
DISS. ETH NO. 23929

Security Considerations for
VLSI-Based Symmetric
Encryption Devices

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

MICHAEL MÜHLBERGHUBER

Dipl.-Ing.,
Graz University of Technology

born on 23.10.1984
citizen of
Austria

accepted on the recommendation of

Prof. Dr. Hubert Kaeslin, examiner
Prof. Dr. Srdjan Capkun, co-examiner

Prof. Dr. Ir. Ingrid Verbauwhede, co-examiner

2016

ii

Acknowledgments

Writing down a document like the present Ph.D. thesis is mainly a
one-man show. However, the more important part—the actual con-
tent of it—is the result of a four year journey working on projects
with many different people. I would like to take this opportunity
to highlight several of them who deserve to be mentioned, as they
significantly influenced this thesis in one way or the other.

First and foremost I thank Prof. Hubert Kaeslin from the Mi-
croelectronics Design Center for supervising my work and his support
throughout the previous years. I am also grateful to my co-examiners,
Prof. Srdjan Capkun and Prof. Ingrid Verbauwhede. This work was
carried out as part of a collaboration between industry and academia
and would not have been possible without the financial support from
the Commission for Technology and Innovation (CTI). The regular
and fruitful discussions with Dr. Richard De Moliner from Omnisec
AG provided me an insight into the requirements for industrial prod-
ucts. Thanks a lot to Dr. Michael Hutter and Dr. Thomas Korak from
the Institute of Applied Information Processing and Communication
(IAIK) at Graz University of Technology for our collaborations.

Many colleagues at the Integrated Systems Laboratory (IIS) in-
fluenced my work significantly. I would like to express my deepest
gratitude to Dr. Frank K. Gürkaynak and Dr. Norbert Felber. With-
out their help I would have most-likely never joined the IIS and would
have missed a great opportunity. Furthermore, I appreciated work-
ing together with Dr. Patrick Maechler, Christoph Keller, Michael
Gautschi, and Beat Muheim at the IIS. The output from many in-
teresting discussions with the following people regularly inspired my
daily work: Michael Schaffner, David Bellasi, Pirmin Vogel, Andreas

iii

iv ACKNOWLEDGMENTS

Traber, and Dr. Pierre Greisen. Administrative tasks and infrastruc-
ture support are often overlooked. Thanks Christoph Wicki for the
smoothly working IT systems and Christine Haller for keeping away
most of the office work, letting me focus on my research. Hansjörg
Gisler constantly supported me with shipments and component pro-
curements. I had the opportunity to supervise many brilliant students
as part of master theses and semester projects. Many thanks to all of
them for their great work and commitment. In particular I would like
to emphasize the work done by Philipp Dunst, Cyril Arnould, Marco
Eppenberger, and Stefan Mach.

Ultimately I would like to thank my family and friends, including
some of my co-workers, who became more than colleagues during the
time of my Ph.D. Mum and dad, you shaped my personality and
attitude more than anybody else and made me the person I am today.
Thank you so much for always guiding me into the right direction. The
previous years were not the easiest ones for my girlfriend Magdalena.
Often little spare time gave our relationship a hurdle to be overcome.
We managed to do so and I am looking forward to a common future
with her.

Abstract

The development and fabrication of secure, trustworthy, and efficient
technical devices becomes an increasingly difficult task because of the
high complexity of today’s systems. Dedicated hardware solutions
based on Application-Specific Integrated Circuits (ASICs) or Field-
Programmable Gate Arrays (FPGAs) are generally preferred over
their software counterparts to achieve ambitious throughput, power,
or energy goals. Similar to their software equivalents, these hardware-
oriented approaches suffer from several vulnerabilities that might be
exploited by an attacker during the life cycle of a device.

As part of this thesis, we investigate risks and performance as-
pects, immanent in the development and fabrication of any VLSI-
based symmetric encryption device. We consider ASICs and FPGAs
as the lowest hierarchy level where an attacker may intrude the sys-
tem. Therefore, we implant a hardware Trojan into an ASIC just
prior to fabrication in a 180 nm CMOS technology by UMC. Both
the genuine and the malicious design have actually been manufac-
tured. Subsequently, we apply Trojan detection techniques based on
side-channel fingerprinting. Despite the comparatively small size of
the Trojan (0.5% of the original design), we successfully distinguish
malicious from genuine ASICs.

Since FPGAs are of particular interest for high-throughput designs
of cryptographic algorithms, we also analyze Trojans on reconfigurable
hardware. More specifically, we insert a malicious circuitry into a bit-
stream after placement and routing. Thereafter, we show how to use
electromagnetic radiation as a side-channel to successfully detect the
Trojan and experimentally demonstrate a method to actually localize
it on the FPGA.

v

vi ABSTRACT

Symmetric encryption devices need to share a common cipherkey
prior to their communication. This exchange is often accomplished
with the use of small hardware tokens like USB sticks or smart cards.
Because such items are widely accessible by the general public, they
need to be secured against implementation attacks like Differential
Power Analysis (DPA). For that reason, we have developed and man-
ufactured Zorro, an ASIC to assess DPA countermeasures on a real
chip. Based on measurements acquired from the fabricated ASIC,
we show that 100 000 traces or less are sufficient to successfully at-
tack Zorro with standard DPA. Zorro does not merely constitute
an evaluation platform for DPA countermeasures, but also represents
the smallest, DPA-secured ASIC implementation of a Keccak-based
Authenticated Encryption (AE) scheme available to date.

Eventually, we analyze the efficiency in terms of throughput-per-
area of emerging AE algorithms. We aim at ASIC architectures with
throughputs of 100Gbit/s and even beyond. To do so, we create a
GCM-AES reference architecture, targeting a 65 nm CMOS technol-
ogy by UMC. This design serves as a basis for a comparison between
several candidates from the CAESAR competition. We show that all
of the CAESAR algorithms investigated outperform GCM-AES when
looking at the asymptotic use case. However, we point out that when
more realistic scenarios are considered, for instance, communication
protocols like Ethernet, this advantage diminishes substantially.

Zusammenfassung

Die Komplexität technischer Produkte ist in den vergangenen Jahren
kontinuierlich gewachsen. Immer mehr Software- und Hardwarekom-
ponenten werden zu grösseren Gesamtsystemen kombiniert um den
Ansprüchen der Kunden gerecht zu werden. Aus diesem Grund wird
die Entwicklung und Herstellung von hochperformanten sowie gleich-
zeitig als sicher und vertrauenswürdig geltenden Geräten stets schwie-
riger. Um den Anforderungen nach hohem Durchsatz und geringem
Energieverbrauch nachkommen zu können, werden oftmals hardwa-
rebasierte Lösungen ihren Software-Alternativen vorgezogen. Sowohl
anwendungsspezifische integrierte Schaltungen (ASICs) als auch pro-
grammierbare Hardwarekomponenten (FPGAs) werden dafür häufig
eingesetzt. Leider können im Zuge der Entwicklung und Fabrikation
dieser Komponenten zahlreiche Schwachstellen dazu genützt werden,
um die Sicherheit der Geräte zu unterwandern.

Die vorliegende Arbeit behandelt Risiken und Performanceaspek-
te, die während des Lebenszyklus eines VLSI-basierten symmetrischen
Verschlüsselungsgerätes nicht vernachlässigt werden dürfen. ASICs
und FPGAs werden dabei als unterste Hierarchieebene eines solchen
Produktes angesehen. Aus diesem Grund untersuchen wir zunächst
Hardware Trojaner. Dazu wurde ein bösartiger Schaltkreis in ein exis-
tierendes ASIC Design eingeschleust. Der unverfälschte sowie der leicht
abgeänderte Chip wurden in einer 180 nm CMOS Technologie fabri-
ziert und im Anschluss daran mittels Seitenkanalanalysen untersucht.
Obgleich der implantierte Trojaner nur 0.5% des ursprünglichen De-
signs ausmachte, konnten wir diesen zuverlässig detektieren.

Zur Umsetzung von kryptografischen Algorithmen in hochperfor-
manten Anwendungen werden immer häufiger FPGAs verwendet. Da-
her vertieften wir unsere Trojaner-Untersuchungen in diese Richtung

vii

viii ZUSAMMENFASSUNG

und implantierten einen bösartigen Schaltkreis in eine existierende
FPGAKonfiguration. Unter Verwendung der elektromagnetischen Ab-
strahlung als Seitenkanal konnten wir zwischen bösartigen und unver-
fälschten Varianten eindeutig unterscheiden. Zusätzlich zur Detektion
stellen wir eine Methode zur Lokalisation von Trojanern vor.

Für den Austausch von Schlüsselmaterial zwischen zwei Parteien
werden oftmals USB Sticks oder Smartcards eingesetzt. Diese sind
aufgrund ihres Einsatzbereiches meist relativ einfach einer breiteren
Masse zugänglich und müssen daher gegen Implementierungsangriffe
wie die differentielle Leistungsanalyse (DPA) geschützt werden. Hierzu
präsentieren wir Zorro, einen ASIC der ausschliesslich zur Beurtei-
lung der Qualität von DPA Gegenmassnahmen entwickelt wurde. Ba-
sierend auf Messergebnissen zeigen wir, dass Techniken wieHiding und
Masking alleine keinen Angriffen auf unseren Chip mit bis zu 100 000
Stromverbrauchsprofilen vorbeugen können. Des Weiteren repräsen-
tiert Zorro die kleinste verfügbare, DPA-sichere ASIC-Realisierung
eines Keccak-basierten Authenticated Encryption Systems.

Abschliessend untersuchen wir die Effizienz hinsichtlich Durchsatz
pro Fläche für aufstrebende kryptografische Algorithmen, welche so-
wohl Vertraulichkeit als auch Integrität gewährleisten. Dazu präsen-
tieren wir zunächst eine GCM-AES Referenzarchitektur basierend auf
einer 65 nm CMOS Technologie für Durchsätze von 100Gbit/s und
mehr. Im Anschluss daran werden hochperformante Designs einiger
Kandidaten der zweiten Runde des CAESAR Wettbewerbs vorgestellt
und mit der GCM-AES Architektur verglichen. Wir zeigen, dass al-
le untersuchten Mittbewerber deutlich effizienter in Hardware um-
zusetzen sind als der Referenzalgorithmus solange der asymptotische
Durchsatz betrachtet wird. Werden die entwickelten Architekturen
hingegen für Kommunikationsprotokolle wie Ethernet verwendet, so
relativiert sich deren Vorsprung gegenüber GCM signifikant.

Contents

Acknowledgments v

Abstract vii

Zusammenfassung ix

1 Introduction 1
1.1 The Need for Hardware-Based Security Systems 3
1.2 Cryptography Basics 5
1.3 Goals of the Thesis . 7
1.4 Contributions . 9
1.5 Outline . 11

2 Real-World Hardware Trojans 13
2.1 Background . 14
2.2 Red Team vs. Blue Team ASIC Trojan Analysis . . . 18

2.2.1 ASIC Development Chain 18
2.2.2 Experimental Setting 19
2.2.3 Chameleon - The Target Circuit 21
2.2.4 Trojan Circuit 23
2.2.5 Trojan Insertion Process 25
2.2.6 Measurement Setup 27
2.2.7 Side-Channel Analysis (SCA) Results 30

2.3 Localization of FPGA Trojans Using Electromagnetic
Radiation (EM) . 40
2.3.1 FPGA Design Flow and Attacker Model 41

ix

x CONTENTS

2.3.2 Trojan Circuit 42
2.3.3 Measurement Setup 43
2.3.4 Trojan Insertion Process 45
2.3.5 Measurement Results 48

2.4 Final Remarks . 51

3 An ASIC for Assessing DPA Countermeasures 53
3.1 Introduction . 54

3.1.1 Requirements and Vulnerabilities of Pervasive
Hardware Devices 55

3.2 DPA Countermeasures 56
3.2.1 Hiding . 56
3.2.2 Masking . 57

3.3 Keccak and the Sponge Family 58
3.3.1 The Keccak-f Permutation 59
3.3.2 SpongeWrap 61
3.3.3 Masking the Sponge 62

3.4 Zorro - An ASIC Assessment Platform for DPA Coun-
termeasures . 63
3.4.1 3-Share, 3-Share*, and 4-Share Designs 65
3.4.2 RAM Allocation 68

3.5 Results . 68
3.5.1 Hardware Figures and Comparison 68
3.5.2 DPA Attacks on Zorro 72

3.6 Summary . 82

Chapter Appendices 83
3.A Round Operations . 83
3.B Data Transfer Protocol 84

4 High-Throughput AEAD Architectures 87
4.1 The CAESAR Competition 88
4.2 Related Work . 90
4.3 Assuring a Fair Comparison 92

4.3.1 Environmental Assumptions 92
4.3.2 General Architecture Requirements 93

CONTENTS xi

4.3.3 Our Hardware Architectures 95
4.4 Results and Comparison 96

4.4.1 GCM-AES Reference Architecture 97
4.4.2 Data at Rest 99
4.4.3 Data in Motion 107

4.5 Summary and Discussion 112

Chapter Appendices 115
4.A Ethernet Revisited . 115

4.A.1 IEEE 802.1AE or MACsec Standard 116
4.B Environmental Assumptions (Extended Discussion) . . 117

4.B.1 Data Stream Type 117
4.B.2 Data Size Availability 118

4.C AXI4-Stream Architecture Interface 123
4.D Our AEAD Architectures 124

4.D.1 GCM-AES Reference Architecture 124
4.D.2 AEGIS and MORUS 129
4.D.3 ICEPOLE . 132
4.D.4 NORX . 133
4.D.5 Tiaoxin – 346 135

4.E Synthesis Results of CAESAR Candidates 137

5 Conclusions and Future Directions 141

A Cryptographic ASICs 149
A.1 Chameleon/Chipit . 150
A.2 Zorro . 151
A.3 MLC:TiM . 152
A.4 Zweifel . 153

Acronyms 155

Symbols 159

Operators 161

xii CONTENTS

Bibliography 163

Curriculum Vitae 177

1
Introduction

The complexity of today’s applications in the field of Information and
Communications Technology (ICT) increases continuously. Through-
out a system’s development and fabrication life cycle, typically soft-
ware as well as hardware components from multiple parties are com-
bined to fulfill the desired application requirements. As a result due
to the high complexity of these systems, assuring a certain level of
security has become a costly and non-trivial task. A major decision,
which must often be taken very early in the development phase of an
application is, whether the targeted functionality should be achieved
using a software- or hardware-centric approach. The main aspects to
be considered when taking such a fundamental decision are illustrated
in Figure 1.1 and can be summarized as follows:

Costs: Like for many other applications, minimizing costs is often
of highest priority throughout the development of a secure ap-
plication. Although this aspect should only be secondary for
security systems, it is often neglected as a result of bowing to
pressure of management and marketing demands. Since devel-

1

2 CHAPTER 1. INTRODUCTION

Security

FlexibilityPerformance/
Efficiency

Costs Software

HardwareP
la

tf
o
rm

 T
re

n
d

Figure 1.1: Aspects to be considered when deciding among hardware-
or software-centric approaches for security applications and the trend
for the corresponding implementation platform.

oping hardware implementations requires substantially more ef-
fort compared to their software counterparts, it is often not even
discussed whether software or hardware approaches should be
favored. However, as briefly discussed in Section 1.1, developing
actually secure software can become way more expensive than
initially thought.

Flexibility: While software in the testing or deployment phase can
be updated at will, there is no (easy) way to apply changes to an
Application-Specific Integrated Circuit (ASIC) after tape-out.
Although today’s Field-Programmable Gate Arrays (FPGAs)
provide more flexibility by using electrical reconfiguration, they
are inferior to software implementations in terms of flexibility.
Hence, if frequent updates are necessary for a system, a software-
centric approach is favored in most cases.

Performance/Efficiency: As for performance and efficiency, hard-
ware solutions are typically employed for two fields of applica-
tion. First, when high performance in terms of throughput is of
utmost importance, ASIC or FPGA systems significantly stay
ahead of software alternatives. Second, if peak power or en-
ergy consumption must be considered as limiting factors, dedi-
cated hardware implementations are usually employed. The ef-
ficiency achievable with ASIC implementations can hardly ever
be reached with their software counterparts hosted on Commer-
cials Off-The-Shelf (COTS).

1.1. HARDWARE-BASED SECURITY SYSTEMS 3

Security: The last aspect, which often gets neglected during devel-
opment, is the actually targeted security. The origin of secure
software is typically a so-called trust anchor, from which trust
gets inherited over several hierarchy levels. Trust anchors are of-
ten based on small hardware components, such as Trusted Plat-
form Modules (TPMs). From them, the trust is usually derived
all the way through drivers, firmwares, and the operating sys-
tem to a certain user application. Consequently, if security is
one of the major goals, hardware-near solutions are more and
more often favored since there is no need to trust the complete
software stack.

Taking into account the four aspects mentioned above, a rough
guideline can be that the more important performance, efficiency, and
security are, the more hardware-near the platform should be (cf. Fig-
ure 1.1). Still, costs and flexibility should not be neglected completely
in such a decision.

1.1 The Need for Hardware-Based Secu-
rity Systems

General-purpose processors have evolved significantly over the last
years. Because of the technology scaling of CMOS processes used
for fabrication, the number of transistors has grown continuously ac-
cording to Moore’s Law [77] in the past. Due to the ever increasing
integration density and the rising importance of security aspects, chip
manufacturers have started to incorporate dedicated instructions for
encryption operations. Most notable is the AES New Instruction Set
(AES-NI), proposed by Intel in 2008 [50] and introduced into their
Westmere processors in 2010. As a result, software implementations
of security applications using such hardware-accelerated platforms al-
ready reach a high level of efficiency compared to their dedicated hard-
ware counterparts, and this trend is to continue. Hence, the question
arises for what type of applications is it actually still justifiable to
build a hardware-centric rather than a software-based system.

4 CHAPTER 1. INTRODUCTION

As outlined in the previous section, performance, efficiency, and
security are the main driving forces behind hardware developments.
For smart cards or Radio-Frequency Identification (RFID) systems,
as well as applications in the field of resource-constrained environ-
ments in general, the circuit complexity and the peak power or the
energy consumed are often metrics of paramount importance. Since
for such applications very high volumes are usually required, ASIC im-
plementations are chosen most of the time. On the other end of the
efficiency range, high-performance applications targeting throughputs
of 100Gbit/s and beyond can be found. For these systems circuit com-
plexity, power, and energy are often secondary and are mostly only
considered after reaching a certain throughput goal. Since the vol-
ume for these types of applications is sometimes significantly smaller
than for resource-constrained environments, FPGA platforms are of-
ten considered as an alternative to ASIC implementations. Due to
their reconfigurability, FPGAs offer a good trade-off between the high
efficiency provided by hardware components and the flexibility of soft-
ware. However, they typically lag behind their ASIC counterparts in
terms of efficiency by approximately an order of magnitude [36].1 In
general, despite the fact that more and more security instructions are
included into general-purpose processors, the performance and the effi-
ciency of hardware implementations are still two of their major selling
points. Especially for non-standard applications where efficiency is of
high importance, dedicated hardware solutions should be favored.

Security and trust, on the other hand, are of growing importance for
system designers. While hardware engineers can influence the result-
ing CMOS circuitry down to the gate level or even to single transis-
tors, software developers are forced to use general-purpose processors,
Graphics Processing Units (GPUs), or other COTS to realize their se-
curity application. As a result, the greater flexibility of the platform
must be paid with costs for verifying its security, which are often not
considered during design decisions. Although difficult to quantify in
numbers, an industry rule of thumb exists, saying that to reach a
security level of EAL6 costs about $1000 per line of code [67]. It is

1Recall that an FPGA is a VLSI chip by itself and thus, potential comparisons
always depend on the technology the FPGA was fabricated in.

1.2. CRYPTOGRAPHY BASICS 5

important to note that hardware architectures are not free from im-
plementation errors which occur during the development of the Hard-
ware Description Language (HDL) code of the circuit. However, all
the hierarchy levels (e.g., the operating system, drivers, or third-party
software libraries) lying in between a software implementation and the
actual hardware executing the respective software must not be con-
sidered as potential weaknesses. Nevertheless, there are still quite
a number of weaknesses in the life cycle of hardware-based systems,
which might be the target of a potential attacker. Those weaknesses,
potential countermeasures to get around them, as well as highly effi-
cient VLSI implementations thereof are the main topic of the present
thesis.

1.2 Cryptography Basics
The requirements of a security system can usually be broken down to
a subset of the following basic cryptographic goals:

Confidentiality: Only the parties designated to participate in a cer-
tain communication should be able to read the transferred data.
Unauthorized parties must not be able to read them.

Integrity: As soon as the messages being sent within a cryptographic
system get modified, the participating parties should be able to
recognize the modification.

Authenticity: This goal is sometimes further split up into entity and
data authentication. Entity authentication refers to the service
that the parties communicating with each other convince the
other participants of their identity. Data authentication means
that when one party receives a message from another party, the
receiver must be able to verify that the message indeed originates
from the supposed sender.

Non-Repudiation: As soon as a party sends a message to another
party, the sender is not able to repudiate that the sent message
does not originate from him.

6 CHAPTER 1. INTRODUCTION

Alice AliceBob Bob

Secure Channel

Eve

Insecure
Channel

Eve

Authentic Channel

Insecure
Channel

Pu Pu

PrPr

Figure 1.2: Left: Symmetric-key encryption scheme using a single
shared secret cipherkey; Right: Public-key encryption scheme using
pairs of private (Pr) and public (Pu) cipherkeys

Security by obscurity is often (mistakenly) applied in order to
achieve one of the above mentioned goals or simply to increase the
overall security of a system. However, as early as in the nineteenth
century A. Kerckhoffs came up with a very fundamental principle,
which should still be followed during the design of cryptographic ap-
plications these days:

Definition 1.1 (Kerckhoffs’ Principle). A system’s security should
only rely on the secrecy of the key being used. Hence, even if an
attacker has a copy of the system, it should still be secure as long as
he does not have access to the utilized key.

Throughout the last couple of centuries, two major types of secu-
rity schemes have emerged to provide secure communication. First,
symmetric-key approaches are based on the fact that the communi-
cating parties share a common secret cipherkey, which is then used to
assure services such as confidentiality and/or authenticity. Public-key
systems, on the other hand, are based on a pair of keys for each par-
ticipating party, one of which is kept secret (the private key) and the
other one is made publicly available for everybody (the public key).
Figure 1.2 illustrates both schemes with the two parties Alice and Bob,
communicating over an insecure channel. This transmission might be
intercepted by an attacker (Eve). Thanks to shorter keys, symmetric
key approaches can achieve much higher efficiencies compared to their
public-key counterparts. However, since for any communication pair
a shared secret must exist, symmetric-key approaches suffer from the

1.3. GOALS OF THE THESIS 7

problem of a more complicated key management. Also the distribu-
tion of the keys via an authentic communication channel prior to the
actual data transmission becomes a challenging task.

Despite the key management challenges, when it comes to data-
intensive communication systems these days, the public-key approach
is mainly used during the setup phase of the transmission (e.g., to ex-
change a symmetric key). For the subsequent data transfer, however,
symmetric-key algorithms are typically employed.

1.3 Goals of the Thesis
Due to the ever increasing complexity of systems in the field of ICT, it
becomes more and more difficult (if not impossible) to provide secure
applications. Although this thesis solely deals with vulnerabilities
stemming from the hardware components of a system, it turns out
to be alarming how sophisticated and powerful state-of-the-art attack
scenarios are. This work was accomplished as part of a collaboration
between industry and academia. The industrial party involved in the
project was Omnisec AG, a Swiss company that provides hardware-
accelerated symmetric encryption solutions for governmental as well
as defense markets. Therefore, this thesis deals with security issues to
be considered throughout the development of VLSI-based encryption
devices. Due to confidentiality issues, we could not work with the
algorithms currently in operation at the industry partner. Hence, for
each of the investigated attack scenarios we tried to find appropriate
replacement candidates, which are expected to be of interest for both
academia as well as industry. The major research questions of this
thesis can be summarized as follows:

Question 1.1. How dangerous are hardware Trojans for VLSI-based
devices and how practical are they?

ASICs and FPGAs are often used as core components of security-
critical applications these days. Therefore, their integrity with regard
to fabrication (ASICs) and configuration (FPGAs) must be assured
thoroughly. The term hardware Trojan has shaped parts of the se-
curity research community during several years now. Nevertheless,
practical examples thereof are still rare and thus, detection methods

8 CHAPTER 1. INTRODUCTION

are mostly evaluated using simulations or on FPGA platforms. We
aim at answering this question by simulating an attack at the ASIC
development chain, thereby tackling the problem of untrustworthy
foundries. With the use of non-destructive detection techniques, we
analyze our ASICs and try to distinguish genuine from malicious sam-
ples. Moreover, we do not only focus on the detection of hardware
Trojans, but also provide first suggestions on how to actually localize
unintended malicious logic components.

Question 1.2. Are state-of-the-art Differential Power Analysis (DPA)
countermeasures of embedded devices ready to withstand sophisticated
attack scenarios, and what is the price we have to pay for them?

Symmetric encryption devices suffer from the problem of key dis-
tribution. Unless cipherkeys are distributed among the communicat-
ing parties electronically with the use of a public-key infrastructure,
physical devices such as smart cards or similar hardware tokens are
used. With the adoption of keyed devices2, which are often more eas-
ily available to the general public, implementation attacks3 become a
major threat. DPA has emerged as one of the most powerful methods
to reveal secret internals based on the leakage of side-channel infor-
mation. With the use of an emerging Authenticated Encryption (AE)
system, we aim at answering the question how well DPA countermea-
sures like hiding or masking work on an actually fabricated ASIC.
Moreover, we want to compare those countermeasures with regard to
their resource requirements needed to achieve the DPA protection.

Question 1.3. Can future AE algorithms keep up with today’s stan-
dards in terms of their hardware efficiency from a VLSI perspective?

The Galois/Counter Mode of Operation (GCM) using the Ad-
vanced Encryption Standard (AES) as the underlying block cipher
can be considered as one of the de-facto AE standards available in
today’s security applications. The Competition for Authenticated En-
cryption: Security, Applicability, and Robustness (CAESAR) aims at

2By keyed devices we refer to hardware components that process any kind of
sensitive data such as secret keys or plaintexts.

3Implementation attacks are attacks that do not target an algorithm by itself,
but the actual implementation of it on a certain device.

1.4. CONTRIBUTIONS 9

finding potential alternatives or even successors. Our goal is it to seek
for the most promising candidates of the competition to be used in
high-performance VLSI architectures. We do not only investigate the
candidates regarding their asymptotic performance4, but use state-
of-the-art communication protocols to analyze them under real-world
conditions. For that, packet size distributions of protocols from dif-
ferent OSI layers are considered, including Ethernet and TCP.

1.4 Contributions
The main goal of this thesis is to investigate potential attack scenar-
ios for symmetric AE systems from a hardware developer’s point of
view. Additionally, its focus lies on designing high-speed VLSI archi-
tectures of potential future AE systems. Therefore, several algorithms
from the CAESAR competition are studied with regard to their hard-
ware performance, targeting throughputs of 100Gbit/s and beyond.
Summarizing, the major contributions of this work are as follows:

• Hardware Trojan detection on an actual ASIC: Detection
of Trojans in the field of VLSI designs has previously either been
conducted with FPGA platforms or based on simulations. The
main reason for this is that a genuine and a malicious ASIC
are not normally available for analyses purposes. Our taped-
out chips, called Chameleon and Chipit, represent one of the
very rare known such pairs of chips. Both contain an AES-
based cryptographic primitive. While Chameleon solely hosts
the genuine design, in Chipit a Denial-of-Service (DoS) hardware
Trojan has been implanted in the interface of the chip. Insertion
of the malicious circuitry was accomplished solely on the layout
data of the design, assuming no special knowledge about the
actual internals of the genuine architecture.

Using several Side-Channel Analysis (SCA) techniques based on
dissipated power, we demonstrate that despite the very small
size of the Trojan, occupying less than 0.5% of the area of the

4By asymptotic performance we refer to the use case where very long input
messages are available to be processed.

10 CHAPTER 1. INTRODUCTION

genuine design, its detection is actually feasible with a compara-
tively simple measurement setup. The presented ASICs have al-
ready been acquired by other research institutions [38] to study
hardware Trojan detection techniques other than SCA finger-
printing based on power.

• Localization of FPGA Trojans using Electromagnetic
Radiation (EM): FPGAs are another potential target for the
implantation of malicious circuitries. Related work from previ-
ous years [79, 80, 81] has shown that the bitstream encryption
process of FPGA vendors cannot be considered to be perfectly
secure. As a result, the configuration stream for an FPGA might
be altered by an attacker unnoticed to insert additional, mali-
cious circuitry in the FPGA.
Based on a post-placement insertion flow, we propose to use the
picked-up electromagnetic radiation not only for distinguishing
malicious from non-malicious configurations, but also to actually
localize the Trojan on the device. By inserting the same DoS
Trojan at different locations on the FPGA, we demonstrate that
detection is independent from the actual location of the Trojan
within the configurable logic. Although we successfully identi-
fied the malicious designs using EM fingerprinting on a Xilinx
FPGA, we fell short of pinpointing the exact location of the
Trojan logic by stepping over the packaged Integrated Circuit
(IC) with a near-field probe.

• ASIC-based DPA countermeasures evaluation platform:
DPA can be considered to be one of the major analysis meth-
ods that has lead to numerous practical attack scenarios on
secret-key-processing cryptographic hardware devices in the re-
cent past.
As a result, we have developed Zorro, an ASIC serving as an
evaluation platform for DPA countermeasures. It contains three
independent, permutation-based AE primitives using Keccak-
f as the underlying permutation, which differ with regard to
the utilized masking scheme. All designs provide both hiding
as well as masking countermeasures that can be enabled or dis-
abled at will. Our ASIC has been developed for applications in

1.5. OUTLINE 11

the field of resource-constrained environments. Hence, low cir-
cuit complexity was one of our main design goals. We demon-
strate that neither hiding nor masking alone are sufficient as
DPA countermeasures to withstand attacks on Zorro with up
to 100 000 traces.

• High-performance hardware designs of AE algorithms:
GCM-AES represents a de-facto standard when it comes to AE
algorithms with Associated Data (AD). The CAESAR competi-
tion aims at finding a potential portfolio of successors or at least
alternatives to GCM-AES, since the latter has suffered from sev-
eral security flaws in the past [69, 29, 113, 32, 96, 42] and also a
need for more efficient algorithms emerges.

We contribute to the competition by analyzing several of the
second-round CAESAR candidates with regard to their suit-
ability for high-throughput hardware designs. More specifically,
we target applications with data rates of 100Gbit/s and even
beyond, which are expected to play a major role in the upcom-
ing years. We compare those competitors against a GCM-AES
reference design as well as against each other under two differ-
ent use cases in terms of the circuit complexity required to reach
the target throughput of at least 100Gbit/s. The two scenarios
in question are the so-called data at rest scenario and the data
in motion use case, for which we use Ethernet as an example
protocol. Based on a mature 65 nm ASIC technology, we show
that although many of the competitors result in better hardware
efficiency for the data at rest use case, most of their advantages
significantly diminish when it comes to more practical data in
motion scenarios like Ethernet.

1.5 Outline
This thesis can be subdivided into three main chapters, each of which
gets identified by an icon. Each such icon refers to one phase in the life
cycle of a VLSI-based encryption device, where the respective attack
scenarios or performance metrics need to be considered.

12 CHAPTER 1. INTRODUCTION

�
Manufacturing. In Chapter 2, we investigate hardware
Trojans for both ASICs and FPGAs. After some background
information on hardware Trojans in general, we first present
an ASIC Trojan, which we implanted into a genuine AES

architecture on the mask level. With the use of side-channel finger-
printing techniques we then classify the actually fabricated genuine
and malicious chips both with and without the use of a golden IC.
Moreover, we propose to use EM not only for Trojan detection, but
also for the localization of the hidden logic based on Trojans implanted
into already placed-and-routed FPGA configurations.

�
Operation. Implementation attacks and their countermea-
sures, which must be considered for any keyed cryptographic
primitive, are covered throughout Chapter 3. In order to an-
alyze DPA countermeasures on an actual ASIC, we introduce
our Zorro chip, providing hiding and masking techniques

that can be enabled or disabled at will. Next, we present the hard-
ware figures of this smallest, DPA-secured ASIC architecture of a
keyed, Keccak-based AE scheme available to date. Using an appro-
priate measurement setup, we then compare the attack resistance of
the different countermeasures.

�
Performance. Chapter 4 deals with current and potential
future AE algorithms to be used in high-performance ASIC
architectures. Since these days, GCM-AES represents one of
the favored primitives in this domain, we first present a ref-
erence architecture reaching an asymptotic throughput of at

least 100Gbit/s based on a mature 65 nm CMOS technology. Next, we
provide high-performance VLSI designs of several of the participants
of the CAESAR competition and compare them against our GCM-
AES reference design. We also analyze the resulting performance of
the investigated candidates under real-world conditions using state-
of-the-art communication protocols such as Ethernet or TCP.

Finally, in Chapter 5 we draw overall conclusions about the topics
treated in this thesis and give suggestions for potential future work.

�

�

�

�

�

�

�

�

�

�

�

� 2
Real-World

Hardware Trojans

Outline. We begin this chapter with a general introduc-
tion about hardware Trojans in Section 2.1. Throughout Sec-
tion 2.2, we present one of the very rare, actually taped-out
ASIC Trojans. We discuss how we inserted the Trojan on
the mask layer, thereby tackling the so-called untrustworthy
manufacturer problem. Moreover, we provide details about
our detection process based on side-channel fingerprinting.
In Section 2.3, we investigate the detection of FPGA Trojans
using Electromagnetic Radiation (EM) as a side channel. For
that we insert a Trojan into a placed-and-routed FPGA bit-
stream. We propose to use EM not only for distinguishing
malicious and genuine FPGA configurations, but also to ac-
tually localize the Trojan circuitry within the FPGA. After
all, we provide final remarks about our hardware Trojan anal-
ysis in Section 2.4.

13

14 CHAPTER 2. HARDWARE TROJANS

Library vendor

ASIC manufact.
or silicon foundry

together with others

EDA vendorsDesign house(s)IP vendor(s)System house

System-level
evaluations,

algorithm design

HDL synthesis,
funct. verific.
design for test

Floorplanning,
place and route,
clock tree gen.

DRC and LVS,
post-layout

timing verific.

Standard
CAE tools

Standard
CAD tools

Technology
files

IC manufact.,
testing, and
packaging

System
integration

Cell library
and macrocells

Specs

Tapeout

Samples

Sign off

HDL
code

Netlist

Layout

Virtual comp.
(hardware models
ready for synth.)

Chip planning,
archit. design,

behav. modeling

Figure 2.1: Parties involved and their responsibilities of a cell-based,
full-custom ASIC development (illustration adapted from [63]).

2.1 Background
Throughout the last decade, trustworthiness in hardware components
got more and more important as these components must provide a re-
liable basis for their software counterparts [40]. Development and fab-
rication of modern VLSI circuits for both ASIC and FPGA platforms
rely on an ever increasing set of active participants to manage both
costs and complexity. Figure 2.1 illustrates the parties involved and
their responsibilities of a typical cell-based, full-custom ASIC develop-
ment. More often than not, large parts of the design are outsourced to
specialist teams all around the world, pre-designed Intellectual Prop-

2.1. BACKGROUND 15

erty (IP) blocks from different vendors are added to the design, and
complex Electronic Design Automation (EDA) software is used in the
design flow for synthesis and analysis purposes. Finally, in the oc-
currence of ASIC development, a specialized semiconductor foundry
is responsible for the actual manufacturing of the IC, including wafer
processing, packaging, and testing.

ASIC and FPGA fabrication are based on the same CMOS man-
ufacturing process. This process must be considered as a point of
attack where a potential adversary may intrude the life cycle of a
security-critical hardware device. The complex fabrication of ASICs
and FPGAs provides a skilled adversary various possibilities for insert-
ing a (relatively small) circuit that can remain undetected during the
design and verification process. Such a malicious hardware circuitry—
also known as a hardware Trojan [41]—would then be manufactured
together with the actual circuit and can be used for different purposes,
such as:

Altering the specification or reliability: Trojans may slightly
change the intended functionality of a circuit or compromise the
performance by altering the physical characteristics of a design
(e.g., narrowing certain wires to accelerate aging).

