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Abstract Within this paper a new path planning algorithm
for autonomous robotic exploration and inspection is pre-
sented. The proposed method plans online in a receding
horizon fashion by sampling possible future configurations in
a geometric random tree. The choice of the objective function
enables the planning for either the exploration of unknown
volume or inspection of a given surface manifold in both
known and unknown volume.Application to rotorcraftMicro
Aerial Vehicles is presented, although planning for other
types of robotic platforms is possible, even in the absence of
a boundary value solver and subject to nonholonomic con-
straints. Furthermore, the method allows the integration of
a wide variety of sensor models. The presented analysis of
computational complexity and thorough simulations-based
evaluation indicate good scaling properties with respect to
the scenario complexity. Feasibility and practical applicabil-
ity are demonstrated in real-life experimental test cases with
full on-board computation.
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1 Introduction

Ever since sensors could be moved in an automated man-
ner such that they can map their environment, the question
of what is the best way to do so has raised the interest of
the research community. Among the differentmobile sensing
problems, those of automated robotic exploration and inspec-
tion are of particular relevance, as critical application fields
such as infrastructure monitoring and maintenance, as well
as advanced manufacturing have high demands for automa-
tion, system reliability, predictive fault detection in order to
maximized safety and lower operation cost. The wide range
of possible applications asks for versatile sensor planning
approaches that can handle complex and large scale problem
setups. However, one of the major challenges for such algo-
rithms is the inherent trend for increased complexity when
the size of the considered scenarios grows.

Early work in the problem of sensor planning focused
on scanning tasks utilizing sensors linked to constructions
around the object of interest (e.g. with articulated robots).
However, the development of advanced mobile robots pro-
voked many studies on advanced environment mapping
exploiting the mobility of such vehicles. While the former is
particularly focused in applications such as quality testing in
automated manufacturing (Chin and Harlow 1982 and refer-
ences therein), the latter concepts can be applied in industrial
inspection (Burri et al. 2012; Nikolic et al. 2013; Omari et al.
2014), landscape surveillance (Khanna et al. 2015), disaster
zone exploration (Colas et al. 2013; Dornhege and Kleiner
2013, mine mapping (Zlot and Bosse 2014) and other simi-
lar application tasks including one or more robots (Zlot and
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Fig. 1 An instant of the
exploration of a room
containing a scaffold is shown
on the left side. In the upper part
one of the employed hexacopter
micro aerial vehicle (MAV), the
AscTec Firefly is depicted,
while the online dense
reconstruction acquired during
the exploration mission is shown
below. The computed path is
visualized in black, closely
followed by the MAV track in
light blue. The right side shows
the AscTec Neo MAV during an
inspection mission, with the
postprocessed data as a
triangular mesh depicted in the
upper part (Color figure online)

Stentz 2006). It should be noted that the specific problem
setup differs depending on whether the interest is to achieve
mapping and reconstruction of the surface or the volume of
interest—or both of them. Another difference arises based
on how much prior knowledge of the environment is avail-
able. In case of perfect knowledge, paths canbeprecomputed,
whereas imperfect knowledge requires methods to avoid col-
lisions or occlusions during operation (Fig. 1).

The autonomous exploration of a volume with given
bounds, but unknowncontent, is a very complex task.Assum-
ing that the sensor itself has to enter the considered volume,
accurate localization, sensing and navigation is required.
Moreover, since in general no a priori collision free paths
are known, the planner has to run online, deciding on a next
step as the exploration advances. The work in Connolly et al.
(1985) proposes to solve a Next Best View Problem (NBVP).
In order to map a given volume, the next best view is deter-
mined based on how much additional, unmapped volume is
visible. Repetition of this process can lead to the exploration
of the given volume. An advanced version of this iterative
approach was presented in Vasquez-Gomez et al. (2014).
A previously unknown 2D area is explored in Kuipers and
Byun (1991), considering a robotic system with measure-
ment and navigation errors. It employs hierarchical maps
to describe the topological objects encountered and derives
a distinctiveness map in which the controller steers “up-
hill”. In Yamauchi (1997) the expression of frontier regions
was introduced for the first time. The frontier is the border
between free and unknown volumes. In their neighborhood
the mapping of additional volume can be expected. The
mentioned paper proposes an algorithm that finds paths to

poses at these frontiers that maximize the extension of the
horizon of known volume, considering an onboard sensor.
Repetition of this process leads to exploration of the vol-
ume. Advanced variants of this algorithm were presented in
González-Banos and Latombe (2002), Adler et al. (2014),
and Heng et al. (2015), where the last also improves the
coverage of unknown volume along the path to the frontier.
The concept has been extended to multi-agent exploration
e.g. in Burgard et al. (2000) and Howard et al. (2006).
Using a geometric representation of the detected obstacles,
Surmann et al. (2003) samples possible viewpoints in the
whole known free volume instead of just at the frontiers.
Faigl and Kulich (2015) and Faigl et al. (2012) bench-
mark frontier methods in 2D scenarios for one or multiple
robots respectively. Amigoni et al. (2013) presents a study on
how the frequencies of decision making and measurement’s
integration into maps affect the speed and quality of the
exploration. In Dewan et al. (2013) a integer programming
formulation is employed to plan paths for the collabora-
tive exploration by aerial and ground robots. Multi-Criteria
Decision Making approaches are benchmarked in Basilico
and Amigoni (2011). The work in Rosenblatt et al. (2002)
uses fuzzy logic and utility fusion concepts to autonomously
explore coral reefs with underwater vehicles. Finally, in
Li et al. (2012) optimal paths for the exploration of an a
priori known 2D area are computed offline using the A∗
algorithm.

