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Abstract. In this paper we study the properties of curves minimizing me-

chanical Lagrangian where the potential is Sobolev. Since a Sobolev function

is only defined almost everywhere, no pointwise results can be obtained in this
framework, and our point of view is shifted from single curves to measures in

the space of paths. This study is motived by the goal of understanding the

properties of variational solutions to the incompressible Euler equations.

1. Introduction. Let L : Rd×Rd× [0, T ] be a smooth time-dependent Lagrangian
which is convex and superlinear in the velocities. In this case the properties of ex-
tremal curves have been known for a long time. In particular, they are characterized
by being solutions of the Euler-Lagrange equations. Moreover, given an initial da-
tum u0 : Rd → R, the value function u : Rd × R+ → R defined by

u(x, t) := min
{
u0(γ(0)) +

∫ t

0

L
(
γ(s), γ̇(s), s

)
ds : γ : [0, t]→ Rd, γ(t) = x

}
,

has been studied by means of the method of characteristics. This function enjoys
many interesting properties. For instance it is differentiable in the x variable at
a point (x̄, t̄) if and only if there exists an unique curve γ which attains the min-
imum in the definition of u(x̄, t̄), and in this case ∇xu(x̄, t̄) = ∂vL

(
γ(t̄), γ̇(t̄), t̄

)
.

In case the minimizing curves at (x̄, t̄) are not unique, what remains true is that
the superdifferential at (x̄, t̄) is the convex hull of {γ̇(t̄) : γ minimizer at (x̄, t̄)}.
Concerning the second order differentiability of u, the value function enjoys the im-
portant property of semiconcavity. Finally, the value function is a viscosity solution
of the time-dependent Hamilton-Jacobi equation ∂tu + H(x,∇xu, t) = 0, H being
the Legendre transform of L. (We refer to [6] for a proof of all these results.) On
the other hand, whenever one relaxes the regularity assumptions on L, very little
is known.

In this paper we shall consider mechanical Lagrangians for which only Sobolev
regularity on the potential is assumed, and we investigate which properties still hold
true in this case. As we will see, no pointwise results can be obtained in this more
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general framework, so the point of view will be shifted from curves to probability
measures on the space of curves.

The interest in non-smooth Lagrangians comes from the study of a variational
approach to the Euler equations for incompressible fluids: as shown by Arnold [4],
the Euler equations in a domain D ⊂ Rd can be interpreted as a geodesic equation
on the infinite-dimensional manifold SDiff(D) of the measure-preserving diffeomor-
phisms of D. Although some well-posedness results can be proven when trying
to find minimizing geodesics between two close diffeomorphisms [8], Shnirelman
[10, 11] showed that the geodesic problem is ill-posed in the large. To bypass this
problem, Brenier has proposed a relaxed approach [5]: he replaces the notion of
path in SDiff(D) with the one of probability measures η on ΩT (D) := C

(
[0, T ];D

)
which satisfy an incompressibility constraint. A coherent notion of energy is avail-
able also in this wider class of objects, so that it is possible to settle the geodesic
problem in this setting and to prove existence of minimizers [5, 1]. By relaxing also
the incompressibility constraint, the pressure field arises as a Lagrange multiplier,
and as shown in [1] it is possible to look for a generalized solution in [0, T ] to the
Euler equations by minimizing

min
η

∫
ΩT (D)

∫ T

0

(
|γ̇(t)|2

2
− p(γ(t), t)

)
dt dη(γ)

among all η with bounded compression satisfying the initial and final constraints
(see later for precise definitions). Furthermore, as proven in [2], the best known
regularity result for p(·, t) in this situation is BV . This fact motivates the study
of non-smooth mechanical Lagrangians. In the present work we shall deal with
Sobolev Lagrangians, which, still in their own interest, represent an intermediate
step towards the BV case. More precisely, we will define some particular subsets
of the spaces of probability measures on ΩT (D) which are particularly suitable for
studying this kind of problem (see Section 2), and we will investigate the regular-
ity properties of the curves on which minimizing measures are concentrated. Let
us observe that, for the model problem we have in mind (i.e. the case when the
Lagrangian is given by 1

2 |v|
2 − p(t, x), p being the pressure associated to a varia-

tional solution to the Euler equations), the existence of a minimizer inside the class
P<T,∞(D) is known [1] (see (1) and Definition 2.1 below). Moreover (assuming for

simplicity Ld(D) = 1) this minimizer can be chosen to belong to the smaller class
P≈T,1(D) of incompressible flows. For this reason, in this paper we will never address
the question of existence of minimizers, and we will only be interested in studying
regularity properties of minimizers.

The paper is structured as follows: in Section 2 we introduce some definition and
notation which will be used through the whole paper, and we collect some prelim-
inary technical results. Section 3 is devoted to show that if the potential is W 1,p,
then a.e. extremal curve is W 2,p and satisfies the Euler equations (see Theorem 3.2).
Finally, in Section 4 we study the properties of the value function. For instance we
can show that, if the potential is W 2,p, then the second spatial derivatives of the
value function are measures whose positive part belongs to Lp (when p = ∞ this
corresponds to the classical fact that the value function is semiconcave).

2. Notation and preliminary results. Let us introduce the framework for the
following sections. Here and in the sequel, D will always denote either a smooth
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bounded domain of Rd or the d-dimensional torus Td. Let L(x, v, t) denote a time-
dependent mechanical Lagrangian of the form

L : D × Rd × [0, T ]→ R

(x, v, t) 7→ |v|
2

2
− V (x, t),

where T > 0 and V : D × [0, T ]→ R is the potential.
For a continuous curve γ : [0, T ]→ D, its action is given by

A(γ) :=

∫ T

0

(
|γ̇(t)|2

2
− V

(
γ(t), t

))
dt,

whenever the integral is well-defined. The set C
(
[0, T ];D

)
is the most general space

of admissible curves for our concerns, and will be denoted by ΩT (D). Let us also
set et : ΩT (D)→ D by et(γ) := γ(t).

Given a probability measure η ∈ P(ΩT (D)), its action is given by (with a little
abuse of language, we use the same symbol as for the action of a curve)

A(η) :=

∫
ΩT (D)

∫ T

0

(
|γ̇(t)|2

2
− V

(
γ(t), t

))
dt dη(γ),

whenever this double integral is well-defined.
Let us now introduce some sets of probability measures on ΩT (D), whose time

marginals are controlled by the Lebesgue measure:

P<T,C(D) :=
{
η ∈ P(ΩT (D)) : (et)#η ≤ CLd ∀ t ∈ [0, T ]

}
,

P<T,∞(D) :=
⋃
C>0

P<T,C(D),

P≈T,C(D) :=
{
η ∈ P(ΩT (D)) :

1

C
Ld ≤ (et)#η ≤ CLd ∀ t ∈ [0, T ]

}
,

P≈T,∞(D) :=
⋃
C>0

P≈T,C(D).

(1)

Given a measure η ∈ P<T,∞(D), the density of (et)#η with respect to Ld will be

denoted by ρt. (Although ρt depends on η we prefer not to explicit this dependence
in order to keep the notation lighter.)

Remark 1. If η ∈ P<T,∞(D), then for η-a.e. γ

L1
(
{t ∈ [0, T ] : γ(t) ∈ ∂D}

)
= 0.

This is a consequence of Fubini Theorem, together with the absolute continuity of
(et)#η: ∫

ΩT (D)

∫ T

0

χ∂D(γ(t)) dt dη =

∫ T

0

∫
D

χ∂D(x) d(et)#η(x) dt

=

∫ T

0

∫
D

χ∂D(x)ρt(x) dx dt = 0.

The same argument also shows that if f : D× [0, T ] is a function defined only Ld+1-
a.e., then for η-a.e. γ the function

t 7→ f(γ(t), t), t ∈ [0, T ],
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is well-defined L1-a.e. Indeed if f is modified on a Ld+1-negligible set, then the
value of f(γ(t), t) is modified on a η ⊗ dt-negligible set, which by Fubini Theorem
implies that for η-a.e. γ the set of t at which there is a modification is L1-negligible.