Denial-of-Service (DoS) attacks: A malicious circuit causing a
complete failure of a design is referred to as a DoS Trojan.

Leaking information: If a design is intended to process any kind
of sensitive data such as secret keys, a Trojan may leak this
information, for instance, over some sort of side channel.

For additional information about the effects of hardware Trojans, we
refer the reader to [108]. Since the complexity of ASICs continues
to increase driven by competitive market pressure, more and more
opportunities for an attacker to insert a Trojan emerge. This is due
to the following factors:

• While IT circuits continue to grow in complexity, the size of
hardware Trojans does not necessarily increase proportionally.
Therefore, detecting an unwanted circuit smaller than, say, one
millionth of the original circuit becomes a challenging task.

16 CHAPTER 2. HARDWARE TROJANS

• Basically, the high costs for developing an ASIC can be justi-
fied in two situations. On the one hand for systems where the
absolute performance of speed, area, energy efficiency, or secu-
rity is of paramount importance. On the other hand for very
high-volume fabrication, where millions of ASICs are to be sold.
Both cases are attractive targets for adversaries, as ASICs of-
ten constitute either the most important part of a system or
are widely deployed and thereby compromise a large number of
systems.

• As the expected harm caused by a compromised device is very
high, adversaries can afford to invest significant sums into de-
signing and inserting hardware Trojans.

At the same time, ASIC designers face considerable challenges to
verify the correct functionality of their own (genuine) circuits properly.
Even the most modern verification flows do not stand much chance
to detect hardware Trojans inserted by determined adversaries. That
is why hardware Trojan detection has attracted significant interest in
recent years.

Trojan detection techniques: In general, Trojan detection ap-
proaches can be classified into destructive and non-destructive meth-
ods as depicted in Figure 2.2. Destructive techniques include de-
packaging, delayering, and various mechanical and/or chemical steps.
Eventually, the exposed layers of an ASIC are visually compared
against the original Graphic Database System II (GDSII) layout data
to find any malicious alterations. However, these techniques are very
time-consuming and rather expensive, especially for modern manu-
facturing processes [112]. Hence, for small- and mid-sized hardware
companies, destructive techniques are hardly affordable.

Within the group of non-destructive techniques, one can differ-
entiate between detection approaches carried out during runtime or
as part of testing. Both runtime monitoring and logic testing, which
belongs to the test-time approaches, are referred to as invasive meth-
ods, since they require additional test circuitry to detect a Trojan.
Side-channel detection methods [6], on the other hand, are based on
building a fingerprint using physical characteristics of a Circuit Un-

2.1. BACKGROUND 17

Hardware Trojan
Detection Techniques

Destructive
(depackaging, delayering,
polishing, layer-by-layer

visual comparison)

Non-Destructive

Runtime Monitoring Test-Time Detection

Logic Testing
Side-Channel
Fingerprinting

(delay, leakage current,
power, EM)

Figure 2.2: Taxonomy of hardware Trojan detection techniques [109].

der Test (CUT). Typical side channels used for this approach are
delay [73, 61], leakage current [3], (dynamic) power, or Electromag-
netic Radiation (EM) [6]. Moreover, Narasimhan et al. [89] proposed
to combine different side channels in order to improve the detection
ratio. In our experiments, we focus on power and EM as side channels
to detect the ASIC and FPGA Trojans, respectively.

Design type notation: During the remainder of this chapter, we
refer to the different designs of actually fabricated ASICs or FPGA
configurations using the following notation.

Original design: The pristine design as intended by the system
house is referred to as the original circuit.

Circuit Under Test (CUT): After the fabrication of an ASIC, the
integrity of the circuit needs to be verified. The same applies fol-
lowing the configuration of an FPGA. At this stage, we denote
the designs as Circuits Under Test (CUTs).

Genuine design: Once a CUT is proven to be Trojan-free, we refer
to it as being genuine.

Malicious design: If a CUT contains a Trojan, it is considered to
be malicious.

18 CHAPTER 2. HARDWARE TROJANS

Specifications Design/Impl. Synthesis

Requirements

Backend
Design

Deployment

HDL

Description

Testing
Assembly/
Packaging

Chips Silicon DiesReports

Our Assumptions: Trusted Party

1 2 3 4

5678

Circuit

Netlist

GDSII/

Layout data

Point of

Attack

Fabrication

Untrusted Party

Figure 2.3: Simplified overview of the design phases of today’s ASIC
development chains and their respective outputs and our assumptions
regarding their trustworthiness.

2.2 Red Team vs. Blue Team ASIC Tro-
jan Analysis

Despite the huge amount of related work carried out on hardware
Trojans and their detection, most work has been accomplished based
on FPGA platforms or ASIC simulation results only. Therefore, we
decided to set up an experiment similar to the untrustworthy manu-
facturer problem, putting ourselves into the role of a fabless customer
and an adversarial foundry. Compared to previous experiments, our
approach tries to answer the question if Trojan insertion during fab-
rication and subsequent detection can be carried out successfully for
a real-world design under the restrictive time schedule of the ASIC
manufacturing process.

2.2.1 ASIC Development Chain
Assume a simplified ASIC development chain as depicted in Fig-
ure 2.3. After initially determining the specifications of a design,
it is usually captured using a Hardware Description Language (HDL).
Next, the HDL description gets synthesized into a netlist of standard
cells. The subsequent step is to generate the physical mask layout
that will be used as a blueprint for manufacturing the IC. Finally,

2.2. ASIC TROJAN ANALYSIS 19

wafer processing takes place, eventually resulting in individual dies
that are tested, packaged, and delivered to the customer.

An adversary may target any of the design stages outlined in Fig-
ure 2.3. From stage 2 to stage 4, the technical requirements continue
to increase and smaller companies usually need to outsource portions
of the design flow to more specialized enterprises. Larger firms out-
source at least the actual IC manufacturing to one of the very few
semiconductor foundries. The last step at which a hardware Trojan
can be inserted into the ASIC is just prior to Fabrication. Assume an
attacker, who is not part of the design team, intercepts the develop-
ment of an ASIC at this stage. Usually, such an adversary knows very
few technical details about the target design and will have only limited
time to analyze the target circuit and to insert the Trojan. Otherwise,
the disruption of the tight manufacturing schedule will raise suspicion.
However, if inserted at this late stage, there will be virtually no oppor-
tunity for the system house (i.e., the party commissioning the ASIC)
to detect the Trojan before measuring the fabricated samples.

For our investigations, we considered fabrication to be the only
untrustworthy stage. We believe that it is one of the most vulnerable
phases in an ASIC’s life cycle, since many people from third parties
are involved. Moreover, monitoring the whole fabrication phase, in-
cluding mask generation and wafer processing, is too expensive for
most fabless hardware firms.

2.2.2 Experimental Setting

To tackle the so-called untrustworthy manufacturer problem, we ini-
tiated an experiment. We tried to imitate an attack as realistically
as possible and therefore, set up a red team vs. blue team approach
based on the following two teams:

1. Blue team: In our experiment, the blue team
acts as the blue-eyed system house, aiming at build-
ing an ASIC, expecting the following assumptions and
responsibilities:

20 CHAPTER 2. HARDWARE TROJANS

• As a first step, the blue team develops the original design all the
way down to the detailed layout (in GDSII format), which they
send to the foundry for fabrication.

• Since the blue team is a fabless system house, they have to trust
several third parties to get their design manufactured.

• Once the blue team gets back their chips, they are responsible
for devising an adequate measurement setup to analyze the ICs
using a non-invasive, side-channel-based analysis approach.

• Using certain post-processing techniques, this team should build
hypotheses regarding which ASICs represent genuine designs
and which contain malicious circuitries, respectively.

2. Red team: The red team, on the other hand,
assumes the role of the adversarial party located at
the foundry. It is expected to fulfill the assumptions
and responsibilities given below:

• The red team is assumed to only have access to the mask-layout
(data typically in GDSII format) sent for fabrication by the blue
team.

• We do not expect the red team to have any detailed knowledge
about the target design, since such knowledge would assume
insider information from the blue team.

• Although such information can be reverse engineered by a so-
phisticated attacker, it is usually a very time consuming task.
Since the fabrication process of an ASIC normally already has a
very tight schedule, any additional delays may raise undesirable
suspicions.

• The red team is responsible for the development of the Tro-
jan circuit. As target-independent hardware Trojans can be
designed prior to an actual attack, their development does not
cause any major delay.

2.2. ASIC TROJAN ANALYSIS 21

Table 2.1: Key properties of Chameleon, the target ASIC for the
Trojan insertion.

Property
CMOS technology 180 nm
Supply voltage (core/pads) 1.8/3.3V
Core area 38 000GE
Maximum frequency (fmax) 125MHz
Latencies (incl. I/O interface)
AES encryption1 945 cycles
AES decryption1 1558 cycles
Grøstl hashing1 3465 cycles
1 Applies for both standalone and GrÆStl version.

• Finally, the red team actually inserts the Trojan into the target
design. Due to the tight schedule of an ASIC fabrication, we
limit the amount of time for the insertion to a handful of working
days.

2.2.3 Chameleon - The Target Circuit

For our investigations, we could have chosen any existing ASIC de-
sign with a well-defined interface, regardless of its functionality. We
had access to a number of designs that were due to be submitted for
fabrication. Our victim circuit, called Chameleon [97], was designed
independently prior to this work and includes the following three cryp-
tographic cores1 that share peripheral circuits and a common top-level
controller:

1. The first core is a standalone, low-area implementation of the
Advanced Encryption Standard (AES) [94], targeting applica-
tions in resource-constrained environments.

1Choosing a cryptographic design has made some of the choices in the project
simpler. However, our approach is generic enough, and we are confident that we
would have achieved similar results with most other designs as well.

22 CHAPTER 2. HARDWARE TROJANS

Grøstl-256

AES-128

GrÆstl
Control Inputs

Input
Handshaking

1

1

InReqxSI

OutAckxSI

3

Data Outputs

Control
Outputs

InAckxSO

OutReqxSO

Output
Handshaking

Data Inputs

DataInxDI

3

8 8

1

1

1

StartxSI, SelModexSI

SelUnitxSI

E
na

bl
ex

S

Controller
(FSM)

Figure 2.4: Chameleon top-level hierarchy, showing independent de-
signs and interfaces; clock and reset signals are omitted

2. The second core implements an iterative version of the crypto-
graphic hash function Grøstl [46], which was one of the finalists
of the SHA-3 hash competition [93] organized by the National
Institute of Standards and Technology (NIST).

3. Eventually, the third design on Chameleon is called GrÆstl and
combines both AES and Grøstl in a single optimized datapath.
Since the two cryptographic primitives share similar core compo-
nents, the resulting GrÆstl architecture provides both a block
cipher and a hash algorithm with only very little overhead in
terms of silicon area compared to the standalone versions.

All three cores are completely independent of each other. The chip
is configured to run only one of the cores at a time. Key data of the
Chameleon implementation are given in Table 2.1.

Figure 2.4 shows the top-level architecture of Chameleon, which
communicates with its environment based on an eight bit wide I/O in-
terface. A four-phase handshaking protocol was implemented to con-
trol the data flow. The signals InReqxSI, InAckxSO and OutReqxSO,

2.2. ASIC TROJAN ANALYSIS 23

Trojan

InReqxSI

DataIn
xDI[0]

DataIn
xDI[2] Kill

BitxD

15

15

DataIn
xDI[1]

K
ill

 S
eq

ue
nc

e
D

et
ec

to
r

Original Design

D Q D Q D Q

D Q D Q D Q

C
ry

pt
o

C
or

es

Figure 2.5: The structure of the DoS hardware Trojan and how it got
implanted into the original design. The combinational logic for the
kill sequence comparator consists of about 10 logic gates.

OutAckxSI control input and output handshaking, respectively. For
Trojan insertion, the red team used no design-specific information
other than the four-phase handshaking signals as will be discussed in
the following subsection. Strictly speaking, this information is not
available from layout data. Yet we believe that it is straightforward
to extract this information, either through cursory examination of
the circuit or through ancillary data such as pin names or from the
supporting documentation.

2.2.4 Trojan Circuit

The goal of the red team was to design a Trojan difficult to detect.
This called for an extremely small circuit. Hence, we decided to inte-
grate the DoS Trojan illustrated in Figure 2.5. The Trojan observes
certain inputs of the original circuit and waits for a specific kill se-
quence. Once detected, another input bit of the original circuit is

24 CHAPTER 2. HARDWARE TROJANS

flipped, which causes functional failure in the following clock cycles,
resulting in a DoS attack. Unlike many published hardware Trojans,
this design is continuously active and is placed into the peripheral
logic of the ASIC. This resulted from the fact that we did not want
to expect the adversary to have deep knowledge of the internals of
the design, as such information could be difficult or even impossible
to obtain.

Since the kill sequence is observed through a serial 8-bit interface,
there is a trade-off between the size of the Trojan circuit and the length
of the kill sequence. For this design a 30-bit sequence2 was used, i.e.,
the same number of Flip-Flops (FFs) were needed, which made up the
majority of the area of the hardware Trojan. The Trojan was designed
to tap into two input bits in parallel (InxDI[0] and InxDI[2]), re-
sulting in the architecture shown in Figure 2.5. The wires required
to connect the Trojan to the target design were placed close to the
original connections and added very little additional load to the cir-
cuit. The input sequence, obtained during multiple read cycles, is
continuously compared to the kill sequence—which got assigned the
hexadecimal value 0x0DDDDDDD3—using a simple combinational cir-
cuit. As soon as the sequence is detected, data input InxDI[1] is
inverted. Once again, there is very little intrusion to the original cir-
cuit; only an XOR gate is inserted into an external I/O path that
typically is off the timing critical path anyway.

One remaining problem with regard to the Trojan insertion was
the clock connection needed for the FFs used in the design. The red
team chose not to use the regular clock signal, but instead used the
input signal InReqxSI of the original circuit. This signal is set once
a new valid data item is present on the input and thus, can directly
be used as the clock for the Trojan circuitry. Additional buffers were
inserted manually in the clock path of the Trojan to reduce the load
on the InReqxSI signal.

2In our case, we knew that the chip would not undergo exhaustive functional
tests after production, so we were able to use a slightly shorter sequence to keep
the Trojan area small. In a more realistic scenario, our victim circuit would also
be more complex, allowing us to hide a longer kill sequence that would withstand
even a very thorough functional test with a higher probability.

3Since the kill sequence is only 30 bit and not 32 bit long, the first two zeros
are truncated from that value.

2.2. ASIC TROJAN ANALYSIS 25

Many hardware Trojan taxonomies exist in the literature (see, for
instance, [115, 35, 65]). According to those, our Trojan can be classi-
fied as follows:

Design phase: Fabrication
Activation: Externally triggered
Effect: Denial-of-service
Location: I/O
Abstraction level: Gate level

2.2.5 Trojan Insertion Process
The actual insertion process of the Trojan, accomplished by the red
team, was performed in three steps:

1. First, we identified the I/O pads and followed their connections.
The input and output circuitries of an ASIC can easily be iden-
tified and distinguished by anyone who has access to the mask-
layout (due to, for instance, different transistor sizes). Further-
more, common standard cells such as FFs can be detected with
relative ease by an experienced layout engineer. This also leads
to the identification of critical nets such as clock and reset. We
had to find four signals: one for the clock, two for the kill
sequence observation, and one that will be flipped by the kill
switch. Once some candidate I/O signals were identified, a suit-
able region on the ASIC was searched for the insertion of the
Trojan cells. The goal was to find an area that was close to
the connections of the target design and had sufficient room to
accommodate the logic gates of the Trojan. The approximate
area is highlighted in Figure 2.6.

2. In the second step, we removed some of the filler cells4 of the
Chameleon design to make room for the Trojan circuit.

3. Finally, the signal and clock routing was completed using the
available gaps in the actual circuit. The manual routing was ac-
complished mainly on inner metal layers, namely on layer three

4Filler cells are added to a design during place and route to improve certain
electrical characteristics. They do not affect any functionality.

26 CHAPTER 2. HARDWARE TROJANS

Figure 2.6: Chip photo of the fabricated Chipit ASIC.

and four of the utilized six-metal-layer technology in order to
thwart potential visual inspections (not assuming the use of so-
phisticated delayering techniques). We cut through the original
connection of input InxDI[1] (i.e., the kill bit) and connected
the combinational logic as well as the shift registers of the Trojan
by adhering to the design rules of the target technology.

All these steps were accomplished on the mask data in GDSII format
exclusively. Therefore, any mistake during the Trojan insertion can
lead to a total failure of the original circuit, which would most likely
expose the attacker. As such, the adversary requires considerable tech-
nical skills to perform the attack. The data was read into Cadence
Design Systems Virtuoso 5.1.41 EDA design software and the modified
layout was exported in GDSII format again. Both Chameleon and its
malicious counterpart Chipit were then fabricated using the 180 nm
CMOS process by United Microelectronics Corporation (UMC). Fig-
ure 2.6 shows a photo of Chipit with the three independent compo-
nents and the approximate area where the Trojan cells are inserted
highlighted. Due to the integration of 30 FFs, the resulting Trojan
requires a comparatively large area, i.e., about 190GE, which is equal
to 0.5% of the overall Chameleon design.

2.2. ASIC TROJAN ANALYSIS 27

Table 2.2: Distribution of chips for measurement.

Design Trojan Chips
Chameleon no #2, #3, #5, #6, #8
Chipit yes #1, #4, #7

2.2.6 Measurement Setup
In total, around 60 chips of both Chameleon and Chipit were manu-
factured. Out of these a mix of eight chips were bonded in a QFN56
package. That set contained three malicious and five genuine chips as
listed in Table 2.2. These were then handed over to the unsuspecting
blue team for testing. The blue team was given the datasheet for
Chameleon and designed a test setup to correctly run the chip. No
additional information about the mix of genuine and malicious ICs
were relayed from the red team to the blue team until the end of
the study. The eight chips were tested as described in the following
sections.

The blue team’s measurement setup mainly consisted of four parts:
an adapter board with a socket for our (Trojan infected and non-
infected) ASICs, a controller board, a digital oscilloscope, and a Per-
sonal Computer (PC). In order to perform side-channel analyses, we
decided to design a Printed Circuit Board (PCB) that allows flexible
power measurements using a QFN56 socket. This PCB was connected
to a controller board. The controller board features an FPGA that was
needed to provide all necessary interface signals to Chameleon/Chipit.
The controller board was then connected to a PC that governs the
overall measurement process. We used MATLAB® as it offers sophis-
ticated analysis tools to perform side-channel analyses. Figure 2.7
shows a simplified overview of our setup. In the following, we de-
scribe the components and connections in more detail.

Adapter board: The adapter board has 51 pins that connect the
CUT with the controller board. Only 48 pins were used by the CUTs;
the remaining pins are still connected but were not used in our ex-
periments. The main component of the adapter board is the QFN56

28 CHAPTER 2. HARDWARE TROJANS

Adapter Board

D
if

f.
Pr

ob
e

VDDIO

VDDcore

C
U

T

Message,Key8

Results 8

Handshaking

Power
Traces

Controller Board
(incl. FPGA)

Measurement
Results

UART
Interface

PC
(MATLAB R©)

LeCroy
WavePro 725Zi

Oscilloscope

Shunt

VSS

Figure 2.7: Simplified measurement setup for Trojan detection.

socket, required to easily exchange the individual CUTs. To measure
the power consumption, the board provides three additional pin head-
ers: one ground, one VDDIO, and one VDDcore pin header. Therefore,
the voltage drop across a measurement resistor can be measured with
the oscilloscope in the ground or power lines of the I/O and core sup-
ply of the CUT. In our experiments, we measured the voltage drop
across a 1W shunt resistor in the VDDcore line because it contained
less noise from the ground or I/O communication. In addition to the
power measurement pins, all I/O pins of the CUT are available as pin
headers to facilitate triggering on different I/O signals, for instance,
on the start signal of the AES implementation (StartxSI).

Controller board: A photo of the controller and adapter board is
given in Figure 2.8. The controller board communicated with a PC
running MATLAB® via a Universal Asynchronous Receiver/Trans-
mitter (UART) interface. A Xilinx Spartan-6 FPGA represents the
core component of the controller board, which allows fully flexible
pin assignments and controlling. In addition to the UART interface,
it implemented the communication with the CUT using the following
protocol: First, we selected the proper mode of operation of the CUT.
We decided to target the stand-alone version of AES (SelUnitxSI =
1) and performed encryptions only (SelModexSI = 0). Second, the

2.2. ASIC TROJAN ANALYSIS 29

Figure 2.8: The controller board and the adapter board including the
QFN56 socket for the CUTs.

PC sent a 128-bit AES key and a 128-bit plaintext block to the con-
troller board. The data was stored in a 256-bit register and split into
8-bit chunks to interface with the CUT. Following the AES encryp-
tion, the ciphertext was again memorized in an internal register and
transferred back to the PC. To verify the correctness of the ciphertext,
it was compared against a reference software implementation.

Power consumption was measured using a LeCroy WavePro 725Zi
oscilloscope. We used a sampling rate of 1GS/s and captured the en-
tire AES encryption operation (including I/O communication). As a
differential probe we utilized an active probe of type LeCroy Dx20-SP.
The oscilloscope was connected to the PC over Local Area Network
(LAN) and transmitted the acquired power traces in sequence mode,
i.e., 100 AES encryptions were executed before sending the power
trace blocks over LAN. For the following power analyses, we set the
baudrate to 19 200 bit/s and the CUT clock frequency to 10MHz. Fur-
thermore, we kept the AES key and the input constant to reduce noise
that was caused by the data. For each CUT, we measured one million

30 CHAPTER 2. HARDWARE TROJANS

power traces, which took about 2.5 hours per CUT. This amount of
traces was required for three reasons:

1. We expected a very low signal from the Trojan circuit as it was
dwarfed by the original design.

2. The Trojan was always active and never in a dormant state,
which made it hard to detect because of missing activation sig-
nals.

3. The more traces were used for averaging, the more noise was
reduced, which helped us to characterize the Trojan signals.

2.2.7 Side-Channel Analysis (SCA) Results
After measuring a set of one million power traces per CUT, we per-
formed the following analyses: First, we built templates of the mea-
sured power traces for each ASIC and applied Differential Power Anal-
ysis (DPA) techniques to identify Trojan-dependent signals. Second,
we used Principal Component Analysis (PCA) to allow hardware-
Trojan detection. Finally, we tried to improve the results using Sup-
port Vector Machines (SVMs) and trained them with test data to
automatically allow a classification of the CUTs with a high success
rate.

Building Templates

In a first observation, we wanted to answer the question if we can
find major differences and high variances between the power traces
of Chameleon and Chipit without any a-priori knowledge about the
chips. For this purpose, we started to build power templates by cal-
culating the mean of all power traces from each ASIC to eliminate
potential measurement noise. The corresponding results can be rep-
resented using the measurements matrix P,

P =

p1,1 p1,2 · · · p1,n
p2,1 p2,2 · · · p2,n
...

...
. . .

...
pm,1 pm,2 · · · pm,n

 , (2.1)

2.2. ASIC TROJAN ANALYSIS 31
#

1

0

50 #
2

0

50

#
3

0

50 #
4

0

50

#
5

0

50 #
6

0

50

Acquisition points × 104

2 4 6 8 10 12

#
7

0

50

Acquisition points × 104

2 4 6 8 10 12
#

8

0

50

Figure 2.9: Absolute values of mean traces of all measured ASICs.

of size m×n, where m refers to the number of measured chips (CUTs)
and n denotes the number of acquisition points per trace. Hence, each
row vector pi,j for i ∈ {1, . . . ,m} refers to the complete mean power
trace of one measured CUT averaged over one million measurements.
The column vectors pi,j for j ∈ {1, . . . , n}, on the other hand, con-
tain the values of the various chips at the same acquisition point.
Figure 2.9 shows the mean power traces p1,j–p8,j. From the mean
traces, we can clearly identify the following operations: the loading
of the input data (I/O communication) occurred at acquisition points
20 000–40 000. After that, an AES encryption was performed (we can
discern the ten rounds of AES between the acquisition points 40 000
and 110 000) and the ciphertext was transmitted back to the controller
board at 110 000–120 000. However, distinguishing any two distinct
groups turned out to be difficult at this stage of the analysis.

Since process variation can be expected to be present in both gen-
uine and malicious circuits, we then computed the difference between
the mean traces and the total mean (i.e., from all eight chips) at each
acquisition point according to equation (2.2),

p′i,j = pi,j −mj i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, (2.2)

32 CHAPTER 2. HARDWARE TROJANS
#

1

0

10

#
2

0

10

#
3

0

10

#
4

0

10

#
5

0

10

#
6

0

10

Acquisition points × 104

2 4 6 8 10 12

#
7

0

10

Acquisition points × 104

2 4 6 8 10 12

#
8

0

10

Figure 2.10: Difference between means and total mean of all CUTs,
including both genuine (Chameleon) and malicious (Chipit) samples.

where mj denotes the mean over all chips at each acquisition point j:

mj = 1
m
·
m∑
i=1

pi,j

Note that we thereby did not only eliminate potential process vari-
ation, but also averaged over the power stemming from the Trojan
gates contained within the malicious CUTs. Thus, depending on the
ratio between process variation and Trojan impact, this step may push
apart the two groups of chips more or less. See Figure 2.10 for the
results of this analysis. From that figure, it seems that chips#1, #4,
#6, and #7 stand out somewhat from the remaining four.

Closer analysis revealed that #1, #4, and #7 had a higher vari-
ance compared to the others. Furthermore, it was observed that there
were no distinct acquisition points that provided high differences due
to Trojan activity. Instead, differences were widespread over the en-
tire power traces, which corresponded to our expectations since the
injected Trojans were always active and never dormant.

In the following, we zoomed into regions with high variance to
study Trojan-dependent signals more thoroughly. Figure 2.11 shows
20 acquisition points of all CUTs during a region where the differences

2.2. ASIC TROJAN ANALYSIS 33

Acquisition points

2 4 6 8 10 12 14 16 18 20

M
ea

n
 p

ow
er

-60

-40

-20

0

20

40

Chip #1
Chip #2
Chip #3
Chip #4

Chip #5
Chip #6
Chip #7
Chip #8

Figure 2.11: Points of interest of mean power traces.

between the data sets were comparatively high. The acquisition points
of chip#1, chip#4, and chip#7 are marked in different colors (blue,
red, and yellow); the remaining points are printed in gray. It became
apparent that the mean power of those three samples—which were
expected to be revealed as the malicious designs at that time—differed
from the mean power of the Chameleon ASICs in several points. For
instance at acquisition point 5, chip#1 and chip#4 consumed more
power while chip#7 needed less compared to the others. The converse
applied at point 6. We were able to identify such differences in many
points throughout the mean power traces (usually at strong peaks that
were caused, for instance, by the internal AES clock signal). However,
for all differences we observed that the mean power of #1, #4, and
#7 differed significantly from the other mean power traces in either
the amplitude and/or time dimension. This led the blue team to their
first hypothesis marking those three chips to be expected to contain
the hardware Trojan.

Classification Using Principal Component Analysis (PCA)

In order to strengthen the initial hypothesis of the blue team and to
reduce noise and more efficiently discover Trojan-dependent signals,
we then applied PCA [62]. Agrawal et al. [6] were the first to propose
PCA for classifying malicious and genuine ASICs. They applied the
Karhunen-Loève (KL) method to allow classification based on IC fin-

34 CHAPTER 2. HARDWARE TROJANS

gerprinting using simulated power traces and postponed the analysis
of actually fabricated ICs as future work.

The main idea of PCA is to reduce the high dimensionality of
the power traces to only a small number of features without loosing
actual information about the original data set. For that, the direction
of greatest variance is used as the first principal component in the
new coordinate system. Previous work mainly used PCA to generate
a feature matrix solely based on side-channel information obtained
from genuine chips and then projected the measurements from a chip
under investigation onto the newly obtained coordinate system.

In our work, we treated all manufactured ASICs on equal terms
and tried to classify them into different groups by reducing the di-
mension of the data set with the use of PCA. For the classification
we only investigated 20 acquisition points (points of interest) of the
overall traces, where the variance was comparatively high. The chosen
points of interest can be considered as samples of the larger popula-
tion of power values available from a complete power trace. In fact,
we chose the same points as in Figure 2.11. Hence, input dimension-
ality for the PCA was 20 in our experiments. The reduction of the
higher-dimensional data set to fewer features was accomplished by
computing the covariance matrix of the input data. Next, the eigen-
vectors were calculated and sorted in descending order according to
their corresponding eigenvalues (i.e., we applied the scree test [33] to
determine the importance of the eigenvectors). The feature matrix
was then multiplied with the original traces to obtain the projected
(transformed) data. Three different approaches were evaluated for
building the feature matrix of the PCA.

1. Feature matrix based on all traces: As a first approach, we
took all power traces gained from averaging over one million mea-
surements to eliminate measurement noise as far as possible. The left
image of Figure 2.12a shows the projected power traces onto the first
ten eigenvectors obtained from all eight chips. The upper row of Ta-
ble 2.3 lists the corresponding first five eigenvalues. From Table 2.3 it
can be observed that the first eigenvalue stood out significantly when
using all power traces. In the right image of Figure 2.12a, we have
plotted the projected power traces using only the first two principal

2.2. ASIC TROJAN ANALYSIS 35

Eigenvectors

2 4 6 8 10

P
ro

je
ct

io
n
s

-40

-20

0

20

40

1st Principal Component

-40 -20 0 20 40

2
n
d

P
ri

n
ci

p
al

 C
o
m

p
o
n
en

t

-10

-5

0

5

Genuine
Chips

(a) Feature matrix obtained using power traces from all eight chips.

Eigenvectors

2 4 6 8 10

P
ro

je
ct

io
n
s

-100

-50

0

50

100

1st Principal Component

-100 -80 -60 -40 -20

2
n
d

P
ri

n
ci

p
a
l
C

o
m

p
on

en
t

-70

-60

-50

-40

-30

-20

Genuine
Chips

(b) Feature matrix obtained using power traces only from genuine chips.

Eigenvectors

2 4 6 8 10

P
ro

je
ct

io
n
s

-40

-20

0

20

40

1st Principal Component

-40 -20 0 20 40

2
n
d

P
ri

n
ci

p
al

 C
om

p
on

en
t

-10

-5

0

5

10

Genuine
Chips

(c) Feature matrix obtained using grouped traces from all eight chips.

Figure 2.12: Left: Projections of the power traces onto the first ten
eigenvectors (ordered in descending order according to their corre-
sponding eigenvalues); Right: The resulting classification using only
the first two principal components for different feature matrices.

36 CHAPTER 2. HARDWARE TROJANS

Table 2.3: Corresponding eigenvalues of the eigenvectors obtained
from the different PCAs.

Used Number of Eigenvalue
Traces† #1 #2 #3 #4 #5
All 477.8 15.8 9.9 2.8 1.3
Genuine 34.3 16.3 3.1 1.4 0.0
Grouped 237.9 14.5 10.1 1.3 1.1
† Power traces used to create the feature matrix of the PCA.

components. As could have already been expected from the eigen-
vector projections and the corresponding eigenvalues, mainly the first
principal component distinguished the groups of genuine and mali-
cious ASICs. Higher dimensions of the projections did not contribute
any valuable information to the classification.

2. Feature matrix based on traces from genuine chips only:
Since most of the related work suggests to use only the genuine ICs
for building the feature matrix, we decided to try this approach as
well. It is important to notice that this requires a-priori information,
which contrasts with the approach from Figure 2.12a. As a result, the
feature matrix becomes more specific for the genuine fingerprint and
therefore, allows a cleaner separation between the two ASIC groups.
Figure 2.12b shows the projections onto the first ten eigenvectors (left
image) and the corresponding classification based on the first two
principal components (right image). Obviously more information has
been obtained from the second dimension of the projection compared
to the first approach. Also the eigenvalues (cf. middle row of Ta-
ble 2.3) indicated that the first two components contain significantly
more information than the remaining ones. Moreover, this time the
second dimension provides more information compared to the first
one, as pointed out by the ratio between the two corresponding eigen-
values.

3. Feature matrix based on grouped traces: To artificially
increase the number of available input data and reduce the averaging

2.2. ASIC TROJAN ANALYSIS 37

403020

1
st Principal Component

100-10-20

2 nd
Principal

Component -30
-10

0

10

-10

0

20

10

3
rd

 P
ri

n
ci

p
al

 C

om
p
on

en
t Genuine

Chips

Figure 2.13: Classification of the genuine and malicious chips using
PCA based on the first three principal components. The feature ma-
trix for the analysis is obtained using 100 mean traces (each averaged
over 10 000 measurements) per chip.

effect due to the large number of measurements per chip, we applied
a third approach for the computation of the feature matrix. For each
ASIC, we calculated 100 mean power traces, where 10 000 traces were
used for averaging (i.e., we split the one million traces per chip into
100 groups of 10 000 traces each). Thus, we obtained a matrix of
mean power traces with 800× 20 elements when only considering our
points of interest. Applying PCA to this data set resulted in the traces
projected onto the eigenvectors shown in the left image of Figure 2.12c.
The corresponding classification based on the first two components is
illustrated in the right plot of Figure 2.12c. Although the feature
matrix was built using the trace groups from all chips this time, the
result was roughly as clear as the classification when building features
only from the genuine chips.

The third eigenvalue (cf. bottom row of Table 2.3) indicated that
the third principal component might also contain valuable information
for the separation of the two groups. The resulting three-dimensional
classification plot is given in Figure 2.13. Although the main eight
groups of traces can clearly be identified from Figure 2.13, some out-
liers in the third dimension distorted the results slightly. These out-
liers were mainly due to the information from higher dimensions of

38 CHAPTER 2. HARDWARE TROJANS

Distribution of rotated acquisition points using first principal component

-20 -10 0 10 20 30 40

F
re

q
u
en

cy
 o

f
ob

se
rv

at
io

n

0

10

20

30

40

Chip #1
Chip #2
Chip #3
Chip #4
Chip #5
Chip #6
Chip #7
Chip #8

Genuine
Chips

Figure 2.14: PCA-based classification using only the first principal
component. The feature matrix for the analysis is obtained using 100
mean traces (each averaged over 10 000 measurements) per chip.

some of the genuine chips, as can be observed from the left image of
Figure 2.12c. Since the highest eigenvalue stood out significantly for
all three analyzed feature matrix constructions, we also decided to
classify the 800 mean traces based on only the first principal compo-
nent. Figure 2.14, showing the results of this analysis presented as a
histogram, indicates that even the first component alone was enough
to reach a nice separation between Chameleon and Chipit.

Closing remarks on the PCA analysis: If the variance between
the acquisition points is not due to actual Trojan influences, but, for
instance, because of process variation, it is most likely that PCA will
not work that well for the classification anymore. As a result, PCA
may mislead the user to erroneously identify chips as malicious just
because they got produced on a different wafer lot. Further investiga-
tions would require close collaboration with a foundry. Nevertheless,
we were able to distinguish genuine and malicious ASICs only by look-
ing at up to the third principal component.

Support Vector Machines (SVMs) Classification

To accomplish Trojan classification more automatically, we decided
to evaluate SVMs as well. Basically, SVMs can be used to tell apart
a set of power traces obtained from malicious and genuine chips after

2.2. ASIC TROJAN ANALYSIS 39

Feature 1

-15 -10 -5 0 5 10 15 20

F
ea

tu
re

 2

-50

-45

-40

-35

-30

-25

-20

-15

#1

#2

#3

#4

#5 #6

#7

#8

Figure 2.15: Result of an SVM-based classification using a two-
dimensional feature vector.

training them with sample data. If trained successfully, they allow an
efficient detection of manufactured ICs that do not map to the trained
(high-dimensional) feature space of non-infected chips. Hospodar et
al. [52], for example, successfully applied this technique in the context
of side-channel analysis. Similar to the PCA approach, where the
feature matrix was generated based on the power traces from the gen-
uine chips, SVM classification requires a-priori knowledge regarding
the distribution of the Trojan ICs.

