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A B S T R A C T

Today, everything is connected. The Internet transports a massive
amount of data every second, and the traffic created by social me-
dia, instant messaging, and video streaming is growing day by
day. The last step to end user devices, such as mobile phones
or laptops, is usually bridged via a wireless connection. Data
is transmitted wirelessly using electromagnetic waves with car-
rier frequencies within the radio spectrum, which is strictly regu-
lated by government organizations. The wireless communication
industry tries to keep up with the data growth and regularly re-
leases new standards based on technological improvements to
increase the achievable data rates. The communication channel
capacity, and thus the maximum possible data rate, depends on
the available bandwidth. As only limited spectrum slices are free
for commercial and private use, a certain data rate cap will be
reached at some point. Fortunately, there is a large piece of the
electromagnetic spectrum at hand, also known as Visible Light,
that is not regulated and can be exploited for wireless communi-
cation.

Visible light as communication medium has many promising
characteristics. Since the medium can be seen, communication
becomes directable and provides visible feedback. Light cannot
pass (most) solid objects and can therefore be simply contained
within a room, providing a secure communication channel. Fur-
thermore, light sources are available everywhere, enabling the
reuse of existing infrastructure to combine illumination and com-
munication.

In contrast to other works in the field of Visible Light Com-
munication (VLC), addressing new modulation schemes and data
rate improvements, this thesis focuses on a low-complex and
software-defined approach and presents inexpensive VLC systems
for different scenarios. Basic microcontrollers, off-the-shelf Light
Emitting Diodes (LEDs) used as sender and receiver, and software-
based communication protocols provide a solid basis for VLC
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networking. The communication protocols presented in this the-
sis simultaneously provide illumination (without flickering) and
communication and can be applied to various consumer devices,
such as toys, mobile phones and lighting infrastructure, while
reusing hardware already in place. The capabilities of the intro-
duced communication protocols are further demonstrated with
a system based on modified LED light bulbs, called EnLighting,
that can be used for illumination and at the same time provides
a room area network. It allows communication with visible light
and also represents a promising platform for indoor localization.

As this thesis aims for low-cost, low-complex, and software-
centric system designs, a diversity of devices can be intercon-
nected with a single set of protocols at moderate data rates, en-
abling new interaction techniques and applications. Moreover, an
unintrusive and ubiquitous system like EnLighting can provide a
communication fabric for the many devices of the envisioned In-
ternet of Things without relying on the crowded radio spectrum.
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Z U S A M M E N FA S S U N G

Heutzutage ist alles vernetzt. Jeden Tag werden riesige Daten-
mengen durch das Internet transportiert. Der Datenverkehr, er-
zeugt durch die sozialen Medien, Sofortnachrichten und Video-
Streaming, nimmt mit jedem Tag zu. Der letzte Abschnitt des
Übertragungsweges zu einem Endbenutzergerät, wie beispiels-
weise einem Mobiltelefon oder Laptop, erfolgt meistens drahtlos.
Daten können drahtlos mit Hilfe von elektromagnetischen Wel-
len übermittelt werden. Für die Trägerwellen werden Radiofre-
quenzen verwendet, die durch Regierungsorganisationen streng
reguliert werden. Die Telekommunikationsindustrie versucht mit
dem Datenwachstum Schritt zu halten und veröffentlicht regel-
mässig neue Kommunikationsstandards, die auf technischen Ver-
besserungen beruhen und höhere Datenraten ermöglichen. Die
Kapazität eines Kommunikationskanals definiert die maximale
Datenrate und ist abhängig von der verfügbaren Bandbreite. Da
nur kleine Teile des Radiospektrums für private und kommerzi-
elle Zwecke freigegeben sind, wird irgendwann eine Obergrenze
der möglichen Datenübertragungsrate erreicht werden. Erfreuli-
cherweise steht aber noch ein anderer grosser Teil des elektro-
magnetischen Spektrums, auch besser bekannt als sichtbares Licht,
zur Verfügung. Dieser Teil des Spektrums ist nicht reguliert und
kann auch für drahtlose Kommunikation genutzt werden.

Ein Kommunikationsmedium basierend auf sichtbarem Licht
hat vielversprechende Eigenschaften. Da das Medium sichtbar
ist, kann die Kommunikation einfach in bestimmte Richtungen
gelenkt werden. Es ist auch möglich Licht auf einfache Weise
nur auf einen Raum zu begrenzen. Dadurch kann ein sicherer
Kommunikationskanal entstehen, der von ausserhalb des Raum-
es nicht abgehört werden kann. Ausserdem sind Lichtquellen an
vielen Orten bereits vorhanden. Diese bereits existierende Infra-
struktur kann verwendet werden, um Beleuchtung mit Kommu-
nikation zu kombinieren.
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Andere Arbeiten im Bereich der Kommunikation mit sichtba-
rem Licht behandeln und verbessern Modulationsarten mit dem
Ziel, die Datenrate zu erhöhen. Im Gegensatz dazu befasst sich
diese Arbeit mit möglichst einfachen und softwarebasierten An-
sätzen für kostengünstige und lichtbasierte Kommunikationssys-
teme, die in verschiedenen Szenarien eingesetzt werden können.
Simple Mikrokontroller, handelsübliche Leuchtdioden, die zum
Senden und Empfangen benutzt werden können, und software-
basierte Protokolle bilden eine stabile Grundlage für lichtbasier-
te Kommunikationsnetzwerke. Diese Arbeit stellt Kommunika-
tionsprotokolle vor, die Beleuchtung und Kommunikation mit-
einander kombinieren (ohne sichtbares Flackern) und von ver-
schieden Endkundengeräten, wie zum Beispiel Spielzeug, Mobil-
telefone oder Leuchten, verwendet werden können, indem mög-
lichst Hardware, die bereits vorhanden ist, ausgenutzt wird. Das
EnLighting System, bestehend aus modifizierten Leuchten, zeigt
die Möglichkeiten der vorgestellten Protokolle auf: Die Lampen
können zur Beleuchtung eingesetzt werden, zeitgleich wird aber
auch ein Netzwerk innerhalb des Raumes aufgebaut, das Kom-
munikation mit sichtbarem Licht ermöglicht. Weiter beweist sich
das System auch als eine vielversprechende Plattform zur Loka-
lisierung innerhalb von Gebäuden.

Das Ziel dieser Arbeit ist es, einfache, kostengünstige und soft-
warebasierte Systemkonzepte zu definieren, die es ermöglichen,
eine Vielzahl von Geräten mit denselben Protokollen zu vernet-
zen. Die erreichten Datenraten fördern neue Anwendungsberei-
che und Interaktionstechniken. Ausserdem bietet ein unaufdring-
liches und allgegenwärtiges System wie EnLighting eine Kommu-
nikationsstruktur, die für das Internet der Dinge genutzt werden
könnte, ohne das dicht belegte Radiospektrum zu belasten.
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1I N T R O D U C T I O N

Not so long ago, you could sit in the movies and enjoy the newest
feature starring your favorite actor without being disturbed by
a silly ringtone. At lunch with your friends, you could discuss
endlessly about a piece of trivia without someone grabbing their
mobile phone to lookup the truth. And during your daily com-
mutes, you could look out the window and dream about the fu-
ture, instead of continuously refreshing your preferred news app
in fear of missing the latest rumors. (Un)fortunately, those days
are gone.

Today everything is connected, namely wirelessly. We carry
the Internet in our pockets with a smartphone permanently con-
nected to cellular networks, wherever we are, allover the world.
Computers, laptops, television sets, and tablets are connected to
Wi-Fi networks at home, streaming data to and from the Internet.
The amount of data consumed by each person is growing every
day. Social media, instant messaging, daily news, video stream-
ing, and e-mail traffic data is mostly transmitted wirelessly for
the last part to the end device.

The wireless communication industry tries to keep pace with
the exponentially growing data demands, which is not at all an
easy task. As the required data rates grow, the available resources
stay mostly constant. Wireless communication is based on elec-
tromagnetic waves and various modulation schemes. Nearly all
communication takes places in the radio spectrum from 3 kHz
to 300 GHz, which is strictly regulated by government organiza-
tions. Commercial and private use is not allowed without a li-
cense, except several tiny chunks of the spectrum, the so called
Industrial, Scientific and Medical (ISM) bands, that are free to
adopt by everyone. For instance, Wi-Fi networks, cordless tele-
phones and microwave ovens employ frequencies belonging to
ISM bands. The bigger part of the radio spectrum is in use for mil-
itary purposes, satellite communication, or navigation services,
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or it is licensed to radio and television broadcasting companies
and mobile network operators.

The wireless channel capacity and thus the maximum achiev-
able data rate is directly proportional to the available bandwidth
(width of the spectrum slice). As spectrum is obviously a scarce
resource and additional chunks are rarely released by the govern-
ments, the wireless communication industry uses other methods
to increase data rates, such as increasing the spectrum efficiency,
optimizing shared medium access, or decreasing the area covered
by a cell to increase signal quality and to reduce the number of
served clients.

Technology can keep up for now, but soon, the theoretical lim-
its will be reached. Furthermore it seems that the Internet of
Things (IoT) is eventually happening, adding many more wire-
lessly connected devices to the already crowded pool of end de-
vices. It can be concluded that more spectrum is required to ful-
fill all mobile data needs. In addition to the ISM band at 60 GHz
(which might be in heavy use soon), a tremendous piece of the
electromagnetic spectrum from 430 to 770 THz is unregulated
and free to use. It is also known as Visible Light.

1.1 motivation

First attempts using visible light as a communication medium
took place in the late nineteenth century. Alexander Graham Bell
(who also made significant contributions to the invention of the
telephone) constructed devices that enabled the first voice trans-
mission over a wireless channel, using sunlight as communica-
tion medium. He called it the Photophone. A person could speak
into a mouthpiece that guided the sound waves towards a mirror.
The mirror was deformed by the sound waves and either scat-
tered or condensed reflected sunlight. At a distance of more than
200 m the reflected light was collected with a parabolic mirror
where the modulated light hit a material that changed electrical
resistance when illuminated. The whole apparatus was hooked
up to an ear peace of a telephone prototype to make the electri-
cal signal audible again.
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After Bell’s successful experiments, the visible light spectrum
and its possible applications for wireless communication went
unnoticed for more than a century as radio communication be-
came more popular. Only at the beginning of the twenty-first
century, researchers started thinking again about the almost for-
gotten piece of spectrum, having the dwindling resources, the
radio spectrum, in mind.

With better tools on hands now, researchers are working on
continuously increasing the capacity of Visible Light Communica-
tion (VLC) links. Light Emitting Diodes (LEDs) are power-efficient
light sources and can be modulated electronically at high frequen-
cies. Their counterparts, photodiodes, used to convert modulated
light back to electrical signals, are built for high sensitivity and
optimized for quick response times.

Visible light as a communication medium also provides other
promising characteristics aside from the vast amount of band-
width available. In contrast to radio waves, communication based
on light is visible. As communication can be seen, it becomes di-
rectable adding visible feedback. This enables new interaction
and control methods, but also grants additional security. As the
communication reach is assessable with the naked eye, it is more
difficult for eavesdroppers to intercept messages. Due to the short
wavelength, visible light cannot pass through most solid materi-
als and can therefore be contained without effort, e.g., within a
room, enabling the forming of small cells with well-defined bor-
ders and providing a secure communication channel. The most
practical aspect about VLC is that light sources, thus possible
transmitters, are already available everywhere: street lamps, light-
ing within buildings, flashlights, indication lights in consumer
electronics, and experience enhancing lights in toys, all based on
efficient and low-cost LEDs.

Analog to radio waves, light needs to be modulated as well to
transfer data from a source to a receiver. In VLC, mostly intensity-
based modulation schemes are applied. The light is repeatedly
switched on and off, which can be detected by a receiver. The re-
ceiver can extract digital information, depending on the used fre-
quencies or the position of “on” and “off” pulses. If the frequency
of those intensity changes is high enough (above 100 Hz), and the
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average light output is constant, a human observer does not note
any flickering and only observes a steady light. Having a light
output that seems constant while still data is transmitted enables
the combination of illumination and communication. Lamps and
lights used for illumination and indication can at the same time
communicate with other devices in the immediate vicinity, serv-
ing as a ubiquitous communication infrastructure.

This thesis focuses on how to reuse those already in place
communication-enabling components to realize an unintrusive
communication system, interconnecting various devices with dif-
ferent capabilities with a single communication protocol. The
goal is to always maintain the primary task of lighting and illumi-
nation at the same time. The repurposing of LEDs to transceivers
and the utilization of software-based communication layers run-
ning on off-the-shelf microcontrollers provide bidirectional com-
munication facilities to formerly unconnected devices, often with-
out the addition of extra hardware. A software-defined system re-
lying on as few as possible supplementary hardware components,
implements a flexible, low-cost, and low-complex approach to in-
terconnect many devices as, e.g., envisioned by the IoT, without
stressing the already scarce radio spectrum resources.

1.2 contributions and thesis structure

This thesis contains the listed contributions and is structured as
follows:

Chapter 2 provides context regarding VLC and discusses recent
advances in the area of communication and communication sys-
tems using visible light as a medium. The focus is on complete
communication systems and their applications and to a lesser ex-
tent on the development of new Physical (PHY) layer modulation
schemes. Related work is summarized, advantages and disadvan-
tages are pointed out and compared to similar work discussed in
this thesis.

Chapter 3 introduces communication protocols that enable LED-
based networking. The PHY layer protocol is designed so that
communication and illumination is separated to provide a well-
defined wireless channel assessment method, although light out-
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put for a human observer is kept constant. Furthermore, LEDs are
employed as transceivers, thus act as transmitters and receivers
while at the same time maintain their illumination capabilities. A
Medium Access Control (MAC) layer protocol defines device ad-
dressing, retransmissions and shared medium access and enables
efficient VLC networking. The aforementioned protocols are im-
plemented in software and run on an off-the-shelf 8-bit microcon-
troller. The two protocol layers are integrated in a communication
library called libvlc, separating application from communication
implementation. The library provides an intuitive Application
Programming Interface (API) that enables rapid prototyping for
VLC applications. The communication protocols, also including
forward error correction, are evaluated in multiple scenarios and
the results are visualized an discussed.

Chapter 4 presents the integration and adaptation of libvlc for
light bulbs networks. Commercially available light bulbs are mod-
ified to host a VLC controller (running libvlc), connected via a se-
rial interface as external peripheral to a System-on-a-Chip (SoC)
board (running an embedded Linux distribution). The VLC con-
troller is transparently integrated into the Linux network stack
(as an Ethernet interface) to enable Internet Protocol (IP) layer
data traffic over VLC links. As the light bulbs high-power LEDs are
not capable light receivers, four photodiodes pointing in four dif-
ferent directions, are added to the system. The photodiodes are
also built into libvlc as a receiving channel, together with a chan-
nel multiplexing method to sense light from all different direc-
tions virtually at the same time. The SoC board comes with a Wi-Fi
module which is used to establish a control channel. Testbed soft-
ware manages deployed light bulbs, implementing functionality
to start and stop measurements, to collect data, and to upgrade
the VLC controller’s firmware over the wireless control channel.
The system, called EnLighting, is evaluated for different transport
layer protocols and different scenarios (direct link and multihop),
using the VLC channel as communication link. The measurement
results are visualized and discussed. Furthermore, the capabili-
ties for indoor localization are explored, exploiting the fact that
the light bulbs can not only transmit, but also receive.
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Chapter 5 explains how to extend libvlc to add support for addi-
tional hardware platforms, by introducing a hardware adaption
architecture. The PHY and MAC layers are implemented on top
of this abstraction to simplify the adoption of new processors.
A prototype board with a 32-bit microcontroller is designed and
built and the corresponding hardware abstraction for libvlc is im-
plemented. Furthermore, libvlc’s PHY layer is complemented with
three additional PHY layer modes to increase the data rate for
good channel conditions. The PHY mode can be changed dynam-
ically based on an automatic adaptation scheme. An additional
synchronization correction method enables high data rates also
for light bulb at large distances, or for no line of sight scenarios,
where light is reflected at doors or walls. Several scenarios for
LED-to-LED networks and light bulb networks are evaluated and
the results are visualized and discussed.

Chapter 6 discusses three VLC-based applications. The first ap-
plication describes the design an implementation of a peripheral
device for smartphones. The peripheral device consists of an LED,
photodiode, and an energy harvesting circuit and is plugged into
the smartphone’s audio jack. An application running on the mo-
bile phone generates audio waveforms to modulate the periph-
eral’s LED according to libvlc’s PHY layer. The light signal picked
up by the photodiode is fed into the microphone input and pro-
cessed by the application to decode the bits transmitted by the
PHY layer protocol. The presented peripheral device enables bidi-
rectional communication with any device running libvlc.

The second application is based on a smartphone software that
exploits the rolling shutter effect. Reflected light from a light
source using libvlc’s PHY layer is recorded with the smartphone’s
camera. The resulting barcode-like video frames can be decoded
in real-time, establishing a light source to mobile phone commu-
nication channel driven only by an application, without hardware
changes to the smartphone itself. Current smartphone cameras
with high video recording frame rates enable the direct integra-
tion into the EnLighting system based on libvlc’s continuous pro-
tocols.

The third and last application explores the use of VLC as in-
teraction and control method. An LED flashlight is modified to
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implement libvlc’s protocol to transmit short beacons which trig-
ger predefined actions in receiving devices. A prototype flash-
light can be used to switch lamps on and off by simply pointing
towards their light bulbs. A user study is conducted for which
candidates complete tasks such as enabling specific lamps or cre-
ating requested light configurations, once with an ordinary light
switch interface and once with the flashlight as a remote control.
The time needed to complete the tasks is recorded and a ques-
tionnaire is filled in by each candidate. The results of the user
study are presented and discussed.

Chapter 7 discusses future work, summarizes all results and
concludes the thesis.
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2R E L AT E D W O R K

In this chapter, the related work is summarized and commented
and analyzed in respect to the VLC system proposed in this thesis.
The chapter is structured into three parts. The first part discusses
the Institute of Electrical and Electronics Engineers (IEEE) 802.15.7
standard [34], which defines PHY and MAC layer schemes for VLC

systems to guarantee interoperability. The second part presents
an overview of VLC core communication systems. Such a system
provides the foundation for any VLC communication link (and
networking) and relies on hardware and/or software to operate
transmitter and receiver. The third and last part discusses the us-
age of VLC for specific applications. Some systems are exclusively
built with a specific scenario in mind and others are built on top
of adapted communication systems to be exploited for different
objectives. This part is subdivided into three sections each focus-
ing on different applications. Indoor localization applications can
benefit from the omnipresent lighting devices already in place
and utilize the rather short range communication capabilities to
form small cells. Current mobile devices employ fast processors
and are already equipped with sensors and extension interfaces,
providing an excellent playground for prototyping communica-
tion systems. Furthermore, novel interaction and sensing meth-
ods take advantage of the visibility and directionality of commu-
nication using the visible light spectrum.

2.1 the ieee 802 .15 .7 standard

The IEEE 802.15.7 standard [6, 34] has influenced various as-
pects of recent VLC research. The document specifies a PHY [74]
and MAC protocol layer [61] with different optional transmission
schemes and protocol configurations for supporting a variety of
use cases. The PHY layer is split into three different operating
modes. PHYI is optimized for larger communication distances
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in outdoor applications (e.g., car or traffic lights) and uses On-
Off Keying (OOK) (with Manchester codes to prevent flickering)
and Pulse-Position Modulation (PPM) schemes at data rates up
to 260 kb/s. PHYII is targeted for higher rates and indoor point-to-
point applications. Again, OOK and PPM schemes are employed to
achieve data rates up to 96 Mb/s. PHYIII is based on a Color-Shift
Keying (CSK) modulation scheme to be used together with Red
Green Blue (RGB) light sources (providing white light) for indoor
usage and data rates up to 96 Mb/s.

Light dimming [69], when using OOK, is realized by inserting
compensation time between modulated data, decreasing the light
output but also reducing the data rate. This is similar to the
adaptive brightness approach, which will be introduced in Sec-
tion 5.2.1. Light dimming for PPM is implemented by reducing
the duration of the light emitting pulses while keeping the data
rate constant. Also while not transmitting, a constant light level
needs to be maintained. The standard defines two available op-
tions: in-band and out-of-band idle patterns. The duty-cycle of
the idle pattern can be adapted to assume variable brightness
levels. The in-band idle pattern uses the same frequency as when
transmitting data and is therefore visible for a receiver (within
the applied bandpass). An out-of-band pattern uses lower fre-
quencies (also using a Direct Current (DC) bias only is allowed),
which are not visible for a receiver, to control luminosity.

The MAC layer protocol foresees three typical topologies: peer-
to-peer, star and broadcast. In a peer-to-peer topology, the de-
vices are allowed to directly communicate with each other us-
ing random medium access with optional Clear-Channel Assess-
ment (CCA). The standard does not further specify how devices
synchronize their transmitting and receiving attempts. In a star
or broadcast topology, only data transfers between a coordinator
and participating devices are allowed. Data is either transferred
within a super frame structure embedded between beacons sent
by the coordinator or directly via random medium access (when
beaconing is disabled).

Many works focus on providing results based on simulations
for the PHY and MAC layer proposed by the standard [32, 54, 59–
61, 75, 89]. Some works also propose changes to the introduced
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MAC layer [30, 31, 47] to improve performance or to adapt to
particular scenarios, e.g., combining the PHY and MAC layer to a
cross-layer protocol [58]. There are also several implementations
available, built on top of Software Defined Radio (SDR) [5, 23, 29],
Field Programmable Gate Array (FPGA) [8], or realized as SoC [9].
These efforts completely focus on the PHY layer only and evaluate
direct link scenarios. MAC and networking for multiple devices
are not further investigated.

The approach to VLC, which will be described in this thesis,
follows a different direction. It aims towards low-complexity and
the reuse of existing hardware components to upgrade existing
devices with VLC networking capabilities. The simplicity of the
system design is reflected by the fact that LEDs are employed as
transceivers and microcontrollers are used instead of dedicated
communication hardware. The system implementation is based
on a flexible and inexpensive software-based platform and there-
fore only achieving comparably low data rates (which are enough
for the envisioned scenarios). The system that will be presented
in this thesis clearly separates illumination from communication
to enable a proper MAC layer protocol with CCA. According to the
standard, a CCA mechanism is optional and not required for ran-
dom medium access although detecting a busy channel is funda-
mental for a Carrier Sense Multiple Access with Collision Avoid-
ance (CSMA/CA) protocol to prevent unnecessary collisions and
increase channel efficiency. Additionally, the introduction of idle
patterns to support light dimming makes distinguishing commu-
nication from illumination more difficult.

The standard lays a solid foundation for developing VLC sys-
tems, but has not been widely adopted so far. It has not been
updated since 2011 and therefore misses recent advancements in
VLC such as the inclusion of an Orthogonal Frequency-Division
Multiplexing (OFDM) modulation scheme [1, 17, 19]. Furthermore,
VLC is often applied for niche scenarios where special require-
ments demand a custom tailored communication system (as the
work to be discussed in this thesis) and the VLC standard can-
not be applied directly. Since there are no commercial products
available implementing the standard, researchers tend to develop
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their own version of a VLC system, deviating from the proposed
PHY and MAC layer schemes.

2.2 core communication systems

VLC faces many challenges [64], but several systems based on
hardware and software [18, 20, 65] emerged during the last years.
This section discusses approaches categorized in hardware-based
systems that focus on performance, and software-based systems
for flexible and cost-efficient solutions.

2.2.1 Hardware-Based Systems

The main difference between hardware-centric systems is the em-
ployed modulation scheme. The most straight forward scheme is
OOK where the light is switched on and off (or not completely
off to maintain a certain light intensity). A data rate of 230 Mb/s
for phosphor-based white LEDs [94] for distances less than 1 m
was demonstrated. By using an RGB LED (for higher bandwidth)
the data rate can be improved up to 477 Mb/s [22] for distances
also less than 1 m. Both system use dedicated hardware for trans-
mitter and receiver and employ photodiodes as light detectors.
When used in conjunction with Run Length Limited (RLL) codes
(e.g., Manchester) to mitigate flickering, OOK provides constant
brightness levels. Dimming can be implemented by redefining
the light on and off levels or by introducing compensation peri-
ods, at the expense of a lower data rate.

Other popular modulation techniques are PPM [62, 63] and
CSK [93, 103], which are also part of the VLC standard. The most
prominent scheme mentioned in recent literature is OFDM [1, 55].
OFDM is already widely used in Radio Frequency (RF) communi-
cation and is known to mitigate inter-symbol interference, which
is a big problem for the aforementioned modulation schemes.
OFDM employs multiple orthogonal subcarriers within the avail-
able bandwidth. Each subcarrier carries data in parallel at a lower
symbol rate (still preserving a higher total data rate) increasing
the robustness against severe channel conditions. The individ-
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ual carriers can be modulated with regular modulation schemes.
Data rates up to 3 Gb/s can be achieved with single special LEDs

(high bandwidth) [92]. Medium access can be handled by us-
ing Orthogonal Frequency-Division Multiple Access (OFDMA) [7],
splitting the available subcarriers up between the present net-
working devices. OFDM-based modulation schemes require ded-
icated (complex) hardware for both, transmitting and receiving
path, and provide only restricted dimming functionality [101].

The researchers who first introduced OFDM for VLC founded
a company to commercialize their technology. The company is
called pureLiFi1 and is offering VLC devices2 to form VLC net-
works. The devices support data rates of 5 to 40 Mb/s at distances
up to 3 m. The communication channel is bidirectional, using an
infrared-based backchannel to communicate from a receiving de-
vice back to the light source. The devices pack extensive hard-
ware and sensors (with optics) and therefore do not come with a
small form factor (and probably also price tag).

The systems discussed in this hardware section mostly focus
on the PHY layer aspect of VLC. Networking and thus also MAC is
not often mentioned since only single link scenarios are consid-
ered. The reported performance and communication distances
can be achieved for special cases where the conditions are op-
timal and the necessary hardware and space is available. The
literature discusses many additional modulation schemes and
hardware-centric systems. Only the most relevant are discussed
here, since this thesis highlights the software and networking as-
pect for VLC systems. The systems that will be presented in this
thesis do not compete with the full-fledged communication hard-
ware. With a software-based and low-complex approach, they
take a different path and explore the usage of only basic hard-
ware together with software-defined protocols to provide VLC

connectivity for scenarios where inexpensive solutions are re-
quired. A flexible software system can be adapted without effort
for different applications and scenarios to investigate the applica-
bility of VLC.

1. http://purelifi.com/
2. http://purelifi.com/lifi-products/lifi-x/
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2.2.2 Software-Based Systems

That LEDs can also be used as light detectors has already been
known for some time [56]. Dietz et al. [16] picked up on this idea
and built a VLC system based on basic microcontrollers with LEDs

as transmitters and receivers, directly connected to the microcon-
troller’s General-Purpose Input/Output (GPIO). The authors use
an OOK scheme together with Pulse Width Modulation (PWM) to
synchronize two devices (no networking of multiple devices is
supported) and transfer data at a rate of 250 b/s. To sense inci-
dent light, the same reverse bias and charge method as will be
described in Chapter 3 is used. To note is that the remaining volt-
age (after a charge) is not determined with an Analog-to-Digital
Converter (ADC), but with a digital GPIO pin (the voltage needs
to drop below the digital input threshold to distinguish bit 0 and
1. This makes their system vulnerable to ambient light changes,
whereas the approach discussed later in this thesis uses light level
differences to encode bits to filter out constant lighting.

Giustiniano et al. [24, 90] picked up on the LED-only approach
and implemented an LED-to-LED communication system with a
MAC layer based on a CSMA/CA and Carrier Sense Multiple Ac-
cess with Collision Detection (CSMA/CD) protocol. Results for a
network throughput of approximately 800 b/s for up to four par-
ticipating devices are reported. The system supports the elimina-
tion of flickering during data transmissions and also while idling
or receiving to always provide constant light output. The imple-
mented mechanism to enable constant light output leads to two
problems: First, since devices are not continuously synchronized,
a preamble preceding the data is used to timely align transmitter
and receiver. It works for two devices but as soon as more devices
are present in a network, their (unsynchronized) idle patterns su-
perimpose and prevent a receiver from recognizing the preamble
pattern. As a result, the transmission fails due to the lack of syn-
chronization. Second, due to the randomly aligned idle patterns
of participating devices, a transmitter cannot detect if the chan-
nel is free or busy since the outcome of a CCA is random. These
two issues will be solved in this thesis with the separation of illu-
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mination and communication and the introduction of continuous
synchronization.

OpenVLC3 [96, 98–100] is an open source (at least the software
part) software-based VLC research platform. The system is based
on a BeagleBone Black4, which comes with a 1 GHz Advanced
RISC Machines (ARM) processor and runs Linux. An additional
board that connects to the BeagleBone is necessary for the VLC

links. It hosts high power LEDs, a standard LED and a photodiode.
The device can either transmit using the high power LEDs or the
standard LED. Both signals, from the photodiode and LED, are fed
into a transimpedance amplifier connected to an external ADC

unit. The system’s PHY and MAC layers are implemented as a de-
vice driver interfacing with the Linux networking stack. The PHY

layer uses an OOK modulation scheme with direct detection at the
receiver. The MAC layer is based on CSMA/CA and CSMA/CD. There
is also the option (in case the standard LED is used as transmit-
ter and receiver) to allow the embedding of frames into ongoing
transmissions to achieve full-duplex communication [95, 97].

OpenVLC can reach data rates up to 20 kb/s and a maximum
communication range of 5 m, depending on the used transmitter
and receiver pair. Using a standard LED as transmitter and a pho-
todiode as receiver results in the longest communication distance
thanks to the LED’s narrow light beam. Network User Datagram
Protocol (UDP) throughput of total 12 kb/s is demonstrated for
two transmitting devices (each 6 kb/s) and one receiving device.

With OpenVLC, a performant software-based solution for VLC

networking is freely available. The platform is promising and
achieves good results, but there are also a few drawbacks. The
PHY layer needs to fulfill real-time requirements. As the used
PHY layer slots are only 20 µs long, the operating system needs
to guarantee timely code execution within a range of a few mi-
croseconds. A heavy load on the system could influence the PHY

layer behavior (even for a kernel with real-time extensions). The
EnLighting system (introduced in Chapter 4), will present a so-
lution where the VLC PHY and MAC layers are integrated into a
Linux system as an external device. The VLC system does not

3. http://www.openvlc.org
4. https://beagleboard.org/black
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draw from the resources of the Linux system and is completely
independent in the execution of the two communication layers.
Another disadvantage of OpenVLC is that there is no support for
continuous illumination (the light output is only enabled while
transmitting). VLC aims at reusing existing lighting infrastructure
to provide communication and illumination. The protocols that
will be presented in this thesis can provide constant light out-
put while idling, transmitting and receiving and can be applied
in scenarios where lighting and communication is required. Fur-
thermore, OpenVLC’s photodiode-based receiver does not work
when a certain level of ambient light is present due to oversatura-
tion (either of the sensor or the amplifier, which is not clear from
the papers since the hardware schematics are not published). The
sensors used in the EnLighting system are DC-filtered before am-
plification to prevent oversaturation in the amplification stage.

Shine [37] provides similar features as OpenVLC. A custom de-
signed Printed Circuit Board (PCB) hosts photodiodes (amplified)
hooked up to an ADC component and LEDs supported by tran-
sistors as drivers. The PCB can be connected to any processor
(with the necessary interfaces) that runs the PHY layer (OOK via
LED drivers and light sampling using the ADC unit) and possi-
ble higher layer protocols. What differentiates the proposed plat-
form from OpenVLC and other systems is the use of multiple LEDs

(arranged outward facing in a circle) together with four photo-
diodes to provide a 360° coverage. Groups of LEDs can be con-
trolled individually to emit light only in a specific direction and
save energy in return. A prototype implementation using an 8-
bit microcontroller achieves approximately 1 kb/s data through-
put at distances of not more than 1 m. An additional evaluation
demonstrates multi-hop capabilities. Aside from the dependence
on several hardware parts, the system provides great flexibility
since the transceiver front end is separated from the control pro-
cessor, which can be substituted based on requirements and us-
age scenarios. The presented receiver implementation relies on
a detection threshold to decode measured light levels to bits. To
avoid errors due to sudden ambient light changes and to simplify
the receiving procedure, PPM can be used as will be discussed in
Chapter 3. Instead of maintaining a threshold and comparing
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against it, two consecutive samples (the two pulse positions) can
be compared and the resulting bits can be decoded without the
influence of ambient light. Also a CCA for MAC can be obtained
without comparing samples to a threshold value, namely as long
as consecutive samples are different, the channel can be assumed
as busy.

VLC systems based on SDR [5, 15, 29, 40, 66, 67] can use more
complex modulation schemes and achieve higher data rates and
still provide a certain degree of flexibility. Drawbacks are the
amount of hardware needed (FPGA, ADC, DAC) and the required
computational power for signal processing. All systems that will
be demonstrated in this thesis focus on reusing existing hardware
(e.g., LEDs as transceiver, smartphone camera as light receiver)
to build low-complex, inexpensive, and flexible communication
systems. Simple microcontrollers already pack enough hardware
and computational power to achieve reasonable data rates for
most envisioned applications.

2.3 application specific systems

Wireless communication technology is predominated by RF-based
systems. Radio waves can penetrate obstacles, are bent by sharp
edges, or even reflected at the ionosphere to reach further. Fur-
thermore, they are invisible. For certain applications, a visible
communication medium, which can easily be blocked by its sur-
roundings, can be more useful. The directionality and visibility
enables new ways of wireless interactions with other devices. Ad-
ditionally, data exchange between devices can be considered as
secure, since a probable eavesdropper can be easily identified
thanks to the visibility and containability of the communication
medium, with limited room for attacks [11]. Due to its very short
short wavelength (400 to 700 nm), light cannot pass through ob-
jects and can therefore be easily contained within a certain area.
This enables the formation of cells with exact boundaries, usable
for localization or for location-based event triggering. In the fol-
lowing, related work for some VLC applications is summarized.
The focus is on application tangent to the work that will be pre-
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sented in this thesis, such as indoor localization, smartphone-
based VLC, and interaction methods based on VLC techniques.

2.3.1 Indoor Localization

As localization based on Global Positioning System (GPS) does
not work in most indoor scenarios due to too weak signals, alter-
natives are required. Indoor localization based on Wi-Fi has been
studied extensively in recent work [10]. The reuse of already de-
ployed Wi-Fi access points can lead to a localization precision of
a decimeter [39], but requires extensive calibration and is prone
to errors caused by the multi-path behavior [88] of radio waves.
Similar to localization technology based on Wi-Fi, the existing
lighting infrastructure can be exploited for positioning [4]. As
there are usually more different light sources within range of a
receiver than Wi-Fi access points, a higher triangulation accuracy
can be expected.

A localization system called Epsilon [50] uses Received Signal
Strength Indication (RSSI) values and trilateration to determine
the position of mobile devices. Light sources transmit, using a
Binary Frequency Shift Keying (BFSK) modulation scheme, loca-
tion information (beacons) in fixed time intervals which can be
received by mobile devices (smartphones). The luminaries con-
sist of a custom designed control circuit attached to a commercial
available 10 W LED and do not provide any sensing capabilities.
As multiple light sources are present, channel hopping is used
to avoid collisions. At the receiving side, a photodiode together
with an amplification circuit and a battery is used to feed a sig-
nal into the audio jack (microphone input) of a mobile phone.
The signal is sampled by the sound processing hardware and
processed by an application on the smartphone. The location in-
formation together with the retrieved RSSI value (from at least
three different light sources) serves as input for trilateration. The
system achieves a positioning accuracy of approximately 40 cm.

Luxapose [41] employs the camera of a smartphone as a light
receiver. The light sources transmit beacons containing identifi-
cation data using OOK. Multiple light sources are captured with
the smartphone camera and isolated using computer vision tech-
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niques. The individual light sources are identified based on the
transmitted beacon with the help of the rolling shutter effect (see
Section 6.2.1 for more information). Based on the known location
of the transmitting luminaries, the smartphone orientation and
the angle of arrival, the location in 3D-space can be calculated.
The authors demonstrate a 10 cm positioning accuracy for their
testbed setup.

Yang et al. [105] take a different approach when modulating
light sources. Their system does not depend on LED-based lumi-
naries. Polarization filters are employed to modulate the light of
any light source (even sunlight). A smartphone camera with an
applied polarization filter captures the incoming light and uses
image processing to decode the transmitted information. The
same localization algorithm as used by the aforementioned Luxa-
pose can be applied: multiple light sources (in a captured video
frame) can be identified by the broadcast beacons and together
with their relative positions, the algorithm determines the receiv-
ing mobile phone’s position with a sub-meter accuracy.

SpinLight [104] uses infrared light, but is also briefly men-
tioned since the presented concepts could also be applied to a
VLC-based system (with some modifications). An infrared light
source is covered with a hemispherical shape. The shape is di-
vided into rings and each ring into different cells. A cell can ei-
ther be open (representing a 1) or closed (representing a 0). When
the covered light source (on the ceiling) is enabled, the cell pat-
tern in projected on the floor. If a device to localize can identify
the cell in which it is located, and the position and height of the
infrared light source is known, its position can be determined.
As the shade is rotating and each ring has a different pattern
of open and closed cells, the receiving device can determine the
corresponding ring by identifying the predefined pattern. To de-
termine the cell within a ring, a synchronization mechanism is
employed to mark the pattern’s starting point. If the correspond-
ing cell within a certain ring can be determined, then the position
is roughly known and can be further refined to achieve an accu-
racy of 4 cm. The authors use infrared light since the rotating
shade would introduce heavy flickering for a source emitting vis-
ible light. The system could be adapted for visible light by replac-
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ing the mechanically turning shade with a display pixel matrix
as found in projectors, which support refresh rates above 100 Hz.
The matrix can be used to generate a similar pattern (without
rotating) at a higher frequency to eliminate flickering.

All discussed systems can achieve a localization accuracy be-
low 1 m. Preliminary results for EnLighting (discussed in Chap-
ter 4) show that the system is also a promising candidate for
localization based on RSSI measurements and trilateration. Com-
pared with the other systems, EnLighting has some important ad-
vantages. Since the system consists of regular light bulbs, it can
be easily deployed anywhere where sockets (or floorlamps) are
available. Furthermore the ability to sense incident light enables
synchronization and therefore MAC for transmitted beacons, pre-
venting collisions and increasing the localization frequency. The
flexible design and the networking capabilities make the system
useful for other applications (e.g., neighbor discovery for main-
tenance purposes) that can be executed concurrently with the
localization service.

2.3.2 Light Sensing for Mobile Devices

The localization systems reviewed above all require an appropri-
ate receiving device to be useful. Common mobile device such as
smartphones and tablets come with light sensors (to control dis-
play brightness settings) but these sensors are either not directly
accessible or cannot be sampled at the demanded frequencies.
Therefore either an additional peripheral connected to the smart-
phone is required (as proposed in Section 6.1), or another light
sensitive part of the device, the camera, can be used. This section
summarizes efforts that explore the usage of cameras embedded
into mobile devices as endpoints for VLC.

Current smartphone cameras support capturing rates from 30
to 240 frames per second which is not high enough to sample
VLC signals, usually modulated above 100 Hz to prevent visible
flickering. Furthermore, the camera is controlled by the mobile
phone’s operating system and does not allow fine grained con-
trol of the frame capturing rate (which can even deviate from
the chosen setting, depending on the system load) and there-
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fore does not allow to synchronize the frame rate to the sig-
nal emitted by a light source. Nevertheless, two (successful) ap-
proaches to establish a communication link from a flicker-neutral
light source to smartphone cameras are discussed in recent work:
Undersampled Frequency Shift OOK (UFSOOK) and the exploita-
tion of the rolling shutter effect.