Remark 2. If V ∈ L1(D × [0, T ]) and η ∈ P<T,∞(D), then A(η) is well-defined

(possibly, it takes value +∞), and moreover also A(γ) is well-defined for η-a.e. γ.
Indeed this follows easily from∫

ΩT (D)

∫ T

0

∣∣V (γ(t), t)
∣∣ dt dη =

∫ T

0

∫
D

∣∣V (x, t)
∣∣ d(et)#η(x) dt ≤ C‖V ‖L1 ,

which implies that t 7→ V (γ(t), t) ∈ L1(0, T ) for η-a.e. γ. Moreover, thanks to
Remark 1 the value of A(γ) is independent of the choice of the representative of V
for η-a.e. γ.

Definition 2.1. Let V ∈ L1(D × [0, T ]). We say that η ∈ P<T,∞(D) is a minimizer

for the action at fixed endpoints if A(η) < +∞ and

A(η) = min
{
A(ν) : ν ∈ P<T,∞(D), (e0, eT )#ν = (e0, eT )#η

}
.

Convention: in the whole paper, C will denote a positive constant which depends
only on the dimension d, the domain D, and the bounds on the density ρ = (et)#η
(η will always be a fixed measure in every statement), and may change value from
line to line.

We now prove some technical results on the Lp-convergence of the incremental
quotients for Sobolev functions and some properties of distributions, which will be
used in the next sections.

Proposition 1. Let u ∈ L1(Rd;Rm), and z ∈ C1(Rd;Rd) with a bounded gradient.
Then, for any measurable set S ⊆ Rd,

‖u(·+ εz(·))− u‖L1(S;Rm) → 0 as ε→ 0

Proof. Suppose first that u ∈ C∞c (Rd;Rm), and fix K ⊂ Rd a compact such that
u(·+ εz(·)) is identically zero outside K for ε small. Then

‖u(·+ εz(·))− u‖L1(S;Rm) ≤ ‖u(·+ εz(·))− u‖L1(Rd;Rm) ≤ εLipu‖z‖L1(K),

and the last term converges to 0 as ε→ 0.
If u is arbitrary in L1(Rd;Rm), we can consider a sequence {uk}k∈N ⊂ C∞c (Rd)

such that

uk ∈ C∞c (Rd;Rm), ‖u− uk‖L1(Rd;Rm) → 0 as k →∞.
In this way we get

‖u(·+ εz(·))− u‖L1(S;Rm) ≤ ‖u(·+ εz(·))− uk(·+ εz(·))‖L1(Rd;Rm)

+ ‖uk(·+ εz(·))− uk‖L1(Rd;Rm)

+ ‖uk − u‖L1(Rd;Rm).

Moreover, denoting by φε(x) = x+ εz(x), thanks to the assumptions on z we have

‖u(·+ εz(·))− uk(·+ εz(·))‖L1(Rd;Rm) =

∫
Rd

∣∣u(x+ εz(x))− uk(x+ εz(x))
∣∣ dx

=

∫
Rd
|u(y)− uk(y)||det∇(φ−1

ε )(y)| dy

≤ C‖u− uk‖L1(Rd;Rm).
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Hence

‖u(·+εz(·))−u‖L1(S;Rm) ≤ (1+C)‖u−uk‖L1(Rd;Rm) +‖uk(·+εz(·))−uk‖L1(Rd;Rm),

so that

lim sup
ε→0

‖u(·+ εz(·))− u‖L1(S) ≤ (1 + C)‖u− uk‖L1(Rd;Rm),

which concludes the proof as the right hand side can be made arbitrarily small.

Lemma 2.2. Let V ∈ L1([0, T ];W 1,1(D)), ϕ ∈ C0([0, T ];Rd). Suppose that f : D×
[0, T ]→ R+ is bounded and that there exists ε̄ > 0 such that

supp f ⊆ {(x, t) ∈ D × [0, T ] : x+ εϕ(t) ∈ D} ∀ 0 ≤ ε < ε̄.

Then

lim
ε↘0

∫
D×[0,T ]

∣∣∣∣f(x, t)
(V (x+ εϕ(t), t)− V (x, t)

ε
−∇xV (x, t) · ϕ(t)

)∣∣∣∣ dt dx = 0

Proof. We notice that the integrand is well-defined due to the condition on the
support of f . Thanks to the boundedness of f we can compute∫

D×[0,T ]

∣∣∣∣f(x, t)
(V (x+ εϕ(t), t)− V (x, t)

ε
−∇xV (x, t) · ϕ(t)

)∣∣∣∣ dt dx
≤ ‖f‖∞‖ϕ‖∞

∫ 1

0

∫
supp f

∣∣∇xV (x+ εsϕ(t), t)−∇xV (x, t)
∣∣ dt dx ds.

Up to extending by zero ∇xV on the whole of Rd+1, we can apply Proposition 1
with u := ∇xV and z(x, t) := (sϕ(t), 0) to obtain, for s fixed,∫

supp f

∣∣∇xV (x+ εsϕ(t), t)−∇xV (x, t)
∣∣ dt dx→ 0 as ε→ 0.

(Observe that, even if z is only C0, thanks to its particular structure we have
det
(
(x, t) 7→ (x+ εsϕ(t), t)

)
= 1, so the proof still works.) Moreover∫

supp f

∣∣∇xV (x+ εsϕ(t), t)−∇xV (x, t)
∣∣ dt dx ≤ 2

∥∥‖V (·, t)‖W 1,1(D)

∥∥
L1[0,T ]

,

and we conclude by applying the Dominated Convergence Theorem.

Lemma 2.3. Fix δ > 0, and let u ∈W 2,1(Dδ), with Dδ = {x ∈ Rd : d(x,D) < δ}.
Then, for any z : D → Rd such that ‖z‖C1(D) < +∞ we have

lim
ε↘0

∫
D

∣∣∣∣u(x+ εz(x)) + u(x− εz(x))− 2u(x)

ε2
−
〈
∇2u(x)z(x), z(x)

〉∣∣∣∣ dx = 0

Proof. The assumptions ensure that, for |ε| small enough, the composition
u(x+ εz(x)) is well defined. Let us also point out that, for |ε| small, the line
segment [x, x+ εz(x)] is entirely contained in Dδ for any x ∈ D.
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Suppose first that u ∈ C∞c (D). Then

1

h2

(
u(x+ hz(x)) + u(x− hz(x))− 2u(x)

)
=

∫ h

0

∇u(x+ sz(x))−∇u(x− sz(x))

h2
· z(x) ds

=

∫ h

0

∫ s

−s

〈
∇2u(x+ rz(x)) z(x), z(x)

〉
h2

dr ds

=

∫ 1

0

∫ 1

−1

〈
∇2u(x+ hsrz(x)) z(x), z(x)

〉
s dr ds.

Thus, the integral in the statement can be written as∫
D

∣∣∣∣∫ 1

0

∫ 1

−1

s
〈
∇2u(x+ hsrz(x))z(x), z(x)

〉
− s

〈
∇2u(x)z(x), z(x)

〉
dr ds

∣∣∣∣ dx
≤ C

∫ 1

0

∫ 1

−1

∫
D

|z(x)|2
∣∣∇2u(x+ hsrz(x))−∇2u(x)

∣∣ dx dr ds
≤ C

∫ 1

0

∫ 1

−1

∫
D

∣∣∇2u(x+ hsrz(x))−∇2u(x)
∣∣ dx dr ds.

(2)

We now observe that the function (r, s) 7→
∫
D
|∇2u(x + hsrz(x)) − ∇2u(x)| dx

pointwise converges to zero (as h → 0) due to Proposition 1. Moreover, if we set
φh,r,s(x) := x+ hsrz(x) we have∫

D

∣∣∇2u(x+ hsrz(x))−∇2u(x)
∣∣ dx

≤
∫
D

|∇2u(x+ hsrz(x))|+ |∇2u(x)| dx

≤
∫
Dδ
|∇2u(y)| |det (∇φ−1

h,r,s)(y)| dy + ‖u‖W 2,1(D) ≤ C‖u‖W 2,1(Dδ),

Hence, thanks to the Dominated Convergence Theorem applied to the function
(r, s) 7→

∫
D
|∇2u(x + hsrz(x)) − ∇2u(x)| dx we obtain the result. In the general

case u ∈ W 2,1(Dδ) it suffices to observe that (2) still holds true by approximating
u in W 2,1 by C∞c functions, and one concludes as above.

