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Abstract

This study focuses on the screening of characteristic data from the ever-expanding sources
of raw, temporal sensor data from commercial buildings. A two-step framework is pre-
sented that extracts statistical, model-based, and pattern-based behavior from two real-
world data sets. The first collection is from 507 commercial buildings extracted from
various case studies and online data sources from around the world. The second collection
is advanced metering infrastructure (AMI) data from 1,600 buildings. The goal of the
framework is to reduce the expert intervention needed to utilize measured raw data in
order to extract information such as building use type, performance class, and operational
behavior. The first step is feature extraction and it utilizes a library of temporal data
mining techniques to filter various phenomenon from the raw data. This step transforms
quantitative raw data into qualitative categories that are presented in heat map visual-
izations for interpretation. In the second step, or the investigation, a supervised learning
technique is tested in the ability to assign impact scores to the most important features
from the first step. The efficacy of estimating variable causality of the characterized per-
formance is tested to determine scalability amongst a heterogeneous sample of buildings.
In the first set of case studies, characterization as compared to a baseline was three times
more accurate in characterizing primary buildng use type, almost twice for performance
class, and over four times for building operations type. For the AMI data, characterizing
the standard industry class was improved by 27% and predicting the success of energy
savings measures was improved by 18%. Qualitative insight from several campus case
study interviews are discussed as well. The usefulness of the approaches was discussed in
the context of campus building operations.
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Kurzfassung

Diese Studie behandelt das Sichten, Sortieren und Bearbeiten charakteristischer Zeitrei-
hen aus stark wachsenden Quellen fur̈ rohe Sensordaten in kommerziellen Gebäuden.
Ein zweistufiges Vorgehen wird präsentiert, das statistische, modellbasierte und Muster-
basierte Verhaltensweisen von zwei Datensätzen extrahiert. Der erste Datensatz beinhal-
tet Daten von 507 kommerziellen Gebäuden, zusammengetragen aus verschiedenen Fall-
beispielen und online Datenquellen aus der ganzen Welt. Der zweite Datensatz beinhaltet
Daten von Advanced Metering Infrastructure (AMI) von 1,600 Gebäuden. Das Ziel der
vorgestellten Methode ist das Reduzieren benötigter Experteneingriffe, um gemessene Ro-
hdaten benutzen zu können zum Erhalten von Information wie Gebäudenutzungstyp, Per-
formance Klasse und Betriebsverhalten. Im ersten Schritt, dem Extrahieren von Charak-
teristiken, werden durch das Benutzen einer Bibliothek von Data Mining Techniken ver-
schiedene Phänomene aus den Rohdaten herausgefiltert. Dieser Schritt transformiert
quantitative Rohdaten zu qualitativen Kategorien, die durch Heat Map Visualisierungen
präsentiert und interpretiert werden. Im zweiten Schritt, der Datenuntersuchung, wird eine
Supervised Learning Technique auf die Möglichkeit hin getestet, den wichtigsten Charak-
teristiken aus dem ersten Schritt eine Auswertung der Auswirkungen zuzuordnen. Um das
Hochskalieren für heterogene Gebäudeparks zu untersuchen wird die Wirksamkeit getestet,
variable Kausalzusammenhänge der charakterisierten Performance zu schätzen. In den
Fallstudien im ersten Datensatz war die Bestimmung des primären Gebäudenutzungstyps
dreimal treffender, die Bestimmung der Performance Klasse fast zweimal treffender und die
Bestimmung des Betriebsverhaltenstyps über viermal treffender als für ein Basisvorgehen.
Für die AMI Daten wurde die Charakterisierung der Standard Industrie Klasse um 27%
verbessert, die Prognose der Erfolgsrate von Energiesparmassnahmen um 18% verbessert.
Interviews mit Akteuren von mehreren Schulanlagen werden diskutiert bezüglich ihrer
qualitativen Einblicke und bezüglich der Nützlichkeit der vorgestellten Ansätze im Kon-
text des Betriebs von Schulanlagen.
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1 Introduction

The built and urban environments have a significant impact on resource consumption and
greenhouse gas emissions in the world. The United States is the world’s second largest
energy consumer, and buildings there account for 41% of energy consumed1. The most
extensive meta-analysis thus far of non-residential existing buildings showed a median
opportunity of 16% energy savings potential by using cost-effective measures to remedy
performance deficiencies (Mills 2011). Simply stated, roughly 6% of the energy consumed
in the U.S. could be easily mitigated - a figure that would eventually grow to an annual
energy savings potential of $30 billion and 340 megatons of C02 by the year 2030. Be-
yond saving energy, money and mitigating carbon, the impact of building performance
improvement also extends to the health, comfort and satisfaction of the people who use
buildings.

It is mysterious that these performance improvements are not rapidly being identified and
implemented on a massive scale across the world’s building stock given the incentives and
amount of research focused on building optimization in the fields of Architecture, Engi-
neering and Computer Science. A comprehensive study of building performance analysis
was completed by the California Commissioning Collaborative (CACx) to characterize the
technology, market, and research landscape in the United States. Three of the key tasks in
this project focused on establishing the state of the art (Effinger et al. 2010), character-
izing available tools and the barriers to adoption (Ulickey et al. 2010), and establishing
standard performance metrics (Greensfelder et al. 2010). These reports were accom-
plished through investigation of the available tools and technologies on the market as well
as discussions and surveys with building operators and engineers. The common theme
amongst the interviews and case studies was the lack of time and expertise on the part
of the dedicated operations professionals. The findings showed that installation time and
cost was driven by the need for an engineer to develop a full understanding of the building
and systems. These barriers reduce the implementation of performance improvements.

1As of 2014, according to: http://www.eia.gov/
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In another study, Ruparathna et al. created a contemporary review of building perfor-
mance analysis techniques for commercial and institutional buildings (Ruparathna et al.
2016). This review was comprehensive in capturing approaches related to technical, orga-
nizational, and behavioral changes. The majority of publications considered fall within the
domains of automated fault detection and diagnostics, retrofit analysis, building bench-
marking, and energy auditing. These traditional techniques focus on one building or a
small, related collection of buildings, such as a campus. Many require complex charac-
teristic data about each building, such as it geometric dimensions, building materials, the
age and type of mechanical systems, and other metadata, to execute the process. Once
again, such detailed techniques rely on metadata that often doesn’t exist in the field, thus
contributing to the barriers listed above.

Another issue facing the building industry is the characterization of the commercial build-
ing stock for benchmarking, intervention targeting, and general understanding of the way
modern buildings are being utilized and operated. The Commercial Building Energy Con-
sumption Survey (CBECS) is the primary means of collecting characteristic data about
the global commercial building stock in the United States. This survey is conducted every
four years, the latest in 2012 in which information on over 6,700 building around the U.S.
was collected for characterization. A large amount of meta-data was collected about each
building from categories such as size, vintage, geographic region, and principal activity.
This data collection was done through the efforts about 250 interviewers across the coun-
try under the supervision of 17 field supervisors, three regional field managers, and a field
director. This manpower was utilized over the course of over three years to characterize
and document the commercial building stock.

From these studies, it becomes apparent that the biggest barrier to achieving performance
improvement in buildings is scalability. Architecture is a discipline founded with aesthetic
creativity as a core tenet. Frank Lloyd Wright once stated, “The mother art is architecture.
Without an architecture of our own, we have no soul of our civilization.” Designers
rightfully strive for artistic and meaningful creations; this phenomenon results in buildings
with not only distinctive aesthetics but also unique energy systems design, installation
practices and different levels of organization within the data-creating components. In this
dissertation, I show that an emerging mass of data from the built environment can facilitate
better characterization of buildings by through automation of meta-data extraction. These
data are temporal sensor measurements from performance measurement systems.
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1.1 Growth of Raw Temporal Data Sources in the Built
Environment

As entities of analysis, buildings are less on the level of a typical mass-produced manu-
factured device in which each unit is the same in its components and functionality; and
more on the level of customers of business, entities that are similar and yet have numer-
ous nuances. Conventional mechanistic or model-based approaches, typically borrowed
from manufacturing, have been the status quo in building performance research. As pre-
viously discussed, scalability amongst the heterogeneous building stock is a significant
barrier to these approaches. More appropriate means of analysis lies in statistical learning
techniques more often found in the medical, pharmaceutical and customer acquisition do-
mains. These methods rely on extracting information and correlating patterns from large
empirical data sets. The strength of these techniques is in their robustness and automation
of implementation - concepts explicitly necessary to meet the challenges outlined.

This type of research on buildings would have been tough even a few years ago. The
creation and consolidation of measured sensor sources from the built environment and
its occupants is occurring on an unprecedented scale. The Green Button Ecosystem now
enables the easy extraction of performance data from over 60 million buildings2. Advanced
metering infrastructure (AMI), or smart meters, have been installed on over 58.5 million
buildings in the US alone3. A recent press release from the White House summarizes the
impact of utilities and cities in unlocking these data (The White House 2016). It announces
that 18 utilities, serving more than 2.6 million customers, will provide detailed energy
data by 2017. This study also suggests that such accessibility will enable improvement of
energy performance in buildings by 20% by 2020. A vast majority of these raw data being
generated are sub-hourly temporal data from meters and sensors.

To understand the exponential magnitude of this source data growth in the building in-
dustry, one can estimate the amount of measurements being generated by these sensors.
The United States context has public data available to create a set of assumptions to
roughly quantify this growth. Before the widespread use of digital building automation
systems, buildings were controlled either manually or using pneumatic controls and build-
ing electrical use was measured and reported monthly. According to the Commercial
Building Energy Consumption Survey, there were over 4.5 million commercial buildings in
the United States in 1996. The theoretical amount of data from monthly electrical meters
for all of these buildings for one year would be 54 million measurements. In about 2007,

2According to: http://www.greenbuttondata.org/
3As of 2014, according to: http://www.eia.gov/tools/faqs/faq.cfm?id=108&t=3
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electrical meters with the capability to capture and store data at 15-minute frequencies
were introduced into the market, and 7 million were installed on all building types 4. If
one assumes that the proportion of these meters that are commercial is similar to today5,
that will result in approximately 784,000 buildings creating 27.4 billion measurements per
year. By 2014, AMI meters have been installed on 6.53 million commercial buildings re-
sulting in 228 billion measurements per year. The exponential magnitudes of growth of
these data can be seen in Figure 1.1. This discussion ignores the concept of accessibility
which has also vastly improved due to the technology.

Figure 1.1: Theoretical growth of measurement data from electrical meters in commercial
buildings in the USA in the last 20 years

The analysis of the performance of buildings and the characterization of the building stock
are necessary and, as discussed, quite tedious challenges in the building industry. Thus,
a critical opportunity for the building industry is how these techniques can utilize the
aforementioned explosion of detailed, temporal sources.

• If one has access to raw data from hundreds, or even thousands, of buildings, how
can analysis be scaled in a robust way?

• How can these data be used to inform the larger research community about the phe-
nomenon occurring in the actual building stock?

4http://www.edisonfoundation.net/iei/Documents/IEI_SmartMeterUpdate_0914.pdf
5About 11.2% according to: http://www.eia.gov/tools/faqs/faq.cfm?id=108&t=3

5

http://www.edisonfoundation.net/iei/Documents/IEI_SmartMeterUpdate_0914.pdf
http://www.eia.gov/tools/faqs/faq.cfm?id=108&t=3


1 Introduction

• What characteristic data about buildings can be inferred from these sources?

Non-residential buildings are the focus of this analysis as they are unique and complex
in their energy-consuming systems. This decision was designed to limit the scope to
this subset of the building industry that is under-researched as compared to residential
buildings.

1.2 A Framework for Automated Characterization of
Large Numbers of Non-Residential Buildings

This thesis develops a framework to investigate which characteristics of whole building
electrical meter data are most indicative of various meta-data about buildings amongst
large collections of commercial buildings. This structure is designed to screen electrical
meter data for insight on the path towards deeper data analysis. The screening nature
of the process is motivated by the scalability challenges previously outlined. An initial
component in the methodology was a series of case study interviews and data collection
processes to survey field data from numerous buildings around the world. Two phases
were then applied to the collected data. The first was to use a library of temporal feature
extraction techniques for the purpose of retrieving various behavior from whole building
electrical sensor data in a relatively fast and unsupervised fashion. The second process
utilizes these features in classification models to determine the accuracy of predicting
various meta-data about each building. The classification aspect of the process is designed
primarily to establish the importance of the input variables in their ability to characterize
various behavior. Several meta-data are targeted to test this framework such as building
use type, performance class, and operational strategy. These objectives were chosen as
they represent steps in the direction of benchmarking, diagnostics, retrofit analysis, and
other types of building performance analysis techniques.

1.3 Research Questions

The primary question addressed through this research is:

• How accurately can the meta-data about a building be characterized through the
analysis of raw hourly or sub-hourly, whole building electrical meter data?

This question is dissected into several more specific parts:
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• Which temporal features are most accurate in classifying the primary use-type, per-
formance class, and operational strategy of a building?

• Can temporal features be used to better benchmark buildings by signifying how well
a building fits within its designated use-type class?

• Can temporal features be used to forecast whether an energy savings intervention
measure will be successful or not?

• Is it effective or possible to implement such features across data from thousands of
buildings?

• How useful are feature extraction and visualization in actual operations?

1.4 Objectives

The objectives of this research are as follows:

1. Consolidate and curate a set of feature extraction techniques from various research
domains that automatically extract characteristic information from raw, temporal
data

2. Extend these feature sets to include pattern recognition approaches that capture
more information through characterizing usage patterns

3. Deploy these features on a test data set of 507 buildings to quantify the ability to
characterize building use type, in-class performance, and operations types

4. Deploy a subset of features on a data set of approximately 1,600 buildings to test
the ability to predict whether an energy-savings measure implementation will be a
success

1.5 Organization of the Thesis

The remainder of this thesis is organized as follows. The research context of contemporary
statistical learning and visual analytics techniques as applied to building performance is
reviewed in Section 2. This section has a special focus on unsupervised learning techniques
as they are a strong basis for many of the temporal features extracted. Section 3 provides
an overview of the two steps in the framework as well as the process of collecting data and
insight from a series of case studies from around the world. Data from over 1200 buildings
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was collected on-site or through various open web portals and 507 were selected for further
analysis. Sections 4-6 provide in-depth overviews of each category of the temporal mining
techniques implemented on the case study buildings, including explanatory visualizations
of the range of values across the tested time range. Section 7 discusses the use of these
features for the characterization of objectives such as predicting building use type, per-
formance class, and operations type. Section 8 focuses on the use of a subset of temporal
features in the industry classification and prediction of energy savings measures of close to
10,000 buildings with AMI data available. Finally, Section 9 provides concluding remarks
to understand the overall results of the thesis and future directions to pursue using the
outlined techniques.
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2 Research Context: Statistical
Learning and Visual Analytics of
Building Data

This section gives an extensive overview of the techniques developed to extract auto-
matically information from raw data to meet the scalability challenge. This content is
developed as a publication submitted to the Renewable and Sustainable Energy Reviews
Journal (Miller et al. Submitted for publication). The domains and range of techniques
reviewed go beyond the scope of this dissertation. It considers a range of applications
and objectives beyond the presented framework and research questions. The purpose of
this effort is to set a wider context for understanding and discuss broader challenges and
opportunities.

Researchers from several domains have developed methods of extracting insight from raw
data from the built environment. Often these methods fall into the category of statistical
learning, often from unsupervised learning. Methods from this sub-domain of machine
learning are advantageous due to their ability to characterize measured or simulated per-
formance data quickly with less analyst intervention, meta-data, and ground truth labeled
data. In this section, a review of previous work in analytics methods is covered by the cat-
egories of smart meter analytics, portfolio analytics, operations and control, and anomaly
detection for buildings.

2.1 Previous Reviews of Data Analytics in Buildings

Various reviews have been completed that overlap with this section. Most of them are
designed to focus on a single core domain of research; the main two areas are building
operations analysis and smart grid optimization. One of the earliest reviews of artificial
intelligence techniques for buildings was completed in 2003 by Krarti and covered both su-
pervised and unsupervised methods (Krarti 2003). Dounis updated this work and focused
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on outlining specific techniques in detail (Dounis 2010). Reddy’s seminal book about a
large variety of analysis techniques for energy engineers includes chapters on clustering
and unsupervised methods specifically (Reddy 2011). Lee et al. describe a variety of
retrofit analysis toolkits which incorporate unsupervised and visual analytics approaches
in a practical sense (Lee et al. 2015). Ioannidis et al. created a large ontology of data
mining and visual analytics for building performance analysis, however with a strong focus
on the techniques and not examples of works using them (Ioannidis et al. 2015). From the
utility and power grid side, Morias et al. created a general overview of various data mining
techniques as focused on power distribution systems (Morais et al. 2009). Chicco covered
clustering methods specifically focused on load profiling tasks (Chicco 2012). Zhou et al.
included the concept of customer load classification (Zhou et al. 2013).

2.2 Overview of Publications

The work for this section was created through a selection of unsupervised analytics cat-
egories outlined by authoritative sources from the machine learning community (Hastie
et al. 2009; James et al. 2013; Duda et al. 2012; Mirkin 2012). The groups selected are
clustering, novelty detection, motif and discord detection, and rule extraction. The field
of visual analytics was added to these groups to cover the presentation layer of many of
these types of techniques. An initial search of publications was then selected for inclusion
through a Google Scholar search of the combination of the method categories and the
terms “building energy”, “building performance analysis”, and “building energy analysis”.
From this initial list of publications, a set of application categories and sub-categories was
developed as seen in Figure 2.1. A more detailed search of each application class was then
completed to account for the unique analytics techniques used in those domains. Only
publications with a majority of the focus on utilization of unsupervised techniques and
with a focus only on non-residential buildings are reviewed. Only works completed since
2005 are included to discuss only the most contemporary work and due to the relatively
recent development of most of the techniques examined. A cutoff date of April 1, 2016, is
applied for inclusions of publications in this review.

2.2.1 Research Sectors

Figure 2.2 illustrates the breakdown of publications based on the year published since
2005. They are further divided into four broad research domains: building energy analysis,
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Figure 2.1: Categories and sub-categories (including number of publications) of building
performance analysis applications of statistical learning and visual analytics

building simulation, computer science and electrical engineering. These research field
categories were subjectively determined for each paper through evaluating a combination of
which university department the authors were from and in which publication the study was
published. Building energy analysis pertains to researchers who predominantly focus on
measured data analysis from buildings while simulation experts research forward modeling
and simulation of building and urban systems. Both fields of study most often exist within
architecture or mechanical engineering departments. Electrical engineering and computer
science are two well-established domains and exist in their departments. It is noticed
that there is a gradual increase in the number of publications over the last ten years with
electrical engineering and building energy analysis being the most common in the first few
years and computer science and building simulation picking up since 2008.

2.2.2 Publications Venues

This section analyzes the prevalence of certain publication venues within this section.
Figure 2.3 illustrates the breakdown of the publication venues represented. The Energy
and Buildings Journal from the building energy analysis domain dominates this list with
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Figure 2.2: Breakdown of publications by year published and research domain

17 articles. Building simulation and energy analysis research domains publish most often
in this journal as well as Applied Energy and Energy Efficiency. Several IEEE conferences
and journals are also dominant as most of the papers from the electrical engineering domain
are in these venues.

2.3 Smart Meter Analytics

Advanced Metering Infrastructure (AMI), also known as smart meter systems, is a net-
work of energy meters, most often focused on the electrical power measurement of a whole
building. These systems are implemented and utilized by electrical utility providers. Con-
ventional metering infrastructure only facilitates monthly data collection for billing pur-
poses, while the new AMI framework allows for sub-hourly electrical demand readings.
These data are primarily used for demand characterization and billing, however, many
additional uses are being discovered. A wide-range of studies have been completed in
recent years to focus on a range of issues related to automatically extracting information
from these data using unsupervised techniques. In this section, three sub-categories of
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Figure 2.3: Breakdown of publications by publication type and research domain

application are discussed: load profiling, account classification, and disaggregation.