When undersampling a signal with a certain fixed frequency,
an alias signal with a different frequency occurs depending on
the camera sampling offset [73]. This enables the mapping of alias
frequencies to data symbols. A light source can use OOK with sev-
eral flicker-free frequencies to encode data that are recognized as
alias frequencies at the smartphone when analyzing light inten-
sities in a series of consecutively captured video frames [53, 73].
To achieve robust results, the random camera’s sampling offset
needs to be taken into account [72]. The approach also allows the
capturing of multiple light sources in parallel to increase the data
rate [71]. Bit rates up to 400 b/s at a communication distance of
several meters are reported.

Another approach exploits the rolling shutter effect. A cam-
era’s Complementary Metal-Oxide-Semiconductor (CMOS) sensor
is read line by line and is not evaluated at once. A light source
using an OOK modulation generates a barcode-like pattern con-
tained in a captured video frame. The rolling shutter effect can be
seen as an extension of the sampling rate, allowing the processing
of a flicker-free light signal. Some efforts discuss the usage of mul-
tiple light sources together with a Frequency Shift Keying (FSK)
modulation scheme [48, 68]. Data symbols are encoded with mul-
tiple frequency which can be retrieved from the captured images
by isolating the light sources and analyzing the pattern created by
the rolling shutter. When capturing reflected light, the complete
video frame can contain data. This enables modulation schemes
such as OOK and PWM [14, 21]. The data is extracted by measur-
ing and comparing the width of the bright and dark bars, frame
by frame. A time gap between individual video frames where
no light is recorded requires the usage of redundant codes. A
data rate of approximately 700 b/s at distances up to 3 m can be
achieved. If RGB light sources are available, the scheme can be
extended with CSK [28] to reach data rates of about 5 kb/s. Color-
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flickering is prevented by ensuring that the amount of red, green,
and blue light is constant within a critical amount of time. The
camera-based system that will be discussed in this thesis (Sec-
tion 6.2.1) makes use of current smartphones with higher captur-
ing rates (240 frames per second), which reduces the gap between
individual frames. This enables the integration of mobile phones
as continuous receivers into the existing EnLighting system, rely-
ing on the same communication protocols.

2.3.3 Interaction and Sensing

VLC also enables new interaction techniques based on the visibil-
ity of the communication process. Section 6.3 discusses a method
to intuitively control light sources by using a flashlight as remote
control. A user study shows that common tasks, such as switch-
ing on and off lights or creating a certain light configuration, can
be executed more efficiently. Schmidt et al. follow a similar ap-
proach using a pico projector as a light source [86]. The projector
projects a user interface on other devices (e.g., a lamp) equipped
with light sensors. The data transfer is started by pressing a but-
ton and received by the device’s sensor, triggering an action. Data
is embedded into the projected images using gray code patterns.
Due to the low refresh of the the projector (30 to 60 Hertz), flick-
ering is introduced when transmitting data.

Optical remote controls based on infrared light have been used
for decades as a low-cost technology to operate many consumer
devices and appliances. While infrared remotes rely on high in-
tensity output to reach the receiver, VLC-based devices can make
use of the visible feedback and therefore reduce their power out-
put. Another proposed device can determine its pointing direc-
tion with the help of cameras and position sensors and interact
with objects by using voice and gesture recognition [102].

VLC can also be applied in human sensing. Zhang et al. [106]
present a system called Okuli to extend the user interface of a mo-
bile device to any nearby surface. An LED and two photodiodes
(to the left and right of the LED) are placed in a small box. Holes
on one side let the light in and out. When moving a finger in
front of the box’s slits, the light from the LED is partially reflected
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back and can be sensed by the photodiodes. The received light
information from the two photodiodes is used to calculate the
relative position of the finger at an accuracy of 1 cm. This concept
can be extended to reconstruct human postures in real-time [51,
52, 107]. LEDs in the ceiling emit light that is partly blocked by a
human, creating a shadow on the floor. Photodiodes distributed
on the floor capture light (and shadow) values (implementing a
low-resolution camera) that are further processed to reconstruct
the human posture. The number of required photodiodes can be
reduced when using many densely arranged LEDs on the ceiling,
each transmitting a distinct beacon (using FSK). The beacon in-
formation is used by the system to identify individual LEDs to
reconstruct a more accurate shadow map (using fewer photodi-
odes). The human posture can be tracked in real-time at a refresh
rate of 40 to 60 Hz. Furthermore, it has been demonstrated that
the system can recognize people [2] with an 80 % success rate.
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3L E D - T O - L E D N E T W O R K S

LEDs are everywhere. They are used as indicators in consumer
electronics, as flash for smartphone cameras, in modern light
bulbs for illumination, and in toys to create play experiences. LEDs

are of low-cost and power efficient and nowadays available in
various form factors, luminosities and colors which explains the
increase in popularity during the past decades. In addition to the
ability to emit light, they can also be used to sense light [16] and
thus are able transform modulated light into electrical signals.

LEDs as transmitters and receivers, paired with off-the-shelf mi-
crocontrollers, provide a novel approach to enable low bit rate
wireless communication for short distances [80, 90]. Communica-
tion devices assembled from the two aforementioned building
blocks can form VLC LED-to-LED networks. They communicate
with each other over free-space line of sight channels and achieve
a total network throughput in the order of kb/s at distances of no
more than a few meters. Except of an LED and a microcontroller,
there is no other additional hardware needed. The complexity of
a communication device can be kept low by implementing nec-
essary protocol logic in software, embedded into the microcon-
troller’s firmware.

Low-complexity LED-to-LED communication can be applied to
sensor networks, home automation systems, and smart illumina-
tion, or can provide a fabric to connect consumer devices and
toys, being a part of the IoT. These networks can exploit the ubiq-
uitous presence of LEDs and leverage their ability to act as cost-
effective transceivers – while allowing the LEDs to continue to
operate as lighting devices.

In such VLC networks, photodetectors like phototransistors or
photodiodes as light sensors are not required anymore. The VLC

devices use off-the-shelf 8-bit microcontrollers, powerful enough
to operate the required communication protocols to handle PHY

and MAC layer. The LED-to-LED network hides the exchange of
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messages within the illumination. A message transfer has no ef-
fect on the level of brightness (for a human observer), so that an
LED appears to be switched on all the time.

This chapter describes the design, implementation and evalua-
tion of an LED-only VLC system that also enables networking for
multiple participating devices. The system includes a software-
based PHY layer and a contention-based MAC protocol layer. The
communication between two devices requires a PHY layer proto-
col with focus on robustness and accurate wireless synchroniza-
tion. For the MAC layer, a CSMA/CA protocol is defined based on
the IEEE 802.11 [33] standard.

The chapter is structured as follows: Section 3.1 provides a de-
scription of the overall system design. Section 3.2 and Section 3.3
describe the hardware and software (protocol) building blocks
used to stitch together a working VLC communication system.
Section 3.4 discusses implementation details and concepts and
Section 3.5 provides insides regarding testbed and system eval-
uation. Section 3.6 summarizes all findings and concludes the
chapter.

3.1 system design

The system design builds upon two main ideas: flexibility and
low-complexity. Flexibility is important since a research platform
is continuously developed further, refined and extended. Switch-
ing to different hardware while prototyping can be done with
less effort if hardware and software is decoupled. Changing com-
munication protocols, fine tuning parameters, and maintenance
is straightforward when implemented as a software system. High
flexibility can be achieved when implementing most system parts
in software while using only basic hardware components. At the
same time, the system complexity is reduced. Low-complex sys-
tems have the advantages that they can be well and clearly de-
fined and since fewer (hardware) parts are involved, cost can be
kept at a minimum. Having a low-complex and low-cost foot-
print makes the system more applicable for consumer electronics,
toys and the IoT.
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Figure 3.1: Overall system design. An off-the-shelf LED is directly con-
nected to the Input/Output (I/O) pins of a Microcontroller
(MCU) and can be used for Transmitting (TX) and Receiving
(RX) data. The communication protocols for the PHY and MAC

layer run directly on the MCU’s firmware encapsulated into
the VLC software library. Wrapped into these layers are pro-
tocols for light sensing, synchronization and Forward Error
Correction (FEC) (PHY layer), and for CSMA/CA (MAC layer).

Figure 3.1 illustrates the overall system design for a software-
based VLC system using LEDs as transceivers. Off-the-shelf LEDs

are used as light sending and receiving front end. Why LEDs can
be used as receivers and how they can be employed in a com-
munication system is outlined in Section 3.2.2. The transmitting
and receiving LED is directly connected to the microcontroller’s
Input/Output (I/O) pins without the necessity of an intermediate
electronic circuit. This improves the system flexibility and hard-
ware independence. The microcontroller requirements and type
are explained in Section 3.2.1.

The firmware running on the microcontroller consists of two
parts: first, the VLC software library and, second, the application.
The library contains the PHY and MAC layer protocols and pro-
vides a high-level API (usable by the application), which offers fa-
cilities to send and receive messages and to collect statistics. The
application contains the program logic for a certain use case. Sep-
arating the application from the communication protocols makes
it possible to independently work on both parts (application and
library). As long as the API stays consistent the communication
library can be extended and developed further without influenc-
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ing the application code. Section 3.3.3 describes the core APIs func-
tionality.

The PHY layer incorporates a light sensing protocol that defines
when and how light is modulated and sensed. Light is modulated
by turning on and off the LED in predefined patterns, whereas
light is sensed by measuring the photocurrent generated by inci-
dent light. Sensing and transmitting devices need to be aligned
to allow the receiving device to sense at the right moments when
the transmitting device is modulating the LED. The synchroniza-
tion protocol is able to correct the initial timing off-set and can
also keep the devices synchronized over time counteracting the
the devices’ drifting clock. Another building block is the Forward
Error Correction (FEC) based on Reed-Solomon [70] error correct-
ing codes. It is able to correct a predefined number of errors (byte
errors in this specific implementation). The PHY layer is explained
in detail in Section 3.3.1.

Since multiple devices (not only two) should be able to form a
network and communicate with each other, there will be compe-
tition for the shared communication channel. Packets sent at the
same time have a chance to collide and therefore can most likely
not be decoded correctly by the receiver. A MAC protocol is able to
handle distributed medium access and can decrease the collision
probability significantly. The implemented protocol is based on
the IEEE 802.11 [33] standard, supporting random contention win-
dows, Request to Send (RTS)/Clear to Send (CTS), retransmissions
and device addressing, and is further described in Section 3.3.2.

3.2 hardware building blocks

The VLC communication device depends on two hardware build-
ing blocks: a main processor to run all communication protocols
and an LED for light emission and sensing. There are certain re-
quirements for a microcontroller to be able to run the proposed
communication protocols: there has to be enough computation
power to handle all protocol levels and timer and ADC peripher-
als need to be available. Almost any off-the-shelf LED is applicable
as a transceiver front end. The sensitivity depends on the LED’s
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color, the housing form factor (lens), and the housing filter prop-
erties.

3.2.1 System Processor

Communication systems usually employ a system processor (can
be a programmable microcontroller to increase flexibility) to run
the application logic and driver for the communication front end.
In the approach presented in this thesis, the system processor
is also responsible to run the VLC front end, consisting of the
PHY and MAC layer. Getting rid of additional hardware reduces
cost and complexity and the software-centric solution increases
flexibility and maintainability. Although there is an additional
workload, a basic 8-bit microcontroller is still powerful enough
to run the communication protocols presented in this chapter.
Since only a basic processor is needed, devices that are already
equipped with microcontrollers and LEDs could be extended with
communication capabilities by a software update only.

For successful prototyping, not only a processor is necessary
but also the processor’s pins need to be accessible, and there
should be a convenient way to program and debug the software
running on the microcontroller. For this purpose, manufacturers
often provide evaluation boards containing all the needed hard-
ware for programming, debugging and serial communication (for
logging and debug output) together with processor pin break-
outs for easy access. The recent Maker Movement [3, 26] also
produced many different kinds of prototyping and evaluation
boards with good availability and support by large communities.

One of those prototyping boards is the Arduino1. In the mean-
time, the Arduino makers are selling a variety of boards with
different processors. When referring to the Arduino in this thesis,
the classic Arduino UNO2 board is meant. The Arduino board is
shown in Figure 3.2. It is equipped with a ATmega328P3 micro-
controller from Atmel. The processor’s specifications are summa-
rized in Table 3.1. It uses Atmel’s own AVR (8-bit) instruction set,

1. https://www.arduino.cc
2. https://www.arduino.cc/en/Main/ArduinoBoardUno
3. http://www.atmel.com/devices/atmega328p.aspx
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Figure 3.2: Arduino UNO prototyping board equipped with an AT-
mega328P processor. The board exposes six pins connected
to the ADC peripheral and 14 digital only pins. The processor
can be programmed through the In-Circuit Serial Program-
ming (ICSP) interface or the serial connection (via the USB-to-
serial converter).

based on a Reduced Instruction Set Computer (RISC) architecture.
The clock speed can be set up to 20 MHz, whereas the Arduino
uses a 16 MHz quartz crystal as clock source. This means that one
instruction cycle on the processor roughly amounts to 63 ns.

The timer and ADC are the two peripherals necessary to build
a robust communication system. The timers can be used to trig-
ger actions with a certain periodicity, such as turning on and off
an LED (modulating light) or sensing incident light. The ADC can
convert an analog voltage to a digital value with a resolution
of 10 bit. When using a reference voltage of 5 V, every ADC unit
relates to approximately 4.9 mV, accurate enough for a system
where the sensitivity of the LED is the bottleneck. An analog-to-
digital conversion is not instant, but needs some time while the
ADC is approximating the resulting voltage step by step. The con-
version speed can be configured to take from milliseconds to a
few microseconds, with reduced accuracy for faster conversion
times. Eight of the 23 GPIO pins are connected to the ADC periph-
eral whereas six are accessible on the Arduino. Since there is only
one ADC available, the analog pins are multiplexed and thus only
one conversion can be processed at a time.
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feature specification

Architecture 8-bit AVR

Operating Voltage 1.8 to 5.5 V

Current per Pin (max.) 40 mA

Clock Speed (max.) 20 MHz

GPIO 23

Timer 8-bit (two), 16-bit (one)

ADC 10-bit (one)

Serial Interface USART (one)

EEPROM 1 kB

Flash Memory 32 kB

SRAM 2 kB

Table 3.1: ATmega328P specifications. The microcontroller uses the 8-bit
AVR instruction set and can be clocked up to 20 MHz. It pro-
vides 23 GPIO pins and integrates timer, ADC and serial com-
munication peripherals. Furthermore, 32 kB of program mem-
ory and 2 kB of Static Random-Access Memory (SRAM) is avail-
able.

The Universal Synchronous Asynchronous Receiver Transmit-
ter (USART) interface allows for serial data exchange with other
devices. Since modern computers do not have classic serial ports
anymore, an intermediate device is employed to connect to a com-
mon USB port, and a standard serial port is emulated in software
on the target machine. The Arduino already comes with a USB-to-
serial converter that enables communication with other devices,
e.g., for logging on a connected computer to gather measurement
results or for debugging purposes. With the help of a bootloader,
it is also possible to upload a program to the microcontroller
using the serial connection. For more complex and larger pro-
grams, using the In-Circuit Serial Programming (ICSP) interface
can speed up the program uploading process. It can be used to
directly write the program memory without relying on a boot-
loader.
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The ATmega328P offers 32 kB of flash memory, which is used
to store the program and constant data. This is enough for pro-
grams of a decent complexity. Important for a communication
system is the 2 kB Static Random-Access Memory (SRAM), which
is reserved for dynamic data, stack, and heap during runtime.
Since communication is based on mostly dynamic data (mes-
sages), the SRAM size is limiting the number of message buffers
and their sizes, but it is enough for a prototype demonstrating
the concepts developed in this thesis.

The processor can be powered with 1.8 to 5.5 V. The Arduino
prototyping board provides a voltage regulator, supporting also
higher voltages, aside from the 5 V available from the USB connec-
tor. Since the processor also allows for lower operating voltages,
it can also be run directly from single cell batteries. The GPIO

pins are able to source approximately 40 mA, enough to directly
supply an LED, fitting the plan to use no intermediate circuitry.

Except from the Arduino UNO board, no other infrastructure
offered by Arduino is used. As will be explained later in this
chapter (Section 3.4), neither the Arduino Integrated Develop-
ment Environment (IDE) nor the Arduino Libraries are used for
the implementation of the software building blocks.

3.2.2 Transceiver Front End

As LEDs are based on the same principles as photodiodes, they
also have similar properties [16]. Indecent light generates a pho-
tocurrent proportional to the light intensity, although less pro-
nounced than in photodiodes. The LED can act as replacement
for the photodiode and the usual circuits for forward (photo-
voltaic) or reverse bias (photoconductive) mode can be applied,
but the photocurrent can also be measured without a dedicated
circuit [16]. Figure 3.3 depicts such a light sensing process. Part
1 shows an LED with the anode (A) pin and cathode (K) pin.
Part 2 and 3 show simplified replacement circuits [25] for an LED,
consisting of a current source modeling the photocurrent, Iphoto,
with a capacitor, C1, in parallel. To start a sensing sequence (Part
2), a voltage is applied in reverse bias. Reverse-biasing means
that a positive voltage is applied to the cathode of the LED. This
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Figure 3.3: Simplified LED replacement circuit. Part 1 shows an LED with
anode (A) and cathode (K). Part 2 and 3 show replacement
circuits with the current source Iphoto, modeling the photocur-
rent, and capacitor C1. Part 2 demonstrates reverse biasing
the LED and charging up the internal capacitance. In part 3,
incident light is generating a photocurrent discharging capac-
itor C1. The remaining voltage measurable over C1 is propor-
tional to the amount of light received.

charges the LED’s internal capacitance (when looking at the re-
placement circuit). Indecent light will generate a photocurrent
and discharge the capacitance. As the photocurrent is propor-
tional to the light intensity, it is possible to infer the amount of
light received by measuring the remaining voltage over C1 (after
a fixed time period).

This measuring sequence can be executed by directly connect-
ing the LED’s anode and cathode to a microcontroller pin each. It
is not only possible to measure the photocurrent generated by the
LED but also to operate it in its usual way when it is emitting light.
The full process of emitting and sensing light while connected to
a microcontroller is illustrated in Figure 3.4. Anode and cathode
are connected to GPIO pins (the cathode is connected to an ADC-
capable pin). Most microcontrollers support digital and analog
behaviors for a certain number of pins. Part 1 shows the LED in
light emitting mode. Both microcontroller pins are used in out-
put mode. The pin connected to the anode is set to HIGH and the
cathode’s pin is set to LOW (ground) to drive the LED in forward
bias mode, during which it emits light. Current (and thus LED

luminosity) could additionally be limited with an appropriate re-
sistor in series. Since the LED is operated with duty cycling, and
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Figure 3.4: Microcontroller-based LED transceiver. Part 1 illustrates an
LED in light emitting state. Both microcontroller pins are
in output mode, anode set to HIGH and cathode set to LOW.
While charging the internal capacitor (part 2), the LED is re-
verse biased; pins are still in output mode, but the polarity
is inverted. Part 3 shows the discharging state. Photocurrent
caused by incident light is discharging the capacitance again.
The remaining voltage, proportional to the amount of light
received, can directly be measured at the cathode pin with
the connected analog microcontroller pin.

the current is also limited by the microcontroller itself, a resistor
is omitted here. Part 2 shows the pin settings during the charge
sequence. The anode is set to LOW and the cathode to HIGH, re-
verse biasing the LED and charging up the internal capacitance.
In part 3, the cathode pin is set to input mode. The capacitance
can now discharge via two paths: current leaks through the high
impedance input pin and the photocurrent generated by incident
light breaks down charges. After the discharge period, the re-
maining voltage can directly be measured using the analog pin
connected to the cathode.

LEDs come in different colors, many form factors, and different
housings. All these properties influence the light sensitivity. First,
the sensing characteristics for LEDs of different colors is discussed.

Figure 3.5 shows the visible light spectrum. Each color is as-
sociated with a wavelength and frequency. Light is not only an
electromagnetic wave, but can also be explained with particles
called photons. Each color is also related to a photon energy Ep
described by Equation 3.1. Hence, LEDs producing light of dif-
ferent colors generate photons with different energies. A photon
represents the energy freed when an electron recombines with a
hole (absence of an electron) [87] within the LED’s semiconduc-
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V B G Y O R

Wavelength [nm]

Frequency [THz]

Photon Energy [eV]

380 450 495 570 590 620 750

789 668 606 526 508 484 400

3.26 2.75 2.50 2.17 2.10 2.00 1.65

Figure 3.5: Visible light spectrum showing the colors violet (V), blue (B),
green (G), yellow (Y), orange (O), and red (R) and the asso-
ciated values for wavelength, frequency and photon energy.
An LED of a certain color is only sensitive to light from the
left part of the spectrum starting at its color’s position. Figure
based on Wikipedia’s Visible Spectrum article.4

tor material. Applying a forward bias voltage to the LED pushes
electrons and holes together and forces the emissions of many
photons, creating light. When sensing light, this process is re-
versed. An incoming photon provides energy to create electron
hole pairs, allowing the electron to move from the valence band
to the conductive band. This provides free charges, which con-
tribute to the photocurrent.

Ep =
hc

λ
(3.1)

The energy needed to create an electron hole pair is the same that
is released in form of a photon when an electron and hole com-
bines (for the same material). Therefore, to induce a photocurrent
in a certain LED, at least photons of the same wavelength, as can
be produced by this LED, or shorter are required. This makes an
LED only sensitive to light of the same color or colors of shorter
wavelength. E.g., a red LED is sensitive to light from a red, green,
and blue LED, but red photons do not have enough energy to
induce photocurrent in a blue LED.

The light color emitted by an LED depends on different semi-
conductor materials and doping (intentionally added impurities)
used. LEDs are available for all main colors from violet to red.
White light, a combination of lights of different wavelength is a

4. https://en.wikipedia.org/wiki/Visible_spectrum
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special case. LEDs producing white light can be built in two dif-
ferent ways:

First, wavelength converting materials like phosphor can be
used. When phosphor is illuminated by blue light, it will emit
yellow light. Mixing this yellow light with blue unconverted light
is resulting in white light. Another method involves three differ-
ent phosphor coatings that emit red, blue and green light when
shown on by ultraviolet light [87]. Using blue or ultraviolet LEDs

coated with phosphor can be used to produce white light but
these LEDs do not have good sensing properties due to the phos-
phor coating and the short wavelength of blue and ultraviolet
LEDs.

The second way to build white LEDs is more straight forward.
Multiple LEDs of different colors can be built into one LED where
the colors are mixed, providing white light. An example is an
RGB LED, housing a red, green and blue LED with common cath-
ode and three anodes or common anode and three cathodes for
individual control. Enabling all LEDs will result in white light,
but in most cases the three colors are still recognizable as well.
An RGB LED can be used to generate all colors by combining the
three colors at different luminosities. In addition, the part of the
LED responsible for the red photons is a good candidate for light
sensing since it is sensitive to light of equal or shorter wavelength
than itself, which is the complete visible spectrum.

The sensitivity also depends on the housing built around the
LED. Lenses shape the produced light beam and thus also widen
or narrow the field of view of the LED, influencing sensitivity for
different viewing angles. A diffuse housing distributes emitted
light more uniformly but also scatters indecent light so that fewer
photons reach the actual sensing area. Colored casings can be
used to change the color of an LED but they also act as color
filters when sensing light.

The main LED used throughout this thesis is a device from
Kingbright5. It is a red LED with a 5 mm clear housing. With the
integrated lens, it achieves a viewing angle of 20°. This generates
a narrow beam of light, which is still compact after a few me-

5. https://octopart.com/l-7113sec-j3-kingbright-55402831
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ters, increasing the photon concentration per area. But the lens
also restricts the sensitivity for incident light. The LEDs require to
be precisely aligned for longer distances to guarantee successful
communication. Overall the selected LED worked well enough to
support the proof of concept system presented in this thesis. Any
other device, which fulfills the wavelength sensitivity property
discussed earlier in this section and as long as enough photons
can reach the sensing surface, will achieve similar results.

3.3 software building blocks

The main contribution of this thesis is the design and implemen-
tation of a software-based PHY and MAC layer. All functionality
is encapsulated into a software library called libvlc. Hence, the
communication core is logically separated from a possible appli-
cation. The library presents the communication service through
an API supporting actions for creating communication channels
(if multiple transceiver front ends are present), sending and re-
ceiving data packets, and for collecting statistics.

With libvlc it is possible to create a full-fledged communica-
tion system based on only the off-the-shelf parts described in
Section 3.2, a basic microcontroller and an LED. The dependence
on only a few hardware parts and the combination of transmitter
and receiver into one transceiver device produces a low-complex
and cost-effective system. The limited achievable data rates fulfill
the requirements for the envisioned applications in the area of
consumer electronics, toys, and the IoT. The software-defined na-
ture of the system enables fast prototyping and provides a pow-
erful tool for VLC research due to its flexibility. Already deployed
systems using LEDs and microcontrollers can be enhanced with
communication abilities by changing only software, and existing
VLC systems can be improved via software updates.

In the following, the PHY and MAC layers are described and
explained in detail, and the proposed API, visible for potential
application, is defined. The libvlc version presented in this the-
sis represents the latest and most stable version. Many concepts
and implementation details changed over time but are all well
documented (in chronological order) [80–82].
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3.3.1 Physical Layer

The PHY layer itself is composed of smaller building blocks. Im-
portant parts are sensing, device synchronization and FEC, de-
scribed in detail later in this section. The key concept behind the
PHY layer is the slotting infrastructure that separates illumination
and communication and introduces simple modulation, sensing
and synchronization.

Light Sensing and Modulation

The light sensing concept is explained with the aid of Figure 3.6
using the help of an oscilloscope. An LED is operated by a micro-
controller as described in Section 3.2.2. One of the scope’s probes
is connected to the LED’s cathode measuring the voltage versus
ground. The resulting voltage is shown as the upper black curve
labeled with Light Sensing. The LED is periodically reverse-biased

Light Source

Light Sensing

OFF

ON

0.8 V

1.8 V

CC C

1

2

Figure 3.6: LED light sensing concept illustrated with an annotated oscil-
loscope screenshot. The LED is reverse-biased (charged) peri-
odically (black channel), labeled with C. After charging, the
LED is discharging itself reaching 1.8 V before being charged
again. The second channel (gray) shows the state of a light
source, first disabled, and then enabled after a certain time
and last disabled again. While the light source is enabled, the
additional photocurrent is discharging the LED’s capacitance
further down to 0.8 V. Label 1 and 2 emphasizes the kink in
the discharge curve caused by the enabling/disabling of the
light source.
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(charged) for a short instance, labeled with C. After charging, the
LED is given time (500 µs) to discharge itself again. The heavy dis-
charge visible is mostly due to the oscilloscope, drawing current
to feed its ADCs. Without a connected probe, the discharge will
depend largely on the photocurrent generated by the ambient
light. Little current will also be drawn by the high impedance in-
put pin, and the drifting electrons and holes in the LED are also
breaking down charges. The second channel (gray) of the oscillo-
scope is showing the state of a light source. It is either enabled or
disabled. While it is enabled, the photocurrent further accelerates
the discharge, leading to a voltage level (before the next charge)
of 0.8 V. Compared to the voltage level when the light source is
off (1.8 V), there is a clear difference visible. Label 1 and 2 are
pointing at the kinks in the discharge curve that are caused by
the state changes of the light source.

The microcontroller can now be used to measure the remaining
voltage at the end of each discharge cycle. The PHY layer proto-
col is constructed around these charge and discharge cycles as
described in the following section. The information from com-
paring voltage levels at the end of each cycle will be used for
synchronization and data symbol decoding.

Slot-based Communication and Illumination

Aside from communication, the main purpose of lighting devices,
the illumination, should be maintained. A VLC system should
be able to hide the communication within the illumination and
act at the same time as a lighting device. The proposed sens-
ing technique requires the LED to be turned off while receiv-
ing light. Therefore, communication and illumination needs to
be multiplexed in time as illustrated with Figure 3.7. During an
Illumination (ILLU) slot, the LED is enabled and contributes to
lighting, while the Communication (COM) slot is responsible for
various light sensing sequences, called intervals. The slots are
each 500 µs long, resulting in a 1 kHz on and off pattern. The fast
light changes are not visible to a human observer. The eye cannot
resolve fast on and off patterns at a certain frequency, which is
called the flicker fusion threshold or critical flicker frequency [45,
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ILLU COM

1000µs

ILLU COM ILLU COM ILLU COM ILLU COM ILLU COM ILLU

S1 G G S2GD1 D2

ILLU

G

Communication Slot

COM COM

Figure 3.7: Slot-based PHY layer communication protocol. ILLU and COM

slots alternate at a frequency of 1 kHz, too fast for a human
observer to notice the COM slots, during which the LED is
turned off. The COM slot consists of several shorter light sens-
ing intervals.

46]. For the human eye, the threshold was determined at about
60 Hz [27]. The COM slot duration of 500 µs is chosen to fit in
the proposed sensing intervals including microcontroller process-
ing time. The ILLU slot duration can be extended for higher light
intensity (duty cycling) at the cost of fewer COM slots per time.
To demonstrate the concept and for simplicity, both are kept the
same length for this discussion.

A COM slot is partitioned in short light sensing intervals that
are responsible for synchronization and data transmission and re-
ception. The synchronization (S1, S2) and data (D1, D2) intervals
are light sensing sequences as shown in Figure 3.8. The start of a
sensing sequence is marked with a C, indicating that the LED is
being charged. At the end, labeled with M, the remaining voltage
is measured. The two synchronization intervals at the start and
at the end of the slot are used to align the COM slots of commu-
nicating devices. This synchronization process is explained later

50µs

S1 G D2

170µs20µs

ILLU ILLUD1

M C

G S2G

C M C M C M

Figure 3.8: A COM slot is partitioned into shorter light sensing intervals.
S1 and S2 are used for synchronization, D1 and D2 for data
encoding, and the guard intervals G protect the other inter-
vals from light leaking caused by inaccurate synchronization.
At the beginning of a sensing interval, the LED is charged (C)
and at the end, the remaining voltage is measured (M).
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in this section. The guard intervals G prevent light leaking into
other intervals in case of inaccurate synchronization. The data
slots are either used to receive or to transmit data.

Modulation Scheme

The applied modulation scheme is based on OOK and PPM. OOK is
a basic version of Amplitude-Shift Keying (ASK) where data sym-
bols are represented as the presence or absence of light during a
certain time, which can be detected using the proposed methods.
Also the transmitter implementation is straight forward, since a
digital GPIO pin is enough to enable or disable light output. More
elaborate modulation schemes like Phase-Shift Keying (PSK) re-
quire more powerful microcontrollers with a Digital-to-Analog
Converter (DAC) and additional peripherals to generate the nec-
essary waveforms. In PPM the position of on-pulses is used to
encode digital data.

Figure 3.9 illustrates how OOK and PPM are applied to the PHY

layer protocol. The transmitting device enables light output dur-
ing the D1 or D2 intervals of its COM slots (light gray area) while
the LED stays off for the rest of the slot (dark gray area). A re-
ceiving device measures its two data intervals and compares the
two values. If D1 is significantly larger than D2, meaning that

S1 G G S2GD1 D2G

Communication Slot

S1 G G S2GD1 D2G
Light

TX

RX

S1 G G S2GD1 D2G

Communication Slot

S1 G G S2GD1 D2G
Light

TX

RX

Figure 3.9: Modulation scheme based on OOK and PPM. The Transmitting
(TX) device either enables light during D1 (left side), encod-
ing a bit 0, or during D2 (right side), encoding a bit 1. Light
output is denoted with a light gray area, and the absence
of light emissions is signalized with a dark gray color. In
addition, the light signal is shown on top of the TX device.
The Receiving (RX) device senses light during D1 and D2 and
compares the results. Measuring more light during D1 than
during D2, results in a bit 0, else a bit 1 is decoded.
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there was more light present during D1, the received symbol is
decoded to a bit 0. If D2 is larger than D1 the received symbol
results to a bit 1. Because there are always light emissions in-
volved in transmitting a bit 0 or 1, it is straightforward to derive
a medium busy or idle scheme CCA. As long as light is detected
in one of the data intervals, there is a transmission going on and
the medium is busy. If D1 and D2 are very close, only ambient
light is present and the medium is therefore idle.

Using the data intervals for light output during a transmission
increases the amount of light emitted per time (when compared
to the case when no data is transmitted and therefore no light is
emitted during a COM slot) for the duration of the transmission.
This is perceived by a human observer as an increase of bright-
ness. To get rid of the unwanted visible brightness changes (flick-
ering), the average light output must remain constant while trans-
mitting, receiving, or idling. To achieve this, the same amount of
light emitted during one of the data intervals must be compen-
sated during the following ILLU slot.

The compensation method is shown in Figure 3.10. Light gray
areas denote enabled light output and dark gray areas mark dis-
abled light output. The first row shows a device while idling or
receiving for reference, resulting in a 50 % duty cycle. The device
shown in the second row starts transmitting and thus adds light

1000µs

ILLU

D1

Communication Slot

COMP

D C D C D D D DC C C

ILLU COM ILLU COM ILLU COM ILLU COM ILLU COM ILLU COM ILLUILLUCOM COM
50% Light 50% Light

S1 G S2GD2G

Figure 3.10: Flicker avoidance while transmitting. The first row shows a
device while idling and transmitting with constant light out-
put at 50 % duty cycle. The second row shows a transmitting
device, which adds light output during the COM slot to mod-
ulate a data bit. This additional light output is compensated
during the next ILLU slot to achieve the same duty cycle,
avoiding a brightness change.
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output to the COM slot, increasing the light duty cycle, which re-
sults in brightness changes. Removing the same amount of light
(switching the light of for the same duration as a data interval) is
decreasing the duty cycle again and compensating for the bright-
ness changes. This prevents flickering during data transmissions
and successfully hides communication from the human eye.

Continuous Synchronization

Looking at the modulation scheme makes it clear that accurate
synchronization of transmitter and receiver is necessary. The ILLU

and COM slots need to be aligned, so that the data intervals of
communicating devices mostly overlap. The synchronization pro-
cedure needs to be simple enough to run on the microcontroller
without consuming too many valuable processing cycles. A com-
mon approach in communication system is to use a Phase-Locked
Loop (PLL) to match the phases of two signals. A PLL is usually
implemented directly in hardware and relies on a sampled input
signal. Since the LED sensing mechanism does not support direct
sampling of the modulated light signal and the synchronization
is required to be implemented in software, the following, much
simpler but sufficient synchronization procedure is presented.

There are two reasons why synchronization is necessary. First,
devices are switched on at random times and therefore have a
phase offset from the beginning. Second, internal resonator or
quartz crystals do not have exactly the same frequency and drift
over time. This drift is higher for resonator circuits and low-cost
crystals. Common practice is to synchronize devices at the begin-
ning of a data frame with a preamble. After the preamble, devices
are expected to be in sync for the duration of a frame. For devices
with inexpensive clock infrastructures, a single synchronization
phase (preamble) is not enough when transmitting longer pack-
ets. The devices will drift apart while transmitting and receiving.
The method presented in this thesis provides continuous synchro-
nization, also while sending or receiving a frame.

Figure 3.11 illustrates the synchronization procedure. Devices
A and B are out of sync. Their COM and ILLU slots are not aligned.
While their phase is offset by ε, the previous or next ILLU slot
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S1 G G S2GD1 D2G

Communication Slot

ILLU

Communication Slot

ILLUILLU S1 G S2GD1 D2G

ILLU

ɛ

Light Light

Device A

Device B

Figure 3.11: Device synchronization process. Two devices are out of sync
by ε. Device A measures additional light during S2 (from
Device B’s ILLU slot) and no additional light during S1,
meaning that the COM slot started too late. Device B receives
additional light during S1 and no light during S2, which
means that the COM slot started too early. The synchroniza-
tion process compares S1 and S2 and as long as they differ,
the phase is corrected step by step until the devices are in
sync.

overlaps with a synchronization interval S1 or S2. The synchro-
nization intervals behave the same as the data intervals. The LED

is charged at the beginning and in the end, the remaining voltage
is measured to deduct the amount of light received. Listing 3.1
shows the algorithm that uses the measured light values to con-
tinuously synchronize devices. After each COM slot, the light val-
ues for S1 and S2 are compared. If their difference is smaller or
equal to a certain margin, nothing happens. Similar light values
for S1 and S2 mean that no light is leaking from neighboring ILLU

slots, hence the devices are synchronized. If the difference be-
tween S1 and S2 increases, one of the synchronization intervals is
receiving more light than the other, which means that the devices
are out of sync. One interval overlaps the following or previous
ILLU slot, receiving light, while the other is taking place during a
COM slot, receiving no light. The amount of light received during
S1 and S2 can also be used to determine the direction of the phase
correction. If more light is received during S1 than during S2, the
previous ILLU slot overlaps and the change from ILLU to COM slot
happened too early, requiring the system to shift its following slot
changes towards right. If light values for S2 are higher than for
S1, the slot changes need to be shifted towards left. The shifting
of the signal is achieved by slightly adapting the duration of the
following ILLU slot. When shifting left, the slot duration is short-
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Listing 3.1: Synchronization algorithm (pseudo code). The algorithm is
run after each COM slot.

/* if S1 and S2 differ more than margin */

if (abs(S1 - S2) > margin) {

if (S1 > S2) {

/* too early */

shift towards right

} else {

/* too late */

shift towards left

}

}

ened and when shifting right, the slot is prolonged. The shifting
step size is in the range of a few microseconds. The higher it
is, the faster an initial synchronization is reached. Using smaller
steps increases the stability of continuous synchronization.

Figure 3.11 shows also that if two devices are out of sync, the
phase correction is always applied so that the devices eventu-
ally converge in synchronization. The measured light values for
S1 and S2 are always the opposite (for two devices), forcing the
algorithm to shift their slot changes towards each other. This pre-
vents that the devices shift their signals in the same direction,
never reaching synchronization, or shifting them apart from each
other, which results in a false equilibrium. The light values for
S1 and S2 are not only similar if the COM slots (and ILLU slots)
are aligned, but also if the signals have a phase offset of one slot
(ILLU slot aligned with a COM slot). This could happen by chance
at device startup and prevent the synchronization algorithm from
immediately correcting the phase offset due to the similarity of
the detected light values for S1 and S2 (both receiving the same
amount of light from the aligned ILLU slot). But as soon as the
two signals slightly move apart (due to the clock drifts), the syn-
chronization mechanism will force the correct slot alignment.

The synchronization algorithm is very simple, consuming only
a few processor cycles, and is directly implemented in software
as part of the PHY layer. It is used to correct the initial phase off-
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set and is also continuously running while idling, transmitting,
or receiving. Due to the sensing mechanism and the algorithm’s
simplicity, the synchronization is not perfect. The phase offset is
always changing within a few microseconds, also depending on
the light intensity. The more light, the more distinct the sensed
intervals are and the more accurate the synchronization is. For
devices further apart, less light is received and the resulting syn-
chronization is less stable. Successful communication is still possi-
ble, given the synchronization inaccuracy is within the duration
of a guard interval G. The guard intervals are located between
synchronization and data intervals and between the two data in-
tervals. The dashed arrows in Figure 3.11 show that although the
two devices are offset, a data slot cannot leak light into a syn-
chronization or data interval and possibly interfere with synchro-
nization or provoke bit flips. The guard intervals are not used
to measure light but provide a buffer zone between the active
sensing intervals.

