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Abstract. The Penman–Monteith (PM) equation is com-
monly considered the most advanced physically based ap-
proach to computing transpiration rates from plants consid-
ering stomatal conductance and atmospheric drivers. It has
been widely evaluated at the canopy scale, where aerody-
namic and canopy resistance to water vapour are difficult
to estimate directly, leading to various empirical corrections
when scaling from leaf to canopy. Here, we evaluated the PM
equation directly at the leaf scale, using a detailed leaf energy
balance model and direct measurements in a controlled, insu-
lated wind tunnel using artificial leaves with fixed and prede-
fined stomatal conductance. Experimental results were con-
sistent with a detailed leaf energy balance model; however,
the results revealed systematic deviations from PM-predicted
fluxes, which pointed to fundamental problems with the PM
equation. Detailed analysis of the derivation by Monteith
(1965) and subsequent amendments revealed two errors: one
in neglecting two-sided exchange of sensible heat by a planar
leaf, and the other related to the representation of hypostom-
atous leaves, which are very common in temperate climates.
The omission of two-sided sensible heat flux led to bias in
simulated latent heat flux by the PM equation, which was as
high as 50 % of the observed flux in some experiments. Fur-
thermore, we found that the neglect of feedbacks between
leaf temperature and radiative energy exchange can lead to
additional bias in both latent and sensible heat fluxes. A cor-
rected set of analytical solutions for leaf temperature as well
as latent and sensible heat flux is presented, and comparison
with the original PM equation indicates a major improve-
ment in reproducing experimental results at the leaf scale.
The errors in the original PM equation and its failure to re-
produce experimental results at the leaf scale (for which it
was originally derived) propagate into inaccurate sensitivi-

ties of transpiration and sensible heat fluxes to changes in at-
mospheric conditions, such as those associated with climate
change (even with reasonable present-day performance af-
ter calibration). The new formulation presented here rectifies
some of the shortcomings of the PM equation and could pro-
vide a more robust starting point for canopy representation
and climate change studies.

1 Introduction

A vast number of current global land surface models, hydro-
logical models and inverse approaches to deduce evaporation
from remote sensing data employ the analytical solution for
the latent heat flux from plant leaves derived by Monteith
(1965), based on an earlier formulation for a wet surface by
Penman (1948), see e.g. Overgaard et al. (2006) and Dol-
man et al. (2014). This so-called Penman–Monteith equation
(henceforth referred to as the PM equation), which intro-
duced stomatal resistance into Penman’s formalism, found
widespread use in the prediction of latent heat flux based
on estimates of leaf and canopy resistance to water vapour.
Whereas the PM equation is generally believed to provide an
adequate physical description of transpiration from an indi-
vidual leaf, it is commonly applied at the canopy scale, where
aerodynamic and bulk stomatal resistance are difficult to es-
timate and are usually deduced empirically from measure-
ments of transpiration and an inverted PM equation (Raupach
and Finnigan, 1988) or from observed surface temperatures
(Tanner and Fuchs, 1968). The scaling up from leaf to canopy
is commonly done in an ad hoc manner by replacing the
leaf-scale resistances with their assumed canopy-scale coun-
terparts, often without any additional physics involved. The
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leaf-canopy scaling and use of data at daily or monthly scales
has led to various empirical corrections to the PM equation
(Allen, 1986), which may have obscured more fundamental
issues with the derivations by Monteith (1965). On the other
hand, Langensiepen et al. (2009) proposed a detailed leaf-
scale parametrisation of the PM equation and averaging over
the canopy and time that yielded reasonable agreement with
sap-flow-derived canopy transpiration estimates, without em-
pirical corrections to the PM equation.

A number of authors have focused on biases introduced by
the simplifications inherent in the PM equation, such as the
linearisation of the saturation vapour pressure curve and the
neglect of dependency of net irradiance on surface tempera-
ture, and proposed various approaches to reduce such biases
(Paw U and Gao, 1988; McArthur, 1990; Milly, 1991; Wid-
moser, 2009). Interestingly, even 50 years after its derivation,
we have not found a rigorous test of the PM equation at the
leaf scale, whereas our analysis of the derivations by Mon-
teith (1965) and later amendments revealed two errors in con-
sidering the effect of stomata and the two-sided exchange of
sensible heat. Therefore, the objectives of the present study
are to

1. develop an experimental set-up allowing direct and in-
dependent measurement of all components of the en-
ergy balance of a single leaf and the relevant boundary
conditions,

2. compare different analytical and numerical leaf energy
balance and gas exchange models with experimental re-
sults and

3. derive an improved analytical representation of latent
and sensible heat fluxes at the leaf scale.

The study is structured as follows. We first present a phys-
ically based, explicit leaf energy balance and gas exchange
model, to serve as a reference for the physical processes.
The explicit model is then used to rederive the Penman
and Penman–Monteith (PM) equations while highlighting
all simplifying assumptions inherent in these formulations.
Subsequently, we will derive a general analytical formula-
tion based on the approach by Penman (1952) and analyse
consistency between the various analytical solutions and the
explicit leaf energy and gas exchange model. In the next
step, we will present an experimental set-up allowing us
to measure all components of the leaf energy balance un-
der fully controlled conditions, using artificial leaves with
known stomatal conductance. Experimental results will be
compared with the explicit numerical model and the differ-
ent analytical solutions, assessing potential bias.

2 Materials and methods

The detailed derivations are described in the Appendix,
while the experimental methods are discussed in detail in

a technical note submitted to HESS (Schymanski et al.,
2017). Here, we only summarise the key points and con-
cepts necessary to understand the flow of the paper. All
symbols used in this paper are listed and described in the
Appendix, Table A1. Additionally, all derivations, data and
code to reproduce the results are provided online and can
be accessed at https://github.com/schymans/Schymanski_
leaf-scale_2016/tree/1.0.0 and doi:10.5281/zenodo.241259
(Schymanski, 2017). Data analysis was performed using the
free software SageMath, the Sage Mathematics Software
System (version 7.3), The Sage Developers, 2016 (http://
www.sagemath.org).

2.1 Explicit leaf energy balance and gas exchange
model

The detailed leaf energy balance model used here is based on
derivations published previously (Schymanski et al., 2013;
Schymanski and Or, 2015, 2016), and is reproduced here
after reorganisation of equations for consistency with the
present paper.

The leaf energy balance is determined by the dominant
energy fluxes between the leaf and its surroundings, includ-
ing radiative, sensible and latent energy exchange (linked to
mass exchange). These are illustrated in Fig. 1. Focusing on
steady-state conditions, the energy balance can be written as

Rs = El+Hl+Rll, (1)

where Rs (W m−2) is absorbed short-wave radiation, El
(W m−2) is the latent heat flux away from the leaf, Hl
(W m−2) is the sensible heat flux away from the leaf and
Rll (W m−2) is the net emitted long-wave radiation, i.e. the
emitted minus the absorbed radiation. In the above, extensive
variables are defined per unit leaf area. Following our previ-
ous work (Schymanski et al., 2013), this study considers spa-
tially homogeneous planar leaves, i.e. homogenous illumina-
tion and a negligible temperature gradient between the two
sides of the leaf. The net long-wave emission is represented
by the difference between blackbody radiation at leaf temper-
ature (Tl, K) and that at the temperature of the surrounding
objects (Tw, commonly represented by air temperature, Ta,
both in K) (Monteith and Unsworth, 2007):

Rll = asHεlσ(T
4

l − T
4

w), (2)

where asH is the fraction of projected leaf area exchanging
radiative and sensible heat (2 for a planar leaf, 1 for a soil
surface), εl is the leaf’s long-wave emissivity (≈ 1) and σ
(W K−4 m−2) is the Stefan–Boltzmann constant. Total con-
vective heat transport away from the leaf is represented as

Hl = asHhc(Tl− Ta), (3)

where hc (W K−1 m−2) is the average one-sided convective
heat transfer coefficient, determined by properties of the leaf
boundary layer.
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Figure 1. Components of the leaf energy balance and their ther-
modynamic drivers. Bent arrows indicate fluxes that are directly
affected by wind speed. Table at bottom illustrates the drivers for
each flux (temperature differences for sensible and radiative heat ex-
change, water vapour concentration differences for mass exchange
and hence latent heat flux). Additional equations below the table il-
lustrate that the driver for latent heat flux is also related to tempera-
ture differences and that the transfer coefficients for both latent and
sensible heat flux depend on wind. L: latent heat of vaporisation,
Mw: molecular mass of water, gtw: total leaf conductance to wa-
ter vapour, Cwl: concentration of water vapour in leaf-internal air,
Cwa: concentration of water vapour in free air stream, hc: one-sided
heat transfer coefficient, Tl: leaf temperature, Ta: air temperature,
σ : Stefan–Boltzmann constant, RH: relative humidity of the free air
stream, gbw: leaf boundary layer conductance to water vapour.