In an inspection task, information about a surface to be
reconstructed can be provided as a mesh- or voxel-based
model. This prior geometric model can be obtained from
CAD software, civil engineering instrumentation, Geograph-
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ical Information Systems or previous mapping missions,
either manually or automatically conducted. One of the early
proposed approaches was the adaptation of the NBVP to the
inspection of surfaces. This was achieved e.g. by Pito (1999)
by forcing the view to contain portions of already mapped
surface to guarantee overlap for camera-based reconstruction
purposes and thereby influence the views to also detect new
parts of the surface. The approach in Banta et al. (2000)
deals with finding a next view on the object of interest,
for which a set of criteria are proposed, depending on the
stage of the reconstruction. The work in Whaite and Fer-
rie (1997) proposes the reduction of an uncertainty motion
of the model to evaluate the next best views. Finally, Yoder
and Scherer (2016) proposes an extension to the concept of
frontiers, which are the boundaries of inspected parts of a
surface embedded in 3D space. This allows the inspection
of an object’s surface without prior knowledge of its shape.
While the abovementioned contributions presented concepts
to inspect surfaces in an unknownor partially known environ-
ment, most inspection algorithms proposed in the literature
assume a perfectly known environment. Solving the clas-
sical offline Coverage Planning Problem, the algorithms in
Choset and Pignon (1998) and Acar et al. (2002) divide sur-
faces like floors or landscapes into cells that are covered
with a sweeping pattern. Following a different approach, the
method presented in Hover et al. (2012) computes inspection
paths, dividing the problem into that of finding of a good
set of viewpoints and subsequently connecting them with a
short path. In Bircher et al. (2016) an alternation between
these two steps is proposed in order to improve the resulting
path and in Janoušek and Faigl (2013) the inspection prob-
lem is solved using self-organizing neural networks. Solving
the problem employing a unified approach in order to prob-
abilistically find the optimal inspection path, the works in
Papadopoulos et al. (2013) and Bircher et al. (2016) rely on
sampling-based concepts to explore the configuration space
with a random tree, the branches of which grow to find
full coverage solutions. Finally, Alexis et al. (2015) pro-
poses the use of re-meshing strategies to uniformly cover
structures represented by 3D triangular meshes. A compre-
hensive overview of coverage path planning algorithms can
be found in Galceran and Carreras (2013) and the references
therein.

The general motivation for the presented research is to
enable enhanced autonomy of mobile robots in places that
are only partially or fully unknown. In such places, explo-
ration is a first task a robot can do to enable achievement
of further goals, such as those of comprehensive inspec-
tion, semantic identification, or manipulation. To this end,
the algorithm presented within this work addresses the prob-
lems of autonomous robotic exploration of an unknown 3D
volume, as well as the inspection of a given surface in
either known, partially known or completely unknown envi-

ronments. While the result of the former is an occupancy
map, dividing space in free and occupied volume, the latter
acquires color andbroadly visual data about a known surface.
In order to solve these two different problems in a unified
way, next best views are randomly sampled in the known
free space. The quality of the selected views is determined
by the amount of visible unmapped volume in the first case
and the amount of visible uninspected surface in the second.
In contrast to previous contributions, the views are sampled as
nodes in a random tree, the edges of which directly provide a
collision free path. Inmost iterations very few sampled view-
points suffice to determine a reasonably good next step and
enable efficient exploration. The robot then only executes
the first edge of the tree towards the best viewpoint, after
which the whole process is repeated in a receding horizon
fashion. This improves the performance of the algorithm and
further distinguishes the presented approach from previously
known exploration and inspection planning strategies. The
lightweight design of the planner allows seamless integra-
tionwith the robot’s control loops. As a result it enables more
agile and robust robot behavior with respect to disturbances
and uncertainties. In this paper, analysis on the computa-
tional complexity for both variants of the proposed algorithm
is provided. Essentially, this receding horizon approach to
next best view planning for autonomous exploration and
inspection aims to close the loop between the planning and
perception loops on-board a robotic system, enable its capac-
ity to actively perceive its environment, and through that
enhance its autonomy levels in critical mapping, monitor-
ing and exploration tasks. An extensive experimental study
has been conducted using aerial robots. Nonetheless, the pro-
posed algorithm is applicable to a wide variety of different
robot configurations.

Overall, this paper corresponds to amajor extension of the
author’s previous preliminary work in Bircher et al. (2016).
More specifically, this work is not limited to the problem
of volumetric exploration but also addresses the problem
of autonomous inspection and unifies the two problems of
exploration of unknown volume and the inspection of sur-
faces in a single algorithm. Relevant new formulations of the
information gain are also provided. Furthermore, profound
analysis of the algorithm properties and computational cost,
aswell as an updated set of simulation and experimental eval-
uation studies is provided. Information about the open-source
released software package that may be found at Bircher and
Alexis (2016) and the online available dataset (Bircher et al.
2016) of the presented experimental results has been added.

The remainder of this paper is organized as follows: The
considered problem is defined in Sect. 2 and the proposed
solution is described in detail, as well as analyzed regarding
computational cost in Sect. 3. Evaluation in simulation and
real-world experiments is presented in Sects. 4 and 5. Finally,
Sect. 6 gives instructions to download the implementation of
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the proposed algorithm, as well as the dataset of an exper-
iment and Sect. 7 summarizes and concludes the presented
work.

2 Problem formulation

The first problem considered within this work consists in
exploring a given bounded 3D volume V ⊂ R

3. This is to
start froman initial collision free configuration andfind apath
that leads to the mapping of the unknown volume. While �

is the simply connected set of collision free configurations ξ ,
a path is given by σ : R → ξ , specifically from ξk−1 to ξk by
σ k
k−1(s), s ∈ [0, 1] with σ k

k−1(0) = ξk−1 and σ k
k−1(1) = ξk .

The path has to be such that it is collision free and can be
tracked by the vehicle, considering its dynamic and kine-
matic constraints. The corresponding path cost is c(σ k

k−1). To
accomplish the task, it has to be determinedwhich parts of the

initially unmapped volume Vunm
init.= V are free V f ree ⊆ V

or occupied Vocc ⊆ V . For the mapping process the volume
is discretized in an occupancy mapM consisting of cubical
voxels m ∈ M with edge length r . The operation is subject
to vehicle dynamic constraints, localization uncertainty and
limitations of the employed sensor system. The assumption
about the sensor is that it can identify surfaces and thus the
free space between the robot and them (e.g. stereo camera,
LiDAR). Limitations of the field of view and resolution affect
the rate of progress and influencewhat can bemapped. As for
most sensors the perception stops at surfaces, hollow or solid
spaces, or narrow pockets can sometimes not be explored
with a given setup. This residual volume is denoted by Vres .