The proposed slot and interval structure and synchronization
process was designed with networking in mind. When coordi-
nating shared medium access in a network, a solution to detect
communication activity is required. Using the same medium at
the same time for another purpose, namely illumination, makes
shared medium access more demanding. The strict separation of
communication and illumination into COM and ILLU slots and the
synchronization provides a common place in time where commu-
nication can be detected independently from illumination. When
two devices are synchronized, communication can only happen
during aligned COM slots where it can be detected using the data
intervals D1 and D2. Further, two or more in sync devices pro-
duce the same light pattern as a single device. Hence, a synchro-
nized network looks and behaves the same as one device when
observed by another device joining the network. The arriving de-
vice can synchronize to the network as it were a single device.
The presented simple synchronization method not only provides
reasonable device synchronization but also scales with the num-
ber of network nodes.
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SFD Flags Size CRC

FEC Flag

7 6 5 4 3 2 1 0

Reserved

1 Byte 1 Byte 1 Byte 1 Byte

Payload FCS/FEC

0...255 Byte 2/16 byte

Figure 3.12: PHY layer frame header. It consists of four fields with a size
of 1 B each. The start of a frame is detected by looking for
a predefined Start Frame Delimiter (SFD) byte, followed by
a byte reserved for future bit flags. One flag is occupied for
the FEC state. The PHY layer payload size is defined by the
size field. In addition, the 3 B are protected by an 8-bit Cyclic
Redundancy Check (CRC).

Physical Layer Frame Format

The PHY layer frame starts with a 4 B header followed by the pay-
load containing the MAC layer frame as shown in Figure 3.12. To
detect the beginning of a new frame, a Start Frame Delimiter (SFD)
is introduced. The SFD is a predefined bit sequence with a length
of 1 B. Since a 0 and 1 bit is well-defined, and not only defined
as presence or absence of light, any bit sequence works as an
SFD. If an SFD is found in the continuously decoded bit stream,
the decoder switches to receiving mode and receives the follow-
ing three PHY header bytes. The first real header byte contains bit
flags and is mostly reserved for future extensions. Still, one of the
flags is used for FEC. It informs the frame receiver whether FEC

is enabled for the PHY payload or a Frame Check Sequence (FCS)
is used. The Flags byte is followed by another 1 B field, defining
the size of the PHY payload. The field’s size limits the maximum
payload to 255 B. Using larger payload sizes is not reasonable
at this stage due to the memory constraints of microcontrollers
and the transmission duration of already approximately two sec-
onds (at 1 kb/s) for a PHY layer frame of maximum size. The flags
and payload size byte is protected by an 8-bit Cyclic Redundancy
Check (CRC) sequence. It is calculated using an already imple-
mented (and optimized in assembler for AVR) avr-libc method6,

6. http://www.nongnu.org/avr-libc/user-manual/group__util__crc.html
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developed by Dallas Inc.7 (now Maxim Integrated). If the trans-
mitted CRC does not match with the CRC computed at the receiver,
the frame is ignored.

The PHY layer header is followed by a 0 to 255 B payload that
contains the MAC layer frame including the application data. The
transmitter decides (e.g., depending on the payload size) whether
to add a 16-bit CRC sequence or additional redundancy for FEC.
The transmitter also sets the FEC flag in the PHY according to the
used method. The FCS uses again an already implemented and
optimized avr-libc method and is used by the receiver to validate
the received payload. With the addition of 16 B redundancy and
some computation at the transmitter and receiver, the receiver is
able to not only validate the payload but also to correct up to
eight byte errors in the received data. The used FEC method is
explained in the following section.

Forward Error Correction

The transmitter decides, based on a configurable FEC threshold,
whether to apply FEC or not. For PHY layer payload sizes equal to
or below the FEC threshold, an FCS is used since it is more efficient
to retransmit short data frames. For payload sizes above the FEC

threshold, Reed-Solomon error correcting codes [70] are applied.
They are widely used in consumer technologies and communica-
tions, provide byte-level error detection and correction, and are
reasonable to implement in software on a microcontroller.

The unit on which all operations take place is called code-
word. The maximum codeword length n is given by Equation 3.2.
Where s represents the symbol size. The length of uncoded data
k is determined by Equation 3.3 and the number of provided par-
ity symbols is 2t. This allows to detect and correct up to t symbol
errors. If the error positions are known, 2t errors can be corrected.
It is practical to use a symbol size s = 8, which is equal to a byte,
allowing to directly find and correct byte errors.

n = 2s − 1 (3.2)

k = n− 2t (3.3)

7. https://www.maximintegrated.com/en/app-notes/index.mvp/id/27
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Using s = 8 gives a codeword length of n = 28 − 1 = 255. The
number of parity symbols can be defined when compiling libvlc.
By default it is set to 2t = 16 resulting in a maximum data length
of k = 255− 16 = 239. These constants produce an FEC code gen-
erally written as RS(255, 239). It limits the maximum PHY payload
size to 239 B. Larger payloads must be split up in chunks of size
k symbols which are each processed as a codeword. Due to the
small difference to the previous maximum payload size of 255 B,
the PHY layer only supports one codeword per frame. The encod-
ing and decoding algorithms can directly be applied to payload
sizes smaller than k. In theory, the payload is padded with ze-
ros up to the size of k, which are omitted when transmitting and
then added again by the receiver for processing.

The encoder and decoder implementations are optimized to
run on a microcontroller with memory limitations. Buffer sizes
and copy operations are minimized and calculations are sped up
by static lookup tables for the logarithm and exponentials for ev-
ery value in the Galois Field8 of 28. The first stage of the decoder
algorithm (syndromes calculation to determine error locations)
is computed step by step (while receiving) and is continued as
soon as another received byte is available, improving on the over-
all processing time for a completely received PHY layer frame. The
additional time needed for processing after receiving a frame can
influence higher layer protocols as discussed in Section 3.5. The
current libvlc implementation can find and correct t byte errors
(2t defined at compile time), and it only supports correcting er-
rors if their locations are known. Since the complete PHY layer
logic is part of the same software it can be upgraded without ef-
fort to mark received and possibly corrupted bytes. As discussed
earlier, the bit-level decoder is comparing voltage values and de-
cides to produce a bit 0 or bit 1. Close decisions can be recorded
and fed into FEC to correct 2t = 16 errors.

8. https://en.wikipedia.org/wiki/Finite_field
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3.3.2 Medium Access Control Layer

The literature almost exclusively discusses point-to-point VLC sys-
tems. The system proposed in this thesis supports the intercon-
nection of multiple devices. Due to its unique slotting mecha-
nism, separating communication and illumination, and provid-
ing a wireless synchronization method, a contention-based pro-
tocol based on the IEEE 802.11 MAC standard [33] can be applied
to handle medium access.

Listen-Before-Talk

In a network where many devices share a common communica-
tion channel (slice of the spectrum) a MAC protocol takes care
of handling medium access so that communication attempts do
not interfere with each other, wasting precious air time. A com-
mon approach to handle shared medium access is to employ a
CSMA/CA protocol where collisions are avoided by listen-before-
talk and random backoff times. Listen-before-talk means that
a transmitter observes the channel before sending, and if the
medium is already occupied, the transmission is suspended. In
wireless radio systems, detecting energy (or the absence of en-
ergy) in a certain frequency band and determining the channel
state is straight forward. In a VLC system where the same chan-
nel is used for illumination and communication, it is more com-
plicated to detect a busy channel (caused by communication and
not illumination). The PHY layer presented in Section 3.8 has been
designed with this problem in mind. The separation of illumi-
nation and communication and the synchronization of ILLU and
COM slots for all devices in range defines a common place in time
where all participating devices can expect only communication
without being affected by the illumination part of the system.
The channel is detected busy if the difference of measured light
during D1 and D2 is above a configurable threshold, meaning
that either communication is ongoing or any other interference is
present.

The MAC protocol is implemented as an independent layer on
top of the PHY layer. An incoming data frame is first processed by
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the PHY layer where a byte buffer is assembled from the incoming
bits. After checking the frame for consistency, either with the help
of FCS or FEC, the PHY layer payload (containing the MAC frame)
is forwarded to the MAC layer for further actions. When transmit-
ting a packet, the application hands the data packet over to libvlc,
which forwards it as frame payload to the MAC layer where the
following protocol steps are executed (protocol parameters and
default values are summarized in Table 3.2):

• The payload forwarded by libvlc is prepended with the MAC

header, containing 4 B of additional data more closely de-
scribed in a later section.

• Before forwarding the MAC frame to the PHY layer where
it is eventually transmitted, the channel is tested (similar
to carrier sensing in IEEE 802.11) to recognize ongoing com-
munication or other interference. If the channel has been
clear for a certain timespan called Distributed Interframe
Space (DIFS), the random backoff process starts. Two param-
eters span the Contention Window (CW). The lower thresh-
old is defined by CWmin and the upper threshold is set by
CWmax. The actual CW (size) starts at CWmin. The backoff
process starts with the generation of a random backoff time
bound by the current contention window CW, hence a num-
ber between 0 and CW. One backoff time unit relates to the
timespan between the starts of two COM slots (unit) which is
1 ms in this setup. While counting down the backoff timer,
the channel is successively sensed during each COM slot.
The MAC frame is handed to the PHY layer after the backoff
time is expired.

• Sensing a busy channel before starting the backoff timer or
during counting it down interrupts the backoff process. If
the busy channel is caused by another transmission and the
SFD and the following PHY header can be decoded, the back-
off timer is resumed after receiving the complete packet
plus an additional DIFS. Is the channel busy due to interfer-
ence, the backoff is continued after detecting no signal for
the duration of a DIFS. Resuming the backoff timer instead
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parameter description default

SIFS waiting time before ACK 4 units

DIFS waiting time before data frame 8 units

CWmin contention window starting value 32 units

CWmax maximum contention window 1024 units

ACKto ACK timeout 84 ms

RTNS number of retransmissions 3

Table 3.2: Available MAC layer parameters. SIFS is the time always waited
before sending an ACK and before a data frame, the transmit-
ter pauses for the duration of DIFS. The contention window
starts from CWmin and is doubled on every transmission fail-
ure until CWmax is reached. A unit is defined as the timespan
between two COM slot beginnings. Within the ACK timeout an
ACK control frame is expected and if not received, the current
data frame is resent at most RTNS times.

of reseting it provides some fairness for the medium access,
since it allows all devices to transmit eventually.

• When receiving a MAC frame from the PHY layer and the
destination field in the header matches the device’s address,
an Acknowledgment (ACK) frame is transmitted. The ACK is
a control frame and consists of only the MAC header with-
out payload. The frame is sent out after a Short Interframe
Space (SIFS), which is always shorter than DIFS. This pre-
vents a collision with other data frames and gives the ACK

a higher priority.

• The transmitting device expects to receive an ACK within
the ACK timeout (ACKto) period. Receiving no ACK means
that the sent frame collided with another frame (when back-
off timers expire at the same time) or that the packet could
not be received correctly due to interference or bad recep-
tion and therefore no ACK was generated at the receiver’s
end. It can also happen that the ACK is generated but never
reaches its destination, again due to interference or bad re-
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ception. If no ACK is received, the process is repeated until
the number of Retransmissions (RTNSs) for the same frame
is reached. For every unsuccessful trial, the current con-
tention window is doubled until CWmax is reached. A suc-
cessful transmission resets the contention window back to
CWmin.

Figure 3.13 illustrates the described MAC process. Part 1 shows
a successful data frame transmission answered with an ACK. First
the channel is sensed, after being clear for DIFS a random backoff
value within the contention window is generated, after which
the data frame is transmitted. The receiving device waits for a
SIFS before sending the ACK. In part 2, the data is sent after a
backoff process, but due to interference or collision, matching
the CRC at the receiver fails. Therefore no ACK is generated at
the receiver and the transmitter starts the backoff process again
(with an extended CW) after the ACK timeout to resend the lost
data frame.

Contention Window 

BUSY DATA ACK

DIFS Backoff SIFS

ILLUCOM

Random Start

Contention Window 

BUSY

DIFS Backoff Random Start

DATA

CRC Error

Retry

1.

2.

Figure 3.13: MAC process illustrated by means of examples. Part 1 shows
a successful data frame transmission after a backoff phase
answered with an ACK. Part 2 demonstrates the protocol
behavior in case of a frame loss. No ACK is issued by the
receiver and the transmitting station starts another backoff
process after the ACK timeout to resend the last frame. The
units used in the backoff process (also for SIFS and DIFS)
consists of an ILLU and COM slot and therefore the timespan
between two COM slot beginnings.
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Forward Error Correction and Acknowledgment Timeout

The FEC is part of the PHY layer. If FEC is enabled by the transmit-
ter, the frame is first tested for consistency and possible errors are
corrected, provided that the error number lies within the code’s
capabilities. If a correct payload can be decoded, it is handed
over to the MAC layer where an ACK is generated. The time be-
tween receiving a complete frame on the PHY layer and sending
the resulting ACK therefore heavily depends on the FEC runtime.

Figure 3.14 plots the time until an ACK is received by the trans-
mitter depending on number of errors and payload size. The
results show that the ACK time increases for higher error num-
bers and larger frame payloads. The ACK time is prolonged due
to higher FEC processing load for larger packets and higher er-
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Figure 3.14: Time passed until a device receives an ACK for a transmitted
data frame. The ACK time is set in relation to frame payload
size and introduced byte errors. Since the FEC codes operate
on a byte level, an error means at least one flipped bit in a
byte. The ACK time increases for higher payload sizes and
higher error numbers. The additional time is introduced at
the frame receiver where the ACK is generated, due to the
FEC processing time. The error bars indicate the standard
deviation.
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ror numbers. For these experiments, the FEC threshold was set
to 30, enabling FEC only for PHY payloads larger or equal to 30 B,
clearly visible in the plot. For a 200 B payload and 8 introduced er-
rors (which is the maximum number of errors correctable for the
tested configuration), the ACK time amounts to more than 94 ms.
Per unit, one bit can be transmitted, the ACK including all head-
ers and SFD equals to 10 B or 80 units. In the used setting where
one unit is 1 ms, the total air time for an ACK is 80 ms. Therefore,
for an ACK time of 94 ms the time passed between completely
receiving a frame and sending out the ACK results in 14 ms, con-
siderably longer than the budgeted SIFS of 4 units.

This problem can be solved in several ways. First, SIFS can be
increased to 96 units covering the maximum FEC processing time.
Second, the ACK can be sent earlier, while still running FEC. The
time consuming part in the FEC algorithm is locating the errors
and correcting them. The time needed to compute the number
of errors detected is independent of the number of errors and
payload size and can be computed within the 4 units of a SIFS

on the used hardware (ATmega328P). If the resulting error num-
ber is within the bounds where the complete frame can be re-
constructed, the ACK can already be dispatched, before patching
the faulty payload. To successfully construct and address an ACK,
the source address field of the received frame’s MAC header must
not be erroneous, so that it can be sent to the correct destination.
Otherwise, the ACK is sent to the wrong receiver and the original
sender will trigger a retransmission. The probability that one out
of k uniformly distributed errors in a payload of n bytes falls on
a specific byte can be calculated with Equation 3.4.

Pn,k =

(
n−1
k−1

)(
n
k

) =
k

n
(3.4)

Figure 3.15 plots the probability for different error numbers and
payload sizes. In addition to the stated payload size, a 4 B MAC

header and 16 B of FEC redundancy are used for the calculation.
For higher payload sizes where losing a packet due to the dam-
aged source address is more serious, probabilities are below 5 %.
Even for medium payload sizes, the probabilities are still below
10 % for 8 possible errors. Furthermore, the probabilities shown
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Figure 3.15: Probability that, for a given number of uniformly dis-
tributed errors and payload sizes, one error falls on a
specific byte. For the computation, the payload is comple-
mented with 4 B MAC header and 16 B FEC redundancy.

in Figure 3.15 are based on the assumption that a specific num-
ber of errors exists. To get the definite probability for a defective
source address, it has to be multiplied with the probability that
a certain number of errors exists, leading to even lower values.
These calculations show, that the probability is reasonable low,
that a data frame is being lost due to wrongly addressed ACKs.
The third, last, and most useful solution proposed is to use a sim-
ilar but more powerful microcontroller, introduced later in this
thesis.

Hidden Station Problem

The hidden station or hidden terminal problem [91] is a well-
known issue in radio communication especially where a listen-
before-talk MAC scheme is employed. For LED-based VLC systems
it is even a bigger problem because most light sources are very
directive and additional optics further narrow light beams and
restrict the field of view.

Figure 3.16 depicts an example for a hidden station scenario.
Devices A, B and C are equipped with an LED as sender and
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A

C

B

Figure 3.16: Hidden station problem. LEDs with a narrow viewing angle
reach further but are more vulnerable to the hidden station
problem. Stations A,B and C are all equipped with a narrow
beam LED. The light cones from A and C overlap with B and
therefore enable B to receive data from both communication
partners. Reverse, B can also reach A and C, but between
A and C, no communication is possible. Communication at-
tempts from A and C have a high probability to collide since
their channels are hidden from each other.

receiver. The light beams of A and C both reach B’s receiving
LED and therefore enable communication from A and C to B.
In reverse, B can also communicate with A and C due to the
overlapping field of view. A and C however do not see each
other although being arranged close to each other. The standard
CSMA/CA MAC protocol fails in this scenario. The following sim-
ple scenario shows that the protocol breaks: A wants to transmit
a data frame, listens to the channels, sees a free channel for the
duration of DIFS and starts transmitting. At the same time, C is
already transmitting, but since its communication is hidden from
A, A could not recognize that the channel actually was busy. The
two data frames collide and B will not be able to decode the
incoming data. While both A and C have data to send, no reason-
able and stable communication from A and C to B is possible. An
advantage of a VLC system over a radio system is that due to the
visibility property of the communication range, hidden stations
can easily be identified.

An approach to mitigate the collision probability for hidden
station scenarios is to extend the existing MAC protocol with an
RTS/CTS scheme [36, 38], also implemented by the IEEE 802.11 stan-
dard [33]. The proposed MAC protocol is enhanced with two ad-
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ditional control frames, an RTS frame and a CTS frame. The RTS

packet consists of the MAC header plus one additional byte pay-
load. A device with a data frame in queue first sends an RTS with
the data frame’s size as payload to the data frame’s receiver. The
RTS competes for the channel like a standard data frame: the de-
vice waits for DIFS and if the channel is clear afterwards, it starts
the backoff process. After a successful backoff, the RTS is sent to
its receiver, which is replying with a CTS. It also consists of the
standard MAC header with an additional byte of payload (copied
from the RTS). The CTS is directly sent, after waiting for a SIFS,
without a backoff process as it is the case for an ACK. If a CTS

is issued, the requesting device successfully reserved the chan-
nel and can transmit its data frame after receiving the CTS and
after waiting for another SIFS. Any other device overhearing the
CTS is reserving the channel for the duration of the requested
data frame, calculated from the size value sent with the CTS. If
no CTS is received after a timeout, the RTS is retransmitted for the
configured number of retransmission. If no RTS gets through, the
current data frame is dropped.

This scheme introduces additional overhead but also prevents
collisions of data frames and therefore the loss of precious chan-
nel time. Back to Figure 3.16. If device A wants to send a data
frame, it first sends an RTS. Since the RTS is much shorter than
an average data frame, the probability that it will collide with an
RTS from device C is low. If the two RTS from A and C collide,
only little channel capacity is lost and another collision is even
less probable for the RTS retransmissions after increasing the CW.
On receiving the RTS, device B is issuing a CTS which can also be
overheard by C. Device C knows now that A reserved the channel
for the following data frame and therefore will defer for the cal-
culated airtime, although it cannot sense a busy channel during
this time.

The protocol extension is implemented as part of the MAC layer
of libvlc. Since the additional overhead is not reasonable for short
packets with a lower collision probability, triggering the trans-
mission of RTS is based on a payload threshold. Only data frames
with a MAC payload size equal or larger than specified by the RTS

threshold will lead to an RTS/CTS handshake.
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Frame Format

This section further explains the MAC header and summarizes the
format of data and control frames. The MAC frame is shown in
Figure 3.17 together with the encapsulating PHY frame. The MAC

header consists of four additional 1 B fields. The control field is
used to identify frame types and to mark a frame as a retrans-
mission. The remaining bits are reserved for future protocol addi-
tions. Half of the control byte is used to determine the frame type,
distinguishing between Data, ACK, RTS, and CTS frames. There is
still room for additional frame types since only four out of 16
possible identifiers are used. The source field stores the MAC ad-
dress of the transmitting device and can be used by the receiver
to address replies, e.g., an ACK or CTS frame. The destination
field labels the frame’s receiver. It is used by the MAC layer to
filter received frames. Only frames with matching destination ad-
dress are accepted, all other frames are ignored. The sequence
number consecutively numbers every new outgoing frame. The
sequence number is used by the receiver to sort out frame dupli-
cates, which can happen when frames are successfully received
but are still retransmitted because the ACK was lost. The MAC

header is followed by a MAC payload with a maximum of 200 B
as discussed earlier.

3.3.3 Application Layer

The described PHY and MAC layer are encapsulated into libvlc to-
gether with additional infrastructure for serial communication,
logging and GPIO abstraction. For measurements to evaluate the
PHY and MAC performance or for basic device-to-device commu-
nication, no additional networking layers are needed. The pro-
gram logic can directly be implemented on the same microcon-
troller using the API exposed by libvlc.

The core functionality is summarized in Listing 3.2. The API can
be structured into three groups. The first three methods belong
to the control group. The method vlc_init initializes all library
parts including PHY and MAC layer. Calling vlc_start enables the
timer interrupts used to drive the PHY layer. Calling vlc_process
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SFD Flags Size CRC

Frame Type

7 6 5 4 3 2 1 0

Reserved

1 Byte 1 Byte 1 Byte 1 Byte

PHY Payload FCS/FEC

0...255 Byte 2/16 byte

Control Source Destination Sequence #

1 Byte 1 Byte 1 Byte 1 Byte

MAC Payload

0...200 Byte

RTNS

Figure 3.17: MAC frame structure as part of a PHY layer frame. The MAC

header is built from additional 4 B. The source field con-
tains the address of the transmitting device and the desti-
nation field is set to the receiving station’s address. The con-
trol field’s four lower order bits identify the different frame
types, the following bit determines an RTNS, and the rest of
the byte is reserved. The MAC payload with a maximum size
of 200 B is appended to the MAC header.

will process all pending tasks for the MAC layer, FEC, logger and
all callbacks, as they are not handled during the timer interrupt
context of the PHY layer. To start processing as soon as tasks are
available, this method is usually called during the application’s
main loop.

The following three methods are part of the callback group.
A callback method for incoming messages is registered through
vlc_register_rx_cb. The registered function will be called from
the MAC layer after frame processing has finished and provides
a pointer to the payload and the payload size. The data needs
to be copied immediately so that it is not overwritten by the
next incoming message (memory is a scarce resource on a micro-
controller). With the next method, vlc_register_tx_cb, a hook
for the TX event can be registered, triggered when the PHY layer
finished transmitting a frame. It is called for all messages, also
retransmissions and control frames. This callback can be used
to log statistics during measurements. The method registered
through vlc_register_tx_done_cb is called when a message dis-
patched using the API is completely handled, meaning either re-
ception was confirmed with an ACK or the maximum number of
retransmissions was reached. This callback is helpful when im-
plementing saturation traffic for measurements. Due to limited
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memory on microcontrollers, the outgoing data queue can only
handle a single packet, hence when the TX done event is triggered,
the next packet can overwrite the current data in the queue.

The last three methods build the action group. An LED is ab-
stracted in libvlc as a communication channel. With the method
vlc_add_channel, a new communication interface is initialized.
It connects the hardware (LED pins) with the software-based PHY

Listing 3.2: Basic functionality exposed by libvlc’s API. Only the core func-
tionality is listed. The API can be structured in three groups:
The first three methods are part of the control group, followed
by the next three being part of the callback group, and the last
three fall in the action group.

/* initializes libvlc */

void vlc_init(void);

/* enables libvlc’s interrupts */

void vlc_start(void);

/* processes pending async tasks */

void vlc_process(void);

/* registers callback for incoming messages */

void vlc_register_rx_cb(void (*cb) (uint8_t *data, uint8_t size);

/* registers callback for sent messages */

void vlc_register_tx_cb(void (*cb)());

/* registers callback for completely handled messages */

void vlc_register_tx_done_cb(void (*cb)());

/* adds a communication channel */

void *vlc_add_channel(uint8_t id, const pin_t *cat, const pin_t *ano,

Channel *ch);

/* sends a message */

int vlc_send_message(uint8_t id, uint8_t* msg, uint8_t size, uint8_t

dest);

/* configures protocol parameters */

void vlc_set_parameter(int group, int param, int32_t value);
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phy group [0] mac group [1] log group [2]

0 Preamble length 0 # RTNS 0 Verbosity level

1 FEC threshold 1 DIFS 1 Prefix

2 Busy threshold 2 CWmin

3 Light emission 3 CWmax

4 RTS threshold

5 MAC address

Table 3.3: Configurable parameters through libvlc’s API. The parameters
are divided into configuration groups. The PHY configuration
group includes parameters to configure FEC, and light emis-
sion and sensitivity. The MAC group consists of the parameters
discussed in Section 3.3.2 and additional parameters to set the
RTS threshold and device MAC address. The logging group pa-
rameters can be used to influence logging behavior.

layer which operates the LED through GPIO pins. The method also
provides the infrastructure to add multiple communication chan-
nels. As the name suggests, vlc_send_message provides the func-
tionality to dispatch messages to the MAC layer. The message, rep-
resented as a byte array, can be sent using a specific channel (id)
to any device MAC address. The method returns after the han-
dover to the MAC layer is completed with a non-negative value if
successful and with a negative value if the message was dropped
due to a full queue. All parameters for the PHY and MAC layer and
other infrastructure can be adjusted with the vlc_set_parameter

method. Parameters are divided into groups and within a group
identified by a numeric value as listed in Table 3.3.

The PHY group includes parameters to change the PHY layer
behavior. The preamble length is used for multi-channel devices
and is further explained later in this thesis. The FEC threshold
defines the PHY layer payload length starting from which FEC is
applied. The busy threshold is used to define the detection sensi-
tivity. If light-level differences are above this threshold, the chan-
nel is busy and the data intervals introduced in the PHY layer
section are considered as data symbols. Light emission is con-
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trolled through the last parameter of the PHY group. It defines
whether light is enabled during an ILLU slot or not. Most param-
eters in the MAC group were already discussed. In addition, the
RTS threshold defines the MAC payload size starting from which
the RTS/CTS protocol extension is enabled. The MAC address pa-
rameter is used to overwrite or set the device’s address. The log-
ging group parameters influence logging behavior and are useful
for debugging and measurements. The verbosity level can be set
from 0 (none) to 7 (silly). The prefix parameter can be used to
prepend a specific character to each logged line.

3.4 system implementation concepts

The implementation is mostly written in C, which is the com-
monly used programming language for microcontrollers due to
its closeness to the hardware. The C code is complemented with
C++ classes where encapsulating functionality into objects makes
sense and to create individual namespaces for method names.
There are no additional libraries needed for the implementation
of the discussed communication layers. The basic functionality,
provided by avr-libc9, which is the standard C library shipped
with the avr-gcc, the compiler suite for the AVR architecture, is
sufficient enough to implement the envisioned system.

The PHY and MAC layer are implemented as strictly separated
and independent parts with a small and clearly defined interface
to each other for data and status exchange. Therefore, individual
layers can be adapted separately or can be completely exchanged
without interfering with their counterparts, and additional layers
can be inserted between existing layers without effort. The follow-
ing sections describe additional implementation concepts used to
keep the software system flexible and to increase maintainability.

3.4.1 Pin Abstraction

The ATmega328P microcontroller supports multiple digital and
analog GPIO pins. The pins are spread over different pin banks,

9. http://nongnu.org/avr-libc/

63

http://nongnu.org/avr-libc/


led-to-led networks

each holding, since it is a 8-bit architecture, eight pins. One bank
is responsible for the analog pins connected to the ADC periph-
eral, whereas the digital pins are held by two other banks. The
pins are controlled via two 8-bit registers per bank. One register
controls the pin direction, whether it is used as input or output
pin, and the other register can be used to set the pin to a low
or high logic level (if used as output pin) or to enable or disable
a pull-up resistor (if used as input pin). The individual pins are
controlled by setting the respective bit within those registers.

To increase the usability of libvlc and to support the communi-
cation channel infrastructure described in the next section, the
pin software mapping is introduced. During the initialization
phase of an application based on libvlc, the software represen-
tation of hardware pins can be loaded. A method provides the
functionality to map a specific pin specified by using an iden-
tifier to the software structure later representing the pin within
libvlc. The mapping function assigns the respective registers to
their software representation, which will be used for all pin oper-
ations in the PHY layer.

3.4.2 Communication Channels

A communication channel is the abstraction of an LED (as sender
and receiver) within libvlc. It bundles an anode and cathode pin
together, using the pin abstraction described in the last section.
Since the microcontroller provides several GPIO pins, it is possible
to have multiple communication channels per device making it
reasonable to model a channel as a class to enable the creation
of multiple instances. How multiple channels are handled within
libvlc is discussed later in this thesis.

The channel class provides the basic functionality to operate
the LED as a communication front end. Light emission can be en-
abled or disabled invoking channel methods to create ILLU slots
and to trigger light output during data intervals. The light sens-
ing process is controlled with the aid of three class methods. The
charge method is reverse biasing the LED marking the starting
point of a sense cycle. At the end of a sensing interval, an ADC

measurement can be triggered with the sense method. An ADC
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conversion is not done within an instant. Depending on the re-
quested granularity, it can take from microseconds to millisec-
onds. The measure method, responsible for returning the mea-
surement result, takes this fact into account. The measure method
immediately returns the result if it is available or blocks until the
value becomes available. In addition, the channel stores all mea-
surements conducted during a COM slot for later synchronization
and bit detection processing.

3.4.3 Timer and Interrupt Handling

The PHY layer’s slot and interval scheme is implemented with a
timer. All intervals are fed into the timer abstraction. The timer
fires after the desired interval length and calls the appropriate
method (implemented as sequential state machine explained in
the next section) to handle the interval specific tasks, like en-
abling light output or triggering an ADC measurement, executed
in an interrupt context. The interrupt handling methods are kept
as short as possible to not interfere with following intervals. Since
the PHY layer actions and processing are time critical (e.g., syn-
chronization or bit detection has to be processed and executed
before the next COM slot), it is directly handled within the in-
terrupt routines at places where the needed computing time fits
between consecutive intervals.

Since the FEC and the MAC layer operate on the completely
received data buffer, further processing is not time critical and
can be handled outside the timer interrupts during the normal
program execution. Therefore, the required tasks are bundled in
process methods, each executed within vlc_process which is in-
voked in the application’s main loop. The processing tasks are
controlled by flags set during the interrupt routines.

3.4.4 Physical Layer State Machines

The PHY layer is based on a hierarchical sequential state ma-
chine as shown in Figure 3.18. Three super states are defined:
Transmitting (TX), Receiving (RX) and idle. The starting point is

65



led-to-led networks

G

D1

G

D2

G

S2

I

COM ILLU

S1

G

D1

G

D2

G

S2

I

COM ILLU

TX IDLE RX

RX Done

PHY CRC Error

TX Done

Start

S1

G

D1

G

D2

G

S2

I2

C

I1

COM ILLU

S1

Frame Pending

SFD Detected

Figure 3.18: PHY layer hierarchical state machine. The three super states
Transmitting (TX), Receiving (RX) and idle describe the cur-
rent activity of the PHY layer. The PHY layer starts in the idle
state. Whenever a frame from the MAC layer is pending, it
transitions to the TX state, transmits the frame an switches
back to idle. While in idle, the channel is scanned for an SFD

and when detected, the state is switched to RX where the
frame is received. The PHY layer falls back to idle on a CRC

error in the PHY header or when the frame is completely re-
ceived. While in the super state, the PHY layer cycles through
sequential finite state machine handling the slots and inter-
val actions.

the idle state. Whenever the MAC layer finishes a backoff pro-
cess, a frame becomes pending in the PHY layer and the state is
switched to TX. As soon as the last bit is sent, the PHY layer tran-
sitions back into the idle state. While in the idle state, every COM

slot is decoded as if receiving, generating a continuous bitstream.
When the last received eight bits match the SFD, the PHY layer
switches to the RX state. While in the RX state, the following three
bytes (PHY header) are awaited, where the last one contains the
CRC protecting the PHY header. If the CRC fails, the frame recep-
tion cannot be continued and the PHY switches back to the idle
state. If the PHY header is correct and therefore the correct pay-
load size is known, the PHY state machine stays in the RX state
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until the complete payload is received and subsequently transi-
tions back to the idle state.

When changing the super state (idle, TX, RX), the underlaying
state machine handling the intervals is also exchanged. E.g., the
actions taken at the start and end of the data intervals are differ-
ent for the TX and RX or idle super state: while in the RX super
state, the channel is sensed during the data intervals and while
in the TX super state, the LED is switched on and off according to
the bit that is currently transmitted.

For efficiency reasons, the intervals used for the underlaying
state machines do not match the schematic figures introduced
earlier (for an ILLU slot). During the TX super state, the duration
of I1 and I2 is chosen so that the compensation interval C falls
at the same position as the first data interval. This generates a
long (continuous) interval I2, which can be used for PHY layer
processing. For the idle and RX super state, the ILLU slot consists
only of one single state.

Each super state is implemented as a separate sequential state
machine. The states (representing intervals) are described as func-
tion pointers, stored in an array. Running the state machine is
straight forward since all states have to be traversed in sequence.
Hence, the array of function pointers can be iterated in order (us-
ing timer interrupts), invoking each function to process the cor-
responding interval. After handling the last state, the sequence
starts again from the beginning at the first array element. Every
super state owns its own sequential state machine wrapped in
an array of function pointers, which is exchanged when super
states are switched. This implementation has the advantage that
new functionality (super states, interval states) can be added, and
existing implementations replaced, without effort. Additionally,
common functionality, e.g., the processing function for the syn-
chronization intervals, can be used throughout all state machines
by using a common function pointer, referencing the same imple-
mentation.
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3.5 system evaluation

In this section, the presented VLC system is evaluated to demon-
strate the feasibility of a software-based LED-only communication
system. A single link scenario is measured to assess through-
put performance for variable communication distances. This ex-
periment primarily demonstrates the PHY layer capabilities. To
test the MAC layer protocols, a full network setup is evaluated.
Throughput and delay measurements give insights about the net-
work behavior and protocol characteristics. Additional measure-
ments demonstrate the implemented RTS/CTS protocol extension
in a hidden station scenario. The following Sections 3.5.1 to 3.5.3
describe the testbed configurations and the used hardware com-
ponents and summarize the measurements and findings for the
individual scenarios.

3.5.1 Single Link

The devices used in the testbed consist of an Arduino Uno board
equipped with an ATmega328P microcontroller as described ear-
lier. A red (640 nm wavelength) LED from Kingbright (see Sec-
tion 3.2.2 for more details) is directly connected to the microcon-
troller’s pin and operated by libvlc. The devices are connected via
USB to a control computer. The USB connection is used to emulate
a serial connection. The microcontroller runs a measurement ap-
plication on top of libvlc using the specified API. The control com-
puter communicates with the measurement application through
the available serial communication link and can start, stop, con-
figure PHY and MAC parameters, and change payload sizes. The
measurement application generates saturation traffic (next packet
is sent as soon as the previous packet is completely processed)
with random payload content according to the specified size re-
ceived from the control computer. All packet transmissions and
receptions are logged on the control computer together with sta-
tistical and time information. These logs contain all the informa-
tion to produce a detailed analysis, e.g., for a data throughput
and delay evaluation. Listing 3.3 shows typical log lines received
from the communicating devices and printed to a console on the
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Listing 3.3: Typical logs collected during an experiment. The informa-
tion contained is (from left to right): mode (reception or
transmission), frame type, source, destination, payload (com-
plete size on PHY layer), sequence number, CW, maximum
CW, RSSI, corrected errors (if FEC is enabled), channel num-
ber (if multiple channels are present), reserved, reserved, dis-
patch time, RX/TX time.

[T,A,0A->0B,0(9),2,0,32,0,0,0,0,0,856430,856511]

[R,A,0A->0B,0(9),2,0,0,24,0,0,0,0,0,854010]

[R,D,0B->0A,200(209),3,0,0,32,0,0,0,0,0,858219]

[T,D,0B->0A,200(209),3,0,32,0,0,0,0,0,854011,855718]

control computer while running an experiment. The statistical
information is generated through instrumentation within libvlc.
Each device keeps its own real-time clock, which is used to log
frame dispatching times on different layers as well as timing in-
formation for TX and RX complete events. Additional statistics
such as RSSI values or number of errors corrected by FEC provide
information about the quality of the current VLC link.

Testbed Setup

The testbed setup used for the single link experiments is shown
in Figure 3.19. Two devices equipped with a measurement ap-
plication running on top of libvlc and a single red LED are placed
opposite each other on a rail system mounted on a wooden board.
The devices are screwed to a block of wood that can move back
and forth on the rail. One block is fixed at one end of the rail,
whereas the other can be moved back and forth to assume various
communication distances to determine the maximum communi-
cation range and run experiments for different receiving signal
strengths. As the light intensity is inversely proportional to the
square of the distance from the source, the number of photons
per area also decreases when increasing the distance, leading
to a smaller photocurrent induced in the receiving LED. Hence,
the difference between on and off signals is less prominent, so
that it is more difficult to distinguish received bits, which results
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in a higher error probability. The height of the wooden blocks
(around 5 cm) is chosen so, that reflections on the ground do not
contribute to the overall signal strength and quality, and therefore
provides an accurate free-space optical communication scenario.

The measurement application running on the testbed devices
is remote-controlled from the control computer with the help of
Python scripts. This tool suite allows to start and stop the testbed
devices, enable and disable traffic generators and apply different
MAC and PHY layer settings, providing a convenient tool to script
and run experiment collections on the control computer. Mea-
surement logs are printed to stdout from where the data can be
piped into additional processing tools or saved to files.

The single link experiments include the following measure-
ments: One device is fixed to the rails and the other device is
moved to different communication ranges, starting from 10 cm
with a step width of 10 cm. The fixed device generates satura-
tion traffic, whereas the other device receives and acknowledges
incoming data frames. A data frame counts as successfully trans-
mitted if the corresponding ACK is also received. Since there is
only one transmitter and therefore only one device competing
for medium access, the MAC protocol could be disabled. How-

Wooden 
Board

Metallic 
Rail

Arduino Wooden 
BlockLED

up to 200 cm

Figure 3.19: Single link distance measurement testbed setup. The left
part depicts a simplified sketch, whereas the right part of
the figure shows a photograph taken from the actual testbed.
Two metallic rails are fixed on a wooden board. Two wooden
blocks, each equipped with an Arduino, are mounted on the
rails and can be moved back and forth to realize various
communication distances. The devices are both connected
to a control computer to collect the measurement data.
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ever, the configuration is kept to be able to compare results to
the following hidden station and network scenarios. At each dis-
tance, experiments for different MAC layer payload sizes (1, 10,
20, 50, 100, 150, and 200 B) are conducted. FEC is disabled and
the default MAC layer parameters (see Table 3.2) are used. The
experiments at all distances are repeated for an FEC threshold
set to 20, meaning that for a PHY layer payload of 20 B or more,
FEC will be applied. The experiments at each distance and for
each payload size are run for 120 s, providing enough data to as-
sess the PHY layer performance for the various communication
ranges. The measurements were conducted during normal day
lighting conditions. No other VLC system or light source using
duty cycling, and possibly interfering with the testbed devices,
were present.

Results

The results for the single link distance measurements are shown
in Figure 3.20. The y-axis denotes the measured average through-
put in b/s (bit per second). Only real payload (without layer
headers) is accounted for in the average throughput. The x-axis
denotes the communication distance (between the tips of the
LEDs) in cm. The lines of different colors (and markers) stand
for the different payload sizes used in the experiments. The error
bars show the standard deviation from the average throughput.

