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Abstract Simulated moving bed (SMB) is a cost-efficient
separation technique that offers high productivity and low
solvent consumption. SMB has gained importance in the
pharmaceutical and fine chemical industry to perform com-
plex separation tasks. However, an open and challeng-
ing problem is the optimal, robust operation of the SMB
process. We have developed a control scheme that integrates
the optimization and control of the SMB unit. A signifi-
cant feature of the controller is that only minimal informa-
tion of the system has to be provided, i.e. the linear ad-
sorption behavior of the mixture to be separated and the
average void fraction of the columns. Therefore, a full char-
acterization of the adsorption behavior of the mixture and
the columns is no longer required. In this ‘cycle to cycle’
control scheme, the measurements, optimization and con-
trol actions are performed once in every cycle. This paper
presents simulation results of the control scheme applied to
the separation of binary mixtures characterized by gener-
alized Langmuir isotherms. The results are presented and
analyzed in the frame of the triangle theory that has been re-
cently extended to encompass these types of isotherms. Be-
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sides, online optimum performance of the SMB unit is com-
pared with off-line optimization carried out using genetic
algorithm. The results show that the controller fulfills the
product and process specifications while operating the SMB
unit optimally, regardless of the different types of Langmuir
isotherms that the systems exhibit.

Keywords Multicolumn processes · Preparative
chromatography · Liquid phase adsorption

1 Introduction

This paper addresses the question whether the optimizing
controller of Simulated Moving Beds (SMBs) that has been
developed in our group in the last few years works effec-
tively whatever the nonlinear isotherm, which the species
to be separated are subject to. The optimizing controller is
based only on information about the linear retention be-
havior of the species to be separated (Abel et al. 2004;
Erdem et al. 2004a), but it has been proved to be effective in
the control of the SMB separation of species subject to the
Langmuir isotherm (Erdem et al. 2004b). The effectiveness
of the controller has been demonstrated also experimentally,
on systems subject to a linear (Abel et al. 2005; Erdem et al.
2005, 2006) and to a Langmuir isotherm (Amanullah et al.
2007). More recently the controller has been extended to the
so-called ‘cycle to cycle’ control and new capabilities, e.g.
the possibility of varying the switch time during operation,
have been added (Amanullah et al. 2007; Grossmann et al.
2007, 2008).

As far as the controller performance is concerned, this pa-
per aims at bridging the gap between the Langmuir isotherm
and any other nonlinear isotherms. This is an important is-
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sue, since a controller whose operation is based on only data
about the linear retention behavior of the species to be sepa-
rated, i.e. under dilute conditions, and whose performance is
the same whatever the underlying nonlinear isotherm would
represent a major step forward in the potential and appli-
cation of SMB, particularly for pharmaceutical applications
and chiral separations. This would allow in fact avoiding the
lengthy and cumbersome determination of the adsorption
isotherm and operating an SMB unit for a new separation
in a very short time.

This is important because the SMB technology has
gained attention in the fast growing field of chiral and phar-
maceutical products where time to market rather than eco-
nomics of the separation is the decisive criterion (Fran-
cotte and Richert 1997). During early drug development
phases, only limited amount of the mixture to be separated
is available and pure components might not even be acces-
sible at all. Therefore, strong performance determining fac-
tors like solid and mobile phases have to be selected with
some screening criteria. As a result, the design and opti-
mization of a new chiral SMB separation is often based
on a trade-off between accuracy in the system parame-
ters and heuristic search of feasible operating conditions.
A number of literature contributions have been devoted to
prove SMB’s feasibility for chiral (Negawa and Shoji 1992;
Ching et al. 1993; Nicoud et al. 1993; Charton and Nicoud
1995; Küsters et al. 1995; Cavoy et al. 1997; Guest 1997;
Pais et al. 1997; Schulte et al. 1997; Juza et al. 1998;
Nagamatsu et al. 1999; Pedeferri et al. 1999) and fine chem-
ical separations (Gattuso et al. 1996; Gottschlich et al. 1996;
Gottschlich and Kashe 1997; Yun et al. 1997; Wu et al.
1998), as well as to show how SMB separations can be
developed quickly using small amount of material for
the initial characterization (Francotte and Richert 1997;
Guest 1997; Francotte et al. 1998; Heuer et al. 1998;
James et al. 1999). Besides, efforts and advances have been
made on the theoretical side, i.e. in the field of process op-
timization. On the one hand, powerful and straightforward
short-cut design methods like the triangle theory (Mazzotti
et al. 1997) have been developed using simplified SMB
dynamics, i.e. the equilibrium model that neglects mass
transfer and axial dispersion effects. On the other hand,
advanced numerical optimization techniques have been ap-
plied and adapted to SMB processes (Kawajiri and Biegler
2006a, 2006b, 2006c). These approaches can handle effi-
ciently more and more detailed models of the SMB dynam-
ics that account for mass transfer, axial dispersion and diffu-
sion within the particle pores. Nevertheless, as the optimiza-
tion techniques become more detailed, the need for accurate
system parameters increases and might become a limiting
factor. In such a context it is rather evident that the con-
troller we have developed, when applicable to any type of
isotherms, would represent a very significant asset for SMB
practitioners.