We used the statistics toolbox in MATLAB® to perform SVM clas-
sification, which provides the built-in method svmtrain to train an
SVM. As input, svmtrain takes the training data containing the fea-
ture values of the measured power traces. Similarly to PCA, this train-
ing data is represented by a matrix with Rtd rows and Ctd columns
where Rtd equals to the number of training data and Ctd equals to
the number of features. Second, a group vector with length Rtd is
required. This vector defines the group membership of the training
data. A third parameter defines the kernel function used for the SVM.
For the classification in our experiments, we applied a quadratic kernel
function as this was found to perform best. The method svmclassify
was used to classify new data according to the previously trained
SVM. It only requires the input data, which has to be classified. Fig-
ure 2.15 shows the result of one classification of the CUTs using the
SVM. The feature vector for this classification is two-dimensional. To

40 CHAPTER 2. HARDWARE TROJANS

find suitable points for the feature vector, the variance for each acqui-
sition point was considered. Eventually, we chose the same points of
interest as used for PCA to allow a comparison of the results. Again,
we took the 800 traces from the grouped-traces approach of the PCA
as available input data (i.e., 100 traces per CUT). Ten feature vec-
tors from chip #1, chip #2, and chip #7 served as training data for
the SVM. It turned out that these 30 out of 800 traces (i.e., 3.75%)
were sufficient to correctly classify the remaining data. A further
experiment indicated that even a single trace per chip (eight traces
in total) for training was also sufficient to perform a classification
without errors. The resulting classification clusters are illustrated in
Figure 2.15. With this approach, the Chipit ASICs (chip#1, chip#4,
and chip#7) can be automatically distinguished from the Chameleon
chips (chip#2, chip#3, chip#5, chip#6, and chip#8). Recall that
compared to the previous classification approaches based on the dif-
ference of means and PCA, the SVM-based technique requires a-priori
knowledge about which ASICs contain Trojans and which do not. If,
for example, only chips without a hardware Trojan are available for
training, some sort of threshold detection based on the feature vector
can be used to classify new chips.

Next, Section 2.3 analyzes hardware Trojans integrated into an
FPGA device. Final remarks about ASIC Trojans are provided as
part of Section 2.4 and conclusions are drawn in Chapter 5.

2.3 Localization of FPGA Trojans Using
Electromagnetic Radiation (EM)

Ensuring the integrity of ASICs, as described in the previous section,
can be considered as the lowest level for which trust must be estab-
lished from a digital hardware designer’s point of view. However, a
significant portion of today’s circuits do no longer get implemented as
ASICs, but employ FPGAs due to their higher flexibility and lower
up-front costs. Therefore, the integrity of the configurations of the
FPGAs (often referred to as the bitstream) in a project must also be
assured to get a continuous trust chain for a hardware-based, security-
critical application.

2.3. FPGA TROJAN LOCALIZATION 41

However, the FPGA’s most compelling benefit, its reconfigurabil-
ity, becomes one of its weakest points. A large amount of FPGAs on
the market are based on SRAMs. Hence, they need to load their con-
figuration from an external, non-volatile memory immediately after
power-up. Despite the fact that the bitstream usually gets encrypted,
[79, 80, 81] have shown that those methods cannot be trusted com-
pletely. Therefore, system houses need to prepare for attackers who
maliciously modify the configuration before it actually gets loaded
into the FPGA.

To simulate such a scenario, we decided to place a hardware Tro-
jan into an FPGA design without knowledge of its HDL model. To
do so, we use RapidSmith [71], an open source library for low-level
manipulation of partially placed-and-routed FPGA designs, to alter
an intermediate data format of a Xilinx Virtex-II Pro FPGA design.
We show how to attach a sequential DoS Trojan to the I/O ports of
an existing AES architecture. On the one hand, we aim at detecting
the malicious configurations. On the other hand, we try to suggest
where on the FPGA the Trojan is harder/easier to detect using EM
side-channel analysis. To achieve these goals, we utilize an electro-
magnetic probe and step over the package of the FPGA, measuring
the electromagnetic field for each step point.

Various works have confirmed the practicability of Side-Channel
Analysis (SCA) for Trojan detection. However, to the best of our
knowledge, at the time of conducting this experiment only [13] actu-
ally accomplished a setup including EM measurements in their exper-
iments. As opposed to [13], who gathered EM traces from a single
location on top of an FPGA, we use a localized approach by stepping
over the FPGA’s package using a stepper table.

2.3.1 FPGA Design Flow and Attacker Model

The top row of Figure 2.16 describes a simplified version of the Xilinx
design flow [107], starting with the mapping of a netlist to the avail-
able FPGA-specific resources. An attacker with access to these parts
of the development chain may incorporate malicious circuitry into an
existing design by modifying the intermediate *.ncd file format. This
task can be simplified by employing third-party tools such as Rapid-

42 CHAPTER 2. HARDWARE TROJANS

.ncd.ncd*.ncd *.bitXilinx

bitgen

Xilinx

route

Xilinx

place

Xilinx

map

*.xdl *.xdl *.xdl

Xilinx

xdl

Xilinx

xdl

Xilinx

xdl

RapidSmith Tools

Point of

Attack

Figure 2.16: Xilinx design flow and RapidSmith interface

Smith [71], a library for low-level manipulation of partially placed-
and-routed FPGA designs. RapidSmith is a set of tools and Appli-
cation Programming Interfaces (APIs) written in Java, that support
importing, manipulating, and exporting of FPGA designs. It is com-
patible with the Xilinx Design Language (XDL), a human-readable
file format equivalent to the Xilinx proprietary Netlist Circuit De-
scription (NCD). Although the Trojan insertion process can also be
accomplished with Xilinx tools only, employing RapidSmith greatly
simplifies the procedure.

Figure 2.16 shows that different possible entry points to the Rapid-
Smith tools exist. For our investigations, we fed RapidSmith release
0.5.2 with a placed-and-routed design in *.xdl file format by convert-
ing the *.ncd file to an *.xdl file with Xilinx’s xdl tool. Although
RapidSmith does not allow direct manipulation of *.bit files, an ad-
versary may also reverse engineer one using tools such as the Bitfile
Interpretation Library (BIL)5 [17] and apply a similar attack after-
wards.

2.3.2 Trojan Circuit
As a target design, we selected an AES-128 architecture. Because Tro-
jans must be kept small, we decided to implement a DoS variant. Ac-

5At the time of writing, BIL supported only Xilinx Virtex-5 devices.

2.3. FPGA TROJAN LOCALIZATION 43

Figure 2.17: Stepper table, SASEBO-G, and HF near-field probe

tually, we used the same malicious circuit as described in Section 2.2.4
for our ASIC experiments [85], the design of which can be observed in
Figure 2.5. On the target FPGA, our DoS Trojan occupied a mere
15 slices. As the original design of the AES core required 2222 slices
on the Virtex-II, the 15 slices of the Trojan were equal to 0.7% of the
overall FPGA utilization. This was roughly the same proportion as
in the ASIC experiment in Section 2.2.

2.3.3 Measurement Setup
Our measurement setup comprised the following parts: the SASEBO-
G side-channel evaluation board [101], a digital storage oscilloscope
(the LeCroy WavePro 725Zi), an EM stepper device with an EM mea-
surement probe, and a PC running MATLAB® as controlling software.
Figure 2.17 shows the SASEBO board and the EM stepper on the left
side and a zoom into the EM stepping location on the right side. The
SASEBO board was connected to a PC via a serial interface. It hosts
two FPGAs, a Virtex-II Pro XC2VP30 and a Virtex-II Pro XC2VP7.
One FPGA can be used as a controller, while the other FPGA carries
the cryptographic circuit to be examined. Both FPGAs were clocked
with a frequency of 16MHz supplied by a Digimess FG100 function
generator.

The communication between the two FPGAs worked as follows:
First, the PC transmitted 256 bits of data (the 128-bit cipherkey and
a 128-bit plaintext message) over the UART interface. This data was
stored in an internal register. After that, the data was transmitted to

44 CHAPTER 2. HARDWARE TROJANS

PC
(MATLAB R©)

LeCroy

oscilloscope

Msg., Key, Results

Handshaking

8

EM trace

FPGA containing

malicious/genuine

AES design

(XC2VP7)

Controlling

FPGA

(XC2VP30)

UART

interface

Measurement

results

Stepper table

with EM probe

attached

Stepper table controlling

SASEBO-G

side-channel

evaluation

board

Clock

Digimess

FG100

function

generator

x

y

Figure 2.18: Schematic view of the measurement setup for detecting
the hardware Trojan in the FPGA using EM fingerprinting.

the evaluation FPGA in chunks of eight bits, where the correct order
and the timing were guaranteed by a dedicated handshake protocol.
Once the AES calculation had finished, the result was sent back to
the control FPGA, which transferred the data back to the PC. Fig-
ure 2.18 shows a simplified overview of the setup and the implemented
communication flow.

As an EM probe, we used a magnetic near-field probe from Langer
EMV Technik (LF-B 3). The probe was attached to a stepper table
controlled by software via MATLAB®. The stepper table allowed us
to move across the FPGA. The accuracy (i.e., the number of step
points and the step window) was controlled by a software application.
In our experiments, we stepped over a window of about 10 by 10mm
advancing the probe in steps of 300µm (31 steps in the x and y axis).
At each step location, we measured 2500 traces of the same operation
(keeping key and message data constant) and calculated the mean
trace in order to reduce noise. We therefore obtained 31 · 31 = 961
mean EM traces for each implementation. The sampling rate of the
oscilloscope was set to 500MS/s and the oscilloscope was configured
to record the traces in sequence mode. This means that 500 traces
were recorded in a row by the oscilloscope, before being transferred to
the PC. This significantly improved the overall measurement speed.

2.3. FPGA TROJAN LOCALIZATION 45

The Xilinx Virtex-II Pro XC2VP7: To successfully identify and
locate the injected Trojan on the Xilinx Virtex-II Pro XC2VP7, it is
necessary to have knowledge about the floorplan and the individual
components included in the FPGA. The XC2VP7 features an embed-
ded PowerPC processor that can be clearly identified in the floor-
plans (cf. major building block in Figure 2.19a–2.19f). The FPGA
further includes eight RocketIO transceiver blocks, 1232 Configurable
Logic Blocks (CLBs)6, 44 dedicated 18× 18 bit hardware multipliers,
44 18 kbit Block RAMs (BRAMs), and four Digital Clock Managers
(DCMs). The entire Virtex-II Pro family is fabricated in a 130 nm
CMOS process technology with nine metal layers.

2.3.4 Trojan Insertion Process
To inject the Trojan into the final FPGA configuration after place-
ment and routing, we developed a Java program using the RapidSmith
API. We generated six different FPGA configurations with the Trojan
placed:

(a) in the top-right corner,
(b) in the bottom-left corner of the FPGA,
(c) in the center,
(d) distributed over the whole floorplan,
(e) on the right hand side near the I/O-lines, and
(f) automatically after the design has been completely re-routed by

the Xilinx ISE place-and-route tool.

Note that the last design, i.e., the completely re-routed one, was only
given for comparison as we did not expect the attacker to be so unso-
phisticated to insert the Trojan into an HDL description of the FPGA
configuration. As this would result in completely different floorplans,
SCA fingerprinting would easily reveal the departures from the origi-
nal design.

Figure 2.19 shows the FPGA utilization of the six designs after
Trojan insertion and illustrates the floorplan of the Virtex-II Pro die.

6Each CLB of the XC2VP7 consists of four slices and two 3-state buffers, where
each slice contains two 4-input Lookup Tables (LUTs) and two FFs.

46 CHAPTER 2. HARDWARE TROJANS

(a) Top-right (b) Bottom-left (c) Center

(d) Distributed (e) Next to I/O pins (f) Re-routed

Figure 2.19: The six FPGA designs with the Trojan placed at different
locations; Occupied and not occupied CLBs are colored in white and
blue, respectively; Trojan logic is drawn in black

The PowerPC is drawn as a yellow box in the center of the floor-
plan. BRAMs are indicated in purple color (six vertical lines) and the
Digital Signal Processing (DSP) units are drawn in orange. Clock-
ing resources are represented in brown (vertical line in the middle)
or dark-blue (horizontal lines). Multi-gigabit transceivers and DCMs
are located at the top and bottom sides of the BRAMs. We further
marked all occupied CLBs in white color and all unused CLBs are
drawn in blue. Note that the FPGA configuration illustrated in Fig-
ure 2.19f uses different CLBs than the other designs because the design
has been re-routed by the Xilinx place-and-route tools following injec-
tion of the Trojan. Moreover, for the design given in Figure 2.19d, we
distributed the Trojan logic to 15 different slices in 15 different CLBs.

2.3. FPGA TROJAN LOCALIZATION 47

CLB

Slice

D1

D2

D3

D4

D Q

D1

D2

D3

D4

D Q

Slice

D1

D2

D3

D4

D Q

D1

D2

D3

D4

D Q

DataIn

xDI[0]

DataIn

xDI[2]

Slice

D1

D2

D3

D4

D Q

D1

D2

D3

D4

D Q

Slice

D1

D2

D3

D4

D Q

D1

D2

D3

D4

D Q

KS[0]

KS[2]

KS[4]

KS[6]

KS[1]

KS[3]

KS[5]

KS[7]

Z0 Z2

Z1 Z3

Figure 2.20: Simplified overview of the mapping of the Trojan logic
into the FPGA resources. Signals KS[x] refer to the bits of the pre-
determined kill sequence (i.e., are constant).

For the remaining designs, we tried to use all unoccupied slices within
one CLB to inject the Trojan (needing four CLBs) and instructed the
routing tool to route only those parts that had not been routed before
(thus, keeping the overall floorplan and resource requirements nearly
constant). CLBs containing the Trojan logic are colored in black in
Figure 2.19.

Trojan resource requirements: The resource requirements of the
Trojan itself were as follows. Since in total a sequence of 30 bits
(15 bits from DataInxDI[0] and 15 bits from DataInxDI[2]) had to
be stored, 30 FFs were needed. A Virtex-II Pro slice contains two
FFs so we required a total amount of 15 slices and thus, at least four
CLBs to implement the Trojan circuit due to the memory elements.
In particular, we decided that the FFs of the upper half and of the
lower half of the slices should be used to store the sequences observed
at signal DataInxDI[0] and DataInxDI[2], respectively. These FFs
were further connected to form the required shift registers. Figure 2.20
illustrates the mapping of the Trojan logic into the FPGA resources.
For the kill-sequence comparator, we utilized the LUTs of the slices
already occupied by the Trojan FFs. Because the LUTs from the top
half and lower half of a slice had four inputs (D1–D4), we compared

48 CHAPTER 2. HARDWARE TROJANS

two bits of the observed sequences with one LUT. The first LUT input
was used for the first bit of one of the two input sequences and the
second LUT input for the first bit of the fixed kill sequence to com-
pare with. The third input was routed to the second bit of the input
sequence and the fourth input to the second bit of the kill sequence
(cf. Figure 2.20). The comparison was done with the following logic
function:

Zi = ((D1 ∧D2) ∨ (D1 ∧D2)) ∧ ((D3 ∧D4) ∨ (D3 ∧D4))
All intermediate results Zi were then combined with a bitwise AND,
implemented in one of the empty LUTs. Eventually, the final result
was XORed to the kill bit obtained from data input DataInxDI[1]
to invert the signal if the received input sequence matches the kill
sequence.

2.3.5 Measurement Results
We started our experiment by creating a genuine EM fingerprint
against which measured EM traces were later compared to distin-
guish malicious and Trojan-free FPGA configurations. Figure 2.21
shows the EM map of the 961 stepping points of the differences be-
tween two measurement sets of the genuine design. The EM map
color-coding given in Figure 2.21 remains the same during the rest of
this section to allow for easy comparisons. As expected, the minor
differences—supposed to stem from measurement noise—were basi-
cally negligible. x and y axis in Figure 2.21 represent the horizontal
and vertical position of the stepper table (i.e., the position of the EM
probe with respect to the FPGA package).

The genuine fingerprint was then compared with the six malicious
designs containing Trojans placed differently. For this purpose, we
calculated the absolute difference of all measured EM traces for the
961 EM-stepping points. Furthermore, we only focused on the I/O
communication of the implemented AES core for our investigations
(i.e., acquisition points 20 000–40 000 printed in Figure 2.9). We lim-
ited our measurements to this interval in order to keep the analysis
effort reasonably low.

As for post-processing of the traces, we applied the following tech-
niques: First, we aligned the traces in the timewise dimension be-

2.3. FPGA TROJAN LOCALIZATION 49

x Direction

10 20 30

y
 D

ir
ec

ti
on

5

10

15

20

25

30 4

6

8

10

12

14

16

18

20

Figure 2.21: EM-signal differences
of two measurement sets of the
genuine (golden) design.

3100 3300 3500
0

20

40

60

80

100

Samples

A
b
so

lu
te

 d
if
fe

re
n
ce

Figure 2.22: Difference of two
traces at the same position before
(red) and after (black) alignment.

cause they were not perfectly aligned due to noise and clock jitter.
Figure 2.22 indicates the differences before and after the trace align-
ment. Second, to identify points of interest (i.e., points where we as-
sumed a Trojan-dependent emission), we calculated the variance for
each difference vector and considered the acquisition point with the
highest value. Figure 2.23a to 2.23f depict the EM-signal differences
of the genuine design and the six malicious designs. To create the
two-dimensional plots, we mapped the difference vector to a matrix
with 31 rows and 31 columns. Each point represents a different EM-
probe location of which the color indicates the difference of the mean
EM traces at the point of interest (blue means almost no difference
and red indicates a high deviation).

As a first observation, one can identify the high deviation of the
re-routed design (f). This was expected because the entire design
was automatically re-routed and therefore, its EM fingerprint sig-
nificantly differed compared to the genuine design. Interestingly, it
showed a high deviation in the top-right corner where the Trojan has
been placed. Note that we measured the radiation over an area of
about 10 by 10mm. Therefore, the plots not only show the direct EM
signals of the FPGA die (assumed to be located in the middle of the
plot), but also the indirect radiation from bonding wires, including

50 CHAPTER 2. HARDWARE TROJANS

10 20 30

5

10

15

20

25

30

(a) Top-right
10 20 30

5

10

15

20

25

30

(b) Bottom-left
10 20 30

5

10

15

20

25

30

(c) Center

10 20 30

5

10

15

20

25

30

(d) Distributed
10 20 30

5

10

15

20

25

30

(e) Next to I/O pins
10 20 30

5

10

15

20

25

30

(f) Re-routed

Figure 2.23: EM maps taken at 31 × 31 distinct locations on top of
the FPGA package, highlighting differences between Trojan-free and
malicious designs for six Trojan placements.

2.4. FINAL REMARKS 51

ground lines and I/O communication. It became apparent that when
the Trojan had been placed in the top-right (a) or bottom-left (b)
corner of the FPGA, the Trojan-dependent signals were higher com-
pared to the cases where the Trojan had been placed in the center
(c) of the FPGA or when the malicious slices had been distributed
all over the FPGA (d). The signal differences of Figure 2.23e (near
I/O) seem to be higher compared to those of the centered design (c),
but not as significant as the results obtained for the top-right (a)
and bottom-left (b) cases. There are several possible explanations for
that. One reason might be the fact that the Trojans that have been
located close to VCC or ground lines have a higher influence (through
EM-signal modulation or shorter wire lengths) on the power supply
signals and can therefore be detected more easily. Trojans placed in
the top-right (a) and bottom-left (b) corners are indeed close to many
VCC and ground pins of the FPGA. Another reason might be that if
the required CLBs of a Trojan are placed closely together, the signal
leakage will be stronger.

We have succeeded in identifying all of the malicious FPGA config-
urations. However, we were not able to pinpoint the actual locations
of the Trojan slices. Although all EM maps of Figure 2.23 indicate
significant differences between the malicious and the genuine FPGA
configurations, the locations of the differences in Figure 2.23 are not
in line with the Trojan locations highlighted in Figure 2.19.

2.4 Final Remarks
For side-channel-based Trojan detection methods, usually a genuine
design is required to create a reference fingerprint. Because ASIC
fabrication is a time-consuming and expensive process, both a Trojan-
free and a malicious variant of the CUT are hardly ever available. Our
pair of Chameleon and Chipit ASICs is one of the very rare cases,
where both of them were actually taped-out. As a result, already
other institutions showed great interest in the chips and based their
analysis methods on our ASICs [38].

So far we applied our EM-based approach for localizing hardware
Trojans just on FPGAs. Despite the fact that we could not precisely
pinpoint the malicious logic on the FPGA with our experimental set-

52 CHAPTER 2. HARDWARE TROJANS

ting, it would be interesting to apply an enhanced measurement setup
to localize ASIC Trojans as well.

�

�

�

�

�

�

�

�

� 3
An ASIC for Assessing
DPA Countermeasures

Outline. This chapter starts with an introduction about
why integrated circuits must be protected against physical at-
tacks in Section 3.1. Next, Section 3.2 discusses preliminaries
about countermeasures against Differential Power Analysis
(DPA). Because our implemented authenticated encryption
scheme is based on Keccak, Section 3.3 introduces sponges
in general and the Keccak-f permutation in particular. In
Section 3.4, we present Zorro, an ASIC designed and fab-
ricated exclusively for assessing DPA countermeasures on a
real chip. Our results provided throughout Section 3.5 are
twofold. On the one hand, we present hardware figures of
our ASIC that targets applications in the field of resource-
constrained environments. On the other hand, we give initial
results from attacks against the actual chip, including a com-
parison about the quality of hiding and masking techniques.
Finally, we summarize this chapter in Section 3.6.

53

54 CHAPTER 3. DPA COUNTERMEASURES

3.1 Introduction
Assuring the integrity of either a fabricated ASIC or the bitstream of
a configured FPGA, as discussed in Chapter 2, can be considered the
lowest level for which trust must be established in a hardware-based
security system. However, when it comes to applications of symmet-
ric encryption, another component in the system must be investigated
from a hardware security point of view. In order to share the secure
key between two communicating parties, often smart cards, Universal
Serial Bus (USB) sticks, or other electronic devices are used for dis-
tribution. Therefore, the key-hosting hardware component must be
secured against attacks from potential adversaries as well.

Besides cryptoanalytical vulnerabilities, analysis techniques of im-
plementations (often referred to as attack techniques, since they may
reveal unintended internal secrets) have shown to be one of the ma-
jor weaknesses for hardware devices providing keyed1 cryptographic
primitives. One such primitive is Authenticated Encryption (AE) [14],
which tries to achieve the two goals of confidentiality and authen-
ticity using a common approach. Previous methods have tried to
provide these two necessities independently from each other, for in-
stance, with the use of Block Ciphers (BCs) and Message Authen-
tication Codes (MACs). However, several of these attempts turned
out to be rather inefficient and suffered from security issues [29, 32].
Hence, researchers have started to develop new hybrid algorithms that
offer the desired goal of AE, for instance, as part of the ongoing Com-
petition for Authenticated Encryption: Security, Applicability, and
Robustness (CAESAR) [1].

A group of primitives that has gained increasing popularity in the
recent past are modes based on a fixed-length permutation. Especially
the family of sponge constructions [21] and its closely related design
principle, the duplex construction [26], represent well-established al-
ternatives to traditional BC-based primitives. The best known repre-
sentative of this family is the sponge-based hash algorithm Keccak,
which has emerged in 2012 as the winner from the SHA-3 competi-
tion [93], initiated by the National Institute of Standards and Technol-

1By keyed primitives, we refer to any primitive that processes a secret (key)
and therefore, needs to be protected against implementation attacks.

3.1. INTRODUCTION 55

ogy (NIST). Moreover, permutation-based schemes are very flexible
and can be used to realize cryptographic constructs such as Pseudo-
random Number Generators (PRNGs), MACs, or AE systems. As a
result, in this chapter we present Zorro, an ASIC exclusively devel-
oped for the purpose of assessing masking and hiding countermeasures
on a real chip. More specifically, Zorro contains several AE primi-
tives based on the Keccak-f permutation. Measurements acquired
from the actually fabricated ASIC are used to analyze potential weak-
nesses and the impact of the implemented countermeasures.

3.1.1 Requirements and Vulnerabilities of Perva-
sive Hardware Devices

Ubiquitous hardware components, such as the key-distributing token
of a symmetric encryption device, are usually limited in terms of sil-
icon area, power, and energy. While the former is mainly due to
the manufacturing costs of the component—roughly proportional to
the chip area—the latter is often because of the way the devices are
powered. Since passive smart cards are powered by electromagnetic
fields radiated from a reader device, low peak power is a major re-
quirement. For battery-powered components, on the other hand, the
energy needed is of paramount importance. We plan to use our ASIC
for applications in resource-constrained environments. Therefore, our
main goal is to minimize the area of the overall chip (incl. the intended
countermeasures) as far as possible.

Securing the processing of sensitive data is of particular interest for
pervasive hardware devices, which are often accessible by the general
public. Due to their availability in the public domain, an adversary
can take measurements from such devices in order to mount various
implementation attacks. Hence, countermeasures must be added to
these devices to thwart potential attacks. Differential Power Analysis
(DPA) [68] turned out to be one of the most powerful implementation
attacks available today. Therefore, we taped-out an ASIC containing
several DPA countermeasures in a mature 180 nm CMOS technology
by UMC. Afterwards, we analyzed the Keccak-based AE architec-
tures based on measurements acquired from the real chip.

56 CHAPTER 3. DPA COUNTERMEASURES

DPA
Countermeasures

Hiding Masking / Secret Sharing

Randomizing Equalizing
(e.g., dual-rail

precharge logic styles)Shuffling Dummy
Operations

Boolean Masking
(based on XORing

the masks)

Arithmetic Masking
(e.g., based on modular
addition/multiplication)

Figure 3.1: Taxonomy of DPA countermeasures. The techniques in-
vestigated are highlighted in bold.

3.2 DPA Countermeasures
Analysis techniques based on the power side channel can basically be
divided into Simple Power Analysis (SPA) and DPA. As opposed to
SPA, DPA usually involves various statistical post-processing meth-
ods based on multiple power traces. Power-analysis attacks basically
work by exploiting the dependency of a cryptographic device’s instan-
taneous power consumption from the data being processed. Therefore,
an obvious way to discourage such attacks is to minimize this correla-
tion. In general, DPA countermeasures can be categorized into hiding
and masking techniques, both of which can be considered as stan-
dard methods for state-of-the-art security-critical electronic devices
today [74]. Figure 3.1 provides a taxonomy of DPA countermeasures
as discussed in the following sections.

3.2.1 Hiding
Hiding tries to minimize the dependency between the processed data
as well as the corresponding operations and the power consumed either
by randomizing or by equalizing the current drain of a device.

Randomizing: This technique can be achieved by randomizing
the points in time when a certain operation is executed. Acquired
power traces so become misaligned and must be adjusted in a pre-

3.2. DPA COUNTERMEASURES 57

processing step, making any attack more difficult. Typical methods to
randomly distribute the execution of operations over time are shuffling
or the insertion of dummy operations.

With shuffling, operations within an algorithm are re-ordered ran-
domly without changing the overall output. Dummy operations, on
the other hand, do not operate on the actual data, but are added
to randomize a device’s power consumption. They operate on some
dummy data. As opposed to shuffling, dummy operations decrease an
implementation’s performance due to additional computations.

Equalizing: While randomizing the power consumption is usu-
ally achieved by changing the point in time when a certain operation is
executed, equalizing tries to even out current drain demand by balanc-
ing power dissipation. The ultimate (theoretical) target is to reduce
the Signal-to-Noise Ratio (SNR) all the way to zero, thereby leaving a
potential attacker completely with random noise, which makes attacks
impossible. However in practice, equalizing the power consumption
of all executed operations of a device is far from trivial. One way to
achieve it is to use logic styles such as Dual-Rail Precharge (DRP).
Sense Amplifier Based Logic (SABL) [110] and Wave Dynamic Differ-
ential Logic (WDDL) [111] are just two examples thereof.

3.2.2 Masking

In contrast to hiding, masking does not only try to alter the power sig-
nature of a device, but changes the actual data being processed. Since
the power dissipation due to the processing of the masked data is ex-
pected to be independent from the original secrets, it is not required
to hide the data-dependency in the power signature anymore. The
basic idea behind masking is to alter every secret data value s (e.g., a
secret key or plaintext) with a mask m, resulting in the masked inter-
mediate value sm = s ∗m. The easiest and most prominent operation
for that purpose is the exclusive-or (⊕) operation, known as Boolean
masking. Other typical operations to conceal the intermediate values
are modular addition or modular multiplication. Then the resulting
masking scheme is referred to as arithmetic masking.

58 CHAPTER 3. DPA COUNTERMEASURES

Albeit masking is widely known as one of the two main DPA coun-
termeasures (besides hiding), there is a more generic approach of it
known as secret sharing. With secret sharing, the data to be concealed
is split into d shares. Hence, masking with a mask m and a masked
intermediate value sm can be thought of a secret sharing scheme with
two shares s1 = sm and s2 = m. While all but one of the shares need
to be generated randomly, the last one is computed according to:

sd = s1 ⊕ . . .⊕ sd−1 ⊕ s

Secret sharing based on two shares (i.e., masking) may seem to protect
against first-order2 DPA attacks at first glance. However, previous
work [75] revealed that due to the presence of glitches, at least three
shares are required to reach first-order resistance in hardware.

In contrast to hiding, secret sharing (or masking more specifically)
suffers from the drawback that with an increasing number of shares,
the required resources also increase correspondingly. Moreover, per-
formance can suffer due to masking, since all of the applied shares need
to be processed. Finally, it is important to note that while masking
linear functions (e.g., using Boolean masking) can be easily achieved
since f(s ⊕m) = f(s) ⊕ f(m), applying it to non-linear functions is
usually not straightforward.

3.3 Keccak and the Sponge Family
An important group of cryptographic primitives, which received a
lot of attention in the recent past, is the family of sponges [24]. In
its original form, a sponge construction takes an input of arbitrary
length and computes a fixed-length output as illustrated in Figure 3.2.
It basically consists of the following two main phases, indicating the
similarities to an actual sponge:

Absorbing phase: During this phase, the input data is absorbed into
the state block by block. Handling an input block is done by
XORing it to the first r bits of the internal state, followed by a
call to the underlying permutation f .

2The order of a DPA attack refers to the number of intermediate values con-
sidered to build the hypothesis for guessing the secrets.

3.3. KECCAK AND THE SPONGE FAMILY 59

0

0

r

c

Padded Message

Squeezing Phase

f f f f

Absorbing Phase

Hash

b

Figure 3.2: Sponge construction.

Lane

C
o
lu
m
n

Row

Slice

y

x
z

Figure 3.3: State

Squeezing phase: Once all input data has been absorbed, the sponge
construction provides the output data by squeezing out one block
after another. If longer output values than r bits are demanded,
the state is fed into the permutation several times.

Originally the sponge construction was developed to be used as a
hash function based on an iteratively re-used fixed-length permuta-
tion. Later, the family of sponges was subdivided into the sponge con-
struction itself [21] and the closely related duplex construction [23, 26].
Since the core of both primitives is the permutation denoted by f , it
is briefly discussed in the following section.

3.3.1 The Keccak-f Permutation
Keccak-f operates on a state with a fixed size of b bits. This state
consists of two parts: First, the rate r, specifying the number of in-
put bits, which are processed in one iteration. Therefore, r relates
to the speed of the computation. Second, the last c bits of the state
denote the capacity, determining the attainable security level of the
construction. Hence, the length of the capacity is determined accord-
ing to c = b− r.

The authors of Keccak defined Keccak-f for the following seven
state sizes: b = 25× w, where w = 2` and ` ranges from 0 to 6. The
state is illustrated in Figure 3.3 and is organized as a 5×5×w matrix
with three dimensional coordinates (x,y,z). We call a set of w bits
with given (x,y) coordinates a lane, a set of 5 bits with given (y,z)
coordinates a row, 5 bits with given (x,z) coordinates a column, and

60 CHAPTER 3. DPA COUNTERMEASURES

x

y z z

(a) θ (b) ρ

(c) π (d) χ

Figure 3.4: The round operations of the Keccak-f permutation [20].

the 5 × 5 matrix for a given (z) coordinate a slice. The Keccak-f
function further consists of 12 + 2` rounds that are made up of five
steps as depicted in Figure 3.4 and briefly discussed below.

θ : Provides diffusion by linearly mixing the parity of two nearby
columns (from two neighboring slices) and adds it to a bit of
another column.

ρ : Provides inter-slice dispersion by rotating all lanes by a predefined
offset.

π : Breaks the horizontal and vertical alignment by transposing the
25 lanes according to a fixed pattern.

3.3. KECCAK AND THE SPONGE FAMILY 61

0

0

r

c

K A0

Iinitialization Associated Data
Processing

Mβ−1 Cβ−1

Tag Output

Aα−1 M0

Encrypting

C0 T0 Tτ−1

f f f f f f

Figure 3.5: Simplified SpongeWrap authenticated encryption (also
known as the wrapping operation).

χ : This represents the non-linear part of Keccak-f . The five bits of
each row are combined using AND gates and inverters and the
shifted result is added to the row.

ι : A w-bit round constant is added (XORed) to one of the lanes of
the state.

For an in-depth discussion of the permutation and a description of the
operations, we refer the reader to [25].

3.3.2 SpongeWrap
Several different permutation-based primitives have been published
throughout the last couple of years. We are going to concentrate on a
mode called SpongeWrap [23], which uses a duplex construction [26]
and the previously described Keccak-f permutation to create an AE
scheme. Figure 3.5 depicts the functionality of this mode, which works
in four phases:

1. Initialization: During initialization, the state is cleared and
loaded with the cipherkey K by a call to the permutation f .

2. Associated Data Processing: As part of this phase, Associ-
ated Data (AD) (i.e., data which must be authenticated but not
encrypted) is absorbed into the state. An example for AD can
be protocol header information, which needs to remain readable
for routing devices.

62 CHAPTER 3. DPA COUNTERMEASURES

3. Encrypting: The encryption step is quite similar to the second
phase, with the only exception that for every processed plain-
text block (i.e., data which needs to be authenticated and en-
crypted), the corresponding ciphertext is provided as an output
as illustrated in Figure 3.5.

4. Tag Output: In the last phase, no input data is handled. In-
stead, the integrity-assuring authentication tag T is generated.

The process of absorbing a key K, the associated data A, and the
plaintext P and squeezing out the ciphertext C and the authentication
tag T is referred to as wrapping. The corresponding decryption step
is known as unwrapping and takes a given K, A, and C and outputs
P as long as T is correct. If the two tags do not match, an error will
be dumped, but no plaintext will be provided.

3.3.3 Masking the Sponge

Devices using Keccak-f in a keyed mode, including AE schemes such
as SpongeWrap, must be protected against implementation attacks
like DPA. Especially when they are part of key-distributing compo-
nents (e.g., smart cards or other embedded systems) they can easily
be accessed by the general public. Hence, countermeasures like hiding
and masking become mandatory for such implementations.

The authors of Keccak proposed to implement a secret shar-
ing technique to protect keyed Keccak instances based on three
shares [22, 19]. Interestingly, Bilgin et al. [28] reported that the im-
plementation of the masking of the non-linear χ operation presented
in [22, 19] does not provide provable security and thus, is not secure
against first-order DPA attacks. As a countermeasure, they proposed
to inject fresh random bits in a 3-share implementation or to add an
additional share (4-share version) that avoids the need of fresh ran-
domness. Apart from the un-keyed Keccak implementations avail-
able in literature [18, 66, 99], the smallest reported masking-secured
designs so far require more than 30 kGE [19, 22, 28].

3.4. THE ZORRO ASIC 63

4-Share

3-Share*

In
p
u
t
C
o
n
tr
o
ll
e
r

Clock Enable

3-Share

Clock & Reset

ScanEn

In
p
u
t

H
an

d
sh

ak
in

g

C
o
n
tr

o
ll

in
g

In
p
u
ts

H
an

d
sh

ak
in

g

O
u
tp

u
ts

D
eb

u
g

O
u
tp

u
ts

2

2

4

8
8

5

D
at

a

In
p
u
t O
u
tp
u
t
C
o
n
tr
o
ll
e
r

D
at

a

O
u
tp

u
t

Figure 3.6: Top-level architecture of Zorro.

3.4 Zorro - An ASIC Assessment Plat-
form for DPA Countermeasures

To assess hiding and masking countermeasures for a SpongeWrap
AE primitive on a real ASIC, we went through the effort of designing
a completely new Integrated Circuit (IC) exactly for that purpose.
Our ASIC, called Zorro [88], is intended to be used as an evaluation
platform for investigating the quality of various DPA countermeasures
for an AE system based on the Keccak-f [1600] permutation.

