICQ(x̄) are local properties that

need to be checked at the (usually a priori unknown) optimal point x̄, SLCQ is a global

property that can be easily checked. This is the property that we use in Chapter 5. �

Proposition 3.3.5. (Karush-Kuhn-Tucker conditions (KKT) for optimization prob-

lems) Let X be given by (3.6). Assume that the functions h : Rn → Rl, g : Rn → Rm

and J : Rn → R are C1 and that Abadies CQ holds at a point x̄ ∈ X . Then x̄ solves

(3.5) if and only if there exist µ̄ ∈ Rl, λ̄ ∈ Rm such that

∇xJ(x̄) +
∑l

j=1 µ̄j∇xhj(x̄) +
∑m

i=1 λ̄i∇xgi(x̄) = 0 (3.7)

h(x̄) = 0, g(x̄) ≤ 0, λ̄ ≥ 0

λ̄ ⊥ g(x̄)

Let Λ(x̄) be the set of vector pairs (µ̄, λ̄) satisfying (3.7). If MFCQ(x̄) holds then Λ(x̄)

is compact and if LICQ(x̄) holds then Λ(x̄) is a singleton.

Proof. See [FP03, Section 1.3.1] and [Wac13].

As we noted before, (3.5) is a special case of VI. It turns out that the previous

proposition can be extended to any VI, under the assumption that the set X is convex.

Proposition 3.3.6. (KKT for VIs [FP03, Proposition 1.3.4 and 3.2.1]) Let X be given

by (3.6), where the functions h : Rn → Rl and g : Rn → Rm are C1. Let f be a mapping

from X into Rn. The following two statements hold.

1. Let x̄ ∈SOL(X , f). If ACQ(x̄) holds, then there exist vectors µ̄ ∈ Rl, λ̄ ∈ Rm such

that

f(x̄) +
∑l

j=1 µ̄j∇xhj(x̄) +
∑m

i=1 λ̄i∇xgi(x̄) = 0 (3.8)

h(x̄) = 0, g(x̄) ≤ 0, λ̄ ≥ 0

λ̄ ⊥ g(x̄)
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2. Conversely, if each function hj is affine, each function gi is convex and if (x̄, µ̄, λ̄)

satisfies (3.8), then x̄ ∈ SOL(X , f).

3. Let f be continuous, x̄ ∈SOL(X , f) and Λ(x̄) be the set of vector pairs (µ̄, λ̄)

satisfying (3.8). If MFCQ(x̄) holds then Λ(x̄) is non-empty and bounded and if

LICQ(x̄) holds then Λ(x̄) is a singleton. �

3.3.1 Existence and uniqueness

We report in the following a main result on existence and uniqueness of the solution to

VI(X , f), [FP03, Corollary 2.2.5, Theorem 2.3.3].

Proposition 3.3.7 (Existence and uniqueness). Consider the VI(X , f). The following

statements hold.

1. If X is compact and convex and f is continuous then SOL(X , f) is non-empty and

compact.

2. If X is closed and convex and f is continuous and SMON then the VI(X , f) has a

unique solution. �

3.3.2 Iterative algorithms

Finding a solution to a VI is equivalent to finding a fixed point of a n-dimensional

mapping, which is in general a very difficult task. However, if the mapping f has one of

the regularity properties given in Definition 3.1, then one can use known algorithms that

aim at iteratively constructing a sequence {x(k)}∞k=1 such that x(k) → x̄ ∈ SOL(X , f). In

the following we review the ones that are used in the thesis.

SMON operator

The simplest case is when the operator f is SMON and Lipschitz and the set X is closed

and convex. According to Proposition 3.3.7, in this case, the VI(X , f) has a unique

solution that can be found using the following projection algorithm, with a sufficiently

small step size α > 0.

Projection algorithm

x(k+1) = ΠX (x(k) − αf(x(k))) (3.9)

Proposition 3.3.8. (Projection algorithm: SMON [FP03, Theorem 12.1.2]) Assume

that X ⊆ Rn is closed and convex and that f is SMON with constant ε and Lipschitz
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with constant L. For any α < 2ε
L2 , Algorithm (3.9) converges for any initial condition

x(0) ∈ X to the unique solution x̄ of VI(X , f). Moreover, let q :=
√

1 + (αL)2 − 2αε,

then ‖x(k) − x̄‖ ≤ qk‖x(0) − x̄‖. �

Convergence of the projection algorithm can be proven also under a slightly different

condition (i.e., the co-coercitivity property) and for time-varying step sizes (i.e., using

αk instead of α in (3.9)).

Definition 3.5. A mapping f : Rn → Rn is called co-coercive (COC) in HS if there

exists c > 0 such that (x− y)> S (f(x)− f(y)) ≥ c ‖f(x)− f(y)‖2
S ,∀x, y ∈ Rn. �

Note that if a mapping f is COC with constant c ≥ 1 then it is FNE (by Lemma 3.1.1).

Moreover, COC implies MON but not necessarily SMON (e.g., take f(x) = x).

Proposition 3.3.9. (Projection algorithm: COC [FP03, Theorem 12.1.8]) Assume that

X ⊆ Rn is closed and convex and that f : X → Rn is COC on X with constant c.

Suppose that SOL(X , f) is non-empty. Consider a sequence {αk ∈ R}∞k=1, such that,

0 < inf αk ≤ supαk < 2c

then the algorithm

x(k+1) = ΠX (x(k) − αkf(x(k)))

produces a sequence x(k) converging to a solution of the VI(X , f). �

MON operator

If the operator is MON but not SMON, then the projection algorithm is not guaranteed

to converge [FP03, Example 12.1.3]. One can however, use the slightly more complex

extragradient algorithm.

Extragradient algorithm

x̃(k) = ΠX (x(k) − αf(x(k))) (3.10)

x(k+1) = ΠX (x(k) − αf(x̃(k)))

Proposition 3.3.10. (Extragradient algorithm [FP03, Theorem 12.1.11]) Assume that

X ⊆ Rn is closed and convex and that f is MON and Lipschitz with constant L. Sup-

pose that SOL(X , f) is non-empty. If α < 1
L

then the sequence x(k) generated by Algo-

rithm (3.10) converges to a solution of the VI(X , f). �
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The main disadvantage of the extragradient algorithm is that it requires two gradient

computations and two projections at every step, thus slowing the overall performance.

A large number of alternative algorithms have been suggested in the literature to solve,

either exactly or approximately, a VI with MON operators. We refer the reader to [FP03,

Chapter 12]. In the next subsection we propose a new approach that can potentially

speed up convergence under additional assumptions on the problem structure (in line

with the requirements of Chapter 5).

MON operator: a special case

In Chapter 5 we will consider games where, additionally to the local constraint sets

X i ⊂ Rn, there is also a constraint C := {x = [x1; . . . ;xN ] | Ax ≤ b} ⊂ RNn coupling

together the strategies of all the players, where A ∈ Rm×Nn, b ∈ Rm. We show in Chapter

5 that the coordination problem, in this case, can be solved by finding the solution of

a variational inequality of the form VI(Y , t) where Y := X × Rm
≥0, X is a convex and

compact set and the operator t : RNn+m → RNn+m is defined as follows

t(y) := t([ xλ ]) =
[
f(x)+A>λ
−(Ax−b)

]
, (3.11)

for a suitable operator f : RNn → RNn. The additional variable λ ∈ Rm
≥0 can be thought

of as a dual variable associated to the coupling constraints.

In this section we propose a new algorithm to find a solution ȳ := [ x̄λ̄ ] of the VI(Y , t),
under the assumption that the operator f is SMON and affine. We briefly note that,

under these assumptions, the operator t in (3.11) is MON and Lipschitz. Consequently, a

solution ȳ ∈ SOL(Y , t), if it exists, can be found by applying the extragradient algorithm

presented in (3.10). Our objective is to propose an alternative approach that, contrary

to the extragradient, requires only one projection operation for each step. To this end,

we start by introducing a class of algorithms, parametrized by a matrix D � 0 not

necessarily symmetric, that has been proposed in the literature to solve a generic VI(Y , t),
as illustrated in (3.12).

Asymmetric projection algorithm for a generic D � 0

y(k+1) = SOL(Y , tkD), tkD(y) := t(y(k)) +D(y − y(k)) (3.12)

Intuitively, an APA aims at solving the original VI(Y , t) by solving at every step

a different affine VI that depends on the previous vector y(k) and on the matrix D.

Therefore APAs are a special class of linearized algorithms for VIs [BT97, Section 3.5.4].

Note that, since D � 0, the affine operator tkD is SMON and continuous, therefore if Y
is convex and closed the solution of VI(Y , tkD) exists and is unique (Proposition 3.3.7),
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thus guaranteeing that the update step in (3.12) is well-defined. Each choice of matrix

D � 0 leads to a different APA. The simplest one is obtained by selecting D = 1
α
I. In

this case in fact, if Y is closed and convex, one can see that the corresponding APA

coincides with the projection algorithm given in (3.9) since, by the minimum principle,

ȳ = SOL(Y , tkD)⇔ ȳ = arg min
y∈Y

(
1

2α
y>y + [t(y(k))−

1

α
y(k)]

>y

)
⇔ ȳ = ΠY [y(k)−αt(y(k))].

Unfortunately, the choice D = 1
α
I does not guarantee convergence in the case that we

are considering here because the operator t as defined in (3.11) is neither SMON nor

COC (to see this set y1 = [ x1
λ1

] and y2 = [ x2
λ2

] with x1 = x2). For APAs with a generic

matrix D a sufficient condition for convergence has been derived in [FP03, Proposition

12.5.2] and is reported in the next lemma.

Lemma 3.3.11. Consider the VI(Y , t) with Y convex and closed and t continuous.

Suppose that SOL(Y , t) is non-empty. Fix a matrix D � 0, set Ds = (D + D>)/2 and

denote by D
−1/2
s the principal square root of the symmetric positive definite matrix D−1

s .

If the operator

g(y) = D−1/2
s t(D−1/2

s y)−D−1/2
s (D −Ds)D

−1/2
s y

is COC with modulus greater than 1/2 then Algorithm (3.12) converges to a solution of

VI(Y , T ).

The convergence rate of the APAs has been studied in [FP03, Chapter 12]. In the

following, we consider the specific APA obtained by selecting

D :=

[
1
τ
INn 0

−2A 1
τ
Im

]
⇒ Ds =

[
1
τ
INn −A>
−A 1

τ
Im

]
(3.13)

which, as proven in the next theorem, results in the following algorithm which alternates

updates in the primal (x) and dual (λ) variables and depends on a step size parameter

τ > 0.

Asymmetric projection algorithm

x(k+1) = ΠX [x(k) − τ
(
f(x(k)) + A>λ(k)

)
] (3.14)

λ(k+1) = ΠRm≥0
[λ(k) − τ(b− 2Ax(k+1) + Ax(k))]

We note that the proposed scheme differs from the projection algorithm, which is

not guaranteed to converge for MON operators, since the λ-update depends not only

on Ax(k) but also on Ax(k+1). Our main result is to prove that if t has the structure

given in (3.11) and f(x) := Fx+ f̃ is affine and SMON, then the sufficient condition of

Lemma 3.3.11 is met for D as in (3.13), even if F 6= F>.

38



We briefly note that convergence for the symmetric case F = F> has been already

proven in the literature [FP03, Proposition 12.5.3 (b)]. Even if seemingly mild, the

missing assumption F 6= F> implies that there exists no cost function J(x) such that

f(x) = ∇xJ(x). Consequently, the considered VI(Y , t) cannot be solved using convex

optimization tools. On the contrary, we show in the next theorem that the condition

F +F> � 0 is sufficient to guarantee convergence of Algorithm (3.14) for this new class

of affine VIs.

Theorem 3.3.12. Consider the VI(Y , t), where t(y) is defined as in (3.11) and suppose

that SOL(Y , t) is non-empty. Suppose that there exists a function g : RNn → Rmg , g ∈ C1

such that X = {x ∈ RNn | g(x) ≤ 0}, that X satisfies the Slater CQ condition and that

the operator f is affine (i.e., f(x) = Fx + f̃ , F ∈ RNn×Nn, f̃ ∈ RNn) and SMON. Let

y(k) :=
[
x(k)

λ(k)

]
be the state of Algorithm (3.14) at iteration k and set

κF :=
σ2
max(F )

σmin(Fs)
, 0 < τ <

(
κF +

√
κ2
F + 4‖A>A‖
2

)−1

,

where Fs := (F + F>)/2. Then the sequence y(k) converges, for any initial condition, to

ȳ ∈SOL(Y , t).

Proof. We divide the proof into two parts: (i) we prove that Algorithm (3.14) is a

particular case of APAs, applied to the VI(Y , t); (ii) we prove that Algorithm (3.14)

satisfies the sufficient convergence condition for APAs. Throughout the proof we use

that for any matrix B, σmax(B) = ‖B‖ and if B = B> � 0 then σmax(B) = λmax(B)

and σmax(B)I � B � σmin(B)I. Moreover, we define Bs := (B +B>)/2.

(i) We are going to show that Algorithm (3.14) coincides with the APA defined by the

matrix D given in (3.13). Note that, from the Schur complement, D � 0 ⇔ Ds �
0 ⇔ 1

τ
I − τA>A � 0. The assumption on τ implies 2/τ > κF +

√
κ2
F + 4‖A>A‖ >√

κ2
F + 4‖A>A‖ therefore 4/τ 2 > 4‖A>A‖ and

τ 2‖A>A‖ < 1. (3.15)

Therefore, since A>A � 0, 1
τ
I − τA>A � 1

τ
(1 − τ 2‖A>A‖)I � 0 and thus D � 0. Let

us characterize the set Rm
≥0 = {λ ∈ Rm | h(λ) := −λ ≤ 0}. By the Slater CQ condition

and by Proposition 3.3.6 the unique solution of VI(Y , tkD) coincides with the solution

[x, λ, µ1, µ2] of the KKT system

tkD(y) +∇yg(x)µ1 +∇yh(λ)µ2 = 0 (3.16)

µ1 ≥ 0, g(x) ≤ 0, µ1 ⊥ g(x)

µ2 ≥ 0, h(λ) ≤ 0, µ2 ⊥ h(λ).
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The equality in (3.16) can be rewritten as[
1
τ
(x− x(k)) + Fx(k) + f̃ + A>λ(k) +∇xg(x)µ1
1
τ
(λ− λ(k)) + b− 2Ax+ Ax(k) +∇λh(λ)µ2

]
=

[
0

0

]
.

Therefore (3.16) holds iff both K1 and K2, defined as

K1 :=


1

τ
(x− x(k)) + Fx(k) + f̃ +A>λ(k) +∇xg(x)µ1 = 0

µ1 ≥ 0, g(x) ≤ 0, µ1 ⊥ g(x)

K2 :=


1

τ
(λ− λ(k)) + b− 2Ax+Ax(k) +∇λh(λ)µ2 = 0

µ2 ≥ 0, h(λ) ≤ 0, µ2 ⊥ h(λ)

hold. These are the KKT systems of two optimization problems, respectively (see Propo-

sition 3.3.5). More in detail, K1 does not depend on [λ, µ2] and [x, µ1] solves K1 if and

only if

x := arg min
x∈X

{
1

2
‖x‖2 − x>(k)x+ τ(Fx(k) + f̃ + A>λ(k))

>x

}
= Πx∈X [x(k) − τ(Fx(k) + f̃ + A>λ(k))].

For every value of x (and hence for the one determined by K1), [λ, µ2] solves K2 if and

only if λ solves the optimization problem

λ := arg min
λ∈Rm≥0

{
1

2
‖λ‖2 − λ>(k)λ+ τ(b− 2Ax+ Ax(k))

>λ

}
= ΠRm≥0

[λ(k) − τ(b− 2Ax+ Ax(k))].

Summing up, y(k+1) :=
[
x(k+1)

λ(k+1)

]
, which is by definition the unique solution of (3.16), can

be explicitly characterized as

x(k+1) = Πx∈X [x(k) − τ(Fx(k) + f̃ + A>λ(k))]

λ(k+1) = ΠRm≥0
[λ(k) + τ(b− 2Ax(k+1) + Ax(k))]

which coincide with the update steps of Algorithm (3.14).

(ii) As illustrated in the previous point, Algorithm (3.14) is the specific APA associated

with the choice of D given in (3.13). According to Lemma 3.3.11, any APA converges if

the mapping g(y) = D
−1/2
s (T −D+Ds)D

−1/2
s y+D

−1/2
s t̃ =: Gy+ g̃ is COC with modulus

greater than 1/2. We are now going to show that this sufficient condition is met for

the specific operator t(y) and matrix D that we are considering. For simplicity let us

rename L := D
−1/2
s . Note that G = L [ F 0

0 0 ]L. We are going to show that, under the given

condition on τ , g(y) is COC with modulus 1 or equivalently v>Gsv− v>G>Gv ≥ 0, ∀v.
Note that

v>Gsv − v>G>Gv = v>L
(
[ Fs 0

0 0 ]−
[
F> 0
0 0

]
L2 [ F 0

0 0 ]
)
Lv

= w>
([

Fs−F>[L2]11F 0
0 0

])
w,
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where w := Lv and [L2]11 denotes the block in position (1, 1) of the matrix L2. Since L

is invertible, the statement is proven if Fs−F>[L2]11F � 0. To this end, let us compute

[L2]11 ≡ [D−1
s ]11. From the the formula for the inverse of a block matrix applied to Ds

we get

[L2]11 = τ(I − τ 2A>A)−1. (3.17)

Since τ 2A>A is symmetric positive semidefinite, λmax(τ
2A>A) = τ 2‖A>A‖ < 1 (by

(3.15)) and the matrix is convergent. Consequently, the Neumann series
∑∞

k=0(τ 2A>A)k

converges to (I− τ 2A>A)−1. Substituting in (3.17) yields [L2]11 = τ
∑∞

k=0(τ 2A>A)k � 0

and

‖[L2]11‖ ≤ τ
∑∞

k=0(τ 2‖A>A‖)k = τ
1−τ2‖A>A‖ ,

where we used the fact that the geometric series converges since τ 2‖A>A‖ < 1 (by

(3.15)). Finally, F � 0 ⇒ Fs = F>s � 0 and [L2]11 = [L2]>11 � 0 ⇒ F>[L2]11F =

(F>[L2]11F )> � 0. Therefore

Fs − F>[L2]11F � (σmin(Fs)− σmax(F>[L2]11F ))I

� (σmin(Fs)− ‖F‖2‖[L2]11‖)I
= (σmin(Fs)− σmax(F )2‖[L2]11‖)I

� σmin(Fs)

(
1− κF

τ

1− τ 2‖A>A‖

)
I � 0.

In the last line we used 1 − κF
τ

1−τ2‖A>A‖ > 0, this is in fact equivalent (by (3.15)) to

1− τ 2‖A>A‖−κF τ > 0⇔ 1
τ2 −‖A>A‖− 1

τ
κF > 0⇐ 1

τ
>

κF+
√
κ2
F+4‖A>A‖
2

, which is true

by assumption.
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CHAPTER 4
Myopic agents

In this chapter we derive algorithms to coordinate the strategies of a population of

myopic agents to a Nash equilibrium of different types of aggregative games

G =

 xibr(x
−i) := arg min

xi∈Rn
J i(xi, σi(x))

s.t. xi ∈ X i
∀ i = 1, . . . , N. (4.1)

Specifically, in Section 4.2 we propose a decentralized algorithm that can be used to steer

a population of agents to a Nash equilibrium of an AAG by means of an reference signal z,

that is broadcast by a central operator. In Section, 4.3 we adapt the proposed algorithm

to the case of NAGs. To this end, we assume that the agents, instead of reacting to a

global reference z, react to a local estimate zi of the neighbors aggregate state which

they update by network communications. Finally, in Section 4.4 we illustrate how the

setting developed for NAGs can be used to coordinate the agents in AAGs distributedly,

that is, by using local communications instead of relying on the presence of a central

operator (thus complementing the results of Section 4.2). All the proofs are given in the

Appendix (Section 4.5).

All the algorithms suggested in this chapter are derived under the fundamental as-

sumption that the agents are myopic. This notion is formalized in Section 4.1; however,

it intuitively corresponds to the assumption that, at every iteration of the coordination

algorithm, each agent selects as next strategy the one that minimizes its cost function,

given the current reference z or its current estimate zi. This assumption is motivated

by those applications where the agents are fully noncooperative and/or the algorithmic

iterations correspond to repetitions of the game over time (e.g. in opinion dynamics).

The assumption of myopic agents significantly complicates the coordination problem,

since it limits the class of allowed update rules. In Chapter 5 we show how different

algorithms, based on gradient steps, can be used when this assumption is relaxed to

bounded rationality.

The results of this chapter have been published in [PCGL14, PGCL15, GPCL16,

PGGL15a, PGGL15b]
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4.1 Assumptions on the agents and optimal responses

Motivated by large-scale applications and privacy issues, we assume throughout this

chapter that the agents do not have access to the individual strategies of the other

agents, but can instead compute their optimal response to a fixed signal zi ∈ Rn, that is

xi ?(zi) := arg min
xi∈Rn

J i(xi, zi) (4.2)

s.t. xi ∈ X i

Note that this mapping differs from the best response mapping, given in (4.1), since the

second argument in the cost function J i(·, ·) is not the aggregate state σi(x) (that might

be unknown and in general could depend on xi), but is a fixed exogenous vector zi (that

does not depend on the optimization variable xi). Specifically, in Section 4.2 we assume

that zi = z̄ for all i ∈ Z[1, N ] where z̄ is a reference broadcast by a central operator to

the whole population, while in Section 4.3 and 4.4 we assume that zi is different for each

agent and represents a local estimate of the neighbors aggregate state.

Since the difference between optimal response and best response, as well as the rela-

tion between J i(xi, σi(x)) and J i(xi, zi) is of fundamental importance for the subsequent

results, we present here a clarifying example.

Example 4.1. Consider a game with N = 3 players, with strategies x1, x2 and x3, and

whose cost functions are

J1(x1, σ1(x)) := [σ1(x)]>x1 :=
[
(x1 + x2)/2

]>
x1 =: J̃1(x1, x2, x3) =: J̃1(x1, x−1),

J2(x2, σ2(x)) := [σ2(x)]>x2 := [x1]>x2 =: J̃2(x1, x2, x3) =: J̃2(x2, x−2),

J3(x3, σ3(x)) := [σ3(x)]>x3 :=
[
(x1 + x2 + x3)/3

]>
x3 =: J̃3(x1, x2, x3) =: J̃3(x3, x−3),

where we used σ1(x) := x1+x2

2
, σ2(x) := x1 and σ3(x) := x1+x2+x3

3
as aggregator functions.

We firstly note that the cost functions depend on the other players strategies only via the

aggregate quantities σi, therefore this is an aggregative game. More in detail, it is a

network aggregative game relative to the matrix

P =

 1/2 1/2 0

1 0 0

1/3 1/3 1/3

 .
For simplicity we assume that there are no constraints, so that x1, x2, x3 ∈ Rn. The best
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response for the three players, given the strategies of the others are

x1
br(x

−1) := arg min
x1

J1(x1, σ1(x)) = arg min
x1

J̃1(x1, x−1) = arg min
x1

[
(x1 + x2)/2

]>
x1

x2
br(x

−2) := arg min
x2

J2(x2, σ2(x)) = arg min
x2

J̃2(x2, x−2) = arg min
x2

[x1]>x2

x3
br(x

−3) := arg min
x3

J3(x3, σ3(x)) = arg min
x3

J̃3(x3, x−3) = arg min
x3

[
(x1 + x2 + x3)/3

]>
x3.

(4.3)

Note that, since the best responses depend on the strategies of the other players the three

optimization problems in (4.3) are coupled. A joint solution is, by definition, a Nash

equilibrium. On the other hand, consider three reference vectors z1, z2, z3, that are fixed

and independent on x1, x2, x3. The optimal responses are

x1 ?(z1) := arg min
x1

J1(x1, z1) = arg min
x1

[z1]>x1

x2 ?(z2) := arg min
x2

J2(x2, z2) = arg min
x2

[z2]>x2

x3 ?(z3) := arg min
x3

J3(x3, z3) = arg min
x3

[z3]>x3.

(4.4)

The most important thing to notice is that the three optimization problems in (4.4) are

decoupled. In other words, each agent i can compute its optimal response by knowing only

zi. Moreover, our definition of optimal response is based on the definition of aggregative

games (i.e., it is not possible to express the optimal responses in terms of the cost function

J̃ because therein the aggregative structure is not made explicit). The main objective of

this chapter is to propose algorithms that can be used to distributedly construct three

vectors z̄1, z̄2, z̄3 ∈ Rn such that the joint solution of (4.4), in response to these vectors,

is a Nash equilibrium of the original game. �

In the rest of the chapter we make the following regularity assumptions on the cost

functions, the constraint sets and the optimal responses, according to Definition 3.2.

Assumption 4.1.1 (Convexity of the cost function and constraints). (a) Each agent

i ∈ Z[1, N ] is subject to personalized convex and compact constraints X i ⊂ Rn. There

exists a convex and compact set X̄ such that X i ⊆ X̄ for all i ∈ Z[1, N ]. (b) The cost

functions {J i (xi, zi) : X i × X̄ → R}Ni=1 are uniformly Lipschitz with constant L̄J.

Assumption 4.1.2 (Regularity of the optimal responses 1). (a) The mappings {xi?}Ni=1

in (4.2) are single valued and (b) uniformly Lipschitz with constant L̄x.

Assumption 4.1.3 (Regularity of the optimal responses 2). There exists a matrix S =

S> ∈ Rn×n, S � 0, such that at least one of the following statements holds:

(a) xi ? is a contraction in HS for all i ∈ Z[1, N ];

(b) xi ? is non-expansive in HS for all i ∈ Z[1, N ];
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(c) xi ? is firmly non-expansive in HS for all i ∈ Z[1, N ];

(d) xi ? is anti-monotone in HS for all i ∈ Z[1, N ].

In the following analysis we provide asymptotic guarantees in terms of the population

size N . To this end, we need to define how the game in (4.1) scales when the population

grows and we need to guarantee that, even though the population increases, the basic

properties of each agent remain well defined. Mathematically, we do so by assuming that

the set X̄ and the Lipschitz constants L̄J, L̄x, as defined in Assumptions 4.1.1 and 4.1.2,

are uniformly bounded over N .

Assumption 4.1.4 (Asymptotic properties). Consider a sequence of games G(N), of

increasing population size N . (a) Denote by X̄ (N) the set X̄ as defined in Assump-

tion 4.1.1 to stress its dependence on the population size N . There exists a convex and

compact set X ⊂ Rn such that X̄ (N) ⊆ X for all population sizes N . (b) Denote by

L̄J(N) and L̄x(N) the Lipschitz constants L̄J and L̄x defined in Assumptions 4.1.1 and

4.1.2 for a population of size N . There exist LJ, Lx > 0 such that L̄J(N) ≤ LJ and

L̄x(N) ≤ Lx for all population sizes N .

4.1.1 The quadratic case

A very important class of aggregative games is the one where the agents have a quadratic

cost function

J i(xi, zi) := qix
i>Qxi + 2

(
Czi + ci

)>
xi, (4.5)

where xi, zi ∈ Rn, Q = Q> � 0, qi > 0, C ∈ Rn×n and ci ∈ Rn. This type of cost

function has been used for example in [HCM07, HCM12, BP13, GTL13, GPCL16]. In

this case, the optimal response can be explicitly characterized as follows.

Lemma 4.1.1 (Optimal response for quadratic cost). The unconstrained optimizer of

the problem (4.2) with cost (4.5) is

x̂i ?(zi) := arg min
xi∈Rn

J i(xi, zi) = − (qiQ)−1 (Czi + ci
)

; (4.6)

the (constrained) optimizer in (4.2) reads as

xi ?(zi) = arg min
xi∈X i

J i(xi, zi) = ΠQ
X i(x̂

i ?(zi)), (4.7)

where ΠS
X (y) := arg minx∈X ‖y − x‖S denotes the projection on the set X in the Hilbert

space HS. �

The next lemma provides sufficient conditions for Assumptions 4.1.1, 4.1.2, 4.1.3 and

4.1.4 to hold when the cost functions are as in (4.5) and the agents have convex and

compact local constraint sets X i. For simplicity, let

Mi :=
[
qiQ −C
−C> qiQ

]
, i ∈ Z [1, N ] . (4.8)
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Lemma 4.1.2 (Sufficient conditions for the convex quadratic case). Under Assump-

tion 4.1.1(a) the cost function in (4.5) satisfies Assumption 4.1.1(b) and the mappings

xi ?(zi) with cost defined as in (4.5) satisfy Assumption 4.1.2. Moreover, the following

statements hold.

1. Mi � 0 ∀i ⇒ Assumption 4.1.3.(a) holds with S = Q

2. Mi < 0 ∀i ⇒ Assumption 4.1.3.(b) holds with S = Q

3. −qiQ 4 C = C> ≺ 0 ∀i ⇒ Assumption 4.1.3.(c) holds with S = −C
4. C = C> � 0 ⇒ Assumption 4.1.3.(d) holds with S = C

Under Assumption 4.1.1(a) and Assumption 4.1.4.(a) if there exist q, q̄ > 0 such that q ≤
qi ≤ q̄ for all population sizes N and for all agents i ∈ Z[1, N ], then Assumption 4.1.4.(b)

holds. �

Remark 4.1. We note that if C = C> (e.g., as in the cases 3. and 4. of the previous

lemma) then the AAG with cost function as in (4.5) is a potential game, according to

Definition 2.2, with potential function

S(x) := x>
([ q1

...
qN

]
⊗Q+

1

N
(1N1

>
N + IN)⊗ C

)
x+ 2[c1; . . . ; cN ]>x.

Consequently, if Assumption 4.1.1(a) holds, qiQ+ 2
N
C � 0 for all i ∈ Z[1, N ] and S(x)

is convex, then the sequential BR dynamics in (2.5) are guaranteed to converge by Propo-

sition 2.3.1. The same does not hold in general for the simultaneous BR dynamics in

(2.6) (a quite restrictive sufficient condition is derived in Section 5.1.2). In the following

section we exploit the aggregative structure of the game to suggest an alternative scheme,

which uses again simultaneous updates, but is guaranteed to converge under different

sufficient conditions.

4.2 Average aggregative games: schemes with cen-

tral operator

We start by considering the case of average aggregative games, that is, games where the

aggregator function is the same for all the players and coincides with the population

average, σi(x) = σ̄(x) := 1
N

∑N
j=1 x

j for all i ∈ Z[1, N ].1 For each agent i ∈ Z[1, N ] the

best response to the other agents strategies x−i is therefore given by

xibr(x
−i) :=

 arg min
xi∈Rn

J i (xi, σ̄(x))

s.t. xi ∈ X i
=

 arg min
xi∈Rn

J i
(
xi, 1

N
xi + 1

N

∑
j 6=i x

j
)

s.t. xi ∈ X i
.(4.9)

1The theory presented in this section can be generalized to the weighted average σ̄(x) :=
1
N

∑N
j=1 a

jxj ,
∑N
j=1 a

j = N , under the assumption that the influence of each agent on the weighted

average becomes negligible when the population size increases, [GPCL16].
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The concept of Nash equilibrium can be specialized for AAGs as follows.

Definition 4.1 (Average aggregative (AA) Nash equilibrium). Given N cost functions

{J i : Rn × Rn → R}Ni=1, a set of strategies {x̄i ∈ X i ⊆ Rn}Ni=1 is an AA ε-Nash

equilibrium, with ε > 0, if for all i ∈ Z[1, N ]

J i
(
x̄i, σ̄(x̄)

)
= J i

(
x̄i, 1

N

∑N
j=1 x̄

j
)
≤ min

xi∈X i
J i
(
xi, 1

N

(
xi +

∑N
j 6=i x̄

j
))

+ ε. (4.10)

It is an AA Nash equilibrium if (4.10) holds with ε = 0. �

4.2.1 Structural assumptions and communication requirements

According to the discussion in Section 4.1, we assume that the agents do not know the

strategies of the other players and therefore cannot compute their best responses as

given in (4.9). On the other hand, we assume that they react optimally to a common

reference z̄ that is broadcast by a central operator (e.g., a price signal in the case of

demand-response). In other words the agents update their strategies by using the optimal

response mapping in (4.2) with zi = z̄ for all i ∈ Z[1, N ]. The main objective of the

section is to derive schemes that can be used by the central operator to iteratively design

the signal z̄ to be broadcast so that the set of optimal responses {xi ?(z̄)}Ni=1 is an AA

Nash equilibrium.

Figure 4.1: Coordination algorithm with central operator

Figure 4.1 illustrates the communication set up. Specifically, we assume that the

agents and the central operator can iteratively communicate in a gather-and-broadcast

48



fashion, so that at every iteration k the central operator broadcasts a tentative reference

signal z(k) to the population, the agents update their strategies accordingly and the

aggregate of the optimal responses A(z(k)) := 1
N

∑N
i=1 x

i ?(z(k)) is gathered by the central

operator. This information can then be used by the central operator to design the next

reference z(k+1). Note that according to this scheme, at every iteration, the agents select

as next strategy the one that minimizes their cost given the current reference z(k), thus

complying with the myopic assumption.

Algorithm 2: AAG: Picard–Banach (decentralized)

Initialization: Set k ← 0. The central operator sets and broadcasts z(0) ∈ Rn.

Iterate until convergence:

Local: strategy update

xi(k+1) ← xi ?(z(k)) := arg min
xi∈X i

J i(xi, z(k))

Central: average and reference update and broadcast

A(z(k))← 1
N

∑N
i=1 x

i
(k+1)

z(k+1) ← A(z(k))

The simplest possible scheme consistent with our structural assumptions is illustrated

in Algorithm 2: at every iteration the central operator broadcasts as new reference z(k+1)

the average A(z(k)) := 1
N

∑N
i=1 x

i ?(z(k)) =: σ̄(k+1) that he has previously received from

the population. We note that Algorithm 2 is similar in spirit to the simultaneous best re-

sponse dynamics except for the fact that the agents update their strategies by taking the

optimal response to the current reference z(k) = σ̄(k), considered as a fixed external signal,

instead of the best response to the current average σ̄(k). Consequently, in Algorithm 2

the agents do not take into account their contribution in the average when optimiz-

ing. This difference becomes negligible for large populations (see also Theorem 4.2.1).

Conditions guarantying the convergence of Algorithm 2 to an AA Nash equilibrium are

derived in Section 4.2.3 where a more general class of coordination algorithms, including

Algorithm 2 as a special case, is proposed. To this end, we start by introducing the

concept of aggregation mapping.

4.2.2 The aggregation mapping

We formalize the average population behavior obtained when all the agents react op-

timally to a reference z by defining the aggregation mapping A : Rn →
(

1
N

∑N
i=1X i

)
⊂ X̄ ⊂ Rn as

A(z) := 1
N

∑N
i=1 x

i ?(z). (4.11)
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Since the objective of our coordination problem is to find an AA Nash equilibrium

for large population size, in the next theorem we exploit the Nash certainty equivalence

principle or mean field approximation idea [HCM07, Section IV.A] to prove that when N

is large the optimal responses to any fixed point of the aggregation mapping are an almost

Nash equilibrium. The cornerstone to this result is the fact that the contribution of an

individual strategy xi to the average population behavior σ̄(x) becomes negligible when

N → ∞. Therefore, if z̄ = A(z̄) = 1
N

∑N
j=1 x

j ?(z̄), then the optimal response xi ?(z̄)

is a good approximation of the best response xibr(x
−i ?(z̄)) of agent i to the strategies

{xj ?(z̄)}j 6=i of the other players.

