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Continuous-Time Trajectory Optimization for Online UAV Replanning

Helen Oleynikova, Michael Burri, Zachary Taylor, Juan Nieto, Roland Siegwart and Enric Galceran
Autonomous Systems Lab, ETH Zürich

Abstract— Multirotor unmanned aerial vehicles (UAVs) are
rapidly gaining popularity for many applications. However, safe
operation in partially unknown, unstructured environments re-
mains an open question. In this paper, we present a continuous-
time trajectory optimization method for real-time collision
avoidance on multirotor UAVs. We then propose a system where
this motion planning method is used as a local replanner, that
runs at a high rate to continuously recompute safe trajectories
as the robot gains information about its environment. We
validate our approach by comparing against existing methods
and demonstrate the complete system avoiding obstacles on a
multirotor UAV platform.

I. INTRODUCTION

Multirotor UAVs are gaining wide acceptance not only
as research platforms, but also for use in various real-
world applications. Despite recent progress in on-board state
estimation, planning, and control, many current UAV systems
still require either an empty environment or perfect knowl-
edge of one a priori. This limits their safety and utility in
unstructured, unknown environments.

In this paper, we focus on the problem of planning safe
avoidance trajectories for a multirotor helicopter (multi-
copter) in partially known or unknown environments. For
example, use cases such as high-speed forest flight require
low-latency motion planning, as these environments are
often densely populated and obstacles frequently occlude one
another [1].

Motion primitive methods have been a common choice for
online replanning on fixed-wing and multirotor platforms,
since they can be executed quickly and each “primitive” can
be constructed to be dynamically feasible [2] [3]. However,
such methods require discretizing the state-space, which
requires a huge motion library or having the controller
track from nearest start state, which [3] cites as being
responsible for up to 20% of the failures of their fixed-wing
collision avoidance system. For our approach, we overcome
the need for state-space or time discretization by choosing
a continuous-time basis function to express our trajectories,
and plan from arbitrary points in the state space to allow
greater flexibility for online replanning.

We draw inspiration from trajectory optimization meth-
ods, such as CHOMP [4], which locally minimize collision
and smoothness costs on a discrete-time trajectory. These
planners are most commonly used for solving manipulation
problems, where most of the constraints are kinematic rather
than dynamic. Kinematic constraints can be simply expressed
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Fig. 1: Results of an experiment showing our online local
replanning system. The UAV starts from behind the large
mattress, which blocks its view of the iron obstacle (left)
behind. The planning goal is set inside the iron obstacle, but
as soon as the UAV observes that it is occupied, it replans
to stop in front (planned path seen in black). This shows the
ability of our system to avoid newly-detected obstacles and
find feasible goal positions online.

in discrete time, while dynamic constraints are more nat-
urally suited to continuous-time representations (and avoid
unnecessary numerical differentiation errors).

For UAV flight, it is advantageous to use continuous-time
trajectory representations like polynomials [5]. These basis
functions provide continuity up to a high derivative, fast
evaluation at any given time, and a very small number of
parameters are needed to describe even long and complex
trajectories. By varying only one parameter (segment time),
it is possible to ensure that these trajectories are dynamically
feasible given a simplified model of multicopter dynamics.

We propose a method of continuous-time trajectory opti-
mization that allows the real-time generation of safe avoid-
ance trajectories. Our method uses a two-part objective
function, minimizing both a derivative of position and cost
of collision with the environment. We also show this method
as integrated into a local replanning system, where we use
this local trajectory optimization to modify an initial plan in
the presence of previously unknown obstacles.

Our approach runs in real-time (under 50 ms for a com-
plete planning cycle), produces continuous-time trajectories,
and is able to plan from and to arbitrary states without a



need for discretization in the workspace or state-space.
The contributions of this work are as follows:
• A continuous-time polynomial formulation of a local

trajectory optimization problem for collision avoid-
ance, capable of running in real-time on a real multi-
copter.