We expected the SpongeWrap architectures, hosted on Zorro,
to be part of an IC used in resource-constrained devices such as smart
cards or Radio-Frequency Identification (RFID) systems. Therefore,
one of our major goals during the development of the SpongeWrap
designs was, to keep the circuit complexity as small as possible. As
discussed in Section 3.3.3, three different masking versions have pre-
viously been presented for the non-linear χ part of Keccak. Hence,
we decided to place three distinct architectures on Zorro that only
differ in their masking scheme. This allows us to analyze all three
approaches independently from each other with respect to potential
weaknesses. Figure 3.6 shows a block diagram of the top-level design
entity of Zorro, including the three distinct architectures named 3-
Share, 3-Share*, and 4-Share. The differences of the three distinct
designs regarding the masking of the non-linear χ function are listed

64 CHAPTER 3. DPA COUNTERMEASURES

Table 3.1: Differences of the three independent designs on Zorro re-
garding the implemented masking scheme of the non-linear χ function.
According to the number of shares, the size of the RAM varies.

Design Masking of χ # Shares Re-Masking RAM

3-Share Bertoni et al. [22, 19] 3 × 608 × 8
3-Share* Bilgin et al. [28] 3 X 608 × 8
4-Share Bilgin et al. [28] 4 × 816 × 8

in Table 3.1, including the two Random-Access Memory (RAM) ver-
sions employed on Zorro.

To assure that meaningful power traces can be measured for each
architecture separately, the Clock Enable entity contains clock gat-
ing cells that drives the clock for the one entity selected exclusively.
Moreover, the Input Controller forwards the input signals solely to the
currently activated design, thereby avoiding any unwanted switching
activity within the deactivated architectures (i.e., silencing has been
applied to the disabled units). With this setup, we are able to obtain
meaningful power measurements of each design without significant
noise from the deactivated units. The Output Controller is respon-
sible of forwarding the output signals of the respective unit once an
input data block has been processed. With a few extra debug out-
puts, Zorro provides additional information about ongoing internal
processes. Data to and from the chip can be transmitted via an 8-bit
data bus, controlled by a four way handshake protocol. All three ar-
chitectures can either operate as encryptor or decryptor. Moreover,
each of them offers four different modes of operation with regard to
the enabled DPA countermeasures:

• In Normal Mode (NM), no DPA countermeasures are en-
abled at all. Therefore, only parts of the RAM are actually
used (since no shares are required) and the SpongeWrap con-
struction works fully unprotected. Measurements based on this
mode serve as a reference for the protected alternatives.

• When running in Hiding Mode (HM), the user can choose
how many dummy rounds the architecture enabled should per-

3.4. THE ZORRO ASIC 65

form (up to 15). A single dummy round always corresponds to
a full Keccak round. Thus, the runtime in HM significantly
increases when the number of dummy rounds is raised. Simul-
taneously, the data transfer to and from the RAM gets shuffled
using eight different possibilities. Thus, the number of time
instances ti, where the leakage can appear for a configuration
using j dummy rounds, is calculated according to:

ti = 8 + 8 · j, j ∈ [1 . . . 15]

For each RAM we reserved a couple of additional entries, which
are not initialized. These words are used as inputs when exe-
cuting the dummy rounds. Thereby no correlation between the
actual state and the measured power traces should be observ-
able at all. For the remainder of this chapter we use HM-j to
denote Zorro running in hiding mode with j dummy rounds.

• Once the Masked Mode (MM) is selected, the activated ar-
chitecture actually operates on the shares. According to the
designs’ names, the 3-Share, 3-Share*, and 4-Share unit apply
Boolean masking with the non-linear part of Keccak masked
as discussed in Section 3.3.3. In the following, we use MM-3
when talking about the architectures applying three shares and
MM-4 in the case of four shares, respectively.

• The most secure mode, supported by each of the three architec-
tures, is the Secure Masked Mode (SMM), which combines
the countermeasures of HM and MM. Contrary to NM and HM,
where only a third/fourth of the RAM entries are actually used
(as well as the uninitialized entries for the dummy rounds), in
MM and SMM all entries are required for processing. We fur-
ther on refer to Zorro running in SMM based on i shares and
j dummy rounds using the following notation: SMM-i-j

3.4.1 3-Share, 3-Share*, and 4-Share Designs
Since the 3-Share, 3-Share*, and 4-Share hardware architectures differ
only very slightly in the masking scheme utilized, we will further on

66 CHAPTER 3. DPA COUNTERMEASURES

LUTC

RAM
608×8

Datapath

8

13

8

8
RamInxDI

RamOutxDO

Data In

Ctrl In

Controlling
FSM

Random
Bits Consts

1

Shift

29ClkxCI

RstxRBI

Data
Out

8

Ctrl
Out

2

LFSR LUTS

Figure 3.7: Design of the 3-Share entity.

solely discuss the 3-Share version and point out the differences to the
other two architectures where necessary.

We aimed at designing a low-area, DPA-secure authenticated en-
cryption system based on Keccak. Because of these goals, the layout
of the memory, required to store the Keccak state, was of utmost im-
portance. Moreover, the secret sharing countermeasure implemented
works on the algorithmic level and thus, the required memory for the
state increases with each share. We favored, therefore, a RAM macro-
cell over a register file built from Flip-Flops (FFs). We keep both the
round constants of the ι function and the shift offsets of the ρ function
in Lookup Tables (LUTs). Figure 3.7 illustrates the uppermost hier-
archy level of the 3-Share entity, including the state RAM, the LUTs,
and the datapath entity, which gets controlled by a Finite-State Ma-
chine (FSM). Moreover, Figure 3.7 shows the Linear Feedback Shift
Register (LFSR), constructed by the primitive polynomial given in
equation (3.1).

x32 + x7 + x3 + x2 + 1 (3.1)

The LFSR gets initialized with an external seed. Its output is, on the
one hand, required for determining whether to perform a dummy op-
eration or not. On the other hand, the LFSR is needed to generate the
random bits for the re-masking in the 3-Share* architecture. Over-
all, 42 random bits are required per input block (39 for the dummy
operation conditions and three for shuffling RAM addresses).

3.4. THE ZORRO ASIC 67

D Q

Clk

En

SubState

256

25

25

8

832

8x

3
2
:
1 8

25x

25

6
:
1

25x

25 50

DataInxDI

RamInxDI

ClkxCI

RstxRBI

8

8 256

RamOutxDO

DataOutxDO

In
p
u
tC

o
n
tr
o
l

Critical Path

8
:
1

SliceUnitUnlin

OutputControl

LaneUnit

SliceUnitLin

Figure 3.8: Datapath of the 3-Share entity (controlling signals omit-
ted).

The 3-Share architecture contains a 608× 8 RAM (cf. Figure 3.7)
for storing state and shares. Basically, a secret sharing scheme for
Keccak based on three shares would require only 4800 bits (three
times the state size). We use the additional eight bytes of the RAM
as inputs for the dummy operations during the hiding mode and there-
fore, keep these memory locations uninitialized. Thereby, none of the
dummy operations computes on the actual payload of the chip and
hence, no correlated power figures should be observed.

For the initial masking of the 3-Share (4-Share) entity, the chip
receives 3200 (4800) random bits to initialize two (three) shares fol-
lowed by the plaintext. The last share is the plaintext XORed with
the shares previously initialized. The implementation of the Keccak-
f [1600] permutation is based on a combined lane and slice processing,
similar to that proposed by Pessl and Hutter [99]. Figure 3.8 shows
the architecture of the Datapath unit of the 3-Share entity. We use the
SubState register to buffer lanes and slices currently being processed.

68 CHAPTER 3. DPA COUNTERMEASURES

3.4.2 RAM Allocation
As proposed by Bertoni et al. [18], storing the bits of lanes and slices
in an interleaved form allows efficient processing of the data when
choosing a small datapath width, meanwhile keeping the size of the
required buffer register at a minimum. We also make use of this tech-
nique and store four bits of two slices in each RAM word (i.e., two
bits of four lanes). Since we need four lanes at a time, this results
in a buffer register of 256 bits. Unfortunately, the state consists of 25
lanes and thus, not all lanes can be stored in this interleaved form. We
decided to store the first lane in a linear way, as this lane is not influ-
enced by the ρ operation and hence, can be skipped for this function.
With this memory allocation, we waste a small amount of clock cycles
when loading data of the first lane. However, we can keep the size of
the SubState register comparatively small. To avoid switching back
and forth between slice-based and lane-based operations as much as
possible, we make use of the rescheduling approach proposed in [99],
where the authors distinguish between the following three different
types of rounds:

R1 = θ × ρ R2...24 = π × χ× ι× θ × ρ R25 = π × χ× ι (3.2)

Appendix 3.A provides a more detailed description about the ar-
chitecture of the Keccak-f operations. Moreover, we discuss the data
transfer protocol with Zorro in Appendix 3.B.

3.5 Results
The results of our work are twofold. First, we present our hardware
figures of Zorro and provide actual ASIC performance numbers of
the 3-Share, 3-Share*, and 4-Share design. Second, we provide practi-
cal results of DPA investigations on our AE system using power traces
obtained from the real chip.

3.5.1 Hardware Figures and Comparison
We used VHDL to code the Register-Transfer Level (RTL) model of
Zorro and Mentor Graphics’ ModelSim version 10.2a to verify func-

3.5. RESULTS 69

tional correctness. Synthesis results were obtained from Synopsys’
Design Compiler version 2012.06 for a mature 180 nm CMOS tech-
nology by UMC. The designs were synthesized using a standard cell
library by Faraday Technologies under typical case conditions. Back-
end design steps were carried out with SoC Encounter by Cadence.
Area results will be given in Gate Equivalents (GEs), where one GE
equals the area of a two-input NAND gate of the target standard cell
library (= 9.3744µm2).

In order to provide a fair comparison between the results of Zorro
and related work as well as meaningful numbers for an actual chip to
be taped out, we present two different area numbers. First, we pro-
vide synthesis results without considering any Design for Testability
(DFT) techniques.3 Second, we include the area numbers after all
backend design steps have been successfully completed and therefore,
the results include DFT circuitries for RAM tests as well as scan FFs
to enable Automated Test Pattern Generation (ATPG).

Figure 3.9 provides an area/time (AT) plot of the synthesis results
of the three different architectures (i.e., area numbers for different
clock constraints of the designs). Based on the isolines, indicating
a constant AT product, it can be observed that for a clock period
below 4 ns, the area requirements of all architectures increase signif-
icantly. Moreover, the efficiency of the architectures in terms of the
AT product does no longer improve. Knowing that timing data would
somewhat deteriorate during the upcoming backend design, we chose
a maximum frequency of 200MHz for Zorro. The critical path of the
design, running through the SliceUnitLin entity, is highlighted using
a dashed line in Figure 3.8. From Figure 3.9 it can be observed that
the relative areas of the three architectures remain quite the same.
This was expected since a major part of the overall area is occupied
by the RAM that scales proportionally with the number of shares.
Other differences between the three designs with regard to their logic
components are almost negligible. Table 3.2 lists an area breakdown
of the Zorro ASIC after synthesis for a clock period of 5 ns. It
shows that our 3-Share, 3-Share*, and 4-Share architectures require
13.4 kGE, 13.9 kGE, and 16.2 kGE, respectively. Table 3.3 provides

3Note that such numbers can depart significantly from those of a finalized chip
ready for tapeout, depending on the implemented design.

70 CHAPTER 3. DPA COUNTERMEASURES

 12

 14

 16

 18

 20

 22

 2 3 4 5 6 7 8

A
re

a
[k

G
E

]

Clock Period [ns]

A
*t =

 constant

3-Share
3-Share*
4-Share

Figure 3.9: AT plot of Zorro’s
three different architectures ob-
tained after synthesis.

Table 3.2: Area breakdown of the
Zorro ASIC (results based on
synthesis numbers at 5 ns).

Component Size [GE] Size [%]

3-Share 13 370 30.5
Datapath &
FSM

7300 16.7

RAM 4680 10.7
LFSR 300 0.7
SliceUnitLin 480 1.1
Others 610 1.3

3-Share* 13 940 31.8
4-Share 16 190 37.0
I/O Interface 320 0.7

Zorro Total 43 820 100.0

a comparison between Zorro and related Keccak-based ASIC de-
signs in the field of low-area and DPA-security. Two reasons make a
sound comparison between the Zorro designs and related work some-
what difficult. First, because of the very generic reason summarized
in Remark 3.1.

Remark 3.1 (No misleading comparisons). We avoid in-depth com-
parisons of our hardware architectures with results from previous work.
The main reason for this is that we believe that such comparisons only
make sense as long as the same target technology is being used. Even
then, a fair comparison is almost infeasible, since too many aspects
may diverge significantly during the development of the designs (e.g.,
standard cell library utilized, skills of designers, initial specifications,
use of application, design priorities).

Second, our goal was to provide a flexible evaluation platform for
DPA countermeasures. Hence, additional resources were required to
support enabling and disabling all the different modes of operation
of Zorro. That overhead would, of course, not be required in a
dedicated DPA-secure design of a Keccak-based AE scheme.

For the actual tapeout-version of Zorro, we added a couple of
DFT circuitries to support testing. This, the insertion of the required

3.5. RESULTS 71

Table 3.3: Zorro compared to related ASIC designs. Numbers are
based on synthesis results.

Source Techn. Size fmax Γ†
[nm] [GE] [MHz] [Cycles]

Designs w/o DPA Countermeasures
Pessl and Hutter [99]‡ 130 5522 61 22 570
Bilgin et al. [28]§ 180 10 800 555 1600
Zorro in Normal Mode‡ 180 13 370 200 21 888

3-Share-Secured Designs w/o Re-Masking
Bertoni et al. [22]§ 130 95 000 200 72
Zorro 3-Share Architecture‡ 180 13 370 200 113 184

3-Share-Secured Designs w/ Re-Masking
Bilgin et al. [28]§ 180 33 100 553 1625
Zorro 3-Share* Archit.‡ 180 13 940 200 113 184

4-Share-Secured Designs
Bilgin et al. [28]§ 180 43 100 572 1600
Zorro 4-Share Architecture ‡ 180 16 190 200 149 640
† Cycles per data item for one Keccak-f permutation
‡ 1088 bit blocks § 1024 bit blocks

72 CHAPTER 3. DPA COUNTERMEASURES

Figure 3.10: Chip layout and
photo of Zorro.

Table 3.4: Post-layout key proper-
ties of Zorro.

Property

Technology (UMC) 180 nm
Supply (Core/Pad) 1.8V/3.3V
Max. Frequ. (fmax) 200MHz
Required Size 45.5 kGE
Est. Power Cons. @ fmax

3-Share 17.3mW
3-Share* 19.7mW
4-Share 20.8mW

Cycles/data item (Normal/Masked)1

3-Share 21 888/113 184
3-Share* 21 888/113 184
4-Share 21 888/149 640

1 Requ. cyc. for one Keccak-f perm.

buffers, and the fact that after the backend design a realistic wire-load
model was available, lead to an increase in area to 14 kGE, 14.5 kGE,
and 17 kGE for the 3-Share, 3-Share*, and 4-Share architectures, re-
spectively. Figure 3.10 shows the final layout of Zorro as well as a
photo of the fabricated chip. Table 3.4 provides the key properties of
Zorro.

3.5.2 DPA Attacks on Zorro
For analyzing the DPA resistance of Zorro, we applied several anal-
ysis techniques to evaluate the applied countermeasures based on the
following measurement setup.

Measurement Setup

To acquire power traces of Zorro, the voltage drop across a 1W resis-
tor in the core supply line was measured with an AP034 differential
probe by LeCroy. This setup allows to minimize the noise created
by, for instance, I/O activity of the chip because it features separate
supply lines for both core and pads. A PicoScope 6404c oscilloscope
was used to capture the power traces which were then stored on a

3.5. RESULTS 73

Personal Computer (PC) for further analyses. The ASIC was clocked
with 10MHz and a sampling rate of 1GS/s resulted in 100 acquisition
points per clock cycle. Zorro provides an 8-bit data bus for com-
munication. Therefore, the measurement setup was basically quite
similar to the one presented in Section 2.2.6. A controlling FPGA
provided the following data, received from a PC, to the ASIC:

• Cipherkey, associated and message data
• Random numbers to initialize the shares
• Configuration data for the countermeasures

First Power Traces

The left plot in Figure 3.11 shows a measured power trace of an entire
Keccak-f permutation of Zorro running in NM. It contains all 24
rounds separated by a dotted vertical line (including one additional
round at the end where ρ is skipped). The right plot in Figure 3.11
depicts a zoom into the first round. We separated the slice and lane
processing phases with a dashed vertical line as well as the eight slice-
processing iterations (Zorro processes the 64 slices in eight blocks) by
dotted vertical lines. The same was done for the six lane-processing
sequences (the 24 lanes are handled in blocks of four). The time
interval where the θ step of the first round takes place is of special
interest because the power-analysis attacks presented next target the
θ step. Only the first θ step was recorded for the power analysis
attacks to keep the analysis effort reasonably small.

Detection of First-Order Leakage

As an initial step, we wanted to confirm that there are no first-order
leakages when running Zorro in masked mode based on measurement
results. For that, we applied Welch’s t-test [47]. More specifically, we
focused on the non-specific (fixed vs. random) t-test, which is part
of a set of multiple leakage tests known as the Test Vector Leakage
Assessment (TVLA) [12]. The t-test is used to decide if two groups
GA and GB of measurements were drawn from populations with the
same mean (null hypothesis) assuming a black-box model. For this
decision, the t-value is calculated according to equation (3.3), where

74 CHAPTER 3. DPA COUNTERMEASURES

0 0.5 1 1.5 2

x 10
6

50

100

150

200

250

Time [ns]

P
o
w

er
 C

o
n
su

m
p
ti
on

0 1 2 3 4 5 6 7 8

x 10
4

50

100

150

200

250 ohRatehT

Time [ns]

P
ow

er
 C

on
su

m
p
ti
on

Figure 3.11: Top: Power trace of an entire Keccak-f permutation
while Zorro is running in NM; Bottom: Zoom into the first round,
computing θ and ρ.

3.5. RESULTS 75

0 1000 2000 3000 4000 5000 6000 7000 8000
−6

−4

−2

0

2

4

6

Samples

t−
v
al

u
e

0 1000 2000 3000 4000 5000 6000 7000 8000
−6

−4

−2

0

2

4

6

Samples

t−
v
al

u
e

Figure 3.12: First-order leakage detection of the 4-Share design. Left:
Shares initialized with zeros; Right: Shares initialized with random
values; vertical lines define the time intervals where the four shares
are processed.

µ() denotes the sample mean, σ2 the sample variance, and ni the
number of samples in the group i.

t = µ(GA)− µ(GB)√
σ2(GA)
nA

+ σ2(GB)
nB

(3.3)

If the value of t exceeds a specific threshold, the null hypothesis is
considered false. According to the recommendations in [47], we have
used a threshold value of ±4.5. If t exceeds that value at any point
during the computation of the algorithm, the null hypothesis can be
rejected with 99.999% probability.

As a first experiment, we verified that there actually is a first-
order leakage within the fabricated ASIC by initializing the shares
with zeros. To apply the fixed vs. random t-test, two groups of stimuli
were generated for Zorro. On the one hand, the plaintext was fixed
to a certain input value to obtain GA. On the other hand, random
inputs were provided to create GB . The result of this analysis for the
four-share implementation is shown in the left image of Figure 3.12.
Vertical lines in the plot separate the time intervals for the processing
of the four shares. It is clearly visible that the t-value exceeds the ±4.5
threshold during the execution of the first share. The outcome of the
experiment is as expected, since the first share processes the input
data without randomization due to the initialization of the remaining

76 CHAPTER 3. DPA COUNTERMEASURES

shares with zeros. Thus, there exists first-order leakage during the
processing of the first share.

The same experiment has then been repeated with the shares ini-
tialized with random values. The right plot in Figure 3.12 depicts the
result for this second experiment. 100 000 measurements have been
used for each group. To avoid any influence of the measurement setup
due to, for instance, temperature drifts, the traces for each group have
been recorded in an alternating manner (i.e., 10 measurements for GA,
10 measurements for GB , 10 measurements for GA, . . .). It is clearly
visible, that with this number of measurements no first-order leakage
can be identified. The t-value does not exceed the ±4.5 threshold at
any time instance; the minimum and maximum values are -2.38 and
3.32, respectively.

The maximum of 100 000 available traces was determined mainly
for two reasons. First, we wanted to keep the measurement effort
reasonably small. Second, we assume that for most target applications
of Zorro, the number of encryptions can be limited to this value.
Whether this is achieved by restricting the number of encryptions
with the use of the communication protocol employed or by updating
a potential session key frequently, is beyond the focus of this analysis.
For the two architectures applying three shares, the same first-order
leakage validation was conducted. The results were similar to those
achieved for the 4-Share implementation, i.e., no first-order leakage
could be observed for up to 100 000 measurements when enabling the
masking countermeasures.

Remark 3.2 (Interpretation of t-test results). The presence of a first-
order leakage does not imply that key-dependent data is responsible
for that leakage. It can therefore not be concluded that key bits can be
extracted from the device with the use of Side-Channel Analysis (SCA)
techniques. The opposite, however (i.e., not indicating any kind of
first-order leakage), heavily suggests that the investigated device offers
solid security boundaries for the number of traces being taken.

Attack Scenario on Zorro

To compare the effort required for a successful attack against the
protected implementations on Zorro, we conducted power measure-

3.5. RESULTS 77

ments and applied standard Correlation Power Analyses (CPAs) based
on the Pearson correlation coefficient [30]. For the rest of this section,
ρc indicates the correlation coefficient of the correct key guess. CPAs
presented herein focus on the first round of Keccak-f . In particu-
lar, we targeted a storage operation of the 256-bit SubState register
(cf. Figure 3.8) that stores key-dependent intermediate values during
the θ step. The decision to initially target the θ transformation was
motivated by the modified round schedule given in equation (3.2). In
the first round, θ is the only slice-based transformation, leading to a
simple power model. For our attack, we assume the initial state Sinit
to be

Sinit = K||M ||0c ,

where K refers to the cipherkey and M denotes a part of the state
chosen freely by an attacker. The last c bits of Sinit represent the
initial capacity, which are all specified to be zero.4

With r = 1088 bits and |K| = 256 bits, the length of the message
part in the initial state is 832 bits (|M | = r − |K| = 1088 − 256 =
832 bits). Furthermore, we use the following notations throughout the
rest of this section:

Sj Current state of share j
Sz Slice number z of state

In the case of a plain implementation without countermeasures,
the initial state Sinit is processed by the round transformations of
Keccak-f . Each slice Sz contains four unknown key bits. The re-
maining 21 bits are known by the attacker and 21 − c

64 = 13 bits,
the message part M , are expected to be freely chosen per slice. For
a secret sharing implementation using d shares, the round transfor-
mations of Keccak-f are performed on the shares S1, S2, . . . , and
Sd respectively. In the first execution step, the shares S1. . .Sd−1

are initialized with random values and Sd is calculated according to
Sd = Sinit ⊕ S1 ⊕ · · · ⊕ Sd−1. The fact that only random data is
processed makes it hard for an attacker to generate hypothetical in-
termediate values that are required for a DPA attack.

4How a potential adversary actually achieves this use case is out of focus of
this work. It might be due to an incorrectly implemented usage of Zorro within
an upper-layer protocol or with the use of inserted faults.

78 CHAPTER 3. DPA COUNTERMEASURES

Due to the modified round schedule given in equation (3.2), the θ
transformation is the first linear transformation applied on Sinit. To
minimize the resources required, the architectures on Zorro perform
θ on one slice per clock cycle, leading to a total of 64 clock cycles when
running in NM and d ·64 clock cycles for the d-share implementations.
Note that the linear transformations can be applied on each share
individually, which makes it possible to process shares sequentially.

As the θ transformation processes sensitive data, for which the key
remains constant for every encryption, it becomes a potential target
for a DPA attack. Preliminary experiments confirmed that Zorro
leaks intermediate values according to the Hamming distance power
model. Since only one slice is processed per clock cycle, Hamming dis-
tances between 0 and 25 are possible. Moreover, due to the inherent
iterative design of the architecture, the algorithmic noise is signifi-
cantly smaller compared to an implementation where the whole state
is transformed in one clock cycle.5 To calculate the θ transformation
for Sz, the information of two neighboring slices is required. Thus,
each slice operation targeted reveals information about four key bits.
Since θ processes two slices in parallel, we can efficiently target eight
key bits (2 × 4 bits of two different slices) by evaluating the power
models of 256 key hypotheses.

Normal Mode

We started our attacks running Zorro in NM (i.e., with no coun-
termeasures enabled). The number of power traces required to suc-
cessfully accomplish this attack served as a basis for the experiments
on our ASIC with with the countermeasures enabled. The CPA at-
tack on the NM was performed with 1000 power traces, leading to ρc
=0.7. This ρc indicates that less than 50 measurements are sufficient
to distinguish the correct from the wrong key hypotheses [74].

5In general, small datapaths—as within the Zorro architectures—are actually
tricky with regard to their side-channel resistance, since the noise level is lower
compared to designs, where multiple operations are computed in parallel.

3.5. RESULTS 79

Hiding Mode

Next, we activated hiding on the Zorro ASIC. The number of dummy
rounds has been set to one (HM-1), which means that zero or one
dummy operation is randomly inserted in front of the first Keccak-
f permutation working on real data. Moreover, as soon as hiding
is activated, read/write operations from/to the RAM are randomly
shuffled. As a result, the operation targeted can appear at 16 different
time instances ti. According to [74], ρc should decrease by a factor
of 1

ti compared to the unprotected case. When taking into account
ρc = 0.7 from the unprotected case and ti = 16, this leads to an
expected value for the protected implementation of

ρc,theory = ρc
ti

= 0.7
16 = 0.044 .

Practical attacks on the HM yielded ρc,pract = 0.049, which agrees
with theory.

Next, we applied windowing [37] to counteract the hiding tech-
niques. In general, windowing sums up the power consumption of
all moments in time when the attacked intermediate value can ap-
pear. Hence, for HM-1 16 time instances had to be combined. As
discussed in [74], this should increase ρc by a factor of

√
ti for our

attack. Table 3.5 lists ρc obtained from our practical measurements
and compares them with the results from theory. It contains num-
bers for three different hiding modes, each analyzed with and without
windowing applied. Most results from our experiments are in line
with theory. The only exception is the significantly larger correlation
coefficient obtained for HM-1 when windowing is applied. Without
windowing, no significant correlation peaks were observed for HM-15
with up to 100 000 measurements. Hence, for HM-15 without win-
dowing we only provide theoretical numbers in Table 3.5.

Masked Mode

In a next experiment we performed power-analysis attacks targeting
the first θ step on Zorro running in MM (all hiding countermeasures
deactivated). 1st-order CPA attacks using 100 000 power traces cap-
tured from the ASIC did not succeed. No significant correlation peaks
could be observed.

80 CHAPTER 3. DPA COUNTERMEASURES

Table 3.5: Results for the power-analysis attacks on Zorro
running in HM. ρc = 0.7 from the unprotected mode (NM)
served as reference for the correlation coefficients.

Mode ti† Wind.‡ ρc,theory ρc,pract

HM-1 16 no 0.044 0.049
HM-1 16 yes 0.176 0.237
HM-2 24 no 0.029 0.031
HM-2 24 yes 0.152 0.160
HM-15 128 no 0.005 -
HM-15 128 yes 0.062 0.057
† Number of different time instances ti
‡ Windowing applied or not

However, due to the clear patterns in the power traces, the time
instances, where the first θ steps of each share are performed, can
be identified with little effort. By combining the revealed time in-
stances, a 3rd-order CPA attack has been mounted. The centralized
product combining, as suggested by Prouff et al. [100], has been used
as combination function. As shown in Figure 3.13, this attack results
in a significant correlation peak for the correct key hypothesis with
ρc = 0.016. Figure 3.14 shows the course of the correlation coefficients
for all key guesses. With less than 70 000 measurements the correct
key hypothesis can be distinguished from the wrong key hypotheses.
Note that since the modifications between the 3-Share and 3-Share*

implementation solely affect the χ step (and not the θ operation tar-
geted herein), the results of the 3rd-order CPA are identical for both
three-share based architectures.

Comparing Masking and Hiding Modes

Our analysis results confirm that both hiding as well as masking in-
crease the effort for an attack. Attacks on the implementation using
hiding also succeed without any modification of the traces (e.g., win-
dowing). Attacks on the masked implementation do not succeed with-

3.5. RESULTS 81

1000 1200 1400 1600 1800 2000
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Time [ns]

C
or

re
la

ti
on

 C
o
ef

fi
ci

en
t

Figure 3.13: 3rd-order CPA re-
sult for the correct key guess us-
ing 100 000 ASIC traces (Zorro
running in masked mode).

1 2 3 4 5 6 7 8 9 10

x 10
4

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Number of Traces

C
or

re
la

ti
on

 C
o
ef

fi
ci

en
t

Correct Key Guess
Incorrect Key Guesses

Figure 3.14: Course of the correla-
tion coefficient of Zorro running
in masked mode (3rd-order CPA).

out combination of the traces, at least not if the shares are calculated
sequentially during the first θ step, as it is the case within Zorro. To
reach the same security level with hiding as with masking, theoreti-
cally 240 dummy rounds would be required. Each additional dummy
round leads to eight additional time instances for the targeted oper-
ation to appear, so ti = 240 · 8 = 1920 for 240 dummy rounds. As a
consequence, ρc would decrease to 0.7√

1920 = 0.016, which is equivalent
to the ρc achieved with a 3rd-order CPA, targeting the masked im-
plementation. However with 240 dummy rounds, the runtime of the
implementation operating in hiding mode exceeds that of the masked
mode significantly. To get around this drawback, a shorter dummy
operation than the complete Keccak round can be chosen. Table 3.6
summarizes the number of required measurements Nmeas for a suc-
cessful key recovery. For the unprotected case (NM), less than 100
measurements are sufficient, for the hiding mode with the weakest
protection HM-1, Nmeas = 285, and for the hiding mode with the
highest protection (HM-15), Nmeas = 4 925 respectively. Note that
Nmeas for HM-1, HM-2, and HM-15 all assume that windowing is ap-
plied. Successful attacks targeting the masked mode (MM-3) require
70 000 measurements. According to [74], 240 dummy rounds (HM-
240) would also require Nmeas = 70 000 to obtain similar correlation
coefficients. However, this mode is not supported by Zorro.

82 CHAPTER 3. DPA COUNTERMEASURES

Table 3.6: Number of required
measurements to successfully at-
tack the different Zorro modes.

Mode Nmeas

NM <100
HM-1 285
HM-2 625
HM-15 4925
HM-240† 70 000
MM 3-share 70 000
† Theoretical value; not sup-
ported by Zorro

3.6 Summary
DPA countermeasures are often analyzed on general-purpose proces-
sors using software implementations, FPGA platforms, or simulations
only. During this chapter we have presented Zorro, an ASIC de-
veloped and manufactured for the sole purpose of assessing DPA
countermeasures on a real chip. We designed Zorro to be appli-
cable in systems with constrained resources such as RFID or smart
cards. Thus, for the implemented AE primitives based on the Kec-
cak-f permutation, we aimed at low area as the primary design goal.
Our smallest SpongeWrap architecture requires 14 kGE, including
DFT circuitries, and offers several hiding and masking countermea-
sures that can be enabled and disable at will. Furthermore, we have
presented initial DPA results, comparing the strength of the differ-
ent countermeasures. We showed that with hiding or masking alone,
Zorro can be successfully attacked with 100 000 traces or even less.

Chapter Appendix

3.A Round Operations

When Zorro operates in NM, the four slice-based round functions
of Keccak-f (θ, π, χ, and ι) are exclusively calculated in the Slice-
UnitLin within a single clock cycle for a whole slice. The applied
round schedule requires to calculate the result of θ, π×χ× ι× θ, and
π × χ × ι. As illustrated in the left image of Figure 3.A.1, all three
operations can be accomplished within the SliceUnitLin with the use
of bypass multiplexers. Calculations of the linear round functions of
the Keccak-f permutation are equal for both the normal mode and
the masking-secured modes. Here, each share can be computed in
sequential order (e.g., in R1 the theta step is performed three or four
times sequentially to process the three or four shares, respectively).

Due to the fact that the non-linear χ function requires inputs from
more than one share, the processing of this function slightly differs.
For the hardware implementation of the 3-Share architecture, we fol-
low the approach presented by Bertoni et al. [22] and compute the
result for two input slices in a single cycle within the SliceUnitUnlin

π

θ

ι

DataInxDI

D
a
ta
O
u
tx
D
O

25

SliceUnitLin

Interleave

DataInxDI

LaneUnit

25

8
8

DataOutxDO

χlin

Figure 3.A.1: Datapath of the 3-Share entity (controlling signals omit-
ted).

83

84 CHAPTER 3. DPA COUNTERMEASURES

entity. For the lane-based operation (ρ), we aimed at calculating its
output byte by byte. This allows us to combine it with the RAM
write operation. Thanks to the chosen RAM allocation, multiples of
2-bit-wide shift operations of lanes can easily be accomplished with
the addressing of the memory. The special storage structure pro-
vides information about four lanes per RAM word (byte), and the
SubState register can hold up to four lanes simultaneously. Unfor-
tunately, each lane has a different shift offset. Hence, different bit
pairs of the buffered lanes must be used to compensate the differ-
ences between the offsets. The different compensation offsets can be
precalculated and are stored in the LUTS entity (see Figure 3.7) for
each lane quadruple. With these values, multiples of 2-bit-wide shift
operations, and the offset between the different lanes can be com-
pensated. What is left is a possible shift by one bit. Therefore, 4
one-bit-registers with surrounding multiplexers are used. If a lane is
shifted by one bit, the high bit of the chosen bit pair is stored in the
1-bit register. The low bit is shifted one bit to the left and the old
content of the one bit register is used as the new low bit. This is done
for each bit pair of the buffered lanes. The result is stored back to
the RAM in interleaved form. The responsible unit for the lane-based
operation is called LaneUnit (cf. right image of Figure 3.A.1).

3.B Data Transfer Protocol

Due to the interleaved storage format of the lanes and the slices in the
state RAM, data blocks must be provided to Zorro in a pre-defined
order. Details about the data transmission follow. Assume we want
to transfer the 1088-bit block of data below (given in hexadecimal
representation, omitting intermediate bytes due to a lack of space,
and each block representing one 64 bit-wide lane):

Lane 1: 1736712d8bc69dee
Lane 2-5: b0dcd17a74223ffc aa08..3e0f f584..51a9 ad97..9bb9
Lane 6-9: 0557ea42de175cfe e478..39a1 12dc..0bc5 eb5a..31e0
Lane 10-13: e84abd82d8383d61 8b31..1482 63fe..2563 4e53..484c
Lane 14-17: 205fa600b47b9a0f 545c..2c44 7734..3c41 67ea..cb0e

3.B. DATA TRANSFER PROTOCOL 85

Then the first lane is transmitted linearly byte by byte. After
that, the next bytes to be transferred to Zorro are constructed from
the next four lanes. Therefore, let us write those four lanes in binary
notation, omitting the last bytes as follows:

Lane 2: 1011 0000 1101 1100 1101 0001 0111 1010 0111 0100 ...
Lane 3: 1010 1010 0000 1000 0111 1010 0010 1100 1000 1110 ...
Lane 4: 1111 0101 1000 0100 0011 1000 0000 1010 0001 0010 ...
Lane 5: 1010 1101 1001 0111 0011 1011 1001 1000 0011 0100 ...

||
|- Bit 0 from Lane 2 (L2B0)
|- Bit 0 from Lane 3 (L3B0)
|- Bit 0 from Lane 4 (L4B0)
|- Bit 0 from Lane 5 (L5B0)
|
- Bit 1 from Lane 2 (L2B1)
- Bit 1 from Lane 3 (L3B1)
- Bit 1 from Lane 4 (L4B1)
- Bit 1 from Lane 5 (L5B1)

Furthermore, let LiB0 and LiB1 denote the first and second bit of
the first byte of the i-th lane (i ∈ {2 . . . 5}), respectively. Then the
next byte to be transmitted to Zorro gets derived from the corre-
sponding four lanes as follows:

L5B0 L4B0 L3B0 L2B0 L5B1 L4B1 L3B1 L2B1 = 1100 0010 = 0xC2

The next byte will be concatenated from the third and fourth bit
of the first byte of these four lanes and so forth. Algorithm 1 describes
the previously described transmission protocol more formally. Based
on this transmission protocol, the interleaved storage of two bits of
four lanes can be assured per RAM entry.