Latent heat flux (El, W m−2) is directly related to the tran-
spiration rate (El,mol, mol m−2 s−1) by

El = El,molMwλE, (4)

where Mw (kg mol−1) is the molar mass of water and λE
(J kg−1) the latent heat of vaporisation. El,mol (mol m−2 s−1)
was computed in molar units as a function of the concentra-
tion of water vapour within the leaf (Cwl, mol m−3) and in
the free air (Cwa, mol m−3) (Incropera et al., 2006, Eq. 6.8):

El,mol = gtw(Cwl−Cwa), (5)

where gtw (m s−1) is the total leaf conductance for water
vapour, dependent on stomatal (gsw) and the boundary layer
conductance (gbw) in the following way:

gtw =
1

1
gsw
+

1
gbw

. (6)

Both the one-sided leaf convective heat transfer coefficient
(hc) and boundary layer conductance to water vapour (gbw,
m s−1) relate to the same physical principles of diffusion and
boundary layer dynamics; i.e. both depend on leaf size (Ll,
m), wind speed (vw, m s−1) and the level of turbulence in the
air stream (critical Reynolds number,NRec ), expressed in the
dimensionless Nusselt and Lewis numbers (NNuL and NLe,
respectively). The relation of hc to gbw additionally depends
on whether stomata are present on one side of the leaf only
(as = 1) or both sides of the leaf (as = 2). The relevant equa-
tions to compute all of these variables as a function of air
temperature, pressure and vapour pressure (Ta, Pa and Pwa,
respectively), wind speed (vw), turbulence and leaf properties
are given in the Appendix, Sects. B1–B4.

Figure 2 illustrates the use of measurements and the dif-
ferent equations to compute the leaf energy balance compo-
nents. Leaf temperature (Tl) needs to be computed by iter-
ation, using the leaf energy balance model, due to the non-
linearities in Eqs. (2) and (B5). Note that a direct measure-
ment of Tl (e.g. using infrared sensors) would enable di-
rect computation of Rll and Hl, and finally El from the en-
ergy balance as El = Rs−Rll−Hl without any iterations.
This illustrates that the use of any of the analytical solutions
explained below is not necessary if Tl is known and ques-
tions the approach proposed by Tanner and Fuchs (1968),
where observed leaf or surface temperature is inserted into
the Penman–Monteith equation to estimate transpiration rate.

2.2 Generalisation of Penman’s analytical approach

The PM equation derived by Monteith (1965) was based on
the analytical solution for evaporation from a wet surface by
Penman (1948). The key point of Penman’s analytical solu-
tion is to express evaporation as a function of the surface–air
vapour pressure difference and sensible heat flux as a func-
tion of surface–air temperature difference. Here, we will fol-
low the succinct derivation presented in the Appendix of Pen-
man (1952) and use our notation for a leaf to obtain a general
solution applicable either to a transpiring leaf or an evaporat-
ing surface. In the first step, we will introduce general trans-
fer coefficients for latent heat (cE , W m−2 Pa−1) and sensible
heat (cH , W m−2 K−1), satisfying the following equations:

El = cE(Pwl−Pwa) (7)

and

Hl = cH (Tl− Ta). (8)

(Please refer to Appendix B3 for a discussion of the mean-
ing of Eq. 7 compared to Eq. 5, and conversion of transfer
coefficients.)

Equations (7), (8) and the leaf energy balance equation
(Eq. 1) form a system of three equations with four unknowns:
El, Hl, Tl and Pwl. In order to eliminate Tl, Penman assumed
that the ratio of the vapour pressure difference between the
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Figure 2. Flow chart of computation procedure for different leaf
energy balance components. Dashed pink boxes with rounded cor-
ners indicate external input, while solid blue rounded boxes indicate
computed variables. Note the central role of leaf temperature, which
needs to be computed by iteration against the leaf energy balance.

surface and the saturation vapour pressure at air temperature
(Pwas) to the temperature difference between the surface and
the air can be approximated by the slope of the saturation
vapour pressure curve at air temperature (1eTa, Pa K−1):

1eTa =
Pwl−Pwas

Tl− Ta
. (9)

This gives four equations (Eqs. 1, 7, 8 and 9) that can be
solved for the four unknowns El, Hl, Tl and Pwl:

El =
1eTacE (Rs−Rll)+ cEcH (Pwas−Pwa)

1eTacE + cH
, (10)

Hl =
cH (Rs−Rll)+ cEcH (Pwa−Pwas)

1eTacE + cH
, (11)

Tl = Ta+
(Rs−Rll)+ cE(Pwa−Pwas)

1eTacE + cH
(12)

and

Pwl =
1eTa (Rs−Rll+PwacE)+PwascH

1eTacE + cH
. (13)

In the original formulations by Penman and Monteith, the
term Rs−Rll is referred to as net available energy, and for
a ground surface, it is represented by net radiation minus
ground heat flux (RN−G). For a leaf, there is no ground

heat flux, and RN = Rs−Rll. In most applications of the an-
alytical solutions, Rll is not explicitly calculated, but it is as-
sumed that RN is known, neglecting the dependence of Rll
on the leaf temperature. This neglect can be alleviated by lin-
earising the equation for Rll (Leuning et al., 1989), which
was also done in Sect. 2.4, where we rederive Eqs. (10)–(12)
based on a linearised equation for Rll, eliminating the need
for separate estimation of RN.

To solve Eqs. (10)–(13), one only needs information about
cH and cE , appropriate for a leaf or an evaporating surface,
whichever is the system of interest. For a planar leaf, cH =
asHhc with asH = 2 as the leaf exchanges sensible heat on
both sides, whereas for a soil surface, asH = 1. Comparison
of Eqs. (4) and (7) with the common representation of El,mol
as a function of total leaf conductance to water vapour (gtw)
and water vapour mole fractions (Eq. B6) suggests that

cE =MwλEgtw,mol/Pa, (14)

where gtw,mol has an aerodynamic component related to gbw
(and hence hc) and a surface-specific component, related to
gsw, as described in Appendix B1. Since planar leaves can
have stomata on one or both sides, the relation between hc
and gbw is not universal; i.e. as in Eq. (B2) can be equal to 1
or 2, whereas for a soil surface as = 1.

2.3 Inconsistencies in the PM equation

From the general form (Eqs. 10–12), we can recover vari-
ous analytical forms used for latent heat flux (e.g. Penman,
1948, 1952; Monteith, 1965), with the appropriate substitu-
tions for cE and cH . This is shown in detail in the Appendix,
Sect. B8, where we also illustrate some inconsistencies in
the published derivations. Here, we will discuss errors in
the derivation of the PM equation, when it is intended for
the simulation of leaf transpiration. The derivation is based
on the Penman equation for a wet surface (Penman, 1948),
which can be recovered from the above general solution by
substituting cE = fu and cH = γvfu into Eq. (10) (Fig. 3a):

Ew =
1eTa(Rs−Rll)+ fuγv(Pwas−Pwa)

1eTa+ γv
, (15)

where fu (W Pa−1 m−2) is often referred to as the “wind
function”.

Monteith (1965) rederived the Penman equation for wet
surface evaporation (Eq. 15) using a different set of argu-
ments and arrived at an equivalent equation (Eq. 8 in Mon-
teith, 1965):

Ew =
1eTa(Rs−Rll)+ ρacpa(Pwas−Pwa)/ra

1eTa+ γv
, (16)

where ra (s m−1) is the leaf boundary layer resistance to sen-
sible heat flux. Equation (16) is consistent with Eq. (15) if
Penman’s wind function (fu) is replaced by

fu =
ρacpa

γvra
. (17)

Hydrol. Earth Syst. Sci., 21, 685–706, 2017 www.hydrol-earth-syst-sci.net/21/685/2017/
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Monteith pointed out that the ratio between the con-
ductance to sensible heat and the conductance to water
vapour transfer, expressed in the psychrometric constant (γv,
Pa K−1) would be affected by stomatal resistance (rs, s m−1)
and hence proposed to replace the psychrometric constant by
γ ∗v :

γ ∗v = γv(1+
rs

ra
), (18)

leading to the so-called Penman–Monteith equation for tran-
spiration:

El =
1eTa(Rs−Rll)+ ρacpa(Pwas−Pwa)/ra

1eTa+ γv

(
1+ rs

ra

) . (19)

To test whether Eq. (19) is physically consistent for a pla-
nar leaf, we deduce it from our more general Eq. (10), using
suitable definitions for cE , cH , ra and rs. Equation (19), with
γv defined in Eq. (B46), could be recovered by substituting
cE = ελEρa/(Pa(rs+ rv)) and cH = cpaρa/ra into Eq. (10),
with subsequent substitution of rv = ra (implicit in Eq. 17,
considering that fu = cE). Note, however, that ra in Mon-
teith’s derivation is defined as one-sided resistance to sensi-
ble heat exchange (Monteith and Unsworth, 2013, p. 231),
neglecting the fact that planar leaves exchange sensible heat
on both sides. We suppose that this omission is related to
the original Penman derivation, developed for a soil surface,
which exchanges latent and sensible heat across one inter-
face, and hence is not appropriate for a leaf. To alleviate this
constraint, one could define ra and rs as total (two-sided) leaf
resistances, but in this case, the simplification rv ≈ ra is not
valid for hypostomatous leaves, as rv would then be twice
the value of ra. This is illustrated in Fig. 3c, where sensible
heat flux is released from both sides of the leaf, while latent
heat flux is only released from the abaxial side, implying that
ash = 2 and as = 1.