The following two propositions are well-known results in functional analysis and
measure theory.

Lemma 2.4. If u ∈ D′(D) satisfies 〈u, ϕ〉 ≥ 0 for all ϕ ∈ C∞c (D), ϕ ≥ 0, then u is
a locally finite measure.

Here and in the sequel we will denote by M(X) (resp. Mloc) the set of finite
(resp. locally finite) measures on X, and by ‖ · ‖M(X) the total variation norm.

Lemma 2.5. Let D ⊆ Rd be a bounded open set and let u ∈ D′(D) satisfy∣∣〈u, ϕ〉∣∣ ≤ ∫
D

|fϕ| dx, ∀ϕ ∈ C∞c (D), (3)

for some f ∈ Lp(D), 1 ≤ p ≤ +∞. Then u = h dx for some h ∈ Lp(D), with
|h| ≤ |f |.

Here we prove a generalization of the Lemma 2.5:
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Lemma 2.6. Let D ⊆ Rd be a bounded open set and let u ∈ D′(D) satisfy

〈u, ϕ〉 ≤
∫
D

fϕ dx, ∀ϕ ∈ C∞c (D), ϕ ≥ 0, (4)

for some nonnegative function f ∈ Lp(D), 1 ≤ p ≤ +∞. Then, u is a measure.
Moreover, if u = u+ − u− denotes the decomposition of u into its positive and
negative part, then u+ = h dx for some h ∈ Lp(D), with 0 ≤ h ≤ f .

Proof. We first prove that u ∈ M(D). Indeed, if U ⊂⊂ D is open, ϕ ∈ C∞c (U)
and ψ ∈ C∞c (D, [0, 1]) is a cut-off function such that ψ ≡ 1 on U , then the function
(‖ϕ‖∞ − ϕ)ψ ∈ C∞c (D) is positive. Hence,

〈u, (‖ϕ‖∞ − ϕ)ψ〉 ≤
∫
D

f(‖ϕ‖∞ − ϕ)ψ dx ≤ 2‖f‖1‖ϕ‖∞.

This implies −〈u, ϕ〉 ≤ 3‖f‖1‖ϕ‖∞. Replacing ϕ with −ϕ, we get∣∣〈u, ϕ〉∣∣ ≤ 3‖f‖1‖ϕ‖∞, ∀ϕ ∈ C∞c (D),

so that ‖u‖M(D) ≤ 3‖f‖1 < +∞. Let us observe that, by approximation, (4) now

holds for every ϕ ∈ C0(D).
Let us then consider the decomposition u = u+ − u− and a Borel set B+ ⊆ D

such that u−(B+) = u+(D \ B+) = 0. Let us show that u+ << Ld, which will
imply u+ = h dLd for some h ∈ L1(D), h ≡ 0 outside B+. It suffices to show that
if N ⊆ B+ and Ld(N) = 0, then also u+(N) = 0. By Lusin Theorem, for every
ε > 0 there exists a continuous function ϕε such that

|u|
(
{x ∈ D : ϕε(x) 6= χN (x)}

)
< ε, 0 ≤ ϕε ≤ 1.

We have ∫
ϕε du =

∫
ϕε du

+ −
∫
ϕε du

− ≤
∫
fϕε dx ∀ ε > 0,

so that taking the limit as ε→ 0 yields
∫
χN du

+ ≤ 0.
It remains to show that if f ∈ Lp(D) then h ∈ Lp(D) too. To this aim, let us

consider g ∈ Lq(B+) ∩ L∞(B+), g ≥ 0, and a Lusin-type approximating sequence
gε : D → R as before. We have∫

gε du =

∫
gεh dx−

∫
gε du

− ≤
∫
fgε dx ≤ ‖f‖p‖gε‖q, ε > 0,

and, as ε→ 0, we get∫
gh dx ≤ ‖f‖p‖g‖q ∀ g ∈ Lq(B+) ∩ L∞(B+), g ≥ 0.

Since h is nonnegative we have ‖h‖p = sup
{ ∫

hg dx
‖g‖q : g ∈ L∞, g ≥ 0,

}
, and the

result is proved.

3. Euler-Lagrange equations. In this section we generalize to action-minimizing
measures the fact that an extremal curve satisfies the Euler-Lagrange equations. We
will assume that the potential enjoys a first-order Sobolev regularity in space (not
in time).
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Definition 3.1. Given γ ∈ ΩT (D) and ϕ ∈W 1,2
0 ([0, T ];Rd), we define

Adm(γ) :=
{
ϕ ∈W 1,2

0 ([0, T ];Rd) : ∃ ε > 0 s.t. γ + ε′ϕ ∈ ΩT (D) ∀ ε′ ≤ ε
}

;

Adm(ϕ) :=
{
γ ∈ ΩT (D) : ϕ ∈ Adm(γ)

}
;

Admε(ϕ) :=
{
γ ∈ ΩT (D) : γ + ε′ϕ ∈ ΩT (D) ∀ ε′ ≤ ε

}
;

B(γ) :=
{
t ∈ [0, T ] : γ(t) ∈ ∂D

}
;

Adm(γ) := Adm(γ)
W 1,2([0,T ];Rd)

.

Proposition 2. Let V ∈ L1([0, T ];W 1,p(D)), 1 ≤ p ≤ ∞, and let η be a minimizer

in P<T,∞(D) for the action at fixed endpoints. Fix ϕ ∈ W 1,2
0 ([0, T ];Rd). Then, for

η-a.e. γ ∈ Adm(ϕ),∫ T

0

(
γ̇(t) · ϕ̇(t)−∇xV (γ(t), t) · ϕ(t)

)
dt ≥ 0.

Proof. First of all, the integral is well-defined for η-a.e. γ. This follows from the
integrability assumptions on∇xV arguing as in Remark 2, and from the fact A(η) <
+∞ (by the definition of minimizer).

Let us then suppose by contradiction that there exists E ⊆ Adm(ϕ) such that
η(E) > 0 and ∫

E

∫ T

0

(
γ̇(t) · ϕ̇(t)−∇xV (γ(t), t) · ϕ(t)

)
dt < 0. (5)

Since η(E) = limn→∞ η(E ∩ Adm1/n(ϕ)), up to replacing E with E ∩ Adm1/n(ϕ)
with n sufficiently big, we can suppose E ⊆ Admε̄(ϕ) for a fixed ε̄ > 0.

In such a case, the following function Fε,E,ϕ : ΩT (D) → ΩT (D) is well defined
for ε < ε̄:

Fε,E,ϕ(γ) =

{
γ + εϕ if γ ∈ E
γ if γ ∈ ΩT (D) \ E.

We now compute the difference quotients of the action:

A((Fε,E,ϕ)#η)−A(η)

ε
=

∫
E

∫ T

0

γ̇(t) · ϕ̇(t) dt dη

+
ε

2

∫
E

∫ T

0

|ϕ̇(t)|2 dt dη

−
∫
E

∫ T

0

V (γ(t) + εϕ(t), t)− V (γ(t), t)

ε
dt dη.

We rewrite the last term as∫
E

∫ T

0

V (γ(t) + εϕ(t), t)− V (γ(t), t)

ε
dt dη

=

∫
D

∫ T

0

V (x+ εϕ(t), t)− V (x, t)

ε
ρE,t(x) dt dx,

where ρE,t is the density of (et)#(ηbE ) with respect to Ld. Let us notice that also

(Fε,E,ϕ)#η ∈ P<T,∞(D), which implies that ρE,t is bounded. Indeed, if S ⊆ D and
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C is such that η ∈ P<T,C(D), then

(et)#(Fε,E,ϕ)#η(S) = η({γ ∈ E : γ(t) + εϕ(t) ∈ S}) + η({γ ∈ Ec : γ(t) ∈ S})
≤ (et)#η(S − εϕ(t)) + (et)#η(S)

≤ 2CLd(S).