Theorem 4.2.1 (AAG Nash equilibrium). Suppose Assumptions 4.1.1, 4.1.2(a) and

4.1.4 hold. For all ε > 0, there exists N̄ε ∈ N such that, for all N ≥ N̄ε, if z̄ is a fixed

point of A in (4.11), that is, z̄ = 1
N

∑N
i=1 x

i ? (z̄), then the set {xi ? (z̄)}Ni=1, with xi ? as

in (4.2), is an AA ε-Nash equilibrium. �

Remark 4.2. It follows from the proof of Theorem 4.2.1, given in the Appendix, that

the set {xi ? (z̄)}Ni=1 is an AA εN -Nash equilibrium with εN = O (1/N). �

4.2.3 A class of decentralized coordination schemes

According to Theorem 4.2.1 the optimal responses to any fixed point of the aggregation

mapping A in (4.11) are an almost AA Nash equilibrium, for large population sizes.

Consequently, if the central operator designs and broadcasts references z(k) that asymp-

totically converge to a fixed point, that is z(k) → z̄ = A(z̄), then the agents strategies

converge to the desired configuration. Let us consider again Algorithm 2. By using the

concept of aggregation mapping, a single iteration of this algorithm can be rewritten as

z(k+1) = A(z(k)),

which is the Picard-Banach iteration relative to the aggregation mapping A. From the

theory revised in Section 3.2.2 it is then clear that a sufficient condition for Algorithm 2

to converge to a fixed point is that the mapping A is either a CON or FNE. Motivated

by this observation, we investigate the regularity properties of the aggregation mapping.

Proposition 4.2.2 (Regularity of the aggregation mapping). Suppose that assump-

tions 4.1.1(a) and 4.1.2 hold. For all i ∈ Z[1, N ], let xi ? be defined as in (4.2). The

mapping A in (4.11) is Lipschitz continuous, has a fixed point, and is

1. CON in HS under assumption 4.1.3.(a)

2. NEX in HS under assumption 4.1.3.(b)

3. FNE in HS under assumption 4.1.3.(c)

4. SPC in HS under assumption 4.1.3.(d) �
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An immediate consequence of the previous proposition is that under Assumption

4.1.3.(a) or 4.1.3.(c), Algorithm 2 converges. This proposition however shows that, even

if these assumptions are violated, different regularity conditions of A can be guaranteed

under different sufficient conditions. Leveraging on this fact and on the fixed point

iterations described in Section 3.2.2 we propose an extension of Algorithm 2.

Algorithm 3: AAG: fixed point iterations (decentralized)

Initialization: Set k ← 0. The central operator sets the mappings Φk and

broadcasts z(0) ∈ Rn.

Iteration:

Local: strategy update

xi(k+1) ← xi ?(z(k)) := arg min
xi∈X i

J i(xi, z(k))

Central: average and reference update and broadcast

A(z(k))← 1
N

∑N
i=1 x

i
(k+1)

z(k+1) ← Φk

(
z(k),A(z(k))

)

The main difference between Algorithm 2 and the proposed extension, detailed in

Algorithm 3, is that, in the latter, we allow the central operator to design the new signal

z(k+1) by means of a (possibly iteration dependent) mapping Φk (·, ·) : Rn×Rn → Rn that

depends not only on the received aggregate A(z(k)) but also on the previous signal z(k),

thus introducing a memory in the coordination scheme. A single iteration of Algorithm 3

results in

z(k+1) = Φk

(
z(k),A(z(k))

)
.

We show in the next theorem that by choosing the mapping Φk appropriately, based

on the theory of fixed point iterations, it is possible to guarantee convergence under

less restrictive assumptions than those of Algorithm 2. Specifically, besides the already

mentioned Picard–Banach iteration

ΦP–B(z(k),A(z(k))) := A(z(k)), (4.12)

for which Algorithm 3 coincides with Algorithm 2, we suggest the use of the Krasnoselskij

iteration

ΦK(z(k),A(z(k))) := (1− λ)z(k) + λA(z(k)) (4.13)

with λ ∈ (0, 1), and the step-dependent Mann iteration

ΦM
k (z(k),A(z(k))) := (1− αk)z(k) + αkA(z(k)), (4.14)
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where the sequence (αk)
∞
k=1 is such that αk ∈ (0, 1) ∀k ≥ 0, limk→∞ αk = 0 and∑∞

k=1 αk =∞ (e.g., αk = 1/k), as described in Section 3.2.2.

Theorem 4.2.3 (Decentralized convergence to a fixed point). Under Assumptions 4.1.1(a)

and 4.1.2, the following iterations and conditions guarantee global convergence of Algo-

rithm 3 to a fixed point of A in (4.11), where xi ? is as in (4.2) for all i ∈ Z[1, N ]:

Picard–Banach (4.12) Krasnoselskij (4.13) Mann (4.14)

1. Assumption 4.1.3.(a) X X X
2. Assumption 4.1.3.(b) X X
3. Assumption 4.1.3.(c) X X X
4. Assumption 4.1.3.(d) X∗ X

∗ with λ < 2
1+L2 , where L is the Lipschitz constant of A in HS.

The fixed point is unique in cases 1. and 4. �

Remark 4.3 (Rate of Convergence). We emphasize that each mapping presented in

Theorem 4.2.3 has its specific range of applicability. This allows us to select one or more

fixed point iterations based on the specific regularity property at hand. Which mapping

provides the best convergence performance is in general problem dependent [Ber07, Chap-

ter 9]. We note however that under Assumption 4.1.3.(a), using ΦP–B, and Assumption

4.1.3.(d), using ΦK, Algorithm 3 exhibits geometric convergence (see Lemma 3.2.4 and

3.2.7). �

An important feature of Theorem 4.2.3 is that decentralized convergence is guaran-

teed under conditions that are independent of the individual constraints {X i}Ni=1. There-

fore, our results and methods apply naturally to populations of heterogeneous agents.

Connection with other decentralized convergence results in aggregative games

Decentralized convergence to Nash equilibria in terms of fixed point iterations has been

previously studied in the literature of aggregative game theory; mostly to show conver-

gence of the sequential BR dynamics in (2.5) [Kuk04, Cournot path] [Jen10, Theorem 2],

under the assumption that the BR mappings of the players are non-increasing [Jen10,

Assumption 1], besides being continuous and compact valued. In large-scale games,

however, simultaneous responses as in Algorithms 2 and 3 are computationally more

convenient with respect to sequential ones. Within the literature of aggregative games,

the Mann iteration in (4.24) has been proposed in [DHZ06, Remark 2] for the simulta-

neous BRs of the agents. See [Hei06] for an application to distributed power allocation

and scheduling in congested distributed networks. The aggregative game setup in these

papers considers the strategy of the players to be a 1-dimensional variable taking val-

ues in a compact interval of the real numbers. Convergence is then guaranteed if the

BR mappings of the players are continuous, compact and non-increasing [DHZ06, con-

ditions (i)–(iii), p. 81]. It actually follows from the proof of Proposition 4.2.2 that
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Assumption 4.1.3.(d) implies that the aggregation mapping is anti-monotone, which is

the n-dimensional generalization of the non-increasing property used in [DHZ06], for the

case of large populations.

4.2.4 An application of AAGs: PEV coordination

As an application of AAGs, we investigate the problem of coordinating the charging

of a large population of plug-in electric vehicles (PEVs), introduced in [MCH13] and

extended to the constrained case in [GTL13, PCGL14]. For each agent/PEV i ∈ Z[1, N ],

we consider the discrete-time linear dynamics sit+1 = sit + biuit, where t ∈ N, sit ∈ [0, 1] is

the state of charge, uit is the charging control input and bi > 0 represents the charging

efficiency. The objective of each PEV i is to select a charging profile ui := [ui0, . . . , u
i
T−1]>

that acquires a charge amount γ̄i ∈ [0, 1], within a finite charging horizon [0, T ], T ∈ N,

and that minimizes the price that the agent has to pay for the electricity. Note that

siT = si0 +bi
∑T−1

t=0 u
i
t, therefore the requirement siT −si0 = γ̄i is equivalent to the charging

constraint
∑T−1

t=0 u
i
t = 1

>
T u

i = γ̄i

bi
=: γi. Moreover, we consider a dynamic pricing scheme,

where the price of the electricity depends on the overall demand, namely the inflexible

demand D ∈ RT
≥0 (i.e., the demand coming from the non-PEVs) plus the aggregate PEV

demand Nσ̄ ∈ RT
≥0. In line with the (almost-affine) price function in [MCH13, PCGL14],

we consider the affine price function p(σ̄t) := 2a (σ̄t + dt), where a is a positive constant

and dt := Dt
N

denotes the average inflexible demand2 in the time interval t. A typical

profile of average inflexible demand is illustrated in Figure 4.2 A). To sum up, each agent

aims at minimizing the total electricity cost according to the following AAG

G :=

{
min
ui∈RT

p(σ̄(u))>ui

s.t. 0 ≤ ui ≤ U i, 1>T u
i = γi,

(4.15)

where p(σ̄) := [p(σ̄0), . . . , p(σ̄T−1)]> is the vector of prices over the interval [0, T ] and

U i ∈ RT
≥0 is a vector of desired upper bounds on the charging inputs.3 .

According to the previous theory, we assume that the agents do not have access to the

charging profile of the other PEVs (so that they cannot compute the actual price p(σ̄))

but react to a reference z = [z0, . . . , zT−1] ∈ RT , broadcast by the central operator4,

and set their electricity profile ui ?LP(z) ∈ RT for the whole interval [0, T ] by solving the

2We refer to [MCH13] for a discussion on why the average quantities σ̄t(ut) = 1
N

∑N
j=1 u

j
t and dt = Dt

N

are used instead of the total quantities
∑N
j=1 u

j
t and Dt. We briefly note here that such assumption

is justifiable if the grid infrastructure (e.g., the number of production plants) scales with the PEV

population size N .
3More general convex constraints could be considered (e.g., to model multiple charging intervals,

charging rates, vehicle-to-grid operations). We keep the same setting of [MCH13, PCGL14] for simplicity.
4The central operator can, without loss of generality, broadcast the price p(z) instead of z.
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following optimization problem

ui ?LP(z) :=

{
arg min

ui∈RT
p(z)>ui

s.t. 0 ≤ ui ≤ U i, 1>ui = γi,
:=

{
arg min

ui∈RT
2a(z + d)>ui

s.t. 0 ≤ ui ≤ U i, 1>ui = γi.
(4.16)

The optimal response in (4.16) is the optimizer of a linear program, hence it can be set

valued and thus violate Assumption 4.1.2. Following [MCH13, PCGL14], we therefore

consider a quadratic relaxation of (4.16) and we define as optimal charging control ui ?

for each PEV i ∈ Z[1, N ], given the reference z, the solution of

ui ?(z) := arg min
ui∈RT

δ ‖ui − z‖2
+ 2a(z + d)>ui

s.t. 0 ≤ ui ≤ U i, 1>T u
i = γi,

(4.17)

where δ > 0 should be chosen small to approximate the original linear cost. We refer

to [PCGL14, Section V] for numerical evidence of the beneficial effect of choosing a small

δ > 0 for the perturbed cost in (4.17). We here report a theoretical result on the relation

among the Nash equilibria of the game in (4.15) and the relaxed game whose optimal

responses are as in (4.17)

Gδ :=

{
min
ui∈RT

δ ‖ui − σ̄(u)‖2
+ 2a(σ̄(u) + d)>ui

s.t. 0 ≤ ui ≤ U i, 1>T u
i = γi.

(4.18)

Lemma 4.2.4 (Convergence of Nash equilibria for small δ). For any δ < a, the game G
in (4.15) and its quadratic relaxation Gδ in (4.18), have a unique Nash equilibrium which

we denote by ūLP and ūδ, respectively. Moreover, ūδ → ūLP, as δ → 0, and for any ε > 0

there exists δ̄ > 0 such that, for any δ < δ̄, ūδ is an ε-Nash equilibrium for the original

game (4.16).

We assume that the central operator (e.g., the grid operator) aims at designing a

reference z̄ ∈ RT such that the set of optimal responses {ui ?(z̄)} is a Nash equilibrium of

the game Gδ in (4.18). In view of Theorem 4.2.1, a solution to such coordination problem

can be found by selecting as reference a fixed point of the mapping

A(z) := 1
N

∑N
i=1 u

i ?(z)

which represents the average among the optimal charging control inputs {ui ?(z)}Ni=1, for

a given price p(z). According to Theorem 4.2.3, such a fixed point can be found by

applying Algorithm 3. Note that in the PEV case this algorithm can be implemented as

follows. At each iteration k:

1. the grid operator broadcasts a tentative price p(z(k));

2. the PEVs solve (4.17) and compute what would be their optimal charging profile

if the price was indeed p(z(k));
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3. the aggregate charging profile is send back to the grid operator which utilizes it to

update and broadcast a new tentative price p(z(k+1)).

It is important to stress that these algorithmic iterations take place before the charg-

ing interval [0, T ] begins. Consequently, the charging profiles ui ?(z(k)) are never im-

plemented5. Once the algorithm reaches convergence, the grid operator sets the actual

price to p(z̄) and the agents implement ui ?(z̄). Since the cost function in (4.18) can

be rewritten up to constant terms as the quadratic cost function in (4.5) with Q = I,

C = (a− δ)I, ci = ad, qi = δ for all i ∈ Z[1, N ], we can establish conditions on δ under

which a specific fixed point iteration, that in this context represents a price update law,

converges to an AA εN -Nash solution for the constrained charging control problem.

Corollary 4.2.5 (Decentralized PEV coordination). The following iterations and condi-

tions guarantee global convergence to an εN -Nash equilibrium of (4.18) with εN = O( 1
N

).

Picard–Banach (4.12) Krasnoselskij (4.13) Mann (4.14)

1. δ > a/2 X X X
2. δ ≥ a/2 X X
3. a > δ > 0 X∗ X

∗ with λ < 2
1+L2 , where L is the Lipschitz constant of A in HS. �

The use of the Picard–Banach iteration was firstly suggested in [MCH13], where

the authors prove convergence of Algorithm 2 for δ > a/2. For small values of δ, it was

however shown both in [MCH13] and [PCGL14] that the Picard–Banach iteration causes

permanent price oscillations. The previous corollary proves that, on the other hand, the

Mann iteration converges for any value of δ > 0, as empirically observed in [PCGL14],

thus allowing one to approximate the original problem (4.15) to any desired precision.

Using the same numerical values as in [MCH13], Figure 4.2 shows that by using the

Mann iteration, the central operator can successfully coordinate the PEV population

to an AA εN -Nash equilibrium, even for δ < a/2. Actually it appears from Figure 4.2

A) that the aggregate of the charging strategies at the obtained Nash equilibrium is

valley-filling, that is, there exists v > 0 such that for each time t, 1
N

∑N
j=1 u

j?
t (z̄) + dt =

max{dt, v}. Such aggregate behavior is desirable in practice since it has no demand

peaks [MCH13, Section I] and can be shown to be welfare-optimal for the original game

G, in the case when there are no charging upper bounds [MCH13, Lemma 3.1]. Figure 4.2

B) shows some charging trajectories of the AA εN -Nash equilibrium {ui ?(z̄)}Ni=1 obtained

with the Mann iteration. Figure 4.2 A) and B) illustrate the strategies at the Nash

equilibrium, that is, the strategies obtained at convergence of Algorithm 3. Figure 4.2

C), on the other hand, is related to the iterations of the algorithm. Specifically, it shows

that by using the Picard–Banach iteration to update the price Algorithm 3 would oscillate

5We note here that since the charging profiles ui ?(z(k)) at iteration k are not implemented, the agents

have actually no incentive in using the optimal response as strategies update rule, but could instead

cheat and send back to the central
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Figure 4.2: Charging setting

without upper bounds (δ = 10−4).

A) The green line represents the

sum of the average non-PEV de-

mand d added to the aggre-

gate charging profile σ̄(u?(z̄)) cor-

responding to the AA εN -Nash

equilibrium {ui ?(z̄)}Ni=1, obtained

with Algorithm 3 using the Mann

iteration. The obtained profile ap-

pears to be valley-filling.

B) Individual strategies at the

εN -Nash equilibrium {ui ?(z̄)}Ni=1.

The area between the maximum

and minimum charging strategies

is shown in transparent green.

The thin lines are some charging

strategies sampled from the AA

εN -Nash equilibrium; the thick

line is the average of all the charg-

ing strategies.

C) Distance between the reference

zk, obtained by applying Algo-

rithm 3 with the Picard–Banach

iteration (red) or the Mann itera-

tion (blue), as price update map-

pings, and the reference z̄ ob-

tained at convergence of the al-

gorithm with the Mann iteration.

Note that the Picard–Banach it-

eration oscillates indefinitely.

A

C

B
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indefinitely, while by using the Mann it reaches convergence. We refer to [PCGL14] for

further discussions and numerical simulations.

4.3 Network aggregative games: distributed schemes

In this section we consider a generalization of the NAG setup introduced in Section 2.1.2

that allows for multiple rounds of communications. We briefly note here that commu-

nicating ν times over a graph with associated adjacency matrix P is mathematically

equivalent to communicating once over a graph with associated adjacency matrix P ν . In

fact, if the agents have initial state x := [x1; . . . ;xN ], after one round of communications

the vector of neighbors aggregate states is σ1 := [σ1
1; . . . ;σN1 ] = Px, after two rounds it is

σ2 := Pσ1 = P 2x and in general the vector of neighbors aggregate states after ν rounds

of communications is σν := P νx. Practically, however, communicating ν times over the

network P is more convenient then communicating once over P ν since in the latter case

the agents would need to exchange information with a larger subset of the population

(actually all the agents up to ν hops away in the graph P ). In the following we denote

by [P ]ij = Pij the element in position (i, j) of the matrix P and by P ν
ij := [P ν ]ij the

element in position (i, j) of the matrix P ν .

To extended the NAG setup to multiple rounds of communications, we assume that

each agent i aims at minimizing a cost function J i (xi, σiν) that depends on its own

strategy xi and on the aggregate quantity σiν(x) :=
∑N

j=1 P
ν
ijx

j which is obtained by

communicating and averaging the strategies of its neighbors N i := {j 6= i | Pij > 0}
a number ν of times, a priori fixed. In the following, we reserve special attention to

the cases: ν = 1 (typical of standard NAGs) and (ii) ν → ∞ (used in the next section

to approximate AAGs). Formally, each agent i ∈ Z[1, N ] aims at computing its best

response to the neighbors’ aggregate state σiν

xibr(x
−i) := arg min

xi∈X i
J i
(
xi, σiν(x)

)
(4.19)

= arg min
xi∈X i

J i
(
xi, P ν

iix
i +
∑N

j 6=i P
ν
ijx

j
)
.

The definition of Nash equilibrium can be specialized to NAGs, with ν communications,

as follows.

Definition 4.2 (Network aggregative (NA) Nash equilibrium with ν communications).

Given N cost functions {J i : Rn×Rn → R}Ni=1, a weighted adjacency matrix P ∈ RN×N ,

a fixed number of communications ν ∈ N and ε > 0, a set of strategies {x̄i ∈ X i}Ni=1 is a

NA ε-Nash equilibrium for (4.19) if, for all i ∈ Z[1, N ], it holds

J i(x̄i, σiν(x̄)) = J i
(
x̄i,
∑N

j=1 P
ν
ijx̄

j
)
≤min
xi∈X i

J i
(
xi, P ν

iix
i +
∑N

j 6=i P
ν
ijx̄

j
)

+ ε.

If the above inequality holds for ε = 0 then {x̄i}Ni=1 is an NA Nash equilibrium.
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4.3.1 Structural assumptions and communication requirements

We assume that the communication network satisfies the following assumption.

Assumption 4.3.1 (Graph property for NAGs). For the a priori fixed number ν ∈ N
of communications and the given population size N , the weighted adjacency matrix P ∈
RN×N is row stochastic and satisfies P ν

ii = 0 for all i ∈ Z[1, N ].

Assumption 4.3.1 is equivalent to the absence of cycles of length ν in the graph

associated with P . In the typical case of single-communication NAGs, that is if ν = 1,

Assumption 4.3.1 is equivalent to the absence of self-loops. Note that, according to this

assumption, xibr(x
−i) = xi ?(σiν(x)), since σiν(x) does not depend on xi.

4.3.2 The extended aggregation mapping (ν fixed)

Consider a game with an a priori fixed number ν of communications. Let z :=
[
z1; . . . ; zN

]
∈ RNn be a vector of (possibly different) references for each agent and define the mapping

x? : RNn → X1×N as

x?(z) :=
[
x1 ?(z1); . . . ;xN ?(zN)

]
∈ RNn, (4.20)

whose components are the optimal responses xi ?(zi) of each agent i to the signal zi, as

defined in (4.2). The mapping x? in (4.20) can be used to define an extended aggregation

mapping Aν that, given a vector z, returns the updated neighbors aggregate states, after

one optimization and ν communication steps. Formally, Aν : RNn → (P ν ⊗ In)X1×N ⊂
RNn is defined as

Aν(z) :=

[
A1
ν(z)

...
ANν (z)

]
:=

 ∑N
j=1 P

ν
1jx

j ?(zj)

...∑N
j=1 P

ν
Njx

j ?(zj)

 = (P ν ⊗ In)x?(z) =: Pνx
?(z). (4.21)

Note that, with respect to the aggregation mappingA(z) defined for AAGs in Section 4.2,

the mapping Aν(z) takes values in RNn instead of Rn. In fact, in NAGs we have N local

references {zi}Ni=1 instead of one reference z which is the same for all players. The next

theorem shows that, nonetheless, the fixed points of the extended aggregation mapping

Aν can be used to find a Nash equilibrium of the NAG game with ν communications,

for any population size N .

Theorem 4.3.1 (NAG Nash equilibria). Under Assumptions 4.1.1(a) and 4.1.2 the

mapping Aν in (4.21) admits at least one fixed point z̄ = Aν(z̄). If also Assumption 4.3.1

holds and z̄ is a fixed point of Aν, then the set of strategies {xi ? (z̄i)}Ni=1, with xi ? as

in (4.2) for all i ∈ Z[1, N ], is an NA Nash equilibrium for (4.19). �
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Note that Theorem 4.3.1 implicitly ensures the existence of at least one Nash equi-

librium for all NAGs satisfying Assumptions 4.1.1, 4.3.1 and 4.1.2 (consistently with

Proposition 2.1.1). If one relaxes Assumption 4.3.1 to P ν
ii = O( 1

N
) for all i ∈ Z[1, N ],

then it is possible to show that the optimal responses to a fixed point are an εN -Nash

equilibrium, with ε = O( 1
N

), following the same procedure as in Theorem 4.2.1.

4.3.3 A class of distributed coordination schemes

Similarly to what was done in Section 4.2 for AAGs, we suggest here a class of update

rules, summarized in Algorithm 4, that aims at reaching an NA Nash equilibrium by find-

ing a fixed point of the extended aggregation mapping (thus exploiting Theorem 4.3.1).

The main difference between Algorithm 3 and Algorithm 4 is that the former requires the

presence of a central operator, that broadcasts the common reference z(k) to the whole

population, while in the latter coordination is achieved in a totally distributed fashion,

see Figure 4.3. Specifically, we assume that at the beginning of step k each agent i has a

local reference vector zi(k), which could for example be its local estimate of the neighbors

aggregate state, and

1. communicates ν1 times to compute a local a priori aggregate

E iν1,0
(z(k)) :=

∑N
j=1 P

ν1
ij z

j
(k), where z(k) = [z1

(k); . . . ; z
N
(k)];

2. computes the optimal response xi(k+1) to E iν1,0
(z(k));

3. communicates ν2 times to compute a local a posteriori aggregate

Aiν1,ν2
(z(k)) :=

∑N
j=1 P

ν2
ij x

j
(k+1);

4. updates the local reference zi by filtering the a posteriori aggregate Aiν1,ν2
(z(k))

with the previous local reference zi(k) through a mapping Φk : Rn × Rn → Rn.

Note that the two subscripts ν1, ν2 in Ai refer to the number of communications exe-

cuted before (ν1) and after (ν2) the optimization step 2. Performing communications

both before and after optimizing allows us to guarantee convergence under more general

conditions than those typically assumed in the literature (see Theorem 4.3.2 in the next

subsection).

Algorithm 4 describes a class of learning dynamics, parameterized by ν1, ν2 and by

the mapping Φk. The simplest dynamics is obtained by setting (ν1, ν2) = (0, ν) and by

using as mapping the Picard–Banach iteration, yielding the update

z(k+1) = ΦP–B
(
z(k),Aν1,ν2

(
z(k)

))
:= Aν1,ν2

(
z(k)

)
. (4.22)

Under these settings and under Assumption 4.3.1, Algorithm 4 coincides with the si-

multaneous best response dynamics in (2.6) for the NAG in (4.19). As mentioned in

Section 2.3, these are the learning dynamics that are obtained when, at every iteration,
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Algorithm 4: NAG: fixed point iterations (distributed)

Initialization. Set k ← 0, choose an initial reference zi(1) ∈ Rn for every agent i,

the mappings {Φk}∞k=1 and ν1, ν2 ∈ Z≥0, such that ν1 + ν2 = ν.

Iterate until convergence. Each agent i:

1) Communicates ν1 times

E i0,0 ← zi(k)

for s = 0 to s = ν1 − 1 do

E is+1,0 ←
∑N

j=1 PijE
j
s,0

end

2) Computes its optimal strategy with respect to E iν1,0

xi(k+1) ← xi ?(E iν1,0) := arg min
xi∈X i

J i(xi, E iν1,0)

3) Communicates ν2 times

Aiν1,0
← xi(k+1)

for s = 0 to s = ν2 − 1 do

Aiν1,s+1 ←
∑N

j=1 PijA
j
ν1,s

end

4) Updates the reference

zi(k+1) ← Φk

(
zi(k),Aiν1,ν2

)
k ← k + 1

strategies’ updatecommunication
(⌫1 times)

communication
(⌫2 times)

references update

{zi
(k+1) = �k(zi

(k), Ai
⌫1,⌫2

)}i=1

A1
⌫1,⌫2

A2
⌫1,⌫2

A3
⌫1,⌫2

A4
⌫1,⌫2

A5
⌫1,⌫2

A6
⌫1,⌫2

A7
⌫1,⌫2

A8
⌫1,⌫2

A9
⌫1,⌫2

9

E1
⌫1,0 E2

⌫1,0

E3
⌫1,0

E4
⌫1,0

E5
⌫1,0

E6
⌫1,0

E7
⌫1,0

E8
⌫1,0

E9
⌫1,0

x1 ?(E1
⌫1,0) x2 ?(E2

⌫1,0)

x3 ?(E3
⌫1,0)

x4 ?(E4
⌫1,0)

x5 ?(E5
⌫1,0)

x6 ?(E6
⌫1,0)

x7 ?(E7
⌫1,0)

x8 ?(E8
⌫1,0)

x9 ?(E9
⌫1,0)

Figure 4.3: Coordination algorithm with local communications only
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all the players synchronously compute their BRs to the current strategies of the neigh-

bors. Conditions under which the BR dynamics are guaranteed to converge are derived

in Theorem 4.3.2 and Lemma 5.1.3. To ensure convergence under weaker assumptions,

we consider again the use of more general fixed point iterations as the Krasnoselskij

iteration

ΦK(z(k),Aν1,ν2

(
z(k)

)
) := (1− λ)z(k) + λAν1,ν2

(
z(k)

)
(4.23)

with λ ∈ (0, 1), and the step-dependent Mann iteration

ΦM
k (z(k),Aν1,ν2(z(k))) := (1− αk)z(k) + αkAν1,ν2(z(k)), (4.24)

where the sequence (αk)
∞
k=1 is such that αk ∈ (0, 1) ∀k ≥ 0, limk→∞ αk = 0 and∑∞

k=1 αk = ∞ (e.g., αk = 1/k), see Section 3.2.2. Note that each agent can compute

the ith component of these mappings knowing only the ith component of its arguments,

therefore the update of z(k) can be performed distributedly (as in point 4 of Algorithm 4).

Global convergence of Algorithm 4

The following result provides conditions on the cost functions and on the network struc-

ture under which the sequence of vectors used to compute the optimal responses,([
E1
ν1,0

(z(k)); . . . ; ENν1,0
(z(k))

])∞
k=1

, (4.25)

in Algorithm 4 converges, as k tends to infinity, to a fixed point of the extended aggre-

gation mapping Aν in (4.21). As a consequence, {xi(k)}Ni=1 converges to the desired Nash

equilibrium configuration, according to Theorem 4.3.1.

Theorem 4.3.2 (Distributed convergence to a fixed point). Under Assumptions 4.1.1(a)

and 4.1.2, the following iterations and conditions guarantee that the sequence in (4.25)

converges, for any initial condition z0 ∈ RNn, to a fixed point of Aν in (4.21)

regularity network (ν1, ν2) ΦP–B in (4.22) ΦK in (4.23) ΦM
k in (4.24)

1. A.4.1.3.(a) ‖P‖ ≤ 1 (0, ν) X X X
2. A.4.1.3.(b) ‖P‖ ≤ 1 (0, ν) X X
3. A.4.1.3.(c) P =P> (ν/2, ν/2) X X X
4. A.4.1.3.(d) P =P> (ν/2, ν/2) X∗ X

∗ = with λ < 2
1+L2 where L is the Lipschitz constant of A ν

2
, ν
2

in HS.

The mapping Aν has a unique fixed point in case 1. �

We note that the condition ‖P‖ ≤ 1 is satisfied by any double stochastic matrix

(thanks to Hölder’s inequality). In particular, it is therefore satisfied if the network is

symmetric (i.e., P = P>).

Remark 4.4 (Rate of Convergence). Under A.4.1.3.(a), using ΦP–B, and A.4.1.3.(d),

using ΦK, Algorithm 4 exhibits geometric convergence (see Lemma 3.2.4 and 3.2.7). �
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4.3.4 An application of NAGs: multidimensional opinion dy-

namics

We consider here the problem of modeling how ideas, innovations or behaviors spread

in a social network [Lor07, MS10, BHT10, MB12, PPTF15]. Opinion dynamics have

been formulated as games in the literature in [GS14] and [EB15]. Here we generalize

these models to the case of constrained opinion sets. Specifically, we assume that each

agent i ∈ Z [1, N ] has a vector xi ∈ [0, 1]n of opinions regarding n ∈ N topics. Each

component xis ∈ [0, 1] represents the opinion of agent i about topic s ∈ Z [1, n], where

0 represents an extremely negative and 1 an extremely positive opinion. We denote by

xi(0) ∈ [0, 1]n the initial opinion of agent i and by θi > 0 its stubborness regarding its

initial opinion. To describe the opinion dynamics, we consider a synchronous repetitive

game where at every iteration k each agent i communicates once (ν = 1) with its

neighbors N i := {j ∈ Z[1, N ] | Pij > 0} and updates its opinion according to the

optimization problem

xibr

(
x−i
)

:= arg min
xi∈X i

N∑
j 6=i

(Pij‖xi − xj‖2)+ θi‖xi − xi(0)‖2

s.t. xi ∈ X i. (4.26)

The cost function in (4.27) comprises two terms: the first one models the influence of

the neighbors to the new opinion of agent i, the second one models the “stubbornness”

of agent i about its initial opinion. Additional constraints on the agents’ opinions across

the n topics, as for example the fact that the opinions regarding two topics should not

differ more than a given threshold, or hard constraints on single topics can be encoded

via the constraint set X i ⊆ [0, 1]n. The agents are assumed to be heterogeneous in the

sense that the stubbornness parameter θi ≥ 0, the constraint set X i and the weights

{Pij}Nj 6=i may be different for every agent. We refer to agents for which θi = 0 and

X i = [0, 1]n as followers and to all the remaining ones as stubborn. We note that (4.27)

can be equivalently reformulated as

xibr

(
x−i
)

:= arg min
xi∈X i

‖xi‖2 − 2
(∑N

j 6=i Pijx
j
)>

xi+ θi‖xi − xi(0)‖2

s.t. xi ∈ X i.

thus it is a network aggregative game with ν = 1. Furthermore, since Pii = 0, Assump-

tion 4.3.1 is met and xibr(x
−i) = xi ?(σi1(x)).

In the absence of constraints, the solution to (4.27) for each topic decouples, hence

one can consider n = 1 without loss of generality, and the BR can be computed explicitly,

leading to the simultaneous BR dynamics

xi(k+1) = xibr(x
−i
(k)) = 1

1+θi

∑
j 6=i Pijx

j
(k) + θi

1+θi
xi(0),
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which is a particular case of the standard Friedkin and Johnsen model [FJ99], with

parameters Λ := diag
(

1
1+θ1

, . . . , 1
1+θN

)
and W := P . For the case in which there is at

least one stubborn agent it is possible to show, with the same argument used in [GS14],

that the simultaneous BR dynamics converge to a Nash equilibrium of the game in (4.27).

If on the other hand, all the agents are followers, one recovers the standard DeGroot

model [DeG74], whose convergence properties have been exhaustively investigated using

consensus theory. In this case, the Nash equilibria coincide with the right eigenvectors

of the matrix P corresponding to the eigenvalue λ = 1. Theorems 4.3.1 and 4.3.2 allow

us to extend the analysis to the multi-dimentional case with stubborn agents and generic

convex constraints.

Corollary 4.3.3 (Distributed opinion dynamics). Suppose that Assumption 4.1.1(a)

holds. The following iterations and conditions guarantee convergence of Algorithm 4,

from any initial configuration, to a Nash equilibrium for (4.27).

cost (∀i) network (ν1, ν2) ΦP–B in (4.22) ΦK in (4.23)

1. θi > 0 ‖P‖ ≤ 1 (0, 1) X X
2. ‖P‖ ≤ 1 (0, 1) X

�

In words, if θi > 0 for all i ∈ Z [1, N ] and ‖P‖ ≤ 1, the simultaneous BR dynamics

(i.e., Algorithm 4 for (ν1, ν2) = (0, 1) by using ΦP–B) converge to the unique Nash

equilibrium. If some followers are present in the population, then a Nash equilibrium

can be reached using an update rule with memory (i.e., Algorithm 4 for (ν1, ν2) = (0, 1)

by using ΦK). We also note that in the first case (i.e. when θi > 0 for all i ∈ Z [1, N ]),

the rate of convergence can be explicitly characterised. In fact, as noted in Remark 4.4,

the simultaneous BR dynamics converge with a geometric rate that depends on the

contraction constant of the extended aggregation mapping. It is easy to see from the

proof of Corollary 4.3.3 that such constant is δ := 1
1+min{θi}Ni=1

< 1. In other words

‖x(k) − x̄‖2 ≤ δk‖x(0) − x̄‖2, where x̄ is the unique Nash equilibrium. Let us define the

time of convergence as T (ε) := min{τ | ‖x(k)−x̄‖∞
‖x(0)−x̄‖∞

≤ ε, ∀k ≥ τ, ∀x(0) ∈ X}. Then we get

‖x(k) − x̄‖∞
‖x(0) − x̄‖∞

≤ Nn
‖x(k) − x̄‖2

‖x(0) − x̄‖2

≤ Nnδk (4.27)

hence
‖x(k)−x̄‖∞
‖x(0)−x̄‖∞

≤ ε if Nnδk ≤ ε or equivalently if k ≥ log(ε)−log(N)−log(n)
log(δ)

. Consequently,

T (ε) ≤ log(ε)−log(N)−log(n)
log(δ)

. If δ is uniformly upper bounded on N (i.e. is θi are uniformily

lower bounded), then the convergence time increases at most with rate O(log(N)). We

note that the upper bound derived with this approach does not depend on the network

topology (as long as ‖P‖ ≤ 1). The investigation of tighter upper bounds that ex-

ploit specific network properties (e.g. the essential spectral radius that appears in the
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Figure 4.4: Average number of iterations (solid line) and 90% confidence intervals

as functions of the population size N for the three different network topologies (top).

The plot on the left refers to a population where only stubborn agents are present and

update their opinion using the BR scheme (ΦP–B), while the plot on the right refers

to a population composed by half stubborn and half follower agents, using the scheme

with memory (ΦK). In each case, 50 different networks and populations were simulated

with initial opinions chosen according to a uniform distribution in [0, 1]2. The stopping

criterion is ‖z(k) − z(k−1)‖∞≤10−5.

convergence rate of opinion dynamics without stubborn agents [OT09]) is left as future

work.