Monteith and Unsworth (2013) acknowledged that a hy-
postomatous leaf could exchange sensible heat on two sides,
but latent heat on one side only, and proposed to represent
this fact by further modifying γ ∗v to

γ ∗v = nMUγv(1+ rs/ra), (20)

where nMU = 1 for leaves with stomata on both sides and
nMU = 2 for leaves with stomata on one side, i.e. nMU =

ash/as in our notation. Insertion of Eq. (20) into Eq. (16)
yields what we will call the Monteith–Unsworth (MU) equa-
tion, which only differs from the Penman–Monteith equation
by the additional factor nMU:

El =
1eTa(Rs−Rll)+ ρacpa(Pwas−Pwa)/ra

1eTa+ γvnMU

(
1+ rs

ra

) . (21)

However, this was done by specifying rs and ra as one-
sided resistances when inserting them into the term for γv

in Eq. (16), which was already based on the approximation
rv ≈ ra, which is not valid for hypostomatous leaves, as ex-
plained above. If we replace ra by ra = ra/ash in Eq. (16)
before substitution of Eq. (20), we obtain a corrected MU
equation:

El =
1eTa(Rs−Rll)+ ρacpa(Pwas−Pwa)ash/ra

1eTa+ γvash/as

(
1+ rs

ra

) , (22)

which only differs from Eq. (21) by the factor ash (= 2) in
the nominator. Equations (19) and (22) are only equivalent to
each other if ash = 1= as, implying that Eq. (19) is not appli-
cable for any planar leaves. For symmetrical amphistomatous
leaves, ash = 2= as, in which case the classic PM equation
is only missing a factor of 2 in the nominator, as pointed out
by Jarvis and McNaughton (1986, Eq. A9).

2.4 Analytical solution including radiative feedback

The above analytical solutions eliminated the non-linearity
problem of the saturation vapour pressure curve, but they
do not consider the dependency of the long-wave component
of the leaf energy balance (Rll) on leaf temperature (Tl), as
expressed in Eq. (2). Therefore, the above analytical equa-
tions are commonly used in conjunction with fixed value of
Rll, either taken from observations or the assumption that
Rll = 0. Here, we replace the non-linear Eq. (2) by its tan-
gent at Tl = Ta, which is given by

Rll = 4ashεlσT
3

a Tl− ashεlσ(T
4

w + 3T 4
a ). (23)

Note that the common approximation of Tw = Ta simplifies
the above equation to Rll = 4ashεlσ(T

3
a Tl−T

4
a ). The lineari-

sation introduces a bias of less than−20 W m−2 in the calcu-
lation of Rll for leaf temperatures ±20 K of air temperature,
compared to Eq. (2) (see Fig. A3).

We can now use a similar procedure as in Sect. 2.2, but
this time it is aimed at eliminating Pwl using the Penman
assumption, rather than eliminating Tl. We first eliminate cE
from Eq. (7) by introducing the psychrometric constant as

γv = cH /cE, (24)

and introduce it into Eq. (8) to obtain

Hl = γvcE(Tl− Ta). (25)

Then, we insert the Penman assumption (Eq. 9) to eliminate
Pwl and obtain

El =
cH (1eTa(Tl− Ta)+Pwas−Pwa)

γv
. (26)

We can now insert the linearised Eqs. (23), (26) and (8) into
the energy balance equation (Eq. 1), and solve for leaf tem-

www.hydrol-earth-syst-sci.net/21/685/2017/ Hydrol. Earth Syst. Sci., 21, 685–706, 2017
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Figure 3. Different representations of energy partitioning into sen-
sible and latent heat flux. (a) Penman equation, where net radia-
tion is partitioned between ground heat flux (not shown), sensible
heat flux and latent heat flux at the land surface, affected by bound-
ary layer resistance expressed in wind function (fu); (b) Penman–
Monteith equation, considering additional stomatal resistance (rs);
and (c) corrected Penman–Monteith equation for a hypostomatous
leaf, where sensible heat flux is emitted from both sides of the
leaf (ash = 2), while latent heat flux is only released on the abax-
ial (lower) side of the leaf (as = 1).

perature (Tl) to obtain

Tl =

(
Rs+ cHTa+ cE (1eTaTa+Pwa−Pwas) (27)

+ ashεlσ
(

3T 4
a + T

4
w

))
1

cH + cE1eTa+ 4ashεlσT 3
a
, (28)

where the temperature of the surroundings is commonly as-
sumed to equal air temperature (Tw = Ta). Equation (27) can

be reinserted into Eqs. (8), (26) and (23) to obtain analyti-
cal expressions forHl, El and Rll, respectively, which satisfy
the energy balance (Eq. 1). Alternatively, the value of Tl ob-
tained from Eq. (27) for specific conditions could be used
to calculate any of the energy balance components using the
fundamental equations described in Fig. 2. However, in this
case, bias in Tl due to simplifying assumptions included in
the derivation of Eq. (27) could result in an unclosed leaf
energy balance (Rs−Rll−Hl−El 6= 0).

2.5 Comparisons of numerical and analytical models
with observations

Variations in leaf temperature and leaf energy balance com-
ponents were simulated using a detailed numerical model
(Sect. 2.1), and various analytical solutions, including the
Penman–Monteith equation (PM; Eq. 19), the Monteith–
Unsworth equation (MU; Eq. 21), our corrected Monteith–
Unsworth equation (MUc; Eq. 22) and the analytical solu-
tion using linearised net long-wave balance (Rlin, based on
Eq. 27). All the above models require similar forcing data,
i.e. irradiance or net radiation, air temperature and humid-
ity, wind speed or aerodynamic resistance and stomatal resis-
tance. To compare the adequacy of the different models for
capturing the key physical processes, we have used identical
environmental forcing in all models, consisting of absorbed
short-wave radiation (Rs), air temperature (Ta) and vapour
pressure (Pwa), wind speed (vw), stomatal conductance (gsw)
and characteristic length of the leaf (Ll). Wind speed and Ll
were used to calculate the one-sided convective heat trans-
fer coefficient (hc, Eq. B10), which is then used to calculate
the leaf boundary layer conductance for water vapour (gbw,
Eq. B2) in the numerical model. The value of hc is converted
to ra in the PM equation using Eq. (B51), whereas in our
new analytical models cH = ashhc. In those models that do
not consider feedbacks between leaf temperature and net ra-
diation, i.e. PM, MU and MUc, we assumed that net radiation
equals the absorbed short-wave radiation, i.e. RN = Rs (p. 79
in Monteith and Unsworth, 2013). For verification of the re-
sults using experimental data, we designed a new experimen-
tal set-up, as described below. The forcing corresponding to
each experimental data point was used in the different mod-
els as described above, producing a simulation data point by
each model for each observation data point. Independent cal-
culation of plausible ranges of stomatal resistance or conduc-
tance (rs = 1/gsw) is described below, and from within these
plausible ranges, we chose values that led to best possible
reproduction of the data by the numerical model.

3 Experimental set-up

To separate the physical aspects of leaf energy and gas ex-
change from complex biological control, we used artificial
leaves with laser-perforated surfaces representing fixed stom-
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Figure 4. Artificial leaf and wind tunnel. (a): cross section of artificial leaf; (b): leaf image before full assembly; (c): topography of laser-
perforated foil with 60 µm pore diameter and 180 µm spacing; (d): wind tunnel. The following are indicated in Panel (a): (1) black aluminium
tape (0.05 mm thick); (2) aluminium tape (0.08 mm); (3) absorbent filter paper (0.1–0.2 mm); (4) laser-perforated foil (0.01–0.05 mm); (5)
min. leaf thickness: 0.3–0.4 mm; (6) max. leaf thickness: 0.35–0.65 mm; (7) thermocouple; (8) glue.

atal apertures and continuous water supply monitored by
micro-flow sensors (Fig. 4a–c). We further constructed a
specialised insulated leaf wind tunnel (Fig. 4d) permitting
full control of atmospheric conditions including air temper-
ature, humidity, irradiance and wind speed and allowing di-
rect measurement of all leaf energy balance components in-
dependently, including net radiation latent and sensible heat
flux. A detailed documentation of the leaf wind tunnel and
the artificial leaves along with the relevant thermodynamic
calculations has been submitted as a technical note to HESS
(Schymanski et al., 2016).

3.1 Artificial leaves

The artificial leaves were constructed of a core made of
porous filter paper (Whatman no. 41), glued onto aluminium
tape and connected to a water supply by a thin tube, flattened
at one end and tightly glued between the aluminium foil
and the filter paper, using Araldite epoxy resin (Fig. 4a–c).
Along with the water supply tube, a thin copper–constantan
thermocouple (TG-TI-40) was placed between the filter pa-
per and the adhesive aluminium tape. The water supply was
connected to a high-resolution liquid flow metre (SLI-0430,
Sensirion AG, Staefa, Switzerland) and a water supply with

a water table 1–3 cm below the position of the leaf, to ensure
that the liquid flow did not exceed the transpiration rate while
maintaining minimum head loss along the flow path.

Different laser perforations were performed by Ralph
Beglinger (Lasergraph AG, Würenlingen, Switzerland),
Robert Voss (ETH Zurich, Switzerland) and Rolf Brönni-
mann (EMPA, Zurich, Switzerland), and the geometry of
laser perforations was measured using a confocal laser scan-
ning microscope (CLSM VK-X200, Keyence, Osaka, Japan).
See Fig. A2 for examples.