Definition 1 (Residual volume) Let � be the simply con-
nected set of collision free, connected configurations and
V̄m ⊆ � the set of all configurations from which the voxel
m can be mapped. Then the residual volume is given as

Vres =
⋃

m∈M
(m| V̄m = ∅).

Due to the nature of the problem, a suitable path has to be
computed online and in real time, as the free volume to nav-
igate in is not known prior to its exploration. To increase the
autonomy of the vehicle, the planner should run onboardwith
the limited resources available, while other computationally
expensive tasks—such as the visual–inertial localization and
mapping pipeline—also have to necessarily run onboard.

Problem 1 (Volumetric exploration problem) Given a
bounded volume V , find a collision free path σ starting at
an initial configuration ξini t ∈ � that leads to identifying the
free and occupied parts V f ree and Vocc when being executed,
such that there does not exist any collision free configuration

from which any piece of V \ {V f ree, Vocc} could be mapped.
Thus, V f ree ∪ Vocc = V \ Vres .

Operatingwithin the sameconstraints, the secondproblem
refers to the inspection of given 2-dimensional manifolds
s ∈ S embedded in a bounded 3D volume V ⊂ R

3 and with
known location. Initially S is not inspected, Suni

ini t.= S and a
path for the vehicle has to be found, such that the whole S is
inspected. Again, some parts denoted by Sres may be beyond
the reach of the sensor, considering the employed system.

Definition 2 (Residual surface) Let V̄s ⊆ � be the set of
all configurations from which the surface piece s ⊆ S can
be inspected. Then the residual surface is given as Sres =⋃

s∈S(s| V̄s = ∅).

Problem 2 (Surface inspection problem) Given a surface S,
find a collision free path σ starting at an initial configuration
ξini t ∈ �, that leads to the inspection of the part Sinsp when
being executed, such that there does not exist any collision
free configuration from which any piece of S \ Sinsp could
be inspected. Thus, Sinsp = S \ Sres .

3 Proposed approach

Considering the problems of exploration of unknown volume
and inspection of surfaces, the proposed unified approach
employs a sampling-based receding horizon path planning
paradigm, to generate paths that cover a volume V in the
former and a surface S in the latter case. A sensing system
that perceives a subset of the environment, e.g. depth camera
or a laser scanner is employed to provide feedback on the
explored volume. All acquired information is combined in a
map representing the world. This volumetric occupancy map
is used for both, collision free navigation and determination
of the exploration progress. In case of surface inspection,
a camera is employed to inspect the given manifold. The
structure of this closed loop setup, depicted in Fig. 2, resem-
bles receding horizon controllers like Camacho and Bordons
(2003) and Alexis et al. (2012). However, in contrast to the
mentioned controllers, the objective of the presented plan-
ner focuses on exploration and inspection, while penalizing
distance. The continuous feedback by mapping the environ-
ment is introduced to help attenuating errors in tracking and
perception, analogous to control theory, where the feedback
also enhances robustness to such errors and uncertainties.

The employed representation of the environment is a vol-
umetric occupancy map (Hornung et al. 2013) dividing the
volume V in cubical volumes m ∈ M that can either be
marked as free, occupied or unmapped. The resulting array
of voxels is saved in an octree, enabling computationally effi-
cient access for operations like integrating new sensor data
or checking for occupancy. Paths are only planned through

123



Auton Robot (2018) 42:291–306 295

Fig. 2 Diagram of the system setup. A volumetric occupancy map of
the environment is built using the input of the onboard sensors of the
robot. At any time, the mapped knowledge of the environment enables
the planner to find good exploration paths, starting at the current loca-
tion. These are executed by the robot and updated during operation. In
case of inspection, also the required surfaces are mapped and evaluated.
This feedback on the inspection progress enables the planning of good
next segments of the inspection paths

known free volume V f ree, thus providing collision free nav-
igation. For a given occupancy map representing the world
M, the set of visible and unmapped voxels from configura-
tion ξ is denoted by VisibleV(M, ξ). Every voxel m in this
set lies in the unmapped exploration area Vunm , the direct
line of sight does not cross occupied voxels and in addition it
complies with the sensor model (e.g. inside the Field of View
(FoV), maximum range). Starting from the current configu-
ration of the vehicle ξ0, a geometric tree T is incrementally
built in the configuration space.To fulfill the role of geometric
tree growing, within this work the RRT algorithm (LaValle
1998) is used. The resulting tree contains NT nodes n and
its edges are given by collision free paths σ , connecting the
configurations of the two nodes. The quality—or information
gain—of a nodeGain(n) is the summation of the unmapped
volume that can be explored at the nodes along the branch,
e.g. for node nk , according to

Gain(nk)=Gain(nk−1)+μ(VisibleV(M, ξk))e
−λc(σ k

k−1),

(1)

with the tuning factorλ penalizing high path costs (González-
Banos and Latombe 2002) and μ() denoting the Lebesgue
measure.

To solve the fundamentally different problem of surface
inspection of a completely known surface manifold S, only
minor adaptations to the described scheme are necessary.
While initially the whole given surface is uninspected, upon
the inspection of piece s ⊆ S it is moved from the set of
uninspected surface Suni to the set of inspected surface Sinsp.
To this end, Eq. 1 is adapted to account for the area of visible
surfaceμ(VisibleS(M, ξ)) instead of the unmapped volume.

For both variants of the algorithm, only the first segment of
the branch to the best nodeExtractBestPathSegment(nbest )
is executed by the robot, where nbest is the node with the
highest gain. Subsequently, the planning step is repeated,
resulting in an actual receding horizon strategy. To prevent
discarding of already found high quality paths, the remain-

der of the best branch is used to reinitialize the tree in
the next planning iteration, re-evaluating its gains using the
updated mapsM or S. Tree creation is in general stopped at
NT = Nmax, but if the best gain gbest of nbest remains zero,
the tree construction is continued, until gbest > 0. Maintain-
ing the best branch for the next planning steps prevents the
loss of these computationally expensive paths. For practi-
cal purposes, a tolerance value NTOL is chosen significantly
higher than Nmax and the exploration is considered to be
solved when NT = NTOL is reached, while gbest remained
zero. This also means that in practice 100% exploration or
coverage are not guaranteed. Algorithm 1 summarizes the
planning procedure.