To numerically investigate the performance of the two schemes we consider a case

study where each agent i has n = 2 opinions xi = [xi1, x
i
2]
>

, regarding two different

topics, taking values in X i := {[x1, x2]> | ‖x1 − x2‖2 ≤ 0.3} and is either a follower

or stubborn with θi = 1. Figure 4.4 reports the number of iterations required to reach

convergence as a function of the population size N for two different compositions of

the population and three different network topologies. These simulations show that the

convergence speed depends only mildly on the population size in the case when all the

agents are stubborn, as expected, but also in the mixed population case, suggesting that

our approach is scalable.
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4.4 Average aggregative games: distributed schemes

AAGs can be seen as NAGs over a complete network, so that, σiν(x) = σ̄(x) = 1
N

∑N
j=1 x

j ∈
Rn for all i. Consequently, Algorithm 4 can readily be applied, with P = 1

N
1N1

>
N and

ν = 1, to distributedly steer the population to a Nash equilibrium of the AAG.6 The

drawback is that, to this end, each agent needs to communicate with all the other agents

in the population, which is not feasible in large-population games. If there is a central

operator, that can compute and broadcast the average, then one can apply the coordi-

nation algorithm already suggested in Section 4.2. Unfortunately, solutions relaying on

a central operator may not always be implementable.

The main result of this section is to show how Algorithm 4 can additionally be

used to coordinate the agents strategies to an almost Nash equilibrium in large-scale

AAGs distributedly, that is by means of local communications over a sparse network

P 6= 1
N
1N1

>
N , by performing a large enough number ν of communications in between

two strategies updates.

4.4.1 Structural assumptions and communication requirements

To apply Algorithm 4 to AAGs we need to ensure that limν→∞ σ
i
ν(x) = σ̄(x) = 1

N

∑N
j=1 x

j.

In other words, the network P should be such that, by iteratively communicating, the

agents asymptotically reach consensus on the population average. To this aim we intro-

duce the following assumption.

Assumption 4.4.1 (Asymptotic average consensus). For all population sizes N , the

weighted adjacency matrix P , which is here denoted by P (N) to stress its dependence

on the population size N , satisfies limν→∞ P
ν(N) = 1

N
1N1

>
N . Equivalently, P (N) is

primitive and doubly stochastic [OSAFM07].

4.4.2 The extended aggregation mapping (ν →∞)

We start by analyzing the relation between the extended aggregation mapping Aν

in (4.21), obtained via ν communications over the local network P , and the extended

aggregation mapping A : RNn → ( 1
N
1N1

>
N ⊗ In)X1×N ,

A(z) :=
(

1
N
1N1

>
N ⊗ In

)
x?(z) =: I x?(z), (4.28)

that arises from a complete network in AAGs.

6Note that rigorously speaking AAGs do not satisfy Assumption 4.3.1, however one can consider the

equivalent cost functions Ĵ i(xi, σ−i(x)) = J i(xi, σ(x)), where σ−i(x) = 1
N

∑
j 6=i x

j and then study the

regularity properties of the game with costs Ĵ i and matrix P = 1
N (1N1

>
N − IN ).
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Lemma 4.4.1 (Convergence of aggregation mappings). Under Assumptions 4.1.1 and

4.1.2, the mappings A in (4.28) and Aν in (4.21), for all ν ∈ N, are continuous and

have at least one fixed point. If additionally Assumption 4.4.1 holds, then

limν→∞ supz∈RNn ‖Aν(z)−A(z)‖ = 0. �

This lemma allows us to prove that the optimal responses to the fixed point of Aν

in (4.21), which can be computed distributedly via Algorithm 4, are an almost Nash

equilibrium for the AAG.

Theorem 4.4.2 (AAG Nash equilibria). Suppose that Assumptions 4.1.1, 4.1.2, 4.1.4

and 4.4.1 hold. For all ε > 0 there exists N̄ such that: for all N > N̄ , there exists ν̄ > 0

such that, for all ν ≥ ν̄, if z̄ is a fixed point of Aν in (4.21), then the set {xi ? (z̄i)}Ni=1,

with xi ? as in (4.2), is an ε-Nash equilibrium for the AAG in (4.9). �

We note that, contrary to the case of NAGs, where the fixed points of Aν lead, under

Assumption 4.3.1, to a Nash equilibrium for finite ν and finite N , in the case of AAGs

a Nash equilibrium is recovered only asymptotically. This is due to the fact that: i)

the agents are required to “almost reach consensus” on the population average (i.e., a

number ν large enough of consensus steps should be performed) and ii) the population

average depends on the strategy of agent i with contribution proportional to 1/N (hence,

to be negligible, N should be large enough). However, for any desired ε > 0, the proof of

Theorem 4.4.2 allows one to derive lower bounds on N and ν ensuring that {xi ? (z̄i)}Ni=1 is

an ε-Nash equilibrium. We note that the minimum number of required communications

ν̄ can be computed in a distributed fashion [PGGL15b, Appendix C]. For symmetric net-

works this dependence can be further specified in terms of the spectral properties of P .

Assumption 4.4.2 (Spectral properties). For all population sizes N the weighted ad-

jacency matrix P = P (N) is symmetric. Moreover, there exists µ ∈ [0, 1) such that

µN := maxλ∈Λ(P (N))\{1}{|λ|} ≤ µ for all N .

Corollary 4.4.3 (ε-convergence rate). Suppose that Assumptions 4.1.1, 4.1.2, 4.1.4,

4.4.1 and 4.4.2 hold. If z̄ is a fixed point of Aν in (4.21), then the set of strategies

{xi ? (z̄i)}Ni=1, with xi ? as in (4.2) for all i ∈ Z[1, N ], is an ε-Nash equilibrium for (4.9),

with ε = O( 1
N

+
√
Nµν). �

In other words, Assumption 4.4.2 allows us to derive an upper bound on ε that is

composed by two terms: one that decreases linearly in N , as for the solution with central

coordinator (Section 4.2), and one that, for any fixed N , decreases exponentially fast

with the number of communication steps ν. Assumption 4.4.2 is satisfied, e.g., by the

degree-normalized adjacency matrices of any family of d-regular undirected ε-expander

graphs [HLW06, Definition 2.2 and Example 2.2]. In fact µN ≤ 1 − ε2

2d2 =: µ [HLW06,

Theorem 2.4], [Sin92, Theorem 2].
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4.4.3 An application of AAGs: hierarchical demand-response

Consider a population of N loads whose electricity consumption ui = [ui1, . . . , u
i
T ] ∈ RT

over the horizon T = Z [0, T − 1] is scheduled according to the demand-response scheme

ui ?(σ̄) := arg min
ui∈RT

∑
t∈T

(
ρi
∥∥uit − ûit∥∥2

+ p(σ̄t)u
i
t

)
(4.29)

s.t. sit+1 = aisit + γiuit ∀t ∈ T
[si(ui);ui] ∈ (S i × Bi) ∩Ri,

where sit = sit(u
i) is the state of the load at time t (e.g., its temperature in case of heat-

ing ventilation air conditioning systems [MHS14] and thermostatically controlled loads

[GGPL15] or its state of charge in case of plug-in electric vehicles [MCH13, PCGL14]),

si0 ∈ R is the given initial state, ai, γi ∈ R\{0} are parameters modeling the dynamics

and the efficiency of load i, σ̄t = 1
N

∑N
i=1 u

i
t ∈ R is the population average energy demand

at time t, σ̄ := [σ̄0; . . . ; σ̄T−1] ∈ RT and ûi ∈ RT is the preferred schedule of agent i.

The energy consumption ui and state vector si(ui) are constrained by the personalized

sets Bi ⊂ RT and S i ⊂ RT , respectively, and by the joint constraint set Ri ⊂ R2T .

The first term in the cost function of (4.29) models the curtailment cost that each agent

encounters for deviating from its nominal energy schedule ûit, according to the Taguchi

loss function [TCW04], ρi > 0 being a constant weighting parameter. The second term

models the demand-response mechanism: the energy price varies according to a price

function p(σ̄t) that is assumed to be an affine increasing function of the total energy

demand as in [MHS14, Equation (15)] and Section 4.2.4,

p(σ̄t) := λσ̄t + p0, λ > 0. (4.30)

Approaches to find a Nash equilibrium iteratively via a central coordinator have been

proposed in [MCH13, PCGL14, GPCL16, MHS14]. Here we note that (4.29) can be

rewritten as the AAG in (4.9) with xi = ui and cost function as in (4.5) with qi = ρi,

Q = IT , C = λ
2
IT , c = p0

2
− θûi. Note that, since si(ui) is an affine function of the input

ui, the constraint [si(ui);ui] ∈ (S i×Bi)∩Ri can be rewritten as a unique constraint on

the input, ui ∈ U i, that is convex and compact if Bi,S i,Ri are convex and compact.

Corollary 4.4.4 (Distributed demand-response). Suppose that Assumptions 4.1.1, 4.1.4

and 4.4.1 hold, and let p(σ̄t) be as in (4.30). The following iterations and conditions

guarantee convergence of the strategies in Algorithm 4, from any initial point, to an

ε(N,ν)-Nash equilibrium for (4.29) with ε(N,ν) = O(‖P ν − 1
N
1N1

>
N‖∞ + 1

N
).

cost (∀i) network (ν1, ν2) ΦP–B in (4.22) ΦK in (4.23) ΦM
k in (4.24)

1. ρi > λ/2 ‖P‖ ≤ 1 (0, ν) X X X
2. ρi ≥ λ/2 ‖P‖ ≤ 1 (0, ν) X X
3. P =P> (ν/2, ν/2) X∗ X

∗ = with λ < 2
1+L2 where L is the Lipschitz constant of A ν

2
, ν
2

in HS. �
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The model given in (4.29) can be used for example to describe demand-response

methods for heating ventilation air conditioning (HVAC) systems in smart buildings,

as suggested in [MHS14], by selecting ρi = θγ2
i , where θ > 0 is the cost coefficient of

the Taguchi loss function and γi > 0 specifies the thermal characteristic of the HVAC

system. In [MHS14, Theorems 1, 2] it is shown that, for N > 3, if γi = γ > 0 for all i,

U i = [uimin, u
i
max] ⊂ RT with uimin, u

i
max ∈ RT , and λ ≤ 2θγ2

N−3
, then the Nash equilibrium is

unique and can be computed using a control algorithm involving a central coordinator.

Corollary 4.4.4 proves that, Algorithm 4, on the other hand, can be used to find an

ε-Nash equilibrium in a distributed fashion, under arbitrary convex constraints ui ∈ U i
and for all values of λ.
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Figure 4.5: Comparison between the approach with central operator and the distributed

hierarchical approach with M = 5 and ν = 2, 10, 50. The matrix PM is the adjacency

matrix corresponding to a symmetric ring, so that [PM ]ij = 1
2 if j = i + 1 or j = i − 1

and [PM ]ij = 0 otherwise, with the convention N + 1 = −1 = 1. The plot shows the av-

erage cost improvement εN := maxi∈{1,...,N} J̄
i − J i ?, where J̄ i := J

(
ūi, 1

N

∑N
j=1 ū

j
)

and

J i ? := minui∈X i J
(
ui, 1

N

(
ui +

∑N
j 6=i ū

j
))

, that an agent can achieve by unilateral devia-

tions from the set of strategies {ūj}Nj=1 obtained at convergence of the algorithm. We set

λ = 2 and θγ2
i = 0.1 for all i. We consider an horizon of T = 24 hrs and we assume

a baseline energy consumption σ0 as illustrated in [MCH13, Figure 1]. We set the base-

line energy price to p0 := λσ0. The average is computed over 10 different populations

with prescheduled energy consumption ûi uniformly sampled in [0, 1]T and constraint set

U i := {u ∈ RT≥0 |
∑T

t=1 u
i
t =

∑T
t=1 û

i
t, u

i
t = 0 if t /∈

[
T istart, T

i
end

]
}, with T istart uniformly sampled

in {1, T}, T iend uniformly sampled in {T istart + 1, T}. To guarantee convergence, we use ΦM
k and

ν1 = ν2 = ν
2 . The stopping criterion is ‖Aν(Aν1,0(z(k)))−Aν1,0(z(k))‖∞ ≤ 10−3.
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As a particular case of network we consider a hierarchical communication structure

that models the fact that groups of buildings are managed by the same company. For

simplicity, let us assume that there are M companies and each one manages B buildings,

for a total of N = MB buildings. At every communication step the managers compute

the aggregate power demand of their buildings, then communicate among each other

using a network PM ∈ RM×M and finally broadcast the price signal to their buildings.

It is easy to prove that the corresponding network P = PM ⊗ 1
B
1B1

>
B satisfies Assump-

tion 4.4.1, ‖P‖2 ≤ 1 and P = P> if and only if PM does. In Figure 4.5 we report the

values of ε obtained at convergence using Algorithm 4 with the mapping ΦM and differ-

ent number of communications, and we compare it with the performance of the centrally

coordinated control scheme described in Section 4.2, Algorithm 3. We empirically verify

that ε decreases when ν increases, as guaranteed by Theorem 4.4.2.

We conclude this section by noting that the model given in (4.29) can be also used,

by setting ρi sufficiently small, to compute the optimal charging strategy for large popu-

lations of plug-in electrical vehicles (Section 4.2.4). Under the same conditions of Corol-

lary 4.4.4 (point 3.), Algorithm 4 allows one to recover an ε-Nash equilibrium using a

symmetric network P instead of the central coordinator.

4.5 Appendix

4.5.1 Proofs of the results stated in Section 4.1

Proof of Lemma 4.1.1 (Optimal response for quadratic cost)

The closed-form expression of the (unique) unconstrained optimizer x̂i ?(z) directly fol-

lows from the equation 0 = ∂
∂xi
J i(xi, zi) = 2qiQx

i + 2 (Czi + ci). Then the following

equalities hold:

ΠQ
X i(x̂

i ?(z)) = arg min
xi∈X i

∥∥xi − x̂i ?(z)
∥∥2

Q

= arg min
xi∈X i

[
xi + (qiQ)−1

(
Czi + ci

)]>
Q ·
[
xi + (qiQ)−1

(
Czi + ci

)]
= arg min

xi∈X i
xi
>
Qxi + 2q−1

i xi
> (
Czi + ci

)
= arg min

xi∈X i
xi
>
qiQx

i + 2
(
Czi + ci

)>
xi

= xi ?(zi).

Proof of Lemma 4.1.2 (Sufficient conditions for the convex quadratic case)

The cost function J i(xi, zi) is C1 and is defined in the compact set X i × X̄ , therefore it

is Lipschitz. One can prove that LJi ≤ 2(qi‖Q‖D̄ + ‖C‖D̄ + ‖c‖) ≤ 2(maxi{qi}‖Q‖D̄ +

‖C‖D̄ + ‖c‖) =: L̄J, where D̄ := maxx∈X̄ ‖x‖. Hence Assumption 4.1.1(b) holds. The

mapping x̂i ? in (4.6) is a single valued affine mapping. Consequently, it is Lipschitz
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with constant Lxi = 1
qi
‖Q−1C‖Q ≤ 1

mini{qi}‖Q
−1C‖Q =: L̄x in HQ. The projection

operator ΠQ
X i has Lipschitz constant 1 in HQ [BC10, Proposition 4.8], therefore the

compositions xi ?(·) = ΠQ
X i(x̂

i ?(·)) in (4.7) are uniformly Lipschitz with constant L̄x and

Assumption 4.1.2 holds.

Statement 1. and 2. It follows from Lemma 3.1.4 that the unconstrained optimizer

x̂i ? in (4.6) is a CON in HQ if and only if (−(qiQ)−1C)
>
Q (−(qiQ)−1C) − Q ≺ 0 or

equivalently C>(qiQ)−1C − qiQ ≺ 0. By Shur complement this is equivalent to Mi � 0.

The proof that x̂i ? in (4.6) is NEX in HQ if and only if Mi � 0 is analogous. Since ΠQ
X i

is FNE [BC10, Proposition 4.8] and hence NEX in HQ it follows that the composition

xi ?(·) = ΠQ
X i(x̂

i ?(·)) is a CON in HQ if x̂i ? is a CON in HQ, NEX in HQ if x̂i ? is NEX

in HQ.

Statement 3. and 4. The projection operator ΠQ
X i is FNE in HQ and xi ?(·) =

ΠQ
X i(x̂

i ?(·)) therefore, by Lemma 3.1.1, for all v, w we have

0 ≤ ‖xi ?(v)− xi ?(w)‖2
Q ≤ (xi ?(v)− xi ?(w))>Q(x̂i ?(v)− x̂i ?(w))

= −(xi ?(v)− xi ?(w))>Q(qiQ)−1C(v − w)

= − 1

qi

(
xi ?(v)− xi ?(w)

)>
C (v − w) .

And consequently

0 ≤ ‖xi ?(v)− xi ?(w)‖2
qiQ
≤ −

(
xi ?(v)− xi ?(w)

)>
C (v − w) (4.31)

If C = C> and 0 ≺ −C � qiQ, then ‖xi ?(v)− xi ?(w)‖2
−C ≤ ‖xi ?(v)− xi ?(w)‖2

qiQ
for

all v, w ∈ Rn. Therefore, it follows from (4.31) that∥∥xi ?(v)− xi ?(w)
∥∥2

−C ≤
(
xi ?(v)− xi ?(w)

)>
(−C) (v − w)

for all v, w ∈ Rn, which is equivalent to xi ? being FNE in H−C by Lemma 3.1.1.

On the other hand, from (4.31) we get

0 ≤
(
xi ?(w)− xi ?(v)

)>
C (v − w)

for all v, w, which for C = C> � 0 is equivalent to −xi ?(·) being MON in HC by

Definition 3.2.

Finally, note that if q ≤ qi ≤ q̄ for all population size N and for all agents i ∈ Z[1, N ],

then L̄J(N) = 2(maxi{qi}‖Q‖D̄ + ‖C‖D̄ + ‖c‖) ≤ 2(q̄‖Q‖D + ‖C‖D + ‖c‖) =: LJ and

L̄x(N) = 1
mini{qi}‖Q

−1C‖Q ≤ 1
q
‖Q−1C‖Q =: Lx, where D = maxx∈X ‖x‖. Therefore,

Assumption 4.1.4.(b) holds.

�
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4.5.2 Proofs of the results stated in Section 4.2

Proof of Theorem 4.2.1 (AAG Nash equilibrium)

By Assumptions 4.1.1 and 4.1.4 there exist a Lipschitz constant LJ > 0, such that for all

population size N and all i ∈ Z[1, N ], |J i(v, z1)− J i(w, z2)| ≤ LJ (‖v − w‖+ ‖z1 − z2‖)
for all v, w ∈ X i, z1, z2 ∈ X̄ (see Lemma 3.1.3). Let us also define D := maxx∈X ‖x‖,
where X is as defined in Assumption 4.1.4.

We now consider an arbitrary fixed point z̄ = 1
N

∑N
j=1 x

j ?(z̄) =: 1
N

∑N
j=1 x̄

j of the

aggregation mapping A in (4.11). We show that an arbitrary agent i can improve its

cost only by an amount ε = εN = O (1/N) if we fix the strategies {x̄j := xj ?(z̄)}Nj 6=i of

all other agents. By definition of optimal response, since x̄i := xi ?(z̄), we have

J i(x̄i, z̄) ≤ J i(xi, z̄) for all xi ∈ X i.

By substituting the equivalence z̄ = 1
N

∑N
j=1 x̄

j we get that, for all xi ∈ X i,

J i(x̄i, 1
N

∑N
j=1 x̄

j) ≤ J i(xi, 1
N

∑N
j=1 x̄

j)

= J i(xi, 1
N (xi +

∑N
j 6=i x̄

j)) +
[
J i(xi, 1

N

∑N
j=1 x̄

j)− J i(xi, 1
N (xi +

∑N
j 6=i x̄

j))
]

≤ J i(xi, 1
N (xi +

∑N
j 6=i x̄

j)) + LJ‖ 1
N

∑N
j=1 x̄

j − 1
N (xi +

∑N
j 6=i x̄

j)‖
= J i(xi, 1

N (xi +
∑N

j 6=i x̄
j)) + LJ

N ‖x̄i − xi‖ ≤ J i(xi, 1
N (xi +

∑N
j 6=i x̄

j) + 2LJD
N .

Since this holds for all i ∈ Z[1, N ], the set {x̄i}Ni=1 is an εN -Nash equilibrium with

εN := 2LJD
N

. Finally, for all ε > 0 there exists N̄ε := 2LJD
ε

such that the cost of any agent

i at a fixed point z̄ is ε-close to its optimal cost, for all population sizes N ≥ N̄ε. �

Proof of Proposition 4.2.2 (Regularity of the aggregation mapping)

The mapping A in (4.11) is a convex combination of the mappings {xi ?}Ni=1, that are

uniformly Lipschitz by Assumption 4.1.2, therefore A is Lipschitz continuous as well.

Moreover, A is compact valued on the convex set 1
N

∑N
i=1X i, thus it has at least one fixed

point by Lemma 3.2.1. The first three statements follow from the fact that the convex

combination of CON/NEX/FNE mappings is CON/NEX/FNE itself. For the fourth

statement, note that the convex combination of MON mappings is MON. Therefore

−A(z) = 1
N

∑N
i=1−xi ?(z) is MON. By Lemma 3.1.2, we then get that Id−A is SMON

and consequently A is SPC by Definition 3.2 with ε = 1. �

Proof of Theorem 4.2.3 (Decentralized convergence to a fixed point)

Remember that an iteration of the algorithm is described by z(k+1) = Φk(z(k),A(z(k))).

From Proposition 4.2.2, if Assumption 4.1.3.(a) holds, then A in (4.11) is a CON and if
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Assumption 4.1.3.(c) holds, then A is FNE. In both cases by Lemma 3.2.4 and 3.2.5, the

Picard–Banach iteration converges to a fixed point of A, which is unique if A is a CON.

For the other two fixed point iterations, we need to consider A in (4.11) as a mapping

from a compact convex set to itself. This can be assumed without loss of generality (that

is, up to discarding the initial condition z(0)) since A takes values in 1
N

∑N
i=1X i, which

is a linear transformation of the compact convex sets {X i}Ni=1, as hence compact and

convex as well [Roc70, Section 3, Theorem 3.1].

If Assumption 4.1.3.(a) or 4.1.3.(b) or 4.1.3.(c) holds then A is NEX from Proposi-

tion 4.2.2 (see also Figure 3.1). If Assumption 4.1.3.(d) holds then A is SPC and Lip-

schitz. In both cases, the Krasnoselskij iteration converges to a fixed point of A by

Lemma 3.2.6 and 3.2.7 and the Mann iteration converges by Lemma 3.2.9 and 3.2.8. �

Proof of Lemma 4.2.4 (Convergence of Nash equilibria for small δ)

To prove this lemma we use an equivalent characterization of Nash equilibria in terms of

variational inequalities as discussed in the following Section 5.1 and Proposition 5.1.1.

Specifically, ūδ is a Nash equilibrium if and only if it solves VI(U1×N , fδ), where U1×N =

U1 × . . .× UN , U i := {ui ∈ RT | 0 ≤ ui ≤ U i,1>T u
i = γi}, fδ(u) = Fδu+ f̃ ,

Fδ =
2

N

[
(a+Nδ − δ)IN + (a− δ + δ/N)1N1

>
N

]
⊗ In, f̃ = 2a

[
d
...
d

]
,

and ūLP is a Nash equilibrium if and only if it solves the VI(U1×N , f), where f(u) = Fu+f̃

with F := F[δ=0]. For δ < a, one can show that both F and Fδ are positive definite

matrices. Therefore, by Lemma 3.1.4, the operators f(u) and fδ(u) are SMON (i.e.,

Fδ, F � 0) and the VIs above have a unique solution (Proposition 3.3.7), proving the

uniqueness of the Nash equilibria. The convergence result follows from [Mos69, Theorem

A (b)] leveraging on the fact that the two VIs are defined over the same convex and

compact set U1×N , the mappings fδ(u) are monotone, continuous and uniformly bounded

in U1×N for δ ∈ [0, a) and the operator fδ(u)→ f(u) uniformly on U1×N as δ → 0. The

fact that ūδ is a ε-Nash equilibrium for the original game (4.15) for δ < δ̄ follows from

JLP(ūiδ, ū
−i
δ ) ≤ Jδ(ū

i
δ, ū
−i
δ ) ≤ Jδ(u

i, ū−iδ ) ≤ JLP(ui, ū−iδ ) + δD, ∀ui ∈ U i

where D := max{‖ui− z‖2 | ui ∈ U i, z ∈ 1
N

∑N
j=1 U j, i ∈ Z[1, N ]} by imposing δ̄ < ε

D
. �

Proof of Corollary 4.2.5 (Decentralized PEV coordination)

Assumptions 4.1.1, 4.1.2, 4.1.4 are met by the problem definition and Lemma 4.1.2. We

consider the matrix inequality (4.8) in Lemma 4.1.2 with Q = I, qi = δ and C = (a−δ)I,

δ, a > 0 and note that Mi = M for all i ∈ Z[1, N ]. The condition

M =
[

δI (δ−a)I
(δ−a)I δI

]
� 0,
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is equivalent, by Schur complement [BV04, Section A.5.5], to δ − (δ − a)δ−1(δ − a) >

0⇔ δ2− (δ−a)2 > 0⇔ δ > a/2. This implies that if δ > a/2 then Assumption 4.1.3.(a)

is satisfied in HI . We now consider the case of δ = a/2. The sufficient condition of

Lemma 4.1.2 for Assumption 4.1.3.(b), is that a
2

[
I −I
−I I

]
= a

2

[
1 −1
−1 1

]
⊗ I < 0, which is

satisfied because a > 0 and
[

1 −1
−1 1

]
⊗I has non-negative eigenvalues. We finally consider

the case δ ∈ (0, a/2). From the sufficient condition in Lemma 4.1.2, we get that xi ? is

SPC in H(a−δ)I if δ ∈ (0, a) and consequently Assumption 4.1.3.(d) is met. The result

then follows from Theorem 4.2.1 and 4.2.3. �

4.5.3 Proofs of the results stated in Section 4.3

Proof of Theorem 4.3.1 (NAG Nash equilibria)

Since, by Assumption 4.1.2, xi ?(zi) in (4.2) is a continuous mapping in zi, the mapping

x?(z) in (4.20) is continuous in z. Consequently, the mapping Aν(z) = Pνx
?(z) is con-

tinuous. By Assumption 4.1.1(a), the set PνX1×N is compact and convex. Therefore, by

Lemma 3.2.1 the mapping Aν admits at least one fixed point. Consider now an arbitrary

fixed point z̄ =
[
z̄1; . . . ; z̄N

]
∈ RNn of the aggregation mapping Aν in (4.21), that is

z̄i =
∑N

j=1 P
ν
ijx

j ?(z̄j). According to Definition 4.2, the set of strategies {x̄i := xi ?(z̄i)}Ni=1

is a Nash equilibrium if no agent i, given the strategies {x̄j}Nj 6=i of all the other agents,

can improve its cost, that is x̄i = arg minxi∈X i J
i
(
xi, P ν

iix
i +
∑N

j 6=i P
ν
ijx̄

j
)
. By definition

of fixed point and using the fact that P ν
ii = 0, for all i

x̄i= xi ?(z̄i)= arg min
xi∈X i

J i(xi, z̄i)=arg min
xi∈X i

J i(xi,
∑N

j=1P
ν
ijx̄

j)

=arg minxi∈X i J
i(xi, P ν

iix
i +
∑N

j 6=i P
ν
ijx̄

j).

�

Proof of Theorem 4.3.2 (Distributed convergence to a fixed point)

We start with some preliminary results.

Lemma 4.5.1. (Regularity of the extended optimizer) Let x? be the extended mapping

in (4.20). If A. 4.1.3.(a)/ A. 4.1.3.(b)/ A. 4.1.3.(c)/ A. 4.1.3.(d) holds, then the map-

ping x? is a CON/NEX/FNE/AMON in HIN⊗S, respectively.

Proof. a) For all i ∈ Z[1, N ], by A. 4.1.3.(a) the mapping xi ? is a CON in HS, with

some rate δi ∈ [0, 1). Therefore, for any r, s ∈ RNn we have ‖x?(r)−x?(s)‖2
IN⊗S =

‖
[
x1 ?(r1)−x1 ?(s1); . . . ;xN ?(rN)−xN ?(sN)

]
‖2
IN⊗S

= ‖x1 ?(r1)−x1 ?(s1)‖2
S+. . .+‖xN ?(rN)−xN ?(sN)‖2

S ≤ δ2
1‖r1−s1‖2

S+. . .+δ2
N‖rN−

sN‖2
S ≤ maxi∈Z[1,N ] δ

2
i ‖r − s‖2

IN⊗S. Note that it holds δ := maxi∈Z[1,N ] δi < 1 since

N is finite.
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b) As in the previous point, with δi = 1 for all i.

c) If A. 4.1.3.(c) holds then, the mappings xi ? are FNE in HS. Therefore, by

Lemma 3.1.1, for all r, s ∈ RNn we have ‖x?(r) − x?(s)‖2
IN⊗S =

∑N
i=1 ‖xi ?(ri) −

xi ?(si)‖2
S ≤

∑N
i=1(ri− si)>S(xi ?(ri)− xi ?(si)) = (r− s)>(IN ⊗S)(x?(r)−x?(s)).

d) If A. 4.1.3.(d) holds, the mappings −xi ? are MON in HS. Therefore, for any

r, s ∈ RNn we have

(−x?(r) + x?(s))> (IN ⊗ S) (r − s) =
∑N

i=1 (−xi ?(ri) + xi ?(si))
>
S (ri − si) ≥ 0.

Lemma 4.5.2. Consider P ∈ RN×N , ν ∈ N and Pν = P ν ⊗ In. For any S ∈ Rn×n , S �
0, let S := IN ⊗ S. If ‖P‖ ≤ 1, then ‖Pν‖S ≤ 1.

Proof. The condition ‖P‖ ≤ 1 implies ‖P ν‖ ≤ ‖P‖ν ≤ 1. By Lemma 3.1.4 this implies(
P ν>P ν − IN

)
4 0. Moreover, by Lemma 3.1.4, ‖Pν‖S ≤ 1 ⇔ Pν

>SPν − S 4 0 ⇔
(P ν ⊗ In)> (IN ⊗ S) (P ν ⊗ In)− IN ⊗ S 4 0⇔

(
P ν> ⊗ I>n

)
(IN ⊗ S) (P ν ⊗ In)− IN ⊗

S 4 0 ⇔
(
P ν>INP

ν ⊗ I>n SIn
)
− IN ⊗ S 4 0 ⇔

(
P ν>P ν

)
⊗ S − IN ⊗ S 4 0 ⇔(

P ν>P ν − IN
)
⊗ S 4 0. Since S � 0 and

(
P ν>P ν − IN

)
4 0, by the properties of the

Kronecker product we conclude that
(
P ν>P ν − IN

)
⊗ S 4 0. Finally, by the previous

equivalence, we have ‖Pν‖S ≤ 1.

Note that a single iteration of Algorithm 4 updates the signal z(k) =
[
z1

(k); . . . ; z
N
(k)

]
according to the mapping

Aν1,ν2(z) := Pν2
x?(Pν1

z) (4.32)

and A0,ν ≡ Aν . The following proposition characterizes the regularity properties of

Aν1,ν2 for different choices of ν1, ν2.

Proposition 4.5.3. (Regularity of the update mapping) The following statements hold.

1. If A. 4.1.3.(a) holds and ‖P‖ ≤ 1, then the mapping A0,ν ≡ Aν in (4.21) is a

CON in HIN⊗S;

2. f A. 4.1.3.(b) holds and ‖P‖ ≤ 1, then the mapping A0,ν ≡ Aν in (4.21) is NEX

in HIN⊗S;

3. If A. 4.1.3.(c) holds, ν ∈ 2N and P = P>, then the mapping A ν
2
, ν
2

in (4.32) is

FNE in HIN⊗S;

4. If A. 4.1.3.(d) holds, ν ∈ 2N and P = P>, then the mapping A ν
2
, ν
2

in (4.32) is SPC

inHIN⊗S. �

Proof. Let S := IN ⊗ S.
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1. By Lemma 4.5.1, x? is a CON and, by Lemmas 3.1.4 and 4.5.2, Pν is NEX. Hence

the mapping Aν = Pνx
?, composition of a CON mapping and a NEX one, is a

CON in HS.

2. Analogous to the proof of point 1, with x? NE.

3. By Lemma 4.5.1, x? is FNE in HS. Since P is by construction a row-stochastic

matrix and P = P>, P is a doubly stochastic matrix. Consequently ‖P‖1 =

‖P‖∞ = 1. From Hölder’s inequality, we have ‖P‖ ≤
√
‖P‖1 · ‖P‖∞ = 1. There-

fore, from Lemma 4.5.2, ‖P ν
2
‖S ≤ 1. Moreover, P = P> implies P ν

2
= P ν

2

> and

P ν
2
S = (P

ν
2 ⊗ In)(IN ⊗ S) = (P

ν
2 ⊗ S) = (IN ⊗ S)(P

ν
2 ⊗ In) = SP ν

2
. Therefore

for any r, s ∈ RNn, we have

‖A ν
2
, ν
2
(r)−A ν

2
, ν
2
(s)‖2

S = ‖P ν
2
(x?(P ν

2
(r)))−P ν

2
(x?(P ν

2
(s)))‖2

S (4.33)

≤ ‖P ν
2
‖2
S ‖x?(P ν

2
(r))− x?(P ν

2
(s))‖2

S ≤ ‖x?(P ν
2
(r))− x?(P ν

2
(s))‖2

S

≤
(
P ν

2
r −P ν

2
s
)>S (x?(P ν

2
(r))− x?(P ν

2
(s))

)
= (r − s)>P ν

2

>S
(
x?(P ν

2
(r))− x?(P ν

2
(s))

)
= (r − s)>SP ν

2

(
x?(P ν

2
(r))− x?(P ν

2
(s))

)
= (r − s)>S

(
A ν

2
, ν
2
(r)−A ν

2
, ν
2
(s)
)
,

where the third inequality derives from x? being FNE. The inequality in (4.33)

implies that A ν
2
, ν
2
(·) is FNE in HS , by Lemma 3.1.1.

4. From Lemma 4.5.1, −x?(·) is MON in HS . Moreover P = P> implies that

P ν
2

>S = SP ν
2
. Therefore for any r, s ∈ RNn,(
−A ν

2
, ν
2
(r) + A ν

2
, ν
2
(s)
)>S (r − s)

=
(
−P ν

2
(x?(P ν

2
(r))) + P ν

2
(x?(P ν

2
(s)))

)>S (r − s)

=
(
−x?(P ν

2
(r)) + x?(P ν

2
(s))

)>P ν
2

>S (r − s)

=
(
−x?(P ν

2
(r)) + x?(P ν

2
(s))

)>S (P ν
2
r −P ν

2
s
)

= (−x?(r̃) + x?(s̃))>S (r̃ − s̃) ≥ 0,

which implies that −A ν
2
, ν
2

is MON. By Lemma 3.1.2, (I −A ν
2
, ν
2
) is SMON (ε = 1)

and thus A ν
2
, ν
2

is SPC in HS .

We are now ready to prove Theorem 4.3.2. We start by noting that, since the sets

X i are convex and compact for every i ∈ Z [1, N ], the mapping Aν1,ν2 : Pν2
X1×N →

Pν2
X1×N is defined from a compact and convex set to itself.

For simplicity let a(k) :=
[
E1
ν1,0

(z(k)); . . . ; ENν1,0
(z(k))

]
.
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Proof of statement 1 and 2 of Theorem 4.3.2

From Proposition 4.5.3, under the assumption of statement 1 (or statement 2), A0,ν(·) ≡
Aν(·) is a CON (or NEX) in HIN⊗S. Therefore, by using the suggested mappings z(k)

converges to a fixed point of the mapping Aν , see Table 3.1. The proof is immediate

upon noticing that, since ν1 = 0, a(k) := Pν1
z(k) ≡ z(k). Moreover, a CON mapping has

a unique fixed point.