• A complete system with this as local replanning com-
ponent, which continuously computes collision-free
trajectories around any newly detected obstacles.

• Evaluation against existing trajectory optimization and
planning algorithms, and experiments on a real world
platform (Fig. 1).

II. RELATED WORK

3D path planning approaches for UAVs can be broadly
classified into several categories, such as sampling-based
methods (often followed by smoothing), trajectory optimiza-
tion methods, and method based on motion primitives. Here
we discuss motion planning methods related to our work,
with emphasis in suitability for real-time replanning with a
dynamically updating map.

Sampling-based planning followed by a smoothing step
which ensures dynamic constraints are met is commonly used
for 3D global planning on UAVs [6]. Approaches such as
running RRT-based methods to generate a visibility graph,
followed by fitting high-order polynomials through the way-
points (graph vertices) are shown to outperform traditional
RRT methods in control space in terms of execution time [6].
Recent speed-ups to the polynomial optimization have also
allowed such combined planners to run in almost real-time,
taking only a few seconds to generate long global plans [7].
While these methods generally produce high-quality plans
and are probabilistically complete, they are still too slow for
some online applications like real-time avoidance.

Closest to our proposed approach are discrete-time
trajectory optimization methods. CHOMP, a trajectory
optimization-based motion planner that revived interest in
this class of planner in recent years, uses a two-part objective
function with a smoothness and collision cost, and performs
gradient descent with positions of discrete waypoints as
parameters [4]. In order to speed up convergence time to
a feasible plan, and ensure smoothness of the final solution,
each gradient descent step is multiplied by a Riemennian
metric in order to ensure smooth, incremental updates. Also
based on trajectory optimization, STOMP is a gradient-free
method that samples candidate trajectories and minimizes a
cost function by creating linear combinations of the best-
scoring candidates [8]. A more recent advent in trajec-
tory optimization for collision-free planning breaks up the
workspace into free convex regions and performs Sequential
Quadratic Programming (SQP) to converge to a solution
faster than the previous two methods [9]. Unfortunately, this
requires a pre-built map with pre-computed convex regions,
which is difficult to achieve in real-time.

Another approach to finding a low-cost path is to cheaply
generate many path candidates, and choose the best of the

candidates based on an objective function. This has been
done for finding good polynomial trajectories to enable
quadrotor ball juggling [10], selecting locally lower-cost
trajectories to track a global plan in rough terrain [11], and
choosing the safest trajectories for autonomous vehicles in
traffic [12]. However, these approaches rely on randomly-
sampled trajectories finding collision-free paths, which is an
assumption that may not hold in very cluttered environments.

An alternative is to solve the optimal control problem
using mixed-integer programming, where the workspace is
again broken up into convex regions and a global optimum
including some linearized or simplified version of the system
dynamics is found [13], [14]. These approaches generally
give dynamically-feasible and collision-free trajectories, and
it is even possible to make guarantees on their safety [15],
[16], however require a map representation which is very
costly to compute and generally have long runtimes (on the
order of magnitude of minutes).

A class of methods commonly used for replanning are
those based on motion primitives. The state-space of the UAV
is discretized into a state lattice with motion primitives form-
ing edges in the graph, and standard graph search algorithms
such as A* and AD* are used to find a feasible solution
through this graph. This has been shown in multicopters
for navigating through partially known environments [2],
[17] and on fixed-wing airplanes for navigating through
a forest while always safely being able to perform an
emergency turn-around maneuver [18]. Another work shows
flying high-speed through a forest using only on-board vision
and planning, picking collision-free next maneuvers from a
motion library [3], where they cite insufficient richness of
the motion primitive library and discretization in the start
state as responsible for 50% of the experimental failures.

A drawback of these approaches is the need to discretize
both the workspace and state space (for example, motion
primitives can only be generated for a finite number of
start velocities and end velocities), and the performance
of the algorithm is tightly linked to how many motion
primitives are generated. Although we do use a discretized
workspace representation, our approach does not require
such discretization, nor does it require discretization in time
or state-space, giving the possibility of a wider range of
solutions to be found.