The theoretical PHY layer bit rate can be computed from the
duration of a COM and ILLU slot. They together sum up to a dura-
tion of 1 ms, meaning that every millisecond one bit of data can
be transfered, leading to bit rate of 1 kb/s. As expected, higher
throughput can be reached with larger payload sizes. The addi-
tional PHY and MAC header and the executed CSMA/CA protocol
(backoff process) makes smaller payload sizes less efficient due
to the large relative overhead per data frame. For a payload size
of 1 B, an average data throughput of 40 b/s is reached. When
increasing the payload size, the throughput also increases, reach-
ing 900 b/s for a maximum payload size of 200 B, which is close
to the theoretical maximum taking the PHY and MAC layer over-
head into account. The throughput stays stable up to a distance
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of 130 cm. Communication is still possible at a distance of 140 cm
for all packet sizes, but with reduced throughput due to lost data
frames. At 150 cm, the error possibility for larger payloads than
50 B is too high so that data exchange for these payload sizes is
almost impossible. For small payloads (50 B and smaller), some
data frames still reach their destination and are acknowledged
successfully, reaching a maximum throughput up to 150 b/s. At
a distance of 160 cm and onwards, no communication is possible
anymore for this measurement setup.

Earlier work [81] based on a previous protocol version reports
communication distances larger than 200 cm. In this protocol ver-
sion, data and synchronization intervals filled a complete 500 µs
slot. Longer intervals mean more time to collect incident photons,
hence discharging the sensing LED further and therefore increas-
ing the sensitivity. The current protocol is optimized for network-
ing, and thus data and synchronization intervals are significantly
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Figure 3.20: Single link measurement results for different communica-
tion distances with FEC disabled. Average data throughput
is shown over distance for various payload sizes. The error
bars show the standard deviation. Higher throughput can
be reached with larger payload sizes due to the overhead
introduced by PHY and MAC layer frame headers. Commu-
nication is stable up to 130 cm.
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shorter and all contained within a single 500 µs COM slot. Based
on the earlier results, increasing the duration of COM and ILLU

slots (and therefore also scaling the data and synchronization in-
tervals within a COM slot) increases sensitivity and therefore also
communication distance. Of course this improvement has also
a price: Fewer data intervals will be available within a certain
amount of time, decreasing the PHY layer bit rate.

The statistics logged through libvlc for each received frame also
contain information about the received signal strength. For each
received bit, an RSSI value can be computed. When the two data
intervals within a COM slot are compared, the difference of inci-
dent light during those two slot is calculated and used as RSSI

value. These bitwise RSSI values are average over all received bits
resulting in a single value for each received frame.

Figure 3.21 and Table 3.4 show the average RSSI value for all
frames received at the same distance. The y-axis denotes the RSSI

in ADC units. The ATmega328P’s integrated ADC has a 10-bit res-
olution. For a reference voltage of 5 V, an ADC unit amounts to
4.9 mV. As expected, the RSSI values follow the inverse square
law for increasing distances. From this follows that the chosen
RSSI metric is directly correlated to the received light intensity.
The x-axis denotes the distances between sending and receiving
LED. As indicated by Figure 3.21, the RSSI drops quickly when the
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Figure 3.21: RSSI values for data frames received at various distances. For
exact values for all distances see Table 3.4. RSSI is measured
in ADC units (roughly 5 mV per unit). The curve follows the
inverse square law when increasing the distance. From ap-
proximately 100 cm onwards, the RSSI values already fall be-
low 10. The error bars denote the standard deviation.
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distance rssi stdev

10 cm 633.6 20.8

20 cm 218.2 2.9

30 cm 110.7 2.0

40 cm 63.8 1.0

50 cm 46.2 2.4

60 cm 32.6 1.1

70 cm 24.7 1.0

80 cm 18.1 1.8

distance rssi stdev

90 cm 14.1 1.3

100 cm 11.2 1.1

110 cm 8.9 1.0

120 cm 8.7 1.3

130 cm 8.0 1.0

140 cm 5.6 0.9

150 cm 5.6 0.9

160 cm 4.8 0.7

Table 3.4: RSSI values with standard deviation for various communica-
tion distances. Stable communication is possible up to 130 cm
with a RSSI value of only 8 ADC units which corresponds to
approximately 40 mV.

distance is increased but communication stays stable (as seen in
Figure 3.20) up to a distance of 130 cm. This is remarkable since
the RSSI at 130 cm only amounts to 8 ADC units or approximately
40 mV. For small payload sizes, communication still works up
to 150 cm or an RSSI value of 5.6. In the end, the communication
fails because of flipped bits caused by the low signal strength.
Synchronization still works up to 200 cm, which is confirmed by
oscilloscope readings. These results show that although LEDs are
used as receivers and only a simple and low-cost microcontroller
drives the PHY layer, the system still works at low light conditions
and is accurate enough to enable stable communications.

To demonstrate the implemented FEC based on Reed-Solomon
codes, the single link distance measurements are repeated with
an FEC threshold of 20. Hence, for every packet with at least 20 B
PHY layer payload the additional 16 B of redundancy is computed
and appended at the end of the PHY payload. Additionally, the
FEC flag in the PHY header control field is set to true to inform the
receiving device about the enabled FEC.

The measurement results are shown in Figure 3.22. The y-axis
denotes data throughput in b/s, whereas the x-axis denotes the
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Figure 3.22: Single link measurement results for different communica-
tion distances with FEC enabled. Average data throughput
is shown over distance for various payload sizes. The error
bars show the standard deviation. In comparison to the re-
sults shown in Figure 3.20, less throughput is achieved for
all packet sizes due to the additional FEC overhead. Thanks
to the error correction capability, communication is now sta-
ble up to 150 cm.

various distances between sender and receiver. The line colors
and markers stand for the different payload sizes. The error bars
show the standard deviation. A comparison of the throughput
to the results depicted in Figure 3.20 clearly shows the effect of
the additional overhead caused by the added FEC redundancy.
The overall throughput is slightly reduced by approximately 50
to 100 b/s, whereas the decrease is more prominent for smaller
payload sizes. The throughput for payload sizes 10 B and 1 B is
not affected since their PHY layer payload size is below the FEC

threshold.
The positive effect caused by FEC starts to arise from a distance

of 140 cm. The throughput stays stable at this distance, whereas
at the same distance and without FEC, the average throughput al-
ready significantly dropped. Figure 3.23 depicts the number of
corrected errors for all the different payload sizes and for all
distances. Only successfully received data fames are accounted
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Figure 3.23: Number of corrected errors in a single link scenario for dif-
ferent distances and various payload sizes. No errors are de-
tected and corrected up to a distance of 130 cm. From 140 cm,
the number of corrected errors starts to rise. For 160 cm and
larger distances, data frames only get through occasionally
(comparing with 3.22), if the detected number of errors lays
within the correction capabilities. This plot only captures
successfully received (and corrected) data frames. Uncor-
rectable data frames are not logged by libvlc.

for. The corrected error number for 140 cm is small but existent,
reflecting what is shown in the throughput plots. Without FEC,
already one flipped bit can invalidate a complete data frame, re-
sulting in a throughput drop in case many frames are affected.
With active FEC these few errors can be corrected which stabilizes
the average throughput at this distance. Also at a distance of
150 cm, throughput is only slightly reduced and stable communi-
cation is still possible. The error plot shows that the correspond-
ing values are between 1 and 3 detected and corrected errors.
For 160 cm, reasonable data throughput is still possible, e.g., for
a 200 B payload, an average of 450 b/s is achievable. At 170 cm,
only a few packets reach their destination with error numbers
close to 8, which is the maximum number of correctable errors
for the used FEC scheme.

Using software-based FEC increases communication distances
for a single link LED-only scenario by 15 to 20 cm. As stated in
Table 3.4, RSSI values at theses critical distances are already low
(between 4 and 5 ADC units), so that distinguishing between dif-
ferent bit values is challenging. For larger distances, the decoded
bit stream will contain more random bits than actually received
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bits and therefore makes it impossible for the FEC to recover cor-
rect data frames. Although FEC could improve communication
distance, it will be more helpful in a noisy environment where
interference is present.

3.5.2 Hidden Station

With a second experiment series, libvlc’s capabilities in a hidden
station scenario is evaluated. As discussed in the MAC layer sec-
tion, libvlc implements an RTS/CTS protocol to decrease the packet
loss rate when hidden stations are present. The same hardware
and software configurations as for the single link scenario are
used. To demonstrate the hidden station effect as explained with
the help of Figure 3.16, at least three devices are needed. The
following two sections describe the testbed used to evaluate this
scenario and the measured results.

Testbed Setup

The testbed setup is shown in Figure 3.24 and analog to the ex-
planatory Figure 3.16. Three devices are fixed to a wooden board.
Device B is positioned between device A and C. Its transceiver
is made of two LEDs soldered together in parallel in a 90° angle.
The two LEDs in parallel roughly behave as a single bigger LED,
but with the capability to transmit to and receive from different
directions. The devices A and C are placed at different corners
of the wooden board so that their LEDs point towards B’s LEDs.
Device B is now able to transmit to device A and C and can also
receive messages from both, whereas A and C are not in each
others field of view. In other words, devices A and C are hidden
from each other. To completely block every possible reflection,
an additional view blocker is installed between A and C. Since
the outcome of this scenario depends on packet collisions, the
capture effect [49] needs to be suppressed. Due to the capture ef-
fect, one of two colliding data frames could still be received if the
signal strength for one of the transmitted signals is significantly
stronger and overlays the weaker signal. Therefore, the distance
from device B to A and C is kept the same, namely 10 cm each, to
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Figure 3.24: Hidden station scenario testbed. Device B is equipped with
two LEDs soldered together in parallel. These two LEDs point
in different directions with an angle of 90° between them.
The LEDs of devices A and C point towards B’s LEDs and are
positioned so that they are not in the field of view of each
other but at the same time are able to communicate with
device B. An additional obstacle blocks the view between
device A and C.

achieve similar signal strength at device B when receiving from
both other devices. Enforcing equal signal strength prevents the
capture effect and colliding packets will most likely not reach
their destination.

The measurements for the hidden station scenario are con-
ducted with the same software and devices used for evaluating
the single link scenario. Experiments are executed for the already
introduced payload sizes and the default MAC parameters are ap-
plied. Devices A and C generate saturation traffic and device B
receives and acknowledges incoming data frames. Due to the fact
that A and C are hidden from each other, they will not sense a
busy channel when the other device is transmitting, which will
lead to collisions. Since the outcome of this scenario is partly
based on chance (collision probability depends on random con-
tention window), the duration for each experiment (payload size)
is set to 10 min. The experiments for all payload sizes are once
conducted with RTS/CTS disabled to demonstrate the hidden sta-
tion effect. In a second run, all experiments are repeated with
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the RTS threshold set to 0, enabling the protocol extension for all
payload sizes.

Results

The results for the hidden station scenario are shown in Fig-
ure 3.25. There are two y-axes, one on the left and one on the
right. The left one, associated with the blue color and blue lines
denotes data throughput in b/s. The right y-axis, associated with
the red color and lines plotted in red, denotes the packet loss rate.
For both axis, the error bars show the standard deviation. The x-
axis stands for the different packet sizes used in this scenario.
Results for both experiments, with and without RTS/CTS protocol
extension, are displayed in this plot. Throughput and packet loss
rates are summed up for both devices, A and C.
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Figure 3.25: Measurement results for the hidden station scenario show-
ing data throughput and packet loss rate. The left y-axis de-
notes data throughput and shows the scale for the blue lines
and the right y-axis denotes the packet loss rate and is valid
for the red lines. The dashed lines show the results for dis-
abled RTS/CTS. Throughput drops down towards zero from
20 B payload size due to packet collisions. The solid lines
show results for RTS/CTS enabled. Thanks to the protocol
extension, collisions are prevented, resulting in an almost
nonexistent packet loss rate.
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The dashed lines show the results for disabled RTS/CTS. For
small payload sizes up to 20 B, approximately half of the pack-
ets are lost, resulting in a data throughput of 200 b/s. Although
both devices A and C are generating saturation traffic and are not
aware of each other (and the most likely occupied channel), data
frames (and their retransmissions) reach their destination and are
acknowledged. This can be explained with the short transmission
time of small packets. The short airtime and the increased con-
tention window for retransmitted packet lead to a lower collision
probability. When increasing the payload size further, collision
probability also increases and throughput drops down to zero,
and the packet loss rate goes up to 100 %. The data frames col-
lide due to uncontrolled medium access caused by the hidden
station problem.

The solid lines show the results for the same scenario with en-
abled RTS/CTS. As for the single link measurements, the through-
put increases when increasing payload size and therefore reduc-
ing the overhead effect. The packet loss rate is close to zero for
all payload sizes. The maximum achievable data throughput of
about 800 b/s is reached with a payload size of 200 B. When com-
paring with the results from the single link scenario, there is
a throughput difference from 100 to 150 b/s, depending on the
payload size caused by the protocol overhead for the RTS/CTS.
The throughput results for both experiments show that it makes
sense to enable RTS/CTS for all packet sizes if hidden stations are
to be expected, also for small payload sizes, since the achieved
throughput without RTS/CTS is not significantly higher.

These results show that also for a VLC network, hidden sta-
tions are a problem. Since communication is visible, it is less
difficult to identify hidden stations than it is for radio commu-
nication. For scenarios where hidden stations are present, the im-
plemented MAC protocol extension using RTS/CTS significantly re-
duces packet collision and increases data throughput. The results
also demonstrate that libvlc operates as intended and protocols
are implemented correctly.
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3.5.3 Network

The third evaluated scenario explores libvlc’s MAC layer capabil-
ities. As described earlier, libvlc implements a CSMA/CA similar
to the one described in the IEEE 802.11 standard. The MAC layer
protocol uses a listen-before-talk approach together with random
backoff. For this evaluation, a network with twelve VLC devices
is built. All devices are connected and have access to the same
channel (all devices are in the field of view of each other). Eleven
devices are simultaneous transmitting data to the twelfth device
and competing for the medium. The following two sections de-
scribe the custom built testbed and explain the measurement re-
sults.

Testbed Setup

The core part of the testbed is a wooden frame shown and de-
scribed in Figure 3.26. It encloses a round USB hub with more
than 20 USB sockets. The top of the frame is completed with a cir-
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Reflection

Round USB Hub
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Figure 3.26: Network scenario testbed. A wooden frame is built around
a round USB hub where all participating devices can be
plugged in. On top of the wooden frame is a circular plat-
form with holes fitting the profile (USB and power plug) of
an Arduino. Twelve devices can be sticked into the top plat-
form, forming a circle. The connected LEDs point towards
the center of the platform where the light is reflected in all
directions, reaching all other receivers.
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cular platform providing enough space for twelve devices. Holes
in the front panel with the shape of an Arduino connector side
(USB port and power plug) makes it possible to directly stick the
devices through the panel and connect them to the USB hub from
the other side. The exactly fitting notches hold the Arduinos in
place without any other fastening mechanism. The twelve devices
are arranged in a circle with connected LEDs pointing towards the
center of the top platform where the light is reflected in all direc-
tion. The reflection of one LED is strong enough to reach all other
devices so that they all share the same channel.

To evaluate the MAC layer behavior for different numbers of
competing devices, a series of eleven experiments is conducted.
For every new experiment, the number of simultaneously trans-
mitting devices is increased by one, from one active device to
eleven. For every experiment, random traffic for the known pay-
load sizes from 1 to 200 B is generated. Since successful medium
access and collisions depend on the random contention window,
the experiments need to run long enough to generate meaningful
results. Hence, the experiment duration is 10 min for each num-
ber of transmitting devices and for each payload size. All devices
transmit to the same device, which acknowledges incoming data
frames. A data frame only counts for the average throughput in
case the corresponding ACK is successfully received. For a MAC

layer evaluation, it does not matter whether a device transmits
to a random communication partner or to a predetermined fixed
one, since the competition for the medium is not influenced by
the destination of a data frame. To simplify the testbed setup and
configuration and the result evaluation, a fixed data sink is used.
The hardware and software is the same as used for the previous
scenarios, and the default MAC layer parameters (Table 3.2) are
applied.

Results

To verify the MAC protocol before running extensive measure-
ments, a test setup with four transmitting devices is used (this
time transmitting to a random other device). Additional instru-
mentation inside libvlc makes the MAC protocol visible on an

82



3.5 system evaluation

oscilloscope (in logic analyzer mode). A GPIO pin (debug pin)
is configured to output a low logic level while the device is in
idle mode, a high logic level while it is transmitting, and quickly
switching between high and low while a backoff process is active.
The debug pin for each device is hooked up to the oscilloscope’s
logic probes. While the experiment is running the actual protocol
can be inspected on the oscilloscope when hitting the stop button
to pause the acquisition of new signals. The result is shown as an
augmented screenshot shown in Figure 3.27. The output signals
for the individual devices are labeled on the left side. The dark
gray ares stands for the backoff process during which the signal
is switched on and off very quickly. Label 1 shows that device
D0, D2, and D3 have a queued data frame and start the backoff
process. Device D2 wins the competition for the medium (shorter
contention window, label 2) and finishes the transmission at la-
bel 3. Device D1 and D2 immediately start with another backoff
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Figure 3.27: MAC protocol visualized on an oscilloscope. Data and ACK

frames together with the backoff process are shown. 1) On-
going backoff process. 2) Device D2 wins medium access
race and starts transmitting. 3) End of a data frame sent by
device D2. 4) As soon as the medium is clear again, device
D0 and D1 start counting down their DIFS. 5) The ACK for
the previously sent data frame has priority and is immedi-
ately sent. 6) After the ACK has been sent, the channel is free
and D0, D1, D3 compete for the medium by starting another
backoff process. 7) Device D1 wins the race for the medium
and starts transmitting the next data frame.
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process after the channel is released (label 4), but are interrupted
by an ACK from D3 (at label 5), which is acknowledging the data
frame sent by D2. This shows a correct prioritizing of the ACK in
respect to a data frame. Label 6 shows that as soon as the ACK is
transmitted and the channel is free again, the backoff processes
from D0, D1 and D3 (from label 1) are resumed. This time, device
D1 wins the race for the medium an transmits its data frame (la-
bel 7). More examples of a working listen-before-talk and backoff
process can be identified in the screenshot, confirming a working
MAC protocol.

The experiment series for the network scenario is evaluated
for data throughput and packet delivery delay. Figure 3.28 il-
lustrates the collected and processed measurements for one to
eleven devices competing for medium access. The y-axis denotes
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Figure 3.28: Full network scenario measurement results. Average data
throughput is plotted versus number of transmitting sta-
tions. One to eleven devices are simultaneously transmitting
and competing for channel access. The MAC protocol, which
is part of libvlc, limits packet collisions to a minimum so that,
although eleven devices try to access the medium, only few
collisions happen and an average throughput of 750 b/s for
the maximum payload size of 200 B is achievable. The error
bars show the standard deviation.
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data throughput in b/s and the x-axis stands for the one to eleven
transmitting devices. The variously colored lines with different
markers show the results for the different payload sizes. The er-
ror bars show the standard deviation. The results for one trans-
mitting device confirms the results from the single link measure-
ments. Increasing the number of stations for payload sizes of 20 B
and shorter does not significantly influence the average through-
put. Since the packets are short, the channel time loss caused by a
collision only marginally influences the average throughput. Al-
though all devices can sense the same channel, data frames can
still collide due to contention windows with the same size. The
more participating transmitting station, the higher is the collision
probability. This probability can be influenced with the CWmin
and CWmax parameters. They have to be chosen in a way, so
that for a given network, the devices do not have to wait for
too long before transmitting, and that the collision probability is
low enough to guarantee stable data exchange. The default pa-
rameters are optimized for smaller networks of around a dozen
devices, which is confirmed by the measurements. Although colli-
sion probability is higher for longer packets, the average through-
put only drops approximately 100 to 150 b/s for larger payload
sizes. For eleven transmitting devices competing for the medium,
an average throughput of 750 b/s is achievable for the maximum
payload size of 200 B.

Figure 3.29 renders the probabilities of packet delivery delays
for three different packet sizes (1 B, 50 B, and 200 B) for one and
eleven sending devices. The results are plotted as Cumulative
Distribution Functions (CDFs) to better visualize the delays caused
by contention. The delay is defined as time passed between the
transmission of a packet and the reception of the corresponding
ACK. The y-axis denotes the probability that the delay is longer
than the corresponding x-axis value. The x-axis therefore denotes
time in ms. The three solid lines show results for only one trans-
mitting station (no competition for the medium). The time indi-
cated by the top part of the lines show the minimal possible delay
given by the length of the packet and the time it takes to transmit
it. The lines go almost straight from top to bottom, because there
is no contention and packets can only be more delayed through

85



led-to-led networks

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

x [ms]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(D

e
la

y
>

x)
1 Transmitter
11 Transmitter

200 Byte1 Byte 50 Byte

Figure 3.29: Data frame delivery delay probabilities for a full network
scenario. The delay includes a full round trip including the
reception of a corresponding ACK frame. The graph shows
plotted CDFs of delays for payload sizes of 1 B, 50 B, and
200 B, and for one or eleven transmitting devices. The curves
for eleven transmitters show the typical step-like shape of a
delay CDF for a contention-based protocol.

retransmissions caused by bit errors, which did not occur during
the experiments (close distance and therefore high RSSI value).
The steps in the dashed lines (eleven transmitting devices) indi-
cate a correctly working contention based protocol. The width of
the steps is again the packet transmission duration. Every step
means that the competition for the medium access was lost and
the transmitter must wait for another device to finish its trans-
mission before trying again to transmit its own data frame.

The two plots showing measurement results for data through-
put and data frame delivery delay and the oscilloscope visualiza-
tion illustrate, that the implemented MAC control protocol works
as intended. Additionally, they also show that the same MAC con-
cepts used in radio-based networks can also be applied in the
domain of VLC.
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3.6 discussion and conclusion

The system discussed in this chapter is software-based and builds
upon few and basic hardware parts. An off-the-shelf 8-bit micro-
controller is paired with an unmodified LED to create a commu-
nication system capable of connecting multiple devices to a net-
work. All communication logic is encapsulated into a firmware
software library, called libvlc, running on the microcontroller. It
provides a flexible prototyping environment to build applications
for VLC networks. An LED is employed as a communication front
end, used to send and receive data modulated with light. The
LED is directly connected to the microcontroller’s GPIO pins with-
out the need of any other hardware parts of electronic circuits.
The software library libvlc implements the complete PHY layer re-
sponsible for data modulation, reception, and synchronization,
designed under the premise that the LEDs are always perceived
(by human observers) as switched on at constant brightness. To-
gether with the MAC layer implemented on top of the PHY layer,
full network scenarios are supported, while still using the lights
for illumination purposes.

The measurements results presented in the evaluation section
confirm a working and stable system for LED-to-LED VLC network-
ing. The achievable throughput is mainly limited by the process-
ing power of the 8-bit microcontroller used and is in the order of
900 b/s at a distance of approximately 1.5 m. The communication
range can be improved by prolonging communication slots at the
cost of data throughput. The proposed MAC layer successfully
handles medium access for networks of a dozen devices and a
protocol extension using RTS/CTS control frames significantly im-
proves and stabilizes communication in case of the presence of
hidden stations. VLC based on LEDs as transceivers is an approach
that enables low bit rate wireless networking based on consumer
electronic equipment that is often already present in many en-
vironments. The simplicity of this approach lies in the reuse of
existing components. Obscuring the communication within the
visible light and hiding the communication in the illumination
makes it possible to also reuse existing lighting system and to
augment them with networking capabilities.
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The presented software system, libvlc, provides a solid baseline
for software-defined, low-complex and flexible VLC communica-
tion and networking. It can be adapted to any kind of LED-based
lighting system and its use cases, extending it with communi-
cation and networking capabilities. Given the fact that lighting
is omnipresent within buildings, in transportation and on the
streets, VLC could be a technology providing the necessary com-
munication fabric for the IoT. This chapter describes the base func-
tionality of libvlc. The following chapters explain and evaluate
library extensions and adaptations.
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The IoT envisions that many devices, such as appliances, wear-
ables, sensors, utilities, and toys, can connect to a network to
communicate with data centers, controllers, and other devices.
Many of these devices have modest data rate requirements, but
all-direction, uplink, downlink, and mesh connections are often a
central requirement to adapt and control the device behavior, and
to provide network redundancy and communication reliability.
However, a communication infrastructure that aims to connect
many devices should be low-cost, non-intrusive, and ubiquitous.

VLC is an attractive choice and has many desirable proper-
ties. LEDs allow the construction of low-cost communication sys-
tems [81] as shown in Chapter 3. VLC does not interfere with
the use of the scarce radio spectrum, and VLC cannot be easily
overheard in another room – to observe a message exchange that
is communicated via a light channel, the eavesdropping party
needs (direct or indirect) line of sight access. This chapter intro-
duces EnLighting, a system of distributed and fully connected LED

light bulbs that communicate through free space optics to enable
indoor communication and localization services.

LED light bulbs combine multiple LEDs and are significantly
brighter than single LEDs. Lenses or diffuse bulbs mounted on
top of the LEDs transform them into an omni-directional light
source. Such light bulbs are low-cost [79, 84] and have been pro-
posed for many novel indoor applications. But some of the de-
sirable properties for illumination, such as dispersion of light in
all directions and the usage of white LEDs, make them unsuitable
to directly receive signals from other light sources as described
in Chapter 3. To enable the sensing of incoming signals from
other light-emitting devices – light bulbs, single LEDs, or smart-
phones [12], LED light bulbs can be enhanced with simple light
receiving electronics based on photodiodes. Such LED light bulbs
are powerful enough to establish a communication link over sev-
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eral meters, but are still based on the same software-defined PHY

and MAC layer [82] as introduced with libvlc. These light bulbs
can communicate with other light bulbs as well as with low-cost
LED-only systems that can be integrated in many devices.

LED light bulbs mounted on the ceiling (or in free-standing
floor lamps) easily cover a room, still serving as illumination
devices, and at the same time create a room area network that
allows data exchange between light-emitting devices. Some light
bulbs may even act as gateway to the Internet to provide connec-
tivity beyond a single room. Each light bulb contains a simple
SoC, running an embedded version of Linux. The light bulbs pro-
vide the physical communication channel between the devices in
the room.

This chapter discusses the design, implementation and evalua-
tion of a room area network based on Linux-enabled light bulbs
and shows that simple devices distributed in a room can pro-
vide an attractive solution for today’s communication challenges
without relaying on the already crowded radio spectrum. The
chapter is structured as follows. Section 4.1 discusses the design
of a Linux- and VLC-enabled light bulb together with the neces-
sary software changes to libvlc and Linux. Section 4.2 describes a
testbed architecture with distributed and networked light bulbs
and software tools to enable the operation of large-scale light
bulb network deployments. Section 4.3.1 presents a communica-
tion link and protocol evaluation for different network topologies:
Traffic for the Internet Control Message Protocol (ICMP) UDP and
Transmission Control Protocol (TCP) are evaluated and analyzed.
Section 4.3.2 discusses and evaluates an indoor localization ser-
vice built on top of the proposed communication system. Sec-
tion 4.4 summarizes and concludes the chapter.

4.1 light bulb design

This section summarizes the VLC light bulb hardware and soft-
ware protocol design. Commercial off-the-shelf LED light bulbs
are used as a starting point and are then modified to host a SoC

running Linux, a microcontroller running libvlc with an appli-
cation on top, and an additional power supply to support the
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added electronics. Since the light bulbs are usually used for il-
lumination, they use white LEDs with a yellow-orange filter to
make the light look warmer. These white LEDs together with the
diffuse bulb on top makes it impossible to directly use the LEDs

as a transceiver. Therefore, photodiodes are added to the system.
Each light bulb system is built from parts of the original light
bulb and additional custom built parts, circuitry, and casing. The
main motivation for using consumer light bulbs as starting point
is that they are readily available at low cost and can be used in
any lamp with standard sockets. This leads to an easy-to-setup
and flexible testbed with quick replication.

4.1.1 System Architecture

The VLC firmware and protocols described in Chapter 3 imple-
ment the PHY and MAC layers and enable low-level networking be-
tween multiple devices. As described, libvlc already supports the
use of LEDs as transceivers. The library is extended, as described
later, with the capabilities to employ photodiodes together with
the available light bulb LEDs as a communication channel. To
make use of higher-level network protocols, the microcontroller
running libvlc (VLC controller) is extended with a SoC running a
Linux distribution for embedded wireless systems called Open-
Wrt1.

Figure 4.1 shows the overall system architecture. A SoC (label 1)
from Qualcomm Atheros with the identification AR9331

2 is used
to handle upper layer protocols such as IP and TCP. It also inte-
grates a Wi-Fi module on the same chip and runs a Linux distri-
bution for embedded systems. The Wi-Fi interface provides a con-
trol channel for testbed operations and firmware updates but is
not meant to interconnect the light bulbs via a radio channel. The
SoC connects to the VLC controller via the USART interface (label
2). The VLC controller (label 3), a microcontroller (ATmega328P)
running a serial communication application on top of libvlc to ac-
cept commands via the USART interface. It is abstracted (from the

1. https://openwrt.org/
2. https://wikidevi.com/wiki/Atheros_AR9331
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Figure 4.1: Light bulb system architecture: 1) Wi-Fi-enabled SoC running
OpenWrt, a Linux distribution for embedded devices. 2) A
USART interface connects the Linux system with the VLC con-
troller. 3) VLC controller, consisting of a microcontroller (AT-
mega328P) running libvlc. 4) Photodiodes connected to a tran-
simpedance amplifier provide light dependent voltage val-
ues, sampled by the VLC controller’s ADC. 5) Board equipped
with several LEDs used for illumination and communication,
controlled by the VLC controller via a GPIO pin.

Linux side) as a regular Ethernet interface, implemented as a ker-
nel driver module. Therefore most applications using TCP or UDP

sockets will work out of the box and can make use of the VLC link.
Photodiodes together with a transimpedance amplifier [25] build
the sensing unit (label 4), converting the generated photocurrent
into a light intensity dependent voltage value. The sensors are
sampled by the VLC controller using the ADC. The LED plate (label
5) contains several LEDs connected in series, acting as light source
for illumination and communication. The light is controlled via a
GPIO pin from the VLC controller.

Since the VLC firmware is real-time critical, it is kept on a ded-
icated device, in the same way as Wi-Fi modules or any other
networking device. In a different approach, the protocols are di-
rectly implemented on top of Linux using the available GPIOs as
already demonstrated [99]. However, such a system works only
as long as the operating system workload is kept low; as soon
as the Linux host is used for other tasks (which motivated the
addition of an operating system to VLC), timings might deviate
and consequently influence the behavior of the VLC layers.
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4.1.2 System Components

The system is built from parts of a light bulb3 manufactured and
sold by IKEA and additional custom-built parts, circuitry, and
casing. This particular light bulb has been chosen because it has
been widely available and the electronics are easily accessible
and extendable. In the following, the most important parts are
discussed: LED plate, power supply, sensors and amplification cir-
cuitry, VLC controller, SoC board, and the additional casing.

LED Plate

The LED plate included in the original light bulb is reused to-
gether with the diffuse bulb that is covering the LEDs. The plate
consists of a single layer PCB equipped with 14 LEDs connected
in series. It has a round shape with screw holes on the side
and power connectors in the center. The LEDs, based on Surface-
Mount Technology (SMT), are additionally covered with a yellow-
orange filter to produce warm white light.

The diffuse bulb distributes the light in all directions and there-
fore makes it possible to send data to devices all around and not
only in a single direction. Since the light intensity is also dis-
tributed, receiving a clean signal at a distance of several meters
is challenging (see light sensor description). Furthermore, a heat
sink is attached to the LED plate, since the LEDs produce not neg-
ligible thermal discharge when powered on. The original light
bulb uses the socket as a heat sink, but since the LED plate is not
connected to the socket in the new light bulb design, it needs to
be cooled differently.

Power Supplies

The switching power supply built into the light bulb socket trans-
forms the high Alternating Current (AC) voltage from the power
grid to DC voltage of around 40 V. It is dimensioned so that it
provides just enough current for the 14 LEDs in series. To provide

3. LED1221G7, E27, 6.3 W, 400 lm
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enough power for the additional electronics, VLC controller, sen-
sors, and Linux Board, a second power supply is added to the
light bulb. The custom-built device is shown in Figure 4.2, part
1. It is built from an AC/DC converter which is transforming the
grid voltage to 9 V DC. A PCB is directly attached to it, hosting a
voltage regulator (1c) which is providing a low-ripple 3.3 V for
the additional electronics. The low-ripple source is specifically
important for the analog amplification circuitry (for further ex-
planations see sensor description). There are connectors to attach
power from the grid (1a) and for regulated 3.3 V power output
(1b).

When testing the complete light bulb system, problems with
the included light bulb power supply emerged. Due to its cost-
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Figure 4.2: Light bulb electronic components. Part 1 shows the power
supply for the additional electronics: 1a) Power grid connec-
tors. 1b) Regulated 3.3 V output. 1c) Regulator for low-ripple
voltage. Part 2 displays the SoC breakout board: 2d) Con-
nectors interfacing with the VLC controller. 2e) Power con-
nector for the electronics and light bulb power supply. 2f)
Metal–Oxide–Semiconductor Field-Effect Transistor (MOSFET)
used to modulated the LED plate from the VLC controller. 2g)
SoC board with PCB antenna. 2h) LED plate connector. Part 3

shows the VLC controller and sensor board: 3j) Phototdiode
connectors (four in total). 3k) Connector to interface with the
SoC host board. 3l) Transimpedance amplifier (four in total).
3m) Pin headers to connect to the microcontroller running
libvlc.
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effective design and open built (no casing and shielding) radi-
ation from the switching circuitry affected the photodiode am-
plifiers. As additional shielding did not serve the purpose, the
power supply was exchanged with a shielded version with simi-
lar form factor (still fits into the light bulb socket) and properties.
This finally solved the radiation problems and lead to clean sen-
sor reading. When designing such a light bulb from scratch, the
power supply could be designed so that all necessary voltages
and current constraints could be fulfilled by a single power sup-
ply.

Light Sensors and Amplification Circuit

Every light bulb is equipped with four photodiodes from Osram4,
pointing in four orthogonal directions to sense incoming light
from all around. The photodiode is sensitive to light for wave-
length from 400 to 1100 nm, covering the complete visible light
spectrum. The sensor has a sensitive area of 1 mm2 and a half
angle of 75°, marking the angle at which the sensitivity reaches
50 % of the peak sensitivity. This wide open field of view helps
providing an omnidirectional “light antenna” with only four sen-
sors.

The incoming signal is strongly amplified by a transimpedance
amplifier to increase the maximum communication distance. The
amplifier can be built with only a few simple components (resis-
tors and capacitors) and an operational amplifier. It converts the
photocurrent generated by the photodiode to a voltage that can
be sampled by an ADC. Before amplification, the signal picked
up from the photodiode is DC-filtered. Every photodiode is con-
nected to its own amplifier to keep the paths on the board as
short as possible and thus the signal less prone to noise and in-
terference. The signals from the four amplifiers are fed into four
different GPIO pins that are connected to the ADC of the VLC con-
troller. There is only one ADC available on the microcontroller and
it can only convert one value at the time. The necessary changes
within libvlc to multiplex light sensing is described in the follow-
ing section about the VLC controller. Figure 4.2, part 3 shows the

4. https://octopart.com/sfh203p-osram+opto-56009445

95

https://octopart.com/sfh203p-osram+opto-56009445


light bulb networks

PCB hosting the light sensors (3j), transimpedance amplifiers (3l)
and VLC controller (3m). It connects to the SoC board via a 12-wire
interface (3k).

System-on-a-Chip Board

Each light bulb includes a SoC board from DPTechnics.5 The mod-
ule consists of a Quaclcomm Atheros (AR9331) SoC, a 400 MHz
Microprocessor without Interlocked Pipeline Stages (MIPS) pro-
cessor with built-in Wi-Fi including an on-board antenna, 64 MB
of Random-Access Memory (RAM) and 16 MB of flash memory
for persistent storage to host the operating system. The available
USART interface is used to connect to the VLC controller. In ad-
dition, the module provides 20 GPIO pins directly operable from
Linux. By default, the SoC runs OpenWrt, an embedded Linux dis-
tribution specifically adapted for routers and other networking
devices. Since it is a complete Linux distribution it ships with the
entire Linux network stack, providing a complete network- and
transport-layer to be used for VLC. A Linux kernel driver module,
further explained in Section 4.1.3, interfaces the VLC controller
with the Linux network stack.

The Wi-Fi connectivity provided by the SoC is useful for a
testbed environment. The wireless radio channel can be used as
a control channel. The devices can be deployed and later con-
figured and reprogrammed (SoC operating system and VLC con-
troller firmware) remotely. Further, measurement series can be
remotely controlled and data can be collected without disassem-
bling the testbed again. It is important to know that the objective
was not to build light bulbs that communicate by using a Wi-Fi
channel. The light bulbs are meant to interact with each other
using VLC only. Some of the provided GPIO pins are connected to
the VLC controller to enable firmware upgrades using ICSP emu-
lation via a software tool called avrdude6. It also supports serial
programming via the bootloader.

Figure 4.2, part 2 shows the board hosting the SoC module (2g)
from both sides. It provides several connectors to hook up the

5. https://www.dptechnics.com, DPT-MOD-001

6. http://www.nongnu.org/avrdude/
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VLC controller and sensor board (2d) and the two power supplies
(2e). One powers all the electronics (part 1) and the other is re-
sponsible to drive the LED plate. The light output is controlled
by the VLC controller using a Metal–Oxide–Semiconductor Field-
Effect Transistor (MOSFET) (2f) placed between light bulb power
supply and LED plate connector (2h). Additional electronics serve
as a resetting infrastructure for the VLC controller and to convert
logic-level voltages (the SoC module only supports a maximum
of 2.5 V on the input pins).

Visible Light Communication Controller

The VLC PHY and MAC layers [81, 82], as described in Chapter 3,
are software-based and encapsulated into libvlc and hosted on
an 8-bit microcontroller. Instead of the Arduino Uno, a differ-
ent board called Microduino Core7, with smaller form factor and
without USB-to-serial converter, but equipped with an identical
microcontroller (ATmega328P) is used. It directly plugs into the
sensor and amplification PCB, connecting to the amplified sensors
and the Linux board.

The newly added hardware (sensors, LEDs driven via MOSFET)
also need to be represented and their behavior implemented into
libvlc. Consequently, the communication channel is further ab-
stracted into two subclasses, LEDChannel and SensorChannel. The
subclass responsible to handle the LED transceiver case, called
LEDChannel, implements light modulation and sensing as dis-
cussed earlier. The SensorChannel provides the abstraction for
the case where a sensor and an LED are combined. It implements
light modulation and sensing using a driver pin (connected to
MOSFET’s gate) and a sensor pin (connected to the photodiode am-
plifier’s output). An application using libvlc can decide whether
to use an LEDChannel or a SensorChannel, hence the API needs to
be extended as shown in Listing 4.1. It is not supported to mix
the channel types.

Light modulation and sensing need to be implemented differ-
ently for a SensorChannel. Controlling the light source is now
handled with a single pin connected to the MOSFET on the SoC

7. https://www.microduino.cc/product/core
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Listing 4.1: Adapted libvlc channel API for EnLighting. The communica-
tion channel class is further abstracted and subclassed to ei-
ther hold an LEDChannel or a SensorChannel. Corresponding
infrastructure to create specialized channels is also added to
the API.