A powerful, though simple, model to capture a large
variety of different nonlinear retention behaviors, includ-
ing different combinations of adsorption and desorption
composition fronts, is provided by the generalized Lang-
muir isotherms (Mazzotti 2006c). These are four different
isotherms, for which in the case of binary systems and in the
frame of the equilibrium theory of nonlinear chromatogra-
phy it has been possible to derive exact criteria for complete
separation in a SMB, i.e. the so called triangle theory (Maz-
zotti 2006a, 2006b). This is very practical in the context of
our study since it allows for a deeper understanding of the
controller’s behavior and for a direct comparison between
the operating conditions predicted by the triangle theory and
achieved by the controller.

The paper is organized as follows: in Sect. 2, a brief
overview of the SMB process, generalized Langmuir iso-
therms, control concepts and optimization problems are pre-
sented. In Sect. 3, the performance of the controller for the
separation of mixtures characterized by generalized Lang-
muir isotherms is assessed and discussed.

2 Background

2.1 Process

A detailed description of the SMB process and its work-
ing principle may be found elsewhere (Mazzotti et al. 1997;
Erdem et al. 2004b; Grossmann et al. 2008) and only a short
summary is given here.

Four different binary mixtures are to be separated in a
closed-loop four-section eight-column SMB unit arranged
in a 2-2-2-2 configuration. The SMB unit is operated in stan-
dard isocratic mode. The feed concentration of the mixtures
to be separated is reported in Table 1, whereas the charac-
teristics of the SMB unit are summarized in Table 2.

The retention behavior of the species to be separated is
described by the following generalized Langmuir isotherm
(Mazzotti 2006c):

ni = Hici

1 + p1K1c1 + p2K2c2
, i = 1, 2 (1)

where ni and ci are the fluid and adsorbed phase concentra-
tions, respectively; Hi and Ki are the Henry and equilibrium
constants for component i, respectively. Component 2 is as-
sumed to be more retained than component 1, i.e. H2 > H1.
The parameters p1 and p2 can take the values ±1, and their
combination characterizes the retention behavior of the four
binary mixtures to be separated as shown in Table 1. The
first mixture, indicated in the following as mixture L, is de-
scribed by setting p1 = p2 = 1, which corresponds to the
well-known Langmuir isotherm. When p1 = p2 = −1 an
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Table 1 Isotherm parameters of the four mixtures to be separated

Type of isotherm (mixture) p1 p2 H1 H2 K1 = K2 [L/g] c
f

1 = c
f

2 [g/L]

Langmuir (L) 1 1 1 2 0.1 1.5

Anti-Langmuir (A) −1 −1 1 2 0.1 1.5

Mixed Langmuir (M1) 1 −1 1 2 0.1 1.5

Mixed Langmuir (M2) −1 1 1 2 0.1 1.5

Table 2 Physical parameters of the SMB unit used for simulation

Parameter Value

Number of columns 8

Column distribution 2/2/2/2 closed loop

Column diameter 1 cm

Column length 10 cm

Total packing porosity ε = 0.4

Theoretical plates per column 100

Switch time t∗ = 120 s

Anti-Langmuir isotherm is obtained for mixture A. The re-
maining two mixtures, M1 and M2, are described by setting
p1 = 1 = −p2 and p1 = −1 = −p2, respectively. It is worth
noting that not all fluid phase concentrations are allowed
since the denominator in (1) has to remain positive for any
non-negative pair (c1, c2). For instance, considering the al-
lowed feed concentrations of our mixtures, where c

f

1 = c
f

2
in all cases, the following inequality has to hold:

1 + p1K1c
f

1 + p2K2c
f

2 > 0 (2)

This constraint is redundant in the Langmuir case. How-
ever, in the other three cases it poses an additional constraint
to the positive orthant of the (c1, c2) plane for the allowed
feed concentrations. For a detailed discussion about the
physical consistency of the generalized Langmuir isotherm
please refer to (Mazzotti 2006c).