III. CONTINUOUS-TIME TRAJECTORY OPTIMIZATION
ALGORITHM

Our approach focuses on optimizing high-degree poly-
nomial trajectories made out of several segments, as in-
spired by [6]. The trajectory is essentially a high-order
polynomial spline, with CD continuity, where D is the
derivative we attempt to minimize. These high-order splines
are generally used for global trajectory generation, and have
many advantages including the ability to specify velocities,
accelerations, and lower derivatives at waypoints, very fast
evaluation times, and compact representation of long and
complex trajectories. While a closed-form solution exists to
minimizing the sum of squared derivatives of such a spline,



we expand the problem to also contain information about the
environment to generate a locally optimal safe trajectory.

A. Problem Formulation

Instead of considering the full dynamics of a multicopter,
we follow the work of Mellinger and Kumar [5] to plan in
a reduced space of differentially flat outputs. This allows us
to plan only in R3 and handle yaw separately.

Therefore, we will consider a polynomial trajectory in K
dimensions, with S segments, and each segment of order N .
Each segment has K dimensions, each of which is described
by an N th order polynomial:

fk(t) = a0 + a1t+ a2t
2 + a3t

3 . . . aN t
N (1)

with the polynomial coefficients:

pk =
[
a0 a1 a2 . . . aN

]>
. (2)

Given this trajectory representation, we seek to find the set
of coefficients p∗ that minimize an objective function J . In
our case, similar to CHOMP [4], our objective function has
two components: a part that attempts to minimize a derivative
D, Jd, and a part that attempts to minimize collisions with
the environment, Jc.

p∗ = argmin
p

wdJd + wcJc (3)

The following sections will present our choices of ob-
jective costs, Jd and Jc, optimization method, and map
representation to solve this problem in real-time.

B. Method

As described in [6], we express the polynomial not in
terms of its N + 1 coefficients, but in terms of its end-
derivatives to allow us to pose the derivative minimization
problem as an unconstrained quadratic program (QP), which
is significantly faster to solve than the constrained dual of
this problem.

We can map between polynomial coefficients and end-
derivatives using the A matrix, and rearrange the end-
derivatives into a free (dP ) and fixed (dF ) blocks using a
mapping matrix M:

p = A−1M

[
dF
dP

]
. (4)

The construction of matrices A, M (and R below) is
addressed in [6]. The fixed derivatives dF are given from
the fixed end-constraints, like start and end velocities and
accelerations, while the free derivatives dP are the parame-
ters we optimize.

In order to incorporate costs from collisions with the
environment, we use a minimization problem with two costs:

d∗P = argmin
dP

wdJd + wcJc (5)

where Jd is the cost due to integrated squared derivative
terms (if minimizing snap, integral of squared snap along
the trajectory), Jc is the cost due to collisions, and wd and
wc are the weighing terms for each part of the cost.

The objective Jd can be calculated via the following:

Jd = d>FRFFdF + d>FRFPdP +

d>PRPFdF + d>PRPPdP (6)

where R is the augmented cost matrix, and RXX denotes
the appropriate blocks within this matrix.

The Jacobian of Jd with respect to the parameter vector
can be computed as follows:

∂Jd
∂dP

= 2d>FRFP + 2d>PRPP . (7)

The derivative costs are independent for each axis, and are
accumulated over all K dimensions of the problem.

To represent collision costs, we use a line integral of the
potential function c(f(t)) over the arc length of the trajectory.

Since our environment is represented as a discrete voxel
grid (see Section III-C), we need to sample the trajectory and
test at least one point within each voxel along the trajectory.

To do so, we transform the trajectory from end-derivatives
into workspace coordinates. For each axis k at a time t:

T = [t0, t1, t2, ..., tN ] (8)
fk(t) = Tpk (9)
f(t) =

[
fx(t) fy(t) . . .