The stomatal conductance resulting from a particular per-
foration size and density was computed following the deriva-
tions presented by Lehmann and Or (2015), assuming that
the stomatal conductance results from two resistances in a se-
ries: the throat resistance (rsp), resulting from the width of the
perforation and the thickness of the perforated foil, and the
vapour shell resistance (rvs), resulting from the size and spac-
ing of the stomata, which can be understood as the resistance
related to distribution of the point-source water vapour over
the entire one-sided leaf boundary layer. We hereby neglect
any internal resistance (termed “end correction” by Lehmann
and Or, 2015), as we assume that the wet filter paper has di-
rect contact with the perforated foil. The relevant equations
are described in Appendix B10.
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3.2 Leaf wind tunnel

Leaf energy and gas exchange were measured in a thermally
insulated wind tunnel with full control over energy and mass
exchange (Fig. 4). The wind tunnel is circular, with two
straight sections of 25 cm length each, a fan in one of the
straight sections and a transparent window and leaf holder in
the opposite straight channel. The fan circulates the wind as
indicated by the arrows in Fig. 4d, subjecting it to controlled
wind conditions. The wind tunnel features an air inlet just be-
fore the fan and an air outlet just after the fan, where the air
is assumed to be well mixed across the tunnel cross section.
In this way, leaf gas exchange can be deduced from the con-
centration difference between the incoming and outgoing air
and the controlled flow rate of air into the wind tunnel. For
this purpose, the incoming air was supplied by a humidifier
providing prescribed vapour pressure and flow rate.

The sensible heat flux (Hl) was deduced from the chamber
energy balance by computing the amount of heat exchanged
with the surroundings through the exchange of air and sub-
tracting the amount of heat added by the fan. Since the fan
was placed inside the chamber, the amount of heat it injected
was assumed to be equal to its power consumption, which
was kept constant by a programmable power controller, while
wind speed was varied by adjusting the position of a wing in
the flow path (Fig. 4) and monitored using a miniature ther-
mal flow sensor. A stack of 3 cm long plastic straws in the
flow path was used to reduce spiralling of the air flow caused
by the rotating fan. The main wind tunnel was built out of
foamed insulation material, while the leaf chamber itself had
two layers of polypropylene foil on each side (above and be-
low the leaf) to permit the transmission of short-wave and
long-wave radiation while minimising conductive heat trans-
fer (see position of the artificial leaf in Fig. 4). We used re-
tractable miniature net radiation sensors to periodically mea-
sure the net radiative load on the leaf. Copper–constantan
thermocouples were placed in the air stream upstream and
downstream of the leaf chamber, lightly inserted into the
wind tunnel wall on the inside and the outside of the cham-
ber, and in the duct through which air was supplied to the
wind tunnel by an external humidifier, providing a flow rate
of up to 10 L min−1 and controlled air temperature and dew
point.

The leaf wind tunnel was used to measure steady-state
conditions under given forcing (air temperature, humidity,
wind speed and irradiance). Sensible heat exchange between
the leaf and the surrounding air was computed from total
chamber heat exchange, using monitored flow rate and tem-
perature of incoming and outgoing air (Fig. 5). The relevant
thermodynamic calculations are presented in a separate tech-
nical note (Schymanski et al., 2016).

H
l E

l

Gas
flow meter

Q
in
 = c

pa
 T

in
 F

in Q
out

 = c
pa

 T
out

 F
out

H
l
 = Q

in
 – Q

out
 

Control volume

Humidifier
 & cooler

Liquid flow meter

Figure 5. Simplified energy balance of insulated wind tunnel. La-
tent heat flux (El) is calculated from liquid flow rate into leaf, sen-
sible heat flux (Hl) is calculated from difference in heat content
of incoming and outgoing air (cpa: heat capacity of air; Tin,Tout:
air temperatures of incoming and outgoing air; Fin, Fout: incoming
and outgoing air flow rates).

Table 1. Perforation characteristics and resulting stomatal conduc-
tances, computed using Eqs. (B55) and (B56), following the proce-
dure described in the Appendix, Sect. B10. Foil thickness is 25 µm.

Pore density Pore area Pore radius gsw
mm−2 µm−2 µm m s−1

27.3–38.2 710–1572 15–22 0.022–0.046
7.1–7.8 890–1886 16–24 0.006–0.012

gsw: calculated stomatal conductance.

4 Results

4.1 Correspondence between experimental results and
numerical model

Experiments were performed for various artificial leaves with
different stomatal conductances under varying air humidity
or varying wind speed, in the absence of short-wave radia-
tion. Stomatal conductance was deduced form confocal laser
scanning microscope (CLSM) images of the perforated foils,
as described above. The ranges of stomatal geometries and
deduced conductances for the two different leaves presented
here are given in Table 1. A more detailed analysis of corre-
spondence between experimental results obtained for a larger
variety of artificial leaves and the numerical model are pre-
sented in a technical note (Schymanski et al., 2016). Here,
we only present selected experiments that highlight system-
atic differences between the various analytical solutions, the
numerical model and observations.

The numerical model reproduced observed sensible and
latent heat fluxes very accurately (Fig. 6) using stomatal
conductance values within the narrow ranges deduced from
CLSM images (Table 1) with no other forms of calibration.
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The experimental conditions and stomatal conductances are
given in the figure captions. Observed net radiation (Rnleaf)
was a little bit below the sum of observed latent and sen-
sible heat fluxes (El+Hl, Fig. 6), suggesting that the en-
ergy balance was not entirely closed. Simulated net radiation
(Rnleaf = Rs−Rll) was in between the observedRnleaf and the
observedEl+Hl. Consistent with Fig. 1, the net radiative ex-
change was not sensitive to wind speed in Fig. 6a, while El
and Hl responded strongly (in opposite directions).

4.2 Performance of analytical leaf gas exchange and
energy balance models

The analytical models generally underestimated latent heat
flux, but the model based on linearised Rll (Rlin) showed
very little bias and closely reproduced the observed latent
and sensible heat fluxes, as it permitted calculation of the net
long-wave component (in contrast with PM, MU and MUc
expressions that assumed Rll = 0). The calculations based on
the Penman–Monteith equation significantly underestimated
latent heat flux, especially at high stomatal conductances
(PM values almost 50 % lower than the observed values in
Fig. 7). The Monteith–Unsworth (MU) equation produced
an even stronger underestimation of latent heat flux in our
results, whereas our corrected Monteith–Unsworth (MUc)
equation was a lot closer to the observed heat fluxes than
either the MU or the PM equations. However, only Eq. (27)
(Rlin) was able to capture the asymmetry between latent and
sensible heat fluxes caused by net absorption of long-wave
radiation, as all the other calculations were based on the as-
sumption of zero radiative exchange (Rll = 0), i.e.Hl =−El.
Our results suggest that the omission of the long-wave ra-
diative feedback (MUc) resulted in a much smaller effect
than the omission of two-sided sensible heat exchange (PM,
MU), compared to the most comprehensive analytical solu-
tion (Rlin) and observations.

Since we were not able to systematically assess the effects
of irradiance and air temperature in our lab experiments, we
conducted a numerical experiment where we compared sim-
ulations by the numerical model with simulations by the best
analytical model and the PM equation. The results shown in
Fig. 8 suggest that our new analytical solution (Eq. 27) be-
haves very similarly to the numerical model, whereas the PM
equation misrepresents the sensitivities of latent and sensible
heat fluxes to both irradiance and air temperature.

5 Discussion

This age values usefulness more highly than cor-
rectness, and the making of money more highly
than both. In fact, there is definitely something sus-
pect about an examiner who would bother at all
with whether an idea is correct or not. (Raupach
and Finnigan, 1988)

(c) 7 perforations mm-2

(a) 35 perforations mm-2

(b) 35 perforations mm-2

Figure 6. Numerical simulations vs. observed fluxes of sensi-
ble, latent and radiative heat in response to varying wind speed
and vapour pressure. Numerical model results (lines) are based
on observed boundary conditions representative of observations
(dots). The boundary conditions are summarised as follows:
(a) gsw = 0.042 m s−1; Rs = 0; Ta = 295.0–296.5 K; Pwa = 1187–
1278 Pa; (b) gsw = 0.035 m s−1; Rs = 0; Ta = 295.7–296.0 K;
vw = 1.0 m s−1; (c) gsw = 0.0065 m s−1; Rs = 0; Ta = 296.1–
296.7 K; vw = 0.7 m s−1. gsw: stomatal conductance; Ta: air tem-
perature; Pwa: vapour pressure; El: latent heat flux; Hl: sensible
heat flux; Rs: absorbed short-wave radiation; Rll: net emitted long-
wave radiation; Rnleaf = Rs−Rll.
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(c) 7 perforations mm-2

(a) 35 perforations mm-2

(b) 35 perforations mm-2

Figure 7. Analytical simulations vs. observed fluxes of sensible and
latent heat in response to varying wind and vapour pressure. Numer-
ical model results (lines) are based on observed boundary conditions
representative of observations (dots). Conditions are the same as in
Fig. 6. El: latent heat flux; Hl: sensible heat flux; Rlin: based on
linearised long-wave balance (Eq. 27); MUc: corrected Monteith–
Unsworth equation (Eq. 22); PM: Penman–Monteith equation
(Eq. 19); MU: Monteith–Unsworth equation (Eq. 21). Red arrows
indicate the magnitudes of biases in the PM equation; the dashed
green arrow marks the maximum bias in sensible heat flux in the
MUc equation for the experimental conditions.