86 CHAPTER 3. DPA COUNTERMEASURES

Algorithm 1 Zorro data transfer protocol.
Input: Input block Inp with a length of 1088 bits. Note that we expect the bits

to be transmitted from the very left (0-th bit) to the very right (1087-th bit).
Output: The byte to be transmitted to the Zorro chip via signal InxDI.
1: LaneQuad = 0 . Counter for lane quadruple
2: for i = 0 to 135 do . Iterate through all 136 bytes of the block
3: if i < 8 then
4: . The bytes of the first lane are transmitted one after another.
5: InxDI[7:0] = Inp[i · 8 : i · 8 + 7]
6: else
7: . Since the bits of a single transmitted byte are constructed from bits

of four consecutive lanes, we must find out when a new lane quadruple (i.e.,
lane 2 to 5, lane 6 to 9, lane 10 to 13, and lane 14 to 17) starts.

8: if (i − 8) > 0 && (i − 8) mod 32 = 0 then
9: LaneQuad + +
10: end if
11: . LSB of every fourth byte is determined different than the other LSBs.
12: if (i − 8) mod 4 = 0 then
13: . First, we must add the offset, which stems from the first lane.
14: lsb = 64
15: . Next, we must add an offset of 256 bits (i.e., four lanes) in case

we have already transmitted some quadruples previously.
16: lsb = lsb + LaneQuad · 256
17: . The LSB of the first byte of a new lane quadruple is the 6th bit

of the first lane of the lane quadruple. Hence, we need to add an offset of 6.
18: lsb = lsb + 6
19: . Finally, the offset for the respective byte must be added.
20: lsb = lsb + 2 · ((i − 8) mod 32)
21: else
22: . The LSB of the other bytes are computed from their predecessors.
23: lsb = lsb − 2
24: end if
25: . Compute the remaining bits of the current byte based on the LSB.
26: InxDI[7] = Inp[lsb + 3 · 64 + 1]
27: InxDI[6] = Inp[lsb + 2 · 64 + 1]
28: InxDI[5] = Inp[lsb + 1 · 64 + 1]
29: InxDI[4] = Inp[lsb + 1]
30: InxDI[3] = Inp[lsb + 3 · 64]
31: InxDI[2] = Inp[lsb + 2 · 64]
32: InxDI[1] = Inp[lsb + 1 · 64]
33: InxDI[0] = Inp[lsb]
34: end if
35: end for

�

�

�

�

�

� 4
High-Throughput

AEAD Architectures

Outline. In Section 4.1 we first give an introduction to CAE-
SAR, the Competition for Authenticated Encryption: Secu-
rity, Applicability, and Robustness. From that competition,
potential successors for GCM—the current de-facto stan-
dard of authenticated encryption algorithms—should emerge.
Throughout Section 4.2 related work about high-speed ASIC
designs of GCM and CAESAR competitors is discussed.
Predetermined specifications and requirements for our high-
throughput ASIC architectures developed are presented as
part of Section 4.3. Moreover, we briefly describe our own
GCM design and the CAESAR architectures in this section.
Thereafter, we provide our results in Section 4.4, including
a comparison between all CAESAR designs and our GCM
reference architecture. Eventually, a summary and a brief
discussion is given in Section 4.5.

87

88 CHAPTER 4. AEAD ARCHITECTURES

4.1 The CAESAR Competition
Confidentiality, integrity, and authenticity are three of the main cryp-
tographic goals required for secure communication. In the past, re-
searchers and engineers often tried to assure these goals separately, for
instance, by using block ciphers and Message Authentication Codes
(MACs). Some of these approaches resulted in severe security prob-
lems [69, 29, 113, 32, 96, 42]. Therefore, the Competition for Authen-
ticated Encryption: Security, Applicability, and Robustness (CAE-
SAR) [1] was launched in order to find combined algorithms, provid-
ing the desired service of Authenticated Encryption (AE) to prevent
such problems. Simultaneously, the performance of today’s algorithms
should be increased.

The ultimate goal of the competition is not to find a single winner,
but a portfolio of algorithms, supporting Authenticated Encryption
with Associated Data (AEAD)1. These finalists are expected to serve
as alternatives to the Advanced Encryption Standard (AES) [94] run-
ning in the Galois/Counter Mode of Operation (GCM) [45, 76], which
currently represents a de-facto standard (further on referred to as
GCM-AES or just as GCM). Another widely accepted mode of oper-
ation, which uses a block cipher to create an AE primitive and might
be replaced by some of the CAESAR winners, is the CBC-MAC mode
of operation [44]. The two algorithms have become highly popular be-
cause the National Institute of Standards and Technology (NIST) has
officially recommended them. Since then, they have been adopted in
technologies and protocols such as WiFi 802.11 [58] and IPSec [114].

CAESAR was initiated in 2014, with 57 candidates being submit-
ted to the challenge. Throughout the first round of the competition
the main focus of the evaluation process was to find cryptoanalytical
weaknesses in the algorithms. Vulnerabilities found during such anal-
yses usually lead to a knock-out of the respective participant. More-
over, a first comparison with regard to the software performance of the
algorithms was accomplished based on their C reference code [2, 90].
Since the focus of those software models was clarity and not perfor-
mance, results of these comparisons have to be taken with caution, as

1By associated data we refer to data that needs to be authenticated but not
encrypted by the AE algorithm.

4.1. THE CAESAR COMPETITION 89

AEAD Algorithms

Algorithm

Cryptanalysis
Performance/Implementation

Evaluations
Hardware Software

Low-Resource

Environments

High

Performance

Side-Channel

Resistance
Several

Criteria

Figure 4.1: Potential evaluation criteria for the AEAD algorithms of
the CAESAR competition, highlighting the investigated sub-criteria.

some authors may have optimized their implementations significantly
more than others. Out of the 57 algorithms initially submitted, 30
made it to the second round. As of this writing, second-round partici-
pants are competing to proceed to the final third round, which should
eventually result in the announcement of the winner portfolio at the
end of 2017.

For the second round, the authors of the algorithms are required to
provide reference hardware implementations as well. This should sim-
plify evaluations of the candidates for different Application-Specific
Integrated Circuit (ASIC) technologies and Field-Programmable Gate
Array (FPGA) devices. Figure 4.1 shows a hierarchy of potential eval-
uation criteria that might be taken into consideration by the CAESAR
committee throughout the selection process. It indicates that a va-
riety of decision points may determine which competitors advance to
the next round. Even within the group of hardware-related criteria,
various target fields of application can be crucial for the selection pro-
cess. We contribute to the competition by analyzing several of the
candidates with regard to high-throughput ASIC architectures.

As a first step, we investigate the circuit complexity needed to
reach a throughput of 100Gbit/s under the asymptotic use case. This
scenario assumes an infinitely large message to be processed by the
AE algorithm, such that any processing required during initialization
or finalization of a cipher, can be neglected.

Second, the high-speed architectures developed are analyzed in
view of more realistic applications. We use Ethernet [54] as an exam-
ple link-layer protocol and present the performances of the hardware
architectures for different packet size distributions. We do not only

90 CHAPTER 4. AEAD ARCHITECTURES

Table 4.1: Comparison of related work for high-speed ASIC architec-
tures of GCM-AES.

Design AES Techn. Size fmax Θ Efficiency
Cores [nm] [kGE] [MHz] [Gbit/s] [kbit/s/GE]

Yang et al. [119] 1 180 498.7 271.0 34.7 69.6
Satoh et al. [103] 4 130 979.3 317.5 162.6 166.0
Zhang et al. [120] 1 130 547.0 764.5 97.9 179.0
Mozaffari-
Kermani et al. [83]†

8 65 630.0‡ 613.0 25.1 39.8

† The most efficient architecture from [83] has been chosen. Num-
bers are given for n (input blocks) = 1. Interestingly, the through-
put of their architectures decreases with the number of input
blocks. We believe this to be some typo.
‡ The area of one GE in the cell library utilized (2.08 µm2) is signif-
icantly larger than that of one GE of our library (1.44 µm2). This
may result in misleading comparisons when using GEs as a metric.

compare the chosen CAESAR candidates against each other, but also
against a previously created GCM-AES reference architecture.

4.2 Related Work

Due to the popularity of GCM-AES, several high-speed hardware ar-
chitectures have been presented in the past, targeting different ASIC
technologies. Table 4.1 summarizes the results of those works and
compares them in terms of throughput-per-area. Albeit all of the de-
signs aimed at high performance, they basically differ from each other
in three main points:

1. Number of parallel cores: To achieve the high throughputs,
the architectures make use of different numbers of parallel AES
cores. As a consequence, also the expected input widths and the
structure of the Galois field multiplier vary.

4.2. RELATED WORK 91

2. Supported key lengths: While the GCM-AES designs by
Yang et al. [119], Zhang et al. [120], and Mozaffari-Kermani and
Reyhani-Masoleh [83] only consider the 128-bit version of AES,
the work by Satoh et al. [103] also supports the 192-bit and the
256-bit version of the block cipher.

3. Pipeline stages: High-speed hardware implementations of AES
typically unroll all rounds of the block cipher, separated by
pipelining registers. Some designers apply pipelining even on
the sub-round level to achieve the desired throughput. As a
result, the circuit complexity due to the pipelining registers in-
creases significantly.

Apart from the ASIC implementations of GCM-AES, a number of
FPGA works have shown that high throughputs can be achieved with
reconfigurable hardware as well [72, 121]. Speeds of 100Gbit/s and
even beyond were achieved on state-of-the-art FPGAs [51, 86, 87].

While hardware designs of GCM have been extensively studied,
only few authors have addressed the hardware efficiency of the CAE-
SAR candidates so far.2 In the specification of Minalpher [102], the au-
thors presented several architectures, reaching a maximum of 9.9Gbit/s
with a size of 16.7 kGE on a 45 nm technology. Šijačić et al. [105] pro-
vided further results on lightweight implementations of Minalpher as
well as of PRIMATEs [7]. The first version of the submission doc-
ument of SCREAM [49] contained various architectures, targeting a
65 nm process technology. The fastest design processes data with a
throughput of 5.2Gbit/s.3 Initial hardware figures of POET [4] for
ASICs and FPGAs were presented in [78], resulting in a maximum
throughput of 768Mbit/s for encryption, using a 180 nm technology
by UMC. A low-area ASIC implementation of AEGIS [117] was pre-
sented by Schilling et al. [104]. Their design required 13.6 kGE based
on a 130 nm technology, runs with a maximum clock frequency of
100MHz, and achieves a throughput of 65Mbit/s. In [48], Gross et al.
presented a Threshold Implementation (TI) [92] and an unprotected

2This is mainly because the second round of CAESAR still comprises 30 candi-
dates competing against each other, and the deadline for the Hardware Description
Language (HDL) implementations is approaching only hesitantly.

3Unfortunately, the authors do not specify the standard cell library utilized,
which makes a comparison even more difficult.

92 CHAPTER 4. AEAD ARCHITECTURES

version of Ascon [43] on a 90 nm technology by UMC. Their fastest
unprotected design needs 25.8 kGE and processes data with up to
13.2Gbit/s. Chakraborti et al. [34] published a high-throughput de-
sign of TriviA, which achieved 91.2Gbit/s on a 65 nm technology,
requiring a size of 24.4 kGE.

Due to the reasons given in Remark 3.1 in Section 3.5.1, this chap-
ter mainly provides results that compare the hardware architectures
developed against each other but not with related work. The only
exception to this rule is a brief comparison of our GCM-AES archi-
tecture with the results from previous work.

4.3 Assuring a Fair Comparison
As mentioned in Section 4.1, we focused our investigations on high-
performance ASIC architectures. However, to allow an arguably fair
comparison, further constraints must be defined in advance. There-
fore, the next two subsections provide an overview of our environmen-
tal assumptions and general requirements that we have determined for
the development of our hardware architectures.

4.3.1 Environmental Assumptions

Our environmental assumptions are briefly outlined below. A more
comprehensive discussion can be found in Appendix 4.B.

Cipherkey changes frequency: We assume the cipherkey to change
rather infrequently. Therefore, the processing time for doing so
is expected to be negligible. Note that the architectural adap-
tations, required to get from a hardly-ever-key-changing design
to a more one-time-pad-like approach, heavily depend on the
algorithm utilized. Hence, no generic statement can be made on
how much effort is required to adopt such modifications.

Data stream type: For a 100Gbit/s transmission to be encrypted
and/or authenticated, we expect to have what we call a single-

4.3. ASSURING A FAIR COMPARISON 93

Public Message Number (PMN)4 stream (sometimes referred to
as a single-message stream in the literature as well). By that
we mean a stream, where the actual majority of data stems
from the Associated Data (AD)/message data of a single PMN.
Therefore, the throughput cannot be increased by just adding
multiple instances of an algorithm in parallel.

Data size availability: As for the available data size, we distinguish
between two different use cases. First, we look at what we call
the data at rest scenario, sometimes also referred to as local or
storage encryption to design our 100Gbit/s architectures. This
scenario is similar to the asymptotic use case introduced in Sec-
tion 4.1. We then use the developed designs to provide results on
how these architectures perform under different data in motion
applications based on Ethernet.

4.3.2 General Architecture Requirements
Our main goal for this chapter is to compare a state-of-the-art GCM
architecture using AES-128 as the underlying block cipher with several
CAESAR candidates. To do so, we determined a couple of architec-
tural criteria, which had to be satisfied by all of our designs developed
to ensure a fair comparison between the algorithms:

Supported cipher versions and modes: Many of the competitors
offer multiple modes of operation. Supporting all of them would
have represented an unnecessary overhead at this early phase of
the competition. Thus, we decided to implement only the pri-
marily recommended versions of the algorithms as found in the
respective submission documents. Moreover, all designs had to
support both encryption and decryption, thereby providing all
features to enable a full communication.

Small I/O delays: All architectures developed should have short in-
put and output delays compared to their internal operating clock

4During the remainder of this chapter, we denote any kind of supporting data,
required for the AE modes (i.e., Initialization Vectors (IVs), nonces), by the more
generic term PMN.

94 CHAPTER 4. AEAD ARCHITECTURES

period. This is to ensure that candidate architectures can be in-
tegrated into larger systems without much timing hassles. By
short we mean that several gate delays in an input or output
signal path are not considered a problem. However, for longer
I/O paths in the range of the clock period, registers have been
added to cut the paths apart. Note that those registers might
be removed if the data inputs/outputs of the architectures are
directly attached to another sequential element.

Similar I/O interfaces: Since our architectures are expected to be
used in streaming applications, we decided that all of them
should communicate with their environment using the AXI4-
Stream Protocol [8]. Let source be the name of any circuit that
can feed one of our designs with data. A corresponding down-
stream circuit, waiting for data from our designs will be referred
to as destination. Potential circuits for source and destination
are First In, First Out (FIFO) buffers, that provide the data
from/to a 100Gbit/s stream. Appendix 4.C contains more de-
tails about the applied AXI interface.

Stallable architectures: Assuming that a downstream circuit is al-
ways ready to accept data from the AEAD architectures is not
a practical assumption (a subsequent FIFO might be full or
other circuits might not be ready to process the provided data).
Hence, we decided that all of the algorithms must be stallable.

Technology-independence: In order to be able to synthesize all of
the designs for different target platforms, we avoid using any
technology-dependent components, such as memory macrocells.
This should, on the one hand, allow a more meaningful com-
parison between the implemented candidates. On the other
hand, this can also be beneficial when comparing our archi-
tectures against future upcoming ASIC implementations of the
algorithms investigated. Moreover, this requirement is by no
way restrictive as most memory macrocells suffer from longer
read/write delays compared to Flip-Flops (FFs), which usually
makes them undesirable for high-throughput applications.

4.3. ASSURING A FAIR COMPARISON 95

4.3.3 Our Hardware Architectures
We decided to develop our own GCM-AES architecture from scratch.
The resulting design should serve as a reference for the CAESAR
candidate analysis. Although we could have used an existing GCM
architecture available in literature as a basis, this would not have
resulted in a fair comparison. Since a lot of the previously designed
architectures did not have a certain goal in mind, an evaluation based
on such a reference would have been almost meaningless.

Below, we provide a short description of our 100Gbit/s archi-
tectures of GCM-AES and of our investigated CAESAR candidates.
As of this writing, the CAESAR competition is in its second round
and 30 candidates still compete against each other in the contest.
Because of the multitude of algorithms submitted, we only chose a
promising subset of competitors to actually evaluate them against
the GCM-AES reference architecture. Architecting and implement-
ing the five CAESAR candidate circuits along with the GCM-AES
reference was not only indispensable for our investigations but also
represented a substantial effort. Yet, we have decided to relocate the
full details about the algorithms and the architectures developed to
Appendix 4.D. Readers can so focus on our results and findings with-
out being distracted by too many technicalities.

GCM-AES: Our GCM reference architecture is based on a single,
fully unrolled AES-128 core, pipelined after each round. Since
we assume that key changes take place rather rarely, we it-
eratively reuse the combinational logic required to derive one
roundkey from another. The 11 roundkeys (incl. the original ci-
pherkey) are stored in FFs. For both the cipher part and the key
expansion of AES we adopted the Canright S-box [31], which is
known to have the best area/timing trade-off from literature.5
As for the authentication part, we make use of a completely
combinational bit-parallel Galois field multiplier.

AEGIS and MORUS: Since the basic structure of AEGIS [117, 118]
and MORUS [116] is quite similar, we discuss them together

5All CAESAR candidate architectures discussed in this chapter that employ
(parts of) the AES round also use the Canright S-box.

96 CHAPTER 4. AEAD ARCHITECTURES

hereafter. Our architectures developed for both of the algo-
rithms are based on a fully combinational state update func-
tion. Although AEGIS uses eight AES rounds in its update
function, no pipelining registers are required. This is because
in contrast to AES, AEGIS processes a 256-bit input block in
parallel through the eight AES rounds. Neither of the two can-
didates requires a distinct key expansion, because they handle
the cipherkey as part of the state update function.

ICEPOLE: The round operation of ICEPOLE [82] has a rather short
combinational delay. Hence, it turned out that a single instance
of it in our hardware architecture is sufficient to achieve the
asymptotic throughput of 100Gbit/s. Therefore, our resulting
design mainly contains one ICEPOLE round, a couple of regis-
ters for the state and the I/Os, and some glue logic.

NORX: The core components of our NORX architecture are eight G
permutations, which make up one F function. Since NORX64-
4-1 is based on four F functions, four clock cycles are required to
process a complete 768-bit input block. Besides the G permuta-
tions, mainly the registers for the state and the I/Os add up to
the overall circuit complexity. Our architecture serves as the of-
ficial reference hardware design for the second round submission
of NORX and is available from [84].

Tiaoxin – 346: Similar to AEGIS, the update function of Tiaoxin –
346, denoted by Update, is based on several AES round func-
tion calls. For our architecture, we have implemented the state
update function fully combinational. One iteration of Update
requires six AES rounds. As the AES rounds are processed in
parallel, no pipelining registers are needed.

4.4 Results and Comparison
All circuit architectures have been developed in VHDL and have
been verified against their C reference implementations using Men-
tor Graphics’ Questa Sim 10.4c. Synthesis numbers are based on re-
sults from Design Compiler 2015.06 by Synopsys using a 65 nm CMOS

4.4. RESULTS AND COMPARISON 97

1 1.25 1.5 1.75 2 2.25

140

160

180

200

Clock Period [ns]

A
re

a
[k

G
E

]

GCM-AES-128 (Canright S-box)

GCM-AES-128 (LUT S-box)

faster

smaller

more A*t
efficient

A*t = constantAsympt.
100 Gbit/s

Goal

Figure 4.1: Required area of the final GCM-AES architectures for
different clock constraints (AT plot). Numbers are based on post-
synthesis results using a 65 nm standard cell library by UMC. The
vertical dashed lines indicate the asymptotic 100Gbit/s goal.

technology by UMC and a standard cell library from UMC under typ-
ical conditions. Area numbers are given in terms of gate equivalents
(GE), where one GE equals the size of a two-input NAND gate of the
standard cell library utilized (= 1.44 µm2).

We present our results in three different sections. First, we will
provide the results of our GCM-AES reference architecture. Next, our
CAESAR designs developed will be compared with each other and
with the GCM architecture for the data at rest use case. Eventually,
all designs will be analyzed for the data in motion scenario using
Ethernet as an example protocol.

4.4.1 GCM-AES Reference Architecture
Figure 4.1 shows an AT plot of our GCM-AES core based on synthesis
results. We provide numbers for two different types of the AES S-box.
First, we created the S-box using a straightforward constant array in
VHDL (further on denoted as LUT version). With this approach all
the effort for implementing the logic of the fully-combinational S-box
is shifted over to the synthesis tool. Second, we obtained results based
on the Canright [31] S-box, which uses subfields to implement the re-
quired GF(28) inversion and is known to have a better area/timing

98 CHAPTER 4. AEAD ARCHITECTURES

trade-off. While the composite-field S-box according to Canright re-
quires less area compared to the LUT implementation, it is a little bit
slower, which might increase the critical path of the AES-128 design
and thus, that of the overall GCM architecture undesirable.

As for the clock period, we consider two different points of interest
for our analysis:

1. On the one hand, we look at the clock period required to reach
the asymptotic throughput of 100Gbit/s. This point of interest
is further on referred to as the 100Gbit/s performance.

2. On the other hand, since most of the designs can be clocked
faster than what is required for a throughput of 100Gbit/s, we
also look at the absolute maximum clock period. Results given
for this point of interest will be denoted by maximum throughput
performance.

Remark 4.1 (Maximum throughput performance). The results for
the asymptotic 100Gbit/s performance represent the actual goal we
had in mind during the development of our architectures. The max-
imum performance variants have been obtained by imposing different
timing constraints during the synthesis process, the Register-Transfer
Level (RTL) code remained the same.

We mainly provide the numbers for the maximum throughput perfor-
mance because of two reasons. First, they might become of interest if
even higher throughputs than 100Gbit/s are demanded for the asymp-
totic use case. And second, by pushing the clock frequency towards
its maximum, we can achieve throughputs of 100Gbit/s and beyond
also for finite message lengths (as discussed in the following sections).

The AT plot in Figure 4.1 indicates that the 100Gbit/s architec-
ture of the Canright version of GCM-AES (the circular marker in
Figure 4.1 lying almost on the vertical dashed line) shows the best
results in terms of the AT product (indicated by the curved, dashed
lines, which mark a constant product).

Remark 4.2 (Backend design considerations). Note that tight syn-
thesis results such as those for the GCM-AES architecture based on
the Canright S-box might become problematic (or even impossible to

4.4. RESULTS AND COMPARISON 99

achieve) throughout an actual backend design run. However, since
our main goal in this work is a comparison based on synthesis results
and to compare the algorithms against each other, we believe these
numbers provide a reasonable basis for further investigations.

Basically, the LUT version of GCM-AES runs faster than its Can-
right counterpart (cf. Figure 4.1). However, it does not provide any
advantages in terms of throughput-per-area. Therefore, we have just
listed it in case throughput is of utmost importance for the target
application.

Table 4.1 summarizes our GCM-AES results and compares them
against previous work on high-speed ASIC architectures. The last
column, entitled fmax/f100 Ratio, indicates how much faster our ar-
chitecture can be clocked compared to the frequency required for the
100Gbit/s asymptotic throughput. As such, it can be seen as an
indicator of how well a resulting architecture meets its asymptotic
throughput requirement. From Table 4.1 it becomes obvious that
our GCM-AES architecture developed significantly outperforms pre-
vious designs.6 One of the reasons is that our design is not based
on multiple cipher and finite-field multiplier stages to reach a high
throughput, which contrasts with previous work. Instead, it merely
uses a single instance of each of them. Moreover, thanks to the fully-
combinational Galois field multiplier, no additional large registers are
needed for the authentication part of GCM. The majority of 128-bit-
wide registers are only needed for pipelining the AES-128 cipher, the
roundkey memory, and for registering inputs and outputs.

As a result, our GCM-AES architecture serves as a sophisticated
reference for the CAESAR candidate designs to be developed on the
one hand. On the other hand, it represents the most efficient high-
speed ASIC design in terms of throughput-per-are available to date.

4.4.2 Data at Rest
As for the data at rest use case, we investigate three different aspects
of our hardware architectures developed. First, we present a compar-

6Recall that it is not in our interest to compare results from distinct technolo-
gies, which is why we do not delve too deep into the comparison with related work
here.

100
C

H
A

PT
ER

4.
A

EA
D

A
R

C
H

IT
EC

T
U

R
ES

Table 4.1: Comparison of our synthesis results for the GCM-AES implementations targeting a 65 nm
ASIC technology with related work. Numbers of our architectures are given for both an asymptotic
throughput of 100Gbit/s and the absolute maximum achievable throughput.
Design Max. Throughput Performance† 100Gbit/s Performance fmax/

f100
Ratio

Techn. Size fmax Θ Efficiency Size f100 Θ Efficiency
[nm] [kGE] [MHz] [Gbit/s] [kbit/s/GE] [%]‡ [kGE] [MHz] [Gbit/s] [kbit/s/GE] [%]‡

Our Work
GCM (Canr.) 65 173.8 793.7 101.6 584.6 100 170.8 781.3 100.0 585.6 100 1.02
GCM (LUT) 65 211.2 885.0 113.3 536.3 92 191.9 781.3 100.0 521.1 89 1.13

Related Work
Yang et al. [119] 180 498.7 271.0 34.7 69.6 12 - - - - - -
Zhang et al. [120] 130 547.0 764.5 97.9 179.0 31 - - - - - -
Satoh et al. [103] 130 979.3 317.5 162.6 166.0 28 - - - - - -
Mozaffari-
Kermani et al. [83]§

65 630.0 613.0 25.1 31.1 5 - - - - - -

† The absolute maximum throughput, reached by pushing the clock frequency to its maximum.
‡ Relative efficiency in terms of throughput-per-area compared to the GCM-AES architecture (Canright S-box).
§ The most efficient architecture from [83] has been chosen. Numbers are given for n (number of input blocks) = 1. Note
that their throughput decreases with an increasing number of input blocks.

4.4. RESULTS AND COMPARISON 101

ison of the designs in terms of cycle count and latency. Second, we
use throughput-per-area as a metric to analyze the efficiency of our
architectures. Finally, we compare the performance of our designs,
considering throughput as a function of the message size.

Comparison in Terms of Cycle Count and Latency

The cycles required to process a certain data item, denoted by Γ, and
the latency L are two basic properties of a hardware architecture.
Most obviously, Γ needs to be small for high-speed designs. Although
L must not necessarily be small to reach high throughputs, we tried
to minimize it as far as possible. The main reason for this is that
with a small latency, the number of required pipelining registers in
the datapath can be minimized as well. As a result, the efficiency in
terms of throughput-per-area can be maximized. In our analysis, we
distinguish between the following types of Γ, referring to the number
of clock cycles required to process . . .

ΓK : . . . the cipherkey K.
ΓInit: . . . the public message number (i.e., IVs or nonces) and for

the initialization phase.
ΓA: . . . a block of associated data.
ΓM : . . . a block of message data (i.e., plaintext or ciphertext).
ΓFin: . . . the last input block and for the finalization phase. The

last input block can be a block of AD or message data,
or some other input required by the AEAD algorithm
(e.g., the lengths of A or M).

As for the latency of the architectures, we differ between the following
two values. Let LM denote the number of clock cycles from an input
block being entered into the AE architecture until the corresponding
result becomes available at the output [63]. Furthermore, let LT refer
to the number of clock cycles between accepting the last input block
and providing the authentication tag T . Table 4.2 lists the different
types of Γ and L for our architectures developed. Since we focused
on the asymptotic throughput, ΓK , ΓInit, and ΓFin play a minor role
for this phase of the analysis. However, we tried to minimize ΓA and
ΓM to reach the desired goal of 100Gbit/s.

102 CHAPTER 4. AEAD ARCHITECTURES

Table 4.2: Cycles per data item Γ and latency L for all data at rest
architectures developed as part of the CAESAR competition.

Design Blk.
Size

Cycles per Data Item Latency

ΓK ΓInit ΓA ΓM
† ΓF in LM LT

[bit] [cycle] [cycle] [cycle]

Reference Architecture
GCM-AES 128 11 11 1 1 1 2 2

CAESAR Candidates
AEGIS-128L 256 10 10 1 1 7 2 8
ICEPOLE 1024 12 12 6 6 12 8 14
MORUS-1280-128 256 16 16 1 1 8 2 9
NORX64-4-1 768 8 8 4 4 4 5 5
Tiaoxin – 346 256 15 15 1 1 20 2 21
† ΓM is usually the same for accepting data items at the input as for releasing
data items at the output.

The results from Table 4.2 indicate that all CAESAR candidates
investigated are based on larger block widths than GCM-AES. Espe-
cially the permutation-based competitors ICEPOLE and NORX op-
erate on much wider blocks, which allows them to process the data in
multiple clock cycles. A major disadvantage of all CAESAR designs
compared to the GCM reference architecture is the higher number of
clock cycles needed for the finalization (ΓFin). This becomes of par-
ticular interest when investigating the throughput for finite message
data lengths (i.e., when ΓInit and ΓFin will have a decisive impact to
the overall performance).

Throughput-per-Area Metric

We now provide results of our architectures in terms of throughput-
per-area based on synthesis numbers. Table 4.3 lists all designs, in-
cluding area and throughput figures for a 65 nm CMOS technology by
UMC. The efficiency is given as an absolute and as a relative value
compared against the GCM-AES reference architecture.7

7Note that Appendix 4.E provides synthesis results in the form of an AT plot
for every core component of each of the investigated candidates (i.e., update func-
tion, permutation, etc.) and the overall algorithm. These plots may serve as a

4.4.
R

ESU
LT

S
A

N
D

C
O

M
PA

R
ISO

N
103

Table 4.3: Synthesis results for the GCM-AES reference implementation and the CAESAR candidates
investigated. Numbers are given both for an architecture that achieves an asymptotic throughput of
100Gbit/s and for a second architecture that maximizes throughput. Data refers to a 65 nm ASIC
technology by UMC and a standard cell library by UMC under typical conditions.
Design Sec.

Lvl.§
Blk.
Size

Max. Throughput Performance† 100Gbit/s Performance fmax/
f100
Ratio

Area fmax Θ Efficiency Area f100 Efficiency
[bit] [bit] [kGE] [MHz] [Gbit/s] [kbit/s/GE] [%]‡ [kGE] [MHz] [kbit/s/GE] [%]‡

Reference Architecture
GCM 128 128 173.8 793.7 101.6 584.6 100 170.8 781.3 585.6 100 1.02

CAESAR Candidates
AEGIS128-L 128 256 107.6 724.6 185.5 1724.2 295 62.9 390.6 1589.2 271 1.88
ICEPOLE 128 1024 96.8 1351.4 230.6 2383.4 408 61.4 585.9 1627.6 278 2.31
MORUS-1280-128 128 256 51.4 1818.2 465.5 9052.6 1548 32.7 390.6 3058.2 522 4.65
NORX64-4-1 256 768 57.4 595.2 114.3 1992.0 341 45.2 520.8 2214.9 378 1.14
Tiaoxin – 346 128 256 104.2 598.8 153.3 1471.3 252 70.9 390.6 1410.4 241 1.53
† The absolute maximum throughput, reached by pushing the clock frequency to its maximum.
‡ Relative efficiency in terms of throughput-per-area compared to the GCM-AES architecture.
§ Note that security levels refer to confidentiality of the plaintext exclusively.

104 CHAPTER 4. AEAD ARCHITECTURES

From Table 4.3 it becomes apparent that all CAESAR algorithms
require significantly less area than GCM-AES to achieve the goal of
100Gbit/s. Consequently, the candidates are also way more efficient
in terms of throughput-per-area than the current de-facto standard.
They outperform GCM by a factor of 2.4 to 5.2.

The last column of Table 4.3 provides the ratio between fmax and
f100. Thus, it can be interpreted as a metric for how good the critical
path fits the clock period, needed to achieve the asymptotic through-
put of 100Gbit/s. It indicates that several candidate architectures
can be clocked much faster than what is needed for the asymptotic
goal. Therefore, it may seem appropriate to build alternative designs
based on multiple instances of the core components of the algorithms.
However, this would increase the circuit complexity required and, as a
result, would decrease the efficiency. Hence, such architecture trans-
formations are not considered in our work.

As for the maximum throughput performance, the efficiency of all
CAESAR candidates, except that of NORX, increases even further in
comparison to GCM-AES. MORUS should be particularly emphasized
here, as it achieves an efficiency 15 times better than that of GCM.
This is mainly due to its very simple state update function, which
allows clock frequencies of up to 1.8GHz.

Area and throughput trends: Figure 4.2 provides synthesis re-
sults near the architectures’ maximum frequencies for several clock
constraints and the resulting throughput and area numbers. It de-
picts the trend of the efficiency for all of our architectures developed.
The dashed lines indicate a constant efficiency and therefore, provide a
good overview about how the designs perform in terms of throughput-
per-area near their maximum operating frequencies. Figure 4.2 con-
firms our findings that most authors seem to have taken into consider-
ation throughput-per-area as a metric for optimizing their algorithms.
We identified three major reasons how the investigated CAESAR can-
didates achieved this performance gain compared to GCM:

1. Hardware-friendly round functions: Some candidates are
based on round functions as simple as a couple of logic gates.

starting point for deriving performance results for other architectures than the
ones presented herein.

4.4. RESULTS AND COMPARISON 105

2 ps/bit 4 ps/bit 6 ps/bit 8 ps/bit 10 ps/bit
500 Gbit/s 250 Gbit/s 167 Gbit/s 125 Gbit/s 100 Gbit/s

40

60

80

100

120

140

160

Time per bit [ps/bit]

A
re

a
[k

G
E

]

AEGIS-128L

GCM-AES-128

ICEPOLE

MORUS-1280-128

NORX64-4-1

Tiaoxin – 346

Throughput [Gbit/s]

1
5
0
0
 G

b
it/s/G

E

1000 G
bit/s/G
E

250 G
bit/s/G

E

125 Gbit/s/GE

faster

smaller

more
efficient

Figure 4.2: Synthesis results of all CAESAR candidate architectures
in terms of throughput and area occupation when operated near their
maximum clock frequencies.

Such highly hardware-friendly approaches allow to clock the ar-
chitectures at a very high rate (or compute multiple rounds in
a single clock cycle). Since simultaneously the circuit complex-
ity can be kept small, the resulting designs are quite efficient in
terms of throughput-per-area.

2. Avoid separate authentication components: GCM requires
two distinct constructs to provide the goal of authenticated en-
cryption (i.e., a block cipher and a Galois field multiplier). The
CAESAR candidates, however, avoid using separate components
for encryption and authentication. This is reflected in the circuit
complexity of the architectures developed.

3. Parallel round processing: Similar to GCM, some of the
candidates are based on full AES rounds. Though, they do not
iteratively process the input blocks through the AES rounds.
Instead, they handle them in parallel. Therefore, no pipelining

106 CHAPTER 4. AEAD ARCHITECTURES

103 104 105

Message Size [Bits]

20

40

60

80

100

120

T
h
ro

u
g
h
p
u
t

[G
b
p
s]

×109

100 Gbit/s

AEGIS-128L

GCM-AES

GCM-AES

NORX64-4-1

MORUS-128-128

ICEPOLE

Tiaoxin-346

Figure 4.3: Throughput results for different message sizes of the
100Gbit/s performance architectures.

registers are required, which would increase the circuit complex-
ity significantly.