]
(10)

We also compute the velocity at each time t, using a
matrix V, which maps a vector of polynomial coefficients
of a function to the polynomial coefficients of its derivative.

vk(t) = ḟk(t) = TVpk (11)
v(t) =

[
vx(t) vy(t) . . .

]
(12)

The collision cost is then the line integral below, integrated
over each segment m (where tm is the end time of the
segment):

Jc =

∫
S

c(f(t))ds

=

∫ tm

t=0

c(f(t))
∥∥∥ḟ(t)∥∥∥ dt

=

tm∑
t=0

c(f(t)) ‖v(t)‖∆t (13)

where c(f(t)) is the potential cost described in [4].
Finally, using the product and chain rules, we obtain the

Jacobian for each axis k:

∂Jc
∂dPk

=

tm∑
t=0

‖v(t)‖ ∇kc TLPP∆t+

c(f(t))
vk(t)

‖v(t)‖
TVLPP∆t. (14)

Here L = A−1M, or the complete mapping matrix
between end-derivatives and polynomial coefficients. LPP
refers to the block of the right-side columns of the matrix,
corresponding to the columns which operate on the free
parameters dP .

We use a heuristic to estimate the segment times, tm,
to meet dynamic constraints and we hold these times fixed
during the optimization.



C. Map Representation

Map representation and choice of potential cost function
is central to the algorithm described above. Naturally, the
potential cost function must be smooth, but its gradient must
also be able to push trajectories out of collision. We use the
potential described in [4], which is a function of an Euclidean
Signed Distance Field (ESDF) value, d(x), at a point in 3D
space, x, and ε is a constant value specifying the obstacle
clearance past which space is considered free.

c(x) =


−d(x) + 1

2ε if d(x) < 0
1
2ε (d(x)− ε)2 if 0 ≤ d(x) ≤ ε
0 otherwise

(15)

We use a voxel-based map representation, as they can be
built and maintained quickly. To ensure that a trajectory does
not collide with the environment, we must check each voxel
along the trajectory. Note that our continuous-time approach
still presents advantages over discrete-time methods, as we
are flexible in how often we sample the trajectory for
collisions, and can change this interval between iterations.
We choose to evaluate the function along every arc length
point ∆s equal to the map voxel resolution. This significantly
speeds up computation without compromising safety.

D. Optimization

In any nontrivial environment, the optimization problem
in (5) is likely to be non-convex and highly nonlinear. For
minimizing the function, we choose to use a quasi-Newton
method like BFGS [19] (though other simpler methods like
gradient descent can also be used).

However, all solutions found with such methods are in-
herently local solutions – and they are prone of falling into
local minima depending on the initialization. Therefore, in
order to increase the chances of finding a feasible (non-
colliding) solution, we do several random restarts where
we perturb the initial state by a random quantity, and then
select the lowest-cost trajectory as the final solution. A more
thorough discussion on the necessity of random restarts for
local trajectory optimization is offered in [9].

IV. REPLANNING SYSTEM

In this section, we introduce the complete system that
makes it possible to run our local replanning method online,
in real-time on dynamically updating map data. First, we
introduce how to build the map and its companion distance
field, then we discuss using a global plan as input into the
local replanner, and finally, how to select start and end points
for replanning.

A. Incremental Mapping

As mentioned in Section III-C, we require an Euclidean
Signed Distance Field (ESDF) to compute the collision
potentials. Our map representation is an Octomap [20], which
contains voxels in one of three states: free, unknown, or
occupied.

When first constructing the map, we fill in the occupancy
of all cells and compute the distances for the complete map,
which is computationally expensive. In order to allow our
algorithm to run in real-time, we track changed nodes in
our Octomap representation and invalidate all voxels in the
ESDF that have those nodes as parents (i.e., nearest neighbor
of a different state). This allows us to recompute the distance
values of only a few tens to hundred voxels per map update,
instead of having to recompute the full dense grid of millions
of voxels.