/* adds an LED (only) communication channel */

void *vlc_add_LEDChannel(uint8_t id, const pin_t *cat, const pin_t *
ano, LEDChannel *ch);

/* adds an LED and sensor communication channel */

void *vlc_add_SensorChannel(uint8_t id, const pin_t *sensor, const

pin_t *driver, SensorChannel *ch);

board. The MOSFET’s source is connected to the common ground
of the system whereas the drain is hooked up to the LED plate’s
minus pole. Setting the gate pin to high connects the ground with
the LED plate’s minus pole, closing the circuit and therefore en-
abling the light. Doing the opposite, providing a low signal, dis-
connects the ground from the LEDs, consequently disabling the
light. Instead of heaving a cathode and anode as before which
need to be set to the right mode and output level, a single pin,
called driver pin, can be used to control the light, independent
from the sensing.

The amplifier circuit connected to the photodiode generates a
light intensity dependent voltage signal (previously done by the
charge and discharge phase of the LED used as receiver). This sig-
nal can be sampled directly with the microcontroller’s ADC. Fig-
ure 4.3 shows the modified light sensing procedure implemented
for a SensorChannel. The interval distribution and duration is
kept the same to ensure compatibility with the LEDChannel. The
light is measured once at the beginning and once at the end of the
COM slot. It is obvious that these measured values can be used as
input for the already discussed synchronization algorithm. They
even provide a more accurate starting position since they repre-
sent light values captured directly at the slot boundaries. Dur-
ing the two data intervals, the sensor is sampled multiple times
and the collected measurements are averaged to provide a single
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Figure 4.3: COM slot sensor light measurement procedure. The interval
structure is kept the same for compatibility. The light is mea-
sured at the beginning and at the end of the COM slot to get
input values for the synchronization algorithm. The sensor
is sampled multiple times during the two data intervals and
subsequently averaged to have a single value per data inter-
val.

value for each, D1 and D2. These two values can be used by the bit
detection procedure as before. To summarize, the only changes
to libvlc are the introduction of the SensorChannel and how and
when light measurements are collected. The result (the collected
values) have the same format in the end and the specific channel
type used is completely transparent for the rest of libvlc.

The API provided by libvlc already supports the creation of mul-
tiple channels, which is now required for the light bulb since it
employs four individual sensors pointing in different directions.
The driver pin can be shared between the four channels to op-
erate the single available light source. The microcontroller’s ADC

can only convert one voltage value at the time and is also not fast
enough to provide a series of values during a short time period.
To sense light from the four directions (almost) at the same time,
the ADC is multiplexed in software within libvlc’s PHY layer. Fig-
ure 4.4 illustrates the used technique. A system with four avail-
able channels is shown. The curves show the signal received by
the corresponding photodiode channel. The COM and ILLU slots
are shown as reference. While in idle mode, libvlc’s PHY layer cy-
cles through all available channels, switching to the next channel
at the end of a COM slot. The active channel is highlighted with a
light blue color. If the channel is switched, also the corresponding
sensor pin is switched and the ADC is configured to take readings
of this specific pin. When detecting a signal, meaning that either
during interval D1 or D2 light is detected, the PHY layer does not
switch to the next channel and stays at the same channel for the
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Figure 4.4: Light bulb channel multiplexing. Four channels and the sig-
nal from the corresponding photodiodes are shown. When
in idle mode, libvlc’s PHY layer cycles through all available
channels, always switching to the next at the end of a COM

slot. The active channel is marked with a blue overlay. If a
busy channel is detected (light during D1 or D2), the channel
is not switched at the end of the slot. Using a preamble of
zeros, with at least the length of the number of participating
channels, prevents channel switching at the beginning of a
frame and guarantees that the PHY layer tries to receive from
a channel with enough signal strength.

next ILLU and COM slot pair. A valid signal is detected when the
difference of the light measured during D1 and D2 is above a
configurable threshold. This makes the system stay on the same
channel when receiving data, but does not guarantee that a sig-
nal is captured from the beginning, possibly missing the start of
an SFD. To prevent this, a preamble precedes the actual SFD and
PHY layer frame. It consists of multiple bits 0 (bit 1 could also be
used, since the channel just needs to stay busy), which tune the
system into a channel with a valid signal before the SFD is trans-
mitted. The preamble has to be at least as long as the number of
available channels. This does not guarantee that the channel with
the highest RSSI values is chosen, but provides a basic solution to
automatically stay at a channel where the signal is strong enough
for reception. After receiving the SFD, the PHY layer switches to
the RX state, preventing further channel switches. The channel cy-
cling is resumed after the reception is completed and the system
has switched back to the idle state. There are many ways to op-
timize the channel selection when receiving, e.g., using a history
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with channel numbers, RSSI values, and frame source addresses,
but the version discussed here provides a simple and clean solu-
tion that works well enough.

Light Bulb Casing

The off-the-shelf light bulbs are tightly packed. To create addi-
tional space for the modifications, casing extensions are designed
and 3D-printed to provide room for the newly added parts. Fig-
ure 4.5 shows the different components and the fully assembled
light bulb. The bottom casing shown in part 1 hosts the power
supply (1c) installed at the lower part of the case and held in
place by a crossbar. The sensor board with the attached VLC con-
troller (1a) sits on top of this crossbar, tightly fitting into the cas-
ing. The holes (1b) on the side provide room for the photodiodes.
On top, there is space to exactly fit the SoC board, which is held
in place without screws or glue. The bottom casing is directly
screwed to the light bulb socket (part 3) using the holes previ-
ously occupied by the screws securing the LED plate. On top sits
an additional casing (shown in part 2), accommodating the LED

plate (2d) and the heat sink (2e), which is directly attached to the
plate. Additional slits (2f) provide improved air flow. The diffuse
bulb is screwed on top of the LED plate and held in place by a 3D-
printed thread. The top case is attached to the bottom part with
screws and incorporated nuts, using the designated holes (visi-
ble in part 1). Part 3 shows the original light bulb socket with the
power supply for the LED plate. It is replaced with a more sophis-
ticated substitute to reduce interference with the transimpedance
amplifier.

The fully assembled light bulb is displayed in part 4. The new
casing contains all the necessary parts for full operation. It seems
clunky but works as a prototype. When designing a VLC-enabled
light bulb from scratch, the electronics could be designed to fit
into a smaller more elegant enclosure. Indeed, it is also possi-
ble to build a VLC-capable illumination device with another form
factor, but the light bulb has two important advantages: First, it
is compact and comes in one single part. Second, the only addi-
tional part to operate a light bulb is a lamp. Lamps come in many
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Figure 4.5: 3D-printed light bulb casings. Part 1 shows the bottom casing
hosting the additional power supply (1c), the light sensors
(1b), the VLC controller board (1a), and the SoC board. Part
2 depicts the top casing with slits (2f) for additional air flow,
housing the LED heat sink (2e) and the LED plate (2d). Part
3: original light bulb socket with integrated (replaced) power
supply for the LED plate. Part 4 presents the completely as-
sembled light bulb.

flavors and sizes and can be arranged effortless for arbitrary sce-
narios within a room or building.

4.1.3 Linux Integration

The transparent integration of the VLC communication channel,
based on libvlc, into the Linux networking stack demands the
implementation of a data link layer, interfacing with both sides,
Linux and the VLC controller. As illustrated with the left part of
Figure 4.6, the data link layer consists of three core functional
blocks: the VLC network driver, libvlc’s MAC protocol, and USART
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communication interface, which interconnects the two aforemen-
tioned blocks through a serial link. This section describes the de-
sign and implementation of the Linux-based network driver for
the VLC controller.

The VLC Linux network driver is implemented as a loadable
kernel module and has two main functions. It handles commu-
nication over the USART interface with the VLC controller, and it
abstracts the VLC device within Linux as a networking device, in-
terfacing with the Linux network stack. The driver implements
a full-fledged serial stack and communication protocol. On the
other side, the VLC controller runs an application on top of libvlc
to handle the serial communication protocol, exposing libvlc’s API.
The serial communication protocols implements commands to,
e.g., transfer a packet between the VLC controller and the driver,
or to initialize and startup libvlc. The serial communication inter-
face is capable of reaching data rates higher than 100 kb/s which
are significantly higher than the rates achievable with VLC and
therefore should not lead to bottlenecks.

The other part oft the VLC network driver deals with trans-
parently integrating the VLC communication link (based on lib-
vlc’s PHY and MAC layer) into the Linux network protocol suite.
It abstracts the VLC controller as an Ethernet-class network inter-
face within Linux. Having this abstraction in place enables the
transparent usage of the VLC link by any IP-based Linux pro-
gram or tool. Programs such as ping or even ssh can be used
without knowing the underlying MAC or PHY layer. Incorporating
VLC into new programs can be done by using standard sockets8

as communication endpoints. Most programming languages di-
rectly support UDP and TCP based on sockets, facilitating rapid
development of new VLC-based applications.

The network interface registers itself within specific kernel data
structures [13], to be invoked when packets are exchanged with
the outside world. It responds to asynchronous requests received
from the outside (incoming packets from the VLC controller), as
well as to requests triggered by the kernel for outgoing pack-
ets to the MAC and PHY layers. The right part of Figure 4.6 fur-

8. https://en.wikipedia.org/wiki/Network_socket
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ther explains the driver’s functionality and implementation. The
interface to the Linux network stack consists of two functional
blocks, which are inherent in every Linux-based network driver:
the net_device and the sk_buff data structures. The net_device

represents the driver module within Linux. It is used to initial-
ize and to disable the network device. Additionally, a number
of device parameters can be set and initialized through this data
structure, e.g., the hardware address and the name of the network
interface as it is exposed to user space.

Network packets are transferred between the driver and the
Linux network stack packed into the sk_buff data structure. A
callback function captures all incoming packets from the Linux
network stack. The content of every arriving sk_buff is sent to
the VLC controller using the implemented USART communication
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VLC Network Driver

Linux Network Stack

MAC Layer

PHY Layer

Visible Light

USART

MAC Layer

USART COM Protocol

USART COM Protocol

USART

VLC Network Driver

net_device sk_buff

Linux Network Stack

Figure 4.6: VLC controller integration with the Linux network stack. The
left part shows the PHY and data link layer (containing libvlc’s
MAC layer and the Linux driver) interfacing with the Linux
network stack on the top. The right part presents a zoomed
in look of the data link layer. The application implemented
on top of libvlc provides a USART communication protocol
connecting to the counterpart on the driver’s side. The driver
communicates with the Linux network stack via two data
structures: net_device is used to control the network device
and network packets are transferred wrapped into sk_buff

structures.
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protocol. On the controller’s side it is dispatched to the MAC layer
using the API provided by libvlc. When receiving data on a VLC

link, the payload is forwarded over the USART link to the Linux
driver, where it is wrapped into an sk_buff structure and com-
mitted to the network stack.

The Linux driver and the USART communication protocol in-
terconnects libvlc’s lower communication layers with the higher
layers of the Linux network, providing direct access to a well-
tested networking infrastructure with all its tools and programs.
Additionally, it distributes the computational load, keeping the
VLC controller simple and low-cost.

4.2 enlighting testbed

After designing and building a communication system, it is usu-
ally tested and evaluated. The testing and measuring process can
be simplified by building custom testbed software tools. The tools
can be employed to configure the system, run tests and measure-
ments, graphically visualize results, and to apply software up-
dates. Certain configuration steps can be automatically repeated
or applied to multiple devices all at once, saving precious time.
Each light bulb employs a SoC with Wi-Fi connectivity, provid-
ing wireless access to each device. Well-designed testbed soft-
ware reduces time spent for tedious system configurations and
helps identifying and solving problems. This section describes
the testbed infrastructure and software built for EnLighting which
is used for software and firmware deployment and protocol de-
bugging as well as to run measurement campaigns.

4.2.1 Testbed Infrastructure

Building, debugging, and running a testbed with devices con-
nected directly to the power grid is complicated and dangerous.
Wired connections from a computer to the light bulbs must be
avoided. Also taking down all light bulbs and disassembling and
reassembling them when updating software or collecting mea-
surement results is not an option. Fortunately, the available wire-
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less control channel enables remote actions, such as conducting
administrative tasks, efficient debugging, software updates, and
data logging for experiments and measurement campaigns.

All light bulbs (and the underlaying OpenWrt installations) are
configured to join a dedicated wireless access point which in-
tegrates them into an IP-based network, enabling remote login
into the Linux system. Having a wireless control channel also
helps scaling testbed deployments, where individual devices are
further apart and an extensive wired installation is not possible.
While remote access to every light bulb gives great flexibility, ad-
ditional software is necessary to simplify testbed management
and to make running experiments more efficient. These software
tools are explained in the following subsection.

4.2.2 Testbed Software

The testbed consists of three different software parts: The EnLight-
ing web interface, the EnLighting server, and the EnLighting ser-
vice. Figure 4.7 illustrates the communication infrastructure used
to relay information between these program parts. The web inter-
face provides a graphical user interface. It collects and visualizes
information gathered from the testbed devices (light bulbs). Fur-
thermore it can be used to trigger actions in a single or in multi-
ple deployed devices. The actual implemented functionalities are
explained later in this section. The web interface is implemented
in JavaScript and uses websockets9 to communicate with the En-
Lighting server. The server is also implemented in JavaScript us-
ing the node.js10 environment. It can be run on the same machine
as the web interface (control machine) or on a dedicated server
within the same network. The EnLighting server is used as mes-
sage broker to communicate with the EnLighting service running
on each light bulb. The intermediate step via a server is required
since the light bulbs run only a plain node.js environment with-
out additional libraries to keep the memory and flash storage
footprint small. The server uses UDP or TCP sockets (already in-

9. https://en.wikipedia.org/wiki/WebSocket
10. https://nodejs.org/
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Control Machine

EnLighting
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Browser
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Dedicated Server

EnLighting
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node.js
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Discover (UDP)
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Figure 4.7: EnLighting testbed communication architecture. The testbed
is controlled via a web interface from the control machine. It
uses websockets to communicate with the EnLighting server
running on the same machine or on a different dedicated
machine in the same network. The server connects to the En-
Lighting service running on each light bulb via UDP (only for
discovering) or TCP sockets to send and receive commands
to trigger actions or gather information. Results are asyn-
chronously reported via the server back to the web interface.

cluded in the node.js runtime) to communicate with the EnLight-
ing service. To discover all available light bulbs, the server sends
a discovery message to the network broadcast IP address. The
light bulbs present (and running the EnLighting service) receive
the discovery message and reply (using TCP) to the server. With
receiving the reply, the server also picks up the IP address of the
corresponding light bulb. The reply also contains additional in-
formation about the light bulb. The collected data is forwarded
to the web interface where it is visualized together with all the
other discovered light bulbs.

If a light bulb is discovered, its IP address is known to the
system and the web interface can directly communicate with it
(via the EnLighting server). Actions and data are transferred be-
tween web interface and light bulbs via commands. A command
consists of the target light bulb’s address, a unique command
identification (number), and optional payload. A command is dis-
patched from the web interface via websockets to the EnLighting
server where a new TCP connection to the target light bulb is
opened. The command is wrapped into a TCP packet and relayed
to the light bulb. If it is a onesided command, the TCP connection
is closed by the light bulb and the action associated with the com-
mand is executed. If a response is expected, a reply command is
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generated and sent back over the still open TCP connection. The
server closes the TCP connection to the light bulb and forwards
the command to the web interface, where the view is updated
with the information provided by the reply command.

The web interface shown in Figure 4.8 gives an overview of the
testbed functionality. The buttons on the top left side (a) are used
to control the testbed. The discover button refreshes the light bulb
view (c) and discovers new light bulbs joining the testbed. The
light bulbs are represented as discs labeled with their hardware
address. They appear yellow when the VLC driver is enabled and
white when it is disabled. The discs can be moved around within
the light bulb view to build a map of the testbed to faster find

a

b

d c

Figure 4.8: EnLighting web interface. The testbed is controlled using the
various buttons on the top left side (a). The information
area (b) below the buttons provide information about the
currently selected light bulb. All discovered light bulbs are
shown in the main area (c). The main area view can be ex-
changed using the tabs (d) to show device logs or a real-time
packet visualization.
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and correlate light bulbs from the testbed with their representa-
tion in the web interface. Other buttons can be used to upload
new firmware to the VLC controller, load and unload the driver
module, open the remote kernel log for a selected light bulb, or
start Showtime, the real-time VLC packet visualizer. Single or mul-
tiple selected light bulbs can be a target of all these actions. The
panel (b) below the buttons shows additional information for the
selected light bulb. The light bulb view can be replaced using
the tabs (d) with a view containing different information such as
light bulb kernel logs or real-time VLC data traffic.

Figure 4.9 shows two additional screenshots from the EnLight-
ing web interface. On the left side, the screenshot displays the
view of an activated kernel log. It is updated in real-time and can
be configured to show VLC packet statistics as explained in Chap-
ter 3, which are printed to the kernel log by the VLC Linux driver.
The kernel logs also provide additional information about the
VLC driver module state. The screenshot on the right shows an
activated Showtime view, the real-time VLC packet visualization.
All activated kernel logs are scanned for VLC packet statistics and
parsed to generate the Showtime visualization. The view can be
panned and zoomed and provides a time-based (x-axis) view of
all sent and received VLC packets, together with additional infor-

Figure 4.9: Additional web interface views. The left side shows an acti-
vated light bulb kernel log, updated in real-time. The right
side shows the web interface with activated Showtime, the
real-time VLC packet visualizer. All currently active kernel
logs are parsed for packet logs and displayed in the Showtime
view.

109



light bulb networks

mation about the packets, such as size, source, destination, RSSI

value, number of corrected errors, etc. Showtime can be helpful
when analyzing protocol behavior when more than two devices
are involved and reading and understanding console logs start to
be complicated and confusing.

4.3 system evaluation

Two dimensions were considered for an evaluation of the commu-
nication system based on the light bulb hardware and software
discussed in this chapter. First, results for the light bulb commu-
nication link are reported. The measurements were conducted at
Linux level for different protocols and for several network topolo-
gies. In the second part, a localization service built on top of
EnLighting is described and evaluated to illustrate the flexibility
offered by light bulbs that can send and receive.

4.3.1 Communication and Networking

A testbed built from four LED light bulbs as described earlier is
used. Figure 4.10 shows a schematic representation of the testbed
setup. Only neighboring light bulbs can communicate with each
other. To send data from the sender to the receiver, intermediate
light bulbs help to bridge the extended communication distance

Sender Receiver

1st hop 2nd hop

4 meter

Figure 4.10: Schematic representation of a multi-hop light bulb testbed.
Light bulbs are placed in a line at 4 m distance from each
other. Data sent from the sender to the receiver is forwarded
by intermediate light bulbs.

110



4.3 system evaluation

and forward the sent packets. The light bulbs are placed at a dis-
tance of 4 m from each other to still bridge a reasonable distance
but also provide a stable communication link (see next section).
The figure also explains the notion of multi-hop communication.
If network packets are forwarded by one or two intermediate
network node(s), the link is called a one or two hop communi-
cation link. If there is no intermediate node participating, and
packets are directly sent to the receiver, the term direct communi-
cation is used. This scenario was chosen for evaluation since light
sources arranged in a line (corridor) or grid (room) are common
and could be exploited to transfer data between, e.g., a gateway
light bulb and other devices further away using multiple hops.

The testbed setup entails the hidden station problem, consider-
ing that each light bulb can only communicate with and receive
from its direct neighbors. Since this evaluation focuses on a proof
of concept for IP communication over a VLC channel, demonstrat-
ing that reliable communication is possible using inexpensive de-
vices, the experiments conducted in this evaluation are designed
so that (most of the time) only one packet is in transfer and hid-
den stations are not an issue. The MAC protocol used in libvlc
also implements an RTS/CTS extension to decrease the collision
probability in case hidden stations are present. Due to the nature
of the conducted experiments, this extension is disabled for the
conducted measurements.

TX 1st hop
2nd hop

RX

4 m

1.75 m

4 m

Figure 4.11: Deployed light bulb multi-hop testbed. The light bulbs are
placed in floor lamps at 1.75 m above the floor level. The
torchieres are setup in a line with a pitch of 4 m between
each light bulb. A light bulb sensors orientation towards
the next light bulb is chosen with a 45° offset (the middle
between two sensors).
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The setup of Figure 4.10 is realized by a simple testbed shown
in Figure 4.11. Each light bulb is placed in an off-the-shelf floor
lamp (torchiere) with a height of 1.75 m. The lamps are placed in
a line, each bulb four meters apart from its neighbors. This setup
also illustrates a benefit obtained by using modified consumer
light bulbs. They can be placed in any available lamp with a fit-
ting socket. The lamps again can be placed anywhere in a room
as long as a power connection is available, shaping a flexible and
uncomplicated testbed.

Experiments for direct link and multi-hop topologies, for dif-
ferent network traffic types (ICMP, UDP, and TCP), and different
communication ranges, are explained and commented in the fol-
lowing sections.

ICMP Network Traffic

To better understand the possible communication range, direct
link performance for different communication distances is eval-
uated. ICMP data traffic is used to measure the Round-Trip Time
(RTT) for bidirectional data exchanges using fping11 (a more pow-
erful version of the standard ping program). Only two of the
testbed light bulbs are used for these measurements. All mea-
surement results always show the payload at the specific protocol
level and the VLC MAC layer payload for better comparison with
previous results. The payload sizes on the Linux level are chosen
so that MAC layer payload sizes are better comparable with ear-
lier results. The maximum payload supported by libvlc is 200 B.
Experiments are run for 5 min each, at different distances and for
different protocol payload sizes. The default MAC layer parame-
ters are used and FEC is disabled to better evaluate the PHY layer
performance.

Results are depicted in Figure 4.12. The y-axis denotes RTT in s
(and is scaled for better comparison with the multi-hop scenario
results) and the x-axis denotes communication distance in m. As
expected, a larger payload size leads to a longer RTT. Results for
the RTTs are in the range from 1 to 4 s. The RTTs reflect the PHY

layer bit rate of 1 kb/s (for the used COM and ILLU slot duration

11. http://fping.org/
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Figure 4.12: Light bulb direct link ICMP measurements results. RTTs for
different communication distances and payload sizes are
shown. Payload sizes are indicated for the current protocol
level and the VLC MAC layer. RTTs lie between 1 to 4 s, de-
pending on the payload size. Communication stays stable
up to a distance of 6 m.

of each 500 µs). The communication link stays stable up to 6 m, a
distance that is reasonable to be bridged by a VLC link within a
room. The communication range could be significantly extended
compared to the LED-only case (1.5 m, 1.3 m without FEC), thanks
to the photodiode and amplifier circuit. One might also think
that the higher light intensity of the light bulb contributed to the
increased communication distance, but this is not true. Only the
total light intensity is higher which is then distributed in all di-
rection by the diffuse bulb covering the LED plate. This results
in a similar light intensity per opening angle as for a single LED.
There are only minimal changes for RTTs at different distances,
but at five meters, the error bars (indicating the standard devi-
ation) show more variation for the RTTs together with a slight
increase of the average RTTs. This is a result of the longer dis-
tance and the therefore decreased RSSI value, introducing bit flips
at the PHY layer. Lost packets are retransmitted by the MAC layer
which increases the RTT significantly. At distances larger than 6 m,
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the error probability increases profoundly so that no further mea-
surements are possible.

The collected results show that stable communication is possi-
ble up to a distance of 6 m. Bridging this distance is sufficient to
communicate with other devices within a (residential) room or
small office. To reach further, e.g., to communicate within large
open spaces, or to create communication links to neighboring
rooms, multiple light bulbs and multi-hop communication can
be used.

Figure 4.13 shows ICMP RTT measurement results for a direct
link as well as for the one and two hop topologies (as described
in the section’s introduction), for different packet sizes, and a di-
rect link covering a distance of 4 m. The y-axis denotes RTT in s
and the x-axis denotes different payload sizes. To route the net-
work traffic, static IP routes are used. Since the VLC controller
is abstracted as a Linux Ethernet interface, any routing proto-
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Figure 4.13: Light bulb multi-hop ICMP measurement results. RTTs for a
direct link as well as for 1-hop and 2-hop topologies and
different payload sizes are shown. Payload sizes are indi-
cated for the current protocol level and the VLC MAC layer.
The results show that, as expected, RTT roughly doubles for
each additional hop and communication stays stable, also
for larger payload sizes.
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col available for Linux e.g., Optimized Link State Routing (OLSR),
could be used to discover routes (with some parameter tuning
due to the low PHY layer data rate when compared to Ethernet or
Wi-Fi). The default MAC layer parameters are used and an exper-
iment runs for 5 min for each payload size and number of hops.
The results show that RTTs are approximately doubling for every
additional hop, and communication stays stable also for larger
payload sizes. Two hops are mostly sufficient to bridge large dis-
tances within bigger rooms and offices but the results also indi-
cate that stable communication can also be expected for a higher
number of intermediate hops, given that channel conditions are
reasonable.

UDP and TCP Network Traffic

UDP and TCP measurements are executed with the well-known
iperf12 tool. The default MAC layer parameters are used and an
experiment runs for 5 min for each payload size and number
of hops. FEC is disabled to reduce the overhead since bit errors
are less likely to happen at a distance of 4 m (see ICMP distance
measurement results). To route the network traffic in multi-hop
topologies, static IP routes are used.

Figure 4.14 shows saturation throughput for a direct link as
well as for one hop and two hop topologies. The y-axis denotes
data throughput in b/s and the x-axis denotes the different pay-
load sizes at the Linux protocol level and for the complete VLC

MAC layer payload. The error bars show the standard deviation.
For small packet sizes the protocol headers are limiting through-
put. For an 18 B UDP payload (Ethernet frames are padded up
to a required minimal size), data throughput of approximately
200 b/s can be reached. For the maximum UDP payload of 158 B
(200 B VLC payload), a throughput of 600 b/s is achievable. Com-
pared with the MAC layer throughput result from the last chapter
(900 b/s), 300 b/s less are measured. This is due to the additional
protocol overhead introduced by the Linux network stack (42 B
overhead for each UDP packet). Also, for one hop and two hop
communication links, UDP data transfer still works, reaching a

12. https://iperf.fr
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Figure 4.14: Light bulb multi-hop UDP measurement results. UDP data
throughput for direct link, one hop, and two hop topologies
and different payload sizes is shown. Payload sizes are indi-
cated for the current protocol level and the VLC MAC layer. A
stable UDP communication link over two hops with a maxi-
mum throughput of approximately 200 b/s is achievable.

maximal throughput also at the maximum packet size. For the
one hop topology, 300 b/s is reached, and for the two hop case, a
maximum of 200 b/s is possible.

TCP measurements are conducted for a static TCP window size
of a single packet, i.e., the next packet is only dispatched if the
corresponding TCP ACK has been received. The Maximum Seg-
ment Size (MSS) is also fixed to 34, 84, and 134 B, reflecting a 100,
150, and 200 B VLC MAC payload size. The measurement results
are shown in Figure 4.15. The y-axis denotes throughput in b/s
and the x-axis denotes the different payload sizes at the Linux
protocol level and for the complete VLC MAC layer payload. The
error bars show the standard deviation. TCP produces more over-
head (mostly due to the additional ACK) than UDP which is visible
in the achieved maximal data throughput. For a direct link topol-
ogy, up to 400 b/s are possible. For one hop and two hop topolo-
gies 200 b/s, respectively 150 b/s, are possible. The throughput is
low, but a stable TCP communication channel is available. Since
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Figure 4.15: Light bulb multi-hop TCP measurement results. TCP data sat-
uration throughput for direct link, one hop, and two hop
topologies, a static MSS of 34, 84 and 134 B, and a static TCP

window with the size of 1 is shown. MSS and VLC MAC pay-
load size is indicated. A stable TCP communication link over
two hops with a maximum throughput of approximately
150 b/s is possible.

there is always only one packet at a time transferred in the chan-
nel (due to the static TCP window with size 1), there are no colli-
sions caused by hidden terminals.

These measurement results provide a proof of concept; they
show that stable communication over a VLC channel using a stan-
dard Linux environment and protocols is possible. Employing
faster microcontrollers could further improve the physical data
rate, and protocol optimization (e.g., reducing protocol overhead
for an IoT deployment) could increase the overall system data
throughput.

4.3.2 Indoor Localization

In addition to basic networking, VLC-enabled light bulbs can also
support other services. This section discusses and evaluates how
a sample application for indoor localization is implemented on
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top of the networked light bulbs. VLC has been used for localiza-
tion in specialized scenarios (see Chapter 2) before. The results
presented here provide evidence that the light bulb’s ability to
send and receive yields tangible benefits. The service is imple-
mented at the Linux level and does not require changes in libvlc.
Since the VLC link is transparently integrated into Linux as an Eth-
ernet interface, any technology supporting IP sockets can be used
as a basis. The application described in the following is based on
the node.js platform.

Given a room illuminated by the LED light bulbs, the RSSI value
(of a received packet) can be used to estimate the distance from
the receiving to the transmitting light bulb. The RSSI is defined as
the difference between a low and a high voltage level, measured
by the ADC at the PHY layer when receiving a bit, and averaged
over a complete data frame. The RSSI value is provided in the
VLC controller’s statistic logs, printed to the kernel log by the VLC

Linux driver. Any application can read and parse the kernel log
to retrieve the RSSI and additional information about the corre-
sponding packet. The localization service running on every light
bulb is repetitively transmitting a beacon with a fixed and con-
figurable time interval. A beacon consists of a UDP packet sent to
the broadcast address.

A receiver placed somewhere in the room can now estimate its
position by looking at the received UDP packet, which contains
the sender’s address, and the kernel log to retrieve the RSSI value
for the received packet. When receiving beacons from multiple
light bulbs, it is possible to refine the estimated location with
well known trilateration techniques [50]. The receiver can either
lookup the location of the sender in a database using the received
address, or the sender can directly provide its location as payload
in the transmitted beacons. The system is deployed as shown in
Figure 4.16. The left part shows a sketch viewed from above and
the right part displays the deployed testbed. The light bulbs are
set up in standard floor lamps at a height of 1.75 m and arranged
in a triangle. Light Bulb (LB)1 and LB3 are placed 6 m apart from
each other and LB2 is located at approximately 4 m distance from
LB1 and LB3.
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Figure 4.16: Indoor localization testbed setup. The left side shows a
sketch of the testbed viewed from above. The augmented
photo on the right shows the deployed testbed. The light
bulbs are deployed in floor lamps arranged in a triangle
and run the localization service. A receiver (RX) receives the
beacons and records the corresponding RSSI values.

RSSI Quality Measurements

For the first measurement setup, only LB1 and LB3 are used, LB2 is
disabled. With these measurements, the quality of the RSSI values
is assessed to determine its behavior under different conditions
and whether it is usable for localization or not. The light bulbs are
sending location beacons at an interval of 1 s plus a random jitter
between 0 and 200 ms. Since the light bulbs can send and receive,
they synchronize to each other and also receive each other’s bea-
cons. A receiving device RX, based on the same hardware as the
light bulbs and with only one photodiode and amplifier (also
without LED plate and battery powered), is placed at different lo-
cations on the direct line between the two light bulbs (from 40 to
560 cm). At every position, the device receives and logs beacons
for a duration 2 min. Furthermore, the receiving photodiode is
pointed towards the ceiling, not favoring any direction.

Figure 4.17 displays the measured RSSI values for different re-
ceiver locations at a height of 100 cm, emulating a device held by
a human. The y-axis denotes the RSSI value and the x-axis denotes
the distance from LB1 in cm towards the location of LB3 at 600 cm.
The measurements shown were recorded concurrently, i.e., both
light bulbs are transmitting beacons at the same time. The RSSI

values follow the inverse square law as already has been con-
firmed for the LED transceiver case and are plausible for values
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Figure 4.17: RSSI quality measurement results with enabled synchroniza-
tion. RSSI values for a receiver moved stepwise from the posi-
tion of LB1 at 0 cm to the position of LB3 at 600 cm at a height
of 100 cm. Thanks to the synchronization and working MAC

protocol, beacons are coordinated and can be received from
both light bulbs at any position.

based on light intensity. The almost inexistent error bars (show-
ing the standard deviation) also underline the stability of the mea-
sured values. Since the two light bulbs are synchronized, the MAC

layer can handle medium access, and beacons only collide with
a small probability. Therefore beacons from both light bulbs can
be received at the same time (one shortly after each other). Even
when the receiver is close to one light bulb, it is still possible to
receive beacons from the light bulb further away. Having clean
RSSI readings and not suffering from the capture effect, thanks to
a working MAC layer (also in extreme conditions), helps refining
the localization process and positioning accuracy.

Figure 4.18 shows the same experiment, but this time with dis-
abled PHY layer synchronization. This setup mimics a VLC system
in which the participating light bulbs can send but not receive.
No real networking is possible and the light bulbs only act as
broadcasting devices. As a result, beacons are not coordinated by
the MAC protocol which increases the collision probability dras-
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Figure 4.18: RSSI quality measurement results with disabled synchroniza-
tion. RSSI values for a receiver moved stepwise from the po-
sition of LB1 at 0 cm to the position of LB3 at 600 cm at a
height of 100 cm. Since synchronization is disabled, beacons
are are not transmitted in a coordinated way and collide.
Due to the capture effect, only beacons from the closer light
bulb are received and RSSI values are falsified.

tically. The plotted results show that most of the time only bea-
cons from the closer light bulb with the stronger signal are re-
ceived. During a collision, the beacon from the closer light bulb
might still be received due to the capture effect. Furthermore, the
suppressed beacon provides additional energy, polluting the RSSI

reading. This evidence is visible in the curve shape and the stan-
dard deviation depicted by the error bars.

These reported measurements show that the chosen RSSI met-
ric and the proposed VLC system can be used for localization ap-
plications. Furthermore, the light bulbs’ ability to receive clearly
improves the quality of the RSSI readings and thus also enhances
localization performance.

Towards Trilateration

Measurement results involving all three light bulbs shown in Fig-
ure 4.16 are reported in the following. The receiving device is
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Figure 4.19: RSSI measurement results for three anchor light bulbs. A
view from above is shown. The white X marks the position
of each light bulb; from left to right: LB1, LB2, and LB3. The
axis denote position within the room. The color code is a gra-
dient from blue (low RSSI value) to yellow (high RSSI value).
The measurements for the same square in each figure were
collected at the same time when moving a receiving device
around within the room. The results clearly suggest that the
RSSI values can be used as input for a trilateration algorithm
to estimate the location.

moved around at a height of 100 cm recording beacons from all
light bulbs. PHY layer synchronization is enabled for all devices.
Figure 4.19 summarizes the results. To improve the figure’s read-
ability, the RSSI values for each light bulb are shown in separate
plots, but the data was recorded at the same time. The view is
from above (the ceiling); the axes show the x-direction and y-
direction (within the room) in m, and the white X denotes each
light bulb’s position. The results clearly show that the RSSI val-
ues are highest closest to the corresponding light bulb and decay
over distance. The figure also shows that the light bulb network-
ing scales at least up to three devices. When combining the three
figures, it is obvious that the retrieved RSSI values can be used to
determine the receiver’s position by applying trilateration tech-
niques.

4.3.2.1 Practical Issues

The previous section discussed the contribution of synchroniza-
tion to the quality of the localization service. Because light bulbs
can receive, the localization service can be extended with useful
features for setting up and managing the lighting infrastructure.
There is no need for any special wiring of the room (other than
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to provide power), and configuration can be done through the
optical links and does not interfere with any Wi-Fi or other ra-
dio systems that may be deployed. Furthermore, the light bulbs
overhear each other’s beacons and therefore can store the trans-
mitter’s IP addresses (could be used for light bulb identification)
together with the corresponding RSSI values. If the lighting infras-
tructure provides a localization service and a light bulb fails and
must be replaced, the replacement bulb (when inserted into the
failed bulb’s socket) can ask the neighbors for the predecessor’s
address. The neighbors can use their history of received beacons
and RSSI values to infer a possible address for the replaced bulb.
This capability simplifies maintenance and minimizes configura-
tion errors (in case of single failures which should be the common
case). Furthermore, light bulbs can also be configured wirelessly
using a VLC link through a mobile light source (e.g., flashlight).
Such a flashlight, programmed with configuration information,
can simply be pointed towards the light bulbs that should be re-
configured or updated, providing an intuitive interface and con-
nectivity.

4.4 discussion and conclusion

Networked light bulbs are combining illumination and commu-
nication. While for a human observer, the light bulb appears
to illuminate its surroundings with a constant brightness, de-
vices with appropriate sensors can receive data encoded into the
light. EnLighting, the VLC system described in this chapter, pro-
vides a software-defined platform based on libvlc, which can be
hosted on inexpensive hardware building blocks. LED light bulbs
equipped with photodiodes offer an ideal platform for room area
communication networks that also allow communication with
low-cost LED-only systems.

Current SoC chips are powerful enough to run complex oper-
ating systems (e.g., Linux), and combined with a VLC controller
based on libvlc and an off-the-shelf light bulb result in smart light
bulbs that support higher layer protocols, such as TCP/IP. With-
out any tuning or customization, such a system provides stable
connections and adequate performance for low-bandwidth ap-
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plications in room area setups. EnLighting builds the basis for
communication services and can be enriched with custom built
applications that can be implemented without effort as demon-
strated in this chapter.

The light bulbs can not only transmit but also receive, provid-
ing a bidirectional communication link. This property is crucial
not only to support a wide range of two-way communication pro-
tocols but also for other application scenarios. As neighboring
light bulbs can synchronize their activities, the number of colli-
sions is reduced and the connections are stable. Furthermore, the
ability to synchronize makes the system flexible. There is no need
for another control channel or specialized wiring so that the light
bulbs can be placed everywhere, in floor lamps or mounted on
the ceiling, without any additional constraints.

As the number of connected devices increases, the available
radio bandwidth stays constant and the available spectrum is be-
coming a scarce resource. For applications with low and moder-
ate bandwidth demands, which is true for scenarios of the envi-
sioned IoT, connected light bulbs can set up a room area network
that provides a communication fabric. Supporting higher layer
protocol stacks is important as it allows many other applications,
that are built on top of these protocols, to work without modifica-
tions. Many issues remain to make the vision of the IoT a reality,
but the proof of concept provided by the simple VLC system de-
scribed in this chapter is an encouraging result that demonstrates
that VLC could be a part of the technological foundation for the
IoT.
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5A D A P T I V E V I S I B L E L I G H T C O M M U N I C AT I O N

VLC combines illumination and communication and is therefore
an attractive technology for a ubiquitous indoor communication
system. An already deployed lighting infrastructure can, without
effort, be reused for communication purposes. Light sources built
from LEDs are a logical choice for such a VLC system as LEDs are
inexpensive, readily available, economical, and can be used to
emit light (for data transmission) as well as to sense light (for
data reception). Communication based on visible light provides
further promising characteristics as discussed in earlier chapters.

To allow the use of VLC for emerging scenarios like the IoT,
networked toys [12], and home automation, the endpoints of a
VLC system must be as simple as possible. A minimal VLC node
should be able to operate just with a single LED and survive on a
battery for a reasonable amount of time. Chapter 3 introduced a
system deployed on a simple 8-bit microcontroller. For scenarios
where devices only need to communicate sporadically, an even
simpler and smaller, less expensive, and more energy efficient
processor could be used.

LED light bulbs combine multiple LEDs and are significantly
brighter than single LEDs radiating light in different directions;
they are low-cost [79, 84] and have been proposed for many
novel indoor applications. To enable the sensing of incoming sig-
nals from other light-emitting devices, LED light bulbs can be en-
hanced with simple light receiving electronics based on photodi-
odes as further described in Chapter 4. Since these light bulbs
are directly connected to the power grid, they have an adequate
power budget and can operate faster processors. Furthermore,
improved computational power paired with accurate light sens-
ing capabilities can be exploited to introduce new and faster PHY

layer data rates (PHY modes).
The key insight that allows different LED-based systems to com-

municate with each other (LED-only devices or LED-based light
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bulbs) is to let software handle the communication protocols. The
software-based PHY layer faces two core problems: First, all de-
vices within range must be synchronized, i.e., agree when to en-
gage in communication, and second, the analog signal detected
by an LED or a photodiode must be sensed and digitized. Both
of these problems, synchronization and sensing, can be accom-
plished in software as realized with libvlc, forging a flexible sys-
tem.