Note that according to the (1) the behavior of the four
mixtures under dilute conditions reduces to the same linear
behavior, i.e. ni = Hici for small ci , with the same values of
the Henry constants. Since the controller uses the values of
the Henry constants only, this implies that exactly the same
controller with exactly the same parameters is used to con-
trol the SMB separation of all four binary mixtures.

2.2 Control concept

At the core of our control approach there is the integration of
the optimization and control of the SMB unit. The controller
makes use of the four internal flow rates, Q1, . . . ,Q4, as ma-
nipulated variables to drive the unit to an operating point that
fulfills the product and process specifications while optimiz-
ing an objective function. Note that in this work the switch

time t∗ of the unit remains constant throughout the oper-
ation although it is possible to extend the controller to in-
clude t∗ among the manipulated variables (Grossmann et al.
2007). The decisions on how to operate the unit are taken on
the basis of the measurements from the plant, i.e. the feed-
back information. The average concentration of component
1 and 2 in the extract and raffinate streams over one cycle,
cE

1,ave, cE
2,ave, cR

1,ave and cR
2,ave , represent the feedback infor-

mation. Collecting this type of information implies waiting
one complete cycle to get each measurement. The sampling
rate is then chosen to be equal to the cycle time, therefore,
the measurements, optimization and control actions are per-
formed only once every cycle, i.e. on a ‘cycle to cycle’ ba-
sis (Grossmann et al. 2008).

The control problem to be solved at every cycle is formu-
lated as a constrained dynamic optimization problem within
the repetitive model predictive control (RMPC) framework
(Natarajan and Lee 2000). We provide objectives and speci-
fications to the controller in the form of a cost function and
of constraints for the optimization problem. The productiv-
ity and solvent consumption contribute to the cost function
to be optimized, whereas the product quality specifications
and the operational restrictions of the plant are imposed as
constraints. The controller makes use of a simplified ‘cy-
cle to cycle’ SMB model to predict and optimize the per-
formance of the unit over a predefined number of cycles,
np , i.e. the so-called prediction horizon. The solution of the
optimization problem yields a sequence of optimal control
actions for a chosen number of cycles, namely the control
horizon, nc. This is implemented according to a receding
horizon strategy, i.e. the first element of the calculated op-
timal control actions sequence corresponding to the current
cycle is implemented, and the remaining calculated optimal
inputs are discarded. The prediction horizon is shifted by
one cycle and as new measurements of the average concen-
trations of both species in extract and raffinate are available,
an optimization problem based on the new estimate of the
plant state is solved. The new state estimate is calculated
using a Kalman filter.

A significant feature of the controller is that the simpli-
fied ‘cycle to cycle’ SMB model used by the controller re-
quires only the linear isotherm information, i.e. H1 and H2,
and the average bed porosity of the unit, εave. These can
be easily obtained from pulse injection experiments under
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dilute conditions. The solution of the optimization problem
calculated at every cycle determines the dynamic behavior
of the controller as well as its performance. The cost func-
tion and the optimization constraints are discussed briefly in
order to highlight the performance determining factors of the
controller. A detailed description of the theory behind the
controller and its implementation can be found elsewhere
(Amanullah et al. 2007; Grossmann et al. 2008).

