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Abstract This paper reports on an integrated inference and
decision-making approach for autonomous driving that mod-
els vehicle behavior for both our vehicle and nearby vehicles
as a discrete set of closed-loop policies. Each policy cap-
tures a distinct high-level behavior and intention, such as
driving along a lane or turning at an intersection. We first
employ Bayesian changepoint detection on the observed his-
tory of nearby cars to estimate the distribution over potential
policies that each nearby car might be executing. We then
sample policy assignments from these distributions to obtain
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high-likelihood actions for each participating vehicle, and
perform closed-loop forward simulation to predict the out-
come for each sampled policy assignment. After evaluating
these predicted outcomes, we execute the policy with the
maximum expected reward value. We validate behavioral
prediction and decision-making using simulated and real-
world experiments.

Keywords Robotics · Autonomous driving

1 Introduction

Decision-making for autonomous driving is challenging due
to uncertainty on the continuous state of nearby vehicles and,
especially, over their potential discrete intentions, such as
turning at an intersection or changing lanes (Fig. 1). The large
state space of environments with many vehicles is computa-
tionally expensive to evaluate given the set of actions other
vehicles can take.

Previous decision-making approaches have employed
hand-tuned heuristics (Montemerlo 2008;Miller 2008; Urm-
son et al. 2008) and numerical optimization (Ferguson et al.
2008; Xu et al. 2012; Hardy and Campbell 2013), but these
methods do not account for the coupled dynamic effects of
interacting traffic agents. For example, a car abruptly initi-
ating a passing maneuver might induce a preceding car to
reconsider its decision to start passing.

Partially observableMarkovdecisionprocesses (POMDP)
offer a theoretically-grounded framework to capture these
interactions, however solvers (Kurniawati et al. 2008; Silver
andVeness 2010; Bai et al. 2014) often have difficulty scaling
computationally to real-world scenarios. In addition, current
approaches for anticipating future intentions of other traffic
agents (Kim et al. 2011; Joseph et al. 2011;Aoude et al. 2013;
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Fig. 1 Ourmultipolicy approach leverages the fact that not all possible
actions of traffic participants are equally likely. Therefore, we can factor
the actions of the egovehicle and traffic vehicles into a set of policies
that capture common behaviors like lane following, lane changing, or
turning. This way we can inform our action search to focus on the likely
interactions of traffic agents

Havlak and Campbell 2014) either consider only the current
state of a neighboring vehicle, ignoring the history of its past
actions, or rather require onerous collection of training data.

In this paper, we present an integrated behavioral antic-
ipation and decision-making system that models behavior
for both the egovehicle and nearby vehicles as the result of
closed-loop policies1 applied to each. This approach is made
tractable by considering only a finite set of a priori known
policies (as illustrated in Fig. 1). Each policy is designed
to capture a different high-level behavior, such as follow-
ing a lane, changing lanes, or turning at an intersection. Our
system proceeds in a sequence of two interleaved stages:
behavioral prediction and policy selection. First, we lever-
age Bayesian changepoint detection to estimate the policy
that a given vehicle was executing at each point in its history
of actions, and then inferring the likelihood of each potential
intention of the vehicle. Furthermore, we propose a statisti-
cal test based on changepoint detection to identify anomalous
behavior of other vehicles, such as driving in thewrong direc-
tion or swerving out of lane. Therefore, we can detect when
our policies fail to model observed behavior, and individual
policies can therefore adjust their prescribed control actions
to react to anomalous cars. Next, using the inferred distri-
bution over policies for other vehicles, we select a policy to
execute by sampling over policy assignments to the egove-
hicle and traffic vehicles and simulating forward to evaluate
the outcomes of each policy decision. The reward function
for a policy choice combines multiple user-defined metrics,
and the final policy for the egovehicle maximizes the reward
over all the sampled outcomes. The policy anticipation and
selection procedure repeats in a receding horizon manner.

1 In this paper,weuse the term closed-looppolicies tomeanpolicies that
react to the presence of other traffic participants, in a coupled manner.
The same concept applies to the term closed-loop simulation.

As a result, our system is able to anticipate and exploit cou-
pled interactions with other vehicles, allowing us to avoid
overly-conservative decisions.

The central contributions of this paper are:

• A behavioral prediction approach that uses Bayesian
changepoint detection to leverage the observed state his-
tory of vehicles to infer the likelihood of their possible
future actions.

• Astatistical test for detecting anomalous behavior online.
• Adecision-making algorithmapproximating thePOMDP
solution that evaluates the predicted outcomes of inter-
actions between vehicles through forward simulation.

• An evaluation of the proposed system using real-world
traffic data, and a traffic scenario in both simulation and
on a real-world autonomous vehicle platform.

This work extends our earlier work which introduces
and refines multipolicy decision-making. In our ICRA
2015 (Cunningham et al. 2015) paper, we introduced the
multipolicy approach for decision-making,whichwedemon-
strated in a real-world autonomous car under assumed known
vehicle behaviors. We extended the approach to incorpo-
rate integrated prediction of other vehicle policies in our
RSS 2015 (Galceran et al. 2015a) paper, though the full-
system verification was limited to simulation. This paper
presents new experimental results, including anticipation and
decision-making on a real-world autonomous vehicle. Addi-
tionally, we have carefully extended the description of our
approach to facilitate its implementation by other practition-
ers.

2 Related work

2.1 Related work on behavioral prediction

Despite the probabilistic nature of the anticipation problem,
several methods in the literature assume no uncertainty on
the future states of other participants (Petti and Fraichard
2005; Ohki et al. 2010; Choi et al. 2010). Such an approach
could be justified in a scenario where vehicles broadcast their
intentions over some communications channel, but it is an
unrealistic assumption otherwise.

Some approaches assume a dynamic model of the obsta-
cle and propagate its state using standard filtering techniques
such as the extended Kalman filter (Fulgenzi et al. 2008; Toit
and Burdick 2010). Despite providing rigorous probabilis-
tic estimates over an obstacle’s future states, these methods
often perform poorly when dealing with nonlinearities in the
assumeddynamicsmodel and themultimodalities inducedby
discrete decisions (e.g. continuing straight, merging, or pass-
ing). Some researchers have exploredusingGaussianmixture
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model (GMMs) to account for nonlinearities and multiple
discrete decisions (Toit andBurdick 2012;Havlak andCamp-
bell 2014); however, these approaches do not consider the
history of previous states of the target object, assigning an
equal likelihood to each discrete hypothesis and leading to a
conservative estimate.