Proof of statement 3 and 4 of Theorem 4.3.2

From Proposition 4.5.3, under the assumption of statement 3, the mapping z(k) 7→
A ν

2
, ν
2
(z(k)) is FNE. Therefore, by using the suggested mappings, z(k) converges to a

fixed point z̄ of the mapping A ν
2
, ν
2
. Under the assumption of statement 4, on the other

hand, z(k) 7→ A ν
2
, ν
2
(z(k)) is SPC with ε = 1 and Lipschitz with constant L (immediate

consequence of Assumption 4.1.2). Consequently, it has a unique fixed point by Lemma

3.2.3. Convergence to such point can be guaranteed by using ΦM
k (Lemma 3.2.8) or, if the

Lipschitz constant L of A ν
2
, ν
2

is known, by using ΦK with λ ∈ (0, 2
1+L2 ), see Lemma 3.2.7.

Finally, in both cases, a(k) := Pν1
z(k) hence, for ν1 = ν

2
, a(k) converges to ā := P ν

2
z̄,

which is a fixed point of the mapping Aν since z̄ = A ν
2
, ν
2
(z̄) ⇒ z̄ = P ν

2
x?(P ν

2
(z̄)) ⇒

P ν
2
z̄ = Pνx

?(P ν
2
(z̄))⇒ ā = Pνx

?(ā)⇒ ā = Aν(ā). �

Proof of Corollary 4.3.3 (Distributed opinion dynamics)

The cost function in (4.27) can be rewritten, up to constant terms that do not depend

on xi, as J i(xi, σi) := (1+θi)‖xi‖2−2(σi+θix
i
(0))
>xi, for σi =

∑
j 6=i Pijx

j. Consequently,

the game in (4.27) is an NAG game with ν = 1, quadratic cost with qi := (1 + θi), Q =

In, C = −In, c = −θixi(0) and constraint set X i. Since σi does not depend on xi,

Pii = 0 for every i and Assumption 4.3.1 is satisfied. It follows from Lemma 4.1.2 that

Assumption 4.1.2 holds. For every agent i ∈ Z [1, N ], the following equivalence holds

Mi =
[
qiQ −C
−C qiQ

]
=
[

(1+θi) 1
1 (1+θi)

]
⊗ In, hence the eigenvalues of Mi are θi and 2 + θi, both

with multiplicity n and if θi > 0 then Mi � 0 and Assumption 4.1.3.(a) holds; if θi ≥ 0

then Mi < 0 and Assumption 4.1.3.(b) holds. Consequently, by Theorem 4.3.2 the given

conditions guarantee convergence of Algorithm 4 to a fixed point z̄ of the aggregation

mapping A1. Finally, Theorem 4.3.1 guarantees that the set of strategies {xi ?(z̄i)}Ni=1 is

a Nash equilibrium. �

76



4.5.4 Proofs of the results stated in Section 4.4

Proof of Lemma 4.4.1 (Convergence of aggregation mappings)

The fact that A(z) = I x?(z) admits at least one fixed point can be proven as done

for Aν(z) = Pνx
?(z) in the proof of Theorem 4.3.1. Let DN := maxx∈X1×N ‖x‖; then

for any z ∈ RNn, ‖Aν(z) − A(z)‖ = ‖Pνx
?(z) − Ix?(z)‖ ≤ ‖Pν − I‖‖x?(z)‖ ≤

‖Pν − I‖DN . Hence supz∈RNn ‖Aν(z)−A(z)‖ ≤ ‖Pν − I‖DN . By Assumption 4.4.1,

limν→∞ ‖P ν − 1
N
1N1

>
N‖ = 0 which implies that limν→∞ ‖Pν − I‖ = limν→∞ ‖(P ν −

1
N
1N1

>
N)⊗ In‖ = 0, therefore limν→∞ supz∈RNn ‖Aν(z)−A(z)‖ = 0. �

Proof of Theorem 4.4.2 (AAG Nash equilibria)

We follow a similar argument as in Theorem 4.2.1. Given Assumption 4.1.4 for all N

and all i ∈ Z[1, N ], the mappings J i are uniformly Lipschitz with constant LJ > 0.

For any (N, ν) ∈ N2, consider an arbitrary fixed point z̄ =
[
z̄1; . . . ; z̄N

]
∈ RNn of the

aggregation mapping Aν in (4.21), that is z̄i =
∑N

j=1 P
ν
ijx

j ?(z̄j) and let x̄i := xi ?(z̄i), for

all i ∈ Z[1, N ], D := maxx∈X ‖x‖. By definition of optimal response we have

J i(x̄i, z̄i) ≤ J i(xi, z̄i) for all xi ∈ X i.

Using the equivalence z̄i =
∑N

j=1 P
ν
ijx̄

j we get

J i(x̄i,
∑N

j=1 P
ν
ijx̄

j) ≤ J i(xi,
∑N

j=1 P
ν
ijx̄

j) for all xi ∈ X i. (4.34)

Let us compute the cost of strategy x̄i in the average aggregative game

J i(x̄i, 1
N

∑N
j=1 x̄

j) = J i(x̄i,
∑N

j=1 P
ν
ijx̄

j) + [J i(x̄i, 1
N

∑N
j=1 x̄

j)− J i(x̄i,∑N
j=1 P

ν
ijx̄

j)]

≤ J i(x̄i,
∑N

j=1 P
ν
ijx̄

j) + LJ‖ 1
N

∑N
j=1 x̄

j −∑N
j=1 P

ν
ijx̄

j‖
≤ J i(x̄i,

∑N
j=1 P

ν
ijx̄

j) + LJ

∑N
j=1 | 1

N
− P ν

ij|‖x̄j‖
≤ J i(x̄i,

∑N
j=1 P

ν
ijx̄

j) + LJD‖P ν − 1
N
1N1

>
N‖∞

≤ J i(xi,
∑N

j=1 P
ν
ijx̄

j) + LJD‖P ν − 1
N
1N1

>
N‖∞

≤ J i(xi, 1
N

∑N
j=1 x̄

j) + 2LJD‖P ν − 1
N
1N1

>
N‖∞

≤ J i(xi, 1
N

(xi +
∑N

j 6=1 x̄
j) + 2LJD(‖P ν − 1

N
1N1

>
N‖∞ + 1

N
),

where the 4th inequality follows from (4.34) and the last one can be proven as in The-

orem 4.2.1. Consequently, if we define K := 2LJD an arbitrary agent i can improve

its cost at most by an amount εN,ν := K(‖P ν − 1
N
1N1

>
N‖∞ + 1

N
) if all other strategies

{x̄j := xj ?(z̄j)}Nj 6=i are fixed. Therefore, the set of strategies {x̄i}Ni=1 is an εN,ν-Nash equi-

librium for the AAG in (4.9). K is a constant that does not depend on N,P or ν and

for any fixed N we have ‖P ν − 1
N
1N1

>
N‖∞ → 0 as ν →∞. Hence, for all ε > 0 and for

any fixed N > N̄ := K
ε

, there exists ν̄ such that for all ν ≥ ν̄, we have εN,ν < ε . �
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Proof of Corollary 4.4.3 (ε-convergence rate)

By the proof of Theorem 4.4.2 the set of strategies {xi ?(z̄i)}Ni=1 is an εN,ν-Nash equilib-

rium for the game in (4.9), with εN,ν = K( 1
N

+ ‖P ν − 1
N
1N1

>
N‖∞). By the properties of

the matrix norm ‖P ν − 1
N
1N1

>
N‖∞ ≤

√
N‖P ν − 1

N
1N1

>
N‖2 =

√
Nσmax(P ν − 1

N
1N1

>
N) =√

N maxλ∈Λ(P ν− 1
N
1N1

>
N ) |λ| =

√
NµνN ≤

√
Nµν , where we used the fact that the matrix

P ν − 1
N
1N1

>
N is symmetric and, since P is symmetric, primitive and doubly stochastic,

1 is a simple eigenvalue and it holds Λ(P ν − 1
N
1N1

>
N) = ((Λ(P ))ν\{1}) ∪ {0}. Hence

εN,ν ≤ K( 1
N

+
√
Nµν). �

Proof of Corollary 4.4.4 (Distributed demand-response)

Given the cost function in (4.29) with p(σ̄t) := λσ̄t + p0, it holds Mi =
[
qiQ −C
−C qiQ

]
=[

ρi −λ2
−λ

2
ρi

]
⊗ IT , hence the eigenvalues of Mi are ρi + λ

2
and ρi− λ

2
, both with multiplicity

T . It follows from Lemma 4.1.2 that Assumption 4.1.2 holds and that if ρi− λ
2
> 0, then

Mi � 0 and Assumption 4.1.3.(a) holds while if ρi− λ
2
≥ 0 then Mi < 0 and Assumption

4.1.3.(b) holds. Moreover, C = λ
2
IT � 0 and therefore Assumption 4.1.3.(c) always

holds. Consequently, by Theorem 4.3.2 the given conditions guarantee convergence of

Algorithm 4 to a fixed point z̄ of the aggregation mapping Aν . The conclusion follows

from Theorem 4.4.2. �
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CHAPTER 5
Boundedly rational agents

In this chapter we address the coordination problem for populations of boundedly rational

agents, that is, for agents that do not have the computational capabilities to solve an

optimization problem as the one in (4.2)1. In Section 5.1 we present an equivalent

characterization of Nash equilibria in terms of variational inequalities and we briefly

review some decentralized and distributed algorithms that have been suggested in the

literature relying on this equivalence. In Section 5.2 we introduce a more general class of

games by assuming that the agents strategies are not only constrained by the local sets

X i, but must also satisfy a global coupling constraint C := {x = [x1; . . . ;xN ] | Ax ≤ b}.
We then review the concept of generalized Nash equilibrium and its connection with

variational inequalities. Using this relation, we propose in Section 5.3 a decentralized

algorithm to steer a population of boundedly rational agents to a generalized Nash

equilibrium of an AAG by means of a central operator. A distributed version of this

algorithm, that can be used for NAGs and AAGs with boundedly rational agents and

global coupling constraints, is suggested in the concluding section 10.1.1. All the proofs

are given in the Appendix (Section 5.4).

Part of the results of this chapter have been published in [PPG+16].

5.1 Relation among Nash equilibria and variational

inequalities

Consider a generic game G (i.e., not necessarily aggregative)

G =

 xibr(x
−i) := arg min

xi∈Rn
J̃ i(xi, x−i)

s.t. xi ∈ X i
∀ i = 1, . . . , N, (5.1)

1It is important to stress that the distinction between myopic and boundedly rational agents is a

distinction between the computational capabilities of the agents and not a distinction among games.

The games that we consider in this chapter are the same games as defined in Chapter 4. The difference

is in the algorithms suggested to reach the Nash equilibrium which, in the case of bounded rationality,

cannot require the computation of the optimal response (4.2) as part of the strategies update step.
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satisfying the following assumption.

Assumption 5.1.1 (Convexity of cost functions and constraints). The cost functions

J̃ i(xi, x−i) are convex and C1 in xi for fixed x−i. The local constraint sets X i are compact

and convex ∀i ∈ Z [1, N ].

The set of Nash equilibria of the game G can be equivalently characterized in terms of

a variational inequality (see Section 3.3) that has as operator a vector whose i-th block

component is the gradient of the cost function J̃ i(xi, x−i) of player i with respect to its

own strategy xi, that is,

f(x) = [∇x1 J̃1(x1, x−1); . . . ;∇xN J̃
N(xN , x−N)]. (5.2)

Proposition 5.1.1 (Nash equilibria and VIs). Suppose Assumption 5.1.1 holds. A set

of strategies {x̄i ∈ X i}Ni=1 is a Nash equilibrium of the game in (5.1) if and only if

x̄ := [x̄1; . . . ; x̄N ] ∈ SOL(X1×N , f),

where X1×N := X 1 × . . .×XN and f(x) is as in (5.2).

Proof. This is a classical result, we report the proof for completeness [FP03], [BT97,

Section 3.5.1]. A set of strategies {x̄i ∈ X i}Ni=1 is a Nash equilibrium if and only if it

solves the N coupled optimization problems in (5.1). By Assumption 5.1.1, these are

convex optimization problems and the sets X i are convex and closed, therefore, by the

minimum principle (Proposition 3.3.1), this requirement is equivalent to

x̄i ∈ SOL(X i,∇xi J̃
i(·, x̄−i)) for all i ∈ Z[1, N ]

⇔ ∇xi J̃
i(x̄i, x̄−i)>(xi − x̄i) ≥ 0 for all xi ∈ X i and i ∈ Z[1, N ]

⇔ ∑N
i=1∇xi J̃

i(x̄i, x̄−i)>(xi − x̄i) = f(x̄)>(x− x̄) ≥ 0 for all x ∈ X1×N

⇔ x̄ ∈ SOL(X1×N , f).

A graphical illustration for N = 2 is given in Figure 5.1.

The results on existence and uniqueness of the solution for VIs, summarized in Sec-

tion 3.3.1, can be readily apply to show the existence and uniqueness of Nash equilibria.

Proposition 5.1.2 (Nash equilibria: existence and uniqueness). Suppose that Assump-

tion 5.1.1 holds. If the function f(x) defined in (5.2) is continuous the Nash game in

(5.1) has at least one Nash equilibrium. If the operator f is additionally SMON then the

Nash equilibrium is unique.

Proof. Under Assumption 5.1.1 X1×N is convex and compact and f is continuous. The

results follow from Proposition 5.1.1 and Proposition 3.3.7.

Note that this result subsumes the one in Proposition 2.1.1.
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5.1.1 Decentralized and distributed algorithms

The equivalence in Proposition 5.1.1 can be readily employed, in the case of agents with

bounded rationality, to suggest coordination schemes that aim at finding a Nash equi-

librium by using one of the algorithms for the solution of VIs presented in Section 3.3.2.

For example, if the operator f is SMON one can use the projection scheme

x(k+1) = ΠX1×N (x(k) − αf(x(k))), (5.3)

where α > 0, x(k) := [x1
(k); . . . ;x

N
(k)] and f is as in (5.2). Exploiting the cartesian

structure of the set X1×N = X 1×· · ·×XN and the properties of the projection operator,

it is immediate to see that the update rule (5.3) can be distributed among the agents,

resulting in

xi(k+1) = ΠX i(x
i
(k) − α∇xi J̃

i(xi(k), x
−i
(k))) for all i ∈ Z[1, N ]. (5.4)

Alternatively, one could aim at solving the VI(X1×N , f) by using a nonlinear algorithm,

as the ones described in [BT97, Section 3.5.6]. Specifically, in the context of games,

the nonlinear Gauss-Seidel algorithm and the nonlinear Jacobi algorithm for VIs [BT97,

Section 3.5.6] coincide with the sequential and simultaneous BR dynamics given in (2.5)

and (2.6), respectively (as introduced in Section 2.3). Conditions guaranteeing their

convergence have been derived in [BT97] by using the concept of block contraction.

Definition 5.1. (Block-maximum norm and block contraction [BT97, Section 3.1.2])

Given a vector x := [x1; . . . ;xN ] ∈ RNn with block components xi ∈ X i ⊆ Rn we define

the block-maximum norm

‖x‖B := max
i=1,...,N

‖xi‖,

where ‖·‖ is the Euclidean norm in Rn. A mapping f : RNn → RNn is a block contraction

if it is a CON under the above introduced block-maximum norm.

Lemma 5.1.3 (Convergence of sequential and simultaneous BR dynamics [BT97]). Con-

sider the game G in (5.1) and suppose that Assumption 5.1.1 holds. Suppose that there

exists α > 0 such that the mapping R(x) = x− αf(x) is a block contraction, where f is

as in (5.2). Then the game G has a unique Nash equilibrium and for any initial condition

x(0) both the sequential and simultaneous BR dynamics converge to it, geometrically.

A sketch of the proof is given in the Appendix. We briefly comment here on the reason

why the mapping R(x) = x−αf(x) appears in the previous lemma. We start by noticing

that the projection algorithm in (5.3) can be rewritten as x(k+1) = ΠX1×N (R(x(k))).

Consequently, ifR(·) is a CON, the composition ΠX1×N (R(·)) is also a CON and algorithm

(5.3) is a Picard–Bannach iteration applied to a CON mapping, which converges by

Lemma 3.2.42. What Lemma 5.1.3 states is that if R(·) is a CON in the block-maximum

2Note that a sufficient condition for the existence of α > 0 such that R(·) is a CON is that f is

SMON, consistently with our previous statement.
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norm (instead of the Euclidean norm) then not only the projection algorithm converges,

but also the sequential and simultaneous BR dynamics.

5.1.2 Average aggregative games

In order to locally implement gradient steps as the one in (5.4), each agent needs to be

able to evaluate the gradient of its cost function. This is in general not a trivial task

since the gradient depends in general on the strategies of the whole population. In the

case of AAGs, however, the gradient depends only on the local strategy of player i, xi(k),

and on the average of the population σ̄(k) = 1
N

∑N
j=1 x

j
(k). In fact

∇xiJ
i(xi, σ̄(x)) = [∇s1J

i(s1, s2)∇xix
i +∇s2J

i(s1, s2)∇xiσ̄(x)] |s1=x1,s2=σ̄(x) (5.5)

= ∇xiJ
i(xi, s2) |s2=σ̄(x) +

1

N
∇s2J

i(xi, s2) |s2=σ̄(x),

where we applied the chain rule to the composite function J i(xi, σ̄(x)). Consequently,

decentralized gradient schemes relying on the presence of a central operator that com-

putes and broadcasts the average at every step, [CLLV14, PKL16], as well as dis-

tributed schemes where the agents try to recover the average by local communications

[KNS12, KNS16] have been suggested in the literature, relying on the assumption that

the operator f(x) is SMON (so that the projection algorithm converges). In the rest of

the chapter we present an extension of these works to the case when the strategies of

the agents do not only need to satisfy the local constraints X i, but also a constraint C
that couples the agents strategies, so that it is not possible to distribute the projection

operation in (5.3) as done in (5.4). Before doing so, we briefly comment on the relation

between the VI algorithms discussed in this subsection and the fixed point algorithms of

Section 4.2, for the case of AAGs with quadratic cost functions.

AAGs with quadratic cost functions

The fundamental difference between the VI algorithms suggested in [CLLV14, PKL16,

KNS12, KNS16] and the fixed point algorithms proposed in Section 4.2 lies in the strate-

gies update step. Specifically, in the VI algorithms the agents update their strategies

by taking a gradient step, while in the schemes of Section 4.2 they select the strategy

that minimizes their cost, given the current reference. Therefore, for some applications

(e.g., if the agents have limited computation capability) only the former class of algo-

rithms can be applied while for others (e.g., if the agents are myopic and/or the game is

repeated over time, as in opinion dynamics) only the latter is appropriate. Nonetheless,

for some applications (e.g., the PEV charging coordination game described in Section

4.2.4) both schemes are feasible. One can then choose which algorithm to use based on

its conditions for convergence, as derived in Lemma 4.1.2 and in the following Lemma
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5.3.1. We briefly compare these conditions in Table 5.1, where also the sequential and

simultaneous BR dynamics are considered as candidate algorithms.

Sufficient conditions for the convergence of the BR dynamics are derived in Proposi-

tion 2.3.1, for potential games, and in the following lemma.

Lemma 5.1.4 (Sufficient conditions for block contraction in the quadratic case). Sup-

pose that Assumption 5.1.1 holds, the cost functions are as in (4.5) and that there exists

β ∈ (0, 1) such that βσmin(qiQ) ≥ σmax(C) for all i ∈ Z[1, N ] and all population sizes N .

Then for any N > β
1−β there exists α > 0 such that the mapping R(x) = x− αf(x) is a

block contraction, where f is as in (5.2).

Sufficient conditions Fixed point Variational Sequential Simultaneous

for all i ∈ Z[1, N ] approach approach BR dynamics BR dynamics

(under Assumption 5.1.1) (Section 4.2) (e.g. [PKL16]) (Section 2.3) (Section 2.3)

qi > 0 Mi � 0 X (N →∞)

Mi � 0 X
−qiQ � C = C> ≺ 0 X X (N →∞)

C = C> � 0 X X X
βσmin(qiQ) ≥ σmax(C), β < 1 N > β

1−β N > β
1−β

qi ≥ 0 C + C> � 0 X

Table 5.1: Sufficient conditions for the convergence of the fixed point algorithms de-

scribed in Section 4.2, the VI algorithm described for example in [PKL16] and the

sequential and simultaneous BR dynamics, for games with quadratic cost. Note that

in the case of simultaneous BR dynamics with “(N → ∞)” we mean that Algorithm 2

converges under the given condition and it coincides with the simultaneous BR dynamics

when N →∞. Moreover, for the sequential BR dynamics we use the fact that C = C>

implies that the game is potential (see Remark 4.1).

5.2 Generalized Nash equilibria

In the rest of the chapter we consider an extension of the game in (5.1), where the

strategies of the agents are constrained not only by the local sets X i, but also by a

coupling affine constraint

C := {x = [x1; . . . ;xN ] ∈ RNn |Ax ≤ b} ⊂ RNn, (5.6)

with A ∈ Rm×Nn, b ∈ Rm. These constraints could model, for example, the fact that

each agent has a feasible range for its usage level (X i) and, at the same time, the overall

usage level cannot exceed a global capacity constraint (C). For example, in the PEV
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application the grid operator might want to impose an upper limit on the total energy

that can be provided to the population at each time t. We define

Q = X1×N ∩ C and Qi(x−i) := {xi ∈ X i |Ax ≤ b}, (5.7)

the set of global and local admissible strategies for player i, given x−i, respectively.

To sum up, each agent aims at minimizing its cost function according to the game

G :=

 min
xi∈Rn

J̃ i(xi, x−i)

s.t. xi ∈ Qi(x−i)
∀i ∈ Z[1, N ]. (5.8)

Note that the main difference between this game and the game in (5.1) is the fact that,

in (5.8), the feasible set depends on the strategies of the other players. The definition of

Nash equilibrium can be generalized for the game in (5.8) as follows.

Definition 5.2 (Generalized Nash equilibrium (GNE)). A set of strategies {x̄i}Ni=1 is

called a generalized Nash equilibrium of the game G in (5.8) if x̄ := [x̄1; . . . ; x̄N ] ∈ Q and

∀i ∈ Z[1, N ]

J̃ i(x̄i, x̄−i) ≤ J̃ i(xi, x̄−i), ∀xi ∈ Qi(x̄−i).

In the following, we denote the set of GNEs of the game G in (5.8) as GNE(G). As

for Nash equilibria also generalized Nash equilibria can be characterized in terms of VIs.

Proposition 5.2.1. (Generalized Nash equilibria and VIs [FK07, Theorem 5]): Suppose

Assumption 5.1.1 holds. Let x̄ ∈ RNn. Then x̄ ∈ SOL(Q, f) ⇒ x̄ ∈ GNE(G), where f

and Q are as in (5.2) and (5.7), respectively, and G is as in (5.8). �

Note that, in the generalized case, one can only show that the solutions of the VI are

GNEs, but not the vice versa. An intuition of why the proof of Proposition 5.1.1 cannot

be adapted to the generalized case is given in Figure 5.1.

The specific GNEs that are obtained as solution of the associated VI are called

variational GNEs. For some specific games, one can show that the variational GNEs

have some additional properties with respect to generic GNEs (as for example minimizing

a suitably defined welfare cost). In general, however, the main advantage of variational

GNEs is that, being the solution of a VI, they are easier to compute.

The results on existence and uniqueness of the solutions for VIs, summarized in

Section 3.3.1, can be readily applied to show existence and uniqueness of variational

GNEs.

Proposition 5.2.2 (Variational GNE: existence & uniqueness). Suppose that Assump-

tion 5.1.1 holds. If the operator f in (5.2) is continuous then the generalized Nash game

in (5.8) has at least one generalized Nash equilibrium. If the operator f is additionally

SMON then the variational GNE is unique.
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Figure 5.1: Let f i(x) := ∇xi J̃
i(xi, x−i). A) Illustration of the proof of Proposition 5.1.1.

If x̄ is an NE, by the minimum principle, f 1(x̄)(x1 − x̄1) ≥ 0 for all x1 ∈ X 1, that is,

for all x belonging to the blue area. Similarly, f 2(x̄)(x2 − x̄2) ≥ 0 in the green area.

Therefore
∑2

i=1 f
i(x̄)(xi − x̄i) ≥ 0 in the intersection, which coincides with X1×2 and

x̄ solves VI(X1×2, f). B) Illustration of the proof of Proposition 5.2.1. If x̄ is a GNE,

by the minimum principle, f 1(x̄)(x1 − x̄1) ≥ 0 for all x1 ∈ Q1(x̄2), that is, in the blue

area, and f 2(x̄)(x2 − x̄2) ≥ 0 in the green area. Clearly this is not sufficient to conclude

that
∑2

i=1 f
i(x̄)(xi − x̄i) ≥ 0 for all x ∈ Q. The fact that a solution of the VI is an NE

in case A (or a GNE in case B) can be proven as follows: if
∑2

i=1 f
i(x̄)(xi − x̄i) ≥ 0

for all x ∈ X1×2 (resp. x ∈ Q), by setting x2 = x̄2 we get f 1(x̄)(x1 − x̄1) ≥ 0 for all

x1 ∈ X 1 (x1 ∈ Q1(x̄2)) and by setting x1 = x̄1 we get f 2(x̄)(x2 − x̄2) ≥ 0 for all x2 ∈ X 2

(x2 ∈ Q2(x̄1)).

In the case of generalized Nash equilibrium problems the VI algorithms presented

in Section 3.3.2 cannot be readily apply to guarantee convergence to the variational

GNE as they all rely on projections onto the set Q that, contrary to the case discussed

in Section 5.1, cannot be easily decomposed into the cartesian product of local sets.

Similarly to what is done in distributed optimization, one can however use a primal-dual

approach that associates to each coupling constraint a dual variable (multiplier) λ and

then solve a VI in the augmented space [x;λ]. We review this approach in the next

subsection.

5.2.1 Primal-dual reformulation

Consider the VI(Q, f) and assume that Q satisfies the following constraint qualification.

Assumption 5.2.1 (Slater). There exists g : RNn → Rmg , g ∈ C1, such that X1×N =

{x ∈ RNn | g(x) ≤ 0}. The sets X1×N := X 1× . . .×XN and Q := X1×N∩C, as defined in

(5.7), satisfy the Slater’s constraint qualification condition, as defined in Lemma 3.3.4.

85



By using the KKT conditions for VIs (Proposition 3.3.6) one can immediately show

the following result.

Proposition 5.2.3 (Augmented VI). Suppose that Assumptions 5.1.1 and 5.2.1 hold.

A point x̄ ∈ RNn solves VI(Q, f), with f and Q as in (5.2) and (5.7), if and only if there

exists λ̄ ∈ Rm such that [x̄; λ̄] is a solution of the VI(Y , t), with Y := X1×N × Rm
≥0 and

t(x, λ) : =

[
f(x) + A>λ

−(Ax− b)

]
. (5.9)

Proof. From the KKT conditions for VI(Q, f) we have that

x̄ ∈ SOL(Q, f) ⇔ ∃λ̄, µ̄ > 0 s.t.


f(x̄) +∇xg(x)µ̄+A>λ̄ = 0

µ̄ ≥ 0, g(x̄) ≤ 0, µ̄ ⊥ g(x̄)

λ̄ ≥ 0, Ax̄− b ≤ 0, λ̄ ⊥ b−Ax̄
(5.10)

and from the KKT conditions for VI(Y , t), by recalling Y = {[ xλ ] | g(x) ≤ 0,−λ ≤ 0},

[x̄; λ̄] ∈ SOL(Y, t) ⇔ ∃µ̄, η̄ > 0 s.t.



[
f(x̄) +A>λ̄+∇xg(x̄)µ̄

−(Ax̄− b)− η̄

]
=

[
0

0

]
µ̄ ≥ 0, g(x̄) ≤ 0, µ̄ ⊥ g(x̄)

λ̄ ≥ 0, η̄ ≥ 0, λ̄ ⊥ η̄

⇔ (5.10).

where the last equality follows from −(Ax̄− b) = η̄.

Corollary 5.2.4. Let VI(Q, f) and VI(Y , t) be defined as in Proposition 5.2.3. The

SOL(Q, f) is non-empty if and only if VI(Y , t) is non-empty.

The main advantage of this reformulation is that the set Y can now be decomposed in

the cartesian product of the local sets X i and the positive orthant Rm
≥0. We also note that

solving the VI in (5.9) is equivalent (thanks to Assumption 5.1.1 and Proposition 5.1.1)

to the following augmented game with N + 1 players, but no coupling constraints.

Gext=


min
xi∈X i

J̃ i(xi, x−i) + λ>([A](:,i)x
i) ∀i ∈ Z[1, N ]

min
λ∈Rm≥0

− (Ax− b)>λ i = N + 1
(5.11)

where [A](:,i) is the block of columns in the matrix A relative to player i, that is A =

[[A](:,1), . . . , [A](:,N)].

Proposition 5.2.5 (Augmented game). Suppose Assumption 5.1.1 holds. Then [x̄; λ̄] ∈
RNn×Rm is a Nash equilibrium of the game Gext if and only if [x̄; λ̄] is a solution of the

VI(Y , t) defined in (5.9). �
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A summary of the relations presented in this section is given in Figure 5.2.

Figure 5.2: Relations between games and VIs, under Assumptions 5.1.1 and 5.2.1

In the rest of the chapter we are going to illustrate how these characterizations can

be exploited to solve the coordination problem, in the case of boundedly rational agents,

under the following regularity assumption.

Assumption 5.2.2 (Monotonicity). The operator f : RNn → RNn as defined in (5.2) is

MON and Lipschitz with constant Lf .

An immediate consequence of this assumption is that the operator t(x, λ), as defined

in (5.9), is MON and Lipschitz as well.

Lemma 5.2.6 (Regularity of the extended operator). Under Assumption 5.2.2, the

operator t(x, λ), as defined in (5.9), is MON and Lipschitz with constant Lf +LA, where

Lf is the Lipschitz constant of f(x) and LA := ‖
[

0 A>
−A 0

]
‖. �

The main contribution of Section 5.3 is to show that the schemes for MON variational

inequalities, illustrated in Section 3.3.2, can be implemented in a decentralized fashion

in the case of AAGs to solve VI(Y , t).

5.3 Average aggregative games: schemes with cen-

tral operator

Consider the average aggregative game in (4.9) with the addition of the coupling con-

straint C as defined in (5.6): min
xi∈Rn

J i(xi, σ̄(x))

s.t. xi ∈ Qi(x−i)
∀i ∈ Z[1, N ], (5.12)
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where σ̄(x) = 1
N

∑N
j=1 x

j and Qi(x−i) is as in (5.7). Propositions 5.2.1 and 5.2.3 guar-

antee that any solution of the VI(X1×N × Rm
≥0, t), with t as in (5.9), is a GNE of the

game in (5.12). Thanks to Assumption 5.2.2 and Lemma 5.2.6, the operator t of such a

VI is MON. Consequently, one can recover one of its solutions, and thus a generalized

Nash equilibrium, by applying the iterative schemes of Section 3.3.2. We show in the

next subsections how these schemes can be implemented in a decentralized fashion.

To this end, we assume the presence of a central operator that, at every iteration,

computes the population average, updates the multiplier, and then broadcasts these two

quantities to the agents, see Figure 5.3. Each agent, in turn, locally computes its gradient

(which in the case of AAGs depends only on its strategy and on the average received by

the central operator, as shown in (5.5))

f i(xi, σ̄(x)) := ∇xiJ
i(xi, σ̄(x)) = ∇xiJ

i(xi, zi) |zi=σ̄(x) +
1

N
∇ziJ

i(xi, zi) |zi=σ̄(x)

and consequently updates its strategy by taking a gradient step of the extended cost

function in (5.11).

Figure 5.3: Coordination algorithm with central operator and dual variables.

5.3.1 A decentralized scheme: quadratic case

In the case of quadratic cost functions

J i(xi, zi) := (xi)>Qixi + 2
(
Czi + ci

)>
xi, (5.13)
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where xi ∈ Rn, Qi = Qi> � 0, C ∈ Rn×n, ci ∈ Rn and zi = σ̄(x), the operator f in (5.2)

is affine and can be explicitly characterized as follows

f(x) = 2

([
Q1

...
QN

]
+

1

N

[
C ... C

...
C ... C

]
+

1

N

[
C>

...
C>

])[
x1

...
xN

]
+ 2

[
c1

...
cN

]
.

This structure can be exploited to derive sufficient conditions, depending only on the

matrices Qi and C, that guarantee Assumption 5.2.2.

Lemma 5.3.1 (Sufficient conditions for the quadratic case). Suppose that the cost func-

tions are as in (5.13), then the operator f is Lipschitz. Moreover, if Qi � 0 for all

i ∈ Z[1, N ] and C +C> � 0 then f is MON. If additionally C +C> � 0 and/or Qi � 0

for all i ∈ Z[1, N ], then f is SMON.

Proof. Immediate consequence of the fact that f(x) is affine and of Lemma 3.1.4.

Since the operator f is affine, it is immediate to see that the operator t in (5.9) is

affine as well. Therefore the asymmetric projection algorithm described in (3.14) can be

applied to solve the VI(X1×N × Rm
≥0, t), leading to Algorithm 5.

Proposition 5.3.2 (Convergence of Algorithm 5). Suppose that Assumptions 5.1.1,

5.2.1 and 5.2.2 hold. Moreover, assume that the cost functions J i(xi, σ̄(x)) are as in

(5.13). Let τ be chosen according to Theorem 3.3.12. Then, for every initial condition

[x(0);λ(0)], Algorithm 5 is guaranteed to converge to a generalized Nash equilibrium of the

game in (5.12). �

5.3.2 A decentralized scheme: general case

Algorithm 5 works in the case of games with quadratic cost. Similarly, one can show

that, for a generic operator f satisfying Assumption 5.2.2, the extragradient algorithm

in (3.10) is guaranteed to converge and can again be implemented in a decentralized

fashion. The only difference is that two rounds of communications among agents and

central operator, as well as two primal-dual updates, are needed at every algorithmic

step, see Algorithm 6.

Proposition 5.3.3 (Convergence of Algorithm 6). Suppose that Assumptions 5.1.1,

5.2.1 and 5.2.2 hold. Let τ ≤ 1
Lf+LA

, where LA is as defined in Lemma 5.2.6. Then, for

every initial condition [x(0);λ(0)], Algorithm 6 is guaranteed to converge to a generalized

Nash equilibrium of the game in (5.12). �
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Algorithm 5: AAG: Asymmetric projection algorithm (decentralized)

Initialization: Set k ← 0. Each agent i has initial state xi(0), the central operator sets

and broadcasts λ(0) ∈ Rm≥0, σ̄(0) = 1
N

∑N
i=1 x

i
(0) and τ > 0.

Iterate:

Local: strategy update

xi(k+1) ← ΠX i [x
i
(k) − τ

(
f i(xi(k), σ̄(k)) +A>(:,i)λ(k)

)
]

Central: multiplier and average update and broadcast

λ(k+1) ← ΠRm≥0
[λ(k) − τ(b− 2Ax(k+1) +Ax(k))]

σ̄(k+1) ← 1
N

∑N
i=1 x

i
(k+1)

Algorithm 6: AAG: Extragradient algorithm (decentralized)

Initialization: Set k ← 0. Each agent i has initial state xi(0), the central operator sets

and broadcasts λ(0) ∈ Rm≥0, σ̄(0) = 1
N

∑N
i=1 x

i
(0) and τ > 0.