2.2.1 Online optimization

The optimization problem is formulated as a linear program
(LP), i.e. the cost function and the constraints are linear in
the decision variables. In the LP to be solved at cycle k, the
four internal flow rates over the control horizon nc, Qj(l)

for j = 1, . . . ,4 and l = k, . . . , k + nc − 1, represent the de-
cision variables. These are constrained by lower and upper
bounds:

Qmax
j ≥ Qj(l) ≥ Qmin

j

for j = 1, . . . ,4, l = k, . . . , k + nc − 1 (3)

In order to guarantee a smooth operation of the plant,
maximum allowable flow rate changes, �Qmax

j , are im-
posed and formulated as inequality constraints as follows:

�Qmax
j ≥ |�Qj(l)| (4)

s
(1)
j ≥ |�Qj(l)| with s

(1)
j ≥ 0

for j = 1, . . . ,4, l = k, . . . , k + nc − 1 (5)

where �Qj(l) = Qj(l) − Qj(l − 1). Inequality (5) allows
minimizing the changes in the flow rates by penalizing the
slack variable s

(1)
j in the cost function (see below). A dif-

ferent weighting of these slack variables in the cost function
allows expressing the preference for the use of one manipu-
lated variable over another.

The required product specifications are enforced by con-
straining the average purity of the extract, P E

ave(l), and raffi-
nate, P R

ave(l), stream for each cycle of the prediction horizon
with lower bounds P E

min and P R
min, respectively. Since the in-

ternal flow rates are constant during each of the cycles, the
minimum purity constraints can be expressed as:

P E
ave(l) = cE

1,ave(l)

cE
1,ave(l) + cE

2,ave(l)
≥ P E

min − s(2)

with s(2) ≥ 0 (6)

P R
ave(l) = cR

2,ave(l)

cR
1,ave(l) + cR

2,ave(l)
≥ P R

min − s(3)

with s(3) ≥ 0 for l = k + 1, . . . , k + np (7)

The parameters s(2) and s(3) are slack variables that allow
softening the constraints and guaranteeing feasibility; they
are highly penalized in the cost function. Note that P E

ave(l)

and P R
ave(l) for l = k + 1, . . . , k + np are nonlinear func-

tions of the concentrations and have to be linearized in order
to be compatible with the LP formulation. These can then
be computed from the estimation of the plant state obtained
from the measurements and the Kalman filter. The optimiza-
tion problem is defined as follows, where the quantity to be
minimized is the cost function:

min
Qnc

j , S

k+nc−1∑

l=k

λD QD(l)︸ ︷︷ ︸
Q1(l)−Q4(l)

− λF QF (l)︸ ︷︷ ︸
Q3(l)−Q2(l)

+ λs(1)s(1) + λs(2) s
(2) + λs(3) s

(3) (8)

Qnc

j is a vector comprising the flow rates for the control hori-
zon nc; S is a vector containing the slack variables used to
soften the constraints; QF and QD are the feed and des-
orbent flow rates to be maximized and minimized, respec-
tively, over a given control horizon nc; λD and λF are the
weighting factors to reflect the relative importance given to
the desorbent consumption minimization and the productiv-
ity or feed throughput maximization, respectively. The row
vector λs(1) contains the weight for each of the slack vari-

ables s
(1)
j , i.e. the elements of the column vector s(1). The

parameters λs(2) and λs(3) are the weights for the slack vari-
ables used in the purity constraints defined by (6) and (7).

There are four objectives reflected in the cost function
that will guide the controller’s behavior. The first and sec-
ond terms express the objective of maximizing the produc-
tivity and minimizing the desorbent consumption, respec-
tively. The third term makes the controller try to minimize
the changes of the flow rates. Finally, the last two terms ex-
press the objectives of minimizing the extent of softening of
the purity constraints and therefore allowing off-spec pro-
duction.

In a real SMB operation, the weights of the terms in the
cost function of (8) depend on the specific features of the
separation and reflect the target product’s value and the sep-
aration costs. The behavior of the controller depends on the
choice of the weights, which in this work are such as to max-
imize productivity and minimize off-spec production. Fur-
thermore, the controller tries to minimize the desorbent con-
sumption as long as this does not conflict with the other two
main objectives. This is reflected in the numerical values of
the parameters used for the simulation that are reported in
Table 3.