Dynamic Bayeseian networks have been also utilized for
behavioral anticipation (Dagli et al. 2003). Gindele et al.
(2015) proposed a hierarchical dynamic Bayesian network
where some of the models on the network are learned from
observations using an (EM) approach.

A common anticipation strategy in autonomous driving
used by, for example, Broadhurst et al. (2005), Ferguson et al.
(2008), orHardy andCampbell (2013), consists of computing
the possible goals of a target vehicle by planning from its
standpoint, accounting for its current state. This strategy is
similar to our factorization of potential driving behavior into
a set of policies, but lacks closed-loop simulation of vehicle
interactions.

Gaussian process (GP) regression has been utilized to
learn typical motion patterns for classification and predic-
tion of agent trajectories (Trautman and Krause 2010; Kim
et al. 2011; Joseph et al. 2011), particularly in autonomous
driving (Aoude et al. 2013; Tran and Firl 2013, 2014). In
more recent work, Kuderer et al. (2015) use inverse rein-
forcement learning to learn driving styles from trajectory
demonstrations in terms of engineered features. They then
use trajectory optimization to generate trajectories for their
autonomous vehicle that resemble the learned driving styles.
Nonetheless, these methods require the collection of training
data to reflect the many possible motion patterns the system
may encounter, which can be time-consuming. For instance,
a lane change motion pattern learned in urban roads will not
be representative of the same maneuver performed at higher
speeds on the highway. In this paper we focus instead on
hand-engineered policies.

2.2 Related work on decision making

Early instances of decision making systems for autonomous
vehicles capable of handling urban traffic situations stem
from the 2007 DARPA Urban Challenge (DARPA 2007).
In that event, participants tackled decision making using
a variety of solutions ranging from finite state machine
(FSMs) (Montemerlo 2008) and decision trees (Miller 2008)
to several heuristics (Urmson et al. 2008). However, these
approaches were tailored for specific and simplified situa-
tions and were, even according to their authors, “not robust
to a varied world” (Urmson et al. 2008).

More recent approaches have addressed the decisionmak-
ing problem for autonomous driving through the lens of
trajectory optimization (Ferguson et al. 2008; Werling et al.
2010; Xu et al. 2012; Hardy and Campbell 2013). How-

ever, thesemethods do notmodel the closed-loop interactions
between vehicles, failing to reason about their potential out-
comes.

The POMDP model provides a mathematically rigorous
formalization of the decision making problem in dynamic,
uncertain scenarios such as autonomous driving. Unfortu-
nately, finding an optimal solution to most POMDPs is
intractable (Papadimitriou and Tsitsiklis 1987; Madani et al.
2003). A variety of general POMDP solvers exist in the lit-
erature that seek to approximate the solution (Thrun 2000;
Kurniawati et al. 2008; Silver and Veness 2010; Bai et al.
2014). Although these methods typically require computa-
tion times on the order of several hours for problems with
even small state, observation, and action spaces compared to
real-world scenarios (Candido et al. 2010), there has been
some recent progress that exploits GPU parallelization (Lee
and Kim 2016).

However, some researchers have proposed approximate
solutions to the POMDP formulation to tackle decision-
making in autonomous driving scenarios. Wei et al. (2011)
proposed a point-based Markov decision process (MDP) for
single-lane driving and merging, and Ulbrich and Maurer
(2013) applied a POMDP formulation to handle highway
lane changes. AnMDP formulation was employed by Brech-
tel et al. (2011) for highway driving; similarly to our policies,
they utilize behaviors that react to other objects. The POMDP
approach of Bandyopadhyay et al. (2013a) considers partial
observability of road users’ intentions, while Brechtel et al.
(2014) solve a POMDP in continuous state space reasoning
about potentially hidden objects and observation uncertainty,
considering the interactions of road users.

The idea of assuming finite sets of policies to speed up
planning has appeared previously (Brechtel et al. 2011; He
et al. 2011; Somani et al. 2013; Bandyopadhyay et al. 2013;
Brechtel et al. 2014). Similarly, we propose to exploit domain
knowledge from autonomous driving to design a set of poli-
cies that are readily available at planning time.

3 Problem formulation

As a decision problem, the goal is to choose egovehicle
actions that maximize a reward function over time within a
dynamic, uncertain environment with tightly coupled inter-
actions between multiple agents. We initially formulate this
problem as a full POMDP which we then approximate by
exploiting driving domain knowledge to reformulate the
problem as a discrete decision over a small set of high-level
policies for the egovehicle.

LetV denote the set of vehicles near the egovehicle includ-
ing the egovehicle. In our particular system, we consider all
trackedvehicleswithin the rangeof ourLIDARsensors, 50m.
At time t , a vehicle v ∈ V can take an action av

t ∈ Av to tran-
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sition from state xv
t ∈ X v to xv

t+1. In our system, a state xv
t is

a tuple of the pose, velocity, and acceleration and an action
av
t is a tuple of controls for steering, throttle, brake, shifter,
and turn signals. As a notational convenience, let xt ∈ X
include all state variables xv

t for all vehicles at time t , and
similarly let at ∈ A be the actions of all vehicles.

We model the vehicle dynamics with a conditional prob-
ability function

T (xt , at , xt+1) = p(xt+1|xt , at ). (1)

Similarly, we model observation uncertainty as

Z(xt , z
v
t ) = p(zvt |xt ), (2)

where zvt ∈ Zv is the observation made by vehicle v at time
t , and zt ∈ Z is the vector of all sensor observations made by
all vehicles. In our system, an observation zvt , made by vehi-
cle v, is a tuple including the observed poses and velocities
of nearby vehicles and an occupancy grid of static obstacles.
These observations are provided by the perception module
(see Sect. 4.1) to the egovehicle. For the rest of the vehicles
considered during planning, transform the observations into
each agent’s coordinate frame, considering the egovehicle’s
state as an observation. In addition, our observation model
considers the limited field of view of each agent, not being
able to account for observations that are far away (beyond
50m). While in some recent work we have considered the
effect of occlusions (Galceran et al. 2015b), we do not con-
sider them in this paper. Further, we model uncertainty on
the behavior of other agents with the following driver model:

D(xt , z
v
t , a

v
t ) = p(av

t |xt , zvt ), (3)

where av
t ∈ A is a latent variable that must be inferred from

sensor observations.
The egovehicle’s goal is to find an optimal policy π∗ that

maximizes the expected sumof rewards over a given decision
horizon H , where a policy is a mapping π : X × Zv → Av

that yields an action from the current maximum a posteriori
(MAP) estimate of the state and an observation:

π∗ = argmax
π

E

[
H∑

t=t0

R(xt , π(xt , z
v
t ))

]
, (4)

where R(xt ) is a real-valued reward function R : X → R.
The evolution of p(xt ) over time is governed by

p(xt+1) =
∫∫∫
X ZA

p(xt )p(zt |xt )p(xt+1|xt , at )

p(at |xt , zt ) dat dzt dxt .
(5)

The driver model D(xt , zvt , a
v
t ) implicitly assumes that the

instantaneous actions of each vehicle are independent of each
other. However,modeled agents can still react to nearby vehi-
cles via zvt . Thus, the joint density for a single vehicle v can
be written as

pv(xv
t , xv

t+1, z
v
t , a

v
t ) = p(xv

t )p(zvt |xv
t )

p(xv
t+1|xv

t , a
v
t )p(a

v
t |xv

t , z
v
t ),

(6)

and the independence assumption finally leads to

p(xt+1) =
∏
v∈V

∫∫∫
X v Zv Av

pv(xv
t , x

v
t+1, z

v
t , a

v
t ) da

v
t dz

v
t dx

v
t .

(7)

Despite assuming independent vehicle actions, marginal-
izing over the large state, observation, and action spaces in
Eq. 7 is still too expensive. A possible approximation to
speed up the process, commonly used by general POMDP
solvers (Thrun 2000; Bai et al. 2014) is to solve Eq. 4 by
drawing samples from p(xt ). However, sampling over the
full probability space with random walks yields a large num-
ber of low probability samples, such as those with agents
not abiding by traffic rules. Our proposed approach samples
more strategically from high likelihood scenarios to ensure
computational tractability.

4 Multipolicy approach

The key observation we leverage is that, in the vast majority
of traffic situations, traffic participants behave in a regular,
predictable manner, following traffic rules. Thus, we can
structure the decision process to reason over a limited space
of closed-loop policies for both the egovehicle and traffic
vehicles. Closed-loop policies allow approximation of vehi-
cle dynamics and observation models from Sect. 3 through
deterministic, coupled forward simulation of all vehicleswith
their assigned policies. Therefore, we can evaluate the con-
sequences of our decisions over available policies (for both
our vehicle and other agents), without needing to evaluate
for every control input of every vehicle.

This assumption does not preclude our system from han-
dling situations where reaction time is key, as we engineer
all policies to produce vehicle behavior that seeks safety at
all times.

More formally, let� be a discrete set of policiesπi , where
each policy is a hand-engineered to capture a specific high-
level drivingmode. The internal formulation of a given policy
can include a variety of local planning and control algorithms,
but because our approach is invariant to the implementation-
specific details, we will not cover them in this paper. The
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key requirement for policy execution is that it works under
forward simulation, which allows for a very broad class of
algorithms. In the most general formulation, let each pol-
icy πi be parameterized by a parameter vector θi , and be a
function of the current world state estimates x and an inter-
nal policy state si . The parameter vector θi can capture, for
example, the “driving style” of the policy by regulating its
acceleration profile to be more or less aggressive. The inter-
nal state si allows reuse of internal planning data, though for
conciseness of notation, we will leave this implicit in policy
formulations. Each policy has a state-dependent applicability
check Applicable(πi , x) that determines whether the pol-
icy can start in the given state x . Applicability reduces the set
of policies to evaluate by removing both illogical behaviors
like parking while on a highway and unsafe behaviors like
performing a lane change when traffic is not clear. We thus
reduce the search in Eq. 4 to a limited set of policies.

By assuming each vehicle v ∈ V is executing a policy
πv
t ∈ � at time t , the driver model for other agents in Eq. 3

can be now expressed as:

D(xt , z
v
t , a

v
t , π

v
t ) = p(av

t |xt , zvt , πv
t )p(πv

t |xt , z1:t), (8)

where p(πv
t |xt , z1:t) is the probability that vehicle v is exe-

cuting the policy πv
t , which is conditioned on the current

state xt and prior observations z1:t from our vehicle’s stand-
point. Inferring this probability is a key component of our
approach, which we present in Sect. 5. Thus, the per-vehicle
joint density from Eq. 6 can now be approximated in terms
of πv

t :

pv(xv
t , xv

t+1, z
v
t , a

v
t , π

v
t ) = p(xv

t )p(z
v
t |xv

t )p(x
v
t+1|xv

t , a
v
t )

p(πv
t |xt , z1:t)p(av

t |xv
t , z

v
t , π

v
t ). (9)

Finally, since we have full authority over the policy executed
by our controlled carq ∈ V , we can separate our vehicle from
the other agents in p(xt+1) as follows, using the per-vehicle
distributions of Eq. 9:

p(xt+1) ≈
∫∫

X q Zq

pq(xqt , xqt+1, z
q
t , a

q
t , π

q
t ) dzqt dx

q
t

∏
v∈V |v �=q

⎡
⎣∑

�

∫∫
X v Zv

pv(xv
t , xv

t+1, z
v
t , a

v
t , π

v
t ) dzvt dx

v
t

⎤
⎦ .

(10)

We have thus far factored the action space from p(xt+1)

by assuming actions are given by the available policies.
However, Eq. 10 still requires integration over the state and
observation spaces. We address this issue as follows. Given
samples from p(πv

t |xt , z0:t) that assign a policy to each car,
we simulate forward both the egovehicle and traffic vehicles

Fig. 2 Multipolicy decision-making via changepoint-based prediction
system diagram. The system takes as input a route to the user’s desired
destination and perceptual data (including localization and dynamic
object tracks), and outputs low-level control commands (e.g., forward
speed and steering wheel angle) to the vehicle. The key components
of our approach are the behavioral anticipation and anomaly detec-
tion module, described in Sect. 5, and the policy selection algorithm
described in Sect. 6

under their assigned policies to obtain sequences of predicted
states and observations. We evaluate the expected sum of
rewards using these sample rollouts over the entire decision
horizon in a computationally feasible manner.