Since E ⊆ Admε̄(ϕ), W 1,2
0 ([0, T ];Rd) ⊂ ΩT (D), and W 1,p(D) ⊂ W 1,1(D) (thanks

to the boundedness of D), conditions of Lemma 2.2 are satisfied. Thus, we can take
the limit as ε→ 0 and obtain

lim
ε↘ 0

A((Fε,E,ϕ)#η)−A(η)

ε

=

∫
E

∫ T

0

γ̇(t) · ϕ̇(t) dt dη −
∫
D

∫ T

0

∇xV (x, t) · ϕ(t)ρE,t(x) dt dx

=

∫
E

∫ T

0

(
γ̇(t) · ϕ̇(t)−∇xV (γ(t), t) · ϕ(t)

)
dt dη.

On the other hand we observe that (Fε,E,ϕ)#η and η have the same endpoints
(because ϕ vanishes at the extrema of [0, T ]), which by the minimality of η implies
that the right derivative of the action is nonnegative. This yields a contradiction
with (5) and proves the result.

Theorem 3.2. Let D be either a smooth bounded connected and convex open set

in Rd or Td, and let L(x, v, t) = |v|2
2 − V (x, t) be a Lagrangian with potential V ∈

L1([0, T ];W 1,p(D)), 1 ≤ p ≤ ∞. If η is a minimizer for the action in P<T,∞(D) at
fixed endpoints, then, for η-a.e. γ:

(i) ∇xV (γ(t), t) is well-defined for a.e. t.
(ii) γ ∈ W 2,p((0, T );D). In particular, γ ∈ C1,1/q, where q is the dual exponent

to p (γ ∈ C1 if p = 1).
(iii) γ̈(t) = −∇xV (γ(t), t) a.e. in [0, T ].

Proof. The point (i) is a direct consequence of Remark 1. We now will show that
the distributional derivative (in time) of γ̇ is given by −∇xV (γ(t), t). By∫

ΩT (D)

∫ T

0

|∇xV (γ(t), t)|p dt dη ≤ C
∫
D

∫ T

0

|∇xV (x, t)|p dt dx

and by the estimate

|γ̇(t)− γ̇(s)| ≤
∫ t

s

|γ̈(τ)| dτ ≤ |t− s|1/q‖γ̈‖Lp([0,T ]),

this will prove both (ii) and (iii).
We split the proof into three cases. In fact, a more careful analysis is needed if

the curve γ touches the boundary of D. Of course if D = Td then only Step 1 is
needed. In what follows, {ϕn}n∈N is a countable dense subset of W 1,2

0 ([0, T ];Rd).

• Case 1. B(γ) = ∅.
In this case, γ ∈ Adm(ϕ) for any ϕ ∈ W 1,2

0 ([0, T ];Rd). In particular, by replacing
ϕ with −ϕ in Proposition 2 we get that, for a fixed ϕ, η-a.e. γ falling within Case
1 satisfies ∫ T

0

(
γ̇(t) · ϕ̇(t)−∇xV (γ(t), t) · ϕ(t)

)
dt = 0.
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Now, by taking {ϕn}n∈N ⊂ W 1,2
0 ([0, T ];Rd) a dense countable subset, we deduce

that there exists a set of curves γ of full η-measure such that∫ T

0

(
γ̇(t) · ϕ̇n(t)−∇xV (γ(t), t) · ϕn(t)

)
dt = 0 ∀n ∈ N,

and by density of the ϕn’s we actually obtain that, for η-a.e. γ,∫ T

0

(
γ̇(t) · ϕ̇(t)−∇xV (γ(t), t) · ϕ(t)

)
dt = 0 ∀ϕ ∈W 1,2

0 ([0, T ];Rd).

Hence, Dtγ̇(t) = −∇xV (γ(t), t) in the distributional sense, which implies the result.

• Case 2. B(γ) 6= ∅ and D = {x ∈ Rd : x · êd > 0}.
Although now D is an half-space and so is not bounded, this can be seen as a

model case where the boundary of D is flat. In this way, in the general case we will
be able to locally reduce to this case by flattening the boundary near a point γ(t),
with t ∈ B(γ) (see Case 3).

By Remark 1, η-a.e. γ touches the boundary in a negligible set of times, that is
L1
(
B(γ)

)
= 0. Moreover B(γ) is closed (as γ is continuous), and its complement

is a countable union of disjoint open intervals. The same conclusions of the Case
1 are valid in each of such intervals. We now have to treat the set of times where
γ touches ∂D. This will be done in two steps, by first proving that t 7→ γ̇(t) is a
function of locally bounded variation, and then by showing that its distributional
derivative is absolutely continuous with respect to L1. Since L1(B(γ)) = 0, this
will allow to conclude that γ̈(t) = −∇xV (γ(t), t) for a.e. t ∈ [0, T ], as desired.
Step a: γ̇ ∈ BVloc((0, T ),Rd). Obviously,{

ϕ ∈W 1,2
0 ([0, T ];Rd) : ϕ · êd ≥ 0

}
⊆ Adm(γ) ∀ γ ∈ ΩT (D).

Hence, arguing as in the Case 1, we find that for η-a.e. γ∫ T

0

(
γ̇(t) ·ϕ̇(t)−∇xV (γ(t), t) ·ϕ(t)

)
dt ≥ 0 ∀ϕ ∈W 1,2

0 ([0, T ];Rd) s.t. ϕ · êd ≥ 0.

(6)
Let us define u := −Dtγ̇ −∇xV (γ(·), ·). We want to show that u is a locally finite
(vector-valued) measure.

We first observe that u ∈
(
W 1,2

0 ([0, T ],Rd)
)∗

. Let us denote by ui the compo-

nents of u, that is 〈ui, ψ〉 := 〈u, ψêi〉 for all ψ ∈ W 1,2
0 ([0, T ];R), so that 〈u, ϕ〉 =∑

i 〈ui, ϕ · êi〉. Condition (6) applied to ϕ and −ϕ, with ϕ · êd ≡ 0, implies that
ui = 0 for 1 ≤ i ≤ d − 1. Hence they are trivially measures. By Lemma 2.4,
ud is a locally finite measure too. Thus u is a locally finite measure. Since
Dtγ̇ = −u−∇xV (γ(·), ·) ∈Mloc((0, T );Rd), γ̇ is a function of locally bounded vari-
ation, as desired.

We now want to show that γ̇ is absolutely continuous. We start by proving that
γ̇ has no jumps, and then we will show that it has no Cantor part either.
Step b: γ̇ is continuous. Fix t̄ ∈ (0, T ) at which γ(t̄) ∈ ∂D. By well-known
properties of BV functions in one variable (see for instance [3, Paragraph 3.2]),
there exist γ̇(t̄−) = limt→t̄− γ̇(t) and γ̇(t̄+) = limt→t̄+ γ̇(t). We want to prove that
these limits are actually equal, so that γ̇ is continuous.

Notice that, since γ(t) · êd ≥ 0 for any t and γ(t) = γ(t̄)+
∫ t
t̄
γ̇(s) ds, it must hold

γ̇(t+) · êd ≥ 0 and γ̇(t−) · êd ≤ 0.
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Given w a vector in the (d− 1)-dimensional sphere Sd−1 such that w · êd ≥ 0, we
consider the family {ϕn}n∈N of test functions defined by

ϕn = hnw, hn ∈ C∞c ((t̄− δn, t̄+ δn);R), hn(t̄) = 1,

ḣn ≥ 0 for t < t̄, ḣn ≤ 0 for t > t̄.

Here δn is chosen in such a way that δn ≤ 1/n and

|γ̇(t)− γ̇(t−)| ≤ 1

n
a.e. in (t̄− δn, t̄),

|γ̇(t)− γ̇(t+)| ≤ 1

n
a.e. in (t̄+ δn, t̄).

Then condition (6) together with Remark 2 and the bound |ϕn| ≤ 1 imply that∫ t̄+δn

t̄−δn
γ̇(t) · ϕ̇n(t) dt ≥

∫ t̄+δn

t̄−δn
∇xV (γ(t), t) · ϕn(t) dt

≥ −
∫ t̄+δn

t̄−δn
|∇xV (γ(t), t)| dt > −∞.