The widespread use of the PM equation is mainly due to
its simplicity and usefulness, the latter of which is contingent
on its ability to accurately represent the sensitivity of evapo-
transpiration to atmospheric variables and surface properties
(boundary layer and bulk stomatal conductances).

(a) Varying radiation (T
a
 = 295 K)

(b) Varying air temperature (R
s
 = 350 W m-2)

Figure 8. Numerical vs. analytical simulations of sensible and latent
heat in response to varying irradiance and air temperature. Crosses
represent numerical solution of leaf energy balance model (S-mod.),
solid lines our new analytical solution based on linearised long-
wave balance (Rlin; Eq. 27) and dashed lines the Penman–Monteith
equation (PM; Eq. 19). Simulation conditions: gsw = 0.045 m s−1;
Pwa = 1300 Pa; vw = 1 m s−1. gsw: stomatal conductance; Ta: air
temperature; Pwa: vapour pressure; El: latent heat flux; Hl: sensi-
ble heat flux; Rs: absorbed short-wave radiation.

In our rederivation and subsequent analyses, we have iden-
tified two errors in the PM equation and in the “corrected”
MU formulation by Monteith and Unsworth (2013). Both
formulations are based on evaporation from a soil surface,
which exchanges sensible and radiative heat only on one
side, whereas planar leaves have two sides exposed to the
surrounding air. Failure to recognise this omission has led to
a second error in the MU formulation, where an additional
reduction to transpiration was introduced to represent leaves
that exchange water vapour from one side only. For a leaf,
the energy for transpiration in darkness is mainly supplied
by sensible heat flux (on both sides), which increases with in-
creasing wind speed. In contrast, the energy for evaporation
from a soil surface in darkness is supplied by sensible heat
on the evaporating surface only (and by soil heat flux from
below). The neglect of the additional exchange of sensible
heat on the second side of the leaf in the PM and MU models
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led to significant underestimation of the observed transpira-
tion rates in our experiments, where the sensible heat flux is
the main source of energy for transpiration (in the absence
of short-wave radiation). Note, however, that the bias is not
constant and not always negative. As illustrated in Fig. 8, the
negative bias decreases with increasing irradiance or air tem-
perature, goes to 0 at a certain combination of temperature
and irradiance and then becomes positive at higher values of
irradiance and/or temperature. This is because under condi-
tions where the leaf temperature is lower than ambient, sen-
sible heat flux is a source of energy for transpiration, whereas
under conditions where the leaf is warmer than the air, sen-
sible heat flux competes for energy with transpiration. The
omission of sensible heat exchange by the second leaf sur-
face has therefore the most drastic effects when leaf tempera-
ture most strongly deviates from air temperature. It may also
be noteworthy in this context that the expression for aero-
dynamic resistance (ra) given by Monteith (1965, Eq. 14)
has been pointed out by other authors to result in heat trans-
fer 2.5 times higher than expected if interpreted as a one-
sided resistance (Parlange et al., 1971). This may have arisen
from the confusion about one-sided vs. two-sided energy ex-
change. Our experimental results clearly illustrate that the in-
consistencies we found in the PM and MU equations are not
just semantic, but actually lead to very significant biases in
simulated transpiration rates for known stomatal resistance,
which would alternatively lead to biases in deduced resis-
tance for known transpiration rates. The results further illus-
trate that our correction for two-sided leaves improves re-
production of leaf-scale measurements tremendously (MUc
vs. PM in Fig. 7), but additional consideration of the surface
temperature–long-wave emission feedback (Eq. 27 and Rlin
in Fig. 7) is also important to accurately capture the charac-
teristics of the leaf energy balance, particularly the sensible
heat flux.

Although the upscaling of a physically based leaf-scale
model to a canopy or land surface is fraught with vari-
ous challenges, including characterisation of the stomatal
or canopy conductance, canopy-scale boundary layer con-
ductance, consideration of canopy storage and distinction
between radiative and aerodynamic surface temperatures
(Monteith, 1965; Tanner and Fuchs, 1968; Jarvis and Mc-
Naughton, 1986; Raupach, 1995; Mallick et al., 2013, 2016),
we believe that care must be taken to start off with the cor-
rect leaf-scale model. In this context, we wish to point out
that Monteith (1965) referred to a single leaf when deriving
the PM equation (evident in the abstract and from Page 208
onwards in his paper), and that the use of the PM equation
at canopy scale is commonly motivated in the context of a
big leaf analogy or by aggregation of many representative
leaves, implying that the physics valid for a leaf is also valid
for a canopy (e.g. Lhomme et al., 2012; Verhoef and Allen,
2000). Therefore, the omission of the second side of a leaf
when Monteith (1965) used the Penman equation as a basis

for his derivation is likely relevant when representing canopy
fluxes using the PM equation.

In the present study, we have developed an experimen-
tal set-up allowing to control all relevant boundary condi-
tions at the leaf scale, including stomatal conductance, and
measuring (to our knowledge, for the first time) all compo-
nents of the leaf energy balance. In contrast to previous tests
of the PM equation, which were conducted at the canopy
scale, where boundary layer and canopy conductances could
not be measured directly, we have been able to greatly con-
strain model parametrisation by independent measurements
of stomatal conductance. This has led to the discovery that
the PM equation, in its original formulation and common use,
does not accurately represent leaf-scale processes. Our newly
derived analytical solutions (Eqs. 27 and 22) are able to not
only more accurately reproduce leaf-scale sensible and la-
tent heat fluxes, but they also allow direct calculation of leaf
temperature, which could be used as an additional diagnostic
variable at the canopy scale and potentially improve remote-
sensing-based evaporation products.

Given the widespread and successful use of the PM equa-
tion, the question arises whether common practice, which re-
lies on parameterisation by fitting resistance terms that pro-
vide a match with observations, somehow compensates for
the errors we identified in the present study. The answer is
“yes and no”. As shown in Fig. 8, there are certain condi-
tions for which the PM equation and the corrected solutions
yield very similar results, and one could easily obtain a much
closer match to the experimental results by fitting signifi-
cantly larger values for ra and rs in the PM equation than
those estimated from diffusive resistance of perforated sur-
faces (the laser perforations in our artificial leaves). This may
also explain the lack of general bias in PM-estimated transpi-
ration rates when applied at the canopy scale (e.g. Langen-
siepen et al., 2009). However, the sensitivity of latent and
sensible heat flux to changing atmospheric conditions (e.g.
short-wave irradiance and air temperature) deduced from the
PM equation would clearly be different than the trends pro-
duced by the corrected equations and numerical simulations
(Fig. 8). This suggests that use of the PM equation for pro-
jections under future climate change scenarios could lead to
a bias in the results. This potential source of bias could be re-
duced using the corrected equation presented in this study
(irrespective of the estimated resistance values fitted for a
canopy).

6 Conclusions

In this study, we revisit the governing equations for the ex-
change of water vapour and energy between a planar leaf
and a surrounding air stream under forced convection. We
derived general analytical solutions for steady-state sensi-
ble and latent heat fluxes from a leaf and the corresponding
leaf temperature (Eqs. 10–12) based on the approach by Pen-
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man (1952). The general equation permits comparison be-
tween different analytical solutions available in the literature
by substituting appropriate formulations of the sensible and
latent heat transfer coefficients. Our analysis reveals that the
Penman–Monteith equation (Eq. 19), even with its modifica-
tion by Monteith and Unsworth (2013) (Eq. 21) is not accu-
rate for a typical planar leaf due to omission of the radiative
and sensible heat fluxes from one side of a leaf. We demon-
strated how our general solution can be used to obtain a more
consistent representation of leaf energy and gas exchange,
in agreement with leaf-scale experimental data (using artifi-
cial leaves). We propose that the same approach could prove
useful to derive a more accurate canopy-scale representation
of latent and sensible heat fluxes, considering their coupling
with radiative exchange and ground heat flux. The new gen-
eralised leaf-scale equations offer a promise for more consis-
tent responses of latent and sensible heat fluxes to changes
in atmospheric forcing in future climates than the responses
predicted by the original PM equation (due to the omissions
therein).

7 Code and data availability

All code and data used to generate the results presented in
this paper are available online at doi:10.5281/zenodo.241259
(Schymanski, 2017).
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Appendix A: Additional tables and figures

Table A1. Table of symbols and standard values used in this paper. All area-related variables are expressed per unit leaf area.