We simplify the full POMDP solution in our approximate
algorithm by reducing the decision to a limited set of poli-
cies and performing evaluations with a single set of policy
assignments for each sample. The overall algorithm acts as a
single-stage MDP, which does remove some scenarios from
consideration, but for sufficiently high level behaviors is not
a major impediment to operation. In addition, our approach
approximates policy outcomes as deterministic functions of
state, but because policies internally incorporate closed-loop
control, the actual outcomes of policies are well-modeled by
deterministic behavior. The policies used in this approach
are still policies of the same form as in the POMDP litera-
ture, but under the constraint that the policy must be one of
a pre-determined policy set.

4.1 System design

Figure 2 illustrates the complete system, where the key com-
ponents are a behavioral anticipation and anomaly detection
module (Sect. 5), our policy selection algorithm (Sect. 6), and
a set of policies capturing different driving behaviors. The
system takes as input a high-level route plan (in the form of
driving directions from start to the user’s desired destination)
and perception, and continuously outputs low-level control
commands (in our case, nominal forward speed and steering
wheel angle) to the vehicle platform. In particular, the per-
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Fig. 3 Policy changepoint detection on a simulated passing maneuver
on a highway. Our vehicle (far right) tracks the behavior of another
traffic agent (far left) as it navigates through the highway segment from

right to left. Using the tracked vehicle’s history of past observations for
the last 30s (green curve), we are able to infer which policies are most
likely to have generated the maneuvers of the tracked vehicle

ception module provides the egovehicle’s pose and velocity
through localization, and Gaussian tracks of the poses and
velocities of other agents within the sensor field of view of
the egovehicle.

In this work we use a set of hand-engineered policies
that covers many in-lane and intersection driving situations,
comprising the following policies: lane-nominal, drive in the
current lane and maintain distance to the car directly in front;
lane-change-right/lane-change-left, separate policies for a
single lane change in each direction; and turn-right, turn-
left, go-straight, or yield at an intersection. Of course, this
set of policies can be easily extended to handle more driving
requirements.

In practice, each policy is implemented as a computer
program with planning and control loops that use a suitable
choice of algorithms for the policy’s task (like parking or
changing lanes). At all times the policy execution block in
Fig. 2 runs the currently selected policy to generate con-
trol actions at rates (on the order of 30 to 50 Hz) suitable
for smooth and safety-critical vehicle control at all times.
This policy execution module also only allows valid pol-
icy transitions, and that policies in the middle of maneuvers
(such as lane changes) are not preempted. This design choice
minimizes the need for a complex centralized error handling
module, since failure cases are handled on a per-policy basis.
In parallel to policy execution and at a lower rate (on the
order of 1 Hz), our policy selection algorithm (Sect. 6) eval-
uates which policy we should execute at the current time.
Low-level control of the vehicle is not constrained by the
decision-making process, since the lower-level controls are
continuously prescribed by the current policy.

From a software architecture standpoint, the multipolicy
approach provides an inherent modularization that allows to
reuse the same code (the policies) for behavior prediction, for
decision-making via forward simulation, and for low-level
planning and control for the vehicle.

5 Behavioral prediction and anomaly detection via
changepoint detection

This section describes how we infer the probability of the
policies executed by other cars and their parameters. Our
behavioral anticipation method segments the history (i.e.,
time-series data) of observed states of each vehicle, where

each segment is associatedwith the policymost likely to have
generated the observations in the segment. We obtain this
segmentation using Bayesian changepoint detection, which
infers the points in the recent history of observations of the
state of other vehicleswhere the underlying policy generating
the observations changes, as illustrated by the simulation in
Fig. 3. In our system the perception module provides Gaus-
sian estimates of the pose and velocity of other vehicles, to
which we apply a sliding window to keep the the most recent
n seconds (we use n = 30 in our system) of observations of
the state of each vehicle. Thus, we can compute the likeli-
hood of all available policies for each tracked car given the
observations in the most recent segment, capturing the dis-
tribution p(πv

t |xt , z1:t) over the car’s potential policies at the
current timestep. This yields a probability distribution of the
policies that a tracked car might execute in the near future,
allowing our system to draw samples from this distribution
and evaluate them through forward simulation in time. Fur-
ther, full history segmentation allows us to detect anomalous
behavior that is not explained by the set of policies in our
system. We next describe the anticipation method for a sin-
gle vehicle, which we then apply successively to all nearby
vehicles.

5.1 Changepoint detection

To segment a tracked car’s history of observed states, we
adopt the recently proposed Changepoint detection using
Approximate Model Parameters (CHAMP) algorithm by
Niekum et al. (2014, 2015), which builds upon the work of
Fearnhead and Liu (2007). Given the set of available policies
� and a time series of the observed states of a given vehi-
cle z1:n = (z1, z2, . . . , zn), CHAMP infers the MAP set of
times τ1, τ2, . . . , τm , at which changepoints between policies
have occurred, yielding m + 1 segments. Thus, the i th seg-
ment consists of observations zτi+1:τi+1 and has an associated
policy πi ∈ � with parameters θi .

The changepoint positions are modeled as aMarkov chain
where the transition probabilities are a function of the time
since the last changepoint:

p(τi+1 = t |τi = s) = g(t − s), (11)

where g(·) is the pdf of a prior distribution over seg-
ment length, and G(·) denotes its cdf. Specifically, CHAMP
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employs a truncated Gaussian as a prior over segment
length:

g(t) =
1
σ
φ(

t−μ
σ

)

1 − �(
α−μ

σ
)

(12)

G(t) = �(
t − μ

σ
) − �(

α − μ

σ
), (13)

where φ is the standard normal pdf, � is its cdf, and α is the
minimum segment length.