2.3.1 Load Profiling

Load profiling is the process of grouping temporal subsequences of measured energy data
for the purpose of characterizing the typical behavior of an individual customer. It involves
time-series clustering and feature extraction. Chicco et al. provide an original example in
our review of this process using support vector machine clustering (Chicco & Ilie 2009).
Gullo et al. and Räsänen et al. took the process further by introducing a framework of
various clustering procedures that were implemented on case studies (Gullo et al. 2009;
Räsänen & Kolehmainen 2009). Ramos et al., Iglesias et al., and Panapakidis et al. tested
various conventional and new clustering methods and similarity metrics to determine those
most applicable to electrical load profiling (Iglesias & Kastner 2013; Ramos et al. 2012;
Panapakidis et al. 2015). Chicco et al. explored new clustering techniques based on ant
colony grouping while Pan et al. discovered the use of kernel PCA for the same purpose
(Chicco et al. 2013; Pan et al. 2015). Several groups of researchers such as Lavin and
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Klabjan and Green et al. have found efficient use in using the core K-Means clustering
algorithm for load profiling (Lavin & Klabjan 2014; Green et al. 2014). Shahzadeh et al.
discussed the use of profiling as applied to forecast accuracy of temporal data (Shahzadeh
et al. 2015). Two studies diverge from the standard profile development using clustering
paradigm. The first is by De Silva et al. who uses Incremental Summarization and
Pattern Characterization (ISPC) instead of clustering to find load profiles (De Silva et al.
2011). The other is the visual analytics-based approach of creating a smart meter analytics
dashboard by Nezhad et al. to set up and inspect typical load profiles (Jarrah Nezhad
et al. 2014).

2.3.2 Customer Classification

Automated account classification is the next sub-category that utilizes unsupervised learn-
ing techniques within the smart meter domain. These methods often employ load profile
clustering as a first step but differentiate themselves in using those features to classify
accounts, or buildings, that fit within various categories. Therefore, account classification
is a type of manual semi-supervised analysis utilizing load profiling as a basis. The study
by Figueiredo et al. harnessed K-Means and a labeled sample from accounts in Portugal
to showcase this concept (Figueiredo et al. 2005). Verdu et al. and Räsänen et al. ap-
plied self-organizing maps (SOM) to accomplish a similar study that classifies accounts
according to the applicability of several demand response scenarios (Verdu et al. 2006;
Räsänen et al. 2008). Vale et al. give an overview of a general data mining framework
focused on characterizing customers (Vale et al. 2009). Florita et al. diverge from the
use of measured data by creating a massive amount of simulation data of load profiles to
quantify energy storage applications for the power grid (Florita et al. 2012). Fagiani et
al. use Markov Model novelty detection to automatically classify customers who poten-
tially have leakage or waste issues (Fagiani et al. 2015). Cakmak et al. and Liu et al.
test new visual analytics techniques within more holistic analysis framework for analyzing
customers (Çakmak et al. 2014; Liu et al. 2015). Borgeson used various clustering and
occupancy detection techniques to analyze a large AMI data set from California (Borge-
son 2013). Bidoki et al. tested various clustering techniques to evaluate applicability for
customer classification (Bidoki et al. 2010). A recent study in Korea develops a new
clustering method for segmenting customers to analyze demand response incentives (Jang
et al. 2016).
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2.3.3 Disaggregation

The last area of smart meter data analysis is the field of meter disaggregation. Disaggrega-
tion attempts decompose a measurement signal from a high level reading to the individual
loads being measured. This domain is well-researched from a supervised model perspec-
tive but recent attempts at unsupervised, pattern-based disaggregation were developed
to facilitate implementation on unlabeled smart meter data. Shao et al. use Dirichlet
Process Gaussian Mixture Models to find and disaggregate patterns in sub-hourly meter
data (Shao et al. 2013). Reinhardt and Koessler use a version of symbolic aggregate
approximation (SAX) to extract and identify disaggregated patterns for the purpose of
prediction (Reinhardt & Koessler 2014). These studies are also unique in that few of the
disaggregation studies focus on commercial buildings as opposed to residential buildings.

2.4 Portfolio Analytics

Portfolio analysis is a domain in which a large group of buildings, often located in the same
geographical area or owned or managed by the same entity, are analyzed for the purpose
of managing or optimizing the group as a whole. Each subsection covers the publications
reviewed in this domain that fall into three categories: characterization, classification, and
targeting.

2.4.1 Characterization

Publications that address the characterization of a portfolio of buildings include unsuper-
vised techniques meant to evaluate and visualize the range of behaviors and performance
of the group. A majority of the techniques utilized are either clustering or visual analytics
that provide a model of exploratory analysis that enable further steps. Seem produced an
influential study that extracts days of the week with similar consumption profiles (Seem
2005). Further clustering work was completed by An et al. to estimate thermal parame-
ters of a portfolio of buildings (An et al. 2012). Lam et al. used Principal Component
Analysis to extract information about a group of office buildings (Lam et al. 2008). Ap-
proaches focused on visual analytics and dashboards were completed by Agarwal et al.,
Lehrer, and Lehrer and Vasudev (Agarwal et al. 2009; Lehrer 2009; Lehrer & Vasudev
2011). Granderson et al. completed a case study-based evaluation of energy information
systems, in which some methods combine some unsupervised approaches with visualiza-
tion (Granderson et al. 2010). Diong et al. completed a case study as well focused on a
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specific energy information system implementation (Diong et al. 2015). Morán et al. and
Georgescu and Mezic developed hybrid methods that employed visual continuous maps
and Koopman Operator methods respectively to visualize portfolio consumption(Morán
et al. 2013; Georgescu & Mezic 2014). Miller et al. completed two studies focused on the
use of screening techniques to automatically extract diurnal patterns from performance
data and use those patterns to characterize the consumption of a portfolio of buildings
(Miller & Schlueter 2015; Miller et al. 2015). Yarbrogh et al. used visual analytics
techniques to analyze peak demand on a university campus (Yarbrough et al. 2015).

2.4.2 Classification

The concept of classifying buildings within a portfolio supplements the characterization
techniques by assigning individual buildings to subgroups of relative performance for the
purpose of benchmarking or decision-making. Santamouris et al. produced a report using
clustering and classification to assign schools in Greece to subgroups of similar performance
(Santamouris et al. 2007). Nikolaou et al. and Pieri et al. further extended this type of
work to office buildings and hotels(Nikolaou et al. 2012; Pieri et al. 2015). Heidarinejad
et al. released an analysis of clustered simulation data to classify LEED-certified office
buildings (Heidarinejad et al. 2014). Ploennigs et al. created a platform for monitoring,
diagnosing and classifying buildings and operational behavior within a portfolio to quickly
visualizing the outputs (Ploennigs et al. 2014).

2.4.3 Targeting

Targeting is a concept that builds upon characterization and classification to identify
specific buildings or measures to be implemented in a portfolio to improve performance.
These publications are differentiated in that specific measures are identified in the analysis.
Sedano et al. use Cooperative Maximum-Likelihood amongst other techniques to evaluate
the thermal insulation performance of buildings (Sedano et al. 2009). Gaitani et al.
used PCA and clustering to target heating efficiency in school buildings (Gaitani et al.
2010). Bellala et al. used various methods to find lighting energy savings on a campus
of a large organization (Bellala et al. 2011). Petcharat et al. also found lighting energy
savings in a group of buildings (Petcharat et al. 2012). Cabrera and Zareipour used
data association rules to complete a similar study to find wasteful patterns (Cabrera &
Zareipour 2013). Geyer et al. and Schlueter et al. test various clustering strategies to
group different buildings within a Swiss alpine village according to their applicability for
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retrofit interventions (Geyer et al. 2016) and thermal micro-grid feasibility (Schlueter
et al. 2016).

2.5 Operations, Optimization, and Controls

Unsupervised techniques focused on individual buildings themselves are placed in the cat-
egory for building operations, optimization, and control. This class contains the largest
number of publications, and it incorporates a wider range of applications. It is differenti-
ated from Section 2.6 in that the applications are not as focused on detecting and fixing
the anomalous behavior. This section evaluates publications within the sub-categories of
occupancy detection, retrofit analysis, controls, and energy management.

2.5.1 Occupancy Detection

Occupancy detection using unsupervised techniques infers human presence in a non-
residential building without a labeled ground truth dataset or as part of a semi-supervised
approach using a subset of labeled data. This occupancy detection is then used for anal-
ysis or as inputs for control of systems. Augello et al. used multiple techniques to infer
occupant presence on a campus in Italy (Augello et al. 2011). Dong and Lam used Hidden
Markov Models to detect occupancy patterns that were then used in a simulation (Dong
& Lam 2011). Thanayankizil et al. developed a concept called Context Profiling in which
occupancy was detected temporally and spatially (Thanayankizil et al. 2012). Mansur et
al. used clustering to detect occupancy patterns from sensor data (Mansur et al. 2015).
The newest studies by Adamopoulou et al. and D’Oca and Hong use a range of techniques
to extract rules related to occupancy (Adamopoulou et al. 2015; D’Oca & Hong 2015).
A recent study using wavelets illustrates the correlation of occupancy with actual energy
consumption (Ahn & Park 2016).

2.5.2 Controls

Controls optimization is an enduring field of study aimed at creating a state of the best
operation and energy performance for a building system such as heating, cooling, ventila-
tion or lighting. Kusiak and Song created a means of optimally controlling a heating plant
with clustering as a key step (Kusiak & Song 2008). Patnaik et al. completed studies fo-
cused on using motif detection to find modes of chilled water plant operation that proved

17



2 Research Context: Statistical Learning and Visual Analytics of Building Data

most optimal (Patnaik et al. 2010, 2009). Hao et al. built upon these concepts to create
a visual analytics tool to investigate these motifs (Hao et al. 2011). May-Ostendorp et
al. used rule extraction as a means of enhancing a model-predictive control process of
mixed-mode systems (May-Ostendorp et al. 2011, 2013). Bogen et al. used clustering
to detect usage patterns for building control system evaluation (Bogen et al. 2013). Fan
et al. used clustering to enhance chiller power prediction with the ultimate goal of con-
trol optimization (Fan et al. 2013). Hong et al. used Empirical Mode Decomposition to
spatially optimize the placement of sensors in a building (Hong et al. 2013). Domahidi
et al. used support vector machines (SVM) to extract optimized rules for supervisory
control (Domahidi et al. 2014). Habib and Zucker use SAX to identify common motifs
of an absorption chiller for the purpose of characterization and control (Habib & Zucker
2015).

2.5.3 Energy Management

Energy management and analysis of an individual building using unsupervised techniques
is becoming common due to the increasing amounts of raw building management (BMS)
and energy management system (EMS) data. Users of these techniques are often facilities
management professionals or consultants who undertake the process to understand how
the building is consuming energy. Duarte et al. use visual analytics to process data from
an EMS along with various pre-processing techniques (Duarte et al. 2011). Lange et al.
created two overview studies focused spatiotemporal visualization of building performance
data and its interpretation in various case studies (Lange et al. 2012, 2013). Gayeski et al.
completed a recent survey of operations professionals on their use of graphical interfaces
of BMS and EMS dashboards (Gayeski et al. 2015). Outside of the visual analytics realm,
Fan et al., Xiao and Fan, and Yu et al. completed studies of an entire data mining using
framework using data association rules to improve operational performance (Fan et al.
2015b; Xiao & Fan 2014; Yu et al. 2013).

2.6 Anomaly Detection

Anomaly detection for buildings focuses on the detection and diagnostics of problems oc-
curring within a building, its subsystems, and components. This field is most often focuses
on the use of novelty detection or clustering approaches to find anomalous behavior. The
sub-categories for this section are divided according to the spatial hierarchy of systems
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within a building; the highest level is whole building consumption, down to the subsys-
tems such as heating, cooling or lighting and then to the individual components of those
systems.

2.6.1 Whole Building

Whole building anomaly detection uses the electricity or heating and cooling energy supply
in coming to a building to determine sub-sequences of poor performance. This category is
complimentary to many of the Smart Meter solutions as they both focus on the use of a
single data stream for a building. Seem had an early work again in this category with his
work in using novelty detection to find abnormal days of consumption in buildings (Seem
2006). Liu et al. used classification and regression trees (CART) (Liu et al. 2010) and
Wrinch et al. use frequency domain analysis for the same purpose (Wrinch et al. 2012).
Jacob et al. utilized hierarchical clustering to use as variables in regression models for
whole building monitoring (Jacob et al. 2010). Fontugne et al. created a process known
as the Strip, Bind, and Search method to automatically uncover misbehavior from the
whole building level and subsequently detects the source of the anomaly (Fontugne et al.
2013b). Janetzko et al. developed a visual analytics platform to highlight anomalous
behavior in power meter data (Janetzko et al. 2013). Chou and Telaga created a hybrid
whole building anomaly detection process using K-means (Chou & Telaga 2014). Ploennigs
et al. and Chen et al. created similar systems that use generalized additive models (GAM)
(Ploennigs et al. 2013; Chen et al. 2014). In the most recent work, Capozzoli et al.
and Fan et al. use various techniques as part of a framework to detect and diagnose
performance problems (Capozzoli et al. 2015; Fan et al. 2015a).

2.6.2 Subsystems

Subsystem anomaly detection focuses on the use of a broader data set to detect and
diagnose faults from a lower level. Yoshida et al. provided a semi-supervised approach that
seeks to determine which variables within a building are most influential in contributing
to overall building performance (Yoshida et al. 2008). Wang et al. use PCA to diagnose
sensor failures (Wang et al. 2010). Forlines and Wittenberg visualized multi-dimensional
data using what they call the Wakame diagram (Forlines & Wittenburg 2010). Linda et
al. and Wijayasekara et al. use various techniques to diagnose system faults and visualize
them spatially (Linda et al. 2012; Wijayasekara et al. 2014). Le Cam et al. use PCA
to create inverse models to detect problems in HVAC systems (Le Cam et al. 2014). Li
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and Wen created a similar process using PCA in conjunction with wavelet transform (Li
& Wen 2014). Sun et al. used data association rules to create fault detection thresholds
for finding anomalies (Sun et al. 2015).

2.6.3 Components

Component level anomaly detection is a bottom-up fault detection approach that focuses
on determining faults in individual equipment. Wang and Cui use PCA to detect com-
ponent faults in chilled water plants (Wang & Cui 2005). Yu et al. and Fontugne et
al. both compliment their work at the whole building level to find associated component
performance anomalies automatically (Yu et al. 2012; Fontugne et al. 2013a). Zhu et al.
use wavelets to diagnose issues in air handling units (AHU) (Zhu et al. 2012).

2.7 Discussion

Several challenges facing the use of unsupervised machine learning in building performance
were uncovered through this process of review. The first relates to the effect of several
traditional research sectors exploring techniques targeted on the improvement of building
performance. It was found that different sets of terminology are used to describe similar
concepts. For example, in the building energy analysis field, the term fault (such as (Zhu
et al. 2012)) is used to describe a situation that is similar to what is labeled an anomaly
in the data mining domain (such as (Fontugne et al. 2013a)). Thus, discussions between
these fields are restrained and completing a review of knowledge is difficult.

A critical issue related to differences in domains is the inconsistency of success objec-
tives. Often individual papers would discuss the accuracy or efficiency of the algorithm
or technical process itself (such as (Iglesias & Kastner 2013)), while others focused ex-
clusively on the end results of the evaluation such as how much energy was saved (such
as (Seem 2006)). Several examples publications successfully address both types of issues.
For example, Ploennings et al. published studies which both addressed the applicabil-
ity of generalized additive models and discussed their implementation in a platform that
is applied to real buildings (Ploennigs et al. 2013, 2014). Researchers should strive to
optimize in both the theoretical and practical domains to have the most impact on real
buildings.

Another observation relates to the lack of easy reproducibility amongst studies. Repro-
ducibility provides the ability for a third-party researcher to easily recreate the results of
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a study through a release of the data or code developed. Recent prominent articles have
outlined the importance of reproducibility in science (jo 2014) and the sharing of data
and code to enhance this pursuit (co 2014). The biomedical sciences research community
is leading the way in this effort; editors from over 30 major journals, funding agency rep-
resentatives, and scientific leaders from that field created guidelines for the enhancement
of reproducibility (jo 2014). Research from the building performance analysis commu-
nity should follow this lead, specifically on machine learning and other types of empirical
analysis.

Another challenge discovered is the lack of clarity regarding which is the optimal technique
for each application. For example, a number of studies were completed to test the ability of
clustering techniques to group similar daily load profiles (Chicco & Ilie 2009; De Silva et al.
2011; Green et al. 2014; Gullo et al. 2009; Lavin & Klabjan 2014; Ramos et al. 2012;
Shahzadeh et al. 2015). A researcher or analyst who is searching for the best technique can
see a survey of implementations through these publications; however, it’s hard for them
to be compared against each other as each utilizes a different data set and incorporates
different methodologies. An explanation of the amount of effort needed to implement
a technique is missing in most studies as well. For example, to implement a certain
algorithm on a potential use-case or data set, an analyst is interested in which parameters
need to be tuned, what labeled ground truth data should be gathered, and what expertise
is necessary for understanding and implementation. This lack of comparison stifles the
ability to make conclusions about the efficiency, interpretability, and appropriateness of
use of each algorithm.

This dissertation seeks to address each of these challenges through the development of
a framework that bridges the gap between the building energy performance, computer
science, and electrical engineering. This goal is accomplished through incorporation of
many of the approaches and techniques found in this literature review on a large collected
temporal data set from buildings. A library of techniques, both mainstream and newly
developed, are implemented on these data. This library is implemented on a collected and
open data set. These techniques and data are to be shared with a wider audience through
various means of reproducible research to be outlined in the methodology and conclusion
sections.
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As discussed in Section 1, a two-step process is presented as a means of extracting knowl-
edge from whole building electrical meters. Figure 3.1 illustrates the intermediate steps
in each of the phases.

The first step is to extract temporal features that produce quantitative data to describe
various phenomenon occurring in the raw temporal data. This action is intended to
transform the data into a more human-interpretable format and visualize the general
patterns in the data. In this step, the data are extracted, cleaned, and processed with a
library of temporal feature extraction techniques to differentiate various types of behavior.
This library is outlined in Sections 4-6. These features are visualized using an aggregate
heat map format that can be used evaluated according to expert intuition, comparison
with design intent metrics, or with outlier detection. Section 3.1 gives a more detailed
definition of temporal features and how they’re utilized in this study.

The second step is focused on the characterization of buildings using the temporal fea-
tures according to several objectives. This step allows an analyst to understand the impact
each feature has upon the discrimination of each objective. Five test objectives are im-
plemented in this study: principal building use, performance class, operations strategy,
general industry class, and energy savings measure success. One of the key outputs of this
supervised learning process is the detection and discussion of what input features are most
important in predicting the various classes. This approach gives exploratory insight into
what features are important in determining various characteristics of a particular build-
ing amongst a large set of its peers. These metadata are building blocks for many other
techniques such as benchmarking, diagnostics and targeting. The motivation for choosing
these particular objectives centers around the consistently available meta-data from the
collected case study data and their relation to various other techniques in the building
performance analysis domain. These topics are covered through qualitative discussion
with several of the operations teams on the campuses where the data were collected and
is discussed more thoroughly in Section 7.
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Figure 3.1: Overview of Data Screening Framework

3.1 Temporal Feature Extraction

Feature extraction is an essential process of machine learning and is the means by which
objects are described quantitatively in a way that algorithms can differentiate between
different types or classes. Figure 3.2 illustrates a hierarchical node diagram of the fea-
tures, or metadata, about a building that are often necessary to accumulate to perform
conventional analysis from the literature. Much of these data are needed when creating
an energy simulation model, when setting thresholds for automated fault detection and
diagnostics, or benchmarking a building. When performing analysis on a single building,
these meta-data might be easy to accumulate. However, when such a process is scaled
across hundreds or potentially thousands of buildings, a collection of these data is not a
trivial procedure.