Throughput as a Function of the Message Size

The numbers presented so far do not take into account the actual
length of the message to be encrypted, but assume very long input
data. For the 100Gbit/s asymptotic figures, theoretically an infinitely
long message is required to compensate the overhead, caused by ini-
tialization and finalization phases. Such assumptions are common in
related work when designing high-throughput hardware architectures.
Nevertheless, the reader should be aware that the targeted 100Gbit/s
throughput will practically never be reached when only looking at the
designs for f100. This is illustrated in Figure 4.3, showing the through-
put of the 100Gbit/s architectures as a function of the message size.
The throughput plotted in Figure 4.3 can be computed according to

Θ = |Message|
ΓMessage · tlp

,

where ΓMessage denotes the clock cycles required to process the whole
message and tlp the longest path of the architecture, respectively. As

4.4. RESULTS AND COMPARISON 107

103 104 105

Message Size [Bits]

100

50

20

300

200

T
h
ro

u
g
h
p
u
t

[G
b
p
s]

×109

100 Gbit/s

GCM-AES

GCM-AES

NORX64-4-1

AEGIS-128L

MORUS-128-128

ICEPOLE

Tiaoxin-346

Figure 4.4: Throughput results for different message sizes of the max-
imum throughput architectures.

opposed to the results presented in the previous section, the numbers
in Figure 4.3 now take into account the time required for initializa-
tion and finalization. As a result, the 100Gbit/s designs converge
against the target throughput, but will practically never reach it. Ob-
viously the designs with time-consuming initialization and finalization
phases (cf. Table 4.2) perform much worse when running with f100.
For instance, for a message length of 10 kbit, GCM-AES achieves a
throughput of 85Gbit/s. MORUS, however, barely passes 60Gbit/s.

On the other hand, when considering the maximum throughput at
fmax, those architectures that can be clocked much faster than what is
required for the asymptotic throughput goal, stand out significantly.
Figure 4.4 indicates that this especially applies to MORUS and ICE-
POLE. The former already achieves a throughput of 100Gbit/s for a
message size of approximately 180 bit.

4.4.3 Data in Motion

We now present how the CAESAR candidate architectures developed
perform when considering typical types of communication protocols.
On the lowest level, we investigate link encryption using Ethernet

108 CHAPTER 4. AEAD ARCHITECTURES

Ethernet
(MACsec)

Header:
16 bytes

Ethernet/
IPv4

Header:
36 bytes IP

v4

Ethernet/
IPv4/TCP

Header:
56 bytes IP

v4
T

C
P Header:

44 bytes IP
v4

U
D

P Ethernet/
IPv4/UDP

Payload: 46 - 1500 bytes

Payload: 26 - 1480 bytes

Payload: 6 - 1460 bytes Payload: 18 - 1472 bytes

Figure 4.5: Typical data sizes for different types of communication
protocols. The shaded parts represent the header, to be processed as
AD, while the payload is expected to be authenticated and encrypted.

with a frame format according to IEEE 802.1AE.8 Furthermore, we
provide results for IPv4 using both TCP and UDP as the transport-
layer protocol. Figure 4.5 shows how much associated data needs to
be authenticated for the different protocols and how much message
data is required to be authenticated and encrypted for typical frame
structures.

Payload Size of Interest

In order to determine what payload sizes should actually be consid-
ered for the data in motion analysis, we investigated typical packet
size distributions of various protocols. High-throughput hardware im-
plementations can often be found in data center communications as
required for enterprises dealing with a huge amount of data or univer-
sity campuses. As for the packet size, related work [98, 16, 15] indi-
cates that most of the layer-2 and layer-3 traffic shows a bimodal dis-
tribution. Also for more application-specific scenarios, such as video
streaming, this bimodal distribution is confirmed [5], although the two
peaks move further and further apart. We analyzed our AEAD archi-
tectures developed for the following packet size distributions (plotted
in Figure 4.6):

Ethernet: Compared to the other investigated packet size distribu-
tions, this distribution describes the overall packets sent via the

8For this section, we expect the reader to be familiar with the Ethernet basics
provided in Appendix 4.A.

4.4. RESULTS AND COMPARISON 109

Frame Size [bytes]

C
u
m

u
la

ti
v
e

D
is

tr
ib

u
ti
o
n

F
u
n
ct

io
n
 (

C
D

F
)

0
0 500 1000 1500

0.4

0.6

0.8

1

Ethernet

TCP

UDP

TCP with payload

Figure 4.6: Typical bimodal distribution of packet sizes for Ethernet,
TCP, and UDP communications between data centers. Source of the
plotted data is a university campus [15].

link layer. Since the only layer-2 protocol used in the traces cap-
tured is Ethernet, this is equal to the overall Ethernet traffic.

TCP: Only the TCP packets are considered for this type of packet
size distribution.

UDP: Although not as ubiquitous as TCP, we also present numbers
of a UDP-only packet size distribution.

TCP with payload: This distribution contains TCP packets with a
non-empty payload exclusively.

In addition to the packet size distributions provided in Figure 4.6, we
also include numbers for the following packet sizes in our analysis:

Maximum-size Ethernet frames: It is assumed that only maxi-
mum size Ethernet packets are transmitted (i.e., frames with a
payload of 1500 bytes).

Jumbo frames: Compensating the time-consuming initialization and
finalization phases of ciphers can naturally be done by increasing
the size of the actual payload. Hence, we also provide numbers
for the use case where maximum-size Jumbo frames (i.e., frames

110 CHAPTER 4. AEAD ARCHITECTURES

Ethernet Max. Ethernet
Frame Size

Jumbo
Frames

TCP TCP
(w/ Payload)

TCP
(w/o Payload)

UDP
0

20

40

60

80

100

T
h
ro

u
g
h
p
u
t

[G
b
it
/s

]

GCM-AES AEGIS-128L ICEPOLE MORUS-1280-128 NORX64-4-1 Tiaoxin – 346

Throughput Impact
Protocol/Cipher Overhead
AEAD Architecture

Figure 4.7: Throughputs for the hardware architectures developed of
the AE ciphers taking into consideration the header lengths and the
frame size distributions shown in Figure 4.5 and 4.6, respectively. The
given numbers apply for the asymptotic 100Gbit/s designs.

with a payload of 9000 bytes) are sent between the communicat-
ing parties exclusively.

TCP without payload: A huge amount of today’s communication
is due to very small packets without payload at all. Typical ex-
amples are acknowledgment (ACK) and synchronization (SYN)
as well as finish (FIN) frames. Therefore, we also consider TCP
packets with an empty payload in our analysis. Note that nei-
ther encrypting nor authenticating these small packets might be
reasonable if their confidentiality and integrity is of no impor-
tance.

100Gbit/s performance: We have analyzed the throughputs of
all hardware architectures developed for the previously presented frame
sizes. Figure 4.7 illustrates the numbers when running the designs
with f100. Basically, two different values can be obtained from it
for each of the candidate architectures and the GCM-AES reference
design. First, the throughput achieved by the actual cipher architec-
tures themselves. And second, the throughputs reached when con-
sidering the overall protocol (i.e., taking into account the additional
performance due to protocol and cipher overheads as discussed in

4.4. RESULTS AND COMPARISON 111

Appendix 4.B.2). The latter is represented by the dotted areas in
Figure 4.7.

The numbers confirm the results obtained in the last part of Sec-
tion 4.4.2. The CAESAR candidate architectures suffer from their
significantly longer initialization and finalization phases compared to
the GCM design. As a result, they perform worse than GCM-AES,
especially for typical Ethernet, TCP, and UDP communications, since
here also a lot of small frames are considered.

While the throughput converges against the 100Gbit/s threshold
for all of the algorithms when assuming Jumbo frames exclusively,
GCM-AES is the only AEAD architecture that achieves 50Gbit/s
with a typical bimodal Ethernet frame size distribution. In case of a
TCP communication without payload (TCP w/o Payload), MORUS
does not even reach a throughput of 10Gbit/s when looking at the
performance of the AEAD architecture only. However, as indicated by
Figure 4.B.2 in Appendix 4.B.2, the throughput roughly doubles for
such small Ethernet packets when taking into account the overhead
due to the protocol and the cipher. Recall that for the numbers pre-
sented, we assumed header data sizes (i.e., the associated data to be
processed by the ciphers) as given in Figure 4.5. The remaining data
within the Ethernet frames was expected to be payload data that
needs to be both authenticated and encrypted. Although the pro-
vided header sizes represent typical values for the respective protocol,
in practice they may diverge slightly depending on the application
being used.

Maximum throughput performance: The results for the algo-
rithms running at their absolute maximum frequencies (i.e., the max-
imum throughput performances) are given in Figure 4.8. We can see
that MORUS is the only cipher that actually reaches the 100Gbit/s
threshold for all frame sizes, except for the TCP packets without pay-
load. However, recall that this implies that the MORUS architecture
must be clocked with 1.8GHz, which is a rather optimistic goal when
actually taping-out the design for the 65 nm technology targeted.

The data in motion analysis has shown that the significantly higher
efficiency in terms of throughput-per-area of the CAESAR algorithms,

112 CHAPTER 4. AEAD ARCHITECTURES

Ethernet Max. Ethernet
Frame Size

Jumbo
Frames

TCP TCP
(w/ Payload)

TCP
(w/o Payload)

UDP
0

100

200

300

400

T
h
ro

u
g
h
p
u
t

[G
b
it
/s

]

GCM-AES AEGIS-128L ICEPOLE MORUS-1280-128 NORX64-4-1 Tiaoxin – 346

Throughput Impact
Protocol/Cipher Overhead
AEAD Architecture

Figure 4.8: Throughputs for the hardware architectures developed of
the AE ciphers taking into consideration the frame size distributions
shown in Figure 4.6 and header lengths as illustrated in Figure 4.5.
The given numbers apply for the maximum frequency designs.

observed during the data at rest evaluation, cannot directly be trans-
ferred to a real-world communication protocol such as Ethernet. Al-
though some candidates still outperform GCM when operated with
their maximum clock frequency, the factor of improvement is signifi-
cantly smaller compared to the throughput-per-area comparison.

4.5 Summary and Discussion
In this chapter we have compared five second-round candidates of the
CAESAR competition with a previously designed GCM-AES refer-
ence architecture. Our goal was to achieve an asymptotic throughput
of at least 100Gbit/s. The results from our analysis indicate that
all competitors investigated are significantly more efficient in terms of
throughput-per-area than GCM when looking at very long input mes-
sages. They outperform the current de-facto standard by a factor of
up to 15. This is mainly achieved because of much simpler algorithm
structures, which allow higher operating clock frequencies meanwhile
the circuit complexity remains comparatively low.

When considering finite message lengths, however, it turned out
that due to their long finalization phases, the advantages of the inves-

4.5. SUMMARY AND DISCUSSION 113

tigated CAESAR competitors decreases substantially. Some of them
even fall behind GCM-AES.

In general, we do not believe that any candidate architecture that
suffers from an internal feedback loop will ever significantly outper-
form counter-mode-based algorithms like GCM for short messages.
All of our CAESAR designs presented in this chapter suffer from this
drawback. For those of them, where the feedback loop is only present
in the initialization or finalization phase, fully unrolling all of the re-
quired iterations might be appropriate. It remains an open question
if this approach results in hardware architectures that are still com-
petitive with GCM in terms of throughput-per-area. We expect that
minor improvements by a factor of 2–5 will not convince industry to
immediately switch from a well established algorithm like GCM-AES
to any of the emerging newcomers.

114 CHAPTER 4. AEAD ARCHITECTURES

Chapter Appendix

4.A Ethernet Revisited

Since Ethernet [54] is used as an example protocol throughout Chap-
ter 4, we briefly recall the basics in this section. Encryption on layer 1
or 2 of the Open Systems Interconnect (OSI) model, usually referred
to as link encryption, is a prominent way to get around the often
complex protocols on the overlaying network layers.

Much like Fibre Channel (FC), Synchronous Optical Networking
(SONET), Synchronous Digital Hierarchy (SDH), and others, Eth-
ernet belongs to the fastest-growing communication protocols avail-
able today. With link speeds of 40Gbit/s and 100Gbit/s [56], it is
suitable for applications such as data-center connections and high-
bandwidth backup solutions. Mainly due to its relative efficiency and
economy, Ethernet is the predominant protocol on the market. There-
fore, AEAD algorithms, that want to play a major role in future mass
markets, must be suitable for encrypting sensitive Ethernet commu-
nications efficiently too.

Recall an Ethernet traffic as depicted in the top image of Fig-
ure 4.A.1. Besides the actual packet, an Ethernet communication
contains an Interpacket Gap (IPG) with a length of at least 12 bytes.
See the middle image of Figure 4.A.1 for the format of the Ether-
net packet, which consists of the actual frame, the preamble, and
the Start Frame Delimiter (SFD), often considered to be part of the
preamble. As can be observed from the bottom image of Figure 4.A.1,
we have omitted the optional Virtual Local Area Network (VLAN) tag
as defined in IEEE 802.1Q [57] for our investigations, since we solely
consider the simplest Ethernet frame possible.

115

116 CHAPTER 4. AEAD ARCHITECTURES

1

SF
D

1

SF
D

L
en

gt
h

/T
y
p
e

2

IP
G

≥ 12

46 – 1500

Payload

64 – 1518

Ethernet Frame

F
C
S

46

D
es

t.
A

d
d
r.

7

P
re

-
am

b
le

7

P
re

-
am

b
le

6
S
o
u
rc

e
A

d
d
r.

Ethernet Packet

72 – 1526

Ethernet Packet

72 – 1526

IP
G

≥ 12

IP
G

≥ 12

IP
G

≥ 12

IP
G

≥ 12

Figure 4.A.1: Top: Ethernet traffic including Interpacket Gap and
Ethernet packets; Middle: Ethernet packet format; Bottom: Ethernet
frame format; Both packet and frame formats are given according to
IEEE 802.3 [55] and sizes are provided in bytes.

4.A.1 IEEE 802.1AE or MACsec Standard

In order to compare the AEAD algorithms on the protocol level, we
followed the Ethernet frame format provided in IEEE 802.1AE [53],
also known as the MACsec standard. As illustrated in Figure 4.A.2,
MACsec extends the header of the original Ethernet frame with the
SecTAG field and adds the Integrity Check Value (ICV) between the
payload and the Frame Check Sequence (FCS). The SecTAG field con-
tains, among others, the Packet Number (PN) and the Secure Channel
Identifier (SCI). These two elements are of special interest when inves-
tigating AEAD algorithms since they contain the 96-bit IV required
for encrypting a frame using GCM. Moreover, the third byte of the
SecTAG element, hosting the TAG Control Information (TCI) and
the Association Number (AN), contains a bit denoted by E, indicat-
ing whether the payload should just be authenticated, or authenti-
cated and encrypted. Currently GCM-AES is the only cipher suite
defined in the MACsec standard, and hence used by default. There-
fore, Figure 4.A.2 also depicts how the IV and the authentication tag
for GCM are mapped into the Ethernet packet. For detailed informa-
tion about the frame formats, we refer the reader to IEEE 802.3 [55]
and IEEE 802.1AE [53].

4.B. ENVIRONMENTAL ASSUMPTIONS (EXTENDED) 117

6

S
o
u
rc

e
A

d
d
r.

[8]

SCI

4

PN

1

SL

1

T
C

I

A
N

2

M
A

C
se

c
E

th
er

ty
p
e

6

D
es

t.
A

d
d
r.

7

P
re

-
am

b
le

6

S
o
u
rc

e
A

d
d
r.

IP
G

≥ 12

S
D
F

1

F
C
S

4

SecTag

8 or 16

ICV

8 – 16
IP
G

≥ 12 7

P
re

-
am

b
le

S
D
F

1 6

D
es

t.
A

d
d
r.

ICV

8 – 16

F
C
S

446 – 1500

Payload

46 – 1500

Payload

POCOCDCOPDPO

IV

Authenticated

Encrypted Tag

PO ... Protocol Overhead

PD ... Protocol Data

CO ... Cipher Overhead

CD ... Cipher Data

Figure 4.A.2: Top: Format of an Ethernet packet according to
IEEE 802.1AE [53]; Bottom: Structure of the SecTAG element; Bold
numbers/strings indicate the sizes/properties used for GCM-AES (the
default cipher suite of IEEE 802.1AE).

4.B Environmental Assumptions (Extended
Discussion)

In Section 4.3.1 we only provide on overview about our environmen-
tal assumptions. Below we discuss two of them, namely the data
stream type and the available data size, more thoroughly. Because we
use Ethernet as an example protocol for the data in motion use case
throughout the remainder of this section, ensure you are familiar with
the Ethernet basics given in Appendix 4.A.

4.B.1 Data Stream Type
In contrast to single-PMN data streams, as investigated in this work,
for so-called multi-PMN streams the throughput can be increased just
by adding multiple instances of the respective design. The difference
between the two types is illustrated in Figure 4.B.1. Examples for
multi-PMN applications include client/server systems, where a server
has to process multiple client streams. Related work often suggests
that the approach of multi-PMNs is a straightforward way to achieve
the desired throughput for a cryptographic algorithm. The effort re-

118 CHAPTER 4. AEAD ARCHITECTURES

100 Gbit/s
Single-PMN

StreamAEAD
Algorithm

AEAD
Algorithm

100 Gbit/s
Multi-PMN

Sream

AEAD
Algorithm

Stream
Aggregator

Stream
Splitter

100 Gbit/s
Multi-PMN

Sream

100 Gbit/s
Single-PMN

Stream

Figure 4.B.1: Single- (left) vs. multi-PMN (right) stream applications

alizing the entities denoted Stream Splitter and Stream Aggregator
in Figure 4.B.1 should not be underestimated however. Especially
synchronization of the different data streams and their merging can
become challenging.

4.B.2 Data Size Availability
We distinguish between two use cases that differ in the available data
size. First, we look at what we call the data at rest scenario, sometimes
also referred to as local or storage encryption to design our 100Gbit/s
architectures. We then use the developed designs to provide results
on how these architectures perform under different data in motion use
cases based on Ethernet.

Data at Rest

In this scenario, usually large amounts of data are available at one
location (i.e., the size of the AD and message data is expected to be
huge). Thus, the processing time for initialization with the PMN as
well as finalization (to generate the authentication tag), becomes neg-
ligible compared to the actual data processing time (i.e., it is similar
to the previously mentioned asymptotic use case scenario).

Observation 4.1 (Practicability of data at rest). Although many
references on hardware architectures for AEAD algorithms assume a
data at rest scenario, not many real-world applications exist.

As a consequence, data at rest may serve as an initial benchmark.
However, without determining the frequency of cipherkey and PMN
changes and the size of AD and message data, it becomes difficult to
create sound comparison results.

4.B. ENVIRONMENTAL ASSUMPTIONS (EXTENDED) 119

Data in Motion

As a second use case, we investigate the performance of various hard-
ware designs of the AEAD algorithms under the data in motion sce-
nario, using Ethernet as an example. We assume a frame format as
discussed in Section 4.A.1. A few more assumptions have been made:

Assumption 4.1 (Single-type payload). For our Ethernet investi-
gations, we only consider situations where the payload is either just
authenticated or authenticated and encrypted, but do not consider any
split versions as specified in the current MACsec standard [53]9.

Based on the frame format according to IEEE 801.AE and As-
sumption 4.1, we can conclude that there are a minimum of 16 bytes
of associated data stemming from the Ethernet header that need to be
authenticated for every frame. Data within the payload of the frame
can either just be authenticated (if the bit E in the header is equal
to zero) or authenticated and encrypted (E = 1).

Assumption 4.2 (Fixed PMN length). The current MACsec frame
format does not provide any elements for PMNs larger than 96 bits.
Therefore, we assume all of the AEAD algorithms to make use of a 96-
bit PMN for our analysis. Although many of the CAESAR candidates
specify a 128-bit PMN for the primarily recommended cipher versions,
only such an assumption allows a sound comparison. Because a 96-bit
PMN might be concatenated with a 32-bit counter value in order to
reach the recommended 128 bits, also this assumption should not pose
a significant restriction at all.

As a result, the Ethernet frame format given in Figure 4.A.2 is
used as a basis for computing the required throughput for all AEAD
designs for the data in motion use case.

Protocol throughput: The overall throughput figure of an Ether-
net connection includes the actual data to be encrypted by the AEAD

9The current MACsec standard allows cipher suites to specify a so-called con-
fidentiality offset, which declares up to the first 50 bytes of the payload of an
Ethernet frame to be only authenticated and the remaining payload to be authen-
ticated and encrypted.

120 CHAPTER 4. AEAD ARCHITECTURES

algorithms as well as the PMNs transferred. Moreover, the Ethernet
header (to be treated as associated data by the ciphers) and the pro-
tocol overhead must be taken into consideration. Therefore, we dis-
tinguish between the following four different types of data (cf. bottom
image of Figure 4.A.2):

Protocol Overhead (PO): The overhead due to Ethernet, which
must not be processed by the ciphers at all, but contributes to
the overall protocol throughput.

Cipher Overhead (CO): In contrast to the PO, the cipher over-
head is needed by the AEAD candidates and includes PMNs
and authentication tags.

Protocol Data (PD): Parts of the Ethernet header (i.e., source and
destination address and several header bytes) have to be authen-
ticated for every frame. We refer to these bytes as Protocol Data.

Cipher Data (CD): The actual payload, which needs to be handled
by the AE algorithm is denoted as Cipher Data.

With these four data types, the throughput for a communication based
on MACsec frames can be computed according to

Θ = |PO|+ |CO|
ΓFrame · tlp︸ ︷︷ ︸

Must not be processed
by the AEAD algorithm

+ |PD|+ |CD|
ΓFrame · tlp︸ ︷︷ ︸

A and M to be processed
by the AEAD algorithm

, (4.1)

where ΓFrame and tlp denote the number of clock cycles required to
process the corresponding Ethernet frame and the longest path in the
hardware architecture investigated, respectively. ΓFrame, on the other
hand, can be determined using

ΓFrame = ΓInit +
⌈
|A|
BWA

⌉
· ΓA +

⌈
|M |
BWM

⌉
· ΓM + ΓFin , (4.2)

where ΓA and ΓM represent the number of clock cycles required
to process a block of associated and message data, respectively. BWx

denotes the number of bits that can be processed simultaneously by
a cipher architecture for input data type x. The value ΓInit refers

4.B. ENVIRONMENTAL ASSUMPTIONS (EXTENDED) 121

Cipher Data (Payload) Size [bytes]
10246 9000103Im

p
ac

t
on

 T
h
ro

u
gh

p
u
t

[%
]

0

20

40

60

80

100

Protocol/Cipher Overhead

Protocol Data (Ethernet Header)

Cipher Data (Ethernet Payload)

Figure 4.B.2: Impact of the different Ethernet communication parts
on the actual throughput as a function of the frame payload size,
assuming a frame format according to Figure 4.A.2.

to the number of clock cycles required for initialization, such as pro-
cessing the PMN.10 Eventually, ΓFin represents the number of clock
cycles required for finalization, usually needed for AEAD algorithms
to generate the authentication tag.

Payload size impact: One might suppose that the larger the pay-
load of an Ethernet frame becomes, the larger the achievable over-
all throughput becomes. Although this assumption can be consid-
ered correct with regard to the AEAD cipher architecture, it is often
neglected that the throughput for protocols gets determined by the
overall data being transmitted. Figure 4.B.2 illustrates the impact
of the protocol and cipher overhead to the overall throughput com-
pared to the actual cipher data. Especially for small payload sizes,
such as 46 bytes, the throughput roughly doubles due to the over-
head, which sums up to 52 bytes for an Ethernet frame as depicted
in Figure 4.A.2. As payload size increases, the impact of the AEAD
architecture outweighs that of the protocol/cipher overhead and the
overall performance gets largely determined by the throughput of the
cipher engine.

10Recall that we ignore the number of clock cycles required to process the ci-
pherkey as we assume key exchanges take place infrequently and, thus, can be
neglected.

122 CHAPTER 4. AEAD ARCHITECTURES

fmax [Hz]108 109
fmax [Hz]108 109

fmax [Hz]108 109

×10
9

T
h
ro

u
gh

p
u
t

Θ
 [
b
it
/s

]

0

20

40

60

80

100

×10
9

T
h
ro

u
gh

p
u
t

Θ
 [
b
it
/s

]
0

20

40

60

80

100

×10
9

T
h
ro

u
gh

p
u
t

Θ
 [
b
it
/s

]

0

20

40

60

80

100

46 bytes Payload 1500 bytes Payload 9000 bytes Payload

BW=64
BW=128
BW=256
BW=512
BW=1024

Figure 4.B.3: Throughput as a function of the maximum clock fre-
quency for Ethernet using a MACsec frame format. The given num-
bers assume an AEAD architecture with ΓInit = ΓA = ΓM = ΓFin =
1 cycle. Results are plotted for different block widths (BW) and Eth-
ernet payload sizes; Left: Payload = 46 bytes; Center: Payload =
1500 bytes; Right: Payload = 9000 bytes

Observation 4.2. Although a hardware architecture for an AEAD
algorithm may not reach the 100Gbit/s for very small input sizes by
itself, when put into a protocol like Ethernet, it may reach the desired
throughput of the communication due to the protocol/cipher overhead.
However, the larger the payload becomes, the higher the impact of the
actual cipher architecture becomes and hence, predominantly deter-
mines the overall throughput.

Required clock frequency: Based on equation (4.1) and (4.2),
we can roughly identify the properties of the hardware architectures
(i.e., the block width, the operating clock frequency as well as the
different Γs) required to reach the target throughput of 100Gbit/s.
From Figure 4.B.3 we can see that the impact of the protocol/cipher
overhead leads to a throughput that does not scale proportionally
with increasing block widths for small frame payloads such as 46 bytes.
For larger payloads like 1500 bytes (center image) or Jumbo frames of
length 9000 bytes (right image), it is mainly the AEAD architecture
that determines the overall throughput.

Figure 4.B.3 also indicates that for an architecture with ΓInit =
ΓA = ΓM = ΓFin = 1 cycle and a block width of 64 bits, a clock

4.C. AXI4-STREAM ARCHITECTURE INTERFACE 123

Table 4.C.1: AXI4-Stream Protocol signals description

Signal Width Description

TValid 1 Valid signal, indicating valid data on TData
TReady 1 Ready signal, indicating readiness for data
TUser 16 Data-describing control signal
TData 128–1024 Actual data signal

frequency of above 1GHz would be required to pass the 100Gbit/s
goal. The reader should be aware that achieving such timings for a
cryptographic algorithm on the 65 nm technology targeted is rather
optimistic. Comparing the center and right image of Figure 4.B.3 with
the left plot indicates that for larger frames, faster clock frequencies
are needed to reach the threshold of 100Gbit/s. This is because the
protocol overhead no longer substantially impacts the actual cipher
performance. It is important to keep in mind that the picture signif-
icantly changes for small payload sizes when hardware architectures
are considered with higher ΓInit, ΓFin, or ΓA/M .

4.C AXI4-Stream Architecture Interface

As mentioned in Section 4.3.2, all AEAD architectures communicate
with their environments via the AXI4-Stream Protocol. Data widths
of the algorithms range from 128 bits to 1024 bits. The type of data
provided to the candidate designs via the TData signal can be iden-
tified using the 16 control bits of the TUser signal. All input data,
including cipherkeys, associated data, plaintexts/ciphertexts, public
message numbers, and data lengths (where required) must be pro-
vided via the input AXI protocols from the source. The resulting
ciphertexts/plaintexts and the corresponding authentication tag are
made available via the output AXI interface to the destination. Ta-
ble 4.C.1 contains a detailed description of the I/O signals of the AXI
interface utilized. The only properties of the interface that change
from algorithm to algorithm, are the width of the TData signal and
the meaning of the TUser signal to the candidate architecture.

124 CHAPTER 4. AEAD ARCHITECTURES

GF(2128)
Mult.

GF(2128)
Mult.

GF(2128)
Mult.

GF(2128)
Mult.

GF(2128)
Mult.

K

IV

AES-128AES-128 AES-128

IV ||031||1 incr() incr()

P

A

|A| || |P |

MSBt() T

C

AES-128

0

128

128

96

128

MSB|Pβ−1|()

|Pβ−1|

|Aα−1|

pad pad

Figure 4.D.1: Simplified encryption process of GCM using AES-128
as the underlying block cipher and a 96 bit-wide IV.

4.D Our AEAD Architectures
In this section, we provide a short description of each of the investi-
gated AEAD algorithms. Moreover, we present simplified block dia-
grams, depicting the structure of our 100Gbit/s architectures.

4.D.1 GCM-AES Reference Architecture

GCM [45] uses a block cipher with an input width of 128 bits to pro-
vide confidentiality and assures integrity with the use of a universal
hash function, called GHASH [45], based on a 128 bit Galois field mul-
tiplication. Figure 4.D.1 illustrates the encryption process of GCM
using AES-128 as the underlying block cipher.11 The inputs to the
block cipher are counter values and thus, can be precomputed in-
dependently of the presence of the actual input data to be encrypt-
ed/authenticated. Therefore, the number of cipher and finite-field
multiplier blocks, necessary to reach the target throughput, is mainly

11In the remainder of this section, GCM-AES always refers to GCM using the
128-bit version of AES if not stated otherwise.

4.D. OUR AEAD ARCHITECTURES 125

limited by the input block width and the speed of the Galois field
multiplier chain.

The Advanced Encryption Standard (AES)

AES is a well-established block cipher standardized by NIST [94] and
other institutions. The algorithm operates on data blocks of 128 bit
and supports three different cipherkey sizes, namely 128 bit, 192 bit,
and 256 bit. Our investigations exclusively deal with the 128 bit ver-
sion, hereafter referred to as AES-128 or simply AES. More details
about the other cipher versions as well as an in-depth explanation of
the algorithm can be obtained from [94].

Cipher Operations AES-128 comprises ten rounds, each operat-
ing on a 128-bit internal state S that can be represented as a 4 × 4
matrix of bytes. Si,j denotes the byte of row i and column j with
i, j ∈ {0, . . . , 3}. The state matrix gets initialized with the input data
(one plaintext block). Each cipher round is made up of four differ-
ent transformations, called SubBytes, ShiftRows, MixColumns, and
AddRoundKey. The only difference between the ten rounds are the
so-called roundkeys used for the AddRoundKey transformation (cf.
Figure 4.D.2). Moreover, the MixColumns transformation is omitted
in the final round. Prior to the ten rounds, an initial AddRoundKey
transformation is executed. The four operations of the cipher round
are defined as follows:

SubBytes: SubBytes performs a byte-wise substitution of the state
using a substitution box (S-box). For the actual values of the
S-box, we refer the reader to [94].

ShiftRows: Each byte of a row of the state is cyclically shifted to
the left by the index of the row (zero-based). Therefore, the first
row does not change, the bytes of the second row are rotated
one byte to the left, and so on.

MixColumns: This operation can be understood as a column-by-
column multiplication modulo x4 + 1 in the finite field GF(28),
looking at the columns of the state as polynomials of the Galois

126 CHAPTER 4. AEAD ARCHITECTURES

R
o
u
n
d
K

e
y

2
–
1
0

Plaintext Block Cipherkey

Last
RoundKey

9
R

o
u
n
d
s

Ciphertext Block

SubBytes

ShiftRows

MixColumns

AddRoundKey

AddRoundKey

SubBytes

ShiftRows

AddRoundKey

K
ey

E
x
p
a
n
si

o
n

Figure 4.D.2: AES-128 en-
cryption with the initial Ad-
dRoundKey, the 9 intermedi-
ate rounds, and the slightly
different final round.

K
ey

E
x
p
.

R
o
u
n
d

K
ey

E
x
p
.

R
o
u
n
d

k12

k13

k14

k15k11

k10

k9

k8k4

k5

k6

k7k3

k2

k1

k0

1st Roundkey
= Cipherkey

2nd Roundkey

SW

RW

w4 w7w5w5 w43

Last
Roundkey

w42w41w40

SW

RW

Rcon

Figure 4.D.3: AES-128 key expan-
sion; ki denote the bytes of the key, wj
the words of the computed roundkeys,
and RW and SW the RotWord and
SubWord operations, respectively.

field. Additional information about MixColumns is available
from the official standard [94].

AddRoundKey: The AddRoundKey function is a bitwise XOR op-
eration of the state bits and the bits of the current roundkey.

Key Expansion Since AES-128 consists of ten cipher rounds and
an initial AddRoundKey transformation, it requires 11 roundkeys. All
128-bit wide roundkeys are derived from the main cipherkey using a
Key Expansion. Expanding the cipherkey to the roundkeys works in
a column-by-column approach, where the first four columns represent
the original cipherkey. Each of the first four columns contains four
bytes of the cipherkey and the remaining columns are derived as shown
in Figure 4.D.3. The RotWord and the SubWord operations of the key
expansion are defined as follows:

4.D. OUR AEAD ARCHITECTURES 127

K
ey

 E
x
p
.
R

o
u
n
d

AES-128

with

Key Exp.

AES-128 Round 9

Counter

T
D

at
aS

rc

T
D

at
aD

st

C
ip

h
er

k
ey

SubMatrix

ShiftRows

AES-128 Round 1

RK0

AES-128 with Key Exp.

RK1

Cipherkey

R
o
u
n
d
k
ey

s

Key Expansion

1
4
0
8

Cipherkey

RK9

RK10

incr()

0

0

AES-128 Round 2

RK1

RK2

K
ey

 E
x
p
an

si
o
n

Clk

Rst

T
U

se
rS

rc

C
tr

l.
 I

n
p
u
t

D
ec

o
d
er

TValidSrc
TReadySrc

T
ag

Galois Field

Multiplier

RK2

RK0

RK3

RK4

RK5

RK6

RK7

RK8

RK9

RK10

RW

SW

0 Contr.

FSM

Dst
TUser

Dst
TReady

Dst
TValid

IV
Encr.

Subkey
Hash

In
te

rf
ac

e

Figure 4.D.4: Left: GCM design based on one AES-128 core and
one bit-parallel finite-field multiplier; Middle: Fully unrolled AES-128
architecture; Right: AES-128 key expansion; Bold bars indicate 128-
bit registers; RW = RotWord operation, SW = SubWord operation;

RotWord: The RotWord function takes one column of the expanded
key and performs a circular shift (rotation) of the bytes such that
[ki, ki+1, ki+2, ki+3] becomes [ki+1, ki+2, ki+3, ki].

SubWord: All four bytes of a column get substituted using the same
S-box as utilized throughout the cipher rounds.

Rcon denotes the round constants required for the key expansion.
They differ from one round to another and can be obtained from [94].

Our 100Gbit/s Data at Rest Architecture

It is well known from related work that high-throughput GCM-AES
designs are usually based on multiple stages of AES and finite-field
multiplier cores. For our reference architecture, it turned out that
thanks to the 65 nm CMOS technology utilized, we were able to reach
the asymptotic 100Gbit/s goal with a single stage. The newly devel-
oped architecture is illustrated in Figure 4.D.4. It basically contains
two main components. First, a fully unrolled AES-128 cipher core,

128 CHAPTER 4. AEAD ARCHITECTURES

pipelined after each round. The AES core also hosts the key ex-
pansion, including registers to store all the roundkeys. Due to our
assumption that key exchanges take place infrequently, we iteratively
reuse the logic for deriving one roundkey from another.12 The sec-
ond main component of the GCM design is a fully combinational,
bit-parallel finite-field multiplier, required to compute the authenti-
cation tag. The controlling of the architecture is accomplished with
Finite-State Machines (FSMs) located at the top level of the design.
They control both the actual datapath and the communication with
the design’s environment using the AXI4-Stream interfaces. All other
control signals, for instance, the enable signals for the cipher state and
roundkey registers, are generated with the use of simple shift registers.

We investigated the proposed GCM-AES architecture using two
different AES S-boxes to reduce the required area as far as possible.
First, we created the S-box using a straightforward constant array in
VHDL (further on denoted as LUT version). With this approach all
the effort for implementing the logic of the fully-combinational S-box
is shifted over to the synthesis tool. Second, we obtained results based
on the Canright [31] S-box, which uses subfields to implement the re-
quired GF(28) inversion and is known to have the best area/timing
trade-off from literature. While the composite-field S-box according
to Canright requires less area compared to the LUT implementation,
it is a little bit slower, which might increase the critical path of the
AES-128 design and thus, that of the overall GCM architecture unde-
sirable. As can be observed from the AT plot of AES in Figure 4.D.5,
both the LUT-based version as well as the Canright S-box reach the
asymptotic throughput of 100Gbit/s. However, while the Canright
design hardly achieves the targeted performance, the LUT-based ver-
sion can be clocked even faster.

The AT plot in Figure 4.D.6 indicates that the bit-parallel Ga-
lois field multiplier is expected not to be part of the critical path of
the resulting GCM architecture. Related work [103, 39, 83] often sug-
gested to use different types of finite-field multipliers to reduce the
required area stemming from the GHASH part of GCM, including
Karatsuba-Ofman [64] multipliers. Such changes may improve the ef-

12For applications with very frequent key changes, a key expansion design with
multiple Key Exp. Round entities should be considered.