Algorithm 1 Exploration Planner—Iterative Step
1: ξ0 ← current vehicle configuration
2: Initialize T with ξ0 and, unless first planner call, also with previous

best branch
3: gbest ← 0 
 Set best gain to zero
4: nbest ← n0(ξ0) 
 Set best node to root
5: NT ← Number of initial nodes in T
6: while NT < Nmax or gbest = 0 do
7: Incrementally build T by adding nnew(ξnew)

8: NT ← NT + 1
9: if Gain(nnew) > gbest then
10: nbest ← nnew
11: gbest ← Gain(nnew)

12: if NT = NTOL then
13: Terminate exploration
14: σ ← ExtractBestPathSegment(nbest )
15: Delete T
16: return σ

3.1 Implementation details

The described approach was designed to equip an aerial
robot with exploration and inspection autonomy, but is also
applicable to a wide range of robot configurations includ-
ing Unmanned Ground Vehicles (UGV) and Autonomous
Underwater Vehicles (AUV) or even articulated robots. For
all robots with a known two-state boundary value solver
(BVS), sampling can be performed in the configuration
space, enabling the use of the well known random tree
construction algorithms like e.g. RRT or RRT∗, offering a
fast coverage of the configuration space. For more com-
plex dynamics where BVS are not explicitly known, random
trees can conveniently be generated by sampling in the con-
trol space and subsequently performing forward integration.
This can be used to accommodate actuator saturation or non-
holonomic constraints in the presented algorithm. The actual
implementation used for the experiments presented in this
work is designed to plan for a rotorcraft MAV.

The considered vehicle configuration is the flat state,
consisting of position and yaw, ξ = (x, y, z, ψ)T . The vehi-
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cle is allowed a maximum translational speed vmax and a
constrained yaw rate ψ̇max, both of which are assumed to
be small, such that roll and pitch can be assumed to be
zero. For slow maneuvering it suffices to use straight lines
as tracking reference for the vehicle, specifically σ k

k−1 =
sξk + (s − 1)ξk−1, with s ∈ [0, 1]. The connection cost of
the reference path is considered to be the Euclidean distance,
c(σ k

k−1) = √
(xk − xk−1)2 + (yk − yk−1)2 + (zk − zk−1)2.

The maximum speed and the yaw rate limit are enforced
when sampling the path to generate a reference trajectory.

The employed camera system is assumed to be mounted
with a fixed pitch, to have a limited FoV described by ver-
tical and a horizontal opening angle [αv, αh], as well as a
constraint on the maximum distance that it can effectively
sense. While the sensor limitation is dsensormax , the algorithm

uses a value dplannermax ≤ dsensormax to determine the volumet-

ric gain of a configuration. A lower dplannermax ensures both
robustness against suboptimal sensing conditions, as well as
improved computational performance.

The depth information is incorporated in a probabilis-
tic occupancy map, the specific implementation of which
employs the octomap package (Hornung et al. 2013) and pro-
vides further functionality for the gain computation and the
collision checking of subvolumes. Volumes of the shape of a
box around the paths are checked to be free in the occupancy
map.

For the surface gain computation the same model with
a limited FoV is employed, while dsensormax is the range, up
to which surfaces are considered to contribute. Information
about the structure to inspect is loaded as a triangular sur-
face mesh S, which can dynamically be refined to reach a
predefined resolution q, being the maximum area of a facet.
Refining in this casemeans splitting the triangle in four equal
smaller triangles, if the status (state of inspection) is not the
same for all. A quadtree data structure enables efficient han-
dling of the refined surfaces, such that the time consumption
of operations like gain computation or insertion of a view is
minimized. A specific facet s ∈ S is considered to belong to
VisibleS(M, ξ) if the orientation is facing towards the view-
point and the line of sight in the occupancy map is free. For
the gain computation the unmapped voxels are considered
free. For the insertion of a view, the line of sight has to be
strictly free.

3.2 Computational complexity

As the planner should run onboard a mobile robot like an
MAV or similar, short computation times and good scaling
properties are crucial. For the exploration problem, the main
scenario-dependent parameters that are relevant for these
properties are the volume to be explored V and the resolution
of the occupancy map r . In addition, the number of nodes in

the tree NT and the choice of the sensor range dplannermax deter-
mine the duration of the path computation. For an occupancy
map in an octree data structure queries like checking a voxel
for its status (Hornung et al. 2013) have logarithmic com-
plexity in the number of voxels N tot

vox = V/r3, corresponding
toO(log(V/r3)). The construction of an RRT tree in a fixed
environment is, as shown in Karaman and Frazzoli (2011), of
complexityO(NT log(NT)),while the query for the best node
in an RRT tree only scales withO(NT). The number of vox-
els in the fixed volume around an edge to check for collision
scaleswith 1/r3 and the complexity to check the NT−1 edges
in the occupancy map is therefore O(NT/r3 log(V/r3)).
Furthermore, for every node the gain has to be computed.
Considering a given FoV, the sensor volume is proportional
to Vsensor ∝ (dplannermax )3. The number of voxels to test is there-
fore approximately equal to N sensor

vox ≈ Vsensor
r3

. A ray cast
to check visibility is performed for every individual voxel.
Its complexity scales with the number of voxels on the ray
O(dplannermax /r), resulting in O(dplannermax /r log(V/r3)) for the
visibility check andO((dplannermax /r)4 log(V/r3)) for one gain
computation. As the construction of the RRT tree dominates
its query, the total complexity of a single replanning step
results in the sum of tree construction, collision checking
and gain computation

O(NT log(NT) + NT/r3 log(V/r3)

+ NT(dplannermax /r)4 log(V/r3)) (2)

Notably, the complexity only depends logarithmically on
the volume of the exploration problem when the map resolu-
tion and planning horizon are fixed. For very large scenarios
and when most space has been mapped, it may happen that
the number of necessary nodes to find any gain exceeds
Nmax. These iterations generally take longer to compute but
as these expensive solutions are kept for the next iterations,
the frequency with which this case occurs is maintained at a
minimum.