On the other hand∣∣∣∫ t̄+δn

t̄−δn
γ̇(t) · ϕ̇n(t) dt−

∫ t̄

t̄−δn
γ̇(t−) · ϕ̇n(t) dt−

∫ t̄+δn

t̄

γ̇(t+) · ϕ̇n(t) dt
∣∣∣ ≤ 2

n
,

which gives

w · (γ̇(t−)− γ̇(t+)) =

∫ t̄

t̄−δn
γ̇(t−) · ϕ̇n(t) dt+

∫ t̄+δn

t̄

γ̇(t+) · ϕ̇n(t) dt

≥
∫ t̄+δn

t̄−δn
γ̇(t) · ϕ̇n(t) dt− 2

n
≥ −

∫ t̄+δn

t̄−δn
|∇xV (γ(t), t)| dt− 2

n

Since t 7→ ∇xV (γ(t), t) ∈ L1(0, T ), letting n→∞ we get

w · (γ̇(t−)− γ̇(t+)) ≥ 0 ∀w ∈ Sd−1, w · êd ≥ 0.

Combining this with the inequality êd · (γ̇(t−) − γ̇(t+)) ≤ 0, we get êd · (γ̇(t−) −
γ̇(t+)) = 0. This implies in particular that − γ̇(t−)−γ̇(t+)

|γ̇(t−)−γ̇(t+)| is an admissible choice

for w, which yields γ̇(t+) = γ̇(t−). Thus γ̇ is continuous even at the points where
γ touches the boundary.
Step c: Dtγ̇ has no Cantor part. Let us call µ = Dtγ̇ and w = dµ

d|µ| . It remains to

show that µ (or equivalently its total variation |µ|) cannot have a Cantor component
either. To this aim, it suffices to prove that, if t̄ is a |µ|-Lebesgue point for w, then

lim inf
ε↘0

|µ|(Iε)
|∇xV (γ(·), ·)| dL1(Iε)

< +∞. (7)

(Here and in the sequel we denote Iε = (t̄− ε, t̄+ ε).) Indeed, by well-known results
about differentiation of measures (cf. [9, Theorem 2.12]) this would imply that

|Dtγ̇| = |µ| << |∇xV (γ(·), ·)| dL1 << L1,

as desired.
For all ε > 0 small, let Ĩε ⊃ Iε be such that

|µ|(Ĩε \ Iε) +

∫
Ĩε\Iε

|∇xV (γ(t), t)| dt ≤ ε |µ|(Iε). (8)
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(Such intervals Ĩε always exist since the measure µ has no atomic part.) Let us
then consider a family of test functions {ϕε}ε>0 such that

ϕε = hεw(t̄), hε ∈ C∞c (Ĩε;R), 0 ≤ hε ≤ 1, hε ≡ 1 in Iε.

Under these conditions, thanks to the fact that t̄ is a |µ|-Lebesgue point for w we
have ∣∣∣∣ 1

|µ|(Iε)

(∫
Ĩε

hε(t)w(t̄) dµ−
∫
Ĩε

hε(t)w(t) dµ

)∣∣∣∣ = oε(1).

We now claim that ϕε are admissible variations |µ|-a.e. in the sense of condition
(6), that is w(t̄)· êd ≥ 0. Indeed, arguing by contradiction, assume that w(t̄)· êd < 0.
Then, by the Lebesgue point condition we have

γ̇(t̄+ ε)− γ̇(t̄− ε)
|µ|(t̄− ε, t̄+ ε)

· êd =

∫ t̄+ε

t̄−ε

Dtγ̇

|µ|(t̄− ε, t̄+ ε)
· êd

=

∫ t̄+ε

t̄−ε

w · êd
|µ|(t̄− ε, t̄+ ε)

d|µ| ε→0−→ w(t̄) · êd < 0.

This implies that there exists a small number s0 > 0 such that(
γ(t̄+ s0)− γ(t̄)

)
· êd =

∫ s0

0

γ̇(t̄+ τ) · êd dτ

<

∫ s0

0

γ̇(t̄− τ) · êd dτ =
(
γ(t̄)− γ(t̄− s0)

)
· êd,

which gives (
γ(t̄+ s0) + γ(t̄− s0)− 2γ(t̄)

)
· êd < 0.

This is impossible since γ takes values in D = {x ∈ Rd : x · êd ≥ 0} and γ(t̄) · êd = 0,
and proves the claim.

Now, since ϕε are admissible variations |µ|-a.e., thanks to the relation |µ| = w ·µ
we get

1 ≤ 1

|µ|(Iε)

∫
Ĩε

hε(t)w(t) · dµ =
1

|µ|(Iε)

∫
Ĩε

hε(t)w(t̄) · dµ+ oε(1)

=
1

|µ|(Iε)

∫
Ĩε

ϕε dµ+ oε(1) = − 1

|µ|(Iε)

∫
Ĩε

γ̇ · ϕ̇ε dt+ oε(1)

≤ 1

|µ|(Iε)

∫
Ĩε

−∇xV (γ(t), t) · ϕε(t) dt+ oε(1)

≤ 1

|µ|(Iε)

∫
Ĩε

|∇xV (γ(t), t)| dt+ oε(1) ≤ 1

|µ|(Iε)

∫
Iε

|∇xV (γ(t), t)| dt+ oε(1)

where at the last step we used (8). Inequality (7) is now proved, and the proof of
Case 2 is completed.

• Case 3. B(γ) 6= ∅ and D ⊆ Rd is a smooth convex open set.
Arguing as in Case 1 we get that, for η-a.e. γ and for any n ∈ N,∫ T

0

(
γ̇(t) · ϕ̇n(t)−∇xV (γ(t), t) · ϕn(t)

)
dt ≥ 0 if γ ∈ Adm(ϕn). (9)

Here {ϕn}n∈N is a dense subset of W 1,2
0 ([0, T ];Rd). From now on, we consider

only curves γ for which the above inequality is true. Fix now t̄ ∈ B(γ), and let
α : Rd−1 → R be a smooth convex function such that ∂D coincides with the graph



LAGRANGIANS WITH SOBOLEV POTENTIALS 1337

of α in a neighborhood of γ(t̄). We locally reduce to the Case 2 by means of the
map

Φ(x1, . . . , xd) = (x1, . . . , xd−1, xd − α(x1, . . . , xd−1)),

so that Φ(∂D) coincide with the hyperplane {xd = 0} in a neighborhood of Φ(γ(t̄)).
Let us show that Dtγ̇ is a measure in a neighborhood of t̄, and let uγ := −Dtγ̇ −
∇xV (γ(·), ·) ∈

(
W 1,2

0 ([0, T ];Rd)
)∗

. We have

〈uγ , ϕ〉 =
〈
uγ ,∇(Φ−1 ◦ Φ)(γ)ϕ

〉
=
〈
uγ ,∇(Φ−1) ◦ Φ(γ)∇Φ(γ)ϕ

〉
= 〈vγ , ψ(ϕ)〉 ∀ϕ ∈W 1,2

0 ([0, T ];Rd),

where

ψ(ϕ) := ∇Φ(γ(·))ϕ(·) and vγ := uγ ∇(Φ−1) ◦ Φ(γ).

(Observe that vγ ∈
(
W 1,2

0 ([0, T ];Rd)
)∗

since ∇(Φ−1)(Φ(γ)) ∈ W 1,2
0 ([0, T ];Rd).)

Hence, thanks to (9) and the fact that the set {ψ(ϕn)}n∈N is still dense in

W 1,2
0 ([0, T ];Rd), we deduce

〈vγ , ψ〉 ≥ 0 ∀ψ ∈ Adm(γ).

Let us now consider ψ̄ ∈ W 1,2
0 ([0, T ];Rd) such that ψ̄ · êd ≥ 0, and fix δ > 0 small.

Moreover we take a smooth compactly supported cut-off function χ : [0, T ]→ [0, 1]
such that χ ≡ 1 in a neighborhood of t̄. Then it is not difficult to check that the
function (ψ̄ + δêd)χ belongs Adm(γ), which implies〈

vγ ,
(
ψ̄ + δêd

)
χ
〉
≥ 0 ∀ ψ̄ ∈W 1,2

0 s.t. ψ̄ · êd ≥ 0.

By letting δ → 0 we have recovered the analogous formula to (6) in the interior of the
interval {χ ≡ 1}. By the analysis of the flat case, we deduce that vγ is a measure in a
neighborhood of t̄, which implies that the same holds for uγ = vγ [∇(Φ−1)◦Φ(γ)]−1.