Modern, whole building electrical meters measure and report raw, sub-hourly, time-stamped
data. Significant amounts of essential information can be extracted from temporal data
to characterize a commercial building. The harvest of this information can assist in the
implementation of conventional analysis techniques, as inputs to classify or benchmark
a building, or to predict whether a building is a good candidate for individual energy
savings measures. To extract information solely from these sensors, new features can be
created from these raw data. These features are designated as temporal as they summa-
rize behavior occurring in time-series data. To illustrate the concept of temporal features
qualitatively, Figure 3.3 shows four example hourly electrical meters from different build-
ings. Even to the untrained eye, these data streams show obvious differences in the way
each building operates. Building A seems to be an extremely consistent consumer of en-
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Figure 3.2: Conventional features, or metadata, about a building

ergy across the entire year. There are no steady-state shifts in operation and seemingly
no influence from outside factors. Qualitatively, this data stream can be thought of as
consistent or predictable. Building B is similar in operation but has an obvious influence
from an external factor in the summer months. It is safely assumed that the consumption
of this building is weather-dependent, and it has some kind of cooling system. Building C
illustrates behavior that has shifts in consumption over the course of the year. This obser-
vation implies that this building has different schedules over the course of a year. Building
D seems to have combinations of all of these attributes, with no obviously dominating
phenomena.

Figure 3.4 illustrates the same four buildings with the time range constrained to two weeks
of data. Short-term temporal effects at the weekly and daily level are now observed.
Building A still appears very consistent with a predictable daily cyclical pattern and a
few variations around August 4 and 5. Building B exhibits similar behavior, but with
noticeable weekend differences on Saturdays and Sundays. Building C has less observable
daily patterns but has a trend upwards in the last five days of the time range. Building
D, again, has a combination of these attributes.

The goal of temporal feature extraction and analysis is to use various techniques to con-
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Figure 3.3: One year of example whole building electrical meter data that qualitatively
exemplifying various temporal features

vert all these qualitative terms into a quantitative domain. For example, the descriptor
weather-dependency can be quantified through the use of the Spearman rank order corre-
lation coefficient with outdoor air temperature. Consistency or volatility of daily, weekly,
or annual behavior can be quantified using various pattern recognition techniques. The
primary focus of this study is to create and apply some temporal feature extraction tech-
niques on commercial buildings for the purpose of characterization. Figure 3.5 illustrates
the categories of temporal features created in this effort.

Temporal features are aggregations of the behavior exhibited in time-series data. They
are characteristics that summarize sensor data in a way to inform an analyst through
visualization or to use as training data in a predictive classification or regression model.
Feature extraction is a step in the process of machine learning and is a form of dimension-
ality reduction of data. This process seeks to quantify various qualitative behaviors. This
section provides and overview of the categories of temporal features extracted from the
case study building data, the methods used to implement them, and visualized examples
of a selected subset of features manifest themselves over a time range. Table 3.1 gives an
overview the temporal features outlined in this section. A detailed list of the temporal
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Figure 3.4: Two weeks of example whole building electrical meter data that qualitatively
exemplifying various temporal features

Figure 3.5: Temporal features extracted solely from raw sensor data

features created in this Section can be found in Appendix A.
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Feature Category General Description
Statistics-based Aggregations of time series data

using mean, median, max, min,
standard deviation

Regression model-based Development of a predictive
model using training data and
using model parameters and
outputs to describe the data

Pattern-based Extraction of frequent and useful
daily, weekly, monthly, or long-
term patterns

Table 3.1: Overview of feature categories

3.2 Characterization and Variable Importance

The primary goal of this dissertation is to get a better sense of what behavior in time-
series sensor data is most characteristic of various types of buildings. As mentioned in
the introduction, if this meta-data can be discriminated, the process of characterizing a
building can be automated. In this section, the process of using random forest classification
models and the input variable importance feature.

For each objective, several steps are taken to predict each objective and then to investigate
the influence of the input features on class differentiation:

1. A random forest classification model is built using subsets of the generated features
to predict the objectives class

2. The classification model provides an indication of the ability of the temporal features
in describing the class based on its accuracy

3. Input feature importance is calculated by the classification model for insight on what
the most informative features are in predicting class

4. An in-depth analysis comparison of two of the classes within each objective is com-
pleted to explore further the attributes that characterize a building

An overview of this process is found in Figure 3.6. After the technical analysis of the
ability for the features sets to characterize building use type, a discussion is presented for
each subsection on the practical insight gained from this process from discussions with the
case study participants outlined in Section 3.3.1.
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Figure 3.6: Characterization process to investigate the ability for various features to de-
scribe the classification objectives

Random forest classification models were chosen based on their ability to model diverse
and large data sets in a robust way Breiman et al. (n.d.). These models use an ensemble
of decision trees to predict various characteristic labels about each building based on its
features. The literature describes decision trees as the "closest to meeting the requirements
for serving as an off-the-shelf procedure for data mining" Hastie et al. (2009). Figure 3.7
illustrates an example of a decision tree using features to determine whether a patient is
sick or healthy using two features Geurts et al. (2009).

Decision trees often over-fit data due to high variance. Random forest models work by
creating a set of decision trees and averaging all of their predictions to overcome this
variance. Figure 3.8 illustrates a set of four decision trees that is more accurately able to
distinguish between the two classes than a single tree model.

Random forests use a form of cross-validation by training and testing each tree using a
different bootstrapped sample from the data. This process produces an out-of-bag error
(OOB) that acts as a generalized error for understanding how well each class can be
predicted. This accuracy is used to determine how well the generated temporal features
can delineate the class objectives. Random forests can also calculate the importance of
the input features and how well they lend themselves to predicting the objectives. This
attribute is useful in that it allows us to understand exactly which temporal features are
most characteristic of various objectives. Variable importance is calculated using Equation
3.2.1. The importance of input feature Xm for predicting Y by adding up the weighted
impurity decreases p(t)∆i(st, t) for all nodes t where Xm is used, averaged over all NT
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Figure 3.7: An example of a decision tree (left) with the decision boundary for two features,
X1 and X2 (right). Adaption with permission from Geurts et al. (2009).

trees in the forest Louppe et al. (2013).

Imp(Xm) =
1

NT

∑
T

∑
t∈T :v(st)=Xm

p(t)∆i(st, t) (3.2.1)

3.3 Case Study, Empirical Data Collection, and
Qualitative Research

One of the main goals of this research is the testing and implementation of the tempo-
ral feature extraction techniques on empirical sensor data collected from real buildings.
Various raw data sets were obtained from case study buildings and campuses around the
world to test the developed methods. The target of these interactions was to collect at
least one year of hourly data from whole building electrical meters, resulting in at least
8760 measurements per building. Several of these data sets were collected through a series
of site visits and interviews. These interactions are detailed in Section 3.3.1 by giving an
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Figure 3.8: Ensemble of decision trees (top) that produces a more accurate decision bound-
ary (lower left) and comparison with a single tree model (lower right). Adapted
with permission from Geurts et al. (2009).

in-depth overview of these case studies by discussing the current performance data acqui-
sition systems and the standard methods of utilizing those data for tracking activities.
A key goal of the collection of these data was that they would be a basis for an open,
shareable data repository for building performance research. This goal was discussed with
the case study participants. Several other raw data sets were collected from open data
sources on the Internet and were included in this study, albeit often with less metadata
available. These case studies are described in Section 3.3.2.

In addition to the quantitative data collected from each of these case studies, qualitative
feedback was gathered to get a better sense of how useful the implementation and in-
terpretation of the framework would be in the day-to-day operations of various types of
stakeholders. The results of these qualitative interviews are included in this Section 7.
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3.3.1 Site Visits for Case Studies

Throughout the course of two years, from February 2014 to April 2016, several site visits
were conducted to interview operations staff at seven campuses. The purpose of this effort
was two-fold: first, to collect as much raw, temporal data from each site as possible and,
second, to discuss the status quo of building energy analysis as performed on their campus.
This section discusses these site visits, the types of data that were collected, and a few of
the lessons-learned from the process. A consistent theme in the site visits was that each
campus has been investing in electrical metering and data acquisition systems over the
past decade. In every one of the case study interviews, the operations staff discussed the
underutilization of the data being collected. A common phrase was, "We have more meter
data than any time before, and we don’t know what to do with it." Another common
situation was that a campus had a large electrical metering infrastructure but did not
know how to extract raw data for this research project. This scenario occurred on three
of the seven campuses after the first interview, and data was still not available even after
a follow-up visit on two of those campuses. Therefore, only four of the seven case studies
had data available and will be discussed in the following subsections.

Case Study 1

The first case study is a campus in a continental climate in the Midwest region of the
United States. It is a university with 226 buildings spread across two main campuses. Al-
together, these buildings have a total floor area over 2.3 million square meters (25 million
square feet). An initial interview was conducted with the lead statistician of the facili-
ties management in March 2015. Information was gathered on the building and energy
management systems of the campus and a discussion regarding the typical utilization of
the data was conducted. It was found that there are over 480 electrical meters on the
campus and that these data were primarily used for billing of the individual academic
departments. They have a custom metering data management platform with some ca-
pabilities for data export. A second site visit was conducted in June 2015 to facilitate
the collection of a sample one year data set. In this site visit, a facilities management
professional with experience in SQL databases was able to directly query the underlying
back-end of the energy management system to extract one year of raw data from all of
the metering infrastructure on the campus. An accompanying meta-data spreadsheet was
discovered that included information on floor area, primary space usage, EnergyStar score,
and address. These data were then used for the analysis and feature extraction, and some
of the results were compiled and presented to the entire facilities management department
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of this university in March 2016. This presentation gave an overview of the feature cre-
ation techniques and an understanding of how the buildings on their campus compare to
other universities. More discussion on the feedback from this presentation are discussed
in Section 7.

Case Study 2

The second case study is a campus in the Northeast region of the United States. It is also a
University and it has 180 buildings on a single main campus. An initial meeting was orga-
nized in April 2015 with the facilities management team. This campus has well-organized
building and energy management systems with a strong emphasis on data acquisition and
management. The campus has an analytics and automated fault detection software plat-
form that is connected to the underlying controls systems. A follow-up campus visit was
conducted in August 2015 to facilitate the download of a raw, example data set from the
buildings on campus. At this point, a log-in to a new data management platform was
given for the purposes data extraction. Several issues arose from the use of this platform
and ultimately, a database query by the software developers of the system was used to
extract the one year of electrical meter data from the campus buildings. Once again, a
spreadsheet of meta-data was shared that included information on floor area and primary
building use type. A final site visit was conducted in April 2016 to discuss some of the
results of the data acquisition and upcoming plans for upgrades. A formal presentation
of the results was not able to be given; thus only limited feedback of the implementation
progress was collected.

Case Study 3

The third case study is a campus in the Midwest region of the United States. Once
again, it is a university campus with 25 buildings encompassing 204,000 square meters
(2.2 million square feet) of floor space. An initial site survey and discussion of the campus
was conducted in March 2015 with the campus lead mechanical and energy engineers. This
campus has its electrical meters connected to a campus energy management platform that
includes various visualizations and analytics techniques. This platform also can easily
provide raw data download for analysis in this study. This platform resulted in this
campus being by far the most user-friendly on data collection out of the case study set,
including the open, on-line data sources. Raw data in flat files was easily downloaded for
all data points at once. The meta-data for this campus was also extracted from this energy
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management platform, albeit in a more manual method from the user interface. A follow-
up visit to this campus was conducted in March 2016 with initial results of characterizing
the data according to a subset of the tested features. A significant amount of feedback for
this case study was given by the facilities management department regarding the ability
for these insights to assist in their decision-making processes.

Case Study 4

The fourth case study is an international school campus in tropical Southeast Asia. This
campus includes five buildings with approximately 58,000 square meters (625,000 square
feet). It was built and opened in 2010 and includes some sustainable design features such
as an optimized chilled water plant, solar thermal cooling system, and an innovative, fresh
air delivery system. The building management and data acquisition system have been a
primary focus of the operations director of the campus for many years. Discussions and
interviews with the operations staff have occurred numerous times over the course of the
last five years. The key focus for this campus has been maintaining an optimized chilled
water system. The operations team of this organization has been an active contributor to
the development of the methodology.

Case Study 5

The final case study to be outlined in this section is a university campus located in Switzer-
land. This campus includes 22 building encompassing more than 150,000 square meters
(1.6 million square feet). This campus has an energy management system with the ability
to extract raw data, albeit only one point at a time. Data from this campus was utilized in
a previous research project focused on campus and building-scale co-simulation and mod-
eling. Only email correspondence with the campus facilities managers of this campus was
conducted. A significant amount of meta-data was available from the facilities department
through a spreadsheet that provided the breakdown of primary uses of the spaces in each
building.

3.3.2 Online Open Case Studies

Several large data sets were found through a search of openly accessible data on-line. This
section gives an overview of these data sources and the methods in which the data was
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Source Name Description Website
Cornell University EMCS Portal http://portal.emcs.cornell.edu/
University of Califor-
nia - Berkeley

Berkeley Campus En-
ergy Portal

http://berkeley.openbms.org/

Arizone State Univer-
sity

Campus Metabolism https://cm.asu.edu

Carbon Culture Community Open
Data Platform

https://platform.carbonculture.net

EnerNOC EnerNOC GreenBut-
ton Data

https://open-enernoc-
data.s3.amazonaws.com/anon/
index.html

University of
Southamption

Open Data Service http://data.southampton.ac.uk/

Table 3.2: Open, online data sources

extracted and pre-processed for analysis. Table 3.3.2 illustrates these sources, a short de-
scription of the platform in which the data was downloaded, and the URL of the platform.
As in the site visit case studies, one year of hourly whole building electrical meter data
was collected from each of these sources for as many buildings as possible.

3.4 Overview of Data Collected

Through data collection from the on-site case study interviews and on-line data sources,
whole building electrical meter data from 1238 buildings was collected. Figure 3.9 illus-
trates the locations of these building around the world. A majority of the buildings are
located in the United States, with the highest concentrations in the northeast region. A
wide range of building types are included in the data set, from Education and Government
to Agriculture and Heavy Industry.

From these groups of primary use types, the buildings are distributed across various time
zone regions as seen in Figure 3.13. The east coast of the United States is the largest group
due to the number of campuses and buildings from the EnerNOC data source. All of the
buildings from the Carbon Culture data source are located in the United Kingdom.

Figure 3.11 and 3.12 illustrate the industries and sub-industries that the case study build-
ings are collected from. The number of university campuses is strongly evident in both
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Figure 3.9: Locations of 1238 case study buildings collected from across the world

Figure 3.10: Distribution of case study buildings amongst time zones

charts.
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Figure 3.11: Distribution of case study buildings amongst general industries

Figure 3.12: Distribution of case study buildings amongst sub-industries
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3.4.1 Selection of Case Study Subset for Feature Implementation

A subset of buildings was chosen based on limiting criteria for inclusion in the implemen-
tation sections of this thesis. The primary consideration for inclusion is that the building
is a member of one of the top primary use types: Offices, Primary/Secondary Schools,
University Laboratories, University Classrooms, or Dormitories. These categories and the
number of buildings in one are shown in Figure 3.13.

Figure 3.13: Distribution of case study buildings amongst primary space uses

3.5 Advanced Metering Infrastructure Case Study

A larger data set of almost 10,000 non-residential buildings is gathered in this thesis
from an organization tasked with using the data to target buildings for performance im-
provement measures. These data are from an Advanced Metering Infrastructure (AMI)
implementation. Different types of meta-data are available for these buildings, including
industry and energy savings measure implementation. The primary goal of this data set is
to provide a context of scalability on a larger data set. These data are strictly private and
detailed data cannot be included in the methodology or development of the framework.
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Statistics-based temporal features are the first and most simplified category of temporal
features developed. The main classes of features are basic temporal statistics, ratio-based,
and the Spearman rank order correlation coefficient.

4.1 Theoretical Basis

4.1.1 Basic Temporal Statistics

The first set of temporal features to be extracted are basic statistics-based metrics that
utilize the time-series data vector for various time ranges to obtain information using
mean, median, maximum, minimum, range, variance, and standard deviation. Many of
these features are developed through the implementation of the VISDOM package in the
R programming language (Borgeson & Kwac 2015).As a simple example, if a time-series
vector is described as X, with N values of X = x1, x2, ..., xn, the most common statistical
metric, mean (or µ), can be calculated using Equation 4.1.1 (Mitsa 2010).

µ =

N∑
i=1

xi

N
(4.1.1)

The mean is taken not just for the entire time series, but also from the summer and
winter seasons. The variance of the values are taken for the whole year, the summer
and winter seasons as well. The variance of daily mean, minimum, and maximum values
are determined to understand the breadth of values across the time range. Variance is
calculated according to Equation 4.1.2.

σ2 =

n∑
i=1

(xi − µ)2

n
(4.1.2)
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The maximum and minimum electrical demand are calculated. Additionally, the hour
and date at which the maximum demand occurs are determined to understand when peak
consumption occurs. Additionally, the temperature at the maximum and minimum is ac-
count for weather influence. The 97th and 3rd percentiles are calculated to exclude any
extreme outliers, a value that’s often more useful than the maximum and minimum.

A series of hour-of-day (HOD) metrics are calculated that relate to aggregating the behav-
ior occurring at each of hour the day-four metrics. The first of these calculates the most
current hour of the top demand of the top 10% hottest days and the most common hour
of the top 10% temperatures to inform roughly about cooling energy consumption. These
metrics are repeated from the bottom 10% coldest days and temperatures. Another set of
twenty-four metrics is calculated to account simply for the mean demand of each hour of
the day.

A set of metrics is calculated individually for January and August to account for poten-
tial heating and cooling seasons. The daily maximum, minimum, mean, range and load
duration are calculated for these seasonal periods. The complete list of these features can
be found in Appendix A.

4.1.2 Ratio-based Statistical Features

The second major category of statistical features is ratio-based features. Simply, these are
metrics in which two or more of the previously calculated statistical metrics are combined
as a ratio. These features often have a normalizing effect in which buildings can be more
appropriately compared to each other. The first extracted metric of this type is one of the
most commonly calculated for building performance analysis: the consumption magnitude
of electricity normalized by the floor area of the building. This metric seeks to provide
a basis for comparison between buildings and is used as a key metric within numerous
benchmarking and performance analysis techniques. Figure 4.1 illustrates a single building
example of this metric per hour across a time range of two weeks at the end of the year.
The top line chart of this figure shows the magnitude of hourly electrical consumption for
one of the case study buildings. The middle portion of the figure repeats this information
in the form of a color-based, one-dimensional heatmap. In this example, the daily weekday
profiles manifest themselves as light-colored bands and weekend and unoccupied periods
as darker bands. The color bar at the bottom of the figure is key in interpreting the color
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values. This figure is an example of a single building demonstration of this particular
feature and is a type of graphic that is used throughout this entire section.