When planning for the inspection of a given surface, tree
construction and collision checking remain the same, only
the gain computation is altered. The necessary computa-
tion time scales with the number of uninspected facets in
the considered triangular mesh N f ac

uni . A naive implemen-
tation checks all facets for visibility, in the implementation
used for the presented experiments this is done in the occu-
pancy map. As the distance at which facets are considered is
bounded by dplannermax , a conservative estimation of the com-
plexity results in O(N f ac

uni d
planner
max /r log(V/r3)). It is noted

that a constant number of ray casts is assumed per facet,
as they have approximately the same size. Scaling the gain
computation complexity with the number of viewpoint con-
figurations NT, the total complexity for the inspection path
planning algorithm results therefore in

123



Auton Robot (2018) 42:291–306 297

−5

0

5

−10
−5

0
5

10

01
23

x [m]

y [m]

z 
[m

]

Fig. 3 The apartment setup is shown together with an instant of the
exploration mission on the left side. Blue is the reference path of the
whole mission, while the vehicle response is depicted in black. The
green point denotes the root of the RRT tree shown in red. An alterna-

tive exploration path computed by the frontier-based algorithm is shown
with a green line. The floor and the roof are not visualized. On the right
side, the occupancy map is depicted, with the voxels colored according
to their height (Color figure online)

O(NT log(NT) + NT/r3 log(V/r3)

+NTN
f ac
uni d

planner
max /r log(V/r3)). (3)

Also this planner’s complexity depends only logarithmi-
cally on the considered volume. Moreover, as the inspection
progresses, the third term for the gain computation vanishes,
as the number of uninspected surfaces decreases.

4 Simulation based evaluation

In order to systematically evaluate the potential of the pro-
posed exploration and inspection planners, simulation stud-
ies have been performed using a hexacopter MAV. Two sce-
narios of different size are considered, while in both the vol-
umetric exploration planner is compared to a frontier-based
approach (similar to González-Banos and Latombe (2002)).

4.1 Simulation environment

Since the planners interact in a closed loop with the robot’s
perception, estimation and control loops, a detailed and real-
istic simulation is required. The Gazebo-based simulation
environment RotorS1 has been used along with the provided
model of the AscTec Firefly hexacopter MAV.2 It employs
a stereo camera that gives real-time feedback of the simu-
lated environment, both as an optical image stream and depth
images. In order to evaluate specifically the path planning,
the simulated depth images are fed to themap instead of com-
puting them from the stereo images. Further, ground truth is
used to bypass the odometry algorithms. The specifications
of the perceived area are a FoV of [60, 90]◦ in vertical and
horizontal direction, respectively, while it is mounted with a
downward pitch angle of 15◦. For all simulations, the size of
the box model for collision detection is assumed to have a

1 RotorS: An MAV gazebo simulator, https://github.com/ethz-asl/
rotors_simulator.
2 Ascending Technologies GmbH, http://www.asctec.de/.

size of 0.5 × 0.5 × 0.3m3. Computation was performed on
a computer with a i7 2.8GHz processor and 16GB RAM.

4.2 Apartment exploration scenario

The first scenario refers to a 20×10×3m3 apartment space,
divided in different rooms by walls as depicted in Fig. 3.
The vehicle starts in the centre and navigates through narrow
passages in order to explore the whole volume or inspect the
whole surface, respectively for the two variations of the pro-
posed planner. The surfacemeshmodel for the latter has been
derived from the occupancy map acquired in the former and
covers all walls, floor and ceiling. The resolution of the online
built occupancy map is r = 0.4m and the surface mesh is
refined, such that all facets have an area of less than 0.5m2.
To ensure high accuracy, the maximum sensing range for
the employed depth sensor is set to dsensormax = 5m, while the

planner only considers a maximum range of dplannermax = 2m.
Table 1 summarizes the complete set of employed parame-
ters.

In order to assess the performance and overall quality of
the exploration planner, a comparison with a frontier-based
planner has been conducted. The work in González-Banos
and Latombe (2002) was adapted to work with the occu-
pancy map and the specific problem setup. For this purpose,
free voxels in the neighborhood of unmapped voxels have
been considered as frontier voxels. To allow collision-free
placement of the vehicle, voxels up to half the collision
box diagonal from the frontier cells are considered as well.
The positions at the candidate voxels’ center are evaluated
for a set of randomly sampled orientations according to
Gain(n) = μ(VisibleV(M, ξ))e−λl , where l is the distance
to the current vehicle location determined by an RRT. The
resulting path is executed by the robot and recomputed upon
reaching the frontier configuration.

For both exploration planners the scenario was executed
10 times, as the outcome is stochastic due to the use of
the RRT algorithm. For the analysis, the total exploration
time ttot is split into execution time tex and computation
time tcomp. The proposed planner displayed a mean total
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Table 1 Apartment exploration
scenario parameters

Parameter Value Parameter Value

Area 20 × 10 × 3m3 Collision box 0.5 × 0.5 × 0.3m3

Volumetric map resolution r 0.4m Inspection mesh resolution q 0.5m2

vmax 0.2m/s ψ̇max 0.75 rad/s

FoV [60, 90]◦ Mounting pitch 15◦

dplannermax 2m dsensormax 5m

λ 0.5 RRT max edge length ε 1m

Nmax 15 NTOL 200

Fig. 4 On the left statistics
compare the Receding Horizon
Next Best View Planner for
exploration (blue) with the
frontier-based approach (red).
The depicted curves show the
mean exploration progress over
the execution time (computation
time has been subtracted). The
standard deviation is given every
minute of execution time. The
same is depicted on the right
side for the inspection planner,
comparing the results with no
prior knowledge of the
environment to the ones with a
given occupancy map (like the
one in Fig. 3) (Color figure
online)
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time for the exploration of tmean
tot = 501.9 s with a standard

deviation of tσtot = 79.4 s, where the computation time was
tmean
comp = 15.2 s with standard deviation tσcomp = 2.7 s. A sin-
gle iteration’s computation lasted on average 0.153 s, with
a standard deviation of 0.139 s. The frontier algorithm con-
sumed on average tmean

tot = 469.7s, but also had more voxels
that could not be inspected (Vres) at the time of termination.
This is due to the limited choice of viewpoints only at the
frontiers. When comparing the exploration progress over the
execution time in Fig. 4, even in this simple scenario the pro-
posed planner performs slightly better. Furthermore, the total
computation time for the frontier-based case is with an aver-
age of tmean

comp = 83.8 s on a significantly higher level. Because
in every iteration the whole computed path is executed, tmean

comp
distributes on less iterations, resulting in an average replan-
ning time of 5.7 s, in which the robot waits for the next path
segment to be computed. Sample results for paths of both
planners are depicted in Fig. 3, together with the occupancy
map acquired by a mission using the proposed planner.