One important point about the map representation is that
although Octomap allows three states (free, unknown, and
occupied) with full probabilities, in order to construct a
distance field, we must discretize to only two states —
free and occupied. How to deal with unknown voxels is a
question of safety: we cannot safely plan through them unless
the robot is able to stop in known free space. Therefore,
we choose to treat unknown as occupied, creating a very
conservative planner. A more thorough discussion of this
choice is offered in Section VI.

B. Global Planning
Next, we built a global plan to an end point in the original

Octomap, while treating unknown space as free. This creates
a high-level optimistic planner, while the local replanner is
conservative and therefore safer. This plan will then be used
as a prior for the replanner, and also allows us to use a
replanner that is not complete – in case no solution is found
by the local trajectory optimization, we simply stop and wait
for the global planner to find a new path.

We use a 2-stage global planner: first, we find a topo-
logically feasible straight-line path using Informed RRT*
[21], and then we plan a dynamically feasible polynomial
trajectory through it [7].

C. Local Replanning
To perform the local replanning, we start with the global

plan (if available) or a straight-line plan to the next waypoint
as prior, and incrementally update the ESDF.

We then select appropriate start and end points for the
replanning algorithm. As start point, we choose the point
on the current trajectory tR seconds in the future, where
tR is the update rate of the replanner. Since our planner
allows continuity and smoothness even in low derivatives,
we are able to use the full state of the UAV at the start point,
including velocity and acceleration, guaranteeing a smooth
path even with changing plans.

The goal point is chosen as a point on the global trajectory
that is h meters ahead of the start point, where h is a planning
horizon. If unoccupied, we accept that point as the goal,
otherwise we attempt to find the nearest unoccupied neighbor
in the ESDF, and as a final fallback we shorten the planning
horizon until a free goal point is found.

We can then run the local optimization procedure between
these two points. Either the optimization succeeds in finding
a collision-free path, or we attempt random restarts until
either a collision-free trajectory is found or the vehicle stops
and waits for the global planner to select a new path.



V. EXPERIMENTAL RESULTS

In this section we first evaluate the proposed continuous-
time local planner and compare it to existing planning
algorithms. Then, we validate our complete system in both a
long, realistic simulation scenario where the robot only has
local information about the environment, and then in a real-
world test on an UAV avoiding newly detected objects in a
room.

A. Evaluation

We validate our approach as a local start-to-goal point
planner in simulation on 100 random 2D forest environments.

To analyze how our algorithm behaves in different den-
sities of clutter, we generate 5 × 5 m Poisson forests [1]
of densities between 0.2 trees/m2 to 0.8 trees/m2. We then
analyze the success fraction of our algorithm versus CHOMP
[4], a discrete-time local optimization method.

We initialize both algorithms with a straight-line path
between opposite corners of the map. For our continuous-
time algorithm, we use between 1 and 5 segments of 11th
order polynomials (N = 11) minimizing snap, and optionally
use 10 random restarts. For CHOMP, we use a fixed N of
100 points and minimize velocity.

Fig. 2a shows typical paths generated by the algorithms.
As can be seen, 1 segment does not have sufficient degrees
of freedom to solve this planning problem, but 5 segments
are able to find a short, smooth, feasible solution. CHOMP
is also able to find a solution for this problem, but falls into
a different local minima from our approach.

We can further analyze the behavior of the algorithms
at different forest densities (number of obstacles in the
environment), as seen in Fig. 2b. As the density of the
environment increases, the chance of all methods finding a
valid solution decreases. However, there is a large increase on
success rate if random restarts are used, and a larger number
of segments is able to handle denser environments (as in the
case in Fig. 2a). Fig. 2c shows the effect of increasing the
number of segments on success across all test cases.