4.D. OUR AEAD ARCHITECTURES 129

10.5 1.5 2

80

100

120

140

160

Clock Period [ns]

A
re

a
[k

G
E

]

A*t = constant
Asympt.

100 Gbit/s
Goal

AES-128 (Canright S-box)

AES-128 (LUT S-box)

Figure 4.D.5: AT plot of the
fully-unrolled AES-128 design for
both the LUT and the Canright
S-box based on synthesis results
for the 65 nm target ASIC tech-
nology.

0.70.6 0.8 0.9 1

51

53

55

57

59

61

Clock Period [ns]

A
re

a
[k

G
E

]

A
*t =

 constant

faster

smaller

more A*t
efficient

Bit-parallel GF(2128)
multiplier

Figure 4.D.6: Synthesis re-
sults of the fully-combinational,
bit-parallel finite-field multiplier
in GF(2128), required for the
GHASH of GCM.

ficiency in terms of throughput-per-area a little bit. However, for our
investigations we kept the bit-parallel multiplier as its critical path
lies significantly below that of the AES core. This gives us more free-
dom with regard to the timing for the logic on the top level of the
GCM architecture. Furthermore, by choosing a different GF(2128)
multiplier type, the latency may increase and hence, also the overall
GCM-AES latency would increase unnecessarily. The additional Tag
register in Figure 4.D.4 enables us to support processing of incom-
ing header data even if the previous authentication tag has not yet
been obtained by the destination from the TDataDst memory. If this
feature is not required, the 128 bit Tag register can be removed.

4.D.2 AEGIS and MORUS
The basic structure of AEGIS [117, 118] and MORUS [116] is quite
similar, which is why we discuss them together in the following. They
mainly differ in the state update function utilized and in the number
of rounds applied in the initialization and finalization phases.

Three different versions of AEGIS were proposed by their authors
in the specification document, namely AEGIS-128L, AEGIS-128, and
AEGIS-256. The former of these represents the primary recommenda-

130 CHAPTER 4. AEAD ARCHITECTURES

S
ta

te
 U

p
d

at
e

S
ta

te
 U

p
d

at
e

S
ta

te
 U

p
d

at
e

S
ta

te
 U

p
d

at
e

S
ta

te
 U

p
d

at
e

S
ta

te
 U

p
d

at
e

10 / 16

K

IV

A 256

≤256

P

Process PlaintextProcess ADInit

|A| |P|

T

Finalization

C

7 / 8
1024 256

1280

2
5

6

<<< 64

<<< 128

<<< 192

<<< 128

<<< 64

A
X

R

A
X

R

A
X

R

A
X

R

A
X

R

AES R.

AES R.

AES R.

AES R.

AES R.

AES R.

AES R.

AES R.

MORUS State UpdateAEGIS State
Update

256
≤256

||

Figure 4.D.7: Left: General overview of the encryption process of both
AEGIS-128L and MORUS-1280-128; Center: State update function
of AEGIS-128L; Right: State update function of MORUS-1280-128

tion and is the only version of AEGIS considered for our investigations.
The left image of Figure 4.D.7 gives an overview of the encryption
process of both AEGIS and MORUS. It basically operates on a 1024-
bit-wide state. The update function consists of eight AES rounds as
depicted in the center image of Figure 4.D.7. Throughout each state
update, AEGIS-128L processes 256 bit of associated or message data.
Initialization and finalization require ten and seven iterations of the
state update, respectively. The structure of AEGIS indicates that it
aims at platforms, providing fast implementations of the AES round.
Especially with hardware accelerations like the recent AES New In-
struction Set (AES-NI) [50], high-performance software realizations of
AEGIS are easily possible.

Compared to AEGIS, MORUS aims at achieving high performance
on devices supporting AVX instructions as well as on custom hard-
ware. Similarly to AEGIS, its major internal component is a state-
update function, consisting of very simple logic operations (see right
image of Figure 4.D.7), which gets applied several times on the state.
The primary recommendation of MORUS—referred to as MORUS-
1280-128—operates on a 1280-bit state, takes a 128-bit cipherkey,
and processes 256 bit of AD or message data in each update step. In
contrast to AD and message processing, where only a single call to

4.D. OUR AEAD ARCHITECTURES 131

State Update

1024

256

Data Input Data Output

Figure 4.D.8: Simplified
overview of the AEGIS-128L
hardware architecture.

State Update

1280

256

Data Input Data Output

Figure 4.D.9: Simplified
overview of the MORUS-1280-
128 hardware architecture.

the update function is required, initialization and finalization need 16
and eight calls, respectively.

Our 100Gbit/s Data at Rest Architectures

The architectures developed for both AEGIS and MORUS are based
on a fully combinational update function and the controlling is ac-
complished using FSMs. In contrast to AES, which sequentially pro-
cesses the incoming data through several rounds, AEGIS-128L ab-
sorbs 256 bit of data by processing them through eight AES rounds in
parallel. Hence, in our AEGIS hardware architecture, illustrated in
Figure 4.D.8, there is no need for pipelining within the state update
function in order to achieve the asymptotic throughput of 100Gbit/s.
Moreover, the key expansion can be omitted since the cipherkey is
already processed throughout the initialization phase (see left image
of Figure 4.D.7). Thanks to the omission of the roundkey genera-
tion, the resulting area of the AEGIS architecture mainly boils down
to the actual state update function and a couple of logic gates and
registers around it. The AES round, used for AEGIS-128L, is equal
to the one we presented in Section 4.D.1 for the GCM-AES reference
architecture (i.e., a fully unrolled one based on the Canright S-box).

Similarly to the AEGIS-128L design, we developed a MORUS-
1280-128 architecture with a single update function (see Figure 4.D.9).
Due to the very hardware-friendly design of the update function of
MORUS, the resulting design can be clocked at a high rate. We
refer to Figure 4.E.3 in Appendix 4.E for an AT plot of the state
update function only. A side effect of the simple state update of

132 CHAPTER 4. AEAD ARCHITECTURES

r

c
1024

256

A0 A
α−1

P0 C0 P
β−1

C
β−1

T

12801280

Key || Nonce

In
it
.

C
o
n
s
t
a
n
t
s

12 or 6

128 1024 ≤1024 1024 ≤1024

µ π ψ κρ

SMN

P
6

P
6

P
6

P
6

P
1
2

P
1
2

R R R

Figure 4.D.10: Simplified encryption process of ICEPOLE (padding
is omitted due to simplicity reasons)

MORUS is that the surrounding glue logic (required to realize the
overall algorithm functionality) as well as the registers need way more
area compared to the update operation logic itself.

Note that input as well as output registers can be omitted for
both the AEGIS-128L and MORUS-1280-128 architecture, in case I/O
timings are considered uncritical. However, the critical path running
through a complete state update function would then include the I/Os
of the architecture.

4.D.3 ICEPOLE
Several of the CAESAR candidates are permutation-based algorithms,
one of which is ICEPOLE [82]. We solely focus on the primarily rec-
ommended version of it, which is further on referred to as ICEPOLE.
It follows the monkeyDuplex approach [27] with an internal state size
of 1280 bit, which is organized as a 4 × 5 × 64 bit array. ICEPOLE
uses a 1026-bit-wide rate r, two bits of which just serve to pad each
input block, and a 254-bit capacity c. The core element of the algo-
rithm is the permutation P , an iterated version of the round function
R. While for initialization and finalization 12 R rounds are used, de-
noted by P12, only six rounds are needed during the other iterations.
Figure 4.D.10 provides a simplified overview of the encryption process
of ICEPOLE. The actual round function consists of five core opera-

4.D. OUR AEAD ARCHITECTURES 133

1024

1024
25

6

1024

1280
1280

1026

1024254

128

12
80

Inp.
Data

D
at

a
O

ut
p.

1024

In
iti

al
C

on
st

an
ts

ICEPOLE
Round

Zero Exp.

Trunc.

Pad

Figure 4.D.11: Simplified top-level architecture of the single-round-
function-based ICEPOLE design (omitting controlling logic).

tions (µ, ρ, π, ψ, and κ). For a detailed description of these functions
and the overall algorithm we refer the reader to [82].

Our 100Gbit/s Data at Rest Architecture

We evaluated various hardware architectures for ICEPOLE [9], using
different numbers of rounds implemented in hardware. Thanks to
the very fast round operation, it turned out that a single instance in
hardware is enough to reach the asymptotic throughput of 100Gbit/s.
Figure 4.D.11 shows the top-level design of the resulting, single-round
based architecture. Note that due to our assumption about small
I/O delays, we had to insert another output register to reduce the
state-to-output timing. Although the output path would not have
run through the ICEPOLE round otherwise, it would have reached
almost the same length as the clock period. The reason for this is
because the propagation delay of the Trunc entity is rather complex.
That unit is responsible for truncating the 1024-bit-wide rate to the
expected output length on the byte level. The actual ICEPOLE round
is a completely combinational implementation and the whole design
is controlled using FSMs.

4.D.4 NORX
NORX [10] is a permutation-based candidate, also following the mon-
keyDuplex approach [27]. Although a dedicated version for high-per-
formance applications of the algorithm has been proposed, we solely

134 CHAPTER 4. AEAD ARCHITECTURES

0

0

r

c

<<

>>>

256
∧

256

768

K, P,

0x01

A0

0x01 0x02

A
α−1

P0 C0 P
β−1

C
β−1

T

0x02 0x08

25610241024

Alg. Parameter

F
l

F
l

F
l

F
l

F
l

F
l

F
l

F F F F F

G

G

G

G

G

G

G

G

G

Figure 4.D.12: Simplified encryption process of NORX64-4-1.

considered NORX64-4-1 (further on referred to as NORX), as this
is the primary recommendation of the authors. It operates on a
b = 1024-bit-wide state, made up of a 4 × 4 array of 64-bit words.
The 768-bit-wide rate r is used to absorb the incoming data by XOR-
ing it. The remaining 256 bit of the state represent the capacity c,
which is responsible for the actual security level of the algorithm.
Figure 4.D.12 illustrates the encryption process of NORX, omitting
the part for processing potential trailer data (i.e., AD after the plain-
text/ciphertext) as this was not part of the CAESAR requirements.
NORX64-4-1 performs four round transformations, denoted by Fl.
The core component of the F function is the G permutation, which
in turn consists of a couple of logic operations such as XOR, AND,
and several shift and rotate operations. The hexadecimal numbers
shown in Figure 4.D.12 represent the domain separation constants,
which determine the type of the next incoming data. Detailed infor-
mation about NORX can be obtained from its CAESAR submission
document [10].

Our 100Gbit/s Data at Rest Architecture

For the 100Gbit/s NORX architecture, we make use of eight instances
of the G permutation, thereby implementing one full round of the F
function within one clock cycle. Figure 4.D.13 shows a simplified block
diagram of the top-level design of the NORX architecture developed.

4.D. OUR AEAD ARCHITECTURES 135

0

Init

5

0
1
2
4
8

7
6
8

1024

251

768

1024

DomainConstant

State

256

Controlling FSM

M
st

T
D

at
a

MstTValid

MstTReady

MstTUser

Contr. Input Decoder

SlaveTReady
SlaveTValid

>>> r0

>>> r1

>>> r2

>>> r3

<< 1∧

G

H

TData
Slave

Rst
Clk

TUser
Slave 7

AbsorbC

1024

G

G

G

G G

G

G

G

H

H

H

H

Figure 4.D.13: Left: Top-level design of the 100Gbit/s NORX archi-
tecture based on eight G functions; Right: Structure of the G function;

The main components besides the logic for the G operations are the
FSMs, responsible for controlling the datapath and the interfaces,
state and I/O registers, some glue logic, and the AbsorbC entity. The
latter is required to absorb the ciphertext during decryption mode into
the state. The NORX design presented is a byte-oriented architecture,
which is why 7 bits are required to determine how many of the 96
input bytes should actually be used for the new rate and how many
will be kept from the previous state (i.e., the architecture supports full
as well as non-full blocks down to the byte level). The Init module
computes the initial state based on the 256-bit cipherkey and the 128-
bit nonce. Note that, in general, the greater part adding up to the
critical path stems from the two successive G functions (highlighted
using the dashed red line in Figure 4.D.13). However, due to the high
frequency required to achieve the 100Gbit/s, also the glue logic (incl.
the AbsorbC function) significantly contributes to the critical path.

4.D.5 Tiaoxin – 346
Like many other CAESAR candidates, Tiaoxin – 346 [91] is based on
the AES round. Its core component is an update function, further

136 CHAPTER 4. AEAD ARCHITECTURES

U
p
d
a
te

U
p
d
a
te

U
p
d
a
te

U
p
d
a
te

U
p
d
a
te

U
p
d
a
te

U
p
d
a
te

In
it

ia
l

S
ta

te
15

256 ≤256 256 ≤256

C
o
m

p
.
O

u
tp

C
o
m

p
.
O

u
tp

256

|AD| |P|||
P
AD

Z1 Z1Z0

20

C

T

Init Process AD Process Plaintext

KNonce

Finalization

1664

M0
M1
M2

State

State

A0

AZ
M0

A0

AZ
M1

A0

AZ
M2

1664

T4T3 T6

Z0 Z0Z1

Update

Figure 4.D.14: Top: Encryption process of Tiaoxin – 346. Bottom:
Internals of the state-update function; A0 and AZ denote a keyless
and a keyed AES round using Z0 as the roundkey.

on denoted by Update, which operates on a 1664-bit-wide state. An
overview of the encryption process of Tiaoxin – 346 is illustrated in
the top image of Figure 4.D.14. Associated and message data are
processed in blocks of 256 bit. Moreover, the required AES round calls
are executed in parallel (see bottom image of Figure 4.D.14). While
only a single call to the Update function is specified for each 256-bit
block of incoming data, initialization and finalization need 15 and 20
calls, respectively. Just before the computation of the authentication
tag, Tiaoxin – 346 processes the lengths of the AD and message data
in an additional Update call.

Internally, the state gets split into three different parts, referred to
as T3, T4, and T6, each of which consists of three, four, and six 128-bit
words. Within Update, the AES round is, on the one hand, used with
a zero roundkey (i.e., a keyless instance of the AES round) and, on
the other hand, utilized with Z0 as the roundkey. Z0 and Z1 are two
constants from SHA-512 [95], being used throughout the algorithm.

4.E. CAESAR CANDIDATES SYNTHESIS RESULTS 137

Update
1664 1664

256

Initial
State

Comp. Outp.
1152

Comp. Tag

D
at

a
O

u
tp

u
t

D
at

a
In

p
u
t

256

256

128

Figure 4.D.15: Simplified top-level datapath of the 100Gbit/s data
at rest Tiaoxin – 346 architecture (control logic and decryption paths
are omitted due to readability).

Our 100Gbit/s Data at Rest Architecture

Figure 4.D.15 shows a simplified version of the top-level architecture
of the developed Tiaoxin – 346 design. In general, it consists of a
fully-unrolled Update operation and a 1664-bit state register. The
update function uses six parallel AES rounds based on Canright S-
boxes to process the 256 bit of incoming data. Also the cipherkey and
the required nonce are processed via the same data input. Both input
as well as output registers are needed to minimize I/O timings. The
AES round function employed is basically the same as the one for the
GCM-AES reference architecture with the exception that the inputs
for the roundkeys are tied to a constant value and thus, the overall
AES round operation becomes simpler.

4.E Synthesis Results of CAESAR Can-
didates

Basically all of the CAESAR candidates investigated in this chap-
ter share the property that their algorithmic structure is based on
one or multiple core components. Examples thereof are permuta-
tions, state update functions, partial or even complete block ciphers
like AES. These components usually get iteratively reused to create
the complete AE primitive. As a result, once the technology-specific
properties of them are known (i.e., maximum clock frequency and the
corresponding area required), performance estimates for diverse ar-

138 CHAPTER 4. AEAD ARCHITECTURES

1.5 2 2.5

40

50

60

70

tlp [ns]

A
re

a
[k

G
E

]

A
*t =

 constant

AEGIS-128L State
Update Function

Figure 4.E.1: AEGIS-128L
state update function

1.5 2 2.5 3

60

70

80

90

100

110

Clock Period [ns]

A
re

a
[k

G
E

]

AEGIS-128L

A
*t =

 constant

Figure 4.E.2: AEGIS-128L

0.4 0.5 0.6 0.7

10

12

14

16

tlp [ns]

A
re

a
[k

G
E

]

MORUS-1280-128 State
Update Function

A
*t = constant

Figure 4.E.3: MORUS-1280-128
state update function

0.6 0.8 1 1.2

35

40

45

50

Clock Period [ns]

A
re

a
[k

G
E

]

MORUS-1280-128

A
*t =

 constant

Figure 4.E.4: MORUS-1280-128

chitectures can be derived. Therefore, Figure 4.E.1 to Figure 4.E.10
provide AT plots of these components together with the AT plots of
the resulting, completely verified CAESAR candidates. The numbers
are based on synthesis results for the 65 nm ASIC technology targeted,
using standard cells by UMC under typical case conditions.

4.E. CAESAR CANDIDATES SYNTHESIS RESULTS 139

0.75 1 1.25

2

3

4

5

6

tlp [ns]

A
re

a
[k

G
E

]

NORX G Function

A*t = constant

Figure 4.E.5: NORX G function

2 2.5 3

35

40

45

50

55

60

Clock Period [ns]

A
re

a
[k

G
E

]

NORX (8 G Functions)

A

*t = constant

Figure 4.E.6: NORX

0.5 0.6 0.7

16

18

20

22

24

26

tlp [ns]

A
re

a
[k

G
E

]

ICEPOLE
P Permutation

A*t = constant

Figure 4.E.7: ICEPOLE P per-
mutation

0.8 1 1.2 1.4 1.6 1.8

65

75

85

95

Clock Period [ns]

A
re

a
[k

G
E

]
ICEPOLE
(1 P Permutation)

A
*t =

 constant

Figure 4.E.8: ICEPOLE

1.2 1.4 1.6 1.8

36

42

48

54

60

tlp [ns]

A
re

a
[k

G
E

]

Tiaoxin – 346
State Update

A*t = constant

Figure 4.E.9: Tiaoxin – 346
Update operation

2 2.5 3 3.5

70

80

90

100

Clock Period [ns]

A
re

a
[k

G
E

]

Tiaoxin – 346

A
*t =

 constant

Figure 4.E.10: Tiaoxin – 346

140 CHAPTER 4. AEAD ARCHITECTURES

5
Conclusions and Future Directions

To satisfy ambitious market requirements of symmetric encryption
devices in terms of throughput and energy efficiency, enterprises com-
monly rely on hardware-based solutions. As the development and fab-
rication of these systems is a complex process, several weaknesses ex-
ist during the life cycle of a VLSI-based device. Attackers can exploit
these vulnerabilities to weaken the device’s security and the confidence
of their users. We addressed some of these risks and performance as-
pects as part of this thesis and conclude our results by answering the
research questions stated in Section 1.3 as follows:

How dangerous are hardware Trojans for VLSI-based devices
and how practical are they?

Hardware Trojans for both ASICs and FPGAs are and will remain a
hot research topic. Our contributions to this field are threefold:

Trojan insertion: We have demonstrated that it is indeed possible
to design a small and effective ASIC Trojan with little or no pre-

141

142 CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS

vious knowledge about the inner functioning of the target circuit.
Interfaces are especially vulnerable parts of an ASIC, since stan-
dardized protocols are usually implemented here, which allow a
potential attacker to more easily implant a Trojan. With neither
insider knowledge about the target design nor time-consuming
reverse engineering techniques, attackers need to keep alter-
ations as simple as possible. Our Denial-of-Service (DoS) Trojan
was inserted at the layout level, just prior to the actual fabrica-
tion stage using only physical layout modifications. Such changes
are rather risky for the adversary, as he may easily destroy the
original design. Nevertheless, we managed to do it just within
a couple of working days. We expect that more sophisticated
Trojan variants are unlikely to be inserted during the fabrica-
tion step into the layout, because significantly more knowledge
about the target design would be needed.
Furthermore, we used the open source RapidSmith tools to insert
a Trojan into a placed-and-routed FPGA configuration, target-
ing a Xilinx Virtex-II device. This approach provides an easy
way to implant malicious circuitry into an existing bitstream
without reverse engineering any vendor-specific file formats.

Trojan detection: Compared to related work, we actually fabricated
both genuine as well as Trojan-infected ASIC samples of a tar-
get design and conducted side-channel analyses exclusively from
measurement data. Although the implanted DoS Trojan oc-
cupied a mere 0.5% of the total area of the original design,
we were able to detect it reliably using the power side chan-
nel. In contrast to related experimental work [70], we have con-
firmed that Principal Component Analysis (PCA), proposed by
Agrawal et al. [6], works properly for Trojan detection in physi-
cal circuits. Information obtained from three dimensions or less
allowed us to identify the three malicious circuits out of a bunch
of eight Circuits Under Test (CUTs).
While power was used to detect the ASIC Trojans, we employed
Electromagnetic Radiation (EM) to identify malicious FPGA
configurations. All six different Trojans were detected on the
target FPGA albeit only 0.7% of the original design are occupied
by Trojan logic.

143

Trojan localization: Although we were able to distinguish among
genuine and malicious FPGA configurations, we originally aimed
at localizing the Trojan resources in the device. Unfortunately,
we fell short of pinpointing the exact location as EM signatures
were not in line with the actual Trojan locations. However, we
expect that with a more sensitive near-field EM probe, our re-
sults can be improved towards an actual Trojan localization.
Interestingly, recently Balasch et al. [11] also used an EM side-
channel fingerprinting technique to detect and localize hardware
Trojans on an FPGA. They utilized the SASEBO-G board as
well and inserted their hardware Trojans after placement and
routing of the target design, similar to our approach presented
herein. Thanks to a more sophisticated measurement setup, the
authors of [11] were able to coarsely locate the Trojan circuits,
which confirms our expectations expressed in [106].

In-house configuration of FPGAs lures a large part of customers
into believing that it is much safer from a security point of view com-
pared to the mostly unprotected ASIC fabrication process. This is
partially true and confirmed by new approaches to ASIC manufac-
turing, such as split-fabrication [59, 60], where wafer processing is dis-
tributed across two foundries. First, the lower levels of the fabrication
are outsourced to sophisticated but untrusted fabs. This includes all
diffusion layers and, possibly, a subset of the metal layers of a CMOS
technology. The upper metals are then added by a trusted foundry,
completing the functionality of the design. Hence, split-fabrication
can be understood as an approach to achieve what is inherent to the
FPGA development process. Nevertheless, FPGAs suffer from other
vulnerabilities due to their reconfigurability that need to be addressed.

Future directions. Our ASIC Trojan analysis comprises only a
very small population of chips, which renders general statements diffi-
cult. An in-depth study with a larger volume would make the results
significantly more meaningful. In addition to that, follow-up investi-
gations must aim at closer collaboration with foundries. This ensures
sound contributions regarding which deviations are due to process
variations and which are actually due to Trojan influences. Moreover,
applying an enhanced version of our EM-based localization approach

144 CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS

to ASIC Trojans and comparing the results with those from FPGA
analyses would be interesting.

Are state-of-the-art DPA countermeasures of embedded de-
vices ready to withstand sophisticated attack scenarios, and
what is the price we have to pay for them?

To answer this question, we presented Zorro, an ASIC designed and
manufactured exclusively to serve as an assessment platform for DPA
countermeasures. To be best of our knowledge, it is the first chip actu-
ally taped-out that hosts a Keccak-based Authenticated Encryption
(AE) scheme (SpongeWrap) and allows to enable and disable dif-
ferent masking and hiding countermeasures at will. As DPA usually
becomes a huge problem in pervasive applications such as the Internet
of Things (IoT), we aimed at low resource consumption during the de-
velopment of Zorro. Our chip hosts three independent architectures,
which exclusively differ in the masking scheme utilized. The smallest
design on Zorro uses three shares for the masking and requires ap-
proximately 14 kGE including Design for Testability (DFT) circuitries
such as Built-In Self-Tests (BISTs) and scan Flip-Flops (FFs).

Using Correlation Power Analysis (CPA) and Pearson’s correlation
coefficient as a distinguisher, our experimental results mostly confirm
what is known from theory regarding hiding countermeasures and the
effort required to detect a significant correlation peak between cor-
rect and false key guesses. The only exception was that with hiding
countermeasures enabled, the correct key hypothesis showed some-
what higher correlations than what is known from theory. Thus, less
power traces were needed to mount a successful attack. Side-Channel
Analysis (SCA) attacks based on measurements of the chip indicated
that when operating in the unprotected mode of the designs, less than
100 power traces are sufficient to reveal the secret key using standard
CPA. As a weak point we targeted the initial θ operation of the Kec-
cak-f permutation. Our target of withstanding DPA attacks with up
to 100 000 power traces was neither achieved with hiding nor masking
countermeasures alone. Even the investigated masking scheme indi-
cated significant correlation peaks for the correct key guess with just
70 000 acquired traces. Although the strength of the countermeasures
heavily depend on the investigated algorithm and its implementation,

145

our results indicate that with hiding or masking alone it is unlikely to
thwart attacks from sophisticated adversaries.

Future directions. Our practical experiments with Zorro con-
stitute initial findings. The ASIC offers several further possibilities
to be analyzed as part of future work. An obvious next step would
be a comparison between the Masked Mode (MM) and the Secure
Masked Mode (SMM). Furthermore, based on an adequate approach
to attack the non-linear χ operation of Keccak, the three different
masking schemes on Zorro should be studied.

Can future AE algorithms keep up with today’s standards in
terms of their hardware efficiency from a VLSI perspective?

We provided the first extensive comparison of CAESAR candidates
and a GCM-AES reference architecture for an ASIC technology. More
specifically, we targeted the field of high-throughput ASIC designs
and compared five second-round algorithms against a Galois/Counter
Mode of Operation (GCM) design. A 65 nm CMOS technology by
United Microelectronics Corporation (UMC) was used as the target
technology and two different use cases were considered with regard to
the available input data size:

Data at rest: As a first step, hardware architectures for the
GCM-AES reference design and each of the CAESAR candidates in-
vestigated were developed, targeting an asymptotic throughput of
100Gbit/s. While keeping the throughput goal in mind, we tried
to minimize the required silicon area for the ASIC designs as far as
possible. Area occupation as a primary metric for comparing the al-
gorithms was considered here.

As a second indicator for the performance of the CAESAR can-
didates, the efficiency in terms of throughput-per-area was used. It
turned out that all AE algorithms investigated outperform GCM-AES
by a factor of approximately 2 to 5. When pushing the operating
frequencies of the architectures to their absolute maximum and con-
sidering throughput-per-area as the comparison metric, MORUS is
even about 15 times as efficient as GCM. Hence, we conclude that the

146 CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS

authors of the CAESAR candidates have taken into consideration the
asymptotic use case during the design of their algorithms, as all of
them require significantly less silicon area to achieve the throughput
goal of 100Gbit/s. The simpler design of the ciphers allow straight-
forward architectures running at high clock frequencies. Moreover,
due to the absence of complex building blocks (like the Galois field
multiplier required for GCM), the silicon area required can be kept
significantly lower compared to GCM.

Data in motion: Assuming very long input messages, as done
for the asymptotic throughput goal of the data at rest scenario, is a
rather strong assumption. Moreover, there are not many real-world
applications for which this assumption actually holds. Hence, in a
second step, we utilized Ethernet, TCP, and UDP communications to
assess the performance of the architectures developed. We considered
typical packet size distributions for each of the protocols and took into
account the overhead stemming from protocol and cipher data to com-
pute the throughput for the data in motion scenario. Since most of
the candidates spend much more time on initialization and finalization
than GCM-AES, their performance drops significantly compared to the
data at rest scenario. However, as most of the CAESAR algorithm
architectures developed can be operated at higher frequencies than
required for the asymptotic 100Gbit/s threshold, yet higher through-
puts than with GCM can be achieved. MORUS even exceeds a value
of 400Gbit/s when only transmitting Jumbo frames, but needs to be
clocked with a rather high clock frequency of 1.8GHz.

Comparing cryptographic algorithms in terms of their hardware
performance, as targeted for the decision of the second round of the
CAESAR competition, is a much trickier task than comparing soft-
ware implementations. We recommend to:

• First, specify the actual field of application (for instance, low-
resource vs. high-performance) and security requirements (like
side-channel resistance or expected security level) of the archi-
tectures to be developed.

147

• Second, additional specifications such as the frequency of key
changes, the available input data size, or architectural-specific
demands (I/O interface, timings, etc.) must be set.

• Eventually, an adequate metric for assessing the performance of
the competitors has to be determined.

Just comparing the efficiency in terms of throughput-per-area can eas-
ily result in misleading analyses as discussed in this thesis. A more
practical and sound approach would be to specify the actual proto-
cols (incl. the target throughput) for which the algorithms should
be investigated. As for the CAESAR competition, we suggest to
determine two different scenarios, one for low-resource and one for
high-speed applications. For the former, any protocol, typically used
in resource-constrained environments (e.g., RFID or smart card sys-
tems), can be adopted. For the latter, a similar approach as presented
in Chapter 4.4.3 might be appropriate (i.e., Ethernet for throughputs
of 100Gbit/s).

Future directions. The results presented herein comprise one spe-
cific scenario, namely the high-speed use case under the asymptotic
throughput assumption. Based on this, several topics for future work
come into mind. First, as mentioned above, an analysis of candi-
date architectures developed from scratch for a dedicated communi-
cation protocol would be interesting. Second, similar to the integra-
tion of the AES-NI instruction set into Intel CPUs, it is quite possible
that a permutation will be adopted by processor design houses in the
near future. Therefore, an evaluation taking into account just the
permutation-based candidates should provide valuable contributions
regarding which competitor should be favored.

148 CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS

A
Cryptographic ASICs

Throughout this thesis, a number of cryptographic Application-Specific
Integrated Circuits (ASICs) have been developed. The following list
summarizes the most relevant ones together with a brief description
and their key properties. Additional information about the chips can
be obtained from http://asic.ethz.ch/cg/.

149

http://asic.ethz.ch/cg/

150 APPENDIX A. CRYPTOGRAPHIC ASICS

A.1 Chameleon/Chipit

Key Properties
Tapeout Year 2012
Involved Students Markus Pelnar, Philipp Dunst
Technology UMC, 180 nm
Package QFN56
Dimensions 1525 µm× 1525 µm
Core Area 40 kGE
Max. Frequency 125MHz

Chameleon hosts three independent architectures. First, an AES
implementation [94], targeting applications in the field of resource-
constrained environments. Therefore, its main design goal was to
keep the silicon area as small as possible. Second, it contains an
iterative version of the cryptographic hash function Grøstl [46], which
was one of the finalists of the SHA-3 hash competition [93] organized
by NIST. And third, an architecture called GrÆstl, which combines
both AES and Grøstl in a single optimized datapath. While Chipit
contains the same circuitry from a functional point of view, we added
a DoS hardware Trojan to it, which can be triggered externally.

A.2. ZORRO 151

A.2 Zorro

Key Properties
Tapeout Year 2014
Involved Students Philipp Dunst
Technology UMC, 180 nm
Package QFN56
Dimensions 1525 µm× 1525 µm
Core Area 50 kGE
Max. Frequency 200MHz

Zorro was designed to serve as an evaluation platform for Differ-
ential Power Analysis (DPA) countermeasures. Therefore, it contains
three independent Authenticated Encryption (AE) primitives based
on the Keccak-f permutation, each equipped with hiding and mask-
ing countermeasures. Since hardware architectures, vulnerable to
Side-Channel Analysis (SCA) attacks, are usually found in pervasive
environments such as Internet of Things (IoT) or Radio-Frequency
Identification (RFID) applications, the main design goal was to keep
the area requirements of the designs as small as possible. The three
designs only differ with regard to the applied masking scheme and all
countermeasures can be enabled/disabled at will.

152 APPENDIX A. CRYPTOGRAPHIC ASICS

A.3 MLC:TiM

Key Properties
Tapeout Year 2015
Involved Students Marco Eppenberger, Stefan Mach, Cyril

Arnould
Technology UMC, 65 nm
Package QFN56
Dimensions 2626 µm× 1252 µm
Core Area 1.1MGE
Max. Frequency 405MHz

In order to evaluate candidates of the CAESAR competition to-
wards their suitability for high-throughput hardware implementations,
MLC:TiM contains five competitors and a GCM-AES reference ar-
chitecture. Their main design goal was to achieve a throughput of
100Gbit/s on the smallest possible area. All architectures on the chip
run independently from each other and can be fed with data from an
on-chip RAM or an LFSR generating pseudo-random data sets. The
common top-level design implements a serial-to-parallel interface at
the input respectively a parallel-to-serial protocol at the output due
to the pin constraints of the ASIC. Because of its rather complex orig-
inal name My Little Crypto: Throughput is Magic (MLC:TiM), the
chip got renamed to Pony relatively quickly for its daily usage.

A.4. ZWEIFEL 153

A.4 Zweifel

Key Properties
Tapeout Year 2016
Involved Students Philippe Degen, Moritz Schneider, Patrick Os-

chatz, Stefan Rietmann
Technology UMC, 65 nm
Package QFN56
Dimensions 2626 µm× 1252 µm
Core Area 1MGE
Max. Frequency 710MHz†

† As of this writing, the chips have not yet returned from fabrication.
Hence, these values are the expected numbers obtained from post-
layout simulations.

As a follow-up project to MLC:TiM, a second ASIC was initiated
to add further CAESAR candidates to the high-throughput analy-
sis. It was called Zweifel and hosts the Authenticated Encryption
(AE) schemes Ascon, Joltik, Minalpher, and SCREAM. Similar to
MLC:TiM, the main design goal for the architectures was to achieve
a throughput of 100Gbit/s, targeting the above mentioned 65 nm
CMOS technology by UMC. Again a common top-level design was
used to feed to competitors with input data, this time with a slightly
more sophisticated Built-In Self-Test (BIST) to functionally verify the
cryptographic primitives directly on-chip.