Figure 4.1: Single building example of area normalized magnitude

After normalized consumption, the first set of temporal features to be extracted are pri-
mary statistics-based metrics that utilize the time-series data vector for various time ranges
to retrieve information using mean, median, maximum, minimum, range, variance, and
standard deviation. The median value of a vector is simply the middle value in an ordered
set if the number of values is odd. If the length of the vector is even, then the median is
the mean of the two middle values. The minimum and maximum values are the first and
last in an ordered set. Vectors of values can also be described according to percentiles.
Percentiles are cutpoints dividing the range of a probability distribution based on the per-
centage of values below a given threshold. For example, the value at the 95% percentile is
found 95% of the way along an ordered set, with only 5% of the values remaining before
reaching the maximum. In this section, aggregation ratios of many of these collection
techniques are applied to the 24 hours from a single day to characterize various types of
typical behavior quickly. The first example of these ratios is the minimum versus maxi-
mum ratio or load ratio. This rate is calculated by taking the daily minimum and dividing
it by the daily maximum. Figure 4.2 illustrates a single building example of this ratio
on one month of data from a case study building. These load ratios indicated whether a
daily profile is more diverse, resulting in a lower load ratio, or more flat, resulting in a
higher load ratio. In this example, weekends and holidays are a darker shade of blue as
compared to generally-occupied weekdays. Load ratio can be used an indicator also of the
relative magnitude of the unoccupied baseline. Buildings that have a lower average load
ratio often have higher than average baselines, such as in laboratories or hospitals.
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Figure 4.2: Single building example of the daily load ratio statistic

A library of similar load ratio daily metrics is designed and implemented on the case
study buildings. These other ratios are daily mean versus maximum, minimum versus
95% percentile, and mean versus 95% percentile. The use of the 95% metric is mean to
mitigate against outliers skewing the load ratios. These ratios are calculated on all days
in the set, as well as just for weekend and weekdays. A full list of the features generated
is found in Appendix A.

4.1.3 Spearman Rank Order Correlation Coefficient

Data stream influence characterization is the process of roughly classifying the dataset into
streams and subsequences based on weather conditions sensitivity. A feature is developed
in a study of evaluation of campus data for simulation feedback, and the following is a
summarization of this technique (Miller & Schlueter 2015). This evaluation is important
in understanding what measured performance is due to heating, cooling, and ventilation
systems (HVAC) responses to outdoor conditions and what is due to schedule, occupancy,
lighting, and different loading conditions which are weather independent. Performance
data that is influenced by weather can be used to understand the HVAC system operation
better or be weather-normalized to understand occupant diversity schedules.

The Spearman Rank Order Correlation (ROC) is used to evaluate the positive or negative
correlation between each performance measurement stream and the outdoor air dry bulb
temperature. This technique has been previously used for weather sensitivity analysis
(Coughlin et al. 2009). The ROC coefficient, ρ, is calculated according to a comparison
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of two data streams, X, and Y , in which the values at each time step, Xi, and Yi, are
converted to a relative rank of magnitude, xi and yi, according to its respective dataset.
These rankings are then used to calculate ρ that varies between +1 and -1 with each ex-
treme corresponding to a perfect positive and negative correlation respectively. A value of
0 signifies no relationship between the datasets. This ρ value for a time-series is calculated
according to Equation 4.1.3.

ρ = 1 − 6
∑
d2i

n(n2 − 1)
(4.1.3)

The difference between the data stream rankings, xi and yi, is signified by a difference
value, di, and the number of samples compared to each dataset is signified by n. Figure
4.3 illustrates the calculation of the ROC coefficient, ρ for three examples. The cooling
sensitive data set shows a strong positive correlation between outside air temperature and
energy consumption with a ρ value of 0.934. As the outside air temperature increases,
the power consumption measured by this meter increases. The heating sensitive dataset
shown has a strong negative correlation with a ρ of -0.68. A weather-insensitive dataset
is shown in the middle which has a ρ of 0.0, signifying no weather relationship, which
is evident due to the four levels of consumption which are independent of outdoor air
conditions.

The correlation coefficient can be visualized for a single case as seen in Figure 4.4. The
coefficient, in this case, is calculated individually for each month. This process results in
twelve calculations of the metric using between 29-31 samples. In this case, consumption
in January to May is noticeably more heating sensitive, a fact that can be observed clearly
from the line chart, as well as the one dimension heat map. May to November is more
cooling sensitive. It is interesting that September appears to be the most cooling sensitive
month, a fact perhaps related to use schedules during that month. This coefficient is not
a perfect indicator of HVAC consumption; it just detects a correlation. However, it is
fast and easy to calculate and is the first phase of detecting weather dependency. More
detailed and informative weather influence extraction features are investigated in Section
5.

4.2 Implementation and Discussion

Figure 4.5 illustrates the same normalized consumption metric as applied to all of the
case study buildings. There are five segments of buildings based on the primary use types
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Figure 4.3: Weather sensitivity examples as energy vs. outdoor air temperature (from
(Miller & Schlueter 2015))

within the set: offices, university laboratories, university classrooms, primary/secondary
schools, and university dormitories. These metrics are visualized in this way to understand
the difference between each of these use types for each of the presented metrics. Each row
of the heatmap for each segment is the values of the feature for a single building, while
the x-axis is the time range for all buildings. Not all of the case study buildings have
a January to December time range. For these cases, the data was rearranged so that
a continuous set of January to December data is available to be visualized in the heat
map. The aggregation metrics themselves are not calculated with this rearranged vector;
it is only for visualization purposes. Like Figure 4.1, this type of graphic is used to
visualize many of the temporal features in this section. From this metric in particular,
one will notice that university labs have a systematically higher consumption over time
as compared to the other use types. One will also see the dark vertical lines across the
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Figure 4.4: Single building example of the spearman rank order correlation coefficent with
weather

time range indicating weekend use as compared to the weekday. This particular pattern
is absent from university dormitories due to their more continuous energy consumption.

Figure 4.6 illustrates this metric as applied to all case study buildings. As in the normalized
magnitude, various patterns are more apparent including the weekday versus weekend
phenomenon.
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Figure 4.5: Heat map representation of normalized magnitude
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Figure 4.6: Heatmap of daily load ratio statistic for all case study buildings
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Figure 4.7: Heatmap of spearman rank order correlation coefficient for all case study build-
ings
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Semi-physical behavior about a building can be extracted by using performance prediction
models and using output parameters and goodness-of-fit metrics for characterization. This
section covers the use of several common electrical consumption prediction models to create
sets of temporal features useful for characterization of buildings. Section 5.1 covers the
theory underlying each technique and Section 5.2 discusses the implementation of the case
study data with a focus on underlying trends as related to building use type.

5.1 Theoretical Basis

5.1.1 Load shape regression-based Features

Prediction of electrical loads based on their shape and trends over time is a mature field
developed to forecast consumption to detect anomalies and analyze the impact of demand
response and efficiency measures. The most common technique in this category is the use
of heating and cooling degree days to normalize monthly consumption (Fels 1986). Over
the years, various other techniques have been developed using techniques such as neural
networks, ARIMA models, and more complex regression (Taylor et al. 2006). However,
simplified methods have retained their usefulness over time due to ease of implementation
and accuracy. In the context of temporal feature creation, a regression model provides
various metrics that describe how well a meter conforms to conventional assumptions. For
example, if actual measurements and predicted consumption match well, the underlying
behavior of energy-consuming systems in the building has been captured adequately. If
not, there is the uncharacterized phenomenon that will need to be obtained with a different
type of model or feature.

A contemporary, simplified load prediction technique is selected to create temporal features
that capture whether the electrical measurement is simply a function of time-of-week
scheduling. This model was developed by Matthieu et al. and Price and implemented
mostly in the context of electrical demand response evaluation (Price 2010; Mathieu et al.
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2011). The premise of the model is based on two features: a time-of-week indicator and
an outdoor air temperature dependence. This model is also known as the Time-of-week
and Temperature or (TOWT) model or LBNL regression model and is implemented in the
eetd-loadshape library developed by Lawrence Berkeley National Laboratory1.

According to the literature, the model operates as follows (Price 2010). The time of week
indicator is created by dividing each week into a set of intervals corresponding to each
hour of the week. For example, the first interval is Sunday at 01:00, the second is Sun-
day at 02:00, and so on. The last, or 168th, interval is Saturday at 23:00. A different
regression coefficient, αi, is calculated for each interval in addition to temperature de-
pendence. The model uses outdoor air temperature dependence to divide the intervals
into two categories: one for occupied hours and one for unoccupied. These modes are
not necessarily indicators of exactly when people are inhabiting the building, but simply
an empirical indication of when occupancy-related systems are detected to be operating.
Separate piecewise-continuous temperature dependencies are then calculated for each type
of mode. The outdoor air temperature is divided into six equally sized temperature inter-
vals. A temperature parameter, βj, with j = 1...6, is assigned to each interval. Within the
model, the outdoor air temperature at time, t, occurring at time-of-week, i, (designated
as T (ti)) is divided into six component temperatures, Tc,j(ti). Each of these temperatures
is multiplied by βj and then summed to determine the temperature-dependent load. For
occupied periods the building load, Lo, is calculated by Equation 5.1.1.

L0(ti, T (ti) = αi +
6∑

j=1

βjTc,j(ti) (5.1.1)

Prediction of unoccupied mode occurs using a single temperature parameter, βu. Unnoc-
cupied load, Lu, is calculated with Equation 5.1.2.

L0(ti, T (ti) = αi + βuTc,j(ti) (5.1.2)

The primary means of temporal feature creation from this process is through the analysis
of model fit. The first metric calculated is a normalized, hourly residual, R, that can be
used to visualize deviations from the model. It is calculated from the actual load, La, and

1https://bitbucket.org/berkeleylab/eetd-loadshape
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the predicted load, Lp. The residual at a specific hour, t, is calculated using Equation
5.1.3.

Rt =
Lt,a − Lt,p

maxLa

(5.1.3)

An example of the TOWT model implemented on one of the case study buildings is seen
in Figure 5.1. Two primary characteristics are captured from a model residual analysis.
The first is the building’s primary deviation from a set time-of-week schedule and behavior
causing the model to highly over-predict. These deviations are most often attributed to
public holidays, breaks in normal operation, or changes in normal operating modes. In
the single building study, one of the most obvious daily deviations, Christmas Day, is
observed. This day is significantly over-predicted due to the model not being informed
of the Christmas Day holiday. The automated capture of this phenomenon can inform
whether the building is of a certain use-type or in a certain jurisdiction. The second
characteristic captured are periods of under prediction when the building is consuming
more electricity than expected. These data inform whether a building is being consistently
utilized, or whether there is volatility in its normal operating schedule from week-to-
week.

Figure 5.1: Single building example of TWOT model with hourly normalized residuals
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5.1.2 Change Point Model Regression

Another means of performance modeling that takes weather characterization into consid-
eration is the use of linear change point models. The outputs of these models can be
interpretable in approximating the amount of energy being used for heating, ventilation,
and air-conditioning (HvAC). This type of model has its basis in the previously-mentioned
PRISM method and has been continuously utilized, recently by Kissock and Eger (Kissock
& Eger 2008). This multivariate, piece-wise regression model is developed using daily con-
sumption and outdoor air dry-bulb temperature information. A linear regression model
is fitted to data detected to be correlated with outdoor dry-bulb air temperature, either
positively for cooling energy consumption or negatively for heating energy consumption.
For example, as the outdoor air temperature climbs above a certain point, the relation-
ship between electrical consumption and every degree increase in temperature should be
a linear line with a certain slope if the building has an electrically-driven cooling sys-
tem. The point at which this change occurs is considered the cooling balance point of the
building and the slope of the line is the rate of cooling energy increase due to outdoor
air conditions. This example can be seen in Figure 5.2a in which the base load of the
building is designated as β1, the slope of the cooling energy line is β2, and the change
point temperature is β3. Heating energy, as seen in Figure 5.2b, is similar except that the
slope of the line will be negative; as temperature decreases, the heating energy increases.
An optimization algorithm is used to detect each of these parameters from either hourly
or daily raw data.

Figure 5.2: Example of an (a) 3 point cooling and (b) 3 point heating change point models
(Used with permission from (Kelly Kissock & Eger 2008))

Equations 5.1.4 and 5.1.5 are used to predict energy energy consumption based on an
outdoor air temperature, T . This equation can also predict the heating (β2(T − β3))
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or cooling (β2(β3 − T )) components of the electrical consumption to a certain level of
accuracy.

Ec = β1 + β2(T − β3) (5.1.4)

Eh = β1 + β2(β3 − T ) (5.1.5)

Figure 5.3 illustrates a change point model fit on an office building in a continental climate
that includes both heating and cooling seasons. It should be noted that the model is not
perfectly characterizing the data due to two modes of daily operation; this situation is due
to there being an offset between occupied and unoccupied operation. This model is used
to generate features of approximate heating and cooling energy and in general, the slopes
of these two modes can safely be assumed to be similar in most cases. The Open Meter
Python library is used to regress these models for each building in this study 2.

Figure 5.3: Single building example of change point model of a building

Figures 5.4 and 5.5 illustrate single building examples of using the regression model to
extract the approximate heating and cooling electrical consumption from the overall power
meter. The cooling consumption example illustrates cooling consumption primarily in the
summer-time season, as expected. An interesting aspect of this example is that there are a
couple days of predicted cooling consumption in November and December. These days are
due to outdoor air temperature crossing the balance point in anomalous ways during that

2http://www.openeemeter.org/
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season. The heating consumption example also resembles an intuitive understanding how
the heating season from December to mid-April. In each example, one notices a correlation
between the cooling and heating consumption in the heat-map and slight increases in the
line charts indicating seasonality.

Figure 5.4: Single building example of predicted electrical cooling energy using change
point model

Figure 5.5: Single building example of predicted electrical heating energy using change
point model
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5.1.3 Seasonality and Trend Decomposition

Temporal, or time series data, from different sources, often exhibit similar types of behav-
ior that are studied within the field of forecasting and temporal data mining. Electrical
building meter data fits within this category, and the same feature extraction techniques
can be applied as what is commonly done for financial or social science analysis. These
techniques often seek to decompose time-series data into several components that repre-
sent the underlying nature of the data (Mitsa 2010). For example, the electrical meter
data collected from buildings is often cyclical in its weekly schedule. People are utilizing
buildings each day of the week in a relatively predictable pattern. A very common exam-
ple of this behavior is found in office buildings where occupants are typical white collar
professionals who come into work on weekdays at a particular time and leave to go home
at a certain time. Weekends are unoccupied periods in which there is little to no activity.
This behavior is an example of what’s known as seasonality within time series analysis.
Seasonality is a fixed and known period of consistent modulation and is a feature that is
often extracted before creating predictive models.

Trends are another feature commonly found in temporal data. A trend is a long-term
increase or decrease in the data that often doesn’t follow a particular pattern. Trends
are commonly due to factors that are less systematic than seasonality and are often due
to external influences. For building energy consumption, trends manifest themselves as
gradual shifts in consumption over the course of week or months. Often these shifts are
due to weather-related factors having an influence on the HVAC equipment. Other causes
of trends are changes in occupancy of degradation of system efficiency.

To capture these features to understand their impact on characterizing buildings, the
seasonal-trend decomposition procedure based on loess is used to extract each of these
features from the case study buildings (Cleveland et al. 1990). This process is used to
remove the weekly seasonal patterns from each building, the long-term trend over time,
and the residual remainders from the model developed by those two components. The
input data is aggregated to daily summations and weather normalized by subtracting the
calculated heating and cooling elements from the change point model described in Section
5.1.2. This step is done to reduce the influence weather plays in the trend decomposition.
The STL package in R is used for this process to extract the seasonal, trend, and irregular
components 3.

The details of the inner algorithms of the STL procedure are described by Cleveland et
al. (Cleveland et al. 1990). The process uses an inner loop of algorithms to detrend and

3https://stat.ethz.ch/R-manual/R-devel/library/stats/html/stl.html

54



5 Regression Model-based Features

deseasonalize the data by creating a trend component, Tv, and a seasonal component, Sv.
The remainder component, Rv, is a subtraction of the input values, Yv as seen in Equation
5.1.6.

Rv = Yv − Tv − Sv (5.1.6)

An output of the process of the STL package is seen in Figure 5.6. The data component
is the weather-normalized electrical meter data, the seasonal component is decomposed
weekly pattern, the trend is the smoothed trend component, and the remainder is the
residual after the other components have been subtracted out.

Figure 5.6: Output of seasonal decomposition process using loess for a single building.

The seasonal component of this decomposition process can then be extracted to get an
understanding of the typical weekly pattern of a building’s electrical consumption. Figure
5.7 illustrates this situation for a single building that has a typical office-style utilization
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Figure 5.7: Single building example of decomposed weekly patterns using the STL process

schedule with a Monday to Friday working schedule with Saturday and Sunday off. This
metric has been normalized to make it comparable to other buildings.

The general trend over the course of the year of data is another example of quantifying
the seasonal patterns in utilization of a building. Weather influence has been reduced
or removed using the change point models. Therefore, a trend could be the result of
changes in building occupancy due to breaks, changes in equipment or space functions
that would significantly increase or decrease the consumption, or gradual faults in systems
of equipment. Figure 5.8 illustrates a single building example of a decomposed trend for a
building. January to May is in the middle range of consumption trend with a noticeable dip
in April. From June to Oct, there is a trend upwards of higher than normal consumption,
perhaps due to higher utilization of the space. October to the end of the year is back to
average with a slight dip during the last few weeks of the year.

The remainder values of the STL decomposition process are indicators of days that fall
outside of the STL model’s prediction. This situation is similar to the residuals of the
loadshape models in Section 5.1.1. Figure 5.9 illustrates an example of the residual days.
Once again, this metric is normalized, however not on a 0 to 1 range. Instead, nega-
tive values indicate a lower than expected consumption for the day, while positive values
are higher than average. In this example, the residuals aren’t exceptionally systematic.
However, a few identifiable days can be seen including Thanksgiving in November.
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Figure 5.8: Single building example of decomposed trend using the STL process

Figure 5.9: Single building example of decomposed remainder component using the STL
process

5.2 Implementation and Discussion

Based on the theoretical basis of model-based approaches, the techniques are then applied
to the 507 targeted case study buildings. This process enables the analysis of various
patterns and phenomenon occurring in the data as a result of the building use type.
Figure 5.10 illustrates an overview of an implementation of the loadshape model on all the
buildings across the various building use types in the study. The differences between each
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use type can be noticed from a high level due to the nature of residuals. The darker areas
of the visualization indicate when the model is highly over-predicting consumption and
lighter areas indicate when the model is under-predicting. Common holiday periods such
as spring, summer and winter breaks and holidays such as the American Labor Day and
Thanksgiving are seen as darker areas. Offices, labs and classrooms seem to have similar
residual patterns, likely due to their scheduling being similar. Slight key differences are
seen such as the fact that classrooms have more general areas of over-prediction, likely
due to less consistent occupancy. Primary/Secondary schools and dormitories are clearly
less predictable on an annual basis due to their strong seasonal patterns of use; this fact
is intuitive and model residuals of this type are accurate in automatically characterizing
this behavior.

Figures 5.11 and 5.12 illustrate heating and cooling energy regression for all case study
buildings. These figures have been normalized according to floor area. Each building’s
response to outdoor air temperature is indicative of the type of systems installed in ad-
dition to the efficiency of energy conversion of those systems. Approximately 15-20%
of offices, labs, and classrooms have a certain amount of cooling electrical consumption,
while the rest have little to none. Many of those buildings are on district heating and
cooling systems, therefore, weather dependent electrical consumption is likely due to air
distribution systems or auxiliary pumps. Several of the labs have year-round cooling con-
sumption, likely due to climate and the high internal loads that accompany laboratory
environments.

Figure 5.13 illustrates the weekly pattern decomposition for all of the case study buildings.
For offices, most of the other cases also exhibit a typical Monday to Friday schedule, with
a few exceptions that have various weekday differences and several that have higher values
on Saturday. Tuesday seems to be the most consistent across the range of buildings on
the peak day of consumption. University labs and classrooms appear to have the same
amount of diversity and a similar schedule to offices, perhaps with slightly less use of
Fridays. Primary/Secondary school classrooms appear to be the most consistent in their
weekly Monday to Friday schedule and have an entirely consistent lack of Saturday and
Sunday utilization. University dormitories are the most diverse in their weekly patterns
with approximately half of the buildings having dominant weekday schedules and half
having dominant weekend schedules.