This flexibility can now be exploited when introducing new
processor types and new PHY modes to improve the achievable
data rates. This chapter discusses the design, implementation,
and reports on a practical evaluation of a VLC system (libvlc im-
provement) that dynamically adapts PHY data rates based on
channel (environment) conditions and the capabilities of com-
munication partners (not all devices can or need to support all
available data rates). To support higher data rates, a faster pro-
cessor needs to be supported. Also to optimize the system for a
specific use case, different microcontrollers could be employed.
To provide a basis for supporting multiple hardware platforms,
a hardware adaptation layer is introduced, abstracting the neces-
sary peripherals to run libvlc.

The chapter is structured as follows. Section 5.1 presents the
design of a Hardware Adaptation Architecture (HAA) for libvlc
together with the design of a new VLC controller board hosting
a modern 32-bit microcontroller. Section 5.2 introduces higher
PHY data rates and improved sensing techniques. The newly in-
troduced PHY mode can be dynamically adapted, providing an
optimal performance based on channel conditions and device ca-
pabilities. Section 5.3 evaluated the communication link an pro-
tocol for different network setups and device types. Section 5.4
summarizes and concludes the topics discussed in this chapter.

5.1 hardware independent platform

A VLC system that connects devices, e.g., in the context of con-
sumer devices and the IoT, must have minimal hardware require-
ments (so that low-cost/low-part count implementations are pos-
sible) yet allow inter-operation with other devices. A software-

126
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centric approach is attractive as it isolates hardware dependen-
cies and allows the reuse of the software base. The PHY layer im-
plemented for libvlc was tailored for the ATmega328P processor.
To increase the portability and decouple the software building
blocks from the hardware, a general PHY layer implementation is
introduced built on top of a device-specific HAA. The system de-
sign overview figure from Chapter 3 can be updated as shown in
Figure 5.1. The sensor and amplifier RX introduced for EnLighting
and the hardware abstraction layer are marked yellow.

The software-centric approach offers a communication system
running on off-the-shelf and low-cost microcontrollers, but is still
robust and stable, and fulfills the data rate requirements for sce-
narios requiring moderate data rates. Many devices already use
a microcontroller and LEDs and could benefit from a hardware in-
dependent VLC software solution that relies on software changes
only. The methods described in Section 5.2 highly benefit from
the software-based approach. All changes described can be done
in software and it is not required to exchange or add hardware
to the existing systems. The following two sections describe the
HAA and introduce a custom built system processor board based
on an ARM1 microcontroller.

1. https://www.arm.com
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Figure 5.1: Extended VLC controller overall system design. Updated ver-
sion of Figure 3.1 additionally showing optional sensor and
amplifier RX path used by the EnLighting system, and the
newly created HAA to support multiple microcontroller ar-
chitectures.
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5.1.1 Hardware Adaptation Architecture

To keep the software protocols hardware (microcontroller archi-
tecture) independent, the processors peripherals (such as timer,
ADC, GPIO, etc.) are abstracted and the actual software (starting
from the PHY layer) is built on top of this abstraction. The HAA

consists of three layers between the hardware and application
as illustrated in Figure 5.2 on the left side. While the Hardware
Adaption Layer (HAL) and Hardware Presentation Layer (HPL) are
platform specific, the Hardware Interface Layer (HIL) exposed to
the application is platform independent.

The HPL is a thin layer sitting above the bare metal hardware,
it presents the underlying hardware to the programmer in the
form of human readable function calls and symbolic memory ad-
dresses and definitions. It does not keep any state and presents
only available hardware features to the programmer. It is often
supplied by the chip manufacturer or available as open source
projects. A HAL is the implementation of the hardware interface
for a specific platform, it is allowed to keep state and is built on
top of the platform specific HPL. The HIL is a common interface
to specific hardware components and peripherals; it sits above
the HAL. To support a new hardware platform for an application,
only the platform specific hardware adaption layer needs to be
implemented, as the HPL is provided by the manufacturer, and
the HIL as well as the application is platform independent. Due to
its generic nature, the interfaces are narrow and hide hardware
features that may not be available on all platforms or emulate
missing hardware features in software on inferior platforms.

Figure 5.2, on the right, shows the HAA concept applied to two
micrcocontroller platforms that are supported by libvlc (at the
moment). The prototype board hosting the ARM processor from
STMicroelectronics (STM)2 is introduced in the next section. The
HPL for the AVR microcontroller is part of the avr-gcc suite and
the processor from STM uses libopencm33, which is an open source
project covering HPLs for ARM processors of different manufactur-
ers. The two HALs are implemented as part of libvlc, providing the

2. http://www.st.com/content/st_com/en.html
3. http://libopencm3.org
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Figure 5.2: HAA for a hardware independent VLC controller. The left part
shows a schematic visualization of the HAA based on three
layers: HPL, HAL and HIL. Only the HPL and HAL are hard-
ware specific, whereas the HIL presents a common hardware
interface. The right part shows the HAA applied to the two
hardware platforms currently supported by libvlc.

actual platform specific implementation that is then used by the
HIL to provide a common interface for the available peripherals.
There is almost no additional computational overhead since it is
already known at compile time which HPL and HAL is used.

When introducing additional hardware platforms, it is only
necessary to create a HAL for the new architecture and available
peripherals. The application does not need to be changed since it
only depends on the HIL. This decouples the software-based VLC

protocols from the hardware, provides flexibility in the choice of
hardware platform, and makes it possible to switch to new plat-
forms with minimal effort.

5.1.2 ARM Prototype Board

The FEC runtime evaluation already demonstrated that the used
ATmega328P processor is already close to its maximum compu-
tational capacity. Also libvlc’s RAM requirements are close to the
80 % mark of the total available 2 kB of RAM, with not much left
for the actual application running on top of libvlc. To support
more complex applications and to enable the implementation of
higher (faster) PHY modes, to increase data throughput as dis-
cussed in the following section, a faster processor is required.

129



adaptive visible light communication

The requirements are as follows: the processor needs to sup-
port all necessary peripherals (timer, ADC, GPIO, and USART for
debugging and logging), and it should be available in a small
package to fit on a small prototype board (to eventually fit into
the light bulb). Additionally, the amount of available RAM and
computational power should be increased when compared to the
AVR platform.

Today, many low-cost and power-efficient microcontrollers are
based on the ARM architecture. Many manufactures license the
ARM and chip layouts to build their own microcontroller ver-
sions. STM is a chip manufacturer selling various ARM-based mi-
crocontrollers. The Cortex-M0 is the smallest available ARM pro-
cessor in a similar price range as legacy 8-bit processors (like
the ATmega328P) but with 32-bit performance. STM offers sev-
eral Cortex-M0 types with different memory and flash sizes. All
requirements can be met with the STM32F051

4 at even a lower
price tag than the AVR-based model.

Table 5.1 lists the specifications for the ARM processor (the
specs for the AVR processor from Table 3.1 are also shown for
comparison). The microcontroller is based on a 32-bit architec-
ture and can be clocked up to 48 MHz, providing a performance
boost when compared to the 8-bit AVR processor. The necessary
peripherals are all available and of a similar nature. The 64 kB of
flash memory and the 8 kB of RAM can increase the complexity of
application built on top of libvlc. Furthermore, the processor can
be operated up to 3.6 V and GPIO pins provide up to 25 mA cur-
rent. Since less voltage and less current is available per pin than
for the AVR processor, the LEDs (when directly operated by the
GPIO pins) are less bright, decreasing the maximum communica-
tion distance. There is no difference when using an LED driver, as
it is the case for the introduced light bulb system.

STM also offers an evaluation board, the STM32F0Discovery5,
which includes pin header, LEDs, push buttons, and an on-board
programmer. It is suitable for prototyping and developing but
the form factor is too big to be included in consumer devices,
toys, and light bulbs. Consequently a smaller prototyping board

4. https://octopart.com/stm32f051k8t6-stmicroelectronics-24958778
5. https://octopart.com/stm32f0discovery-stmicroelectronics-22099547
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feature stm32f051 atmega328p

Architecture 32-bit ARM 8-bit AVR

Operating Voltage 2.0 to 3.6 V 1.8 to 5.5 V

Current per Pin (max.) 25 mA 40 mA

Clock Speed (max.) 48 MHz 20 MHz

GPIO 25 23

Timer 8-bit N/A 2

Timer 16-bit 5 1

Timer 32-bit 1 N/A

ADC 12-bit (two) 10-bit (one)

Serial Interface USART (two) USART (one)

EEPROM N/A 1 kB

Flash Memory 64 kB 32 kB

SRAM 8 kB 2 kB

Table 5.1: STM32F051 specifications (ATmega328P specifications shown
for comparison). The microcontroller uses an 32-bit ARM in-
struction set and can be clocked up to 48 MHz. it provides
25 GPIO pins and integrates timer, two 12-bit ADCs and serial
communication peripherals. Further, 64 kB of program mem-
ory and 8 kB of SRAM is available.

with just the microcontroller and a few necessary electronic parts
is designed, based on the STM32F0Discovery board schematics.
The fully assembled custom-built PCB is shown in Figure 5.3. Top
and bottom part of the completely assembled board are shown.
The board has the same form factor as the Microduino Core used
for the EnLighting system. Also the pin layout is plugin compat-
ible, meaning that the ARM board can be used with the light
bulbs sensor board without additional changes. The processor
(a) is clocked with an external 8 MHz oscillator (b) which can be
increased up to 48 MHz by a microcontroller-internal PLL. Two
indicator LEDs (c) are available on the board. One is used as a
power on indicator (green), the other (blue) is connected to a
GPIO pin and can be used as desired. The board can be directly
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Figure 5.3: Custom designed ARM board based on the STM32F051 micro-
controller from STM. Top and bottom part of the assembled
PCB are shown; a. microcontroller; b. 8 MHz oscillator, can be
scaled up up to 48 MHz by an internal PLL; c. (power) indi-
cator LEDs; d. voltage regulator (3.3 V). The right part shows
some assembled board together with a 5 mm LED for size
comparison.

operated with a microcontroller-compatible voltage or via the on-
board voltage regulator (d) which provides stable 3.3 V output for
an input voltage of maximum 16 V. The right part of Figure 5.3
shows three assembled ARM boards together with a 5 mm LED for
a size comparison.

5.2 adaptive illumination and sensing

The modular and layered structure of the VLC software platform
allows effortless porting of the VLC system to different microcon-
troller families and architectures. As of the moment, an AVR (AT-
mega328P) and ARM (STM32F051) are supported by the HAA. Nei-
ther of them currently reaches its limit in terms of computational
power and memory. Therefore good channel conditions allow a
more densely modulated medium (shortening data interval dura-
tion, at the cost of additional computation), which will increase
the data rates of the system. This section describes how a fully
adaptive system that dynamically adapts to current channel con-
ditions and capabilities of participating communication partners
can be built by extending libvlc. In addition to the adaptive hard-
ware and PHY modes, an adaptive LED brightness control mecha-
nism is introduced for the existing VLC protocol, briefly discussed
in the following section.
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5.2.1 Adaptive Brightness Control

With the VLC protocol introduced in this thesis (scheme shown in
Figure 3.7), a lighting device outputs light only half of the time,
being only half as bright as originally possible. If the light source
only needs to provide static brightness, the lighting system can
be designed such that a 50 % duty cycle is equal to the target
brightness. An adaptive light source can follow the concept de-
picted in Figure 5.4. Light output can be reduced replacing ILLU

slots with slots where no light is emitted or even replace ILLU

slots with COM slots to increase communication capacity. To in-
crease brightness, additional ILLU slots can be introduced at the
cost of COM slots and communication performance.

For libvlc, only a few things need to be changed. Synchroniza-
tion is not affected at all, also for devices at different brightness
levels. As long as some ILLU or COM slots exists (edges from dark
to bright or reverse), the system is able to synchronize. In case
the clock drift between devices cannot be compensated anymore
since fewer synchronization chances are available (when chang-
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Figure 5.4: Adaptive brightness control. Light brightness can be con-
trolled by adding or removing ILLU slots. Dark gray areas
symbolizes no light output and light gray areas depict light
emission. The second row (50 %) displays the normal behav-
ior. The brightness can be increased by replacing COM slots
with ILLU slots with the side effect of loosing data through-
put performance. Deactivating light output for certain ILLU

slots decreases the brightness. The scheme can be continued
in both directions.
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ing ILLU and COM slot ration), the synchronization step can be
increased with the brightness change. When making the light
source brighter, the number of COM slots is reduced, which needs
to be known by a transmitter so that only available COM slots are
used for transmission. To solve this problem, each device keeps
track of all neighbors and brightness levels. If a device changes
brightness, it informs all neighbors. Reception is not affected by
brightness changes, also not in systems with mixed brightness
levels, because light level differences and not absolute values are
used when evaluating and decoding data intervals.

For a lighting system where the brightness of all participat-
ing (and communicating) devices is always changed simultane-
ously, a different approach can be applied. Changing the dura-
tion of the ILLU slots, whereas the duration of the COM slots stays
constant, also affects the brightness. Obviously, prolonging ILLU

slots lead to more light output and therefore increases brightness,
and reversely shortening ILLU slots decreases the brightness level.
ILLU slots cannot be shortened indefinitely since there has to be
enough room for compensation while communicating to prevent
flickering. Changing the ILLU slot duration does not affect com-
munication and can be applied to libvlc without any changed to
the rest of the communication protocols.

This section only presents initial thoughts and concepts. Bright-
ness control is not yet implemented in libvlc and therefore can
also not be discussed in the evaluation section of this chapter.
Brightness control is an important feature of VLC systems and
illumination devices and is therefore briefly addressed here for
completeness.

5.2.2 Physical Layer Modes

To make use of available processing power and good channel
conditions, the data interval duration within a COM slot can be
shortened to construct COM slots with different numbers of data
interval pairs to increase the PHY data rate. The resulting PHY

modes are shown in Figure 5.5; different PHY modes can be built
by changing the number of data intervals and their duration in-
side a COM slot. The top of the figure shows the SINGLE or BASIC
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PHY mode; it is identical to the COM slot structure introduced in
Chapter 3 and uses identical timings. By equally partitioning D1

and D2 into two intervals each, PHY mode DOUBLE is composed,
containing four data subintervals D1,1, D1,2, D2,1, and D2,2. By
repeating this procedure, the construction of PHY modes QUAD

and OCTA is straightforward (see Figure 5.5). There are in total
16 subintervals for the OCTA PHY mode. Since the overall COM slot
duration stays the same, the subintervals are getting shorter for
higher PHY modes, e.g., 21 µs for an OCTA subinterval. Splitting
into more subintervals is not useful since the necessary accuracy
in synchronization cannot be achieved with simple hardware and
software-base protocols. Shorter slots mean that less light is re-
ceived (for LED-only systems), and the synchronization must be
(more) accurate. Hence, the better the channel condition (mostly
depending on the sender receiver distance) the higher the PHY

mode that can be used.
The guard intervals (20 µs) are still in place to increase the sta-

bility of the SINGLE PHY mode. Also for the higher PHY modes
they are still in place to simplify the protocol implementation (not
influencing the achievable data rate) but are not necessary any-
more. The duration of the guard intervals can also be decreased
with minimal effect on the signal quality for the LED-only case
(duration of data subintervals slightly increased). When receiv-
ing, the subinterval start and end times are slightly offset inside

S1 G D1,1 OCTA

QUAD

DOUBLE

SINGLE

Communication Slot

D1,2 D1,3 D1,4 D1,5 D1,6 D1,7 GD1,8 D2,1 D2,2 D2,3 D2,4 D2,5 D2,6 D2,7 D2,8 G S2

S1 G D1,1 D1,2 D1,3 D1,4 G D2,1 D2,2 D2,3 D2,4 G S2

S1 G D1,1 D1,2 G D2,1 D2,2 G S2

S1 G D1 G D2 G S2

50µs 170µs

85µs

42µs

21µs

Figure 5.5: PHY layer data subintervals. The data intervals D1 and D2

are further partitioned into shorter subintervals to compose
different PHY modes, called SINGLE, DOUBLE, QUAD,and OCTA.
Construction is done by simply splitting one data interval
into two, repetitively. More data intervals per communication
slot increase the PHY data rate.
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the actual subinterval, implementing short guard spaces to pro-
vide protection from light leaking into neighboring subintervals
in case of imprecise synchronization. But in general, synchroniza-
tion needs to be more accurate to successfully apply faster PHY

data rates using shorter data subintervals.
To enable a completely dynamic PHY mode adaptation, each

frame has to carry information about the used PHY rate. Con-
sequently, the PHY header is always transmitted in PHY mode
SINGLE, using two bits in the flags field to inform the receiver
about the data rate of PHY layer payload. A receiver always starts
decoding in SINGLE mode. After successfully validating the PHY

header with the provided CRC the receiver switches to the re-
quired PHY mode to decode the rest of the frame. Furthermore,
MAC layer ACKs are transmitted one PHY mode lower as the cor-
responding data frame, e.g., for a data frame received in OCTA

mode, QUAD is used to transmit the ACK. Lowering the PHY mode
increases the probability of a successful delivery and therefore
prevents possible unnecessary retransmissions. This is important
since channel conditions are not necessarily the same in both di-
rections. A data frame can still be delivered (and repaired by FEC)
using a particular PHY mode in one direction, but the ACK sent in
the other direction with the same PHY mode cannot be received
due to possible worse channel conditions and not available FEC.

Data Encoding

For all PHY modes, the two subintervals with the same (second)
index encode a bit 0 or 1 together. Figure 5.6 shows an example of
an OCTA communication slot. The dark gray background symbol-
izes lights turned off, whereas the light gray areas mean lights
turned on. Below the slot visualization, the on and off signal
from the modulated light is shown. The corresponding subinter-
vals are labeled with the same numbers. A single bit is encoded
with the two subintervals D1,k and D2,k, for k ∈ {1, . . . ,N}. Cor-
responding subintervals are always encoded with inverted light
levels so that for the decoder, a simple light value comparison is
enough to determine the resulting bit. Spatially splitting up the
corresponding subintervals makes the decoder also more robust
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1

S1 G D1,1 D1,2 D1,3 D1,4 D1,5 D1,6 D1,7 GD1,8 D2,1 D2,2 D2,3 D2,4 D2,5 D2,6 D2,7 D2,8 G S2

Communication Slot

2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Figure 5.6: PHY mode data encoding. Example communication slot,
showing 1 B of data. The first row displays the slot layout and
the second row shows the on and off signal of the modulated
light. Intervals D1,k and D2,k, for k ∈ {1, . . . ,N} together en-
code a single bit.

against light leaking into neighboring slots during imprecise syn-
chronization.

Theoretical Speedup

The theoretical data throughput improvement SN,P for a given
slot layout with N subintervals and a MAC layer payload of size
P is obtained by dividing the throughput (theoretical MAC layer
throughput) achieved with N subinterval pairs by the through-
put of the base case with only one subinterval pair as stated by
Equation 5.1.

SN,P =
RN,P

R1,P
(5.1)

The throughput RN,P itself is calculated by dividing the payload
size (in bit) by the time TN,P it takes to successfully transmit that
payload (and all included headers), as shown in Equation 5.2.

RN,P =
P

TN,P
(5.2)

The time TN,P for a successful transmission of a payload of size P
(using N subintervals pairs) depends on whether FEC is enabled
or the frame is validated by CRC only. It is described by Equa-
tion 5.3 (FEC) and Equation 5.4 (CRC). HPHY denotes the 4 B PHY

header (including the SFD). The 4 B MAC header is accounted for
by HMAC. Depending on whether FEC is used or not, additional re-
dundancy (EFEC, 16 B) or ECRC for a 2 B CRC is used. P signifies the
payload size, which amounts to 200 B for maximum throughput
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(as seen in previous results), and N is the number of subinterval
pairs used in the actual PHY mode.

T FEC
N,P =

Data︷ ︸︸ ︷(
HPHY +

HMAC + P+ EFEC

N

)
+

ACK︷ ︸︸ ︷(
HPHY +

HMAC + ECRC

max(1,N/2)

)
C

(5.3)

T CRC
N,P =

Data︷ ︸︸ ︷(
HPHY +

HMAC + P+ ECRC

N

)
+

ACK︷ ︸︸ ︷(
HPHY +

HMAC + ECRC

max(1,N/2)

)
C

(5.4)
The first addend of the numerator in both equations describes the
data frame containing payload P. Its MAC header, the payload and
the redundancy or FCS is sent using the given number of subinter-
val pairs N, while the PHY header is transmitted with PHY mode
SINGLE. The second addend in the numerator represents the MAC

layer ACK, which needs to be received by the sender, before a
data frame is considered to be successfully processed and a new
frame can be prepared. The ACK does not contain any MAC pay-
load and is validated via CRC only. It is transmitted using one
PHY mode lower than the corresponding data frame (meaning
that only half of the subinterval pairs is used to transmit ACK).
The numerator calculates the number of COM slots needed to con-
struct a complete data frame and ACK. A COM slot carries 1 to N
bit depending on the used PHY mode. Therefore all data amounts
in the formula are applied as a value in bit (multiplied by 8).
Dividing the numerator by the number of COM slots per second
(1000 for 500 µs ILLU and COM slot pairs), yields the time TN,P it
takes to successfully transmit a data frame with payload P, us-
ing a PHY mode with N subinterval pairs. The interframe time
and random contention window introduced by the MAC layer are
neglected for this calculation, since only a benchmark result for
comparison to real measurements is of interest.

Table 5.2 shows the theoretical transmission times, as well as
the resulting throughput and maximum speedup, for the intro-
duced PHY modes, based on Equations 5.3 and 5.4. The maxi-
mum PHY data rate, as opposed to the throughput, grows linearly
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fcs

N TN [s] RN [b/s] SN

1 1.76 909.10 1.00

2 0.94 1709.40 1.88

4 0.50 3200.00 3.52

8 0.28 5623.76 6.24

fec

N TN [s] RN [b/s] SN

1 1.87 854.70 1.00

2 0.99 1612.90 1.89

4 0.53 3030.30 3.55

8 0.30 5405.41 6.32

Table 5.2: Theoretical transmission time, throughput and speedup, for a
maximum payload P of 200 B, depending on the number of
subintervals N; using a FCS (with CRC) or FEC. For both cases,
a maximum theoretical speedup of more than 6 can be reached
for 8 subinterval pairs.

with the the number of subinterval pairs N, reaching 8 kb/s for
N=8, meaning that 8 bits are transmitted per COM slot. Since the
PHY header is transmitted in PHY mode SINGLE and due to the
overhead caused by the PHY, MAC, and FCS or FEC, the resulting
theoretical throughput is significantly lower. For the maximum
PHY mode (OCTA), a throughput of approximately 5 kb/s and a
speedup of 6 is to be expected.

Receiving Strategies

Different receiving and decoding methods can be used depend-
ing on the receiving channel (LED or dedicated sensor) and the
microcontroller’s capabilities. Figure 5.7 summarizes the three
approaches (for PHY mode OCTA, the same is valid also for the
other PHY modes). The first example (1) shows the layout of a
COM slot for a receiving LED channel. The first row (TX) shows
the on and off signal of the modulated light from a transmitter,
and the second row (RX) visualizes the reception logic. Since the
LED is not paired with an electrical amplifier, the channel cannot
directly be sampled. The LED is first charged in reverse bias and
the remaining voltage is measured after a short period of time
as introduced in Section 3.3.1. The remaining voltage correlates
to the received light since the last charge. The blue arrows in-
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dicate a charge and the red arrows denote the starting point of
a voltage measurement. The subinterval control loop configures
pins and handles the ADC inclusive result collection. For the PHY

modes QUAD and OCTA a more powerful processor, like the intro-
duced ARM microcontroller, is required to handle the processing
within the short duration of a subinterval. The less performant 8-
bit AVR processor can handle PHY modes SINGLE and DOUBLE. The
blue and red arrows do not match with the subinterval bounds,
but are slightly offset within the subinterval to provide additional
guard space in case of an inaccurate synchronization.

The second communication slot (2) illustrates the implementa-
tion of a dedicated sensor channel. Here, the signal provided by
the modulated light can directly be read from the output of the
transimpedance amplifier. The microcontroller triggers an ADC

sample (red arrow) at the center of each subinterval. Samples
are collected and later processed at the end of the communica-
tion slot. Sensor-based receiving employs a less complex control

S1 G D1,1 D1,2 D1,3 D1,4 D1,5 D1,6 D1,7 GD1,8 D2,1 D2,2 D2,3 D2,4 D2,5 D2,6 D2,7 D2,8 G S2

S1 G D1 G D2 G S2

Receiving

Communication Slot
1.

3.

2.

RX

TX

RX

RX

TX

TX

Figure 5.7: Receiving strategies for LED and sensor channels. 1. LED-
based receiving. The LED is charged in reverse bias (blue
arrow) at the beginning of the (sub)interval and the re-
maining voltage is measured (red arrow) at the end of the
(sub)interval. 2. Sensor-based receiving. The sensor is sam-
pled in the middle of each subinterval. 3. Sensor-based receiv-
ing with DMA. The complete COM slot is sampled and results
are transferred to memory by DMA. Samples can be assigned
to synchronization intervals and each data subinterval using
the sample number (position in memory).
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loop using fewer computation resources. Hence, all discussed
PHY modes also work on less performant 8-bit processors.

For a microcontroller supporting DMA, the last shown method
(3) can be applied. The complete communication slot can be sim-
plified into one state. A timer is instructed to trigger samples
(reading voltage values via ADC) during the complete slot. The
conversion results are continuously transferred to memory via
DMA without involving the processor. Using DMA allows faster
sampling so that for a 500 µs COM slot 250 samples can be col-
lected. They are processed later (during the following ILLU slot)
where they are assigned to synchronization and data subintervals
and averaged according to the active PHY mode. This method re-
moves all processing from the communication slot, and the mi-
crocontroller can be used to process higher layers (MAC or appli-
cation logic) during this time. This method also opens up space
for further improvements discussed in the next section. DMA is
supported by the introduced ARM processor from STM.

Synchronization Correction

The higher the PHY mode, the smaller the subintervals and there-
fore more precise synchronization is required. The synchroniza-
tion is done in software and only relies on the simple method de-
scribed earlier. Devices communicating over large distances (sev-
eral meters), e.g., light bulbs, suffer from imprecise synchroniza-
tion. Due to the lower received signal strength, the synchroniza-
tion is easily influenced by noise and can shift several microsec-
onds back and forth. This additional shift can be compensated
when using the DMA receiving strategy as explained in the fol-
lowing.

Figure 5.8 shows such a scenario where the synchronization
offset is ε. When using the DMA sampling method, this offset
can be recognized and corrected. For the transmission of the PHY

header, PHY mode SINGLE is used with the two data intervals D1

and D2. For all PHY header bits, there is either a falling edge at
the end of D1 or a rising edge at the beginning of D2, depend-
ing on the transmitted bit. Since it is known where this edge
should be inside the COM slot (when perfectly synchronized) and
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2

S1 G D1 G D2 G S2

Receiving
ε ε

NN-4

RX

TX

ε

Figure 5.8: Synchronization offset calculation. Transmitter and receiver
are slightly misaligned by ε. An offset to correct the sample
assignment during the PHY payload can be calculated during
the transmission of the PHY header (sent using PHY mode
SINGLE). The edge is expected at sample N but detected at
sample N-4. This offset is calculated and averaged for each
bit of the PHY header and then applied to decode the PHY

payload probably sent in a higher PHY mode.

the edge can be detected (at a resolution of 2 µs, 250 samples
per COM slot) using the collected samples, the resulting offset (in
samples) can be calculated and be considered when assigning
samples to subintervals. The example in Figure 5.8 shows that
the edge is expected at sample N but detected at sample N-4.
This offset is calculated for all PHY header bits and averaged to
be applied when decoding the PHY payload. The PHY header can
still be decoded correctly, also if synchronization is significantly
off. It is transmitted in the most resilient PHY mode where many
samples are averaged to a single value per data interval. Outliers
collected outside the corresponding data interval do not carry as
much weight as in higher PHY modes where data subintervals are
shorter.

Figure 5.9 displays the results of an experiment where the
packet delivery ratio for a transmitting and receiving light bulb
is measured. The light bulbs are set up at a distance of 5 m for
a direct link scenario. One is used as transmitter, the other as a
receiver. For all PHY modes, 100 data frames with a MAC layer
payload of 200 B are sent. The frames are counted as delivered if
they are successfully decoded at the receiver. The y-axis denotes
the packet delivery ratio in % and the x-axis denotes the four
different PHY modes. When using the standard synchronization
method, for PHY mode QUAD, 20 %, and for PHY mode OCTA, more
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Figure 5.9: Packet delivery rate comparison with and without synchro-
nization correction. Packet delivery rate is measured for 100
data frames with maximum payload for each PHY mode,
once with standard synchronization, and once with enabled
synchronization correction. Using the synchronization correc-
tions drastically improves the successful reception for PHY

mode QUAD and OCTA.

than 60 % of all data frames sent are lost. Applying the offset cor-
rection leads to drastically improved results: almost every packet
is received successfully. This method demonstrates another way
to improve the achievable data rate by selecting the correct sam-
ples.

Revised Physical Layer Header

Figure 5.10 depicts the revised PHY header based on the header in-
troduced in Figure 3.12. The flags field is complemented with two
additional values (marked yellow), each covering two bits. The
three most significant bits are still reserved. Bit 3 and 4 encode
the PHY mode used for the PHY payload (00:SINGLE, 01:DOUBLE,
10:QUAD, 11:OCTA). Bit 1 and 2 define the capabilities (supported
PHY modes) of the transmitting device. These two bits are always
transmitted with every frame, informing all neighbors about the
PHY modes supported by this specific device. The neighbor man-
ager, a part of libvlc, is keeping track of all neighboring devices
and their capabilities. The PHY header is always transmitted using
the SINGLE PHY mode to allow the receiver to decode its contents
and then switch to the requested PHY mode to receive the rest of
the frame encoded with the requested PHY mode.
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SFD Flags Size CRC

FEC Flag

7 6 5 4 3 2 1 0

Reserved

1 Byte 1 Byte 1 Byte 1 Byte

Payload FCS/FEC

0...255 Byte 2/16 byte

CapabilitiesPHY Mode

Figure 5.10: Revised PHY layer frame header based on the frame format
introduce in Figure 3.12. Two values are added to the flags
field (marked yellow), each covering two bits. The two PHY

mode bits encode the PHY mode used for the PHY payload
and the two capabilities bits announce the supported PHY

modes of the transmitting device.

Dynamic Physical Layer Mode Adaptation

To be able to react to changes in the environment, the information
available from collected packet statistics is leveraged to switch
between PHY modes in an automated manner. One of the first
published algorithms to make use of transmission and failure
counters to adapt the transmission mode was Auto Rate Fall-
back (ARF) [35] developed for a predecessor of IEEE 802.11 Wi-Fi.
This algorithm works by periodically checking whether a faster
transmission mode would work, using so-called probing packets.
Whenever a certain number of probing packets are transmitted
successfully, the sender switches to the faster mode. Reversely,
when the number of lost frames exceeds a given threshold, the
sender scales back to a slower mode.

In a comparison of different adaptation schemes [57] and in
the introductory paper for ARF [44], the disadvantages of ARF are
elaborated. The major drawback of the algorithm is its inability
to leverage long-term stability. ARF probes the channel capabili-
ties frequently, regardless of the result of former inquiries. This
behavior leads to an unnecessarily high number of failed prob-
ing packets, which diminishes throughput. Adaptive Auto Rate
Fallback (AARF) tries to eliminate this problem by adapting the
interval between probing. Whenever a given number of probing
packets fail, the threshold determining when to send the next
probing packet is doubled (up to a certain limit). This yields a
substantial reduction in wasted probing packets in a stable envi-
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ronment and still allows AARF to use a faster PHY mode, should
the conditions improve. Since the AARF scheme is straightforward
to implement and also successfully employed in other wireless
systems, an adapted version thereof is built into libvlc.

5.3 evaluation

This section discusses measurements for different VLC-enabled
devices and setups. LED-only devices with different capabilities,
light bulbs communicating with LED-only devices, and light bulb
networks are evaluated to show the effectiveness of the presented
adaptive PHY layer together with the CSMA/CA-based MAC layer.
All results show MAC layer throughput. The testbed setups are the
same as already introduced in Chapter 3 and Chapter 4 when
not stated otherwise. The following section addresses the issue
about the MAC ACK timeout and FEC processing discussed in Sec-
tion 3.3.2 again, this time for the newly introduced ARM proces-
sor.

5.3.1 Forward Error Correction Processing Time Revisited

As discussed earlier, the FEC processing time depends on the
number of errors to correct and on the payload size. The results
for the AVR 8-bit processor unveiled that the FEC processing time
took too long for one or more errors to be compatible with the
MAC protocol. The verification and error correction of a received
data frame takes so long that the corresponding ACK cannot be
sent within the necessary time to conform with the SIFS. The prob-
lem can be handled by releasing the ACK before the actual error
correction, as soon as the information is available whether the
data frame can be recovered (hoping that the frame’s source ad-
dress is not erroneous and the ACK can be delivered to the correct
destination).

Since libvlc now supports a faster 32-bit ARM processor from
STM, which is introduced in this chapter together with the HAA,
the ACK timeout measurements are repeated to verify if the prob-
lem still exits. The results are shown in Figure 5.11. The time it
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takes from the moment when a data frame transmission is com-
plete until the corresponding ACK is received is plotted versus
different payload sizes for different error numbers. Due to the
32-bit architecture and higher clock rate, the ARM microcontroller
can handle the FEC processing within 83 µs (compared to 95 µs
for the AVR processor, see Figure 3.14) for all payload sizes and
error numbers. This ensures that the ACK can be dispatched in
time so that it can be delivered after SIFS. For devices using the
ARM-based STM processor, it can therefore be guaranteed that the
MAC protocol requirements can be fulfilled (without dispatching
the ACK before errors are corrected) and the ACK is sent to the
correct receiver.
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Figure 5.11: FEC processing time for STM ARM microcontroller. The time
between frame transmission completion and the reception
of a corresponding ACK is set in relation to frame payload
size and introduced byte errors. The ACK time increases for
higher payload sizes and higher error numbers. The addi-
tional time is introduced at the frame receiver where the
ACK is generated, due to the FEC processing time. The error
bars are indicating the standard deviation. The processing
time for all combinations is short enough to ensure a timely
ACK dispatch within SIFS. See Figure 3.14 for the previous
results (AVR processor).
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5.3.2 LED-to-LED Communication

This section discusses measurement results for LED-only devices
using the same LED to send and receive. The four PHY modes in-
troduced in this chapter are evaluated for single link communica-
tion and various distances and in a network with up to twelve de-
vices. The experiments are mostly conducted with devices based
on the STM ARM processor since this platform supports all avail-
able PHY modes. Some measurements also demonstrate the in-
teroperability between both microcontroller platforms (AVR and
ARM) using the capability announcements.

Single Link

The single link performance is measured in terms of throughput
for an LED-only setup. Here, both sender and receiver are based
on the ARM prototype boards, using a single LED each to trans-
mit and receive. Except from the different microcontroller boards,
the same hardware and testbed setup is used as discussed in Sec-
tion 3.5 and illustrated in Figure 3.19. Messages of various sizes
between 1 B and 200 B are transmitted from a dedicated sending
device and acknowledged by a dedicated receiver. The default
MAC layer parameters are used. The ACK is always sent with a
more resilient PHY mode than the corresponding data frame was
received with (e.g., if the data frame was sent with PHY mode
OCTA, the ACK is sent using PHY mode QUAD). Data frames are
transmitted at saturation, i.e., the next frame is immediately sent
whenever the previous frame is completely processed (either ac-
knowledged or the maximum number of retransmission reached).
Only successfully acknowledged data frames count towards the
throughput. The FEC threshold is set to 30, enabling FEC for PHY

payloads with a length larger or equal to 30 B. Measurements are
conducted for each of the four PHY modes, first fixed without
dynamic adaptation. Experiments for various payload sizes and
distances are executed for each fixed PHY mode. Each of those
experiments (for each distance and each payload size) was evalu-
ated for a duration of 5 min.
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Figures 5.12 to 5.15 depict the results for fixed PHY modes
SINGLE through OCTA. The y-axis denotes MAC layer throughput
in b/s and the x-axis denotes distance in cm. The error bars vi-
sualize the standard deviation. PHY mode SINGLE (Figure 5.12)
works reliably up to 160 cm. These results confirm the measure-
ments from Chapter 3 depicted in Figure 3.20. The more accu-
rate oscillator on the ARM board improves synchronization and
therefore slightly increases communication distance about 10 cm.
Using 200 B messages, a maximum throughput of approximately
850 b/s for the aforementioned distances can be achieved. This
result matches the theoretical maximum throughput as calcu-
lated in Section 5.2.2. The maximum distance where successful
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Figure 5.12: Single link throughput measurement results using PHY

mode SINGLE for different packet sizes and variable dis-
tances. A maximum throughput of 850 b/s is achievable and
communication is stable up to a distance of 170 cm.
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Figure 5.13: Single link throughput measurement results using PHY

mode DOUBLE for different packet sizes and variable dis-
tances. A maximum throughput of 1.55 kb/s is achievable
and communication is stable up to a distance of 150 cm.
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Figure 5.14: Single link throughput measurement results using PHY

mode QUAD for different packet sizes and variable distances.
A maximum throughput of 2.85 kbit/s is achievable and
communication is stable up to a distance of 90 cm.
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Figure 5.15: Single link throughput measurement results using PHY

mode OCTA for different packet sizes and variable distances.
A maximum throughput of 4.72 kbit/s is achievable and
communication is stable up to a distance of 60 cm.

transmissions are still possible is at about 170 cm, albeit with a
throughput of only 100 b/s.

PHY mode DOUBLE (Figure 5.13) achieves a maximum through-
put of 1.55 kb/s up to a distance of 140 cm. Again, this result lies
within the magnitude of the theoretical maximum of 1.61 kb/s,
deviating only a few percent from the theoretical value. Com-
munication is possible up to 160 cm, but with heavy losses in
throughput. PHY mode QUAD (Figure 5.14) works reliably up to
90 cm with a maximum throughput of 2.85 kbit/s (more than 90 %
of the theoretical maximum). Maximum throughput is achieved
with PHY mode OCTA (Figure 5.15). The throughput has increased
to 4.72 kbit/s, which is equal to more than 85 % of the theoretical

149



adaptive visible light communication

0 20 40 60 80 100 120 140 160 180 200

Communication Distance [cm]

0

1000

2000

3000

4000

5000

6000

T
h

ro
u

g
h

p
u

t 
[b

/s
] 1 Byte

10 Byte
20 Byte
50 Byte
100 Byte
150 Byte
200 Byte

Figure 5.16: Single link throughput measurement results using AARF

to dynamically adapt the PHY mode for different packet
sizes and variable distances. A maximum throughput of
4.70 kbit/s is achieved at distances up to 50 cm. At the same
time thanks to the dynamic PHY mode adaptation the com-
munication stays reliable up to a distance of 160 cm.

maximum. The communication link stays reliable up to a dis-
tance of 60 cm.