Iterate:

Local 1: strategy update

x̃i(k) ← ΠX i [x
i
(k) − τ

(
f i(xi(k), σ̄(k)) +A>(:,i)λ(k)

)
]

Central 1: multiplier and average update and broadcast

λ̃(k) ← ΠRm≥0
[λ(k) − τ(b−Ax(k))]

σ̃(k) ← 1
N

∑N
i=1 x̃

i
(k)

Local 2: strategy update

xi(k+1) ← ΠX i [x
i
(k) − τ

(
f i(x̃i(k), σ̃(k)) +A>(:,i)λ̃(k)

)
]

Central 2: multiplier and average update and broadcast

λ(k+1) ← ΠRm≥0
[λ(k) − τ(b−Ax̃(k))]

σ̄(k+1) ← 1
N

∑N
i=1 x

i
(k+1)
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5.4 Appendix

5.4.1 Proofs of the results stated in Section 5.1

Proof of Lemma 5.1.3 (Convergence of sequential and simultaneous BR dy-

namics [BT97])

This proof combines known results [BT97] and is reported here for completeness. Firstly,

since X1×N is a cartesian product and the projection operator is NEX in the Euclidian

norm [BT97, Chapter 3, Proposition 3.2 (c)] the projection operator ΠX1×N (·) is NEX in

the block-maximum norm

‖ΠX1×N (x)− ΠX1×N (y)‖B = max
i
‖ΠX i(xi)− ΠX i(y

i)‖ ≤ max
i
‖xi − yi‖ = ‖x− y‖B.

By assumptionR(x) is a block contraction. Consequently, the operatorO(x) := ΠX1×N (x−
αf(x)) := ΠX1×N (R(x)) is a block contraction. The operator O(x) describes one step

of the projection algorithm, which is a linearized algorithm for solving the VI(X1×N , f)

with scaling matrices A(x) = I/α. Consequently, by [BT97, Chapter 3, Proposition

5.12], VI(X1×N , f) has a unique solution and for any initial condition x(0) both the se-

quential and simultaneous BR dynamics (i.e., the nonlinear Gauss-Seidel and Jacobi

algorithms) converge to it, geometrically. The conclusion then follows from Proposition

5.1.1.

Proof of Lemma 5.1.4 (Sufficient conditions for block contraction in the

quadratic case)

To prove this result we use the sufficient conditions given in [BT97, Chapter 3, Propo-

sition 1.12] with Gi = In for all i ∈ Z[1, N ]. Note that in the quadratic case fi(x) =

2Dix
i + 2

N
C
∑

j 6=i x
j + 2ci, where we defined Di := (qiQ + C+C>

N
), and Di � 0 by As-

sumption 5.1.1. Then

‖fi(x)− fi(y)‖ ≤ 2‖Di‖‖xi − yi‖+ 2
N
‖C‖∑j 6=i ‖xj − yj‖

≤ 2(‖Di‖+ N−1
N
‖C‖)‖x− y‖B ≤ A1‖x− y‖B,
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with A1 := 2
(
maxi=1,...,N{‖Di‖}+ N−1

N
‖C‖

)
> 0. Moreover,

(fi(x)− fi(y))>(xi − yi) = (2Di(x
i − yi) + 2

N
C
∑

j 6=i(x
j − yj))>(xi − yi)

= 2(xi − yi)>Di(x
i − yi) + 2

N

∑
j 6=i(x

j − yj)>C>(xi − yi)
≥ 2σmin(Di)‖xi − yi‖2 − 2

N
σmax(C)‖xi − yi‖∑j 6=i ‖xj − yj‖

≥ 2σmin(Di)‖xi − yi‖2 − 2N−1
N
σmax(C)‖x− y‖2

B

≥ 2
[
σmin(qiQ)− σmax(C+C>

N
)
]
‖xi − yi‖2 − 2N−1

N
σmax(C)‖x− y‖2

B

≥ 2
[
mini=1,...,N{qi}σmin(Q)− σmax(C+C>

N
)
]
‖xi − yi‖2 − 2N−1

N
σmax(C)‖x− y‖2

B

:= A2‖xi − yi‖2 − A3‖x− y‖2
B,

where we use Cauchy-Schwarz in the first inequality. Let us define α := βN+1
N

and note

that α < 1 since N > β
1−β . By assumption σmin(qiQ) ≥ 1

β
σmax(C) for all i ∈ Z[1, N ],

therefore

min
i=1,...,N

{qi}σmin(Q) ≥ 1
β
σmax(C) = 1

α
N+1
N
σmax(C) = 1

α
N−1
N
σmax(C) + 1

α
2
N
σmax(C)

> 1
α
N−1
N
σmax(C) + 2

N
σmax(C) = 1

α
N−1
N
σmax(C) + σmax(C

N
) + σmax(C

>

N
)

≥ 1
α
N−1
N
σmax(C) + σmax(C+C>

N
).

Consequently,

A3

2
= N−1

N
σmax(C) < α

(
mini=1,...,N{qi}σmin(Q)− σmax(C+C>

N
)
)
< A2

2

and A3 < A2.

5.4.2 Proofs of the results stated in Section 5.2

Proof of Proposition 5.2.5 (Augmented game)

Let xN+1 := λ, J̃ i(xi, x−i) := J̃ i(xi, x−i) + (xN+1)>([A](:,i)x
i) for all i ∈ Z[1, N ] and

J̃N+1(xN+1, x−(N+1)) := −(A[x1; . . . ;xN ]− b)>xN+1. The statement can be proven as in

Proposition 5.1.1, for the game with N + 1 players and cost J̃ , upon noticing that the

minimum principle holds when the constraint set is closed and convex but not necessarily

bounded. Therefore the constraint set XN+1 := Rm
≥0 is admissible.

Proof of Lemma 5.2.6 (Regularity of the extended operator)

The operator t(x, λ) is the sum of the two operators [ xλ ] 7→
[
f(x)

0

]
and [ xλ ] 7→

[
0 A>
−A 0

]
[ xλ ]+

[ 0
b ]. The former operator is MON and Lipschitz by assumption. The latter is MON and

Lipschitz with constant LA because it is affine (see Lemma 3.1.4). Consequently, t(x, λ)

is MON and Lipschitz as well.

92



5.4.3 Proofs of the results stated in Section 5.3

Proof of Proposition 5.3.2 (Convergence of Algorithm 5)

Algorithm 5 can be rewritten in condensed form as

y(k+1) :=
[
x(k+1)

λ(k+1)

]
=

[
ΠX1×N [x(k)−τ(f(x(k))+A

>λ(k))]

ΠRm≥0
[λ(k)−τ(b−2Ax(k+1)+Ax(k))]

]
which coincides with one step of the asymmetric projection algorithm given in (3.14) for

the VI(X1×N×Rm
≥0, t) =VI(Y , t). Note that SOL(X , f) is non-empty because X is convex

and compact and f is continuous. Therefore, by Corollary 5.2.4, SOL(Y , t) is non-empty

as well. Theorem 3.3.12 then guarantees convergence of Algorithm 5 to a solution [x̄; λ̄]

of VI(X1×N × Rm
≥0, t). Consequently, by Proposition 5.2.3, x̄ solves VI(Q, f) and is a

variational GNE for the generalized AAG by Proposition 5.2.1.

Proof of Proposition 5.3.3 (Convergence of Algorithm 6)

Algorithm 6 coincides with the extragradient algorithm for the VI(X1×N×Rm
≥0, t) =VI(Y , t).

Note that SOL(X , f) is non-empty because X is convex and compact and f is continuous.

Therefore, by Corollary 5.2.4, SOL(Y , t) is non-empty as well. Consequently, Proposition

3.3.10 guarantees convergence of Algorithm 6 to a solution [x̄; λ̄] of VI(X1×N × Rm
≥0, t).

Consequently, by Proposition 5.2.3, x̄ solves VI(Q, f) and is a variational GNE for the

generalized AAG by Proposition 5.2.1.
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Part II

Populations of biological systems:

Controlled stochastic biochemical

reaction networks
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CHAPTER 6
Introduction

In this second part of the thesis we move our attention from populations of rational

agents to populations of systems whose behavior can be described using a chemical

reaction network. In full generality, a reaction network is a system comprising different

“species” that interact by means of a series of “reactions” whose effect is to change the

number of copies per species present in the system. Some example of applications are as

follows.

– Biochemical networks : biochemical networks describe the evolution of chemical

species inside a cell [Wil11]. A classical example, which we use as benchmark for

the subsequent theory, is the gene expression process in which two species, the

mRNA and the corresponding protein, interact by means of four reactions. The

mRNA count is increased by transcription events (in which DNA is copied into

mRNA, usually at a constant rate), the protein count is increased by translation

events (in which the protein is synthesized from the mRNA copies, at a rate that

is proportional to the mRNA counts) and, finally, both species are degraded by

the cell, either actively or because of cell division events.

– Pharmacokinetic networks : pharmacokinetic models are used to study the absorp-

tion, distribution and elimination of drugs in the body. Traditionally, pharma-

cokinetic models aim at describing how a drug under investigation propagates in

different compartments (e.g. heart, lungs, liver, brain, etc.) [Jac96]. Such com-

partmental models can be casted in the framework of reaction networks by associ-

ating a species to each compartment and by modeling the fluxes among different

compartments as reaction events.

– Epidemiological networks : epidemiological networks study the spread of an infec-

tion through a population [AM92, NPP16]. Numerous publications can be found

in this context both in a deterministic and stochastic setting. To illustrate the

connection with reaction networks we consider the standard SIR model [MA79].

Therein, the population is divided in three classes (i.e. species): susceptible (S),

infected (I) and resistant (R). Because of mutual interactions individuals that are

susceptible can become infected and infected people can recover and thus become
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resistant. These events can be model as reactions that happen with a rate depen-

dent on the amount of infected people and on the infection virulence, respectively.

– Ecological networks : ecological networks aim at studying the interaction among

different organisms living in an ecosystem. The most common model is the Lotka-

Volterra model where two species, a predator and a prey, compete for survival. Also

in this case the amount of predators and preys in the ecosystem can be modeled

as the result of a series of reactions modeling birth and death events.

Even though many of the results developed in the following can be applied to any

of the contexts described above, [GJ13, PLR15], in the rest of the thesis we focus on

biochemical reaction networks. Consequently, we refer to the systems as cells and to

their internal components as species.

Biochemical reaction networks have been traditionally studied using a determinis-

tic approach according to which the amount of species (or their concentration) inside a

single cell can be described as the solution of a deterministic ordinary differential equa-

tion. This approach leads to models that are computationally very efficient and has

been successfully applied in many different contexts. Recent technological developments

have however allowed researchers to simultaneously observe the amount of species in-

side thousands of cells of the same population and have shown that, even if each cell

starts with the same initial configuration and is exposed to the same environment, the

amount of species inside different cells of the same population can vary significantly

[SS08]. These observations suggest that deterministic approaches may not always be a

valid choice. This statement is particularly relevant for biochemical networks involv-

ing species present in low copy numbers, as for example the mRNA in gene expression

systems. In this case, in fact, even small fluctuations may become predominant in influ-

encing the cell behavior. Popular examples of such phenomena are stochastic switching

systems, as the Enterobacteria phage λ [ARM98]. For these systems it has been observed

that cells of the same population can undertake, with a certain probability, either one of

two very different fates, leading to a phenomenon known as population portioning. It has

been hypothesized that population partitioning is an evolutionary mechanism adopted

by cells to survive in uncertain and mutating environments (so that part of the popula-

tion is always in the condition to survive) or to achieve division of labor (so that cells

can perform mutually exclusive task and increase the benefit of the overall population).

The pioneering work of N.G. van Kampen and D.T. Gillespie provides the fundamen-

tal analytical and computational methods for incorporating stochasticity in the analysis

of biochemical reaction networks [VK07, Gil07]. Their basic observation is that each

reaction inside a cell can take place only if the necessary reactants come sufficiently close

and this is a stochastic event, governed by the laws of statistical mechanics. Conse-

quently, reaction events are stochastic and the amount of species inside each cell of a

given population should be seen as a different realization of a (Markovian) stochastic
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process. In the rest of the thesis we use the master equation describing the probabil-

ity evolution of this process and its moments (e.g., the average amount of species, its

variance etc.) to concisely describe and control the population behavior.

A fundamental assumption that we make is that the rate at which (some of the)

reactions happen inside each cell can be influenced by means of an external control

signal, which is applied globally to the whole population. Such a signal could for example

be a light pulse, as done in [MASSO+11, OHL+14], or a concentration signal, as in

[UMD+12, MDBDB11]. It is important to stress that, contrary to the first part of

the thesis, we assume here that the cells do not interact one with the others, but are

actually independent realizations of the same (controlled) stochastic process. Moreover,

we assume that we can observe the cells behavior by means of population measurements,

that is, measurements of the average amount of species (and possibly of the variance or

higher order moments) in a sample of the population at different time instants.

Our first objective is to propose a systematic procedure to characterize these systems

(i.e., to construct a model of the underlying stochastic process) from population mea-

surements by “optimally” perturbing the system with the available external signal. We

then use the identified model to investigate the range of behaviors that the population

can exhibit under different choices of the external input and to design external inputs

that control the population to a desired state.

6.1 The stochastic biochemical reaction network frame-

work

A biochemical reaction network is a system comprising S molecular species Z1, ..., ZS
that interact through R reactions. A typical reaction r ∈ {1, 2, . . . , R} can be expressed

as

ν ′1rZ1 + . . .+ ν ′SrZS −→ ν ′′1rZ1 + . . .+ ν ′′SrZS, (6.1)

where ν ′1r, . . . , ν
′
Sr ∈ N and ν ′′1r, . . . , ν

′′
Sr ∈ N are the coefficients that determine how many

molecules for each species are needed for the reaction to happen and how many are

produced as a consequence. The net effect of each reaction can therefore be summarized

with a vector νr ∈ NS, whose components are ν ′′sr−ν ′sr for s = 1, . . . , S, which is called the

stoichiometric vector. In the following we say that a reaction is of order k if it involves

k reactants (i.e.,
∑S

s=1 ν
′
sr = k). A standard assumption in the analysis of biochemical

reaction networks is as follows.

Assumption 6.1.1. The system is well-stirred, in thermal equilibrium and with constant

volume.

It was proven by Gillespie [Gil92] that, under Assumption 6.1.1, each reaction r is a
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stochastic event that happens, in the infinitesimal interval [t, t+ dt] with probability

αr(θr, z)dt := θr · hr(z) · dt, (6.2)

where z = [z1, ..., zS]> denotes the amount of molecules per species that are present in

the system at time t, hr(z) := ΠS
s=1

(
zs
ν′sr

)
is a function that counts in how many different

ways one can select the required amount of reactants from the available molecules z and

θr ∈ R≥0 is a (usually unknown) parameter depending on binding affinities, temperature,

volume, etc. In the following we refer to the time-varying quantity αr(θr, z) as the

propensity of reaction r and to the constant parameter θr as the reaction rate. The

formula for the propensity derived by Gillespie in [Gil92] and given in (6.2) is known as

mass action and is based on the laws of statistical mechanics. In the following, we use

the short-hand notation

ν ′1rZ1 + . . .+ ν ′SrZS
θr−−−−→ ν ′′1rZ1 + . . .+ ν ′′SrZS,

to denote a reaction that follows the mass action kinetics with rate parameter θr. When

modeling complex system, it might be useful to simplify a reaction network by lump-

ing together several reactions or by abstracting some external influencing factor. This

operation usually leads to a condensed reaction of the form given in (6.1), but with a

propensity that does not follow the laws of mass action kinetics. For example, enzyme

reactions are usually modeled using Michaelis-Menten kinetics [Wil11, Section 7.3]. If

propensities different from mass action are allowed we use the extended notation

ν ′1rZ1 + . . .+ ν ′SrZS
αr(θr,z)−−−−−−−−→ ν ′′1rZ1 + . . .+ ν ′′SrZS.

Let Z(t) = [Z1(t), ..., ZS(t)]> be the vector describing the number of molecules present

in the network for each species at time t, that is, the state of the network at time t. As

a consequence of the fact that reactions are stochastic, Z(t) is a stochastic process.

Moreover, since the propensity of each reaction depends only on the current state of

the system, the process Z(t) is Markovian. In the following, we always use the upper

case to denote a process and the lower case to denote its realizations. For example,

z = [z1, ..., zS]> denotes a particular realization of the state Z(t) of the stochastic system

at time t. Let p(t, z) = P[Z(t) = z] be the probability that the realization of the process

Z at time t is z. It is proven in [Gil92] that

p(z, t+ dt) = p(z, t)(1−
R∑
r=1

αr(θr, z)dt)︸ ︷︷ ︸
term 1

+
R∑
r=1

p(z − νr, t)αr(θr, z − νr)dt︸ ︷︷ ︸
term 2

+o(dt).

The previous formula can be easily understood once we note that the probability of being

in state z at time t+dt is given by the sum of the probabilities of two mutually exclusive

events: either the system was already in state z at time t and no reaction happened in
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the interval [t, t+dt] (term 1) or the system was not in z and the right reaction happened

(term 2). Finally, the term o(dt) is due to the fact that in the previous discussion we did

not consider the case that more than one reaction could happen in the interval [t, t+dt].

By rearranging the terms and taking the limit as dt → 0 one arrives at what is known

as the chemical master equation (CME)

ṗ(z, t) =
R∑
r=1

[p(z − νr, t)αr(θr, z − νr)− p(z, t)αr(θr, z)] . (6.3)

Note that typical biochemical reaction networks involve many different species, whose

counts can theoretically grow unbounded. Consequently, z ∈ NS and the CME in (6.3) is

a system of infinitely many coupled ordinary differential equations that cannot be solved

in a straightforward way, even for very simple systems. A large number of different meth-

ods, both analytical and computational, have been proposed in the literature to either

solve or approximate the CME . We refer to [Wil11, GJ13, Rue14] for a comprehensive

review. In the following we limit our discussion to the two approximate methods that

are going to be used in the thesis. To better illustrate these methods we consider as

running example the following renowned model of gene expression.

Example 6.1 (Gene expression reaction network). Consider a biochemical network con-

sisting of two species, the mRNA (M) and the corresponding protein (P ), and the fol-

lowing reactions

∅ α1(kr,z)−−−−−−−→ M M
α3(kp,z)−−−−−−−→ M + P

M
α2(γr,z)−−−−−−−→ ∅ P

α4(γp,z)−−−−−−−→ ∅

where kr, kp are the mRNA and protein production rate and γr, γp are the mRNA and

protein degradation rate, respectively. Then Z(t) = [M(t), P (t)]>, z = [m, p]>, θ =

[kr, γr, kp, γp]
> and the stoichiometric matrix is

ν := [ν1, ν2, ν3, ν4] =

[
1 −1 0 0

0 0 1 −1

]
.

The empty set notation is used whenever a certain species is produced or degrades without
involving the other species. The CME for this system is

ṗ

([
m

p

]
,t

)
=−
(
α1

(
kr,

[
m

p

])
+α2

(
γr,

[
m

p

])
+α3

(
kp,

[
m

p

])
+α4

(
γp,

[
m

p

]))
p

([
m

p

]
,t

)
+ (6.4)

α1

(
kr,

[
m−1

p

])
p

([
m−1

p

]
,t

)
+α2

(
γr,

[
m+1

p

])
p

([
m+1

p

]
,t

)
+α3

(
kp,

[
m

p−1

])
p

([
m

p−1

]
,t

)
+α4

(
γp,

[
m

p+1

])
p

([
m

p+1

]
,t

)
.

In the case of mass action kinetics the propensities αr(θr, z) can be further specified as

α1(kr, z) = kr, α2(γr, z) = γr ·m, α3(kp, z) = kp ·m, α4(γp, z) = γp · p. (6.5)
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6.1.1 Solving the CME: finite state projection

Let us introduce an ordering {zj}∞j=1 of the possible state realizations z ∈ NS. For the

system in Example 6.1, we could for instance use the mapping

z1 = [0, 0]>, z2 = [1, 0]>, z3 = [0, 1]>, z4 = [2, 0]>,

z5 = [1, 1],> z6 = [0, 2]>, z7 = [3, 0]>, z8 = [2, 1]>, . . .

where [m, p]> denotes the state with m mRNA copies and p proteins (see Figure 6.1).

Figure 6.1: State space for the gene expression system of Example 6.1.

Setting1 Pj(t) := p(zj, t), the CME in (6.3) can be rewritten as an infinite dimensional

linear system,

Ṗ (t) = FP (t), (6.6)

where P (t) ∈ [0, 1]∞ and the matrix F ∈ R∞×∞ can be derived from the reaction network

and its propensities. Specifically, the element [F ]i,j is the propensity of transitioning from

state zj to state zi (because a reaction with stoichiometric vector νr = zj − zi happens)

and −[F ]i,i is the propensity of leaving state zi (because any of the R reactions happens).

Consequently, system (6.6) can be thought of as a Markov chain with countably many

states zj ∈ NS and constant transition matrix F . Note that, by construction, all the

off-diagonal components of F are nonnegative and thus F is, by definition, a Metzler

matrix. The full derivation can be found in [MK06].

The main idea of the finite state projection (FSP) technique [MK06] is that the

probability of visiting most of the states of the Markov chain (6.6) is practically negligible.

Therefore, system (6.6) can be approximated by removing these states and keeping track

only of the probability evolution for the remaining ones, that take index in a suitable

1Not to be confused with the symbol used to denote the amount of protein in Example 6.1.
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set J . For example in gene expression, even though mathematically the mRNA could

grow unboundedly, it is very unlikely to observe states with more that tens of copies. To

formalize this concept let us first define the reduced order system

˙̄PJ(t) = [F ]J P̄J(t), P̄J(0) = PJ(0), (6.7)

where PJ(0) is the subvector of P (0) corresponding to the indices in J , and [F ]J denotes

the sub matrix of F obtained by selecting only the rows and columns with indices in J .

From now on, we denote by P (T ) and P̄J(T ) the solutions at time T of system (6.6) and

system (6.7), respectively. The dependence on the initial conditions P (0) and PJ(0) is

omitted to keep the notation compact. Intuitively, the truncated system (6.7) is a good

approximation of the original system (6.6) if most of the probability mass lies in J . This

intuition can be formalized as follows.

Assumption 6.1.2. For a given finite set of state indices J , an initial condition PJ(0),

a given tolerance ε > 0 and a finite instant T > 0, it holds

1
>P̄J(T ) ≥ 1− ε.

�

Under Assumption 6.1.2, it is possible to show that, up to time T , the evolution of the

reduced Markov chain P̄J(t) is a good approximation of the original, infinite dimension,

Markov chain P (t).

Proposition 6.1.1 (Finite State Projection [MK06]). If Assumption 6.1.2 holds, then

Pj(T ) ≥ P̄j(T ), ∀j ∈ J and ‖PJ(T )− P̄J(T )‖1 ≤ ε.

The FSP approach is a quite efficient approach for small-size biochemical reaction

networks, however it suffers from two fundamental drawbacks.

1. Since in the original Markov chain there are transitions from states that are in the

set J to states that have been discarded, asymptotically P̄J(t) → 0. Therefore,

Assumption 6.1.2 will not be satisfied for large T and the FSP method cannot be

used to analyze the asymptotic behavior of the system;

2. For a given final time T the number of states that need to be tracked (i.e., the

size of the set J) in order to guarantee Assumption 6.1.2 grows exponentially in

the number of species S. Therefore, the FSP method becomes computationally

intractable for large biochemical networks.

Extensions and modifications of the FSP approach that partially address these issues

are discussed for example in [RMASL11], where a Kalman filter approach is suggested,

or in [MK07, HMW09], where a time-varying set J(t), for t ∈ [0, T ], is proposed.
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6.1.2 Solving the CME: moment equations

In the previous section we have seen that, for large biochemical networks, it is usually

impossible to solve the CME and consequently, it is not possible to characterize the

full evolution of the probability distribution. In many practical applications however,

the evolution of some low-order moments of the stochastic process Z(t) is informative

enough to characterize the system. In [ZRK+12], for example, the authors suggest a

method to infer the value of the rate parameter θ using only mean and variance data.

Equations describing the time evolution of the uncentered moments of Z(t) can be eas-

ily computed from the CME, in the case of mass-action kinetics, by multiplying both

sides of (6.3) by (products of) the components of z and summing over all z ∈ NS [Rue14].

Example 6.1 (cont.) For the gene expression system of Example 6.1, the evolution
of the mean of the mRNA, E[M(t)], can be computed as follows

Ė[M ] =
d

dt

∞∑
m=0

∞∑
p=0

m · p
([
m

p

]
, t

)
=

∞∑
m=0

∞∑
p=0

m · ṗ
([
m

p

]
, t

)

=

∞∑
m=0

∞∑
p=0

[
−m (kr + γrm+ kpm+ γpp) p

([
m

p

]
, t

)
+ krmp

([
m− 1

p

]
, t

)

+γrm(m+ 1)p

([
m+ 1

p

]
, t

)
+ kpm

2p

([
m

p− 1

]
, t

)
+ γpm(p+ 1)p

([
m

p+ 1

]
, t

)]
=

∞∑
m=0

∞∑
p=0

[
−mkr − γrm2 − kpm2 − γpmp+ kr(m+ 1) + γr(m− 1)m+ kpm

2 + γpmp
]
· p
([
m

p

]
, t

)

=

∞∑
m=0

∞∑
p=0

[kr − γrm] p

([
m

p

]
, t

)
= kr − γrE[M ],

where we used the CME expression derived in (6.4) with propensities given by the mass

action kinetics in (6.5). �

In general, the resulting system of moment equations can be written as

˙̃x∞(t) = Ã∞(θ)x̃∞(t), (6.8)

where x̃∞(t) contains all the uncentered moments of the probability distribution P[Z(t)]

and Ã∞ ∈ R∞×∞ is an infinite dimensional matrix whose elements depend on the rate pa-

rameters vector θ := [θ1; . . . ; θR]. From (6.8) it is possible to derive a (usually nonlinear)

system describing the evolution of the centered moments x∞(t)

ẋ∞(t) = f∞(θ, x∞(t)), (6.9)

see for example [LKK09]. Note that the solution of either (6.8) or (6.9) completely

describes the stochastic process Z(t). It is therefore not surprising that, as for the CME,

these systems are generally very difficult, if not impossible, to solve. Luckly, in most

cases the evolution of some low-order moments is sufficiently informative to characterize
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the system. Let x≤l(t) be the vector of desired centered moments up to order l. Note

that from (6.9) it is possible to extract the time derivative of the moments of interest,

but this will in general depend also on the higher order moments x>l(t), that is

ẋ≤l(t) = g(θ, x≤l(t), x>l(t)). (6.10)

An explicit formula for g is given in [LKK09] as a function of the propensities and

their derivatives. This formula significantly simplifies under the assumption of affine

propensity functions, as illustrated in the next proposition for the first two moments

(l = 2).

Assumption 6.1.3. For each reaction r = 1, . . . , R the propensity αr(θr, z) is an affine

function of z.

Proposition 6.1.2 ([LKK09]). Consider the CME given in (6.3) and suppose that As-

sumption 6.1.3 holds. Let xi(t) = E[Zi(t)], x≤1(t) = [x1(t); . . . ;xS(t)] and xij(t) =

E[(Zi(t)− xi(t))(Zj(t)− xj(t))]. Then, for all i, j ∈ Z[1, S],

ẋi =
R∑
r=1

[νir · αr(θr, x≤1)] (6.11)

ẋij =
R∑
r=1

[
νir ·

S∑
l=1

(
∂αr(θr, x≤1)

∂zl
xjl

)
+ νjr ·

S∑
l=1

(
∂αr(θr, x≤1)

∂zl
xil

)
+ νirνjr · αr(θr, x≤1)

]

where we omitted the time dependence for simplicity.

The most important feature of the equations in (6.11) is that the evolution of mean

and variance are closed, in the sense that they do not depend on higher order moments,2

that is

ẋ≤l(t) = f(θ, x≤l(t)). (6.12)

Therefore computing the evolution of the low order moments reduces to solving a system

of finitely many non-linear first order differential equations. We note that, in the case

of mass action kinetics, Assumption 6.1.3 is satisfied if the network contains reactions

up to first order (i.e, reactions with at most one reagent). In fact if a reaction is of zero

order its propensity is constant (i.e., αr(θr, z) = θr) and if a reaction is of order one then

its propensity is linear (i.e., αr(θr, z) = θrzir , for some ir ∈ Z[1, S]). Assumption 6.1.3 is

violated, on the other hand, for mass action reactions of order greater then one. For ex-

ample, for order two the propensity becomes αr(θr, z) = θrzirzjr , for some ir, jr ∈ Z[1, S]

which is quadratic and thus non-affine. If the propensities are not affine approximate

methods to solve (6.10) by substituting the unknown high order moments x>l(t) with a

non-linear function of the low order ones, that is, by imposing x>l(t) ∼= h(x≤l(t)) have

2Note that this statement is true also for l > 2. In general, under Assumption 6.1.3 the evolution of

the moments x≤l, at any order l, does not depend on x>l.
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been suggested in the literature, under the name of moment closure techniques, resulting

in the approximate dynamics

ẋ≤l(t) ∼= g(θ, x≤l(t), h(x≤l(t))) =: f(θ, x≤l(t)).

Unfortunately, in this case there are no theoretical guarantees or known bounds on the

approximation error. Consequently, we do not delve more into this topic and we refer

the interested reader to [Hes08].

Example 6.1 (cont.) Under the assumption of mass-action kinetics, the propensity

functions of the gene expression model of Example 6.1 are affine, as shown in (6.5).

Therefore, if the state of system (6.12) is ordered as x≤2 := [xM , xP , xM2 , xMP , xP 2 ]> ,

then ẋ≤2 = Ax≤2 + b, where

A =


−γr 0 0 0 0

kp −γp 0 0 0

γr 0 −2γr 0 0

0 0 kp −(γr + γp) 0

kp γp 0 2kp −2γp

 , b =


kr
0

kr
0

0

 . (6.13)

Note that, since the mRNA production follows a birth and death process, M(t) has a

Poisson distribution and consequently xM = xM2. Exploiting this information the 5-

dimensional system in (6.13) can be reduced to the equivalent 4-dimensional system ẋ =

Arx+ br, with matrices

Ar =


−γr 0 0 0

kp −γp 0 0

kp 0 −(γr + γp) 0

kp γp 2kp −2γp

 , br =


kr
0

0

0


and state x := [xM , xP , xMP , xP 2 ]> . In the following we will use both these systems

interchangeably.

6.2 Problem statement: controlled biochemical net-

works and population measurements

In the following we are interested in characterizing and possibly controlling the behavior

of a population of identical cells, each containing a copy of the biochemical network of

interest. To this end, we make two standing assumptions.
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Population measurements: We can observe the system behavior by performing

experiments in which at H ∈ N predetermined measurement times {th}Hh=1 we:

1. collect a random sample of the population consisting of N ∈ N cells 3;

2. measure the amount of one or more species in each cell of the sample, thus

constructing the dataset Y(th) := {yi(th)}Ni=1;

3. discard the sample.

This is the typical process for example in flow-cytometry experiments, where one or

more species of interest are tagged with fluorescence labels that are then measured via

lasers and fluorescence detectors. With this measurement procedure the number N of

cells measured at every sampling time is typically very large. Moreover, since cells are

discarded, the recordings {yi(th)}Ni=1 at different measurements times are statistically

independent.

Controlled reactions: We can intervene on the population by means of M ∈ N
external signals, denoted by σm(t) ∈ Σm ⊆ R≥0,m ∈ {1, . . . ,M}, which are applied

to the whole population. Each external signal σm acts on the system by modifying

the propensity of a specific reaction rm in a multiplicative fashion, that is, it modifies

its propensity from αrm(θrm , z(t)) into αrm(θrm , z(t)) · σm(t).

Examples of controlled stochastic biochemical reaction networks satisfying this as-

sumption are described for example in [MASSO+11, RPMA+15, OHL+14, UMD+12,

MDBDB11]. Note that the CME in case of controlled reaction results in

ṗ(z, t) =
M∑
r=1

[p(z − νr, t)αr(θr, z − νr)− p(z, t)αr(θr, z)]σr(t)+

+
R∑

r=M+1

[p(z − νr, t)αr(θr, z − νr)− p(z, t)αr(θr, z)] ,
(6.14)

where we assumed, without loss of generality, that the reactions have been ordered so

that rm = m, for each m ∈ Z[1,M ]. In Section 8.3 and 8.4 we show how the solution

methods described in Sections 6.1.1 and 6.1.2 for autonomous reaction networks can be

adapted to approximate the CME of controlled reaction networks. For example, following

the same steps as in Section 6.1.2, one can derive an equation describing the evolution

3For simplicity we assume that the number of cells sampled at each measurement time is the same.

All the results can trivially be generalized to different sample sizes N(th).
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of the low-order moments of (6.14) as a function of the applied external signal, resulting

in the controlled system

ẋ≤l(t) = f(θ, x≤l(t), σ(t)). (6.15)

To sum up, in the second part of the thesis, we analyze the behavior of a population

of cells that we can influence through some external signals and that we can track via

high-throughput population measurements. The experimental apparatus is thus defined

by the available external signals and the species that can be measured. For a fixed

experimental apparatus, an experiment e is completely specified by the applied input

and by the measurements times, so that e = {σ(t), t1, . . . , tH}. The class of all possible

experiments is denoted by E . The objective of the second part of the thesis is to

1. select the best sequence of experiments ei ∈ E , i = 1, . . . , I to be performed

to “optimally” infer the rate parameters θ of a given reaction network from the

available population measurements (Chapter 7);

2. once a model and its parameters have been identified, use the model to either pre-

dict the population behavior for an unseen experiment (Chapter 7) or characterize

the whole range of behavior that the population can exhibit under different choices

of the external signals (Chapter 8);

3. control the population behavior by designing a suitable external signal (Chapter

9).

To demonstrate the validity of our theoretical results we report in Chapter 9 an in vivo

case study in which the proposed techniques are used to characterize and control a light

inducible gene expression circuit implemented in yeast.
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CHAPTER 7
A systematic parameter inference procedure

from population data

Systems biology rests on the idea that biological complexity can be better unraveled

through the interplay of modeling and experimentation. The success of this approach

however depends critically on the informativeness of the chosen experiments, which is

usually unknown a priori. In this chapter, we propose a systematic scheme, based on it-

erations of optimal experiment design, population experiments and Bayesian parameter

inference, to guide the discovery process in the case of stochastic biochemical reaction

networks. Specifically, in Sections 7.1,7.2,7.3 we review known results on parameter in-

ference, posterior predictive distributions and experiment design. We then combine these

results to propose in Section 7.4 a sequential characterization procedure for controlled

stochastic biochemical reaction networks from population data. The results of Section

7.4 have been published in [RPMA+15].

7.1 Parameter inference

Consider a controlled stochastic biochemical reaction network, as described in Sec-

tion 6.2, consisting of R reactions with unknown rates θ = [θ1, . . . , θR]. Moreover,

suppose that a specific experiment e ∈ E has been performed and that the data Ye =

{Ye(th)}Hh=1 has been recorded. The main objective of parameter inference is to use this

data to infer the value of the unknown parameter vector θ. Let us denote by p(z, t | θ, e)
the solution of the controlled CME in (6.14), to make explicit its dependence on the

performed experiment e and on the specific parameter vector θ used to solve it. The

maximum likelihood estimator is by definition the parameter vector θ that maximizes

the probability of observing the recorded outcome Ye, that is,

θ̂ML(Ye) := arg max
θ
L(Ye | θ) := arg max

θ
P(Ye | θ).

The function L(Ye | θ) is the likelihood of observing the outcome Ye conditioned on the

parameters choice θ. With the notation introduced above and recalling that, according
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to our assumption, the measurements in Ye are independent one obtains

θ̂ML(Ye) = arg max
θ
{ΠH

h=1ΠN
i=1 p(yi(th), th | θ, e)}.

The main drawback of the maximum likelihood approach is that, to solve the previous

optimization problem, one needs to solve the CME in (6.14) for each possible value of the

parameter θ. As discussed in Section 6.1 this is an impossible task even for very simple

biochemical reaction networks. To overcome this issue, we review in the next section an

alternative, approximate approach, that uses the moment equations.