Given a segment from time s to t and a policyπ , the policy
evidence for that segment is defined as:

L(s, t, π) = p(zs+1:t|π) =
∫

p(zs+1:t|π, θ)p(θ) dθ . (14)

To avoid marginalizing over parameters, CHAMP approxi-
mates the logarithm of the policy evidence for that segment
via the BIC (Bishop 2007) as:

log L(s, t, π) ≈ log p(zs+1:t|π, θ̂) − 1

2
kπ log(t − s), (15)

where kπ is the number of parameters of policy π and θ̂ are
estimated parameters for policy π . The BIC is a well-known
approximation that avoidsmarginalizing over themodel (pol-
icy, in our case) parameters and provides a principled penalty
against complex policies by assuming a Gaussian posterior
around the estimated parameters θ̂ . Thus, only the abil-
ity to fit policies to the observed data is required, which
can be achieved via maximum likelihood estimation (MLE)
(described in Sect. 5.2).

As shown by Fearnhead and Liu (2007), the distribution
Ct over the position of the first changepoint before time t can
be estimated efficiently using standard Bayesian filtering and
an online Viterbi algorithm. Defining

Pt ( j, π) = p(Ct = j, π, E j , z1:t) (16)

PMAP
t = p(Changepoint at t, Et , z1:t), (17)

where E j is the event that the MAP choice of changepoints
has occurred prior to a given changepoint at time j , results
in:

Pt ( j, π) = (1 − G(t − j − 1))L( j, t, π)p(π)PMAP
j (18)

PMAP
t = max

j,π

[
g(t − j)

1 − G(t − j − 1)
Pt ( j, π)

]
. (19)

At any time, the most likely sequence of latent policies
(called the Viterbi path) that results in the sequence of obser-
vations can be recovered, recursively, by finding the timestep
and policy pair ( j, π) that maximize PMAP

t , and then repeat-
ing themaximization for PMAP

j successively until time zero is

reached. Further details on this changepoint detectionmethod
are provided by Niekum et al. (2014, 2015).

5.2 Behavioral prediction

In contrast to other anticipation approaches in the literature
that consider only the current state of the target vehicle and
assign equal likelihood to all its potential intentions (Fer-
guson et al. 2008; Hardy and Campbell 2013; Havlak and
Campbell 2014), here we compute the likelihood of each
latent policy by leveraging changepoint detection on the his-
tory of observed vehicle states.

Given the segmented history of observations of a given
vehicle obtainedvia changepoint detection, consider the (m+
1)th segment (the most recent), consisting of observations
zτm+1:n. The likelihood and parameters of each latent policy
π ∈ � for the target vehicle given the present segment can
be computed by fitting the policy models as follows:

∀π ∈ �, L(π) = argmax
θ

log p(zτm+1:n|π, θ). (20)

Specifically, we assume p(zτm+1:n|π, θ) to be a multivari-
ate Gaussian with mean at the trajectory ψπ,θ obtained by
simulating forward in time the execution of policy π under
parameters θ from timestep τm + 1:

p(zτm+1:n|π, θ) = N (zτm+1:n;ψπ,θ , σ I ), (21)

where σ is a hyperparameter set by hand capturing model-
ing error and I is a suitable identity matrix (we discuss our
forward simulation of policies further in Sect. 6.2). That is,
Eq. 21 essentially measures the deviation of the observed
states from those in the trajectory prescribed by the given
policy. The same model fitting procedure is employed for
computing Eq. 15 during changepoint detection.

The policy likelihoods obtained via Eq. 20 capture the
probability distribution over the possible policies that the
observed vehicle might be executing at the current timestep,
which can be represented, using delta functions, as a mixture
distribution:

p(πv
t |xt , z0:t) = η

|�|∑
i=1

δ(αi ) · L(πi ), (22)

where αi is the hypothesis over policy πi and η is a normal-
izing constant. We can therefore compute the approximated
posterior of Eq. 10 by sampling from this distribution for each
vehicle, obtaining high-likelihood samples from the coupled
interactions of traffic agents.
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5.3 Anomaly detection

The time-series segmentation obtained via changepoint
detection allows us to perform online detection of anomalous
behavior not modeled by our policies. Inspired by prior work
on anomaly detection (Piciarelli and Foresti 2006; Chandola
et al. 2009; Kim et al. 2011), we first define the properties of
anomalous behavior in terms of policy likelihoods, and then
compare the observed data against labeled normal patterns
in previously-recorded vehicle trajectories. Thus, we define
the following two criteria for anomalous behavior:

1. No likely available policies Anomalous behavior is not
likely to be explained by any of the available policies as
we design policies to abide by traffic rules and provide a
smooth riding experience. Therefore, behaviors like driv-
ing in the wrong direction or crossing a solid line on the
highway will not be captured by the available policies.
We thus measure the average likelihood among all seg-
ments in the vehicle’s history as the global similarity of
the observed history to all available policies:

S = 1

m + 1

m+1∑
i=1

L(πi ), (23)

where πi is the policy associated with the i th segment.
2. Ambiguity among policies A history segmentation that

fluctuates frequently among different policies might be
a sign of ambiguity on the segmentation. To express this
criterion formally, we first construct a histogram cap-
turing the occurrences of each policy in the vehicle’s
segmented history. A histogramwith a broad spread indi-
cates frequent fluctuation, whereas one with a single
mode is more likely to correspond to normal behavior.
We measure this characteristic as the excess kurtosis of
the histogram, κ = μ4

σ 4 −3,whereμ4 is the fourthmoment
of the mean and σ is the standard deviation. The excess
kurtosis satisfies −2 < κ < ∞. If κ = 0, the histogram
resembles a normal distribution, whereas if κ < 0, the
histogram presents a broader spread. That is, we seek to
identify changepoint sequences where there is no domi-
nant policy.

Using these criteria, we define the following normality mea-
sure given a vehicle’s MAP choice of changepoints:

N = 1

2
[(κ + 2)S] . (24)

This normalitymeasure on the target car’s history can then be
compared to that of a set of previously recorded trajectories
of other vehicles. We thus define the normality test for the

current vehicle’s history as N < 0.5γ , where γ is the mini-
mum normality measure evaluated on the prior time-series.

6 Multipolicy decision-making

The policy selection algorithm for our car (Algorithm 1),
implements the formulation and approximations given in
Sects. 3 and 4 by leveraging the anticipation scheme from
Sect. 5. The algorithm begins by drawing a set of samples
s ∈ S from the distribution over policies of other cars via
Eq. 22, where each sample assigns a policy πv ∈ Π to each
nearby vehicle v, excluding our car. For each policy π avail-
able to our car and for each sample s, we simulate forward all
vehicles under policy assignments (π, s) until the decision
horizon H , which yields a set Ψ of simulated trajectories
ψ . We then evaluate the reward rπ,s for each rollout Ψ , and
finally select the policy π∗ maximizing the expected reward.
The process continuously repeats in a receding horizon man-
ner.Note that policies that are not applicable given the current
state x0, such as an intersection handling policy when driving
on the highway, are not considered for selection (line 5).