This occupancy map was used to derive a surface mesh
model, depicted in Fig. 5, together with a sample path of
the proposed inspection planner. The resolution threshold
of the surface mesh was set to q = 0.5m2. Using the

Fig. 5 Themesh representation of the wall, ceiling and floor surface of
the apartment is depicted, together with a sample inspection path (blue)
and the recorded vehicle response (black) (Color figure online)

exactly same setup, but with an altered objective for unin-
spected surface area, the scenario was run 10 times, once
without prior knowledge of the environment and a second
time with a given complete occupancy map, recorded in
a prior exploration run. Figure 4b depicts the inspection
progress over time for both flavours of the scenario, while
in the following the time consumptions are summarized
(corresponding values for the inspection in known environ-
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Fig. 6 The bridge model is
displayed along with the
computed exploration path
(blue), the simulated vehicle
response (black) and the
acquired occupancy map in the
lower part of the figure. These
results are given for the
proposed exploration planner on
the left side and the compared
frontier-based planner on the
right. Note that the latter only
made partial exploration due to
excessive computation time for
this large scale problem. The
figures are available as Matlab
figures on Bircher et al. (2016)
for further inspection by the
interested reader (Color figure
online)

ment are given in parenthesis). The inspection mission lasted
on average tmean

tot = 1007.2 s (1031.5 s), with a standard
deviation of tσtot = 229.8 s (229.5 s). In this time, the per-
centage of the area that has been inspected is on average
μ(Smean

insp )/μ(S) = 99.6% (99.3%) with standard deviation
of μ(Sσ

insp)/μ(S) = 0.27% (0.27%). The share of compu-
tation time is tmean

comp = 7.14 s (7.13 s) with standard deviation
tσcomp = 0.74 s (0.99 s). A single iteration’s computation
lasted on average 0.036 s (0.035 s), with a standard devia-
tion of 0.047 s (0.049 s). Overall, the results in this scenario
display a fast inspection progress in an initial phase with
a slower rate as the mission proceeds, which is typical for
greedy, locally planning schemes. However, initial knowl-
edge of the environment can improve the convergence to the
final inspection status, as can be seen in Fig. 4b.

This simulation scenario has shown that the performance
of the proposed exploration planner is not inferior to a
frontier-based approach, despite the low number of view-
points considered per iteration. It even succeeds in finding
some voxels that remain hidden to the compared algorithm.
Moreover, its short computation time allows the seamless
integration into the robot’s control and path planning loops.
At the same time, it demonstrated that changing the objec-
tive to the inspection of surfaces leads to a planning scheme,
suitable to solve the problem of inspection of a given sur-
face. While this very basic scenario highlights the ability of
the presented planner to efficiently explore a given volume,
a more challenging scenario will reveal its high performance
and overall capacity.

4.3 Exploration of a volume containing a bridge

A second simulation scenario refers to a 50 × 26 × 14m3

volume containing a bridge,3 as depicted in Fig. 6. Starting

3 Bridge Model, 3D Warehouse, https://3dwarehouse.sketchup.com/.

at the side of the bridge, in a first mission the robot has to
explore the whole volume, while at the same time mapping
the bridge in the occupancy map, the resolution of which is
r = 0.25m. Due to the larger size, the higher resolution and
the geometrical complexity of the bridge, this scenario is a
much more challenging problem. Table 2 summarizes the set
of all employed parameters.

The total time for a single run has been ttot = 43.8min,
where in total tcomp = 9.4min have been spent on com-
putation. A single replanning lasted on average 1.6 s. The
median of only 1 s reveals that a large portion of the com-
putation time has been spent for the cases, where after Nmax

iterations no gain has been found. These replanning steps
took up to 23 s. In contrast, the frontier-based comparison
run has been aborted after ttot = 1670.1min. Until then, the
planner spent tcomp = 1660.4min for computation and on
average 25.9min per replanning step.

The progress over the total exploration time for both plan-
ners is displayed in Fig. 7. While the proposed planner
reduces the unexplored volume significant in a short time
before the curveflattens, the compared frontier-based planner
only very slowly progresses, due to excessive computation
time. Figure 6 depicts the computed paths on top of the sim-
ulated model, as well as the occupancy maps at the end of
the executions.

In a second mission, the surface model of the bridge was
assumed to be known and a slightly inflated mesh model was
derived, such that—despite an inaccurate occupancy map—
the surface could still be detected to be visible. The mesh
resolution threshold was set to q = 0.5m2. Using exactly
the same setup as in the exploration mission, but with an
objective for surface inspection, a single execution was sim-
ulated. The total inspection lasted for ttot = 105.0min with
a total computation time of tcomp = 7.4min. On average,
a single replanning lasted only 0.498 s. As opposed to the
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Table 2 Bridge exploration
scenario parameters

Parameter Value Parameter Value

Area 50 × 26 × 14m3 Collision box 0.5 × 0.5 × 0.3m3

Volumetric map resolution r 0.25m Inspection mesh resolution q 0.5m

vmax 0.5m/s ψ̇max 0.75 rad/s

FoV [60, 90]◦ Mounting pitch 15◦

dplannermax 2m dsensormax 10m

λ 0.2 RRT max edge length ε 3m

Nmax 30 NTOL 5000

Fig. 7 These two figures depict
the exploration progress for the
proposed planner on the left and
the frontier-based comparison
algorithm on the right for the
bridge scenario. The solid black
line denotes the unmapped
volume, decaying as exploration
progresses. The red dashed line
denotes known free volume and
the blue alternately dashed and
dotted line denotes occupied
volume (Color figure online)
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Fig. 8 The inspection progress of the simulated bridge inspectionmis-
sion is displayed on the left side. While most of the surface is inspected
within the first 20min, much more time is required for the remaining
uninspected surfaces.On the right the simulated bridge model, together

with the employed surface mesh (green), the computed inspection path
(blue) and the vehicle response (black) are depicted. A version of the
figure is available as Matlab figure on Bircher et al. (2016) for further
inspection by the interested reader (Color figure online)

exploration missions, where the average computation time
increases over time, the inspection planning becomes more
efficient due to the decreasing surface that has to be consid-
ered in the gain computation. An indicative result supporting
this is the average computation time of the first 100 iter-
ations of 2.16 s and the last 100 iterations of 0.153 s. The
inspection progress over time is depicted in Fig. 8 on the left
side, while the right shows the bridge with the employed sur-
face mesh, the path and the corresponding vehicle response.
The final ratio of inspected area was μ(Sinsp)/μ(S) =
99.1%.