7.1.1 The likelihood of sample moments

While solving the CME (6.14) is in general a very difficult task, computing its low

order moments is a viable alternative for many systems of practical interest. In fact,

as illustrated in Section 6.1.2, under Assumption 6.1.3 or by using a suitable moment

closure technique [Hes08], this problem is equivalent to solving the ordinary differential

equation in (6.15). In the following, we denote by x(t | θ, e) the solution of (6.15) to

emphasize its dependence on the experiment e and parameter θ. The main idea of the

moment approach is to use the dataset Ye = {Ye(th)}Hh=1 to construct an estimate of the

low-order moments at each measurement time th and then select the parameter vector

that maximizes the likelihood of observing those moments instead of the likelihood of

observing each single realization. Let us assume for simplicity that only one species s

is measured, so that yi(th) ∈ N is the amount of species s in the i-th cell of the sample

taken at time th
1. Then the estimators for mean and variance of Zs(th) are

µ̂es(th) =
1

N

N∑
i=1

yei (th)

µ̂es2(th) =
1

N − 1

N∑
i=1

(yei (th)− µ̂es(th))2.

In the following we refer to µ̂es(th), µ̂
e
s2(th) as the sample moments. Let the set De =

{µ̂es(th), µ̂es2(th)}Hh=1 be the sample moments dataset. Note that since Ye is a collection of

random realizations, also the estimators µ̂es(th) and µ̂es2(th) are random variables. Since

they are obtained as sum of the independent random variables yei (th) when the sample

size N tends to infinity, thanks to the central limit theorem, the distribution of µ̂es(th)

and µ̂es2(th) tends to a normal distribution, whose mean and variance can be computed

from the moments x(t | θ, e) of the Z process from which the samples yei (th) were taken.

1The following results can be generalized to an arbitrary number of measured species.
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Specifically,

µ̂eth :=

[
µ̂es(th)

µ̂es2(th)

]
∼ N (µeth|θ,Σ

e
th|θ) where (7.1)

µeth|θ :=

[
xs(th |θ, e)
xs2(th |θ, e)

]
, Σe

th|θ :=
1

N

[
xs2(th |θ, e) xs3(th |θ, e)
xs3(th |θ, e) xs4(th |θ, e)− N−3

N−1
(xs2(th |θ, e))2

]
where xsi(th | θ, e) denotes the i-th central moment of Zs(t) (that is, the relative com-

ponent in x(th | θ, e)). Exploiting the fact that for large sample size N the moments

are normally distributed, it is possible to compute an explicit formula for the likelihood

of a parameter vector, given the estimated moments De, that leads to the maximum

likelihood estimator from sample moments

θ̂ML(De) = arg max
θ
L(De | θ) = arg max

θ
ΠH
h=1p(µ̂

e
th
| θ, e) (7.2)

:= arg max
θ

ΠH
h=1

1

2π
√
|Σe

th|θ|
exp

(
−1

2
(µ̂eth − µ

e
th|θ)

>Σe
th|θ
−1(µ̂eth − µ

e
th|θ)

) .

The advantage of performing inference from sample moments instead of realization is

that, to solve (7.2), one has to compute the solution of the system of low-order moments

given in (6.15) instead of the full CME (6.14), thus making the inference task compu-

tationally tractable. Clearly, this computational advantage comes at the expenses of

discarding all the information contained in the higher order moments. Nonetheless, in

many practical cases the information contained in the low order moments is still sufficient

to accurately identify the unknown parameters (i.e. θ̂ML(De) ∼= θ̂ML(Ye)) [RL13].

7.1.2 Bayesian parameter inference

The maximum likelihood estimator in formula (7.2) allows one to select the parameter

vector that best explains the sample moments dataset De. In biological application,

however, scientists have additional information on the reaction rates, coming for exam-

ple from previous literature studies, and are interested in ranges of plausible parameters

rather than in single parameter vectors. These aspects can be incorporated in the in-

ference procedure by using a Bayesian approach, which aims at computing a probability

distribution over the parameter space instead of a point estimator. In the Bayesian

framework, any additional information on the parameters is encoded in a prior parame-

ter distribution p(θ) which is then modified, according to the Bayes formula, to account

for the measured data, leading to the posterior parameter distribution

p (θ | De) =
L (De | θ) p(θ)

p (De) , (7.3)

where L (De | θ) is as in (7.2) and p (De) =
∫
L (De | θ) p(θ)dθ. We note that in general it

is not possible to compute an analytic expression for the posterior distribution. However,
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particle approximations of such a distribution can be obtained using sampling methods

as, for example, the Metropolis–Hastings algorithm or more complex sequential Monte

Carlo algorithms if the parameter space is high dimensional [DMDJ06, MA13]. If a point

estimate θ̂ of the model parameters is also desired, the maximum a posteriori (MAP)

estimate

θ̂MAP(De) := arg max
θ
p (θ | De) , (7.4)

that is, the maximizer of the posterior distribution, can be extracted from the particle

approximation. Note that, if the prior parameter distribution p(θ) is uniformly dis-

tributed, then θ̂MAP(De) coincides with θ̂ML(De). Finally, since the data collected in

different experiments is statistically independent, it is straightforward to extend (7.2),

(7.3), (7.4) to a dataset containing multiple experiments, D = {De}Ee=1, by using as

likelihood

L (D | θ) =
E∏
e=1

L (De | θ) .

The parameter posterior distribution, computed using the Bayesian inference ap-

proach, allows one to quantify the available information on the parameter vector θ. A

posterior parameter distribution which is very peaked around a single value suggests that

the MAP estimator is a “reliable” parameter estimate. On the other hand, multinomial

or flat posterior distributions can be an index of either one of two scenarios: i) the data

that has been used in the Bayesian inference approach was not informative enough or

ii) the model is practically unidentifiable, which means that there are multiple param-

eter vectors that lead to the same observed behavior. To distinguish among these two

cases, and more in general to determine how well new experiments can be predicted by

the inferred model, one can compute the posterior predictive distribution of the sample

moments for one or more validation experiments.

7.2 Posterior predictive distributions of sample mo-

ments

The most straightforward approach to predict the response of the population in a new

validation experiment2 v ∈ E , given the data D recorded in previous experiments, is to

solve the corresponding moment equations with the point estimate θ̂MAP(D) as parame-

ters vector. Even though this is a valid approach, it does not allow one to quantify how

certain this prediction actually is. Consider, for instance, a case where the parameter

2Note that we use the symbol v ∈ E instead of the generic e ∈ E to denote a validation experiment.

Our aim is to stress the fact that the posterior predictive distributions are computed before the experi-

ment is performed to predict its outcome, based on the dataset D recorded in some previous experiments

(i.e., not in v). Such predictions can be used to validate the model based on the difference between the

predicted outcome and the actual data Dv, which is measured a posteriori.
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posterior distribution is very flat so that its density function is only marginally larger at

the MAP estimate than at other parameter values. In such a case predictions computed

with parameters other than the MAP estimate would be almost equally likely outcomes

of the new experiment, even though they could be significantly different. To overcome

this issue one should validate the model by using the complete posterior predictive dis-

tribution instead of predictions computed with point estimates only. This distribution

describes how likely different measurements, in our case sample mean and variance µ̂vt ,

are for a new validation experiment v, given all the previously measured data D. The

posterior predictive distribution can be computed from the parameter posterior distri-

bution p(θ |D) according to

ppred(µ̂vt | D, v) =

∫
θ

p(µ̂vt | θ, v)p(θ |D)dθ,

where p(· | θ, v) is the distribution of µ̂vt given the selected experiment v and that θ are

the model parameters, as in (7.2). The distribution ppred(·, | D, v), can be approximately

computed by replacing the integral over θ with a sum over samples {θq}Qq=1, drawn from

the posterior distribution p(θ | D). Since for each θ the sample moments distribution

p(· | θ, v) is approximately a two-variate gaussian distribution3 we obtain a gaussian

mixture approximation of the posterior predictive distribution at time t as

ppred(· | D, v) ≈ 1

Q

Q∑
q=1

N
(
µvt|θq ,Σ

v
t|θq

)
,

where µvt|θq and Σv
t|θq are as in (7.1).

7.3 Experiment design for parameter inference

For the inference process described in Section 7.1 to be successful, it is of paramount

importance to design and perform experiments that yield the information required to

identify the model parameters. To this end, optimal experiment design techniques for

biochemical stochastic networks have been recently developed [RMAL13, ZNUK12].

7.3.1 The Fisher information

The first thing that is required for the design of optimal experiments is a way of quanti-

fying the information that an experiment can provide about the unknown parameter θ.

One way of quantifying this information is through the computation of the Fisher infor-

mation matrix [KCRS11]. The entries of the Fisher information matrix, I(θ, e) ∈ RR×R,

3Due to the finite sampling noise as described in Section 7.1.1.
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are given by

[I(θ, e)]k,l = E
[(

∂

∂θk
logL(De | θ)

)(
∂

∂θl
logL(De | θ)

)]
, (7.5)

where L(De | θ) is the likelihood of the data De, recorded in experiment e, given that

θ are the model parameters as in (7.2), and the expectation is taken with respect to

all possible realizations of the data De. If one uses as data the sample moments of

the measured species Zs, the Fisher information matrix can be approximated, for N

large, using only the first four moments of the probability distribution, according to the

formulas derived in [RMAL13]:

I(θ, e) =
H∑
h=1

Ieth(θ) where (7.6)

[
Ieth(θ)

]
k,l

= N

 ∂xs,th
∂θk

∂xs,th
∂θl

xs2,th
+

(
xs2,th

∂xs2,th
∂θk

− ∂xs,th
∂θk

xs3,th

)(
xs2,th

∂xs2,th
∂θl
− ∂xs,th

∂θl
xs3,th

)
(xs2,th)2 (xs4,th − (xs2,th)2)− xs2,th(xs3,th)2

 ,

where xsi,th = xsi(th | θ, e) is the i-th centered moment of the distribution P[Zs(th) = z |
θ, e]. To evaluate this formula, in addition to the moments themselves, partial derivatives

of means and variances with respect to θ have to be computed from the model. These

can be obtained by solving the population moment equations (6.12) with any solver

for ordinary differential equations which also returns parameter sensitivities, such as

CVODES of the SUNDIALS toolbox [HBG+05].

7.3.2 Designing an optimal experiment

The expectation in (7.5) is taken with respect to all possible realizations of the data.

Accordingly, the Fisher information matrix does not depend on any measurement and

can be used to evaluate the utility of different experiments before they are performed.

This means that one can search among all possible experiments for the one which can be

expected to provide the most information about the model parameters. In other words,

one can aim at solving the optimization problem

e∗ = arg max
e∈E
{det I(θ, e)}, (7.7)

where I(θ, e) is the Fisher information matrix defined in (7.6) and E is the set of all pos-

sible experiments. The determinant det I(θ, e) in (7.7) provides one way of summarizing

the information of an experiment in a scalar quantity that can be maximized. This is

known as D-optimality. There exist many other optimality criteria, we refer the reader

to [Rue14] for a detailed discussion.

It is important to underline that the Fisher information matrix depends on the values

of the parameters θ which are to be estimated. These parameters are obviously unknown
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(otherwise performing an experiment for their identification would not be necessary).

One way to overcome this problem is described in the next section.

7.4 Sequential experiment design for parameter in-

ference

In the previous section we have described how, given an experiment, one can identify

the “best” parameter vector θ and how, given a parameter vector, one can design an

“optimal” experiment. Sequential experiment design aims at combining these two pro-

cesses to infer the parameter vector with as less experiments as possible. Specifically,

in sequential experiment design the parameters θ are replaced by their best currently

available estimates θ̂, so that a new experiment is designed using θ̂ for the computation

of the Fisher information matrix. The data collected in this experiment can then be used

to improve the quality of the estimates and another experiment can be designed with the

updated parameter estimates. In general, there is no guarantee that evaluating I(θ, e)

at estimated values θ̂ will result in the design of informative experiments. Simulation

studies [HWT13a], however, have shown that sequential experiment design often leads

to good results, especially if many different experiments are needed to identify the model

parameters. By making use of the inference and experiment design methods reviewed

in Section 7.1 and 7.3, we propose here a sequential experiment design procedure for

controlled stochastic biochemical reaction networks from population data.

The proposed approach, illustrated in Figure 7.1 is an iterative procedure where at

every step k:

1. A new experiment ek, optimally complementing the previously performed experi-

ments {ei}k−1
i=1 , is designed based on the MAP estimate θ̂k−1. Mathematically,

ek = arg max
e∈E

{
det I

(
θ̂k−1, {ei}k−1

i=1 ∪ {e}
)}
.

2. The experiment ek is performed and the sample moments dataset Dek is computed

from the recorded measurements Yek .

3. The posterior parameter distribution is updated, by using Bayes formula,

p
(
θ | {Dei}ki=1

)
=
L (Dek | θ) p

(
θ | {Dei}k−1

i=1

)
p (Dek) ,

and the new MAP estimate is computed

θ̂k({Dei}ki=1) := arg max
θ
p
(
θ | {Dei}ki=1

)
.
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The procedure stops when either the posterior parameter distribution is sufficiently

peaked or the posterior predictive distributions for some validation experiments (dif-

ferent from {ei}ki=1) are sufficiently tight. To initialize the sequential procedure one can

set p (θ | {Dei}0
i=1) to be the prior distribution p(θ) and θ̂0 = arg maxθ p(θ), if the prior

is not flat, or a value taken from the literature, otherwise.

Figure 7.1: Sequential experiment design for parameter inference.

An important aspect to underline is that, for the design of the next experiment, the

joint Fisher information matrix of the already performed experiments and the yet to be

determined experiment has to be computed. If only the Fisher information matrix of the

new experiment alone would be used for the design, it would be likely that an experiment

which is similar to the first one would be designed (since the only difference to the design

of the first experiment would be that the Fisher information matrix is evaluated at

updated parameter values). If, on the other hand, the joint information is used, one can

expect that an experiment that adds new information and in some sense complements the

already performed experiments is designed at every step [HWT13b]. We also note that

only the MAP estimate is used in the experiment design step instead of the full parameter

posterior distribution. This is a suboptimal choice which is however mandatory for

computational reasons. Selecting the best experiment according to the full parameter

distribution would indeed require the computation, for each candidate experiment, of the

expected Fisher information matrix over the parameter distribution. This task cannot

be solved analytically but could be solved approximately by replacing the integral over θ

with a sum over samples {θqk}Qqk=1, drawn from the posterior distribution p(θ |{Dei}ki=1)
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and then selecting as next experiment

ek+1 = arg max
e∈E

{ Q∑
qk=1

det I
(
θqk , {ei}ki=1 ∪ {e}

)}
.

This would however increase the computation time by a multiplicative factor Q.

The usefulness of sequential experiment design is verified in Chapter 9, where the

proposed approach is applied to the in vivo characterization of a light inducible gene

expression system.
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CHAPTER 8
Reachability analysis

A fundamental question in the study of stochastic controlled biochemical reaction net-

works is to what extent is noise an intrinsic property of the system and consequently

what are the fundamental limits in noise suppression [LVP10]. In this chapter we tackle

this question by rephrasing it in terms of moments of the underlying stochastic process.

Specifically, we aim at investigating what values of mean and variance (or higher order

moments) of the species present in the network are obtainable by perturbing the system

with the available external signal. To this end, we adapt the hyperplane method, origi-

nally proposed in [GK91], to compute inner and outer approximations of the reachable

set of the system describing the moments evolution. A remarkable feature of this ap-

proach is that it allows one to easily compute projections of the reachable set for pairs

of moments of interest, without first requiring the computation of the full reachable set,

thus making our method scalable.

The results of this chapter have been published in [PVL14, PVL15, PVL16].

8.1 Problem formulation

One of the most impressive results achieved by synthetic biology in the last decade is the

synthesis and introduction of the externally controllable modules described in Section 6.2

in pre-existing biochemical reaction networks, allowing researchers to influence and pos-

sibly control the behavior of a cell in vivo. A fundamental prerequisite for the successful

application of these modules, however, is understanding what range of behaviors they

can exhibit under different choices of the external signal. For deterministic systems, this

refers to the problem of computing the set of states that can be reached by the system

trajectories starting from a known initial configuration [BDJPG08, CF03]. As discussed

in Chapter 6, however, biochemical reaction networks are inherently stochastic and, for

any fixed control input, many different evolutions may arise with different likelihood.

Therefore, the analysis of these systems has to be formulated in a probabilistic setting.

One may be interested, for example, in computing the probability of entering a prespec-

ified subset of the state space, given a fixed initial condition or an initial probability
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distribution [BHHK03, AKLP10, ESPP+06, MK06].

Here we analyze controlled stochastic biochemical reaction networks by posing a

related but different question: instead of focusing on the behavior of the different real-

izations we are interested in characterizing how the external input influences the mean,

variance (and possibly higher order moments) of the stochastic process. This approach

is motivated for example by biotechnology applications, where one would like to control

the average production of the cells in large populations, instead of each cell individually.

More on the theoretical side, this different perspective can be useful to investigate fun-

damental questions on noise suppression in biochemical reaction networks [LVP10]. In

[PVL14], for example, a similar approach is employed to study a simple gene expression

network and to derive bounds on the variability of protein levels that can be observed in

a population of identical cells. Finally, information regarding the species’ moments can

be useful to derive computationally efficient algorithms to simulate the behavior of the

full Markov chain distribution.

Note that while the trajectories of the system are stochastic the evolution of the

moments of the process is deterministic, as detailed in Section 6.1.2. Consequently, for

the class of networks described in Chapter 6, the above question can be rephrased as

a standard reachability problem in the moments space. Many different methods have

been proposed in the literature to compute the reachable set of a deterministic system,

among which level set methods [MT05], ellipsoidal methods [KV97] and sensitivity based

methods [DM07]. Biochemical networks typically have an high-dimensional state space,

therefore the choice of a method that scales well with the system size is essential. Here,

we opted for the hyperplane method introduced in [GK91] for linear systems. The

reason is that, in biological applications, researchers are often interested in analyzing the

behavior of only a few chemical species of the possibly many involved in the network.

Consequently, one is typically interested in the projection of the reachable set (which is

a high-dimensional object) on some low-dimensional space of interest. The hyperplane

method stands out in this respect, since it allows one to compute directly the projection

of interest, without requiring the computation of the full high-dimensional reachable set

first. Finally, intersections of hyperplanes are very easy to handle and to visualize.

The chapter is organized as follows. In Section 8.2 we present the main theoretical

results on reachability analysis. Specifically, in Section 8.2.2 we review the hyperplane

method for linear systems with bounded input, while in Section 8.2.3 we extend it to

switched affine systems. In Section 8.3 we apply these theoretical results to biochemical

networks satisfying Assumption 6.1.3. Under this assumption the system describing the

moment evolution is, in fact, closed and linear with bounded input (Section 8.3.1) or

switched affine (Section 8.3.2). In Section 8.4, we consider generic reaction networks for

which the system of moment equations is not necessarily closed. Since moment closure

methods would lead to nonlinearities, the theoretical results of Section 8.2 cannot be

applied. To obviate to this problem we derive in Section 8.4.2 an extension of the FSP
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method for controlled biochemical networks and we show that the reduced Markov chain

is switched affine. We then apply the results of Section 8.2.3 to this new system. Figure

8.1 provides a summary of the main contributions of this chapter. All the proofs are

given in the Appendix.

Figure 8.1: Contributions of Chapter 8.

8.2 Reachability tools

8.2.1 The reachable set

Consider the n-dimensional nonlinear controlled system

ẋ(t) = f(x(t), σ(t)) t ≥ 0. (8.1)

In the following we assume that, for every initial condition x(0) ∈ Rn and every input

function σ(·) belonging to the set of admissible control laws S, the solution of (8.1),

denoted by x(t;x(0), σ(·)), is well defined and unique at every time t > 0. We also

assume that the admissible laws σ ∈ S are uniformly bounded.

Remark 8.1. The above assumptions are satisfied, for example, by a controlled linear

system with bounded input, as discussed in Section 8.2.2, or by an autonomous switched

affine system that can switch at most K times within a finite set of I possible modes
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Σ := {σ̄1, . . . , σ̄I} at preassigned switching instants 0 = t0 < . . . < tK+1 = T , that is

SK := {σ(·) | σ(t) = σ̄ik ∈ Σ, ∀t ∈ [tk, tk+1),∀k = 0, . . . , K},

as discussed in Section 8.2.3.

The reachable set of system (8.1) at time T is defined as follows.

Definition 8.1 (Reachable set at time T ). The reachable set RT (x0) from x0 at time

T > 0, for the system (8.1) with admissible control set S, is defined as the set of all

states x ∈ Rn that are reachable at time T from x(0) = x0, using an admissible control

law:

RT (x0) := {x ∈ Rn | x = x(T ;x0, σ(·)), ∃ σ ∈ S }.
�

As motivated in the previous section, biologists are usually interested in charac-

terizing the behavior of only a few species of the many involved in the network. In

mathematical terms, this means that one is interested in the projection of the reachable

set on a plane of interest. For example one may be interested in the relation between the

mean behavior of two species or between mean and variance of a single species. For any

p, q ∈ {1, . . . , n}, p 6= q, the projection of the reachable set RT (x0) in the (xp, xq)-plane

is

Rp,q
T (x0) := {y ∈ R2 | y = [xp, xq]

> =
[
e>p
e>q

]
x, ∃x ∈ RT (x0)},

where ep, eq are canonical vectors with entry 1 in position p, q, respectively. This defi-

nition can be generalized to any pair of linear combinations C1x and C2x of the state

components, where C1, C2 ∈ Rn, by identifying the linear combinations C1x and C2x as

the system output, and then investigating the set of all values that the output of the

system can reach. Specifically, given a matrix C :=
[
C1
C2

]
∈ R2×n, with Cj being the jth

row of matrix C, we define the output of system (8.1) as

y(t) = Cx(t) =

[
C1x(t)

C2x(t)

]
∈ R2 (8.2)

and the output reachable set as follows.

Definition 8.2 (Output reachable set at time T ). The output reachable set RC
T (x0)

from x0 at time T > 0, for system (8.1) with admissible control set S and output given

in (8.2), is defined as the set of all output values y := Cx ∈ R2 that are obtainable at

time T from x(0) = x0, using an admissible control law. That is,

RC
T (x0) := {y ∈ R2 | y = Cx, ∃ x ∈ RT (x0)}.

�
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Computing the (output) reachable set for nonlinear systems is in general a very

difficult task. In the next section we revise a method to approximate this set in the case

of controlled linear systems with bounded input, which we then extend in Section 8.2.3

to the case of switched affine autonomous systems.

8.2.2 The hyperplane method for linear systems with bounded

input

Consider a time-invariant linear system

ẋ(t) = Ax(t) +Bσ(t), (8.3)

where x(t) ∈ Rn, A ∈ Rn×n, B ∈ Rn×m and σ(t) = [σ1(t); . . . ;σm(t)] ∈ Σ := Σ1 × . . .×
Σm. If Σ = Rm, that is, if the control input is unbounded the following classical result

of control theory allows one to explicitly characterize the reachable set, as reported for

example in [Son98, Lemma 3.2.2].

Proposition 8.2.1. Consider the linear system in (8.3) and assume that Σ = Rm. Then,

for any T > 0, we get

RT (x0) = eATx0 + Im(R), R := [B,AB,A2B, . . . , An−1B].

Consequently, RT (x0) = Rn if and only if the pair (A,B) is reachable, that is, if

rank(R) = n. �

According to the previous proposition if the control input is unbounded the reachable

set RT is an affine subspace and RT (0) is independent on the final time T . This result

does not hold anymore if the input is bounded, that is, if Σ ⊂ Rm. Nonetheless, by

assuming sufficient structure of Σ it is possible to prove that the reachable set has the

following properties [Son98, Lib11].

1. If 0 ∈ Σ, then for any T̂ > T > 0, it holds RT (0) ⊆ RT̂ (0).

2. If the constraint set Σ is convex, the reachable set RT (x0) is convex, for any T > 0.

Since biological signals are non-negative and bounded, we assume in the following that

Σr = [0, σ̄r], so that Σ satisfies both the conditions above and according to the first

statement, the longer the horizon T is the more states can be reached. The limiting set,

that is, the set of states that can be reached in any arbitrarily long but finite time, is

the infinite-time reachable set.

Definition 8.3 (Infinite-time reachable set). The infinite-time reachable set R(x0), for

system (8.3) with control constraint set Σ, is defined as the set of all states x ∈ Rn that

are reachable from x(0) = x0, using an admissible control law. That is

R(x0) := {x ∈ Rn | x ∈ RT (x0), ∃T > 0}.
�
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The main idea of the hyperplane method, introduced in [GK91], is to construct an

outer approximation of the reachable set RT as the intersection of a family of half-spaces

defined by hyperplanes that are tangent to the boundary of RT , see Figure 8.2. For any

given direction c ∈ Rn, let us define two supporting hyperplanes that are tangent to

∂RT , one from above Ha
T (c) := {x ∈ Rn | c>x = vaT (c)} and one from below Hb

T (c) :=

{x ∈ Rn | c>x = vbT (c)}. The two values vaT (c), vbT (c) ∈ R can be computed by solving

the following optimization problems

vaT (c) := max
x∈RT (x0)

c>x, and vbT (c) := min
x∈RT (x0)

c>x, (8.4)

for simplicity we omit the dependence of vaT (c), vbT (c) on the initial condition x0. By refor-

mulating these problems as finite time optimal control problems and using the Maximum

Principle [Lib11], one can explicitly compute two control laws σa,?(t) and σb,?(t) that lead

the state x(0) = x0 to two points x(T ;x0, σ
a,?) =: xa,?T (c) and x(T ;x0, σ

b,?) =: xb,?T (c)

satisfying

xa,?T (c) ∈ Ha
T (c) ∩RT (x0), xb,?T (c) ∈ Hb

T (c) ∩RT (x0), (8.5)

respectively. In other words, the two hyperplanes Ha
T (c),Hb

T (c) are tangent to RT (x0) in

xa,?T (c), xb,?T (c). Note that these points are unique if the set RT (x0) is strictly convex.

Proposition 8.2.2 (Tangent hyperplanes [GK91]). Given system (8.3), with control

constraint sets Σr := [0, σ̄r] ⊂ R≥0, define the following admissible control laws, expressed

component-wise for any r = 1, . . . ,m,

σa,?r (t) : =


σ̄r if c>eA(T−t)br > 0

0 if c>eA(T−t)br < 0

0 ≤ σar ≤ σ̄r if c>eA(T−t)br = 0

σb,?r (t) : =


0 if c>eA(T−t)br > 0

σ̄r if c>eA(T−t)br < 0

0 ≤ σbr ≤ σ̄r if c>eA(T−t)br = 0,

where br denotes the rth column of B. Then

vaT (c) = c>eATx0 +
∑m

r=1 σ̄r
∫ T

0

[
c>eA(T−t)br

]
+
dt (8.6)

vbT (c) = c>eATx0 −
∑m

r=1 σ̄r
∫ T

0

[
c>eA(T−t)br

]
− dt. (8.7)

Suppose additionaly that the pair (A, br) is reachable, that is rank [br, Abr, . . . , A
n−1br] =

n, for all r = 1, . . . ,m. Then there are no singular arcs, that is, there exists no interval

[τ1, τ2], with 0 ≤ τ1 < τ2 ≤ T such that c>eA(T−t)br = 0 for all t ∈ [τ1, τ2]. Consequently,

the laws σa,?r (t), σb,?r (t) are completely specified and the two intercepts can be obtained as

xa,?T (c) = eATx0 +
∫ T

0
eA(T−t)Bσa,?(t)dt and xb,?T (c) = eATx0 +

∫ T
0
eA(T−t)Bσb,?(t)dt.

(8.8)

�
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Using Proposition 8.2.2 it is possible to construct approximations both of the finite-

time reachable set RT (x0) and of the infinite-time reachable set from the origin R(0).

In fact, let us define the half-spaces

Ha
T (c) := {x ∈ Rn | c>x ≤ vaT (c)}, Hb

T (c) := {x ∈ Rn | c>x ≥ vbT (c)}, (8.9)

where vaT (c), vbT (c) are defined as in (8.6) and (8.7). By construction, the reachable set

RT (x0) is contained in both half-spaces and therefore in their intersection. Moreover,

since xa,?T (c), xb,?T (c) ∈ RT (x0) and RT (x0) is convex, conv(xa,?T (c), xb,?T (c)) ⊆ RT (x0). In

the following proposition we generalize these intuitions to a set of different directions

C := {c1, . . . , cD}, as illustrated in Figure 8.2 for D = 2.

Figure 8.2: Illustration of the hyperplane method. The reachable set RT (x0) is in blue.

The lined region is the outer approximation, the region in between the dotted lines is

the inner approximation.

Proposition 8.2.3 (The hyperplane method [GK91]). Given system (8.3), a fixed time

T > 0, an integer number D ≥ 1, and a set of D directions C := {c1, . . . , cD}, define the

half-spaces Ha
T (cd),Hb

T (cd) as in (8.9), for all d = 1, . . . , D.

1. The following two sets are an outer and inner approximation of the reachable set

RT (x0) at time T ,

Rout
T (x0) := ∩Dd=1{Ha

T (cd) ∩Hb
T (cd)}, Rin

T (x0) := conv
(
∪Dd=1{xa,?T (cd), xb,?T (cd)}

)
,

where xa,?T (cd), xb,?T (cd) are as defined immediately before (8.5).
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2. Suppose that x0 = 0, A is Hurwitz stable and diagonalizable. Let {uh}nh=1 and

{û>h }nh=1 be n linearly independent right and left eigenvectors of A corresponding to

the eigenvalues {λh}Nh=1, respectively, and satisfying û>h uh = 1 for all h = 1, . . . , n.

For every d = 1, 2, . . . , D, set

εT (cd) : =
m∑
r=1

(
σ̄r

n∑
h=1

‖dh,r(cd)‖
eRe(λh)T

|Re(λh)|

)
≥ 0,

where dh,r(c
d) := cd

>
uhû

>
h br ∈ C, and set

Ha(cd) := {x ∈ Rn | cd>x ≤ vaT (cd) + εT (cd)},
Hb(cd) := {x ∈ Rn | cd>x ≥ vbT (cd)− εT (cd)},

where are vaT (cd), vbT (cd) are as in (8.4). Then Rout(0) := ∩Dd=1{Ha(cd) ∩ Hb(cd)}
and Rin(0) := Rin

T (0) are an outer and inner approximation of R(0), respectively.

3. Set λ̄ := max{Re(λ)| λ ∈ Λ(A)} < 0, σ̄ := max{σ̄r | r = 1, . . . ,m} and l :=

maxd=1,...,D
r=1,...,m

{‖cd>[u1, . . . , un]‖∞ · ‖[û1, . . . , ûn]>br‖∞}. Then

εT (cd) ≤ l n m σ̄ · eλ̄T|λ̄| , ∀d = 1, . . . , D. (8.10)

�

In words, the hyperplane method allows one to construct inner and outer approxi-

mations of the reachable set as intersections of the half-spaces described by the set of

directions C := {c1, . . . , cD}. The higher the dimension n of the state space, the higher

would in general be the number of directions D required to obtain a good characteri-

zation of the reachable set. In [GK91, Figure 4] an iterative algorithm that adds one

direction at a time, given the current estimate of the reachable set, is proposed. If, on

the other hand, one is interested in the output reachable set only, then inner and outer

approximations of the set RC
T can be easily computed, via the hyperplane method, by

selecting only hyperplanes that are perpendicular to the plane of interest, as detailed in

the following corollary.

Corollary 8.2.4 (Projection on a two dimensional subspace). Consider system (8.3)

with output (8.2). Choose D values γd ∈ R, set cd := C>2 − γdC>1 ∈ Rn and

HC,a
T (γd) := {y ∈ R2 | y2 ≤ γdy1 + vaT (cd)}, HC,b

T (γd) := {y ∈ R2 | y2 ≥ γdy1 + vbT (cd)},

where vaT (cd), vbT (cd) are as in (8.6) and (8.7). Moreover, let

xC,aT (γd) := Cxa,?T (cd), xC,bT (γd) := Cxb,?T (cd),
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where xa,?T (cd), xb,?T (cd) are defined as in (8.5). The sets

RC,out
T (x0) := ∩Dd=1{HC,a

T (γd) ∩HC,b
T (γd)}, RC,in

T (x0) := conv
(
∪Dd=1{xC,aT (γd), x

C,b
T (γd)}

)

are an outer and inner approximation of the output reachable set RC
T (x0) at time T ,

respectively. �

The previous results have been derived under the assumption that the inputs are

bounded in the compact and convex sets Σr, r = 1, . . . ,m. In the following proposition

we show that the derived approximations are valid also if the control inputs take values

in a subset Σd
r of Σr of finite cardinality, as long as 0 and σ̄r are among the possible

choices.

Proposition 8.2.5 (Finite cardinality constraint set). Consider system (8.3) and sup-

pose that the control constraint sets have finite cardinality, that is, for any r there exists

2 ≤ Kr < +∞ such that Σd
r :=

{
0 = σ1

r < σ2
r < . . . < σKrr = σ̄r

}
⊂ R≥0. Then Rout

T (x0)

and Rin
T (x0) are outer and inner approximation of RT (x0), respectively, Rout(0) is an

outer approximation of R(0) and RC,out
T (x0) and RC,in

T (x0) are outer and inner approxi-

mation of RC
T (x0), respectively. �

8.2.3 The hyperplane method for switched affine systems

In this section, we propose an extension of the hyperplane method reviewed in the

previous section to the case of a switched affine system of the form

ẋ(t) = Aσ(t)x(t) + bσ(t), (8.11)

where the switching sequence σ(·) satisfies the following assumption.

Assumption 8.2.1. The input sequence σ(t) can switch at most K times within a finite

set of I possible modes Σ := {σ̄1, . . . , σ̄I} at preassigned switching instants 0 = t0 <

. . . < tK+1 = T , that is, σ ∈ SK

SK := {σ(·) | σ(t) = σ̄ik ∈ Σ ∀t ∈ [tk, tk+1), ∀k = 0, . . . , K}. (8.12)

Under this assumption we show that an outer approximation of the desired output

reachable set can be obtained by solving a collection of mixed integer linear programs

(MILPs). The main advantage of the proposed approach is that the number of MILPs

to be solved does not scale with the system dimension but with the dimension of the

output reachable set, which is considerably smaller. To this end, we rewrite the two
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optimization problems in (8.4) as finite time optimal control problems, namely as:

vaT (c) := max
σ∈S

c>x(T ) (8.13)

s.t. ẋ(t) = Aσ(t)x(t) + bσ(t) ∀t ∈ [0, T ]

x(0) = x0

vbT (c) := min
σ∈S

c>x(T ) (8.14)

s.t. ẋ(t) = Aσ(t)x(t) + bσ(t) ∀t ∈ [0, T ]

x(0) = x0.

The main advantage of this reformulation is that the solution of finite time optimal

control problems for switched systems has been already addressed in the literature (see

e.g. [SCGB06, BCV15]). We consider the case when the total number K and time

{t1, . . . , tK} of the switchings is fixed and known, that is, when the input set is SK as

defined in (8.12). It is important to remark that, in this case, the reachable set consists

of a finite number of points that can be computed by solving the moment equations for

each possible input sequence. Since the cardinality of the set SK grows exponentially

with K, this approach is however computationally infeasible even for small systems.

Following the same procedure as in [SCGB06, Section IV.A], we show that, on the other

hand, the hyperplane constants defined in (8.13) and (8.14) can be computed by solving

an MILP. Let us consider the maximization problem in (8.13) and define xk := x(tk),

Āki := eAσ̄i (tk+1−tk) and b̄ki = [
∫ (tk+1−tk)

0
eAσ̄iτdτ ]bσ̄i for every k and i ∈ 1, . . . , I. Then for

the switched affine system in (8.11) we get

vaT (c) := max
ik∈{1,...,I}

c>xK+1 (8.15)

s.t. xk+1 = Ākikxk + b̄kik k = 0, . . . , K

x0 ∈ R assigned.