Variable Description (value) Units

Ap Cross-sectional pore area m2

as Fraction of one-sided leaf area covered by stomata (1 if stomata are 1
on one side only, 2 if they are on both sides)

ash Fraction of projected area exchanging sensible heat with the air (2) 1
αa Thermal diffusivity of dry air m2 s−1

βB Bowen ratio (sensible / latent heat flux) 1
cE Latent heat transfer coefficient J Pa−1 m−2 s−1

cH Sensible heat transfer coefficient J K−1 m−2 s−1

cpa Specific heat of dry air (1010) J K−1 kg−1

Cwa Concentration of water in the free air mol m−3

Cwl Concentration of water in the leaf air space mol m−3

dp Pore depth m
Dva Binary diffusion coefficient of water vapour in air m2 s−1

1eTa Slope of saturation vapour pressure at air temperature Pa K−1

El Latent heat flux from leaf J m−2 s−1

El,mol Transpiration rate in molar units mol m−2 s−1

Ew Latent heat flux from a wet surface J m−2 s−1

ε Water-to-air molecular weight ratio (0.622) 1
εl Long-wave emissivity of the leaf surface (1.0) 1
fu Wind function in Penman approach, f (u) adapted to energetic units J Pa−1 m−2 s−1

g Gravitational acceleration (9.81) m s−2

gbw Boundary layer conductance to water vapour m s−1

gbw,mol Boundary layer conductance to water vapour mol m−2 s−1

gsw Stomatal conductance to water vapour m s−1

gsw,mol Stomatal conductance to water vapour mol m−2 s−1

gtw Total leaf conductance to water vapour m s−1

gtw,mol Total leaf layer conductance to water vapour mol m−2 s−1

γv Psychrometric constant Pa K−1

hc Average one-sided convective transfer coefficient J K−1 m−2 s−1

Hl Sensible heat flux from leaf J m−2 s−1

ka Thermal conductivity of dry air J K−1 m−1 s−1

kdv Ratio Dva /Vm mol m−1 s−1

Ll Characteristic length scale for convection (size of leaf) m
λE Latent heat of evaporation (2.45e6) J kg−1

MN2 Molar mass of nitrogen (0.028) kg mol−1

MO2 Molar mass of oxygen (0.032) kg mol−1

Mw Molar mass of water (0.018) kg mol−1

NGrL Grashof number 1
NLe Lewis number 1
nMU n= 2 for hypostomatous, n= 1 for amphistomatous leaves 1
NNuL Nusselt number 1
np Pore density m−2

NPr Prandtl number (0.71) 1
NRec Critical Reynolds number for the onset of turbulence 1
NReL Reynolds number 1
NShL Sherwood number 1
νa Kinematic viscosity of dry air m2 s−1

Pa Air pressure Pa
PN2 Partial pressure of nitrogen in the atmosphere Pa
PO2 Partial pressure of oxygen in the atmosphere Pa
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Table A1. Continued.

Variable Description (value) Units

Pwa Vapour pressure in the atmosphere Pa
Pwas Saturation vapour pressure at air temperature Pa
Pwl Vapour pressure inside the leaf Pa
ra One-sided boundary layer resistance to heat transfer s m−1

(rH in Monteith and Unsworth (2013, p. 231))
rbw Boundary layer resistance to water vapour, inverse of gbw s m−1

Rll Long-wave radiation away from leaf J m−2 s−1

Rmol Molar gas constant (8.314472) J K−1 mol−1

rp Pore radius (for ellipsoidal pores, half the pore width) m
Rs Solar short-wave flux J m−2 s−1

rs Stomatal resistance to water vapour (Monteith and Unsworth, 2013, p. 231) s m−1

rsp Diffusive resistance of a stomatal pore s m2 mol−1

rsw Stomatal resistance to water vapour, inverse of gsw s m−1

rtw Total leaf resistance to water vapour, rbv+ rsv s m−1

rv Leaf BL resistance to water vapour; Monteith and Unsworth, 2013, Eq. 13.16 s m−1

rvs Diffusive resistance of a stomatal vapour shell s m2 mol−1

ρa Density of dry air kg m−3

ρal Density of air at the leaf surface kg m−3

S Factor representing stomatal resistance in Penman (1952) 1
sp Spacing between stomata m
σ Stefan–Boltzmann constant (5.67e− 8) J K−4 m−2 s−1

Ta Air temperature K
Tl Leaf temperature K
Tw Radiative temperature of objects surrounding the leaf K
Vm Molar volume of air m3 mol−1

vw Wind velocity m s−1

Figure A1. Dependence of the leaf–air water vapour concentration difference (Cwl−Cwa) on leaf temperature (Tl). In this example, (70 %
relative humidity, 300 K air temperature (Ta), the water vapour concentration difference doubles for an increase in leaf temperature by 5 K
relative to air temperature or drops to 0 for a decrease in leaf temperature by 6 K. Plot obtained by inserting Eq. (B5) into Eq. (B4). Cwa was
obtained substituting Ta for Tl and multiplying Eq. (B5) by the assumed relative humidity of 0.7.
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(a)

(b)

100 μm

100 μm

Figure A2. Example confocal laser scanning microscope (CLSM)
images of perforated foils summarised in Table 1. (a) 35 perfora-
tions per mm2, (b) 7.8 perforations per mm2. Colours represent sur-
face elevation, black bars at the bottom and on the right of each
picture show topographic profiles of transects crossing perforations
(white dashed lines in main images), with the detection thresholds
(10 µm below surface) marked as blue-filled areas.
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Figure A3. Net long-wave radiation away from leaf as a function of
leaf temperature. Solid line represents Eq. (2), while the dotted line
represents the linearised function (Eq. 23). Calculations are based
on 300 K air and wall temperature (Ta and Tw, respectively).
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Appendix B: Mathematical derivations

B1 Boundary layer conductance to water vapour

The total leaf conductance to water vapour is determined by
the boundary layer and stomatal conductances and equal to 1
over the sum of their respective resistances (gtw = 1/(rsw+

rbw). The boundary layer conductance for water vapour is
equivalent to the mass transfer coefficient for a wet surface
(Incropera et al., 2006, Eq. 7.41):

gbw =NShLDva/Ll, (B1)

where NShL is the dimensionless Sherwood number and Dva
is the diffusivity of water vapour in air. If the convection co-
efficient for heat is known, the one for mass (gbw) can read-
ily be calculated from the relation (Incropera et al., 2006,
Eq. 6.60)

gbw =
ashc

ρacpaN
1−n
Le

, (B2)

where as is the fraction of one-sided transpiring surface area
in relation to the surface area for sensible heat exchange, cpa
is the constant-pressure heat capacity of air, n is an empiri-
cal constant (n= 1/3 for general purposes) and NLe is the
dimensionless Lewis number, defined as (Incropera et al.,
2006, Eq. 6.57)

NLe = αa/Dva, (B3)

where αa is the thermal diffusivity of air. The value of as was
set to 1 for leaves with stomata on one side only, and to 2 for
stomata on both sides. Other values could be used for leaves
only partly covered by stomata.

B2 Effect of leaf temperature on the leaf–air vapour
concentration gradient

The concentration difference in Eq. (5) is a function of the
temperature and the vapour pressure differences between the
leaf and the free air. Assuming that water vapour behaves like
an ideal gas, we can express its concentration as

Cwl =
Pwl

RmolTl
, (B4)

where Pwl is the vapour pressure inside the leaf, Rmol is the
universal gas constant and Tl is leaf temperature. A simi-
lar relation holds for the vapour concentration in free air,
Cwa = Pwa/(RmolTl). In this study, the vapour pressure in-
side the leaf is assumed to be the saturation vapour pressure
at leaf temperature, which is computed using the Clausius–
Clapeyron relation (Hartmann, 1994, Eq. B.3):

Pwl = 611exp
(
λEMw

Rmol

(
1

273
−

1
Tl

))
, (B5)

where λE is the latent heat of vaporisation and Mw is the
molar mass of water.

Note that the dependence of the leaf–air water concen-
tration difference (Cwl−Cwa) in Eq. (B4) is very sensitive
to leaf temperature. For example, if the leaf temperature in-
creases by 5 K relative to air temperature, Cwl−Cwa would
double, while if leaf temperature decreased by 6 K,Cwl−Cwa
would go to 0 at 70 % relative humidity (Fig. A1).

B3 Concentration or vapour pressure gradient driving
transpiration?

Note that El,mol is commonly expressed as a function of the
vapour pressure difference between the free air (Pwa) and the
leaf (Pwl), in which the conductance (gtw,mol) is expressed in
molar units (mol m−2 s−1):

El,mol = gtw,mol
Pwl−Pwa

Pa
. (B6)

For Pwl = Pwa, Eq. (5) can still give a flux, whereas Eq. (B6)
gives zero flux. This is because the concentrations of vapour
in air (mol m−3) can differ due to differences in temperature,
even if the partial vapour pressures are the same (see Eq. B4).
Therefore, the relation between gtw and gv,mol has an asymp-
tote at the equivalent temperature. It can be obtained by com-
bining Eqs. (5) and (B6) and solving for gtw,mol:

gtw,mol = gtw
Pa(PwaTl−PwlTa)

(Pwa−Pwl)RmolTaTl)
. (B7)

For Tl = Ta, the relation simplifies to

gtw,mol = gtw
Pa

RmolTa
, (B8)

which, for typical values of Pa and Ta, amounts to gtw,mol ≈

40 mol m−3gtw. For all practical purposes, we found that
Eqs. (5) and (B6) with gtw,mol = gtw

Pa
RmolTa

give similar re-
sults when plotted as functions of leaf temperature.

B4 Model closure

Given climatic forcing as Pa, Ta, Rs, Pwa and vw, and leaf-
specific parameters as, asH, Ll and gsw, we need to compute
Cwa, hc, gbw and a series of other derived variables, as de-
scribed below.