This second, more complex scenario reveals the good
scaling properties of the proposed planner, which is capa-

ble of handling large problems without excessive runtime.
At the same time, the implementation of an alternative
frontier-based exploration planning algorithm proves to be
less suitable for more complex exploration problems, as the
computation time quickly grows beyond feasibility.

5 Experimental evaluation

Real world experiments were conducted to further evaluate
and demonstrate the performance of the proposed concept.
Running with the limited onboard resources and in real-time,
imposes fixed and tight limits on the amount of computations
that are feasible.
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5.1 The firefly aerial robot platform

The first experiment was performed using the AscTec Fire-
fly hexacopter MAV (see footnote 2) onboard of which
the Visual–Inertial Sensor (VI-Sensor) developed by the
Autonomous Systems Lab at ETH Zurich and Skybotix AG
is integrated. The sensor provides stereo images hardware
time-synchronized with the data from a high quality Inertial
Measurement Unit (IMU). They are used by a visual–inertial
odometry algorithm for pose estimation (Bloesch et al. 2015;
Lynen et al. 2013). Further, also a point cloud of the envi-
ronment is constructed from the stereo images and is used
for the environment mapping. Using the full state estimate
feedback, a trajectory tracking model predictive controller is
implemented on the aerial robot that considers the vehicle
dynamics and provides attitude and thrust reference for the
low-level controller running on the autopilot provided by the
MAVmanufacturer. Mapping, estimation, high-level control
and planning are running on an on-board computer with a i7
3.1GHz processor and 8GB RAM.

An external motion capture system (VICON) was used
only to monitor the vehicle ground-truth state and provide
the option to intervene in case of failure using a programmed
“safety pilot”.

5.2 Exploration experiment scenario

The experimental scenario refers to a closed roomwith a size
of 9 × 7 × 2m3. It contains scaffold elements at the walls,
which set high demands in terms of perception accuracy and
robustness, as well as collision free navigation capability,
as the structure consists of thin poles. The employed aerial
robot and the scaffold structure are depicted in Fig. 9. The
attached stereo camera module’s FoV is [60, 90]◦ and it is
mounted with a downward pitch of 15◦. For planning pur-
poses, a sensing range of dplannermax = 1m is considered, while
the sensor’s range is set to dsensormax = 5m. The λ-parameter
for the gain computation is set to 0.5, which corresponds
to a strong penalty on distance. Collision checking is per-
formed in the r = 0.2m resolution occupancy map. All
the employed parameters are summarized in Table 3, while
Fig. 10 shows the progress at distinct instants of the mission
execution. The colored voxels depict the occupied space,
while encoding their height by the color. The exploration
starts at ttot = 0, after an initialization motion to allow
the computation of a first collision free path segment. The
MAV subsequently explores the volume, first mostly nearby
regions by yawing, which is favored by the high λ-parameter
and then also by moving to different regions of the vol-
ume to explore. The vehicle accurately follows (light blue)
the computed path (black), which favors the precise and
swift exploration of remaining unmapped areas. The high

Fig. 9 The AscTec Firefly hexacopter MAV is depicted, together with
the scaffold structure used for the exploration experiment

Table 3 Scaffold exploration experiment parameters

Parameter Value Parameter Value

Area 9 × 7 × 2m3 Volumetric map
resolution r

0.2m

vmax 0.25m/s ψ̇max 0.3 rad/s

FoV [60, 90]◦ Mounting pitch 15◦

dplannermax 1m dsensormax 5m

λ 0.5 RRT max edge
length ε

1.5m

Nmax 20 Collision box 1.2 × 1.2 × 0.5m3

resolution of the employed occupancy map requires views
from different directions to explore voxels that may be hid-
den behind parts of the scaffold. The exploration finishes at
ttot = 253.37 s and after 58 planning iterations. Of the total
time, tcomp = 11.5 s have been used for computation, which
corresponds to an average value of 0.199 s per computation
step (standard deviation 0.125 s).

This experiment demonstrates the applicability of the pro-
posed algorithm to exploration using real small aerial robots.
Furthermore, the very short computation times highlight the
high performance in computing the next path segment. A
second experiment will focus on the inspection of a given
structure.

5.3 The neo aerial robot platform

For the second experiment an AscTec Neo hexacopter MAV
was employed (see Fig. 11). In addition to the VI–Sensor,
mounted equally as on the Firefly MAV, an upward fac-
ing camera offers additional convenience in exploration and
inspection missions. Point clouds are generated using a
monocular version of the depth reconstruction algorithm,
considering consecutive images with the travelled distance
as baseline, which is again estimated using a visual–inertial
odometry algorithm (Bloesch et al. 2015; Lynen et al. 2013).
As with the Firefly MAV, the computed trajectories are
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Fig. 10 The exploration
experiment in a closed room is
depicted. The colored voxels
represent occupied parts of the
occupancy map (colored
according to their height) while
the computed path is given in
black and the vehicle response
in light blue. The initial phase of
the exploration mission is
dominated by yawing motions
to maximize exploration without
traveling large distances.
Subsequently, the MAV
explores regions further away, to
eventually accomplish its
mission (Color figure online)

Fig. 11 The AscTec Neo hexacopter MAV is depicted, with the fields
of view of the stereo camera pair and the upward facing camera visual-
ized in green (Color figure online)

tracked using amodel predictive controller. The Neo features
the same on-board computer as the Firefly.