The results can be summarized as follows: the higher the PHY

mode, the shorter the communication distance that can be cov-
ered. Increasing the PHY mode leads to shorter subintervals and
therefore less time to collect incoming photons. The light inten-
sity decreases with communication distance so that fewer pho-
tons can reach the sensing LED. Hence, at a certain distance, not
enough photons can be collected during a subinterval to signif-
icantly contribute to the LED’s discharge and therefore no valid
bit can be decoded. Additionally, larger payloads reach higher
throughput because of the PHY and MAC layer overhead. The
point at which shorter messages perform better than longer ones
is reached when the probability for bit errors is so high that send-
ing shorter messages with a higher framing overhead yields a
higher expected throughput, due to fewer lost messages.

To evaluate the effectiveness of the dynamic PHY mode adapta-
tion, the following results are compared with the results obtained
with a fixed PHY mode. The throughput is measured again with
the same setup as before, but without specifying the mode. Thus,
libvlc uses the modified AARF algorithm to select the optimal PHY

mode dynamically. The results of this experiment are shown in
Figure 5.16. The adaptive PHY mode selection procedure always
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starts at the slowest mode and probes for the applicability of the
next higher mode after a couple of frames have been transmit-
ted successfully. If the probing packet succeeds, the PHY mode
is changed accordingly and an attempt to transmit faster occurs
again some frames later. Should the probing packet fail, the cur-
rent PHY mode is maintained and the waiting period for the next
probing packet is doubled. This behavior has the advantage that
it is always able to detect the best possible PHY mode for a certain
distance (and signal strength), as becomes evident when com-
paring the graphs. One drawback of this tentative approach is
the increased uncertainty in the transmission duration, and thus
throughput, which is visible in the considerably higher error bars
in Figure 5.16. Nonetheless it shows that the adaptive method
succeeds to chose the best available PHY mode at all distances
resulting in optimal throughput.

Network

In this measurement series, the adaptive PHY mode selection in
a network of twelve devices arranged in a circle is evaluated. An
LED is used as sender and receiver. The network consists of six
AVR and six ARM boards, which are added one by one to the net-
work in an alternating fashion. For each number of devices, net-
work throughput for various payload sizes is measured. An ex-
periment for each packet size lasts 5 min. The same testbed setup
as shown in Figure 3.26 is used (with the described hardware
changes). The AVR boards are capable of using PHY mode SINGLE

and DOUBLE. The ARM boards support up to PHY mode QUAD in
this configuration. These capabilities are set by the measurement
application and used by libvlc to transmit at optimal rates (de-
termined by AARF). For this measurement, all devices transmit
at saturation, selecting a random receiver (not themselves) for
each transmission. Furthermore, default MAC layer parameters
are used and the FEC threshold is set to 30 B.

The measurement results are shown in Figure 5.17. The y-axis
denotes throughput in b/s and the x-axis denotes the number of
participating (and transmitting) devices. The error bars show the
standard deviation. When only two devices (one AVR and one
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Figure 5.17: Network throughput measurement results for mixed (AVR
and ARM) devices. AARF is used to dynamically adapt the
PHY mode. Results for different payload sizes and for two
to twelve transmitting devices are shown. A throughput of
approximately 900 b/s can be achieved with twelve trans-
mitting devices.

ARM board) are active, the maximum supported PHY mode by
both platforms is PHY mode DOUBLE. The two devices can trans-
mit using short contention windows, since collisions in this setup
are unlikely, leading to a throughput close to the theoretical max-
imum of approximately 1.6 kb/s. Adding more devices to the
network diminishes the throughput due to the higher probability
of collisions. The stable behavior of the system for a large range
of number of devices (from three to nine), shows that the col-
lision avoidance provided by the MAC layer works reliably, also
for dynamic PHY modes. Nevertheless, for more than nine trans-
mitters the total system throughput considerably decreases, since
collisions and congestion become more likely. With 12 transmit-
ting devices, a maximum throughput of approximately 900 b/s
can be achieved. Having a network of devices based on different
hardware cannot exhaust the theoretical limits, but nevertheless
libvlc can provide a stable network performance.

Figure 5.18 shows results for the same testbed setup for two
to twelve devices, but this time using only devices with ARM pro-
cessors. They are configured to use AARF to dynamically choose
the appropriate PHY mode. The communication partner for each
transmission is randomly selected. The highest selectable PHY

mode is OCTA (only ARM-based devices are present). The result-
ing throughput is significantly higher than with a mixed setup.

152



5.3 evaluation

2 3 4 5 6 7 8 9 10 11 12

# Transmitting Devices

0

1000

2000

3000

4000

5000

6000
T

h
ro

u
g

h
p

u
t 

[b
/s

]
1 Byte
10 Byte
20 Byte
50 Byte
100 Byte
150 Byte
200 Byte

Figure 5.18: Network throughput measurement results for ARM devices.
AARF is used to dynamically adapt the PHY mode. Results
for different payload sizes and for two to twelve transmit-
ting devices are shown. A throughput of approximately
3.2 kb/s can be achieved with twelve transmitting devices.

The network shows the typical behavior of a CSMA/CA protocol.
Throughput is slightly increasing (when adding more devices)
until saturation is reached; at this point, collisions start to be
more probable and throughput decreases again for each addi-
tional device, but communication stays stable. For 200 B packets,
throughput can reach up to almost 5 kb/s for nine devices partic-
ipating in the network. For the maximum number of twelve de-
vices, a four times higher throughput of approximately 3.2 kb/s
is reached when compared to the results of Section 3.5.3.

5.3.3 Light Bulb-to-LED Communication

Since libvlc does not only support LED-to-LED channels, but also
allows the use of LED-only devices in combination with LED light
bulbs equipped with dedicated sensors as introduced in Chap-
ter 4, such a heterogeneous setup is evaluated in the following.
The throughput performance for a system where a light bulb
transmits data to a device with an LED as receiver is measured.
Unlike before, data is sent as broadcast messages to also present
the performance for unacknowledged data transmissions. The
testbed setup is illustrated in Figure 5.19. The light bulb is in-
serted into a table lamp and aligned with the receiving LED as
shown in the figure. Both devices employ an ARM processor to
enable all available PHY modes and can be moved back and forth
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Light Bulb (TX) LED (RX)

0-200 cm

Figure 5.19: Light bulb-to-LED communication testbed setup. The light
bulb is aligned with the receiving LED as shown in the pic-
ture. The lamp and the LED device is moved back and forth
to cover communication distances up to 200 cm. The receiv-
ing device uses an ARM processor to be able to support all
available PHY modes.

to realize communication distances between 0 to 200 cm. Experi-
ments for various distances and payload sizes are conducted for a
duration of 5 min each. All experiments are repeated for the four
available PHY modes (fixed without AARF). The FEC threshold is
set to 30 B and default MAC parameters are applied.

Figures 5.20 to 5.23 show the results of the measurement cam-
paign for PHY mode SINGLE to OCTA. The y-axis denotes MAC layer
throughput in b/s and the x-axis denotes communication dis-
tance in cm. The error bars indicate the standard deviation. Since
the adaptive PHY mode selection is based on transmission statis-
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Figure 5.20: Throughput measurement results for light bulb-to-LED com-
munication using PHY mode SINGLE. Results for different
packet sizes and variable distances are shown. A maximum
throughput of approximately 950 b/s is achievable and com-
munication is stable up to a distance of 180 cm.
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tics, it cannot be used for broadcast messages due to the lack
of ACKs. It becomes evident from the plots that the maximum
throughput is higher than with acknowledged messages, which
is understandable, since the sender does not need to wait for an
ACK before sending the next packet. The difference in throughput
is most noticeable for PHY mode OCTA, where the LED setup with
ACK achieves a maximum throughput of about 4.72 kb/s and the
light bulb-to-LED setup reaches 5.46 kb/s for a 200 B payload, an
increase of about 15 %. Thanks to the higher light intensity pro-
duced by the light bulb, further communication distances than
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Figure 5.21: Throughput measurement results for light bulb-to-LED com-
munication using PHY mode DOUBLE. Results for different
packet sizes and variable distances are shown. A maxi-
mum throughput of approximately 1.7 kb/s is achievable
and communication is stable up to a distance of 170 cm.

0 20 40 60 80 100 120 140 160 180 200

Communication Distance [cm]

0

1000

2000

3000

4000

5000

6000

T
h

ro
u

g
h

p
u

t 
[b

/s
] 1 Byte

10 Byte
20 Byte
50 Byte
100 Byte
150 Byte
200 Byte

Figure 5.22: Throughput measurement results for light bulb-to-LED com-
munication using PHY mode QUAD. Results for different
packet sizes and variable distances are shown. A maxi-
mum throughput of approximately 3.1 kb/s is achievable
and communication is stable up to a distance of 160 cm.
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Figure 5.23: Throughput measurement results for light bulb-to-LED com-
munication using PHY mode OCTA. Results for different
packet sizes and variable distances are shown. A maxi-
mum throughput of approximately 5.5 kb/s is achievable
and communication is stable up to a distance of 120 cm.

for the LED-only case can be reached. Yet, it is limited by the sen-
sitivity of the LED, leading to a relatively modest improvement in
the maximum distance of about 20 cm for PHY mode SINGLE and
DOUBLE. Nevertheless, for PHY mode QUAD and OCTA, the maximum
communication distance is almost doubled to 160 cm respectively
120 cm when compared to the LED-only case. The results demon-
strate that libvlc can also support heterogeneous communication
links.

5.3.4 Light Bulbs

This section presents results for measurements conducted with
LED light bulbs equipped with sensors for reception as intro-
duced in Chapter 4. A network formed by up to six light bulbs is
evaluated for the four available PHY modes and AARF. Further-
more it is demonstrated that light bulb networks can also be
formed using only indirect light. No direct line of sight is nec-
essary for two light bulbs communicating with each other.

Network

Whereas Section 5.3.3 reported results for a mixed setup of LED

light bulbs and LED-only devices, the content of this section de-
scribes the testbed and results for a network of light bulbs. For
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this measurement campaign, six light bulbs (in floor lamps) are
arranged in a star-like shape, each 2 m apart from the center), us-
ing the devices on the edges as dedicated senders and the light
bulb in the center of the star as the dedicated receiver. Experi-
ments for various payload sizes and one to five transmitting de-
vices are each conducted for a duration of 5 min. These measure-
ment series are repeated for all available PHY modes and the dy-
namic PHY mode selection based on AARF. FEC is enabled for PHY

layer payloads of 30 B and larger, and default MAC parameters are
used.

Figures 5.24 to 5.28 show the results for each fixed PHY mode as
well as the effect of adaptive mode selection. The y-axis denotes
the total network throughput, which is the sum of throughputs
achieved for each sender, in b/s. The x-axis denotes the number
of transmitting devices. The results for all four PHY modes show a
stable throughput for the various number of senders, demonstrat-
ing a working MAC protocol. The achieved maximum throughput
can be compared with the results for single link throughput for
all PHY modes and is within a few percent of the theoretical max-
imum throughput. For PHY mode OCTA, a payload size of 200 B,
and five devices, a throughput of more than 4.5 kb/s is reached.

The dynamic PHY mode selection, using a modified AARF, pro-
vides slightly inferior results than PHY mode OCTA for more than
three transmitters and packet sizes above 50 B. The maximum
achievable throughput is 4.65 kbit/s for three transmitting de-
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Figure 5.24: Throughput measurement results for a light bulb network
using PHY mode SINGLE. Results for different payload sizes
and one to five transmitting devices are shown. A through-
put of 850 b/s is reached for five transmitting devices.
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Figure 5.25: Throughput measurement results for a light bulb network
using PHY mode DOUBLE. Results for different payload sizes
and one to five transmitting devices are shown. A through-
put of 1.7 kb/s is reached for five transmitting devices.
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Figure 5.26: Throughput measurement results for a light bulb network
using PHY mode QUAD. Results for different payload sizes
and one to five transmitting devices are shown. A through-
put of 2.8 kb/s is reached for five transmitting devices.

vices. This suggests that the parameters for the adaptive selec-
tion, which determines how the algorithm reacts to dropped or
retransmitted frames, are set too conservatively in a scenario with
higher contention probability. This leads to hasty scale-backs, and
a slower PHY mode is selected too quickly, and the waiting time
for the next probing packet is too long to quickly adapt to the re-
covery characteristics of a congested channel. Still, the results for
the adaptive PHY mode selection are close enough to the results
achieved with PHY mode OCTA to consider it a working prototype.
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Figure 5.27: Throughput measurement results for a light bulb network
using PHY mode OCTA. Results for different payload sizes
and one to five transmitting devices are shown. A through-
put of 4.6 b/s is reached for five transmitting devices.
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Figure 5.28: Throughput measurement results for a light bulb network
using AARF to dynamically determine the optimal PHY

mode. Results for different payload sizes and one to five
transmitting devices are shown. A throughput of 4.2 b/s is
reached for five transmitting devices.

No Line of Sight Communication

The highly sensitive light bulb sensors and the improved syn-
chronization methods allow for line of sight communication over
several meters. One of the most often heard critique points for
VLC system is that only line of sight communication is possible.
Figure 5.29 shows that also no line of sight communication is pos-
sible if accurate enough sensing is available. LB1 is moved from
line of sight to a no line of sight location while communicating
with the static LB2. The plot shows RSSI values retrieved from re-
ceived data frames for various line of sight and no line of sight
positions of LB1. While in line of sight, LB1 moves closer to LB2,
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Figure 5.29: No line of sight communication via reflection on a room
door. LB1 is moved from line of sight to no line of sight (from
left to right). The plot shows RSSI values retrieved from re-
ceived data frames in relation to the position of LB1. At the
transition point (60 cm and further) from line of sight to no
light of sight, communication is still possible.
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and therefore the RSSI value is slightly increasing. At a distance
of 60 cm, the RSSI value suddenly drops to 30. This is the point
where the light bulbs start to communicate via the reflection on
the door (regular wooden door, painted white). The communi-
cation also stays stable when moving LB1 further away from the
door. At 150 cm, LB1 is at the same horizontal coordinate but sep-
arated by a wall and still communicates with LB2. To reach even
further, the application running on top of libvlc can configure a
PHY parameter specifying the light level difference at which bits
can still be distinguished. This value is closely related to the RSSI

value. Setting it to a value of 10 and above still guarantees stable
communication and enables reception at an RSSI level close to 10.
Reflection not only works on doors but also an walls and ceilings
and evens allow communication between different floor levels.

5.4 discussion and conclusion

This chapter introduced various PHY layer modes and a dynamic
PHY mode selection scheme based on AARF. To allow the higher
PHY modes to work properly, an additional hardware platform
based on a 32-bit ARM processor from STM is proposed. The pro-
cessor provides higher performance due to the 32-bit architec-
ture and higher clock rate, whereas the price level is similar as
for classic 8-bit microcontrollers. To run libvlc on different hard-
ware and to reduce the effort needed to port the communication
library to another platform in the future, a HAA is integrated in
the existing VLC software stack. Furthermore, improved receiving
strategies increase the software-based synchronization accuracy
leading to higher performance and larger communication ranges.
Data throughput could be increased more than 5 times for all
channel types (LED, sensor, mixed) with mostly software changes
only, demonstrating the capabilities of a flexible software-based
system.

A software-based VLC system can work with a wide range of
sensing hardware. In scenarios that must work with minimal
hardware components (e.g., because cost or energy consumption
are critical parameters), a single LED can be used as a sender and
receiver. If the environment allows the usage of an LED light bulb
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(with a dedicated sensor for receiving), larger distances can be
covered. As LED light bulbs and LED-only systems use the same
PHY and MAC layer integrated into libvlc, they can inter-operate
and form a convenient platform for indoor room-area networks.

Realistic VLC systems must work across a wide range of en-
vironmental conditions; close to a window that brings sunlight
into a room, for mobile devices (maybe attached as tags to phys-
ical objects), or without direct line of sight (either because of the
device placement or because a moving object or person blocks
temporarily the view). The software-centric approach described
allows to easily adapt the link resilience based on the strength
of the input signal. Adaptivity can deal with varying distances
between sender and receiver, the hardware capabilities (sensor
properties and processor features), or environmental conditions.
Compared to a static system, an adaptive VLC system can trans-
late the increased channel capacity into up to 8 times higher bit
rates, can communicate over significantly larger distances, or al-
low communication without a direct line of sight, allowing VLC

to be used to communicate around a corner or between different
floors of a building.
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6E X P L O R AT I O N A N D A P P L I C AT I O N S

The previous chapters introduced a prototype VLC system that
builds upon basic microcontrollers running a software-defined
communication stack called libvlc. The proposed communication
protocols are evaluated for different scenarios such as LED-to-LED

networks or connected light bulbs. The results demonstrate that
the proposed concepts are working and that they are ready to
be to applied to real-world devices, extending them with VLC

capabilities.
This chapter is about exploring the many application areas of

VLC and demonstrating how existing devices can be used to in-
teract with VLC networks. Sections 6.1 and 6.2 discuss how to es-
tablish a VLC link between smartphones and VLC-enabled devices,
such as toys or LED light bulbs. The first approach described in
Section 6.1 uses a battery-less extension device that plugs into
the phone’s audio jack, enabling bidirectional communication us-
ing an LED and photodiode driven by audio signals. The second
approach discussed in Section 6.2 goes even further and does not
rely on additional devices. It employs the integrated smartphone
camera as a sensor and exploits the rolling shutter effect to enable
software-based real-time decoding of VLC data streams generated
by devices running libvlc.

Section 6.3 explores the ability of VLC to make communication
visible. It describes an intuitive approach how to use a modi-
fied flash light as a remote control to configure lighting systems
by simply pointing at the illumination sources. The light is em-
ployed at the same time to guide the user (to provide visual
feedback) and to carry information (to send commands) from
the flash light to the targeted light source. The applications ad-
dressed in this chapter showcase only a small selection of many
direction that can be investigated explored to effectively apply
VLC as a communication technology.
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6.1 from sound to sight

This section presents the design, implementation and evaluation
of a miniature low-cost passive device that can be plugged into
an audio jack connection of a mobile phone to enable two-way
VLC communication based on the protocol introduced in Chap-
ter 3. The device uses an LED and a photodiode to transmit re-
spectively receive light signals. The use of a photodiode instead
of a receiving LED is discussed in Section 6.1.1. When connecting
such a device with a phone’s headset audio jack, the phone can
exchange data through light at a data rate of 700 b/s in both di-
rections. The miniature VLC device uses the audio output of the
phone to drive an LED (TX), and the microphone input to receive
from a photodiode (RX).

The audio jack device is battery-free and operates without the
involvement of a microcontroller. A software running on the mo-
bile phone is responsible to generate the audio signals to drive
the LED and modulate the light. The incoming light signal sensed
by the photodiode and recorded by the microphone is also di-
rectly processed on the phone. Since the application can receive
and generate data frames in real-time it is able to maintain a
bidirectional communication link with other devices running the
libvlc communication stack.

This section is structured as follows. Section 6.1.1 presents the
hardware design of a VLC peripheral extension device for smart-
phones using the audio jack as interface. The device is battery-
free and only powered and operated through audio signals gen-
erated by the mobile phone. Further, the device is equipped with
a photodiode to feed incoming modulated light as electrical sig-
nals into the microphone input. Sections 6.1.2 describes the smart-
phone application software operating the audio jack peripheral
device through audio signal processing only; there is no need for
an additional microcontroller. Microphone input data is analyzed
and decoded in software and arbitrary data packets can be gener-
ated in real-time using the peripheral’s LED as a communication
front end. Section 6.1.3 discusses the evaluation of the designed
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hardware together with application software running on Apple
iOS1 devices; results for different host devices are reported.

6.1.1 Hardware Design

This section focuses on how to extend mobile devices, such as
smartphones and tablets, with VLC capabilities. Although these
devices are already equipped with a flash light (light emitter) and
camera (light receiver), which can be used for communication [12,
14], they do not provide enough flexibility to work well together
with other VLC-enabled devices. Smartphone operating systems
cannot support real-time scheduling, and control over the flash
light and camera is often restricted. These constraints limit per-
formance and stability of a VLC link. The system described in the
following is based on a passive peripheral device that plugs into
a smartphone’s audio interface and can emit and receive light by
using the phone’s audio system. The peripheral device is battery-
free and powered only through the audio signals, yet the com-
munication protocols are handled without additional microcon-
troller or signal processors – light is directly modulated through
audio signals generated in real-time by the smartphone, and in-
coming signals are converted by the microphone and analyzed
by the smartphone’s software. The system described can interact
with existing VLC-enabled toys or other consumer devices that
implement libvlc’s VLC protocols.

Audio signals are AC-coupled, hence it is not possible to di-
rectly generate an on and off signal to drive an LED. Further, even
with the loudest audio settings, the peak voltage values of the
audio output signal is still in the millivolts range (around 100 to
200 mV, depending on the device) and therefore not large enough
to emit light with reasonable intensity using a standard LED. The
proposed peripheral device uses a hardware design based on the
Hijack project2 [42, 43]. The device’s schematics are shown in
Figure 6.1 on the left side. The schematics present a low-complex
design with only a handful of components (no microcontroller

1. https://de.wikipedia.org/wiki/Apple_iOS
2. http://web.eecs.umich.edu/~prabal/projects/hijack/
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Figure 6.1: Audio jack peripheral schematics and assembled PCB. Right
part: Coupled inductors (T1) transform the audio signal so
that the voltage is high enough to drive the LED (LED1). An
efficient MOSFET rectifier bridge (Q1-Q4) inverts the negative
part of the signal to provide additional forward bias for the
LED. The photo current generated by the photodiode (PD1)
is converted to a voltage using a resistor (R1) and sampled
through the microphone input. Left part: fully assembled PCB

with 3D-printed case.

needed). The audio signals of the left and right (stereo) channel
are joined together to increase the available current and power.
The signals are transformed by the coupled inductors (T1)3. These
inductors are passive components that increases the voltage at
the same electric power (current is decreased). The higher volt-
age is needed to drive the LED. Already with this raw signal, the
LED emits light, albeit with low intensity. To increase the light
emission further, the signal is rectified (Q1-Q4). This step makes
it possible to also use the negative parts of the generated audio
signal to emit light instead of reverse biasing the LED. The rec-
tifier is built as an efficient MOSFET rectifier bridge to minimize
voltage loss. Finally, a capacitor is used to smooth and stabilize
the LED’s input voltage (the same LED from Kingbright as men-
tioned in previous chapters is also used here).

Instead off using the LED also for reception, the device uses a
photodiode to convert modulated light back to electrical signals.
Using the same LED to send and receive is not trivial for this
setup. There is a bias voltage of 2 V applied to the microphone in-
put and therefore, to switch between emitting and receiving light,

3. https://octopart.com/lpr6235-253pmlc-coilcraft-11914358
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the LED needs to be attached and detached from and to the micro-
phone signal line. As the goal is to keep the hardware as simple
as possible, the focus is on how to modulate the light with the
help of audio signals and to allow bidirectional communication
with a low-complex circuit. The peripheral device uses the mi-
crophone (and electronic circuit behind it) as an ADC to measure
the voltage over a resistor (R1). Incident light generates a photo
current in the photodiode (PD1). The current is proportional to
the light intensity and can be measured as voltage drop over the
resistor. Figure 6.1 on the right shows the assembled PCB with
and without casing. The device is still small, fits on a board of
1.7 cm by 2.7 cm, requires no battery, and can be built with only
a handful of inexpensive electronic parts.

6.1.2 Smartphone Software

The software part of the VLC system implemented for iOS is re-
sponsible for generating the waveforms needed to modulate the
peripheral device’s LED to conform with libvlc’s PHY layer. It also
analyzes the incoming signal from the photodiode and decodes
it. The software consists of three principal modules: the main
module, the sender module, and the receiver module. Because
sender and receiver use the same interface to the hardware, they
are partly implemented in a common transceiver module. Data
passed from the application to the VLC main module is encapsu-
lated in VLC frames and added to a message queue. The main
module is also in charge of the MAC layer as specified by libvlc.
From there the frames are passed to the sender in First In – First
Out (FIFO) order. Incoming messages are processed by a decod-
ing pipeline and finally delivered to the main module, which
dispatches a MAC layer ACK if necessary and delivers the data to
the application.

Sender

The core of the sender is a callback function that is invoked by
the hardware whenever it needs to output sound buffers. Sound
buffers contain the values that are output via the sound system’s
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DAC to generate the audio signal. To ensure that the callback func-
tion returns before a buffer underrun occurs, the templates for
the three appearing patterns (idle COM slot and COM slot for bit
0 and 1) are pre-built at start-up and only need to be copied into
the target buffers (this system supports only PHY mode SINGLE

due to the limited sampling rate of 48 kHz). A template always
comes with the following ILLU slot (with possible compensation)
attached. The built-in sound processor of iOS devices smooths
quick on and off patterns. It was determined that with a sample
rate of 48 kHz and a signal frequency of 10 kHz the effect could
be reduced to an acceptable level while still delivering enough
power to the LED. The 10 kHz signal is transformed and rectified
by the peripheral device to deliver a constant forward voltage to
the connected LED.

An example of a generated audio signal based on the prede-
fined wave forms is shown in Figure 6.2. An oscilloscope screen-
shot shows the smartphone’s stereo audio output signal. To pro-
duce an idle pattern, the 10 kHz signal (generating an ILLU slot)
and no signal (creating a COM) is alternating. The audio signals to
generate light patterns for COM slots carrying bits and ILLU slots

ILLU COM ILLU COM ILLU COM ILLUILLUCOM COM

Figure 6.2: Stereo audio signal to generate alternating ILLU and COM

slots. An oscilloscope screenshot is illustrating the smart-
phone’s audio output signal. A 10 kHz signal (transformed
and rectified by the peripheral device) drives the LED dur-
ing an ILLU slot. An idle COM slot (no light output) is simply
created by the absence of any signal.

168



6.1 from sound to sight

with compensation parts can be created analogously by enabling
the 10 kHz audio signal for a certain amount of time. There is no
synchronization mechanism integrated in the smartphone soft-
ware. It is not necessary for the receiver since the incoming sig-
nal is oversampled by the microphone part of the audio system.
When transmitting, it is expected that a receiver synchronizes to
the produced light signal, if necessary.

Receiver

Whenever the hardware has input audio buffers ready, contain-
ing the captured waveforms from the microphone input, a mech-
anism is invoked to preprocess these buffers and to copy them to
user memory where they are forwarded to the decoding pipeline.
The first stage of the pipeline is the physical decoding stage. It
compares the audio frames to a threshold with alternating sign.
A value below the negative threshold value is considered to origi-
nate from incoming light, while a value above the positive thresh-
old means there was no light detected. A change between light
and no light is called a flip. The decoder then calculates the num-
ber of samples between the flips. These run lengths correspond
to the on and off pattern of the transmitting LED. By analyzing
these patterns, individual bits can be decoded. The decoded bits
are accumulated to bytes and passed to the next stage.

Due to a high level of noise in the signal, short intervals can-
not be reliably detected with a resolution of only 24 samples per
slot (48 kHz is the maximum sampling rate). Thus, a simplified
decoding scheme is introduced that works as follows: if there is
no flip during a COM slot, no bit is detected. If there is a flip, the
decoder counts the samples and determines in which half of the
COM slot the flips occurs. With this information, it can be con-
cluded whether the light belongs to D1 or D2 to successfully de-
code a bit. Furthermore, the inability to detect short intervals pre-
vents the system from being able to synchronize to another VLC

device (as it cannot detect the synchronization intervals which
are part of libvlc’s PHY layer). As long as only one smartphone is
in a network, this limitation does not pose a problem as the other
VLC devices can synchronize to the smartphone’s pattern. The
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second pipeline checks for the SFD in the decoded bit stream and
if detected, the headers are decoded and the payload is retrieved.

Signal Feedback and Filtering

To drive the LED and to follow the alternating ILLU and COM slot
pattern, the audio system is continuously generating the neces-
sary waveforms. Because of the simple circuitry included in the
peripheral device, the audio output signal is leaking into the re-
ceiver (microphone), leading to two problems: First, there is a
10 kHz feedback signal during ILLU slots, making it impossible
to reliably detect the end of ILLU slots. Second, while transmit-
ting data, the generated audio signals mimicking the data and
compensation intervals are also fed back into the receiver, lead-
ing to more signal decoding problems. To prevent both problems,
the waveform buffers from the microphone are preprocessed be-
fore decoding. By keeping track of the COM slot sample times
when generating the output waveforms, the corresponding input
buffers are filtered to remove the leaked signal.

The smartphone application also includes an oscilloscope-like
visualization. The microphone input signal can be paused or dis-
played in real-time. This visualization tool is used in Figure 6.3
to illustrates the filtering process. If the peripheral’s light output
is not enabled, no audio signal is leaking into the receiver, hence
a clean input signal can be reported (1). The negative part of the
signal denotes light input. The dashed red line shows the run
lengths between signal flips used by the decoder pipeline to re-
trieve the encoded bits. If the light output is enabled, the software
produces a 10 kHz signal to drive the LED and to follow the ILLU

an COM slot pattern, also leaking into the microphone input (2).
Since it is known when light output is enabled, it can be filtered
by modifying the retrieved audio samples (3). The COM slot begin-
nings and endings are still influenced by the audio signal used to
generated light output. To provide a clean signal for the decoder
pipeline, those parts of the slot are masked out (4). This can be
done without consequences since the signal flips used to decode
the bit stream occur within the slot and not at the borders. While
transmitting, the same filtering procedure is applied to the ILLU
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Figure 6.3: Signal filtering and masking. The dashed red line indicates
the run length pattern found. 1) Input signal while LED off;
2) input signal while LED on; 3) filtered ILLU slot; 4) masked
COM slot borders; 5) filtered ILLU slot while transmitting; 6)
filtered and masked COM slots while transmitting.
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slots (now including the compensation interval) and COM slots
carrying data (6).

6.1.3 Evaluation

The evaluation testbed consists of an iPhone 5S and an iPad mini
(both equipped with Apple’s A7 processor, running iOS 7) and a
VLC prototype device that employs an LED as transceiver and runs
libvlc. The audio jack peripheral device is platform independent.
Other smartphones or tablets, even laptops or desktop comput-
ers (independent of operating systems), could be used for this
evaluation as long as they provide a 3-channel audio jack plug
with a matching pinout. All experiments are conducted in an of-
fice space and without special shielding from artificial light or
sunlight.

Acknowledgment Timeout

The VLC device and smartphone both run a MAC layer capable of
data frame acknowledgments and retransmissions. After trans-
mitting a data frame, the transmitter waits for the ACK timeout.
If no ACK from the data frame’s destination is received within this
time period, the frame counts as lost and the transmitter retrans-
mits the same frame again. This procedure is repeated until an
ACK is received or a fixed number of retransmissions is reached.
The VLC device running libvlc can keep ACK timeouts short since
the frame processing only lasts a few milliseconds. With a short
ACK timeout, the communication channel can be used more effi-
ciently guaranteeing higher data throughput.

A smartphone operating system is not a system with real-time
guarantees and the main processor is used for several different
tasks at the same time. Also, it may take some time to analyze
incoming data from the peripheral device and decode the content.
Furthermore, the audio signals needed to transmit an ACK are
generated on demand specifically for the received data frame;
this step takes additional time. Hence, libvlc’s ACK timeout must
be adjusted to enable a successful and optimized data exchange
with a smartphone using the audio jack extension device.
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To find a proper value for the ACK timeout the following ex-
periment is conducted: the VLC device is generating data packets
(saturation) with the smartphone as destination. The smartphone
needs to acknowledge this data. If the ACK does not arrive on
time, the data frame is retransmitted, resulting in throughput
drop. To find an optimal value, the timeout is increased step by
step. The same experiment is also repeated for different packet
sizes so see if the processing time (on the smartphone) has any
impact on the delay. The results for the iPhone 5S are shown
in Figure 6.4 (results for the iPad mini are very similar). The y-
axis denotes throughput in b/s and the x-axis denotes the cho-
sen ACK timeout in ms. The error bars show the standard devia-
tion. For timeouts of 125 to 130 ms throughput is stable but not
close to the theoretically reachable maximum, meaning that the
ACK arrives too late and packets are always retransmitted (and
duplicates dropped at the receiver). Between 130 ms and 150 ms
throughput is increasing slowly, but the plot also shows increased
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Figure 6.4: Throughput measurement results for various ACK timeouts
and payload sizes for an iPhone 5S. For a timeout of up to
150 ms, the ACK might arrive too late and the correspond-
ing data frame is retransmitted reducing throughput. From
151 ms, the ACK arrives in time, triggering no retransmission
and therefore maximizing data throughput.
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error bars, leading to the conclusion that the ACK reaches the
destination sometimes within the timeout window. For 151 ms
and longer, the error bars are disappearing again and through-
put stays stable. Measurements for higher timeouts are omitted
since the throughput does not increase anymore. Also, the packet
length and therefore the decoding time on the smartphone seems
not to have any impact. In summary, the measurements show
that a delay of around 150 ms (libvlc’s default is 84 ms) is opti-
mal to maximize throughput for a single communication link.
As these experiments were conducted with older hardware, this
value might be lower (and closer to the default value) with cur-
rent smartphones.

Distance Measurements

To be useful for some use cases, the peripheral device must be
able to cover a certain communication distance and achieve a sta-
ble and reasonable data throughput. Figures 6.5 and 6.6 show
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Figure 6.5: Throughput measurement results (without FEC) for various
distances and payload sizes and for a communication chan-
nel between an iPhone 5S, using the introduced audio jack
peripheral, and a VLC device based on libvlc. A maximum
throughput of 700 b/s for a payload size of 150 B is achieved.
The communication link stays stable up to a distance 35 cm.
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Figure 6.6: Throughput measurement results (without FEC) for various
distances and payload sizes and for a communication chan-
nel between an iPad mini, using the introduced audio jack
peripheral, and a VLC device based on libvlc. A maximum
throughput of 700 b/s for a payload size of 150 B is achieved.
The communication link stays stable up to a distance 50 cm.

measurements for an iPhone respectively an iPad and various
payload sizes. The y-axis denotes data throughput in b/s and
the x-axis denotes communication distance in cm. The error bars
show the standard deviation. The VLC device running the libvlc
firmware acts as data frame generator (saturation). The smart-
phone or tablet receives the data frame and sends back acknowl-
edgments. A transmitted data frame is only accounted for when
also the corresponding ACK is received. The measurement results
for the iPhone show that the throughput stays stable up to 25 cm
at a maximum throughput of 700 b/s for a payload size of 150 B.
With the retransmission scheme in place, it is also possible to
achieve reliable communication up to a distance of 35 cm, but
with losses in throughput. The iPad measurement results show
an increased communication range. This is due to the more pow-
erful audio amplifier included in the iPad which increases the
intensity of the light emissions. The iPad achieves stable through-
put in the same order as the iPhone at a communication dis-
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tance of up to 50 cm. These measurements show that the mobile
device’s audio system has also an impact on the possible com-
munication range. In conclusion, for a communication channel
from the mobile device to a VLC device, 50 cm is a reasonable
distance to remotely interact with other devices such as toys or
other smartphones and tablets. When receiving broadcast data
(e.g., from a light bulb), where no back channel is required, dis-
tances of several meters are possible.

Power Consumption

Highest light emissions are achieved by using the loudest audio
output settings. This setup puts additional stress on the device’s
battery. Also, the computational power consumed to decode and
create data packets cannot be neglected (although checking the
system monitor during measurements always shows a processor
utilization below 10 %). Figure 6.7 shows the battery level for
both iPhone and iPad over time while transmitting and receiv-
ing. The y-axis denotes the battery level as a percentage and the
x-axis denotes the time since the last full charge. The measure-
ments show that the battery lifetime equals to more than four
hours for the iPhone, and more than five hours for the iPad (due
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Figure 6.7: Mobile device battery lifetime measurement results for an
audio jack peripheral in operation. Results for an iPhone and
iPad are shown. For continuous operation, the battery of the
mobile device lasts more than four hours, respectively, five
hours. A general use case assumes only sporadic use of the
peripheral device which is not affecting battery lifetime sig-
nificantly.
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to higher battery capacity). When assuming that the audio jack
peripheral device is not used more than 10 % of the overall usage
time per battery charge, it can be concluded that the peripheral
device does not impact battery lifetime significantly.

6.1.4 Conclusion

Section 6.1 reports on the design, implementation and evaluation
of a smartphone VLC extension device. It uses a smartphone (or
tablet) audio jack as interface and is operated by audio signal
processing. The key design constraints are low-complexity, low-
cost, battery-free operation, and interoperability with the existing
VLC systems based on libvlc. A simple and passive plug-in device
is presented based on only a handful of electronic components
powered by audio signals. Its LED is modulated without the help
of an additional microcontroller, directly via audio signals gener-
ated in real-time by an application running on the mobile device.
The evaluation results demonstrate the VLC communication pro-
tocols implemented in software on the smartphone or tablet pro-
vide stable and reliable communication for distances up to 50 cm,
depending on the device used (and its audio system). These re-
sults show that smartphones and tablets can also be integrated
into existing VLC networks by the addition of only a small pas-
sive component.

6.2 from bars to bits

VLC systems based on libvlc support networking a wide range of
devices with a single protocol. Simple stations (such as toys or
other consumer devices) might have only a single, simple LED

that is used for both, transmitting and receiving data [81, 82, 85].
LED light bulbs enhanced with photo detectors (and including a
SoC that runs an embedded version of Linux) may serve a room-
area network [79, 83, 84]. LED flash lights allow a user to point to
another station and to transmit data (e.g., a command) embedded
in the light beam. A system like EnLighting can support various
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services, either on top of the well-known IP suite or directly using
the underlying VLC protocol.

Smartphones are ubiquitous and could be an attractive plat-
form to host various services based on VLC. E.g., a VLC system
could provide positioning information or could distribute access
keys. Unfortunately, current smartphone models do not have (ac-
cessible) dedicated sensors to handle VLC links. The previous
chapter proposed the addition of an external device to enable
bidirectional communication. This section explores the use of a
smartphone’s camera (without the help of an additional device)
to allow data reception based on existing communication proto-
cols employed by libvlc. Those cameras include a CMOS sensor
array that provides the capability to sense light, usually used to
take photographs or to record videos. Synchronizing the smart-
phone’s sensing efforts with the VLC protocols is a challenge for
an on-board camera, as the camera is driven by the operating
system and therefore cannot be accessed directly for fine granu-
larity control. Additionally, recent smartphone cameras support
a capture rate up to 240 frames per second, which is a sampling
rate too low for many VLC systems. Fortunately, such cameras
suffer from the rolling shutter effect, where the CMOS sensor is
read out line by line, representing a blinking light source as a set
of bright and dark bars [14, 21, 48]. Although a rolling shutter
might create problems when photographing fast moving objects,
its side effects can provide the input for a suitable software solu-
tion to reconstruct the blinking light source. The frame capturing
rate can be multiplied by the number of lines available per frame,
providing a high enough sampling rate to reconstruct VLC sig-
nals.

This section describes the operation of simple, consumer-grade
shutters in relation to libvlc’s PHY layer (Section 6.2.1), followed
by the description of the design and implementation of a robust
decoder based on the rolling shutter effect (Section 6.2.2). Sec-
tion 6.2.3 reports an evaluation, demonstrating possible commu-
nication distances and achievable data throughput.
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6.2.1 Rolling Shutter

Smartphones usually employ a commodity camera with a simple
CMOS sensor array. Many of these cameras use a rolling shutter:
The columns (or rows) of the sensor array are read one at a time
and not all at once (as would be the case for a global shutter).
As a result, a frame captured with a rolling shutter relates to
multiple points in time, because each line of the image sensor is
read out one after the other. This effect can be exploited to in-
crease the sampling rate of the camera. An LED modulated with
an OOK scheme and captured with a rolling shutter camera gener-
ates a barcode-like pattern for each video frame. The width of the
generated bars directly relate to the on and off times of the LED

and can therefore be used to extract encoded data. Figures 6.8
and 6.9 show the effect when the camera is directed at a white
wall that is illuminated by a VLC transmitter following the libvlc’s
PHY layer protocol (for PHY mode SINGLE and PHY mode DOUBLE).
The COM and ILLU slots as well as the data and compensating
(sub)intervals are visible and distinguishable just by looking at
the captured frame.