Figure 5.14 illustrates the trend decomposition as applied to the entire case study set of
buildings. Offices appear to have quite a bit of diversity over time, with a few observable
systematic low spots in the spring and autumn periods at the bottom of the heat map.
Laboratories reflect that behavior, while university visually has an opposite effect with
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Figure 5.10: Heatmap of normalized daily residuals for all case study building

lower than the average trend in the summer months. Primary/Secondary school classrooms
have a very distinct delineation between when school is in session and out of session
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Figure 5.11: Heatmap of normalized predicted electrical cooling energy for all case study
buildings

during the summer and various breaks. As many of these schools are in the UK, their
out-of-session periods appear to line up naturally. University dormitories also have clear
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Figure 5.12: Heatmap of normalized predicted electrical heating energy for all case study
buildings

delineations between occupied and unoccupied periods and they seem also to match up
quite well, despite the diversity of data sources of these buildings.
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Figure 5.13: Heatmap of decomposed weekly patterns for all case study buildings

Figure 5.15 illustrates the residuals applied across all of the case study buildings. Some
similarity between all of the university offices, labs, and classrooms are apparent regarding
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Figure 5.14: Heatmap of decomposed trend over time for all case study buildings

the holidays detected. The most consistent ones include the American memorial day in
May, American Independence Day in July, Thanksgiving in November and Christmas Day
in December. However, University Labs have a slightly less dramatic range of values.
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Primary/Secondary schools have appeared to have many more dramatic differences from
the STL model.

Figure 5.15: Heatmap of decomposed remainder residuals for all case study buildings

Overall, model-based temporal features are good at highlighting several different phenom-
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ena occurring in a building’s behavior. The first, and most important, is essentially how
predictable a building is across an annual time range and what systematically anomalous
days are occurring, such as holidays and break periods. Weather-related models are help-
ful in understanding what consumption is likely due to heating and cooling systems. This
feature is different than the spearman coefficient from the statistic-based section in that
it provides more information related to when a building goes into climate control modes
regarding outside air temperature.
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Temporal data mining for performance monitoring focuses on the extraction of patterns
and model building of time series data. These techniques are, in some ways, similar to
many existing building performance analysis approaches; however, different concepts and
terminology are used. Two key concepts to understand when applying data mining to
buildings are that of motifs and discords. A motif is a common subsequence pattern that
has the highest number of non-trivial matches (Patel et al. 2002), thus, a pattern that is
frequently found in the dataset. A discord, on the other hand, is defined as a subsequence
of a time series that has the largest distance to its nearest non-self match (Keogh et al.
2005). It is a subsequence of a univariate data stream that is least like all other non-
overlapping subsequences and is, therefore, an unusual pattern that diverges from the rest
of the dataset. These definitions are more general than that of a fault and therefore more
appropriate for the goal of higher level information extraction with less parameter setting.
In short, the goal is to find interesting or infrequent behavior efficiently and not create a
detailed list of specific problems that could be occurring in individual systems.

6.1 Theoretical Basis

To work with standard temporal mining approaches, Symbolic Aggregate approXimation
(SAX) representation of time-series data (Lin et al. 2003) is used. SAX allows discretiza-
tion of time series data which facilitates the use of various motif and discord detection
algorithms. The process breaks time series data into subsequences which are converted
into an alphabetic symbol. These symbols are combined to form strings to represent the
original time series enabling various mining and visualization techniques. Regarding ap-
plication, an example of a process using SAX-based techniques is the VizTree tool that
uses augmented suffix tree visualizations designed for usability by an analyst (Lin et al.
2004). A particular application of VizTree is the analysis of collected sensor data from an
impending spacecraft launch in which thousands of telemetry sensors are feeding data back
to a command center where experts are required to interpret the data. Visualization and
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filtering tools are needed that allow a natural and intuitive transfer of mined knowledge
to the monitoring task. Human perception of visualizations and the algorithms behind
them must work in unison to achieve an understanding of significant amounts of original
data streams.

6.1.1 Dirunal Pattern Extraction

Towards the development of diurnal motif and discord extraction, a new technique was
developed as an application of temporal data mining to building performance data. It is a
process called DayFilter and it includes five steps designed to filter structure incrementally
from daily raw measured performance data. These steps, as seen in Figure 6.1, are intended
to bridge the gap between contemporary top-down and bottom-up techniques. The arrows
in the diagram denote the execution sequence of the steps. Note that steps 3, 4, and
5 produce results applicable to the implementation of bottom-up techniques. Much of
the graphics and explanation for this section are contained in a publication explaining
DayFilter and its uses (Miller et al. 2015).

The whole building and subsystem metrics are targeted for analysis to determine high-
level insight. The process begins with a data preprocessing step which removes obvious
point-based outliers and accommodates for gaps in a univariate data set of variable length.
Next, the raw data is transformed into the SAX time-series representation for dimension-
ality reduction by creating groups of SAX words from daily windows. This step enables
the quick detection of discords, or regular patterns of performance that fall outside what is
considered normal in the dataset according to the frequency of patterns. The discords are
filtered out for future investigation while the remaining set of SAX words is clustered to
create performance motifs or the most common daily profiles. The additional clustering
step beyond the SAX transformation and filtering adds the ability further to aggregate
daily profiles beyond the SAX motif candidates. These clusters are useful in characterizing
what can be considered standard performance. Finally, these data are presented using vi-
sualization techniques as an aid to interpreting the questionable discords and the common
clusters. In the following simplified example, each of these steps is detailed. The input
parameter selections in this section are based on suggestions from other studies using SAX
aggregation and clustering approaches.

As in any data mining approach, data preprocessing is an important step to clean and
standardize the data. In the proposed method, extreme point measurements are removed
that fall outside of three standard deviations, 3σ, of the mean, µ, of the selected univari-
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Figure 6.1: Diagram of the five steps in the DayFilter (from (Miller et al. 2015))

ate data stream x(t). The data are then normalized to create a dataset, Z(t) with an
approximate 0 mean and a standard deviation of close to 1 (Goldin & Kanellakis 1995):

Z(t) =
x(t) − µ

σ
(6.1.1)

In the second step, Z(t) is transformed into a symbolic representation using SAX. It is one
of the many means of representing time-series data to enhance the speed and usability of
various analysis techniques. SAX is a type of Piecewise Aggregate Approximation (PAA)
representation developed by Keogh et. al and it has been used extensively in numerous
applications (Lin et al. 2007).

In brief, the SAX transformation is as follows. The normalized time-series, Z(t), is first
broken down into N individual non-overlapping subsequences. This step is known as
chunking, and the period length N is based on a context-logical specific period (Lin et al.
2005). In this situation, N is chosen as 24 hours due to the focus on daily performance
characterization. Each chunk is then further divided into W equal sized segments. The
mean of the data across each of these segments is calculated and an alphabetic character
is assigned according to where the mean lies within a set of vertical breakpoints, B =

β1, ..., βa−1. These breakpoints are calculated according to a chosen alphabet size, A, to
create equiprobable regions based on a Gaussian distribution, as seen in Table 6.2.
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Figure 6.2: Example breakpoint lookup table from Keogh et. al (Keogh et al. 2005) for
A = 3, 4, 5 calculated from a Gaussian distribution (Miller et al. 2015)

Based on a chosen value of W segments and alphabet size A, each N size window is
transformed into a SAX word. An example of this process is seen in Figure 6.3. This
example shows two daily profiles which are converted to the SAX words, acba and abba.
The SAX word is useful from an interpretation point of view in that each letter corresponds
consistently to a subsequence of data from the daily profile. For example, the first letter
explains the relative performance for the hours of midnight to 6:00 AM. Therefore if the
size of A is set to 3, a SAX word whose first letter is a would have low, b would indicate
average, and c would correspond to high consumption. Larger sizes of A would create
SAX words with a more diverse range of characters and would capture more resolution
magnitude-wise.

Figure 6.3: SAX word creation example (based on figure from Keogh et. al (Keogh et al.
2005)) of two days of 3 minute frequency data, parameters are N=480, W=4,
and A = 3 and the generated representative word for daily profile 1 is acba
and daily profile 2 is abba (from (Miller et al. 2015))

The individual subsequences, N , are not normalized independently. This particular de-
cision is divergent from the generalized shape-based discord approaches and is because,
at this level of analysis and the context of building performance data, there is interest in
discovering interesting subsections based on both magnitude and shape.
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The targeted benefits of using SAX in this scenario are that discretization uniformly
reduces the dimensionality and creates sets of words from the daily data windows. This
transformation allows the use of hashing, filtering, and clustering techniques that are
commonly used to manipulate strings (Lin et al. 2007).

Once the SAX words are created, each pattern is visualized and tagged as either a motif
or discord. The results of applying the SAX process to a two-week sample power dataset
are shown in Figure 6.4. The diagram shows how each daily chunk of high-frequency data
is transformed into a set of SAX characters. In this example, an alphabet size, A, of 3
and a subsequence period count, W , of 4 are used for each character aggregating the data
from 6 hours of each profile. These parameters are the same as used in the more simplified
two-day example from Figure 6.3

Figure 6.4: Creation of SAX words from daily non-overlapping windows: W1: 00:00-06:00,
W2: 06:00-12:00, W3: 12:00-18:00, W4: 18:00-24:00. Time series data is
transformed according to a SAX character creation and then as a string, or
SAX word (Miller et al. 2015)

Figure 6.5 visualizes the frequency of the SAX strings and substrings in the form of an
augmented suffix tree. Suffix trees have been an integral part of string manipulation and
mining for decades (Weiner 1973). Augmented suffix trees enable a means of visualizing
the substring patterns to show frequency at each level. This figure incorporates the use
of a Sankey diagram to visualize the tree with each substring bar height representing the
number of substring patterns existing through each window of the day-types. The more
frequent patterns are categorized as motifs or patterns which best describe the average
behavior of the system. One can see the patterns with the lower frequencies and their
indication as discords or subsequences that are least common in the stream.
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Heuristically, a decision threshold is set to distinguish between motifs and discords. This
threshold can be based on the word frequency count for each pattern as a percentage of
the number of all observations. This threshold can be tuned to result in a manageable
number of discord candidates to be further analyzed. More details about setting this limit
will be discussed the applied case studies.

In the two-week example, this process yields two patterns which have a frequency greater
than one and thus are the motif candidates. A manual review of the data confirms that
those patterns match with an expected profile for a typical weekday (acca) and weekend
(aaaa). The less frequent patterns are tagged as discords and can be analyzed in more
detail. In this case, it can be determined that the patterns abba, abca, and acba, despite
being infrequent, are not abnormal due to the occupancy schedule for those particular
days. Pattern ccba, however, is not explainable within the scheduling and is due to a fault
causing excessive consumption in the early morning hours.

This step leads into the next phase of the process focused on further aggregating the motif
candidates of the dataset. The size and number of potential motif filtered in this step will
give an indication of the number of clusters that will likely pick up the exact structure
from the dataset.

Figure 6.5: Augmented suffix tree of SAX words. Each level from left to right represents
the W1 − W4, the substrings are noted adjacent to each bar, and the bar
thickness is proportional to the number of days within each pattern type. The
pattern frequency in number of days is noted in this graphic within or just
adjacent to each bar. (from (Miller et al. 2015))

As the final step, interpretation and visualization are critical for DayFilter for a human
analyst to visually extract knowledge from the results, and to make decisions regarding
further analysis. The Overview, zoom and filter, details-on-demand approach (Shneider-
man 1996) and the previously mentioned VizTree tool (Lin et al. 2004) are used for insight
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into this process. The hidden structures of building performance data are revealed through
the SAX process, and visualization is used to communicate this structure to an analyst.
The method uses a modified Sankey diagram to visualize the augmented suffix tree in a
way which the count frequency of each SAX word can be distinguished. Figure 6.6 shows
how this visualization is combined with a heat map of the daily profiles associated with
each of the SAX words using the same two-week example data from Figures 6.4 and 6.5.
The Sankey diagram is rearranged according to the frequency threshold set to distinguish
between the motif and discord candidates.

In Figure 6.6, the discords are shown as the top four days, Jan. 2, 3, 12, and 13 and
the remaining days are shown as more frequent potential motifs below. Each daily profile
is shown adjacent to the right of the Sankey diagram and is expressed as a color-based
heatmap. Each horizontal bar of the heat map is an individual day, and they are grouped
according to pattern with the associated legend informing the viewer the magnitude of
energy consumption across the day. This visualization is designed to present quickly the
patterns arranged according to a sort of hierarchy provided by the suffix tree. One can
more easily distinguish seemingly normal versus abnormal behavior with this combination
of visualizations.

Figure 6.6: Example suffix tree with heatmap from the two week dataset. The sankey
diagram illustrates the divisions according to pattern and the general categories
of motif vs. discord candidates. Each horizontal line in the heatmap represents
a single daily profile to illustrate consumption magnitude of each SAX word.
(Miller et al. 2015)

DayFilter is applied on a large energy performance datasets to demonstrate the usability
and results in real-life scenarios. The process is applied to a 70,000 square meter inter-
national school campus in the humid, tropical climate of Singapore. It was built in 2010
and includes a building management system (BMS) with over 4,000 measured data points
taken at 5-minute intervals from the years of 2011-2013 - resulting in close to 800 million
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records of raw data. This collection includes 120 power meters and 100 water meters in
the energy and water management system. The data from this study are a seed dataset
in an open repository of detailed commercial building datasets (Miller et al. 2014).

The chilled water plant electricity consumption is targeted in this case due to its im-
portance in this climate and the potential savings opportunities available through chilled
water plant optimization. Measured kilowatt-hour (kWh) and kilowatt (kW) readings
were taken from July 12, 2012, to October 29, 2013, with 474 total daily profiles analyzed.
Figure 6.7 illustrates a Sankey diagram with a heat map of the output of the DayFilter
process with parameters set to A=3 and W=4. The discord and motif candidates are
separated in this case according to a decision threshold which quantifies a discord as a
day-type with a frequency count less than 2% of total days available. This distinction
results in 39 days with patterns tagged as discord candidates, which is 8.2% of the total
days in the dataset.

In general, there are six primary motif candidates with two candidates appearing to be
typical weekday types, two holiday or half-capacity types, and two-weekend unoccupied
types. Pattern aaaa and abaa are predominantly flat profiles common to non-occupied
cooling consumption. Patterns abba and acba are representative of days in which school is
out of session, but staff still occupies the office spaces. Pattern acca represents a regular
full-occupied school day, and it is by far the most common with 202 days tagged out of
474. Pattern accb is similar to acca with slightly more use in the late afternoon and early
evening. This phenomenon is due to extracurricular activities planned outside the normal
operating schedule of the facility.

For characterization, a metric is developed from the DayFilter process that approximates
the presence of motifs and discords. This metric is a daily frequency calculation of each
day’s pattern count versus the total number of days. An example of this metric is seen in
Figure 6.8.

6.1.2 Pattern Specificity

Another way to leverage SAX to characterize the case study data is to use it to extract
which patterns are most indicative of a particular building use type. This information is
obtained using the SAX-VSM process pioneered by Senin and Malinchik that uses SAX
and Vector Space Model technique from the text mining field (Senin & Malinchik 2013b).
Conventionally this method is utilized as a classification model to predict which class
a certain time-series belongs. A by-product of the process is that the subsequences of
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Figure 6.7: Cooling electricity consumption representation of the day-types from the Day-
Filter process (Miller et al. 2015)

each data stream are assigned a metric indicating their specificity. Pattern specificity is
a concept that quantifies how well a meter fits within its class. This technique is used to
determine whether a building is operating similar to other supposed peer buildings of the
same type.
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Figure 6.8: Single building example of daily pattern frequency using DayFilter, a=3 and
w=3

The SAX-VSM process begins with the SAX word creation, similar to DayFilter as shown
in Figure 6.4. However, the key difference is that the conventional SAX process extracts
word patterns from overlapping windows as opposed to simply chunking each daily profile.
Each data stream within a particular class of a training data set is converted to SAX words
using the same input variables of alphabet size, A, and subsequence period count, W . In
addition, a P variable is chosen to indicate the size of the sliding window. With SAX-
VSM, all of the SAX words for a certain use type class, such as Offices, are then combined
into a large Bag of Words (BOG) representation called a corpus, and then used to build a
term frequency matrix. This model is then used to calculate a tf ∗ idf weight coefficient,
which is the product of the term frequency (tf) and the inverse document frequency (idf).
The term frequency is a logarithmically scaled metric based on the incidence of a pattern
in the BOG. The inverse document frequency is computed as the log of the ratio of the
number of classes to the number of bags where each pattern occurs (Manning et al. n.d.).
Once this matrix of weight vectors is computed, the cosine similarity of an individual data
stream can be calculated to determine how similar to each class it is.

In this study, the goal is not to use SAX-VSM to classify each data stream, but to extract
instead temporal features that can be used to characterize them. Thus, the in-class cosine
similarity is calculated for each building’s data set as compared to the class it was assigned.
This process is not conventional from the classification sense as it is considered over-fitting
due to all samples being included in the training set. This situation is tolerated in this
analysis as it is desired to quantify only how much the patterns of use for a building
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Figure 6.9: Overview of SAX-VSM algorithm: first, labeled time series are converted into
bags of words using SAX; secondly, tf ∗ idf statistics is computed resulting in
a single weight vector per training class. For classification, an unlabeled time
series is converted into a term frequency vector and assigned a label of a weight
vector which yields a maximal cosine similarity value (figure and caption used
with permission from (Senin & Malinchik 2013a)).

compare to those of its labeled peers.

The specificity metric for each data stream is calculated for each sliding window by sub-
tracting all other tf ∗ idf weights for each pattern from the in-class weighting. An example
of this weighting

The specificity calculation process is implemented on each of the building test data sets.
A single building example of this process is seen in Figure 6.11. This building is within
the Office use-type classification; thus the color spectrum indicates how precise each sub-
sequence is to this building’s behavior as an office as compared to the entire training data
set. This example is using the input metrics of a = 8, p = 8, and w = 24 to capture the
specificity of daily patterns. These parameters settings include the use of a 24-hour slid-
ing window that is divided into eight segments of three hours length, and the normalized
magnitude assigns a symbol from a range of eight letters, a, b, c, d, e, f, g, h.

The specificity calculation process also implemented using input parameters designed to
capture patterns of weekly behavior. In this situation, the input metrics of a = 6, p = 14,
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Figure 6.10: An example of the heat map-like visualization of subsequence importance to
a class identification. Color value of each point was obtained by combining
tf ∗ idf weights of all patterns which cover the point. The highlighted class
specificity corresponds to a sudden rise, a plateau, and a sudden drop in
Cylinder; to a gradual increase in Bell; and to a sudden rise followed by
a gradual decline in Funnel (figure and caption used with permission from
(Senin & Malinchik 2013a))

Figure 6.11: Single building example of daily in-class specificity, a=8, p=8, and w=24 for
an office building. Positive specificity indicates behavior that is characteristic
of a certain class, while negative values indicates behavior of a different class.

and w = 168 are chosen to capture this behavior. These parameters settings model a

77



6 Pattern-based Features

168-hour sliding window (one week) that is divided into 14 segments of 12 hours length,
and the normalized magnitude assigns a symbol from a range of six letters, a, b, c, d, e, f . A
single building example is seen in Figure 6.12. This building is also within the Office use-
type classification; thus the color spectrum indicates how precise each weekly subsequence
is to this building’s behavior as an office as compared to the entire training data set.