The rest of the proof follows exactly as in the flat case, where the convexity
assumption of D is used to show that the vector w(t̄) is admissible also in this case
(see Step c of Case 2).

4. Properties of the value function. In this section, we focus on the properties
of the value function. In particular, we will generalize the classical results recalled
in the introduction to this more general setting. We start with some preliminary
assumptions on V and u0. We shall work with a precise representative of the
potential V and the function u0, so that in particular both V and u0 are defined at
every point.

Definition 4.1. Let

L(x, v, t) =
|v|2

2
− V (x, t), (x, v, t) ∈ D × Rd × [0, T ]

where V is bounded from above. Let u0 : D → R be a function bounded from below.
The value function u : D × [0, T ]→ R associated to L and u0 is defined as

u(x, t) := inf

{
u0(γ(0)) +

∫ t

0

L(γ(τ), γ̇(τ), τ) dτ : γ ∈ Ωt(D), γ(t) = x

}
. (10)

The assumptions on V and u0 ensure that the infimum in the above definition
of u is not −∞. Moreover, the condition for V and u0 to be defined everywhere
ensures that u is well-defined. Indeed a priori, by changing for instance u0 on a
negligible set, u may change in a non-negligible set.
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Definition 4.2. Given V , u0 and u as in the previous definition, we say that
γ ∈ Ωt(D) is a minimizer for the evolutive problem (at time t) if

u(γ(t), t) = u0(γ(0)) +A(γ).

In order to deduce some regularity properties on u(·, T ), in all the following results
we will assume the existence of a measure η ∈ P≈T,∞(D) concentrated on minimizers
for the evolutive problem at time T . Let us observe that a variational solution to the
Euler equation will not generally satisfy this assumption, as the curves on which
it is concentrated only minimizes the action at fixed endpoints (see [1, Theorem
6.8]). However, it is likely that a variant of the minimization problem related to
the Euler equations [5, 1], where one removes the endpoint constraint but keep the
incompressibility, may allow to find such measures. As we said in the introduction,
in this paper we will make no attempts to prove existence of minimizers, but we
will only study their regularity properties.

Theorem 4.3. Let D be as in Theorem 3.2, V , u0 and u as in Definition 4.1.
Assume that there exists η ∈ P≈T,∞(D) concentrated on minimizers for the evolutive

problem at time T . Moreover, suppose that V ∈ Lp([0, T ];W 1,p(D)), 1 ≤ p ≤ ∞.
Then for every v ∈ Rd, |v| = 1, if ∂vu(·, T ) denotes the distributional derivative of
u(·, T ) in the direction v, it holds:

(i) ∂vu(·, T ) ∈ Lp(D). More precisely, there exists hv ∈ Lp(D) such that

〈∂vu(·, T ), ϕ〉 =

∫
D

hvϕdx ∀ϕ ∈ C∞c (D).

In particular, by Sobolev’s embeddings, if p > d then u(·, T ) is continuous.
(ii) The distributional gradient ∇xuT = (hê1 , . . . , hêd) is given by

∇xuT (x) =

∫
{γ:γ(T )=x}

γ̇(T ) dηT,x, for Ld-a.e. x ∈ D,

where ηT,x are the probability measures on {γ ∈ ΩT (D) : γ(T ) = x} obtained
by disintegrating η through the map eT , i.e.

η =

∫
ηT,x d(eT )#η(x)

(we refer to [7, Chapter III] for the notion of disintegration of a measure).

Proof. Fix v ∈ Sd−1. To simplify the notation, we shall denote by uT the function
u(·, T ) all along the proof. Remark 1 ensures that η-a.e. γ touches the boundary
in a set of times of zero measure. Let us point out that, under our assumptions,
if η is concentrated on minimizers for the evolutive problem, then it is easily seen
that it also minimizes the action at fixed endpoints (see for instance the proof of
[1, Theorem 6.12]). This implies that all the conclusions of Theorem 3.2 hold. In
particular

γ̈(t) = −∇xV (γ(t), t) for L1-a.e. t ∈ [0, T ].

We now claim that there exists a universal constant C, depending only on D and
the dimension, such that

‖γ̇‖L∞([0,T ]) ≤ C +

∫ T

0

|∇xV (γ(t), t)| dt (11)
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Indeed, we apply the intermediate value theorem to any component γi(t) = γ(t) · êi,
i = 1, . . . , d, to find a time tγi ∈ [0, T ] such that

|γ̇i(tγi)| ≤ C|γi(T )− γi(0)| ≤ C diam(D).

Hence, for every τ ∈ [0, T ],

|γ̇i(τ)| ≤ |γ̇i(tγi)|+
∫ τ

tγi

|∇xV (γ(t), t)| dt ≤ C +

∫ T

0

|∇xV (γ(t), t)| dt,

and (11) follows easily.
Let {ϕn}n∈N ⊂ C∞c (D; [0, 1]) be an increasing sequence of smooth cut-off func-

tions such that, if Dn denotes the interior of the set {ϕn = 1}, then ∪nDn = D.
We define

φγ,n(t) :=
t

T
ϕn(γ(t)).

Let us point out that, for any γ ∈ ΩT (D) and for any n ∈ N, since φγ,n(t) = 0
whenever γ(t) 6∈ suppϕn, the curve t 7→ γ(t) + φγ,n(t)hv belongs to ΩT (D) for |h|
smaller than dist(suppϕn, ∂D).

Step 1. Let γ be a minimizer for the evolution problem at time T , fix n ∈ N, and
assume that |h| ≤ dist(suppϕn, ∂D). Then

uT (γ(T ) + φγ,n(T )hv)− uT (γ(T ))

h
≤
∫ T

0

v · φ̇γ,n(t)γ̇(t) dt

+ h

∫ T

0

φ̇γ,n(t)2

2
dt−

∫ T

0

V (γ(t) + φγ,n(t)hv, t)− V (γ(t), t)

h
dt.

Let us first remark that |φ̇γ,n(t)| ≤ 1
T + ‖∇ϕn‖∞|γ̇(t)|, which implies that φγ,n ∈

W 1,2([0, T ];R). Moreover, thanks to our assumptions the curve t 7→ γ(t)+φγ,n(t)hv
belongs to ΩT (D), and starts from γ(0) at t = 0. In particular it is admissible in
the definition of uT , which implies

uT (γ(T )+φγ,n(T )hv)

≤ u0(γ(0)) +

∫ T

0

[
1

2

∣∣∣γ̇(t) + φ̇γ,n(t)hv
∣∣∣2 − V (γ(t) + φγ,n(t)hv, t

)]
dt.

On the other hand, thanks to the minimality of γ we have

uT (γ(T )) = u0(γ(0)) +

∫ T

0

|γ̇(t)|2

2
− V (γ(t), t) dt.

The conclusion of Step 1 follows easily.

Step 2. There exists a function f ∈ Lp(D) such that
∣∣〈∂vuT , ϕ〉∣∣ ≤ ∫D |fϕ| dy for

all ϕ ∈ C∞c (D).
Fix ϕ ∈ C∞c (D), ϕ ≥ 0. Then there exists n ∈ N such that suppϕ ⊂ Dn. Since Dn

is open this implies the following: whenever ϕ(y) 6= 0, then y, y+hv ∈ Dn for |h| <
dist(suppϕ, ∂Dn). Hence φγ,n(T ) = 1 for all curves γ such that γ(T ) ∈ suppϕ, and
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thanks to Step 1 we obtain

〈∂vuT , ϕ〉 = −〈uT , ∂vϕ〉 = lim
h→0

∫
D

uT (y)
ϕ(y − hv)− ϕ(y)

h
dy

= lim
h→0

∫
D

ϕ(y)
uT (y + hv)− uT (y)

h
dy

= lim
h→0

∫
ΩT (D)

(
ρ−1
T

(
γ(T )

)
ϕ
(
γ(T )

)uT (γ(T ) + hv
)
− uT

(
γ(T )

)
h

)
dη

≤ lim
h→0

∫
ΩT (D)

(
ρ−1
T (γ(T ))ϕ(γ(T ))

(∫ T

0

v · φ̇γ,n(t)γ̇(t) dt−
∫ T

0

V (γ(t) + φγ,n(t)hv, t)− V (γ(t), t)

h
dt
))

dη

=

∫
ΩT (D)

(
ρ−1
T (γ(T ))ϕ(γ(T ))

(
v ·
∫ T

0

(
φ̇γ,n(t)γ̇(t)− φγ,n(t)∇xV (γ(t), t)

)
dt
))

dη

=

∫
ΩT (D)

ρ−1
T (γ(T ))ϕ(γ(T )) v · γ̇(T ) dη.