When capturing a frame, light intensities are measured during
a predefined time interval, which is known as the exposure time.
By choosing a shorter exposure time and therefore reducing the
influence of ambient light, the edges between bright and dark
pixel bars are sharpened. The camera system’s frame rate gives

COM ILLU COM ILLU COM ILLU COMILLU

ILLU D2 D1 D1 D1C2 C1 C1

Figure 6.8: Alternating bright and dark bars caused by the rolling shut-
ter effect when recording PHY mode SINGLE. The captured
light source follows libvlc’s PHY layer as described earlier.
COM slots, ILLU slots, data, and compensation intervals are
clearly visible.
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Q COM ILLU COM ILLU COMILLUCOM ILLU

D2,2 C1,1 C2,2 D1,2 D2,1 C1,2 C2,1 D1,1 D2,2 C1,1 C2,2 D1,1 D1,2 C1,1 C1,2

Figure 6.9: Alternating bright and dark bars caused by the rolling shut-
ter effect when recording PHY mode DOUBLE. The captured
light source follows libvlc’s PHY layer as described earlier.
COM slots, ILLU slots, data, and compensation subintervals
are clearly visible. The subdivided data intervals lead to nar-
rower bars.

an upper bound on how much time is required to read out all
lines of a frame, since the last line has to be reached before start-
ing a new frame. In addition, measurements on an iPhone 6S
and iPhone 5 show that there is a gap between reading out the
last line of a frame and reading out the first line of the following
frame4. In other words, the shutter has the (undesirable) prop-
erty to appear to pause after reading the matrix of photo detec-
tors that make up the camera’s CMOS sensor. During this time, no
measurements are kept, i.e., no line is captured. This idle time
must be considered in the design of an appropriate protocol, be-
cause any signal that is transmitted during this gap is lost.

To empirically assess the length of this gap, an iPhone 6S cap-
tures a scene in slow motion, i.e. at 240 frames per second, with
an exposure time of 6 µs (and an ISO setting of 736). A light source
is turned on every second for 2083 µs, which corresponds to a
bright bar with a width of approximately 50 % of a frame. De-
pending on when a frame is captured, the bar can appear fully
within one frame (Figure 6.10, plot 1) or span over two frames

4. There exists a wide variety of sensor arrays and camera designs built into many
different smartphones [48]. This exploration focuses on iPhone devices as those
are readily available, provide high video capturing frame rates, represent a
large segment of the market (with a slow motion capable camera system), and
are subject to common specifications. Results for Android devices are expected
to be similar.
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Figure 6.10: Averaged line intensities for light pulses of a fixed dura-
tion. Plot 1 shows a pulse completely visible within a single
frame resulting to a width of 417 pixels. Plot 2 and 3 show
the same light pulse, but split over to consecutive frames
resulting in a total width of only 327 pixels. The pixel differ-
ence can be used to calculate the gap duration between two
captured frames.

(Figure 6.10, plot 2 and 3). The plots show the averaged light in-
tensities of each line of a captured frame. It is obvious that the
width of the two partial bright bars is not equal to the width of
the fully visible bar. The width difference can now be calculated
in pixels and converted to a time value. It is concluded that there
is a gap of about 440 µs (with few microseconds of variation) be-
tween consecutive frames when no signal can be received. These
measurements were conducted while the phone was mostly idle
and no other applications were running.

As a consequence, two challenges can be formulated when us-
ing a commodity camera built into a smartphone as an input
device for VLC: First, it is impossible to synchronize camera sen-
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sor readings with incoming light signals since the camera is con-
trolled by the operating system, and second, the rolling shutter
is not continuous, there is a gap between reading the last line of
a frame and the first line of the following frame.

6.2.2 Decoder

The video frame decoder is an iOS application that first config-
ures the camera to capture frame buffers at 240 frames per sec-
ond with a resolution of 720 lines per frame, maximal ISO value
(736), and an exposure time of 6 to 60 µs, depending on the light
source’s intensity. While capturing, the application receives for
each video frame a callback with a pixel buffer in the Y-Cb-Cr5

biplanar color space, where only the Y-plane is of any interest,
because the decoder is only interested in light intensities and not
in the pixels’ actual color values.

Instead of working with the intensities of an entire frame, the
obtained matrix is reduced to an array that represents a row in
the original frame (reducing each captured line to one pixel). The
array is computed by averaging every eighth pixel’s intensity (of
a given line). Considering multiple pixels in a line helps reducing
noise, which exists due to the high sensor sensitivity, i.e. the high
ISO value. Only every eighth pixel is taken into account to reduce
processing time, as accessing every pixel in the frame would al-
ready exceed the time budget defined by the frame rate.

The averaged intensities (720 values) are pushed to a different
thread preventing the operating system from skipping frames in
case the capturing callback takes too long. As a first step, the
worker thread thresholds the intensities based on their mean.
Hence, finding gradients to identify bright and dark bars is af-
terwards a trivial task by iterating over the thresholded input
array and comparing each pair of neighboring entries. Whenever
the value of an entry changes, a negative respectively a positive
edge is found and its relative position in the captured frame is
maintained in corresponding lists.

5. https://en.wikipedia.org/wiki/YCbCr
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To start decoding a transmitted bit pattern, the COM slots car-
rying the information need to be identified. For each frame, the
starting points of COM slots can be obtained by checking for each
negative gradient the following three cases:

1. The next gradient is positive and occurs at a distance of
about 100 pixels, which corresponds to roughly 500 µs.

2. There is a positive gradient at a distance of about 10 pixels
and a negative gradient is about 50 pixels away.

3. The following positive gradient is at a distance of about
50 pixels, and the following negative gradient is approxi-
mately 90 pixels away.

This list can be extended analogously to cover all cases (subdi-
vided data intervals) when handling PHY mode DOUBLE. Case 1

handles an idle COM slot, which is completely dark, and therefore
the next strong gradient belongs to the transition to the following
ILLU slot. Cases 2 and 3 test for the existence of strong gradients
at the start and at the end of a D1 or D2 data interval. To en-
hance stability, the decoder incorporates a fail-safe procedure to
test whether additional fully visible COM slots can be inserted at
the start, in between, or at the end of an already detected COM

slot.
Given the start of a fully visible COM slot, decoding the trans-

mitted symbols is now straight forward. The average intensity of
the D1 interval is compared against the intensity of the D2 inter-
val. If the computed difference is large enough (above a certain
threshold), the corresponding COM slot is decoded to a bit 0 or 1.
In case the difference is too small, the COM slot is considered to be
idle. This threshold is again evaluated on a per-frame basis and
is the mean of the minimal and maximal intensity of the frame.
In case the decoder has received the PHY mode DOUBLE flag in the
PHY header, the average intensity of the D1,1 and D1,2 interval
are checked against the intensity of D2,1 respectively D2,2.

As discussed earlier, there is a gap between two frames where
no light can be received. The decoder must ensure that no sym-
bol is lost during this gap between two consecutive frames. The
PHY layer protocol implemented by libvlc is slightly adapted to
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add additional redundancy during ILLU slots to be able to bridge
this gap. Instead of compensating the additional light output of
a COM slot in a single block during the following ILLU slot, it is
compensating in smaller intervals, inversely mirroring the pulses
as they occur in the COM slot. The ILLU slot contains now the
same information (inversed) as the preceding COM slot, in addi-
tion to still compensating for the light output to avoid flickering.
Since the ILLU slot is ignored by other VLC devices, the protocol
is still compatible with the original version. Although a gap of
about 440 ms was concluded, a larger loss of 500 ms is assumed,
simplifying the following explanation to exploit the redundancy
of ILLU slots.

Figure 6.11 shows a COM and ILLU slot that cannot be com-
pletely received due to a gap of 500 ms (between two consecutive
frames). Depending on the location of the gap, one of the follow-
ing situations sets in:

• In the simplest case, the gap coincides with the ILLU slot,
causing the preceding COM slot to be fully visible. Thus, the
COM slot can be decoded as every other fully visible COM

slot.

• The COM slot is completely lost, inducing the successive
ILLU slot being fully visible. Since the ILLU slot is the inverse
of the associated COM slot, the ILLU slot can be handled like
a COM slot after inverting its intensities.

• In case the gap starts during a COM slot, not only parts of
the COM slots, but also parts of the ILLU slot are affected.
Fortunately, the lost COM parts exist in inverted form in
the ILLU slot and vice versa, because C1 and C2 begin at
the same relative offset as D1 respectively D2. Therefore by
combining COM and ILLU slot, there is enough information
for reconstruction.

• The last case concerns the gap beginning during an ILLU

slot. The antecedent COM slot is fully visible and can thus
be normally processed, but some parts of the next COM slot
are not received. These parts can be restored, using the cor-
responding ILLU slot.
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Figure 6.11: A gap of up to 500 ms can start at an arbitrary location dur-
ing the transmission of a data packet in PHY mode SINGLE.
75 % and 100 % of the D1 respectively D2 interval are lost in
this case. However, the encoded bit can be reconstructed by
exploiting the redundancy in the 75 % visible respectively
completely visible compensation interval C1 and C2.

In practice, the gap is smaller than 500 ms (as shown for an
iPhone 6S), providing the decoder even more information for re-
construction. The above cases are simplified in the implementa-
tion by storing the average intensities for every D1 and D2 inter-
val occurring in a COM slot close to the end of a frame that is
visible for at least 50 %. The stored information is then combined
with the intensities of the compensation interval of the first ILLU

slot in the next video frame if the compensation interval is also

COMILLU ILLU COM

D1,1 C1,1

GAP

D1,2 D2,2D2,1 C1,2 C2,2C2,1

Figure 6.12: A gap of up to 500 ms can start at an arbitrary location dur-
ing during the transmission of a data packet in PHY mode
DOUBLE. Although 75 % of D2,2 are lost in this case, the en-
coded two bits can be reconstructed by exploiting the redun-
dancy in the visible 75 % of the compensation subinterval
C2,2 in the subsequent ILLU slot.
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visible for more than 50 %. Considering only intervals visible for
at least 50 % guarantees stable averages, since at least 18 (SINGLE)
respectively 9 pixels (DOUBLE) are used for averaging. In addition,
this restriction has no impact on decoding, because, independent
of the gap’s location, there is an interval whose majority is visible
for each pair of data and compensation interval (as illustrated in
Figure 6.11).

The reconstruction of partially visible slots is achieved sim-
ilarly for PHY mode DOUBLE. The only difference is that more
information has to be stored when changing video frame, be-
cause there are two additional data subintervals which might be
needed for the next captured frame. Figure 6.12 shows a case for
which the average intensities of the first three data subintervals
have to be stored to be combined with the inverted intensity of
the partly visible C2,2 slot in the next frame.

The application starts collecting the decoded bits as soon as the
SFD is detected and the PHY header’s CRC turns out to be correct.
The PHY payload’s soundness is verified via the method provided
by the transmitter and indicated in the PHY header’s flags field.
Either FCS is used to verify whether the payload is correct or FEC is
employed to find possible errors and correct them. A correctly re-
ceived PHY payload is forwarded to the MAC protocol layer where
additional headers are removed and the resulting payload can be
retrieved.

6.2.3 Evaluation

The concepts described in Section 6.2.2 are used to implement
a software-based real-time decoder as an iOS application run-
ning on an iPhone 6S. The employed light source is a commer-
cially available LED strip (63 LEDs, 24 V, 1500 mA from Luminary
Design GmbH6). The experiments are conducted in a darkened
room with an ambient light value measured as 9 lx (there is no
need for a dark room for the software to work, but controlling
the room lighting keeps it constant for the duration of the mea-
surements). The light source is mounted vertically at various dis-

6. http://luminarydesign.ch
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tances pointing to a white wall. The iPhone 6S is arranged next
to the light source, with the same distance to the wall and cap-
tures the illuminated part of the wall (Figure 6.13). The LED strip
is connected to a microcontroller running the libvlc firmware to
generate VLC traffic for different payload sizes. For each distance
and each payload size, at least 200 data packets are sent. For PHY

layer payload sizes of up to and including 50 B, an FCS is used,
and for larger payloads, FEC provides additional redundancy to
find and correct possible errors.

Figure 6.14 shows the throughput for PHY mode SINGLE for
different payload sizes. The y-axis denotes throughput in b/s
and the x-axis denotes the distance between smartphone / light
source and the reflecting wall. The error bars show the standard
deviation. A maximum throughput of 750 b/s can be achieved
with a payload size of 100 B. Since the operating system behav-
ior cannot be controlled completely, it might happen that the
gap between two captured frames is increased because the smart-
phone is using its processing power somewhere else. Therefore,
for larger packets, the probability of losing bits in between frames
is so high, that the average throughput cannot be increased any-
more.

As mentioned in Section 6.2.2, PHY mode DOUBLE is also sup-
ported by the decoder and can reach a maximum throughput

1

2

31-3 m

Figure 6.13: Testbed setup with an iPhone 6S (1) capturing the illumi-
nated part of the wall (3). The light source (2), is placed
next to the smartphone pointing to the same wall area (at
the same distance to the wall). The distance between light
source / smartphone and wall is modified to achieve differ-
ent communication ranges.
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of 1250 b/s as shown in Figure 6.15. The communication link is
stable for distances up to 2.75 m, as demonstrated by the results.
The sudden loss of throughput at about 2.9 m is due to less light
penetrating the iPhone’s camera, which in turn leads to smaller
brightness differences between dark and bright bars in the cap-
tured frames. Although the comparison of D1 and D2 intervals is
stable and can still be done for these light conditions, threshold-
ing the input array leads to a noisy results where slots and inter-
vals cannot be recovered. The standard deviation increases with
the packet size due to the longer transmission duration and the
unswayable influence of the operation system (length of the gap
between frames) being accountable for video frame and hence
packet loss.

6.2.4 Conclusion

This section describes a simple approach how to integrate smart-
phones with commodity cameras into a VLC network based on
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Figure 6.14: Throughput for LED to smartphone communication using
different payload sizes, variable distances and PHY mode
SINGLE. The distance is measured from the light source (and
smartphone) to the wall. A maximum data throughput of
750 b/s can be achieved with a payload size of 100 B.
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Figure 6.15: Throughput for LED to smartphone communication using
different payload sizes, variable distances and PHY mode
DOUBLE. The distance is measured from the light source (and
smartphone) to the wall. A maximum data throughput of
1250 b/s can be achieved with a payload size of 100 B.

libvlc. The smartphone uses an application to continuously pro-
cess captured video frames, decoding a data stream made visible
through the rolling shutter effect. The protocol used for commu-
nication between LEDs or light bulbs can directly be understood
by the smartphone’s camera without any customizations, provid-
ing a unified communication fabric for different devices with dif-
ferent hardware and light sensors. The presented approach works
even if the VLC protocol hides communication and creates (for a
human observer) the impression that the light source is always
on. Avoiding flickering is important when using VLC in environ-
ments occupied by humans.

The ability to directly and continuously receive data transmit-
ted by other devices in a VLC system, e.g., on a smartphone, opens
many opportunities for new services and usage models. Being
able to directly employ the smartphone’s camera as an additional
communication front end through software only enables flexible
and rapid prototyping of new applications for location-based ser-
vices, indoor localization, and the IoT.

189



exploration and applications

6.3 intuitive lighting control with lighttouch

Light sources based on VLC technology bring new communica-
tion features to consumer devices such as smartphones and toys,
introducing new play patterns and experiences [85]. The visibility
and directionality of light paired with the communication ability
can be exploited to create a new type of user interface. The di-
rectionality of light makes it easy to point towards possible in-
teraction points (objects equipped with light receivers - LEDs or
photodiodes) and the generated light beam acts as visible feed-
back to determine devices in reach.

This section introduces LightTouch, a lighting control user in-
terface based on VLC. A prototype based on an off-the-shelf LED

flashlight (modified to host a microcontroller, running libvlc) and
VLC-enabled light bulbs (based on the EnLighting system), demon-
strates a proof-of-concept system for VLC-based user interfaces.
The light bulbs used as interaction end points are only one of
many possible applications and use cases. A user study com-
pares LightTouch with a conventional switch-based interface im-
plemented on a touch screen. The experiments and results are
described and followed by a discussion.

6.3.1 System Description

Today, many flashlights are already equipped with LED-based
light sources since they are more energy-efficient and still can
produce a high light intensity. Hence, the use of an LED can in-
crease battery lifetime significantly. Furthermore, LEDs also have
the property that they can be switched on an off at high frequen-
cies, making them good candidates for VLC.

Usually, a large flashlight is powered by two or three D-type
batteries. Figure 6.16 shows a custom 3D-printed case (b) of the
same size as two batteries (a). The case provides metal contacts
in the front (d) and at the back (c) to mimic one large battery,
still fitting inside the flashlight’s battery compartment. Inside the
3D-printed case, there is space for a microcontroller (e) running
libvlc, a MOSFET (f) to switch high currents, and a Lithium Poly-
mer (LiPo) battery (g) to provide power for the electronics and LED.
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a

b

c
d

e f g

Figure 6.16: 3D-printed case for the flashlight battery compartment. The
flashlight is usually operated by two D-type batteries (a) and
now replace by a 3D-printed hollow case (b). The printed
case uses a washer (c) as negative pole and a screw as pos-
itive pole (d). A microcontroller (e) runs libvlc and is con-
nected to an additional prototyping board with a MOSFET

(f). Furthermore, a LiPo battery (g) provides power for the
LED and electronics.

A GPIO pin from the microcontroller is triggering the MOSFETs to
switch on and off the LED, following libvlc’s PHY layer protocol.
Providing a hight signal to the MOSFET’s gate connects the LiPo’s

negative pole to the negative pole of the battery case closing the
circuit and providing current to the flashlight’s LED. Since the 3D-
printed case has exactly the size of two D-type batteries, it can be
used with every two-battery LED flashlight, transforming it into a
VLC device. Different cases can be printed without effort to also
provide fitting compartments for other LED-based flashlights.

The flashlight (when switched on) continuously transmits a
predefined 1 B pattern, called beacon. A beacon is just a plain
byte without any additional headers and implemented in libvlc
as follows: Beacons are predefined and need to be registered by
the receiving device’s application via libvlc’s API. The PHY layer
compares every completed byte buffer with the list of registered
beacon patterns (similar as the SFD is detected). If a beacon is
recognized, a callback is initiated, informing the application run-
ning on top of libvlc about the match. The VLC-enabled light bulbs
listen for incoming beacons, and if the predefined pattern is re-
ceived they are switched on or off depending on their previous
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state. The flashlight can now toggle the light bulbs it points to,
acting as an intuitive light switch. Since this one byte pattern can
also be changed (dynamically), the flashlight could also trigger
different actions in the light bulbs, e.g., changing light intensity
or color.

The prototype application described above is only one of many
use cases. When the hardware modifications are in place, only
the software running on the microcontrollers must be updated to
implement new functionality.

6.3.2 User Study

The experiment is structured into two tasks: The One Lamp task
and the The Light Configuration task. The tasks are explained in
the following sections. After completing the two tasks, the partic-
ipants were asked five questions, described in the questionnaire
section.

Experiment Setup

The experiment setup is shown in Figure 6.17. Three desk lamps
equipped with VLC-enabled light bulbs are placed on a table and
podium in a room. A podium with a touchscreen-enabled com-
puter is setup 2 m in front of the lamps. The participants stand
in front of the touch panel. The touchscreen shows a graphical
user interface with three switches labeled from one to three. The
desk lamps are also labeled from one to three, each at a differ-
ent position. The three switches on the touchscreen can be used
to switch on and off the corresponding lamp. The numbering is
chosen so that no natural mapping for the switches (e.g., lamps
left to right correspond to switches one to three) exists. The com-
puter is connected to power sockets, which can be enabled and
disabled through Ethernet. A modified VLC-enabled flashlight as
described in the last section is handed (switched off) to a partici-
pant when necessary. The tasks are explained immediately before
the experiment. Participants did not know the nature or purpose
of the experiment and did not have any prior knowledge of the
functionality of the flashlight. The time to complete the two tasks
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when using the touchscreen computer interface or the flashlight
interface is measured. Task 1 and task 2 are executed immediately
after each other.

Task 1 - One Lamp

Initially, all three lamps are switched off. The participant stands
in front of the touch screen. The three lamps are introduced and
it is explained that the switches on the touchscreen can be used
to toggle the lamps. One random lamp is now chosen and the
participant is asked to enable it using the switches on the touch
screen. The lamps are identified verbally as left, middle, or right.
The time is measured until the selected (and only the selected)
lamp is switched on.

For the start of the second part of task 1, the lamps are switched
off again. The flashlight is handed (switched off) to the partici-
pant and she or he is told to use the flashlight (without explain-

3 Desk Lamps

Shadow
Experiment

Switches 
Interface

Participant 
Position

Figure 6.17: User study experiment setup. Three desk lamps equipped
with VLC-enabled light bulbs, a podium with a computer on
top, providing a touchscreen interface at 2 m distance, and
the shadow casting box (for the second task).
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ing anything else) to switch on another randomly chosen lamp.
The time is again measured until the task is completed.

Task 2 - Light Configuration

For the second task, an object is placed on the table in range of the
three lamps (see Figure 6.17). A shadow configuration is drawn
on the table. This shadow is cast by the object under a certain
lighting condition. As example, if only the left and the middle
lamps are switched on, the shadow cast on the desk is different
from the shadow created by the light of two other lamps. The
participant is asked to find the lighting setup that matches the
shadow shape drawn on the table. The lamps are once operated
by the switches and once by the flashlight. Again, the time it
takes to complete each part is measured.

Questionnaire

Immediately after the two tasks, every participant is asked to
answer the questions as listed below. Every question can be an-
swered with the following three options: (1) switches, (2) equal,
and (3) flashlight.

q1 Which interface is more intuitive?

q2 Which interface felt more efficient to complete the tasks?

q3 Which interface was easier to use?

q4 Which interface would you prefer for the tasks at hand?

q5 Which interface is more fun to use?

Experiment Results

Overall 21 subjects (3 females, 18 males) of ages between 22 and
35 participated in the experiment and completed the two tasks
and the questionnaire as described above. The results are pre-
sented in the following paragraphs.

Task 1 - One Lamp – The aim of this task is to compare the two
different input methods (touchscreen switches and flashlight).
Only three participants recognized the labeling on the lamps and
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Figure 6.18: Time measurements results for task 1 (one lamp) and task
2 (light configuration) for the two compared interfaces,
switches and flashlight. The error bar shows the standard
deviation.

could use it to find the corresponding switch. Most participants
assumed a natural mapping of the switches and lamps and there-
fore did not succeed in the beginning. After trying out most or
all the switches, eventually the right lamp was switched on. Fig-
ure 6.18 shows the timing measurements. On average it took each
participant around 10 s. For the second part of this task, the par-
ticipants had to use the flashlight to switch on a specific lamp.
Although not having more than this information, they switched
on the flashlight and naturally pointed it towards the lamp they
were asked to switch on. On average this task was completed
within 2 s.

Task 2 - Light Configuration – The workload of this task is cho-
sen to emulate a more complex scenario, like creating a certain
light configuration in a room with multiple lamps, to evaluate the
practically of the two interfaces. This task also includes switch-
ing off lamps that the participants (wrongly) think to be part of
the wanted lamp configuration. Figure 6.18 shows also the time
measurements for the second task. Although participants were
now familiar with the mapping of switches to lamps, using the
switches still took more than twice the time to complete the task
(11 s) than using the flashlight (5 s). This result shows that also
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Figure 6.19: Questionnaire answers in percent for the three possible an-
swers (switches, equal, flashlight). Q1 to Q5 corresponds to
the questions listed in the questionnaire section.

for a complex use case, the flashlight is an appealing candidate
for a more natural interface.

User Feedback – Figure 6.19 summarizes the results of the ques-
tionnaire. Almost all participants (85 %) thought of the flashlight
as a more intuitive interface for operating the lams. Also, over
80 % of the subjects replied that the flashlight felt more efficient
to complete the given tasks. The same percentage stated that the
flashlight is also easier to handle. 90 % of the participants would
prefer the flashlight to complete the tasks at hand (and therefore
also similar tasks). The flashlight seems to also have an entertain-
ing effect, since 95 % named it as the interface that is more fun to
use.

6.3.3 Discussion and Conclusion

The experiment results show that even when unaware of the func-
tionality, the flashlight was successfully used to complete the
tasks within a shorter timespan. According to the answers to
the questionnaire, it is also thought of a good interface for the
proposed tasks and easy and practical to use. Hence, a flashlight-
like pointing device could improve over complicated buttons and
switches interfaces (for many lights) where the correspondence
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of switch to light is done by manual mapping instead of sim-
ple pointing. The flashlight was operated correctly without pre-
vious knowledge whereas with the switches interface the partic-
ipants first needed to learn and understand which switch oper-
ated which lamp.

The LightTouch interface also scales well with an increasing
number of light sources. A common switch interface is usually
restricted in space often leading to not having a separate switch
for every available light source, but instead for groups of several
light sources. Also mapping light sources to switches gets compli-
cated fast, if an increasing number of lights should be operated
autonomously. The LightTouch interface does not face such prob-
lems. It can operate independent of the number of light sources
present. Further it is also not only limited to simply toggling
the light sources. The light is transporting encoded data and by
changing this information, different actions can be trigged, e.g.,
dimming the lights or changing colors.

Deploying a lighting system can also be complex. Cables for
switches or bus systems need to be planted apart from the power
grid wiring. Using a flashlight as light system control represents
a very intuitive and low-cost wireless interface and does not
need additional wiring. Using a flashlight as remote control for
lights can also have a downside. Switches are stationary and will
always be at the same place and do not need external power
sources. In case of the flashlight, it can be laying around any-
where and has to be found first before it can be used, or it can
even run out of battery when most needed.

This section presents a novel user interface based on VLC to
interact with light sources. A VLC-enabled flashlight can be used
to switch on and off lamps by simply pointing towards them.
A user study compares the proposed LightTouch interface to a
common switch interface and the results emphasize that using a
VLC-enabled pointing device can compete and even improve ex-
isting interfaces. Only one example of many possible use case are
presented, underlining the feasibility of such a system. The direc-
tionality and visibility of the communication turns a VLC-enabled
pointing device into a unique interface for wireless interaction
with remote objects.
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Dumbledore turned and walked back down the street. On the corner he
stopped and took out the silver Put-Outer. He clicked it once and twelve
balls of light sped back to their street lamps so that Privet Drive glowed
suddenly orange and he could make out a tabby cat slinking around the
corner at the other and of the street.

— J.K. Rowling, Harry Potter and the Philosopher’s Stone
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7C O N C L U S I O N A N D F U T U R E W O R K

The chapters in this thesis describe different VLC systems, based
on different hardware, and with different capabilities. They have
one thing in common, namely libvlc. The goal of this thesis was
to develop software-based protocols that can be applied to many
different devices, enabling VLC-based networking without sig-
nificant modifications. With the help of libvlc, devices such as
light bulbs, flashlights, smartphones, and different VLC prototype
boards (mimicking possible future toys and consumer devices),
based on only LEDs or additionally equipped with photodiodes,
can all speak the same language. Due to this common ground,
facilitating efficient data exchange and networking, using a com-
munication channel based on visible light, is straight forward.

7.1 analysis

The design of libvlc’s protocols originated from investigating the
reasons of a failed MAC experiment, conducted with an earlier
version of the communication protocols. One of the requirements
for the PHY layer protocol is, along with enabling communication,
to enable constant flicker-free light output for human observers,
so that the lighting device does not abandon its main purpose. A
MAC protocol based on a CSMA/CA scheme heavily relies on a CCA

to determine if the communication channel is free or busy. The
analysis of the failed experiment attempt uncovered that the em-
ployed protocol was not able to differentiate between light used
for illumination and light used for communication. In more com-
plex systems, this problem could be solved by modulating the
light with different frequencies and apply filters to identify the
light contributions. As the objective was to create a low-complex
system using only basic microcontrollers, filtering was not an op-
tion. This lead to the idea to separate illumination and communi-
cation in time.

199



conclusion and future work

The PHY layer, implemented as part of libvlc, partitions the time-
line in ILLU and COM slots. As the name already suggests, the il-
lumination slots provide the necessary light flux when idling, re-
ceiving, and transmitting to maintain constant light output. Each
ILLU slot is followed by a communication slot, where light is
sensed, but also emitted in case of an ongoing data transmission.
The ILLU and COM slots are alternating with a frequency above
the flicker fusion threshold so that only a steady light is visible
by the naked eye. The additional light output during the COM

slots are compensated during the following ILLU slot to keep the
same average light brightness.

Together with continuous synchronization to align the ILLU

and COM slots of participating devices, this simple approach, sep-
arating the light used for illumination from the light employed
for communication, allows the devices to attribute any sensed
light emissions to communication. This allows to define a CCA

scheme to reliably determine the current channel state. The abil-
ity to detect a busy communication channel reduces data frame
collisions and thus improves the overall network throughput and
reduces packet delivery delays.

The evaluation results demonstrate that it is possible to assem-
ble a communication system capable of networking, based just
on an off-the-shelf 8-bit microcontroller and conventional LEDs.
The heavy lifting is done by software-defined protocols. The PHY

layer together with FEC allow communication distances close to
2 m at a bit rate of 850 b/s. The working network experiments
show that the CCA and the MAC protocol fulfill their duty. For
the maximum number of eleven devices, simultaneously trying
to access the medium, a resulting throughput of still 750 b/s is
possible. As this result is only a little worse than the direct link
result, it can be concluded that only few collisions happen thanks
to the clearly defined CCA and the efficient MAC protocol. Protocol
extensions such as RTS/CTS additionally support the MAC layer in
case of hidden stations present.

The software-centric approach allows the extension of libvlc,
with four different PHY layer modes to increase channel capacity,
together with a dynamic adaptation scheme, without effort. Nei-
ther additional hardware is required nor changes to existing hard-
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ware need to be applied. The dynamic PHY mode scheme adapts
to local channel conditions and can increase data throughput by
a factor of 5, reaching bit rates that already support the transmis-
sion of human voice (digital), still using only LEDs as transceivers.
The flexibility of libvlc is further increased by introducing a HAA

to quickly adopt new hardware platforms.
EnLighting demonstrates a successful application of libvlc to a

communication system consisting of interconnected light bulbs.
Again, thanks to the flexibility of the software-based approach,
only minimal changes are necessary to integrate photodiodes as
sensing devices with an additional multiplexing scheme to han-
dle four photodiodes with a single ADC. To add IP traffic support,
the libvlc-based VLC controller is integrated (as an external de-
vice) into Linux as an Ethernet device, interfacing with the Linux
network stack. As the VLC controller is transparently abstracted
as an Ethernet device, any software using IP-based networking
can now employ the VLC link for communication. This makes it
possible to reuse existing higher layer protocols, as for instance,
routing protocols used in a mesh network.

When working with many devices, deployed and distributed
over a large area, testbed software can simplify developing, de-
bugging and running experiments immensely. The testbed sys-
tem developed for EnLighting connects all light bulbs via a Wi-Fi
control channel to a dedicated network. This allows to remotely
control all testbed devices, to collect data and to display real-time
protocol information. While working on EnLighting, the testbed
infrastructure was heavily used and helped to work more effi-
ciently on the devices and protocols.

The proposed light bulbs can still be used for illumination and
at the same time broadcast data. What differentiates them from
other systems is the ability to also receive light and accept in-
coming data traffic. The capability to detect light and being able
to synchronize to other light bulbs in the vicinity can improve
existing applications and enable new use cases. While exchang-
ing data, the light bulbs can bridge communication distances of
several meters, also for no line of sight scenarios, using walls,
floors, and open doors as light reflectors. Data can be forwarded
along floors using multi-hop communication to connect multiple
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offices or to eventually reach a gateway connecting to a different
network based on other technologies. Furthermore, thanks to the
ability to perform a CCA, multiple light bulbs in a room can use
libvlc’s MAC protocols for efficient networking.

Using VLC for indoor localization has high potential. Light nat-
urally forms communication cells with well-defined borders and
light sources are already numerously available inside buildings,
enabling accurate localization based on trilateration. Light bulbs
continuously transmit beacons with location and identification
information, which are used together with a corresponding RSSI

value to calculate a position. As EnLighting also supports MAC,
the system does not rely on a random scheme to prevent beacon
collisions, thus beacons can be sent at a higher rate, which can
lead to faster localization. Additionally, light sources can collect
information about their neighbors (extracted from beacons). In
case of a failure, the light bulb can be replaced without further
configuration steps. As soon as a new bulb is deployed, it can
request the necessary configuration data from its neighbors.

The low-complex nature of the discussed communication sys-
tem and the associated communication protocols make it appli-
cable to various sorts of devices. Mobile phones can use a bat-
teryless peripheral device plugged into the audio jack and adopt
the built-in audio system and software to follow libvlc’s proto-
cols to send and receive data. Instead of an additional peripheral,
the smartphone camera can directly be used as a light receiver.
The redundantly designed PHY layer protocol allows continuous
reception, exploiting the rolling shutter effect, even as gaps be-
tween captured video frames are introduced, during which no
light can be received. Moreover, LED-based flashlights or similar
devices can act as remote controls, transmitting commands to de-
vices they point to, and at the same time provide visual feedback.
Visible light communication could change how people interact
with devices and provide more intuitive user interfaces.

This thesis presents a software-defined, low-complex and low-
cost approach to visible light communication. Thanks to the low-
complexity and software-centric concepts, the presented commu-
nication protocols for MAC and PHY layer can be applied to var-
ious devices, reusing hardware already in place, and extending
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their capabilities with VLC at low-cost. The software library, lib-
vlc, connects a diversity of devices with the same single set of
protocols, forming heterogeneous networks and enabling new in-
teractions and applications. Due to the targeted low-cost and low-
complexity environments, applications requiring high data rates,
e.g., video streaming, cannot be addressed, but with an unintru-
sive and ubiquitous system like EnLighting, a possible communi-
cation fabric for the IoT can be provided, relieving the overloaded
radio spectrum.

7.2 future work

With the introduction of the different PHY modes, the achiev-
able data rates could already be improved. The used data in-
terval width for PHY mode OCTA is already so narrow that an
additional synchronization correction had to be introduced. This
prevents the implementation of additional PHY modes with again
narrower slots to further increase data rates (at least for a low-cost
microcontroller-based solution). Instead of trying to improve in
the time space, RGB light sources could encode data symbols us-
ing the color space. Different colors can encode multiple bits and
thus increase the overall data rate. The light source can still ap-
pear to emit white light (for a human observer) if the share of red,
green, and blue emissions are equal and constant within a short
interval. For the light sensing, either multiple receivers (LEDs or
photodiodes) with color filters can be employed or it could be
explored if it is possible to use the registered light intensity to
derive the color.

The concept, described in Section 5.2.1, to dynamically control
the light source’s brightness has not been implemented so far.
Such functionality is required in scenarios where the light sources
used for communication and illumination need to be dimmable.
An implementation based on libvlc could either modify the dura-
tion of ILLU slots, or replace certain ILLU slots with COM slots, to
decrease brightness and possibly also increase the data rate, and
replace COM slots with ILLU slots, to increase the brightness but
also decrease the data rate.
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conclusion and future work

Section 4.3.2 describes how EnLighting could be used for in-
door localization. The aforementioned section does not evaluate
a complete indoor localization but only verifies that RSSI values
could be used as a light source to receiver distance estimator. A
most attractive candidate for a possible receiver in a real-world
scenario is the smartphone, since it can retrieve additional in-
formation from other wireless networks and directly display the
actual (calculated) position. As described in Section 6.2, a smart-
phone can be integrated into the EnLighting network without any
hardware modifications, exploiting the rolling shutter effect to
receive data. With the two building blocks, EnLighting and the
smartphone camera receiver application, all components to im-
plement an indoor positioning system based on RSSI values and
trilateration are ready, making localization a topic worth to ex-
plore further.
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AC R E D I T A N D AT T R I B U T I O N

This appendix lists all the third-party contributions to this thesis
and gives credit to the respective authors. The implementation
of libvlc and EnLighting used a number of resources provided by
third parties which are released under various licenses that may
require to attribute the creator of the material. For this purpose,
all employed resources together with the relevant student contri-
butions are listed in this appendix.

a.1 student contributions

The technical realization of libvlc and EnLighting and the proto-
type applications would not have been possible without the help
of hardworking students that explored the concepts described
in this work as part of their Bachelor’s, Master’s or semester
projects. In this section, students who significantly contributed
to the work described in this thesis, are listed in the following.
All students were supervised by the author of this thesis. The list
is ordered alphabetically.

• Linard Arquint explored the application of the rolling shut-
ter effect for a smartphone-based VLC receiver as part of his
Bachelor’s thesis: Implementation of a Smartphone-based Visi-
ble Light Communication System using the Camera as a Receiver.
Based on his findings, he implemented a prototype decoder
application as described in Section 6.2.2.

• Theodoros Bourchas implemented a first version of the
Linux driver used for EnLighting (described in Section 4.1.3)
and conducted measurements for different transport layer
protocols as part of his Master’s thesis with the title En-
abling TCP/IP over Visible Light Communication Networks.
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credit and attribution

• Benjamin von Deschwanden implemented the PHY layer
modes introduced in Chapter 5 and helped conducting sev-
eral measurement campaigns (the results are shown in Sec-
tion 5.3). He worked on this subject as part of his Master’s
Thesis with the title: Light Resource Management for Visible
Light Communication Networks.

• Thomas Richner worked on the testbed software for En-
Lighting as part of a semester thesis and helped restructur-
ing libvlc for the HAA (Section 5.1.1) as part of his Master’s
thesis: Design, Implementation and Evaluation of a Hardware
Independent Software Stack for Visible Light Communication. In
addition, he was also involved in designing and assembling
the ARM prototype board described in Section 5.1.2.

• Daniel Schwyn completed the smartphone audio encoder
and decoder application (Section 6.1.2) used together with
the audio jack peripheral device. The work was done as
part of his Bachelor’s thesis with the title: Implementation
of a Smartphone-based VLC System using the Audio Jack as a
Communication Front-End.

• Josef Ziegler explored how consumer LED light bulbs can
be modified to work together with the software-based com-
munication protocols. As part of a semester thesis he devel-
oped a first prototype light bulb for the EnLighting system.

a.2 attributions

libopencm3. The hardware library libopencm3
1 is used as HPL

for the STM ARM processor in libvlc. The library code is released
under LGPL, version 3

2.

OpenWrt. The Linux distribution used for the EnLighting SoC is
based on OpenWrt3. If not otherwise stated in the source files, the

1. http://libopencm3.org
2. https://opensource.org/licenses/LGPL-3.0
3. https://openwrt.org
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A.2 attributions

OpenWrt build environment is provided under the GPL, version
2

4 terms.

Bootstrap. The EnLighting web interface uses HTML and CSS
files from the Bootstrap5 framework. The Bootstrap code is re-
leased under the MIT license6 and copyright by Twitter, Inc.

D3.js. Parts of the visualization displayed in the EnLighting web
interface are based on D3.js7 created by Mike Bostock. The D3.js
library is released under the BSD8 license.

Font Awesome. The icons used in the EnLighting web interface
are provided by Font Awesome9 created by Dave Gandy. The
Font Awesome font is licensed under the SIL Open Font License10

1.1.

4. https://opensource.org/licenses/gpl-2.0.php
5. http://getbootstrap.com/
6. https://opensource.org/licenses/MIT
7. https://d3js.org/
8. https://opensource.org/licenses/BSD-3-Clause
9. http://fontawesome.io/

10. http://scripts.sil.org/OFL
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