For a more representative evaluation, we simulate arealis-
tic 3D forest environment using real tree models, as shown in
Fig. 3. The environments are 10×10×10m, populated with
a density of 0.2 trees/m2. The trees are of random scale
and height, adding the additional complexity of navigating
in 3D and avoiding the tree canopies. We generate 9 such
environments, and select 10 random start and goal points at
least 4 meters apart, for a total of 90 test cases.

We evaluate several parameter settings of our algorithm
and compare to CHOMP (which minimizes velocity), and
sampling-based visibility graph search (RRT-based methods)
with polynomial smoothing using 9th order minimum snap
polynomials. For CHOMP and our method, since both fea-
ture a derivative cost term and a collision cost term, we use
the same weights (wd = 0.1, wc = 10) to make as fair of a
comparison as possible. Both algorithms are allowed to run
for up to 50 iterations.

The results are shown in Table I. Though RRT-based
algorithms with smoothing are clearly able to solve a larger

Algorithm Success
Fraction

Mean
Norm. Path

Length

Mean
Compute
Time [s]

Inf. RRT* + Poly 0.9778 1.1946 2.2965
RRT Connect + Poly 0.9444 1.6043 0.5444
CHOMP N = 10 0.3222 1.0162 0.0032
CHOMP N = 100 0.5000 1.0312 0.0312
CHOMP N = 500 0.3333 1.0721 0.5153
Ours S = 2 jerk 0.4889 1.1079 0.0310
Ours S = 3 vel 0.4778 1.1067 0.0793
Ours S = 3 jerk 0.5000 1.0996 0.0367
Ours S = 3 jerk + Restart 0.6333 1.1398 0.1724
Ours S = 3 snap + Restart 0.6222 1.1230 0.1573
Ours S = 3 snap 0.5000 1.0733 0.0379
Ours S = 4 jerk 0.5000 1.0917 0.0400
Ours S = 5 jerk 0.5000 1.0774 0.0745

TABLE I: A table showing comparison of RRT variants
with polynomial smoothing, CHOMP, and our approach on
a set of 90 forest planning problems, as shown in Fig. 3.
We compare the success fraction, normalized path length
(solution path length divided by straight-line path length),
and computation time. As can be seen, adding random
restarts significantly improves success fraction but at the cost
of higher computation time. RRT* and RRT Connect are able
to solve a higher percentage of problems, but at the cost of
slower performance.

number of problems, Informed RRT* takes too long to run in
real-time at a high rate, and RRTConnect, while significantly
faster, is still exceeding the time budget and producing much
longer paths.

For N = 100 (where N is the number of discretized way-
points) in the CHOMP algorithm, the results are comparable
both in run time, success rate, and path length. However,
in order to fully safely verify the trajectory, there should
be a waypoint for every voxel in the 3D occupancy grid.
Therefore, N = 500 is a more appropriate comparison from a
safety perspective (as the mean path length is approximately
5 meters), and since the execution time grows approximately
with O(N2), this method performs much slower in such
cases. It also has a lower success rate, as it does not converge
to a collision-free solution within the limited iteration steps.

On the other hand, our method has a fixed number of
parameters for a given number of segments, regardless of
trajectory length or map resolution. Therefore, we are able
to keep a low computation time, as long as the number
of segments chosen is appropriate for the density of the
environment, and our results show that 3 segments is enough
for the realistic forest scenario tested. As a result, our
approach has only 10 free parameters where CHOMP has
500 per axis.

We chose to use 3 segments and minimize jerk in our final
real-world experiments, as this has the smallest number of
free parameters for the highest success rate in our compari-
son.

B. System Simulation

Next, we validate our local replanning in the context of a
complete system and only a partially known map.
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Fig. 2: Results of 2D evaluations of our algorithm against CHOMP. (a): Typical paths generated by our algorithm with
different number of segments, compared to CHOMP. With only one segment (red), there are not enough degrees of freedom
to avoid all the obstacles, but it is able to find a solution (and one different from CHOMP) with 5 segments. The potential
cost map is in gray, with the original obstacle edges in blue. (b): Success rate of the different local planners vs. density of
the environment. As density increases, success rate decreases, but more so for a smaller number of segments, and some of
this decrease can be counteracted by doing 10 random restarts. (c): Fraction of successful plans (taken over environments
of all densities) by number of segments. This also shows a significant increase in success rate by doing random restarts,
which allows the algorithm to avoid local minima that are in collision.