Figure 6.12: Single building example of weekly in-class specificity, a=x, w=X, and p=X

6.1.3 Long-term Pattern Consistency

Breakout detection screening is a process in which each data stream is analyzed according
to the tendency to shift from one performance state to another with a transition period
in between. This metric is used in this context to quantify long-term pattern consis-
tency, and much of the explanation and graphics in this section are from a previous study
(Miller & Schlueter 2015). Breakout detection is a type of change point detection that
determines whether a change has taken place in a time series dataset. Change detection
enables the segmentation of the data set to understand the nonstationarities caused by
the underlying processes and is used in multiple disciplines involving time-series data such
as quality control, navigation system monitoring, and linguistics (Basseville & Nikiforov
1993). Breakout detection is applied to temporal performance data to understand gen-
eral, continuous areas of performance that are similar and the transition periods between
them.

In this process, an R programming package, BreakoutDetection, is utilized, which is also
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developed by Twitter to process time-series data related to social media postings1. This
package uses statistical techniques which calculate a divergence in mean and uses robust
metrics to estimate the significance of a breakout through a permutation test. The specific
technical details of the breakout detection implementation can be found in a study by
James et al. (James et al. 2014). BreakoutDetection uses the E-Divisive with Medians
(EDM) algorithm, which is robust amongst anomalies and can detect multiple breakouts
per time series. It can identify the two types of breakouts, mean shift and ramp up. Mean
shift is a sudden jump in the average of a data stream, and ramp up is a gradual change
of the value of a metric from one steady state to another. The algorithm has parameter
settings for the minimum number of samples between breakout events that allows the user
to modulate the amount of temporal detail.

The goal in using breakout detection for building performance data is to find directly
when macro changes occur in sensor data stream. This discovery is particularly exciting
in weather-insensitive data to understand when modifications are made to the underlying
system in which performance is being measured. Figure 6.13 data from a single building
data stream. Each color represents a group of continuous, steady-state operation and each
change in color is, thus, a breakout. These breakouts could be the result of schedule or
control sequence modifications, systematic behavior changes, space use type changes, etc.
Creation of diversity factor schedules should target data streams which have few breakouts
and the data between breakouts is the most applicable for model input. One parameter
setting for breakout detection is the minimum breakout size threshold. This parameter
prevents breakouts from being detected to close together, thus capturing potentially noisy
behavior for the particular data set.

6.2 Implementation and Discussion

Figure 6.14 shows this pattern frequency metric as applied to all the case study buildings.
One will notice that there is a range of pattern frequencies occurring across each of the
building use types. Offices and Primary/Secondary Classrooms seem to have larger regions
of darker, more consistent behaviour. Labs and Classrooms seem to be more volatile across
the time ranges.

Figure 6.15 illustrates this process applied to all 507 case studies as divided amongst
the use types. Clear differences in patterns across the time ranges are visible for each
of the building use types. Offices, university laboratories, and university classrooms all

1https://github.com/twitter/BreakoutDetection
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Figure 6.13: Single building example of breakout detection to test for long-term volatility
in an university dormitory building. A minimum threshold of 30 days is
chosen in this case, which explains the lack of threshold shift in April, a
break that may be attributed to spring break for this building

seem to have similar phases of specificity at similar times of the year, while dorms and
primary/secondary schools are often differentiated by their breaks.

Figure 6.16 illustrates weekly specificity as applied to all the buildings. The transition
between specific and non-specific patterns is smoother in this case due to the weekly time
range. It is also apparent that the most distinct behavior patterns for each building use
type are correlated to when that particular building has behavior related to lower occu-
pancy such as summer breaks or holiday periods. These phenomena need to be somewhat
consistent across all the buildings within a classification for it to indicate specificity.

Figure 6.17 illustrates breakout detection across the building use types in this study. This
implementation uses the same input parameter of a 30 day minimum between breakouts.
One notices somewhat of consistency amongst offices, labs, and classrooms regarding the
distribution of breakout numbers, while university dormitories and primary/secondary
classrooms have a noticeably higher number of breakouts across the range of behavior.
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Figure 6.14: Heatmap of daily pattern frequencies using DayFilter with a=3 and w=3
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Figure 6.15: Heatmap of in-class specificity with p=24, a=8, w=8
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Figure 6.16: Heatmap of in-class specificity with p=168, a=6, w=14
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Figure 6.17: Heatmap of breakout detection on all case studies
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7 Characterization of Building Use,
Performance, and Operations

Visualization of temporal features on their own is a means of understanding the range of
values of the various phenomenon across a time range. This situation gives an analyst the
basis to begin understanding what discriminates a building based on different objectives.
The next step is to utilize the features to predict whether a building falls into a particular
category and test the importance of various elements in making that prediction. Under-
standing which features are most characteristic to a particular objective is the fundamental
tenet of this study. In this section, three classification objectives are tested:

1. Principle Building Use - The primary use of the building is designated for the princi-
pal activity conducted by percentage of space designated for that activity. It is rare
for a building to be devoted specifically to a single task, and mixed-use buildings
pose a specific challenge to prediction.

2. Performance Class - Each building is assigned to a particular performance class
according to whether its area-normalized consumption in the bottom, middle, or top
33% percentiles within its principle building use-type class.

3. General Operation Strategy - Buildings that are controlled by the same entity, such
as those on a University campus, often have similar schedules, operating parameters,
and use patterns. This objective tests to understand how distinct these differences
are between different campuses.

7.1 Principal Building Use

The first scenario investigated is the characterization of primary building use type. The
goal of this effort is to quantify what temporal behavior is most characteristic in a building
being used for a certain purpose. For example, what makes the electrical consumption
patterns of an office building unique as compared to other purposes such as a convenience
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store, airport, or laboratory. This objective is necessary to understand who are the peers
of a building. Whatever category a building is assigned determines what benchmark is
used to determine the performance level of a building. The EnergyStar Portfolio Manager
is the most common benchmarking platform in the United States and the first step in
its evaluation is identifying the property type. There are 80 property types in portfolio
manager and each one is devoted to a particular primary building use type. Twenty-one
of those property types are available for submission to achieve a 1-100 ENERGYSTAR
score in the United States. These property types are seen in Figure 7.1.

Figure 7.1: EnergyStar building use-types available for 1-100 rating (from https://www.
energystar.gov/)

Allocation of the primary use type of a building is often considered a trivial activity when
analyzed from a smaller set of buildings. As the number of building being analyzed grows,
so does the complexity of space use evaluation. The use of buildings changes over time
and these changes are not always documented. In several of the case studies, this topic
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was discussed and highlighted as an issue concerning benchmarking a building.

Discriminatory features have already been visualized extensively in Sections 4-6 and the
differences between the primary use types are apparent in the overview heat maps of each
feature. In this and the following sections, a quantification of the impact of each fea-
ture will be evaluated using a random forest model and its associated variable importance
methods. Figure 7.2 is the first such example of the output results of the classification
model in predicting the building’s primary use type using the temporal features created
in this study. This visualization is a kind of error matrix, or confusion matrix, that illus-
trates the performance of a supervised classification algorithm. The y-axis represents the
correct label of each classification input and the x-axis is the predicted label. An accurate
classification would fall on the left-to-right diagonal of the grid. This grid is normalized
according to the percentage of buildings within each class. The model was built using
the scikit-learn Python library1 with the number of estimators set to 100 and the min-
imum samples per leaf set to 2. The overall general accuracy of the model is 67.8% as
compared to a baseline model of 22.2%. The baseline model using a stratified strategy
in which categories are chosen randomly based on the percentage of each class occurring
in the training set. Based on the analysis, university dormitories and primary/secondary
classrooms are the best-characterized use types overall with precisions of 92% and 96%
respectively and accuracies of 74% and 75%. The office category is easy confused with
university classrooms and laboratories. This situation is not surprising as many of these
facilities are quite similar and uses within these categories often overlap.

The most important features contributing to the accuracy of the classification model are
found in Figure 7.3. These features are ranked according to their importance in designating
the difference between all of the building types. Three of the top fifteen most important
features are from the stl decomposition process. This fact shows the importance that
normalized weekly patterns play in differentiation, in particular for dormitories. Eight
of the fifteen are statistical metrics, either ratios or consumption statistics. The second
highest variable importance is related to the correlation output from the loadshape model.
And the remaining three variables pertain to the number of long-term breakouts, and thus,
volatility.

1http://scikit-learn.org/
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Figure 7.2: Classification error matrix for prediction of building use type using a random
forest model

7.1.1 University Dormitory and Laboratory Comparison

The random forest classification model and variable importance metrics provide an in-
dication of how the features characterize a building’s use. A deeper investigation of the
features with a comparison between two use types is useful to understand the charac-
terization potential of various subsets of features. For this example, two building type
classifications are compared that showed sharp distinction from each other in the random
forest model: university laboratories and dormitories. For this comparison, the highly
comparative time-series analysis (hctsa) code repository is used as a toolkit for analysis
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Figure 7.3: Importance of features in prediction of building use type

of the generated temporal features in this study Fulcher et al. (2013). This toolkit has
various visualization tools that enable analysis of the predictive capabilities of temporal
features. Figure 7.4 shows the top forty features in differentiating university laboratories
and dormitories using a simple linear classifier model. These features are clustered ac-
cording to their absolute correlation coefficients to understand how many unique sets of
informative features are present. Groups of features in the same cluster are essentially
giving the same type of information about the differences between a certain set of tested
classes. In the case of laboratories and dormitories, there are eight sets of clusters giving
information about this distinction. The first, fourth and fifth clusters contain a couple of
breakout metrics representing volatility. The second and third clusters represent magni-
tudes of cooling energy and consumption statistics. The sixth cluster represents seasonal
metrics. The seventh cluster is a collection of fourteen features that are highly correlated,
with most being related to daily ratios and consumption-related metrics. The eighth and
last cluster include fifteen features, several representing consumption metrics and ratios,
but also several related to daily pattern frequencies.

Figure 7.5 illustrates the probability distributions of the top five differentiating features
for distinguishing laboratories from dormitories. The probability density of each of the
features is relatively similar in shape and distribution. This situation is because most
of the features are from clusters seven and eight which are highly correlated within the
cluster and between the clusters as well.

Figure 7.6 shows a distribution of the library of features on the data set compared to a
benchmark of nulls generated by randomly selecting the class. This visualization indicates
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Figure 7.4: Clustering of dominant features in the comparison of university dormitories
and laboratories

that there is a clear statistical difference in discriminating these two categories for a
significant number of the input features. The real mean is approximately 62%, while the
null mean is slightly above 50%. The ability to distinguish between these two classes is
relatively high.

7.1.2 Discussion with Campus Case Study Subjects

Previously, an example of how to characterize building use type was illustrated using a
random forest model and various feature importance techniques. In this subsection, a
discussion is presented of how this sort of characterization can be useful in a practical
setting. In the case study interviews, the topic of benchmarking of buildings was dis-
cussed. One of the issues presented to the operations teams was the concept of not having
a complete understanding of the way the buildings on their campus were being used. For
example, several of the campuses have a spreadsheet outlines various metadata about the

90



7 Characterization of Building Use, Performance, and Operations

Figure 7.5: Probability density distribution of top five features in characterizing the dif-
ference between university dormitories and laboratories

facilities on campus. This worksheet, in many cases, includes the primary use type of
the building. It was found that this primary use type designation is often loosely based
on information from when the building was constructed or through informal site survey.
In other situations, the building has an accurate breakdown of all the sub-spaces in the
building and approximately what the spaces are being used for. In these discussions, the
idea was presented that building use type characterization could be used to determine
automatically whether the labels within these spreadsheets aligned with the patterns of
use characterization using the temporal feature extraction. This proposal was met some
positive feedback, albeit there was a hesitation to confirm fully that this process would be
entirely necessary if labor were directed to do the same task.

Many of the case study subjects then were shown a series of graphics designed to tell
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Figure 7.6: Ability of temporal features to distinguish between dormitories and laborato-
ries as compared to the null hypothesis

the story of building use type characterization in an automated way. Figure 7.7 is the first
graphic shown to the subjects. This figure illustrates several of the most easily understood
temporal features and how they break down across the various building use types. This
graphic was created using the data for a particular case study; therefore more separation
between the classes exist than in the prediction of classes found in the previous section.
Discussions using this graphic first centered around the first feature: Daily Magnitude per
Area. It was intuitive to most participants that a university laboratory has more and
primary/secondary schools have less consumption per area than the other use types. It is
more surprising, however, that certain building use types are characterized well by other
features, such as a number of breakouts with primary/secondary schools and daily and
weekly specificity with university dormitories.

After a discussion of how different use types of buildings are characterized using temporal
features, the concept of misclassified buildings was introduced. Misclassification of build-
ings pertains to when the primary use type of the building doesn’t match the temporal
features of the electrical consumption, particularly the daily and weekly patterns of use.
Figure 7.8 was designed to illustrate this concept. This figure contains a subset of the
case study buildings within the office, university classroom, and university laboratory cat-
egories. The pattern specificity for offices, classrooms and laboratories were calculated
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Figure 7.7: Simplified breakdowns of general features according to building use type that
were presented to case study subjects

for each building as shown in the first three columns of the graphic. They are clustered
according to their similarity with red indicating low values and blue indicating high values.
The column on the far right indicates the use type classification for each building. The
laboratories are yellow, classrooms are blue, and offices are green. It can be seen that
there are distinct clusters of building types and a few regions in which there is a mix of
building use types in the final column.

Figure 3.7 shows the same diagram zoomed in on a certain subsection of a cluster that
contains mostly buildings that identify as classrooms. Interspersed amongst these class-
rooms are several buildings labeled as offices. These offices can be potentially thought
of as misfits in that they are not members of more consistently homogeneous clusters.
Discussions with members of the case study groups revealed that this information is inter-
esting, but immediately there wasn’t a clear understanding of how this information would
influence decision-making. It was suggested that this information could be used to sup-
plement the results of the benchmarking process by giving more insight into potentially
why a building is not performing well within its class. The situation may actually be that
the building is more a member of a different class and therefore may not be comparable
to those particular peers.
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Figure 7.8: Hierarchical clustering of buildings according to laboratory (yellow), office
(green), and classroom (blue) specificity

7.2 Characterization of Building Performance Class

The second objective targeted in this study is the ability for temporal features to char-
acterize whether a building performs well or not within it use-type class. Consumption
is the metric being measured; therefore it’s not the goal of this analysis to predict the
performance of a building, its to determine which temporal characteristics are correlated
with good or poor performance. This effort is related to the process of benchmarking
buildings. Using the insight gained through characterization of building use type, it is
possible to inform whether a building’s behavior matches its peers. Once a building is
part of a peer group, its necessary to understand how well that building performs within
that group. In this section, the case study buildings are divided according to which per-
centile each fits within in its in-class performance. The buildings are divided according to
percentiles, with those in the lowest 33% are classified as "Low", the 33 to 66% percentile
are "Intermediate", and the top 33% are classified as "High". As in the previous section,
these classifications and a subset of temporal features are implemented into a random for-
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Figure 7.9: Hierarchical clustering of buildings according to laboratory, office, and class-
room specificity zoomed in on a cluster with illustrates misfits

est model to understand how well the features are at characterizing the different classes.
Since this objective is related to consumption, all input features with known correlations
to consumption were removed from the training set. These include the obvious features of
consumption per area, but also include many of the statistical metrics such as maximum
and minimum values. Most of the daily ratio input features remain in the analysis as they
are not directly correlated with total consumption. Figure 7.10 illustrates the results of
the model in an error matrix. It can be seen that high and low consuming buildings are
well characterized. The intermediate buildings have higher error rates and are often mis-
classified with the other two classes. The overall accuracy of the model for classification
is 62.3% as compared to a baseline of 38%.

Figure 7.11 shows the variable importance calculation as it relates to classification for
all three classes. The top features for this model are a mix of statistical features and
model-based features. Within the statistical features category, the seasonal range for both
winter and summer are top features in addition to several daily ratios. For model-based
features, the loadshape model errors, the stl model residuals, and the eemeter residuals
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Figure 7.10: Classification error matrix for prediction of performance class using a random
forest model

are all present.

7.2.1 High versus Low Consumption Comparison

The two classifications chosen for this objective are intuitively the high and low consuming
buildings. This part of the analysis gives a more in-depth perspective of exactly which
features are most important in the differentiation between these two types of buildings.
This understanding provides insight on potentially what behavior in a building results
in good or poor performing buildings. Once again, the highly comparative time-series
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Figure 7.11: Importance of features according to random forest model in prediction of
building performance class

analysis (hctsa) code repository is used for this process. Figure 7.12 is a correlation
matrix showing the top forty features as determined by hctsa according to the in-sample
linear classification performance. Eight clusters of features are detected on discriminating
between high and low consumption. The first set of correlated features seen in the upper
left corner of the figure contains a mix of statistical and daily pattern-based features. The
second cluster includes a set of four features related to daily ratios. The third and largest
group is mostly statistical and daily ratio-based features. The fourth, sixth, seventh, and
eighth clusters all contain mostly in-class similarity and temporal features created using
jmotif. These features are an indicator of how well a building’s patterns fit within its
own class. An interesting aspect of these features is their lack of correlation with the rest
of the larger set. This situation indicates that they are capturing unique behavior, not
picked up by others in the set. These clusters are also relatively small with only one to
four members. The sixth cluster contains a set of features that are mostly generated by
the stl decomposition models.

Figure 7.13 shows the probability distributions of the top five performing features in
predicting high versus low consumption. The number one top feature for differentiating
between these classes is the daily in-class similarity feature that is generated by the jmotif
process. This feature informs us that buildings from all classes that have the highest
average daily pattern similarity to their peers are often also amongst the highest consuming
buildings in their class. Buildings that are on average less similar in their daily patterns
to their class are often in a lower percentile of consumption. This fact suggests that many
buildings that are misclassified are lower consumers of electricity. The second and fourth
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Figure 7.12: Clustering of dominant features in the comparison of high and low consump-
tion performance classes

features are daily statistical ratios. Buildings with higher consumption tend to have more
flat profiles, likely due to a higher base load during unoccupied periods. The third top
classifier is also created using the jmotif library and it suggests that a building that whose
minimum daily pattern specificity across the year is an indicator of higher than average
consumption.

Figure 7.14 shows the probability distribution of the features in their ability to distinguish
between high and low consumption as compared to a baseline. The mean of the created
features is approximately 58%, while the null mean is 51%. This situation indicates that
the generated temporal features have a significant impact on the prediction and evaluation
of whether a building performs well or not.
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Figure 7.13: Probability density distribution of top five features in characterizing the dif-
ference between high and low consumption

7.2.2 Discussion with Campus Case Study Subjects

In a situation similar to the discussion about building use type, participants in the case
studies were guided through the process of analysis using a subset of features from buildings
on their campus. Figure 7.15 illustrates a graphic that was shown to the groups. In this
case, the buildings are divided into two classes: Good and Bad. These categories are
based on whether the building falls in the upper or lower 50% within its class. The first
observation by the case study participants is that the load diversity, or the daily maximum
versus minimum, is a strong indicator of the performance class. This fact is not surprising
as this metric indicates the magnitude of the base load consumption as compared to the
peak. Other relatively strong differentiators, in this case, are cooling energy, seasonal
changes, and weekly specificity. The discussions related to this graphic centered around
the potential for the temporal features to inform why a building is performing well or not.
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Figure 7.14: Ability of temporal features to distinguish between high and low consumers
as compared to the null hypothesis

The results of Section 7.2.1 also include such clues on why a building may be in a high or
low performing state.

Figure 7.15: Simplified breakdowns of general features according to performance level that
were presented to case study subjects
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Figure 7.16 illustrates another graphic related to building consumption classes that were
discussed with case study participants. This graphic is an overview of the distributions of
the simplified set of features for a certain campus as compared to the entire set of case study
buildings. This graphic shows where the buildings on this campus stand as compared to
their peers. In this case, the buildings are on the higher end of the normalized consumption,
which could likely be because they’re also almost all in the highest 20% of buildings for
heating energy consumption. The buildings also have a relatively high load diversity, thus
the base loads for this campus are likely higher than average and interventions could be
designed to reduce this unoccupied load. Many of the case study participants saw this
insight as useful as it supplements the information from benchmarking.