The set of inequality constraints (3)–(7) and the cost
function (8) complete the formulation of the LP. The prob-
lem comprises 300 variables, and 367 constraints. A com-
mercial solver, ILOG CPLEX 7.0 was used to solve the op-
timization problem. The maximum computation time was
found to be less than 0.1 s in a PC with a 3 GHz processor.
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Table 3 The parameters used for the implementation of the controller.
All the flow rate parameters are given in [mL/min]

Parameter Value

Qmax
1 10.00

Qmax
2 7.00

Qmax
3 9.30

Qmax
4 7.00

Qmin
j for j = 1, . . . ,4 0.60

�Qmax
j for j = 1, . . . ,4 0.12

P E
min = P R

min 99.0%

λF 20

λD 2

λs(1) [4000 400 400 4000]
λs(2) = λs(3) 100

nc 1 cycle

np 8 cycles

Table 4 Objective function, decision variables, and constraints for the
off-line optimization using genetic algorithm

Objective function minimize: λDQD − λF QF

Decision variables Qj for j = 1, . . . ,4

Constraints P E
min = P R

min = 99.0%; t∗ = 120 s

2.3 Off-line optimization

The performance obtained with the controller was compared
with those attained through off-line optimization. To allow
for fair comparison, comparable objective function and con-
straints were defined, as reported in Table 3. The cost func-
tion, decision variables and constraints for the off-line opti-
mization are reported in Table 4. Note that at steady state,
the slack variables in (8) are all zero. Hence they are not
included in the objective function of the off-line optimiza-
tion. The objective function, while represents performance
index, reflects in a quantitative manner the performance of
the SMB process and is used as the basis for the comparison
of the online and the off-line optimizations.

A non-sorting genetic algorithm (NSGA) is used as op-
timization algorithm, whose detailed description may be
found elsewhere (Zhang et al. 2003).

3 Results

This section is devoted to the implementation of the con-
trol concept presented in Sect. 2.2 on the virtual SMB plant
described in Sect. 2.1. The goal is to demonstrate that sup-
plying the Henry constants and the average porosity of the
SMB columns to the model of the controller is adequate to

meet the process and product specifications and to operate
the unit optimally whatever the nonlinear isotherm charac-
terizing the mixture to be separated.

The results are analyzed using the so-called triangle the-
ory (Mazzotti et al. 1997, Mazzotti 2006a, 2006b). For the
sake of completeness, the main concepts are summarized
here. The separating conditions are derived on the basis of
the equilibrium theory model. The five operating parameters
of the SMB, i.e. the four sectional flow rates and the switch
time, are combined into four dimensionless sectional flow
rate ratios that characterize the performance of the unit:

mj = Qj t
∗ − V ε

V (1 − ε)
(j = 1, . . . ,4) (9)

Note that the flow rate ratios mj are linear functions of
the flow rates when the switch time t∗ is fixed; V is the vol-
ume of one column and ε is the total packing porosity. The
necessary and sufficient conditions for the complete separa-
tion of any system can be cast in the general form:

m1,min < m1 (10)

m2,min < m2 < m2,max (11)

m3,min < m3 < m3,max (12)

m4 < m4,max (13)

The upper and lower bounds for the sectional flow rate
ratios depend on the specific isotherm and on its parame-
ters. They are given as functions of m2, m3, the adsorption
isotherm parameters and the feed composition. A detailed
analysis, derivation and description of these bounds may be
found elsewhere (Mazzotti 2006a, 2006b). The separation
conditions can be graphically represented in two different
plots. The first one refers to the m2 and m3 flow rate ratios,
and represent the complete separation region in the (m2,m3)

plane; it is shown in the top left part of the regions of Figs.
1a, 2a, 3a, and 4a, since m3 is larger than m2 hence feasi-
ble operating points lie above the diagonal of the (m2,m3)

plane. When the inequalities (10) and (13) are fulfilled, the
position of the operating point in the (m2,m3) plane allows
one to make a prediction of the separation performance. The
triangular region defined by (11) and (12) for each mixture
represents the set of operating points for which, in the frame
of equilibrium theory, a complete separation of the mixture
is achieved (Mazzotti 2006a, 2006b). Note that the point
on the (m2,m3) plane that maximizes the feed throughput,
which is proportional to the difference between m3 and m2,
at complete separation is the vertex of the complete separa-
tion region.

The second plot refers to the flow rate ratios m1 and m4.
Since m1 > m4 the corresponding complete separation re-
gion defined by (10) and (13) is below the diagonal of the
plane of horizontal coordinate m1 and of vertical coordinate
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Fig. 1 Langmuir isotherm: (a) trajectory of the operation for the sepa-
ration of mixture L. Upper left: (m2,m3) plane. Lower right: (m1,m4)

plane. Symbols; !: startup point, �: final operating point, 1: optimum
found through off-line optimization. (b): purity of the product streams
and performance index during the controlled SMB operation

m4 (see the lower right part of Figs. 1a, 2a, 3a, and 4a).
Fulfilling the constraints of (10) and (13) implies that the
solvent is fully regenerated when leaving section 4 and be-
ing recycled to section 1, and that the adsorbent in section 1
is fully regenerated too. Since these constraints depend on
m2 and m3 the values in the figures have been calculated us-
ing the optimal operating point calculated through off-line
optimization.