Fig. 3: Figure showing the simulation setup for evaluations.
The forest is 10 × 10 × 10 meters, with a density of 0.2
tree/m2. The paths are planned between two random points
in the space, at least 4m apart. Yellow is our method, cyan
is Informed RRT* + polynomial optimization (discussed in
global planner section), and purple is CHOMP.

We set up a realistic simulation experiment in RotorS [22]
simulator, using a model of our multicopter platform. We
approximate filling a blank map from sensor data by only
giving the UAV access to a small radius of the map around
itself while flying through a large forest environment. The
map is 50× 50m with a density of 0.1 trees/m2.

We use 4 meters as a planning horizon for our local
replanning and give the algorithm access to 5 meters around
its current position (to emulate a stereo system with a 5
meter maximum range). A new plan, minimizing jerk in a
3-segment trajectory, is generated at 4 Hz as the UAV is
flying.

Fig. 4 shows the results of our experiment, compared to
a global plan made from a fully-known map using Informed

RRT* and polynomial smoothing.
As can be seen, both algorithms produce similar paths,

with the local replanning finding a solution that is only
0.5m longer than the global path. The RRT* plus smoothing
algorithm ran with complete knowledge of the map and took
30 seconds to compute, 20 of which were spent on finding the
visibility graph and 10 were spent on finding a collision-free
polynomial path. On the other hand, our algorithm was able
to find a comparable path while considering only a 4 meter
region around itself and continuous replanning at 4 Hz.

C. Real World Experiments

Finally, we show our complete system running in real-
time on a multicopter, starting from a completely blank map
and filling it from sensor data. The experiment is done in an
indoor environment with two obstacles: a large one directly
in front of the robot, obscuring the robot’s vision, and a
smaller second obstacle behind the first. A goal point is
placed inside the second obstacle, and the UAV must avoid
the large obstacle, fly behind it, detect the second obstacle,
and stop short of collision. The physical setup is shown in
Fig. 1.

Our platform is an Asctec Firefly1 using a visual-inertial
stereo sensor [23], running at 20 Hz, for both state estimation
and perception, both of which are done entirely on-board on
an 2.1 GHz Intel i7 CPU.

The UAV starts with a blank map and builds it online
from dense stereo reconstruction data. The map is updated
at 5 Hz, and replanning is done at 4 Hz, and we use the same
parameters as in the previous section. The key difference is
that due to the narrow field of view of the camera, we treated
unknown space as free. A further discussion of this decision
is offered in Section VI.

1http://www.asctec.de/en/uav-uas-drones-rpas-roav/
asctec-firefly/

http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-firefly/
http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-firefly/


Fig. 4: Here we show a comparison of our local replanning
method (cyan - 67.9 m), operating with a planning horizon
of 4 meters, compared to a single global plan (black -
67.5 m) generated with prior knowledge of the entire map.
The environment is 50×50 m with a density of 0.1trees/m2,
and we show only the tree trunks of the obstacles for clarity.
The local replanning algorithm is running at a rate of 4
Hz, while the global planner, using Informed RRT* with
polynomial smoothing, runs in 30 seconds.

Fig. 5 shows the path evolution over time of the trajectory,
with the color of the trajectory going from red to blue with
time. As can be seen, though initial trajectory candidates are
both in collision and often very far from obstacles, but as
the UAV approaches the goal, its path gets smoother and out
of collision. Also note that until the trajectory color reaches
cyan, the trajectory goal is still placed in collision since the
UAV has not seen the obstacle yet. This experiment can be
seen in the video attachment.