We introduce the binary variables γki ∈ {0, 1} defined so that, for each i ∈ {1, . . . , I}
and k ∈ {0, . . . , K}, γki = 1 if and only if the value of σ(t) in the time interval [tk, tk+1)

is σ̄i, namely the system is in mode i. Moreover, we introduce a copy of the state vector

for each possible mode of the system: zk+1
i = (Āki xk + b̄ki )γ

k
i . Problem (8.15) can then

be rewritten as

vaT (c) := max
xk,z

k
i ,γ

k
i

c>xK+1 (8.16)

s.t. zk+1
i = (Āki xk + b̄ki )γ

k
i , ∀i, (8.17)∑I

i=1 γ
k
i = 1, k = 0, . . . , K,

xk =
∑I

i=1 z
k
i , k = 1, . . . , K + 1,

x0 ∈ R assigned.
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The constraint in (8.17) can be equivalently replaced by

zk+1
i ≤ (Āki xk + b̄ki ) +B(1− γki ), zk+1

i ≥ −Bγki ,
zk+1
i ≥ (Āki xk + b̄ki )−B(1− γki ), zk+1

i ≤ Bγki ,

where B ∈ Rn
≥0 is an upper bound on the absolute value of state vector, that is, B ≥

maxk{|xk|} component-wise (see the big-M method in [BM99, Eq. (5b)]). With this

substitution Problem (8.16) becomes an MILP. Similar reasonings can be applied to the

minimization problem (8.14). We note that finding an a priori upper bound B on |x(tk)|,
for all k ∈ {0, . . . , K+ 1} and all σ ∈ SK , is not trivial in general. We will however show

in Sections 8.3 and 8.4 how to solve this problem for controlled biochemical reaction

networks. The desired outer approximation of the reachable set can then be computed

as in Section 8.2.2. Note that in the case of switched affine systems it is not possible to

recover an inner approximation, since there is no guarantee in general that the reachable

set would be convex. The outer approximation can, on the other hand, be derived exactly

as done in [GK91] for linear systems.

Proposition 8.2.6 (The hyperplane method for switched affined systems). Given system

(8.11), a fixed time T > 0 and a set of D ≥ 1 directions C := {c1, . . . , cD}, define the

half-spaces

Ha
T (cd) := {x ∈ Rn | cd>x ≤ vaT (cd)},
Hb
T (cd) := {x ∈ Rn | cd>x ≥ vbT (cd)},

for d = 1, . . . , D, where vaT (cd), vbT (cd) are defined as in (8.13) and (8.14). The set

Rout
T (x0) := ∩Dd=1{Ha

T (cd) ∩ Hb
T (cd)} is an outer approximation of the reachable set

RT (x0). �

Similarly, an outer approximation of the output reachable set can be easily computed

with the hyperplane method by selecting as set of directions C the set of vectors cd :=

C>2 − γdC>1 ∈ Rn, d = 1, 2, . . . , D, for arbitrary choices of the real parameter γd.

Corollary 8.2.7. Consider system (8.11) with output (8.2). Choose D values γd ∈ R,

set cd := C>2 − γdC>1 ∈ Rn and

HC,a
T (γd) := {y ∈ R2 | y2 ≤ γdy1 + vaT (cd)},
HC,b
T (γd) := {y ∈ R2 | y2 ≥ γdy1 + vbT (cd)},

where vaT (cd), vbT (cd) are computed as in (8.13) and (8.14). The set RC,out
T (x0) :=

∩Dd=1{HC,a
T (γd)∩HC,b

T (γd)} is an outer approximation of the output reachable set RC
T (x0).

�
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8.3 Reachable set of networks with affine propensi-

ties

To apply the previous theoretical results to controlled biochemical reaction networks let

us consider the controlled CME given in (6.14) and reported here for convenience.

ṗ(z, t) =
M∑
r=1

[p(z − νr, t)αr(θr, z − νr)− p(z, t)αr(θr, z)]σr(t) + (6.14)

+
R∑

r=M+1

[p(z − νr, t)αr(θr, z − νr)− p(z, t)αr(θr, z)] .

Following the same steps as in Proposition 6.1.2, in the case of affine propensities it is

possible to derive an explicit characterization of the moment equations for mean and

variance in the presence of controlled reactions.

Proposition 8.3.1. Consider the controlled CME given in (6.14) and assume that the
propensity functions {αr(θr, z)}Rr=1 are affine functions of the state z (Assumption 6.1.3).
Let xi(t) = E[Zi(t)], x≤1(t) = [x1(t); . . . ;xS(t)] and xij(t) = E[(Zi(t) − xi(t))(Zj(t) −
xj(t))]. Then, for all i, j ∈ Z[1, S],

ẋi =
M∑
r=1

[νir · αr(θr, x≤1)]σr +
R∑

r=M+1

[νir · αr(θr, x≤1)]

ẋij =

M∑
r=1

[
νir ·

S∑
l=1

(
∂αr(θr, x≤1)

∂zl
xjl

)
+ νjr ·

S∑
l=1

(
∂αr(θr, x≤1)

∂zl
xil

)
+ νirνjr · αr(θr, x≤1)

]
σr

+

R∑
r=M+1

[
νir ·

S∑
l=1

(
∂αr(θr, x≤1)

∂zl
xjl

)
+ νjr ·

S∑
l=1

(
∂αr(θr, x≤1)

∂zl
xil

)
+ νirνjr · αr(θr, x≤1)

]

where we omitted the time dependence for simplicity. �

Corollary 8.3.2. Let x≤2(t) be a vector whose components are the moments of Z(t) up

to second order. Then

ẋ≤2(t) = A(σfirst(t))x≤2(t) +Bσzero(t) + b (8.18)

where σzero(t) is a vector comprising all the external signals influencing a reaction with

constant propensity, that is, αr(θr, z) = θr and σfirst(t) is a vector comprising the external

signals influencing a reaction with linear propensity in z, that is, αr(θr, z) = θr · ν ′r>z. �

Remark 8.2. We note that the affine term b in (8.18) is present if and only if there

are uncontrolled zero order reactions. One could however include this term in the input

matrix by introducing an artificial control signal that is always equal to one, so that

ẋ≤2(t) = A(σfirst(t))x≤2(t) + [B, b]
[
σzero(t)

1

]
.
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8.3.1 Linear moment equations

According to Corollary 8.3.2 if only reactions with constant propensities are controlled

then the system of moment equations is linear with bounded input1. Therefore the

theoretical results of Section 8.2.2 can be applied. For mass-action kinetics, this case

corresponds to the situation when only zero-order reactions are controlled. To illustrate

this scenario we consider again the gene expression model of Example 6.1.

Gene expression case study: one external signal

Consider the gene expression model of Example 6.1 and assume that an external con-

trol signal influencing the first reaction, that is the mRNA production, is available

[MASSO+11, RPMA+15, OHL+14, UMD+12, MDBDB11]. The corresponding biochem-

ical network is thus

∅ kr·σ(t)−−−−→ M M
γr−−−−→ ∅

M
kp−−−−→ M + P P

γp−−−−→ ∅

where σ(t) ∈ R≥0 is the external control signal, while the parameters kr, kp, γr, γp > 0

are the mRNA and protein production and degradation rates. Let the mean and the

covariance of the two species be[
x1(t)

x2(t)

]
, E

[
M(t)

P (t)

] [
x1(t) x3(t)

x3(t) x4(t)

]
, V

[
M(t)

P (t)

]
.

Note that we impose E [M(t)] = V [M(t)] = x1(t) since the mRNA follows a birth-death

process, as explained in Example 6.1. The moments evolution over time is given by

ẋ(t) = Ax(t) +Bσ(t), (8.19)

A ,


−γr 0 0 0

kp −γp 0 0

kp 0 −(γr + γp) 0

kp γp 2kp −2γp

 , B ,


kr
0

0

0

 .
We note that, since the rate parameters are always positive, the matrix A in (8.19) is

by construction Hurwitz stable. Moreover, apart from singular cases in the parame-

ters space, the diagonal elements of A are distinct, leading to a diagonalizable matrix.

Therefore, the assumptions of Proposition 8.2.3 are satisfied and one can use the results

in Section 8.2.2 to study the reachable set of system (8.19). Note that the signal σ(t)

is a switching sequence taking values in the set Σd = {0, 1} if the control input is of

1See Remark 8.2 if uncontrolled zero order reactions are present in the network.
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the ON-OFF type [MASSO+11, RPMA+15, OHL+14, MDBDB11] and in the interval

Σc = [0, 1] if the control input is continuous [UMD+12]. Proposition 8.2.5 guarantees

the validity of the following results both for Σd and Σc.

For this biochemical network it is of particular interest to characterize what combi-

nations of the protein mean and variance are achievable, that is, the output reachable

set obtained by selecting as output matrix

C :=

[
0 1 0 0

0 0 0 1

]
,

for x0 = 0. The problem of computing an outer approximation of this set was studied

in [PVL14] using ad hoc methods. In Figure 8.3 we compare the outer approximation

obtained therein (magenta line) with the inner (red) and outer (blue) approximations

that we obtained using the hyperplane method. For this case study we used the param-

eters identified in [MASSO+11] and we set a final horizon of T = 104 minutes, which,

according to formula (8.10), leads to εT (cd) ≤ 5.7 ·10−20, hence for all practical purposes

Rout
T (0) ≡ Rout(0). This figure clearly shows that the outer approximation computed

using the hyperplane method is more accurate than the one previously obtained in the

literature. Moreover, since inner and outer approximations practically coincide, this

method allows one to effectively recover the reachable set.
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Figure 8.3: Comparison of the inner (red) and outer (blue) approximations of the reach-

able set for the protein mean and variance, according to model (8.19), computed using

the hyperplane method and the outer approximation computed according to [PVL14]

(magenta). The axis are normalized with respect to the maximum reachable value of

protein mean and variance, respectively.
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8.3.2 Switched affine moment equations

If the control inputs affect also reactions with affine propensities and if these inputs

satisfy Assumption 8.2.1 then the moment equations in (8.18) of Corollary 8.3.2 can

be equivalently rewritten as the autonomous switched system given in (8.11) and the

theoretical tools described in Section 8.2.3 can be applied. Note that Assumption 8.2.1

is equivalent in biological applications to the assumption that the number of switchings

and their timing during a given experiment is fixed a priori. This assumption can be

motivated by the fact that changes in the external stimulus are costly and/or stressful

for the cells. Moreover, it is trivially satisfied if the stimulus can only be changed

simultaneously with some fixed events, such as culture dilution or measurements.

Gene expression case study: two external signals and fluorescent protein

We consider again the gene expression system of Example 6.1, but we now assume that

1. both mRNA production and degradation can be controlled, so that the vector of

propensities is α(z) = [kr · σ1(t), γr ·m · σ2(t), kp ·m, γp · p]> and σ(t) :=
[
σ1(t)
σ2(t)

]
;

2. the protein P can mature into a fluorescent protein F according to the additional

maturation and degradation reactions

P
α5(kf ,z)−−−−−→ F, F

α6(γp,z)−−−−→ ∅,
where α5(kf , z) := kf · p, α6(γp, z) := γp · f and kf > 0 is the maturation rate.

The degradation rate of the fluorescent protein F is assumed to be the same as

that of the non-mature protein P ;

3. the fluorescence intensity I(t) of each cell can be measured by flow-cytometry and

is proportional to the amount of fluorescence proteins, that is, I(t) = rF (t) for a

fixed scaling parameter r > 0.

The system describing the evolution of mean and variances of this augmented network

ẋ(t) = Afσ(t)x(t) + bfσ(t), (8.20)

Afσ(t) =



−γrσ2(t) 0 0 0 0 0 0 0

kp −(γp + kf ) 0 0 0 0 0 0

0 γp −kf 0 0 0 0 0

kp 0 0 −(γrσ2(t) + γp + kf ) 0 0 0 0

0 0 0 γp −(γrσ2(t) + kf ) 0 0 0

kp (γp + kf ) 0 2kp 0 −2(γp + kf ) 0 0

0 −γp 0 0 kp γp −(2kf + γp) 0

0 γp kf 0 0 0 2γp −2kf


,

bfσ(t) =
[
krσ1(t) 0 0 0 0 0 0 0

]>
,
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is 8-dimensional, with state vector

x = [E[M ],E[P ], E[F ], V [M,P ], V [M,F ], V [P ], V [P, F ], V [F ]]> ,

and it depends on the parameter vector θ = [kr, γr, kp, γp, kf , r] (for more details see

[RMAL13, SI pg. 16]). These parameters can be identified from real data using the

method described in Chapter 7, see also Chapter 9. For our case study we use the MAP

estimate identified in [PVL15], that are, in min−1

kr = 0.0236 γr = 0.0503 kp = 178.398

kf = 0.0212 γp = 0.0121 r−1 = 646.86 (8.21)

and we set

Cf :=

[
0 0 r 0 0 0 0 0

0 0 0 0 0 0 0 r2

]
, (8.22)

to compute the mean and variance reachable set for the fluorescence intensity.

Our aim is to compare the reachable set of the gene expression system when both

mRNA production and degradation are controlled (as in [BK12]), with the correspond-

ing set for the case when only the mRNA production can be controlled (as studied in

the previous section and in [PVL15]). To this end, we use the hyperplane method as

described in Section 8.2.3 with possible modes σ̄i :=
[
σ̄i1
σ̄i2

]
belonging to

Σ2in :=

{[
0

1

]
,

[
0

0.5

]
,

[
1

1

]
,

[
1

0.5

]}
Σ1in :=

{[
0

1

]
,

[
1

1

]}
,

respectively. Note that we set the minimum input for the mRNA degradation to 0.5 > 0

to avoid unboundedness. We set x(0) = 0 as initial state. With these choices of inputs

it is intuitive that the highest possible state is reached when mRNA production is at

its maximum and mRNA degradation is at its minimum. Therefore, in the MILPs we

can use the bounds B = x (T ; 0, σ(t) = [ 1
0.5 ] ∀t) for the case of two inputs and B =

x(T ; 0, σ(t) = [ 1
1 ] ∀t), for the case of one input. We set T = 300 min and we assume

that switches can occur every 20 min, so that K = 15. Figure 8.4 shows the output

reachable set for the case of two inputs. The black crosses are obtained simulating the

output of the system for 5000 randomly constructed input sequences. The simulation

time for computing the outer approximation with the hyperplane method was 5.6 hrs.

Computing the exact reachable set by simulating all the possible switching sequences,

assuming that one simulation takes 10−4 sec and neglecting the time needed to enumerate

all the possible sequences, would take 29.8 hrs. Figure 8.5 shows the comparison of the

output reachable set obtained for the cases of one and two inputs.
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Figure 8.4: Outer approximation of the output reachable set of system (8.20), with

output as in (8.22) and parameters as in (8.21), when the set of possible modes is Σ2in.

The red lines are the hyperplanes tangent from above, the blue the ones from below.

The two green dots represent the outputs when σ(t) = [1, 0.5]> ∀t and σ(t) = [1, 1]> ∀t,
respectively. The black crosses represent the output for arbitrary sequences with σ(t) ∈
Σ2in.
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Figure 8.5: Output reachable set of system (8.20), with output as in (8.22) and param-

eters as in (8.21). The blue line is the outer approximation obtained for σ(t) ∈ Σ2in (see

also Fig. 8.4), the red line the one for σ(t) ∈ Σ1in.
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8.4 Reachable set of networks with generic reactions

If the network contains reactions of order higher than one or if the reactions do not

follow the laws of mass action kinetics, then the propensities might be non-affine. In such

cases, the arguments illustrated in the previous section cannot be applied. To overcome

this problem we first approximate the infinite dimentional controlled CME (6.14) with

a finite dimensional system, similarly to what done for uncontrolled reactions in the

FSP method described in Section 6.1.1. Then we show how this system can be used to

construct an outer approximation of the desired projected reachable set. For this method

it is actually easier to work with the uncentered moments {E[Zk
s (t)]}∞k=2 instead of the

centered moments {E[(Zs(t) − E[Zs(t)])
k]}∞k=2. Consequently, we present our results in

the former case. Nonetheless, we note that, given the bijective relation between the two

sets of moments, the reachable set of the centered moments can be directly recovered

from the reachable set of the uncentered moments. For example, if one is interested in

mean and variance the formula V[Zs(t)] = E[(Zs(t)− E[Zs(t)])
2] = E[Z2

s (t)]− E[Zs(t)]
2

can be used.

8.4.1 An equivalent formulation of the controlled CME

Let us introduce an ordering {zj}∞j=1 of the possible state realizations z ∈ NS as done in

Section 6.1.1. Following the same steps as in [MK06] and setting2 Pj(t) := p(zj, t), the

CME in (6.14) can be rewritten as an infinite dimensional linear autonomous switched

system that has I = |Σ| modes,

Ṗ (t) = Fσ(t)P (t), (8.23)

where P (t) ∈ [0, 1]∞ and, for each value σ(t) = σ̄i ∈ Σ, Fσ̄i ∈ R∞×∞ is a Metzler matrix.

Note that system (8.23) can be thought of as a Markov chain with countably many states

zj ∈ NS and time-varying transition matrix Fσ(t) or as an infinite dimentional switched

affine autonomous system. From system (8.23) one can compute the evolution of the

statistical (uncentered) moments of Z(t), as a linear function of P (t). For instance if

zjs denotes the amount of species Zs in the state zj, then the mean can be obtained as

Cm
s · P (t), where

Cm
s :=

[
z1
s , z

2
s , . . .

]
(8.24)

and the second moment can be obtained as Cv
s · P (t), where

Cv
s :=

[
(z1
s)

2, (z2
s)

2, . . .
]
. (8.25)

Therefore the original problem can be restated as: Find the output reachable set of

the infinite dimensional linear autonomous switched system (8.23), with output y(t) =[
Cms
Cvs

]
P (t).

2Not to be confused with the symbol used to denote the amount of protein.
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Example 6.1 (cont.) With the ordering introduced in Section 6.1.1, the moments

of mRNA and protein for the gene expression system can be computed as the output of

(8.23) by setting

Cm
M =

[
0 1 0 2 1 0 3 2 . . .

]
,

Cv
M =

[
0 1 0 4 1 0 9 4 . . .

]
,

Cm
P =

[
0 0 1 0 1 2 0 1 . . .

]
,

Cv
P =

[
0 0 1 0 1 4 0 1 . . .

]
.

�

8.4.2 The FSP reduction technique for the controlled CME

As in the FSP method for autonomous CME we can try to approximate the behavior of

the infinite Markov chain in (8.23) by constructing a reduced Markov chain that keeps

track of the probability of visiting only the states in a suitable set J . Let us define the

reduced order system

˙̄PJ(t) =
[
Fσ(t)

]
J
P̄J(t), P̄J(0) = PJ(0), (8.26)

where PJ(0) is the subvector of P (0) corresponding to the indices in J , and [F ]J denotes

the sub matrix of F obtained selecting only the rows and columns with indices in J . From

now on, we denote by P (T ;σ) and P̄J(T ;σ) the solutions at time T of system (8.23) and

system (8.26) when input σ is applied. The dependence on the initial conditions P (0)

and PJ(0) is omitted to keep the notation compact. As in the uncontrolled case, the

truncated system (8.26) is a good approximation of the original system (8.23) if most

of the probability mass lies in J . However in the controlled case we need to guarantee

that this happens for all possible input sequences. This intuition can be formalized as

follows.

Assumption 8.4.1. For a given finite set of state indices J , an initial condition PJ(0),

a given tolerance ε > 0 and a finite instant T > 0, it holds

1
>P̄J(T ;σ) ≥ 1− ε, ∀σ(·) ∈ S.

�

Note that Assumption 8.4.1 holds if and only if

1− ε ≤ min
σ∈S

1
>P̄J(T ;σ)

s.t. ˙̄PJ(t;σ)=
[
Fσ(t)

]
J
P̄J(t;σ), P̄J(0) = PJ(0).
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Therefore, for S = SK this problem is equivalent to an MILP and Assumption 8.4.1 can

be checked using the method illustrated in Section 8.2.3, with c = 1 and B = 1.

Under Assumption 8.4.1, the following relation between the solutions of (8.23) and

(8.26) holds.

Proposition 8.4.1 (FSP for switched CME). If Assumption 8.4.1 holds, then for every

input sequence σ ∈ SK, it holds

Pj(T ;σ) ≥ P̄j(T ;σ), ∀j ∈ J
‖PJ(T ;σ)− P̄J(T ;σ)‖1 ≤ ε.

�

8.4.3 Relation between projected reachable sets

Let Cm
s (j) and Cv

s (j) be the j-th components of the vectors Cm
s and Cv

s , respectively, as

defined in (8.24) and (8.25). For a given species of interest s, we denote by

y1(t;σ) := E [Zs(t) | Z(t) ∈ J, σ(·)] =

∑
j∈J C

m
s (j) · Pj(t;σ)∑
j∈J Pj(t;σ)

y2(t;σ) := E
[
Z2
s (t) | Z(t) ∈ J, σ(·)

]
=

∑
j∈J C

v
s (j) · Pj(t;σ)∑

j∈J Pj(t;σ)
(8.27)

the mean and second order moment of Z(t) conditioned on the fact that Z(t) is in J and

the input σ is applied. The aim of this section is to obtain an outer approximation of

the output reachable set of the infinite system (8.23) with the nonlinear output (8.27),

by using computations involving only the finite dimensional system (8.26). To this end,

we define the two entries of the linear output of the finite dimensional system as

ȳ1(t;σ) :=
∑
j∈J

Cm
s (j) · P̄j(t;σ) =: C̄1P̄J(t;σ)

ȳ2(t;σ) :=
∑
j∈J

Cv
s (j) · P̄j(t;σ) =: C̄2P̄J(t;σ). (8.28)

Proposition 8.4.2. Suppose Assumption 8.4.1 holds. Let RC
T (x0) and R̄C̄

T (x0) be the

output reachable sets at time T of systems (8.23) and (8.26), with output (8.27) and

(8.28), respectively. For given γ, v̄a, v̄b ∈ R, consider the half-spaces

H̄a := {ȳ ∈ R2 | ȳ2 ≤ γȳ1 + v̄a}, H̄b := {ȳ ∈ R2 | ȳ2 ≥ γȳ1 + v̄b},
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and assume that R̄C̄
T (x0) ⊆ H̄a ∩ H̄b. Set M1 := maxj∈J(Cm

s (j)), M2 := maxj∈J(Cv
s (j)),

[γ]+ :=

{
γ if γ > 0

0 if γ ≤ 0
, [γ]− :=

{
0 if γ ≥ 0

−γ if γ ≤ 0
,

δa(γ) :=
2ε

1− ε · ([γ]− ·M1 +M2), δb(γ) :=
2ε

1− ε · ([γ]+ ·M1), (8.29)

Ha := {y ∈ R2 | y2 ≤ γy1 + v̄a + δa(γ)}, Hb := {y ∈ R2 | y2 ≥ γy1 + v̄b − δb(γ)},

with ε as in Assumption 8.4.1. Then RC
T (x0) ⊆ Ha ∩Hb. �

Corollary 8.4.3 (The hyperplane method for system (8.23)). Suppose Assumption 8.4.1

holds. Let RC
T (x0) be the output reachable set at time T > 0 of system (8.23) with output

(8.27). Choose D values γd ∈ R and set cd := (C̄2)> − γd(C̄1)> ∈ Rn, with C̄1, C̄2 as in

(8.28). Set

HC,a
T (γd) := {y ∈ R2 | y2 ≤ γdy1 + v̄aT (cd) + δa(γd)},
HC,b
T (γd) := {y ∈ R2 | y2 ≥ γdy1 + v̄bT (cd)− δb(γd)},

where v̄aT (cd), v̄bT (cd) are computed as in (8.13), using the finite dimension system (8.26),

and δa(γd), δ
b(γd) are computed as in (8.29). Then the set

RC,out
T (x0) := ∩Dd=1 {HC,a

T (γd) ∩HC,b
T (γd)}

is an outer approximation of RC
T (x0).

Proof. This is a direct consequence of Corollary 8.2.4 and Proposition 8.4.2.

8.5 Appendix

8.5.1 Proofs of the results stated in Section 8.2

Proof of Proposition 8.2.2

The proof follows the same lines as [GK91, Lemma 2.1 and Theorem 2.1], where the

same reachability problem is studied when the constraint sets are subsets of R instead of

R≥0 and symmetric, that is Σr := [−σ̄r, σ̄r]. We notice that if (A, br) is reachable for any

r ∈ Z[1, R] then there are no singular arcs [Lib11, Section 4.4.2], therefore the control

laws σa,?(t) and σb,?(t) are bang-bang with finitely many discontinuities. Consequently,

formula (8.8) allows one to explicitly compute xa,?T (c) and xb,?T (c).
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Proof of Proposition 8.2.3

This proof follows the lines of Theorem 2.2 in [GK91]. RT (x0) ⊆ Rout
T (x0) comes from

the fact that, by definition of vaT (cd) and vbT (cd), for any direction cd, RT (x0) ⊆ Ha
T (cd)

and RT (x0) ⊆ Hb
T (cd). Viceversa, each element in X := ∪Dd=1{xa,?T (cd), xb,?T (cd)} belongs

to RT (x0), which is a convex set. Therefore, Rin
T (x0) = conv(X ) ⊆ RT (x0).

To approximate the infinite-time reachable set from the origin, consider an instant T̂ > T
and define εa(T, T̂ , c) = va

T̂
(c)− vaT (c) and εb(T, T̂ , c) = vb

T̂
(c)− vbT (c), so that the values

v
a/b

T̂
(c) at time T̂ > T can be computed by adding εa/b(T, T̂ , c) to the values v

a/b
T (c) at

time T . Note that RT (0) ⊆ RT̂ (0) implies εa(T, T̂ , c) ≥ 0 and εb(T, T̂ , c) ≤ 0 (see also
[GK91, Lemma 2.2]). Moreover,

εa(T, T̂ , c) =
∑m

r=1 σ̄r
∫ T̂−T

0

[
c>eA(T̂−t)br

]
+
dt ≤∑m

r=1 σ̄r
∫ T̂−T

0 |c>eA(T̂−t)br|dt =: ε(T, T̂ ),

−εb(T, T̂ , c) =
∑m

r=1 σ̄r
∫ T̂−T

0

[
c>eA(T̂−t)br

]
−
dt ≤∑m

r=1 σ̄r
∫ T̂−T

0 |c>eA(T̂−t)br|dt =: ε(T, T̂ ).

From [GK91, Theorem 2.2 ] we get ε(T, T̂ ) ≤ εT (c). Therefore, for any T̂ > T , va
T̂

(c) =

vaT (c) + εa(T, T̂ , c) ≤ vaT (c) + εT (c) and vb
T̂

(c) = vbT (c) + εb(T, T̂ , c) ≥ vbT (c) − εT (c).

Consequently, for any d = 1, . . . , D, RT̂ (0) ⊆ Ha
T̂

(cd) := {x ∈ Rn | cd>x ≤ va
T̂

(cd)} ⊆
Ha(cd),RT̂ (0) ⊆ Hb

T̂
(cd) := {x ∈ Rn | cd>x ≥ vb

T̂
(cd)} ⊆ Hb(cd). Since these equations

hold for any T̂ ≥ T and Ha(cd) and Hb(cd) do not depend on T̂ , we get R(0) ⊆ Ha(cd)

and R(0) ⊆ Hb(cd) for all d = 1, . . . , D, which yields R(0) ⊆ Rout(0). Finally Rin
T (0) ⊆

RT (0) ⊆ R(0). �

Proof of Corollary 8.2.4

For the given set of γds the results are direct consequences of Proposition 8.2.3 with the

cds defined as in the statement.

Proof of Proposition 8.2.5

The proof follows from the fact that the finite-time reachable set RT (x0), obtained using

Σ, and the finite-time reachable set Rd
T (x0), obtained using Σd, coincide. To prove this,

let Rbb
T (x0) be the finite-time reachable set obtained using Σbb

r := {0, σ̄r} for any r, that

is, the set of vertices of Σ. Since Σ is a convex polyhedron, by [Sus83, Theorem 8.1.2],

System (8.3) with input set Σ has the bang-bang with bound of number of switching

(BBNS) property. Consider now an arbitrary point x̄ ∈ RT (x0). By definition there

exists an admissible control law in Σ that steers x0 to x̄. Consequently, by the BBNS

property there exists a bang-bang control law in Σbb that achieves the same result with a

finite number of discontinuities. Thus x̄ ∈ Rbb
T (x0). Since this is true for any x̄ ∈ RT (x0),

we get RT (x0) ⊆ Rbb
T (x0). From the fact that Σbb ⊆ Σd ⊆ Σ we get RT (x0) ⊆ Rbb

T (x0) ⊆
Rd
T (x0) ⊆ RT (x0), which concludes the proof.
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Proof of Proposition 8.2.6 and Corollary 8.2.7

As done in Proposition 8.2.3 and Corollary 8.2.4. Note that the only difference among

the hyperplane method for linear and switched affine systems is the method used to solve

the optimization problems in (8.4) efficiently.

8.5.2 Proofs of the results stated in Section 8.4

Proof of Proposition 8.4.1

This result has been proven in [MK06] for linear systems. We extend it here to the case

of switched systems with K switchings. Note that for any σ̄i ∈ Σ, Fi := Fσ̄i has non-

negative off diagonal elements. Hence, using the same argument as in [MK06, Theorem

2.1] it can be shown that for any index set J , and any τ ≥ 0

[exp(Fiτ)]J ≥ exp([Fi]Jτ) ≥ 0, ∀i ∈ 1, . . . , I.

Consider an arbitrary input sequence σ(·) ∈ SK . We have

PJ(T ;σ) = [ΠK
k=0exp(Fik(tk+1 − tk)) · P (0)]J ≥ ΠK

k=0[exp(Fik(tk+1 − tk))]J · PJ(0)

≥ ΠK
k=0exp([Fik ]J(tk+1 − tk)) · PJ(0) = P̄J(T ;σ). (8.30)

Moreover, from 1 =
∑∞

y=1 Py(T ;σ) ≥ ∑
j∈J Pj(T ;σ) = 1

>PJ(T ;σ) and Assump-

tion 8.4.1, we get

1
>P̄J(T ;σ) ≥ 1− ε ≥ 1

>PJ(T ;σ)− ε. (8.31)

Combining (8.30) and (8.31) yields 0 ≤ 1
>PJ(T ;σ)− 1>P̄J(T ;σ) ≤ ε, thus ‖PJ(T ;σ)−

P̄J(T ;σ)‖1 ≤ ε.

Proof of Proposition 8.4.2

Let us first focus on the conditional mean. Choose a sequence σ(·) ∈ S. For simplicity

we will omit the dependence on (T ;σ) in Pj, P̄j, y and ȳ. By taking into account the

following conditions: (1) Cm
s (j) ≥ 0 for all j ∈ J ; (2) Pj ≥ P̄j for all j ∈ J , due to

Proposition 8.4.1, and (3)
∑

j∈J Pj ≤ 1, we get y1 ≥ ȳ1. Consequently, at time t = T we

have

|y1 − ȳ1| = y1 − ȳ1 =
∑
j∈J C

m
s (j)·Pj∑

j∈J Pj
−∑j∈J C

m
s (j) · P̄j ≤

∑
j∈J C

m
s (j)·Pj

1−ε −∑j∈J C
m
s (j) · P̄j

=
(
1 + ε

1−ε

)∑
j∈J C

m
s (j) · Pj −

∑
j∈J C

m
s (j) · P̄j

= ε
1−ε
∑

j∈J C
m
s (j) · Pj +

∑
j∈J C

m
s (j) · (Pj − P̄j)

≤M1

(
ε

1−ε
∑

j∈J Pj +
∑

j∈J(Pj − P̄j)
)

≤M1

(
ε

1−ε + ‖PJ − P̄J‖1

)
≤M1

(
ε

1−ε + ε
)
≤M1

2ε
1−ε ,
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where we used
∑

j∈J Pj ≥
∑

j∈J P̄j ≥ 1−ε (due to Assumption 8.4.1), and Pj ≥ P̄j, ‖PJ−
P̄J‖1 ≤ ε (following from Proposition 8.4.1). Summing up, ȳ1 ≤ y1 ≤ ȳ1 + M1

2ε
1−ε .

Similarly, it can be proven that ȳ2 ≤ y2 ≤ ȳ2 +M2
2ε

1−ε . The previous relations imply that

if γ ≥ 0 and (ȳ1, ȳ2) ∈ H̄a,

y2 ≤ ȳ2 +M2
2ε

1−ε ≤ γȳ1 + v̄a +M2
2ε

1−ε ≤ γy1 + v̄a +M2
2ε

1−ε = γy1 + v̄a + δa(γ)

while for (ȳ1, ȳ2) ∈ H̄b we have

y2 ≥ ȳ2 ≥ γȳ1 + v̄b ≥ γy1 + v̄b − γM1
2ε

1−ε = γy1 + v̄b − δb(γ).

On the other hand, when γ < 0 and (ȳ1, ȳ2) ∈ H̄a then

y2 ≤ ȳ2 +M2
2ε

1−ε ≤ γȳ1 + v̄a +M2
2ε

1−ε ≤ γy1 + v̄a + (M2 − γM1) 2ε
1−ε = γy1 + v̄a + δa(γ),

while for (ȳ1, ȳ2) ∈ H̄b we have

y2 ≥ ȳ2 ≥ γȳ1 + v̄b ≥ γy1 + v̄b − δb(γ).

Therefore for every sequence σ it holds

γy1(T ;σ) + v̄b − δb(γ) ≤ y2(T ;σ) ≤ γy1(T ;σ) + v̄a + δa(γ)

and consequently [y1(T ;σ); y2(T ;σ)]> ∈ Ha ∩Hb.
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CHAPTER 9
From theory to practice: a light-inducible

gene expression circuit

Methods for parameter inference (see Section 7.1) and optimal experiment design (see

Section 7.3) for stochastic models have been developed and applied to a number of bio-

logical systems. However, a systematic characterization procedure as the one described

in Section 7.4 , that exploits the information gained from each performed experiment,

has not been fully developed or experimentally validated yet. In this chapter, we pro-

vide the first study in which a noisy biochemical reaction network is characterized, and

ultimately also controlled, through iterations of optimally designed flow-cytometry ex-

periments and Bayesian inference. Specifically, we consider a gene expression circuit that

has been engineered in yeast so that the expression of the gene can be induced and inhib-

ited by exposure of the cells to red and far-red light [SSHTQ02, MASSO+11]. We use the

sequential experiment design procedure proposed in Chapter 7 to ensure that the light-

induction pattern yielding the most informative output is iteratively administered to the

cells and that the most informative measurement times are chosen, until the outcome

of future experiments can be predicted with low uncertainty. Ultimately, we obtain a

stochastic model that is capable of predicting the response of the entire cell population to

arbitrary light-induction patterns with high precision. We then use the obtained model

to study the fundamental limits on noise suppression for the protein production, using

the techniques discussed in Chapter 8. This allows us to in silico plan light-induction

patterns that regulate statistics of the protein distribution to desired profiles. Our ex-

perimental results show that different reference profiles can be successfully tracked over

long time horizons. In contrast to previous studies, the use of a stochastic model allows

us not only to regulate population averages as done in [MASSO+11, OHL+14, OT14] or

individual cells as in [UMD+12], but also the variability across the population.

The results of this chapter have been published in [RPMA+15]. Earlier results in this

direction were also reported in [Rue14].
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9.1 The system

We consider the engineered gene expression circuit presented in [MASSO+11]. The main

component of this system is a light-responsive phytochrome/phytochrome-interaction-

factor (Phy/PIF) module [SSHTQ02] that can be used to drive the expression of a yellow

fluorescent protein (YFP) reporter by shining red and far-red light on a population of

yeast cells. We model this system with the biochemical reaction network illustrated in

Figure 9.1, that consists of the following reactions:

Reaction 1: ∅
kM ·σ(t)

−−−−→ M

Reaction 2: M
cM
−−−−→ ∅

Reaction 3: M
kP

−−−−→ M + P

Reaction 4: P
kF

−−−−→ F

Reaction 5: P
cP

−−−−→ ∅
Reaction 6: F

cP
−−−−→ ∅.