Algorithm 1: Policy selection.
Input:

• Current MAP estimate of the state, x0.
• Set of available policies Π .
• Policy assignment probabilities (Eq. 22).
• Planning horizon H .

1 Draw a set of samples s ∈ S via Eq. 22, where each sample
assigns a policy to each nearby vehicle. R ← ∅ // Rewards
for each rollout

2 foreach π ∈ � do // Policies for our car
3 foreach s ∈ S do // Policies for other cars
4 if Applicable(π, x0) then
5 Ψ π,s ← SimulateForward(x0, π, s, H)

// Ψ π,s captures all vehicles
6 R ← R ∪ {(π, s, ComputeReward(Ψ π,s))}
7 return π∗ ← SelectBest(R)

6.1 Accounting for multiple possible route plans

The destination objectives of each vehicle considered in our
decision making approach, including the ego-vehicle, are
captured by route plans, which consist of a set of driving
directions that a vehicle must follow to reach its destination,
similarly to the driving directions given by GPS navigation
devices. The route plan for the ego-vehicle is given as input
to the decision making system, from an external module that
computes the driving directions necessary to reach the desti-
nation desired by the user.

For other traffic participants, we extract possible partial
route plans deterministically from a prior road network map,
with driving directions covering until the decision horizon.
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6.2 Sample rollout via forward simulation

While high-fidelity vehicle simulation techniques exist, in
practice (Cunningham et al. 2015), a lower-fidelity simula-
tion can capture the necessary interactions between vehicles
to make reasonable choices for egovehicle behavior, while
providing faster performance. Our simulation model for
each vehicle assumes an idealized steering controller, but
nonetheless, this simplification still faithfully describes the
high-level behavior of the between-vehicle interactions. We
simulate traffic vehicles classified as anomalous using a
single policy accounting only for their current state and
local obstacles, since they are not likely to be modeled
by the set of behaviors in our system. Note that poli-
cies selected for all vehicles and remain constant from the
start of the sample rollout, which prevents the approach
from anticipating policy changes of traffic vehicles. As
a partial solution for this problem, we allow policies to
internally switch to other policies, for instance switching
from a lane-change to a lane-nominal policy upon comple-
tion.

6.3 Reward function

The reward function for evaluating the outcome of a roll-
out Ψ involving all vehicles is a weighted combination of
metrics mq(·) ∈ M, with weights wq that express user
importance. The construction of a reward function based on a
flexible set of metrics derives from our previous work (Cun-
ningham et al. 2015), which we extend here to handle
multiple potential policies for other vehicles. Typical met-
rics include measures of accomplishment (distance to goal),
safety (minimum distance to obstacles) and passenger com-
fort (maximum yaw rate). For a full policy assignment (π, s)
with rollout Ψ π,s , we compute the rollout reward rπ,s as

the weighted sum rπ,s = ∑|M|
q=1 wqmq(Ψ

π,s). We normal-
ize each mq(Ψπ,s) to the interval [0, 1] across all rollouts
to ensure comparability between metrics of different units.
Because normalization can amplify insignificant variations
in metric values, we set the weight wq to zero when the
range of mq(·) across all samples is too small to be informa-
tive.

We finally evaluate each egovehicle policy reward rπ
as the expected reward over all rollout rewards rπ,s , com-
puted as rπ = ∑|S|

k=1 rπ,sk p(sk), where p(sk) is the joint
probability of the policy assignments in sample sk , com-
puted as a product of the per-vehicle assignment proba-
bilities (Eq. 22). We use expected reward to target better
average-case performance, as it is easy to become overly
conservative if one only accounts for worst-case behav-
ior.

Fig. 4 Our autonomous car platform. The vehicle is a Ford Fusion
equipped with a sensor suite including four LIDAR units and survey-
grade INS. All perception, planning, and control is performed onboard

7 Experimental evaluation

We evaluate our approach in two parts: the behavioral antic-
ipation method by itself and then the integrated anticipation
and policy selection approach. Both evaluations use the same
instrumented autonomous vehicle platform (Fig. 4) for data
collection and active autonomous driving. To evaluate our
behavior prediction and anomaly detection method we use
traffic-tracking data collected using our autonomous vehi-
cle platform, which we describe below. Finally, we evaluate
our multipolicy approach performing integrated behavioral
analysis and decision-making on highway traffic scenarios.

7.1 Autonomous vehicle platform, dataset, and setup

Our autonomous vehicle platform (Fig. 4) for data collec-
tion and autonomous testing consists of a drive-by-wire Ford
Fusion equipped with a sensor suite including four Velodyne
HDL-32E 3D LIDAR scanners, an Applanix POS-LV 420
inertial navigation system (INS), and GPS. An onboard five-
node computer cluster performs all planning, control, and
perception for the system in realtime.

The vehicle uses prior maps of the area it operates on that
capture information about the environment such as LIDAR
reflectivity and road height, and are used for localization and
tracking of other agents. The road network is encoded as a
metric-topological map that provides information about the
location and connectivity of road segments, and lanes therein.

Estimates over the states of other traffic participants are
provided by a dynamic object tracker running on the vehicle,
which uses LIDAR range measurements. The geometry and
location of static obstacles are also inferred onboard using
LIDAR measurements.

The traffic-tracking dataset used to evaluate behavior
anticipation consists of 67 dynamic object trajectories
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Fig. 5 29 trajectories in the traffic-tracking dataset used to evaluate
our multipolicy framework, overlaid on satellite imagery

recorded in an urban area. Of these 67 trajectories, 18 corre-
spond to “follow the lane” maneuvers and 20 to lane change
maneuvers, recorded on a divided highway. The remaining
29 trajectories (shown in Fig. 5) correspond to maneuvers
observed at a four-way intersection regulated by stop signs.
All trajectories were recorded by the dynamic object tracker
onboard the vehicle and extracted from approximately 3.5h
of total tracking data.

In all experiments we use a C implementation of our sys-
tem running on a single 2.8GHz Intel i7 laptop computer.