Figure 7.16: Feature distributions of a single campus as compare to all other case study
buildings

7.3 Characterization of Operations Strategies

The final characterization objective for the case studies is the ability for the temporal
features to classify buildings from the same campus, and thus buildings that are being
operated in similar ways. This characterization takes to into account the similarity in
occupancy schedules, patterns of use, and other factors related to how a building operates.
Like the performance classes, this type of classification is more important in understanding
the features that contribute to the differentiation, rather than the classification itself.
Seven campuses were selected from the 507 buildings to create seven groups of buildings
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to characterize the difference between their operating behavior. Features were removed
for this objective that are indicators of weather sensitivity as these would be related to
the location of the buildings, and thus, the campus that they’re located. Figure 7.17
illustrates the results from the random forest model trained on these data. The accuracy
of this model is 80.5% as compared to a baseline of 16.9%. The model is excellent at
predicting some of the groups, such as groups 1-4, which more deficient in others, such as
5-7. The high accuracy of this prediction is surprising and lends itself to the ability of the
temporal features and the random forest model to predict the operational normalities of
these buildings.

Figure 7.17: Classification error matrix for prediction of operations group type using a
random forest model
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Figure 7.18 illustrates the temporal features identified by the random forest model as
the most important in class differentiation. One can observe several daily pattern-based
features in addition to statistical and daily ratio-based features. This finding lends weight
to the assumption that similarity in daily scheduling is a key discriminator between the
operations of various campuses.

Figure 7.18: Importance of features in prediction of operations type

7.3.1 Group 1 versus Group 2 Comparison

Groups 1 and 2 were selected to undertake a deeper analysis using the highly comparative
time-series analysis library. Figure 7.19 shows the top forty features and their correlated
clusters. The first and largest cluster of features, in this case, are from the breakout
detection process, a calculation of long-term volatility. This insight suggests that breakouts
are a key discriminatory aspect of seasonal patterns that would exist for buildings being
operated in the same way. The third cluster includes a diverse set of features including
a few from the loadshape library and several statistics-based metrics. The fourth cluster
contains features from the jmotif library, including both in-class similarity and specificity
metrics. The remaining clusters are all quite small, only containing one or two features,
and are made up of both pattern and motif-based features.

Figure 7.20 illustrates the top five features in the comparison of Group 1 and 2. The first
three features are variations of in-class similarity. This indication shows that the buildings
from these two particular groups are differentiated by how much the buildings fit within
their designated class. The fourth and fifth dominant features are associated with the
number of breakouts and long-term volatility.
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Figure 7.19: Clustering of dominant features in the comparison of operations group 1 and
2

Figure 7.21 illustrates how well all of the features can discriminate the difference between
these two groups of buildings. The separation for a majority of the features is not much
greater than the null mean, but the top differentiators are quite prominent.
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Figure 7.20: Probability density distribution of top five features in characterizing the dif-
ference between Group 1 and 2 operations classes
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Figure 7.21: Ability of temporal features to distinguish between group 1 and 2 operations
types as compared to the null hypothesis
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8 Characterization of Energy-Savings
Measure Implementation Success

In the previous sections, the process of temporal feature extraction and interpretation is
implemented on a test set of 507 buildings. One of the key pieces of feedback from the
case study interviews was that conventional analysis and meta-data collection for a set
of buildings at this level is reasonable if the resources are allocated. This assumption
quickly becomes untenable when discussing the analysis of the millions of buildings with
smart meter data. These data are also known as Advanced Metering Infrastucture (AMI)
data. In this section, execution of a subset of the temporal feature extraction process is
applied to a data set of close to 10,000 buildings that have been aggregated by the Vermont
Energy Investment Corporation (VEIC) on behalf of electrical utilities. The utilization
goal of these data is to supplement a process of targeting buildings for energy savings
implementation measures. Utilization of temporal features is discussed in the context
of assisting to label the approximate building use type and predicting measure success
implementation through a combination of smart meter data and past project experience
meta-data. These objectives are common in situations with large amounts of AMI data
as often the only meta-data available for these buildings is related to the location and
demographic characteristics of a building.

8.1 Predicting General Industry Membership

The first task that the features are used for is to characterize the general industry for which
a building is being used. This task is a first step in using temporal features to predict
necessary conventional features that can be used for more conventional targeting processes.
As a proof-of-concept about this task, temporal data is used to build a classification model
to predict the most common meta-data attribute of a building: its general use type. In this
case, the label for use type is the Standard Industrial Class (SIC) one digit classification
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is used. The breakdown of the number of buildings within each of the SIC code categories
is found in Figure 8.1.

Figure 8.1: Building Type Classification of the Labeled AMI Accounts

Four classification models are then created to predict the general SIC Category of each
account:

• Baseline model - using the distributions of the input samples to guess the category

• Non-Temporal Features Model – using non-temporal features containing monthly
data and zip code/location information

• Temporal Features – using the new features generated from the AMI data

• Combined Features – using all the features, temporal and non-temporal

Once again a random forest model was implemented using Python’s Scikit-Learn library.
The models were executed an out-of-bag error to calculate mean model accuracy of a
multi-label classification. Figure 8.2 illustrates the results of the models with respect to
percent mean accuracy improvement over the baseline.

The baseline model correctly predicts the labels with a 18.1% accuracy, while the features
influenced models were 38.5% for Non-Temporal, 45.3% for the Temporal and 45.7% for
the combined model. The baseline model represents common practice in which a class is
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Figure 8.2: Mean Model Accuracy Improvement from Baseline

chosen based on the probability distribution of that class occurring in the labeled dataset.
The combined feature set more than doubles the probability of predicting this piece of
meta-data.

Mean accuracy of multi-label classification models as done in this analysis is a harsh metric
as it forces the model to make a single choice for labeling each sample. In practice, it is
not desired for a model that completely makes this decision; but instead to simply want
the model to inform what the probability that a sample fits within a class. For example,
there could be 45% chance an unlabeled account is an office, a 35% chance it is a school
and 20% chance it is a grocery store. The reason to choose mean model accuracy in this
report it to communicate a simplified message of the techniques and the progress made
thus far. The fact that the overall classification model accuracy is around 40-60% for a
classification model with ten classes is not discouraging. It is the improvement in mean
accuracy from baselines that is the focus and this has been demonstrated so far in the
project.

It can also be seen in detail how the model predicts the classes for each by creating and
analyzing a classification confusion matrix. Figure 8.3 illustrates this matrix for the com-
bined model. It is observed that two of the largest classes, Retail and Finance, have the
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highest accuracy rates at over 55-60% with several other categories being misclassified
within them. This issue is common with imbalanced classification models and further fea-
ture development would improve the model by better characterizing the difference between
each class.

Figure 8.3: Classification error matrix for prediction of standard industry class (SIC) using
a random forest model
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8.2 Energy Efficiency Measure Implementation Success
Prediction

The next example of using the temporal features is predicting the success of future measure
implementation events using the past data. For this proof-of-concept, Pre and Post-
measure implementation data are utilized from close to 1,600 buildings that had one or
more measures implemented. The difference in mean daily consumption before an after
the measure implementation is calculated to achieve a rough indication of measure success.
The measures into three classifications is divided according to where the difference in daily
consumption for each account fits in the range of values. In this analysis, the accounts
in the lowest 33% were considered "Poor", while the 66% percentile were "Average" and
the top 33% are considered "Good". Simple difference in mean daily consumption is not
a perfect metric for success, as it is not normalized for weather or occupancy changes;
although it is adequate for this step as we are already arbitrarily choosing the thresholds
for class difference anyway and are looking for a simple metric at this point.

Figure 8.4 illustrates a breakdown of the measure categories within the tested dataset.

Figure 8.4: Breakdown of Measure Categories included in the Dataset

A Random Forest algorithm was implemented to use the temporal features to predict the
class of potential measure success (Good, Average or Poor). Figure 8.5 illustrates the
classification error matrix for this model.
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Figure 8.5: Classification error matrix for prediction of measure implementation success
using a random forest model

The baseline model with this data is able to predict the success within this set of classi-
fication at 32.8% accuracy, while the model based on temporal features achieved 51.1%
accuracy. The more important aspect to pay attention to is that the misclassification rate
between "Good" and "Poor" is less than 20% – a promising fact that motivates further
investigation using the existing temporal data-set.

8.3 Discussion

This section discusses the creation of additional information about smart meter by ex-
tracting characteristics from the high-frequency time-series measurements. Based on a
classification test using almost 9,600 labeled smart meter accounts, the accuracy of pre-
dicting building type is improved (based on SIC 1-Digit category) by over 27% over a
conventional baseline.

Data about energy efficiency measures implementation and classified almost 1,600 accounts
was aggregated into Good, Average, and Poor performing classes according to pre and
post-measure consumption. A classification model is developed that improves the ability
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to predict measure implementation class success by 18% over a baseline. Additionally,
there was only a 20% error rate in differentiating between Good and Poor performing
measures.

The biggest opportunity ahead is to characterize missing meta-data and predict measure
implementation success for future projects. Much work is also yet to be done to improve
the models and input information to bring the overall prediction accuracies higher in
absolute terms. Model prediction can also be improved incrementally as the AMI and
measures implementation data are better integrated.
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9 Conclusion and Outlook

This dissertation was undertaken with objectives related to the characterization of build-
ing behavior using temporal feature extraction and variable importance screening. The
primary goal of the effort is to automate the process of predicting various types of meta-
data based on the research questions formulated in Section 1. The following research
questions were formulated to address these objectives:

How accurately can the meta-data about a building be characterized through the
analysis of raw hourly or sub-hourly, whole building electrical meter data? Which

temporal features are most accurate in classifying the primary use-type, performance
class, and operational strategy of a building?

A framework of analysis was developed to address and test this question. This process
was implemented on two sets of case study buildings and the key quantitative conclusions
include:

• The framework can characterize primary building use type with a general accuracy
of 67.8% as compared to a baseline model of 22.2% based on five use type classes.
Temporal features enable a three-fold increase in building use prediction. Pattern-
based features are the most common category in the top ten in the characterization
of use-type, thus are important differentiators as compared to more traditional fea-
tures. Features from the stl decomposition process were found to be important as
well due to the ability to distinguish differences in normalized weekly patterns. Uni-
versity dormitories and laboratories were selected for a more in-depth analysis that
illustrated the specific differentiators between those two classes.

• Building performance class overall accuracy of the model for classification is 62.3% as
compared to a baseline of 38%. The top indicator of high versus low building in-class
performance was temporal features pattern specificity. Once again, pattern-based
temporal features were found to be significant in distinguishing between different
types of behavior. High versus Low consumption classes are compared in more
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detail. According to in-class specificity, it was determined that buildings that are
less similar to their own class generally have lower consumption; a conclusion that
helps understand the performance of misfit buildings.

• For operations class, the accuracy of this model is 80.5% as compared to a baseline of
16.9%, a four-fold increase in accuracy. Daily scheduling of buildings was captured
using the DayFilter features, accounting for half of the entire input features. Two
operations groups are compared where the jmotif in-class similarity features fill out
the top three spot, illustrating the efficacy of pattern-based features in discriminating
behavior.

Additional questions related to the implementation of the framework are raised:

Can temporal features be used to better benchmark buildings by signifying how well a
building fits within its designated use-type class? Can temporal features be used to

forecast whether an energy savings intervention measure will be successful or not? Is it
effective or possible to implement such features across data from thousands of buildings?

What are the most appropriate parameter settings for various generalized temporal
feature extraction techniques as applied to this context?

These questions are addressed through implementation of the framework on a larger
dataset containing thousands of buildings.

• The ability to assist in the targeting of buildings based on how well they respond to
energy savings measures is enhanced significantly using this process. An experiment
was conducted in which prediction of whether a building fits within three classes of
energy savings success. In the baseline model, there was only an 18.1% accuracy in
predicting whether a building will be good or bad with regards to an energy-saving
measure implementation. The temporal features developed and implemented were
able to predict a 45.3% accuracy of prediction, more than double the performance.

It should be noted that the quantitative analysis portion of this study seeks to illustrate the
accuracy of characterization. This success metric is as compared to the quantity of energy
saved, the percentage of savings due to implementation, and other building performance
metrics. This shift in focus is deliberate as the framework is designed as a step between
raw data and other techniques that target the decision-making process.

Several insights were gathered from the qualitative research approaches on the case study
interviews. This insight can be found in Section 7. The first key issue was that the two-step
framework was seen as interesting and insightful regarding the results. Participants were
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generally engaged with the content and results, but little concrete decision-making power
was extracted from them. One of the most discussed concepts in these case studies was the
ability for the framework to identify building use type more accurately, giving operations
teams the ability to find misfit buildings that are inappropriately labeled. Guidelines for
further work in the utilization of the framework for practical applications was discussed.

9.1 Outlook

A major future effort to build upon this work is expansion and enhancement of both
the building data library and the applied techniques. The more meta-data collected for
each building, the more detailed understanding of what temporal behavior is correlated
with those data. Thus, a more detailed characterization of each building and correlations
between the meta-data can occur. Additionally, increasing the number and scope of the
buildings in the data set enhances the ability to generalize the results across the wider
building stock. This repository could grow into something of a Building Data Genome
that enables researchers to download, make generalizations and infer information from the
data set in addition to comparing it to buildings from their portfolios. This idea draws
inspiration from the field of bioinformatics and the study of genomes in the biological
world. These genomes were sequenced from raw data (DNA) and are used to find patterns
or correlations related to certain meta-data about a specific organism. The release of the
data and code generated to create this framework is announced in Section 9.2.

The first major area of influence that the framework outlined in this dissertation is within
the domain of building performance benchmarking. This focus was discussed in Section
7.1 in the ability for the framework to predict what the primary use type of a building
based on its temporal data. With the increased availability of high-frequency data, soon
building owners will have the ability to submit their fifteen-minute frequency performance
data directly from their utility or energy management systems. Extracting information
about how well each building performs as compared to its peers can be enhanced through
the use of this high-frequency data. This dissertation has illustrated the use of temporal
features for the purpose of building use and performance class prediction; both concepts
that are very relevant to this application. The next steps in this effort include fine-tuning
the algorithms such that meta-data about a potential input building is checked against
the temporal features generated from the raw data.

Another promising field of research is in the automated targeting of buildings amongst vast
portfolios for various objectives such as retrofit opportunities. This field is emerging as
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large numbers of AMI data sets become available. As discussed in the introduction, there
is an under-supply of qualified data analytics experts to extract patterns and information
from these data to make decisions on which buildings to prioritize on various objectives.
The framework outlined identifies an initial step in the direction of characterizing energy
savings measures. Further work is necessary to develop these models into a tool that
automatically determines the applicability of various energy savings measures based on
temporal data from past projects and training data from potential targeted buildings.
These types of tools could act as screening process in how well a building fits within the
category its being benchmarked against. This process could also provide feedback as to
why a building did or didn’t perform well within its class based on where its individual
features fall as compared to other buildings in the same class.

The effort in this dissertation also works to reduce the ambiguity of algorithm applicability
in commercial building research. This phenomenon is observed in the wider data mining
community as a whole (Keogh & Kasetty 2003). In this study, Keogh et al. describe a
scenario in which “Literally hundreds of papers have introduced new algorithms to index,
classify, cluster, and segment time series.” They go on to state, “Much of this work has
very little utility because the contribution made (speed in the case of indexing, accuracy
in the case of classification and clustering, model accuracy in the case of segmentation)
offer an amount of improvement that would have been completely dwarfed by the variance
that would have been observed by testing on many real world datasets, or the variance
that would have been observed by changing minor (unstated) implementation details.”
They make the case that time series benchmarking data sets should be used to evaluate
whether a new proposed algorithm is more beneficial as compared to previous work. The
use of benchmark data sets reduces the impact of implementation bias, the disparity in
the quality of implementation of a proposed approach versus its competitors, and data
bias, the use of a particular set of testing data to confirm the desired finding. These biases
were proven common amongst popular data mining publications, and it is suspected that
they may be prevalent in the papers in this review. Benchmarking data sets for building
performance analysis could be developed and promoted for use in papers similar to what
was used in the Great Building Energy Predictor Shootout competition that was held in
the mid-1990’s (Kreider & Haberl 1994). In this competition, standardized training and
testing data sets were provided to numerous participants to determine who could create
the most accurate model to predict future consumption. A modern-day energy predictor
shootout could be held to incorporate the numerous advances made in machine learning
since then. In addition to the ability to compare accuracy of algorithms, publications
should also include more detailed explanations of the effort required to implement the
proposed techniques such that a third-party could evaluate whether the effort-to-accuracy
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balance is right for their application.

Regarding outlook, the techniques outlined in this study are also applicable to other
domains with temporal data and daily, weekly and seasonal patterns from fields such as
transportation or finance. For example, finding the specificity or long-term volatility of the
driving habits of cars on the road could be an application of the pattern-based temporal
features. Within the building industry, this framework could be used in the context of
space use utilization through analysis of sensor data from tracking devices or temporary
indoor environmental quality sensors. Finding representative motif patterns in this type of
data could prove valuable insight into which types of behavior are most indicative of more
or less efficient operation in a space. For example, in a hospital, a sensor network could
inform designers whether a particular layout, schedule of operations, or type of equipment
is most effective in preventing the spread of disease or the health outcome of patients.

9.2 Reproducible Research Outputs

A primary goal of this dissertation was the creation of a repository of building perfor-
mance data and techniques that can be implemented by other researchers and profes-
sionals. The 507 building case study data set and much of the data analysis behind the
temporal feature extraction and classification has been combined into a GitHub repository
that is open and accessible online (https://github.com/architecture-building-systems/the-
building-data-genome). The release of specific data sets for data science publications could
become the norm, thus facilitating the ability for a third-party to recreate the results. The
repository includes a set of Jupyter notebooks that can be downloaded and used to repli-
cate the results of those studies easily. The Jupyter notebook website states that it is "an
open source, web application-based document that combines live code, equations, visual-
izations, and explanatory text."1 The use of these types of formats is an opportunity to
enhance the interdisciplinary communication further through the sharing and utilization
of publication data.

1https://jupyter.org/

118



A Complete List of Generated
Temporal Features

This appendix section outlines a library of temporal features developed or utilized in this
dissertation. The last three columns indicate whether the feature was used as an input in
each of the sections of Chapter 7: Use Type (U), Consumption Type (C), and Operations
Type (O).