To assess the performance of the controller, all four gen-
eralized Langmuir isotherms have been studied. In all cases,
the same controller, and only the linear adsorption isotherm
information, are used to carry out the separation of the bi-
nary mixtures characterized by the isotherms reported in Ta-
ble 1 in an SMB featuring the characteristics given in Ta-
ble 2. All four operations have been carried out with initially
clean columns and from the initial operating point as given
in Table 5. The feed concentration of the two species to be

Fig. 2 Anti-Langmuir isotherm: (a) trajectory of the operation for
the separation of mixture A. Upper left: (m2,m3) plane. Lower right:
(m1,m4) plane. Symbols; !: startup point, �: final operating point, 1:
optimum found through off-line optimization. (b): purity of the product
streams and performance index during the controlled SMB operation

separated is in all four cases c
f

1 = c
f

2 = 1.5 g/L. The com-
plete separation regions in the operating parameter space in
the four cases depend on the feed composition, as well as
on the isotherm parameters, and are plotted in Figs. 1a, 2a,
3a, and 4a. The controller is switched on at cycle 10 with
the aim of fulfilling the process and product specifications
and of optimizing the performance of the unit. It is worth
emphasizing here again that the controller has no informa-
tion about what adsorption isotherm the mixture to be sepa-
rated is subject to. Only the feedback information from the
plant gives insight about to what extent and in which direc-
tion the product purities deviate from the set points. Based
on the feedback, on the embedded simplified model of the
SMB and on the optimization problem the controller is able
to decide how to correct the operating conditions in all four
cases.

Figures 1b, 2b, 3b, and 4b show the evolution of the
product purities and of the performance indices with re-
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Fig. 3 Mixed type 1 (M1) isotherm: (a) trajectory of the operation for
the separation of mixture M1. Upper left: (m2,m3) plane. Lower right:
(m1,m4) plane. Symbols; !: startup point, �: final operating point, 1:
optimum found through off-line optimization. (b): purity of the product
streams and performance index during the controlled SMB operation

spect to time (units are the number of cycles, a cycle be-
ing the time needed to switch the SMB inlet and outlet
ports a number of times equal to the number of columns
in the unit). We observe that the required purity specifica-
tions of 99.0% for both the extract and raffinate streams
are fulfilled in all cases. However, the time needed to ful-
fill the purity requirements is different for the four differ-
ent cases (L: 45, A: 130, M1: 80, M2: 25 cycles). This is
because of the different dynamics of the SMB process in
the case of different isotherms characterizing the mixture
to be separated and of the different relative position of the
initial operating point with respect to the optimal operating
point achieved by the controller. In all cases, a quicker ful-
fillment of the purity requirements is followed by a slower
optimization. This behavior is a direct consequence of the
way the weights in the cost function have been chosen.

Fig. 4 Mixed type 2 (M2) isotherm: (a) trajectory of the operation for
the separation of mixture M2. Upper left: (m2,m3) plane. Lower right:
(m1,m4) plane. Symbols; !: startup point, �: final operating point, 1:
optimum found through off-line optimization. (b): purity of the product
streams and performance index during the controlled SMB operation

Table 5 Start-up flow rates (mL/min)

Flow rates L A M1 M2

Q1 6.34 7.11 7.11 6.48

Q2 3.88 3.88 3.88 3.88

Q3 6.33 6.33 6.33 6.33

Q4 3.66 3.42 3.42 3.66

The violation of the purity constraints is heavily penalized
in the cost function and therefore these requirements are
quickly fulfilled at the beginning of the operation. During
the rest of the operation the controller aims at maximizing
the feed throughput, of course, without violating the purity
constraints, which gives rise to the rather slow and cautious
optimization.
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Table 6 Flow rates and performance indices obtained for four different mixtures from the ‘cycle to cycle’ online optimizing control runs (c2c)
and the off-line genetic algorithm optimization (Off-line)