(12)

(Observe that, by Theorem 3.2, η-a.e. γ is of class C1, so that in particular γ̇(T ) is
well-defined η-a.e.) Here the last but one equality is a consequence of Lemma 2.2
together with the identities

∫
ΩT (D)

∫ T

0

V (γ(t) + φγ,n(t)hv, t)− V (γ(t), t)

h
dt dη

=

∫
D

∫ T

0

V (x+ t
T ϕn(x)hv, t)− V (x, t)

h
ρt(x) dt dx,∫

ΩT (D)

∫ T

0

φγ,n(t)∇xV (γ(t), t) dt dη =

∫
D

∫ T

0

t

T
ϕn(x)∇xV (x, t)ρt(x) dt dx,

while the last one follows from an integration by parts together with Theorem 3.2.
By exchanging v with −v in (12) and exploiting the linearity with respect to ϕ, we
actually obtain the equality

〈∂vuT , ϕ〉 =

∫
ΩT (D)

ρ−1
T (γ(T ))ϕ(γ(T )) v · γ̇(T ) dη ∀ϕ ∈ C∞c (D). (13)
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From the above equation together with (11), we get∣∣∣∣∫
ΩT (D)

ρ−1
T (γ(T ))ϕ(γ(T )) v · γ̇(T ) dη

∣∣∣∣
≤ C

∫
ΩT (D)

ρ−1
T (γ(T ))ϕ(γ(T )) dη

+

∫
ΩT (D)

ρ−1
T (γ(T ))ϕ(γ(T ))

∫ T

0

|∇xV (γ(t), t)| dt dη

= C‖ϕ‖1 +

∫
D

ϕ(y)

∫
ΩT (D)

∫ T

0

∣∣∇xV (γ(t), t)
∣∣ dt dηT,y dy

= C‖ϕ‖1 +

∫
D

f̃ ϕ dy,

where f̃ : D → R is given by

f̃(y) =

∫
ΩT (D)

∫ T

0

|∇xV (γ(t), t)| dt dηT,y. (14)

The function f̃ belongs to Lp(D): indeed, thanks to Jensen inequality and the fact
that ρT is bounded from below, we get

‖f̃‖pp ≤ C
∫
D

∫
ΩT (D)

∫ T

0

∣∣∇xV (γ(t), t)
∣∣p dt dηT,y dy

≤ C
∫

ΩT (D)

∫ T

0

ρ−1
T (y)

∣∣∇xV (γ(t), t)
∣∣p dt dη

≤ C‖V ‖pLp([0,T ];W 1,p(D)).

Thus Step 2 is achieved with f = C + f̃ .

Step 3. Proof of (i) and (ii).
Statement (i) follows from Step 2 together with the Lemma 2.5. To get (ii), we
disintegrate the right-hand side of (13) through the map eT to obtain

〈∂vuT , ϕ〉 =

∫
D

ϕ(y)

(∫
ΩT (D)

γ̇(T ) dηT,y

)
dy.

Theorem 4.4. Let D be as in Theorem 3.2, V , u0 and u as in Definition 4.1.
Assume that there exists η ∈ P≈T,∞(D) concentrated on minimizers for the evolutive

problem at time T . Moreover, suppose that V ∈ Lp([0, T ];W 2,p(D)), 1 ≤ p ≤
∞. Then for every v ∈ Rd, |v| = 1, if ∂vvu(·, T ) denotes the second distributional
derivative of u(·, T ) in the direction v, it holds:

(i) ∂vvu(·, T ) ∈Mloc(D);
(ii) there exists h ∈ Lploc(D) such that ∂vvu(·, T )+ = hLd.

Proof. To simplify the notation, we denote by uT the function u(·, T ). Remark
1 ensures that η-a.e. γ touches the boundary in a set of times of zero measure.
Moreover, as we already observed at the beginning of the proof of Theorem 4.3, if η
is concentrated on minimizers for the evolutive problem then it is also a minimizer
for the action at fixed endpoints. This implies that all the conclusions of Theorem
3.2 hold, and in particular η-a.e. γ is of class C1.
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As in the proof of Theorem 4.3, we consider an increasing sequence {ϕn}n∈N ⊂
C∞c (D; [0, 1]) such that if Dn denotes the interior of {ϕn = 1} then ∪nDn = D,
and we define

φγ,n(t) :=
t

T
ϕn(γ(t)).

We observe that for any γ ∈ ΩT (D) and for any n ∈ N the curve t 7→ γ(t)+φγ,n(t)hv
belongs to ΩT (D) for |h| < dist(suppϕn, ∂D).

Step 1. If γ is a minimizer at time T then, for any n ∈ N and for any h > 0 small
enough,

uT
(
γ(T ) + φγ,n(T )hv

)
+uT

(
γ(T )− φγ,n(T )hv

)
−2uT (γ(T ))

h2

≤
∫ T

0

(
|φ̇γ,n(t)|2−

V
(
γ(t) + φγ,n(t)hv, t

)
+V
(
γ(t)− φγ,n(t)hv, t

)
−2V (γ(t), t)

h2

)
dt.

For |h| small, the curve t 7→ γ(t) + φγ,n(t)hv is admissible in the definition of uT ,
hence

uT
(
γ(T )+φγ,n(T )hv

)
≤ u0(γ(0))+

∫ T

0

1

2

∣∣∣γ̇(t)+φ̇γ,n(t)hv
∣∣∣2−V (γ(t)+φγ,n(t)hv, t

)
dt.

Analogously,

uT
(
γ(T )−φγ,n(T )hv

)
≤ u0(γ(0))+

∫ T

0

1

2

∣∣∣γ̇(t)−φ̇γ,n(t)hv
∣∣∣2−V (γ(t)−φγ,n(t)hv, t

)
dt.

By using the minimality of γ, the conclusion of Step 1 follows easily.

Step 2. There exists a function f ∈ Lp(D) such that the following holds: for
any n ∈ N there exists a constant C̄n such that 〈∂vvuT , ϕ〉 ≤ C̄n

∫
fϕ dy for all

ϕ ∈ C∞c (Dn), ϕ ≥ 0.
Fix ϕ ∈ C∞c (Dn), ϕ ≥ 0, and observe that since suppϕ ⊆ Dn then y + hv ∈ Dn for
all y ∈ suppϕ, |h| < dist(suppϕ, ∂Dn). This gives that φγ,n(T ) = 1 for all curves
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γ such that γ(T ) ∈ suppϕ, and by Step 1 we get

〈∂vvuT , ϕ〉 = 〈uT , ∂vvϕ〉

= lim
h→0

∫
ΩT (D)

(
ϕ(γ(T ))

uT (γ(T ) + hv) + uT (γ(T )− hv)− 2uT (γ(T ))

h2

ρ−1
T (γ(T ))

)
dη

≤
∫

ΩT (D)

∫ T

0

ϕ(γ(T ))ρ−1
T (γ(T ))|φ̇γ,n(t)|2 dt dη

− lim
h→0

∫
ΩT (D)

∫ T

0

(
ϕ(γ(T ))ρ−1

T (γ(T ))

(V (γ(t) + φγ,n(t)hv, t
)

+ V
(
γ(t)− φγ,n(t)hv, t

)
− 2V

(
γ(t), t

)
h2

))
dt dη

=

∫
ΩT (D)

∫ T

0

ϕ(γ(T ))ρ−1
T (γ(T ))|φ̇γ,n(t)|2 dt dη

−
∫

ΩT (D)

∫ T

0

ϕ(γ(T ))ρ−1
T (γ(T ))∂vvV (γ(t), t)φγ,n(t)2 dt dη

(15)

Here the inequality follows from Step 1 together with positivity of ϕ, while the
last equality is a consequence of Lemma 2.3 together with the assumption on V .
Now, since |φγ,n| ≤ 1, the last term is easily estimated as in the proof of Step 2 in
Theorem 4.3:∫

ΩT (D)

∫ T

0

ϕ(γ(T ))ρ−1
T (γ(T ))|∂vvV (γ(t), t)|φγ,n(t)2 dt dη ≤ C

∫
D

f1 ϕdx

where

f1(y) =

∫
ΩT (D)

∫ T

0

|∂vvV (γ(t), t)| dt dηT,y, y ∈ D.