Feature Code Description Category Type U C O
consumpstats dailykwminvar Daily minimum variance Stats. Cons. Stats X X
consumpstats dailykwvar Daily variance Stats. Cons. Stats X X
consumpstats kw90 Ninety percentile Stats. Cons. Stats X X
consumpstats kwmean Mean Stats. Cons. Stats X X
consumpstats kwmeanannual Annual mean Stats. Cons. Stats X X
consumpstats kwmeansummer Annual summer Stats. Cons. Stats X X
consumpstats kwmeanwinter Annual winter Stats. Cons. Stats X X
consumpstats kwtotal Total Stats. Cons. Stats X X
consumpstats kwvar Variance Stats. Cons. Stats X X
consumpstats max Max Stats. Cons. Stats X X
consumpstats max97 Max percentile Stats. Cons. Stats X X
consumpstats maxMA Max MA Stats. Cons. Stats X X
consumpstats maxdaydate Day of max use Stats. Cons. Stats X X
consumpstats maxdaypct Day of max as a pct. Stats. Cons. Stats X X
consumpstats maxdaytout Day of max output Stats. Cons. Stats X X
consumpstats maxhrkw Max hour Stats. Cons. Stats X X
consumpstats maxhrtout Outdoor air temp on max day Stats. Cons. Stats X X
consumpstats mean Mean Stats. Cons. Stats X X
consumpstats min Minimum Stats. Cons. Stats X X
consumpstats min3 Minimum percentile Stats. Cons. Stats X X
consumpstats range Range Stats. Cons. Stats X X
consumpstats t10kw Most common hour in top ten

percent
Stats. Cons. Stats X X

consumpstatsdaykw Total on max day Stats. Cons. Stats X X
consumpstatsdaytout Outdoor air temp Stats. Cons. Stats X X
consumpstatsmaxdaykw Day with max cons. Stats. Cons. Stats X X
consumpstatst 90kw Max percentile Stats. Cons. Stats X X
normalizedcons max Area normalized stats Stats. Cons. Stats X X
normalizedcons mean Area normalized stats Stats. Cons. Stats X X
normalizedcons min Area normalized stats Stats. Cons. Stats X X
normalizedcons std Area normalized stats Stats. Cons. Stats X X
consumpstats Aug max Aug stats Stats. Cons. Stats X
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consumpstats Aug mean Aug stats Stats. Cons. Stats X
consumpstats Aug min Aug stats Stats. Cons. Stats X
consumpstats Aug mn2mx Aug stats Stats. Cons. Stats X
consumpstats Jan max Jan stats Stats. Cons. Stats X
consumpstats Jan mean Jan stats Stats. Cons. Stats X
consumpstats Jan min Jan stats Stats. Cons. Stats X
consumpstats dailykwmaxvar Daily max variance Stats. Cons. Stats X
consumpstats kwtotalApr Monthly totals Stats. Cons. Stats X
consumpstats kwtotalAug Monthly totals Stats. Cons. Stats X
consumpstats kwtotalDec Monthly totals Stats. Cons. Stats X
consumpstats kwtotalFeb Monthly totals Stats. Cons. Stats X
consumpstats kwtotalJan Monthly totals Stats. Cons. Stats X
consumpstats kwtotalJul Monthly totals Stats. Cons. Stats X
consumpstats kwtotalJun Monthly totals Stats. Cons. Stats X
consumpstats kwtotalMar Monthly totals Stats. Cons. Stats X
consumpstats kwtotalMay Monthly totals Stats. Cons. Stats X
consumpstats kwtotalNov Monthly totals Stats. Cons. Stats X
consumpstats kwtotalOct Monthly totals Stats. Cons. Stats X
consumpstats kwtotalSep Monthly totals Stats. Cons. Stats X
consumpstats kwvarsummer Summer variance Stats. Cons. Stats X
consumpstats kwvarwinter Winter variance Stats. Cons. Stats X
consumpstats maxhrdate Timestamp of max cons. Stats. Cons. Stats X
consumpstats t10t Temp at percentile Stats. Cons. Stats X
consumpstats t90t Temp at percentil Stats. Cons. Stats X
all meanvs95 max Ratio of daily Stats. Daily Ratios X X X
all meanvs95 mean Ratio of daily Stats. Daily Ratios X X X
all meanvs95 min Ratio of daily Stats. Daily Ratios X X X
all meanvs95 std Ratio of daily Stats. Daily Ratios X X X
all meanvsmax max Ratio of daily Stats. Daily Ratios X X X
all meanvsmax mean Ratio of daily Stats. Daily Ratios X X X
all meanvsmax min Ratio of daily Stats. Daily Ratios X X X
all meanvsmax std Ratio of daily Stats. Daily Ratios X X X
all minvs95 max Ratio of daily Stats. Daily Ratios X X X
all minvs95 mean Ratio of daily Stats. Daily Ratios X X X
all minvs95 min Ratio of daily Stats. Daily Ratios X X X
all minvs95 std Ratio of daily Stats. Daily Ratios X X X
all minvsmax max Ratio of daily Stats. Daily Ratios X X X
all minvsmax mean Ratio of daily Stats. Daily Ratios X X X
all minvsmax min Ratio of daily Stats. Daily Ratios X X X
all minvsmax std Ratio of daily Stats. Daily Ratios X X X
weekdays meanvs95 max Ratio of weekday Stats. Daily Ratios X X X
weekdays meanvs95 mean Ratio of weekday Stats. Daily Ratios X X X
weekdays meanvs95 min Ratio of weekday Stats. Daily Ratios X X X
weekdays meanvs95 std Ratio of weekday Stats. Daily Ratios X X X
weekdays meanvsmax max Ratio of weekday Stats. Daily Ratios X X X
weekdays meanvsmax mean Ratio of weekday Stats. Daily Ratios X X X
weekdays meanvsmax min Ratio of weekday Stats. Daily Ratios X X X
weekdays meanvsmax std Ratio of weekday Stats. Daily Ratios X X X
weekdays minvs95 max Ratio of weekday Stats. Daily Ratios X X X
weekdays minvs95 mean Ratio of weekday Stats. Daily Ratios X X X
weekdays minvs95 min Ratio of weekday Stats. Daily Ratios X X X
weekdays minvs95 std Ratio of weekday Stats. Daily Ratios X X X
weekdays minvsmax max Ratio of weekday Stats. Daily Ratios X X X
weekdays minvsmax mean Ratio of weekday Stats. Daily Ratios X X X
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weekdays minvsmax min Ratio of weekday Stats. Daily Ratios X X X
weekdays minvsmax std Ratio of weekday Stats. Daily Ratios X X X
weekend meanvs95 max Ratio of weekend Stats. Daily Ratios X X X
weekend meanvs95 mean Ratio of weekend Stats. Daily Ratios X X X
weekend meanvs95 min Ratio of weekend Stats. Daily Ratios X X X
weekend meanvs95 std Ratio of weekend Stats. Daily Ratios X X X
weekend meanvsmax max Ratio of weekend Stats. Daily Ratios X X X
weekend meanvsmax mean Ratio of weekend Stats. Daily Ratios X X X
weekend meanvsmax min Ratio of weekend Stats. Daily Ratios X X X
weekend meanvsmax std Ratio of weekend Stats. Daily Ratios X X X
weekend minvs95 max Ratio of weekend Stats. Daily Ratios X X X
weekend minvs95 mean Ratio of weekend Stats. Daily Ratios X X X
weekend minvs95 min Ratio of weekend Stats. Daily Ratios X X X
weekend minvs95 std Ratio of weekend Stats. Daily Ratios X X X
weekend minvsmax max Ratio of weekend Stats. Daily Ratios X X X
weekend minvsmax mean Ratio of weekend Stats. Daily Ratios X X X
weekend minvsmax min Ratio of weekend Stats. Daily Ratios X X X
weekend minvsmax std Ratio of weekend Stats. Daily Ratios X X X
hourlystats maxHOD Hour of day stat Stats. Hourly Stats. X X X
hourlystats HODmean1 Hour of day stat Stats. Hourly Stats. X X
hourlystats HODmean10 Hour of day stat Stats. Hourly Stats. X X
hourlystats HODmean11 Hour of day stat Stats. Hourly Stats. X X
hourlystats HODmean12 Hour of day stat Stats. Hourly Stats. X X
hourlystats HODmean13 Hour of day stat Stats. Hourly Stats. X X
hourlystats HODmean14 Hour of day stat Stats. Hourly Stats. X X
hourlystats HODmean15 Hour of day stat Stats. Hourly Stats. X X
hourlystats HODmean16 Hour of day stat Stats. Hourly Stats. X X
hourlystats HODmean17 Hour of day stat Stats. Hourly Stats. X X
hourlystats HODmean18 Hour of day stat Stats. Hourly Stats. X X
hourlystats HODmean19 Hour of day stat Stats. Hourly Stats. X X
hourlystats HODmean2 Hour of day stat Stats. Hourly Stats. X X
hourlystats HODmean20 Hour of day stat Stats. Hourly Stats. X X
hourlystats HODmean21 Hour of day stat Stats. Hourly Stats. X X
hourlystats HODmean22 Hour of day stat Stats. Hourly Stats. X X
hourlystats HODmean23 Hour of day stat Stats. Hourly Stats. X X
hourlystats HODmean24 Hour of day stat Stats. Hourly Stats. X X
hourlystats HODmean3 Hour of day stat Stats. Hourly Stats. X X
hourlystats HODmean4 Hour of day stat Stats. Hourly Stats. X X
hourlystats HODmean5 Hour of day stat Stats. Hourly Stats. X X
hourlystats HODmean6 Hour of day stat Stats. Hourly Stats. X X
hourlystats HODmean7 Hour of day stat Stats. Hourly Stats. X X
hourlystats HODmean8 Hour of day stat Stats. Hourly Stats. X X
hourlystats HODmean9 Hour of day stat Stats. Hourly Stats. X X
seasonal Aug dur Seasonal stats Stats. Simple Stats. X X X
seasonal Aug n2d Seasonal stats Stats. Simple Stats. X X X
seasonal Aug range Seasonal stats Stats. Simple Stats. X X X
seasonal Jan dur Seasonal stats Stats. Simple Stats. X X X
seasonal Jan mn2mx Seasonal stats Stats. Simple Stats. X X X
seasonal Jan n2d Seasonal stats Stats. Simple Stats. X X X
seasonal Jan range Seasonal stats Stats. Simple Stats. X X X
stats dur Duration Stats. Simple Stats. X X X
stats kwtoutcor Temp and cons. Correlation Stats. Simple Stats. X X X
stats mindaydate Minimum cons day Stats. Simple Stats. X X X
stats mindaypct Min day percentage Stats. Simple Stats. X X X

121



A Complete List of Generated Temporal Features

stats minhrkw Min hour Stats. Simple Stats. X X X
stats minhrtout Temp at min. hour Stats. Simple Stats. X X X

Feature Code Description Category Type U C
eemeter coolbalpt Cooling balance point Model EEMeter

Model
X X X

eemeter cvrmse Model fit coefficient Model EEMeter
Model

X X X

eemeter heatbalpt Heating balance point Model EEMeter
Model

X X X

eemeter baseload Baseload Model EEMeter
Model

X X

eemeter cooling max Maximum cooling cons. Model EEMeter
Model

X X

eemeter cooling mean Mean cooling cons. Model EEMeter
Model

X X

eemeter cooling min Min cooling cons. Model EEMeter
Model

X X

eemeter cooling std Std. Dev. Cooling cons. Model EEMeter
Model

X X

eemeter coolslope Slope of cooling linear regres-
sion

Model EEMeter
Model

X X

eemeter heating max Maximum heating cons. Model EEMeter
Model

X X

eemeter heating mean Mean heating cons. Model EEMeter
Model

X X

eemeter heating min Min. heating cons. Model EEMeter
Model

X X

eemeter heating std Std. Dev. Heaint cons. Model EEMeter
Model

X X

eemeter heatslope Slope of heatig linear regres-
sion

Model EEMeter
Model

X X

eemeter nmbe Model fit coefficient Model EEMeter
Model

X X

loadshape corr interval Model fit coefficient Model Loadshape
Model

X X X

loadshape corr interval day-
time

Model fit coefficient Model Loadshape
Model

X X X

loadshape mape interval Model fit coefficient Model Loadshape
Model

X X X

loadshape mape interval day-
time

Model fit coefficient Model Loadshape
Model

X X X

loadshape rmse interval Model fit coefficient Model Loadshape
Model

X X X

loadshape rmse interval day-
time

Model fit coefficient Model Loadshape
Model

X X X

stlreminder apr mean Model fit remainder Model STL Model X X X
stlreminder aug mean Model fit remainder Model STL Model X X X
stlreminder dec mean Model fit remainder Model STL Model X X X
stlreminder feb mean Model fit remainder Model STL Model X X X
stlreminder jan mean Model fit remainder Model STL Model X X X
stlreminder jul mean Model fit remainder Model STL Model X X X
stlreminder jun mean Model fit remainder Model STL Model X X X
stlreminder mar mean Model fit remainder Model STL Model X X X
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stlreminder may mean Model fit remainder Model STL Model X X X
stlreminder nov mean Model fit remainder Model STL Model X X X
stlreminder oct mean Model fit remainder Model STL Model X X X
stlreminder sep mean Model fit remainder Model STL Model X X X
stltrend apr mean Model trend mean Model STL Model X X X
stltrend aug mean Model trend mean Model STL Model X X X
stltrend dec mean Model trend mean Model STL Model X X X
stltrend feb mean Model trend mean Model STL Model X X X
stltrend jan mean Model trend mean Model STL Model X X X
stltrend jul mean Model trend mean Model STL Model X X X
stltrend jun mean Model trend mean Model STL Model X X X
stltrend mar mean Model trend mean Model STL Model X X X
stltrend may mean Model trend mean Model STL Model X X X
stltrend nov mean Model trend mean Model STL Model X X X
stltrend oct mean Model trend mean Model STL Model X X X
stltrend sep mean Model trend mean Model STL Model X X X
stlweeklypattern fri mean Model trend mean Model STL Model X X X
stlweeklypattern mon mean Model trend mean Model STL Model X X X
stlweeklypattern sat mean Model trend mean Model STL Model X X X
stlweeklypattern sun mean Model trend mean Model STL Model X X X
stlweeklypattern thur mean Model trend mean Model STL Model X X X
stlweeklypattern tue mean Model trend mean Model STL Model X X X
stlweeklypattern wed mean Model trend mean Model STL Model X X X

Feature Code Description Category Type U C

breakouts max 10 1 2 Number of breakouts (various
inputs)

Pattern Breakout X X X

breakouts max 10 1 3 Number of breakouts (various
inputs)

Pattern Breakout X X X

breakouts max 10 1 5 Number of breakouts (various
inputs)

Pattern Breakout X X X

breakouts max 10 2 2 Number of breakouts (various
inputs)

Pattern Breakout X X X

breakouts max 10 2 3 Number of breakouts (various
inputs)

Pattern Breakout X X X

breakouts max 10 2 5 Number of breakouts (various
inputs)

Pattern Breakout X X X

breakouts max 10 5 2 Number of breakouts (various
inputs)

Pattern Breakout X X X

breakouts max 10 5 3 Number of breakouts (various
inputs)

Pattern Breakout X X X

breakouts max 10 5 5 Number of breakouts (various
inputs)

Pattern Breakout X X X

breakouts max 30 1 2 Number of breakouts (various
inputs)

Pattern Breakout X X X

breakouts max 30 1 3 Number of breakouts (various
inputs)

Pattern Breakout X X X

breakouts max 30 1 5 Number of breakouts (various
inputs)

Pattern Breakout X X X

breakouts max 30 2 2 Number of breakouts (various
inputs)

Pattern Breakout X X X

breakouts max 30 2 3 Number of breakouts (various
inputs)

Pattern Breakout X X X
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breakouts max 30 2 5 Number of breakouts (various
inputs)

Pattern Breakout X X X

breakouts max 30 5 2 Number of breakouts (various
inputs)

Pattern Breakout X X X

breakouts max 30 5 3 Number of breakouts (various
inputs)

Pattern Breakout X X X

breakouts max 30 5 5 Number of breakouts (various
inputs)

Pattern Breakout X X X

breakouts max 60 1 2 Number of breakouts (various
inputs)

Pattern Breakout X X X

breakouts max 60 1 3 Number of breakouts (various
inputs)

Pattern Breakout X X X

breakouts max 60 1 5 Number of breakouts (various
inputs)

Pattern Breakout X X X

breakouts max 60 2 2 Number of breakouts (various
inputs)

Pattern Breakout X X X

breakouts max 60 2 3 Number of breakouts (various
inputs)

Pattern Breakout X X X

breakouts max 60 2 5 Number of breakouts (various
inputs)

Pattern Breakout X X X

breakouts max 60 5 2 Number of breakouts (various
inputs)

Pattern Breakout X X X

breakouts max 60 5 3 Number of breakouts (various
inputs)

Pattern Breakout X X X

breakouts max 60 5 5 Number of breakouts (various
inputs)

Pattern Breakout X X X

dayfilterfreq 3 2h max Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 3 2h mean Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 3 2h min Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 3 2h std Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 3 4h max Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 3 4h mean Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 3 4h min Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 3 4h std Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 3 6h max Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 3 6h mean Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 3 6h min Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 3 6h std Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 3 8h max Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 3 8h mean Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 3 8h min Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 3 8h std Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 5 2h max Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 5 2h mean Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 5 2h min Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 5 2h std Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 5 4h max Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 5 4h mean Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 5 4h min Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 5 4h std Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 5 6h max Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 5 6h mean Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 5 6h min Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 5 6h std Daily freq. (various inputs) Pattern DayFilter Freq. X X X
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dayfilterfreq 5 8h max Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 5 8h mean Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 5 8h min Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 5 8h std Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 7 2h max Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 7 2h mean Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 7 2h min Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 7 2h std Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 7 4h max Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 7 4h mean Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 7 4h min Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 7 4h std Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 7 6h max Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 7 6h mean Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 7 6h min Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 7 6h std Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 7 8h max Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 7 8h mean Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 7 8h min Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 7 8h std Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 9 2h max Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 9 2h mean Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 9 2h min Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 9 2h std Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 9 4h max Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 9 4h mean Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 9 4h min Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 9 4h std Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 9 6h max Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 9 6h mean Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 9 6h min Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 9 6h std Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 9 8h max Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 9 8h mean Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 9 8h min Daily freq. (various inputs) Pattern DayFilter Freq. X X X
dayfilterfreq 9 8h std Daily freq. (various inputs) Pattern DayFilter Freq. X X X
jmotif inclasssim 168 6 14 jMotif In-class similiarity Pattern jMotif Pattern X X
jmotif inclasssim 168 8 21 jMotif In-class similiarity Pattern jMotif Pattern X X
jmotif inclasssim 24 12 12 jMotif In-class similiarity Pattern jMotif Pattern X X
jmotif inclasssim 24 6 6 jMotif In-class similiarity Pattern jMotif Pattern X X
jmotif inclasssim 24 8 8 jMotif In-class similiarity Pattern jMotif Pattern X X
jmotiftemporal 168 6 14 max jMotif temporal specificity Pattern jMotif Pattern X X
jmotiftemporal 168 6 14 mean jMotif temporal specificity Pattern jMotif Pattern X X
jmotiftemporal 168 6 14 min jMotif temporal specificity Pattern jMotif Pattern X X
jmotiftemporal 168 6 14 std jMotif temporal specificity Pattern jMotif Pattern X X
jmotiftemporal 168 8 21 max jMotif temporal specificity Pattern jMotif Pattern X X
jmotiftemporal 168 8 21 mean jMotif temporal specificity Pattern jMotif Pattern X X
jmotiftemporal 168 8 21 min jMotif temporal specificity Pattern jMotif Pattern X X
jmotiftemporal 168 8 21 std jMotif temporal specificity Pattern jMotif Pattern X X
jmotiftemporal 24 12 12 max jMotif temporal specificity Pattern jMotif Pattern X X
jmotiftemporal 24 12 12 mean jMotif temporal specificity Pattern jMotif Pattern X X
jmotiftemporal 24 12 12 min jMotif temporal specificity Pattern jMotif Pattern X X
jmotiftemporal 24 12 12 std jMotif temporal specificity Pattern jMotif Pattern X X
jmotiftemporal 24 6 6 max jMotif temporal specificity Pattern jMotif Pattern X X
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jmotiftemporal 24 6 6 mean jMotif temporal specificity Pattern jMotif Pattern X X
jmotiftemporal 24 6 6 min jMotif temporal specificity Pattern jMotif Pattern X X
jmotiftemporal 24 6 6 std jMotif temporal specificity Pattern jMotif Pattern X X
jmotiftemporal 24 8 8 max jMotif temporal specificity Pattern jMotif Pattern X X
jmotiftemporal 24 8 8 mean jMotif temporal specificity Pattern jMotif Pattern X X
jmotiftemporal 24 8 8 min jMotif temporal specificity Pattern jMotif Pattern X X
jmotiftemporal 24 8 8 std jMotif temporal specificity Pattern jMotif Pattern X X
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