The vapour concentration in the free air can be computed
from vapour pressure analogously to Eq. (B4):

Cwa =
Pwa

RmolTa
. (B9)

The heat transfer coefficient (hc) for a flat plate can be de-
termined using the non-dimensional Nusselt number (NNuL ):

hc = ka
NNuL

Ll
, (B10)

Hydrol. Earth Syst. Sci., 21, 685–706, 2017 www.hydrol-earth-syst-sci.net/21/685/2017/



S. J. Schymanski and D. Or: Omission in the Penman–Monteith equation 701

where ka is the thermal conductivity of the air in the bound-
ary layer and Ll is a characteristic length scale of the leaf.

For sufficiently high wind speeds, inertial forces drive the
convective heat transport (forced convection) and the rele-
vant dimensionless number is the Reynolds number (NReL ),
which defines the balance between inertial and viscous forces
(Incropera et al., 2006, Eq. 6.41):

NReL =
vwLl

νa
, (B11)

where vw is the wind velocity (m s−1), νa is the kinematic
viscosity of the air and Ll is taken as the length of the leaf in
wind direction.

In the absence of wind, buoyancy forces, driven by the
density gradient between the air at the surface of the leaf and
the free air dominate convective heat exchange (free or nat-
ural convection). The relevant dimensionless number here is
the Grashof number (NGrL ), which defines the balance be-
tween buoyancy and viscous forces (Incropera et al., 2006,
Eqs. 9.3 and 9.65):

NGrL =
g(
ρa−ρal
ρal

)L3
l

ν2
a

, (B12)

where g is gravity, while ρa and ρal are the densities of the
gas in the atmosphere and at the leaf surface, respectively.

ForNGrL �N2
ReL

, forced convection is dominant and free
convection can be neglected, whereas for NGrL �N2

ReL
free

convection is dominant and forced convection can be ne-
glected (Incropera et al., 2006, p. 565). For simplicity, the
analysis is limited to forced conditions, which are satisfied by
considering wind speeds greater than 0.5 m s−1 for 5× 5 cm
leaves.

The average Nusselt number under forced convection was
calculated as a function of the average Reynolds number and
a critical Reynolds number (NRec ) that determines the onset
of turbulence and depends on the level of turbulence in the
free air stream or leaf surface properties (Incropera et al.,
2006, p. 412):

NNuL = (0.037N4/5
ReL
−C1)N

1/3
Pr , (B13)

with

C1 = 0.037C4/5
2 − 0.664C1/2

2 (B14)

and

C2 =
NReL +NRec − |NRec −NReL |

2
. (B15)

Equation (B15) was introduced to make Eq. (B13) valid
for all Reynolds numbers, and following considerations ex-
plained in our previous work (Schymanski et al., 2013), we
chose NRec = 3000 in the present simulations.

In order to simulate steady-state leaf temperatures and the
leaf energy balance terms using the above equations, it is nec-
essary to calculate ρa, Dva, αa, ka and νa, while Ll, Rec and
gsv are input parameters, and Pwa and vw (vapour pressure
and wind speed) are part of the environmental forcing. Dva,
αa, ka and νa were parameterised as functions of air tem-
perature (Ta) only, by fitting linear curves to published data
(Monteith and Unsworth, 2007, Table A.3):

Dva = (1.49× 10−7)Ta− 1.96× 10−5 (B16)

αa = (1.32× 10−7)Ta− 1.73× 10−5 (B17)

ka = (6.84× 10−5)Ta+ 5.62× 10−3 (B18)

νa = (9× 10−8)Ta− 1.13× 10−5. (B19)

Assuming that air and water vapour behave like an ideal gas,
and that dry air is composed of 79 % N2 and 21 % O2, we
calculated air density as a function of temperature, vapour
pressure and the partial pressures of the other two compo-
nents using the ideal gas law:

ρa =
naMa

Va
=Ma

Pa

RmolTa
, (B20)

where na is the amount of matter (mol),Ma is the molar mass
(kg mol−1), Pa the pressure, Ta the temperature and Rmol the
molar universal gas constant. This equation was used for each
component, i.e. water vapour, N2 and O2, where the partial
pressures of N2 and O2 are calculated from atmospheric pres-
sure minus vapour pressure, yielding

ρa =
MwPwa+MN2PN2 +MO2PO2

RmolTa
, (B21)

where MN2 and MO2 are the molar masses of nitrogen and
oxygen, respectively, while PN2 and PO2 are their partial
pressures, calculated as

PN2 = 0.79(Pa−Pwa) (B22)

and

PO2 = 0.21(Pa−Pwa). (B23)

B5 Analytical solutions by Penman

In order to obtain analytical expressions for the different leaf
energy balance components, one would need to solve the leaf
energy balance equation for leaf temperature first. However,
due to the non-linearities of the blackbody radiation and the
saturation vapour pressure equations, an analytical solution
has not been found yet. Penman (1948) proposed a work-
around, which we reproduced below, adapted to our notation
and to a wet leaf, while Penman’s formulations referred to a
wet soil surface. He formulated evaporation from a wet sur-
face as a diffusive process driven by the vapour pressure dif-
ference near the wet surface and in the free air:

Ew = fu(Pwl−Pwa), (B24)
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where Ew (J s−1 m−2) is the latent heat flux from a wet sur-
face and fu is commonly referred to as the wind function.
Penman then defined the Bowen ratio (Eq. 10 in Penman,
1948) as

βB =Hl/Ew = γv
Tl− Ta

Pwl−Pwa
, (B25)

where Hl is the sensible heat flux and γv is the psychromet-
ric constant, referring to the ratio between the transfer coef-
ficients for sensible heat and that for water vapour.

In order to eliminate Tl, Penman introduced a term for the
ratio of the vapour pressure difference between the surface
and the saturation vapour pressure at air temperature (Pwas)
to the temperature difference between the surface and the air:

1eTa =
Pwl−Pwas

Tl− Ta
, (B26)

and he proposed to approximate this term by the slope of
the saturation vapour pressure curve evaluated at air temper-
ature, which can be obtained by substitution of Ta for Tl and
differentiation of Eq. (B5) with respect to Ta:

1eTa =
611λEMw exp

(
λEMw
Rmol

(
1

273 −
1
Ta

))
RmolT 2

a
. (B27)

For further discussion of the meaning of this assumption,
please refer to Mallick et al. (2014).

Substitution of Eq. (9) in (B25) (Eq. 15 in Bowen, 1926)
yields

βB =
γv

1eTa

(Pwl−Pwas)

(Pwl−Pwa)
. (B28)

SubstitutingEw forEl in the energy balance equation (Eq. 1),
inserting Hl = βBEw (Eq. B25) and solving for Ew gives

Ew =
Rs−Rll

βB+ 1
. (B29)

Substitution of Eq. (B28) into (B29), equating with Eq. (B24)
and solving for Pwl gives

Pwl =
fu(1eTaPwa+ γvPwas)+1eTa(Rs−Rll)

fu(1eTa+ γv)
. (B30)

Now, insertion of Eq. (B30) into Eq. (B24) gives the so-called
Penman equation:

Ew =
1eTa(Rs−Rll)+ fuγv(Pwas−Pwa)

1eTa+ γv
. (B31)

Equation (15) is equivalent to Eq. (16) in Penman (1948),
but Eq. (17) in Penman (1948), which should be equivalent to
Eq. (B30), has Pwl (es in Penman’s notation) on both sides,
so it seems to contain an error. In his derivations, Penman
expressedRs−Rll as “net radiant energy available at surface”

and pointed out that the above two equations can be used to
estimate El and Tl from air conditions only. This neglects
the fact that Rll is also a function of the leaf temperature. To
estimate surface temperature, Eq. (B30) can be inserted into
Eq. (9) and solved for Tl, yielding

Tl =
Rs−Rll+ fu(γvTa+1eTaTa+Pwa−Pwas)

fu(γv+1eTa)
. (B32)

B5.1 Introduction of stomatal resistance by
Penman (1952)

To account for stomatal resistance to vapour diffusion, Pen-
man (1952) introduced an additional multiplicator (S) in
Eq. (B24) (Penman, 1952, Appendix 13):

El = fuS(Pwl−Pwa), (B33)

where S = 1 for a wet surface (leading to Eq. B24) and S < 1
in the presence of significant stomatal resistance.

In accordance with Eqs. (B24) and (B25), Hl can be ex-
pressed as (Penman, 1952, Appendix 13)

Hl = γvfu(Tl− Ta). (B34)

Substitution of Penman’s simplifying assumption (Tl− Ta =

(Pwl−Pwas)/1eT, Eq. (9) is the first step to eliminating Tl:

Hl =
γvfu(Pwl−Pwas)

1eTa
. (B35)

A series of algebraic manipulations involving Eqs. (B33),
(B35) and (1) and the resulting Eq. (B36) is given in Pen-
man (1952, Appendix 13). When solving Eqs. (B33), (B35)
and (1) for El, Hl and Pwl, we obtained

El =
S1eTa(Rs−Rll)+ Sγvfu(Pwas−Pwa)

S1eT+ γv
(B36)

Hl =
γv (Rs−Rll)+ Sγvfu (Pwa−Pwas)

S1eTa+ γv
(B37)

Pwl =
(1eTa/fu)(Rs−Rll)+ (S1eTaPwa+ γvPwas)

S1eTa+ γv
. (B38)

B5.2 Analytical solutions for leaf temperature, fu, γv
and S

Equation (B38) can be inserted into Eq. (9) and solved for
leaf temperature to yield

Tl = Ta+
Rs−Rll− Sfu(Pwas−Pwa)

fu (S1eT+ γv)
. (B39)

Penman (1952) proposed to obtain values of fu and S for
a plant canopy empirically and described ways to do this.
However, for a single leaf, fu and S could also be obtained
analytically from our detailed mass and heat transfer model.