(the measures ηT,y are defined as in Theorem 4.3). Concerning the other term, we

observe that |φ̇γ,n(t)|2 ≤ 1
T 2 + 2

T ‖∇ϕn‖∞|γ̇(t)|+‖∇ϕn‖2∞|γ̇(t)|2. Moreover, thanks
to Theorem 3.2 and (11) we have∫ T

0

|γ̇(t)|2 dt = γ(T ) · γ̇(T )− γ(0) · γ̇(0)−
∫ T

0

γ(t) · γ̈(t) dt

= γ(T ) · γ̇(T )− γ(0) · γ̇(0) +

∫ T

0

γ(t) · ∇xV (γ(t), t) dt

≤ C
(

1 +

∫ T

0

|∇xV (γ(t), t)| dt
)
,

where we used that the L∞-norm of γ is uniformly bounded since γ(t) ∈ D for all
t ∈ [0, T ]. Thanks to these facts we easily obtain

〈∂vvuT , ϕ〉 ≤ Cn‖ϕ‖1 + C

∫
D

f1 ϕdy + Cn

∫
D

f2 ϕdy, ∀ϕ ∈ C∞c (D), ϕ ≥ 0

where f2 = f̃ (with f̃ defined in (14)) and Cn is a constant depending on ‖∇ϕn‖∞.
Arguing as in the proof of Step 2 in Theorem 4.3, one can easily prove that f1 ∈
Lp(D), and Step 2 is proved with f = 1 + f1 + f2.
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Step 3. Conclusion of the theorem.
It is a direct consequence of Lemma 2.6.

Now we focus on the generalization of the property of the value function to be a
viscosity solution of Hamilton-Jacobi. Since the notion of viscosity solution requires
at least continuity of the value function, we assume that the potential is W 1,p with
p > d. We start with a preliminary result:

Lemma 4.5. Let D be as in Theorem 3.2, V , u0 and u as in Definition 4.1, and
suppose that u0 is continuous and V ∈ L∞([0, T ];W 1,p(D)), p > d. Then u is
continuous on D × [0, T ].

Proof. First of all we remark that under the above assumptions the existence of
a minimizing curve for any (x, t) follows by standard methods in the calculus of
variations. (Although all the proof could be done by only considering a sequence of
minimizing curves.)

Thanks to the assumption V ∈ L∞([0, T ];W 1,p(D)) ⊂ L∞([0, T ];C0,α(D)), α =
1− d/p, the continuity of u in space follows easily arguing as in the proof of Step 1
of Theorem 4.3.

To prove the continuity in time, fix a point x and two times 0 < s < t ≤ T . If
γs : [0, s] → D is such that γ(s) = x, then the concatenation of γ with the curve
constantly equal to x on [s, t] gives

u(x, t) ≤ u0(γ(0)) +

∫ s

0

1

2

[
|γ̇(τ)|2 − V (γ(τ), τ)

]
dτ −

∫ t

s

V (x, τ) dτ,

and by the arbitrariness of γ we get

u(x, t) ≤ u(x, s) + (t− s)‖V ‖L∞([0,T ]×D).

On the other hand, given a minimizing curve γt : [0, t] → D for the evolutive
problem such that γ(t) = x, we construct a competitor for u at (x, s) by considering
γt,s(τ) := γ

(
t
sτ
)
. Thanks to the estimate∫ s

0

∣∣V (γt(τ), τ)− V (γt,s(τ), τ)
∣∣ dτ ≤ C ∫ s

0

∣∣γt(τ)− γt,s(τ)
∣∣α dτ

≤ C s

tα

(∫ t

0

∣∣γt(τ)− γt
(
s
t τ
)∣∣ dτ)α ≤ C s

tα

(∫ t

0

∫ τ

s
t τ

|γ̇t(u)| du dτ
)α

= C
s

tα
(t− s)α

(∫ t

0

u|γ̇t(u)| du
)α
≤ C s (t− s)α

(∫ t

0

|γ̇t(u)| du
)α

and the bound ∫ t

0

|γ̇t(τ)|2 dτ ≤ A(γt) + ‖V ‖L∞([0,T ]×D) T,

since the action of A(γt) is easily seen to be bounded by a universal constant (thanks
to the minimality) we easily get the inequality

u(x, s) ≤ u(x, t) + C (t− s)α.
This concludes the proof.

In the next theorem we show that u is a viscosity solution to the evolutive
Hamilton-Jacobi equation at almost every point. Although both u and V are con-
tinuous, it is not clear to us whether one may expect u to be a viscosity solution at
every point, since the continuity of V does not ensure that a minimizing curve is
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C1. However, thanks to the Sobolev regularity of V , we can apply Theorem 3.2 to
say that almost every curve satisfies the Euler-Lagrange equation and is C1.

Theorem 4.6. Let D ⊆ Rd be as in Theorem 3.2, V , u0 and u as in Definition
4.1, and suppose that u0 is continuous and V ∈ C0([0, T ];W 1,p(D)), p > d. Fur-
thermore, assume that there exists η ∈ P≈T,∞(D) concentrated on minimizers for the

evolutive problem at time T . Set H(x, p, t) := 1
2 |p|

2 + V (x, t). Then, for every fixed
t ∈ (0, T ), u is a viscosity solution of the evolutive Hamilton-Jacobi equation{

∂tu(x, t) +H(x,∇xu(x, t), t) = 0,

u(·, 0) = u0,
(16)

at Ld-a.e. point x.

Proof. As we already observed in the proof of Theorem 4.3, under the above hy-
potheses all the conclusions of Theorem 3.2 hold, and in particular η-a.e. γ is of
class C1. Moreover, let us remark that if γ is a minimizer for the evolutive problem
at time T , it is the case also for every t < T .

Fix t ∈ (0, T ), and consider a point x such that there exists a minimizer γ ∈
C1([0, t],Rd). (This holds true for Ld-a.e. x, thanks to the fact that Ld ≤ C(et)#η.)
We will prove that u is a viscosity solution at (x, t).

Supersolution: If ϕ is a C1 function touching from below u at (x, t) = (γ(t), t),
then

ϕ(γ(t), t)− ϕ(γ(t′), t′) ≥ u(γ(t), t)− u(γ(t′), t′) =

∫ t

t′
L
(
γ(s), γ̇(s), s

)
ds.

Recalling that V is continuous and γ ∈ C1, dividing by t− t′ > 0 and letting t′ ↗ t
we obtain

∇xϕ(x, t) · γ̇(t) +
∂ϕ

∂t
(x, t) ≥ L(x, γ̇(t), t).

Since L(y, v, t) − p · v ≥ −H(x, p, t) for all y, v, p, t (by the definition of H), the
above equation implies that u is a viscosity supersolution at the point (γ(t), t).

Subsolution: For this part, we do not need the existence of a C1 minimizing
curve. Given a vector v ∈ Rd and h > 0 small, if ϕ is a C1 function touching from
above u at (x, t) we have

ϕ(x, t)− ϕ(x− hv, t− h)

h
≤ u(x, t)− u(x− hv, t− h)

h
.

Now, if γ : [0, t − h] → D is a minimizer for the evolutive problem, by considering
the concatenation of γ with the curve σ : [t−h, t]→ D, σ(τ) = x− (t− τ)v, we get

u(x, t)− u(x− hv, t− h)

h
≤ 1

h

∫ t

t−h
L
(
x− (t− τ)v, v, τ

)
dτ.

Letting h→ 0 we obtain

∂ϕ

∂t
(x, t) ≤ L(x, v, t)−∇xϕ(x, t) · v,

and the result follows by taking the supremum among all vectors v ∈ Rd.
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