7.2 Behavioral prediction

For our system, we are interested in correctly identifying the
behavior of target vehicles by associating it to the most likely
policy according to the observations. Thus, we evaluate our
behavioral analysis method in the context of a classifica-
tion problem, where we want to map each trajectory to the
underlying policy (class) that is generating it at the current
timestep. The available policies used in this evaluation are:

� = {lane-nominal, lane-change-left, lane-change-right}
∪

{turn-right, turn-left, go-straight, yield},
(25)

where the first subset applies to in-lane maneuvers and the
second subset applies to intersection maneuvers. For all
policies we use a fixed set of empirically-tuned parameters
including maximum longitudinal and lateral accelerations,
and allowed distances to nearby cars.

To assess each classification as correct or incorrect, we
leverage the road network map and compare the final lane
where the trajectory actually ends to that predicted by the
declared policy. In addition, we assess behavioral predic-

Fig. 6 Precision and accuracy curves of current policy identification
via changepoint detection, evaluated at increasing subsequences of the
trajectories.Ourmethod provides over 85%accuracy and precision after
only 50% of trajectory completion, while the closed-loop nature of our
policies produce vehicle behavior that seeks safety in a timely manner
regardless of anticipation performance

tion performance on subsequences of incremental duration
of the input trajectory, measuring classification performance
on increasingly longer observation sequences. Classification
performance is measured in terms of precision and accuracy,
defined as usual in terms of total positives P , total negatives
N , true positives T P , and false positives FP as follows:

• precision or positive predictive value (PPV),

PPV = TP/(TP + FP),

• accuracy (ACC),

ACC = (TP + TN)/(P + N ).

Figure 6 shows the accuracy and precision curves for
policy classification over the entire dataset. The ambiguity
among hypotheses results in poor performance when only an
early stage of the trajectories is used, especially under 30%
completion. However, we are able to classify the trajecto-
ries with over 85% accuracy and precision after only 50%
of the trajectory has been completed. Note, however, that
the closed-loop nature of our policies allows us to produce
vehicle behavior that seeks safety at all times regardless of
anticipation performance.

A qualitative evaluation of our behavioral analysis and
prediction method is shown in Fig. 3, where we run change-
point detection on a simulated passingmaneuver executed by
a tracked vehicle on a three-lane highway. This simulation
allows us to evaluate the method independently of the poten-
tial tracking errors present in the real-world traffic tracking
dataset. As shown in Fig. 3, we are able to correctly segment
the passing maneuver into the available policies (Eq. 25).

7.3 Anomaly detection

Wenowqualitatively explore theperformanceof our anomaly
detection test. We recorded three additional trajectories cor-
responding to two bicycles and a bus. The bikes crossed the
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(a) Car 1 (b) Car 2 (c) Car 3

(d) Bike 1 (e) Bike 2 (f) Bus

Fig. 7 Anomaly detection examples. Top row normal trajectories
driven by cars from the intersection dataset. Bottom row anomalous
trajectories driven by bikes (d), (e), and a bus (f). Our test is able to cor-
rectly detect the anomalous trajectories not modeled by our intersection
policies (γ = 0.1233)

intersection from the sidewalk, while the bus made a signifi-
cantly wide turn. We run the test on these trajectories and on
three additional intersection trajectories using the minimum
normality value on the intersection portion of the dataset,
γ = 0.1233. As shown by the results in Fig. 7, our test is
able to correctly detect the anomalous behaviors notmodeled
in our system.

7.4 Decision-making via changepoint-based prediction
results

We tested the full behavioral anticipation and decision-
making system in both real-world and simulated environ-
ments to demonstrate feasibility in a real vehicle environment
and evaluate the effect of policy sampling strategies on deci-

sion results. The two-vehicle scenarioweused is illustrated in
Fig. 8, showing both our initial simulation of the test scenario
and the real-world driving case. In particular, this scenario
highlights a case where identifying the behavior of another
vehicle, in this case the second lane change of vehicle 2,
causes the system to decide to initiate our lane change as
soon as the it is clear the vehicle 2 is going to leave the lane.
This extends our previous experimental results from Cun-
ningham et al. (2015), which demonstrated many trials of
simple overtaking of a vehicle on a two-lane road assuming
a single possible behavior for the passed vehicle.

In both real-world and simulated cases, we ran Algo-
rithm 1 using a 0.25 s simulation step with a 10 s rollout
horizon, with the same multi-threaded implementation of
policy selection. The target execution rate for policy selec-
tion is 1 Hz, with a separate thread for executing the current
policy running at 30 Hz. The process uses four threads for
sample evaluation, and because the samples are independent,
the speedup frommulti-threading is roughly linear so long as
all threads are kept busy. In this scenario, for both the egove-
hicle and the traffic vehicles, we used a pool of three policies
that are representative of highway environments:

� = {lane-nominal, lane-change-left, lane-change-right}.

7.4.1 Evaluating policy rewards

We use a straightforward set of metrics in this scenario to
compose the reward functionwith empirically tunedweights.
The metrics used are as follows:

Fig. 8 Two-vehicle passing scenario executed in both simulation (top)
and on our test vehicle, shown from the forward-facing camera. Note
while the vehicles do not have the same timing in both cases, the struc-
ture of the scenario is the same in both. In this scenario, the egovehicle
starts behind both traffic vehicles in the right lane of the three-lane road.
The traffic vehicle 1 drives in the right lane along the length of the road,

while traffic vehicle 2 makes two successive lane changes to the left.
We remain in the right lane behind vehicle 1 until vehicle 2 initiates a
lane change from the center to left lane, and at that point we make a
lane change to the center lane. We pass both vehicles and return to the
right lane
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Fig. 9 These time-series plots show rewards for each policy (where
policies lane-nominal, lane-change-left and lane-change-right are red,
green and blue, respectively) is available to the egovehicle for both the
simulated (top) and real-world version of the test scenario, with pol-
icy rewards normalized at each timestep. The dashed lines indicate the

transitions between currently running policies based on the result of the
elections. Discontinuities are due to a policy not being applicable, for
reasons such as a vehicle blocking a lane change, or lane-change-right
not being feasible from the right lane

1. Distance to goal: scores how close the final rollout pose
is to the goal.

2. Lane bias: penalizes being far from the right lane.
3. Maximum yaw rate: penalizes abrupt steering.
4. Dead end distance: penalizes staying in dead-end lanes

depending on distance to the end.