Comparison of Eq. (B33) with (B6) (after substituting
Eq. 4) reveals that S is equivalent to

S =
Mwgtw,molλE

Pafu
, (B40)
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where fu was defined by Penman (1948) as the transfer co-
efficient for wet surface evaporation, i.e. a function of the
boundary layer conductance only.

To find a solution for fu, we first formulate Ew as transpi-
ration from a leaf where gtw = gbw, using Eqs. (4), (B6) and
(B8):

Ew =
λEMwgbw

RmolTa
(Pwl−Pwa). (B41)

Comparison of Eq. (B41) with (B24) gives fu as a function
of gbw:

fu = gbw
λEMw

RmolTa
. (B42)

Comparison of Eq. (B34) and (3) reveals that

γv =
ashhc

fu
, (B43)

and insertion of Eqs. (B42) and (B2) give γv as a function of
ash and as:

γv = ash/as
NLe

2
3RmolTaρacpa

λEMw
. (B44)

Now, we can insert Eqs. (B42), (B8) and (6) into (B40) to
obtain S as a function of gsw and gbw:

S =
gsw

gbw+ gsw
. (B45)

The above equation illustrates that S is not just a function of
stomatal conductance, but also the leaf boundary layer con-
ductance, explaining why Penman (1952) found that S de-
pends on wind speed.

B6 Psychrometric constant in the Penman–Monteith
equation

Monteith and Unsworth (2013) provide a definition of γv as

γv =
cpaPa

λEε
, (B46)

where ε is the ratio of molecular weights of water vapour
and air (given by Monteith and Unsworth, 2013 as 0.622).
The molar mass of air is Ma = ρaVa/na, while according to
the ideal gas law, Va/na = RmolTa/Pa, which yields for ε =
Mw/Ma:

ε =
MwPa

RmolTaρa
. (B47)

Inserting Eqs. (B21), (B22) and (B23) into the above, Ta can-
cels out, and at standard atmospheric pressure of 101 325 Pa,
we obtain values for ε between 0.624 and 0.631 for vapour
pressure ranging from 0 to 3000 Pa, compared to the value of
0.622 mentioned by Monteith and Unsworth (2013).

B7 Meaning of resistances in PM equation

As opposed to the formulations in Sect. 2.1, where sensible
and latent heat transfer coefficients (hc and gtw, respectively)
translate leaf–air differences in temperature or vapour con-
centration to fluxes, resistances in the PM equation are de-
fined in the context of the following two equations (Monteith
and Unsworth, 2013, Eqs. 13.16 and 13.20):

El =
asλEρaε

Pa(rv+ rs)
(Pwl−Pwa) (B48)

and

Hl =
ashρacpa

ra
(Tl− Ta), (B49)

where rv and rs are the one-sided leaf boundary layer and
stomatal resistances to water vapour, respectively, and ra is
the one-sided leaf boundary layer resistance to sensible heat
transfer. Note that we introduced as, ash and rs in Eqs. (B48)
and (B49) based on the description on p. 231 in Monteith
and Unsworth (2013), where the authors also assumed that
rv ≈ ra. 1

Comparison of Eq. (B48) (after substitution of Eq. B47)
with our fundamental diffusion equation (Eq. 5, after substi-
tution of Eqs. B4 and B9 and insertion into Eq. 4) reveals
that under isothermal conditions (Tl = Ta)

rv = as/gbw, (B50)

while comparison of Eq. (B49) with Eq. (3) reveals that

ra =
ρacpa

hc
. (B51)

B8 Comparison of our general analytical solution with
original Penman and Penman–Monteith equations

From the general form (Eq. 10), we can recover most of the
above analytical solutions by appropriate substitutions for cE
and cH , but closer inspection of the necessary substitutions
reveals some inconsistencies.

The Penman equation for a wet surface (Eq. 15) can be re-
covered by substituting cE = fu and cH = γvfu into Eq. (10)
(Fig. 3a), while additional substitution of Eq. (17) leads to re-
covery of Eq. (16), the Penman equation as reformulated by
Monteith (1965). The formulation for leaf transpiration de-
rived by Penman (1952) (Eq. B36) is obtained by substitut-
ing cE = Sfu (deduced from Eq. B33) and cH = γvfu (from
Eq. B34). These substitutions are consistent with the formu-
lations of latent and sensible heat flux given in Eqs. (B34)
and (B24) or (B33), as long as fu and ra refer to the total
resistances of a leaf to latent and sensible heat flux, respec-
tively, as Eq. (17) in conjunction with cH = γvfu implies that

cH = (ρacpa)/ra. (B52)

1Division of Eq. (B51) by (B50) and substitution of Eqs. (B2),
(B3), (B17) and (B16) reveals that ra/rv =N

−2/3
Le

= 1.082.
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Similarly, the Penman–Monteith equation (Eq. 19 with
γv defined in Eq. B46) could be recovered by substituting
cE = ελEρa/(Pa(rs+ rv)) and cH = cpaρa/ra, with subse-
quent substitution of rv = ra. Note, however, that these sub-
stitutions are not consistent with Eqs. (B48) and (B49), as the
factors as and ash (referring to the number of leaf faces ex-
changing latent and sensible heat flux, respectively) are miss-
ing (Fig. 3b cf. 3c). This is because the PM equation was
derived with a soil surface in mind, which exchanges latent
and sensible heat only on one side, and hence is not appro-
priate for a leaf. To alleviate this constraint, one could de-
fine ra and rs as total (two-sided) leaf resistances, but in this
case, the simplification rv ≈ ra is not valid for hypostoma-
tous leaves, as ra would then be only half of rv. This is il-
lustrated in Fig. 3c, where sensible heat flux is released from
both sides of the leaf, while latent heat flux is only released
from the abaxial side, implying that ash = 2 and as = 1.

Monteith and Unsworth (2013) acknowledged that a hy-
postomatous leaf could exchange sensible heat on two sides,
but latent heat on one side only and introduced the parameter
nMU = ash/as to account for this (Eq. 21). Using our general
equation, it should be possible to reproduce the MU equa-
tion (Eq. 21) by substituting cE = asελEρa/(Pa(rs+rv)) (de-
duced from Eq. B48) and cH = ashcpaρa/ra (deduced from
Eq. B49) into Eq. (10). However, the result of this substitu-
tion, as presented in Eq. (B53), is not the same as Eq. (21) af-
ter substitution of Eq. (B46) and nMU = ash/as, which would
result in Eq. (B54):

El =
asελE

(
1eTara (Rs−Rll)+ ashcpaρa (Pwas−Pwa)

)
Paashcpa (rs+ ra)+1eTaasελE

(B53)

vs.

El =
asελE

(
1eTara (Rs−Rll)+ cpaρa (Pwas−Pwa)

)
Paashcpa (rs+ ra)+1eTaasελE

. (B54)

Note the missing ash in the nominator of Eq. (B54), as
pointed out in the main text.

B9 Surface temperature dependence of net radiation

In the main text, Eq. (2) was linearised by taking its deriva-
tive with respect to Tl, defining this derivative as the slope
of a linear function of temperature with an intercept chosen
to make this function intersect with Eq. (2) at Tl = Ta. The
result is given in Eq. (23) and plotted in Fig. (A3).

B10 Calculation of stomatal conductance from pore
dimensions

At least three confocal laser scanning images of each per-
forated foil were analysed and average pore area (Ap, m2),
pore radius (rp, m), number of pores per surface area (np,
m−2) and average distance to nearest neighbour (sp, m) was
computed for each image. The resulting stomatal conduc-
tance was computed following the derivations presented by
Lehmann and Or (2015), assuming that the stomatal conduc-
tance results from two resistances in a series: the throat re-
sistance (rsp), dependent on the areas of the pores and the
thickness of the perforated foil (dp), and the vapour shell
resistance (rvs), dependent on the size and spacing of the
stomata, which can be understood as the resistance related
to distribution of the point-source water vapour over the en-
tire one-sided leaf boundary layer. We hereby neglect any in-
ternal resistance (termed “end correction” by Lehmann and
Or, 2015), as we assume that the wet filter paper has direct
contact with the perforated foil. The throat resistance was
computed (Eq. 1 in Lehmann and Or, 2015) as

rsp =
dp

Apkdvnp
, (B55)

where kdv is the ratio of the vapour diffusion coefficient and
the molar volume of air (Dva/Vm), and Ap = πr

2
p . For the

vapour shell resistance, we use the formulation originally
proposed by Bange (1953):

rvs =

(
1

4rp
−

1
πsp

)
1

kdvnp
, (B56)

where sp (m) is the spacing between stomata, inferred
from the images as sp = 1/√np. Stomatal conductance (gsw)
for each image was then calculated following Eq. (B8),
i.e. gsw = gsw,molRmolTa/Pa, after substituting gsw,mol =

1/(rsp+ rvs).
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