(9.1)

This reaction network is similar to the one used in [MASSO+11] but contains a crucial

difference in the way the external signal σ(t) (i.e. the light input) is incorporated. Here,

we assume that the mRNA production rate is multiplied by a signal σ(t) = σ(t;L) of

the form

σ(t;L) = U
e−dr(t−tc)

e−dr(t−tc) + h
,

where L is the applied light-pattern. When a red pulse is applied, tc is set to the current

time and U is set to one, so that mRNA transcription takes place with maximum rate.

The unknown parameters dr and h capture the natural decay of the signal after a red

pulse due to dark reversion [MASSO+11]. When a far-red pulse is applied U is set to

zero, so that transcription is arrested until a new red pulse is applied. See [RPMA+15,

SI Section S.2.1.1] for a detailed derivation.

Finally, we assume that the fluorescent intensity I(t) of a sample of the population

can be measured via flow-cytometry. Analogously to what done in Section 8.3.2 we

assume that the fluorescence intensity I(t) is proportional to the amount of fluorescent

proteins F (t) via a deterministic and unknown scaling parameter r. In other words, we

assume I(t) = rF (t).
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Figure 9.1: Stochastic modeling of the light-inducible gene expression circuit. The bind-

ing and unbinding of PhyB-PIF3 (left panel), caused by the light pulses, is modeled by

multiplying the mRNA production rate by the signal σ(t;L) (upper right panel). When

the signal is active, mRNA M is produced with a rate kM ·σ(t;L). To capture cell-to-cell

variability in the light responsive module we assume that kM varies between different

cells according to a gamma distribution PkM with unknown mean MkM and variance

VkM . When mRNA is present, protein P is produced with rate kP and then becomes

fluorescent with rate kF . All the species degrade: the mRNA (M) with rate cM and the

dark (P ) and fluorescent (F ) protein with rate cP = cF , as detailed in the bottom part

of the figure. We assume that each fluorescent protein molecule emits an unknown but

deterministic amount r of fluorescence. The fluorescence distribution in the cell popula-

tion is recorded over time using flow cytometry (lower right panel). In total, the model

(bottom part of the figure) comprises 3 species, 6 reactions, and 9 unknown parameters

θ = [MkM VkM kP kF cM cP dr h r]
>.
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9.2 The CME for heterogeneous populations

To capture variability in the light-responsive module we model the mRNA production

rate kM as a random variable that is distributed according to a gamma distribution1

PkM with unknown mean MkM and variance VkM (see [RMAL13]). This assumption

means that we allow the parameter kM to vary among cells, but not in time. Under our

assumption, the time evolution of the amount of molecules in an individual cell can be

described by a continuous time Markov chain conditioned on the value of kM in that

cell. Consequently, we obtain a conditional controlled CME

d

dt
p(z, t|kM) =− p(z, t|kM)α1(θ̄1, z)σ(t;L) + p(z − νk, t|kM)α1(θ̄1, z − ν1)σ(t;L)

−
6∑
r=2

p(z, t|kM)αr(θ̄r, z) +
6∑
r=2

p(z − νr, t|kM)αr(θ̄r, z − νr),

where p(z, t|kM) is the probability that z molecules are present at time t conditional

on the value of the parameter kM in the cell, νr ∈ Z3, r = 1, . . . , 6 are the stoichio-

metric transition vectors of the 6 chemical reactions in (9.1) and θ̄r are the reaction

rates θ̄ := [kM kP kF cM cP cP ]>. By integrating (9.2) over all possible values of kM
with respect to the probability measure PkM and simultaneously multiplying by different

polynomials in z and summing over all possible values of z, similarly to what done in

Section 6.1.2, we can derive a system of population moment equations from (9.2) (see

[ZRK+12]) that depends on those rate parameters that are fixed for all cells in the pop-

ulation and on the moments of the distribution PkM . Since we assumed that PkM is

an unknown gamma distribution parametrized by its mean and variance, we obtain a

system of population moment equations, that depends on a new population parameter

vector θ̄p = [MkM VkM kP kF cM cP dr h]>2, of the form

ẋ(t | θ̄p, e) = A(θ̄p, σ(t; θ̄p, Le))x(t | θ̄p, e) +B(θ̄p, σ(t; θ̄p, Le)), (9.2)

where Le is the light-induction pattern applied in experiment e and x(t | θ̄p, e) is a vector

which comprises moments up to a desired order (in our case four) of the joint distribution

of Z(t) and the parameter kM in experiment e assuming the vector of parameters θ̄p.

Note that Corollary 8.3.2 does not directly apply here because we assumed that kM is

a stochastic parameter. Nonetheless, the moment equation system (9.2) turns out to be

closed and with a switched affine structure similar to system (8.18). Hence, its solution

1The gamma distribution is a generalization of the exponential distribution and can be used to

approximate a wide variety of shapes.
2Note that θ̄ contains a fixed reaction rate kM , while θ̄p contains the first two moments of the

distribution of kM across the population, since we assumed it to be heterogeneous. Consequently, one

may think of θ̄ as the parameter vector characterizing a single cell of the population (which is different

from cell to cell if these are heterogenous) and θ̄p as the unique parameter vector characterizing the

whole population.
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can be computed numerically using standard solvers for ordinary differential equations.

Finally, the moments of the measured fluorescence intensity I(t) can be easily derived

from the moments of F (t), since xIi(t | θ, e) = rixF i(t | θ̄p, e), where θ =
[
θ̄p

r

]
is the

final vector of parameters to be identified, that are, the population parameters as in θ̄p

and the deterministic parameter r denoting the fluorescence intensity emitted by a single

fluorescent protein, as explained in Section 8.3.2.

9.3 Systematic parameter inference procedure

To optimally identify the model parameters we use the iterative characterization proce-

dure described in Section 7.4 and illustrated for the light inducible gene expression circuit

in Figure 9.2A. Specifically, we designed a first optimal experiment (Figure 9.2B), based

on an initial estimate of the parameters θ̂0 taken from the literature (Table 9.1). We

then administered the resulting light-induction pattern to the cells, using a custom-built

LED-based light delivery system, and measured by flow cytometry the resulting fluores-

cence intensity at the optimal measurement times. Subsequently, the data was processed

and used in the inference algorithm to determine the parameter posterior distribution.

Figure 9.2B shows that the model output computed using the corresponding maximum a

posteriori (MAP) estimates θ̂1 agrees well with the means and variances of the measured

fluorescence distributions. This, however, does not guarantee that the MAP estimates

can be used to predict the outcome of new experiments. Indeed, the parameter posterior

distribution (Figure 9.3 top row) is flat in some dimensions, indicating that some of the

parameters are practically unidentifiable from the data measured in the first experiment

only. Based on these considerations, we concluded that one experiment is not sufficient

to characterize the system. Consequently, we designed a second experiment that, accord-

ing to the Fisher information matrix computed with the MAP estimates θ̂1, optimally

complements the already performed one. The resulting light-induction pattern and mea-

surement times are shown in Figure 9.2C. After performing the second experiment, we

again used Bayesian moment-based inference to update the parameter posterior distribu-

tion. The resulting distribution shows (Figure 9.3 bottom row) that additional certainty

about the model parameters was gained from the second experiment.

Table 9.1: Initial estimates θ̂0 of the model parameters and MAP estimates obtained

from the first optimal experiment θ̂1 and from both optimal experiments θ̂2

γM kP kF γP dr h MkM VkM r−1

θ̂0 0.03 0.22 0.0419 0.0066 0.0155 0.5 0.9 0.27 10−3

θ̂1 0.0124 3159.9 0.0022 0.0465 0.2677 1.34 · 10−10 0.1185 0.0045 2583.1

θ̂2 0.0322 731.1953 0.0300 0.0114 0.2741 1.74 · 10−10 0.1484 0.0080 17171
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Figure 9.2: Optimal characterization of the light-inducible gene expression circuit. (A) Il-

lustration of the iterative experiment design scheme. (B) Applied light-induction pattern

(red and black bars) and measured means and variances in the first optimal experiment

(black dots). The blue line is the model output with the MAP estimates θ̂1 obtained from

the data of this experiment. (C) Applied light-induction pattern and measured means

and variances in the second optimal experiment. The blue line is the model output with

the MAP estimates θ̂2 obtained from the data of the two optimal experiments.
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Figure 9.3: Comparison of the posterior distributions computed from the data collected

in the first optimal experiment O1 (top row) and from both the optimal experiments

O1O2 (bottom row). The different panels show some of the two dimensional marginals of

the full posterior distribution of the parameters θ. The color is an index of the likelihood

of each particle: blue for the particles with lower likelihood and red for the particles with

higher likelihood.

To determine whether the residual prediction uncertainty is sufficiently small to ter-

minate the iterative procedure, we used the obtained model to predict the outcome of

a 10-hour experiment, with a randomly chosen light pattern. In particular, to quantify

how the uncertainty in the posterior distribution of the model parameters influences the

prediction of future experiments, we computed the posterior predictive distribution (as

in Section 7.2). Figure 9.4A shows the 98% confidence region, for both the fluorescence

mean and variance, computed from the obtained posterior predictive distributions. We

judged these confidence regions to be sufficiently tight to terminate the iterative proce-

dure.

To validate the obtained model we performed the experiment of Figure 9.4A and

verified that the means and variances of the fluorescence distributions, measured every

30 minutes, lie within or very close to the precomputed confidence regions. We fur-

ther validated the model by comparing the entire predicted fluorescence distribution to

the measured one at different times (Figure 9.4B); the model predictions were obtained

by simulating the system using Gillespie’s stochastic simulation algorithm [Gil76] with

the MAP estimates θ̂2. The results agree very well with the experimentally measured

distributions, indicating that the model is capable of predicting entire population distri-

butions, even though only sample means and variances were used in the identification.
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Figure 9.4: Validation of the identified model. (A) Measured and predicted mean (top)

and variance (bottom) of the fluorescence distribution in a validation experiment. Model

predictions are visualized in terms of the means (solid line) and 98% confidence regions

(shaded region) of the posterior predictive distributions. (B) The measured fluorescence

distributions (black) agree very well with simulated distributions (blue) obtained with

the MAP estimates θ̂2.

150



9.4 Comparison with random and experience-based

experiments

Random experiments

The results of the previous section show that our iterative characterization procedure

leads to a predictive model after only two experiments. To demonstrate that optimal ex-

periment design is indeed necessary to obtain this result, we performed two experiments

of the same duration and with the same number of measurements (equally spaced) as the

optimal experiments but with randomly chosen light-induction patterns ([RPMA+15, SI

Section S.7.1]). The parameter posterior distribution, computed from the resulting data,

shows that the random experiments convey much less information than the optimal ones,

leading to large residual uncertainty about the parameter values ([RPMA+15, SI Figure

S.8]).
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Figure 9.5: Comparison of the posterior predictive distributions computed using the

parameter posterior distribution obtained from the two optimally designed (blue), the

two best experience-based (green) and two random (magenta) experiments, for a second

validation experiment. Model predictions are visualized in terms of the means (solid line)

and 98% confidence regions (shaded region) of the posterior predictive distributions. The

light sequence was chosen to produce damped oscillations of the mean fluorescence. The

means and variances of the measured fluorescence distributions are shown with black

dots.
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Figure 9.5 shows that the model identified from the two random experiments cannot

adequately predict the outcome of a validation experiment, that is, the large uncer-

tainty remaining in the parameter posterior distribution propagates to the predictive

distributions of the fluorescence mean and variance. Adding a third random experiment

improves the situation only marginally ([RPMA+15, SI Figures S.8 and S.9]). According

to our experience, a large number of random experiments would be required to obtain

an accurate model of this system.

Experience-based experiments

Because the light-inducible gene expression circuit is a relatively simple system, it is

also reasonable to design experiments based on intuition/experience only. It is obviously

a subjective matter which experiments should be termed intuitively good for the char-

acterization of this system. We decided that the most objective choice was to use the

experiments performed for the identification of this system in [MASSO+11]. Hence, we

chose three of the experiments shown in [MASSO+11, Figure 1] (one from each panel),

applied the corresponding light-induction patterns to the cell population, and measured

the fluorescence for 5 hours every 30min, as done for the random experiments. The

posterior distribution computed from the resulting data ([RPMA+15, SI Figure S.11])

and the corresponding model predictions ([RPMA+15, SI Figure S.12]) show that any

combination of only two experience-based experiments leads on average to worse results

than the two optimal experiments.

Table 9.2 gives a summarizing comparison of how well a number of different exper-

iments are predicted by the models obtained from the optimal, the random and two

different pairs of experience-based experiments. From this table it can be seen that the

performance of the experience-based approach depends strongly on the particular choice

of the pair of experiments. Furthermore, the model identified from the two optimal

Optimal Best experience-based Worst experience-based Random

Figure 9.4 −28.8? −123.0 −335.0 −206.2

Figure 9.5 −69.6 30.6? 20.2 −115.9

Figure 9.6A −44.7? −125.1 −356.5 −225.6

Figure 9.6B −174.4? −210.0 −342.3 −310.7

Figure 9.6C −67.7? −135.9 −315.1 −261.4

Figure 9.6D −67.1? −71.2 −131.5 −143.6

Table 9.2: Comparison of optimal, random and experience-based experiments. For each

performed experiment the log of the mean likelihood of the measured data, according to

the different parameters posterior distributions, is computed. The best model, that is

the one with highest expected likelihood, is labeled with a star.
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experiments outperforms the one identified from the best pair of experience-based ex-

periments in 5 cases out of 6. We conclude that, for this system, experimental effort can

be saved if optimal experiment design is used.

9.5 Regulating gene expression

Our final model of the gene expression circuit appears to be sufficiently accurate to

predict moments of the fluorescence distribution for any light-induction pattern. Con-

sequently, we can use it to regulate statistics of the amount of fluorescent protein in the

population.
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Figure 9.6: Regulation of population statistics. In all panels the light blue line is the

reference time course and the black dots are the measured data. The red and black

bars show the applied light pattern, which was a priori designed to make statistics of

the population follow the desired reference (in light blue). (A) As a consequence of

the applied light pattern, the mean of the fluorescence distribution follows the desired

piecewise constant reference. (B) The mean of the fluorescence distribution follows a

ramp. (C) The variance of the fluorescence distribution follows a piecewise constant

reference. (D) The coefficient of variation of the fluorescence distribution is regulated to

a constant value.
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To illustrate this point, we used the MAP estimates θ̂2, identified from the two

optimal experiments, to compute two light-induction patterns that, when applied to the

population, make the mean of the fluorescence distribution (seeing as an output) follow

two different reference profiles. Figure 9.6A and Figure 9.6B show that a very good

tracking of the reference is achieved in both experiments.

Given that our stochastic model can be used to predict higher order statistics of the

fluorescence distribution, we can also choose reference time courses for other popula-

tion statistics. Figure 9.6C and 9.6D show two experiments in which references for the

variance and the coefficient of variation of the fluorescence distribution are tracked. For

the model under consideration we found that, with the red and far-red light as the only

control inputs, it is practically impossible to independently regulate the mean and the

variance of the fluorescence distribution. This observation motivates us to study the

reachable set of fluorescent protein mean and variance.

9.6 Reachability analysis

To investigate the reachability properties of the light inducible gene expression system we

assume that the external input sequence σ(t) takes value in Σ = {0, 1}. In other words,

for the purpose of this section, we disregard the dark reversion process (i.e., the natural

decay of the signal after a red pulse is applied, as described in Section 9.1). Under this

assumption the system of population moment equations given in (9.2) becomes a switched

affine system (with I = 2), allowing us to apply the theory developed in Section 8.2.3.

For our investigation we use as parameter the final MAP estimator θ̂2. Note that this

choice results in a 60% Coefficient of Variation (CV) for kM (i.e.,

√
VkM

EkM
= 0.6).

Figure 9.7A shows that the predicted outer approximation of the reachable set is

in agreement with the measured data. An interesting aspect to notice is that, most of

the measured data lies in the bottom left region of the estimated reachable set. This

phenomenum can be explained by noticing that:

1. in the performed experiments the input signal σ(t) is at the zero value (OFF)

for most of the time. This means that the gene expression system is only mildly

induced, thus leading to low protein production levels (low mean). For the system

under investigation, input sequences that are mostly ON could not be applied since

continuous red light administration would damage the cells.

2. the outer approximation of the reachable set obtained with the method of Sec-

tion 8.3 is by construction convex. On the other hand, the reachable set of a

switched system does not need to be. The fact that the hyperplanes approximat-

ing the reachable set from above (red lines) are all tangent at either one of the

two extremes is a strong evidence that for this model the reachable set is actually
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not convex. We therefore conclude that the outer approximation is not tight, in

line with the experimental results suggesting that mean and variance cannot be

controlled independently.

In Figure 9.7B, we investigate how the reachable set changes if we change the level

of heterogeneity in the population, that is if we assume that the mean EkM is fixed

and we consider different values for VkM . As to be expected, this additional source of

stochasticity results in a shift of the reachable set towards regions with higher variance.

Moreover, while for CV=0% we know that the reachable set is convex, the higher the

CV is the less tight the outer approximation becomes.
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Figure 9.7: Reachable set of the light inducible gene expression model using as output

the fluorescence intensity mean and variance. A) Comparison of the real data with the

outer approximation of the reachable set obtained using the hyperplane method and θ̂2 as

parameter vector. The data are those collected in the designed (blue), random (magenta),

intuitive (green), validating (black) and control (cyan) experiments. B) Comparison of

the output reachable set when the parameters are as in θ̂2, except for VkM which is chosen

in order to obtain different levels of heterogeneity (as defined in Section 9.2).

155



156



Part III

Conclusions
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CHAPTER 10
Conclusions and possible extensions

10.1 Part I: populations of rational agents

In the first part of the thesis we have presented a framework to describe populations

of rational agents that are profit maximizing and whose cost functions depend in an

aggregative way on the strategies of the other players. Specifically, we have focused on

AAGs (in which the cost of each player depends on the average of the strategies of the

rest of the population) and on NAGs (in which each player has a different aggregator

function that is a convex combination of the strategies of its neighbors). In both cases,

motivated by real applications, we have considered the case of heterogeneous agents with

multidimensional strategies and personalized constraint sets. To guarantee scalability

and privacy, we have devised control solutions that rely only on global signals or local

communications, while keeping the decision making process and the knowledge of the

cost functions and constraint sets local.

We have discussed under which conditions dynamics that are traditionally investi-

gated in the economic literature, as the simultaneous and sequential BR dynamics, are

guaranteed to converge to a Nash equilibrium. We have then proposed other types of

dynamics, which can be seen as an extension of the simultaneous BR dynamics in the

case of large populations, and derived different conditions that guarantee convergence for

AAGs (both using a central operator or local communications) and for NAGs (by local

communications). These schemes are suitable for myopic agents that at every iterative

step select the strategy that minimizes their cost function.

We have then reviewed known gradient schemes for populations of boundedly rational

agents, that is agents for which the central operator can also design the strategy update

law, ana we have extended these algorithms to generalized Nash problems, where the

agents need to satisfy an additional constraint C coupling their strategies.

10.1.1 Direct extensions

Some immediate extensions of the previous results have been omitted in the interest of

space and are briefly reported here.
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NAGs with coupling constraints: a distributed scheme

Consider the network aggregative game with ν communications given in (4.19) with the

addition of a set of coupling constraints in the neighbors aggregate states

Cν := {x ∈ RNn | Aiσiν(x) ≤ bi ∀i ∈ Z[1, N ]} =: {x ∈ RNn | Aνx ≤ bν},
where Ai ∈ Rmi×n, bi ∈ Rmi for all i ∈ Z[1, N ], Aν := diag(A1, . . . , AN) · Pν and bν =

[b1; . . . ; bN ], resulting in min
xi∈Rn

J i(xi, σiν(x))

s.t. xi ∈ Qiν(x−i)
∀i ∈ Z[1, N ], (10.1)

where σiν(x) =
∑N

j=1 P
ν
ijx

j, Qν := X1×N ∩ Cν and Qiν(x−i) := {xi ∈ X i | Aνx ≤ bν}.
Exactly as in Section 5.3, one can use the iterative schemes illustrated in Section 3.3.2

to solve the associated VI(X1×N × Rm
≥0, t), with t defined as in (5.9) using

fν(x) := [∇xiJ
i(xi, σiν(x))]Ni=1

instead of f(x), and hence find a variational GNE of the game in (10.1). We note that,

in this case, the operator fν(x) can be evaluated locally, without the need of a central

operator, since each agent can compute its component by knowing only its strategy and

the neighbors aggregate state. Moreover, each agent can update locally the dual variable

λi ∈ Rmi associated with the coupling constraint on its neighbors aggregate state (i.e,

Aiσiν(x) ≤ bi). These two features allows one to implement the schemes of Section 3.3.2

in a totally distributed fashion in the case of NAGs, provided that P = P>.

AAGs with coupling constraints: a distributed scheme

The algorithm suggested in the previous section for NAGs can also be used to guarantee

distributed convergence to almost generalized Nash equilibria in AAGs. The details

are omitted in the interest of space. The main idea, however, is to follow the same

procedure as in Section 4.4 and allow a sufficient number of communications in between

two strategies update, over a sparse network P satisfying Assumption 4.4.1. Under

suitable regularity conditions on the cost functions and on the constraints, one can in fact

use [Mos69, Theorem A (b)] to show that the solution of the VI(Qν , fν) associated with

the NAG with ν communications converges to the solution of the VI(Q, f) associated

with the AAG. Consequently, one can use the scheme for NAGs to approximate the Nash

equilibrium of an AAG with arbitrary precision, by selecting ν large enough.

10.1.2 Further research directions

The use of distributed algorithms to coordinate a population of agents to configurations

that have a meaningful interpretation in terms of game theory (e.g. to Nash equilibria)
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is a relatively new field. We conclude this chapter by highlighting possible extensions to

the presented framework that may be of interest as future work.

Social optimality

Throughout this thesis our objective was to coordinate the strategies of the agents to a

Nash equilibrium, which is a a configuration of strategies that is fair in the sense that

no agent can improve its cost by unilateral deviations. We did not investigate what

are the properties of the obtained equilibrium. Specifically, concepts as social global

optimality, efficiency and price of anarchy [TX14, HCM12] were not considered in this

thesis. The easiest case to analyze is that of games with SMON integrable operator

f(x) := [∇x1J1(x1, x−1); . . . ;∇xNJ
N(xN , x−N)]. That is, games for which there exists a

strongly convex function S(x) : RNn → R such that ∇xS(x) = f(x). In this case one

can show that any Nash equilibrium obtained with the gradient schemes described in

Chapter 5 is a minimizer of S(x), which can therefore be thought of as a welfare function

[PPG+16]. In general however there is no guarantee that the Nash equilibrium would

be socially optimal. Note that, in the case of boundedly rational agents, the central

operator could directly design the strategies update laws to guarantee convergence to

the minimum of the social function by using standard distributed optimization tools.

This would however give no guarantees at all on the performace of the single agents. In

other words, it might be that the performace of a single agent is greatly sacrificed for

the good of the rest of the population. Consequently, in the literature there are schemes

that guarantee convergence to socially optimal solutions that might not be fair and

schemes that guarantee convergence to fair solutions that might not be socially optimal.

I believe that one of the most challenging future direction for this field is overcoming this

dicotomy. For example, in the case of games with multiple equilibria, a first step could

be the development of algorithms that steer the agents to the Nash equilibrium that

minimizes an arbitrarily chosen social function or that minimizes the price of anarchy.

Similarly, the problem of how to modify the original game by mechanism or utility design

(i.e., by using incentives, tolls, etc.) so that the Nash equilibria of the new game have a

desired social property is an interesting field of research [MS14, LM13, JT05].

Cheating

An important assumption of our work is that the agents communicate truthfully with

the central operator or with their neighbors. Note that the latter do not need to be

spatial neighbors. A neighborhood could be defined as the set of players that an agent

trust and with whom he is willing to communicate truthfully. Moreover, in technical

applications (as e.g. demand response schemes) one may envision these communications

to be performed by an automatic device. Nonetheless, a future research direction is the

analysis of the robustness of our schemes when part of the agents are allowed to cheat.
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In this sense, the algorithms presented in Chapter 4 for myopic agents are less prone to

the risk of cheating since, at every step, each agent selects the strategy that minimizes its

cost. Consequently, any cheating behavior would be suboptimal at the single algorithmic

step, but might still be beneficial in the long run.

Stochasticity

In this thesis we considered games that are deterministic. However, many of the appli-

cations described in Chapter 2 are characterized by uncertainty and noise. In the case of

demand response applications, for example, both the demand and production profiles are

affected by noise coming, for example, from the uncertainties in the weather forecasts.

Moreover, the number of players could fluctuate during the game, adding additional

sources of variability. These aspects could be taken into account by using a stochastic

version of the games presented in this thesis where, for example, the aggregator function

depends on a random variable. One could then examine games where each agent tries to

minimize its expected cost. The easiest way to tackle this problem is to follow the same

lines as in Section 5.1, using however schemes to solve stochastic VIs (as e.g. the ones

described in [KNS13, YNS16a]) and extend the results of [YNS16b] for standard Nash

games to generalized Nash games, as done in Section 5.2 for the deterministic case.

Asynchronicity

Our technical results are derived for agents that update their strategies synchronously

and over a fixed network. As future work, we believe it would be interesting to study

whether similar convergence results can be achieved via asynchronous updates and time-

varying or random communications [BT97, FZ08, ZC10]. This was done for example for

AAGs with boundedly rational agents in [KNS16], by using gossip-based communication

schemes. For AAGs with myopic agents and or coupling constraints, known results

from consensus theory could be applied to guarantee that the convergence requirement

σiν (k) → σ̄ (see Assumption 4.4.1 and Section 4.4) is achieved asynchronously. Even

more interesting would be the development of algorithms where both communications

and strategies updates are performed asynchronously. Once again one could rely on

asynchronous distributed algorithms for convex optimization or solution of VIs to

tackle this task [BT97]. Finally, it would be interesting to study the performance of

the proposed schemes in the presence of communication noise or delays, as for example

done in [ZF16] in the case of monotone games.

Other types of equilibria

In this work we focused on the notion of Nash equilibrium as it encodes the concept of

“fairness” and “stability” in the sense that no agent has interest in unilateral deviations.
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Nonetheless, other types of equilibria have been studied in game theory and, depending

on the application, may offer valid alternatives. In the case of average aggregative games,

for example, an important class is that of Wardrop equilibria (also known as competitive

equilibria in the economic literature). Loosely speaking a Wardrop equilibrium is a set

of strategies {x̄j}Nj=1 where no agent has incentive in changing its own strategy if we fix

the average to 1
N

∑N
j=1 x̄

j, that is, if for all agent i ∈ Z[1, N ] it holds

J i(x̄i, 1
N

∑N
j=1 x̄

j) ≤ J i(xi, 1
N

∑N
j=1 x̄

j), ∀xi ∈ X i.

The main difference between Nash and Wardrop is thus that in the latter the agent is not

allowed to change its contribution to the average, but only the first argument of J i(·, ·).
Wardrop equilibria were originally defined in traffic applications, where the population is

very large and consequently the contribution of a single agent to the average is negligible.

One can actually show that, under mild assumptions, any Wardrop equilibrium is an

εN−Nash equilibrium with εN → 0 as N →∞. This is the fundamental property at the

core of the proof of Theorem 4.2.1. Other types of equilibria that one may consider are

Stackelberg equilibria (where the agents are divided into minor and major player that

select their actions sequentially [BO99, NCMH12, MGP+16]) or correlated equilibria.

10.2 Part II: populations of biological systems

In the second part of the thesis we have presented a framework to describe populations

of stochastic biochemical reaction networks. The fundamental feature that we exploited

to characterize these systems is that every cell in the population can be considered as

an independent realization of an underlying stochastic process. Recent technological

advancements have allowed researchers to measure thousands of such cells at the same

time, thus providing large samples from which reliable estimates of the moments of such

a stochastic process can be computed.

Based on such moments estimates, we have proposed a sequential approach, com-

posed by experiment design, flow cytometry experiments and parameter inference, to

systematically infer the unknown parameters of controlled stochastic biochemical reac-

tion networks. We have then proposed a framework, based on reachability theory, to

analyze the behavior of such control networks and answer fundamental questions on

noise suppression, for example in gene expression circuits.

10.2.1 Direct extensions

A direct extension of the presented theory is briefly discussed in this section.
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Sequential experiment design for model selection

The main objective of Chapter 7 was to suggest an iterative procedure to identify the

unknown parameters of a given model of the stochastic biochemical reaction network of

interest. More in general one might be interested in using the measured data to dis-

criminate among a finite number of different models m = 1, . . . ,M , all with unknown

parameters. In this case the sequential procedure described in Section 7.4 can be ex-

tended as shown in Figure 10.1.

Figure 10.1: Sequential experiment design for model selection.

Note that all the steps in Figure 10.1 are the same as in Section 7.4 except for the

experiment design procedure which, in this case, should aim at selecting the experiment

that allows to better discriminate among the M models. To this end, one can select the

experiment e ∈ E that maximizes the “distance” among the M posterior predictive dis-

tributions of the sampled mean and variance for experiment e, computed by using the m

different models and the corresponding parameter posterior distributions obtained from

previous experiments. Note that, in general, computing the distance among probability

distributions is not a trivial task. However, as detailed in Section 7.2, the posterior pre-

dictive distributions of the sample moments can be approximated by Gaussian mixtures.

One can then develop a computationally efficient experiment design procedure by using

ad hoc definitions of distance for Gaussian mixtures. We finally note that the parameter

posterior distributions can also be used to compute the Bayes factors among each pair

of models, which can be used as test to terminate the iterative procedure.
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10.2.2 Further research directions

Automatization and robustness to different environment conditions

Dynamic control of gene expression can have far-reaching implications for biotechno-

logical applications and biological discovery. Nonetheless, it is at a very preliminary

research-oriented implementation stage. The experiments described in Chapter 9, for

example, were performed manually and required the constant presence of human su-

pervision to take measurements, provide the correct pulses and, in general, guarantee a

strictly regulated environment with constant temperature, density, etc. The interplay

of experiment design, data collection and data inference was also performed in a cus-

tom made fashion. It is clear that to make the process of controlling gene expression

technological appealing all these steps need to be automated and the proposed methods

should be made robust to changes in the environment. A first step in this direction has

been taken in [MARA+16], where an automated scheme to implement the control task

described in Section 9.5 is suggested, based on a simple deterministic model. It would

be of interest to devise a scheme where stochastic model calibration and re-identification

of the parameters in case of environmental changes are included.

Internal vs external control

In this thesis we have focused on populations of stochastic biochemical reaction networks

that can be controlled by using external signals, applied to the whole population. A

different line of research has focused, on the other hand, on the design and integration

of feedback loops inside the biochemical reaction network at the single cell level [BK12,

BZK16, ZSRK16]. An important future direction is the comparison between these two

approaches and possibly their integration.

Parameter inference and model selection in evolutionary games

We have briefly mentioned in Chapter 6 that, even though we focused on biochemical

reaction networks, the tools developed in this thesis could be of interest also for other

types of reaction networks. One important example is that of evolutionary games. Evo-

lutionary game theory studies the learning process of a population of rational agents

that can choose among a finite set of different strategies [Smi82, San10]. The basic

assumptions are that (i) the strategy chosen by an agent results in a different payoff

(i.e., reward) depending on the strategies chosen by the rest of the population and (ii)

the agents iteratively change their strategies, in an attempt to maximize their payoffs.

This “learning” process can be modeled by means of reactions that change the amount

of players selecting a given strategy (i.e. the species) with a rate that depends on the

payoff (i.e. the higher the payoff of the new strategy the oftener the reaction takes
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place). Traditional learning dynamics rules, as best response, logit, replicator dynamics,

etc. can be casted in this framework by choosing suitable reactions rates. The inference

and model selection tools previously described could then be applied to identify and

discriminate among these different rules based on population observations (e.g, surveys)

and changing incentives (e.g., modifications of the payoff matrices).
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[DM07] A. Donzé and O. Maler. Systematic simulation using sensitivity analysis.

In A. Bemporad, A. Bicchi, and G. Buttazzo, editors, Hybrid Systems:

Computation and Control, pages 174–189. Springer, 2007.

[DMDJ06] P. Del Moral, A. Doucet, and A. Jasra. Sequential Monte Carlo samplers.

Journal of the Royal Statistical Society: Series B (Statistical Methodology),

68(3):411–436, 2006.

[DPK+15] T. Danino, A. Prindle, G. A. Kwong, M. Skalak, H. Li, K. Allen, J. Hasty,

and S. N. Bhatia. Programmable probiotics for detection of cancer in

urine. Science translational medicine, 7(289):289ra84, 2015.
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[KNS13] J. Koshal, A. Nedić, and U. V. Shanbhag. Regularized iterative stochas-

tic approximation methods for stochastic variational inequality problems.

IEEE Transactions on Automatic Control, 58(3):594–609, 2013.

[KNS16] J. Koshal, A. Nedić, and U. V. Shanbhag. Distributed algorithms for

aggregative games on graphs. Operations Research, 64(3):680–704, 2016.

[Kuk04] N. S. Kukushkin. Best response dynamics in finite games with additive

aggregation. Games and Economic Behavior, 48(1):94–10, 2004.

[KV97] A. Kurzhanski and I. Valyi. Ellipsoidal calculus for estimation and control.

Springer, 1997.

[Lib11] D. Liberzon. Calculus of variations and optimal control theory: A concise

introduction. Princeton University Press, 2011.

[LKK09] C. H. Lee, K.-H. Kim, and P. Kim. A moment closure method for stochas-

tic reaction networks. The Journal of Chemical Physics, 130(13):134107,

2009.

[LL07] J.-M. Lasry and P.-L. Lions. Mean field games. Japanese Journal of

Mathematics, 2:229–260, 2007.

[LM13] N. Li and J. R. Marden. Designing games for distributed optimization.

IEEE Journal of Selected Topics in Signal Processing, 7(2):230–242, 2013.

173



[Lor07] J. Lorenz. Continuous opinion dynamics of multidimensional allocation

problems under bounded confidence: More dimensions lead to better

chances for consensus. European Journal of Economic and Social Systems,

19(2):16, 2007.

[LVP10] I. Lestas, G. Vinnicombe, and J. Paulsson. Fundamental limits on the

suppression of molecular fluctuations. Nature, 467(7312):174–178, 2010.

[MA79] R. M. May and R. M. Anderson. Population biology of infectious diseases:

Part I. Nature, 280(5722):455–461, 1979.

[MA13] A. Milias-Argeitis. Computational methods for simulation, identification

and model selection in systems biology. Doctoral dissertation, ETH Zurich,

2013.

[MARA+16] A. Milias-Argeitis, M. Rullan, S. K. Aoki, P. Buchmann, and M. Kham-

mash. Automated optogenetic feedback control for precise and robust

regulation of gene expression and cell growth. Nature Communications,

7:12546, 2016.

[MAS09] J. R. Marden, G. Arslan, and J. S. Shamma. Cooperative control and

potential games. IEEE Transactions on Systems, Man, and Cybernetics,

Part B: Cybernetics, 39(6):1393–1407, 2009.

[MASSO+11] A. Milias-Argeitis, S. Summers, J. Stewart-Ornstein, I. Zuleta, D. Pincus,

H. El-Samad, M. Khammash, and J. Lygeros. In silico feedback for in vivo

regulation of a gene expression circuit. Nature Biotechnology, 29:1114–

1116, 2011.

[Mat92] A. Matsui. Best response dynamics and socially stable strategies. Journal

of Economic Theory, 57(2):343–362, 1992.

[MB12] A. Mirtabatabaei and F. Bullo. Opinion dynamics in heterogeneous net-

works: Convergence conjectures and theorems. SIAM Journal on Control

and Optimization, 50(5):2763–2785, 2012.

[MCH13] Z. Ma, D. S. Callaway, and I. A. Hiskens. Decentralized charging control

of large populations of plug-in electric vehicles. IEEE Transactions on

Control Systems Technology, 21(1):67–78, 2013.

[MDBDB11] F. Menolascina, M. Di Bernardo, and D. Di Bernardo. Analysis, design

and implementation of a novel scheme for in-vivo control of synthetic gene

regulatory networks. Automatica, 47(6):1265–1270, 2011.

174
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