These costs are designed to approximate the idealized value
function that might come from a classical POMDP solution
and to avoid biases due to heuristic cost functions. As can be
seen through the policy reward trends in Fig. 9, there are clear
decision points in which we choose to execute a new policy,
which results in stable policy selectiondecisions.Discontinu-
ities, such as the reward for lane-change-right, are expected
as some policies are applicable less often, and in the middle
of a maneuver such as a lane change, it is not possible that
no policies can be initiated. In cases where a policy cannot
be preempted until completed, such as lane-changes, another
policymay have a higher reward but not induce policy switch
due to concurrent policy execution and selection (Sect. 4.1),
such as in Fig. 9(b) at 10 s, where we continue a lane-change
even though lane-nominal has a locally higher reward. The
reward in this case is higher because trajectory generation
within the lane-change policy expects to start at a lane cen-
ter, not while between lanes as during the lane change itself.
From the demonstrations in both simulation and real-world
experiments, the policy selection processmakes qualitatively
reasonable decisions as expected given the reward metric
weights. Further evaluation of the correctness of decisions
made, however, will require larger-scale testing with real-
world traffic in order to determine whether decisions made
are statistically consistent with the median human driver.

7.4.2 Sampling computational performance

In addition to showing that decision process makes reason-
able decisions, we evaluate the computational performance

of the sampling process and investigate strategies for main-
taining real-time operation.

We target a rate of 1 Hz for policy selection, though in
practice though there are occasional spikes in the number
of samples when there are more applicable policies avail-
able. The median time to evaluate a sample on the compute
platform used in our vehicle platform is 270ms, with a max-
imum time of 686ms during the test scenario. We note that
if policy selection takes longer than our target time, the cur-
rently running policy still timely produces vehicle behavior
that seeks safety, so computational delays only result in sub-
optimal decision timing.

At peak, exhaustive sampling of all permutations all
feasible policy assignments uses 12 samples in the simu-
lated scenario, with a median of 5 samples. Adding more
cars and policies would increase the computational cost
further, so to further scale the system we need to limit
how many samples we evaluate. The sampling strategies
each choose a subset of samples from the exhaustive
evaluation, so we can evaluate the procedure by post-
processing the logged scenarios and recomputing policy
rewards.

• Most likely: Only highest probability policy assignment
to traffic vehicles.

• Most likely + ambiguous: Evaluates additional samples if
there are multiple assignments of near-equal probability.

• N best assignments: Bound the number of assignments
(set to 3).

• N best samples: Bound total number of samples (set to
6).

These approaches trade off between fidelity in approximat-
ing the full policy reward distribution and the computation
cost. Choosing the most likely assignment to evaluate results
in only needing to evaluate a maximum of three samples,
which is a lower bound with three active policies. Increas-
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ing the sample set to only include ambiguous assignments
increases the maximum number of samples to four. For both
N best assignments and N best samples, the maximum num-
ber of samples is six, which is expected given the parameters.

There is a trade-off in sampling strategy selection where
using fewer samples produces a less accurate approximation
of the policy reward, but is computationally cheaper. Because
the computed rewards will be different if fewer samples are
included, we need to determine if the decision made by the
system actually changes with sampling strategy. We use the
exhaustive sampling approach as the standard for correct
decisions, and for each sampling strategy we count the num-
ber of discrepancies. Within the simulated scenario results,
using only the most likely sample yields incorrect decisions
3% but expanding the number of samples to account for
ambiguity makes no errors. The N best assignments and N
best samples approaches both are incorrect for 6% of results,
which can be expected as both strategies under-sample when
ambiguity is present.

8 Limitations and further work

While we have demonstrated our approach in proof-of-
concept scenarios, there remain several limitations to the
current methodology that motivate our future work.

8.1 Limitations

We have shown that at the moment our system is able
to detect anomalous behavior of traffic participants. While
this information could be used to, for example, make a
conservative decision, such as slow down, in the presence
of an anomaly, we have not implemented such capabil-
ity yet. Such decisions could be implemented within each
individual policy, as well as part of the policy selection algo-
rithm.

While each policy in our system has collision avoidance
built in andwill therefore produce vehicle behavior that seeks
safety, our decision making approach does not provide strict
safety guarantees when dealing with unexpected events that
are far ahead in the future. Exploring safety guarantees for
our system is an avenue for further work.

While our decision-making approach can choose between
a set of possible policies, it does not yet allow for either the
egovehicle or traffic vehicles to switch policies after initial
policy assignment. As such, our approach does not solve
a full MDP in this formulation, a problem we intend to
address in future work through branching searches through
policies.

Our decision-makingmethod currently takes the relatively
simple approach of reasoning over all cars that are observ-
able by the egovehicle, but this can result in computational
limitations as the number of policy assignments increase.
With the computational timing from (Sect. 7.4.2) we can
perform exhaustive sampling on 4 vehicles, and switch to
other sampling approaches when there is more traffic. This
could be improved by more a more selective choice of
nearby agents likely to interact with the egovehicle to con-
sider.

8.2 Further work

In future work we plan to explore explicitly modeling unex-
pected behavior, such as the appearance of a pedestrian or
vehicles occluded by large objects. Further, additional met-
rics for anomaly detection we wish to explore in future work,
beyond segment likelihood and excess kurtosis, includemean
segment length. Exploring principled methods for reacting
to detected anomalous behavior is also an avenue for future
work.

9 Conclusion

We introduced a principled framework for integrated behav-
ioral anticipation and decision-making in environments
with extensively coupled interactions between agents as an
approximate POMDP solver. By explicitly modeling rea-
sonable behaviors of both our vehicle and other vehicles
as policies, we make informed high-level behavioral deci-
sions that account for the consequences of our actions. As
we have shown, this approach is feasible in real-world test
cases.

We presented a behavior analysis and anticipation sys-
tem based on Bayesian changepoint detection that infers
the likelihood of policies of other vehicles. Furthermore, we
provided a normality test to detect unexpected behavior of
other traffic participants. We have shown that our behavioral
anticipation approach can identify themost-likely underlying
policies that explain the observed behavior of other cars, and
to detect anomalous behavior not modeled by the policies in
our system.
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