We also show average timings for the complete system
in Table II. As can be seen, the complete system is fast
enough to run in real-time at 4 Hz, and has a mean latency
of only 40 ms between acquiring depth data from the sensors
to generating a feasible collision-free trajectory.

VI. DISCUSSION

Our experiments have shown that our approach is able to
find solutions to local path-planning problems successfully,
at a comparable rate to existing trajectory optimization
methods. While sampling-based methods are still able to
solve a much larger percentage of the problems posed, they
are prohibitively slow for our target application.

The main advantage of our method compared to discrete-
time trajectory optimization methods lies in the inherently
smooth, compact representation. For example, as can be

Fig. 5: Local plans over time for the real-world experiments.
The original goal point is embedded in the second obstacle
(pink), which is not visible from the start position. Over
time, the paths stop short of collision with the obstacle and
the final path (blue) is a shorter, lower curvature path than
many of the plans earlier in the experiment.

seen in Table I, the number of waypoints CHOMP requires
to check every voxel along a 5 m long path with a map
resolution of 10 cm is N = 500, and with this many
variables, the convergence rate is significantly slower and the
execution time is significantly longer than for our algorithm,
even with 5 polynomial segments.

Our approach allows better control of end derivatives,
which makes it much easier to integrate this into a continuous
replanning framework, as shown in Section V-B and Section
V-C. We are able to continue planning from the exact current
(or future) state of the UAV, leading to smooth, continuous
paths. This is an advantage over both motion primitive
methods, which must discretize the state, and discrete-time
methods, which can only encode lower-derivative continuity
as a cost rather than a hard constraint.

However, the main drawback of this approach is the
required map representation (ESDF) in which space is treated
as either occupied or unoccupied, and unknown space must
be treated as one of the two. The obvious choice is to treat
unknown space as impassable. While this can work well in
simulation, real sensors often have measurements which are
not completely dense, leading to blocks of unknown space
even in areas that have been observed. Treating these as
occupied leads to the UAV rarely being able to find areas
where the entire bounding box of the UAV contains no
unoccupied voxels. Treating these as free, on the other hand,
encourages the UAV to travel into unknown space to avoid
obstacles. This can have disastrous consequences depending
on the sensor configuration; for example, flying straight into



Step Time [ms]

Mapping

Octomap Insert 10
ESDF Initial Map Creation* 110
ESDF Incremental Update <1

Local Replanning

Select Start and End 1
Optimization (Total) 28

Compute Der. Gradient (per 100 evals) 0.6
Computer Col. Gradient (per 100 evals) 16

Total Time per Planner Iteration 40

TABLE II: Timings for our complete replanning system,
taken from the real-world experiment. We present mean
timings over the entire experiment, which is why the total
optimization time is shorter than the maximum time with
10 restarts (most planner iterations find a feasible solution
without any restarts). Gradients timings are given over 100
evaluations of the cost function. *Initial map creation runs
only once and is not included in the total.

a ceiling that the sensors can not observe. There is also the
additional cost of computing a dense distance field over each
voxel of the original map, which does not scale to very large
environments.

However, our algorithm can be adapted to use other map
representations, as long as a smooth, continuous penalty for
collisions can be defined. Future work will focus on finding
more compact potential cost representations without these
drawbacks.

VII. CONCLUSIONS

We presented a motion planning method that uses trajec-
tory optimization in continuous time to find collision-free
paths between obstacles. We then constructed a complete
replanning system, from mapping to trajectory generation,
which allows us to replan at a high rate and respond to
previously unknown or unseen obstacles with low delay.
We verified that our method runs comparably to discrete-
time trajectory optimization, while having the advantages
of continuous-time representation to minimize the number
of parameters and allow arbitrary start and goal states. Our
experiments showed the system running both in simulation
and on a real multicopter platform at 4 Hz, though timing
analysis shows that it could run at upwards of 25 Hz.
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