Flow rates L A M1 M2

[mL/min] c2c Off-line c2c Off-line c2c Off-line c2c Off-line

Q1 6.54 6.34 7.52 7.21 6.91 6.93 6.45 6.34

Q2 3.55 3.56 4.73 4.73 4.05 4.05 3.89 3.91

Q3 5.26 5.26 7.24 7.22 5.92 5.93 6.30 6.28

Q4 3.31 3.48 3.72 3.91 3.60 3.57 3.68 3.90

PI [−] −27.7 −28.2 −42.7 −43.3 −30.7 −30.8 −42.5 −42.5

�QF −0.6% −0.8% +0.5% −1.3%

�QD −12.9% −15.2% +1.5% −13.5%

The trajectories of the operating points in the operat-
ing parameter space are shown in Figs. 1a, 2a, 3a, and 4a.
The values of the flow rates attained by the controller at
steady state are reported in Table 6, together with the cor-
responding values calculated by off-line optimization. Note
that in all cases, the final operating point in the (m2,m3)
plane are located near the vertex of the corresponding re-
gions of complete separation. Note that in the case of the
mixed Langmuir isotherm M2, the initial operating point is
by chance very close to the optimal operating point in the
(m2,m3) plane.

On the contrary, the final operating points in the (m1,m4)
plane are not optimal as they are close to neither the ver-
tex of the complete separation region predicted by trian-
gle theory nor the optimal point calculated by off-line op-
timization. This is reflected by the larger amount of des-
orbent used by the controller than required compared to
the off-line optimization (see Table 6). Such behavior of
the controller is due to the presence of the slack variables
in the cost function of (8). These variables help to guide
and define the behavior of the controller during the tran-
sient periods, i.e. while the flow rates are being manipu-
lated. The weights λs(1) on the slack variables define how
much and which flow rate is preferably used for control pur-
poses. In our study, we preferred manipulating the flow rates
in the sections 2 and 3 rather than the ones in sections 1
and 4 (λs(1) = [4000 400 400 4000]), which is also consis-
tent with our objective of maximizing the feed throughput
(λF = 20) more than of minimizing the desorbent consump-
tion (λD = 2). On the other hand, λs(2) and λs(3) define how
fast we would like to achieve the specified purities or to min-
imize the off-spec production, which is in our case the first
priority (λs(2) = λs(3) = 100). The weights we have chosen
are effective in allowing for the feed throughput maximiza-
tion and the minimization of the off-spec production by ful-
filling the specified purities relatively quickly, but they are

apparently less effective in minimizing the desorbent con-
sumption. If priorities were different, the weights could be
tuned accordingly.

4 Concluding remarks

The analysis and results presented in this paper prove that
the SMB optimizing controller that our group has developed
over the last few years is capable of controlling and optimiz-
ing SMB operation for systems subject to any type of gener-
alized Langmuir isotherms. The controller uses the same set
of minimal information, namely the behavior of the com-
ponents to be separated in the linear range, i.e. at high di-
lution, in all four cases of generalized Langmuir isotherms.
Since these four isotherms cover a range of retention be-
haviors that is rather broad, we argue that the optimizing
controller will be able to control and to optimize SMB op-
eration for systems subject to any isotherm based on infor-
mation about the retention behavior of the species to be sep-
arated under very dilute conditions only. This capability of
the controller makes it virtually no more necessary the costly
and lengthy determination of adsorption isotherms during
the development of a new SMB separation. Based on the ex-
perience that we have gained in transferring the controller
from a virtual to a real, experimental environment in the
case of the linear and Langmuir isotherms, we are confi-
dent that also in the case of the other three isotherms dis-
cussed in this work the experimental performance of the
controller will be similar to the one obtained in simula-
tions.

As far as the optimizing capabilities of the controller are
concerned, we have compared the separation performance
attained by the online controller and those achievable as
calculated through off-line optimization. The two compares
very well, in terms of feed throughput, with the online opti-
mizer. However, the online optimizing controller is less ef-
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fective in minimizing desorbent consumption. An explana-
tion for such behavior, based on the choice of the weighting
factors in the cost function used by the controller, has been
presented and discussed. As to the dynamic behavior of the
controller, we have noted differences among the four gen-
eralized Langmuir isotherms that deserve further study in
order to ascertain whether these differences stem from the
choice of the tuning parameters or of the initial operating
point, which is obviously in a different position with respect
to the final optimal operating point.
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