Acronyms

AD Associated Data
AE Authenticated Encryption
AEAD Authenticated Encryption with Associated Data
AES Advanced Encryption Standard
AES-NI AES New Instruction Set
AMBA Advanced Microcontroller Bus Architecture
AN Association Number
APB Advanced Peripheral Bus
API Application Programming Interface
ASIC Application-Specific Integrated Circuit
ATPG Automated Test Pattern Generation
AXI Advanced eXtensible Interface Bus

BC Block Cipher
BIL Bitfile Interpretation Library
BIST Built-In Self-Test
BRAM Block RAM

CAESAR Competition for Authenticated Encryption: Security, Ap-
plicability, and Robustness

CBC Cipher Block Chaining
CD Cipher Data
CLB Configurable Logic Block
CMOS Complementary Metal-Oxide-Semiconductor
CO Cipher Overhead
COTS Commercial Off-The-Shelf
CPA Correlation Power Analysis
CRC Cyclic Redundancy Check

155

156 Acronyms

CUT Circuit Under Test

DCM Digital Clock Manager
DFT Design for Testability
DoM Difference of Means
DoS Denial-of-Service
DPA Differential Power Analysis
DRP Dual-Rail Precharge
DSP Digital Signal Processing
DUT Device Under Test

EAL Evaluation Assurance Level
EDA Electronic Design Automation
EM Electromagnetic Radiation

FC Fibre Channel
FCS Frame Check Sequence
FF Flip-Flop
FIFO First In, First Out
FPGA Field-Programmable Gate Array
FSM Finite-State Machine

GCM Galois/Counter Mode of Operation
GDSII Graphic Database System II
GE Gate Equivalent
GPU Graphics Processing Unit

HDL Hardware Description Language
HM Hiding Mode

IBM International Business Machines Corporation
IC Integrated Circuit
ICT Information and Communications Technology
ICV Integrity Check Value
IEEE Institute of Electrical and Electronics Engineers
IIS Integrated Systems Laboratory
IISSI Integrated Systems Laboratory (IIS) Silicium Integritas
IoT Internet of Things

Acronyms 157

IP Intellectual Property
IP Internet Protocol
IPG Interpacket Gap
IV Initialization Vector

JTAG Joint Test Action Group

KL Karhunen-Loève

LAN Local Area Network
LED Light-Emitting Diode
LFSR Linear Feedback Shift Register
LSB Least Significant Bit
LUT Lookup Table

MAC Message Authentication Code
MAC Media Access Control
MM Masked Mode

NCD Netlist Circuit Description
NIST National Institute of Standards and Technology
NM Normal Mode

OSI Open Systems Interconnect

PC Personal Computer
PCA Principal Component Analysis
PCB Printed Circuit Board
PD Protocol Data
PMN Public Message Number
PN Packet Number
PO Protocol Overhead
PRNG Pseudorandom Number Generator

RAM Random-Access Memory
RFID Radio-Frequency Identification
RTL Register-Transfer Level

158 Acronyms

SABL Sense Amplifier Based Logic
SCA Side-Channel Analysis
SCI Secure Channel Identifier
SDH Synchronous Digital Hierarchy
SFD Start Frame Delimiter
SMM Secure Masked Mode
SMN Secure Message Number
SNR Signal-to-Noise Ratio
SONET Synchronous Optical Networking
SPA Simple Power Analysis
SVM Support Vector Machine

TCI TAG Control Information
TCP Transmission Control Protocol
TI Threshold Implementation
TPM Trusted Platform Module
TSMC Taiwan Semiconductor Manufacturing Company

UART Universal Asynchronous Receiver/Transmitter
UDP User Datagram Protocol
UMC United Microelectronics Corporation
USB Universal Serial Bus

VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit
VLAN Virtual Local Area Network
VLSI Very Large Scale Integration

WDDL Wave Dynamic Differential Logic

XDL Xilinx Design Language

Symbols

b State size of the Keccak-f permutation
c Capacity of the Keccak-f permutation
l Length of Associated Data (AD) in bits
m Length of the message in bits, i.e., m = |P | = |C|
r Rate of the Keccak-f permutation
t Length of the authentication tag in bits (usually 128 bits)
ti Number of time instances due to randomizing countermeasures

A Associated Data (AD)
Ai i-th block of AD; i ∈ {0 . . . α− 1}
A∗ Padded AD to reach a multiple of the desired block length
C Ciphertext data to be checked for integrity and to be decrypted
Cj j-th block of ciphertext; j ∈ {0 . . . β − 1}
C∗ Padded ciphertext to reach a multiple of the desired block

length
IV Initialization vector
K Cipherkey
M Message data (may refer to plaintext or ciphertext)
P Plaintext data to be authenticated and encrypted
Pj j-th block of plaintext; j ∈ {0 . . . β − 1}
P ∗ Padded plaintext to reach a multiple of the desired block length
PMN Public message number
Sinit Initial value of the Keccak-f state

159

160 Symbols

Sz Slice number z of the Keccak-f state
T Authentication tag

α Number of AD blocks to be authenticated
β Number of plaintext respectively ciphertext blocks
τ Number of authentication tag blocks

Γ· Number of clock cycles required for a hardware architecture to
process data item ·

ρc Correlation coefficient of the correct key guess
Θ The throughput of a hardware architecture

Operators

0x Bit-vector with x zeros
1x Bit-vector with x ones
·||· Concatenation
⊕ Bitwise Exclusive-or (XOR)
· Bitwise negation (NOT)
∨ Bitwise OR
∧ Bitwise AND
| · | Length of · in bits

161

162 Operators

Bibliography

[1] CAESAR: Competition for Authenticated Encryption: Security,
Applicability, and Robustness. [Online]. Available: http:
//competitions.cr.yp.to/caesar.html

[2] Implementation notes: amd64, titan0, crypto_aead.
[Online]. Available: http://bench.cr.yp.to/web-impl/
amd64-titan0-crypto_aead.html

[3] J. Aarestad, D. Acharyya, R. Rad, and J. Plusquellic, “Detect-
ing Trojans Through Leakage Current Analysis Using Multiple
Supply Pad IDDQs,” IEEE Transactions on Information Foren-
sics and Security, vol. 5, no. 4, pp. 893–904, Dec 2010.

[4] F. Abed, S. Fluhrer, J. Foley, C. Forler, E. List, S. Lucks,
D. McGrew, and J. Wenzel. (2015, Aug.) The POET Family
of On-Line Authenticated Encryption Schemes. [Online].
Available: http://competitions.cr.yp.to/round2/poetv20.pdf

[5] V. K. Adhikari, S. Jain, and Z.-L. Zhang, “YouTube Traffic Dy-
namics and Its Interplay with a Tier-1 ISP: An ISP Perspective,”
in Proc. of IMC’10, 2010, pp. 431–443.

[6] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and
B. Sunar, “Trojan Detection using IC Fingerprinting,” in Proc.
of Security and Privacy, 2007, pp. 296–310.

[7] E. Andreeva, B. Bilgin, A. Bogdanov, A. Luykx, F. Mendel,
B. Mennink, N. Mouha, Q. Wang, and K. Yasuda.
(2014, Sep.) PRIMATEs v1.02. [Online]. Available: http:
//competitions.cr.yp.to/round2/primatesv102.pdf

163

http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/caesar.html
http://bench.cr.yp.to/web-impl/amd64-titan0-crypto_aead.html
http://bench.cr.yp.to/web-impl/amd64-titan0-crypto_aead.html
http://competitions.cr.yp.to/round2/poetv20.pdf
http://competitions.cr.yp.to/round2/primatesv102.pdf
http://competitions.cr.yp.to/round2/primatesv102.pdf

164 BIBLIOGRAPHY

[8] ARM, “AMBA 4 AXI4-Stream Protocol,” ARM, 2010, version:
1.0. [Online]. Available: http://infocenter.arm.com/help/index.
jsp?topic=/com.arm.doc.ihi0051a/index.html

[9] C. Arnould, “Towards Developing ASIC and FPGA Architec-
tures of High-Throughput CAESAR Candidates,” Master’s the-
sis, ETH Zurich, Autumn Term 2014.

[10] J.-P. Aumasson, P. Jovanovic, and S. Neves, “NORX V1,” http:
//competitions.cr.yp.to/round1/norxv1.pdf, Mar. 2014.

[11] J. Balasch, B. Gierlichs, and I. Verbauwhede, “Electromagnetic
Circuit Fingerprints for Hardware Trojan Detection,” in Proc.
of EMC’15, Aug. 2015, pp. 246–251.

[12] G. Becker, J. Cooper, E. DeMulder, G. Goodwill, J. Jaffe,
G. Kenworthy, T. Kouzminov, A. Leierson, M. Marson, P. Ro-
hatgi, and S. Saab, “Test Vector Leakage Assessment (TVLA)
methodology in practice,” 2013.

[13] G. T. Becker, A. Lakshminarasimhan, L. Lin, S. Srivathsa, V. B.
Suresh, and W. Burelson, “Implementing Hardware Trojans:
Experiences from a Hardware Trojan Challenge,” in Proc. of
ICCD’11, 2011, pp. 301–304.

[14] M. Bellare and C. Namprempre, “Authenticated Encryption:
Relations among Notions and Analysis of the Generic Compo-
sition Paradigm,” in Advances in Cryptology – ASIACRYPT
2000, 2000, vol. 1976, pp. 531–545.

[15] T. Benson, A. Akella, and D. A. Maltz, “Network Traffic Char-
acteristics of Data Centers in the Wild,” in Proc of. IMC’10,
2010, pp. 267–280.

[16] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understand-
ing Data Center Traffic Characteristics,” SIGCOMM Computer
Communication Review, vol. 40, no. 1, pp. 92–99, Jan. 2010.

[17] F. Benz, A. Seffrin, and S. A. Huss, “BIL: A Tool-Chain for
Bitstream Reverse-Engineering,” in Proc. of FPL’12, 2012, pp.
735–738.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://competitions.cr.yp.to/round1/norxv1.pdf
http://competitions.cr.yp.to/round1/norxv1.pdf

BIBLIOGRAPHY 165

[18] G. Bertoni, J. Daemen, M. Peeters, G. V. Assche, and
R. V. Keer. (2012, May) Keccak Implementation Overview.
Version 3.2. [Online]. Available: http://keccak.noekeon.org/
Keccak-implementation-3.2.pdf

[19] G. Bertoni, J. Daemen, N. Debande, T.-H. Le, M. Peeters, and
G. Van Assche, “Power Analysis of Hardware Implementations
Protected with Secret Sharing,” Cryptology ePrint Archive, Re-
port 2013/067, 2013.

[20] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche.
The Keccak sponge function family. [Online]. Available:
http://keccak.noekeon.org

[21] ——, “Sponge Functions,” in ECRYPT Hash Work-
shop, 2007. [Online]. Available: http://sponge.noekeon.org/
SpongeFunctions.pdf

[22] ——, “Building power analysis resistant im-
plementations of Keccak,” 2nd SHA-3 Candi-
date Conference, Aug. 2010. [Online]. Avail-
able: http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/
Aug2010/documents/papers/BERTONI_KeccakAntiDPA.pdf

[23] ——, “Duplexing the sponge: single-pass authenticated encryp-
tion and other applications,” 2nd SHA-3 Candidate Conference,
Aug. 2010. [Online]. Available: http://csrc.nist.gov/groups/
ST/hash/sha-3/Round2/Aug2010/documents/presentations/
DAEMEN_SpongeDuplexSantaBarbaraSlides.pdf

[24] ——. (2011, Jan.) Cryptographic sponge functions. [Online].
Available: http://sponge.noekeon.org/CSF-0.1.pdf

[25] ——. (2011, Jan.) The Keccak reference. [Online]. Available:
http://keccak.noekeon.org/Keccak-reference-3.0.pdf

[26] ——, “Duplexing the Sponge: Single-Pass Authenticated En-
cryption and Other Applications,” in Proc. of SAC’12, 2012,
vol. 7118, pp. 320–337.

http://keccak.noekeon.org/Keccak-implementation-3.2.pdf
http://keccak.noekeon.org/Keccak-implementation-3.2.pdf
http://keccak.noekeon.org
http://sponge.noekeon.org/SpongeFunctions.pdf
http://sponge.noekeon.org/SpongeFunctions.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/BERTONI_KeccakAntiDPA.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/BERTONI_KeccakAntiDPA.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/presentations/DAEMEN_SpongeDuplexSantaBarbaraSlides.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/presentations/DAEMEN_SpongeDuplexSantaBarbaraSlides.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/presentations/DAEMEN_SpongeDuplexSantaBarbaraSlides.pdf
http://sponge.noekeon.org/CSF-0.1.pdf
http://keccak.noekeon.org/Keccak-reference-3.0.pdf

166 BIBLIOGRAPHY

[27] ——, “Permutation-based encryption, authentication and
authenticated encryption,” Directions in Authenticated Ciphers
(DIAC’12), 2012. [Online]. Available: http://keccak.noekeon.
org/KeccakDIAC2012.pdf

[28] B. Bilgin, J. Daemen, V. Nikov, S. Nikova, V. Rijmen, and
G. Van Assche, “Efficient and First-Order DPA Resistant Im-
plementations of Keccak,” in Proc. of CARDIS’14, 2014, pp.
187–199.

[29] N. Borisov, I. Goldberg, and D. Wagner, “Intercepting Mobile
Communications: The Insecurity of 802.11,” in Proc. of Mobi-
Com’01, 2001, pp. 180–189.

[30] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis
with leakage model,” in Proc. of CHES’04, 2004, pp. 16–29.

[31] D. Canright, “A Very Compact S-Box for AES,” in Proc. of
CHES’05, 2005, vol. 3659, pp. 441–455.

[32] B. Canvel, A. Hiltgen, S. Vaudenay, and M. Vuagnoux,
“Password Interception in a SSL/TLS Channel,” in Proc. of
CRYPTO’03, 2003, vol. 2729, pp. 583–599.

[33] R. B. Cattell, “The Scree Test For The Number Of Factors,”
Multivariate Behavioral Research, vol. 1, no. 2, pp. 245–276,
1966.

[34] A. Chakraborti, A. Chattopadhyay, M. Hassan, and M. Nandi,
“TriviA: A Fast and Secure Authenticated Encryption Scheme,”
in Proc. of CHES’15, 2015, vol. 9293, pp. 330–353.

[35] R. Chakraborty, S. Narasimhan, and S. Bhunia, “Hardware tro-
jan: Threats and emerging solutions,” in Proc. of HLDVT’09,
Nov. 2009, pp. 166–171.

[36] E. S. Chung, P. A. Milder, J. C. Hoe, and K. Mai, “Single-Chip
Heterogeneous Computing: Does the Future Include Custom
Logic, FPGAs, and GPGPUs?” in Proc. of MICRO’10, 2010,
pp. 225–236.

http://keccak.noekeon.org/KeccakDIAC2012.pdf
http://keccak.noekeon.org/KeccakDIAC2012.pdf

BIBLIOGRAPHY 167

[37] C. Clavier, J.-S. Coron, and N. Dabbous, “Differential Power
Analysis in the Presence of Hardware Countermeasures,” in
Proc. of CHES’00, 2000, pp. 252–263.

[38] F. Courbon, P. Loubet-Moundi, J. J.-A. Fournier, and A. Tria,
“SEMBA: a SEM Based Acquisition technique for fast invasive
Hardware Trojan detection,” in Proc. of ECCTD’15, Aug. 2015.

[39] J. Crenne, P. Cotret, G. Gogniat, R. Tessier, and J.-P. Diguet,
“Efficient key-dependent message authentication in reconfig-
urable hardware,” in Proc. of FPT’11, Dec. 2011, pp. 1–6.

[40] Defense Advanced Research Projects Agency (DARPA). (2007)
Trusted Integrated Circuits (TRUST).

[41] Defense Science Board. (2005, Feb.) Defense Science Board
Task Force On High Performance Microchip Supply. [Online].
Available: http://www.acq.osd.mil/dsb/reports/ADA435563.
pdf

[42] J. P. Degabriele and K. G. Paterson, “On the (In)Security
of IPsec in MAC-then-Encrypt Configurations,” in Proc. of
CCS’10, 2010, pp. 493–504.

[43] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer.
(2015, Aug.) Ascon v1.1. [Online]. Available: http://
competitions.cr.yp.to/round2/asconv11.pdf

[44] M. Dworkin, “Recommendations for Block Cipher Modes of Op-
eration: The CCM Mode for Authentication and Confidential-
ity,” NIST, Tech. Rep., 2004.

[45] ——, “Recommendations for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC,” NIST, Tech. Rep.,
2007.

[46] P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Mendel,
C. Rechberger, M. Schläffer, and S. S. Thomsen. (2011, Mar.)
Grøstl – a SHA-3 candidate. Submission to NIST (Round 3).
[Online]. Available: http://www.groestl.info/Groestl.pdf

http://www.acq.osd.mil/dsb/reports/ADA435563.pdf
http://www.acq.osd.mil/dsb/reports/ADA435563.pdf
http://competitions.cr.yp.to/round2/asconv11.pdf
http://competitions.cr.yp.to/round2/asconv11.pdf
http://www.groestl.info/Groestl.pdf

168 BIBLIOGRAPHY

[47] G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi, “A
testing methodology for side-channel resistance validation,”
in NIST Non-invasive attack testing workshop, 2011.
[Online]. Available: http://csrc.nist.gov/news_events/
non-invasive-attack-testing-workshop/papers/08_Goodwill.
pdf

[48] H. Groß, E. Wenger, C. Dobraunig, and C. Ehrenhöfer, “Suit
up! Made-to-Measure Hardware Implementations of Ascon,”
Cryptology ePrint Archive, Report 2015/034, 2015.

[49] V. Grosso, G. L. F.-X. Standaert, K. Varici, F. Durvaux,
L. Gaspar, and S. Kerckhof, “SCREAM & iSCREAM,” http:
//competitions.cr.yp.to/round1/screamv1.pdf, Mar. 2014.

[50] S. Gueron, “Intel® Advanced Encryption Standard (AES) New
Instructions Set,” Intel Corporation, Tech. Rep., 2010.

[51] L. Henzen and W. Fichtner, “FPGA Parallel-Pipelined AES-
GCM Core for 100G Ethernet Applications,” in Proc. of ESS-
CIRC’10, Sep. 2010, pp. 202–205.

[52] G. Hospodar, B. Gierlichs, E. De Mulder, I. Verbauwhede, and
J. Vandewalle, “Machine learning in side-channel analysis: a
first study,” Journal of Cryptographic Engineering, vol. 1, no. 4,
pp. 293–302, 2011.

[53] IEEE, “IEEE Standard for Local and metropolitan area net-
works - Media Access Control (MAC) Security,” IEEE Std
802.1AE-2006, Aug. 2006.

[54] ——, “IEEE Standard for Ethernet,” IEEE Std 802.3-2012 (Re-
vision of IEEE Std 802.3-2008), Dec. 2012.

[55] ——, “IEEE Standard for Ethernet - SECTION ONE,” IEEE
Std 802.3-2012 (Revision of IEEE Std 802.3-2008), Dec. 2012.

[56] ——, “IEEE Standard for Ethernet - SECTION SIX,” IEEE
Std 802.3-2012 (Revision of IEEE Std 802.3-2008), Dec. 2012.

http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
http://competitions.cr.yp.to/round1/screamv1.pdf
http://competitions.cr.yp.to/round1/screamv1.pdf

BIBLIOGRAPHY 169

[57] IEEE, “IEEE Standard for Local and metropolitan area net-
works – Bridges and Bridged Networks,” IEEE Std 802.1Q-2014
(Revision of IEEE Std 802.1Q-2011), Dec. 2014.

[58] IEEE Std 802.11-2007, “IEEE Standard for Information Tech-
nology - Telecommunications and Information Exchange Be-
tween Systems - Local and Metropolitan Area Networks -
Specific Requirements - Part 11: Wireless LAN Medium Ac-
cess Control (MAC) and Physical Layer (PHY) Specifications,”
LAN/MAN Standards Committee, New York, NY, USA, pp.
C1–1184, Jun. 2007.

[59] Intelligence Advanced Research Projects Activity (IARPA).
(2011) Trusted Integrated Circuit Program. [Online]. Available:
http://www.iarpa.gov/index.php/research-programs/tic

[60] R. Jarvis and M. McIntyre, “Split manufacturing method for
advanced semiconductor circuits,” Patent 7,195,931, 2007, US
Patent.

[61] Y. Jin and Y. Makris, “Hardware Trojan Detection Using Path
Delay Fingerprint,” in Proc. of HOST’08, 2008, pp. 51–57.

[62] I. Jolliffe, Principal Component Analysis. Springer, 2002.

[63] H. Kaeslin, Top-Down Digital VLSI Design Vol. 2 (Lecture
Notes) - From Gate-Level Circuits to CMOS Fabrication, Sep.
2015.

[64] A. Karatsuba and Y. Ofman, “Multiplication of Multidigit
Numbers on Automata,” in Soviet Physics Doklady, vol. 7, 1963,
p. 595.

[65] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor,
“Trustworthy Hardware: Identifying and Classifying Hardware
Trojans,” IEEE Computer, vol. 43, no. 10, pp. 39–46, Oct. 2010.

[66] E. B. Kavun and T. Yalcin, “A Lightweight Implementation of
Keccak Hash Function for Radio-Frequency Identification Ap-
plications,” in Proc. of RFIDSec’10, 2010, pp. 258–269.

http://www.iarpa.gov/index.php/research-programs/tic

170 BIBLIOGRAPHY

[67] G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell,
R. Kolanski, and G. Heiser, “Comprehensive Formal Verifica-
tion of an OS Microkernel,” Transactions on Computer Systems,
vol. 32, no. 1, pp. 2:1–2:70, Feb. 2014.

[68] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,”
in Proc. of CRYPTO’ 99, 1999, pp. 388–397.

[69] H. Krawczyk, “The Order of Encryption and Authentication for
Protecting Communications (or: How Secure Is SSL?),” in Proc.
of CRYPTO’01, 2001, vol. 2139, pp. 310–331.

[70] S. Kutzner, A. Y. Poschmann, and M. Stöttinger, “Hardware
Trojan Design and Detection: A Practical Evaluation,” in Proc.
of WESS’13, 2013, pp. 1:1–1:9.

[71] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson,
and B. Hutchings, “RapidSmith: Do-It-Yourself CAD Tools for
Xilinx FPGAs,” in Proc. of FPL’11, 2011, pp. 349–355.

[72] S. Lemsitzer, J. Wolkerstorfer, N. Felber, and M. Braendli,
“Multi-gigabit GCM-AES Architecture Optimized for FPGAs,”
in Proc. of CHES’07, 2007, vol. 4727, pp. 227–238.

[73] J. Li and J. Lach, “At-Speed Delay Characterization for IC Au-
thentication and Trojan Horse Detection,” in Proc. of HOST’08,
2008, pp. 8–14.

[74] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks
– Revealing the Secrets of Smart Cards. Springer, 2007.

[75] S. Mangard, T. Popp, and B. Gammel, “Side-Channel Leakage
of Masked CMOS Gates,” in Proc. of CT-RSA’05, 2005, vol.
3376, pp. 351–365.

[76] D. A. McGrew and J. Viega, “The Galois/Counter Mode of
Operation (GCM),” Submission to NIST Modes of Operation
Process, May 2005.

[77] G. E. Moore, “Cramming More Components onto Integrated
Circuits,” Electronics, vol. 38, no. 8, pp. 114–117, Apr. 1965.

BIBLIOGRAPHY 171

[78] A. Moradi. A Hardware Implementation of POET 2. [Online].
Available: https://www.uni-weimar.de/fileadmin/user/fak/
medien/professuren/Mediensicherheit/Research/Publications/
poet_v2-hardware.pdf

[79] A. Moradi, A. Barenghi, T. Kasper, and C. Paar, “On the Vul-
nerability of FPGA Bitstream Encryption Against Power Anal-
ysis Attacks: Extracting Keys from Xilinx Virtex-II FPGAs,”
in Proc. of CCS’11, 2011, pp. 111–124.

[80] A. Moradi, D. Oswald, C. Paar, and P. Swierczynski, “Side-
channel Attacks on the Bitstream Encryption Mechanism of Al-
tera Stratix II: Facilitating Black-Box Analysis Using Software
Reverse-engineering,” in Proc. of FPGA’13, 2013, pp. 91–100.

[81] A. Moradi and T. Schneider, “Improved Side-Channel Analysis
Attacks on Xilinx Bitstream Encryption of 5, 6, and 7 Series,”
Cryptology ePrint Archive, Report 2016/249, 2016.

[82] P. Morawiecki, K. Gaj, E. Homsirikamol, K. Matusiewicz,
J. Pieprzyk, M. Rogawski, M. Srebrny, and M. Wójcik, “ICE-
POLE v2,” http://competitions.cr.yp.to/round2/icepolev2.pdf,
Aug. 2015.

[83] M. Mozaffari-Kermani and A. Reyhani-Masoleh, “Efficient and
High-Performance Parallel Hardware Architectures for the AES-
GCM,” IEEE Transactions on Computers, vol. 61, no. 8, pp.
1165–1178, Aug. 2012.

[84] M. Muehlberghuber. NORX Hardware Reference Implementa-
tion. [Online]. Available: https://github.com/norx/norx-hw

[85] M. Muehlberghuber, F. K. Gürkaynak, T. Korak, P. Dunst,
and M. Hutter, “Red Team vs. Blue Team Hardware Trojan
Analysis: Detection of a Hardware Trojan on an Actual ASIC,”
in Proc. of HASP’13, 2013, pp. 1–8.

[86] M. Muehlberghuber, C. Keller, N. Felber, and C. Pendl, “100
Gbit/s Authenticated Encryption Based on Quantum Key Dis-
tribution,” in Proc. of VLSI-Soc’12, Oct. 2012, pp. 123–128.

https://www.uni-weimar.de/fileadmin/user/fak/medien/professuren/Mediensicherheit/Research/Publications/poet_v2-hardware.pdf
https://www.uni-weimar.de/fileadmin/user/fak/medien/professuren/Mediensicherheit/Research/Publications/poet_v2-hardware.pdf
https://www.uni-weimar.de/fileadmin/user/fak/medien/professuren/Mediensicherheit/Research/Publications/poet_v2-hardware.pdf
http://competitions.cr.yp.to/round2/icepolev2.pdf
https://github.com/norx/norx-hw

172 BIBLIOGRAPHY

[87] M. Muehlberghuber, C. Keller, F. K. Gürkaynak, and N. Fel-
ber, “FPGA-Based High-Speed Authenticated Encryption Sys-
tem,” in From Algorithms to Circuits and System-on-Chip De-
sign, 2013, vol. 418, pp. 1–20.

[88] M. Muehlberghuber, T. Korak, P. Dunst, and M. Hutter, “To-
wards Evaluating DPA Countermeasures for Keccak on a Real
ASIC,” in Proc. of COSADE’15, 2015, vol. 9064, pp. 222–236.

[89] S. Narasimhan, D. Du, R. S. Chakraborty, S. Paul, F. Wolff,
C. Papachristou, K. Roy, and S. Bhunia, “Multiple-Parameter
Side-Channel Analysis: A Non-Invasive Hardware Trojan De-
tection Approach,” in Proc. of HOST’10, Jun. 2010, pp. 13–18.

[90] I. Nikolić. CAESAR candidates speed comparison. [Online].
Available: http://www1.spms.ntu.edu.sg/~syllab/speed/

[91] ——, “Tiaoxin – 346, VERSION 2.0,” http://competitions.cr.
yp.to/round2/tiaoxinv2.pdf, Aug. 2015.

[92] S. Nikova, C. Rechberger, and V. Rijmen, “Threshold Imple-
mentations Against Side-Channel Attacks and Glitches,” in
Proc. of ICICS’06, 2006, vol. 4307, pp. 529–545.

[93] NIST. SHA-3 Cryptographic Hash Algorithm Competition. [On-
line]. Available: http://csrc.nist.gov/groups/ST/hash/sha-3/

[94] ——, Advanced Encryption Standard (AES) (FIPS PUB 197),
National Institute of Standards and Technology, Nov. 2001.

[95] ——, Secure Hash Standard (SHS) (FIPS PUB 180-4), National
Institute of Standards and Technology, Mar. 2012.

[96] K. Paterson and A. Yau, “Cryptography in Theory and Practice:
The Case of Encryption in IPsec,” in Proc. of EUROCRYPT’06,
2006, vol. 4004, pp. 12–29.

[97] M. Pelnar, M. Muehlberghuber, and M. Hutter, “Putting to-
gether What Fits together - GrÆStl,” in Proc. of CARDIS’12,
2013, vol. 7771, pp. 173–187.

http://www1.spms.ntu.edu.sg/~syllab/speed/
http://competitions.cr.yp.to/round2/tiaoxinv2.pdf
http://competitions.cr.yp.to/round2/tiaoxinv2.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/

BIBLIOGRAPHY 173

[98] K. Pentikousis and H. Badr, “Quantifying the deployment of
TCP options - a comparative study,” IEEE Communications
Letters, vol. 8, no. 10, pp. 647–649, Oct. 2004.

[99] P. Pessl and M. Hutter, “Pushing the Limits of SHA-3 Hardware
Implementations to Fit on RFID,” in Proc. of CHES’13, 2013,
vol. 8086, pp. 126–141.

[100] E. Prouff, M. Rivain, and R. Bevan, “Statistical Analysis of
Second Order Differential Power Analysis,” IEEE Transactions
on Computers, vol. 58, no. 6, pp. 799–811, Jun. 2009.

[101] Research Center for Information Security. (2008, Oct.) Side-
channel Attack Standard Evaluation Board - SASEBO-G.
National Institute of Advanced Industrial Science and Technol-
ogy. [Online]. Available: http://www.risec.aist.go.jp/project/
sasebo/download/SASEBO-G_Spec_Ver1.0_English.pdf

[102] Y. Sasaki, Y. Todo, K. Aoki, Y. Naito, T. Sugawara, Y. Mu-
rakami, M. Matsui, and S. Hirose, “Minalpher v1.1,” http:
//competitions.cr.yp.to/round2/minalpherv11.pdf, Aug. 2015.

[103] A. Satoh, T. Sugawara, and T. Aoki, “High-Performance Hard-
ware Architectures for Galois Counter Mode,” IEEE Transac-
tions on Computers, vol. 58, no. 7, pp. 917–930, Jul. 2009.

[104] R. Schilling, M. Jelinek, M. Ortoff, and T. Unterluggauer, “A
low-area ASIC implementation of AEGIS128 – A fast authen-
ticated encryption algorithm,” in Proc. of Austrochip’14, Oct.
2014, pp. 1–5.

[105] D. Šijačić, B. Yang, and B. Bilgin. (2015, May) Mi-
nalpher & PRIMATEs: Overview of Lightweight Hardware
Implementation Results. Google Group: Cryptographic compe-
titions. [Online]. Available: https://groups.google.com/forum/
#!forum/crypto-competitions

[106] O. Söll, T. Korak, M. Muehlberghuber, and M. Hutter, “EM-
Based Detection of Hardware Trojans on FPGAs,” in Proc. of
HOST’14, May 2014, pp. 84–87.

http://www.risec.aist.go.jp/project/sasebo/download/SASEBO-G_Spec_Ver1.0_English.pdf
http://www.risec.aist.go.jp/project/sasebo/download/SASEBO-G_Spec_Ver1.0_English.pdf
http://competitions.cr.yp.to/round2/minalpherv11.pdf
http://competitions.cr.yp.to/round2/minalpherv11.pdf
https://groups.google.com/forum/#!forum/crypto-competitions
https://groups.google.com/forum/#!forum/crypto-competitions

174 BIBLIOGRAPHY

[107] E. Stavinov. (2011) Using Xilinx Tools in Command-Line
Mode. [Online]. Available: http://outputlogic.com/xcell_
using_xilinx_tools/74_xperts_04.pdf

[108] M. M. Tehranipoor, U. Guin, and D. Forte, Counterfeit Inte-
grated Circuits. Springer, 2015.

[109] M. Tehranipoor and C. Wang, Introduction to Hardware Secu-
rity and Trust. Springer Science + Business Media, 2012.

[110] K. Tiri, M. Akmal, and I. Verbauwhede, “A dynamic and dif-
ferential CMOS logic with signal independent power consump-
tion to withstand differential power analysis on smart cards,” in
Proc. of ESSCIRC’02, Sep. 2002, pp. 403–406.

[111] K. Tiri and I. Verbauwhede, “A Logic Level Design Methodology
for a Secure DPA Resistant ASIC or FPGA Implementation,”
in Proc. of DATE’04, 2004.

[112] R. Torrance and D. James, “The State-of-the-Art in IC Reverse
Engineering,” in Proc. of CHES’09, 2009, vol. 5747, pp. 363–
381.

[113] S. Vaudenay, “Security Flaws Induced by CBC Padding – Appli-
cations to SSL, IPSEC, WTLS...” in Proc. of EUROCRYPT’02,
2002, vol. 2332, pp. 534–545.

[114] J. Viega and D. Mcgrew, “The Use of Galois/Counter Mode
(GCM) in IPsec Encapsulating Security Payload (ESP),” RFC
4106 (Proposed Standard), Internet Engineering Task Force
(IETF), Jun. 2005.

[115] X. Wang, M. Tehranipoor, and J. Plusquellic, “Detecting Mali-
cious Inclusions in Secure Hardware: Challenges and Solutions,”
in Proc. of HOST’08, Jun. 2008, pp. 15–19.

[116] H. Wu and T. Huang, “The Authenticated Cipher MORUS
(v1),” http://competitions.cr.yp.to/round2/morusv11.pdf,
Aug. 2015.

http://outputlogic.com/xcell_using_xilinx_tools/74_xperts_04.pdf
http://outputlogic.com/xcell_using_xilinx_tools/74_xperts_04.pdf
http://competitions.cr.yp.to/round2/morusv11.pdf

BIBLIOGRAPHY 175

[117] H. Wu and B. Preneel, “AEGIS: A Fast Authenticated Encryp-
tion Algorithm (v1),” http://competitions.cr.yp.to/round1/
aegisv1.pdf, Mar. 2014.

[118] ——, “AEGIS: A Fast Authenticated Encryption Algorithm,”
in Proc. of SAC’13, 2014, vol. 8282, pp. 185–201.

[119] B. Yang, S. Mishra, and R. Karri, “High Speed Architecture
for Galois/Counter Mode of Operation (GCM),” 2005. [Online].
Available: https://eprint.iacr.org/2005/146.pdf

[120] C. Zhang, L. Li, J. Xu, and Z. Wang, “High-throughput GCM
VLSI architecture for IEEE 802.1ae applications,” in Proc. of
ISCAS’09, May 2009, pp. 900–903.

[121] G. Zhou, H. Michalik, and L. Hinsenkamp, “Improving
Throughput of AES-GCM with Pipelined Karatsuba Multipliers
on FPGAs,” in Proc. of ARC’09, 2009, vol. 5453, pp. 193–203.

http://competitions.cr.yp.to/round1/aegisv1.pdf
http://competitions.cr.yp.to/round1/aegisv1.pdf
https://eprint.iacr.org/2005/146.pdf

176 BIBLIOGRAPHY

Curriculum Vitae

Michael Mühlberghuber was born in Salzburg, Austria, in 1984. He
received a Bachelor’s and Master’s degree from Graz University of
Technology (TU Graz) in 2009 and 2011, respectively. His master
thesis was part of a collaboration between the Institute of Applied
Information Processing and Communications (IAIK) at TU Graz and
the Integrated Systems Laboratory (IIS) at ETH Zurich. In 2011, he
joined the IIS as a research assistant. His research interests include
hardware Trojans and the development of VLSI architectures of cryp-
tographic primitives, targeting resource-constrained environments and
high-performance applications.

177

	Acknowledgments
	Abstract
	Zusammenfassung
	1 Introduction
	1.1 The Need for Hardware-Based Security Systems
	1.2 Cryptography Basics
	1.3 Goals of the Thesis
	1.4 Contributions
	1.5 Outline

	2 Real-World Hardware Trojans
	2.1 Background
	2.2 Red Team vs. Blue Team ASIC Trojan Analysis
	2.2.1 ASIC Development Chain
	2.2.2 Experimental Setting
	2.2.3 Chameleon - The Target Circuit
	2.2.4 Trojan Circuit
	2.2.5 Trojan Insertion Process
	2.2.6 Measurement Setup
	2.2.7 Side-Channel Analysis (SCA) Results

	2.3 Localization of FPGA Trojans Using Electromagnetic Radiation (EM)
	2.3.1 FPGA Design Flow and Attacker Model
	2.3.2 Trojan Circuit
	2.3.3 Measurement Setup
	2.3.4 Trojan Insertion Process
	2.3.5 Measurement Results

	2.4 Final Remarks

	3 An ASIC for Assessing DPA Countermeasures
	3.1 Introduction
	3.1.1 Requirements and Vulnerabilities of Pervasive Hardware Devices

	3.2 DPA Countermeasures
	3.2.1 Hiding
	3.2.2 Masking

	3.3 Keccak and the Sponge Family
	3.3.1 The Keccak-f Permutation
	3.3.2 SpongeWrap
	3.3.3 Masking the Sponge

	3.4 Zorro - An ASIC Assessment Platform for DPA Countermeasures
	3.4.1 3-Share, 3-Share*, and 4-Share Designs
	3.4.2 RAM Allocation

	3.5 Results
	3.5.1 Hardware Figures and Comparison
	3.5.2 DPA Attacks on Zorro

	3.6 Summary

	Chapter Appendices
	3.A Round Operations
	3.B Data Transfer Protocol

	4 High-Throughput AEAD Architectures
	4.1 The CAESAR Competition
	4.2 Related Work
	4.3 Assuring a Fair Comparison
	4.3.1 Environmental Assumptions
	4.3.2 General Architecture Requirements
	4.3.3 Our Hardware Architectures

	4.4 Results and Comparison
	4.4.1 gcm-aes Reference Architecture
	4.4.2 Data at Rest
	4.4.3 Data in Motion

	4.5 Summary and Discussion

	Chapter Appendices
	4.A Ethernet Revisited
	4.A.1 IEEE 802.1AE or MACsec Standard

	4.B Environmental Assumptions (Extended Discussion)
	4.B.1 Data Stream Type
	4.B.2 Data Size Availability

	4.C AXI4-Stream Architecture Interface
	4.D Our AEAD Architectures
	4.D.1 GCM-AES Reference Architecture
	4.D.2 AEGIS and MORUS
	4.D.3 ICEPOLE
	4.D.4 NORX
	4.D.5 Tiaoxin–346

	4.E Synthesis Results of CAESAR Candidates

	5 Conclusions and Future Directions
	A Cryptographic ASICs
	A.1 Chameleon/Chipit
	A.2 Zorro
	A.3 MLC:TiM
	A.4 Zweifel

	Acronyms
	Symbols
	Operators
	Bibliography
	Curriculum Vitae