5.4 Inspection experiment scenario

In the second experiment, the objects of interest are two
wooden pallets and a rusty boiler, arranged in a setup within
a volume of 6×6×3m3 as depicted in Fig. 12. The objective
is to perform a first exploration flight, as the objects and their
environment have to be identified. In a second flight, using a
mesh model of the object’s surface, an inspection mission is
executed. The AscTec Neo hexacopter MAV, as depicted in
Fig. 11, features a stereo camera pair and an upward facing
camera. Due to the sampling based nature of the algorithm,
a second camera can conveniently be accommodated in the
gain checking and insertion of the point clouds in the map.
Both camera’s measurement ranges are limited by dsensormax =
5m3, while the planner only considers dplannermax = 2.5m. This
camera setup offers increased inspection and exploration per-
formance, as thefield of view is increased to the single camera

case. It enables overhead volume exploration and oblique
surfaces can be inspected with higher accuracy. The robot’s
motions are constrained by amaximum translational velocity
of vmax = 0.2m/s and a yaw rate limit of ψ̇max = 0.5 rad/s.
The parameter λ = 0.5 imposes a high cost on distance, such
that close-by gain is collected first, rather than going back and
forth.Aboxmodel of the robot of 1.2×1.2×0.5m3 is consid-
ered for the collision checking in the occupancy map, which
has a resolution of r = 0.3m. The employed parameters are
summarized in Table 4.

In the first part of the mission, the occupancy map is cre-
ated by exploring the bounded volume. The resulting map
along with the performed path is depicted in Fig. 12. The
average computation time during the ttot = 284.4 s explo-
ration was tmean

comp = 0.730 s with a standard deviation of
tσcomp = 0.104 s.

Starting with the constructed occupancy map, the second
part of the mission was to inspect the surface of the objects
of interest. For this purpose, a mesh model with a resolution
threshold of q = 0.01m2 has been employed as depicted
on the left side of Fig. 13. For robustness with respect to
the detection method of the inspected surfaces, a slightly
inflated box mesh model of the considered objects has been
used. The resulting inspection path is depicted on the right
side of Fig. 13, together with an offline reconstructed point
cloud of the perceived structure. The total inspection lasted
for ttot = 322.0 s, whereof tcomp = 30.9 s have been used for
the computation, on average tmean

comp = 0.469s with a standard
deviation of tσcomp = 0.091 s. The point cloud in Fig. 13 has
been computed using the Pix4d 3D reconstruction software,4

using the monocular image streams. Its density indicates the
quality of the inspection results.

This second experiment does not only show the planner’s
capability to inspect surfaces, but also proposes the use of a

4 Pix4D, http://pix4d.com/.
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Fig. 12 On the left side, the
two objects of interest in the
second experiment are depicted.
The first consists of two wooden
pallets, while the second is a
rusty piece of boiler. On the
right side, the occupancy map
acquired during the exploration
is depicted, showing the two
objects in the middle of a
6 × 6m2 volume. The computed
exploration path is depicted in
black, while the vehicle
response is overlaid in light blue
(Color figure online)

Table 4 Exploration and
inspection experiment
parameters

Parameter Value Parameter Value

Area 6 × 6 × 3m3 Collision box 1.2 × 1.2 × 0.5m3

Volumetric map 0.3m Inspection mesh 0.01m2

resolution r resolution q

vmax 0.2m/s ψ̇max 0.5 rad/s

FoV [60, 90]◦, [60, 90]◦ Mounting pitch 15◦, −90◦

dplannermax 2.5m dsensormax 5m

λ 0.5 RRT max edge length ε 0.5m

Nmax 20 NTOL 200

Fig. 13 In the second part of
the second experiment two
objects are inspected. Their
occupancy map signature is
depicted on the top of the left
side, while beneath the surface
mesh model at an instant of the
mission is overlaid. The red
parts have already been
inspected, while the blue part
still needs to be covered. On the
right side the computed
inspection path is plotted in blue
and the corresponding vehicle
response in black. The depicted
environment is a point cloud
reconstructed with the Pix4d
software (see footnote 4) using
monocular image streams
(Color figure online)

combination of the two presented planners in order to first
explore a given volume to subsequently inspect structures
that have been identified during the first part. Such a proce-
dure is relevant, e.g. in industrial inspection, where frequent
missions take place in a changing environment. Prior explo-

ration to acquire a high fidelity model of the structures and
obstacles enable the subsequent inspection of the updated
zones of interest, while at the same time ensuring collision
free operation. A video of the recorded result is available
at https://youtube.com/D6uVejyMea4.
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6 Code and dataset release

As a part of the contribution of this paper, an implementation
of the proposed algorithms is available online (Bircher and
Alexis 2016). The package comprises the planner, as well
as an interface for the integration with the Gazebo-based
simulator RotorS (see footnote 1) along with demo scenar-
ios. While various types of robots can be integrated with
the existing framework, an implementation to plan for mul-
ticopters using RRT is provided. Additionally, a dataset with
postprocessed data recorded during the presented experiment
is released (Bircher et al. 2016) to enable detailed inspection
of the achieved quality of the results.

7 Summary and conclusion

Anewpath planning schemehas been introduced that enables
the online planning of good paths to explore a given bounded
volume in a receding horizon manner. It has been shown that
withminor adaptation of the objective function, the proposed
planning method finds good paths for the inspection of an a
priori known surface in either known or unknown environ-
ment. These different scenarios have been evaluated in chal-
lenging simulations and further validated in real world exper-
iments using rotorcraftMAVs.Analysis on the computational
complexity has beenprovided and the good scaling properties
with respect to the scenario size have further been highlighted
in the presented simulation scenarios of different scale. The
implementation of the proposed path planner is released at
Bircher and Alexis (2016) for use and further development
by the community along with sample results, which will
continuously be updated. A sample dataset of postprocessed
experimental data is available at Bircher et al. (2016). Further
work could be dedicated to plan for various robotic platforms
like fixedwingUAVsor robot arms, or large scale experimen-
tal scenarios. Towards the direction of higher dimensional
states, a 6 degree of freedom rotorcraft MAV model in com-
bination with a random tree sampled in control space could
enable the planning of exploration paths for dynamic flight.
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