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Abstract The differential cross section and charge asym-
metry for inclusive pp → W± + X → μ±ν + X production
at

√
s = 8 TeV are measured as a function of muon pseudo-

rapidity. The data sample corresponds to an integrated lumi-
nosity of 18.8 fb−1 recorded with the CMS detector at the
LHC. These results provide important constraints on the par-
ton distribution functions of the proton in the range of the
Bjorken scaling variable x from 10−3 to 10−1.

1 Introduction

We present measurements of the pp → W±+X → μ±ν+X
differential cross section and the muon charge asymmetry
that provide important constraints on the valence and sea
quark distributions in the proton. Uncertainties in the parton
distribution functions (PDF) have become a limiting factor
for the precision of many inclusive and differential cross sec-
tion calculations, given the development of precise theoreti-
cal tools describing hard scattering processes in pp collisions.

For each charge of the W boson, the differential cross
section,

σ±
η = dσ

dη
(pp → W± + X → μ±ν + X), (1)

is measured in bins of muon pseudorapidity η = − ln
tan(θ/2) in the laboratory frame, where θ is the polar angle
of the muon direction with respect to the beam axis. Cur-
rent theoretical calculations predict these cross sections with
next-to-next-to-leading-order (NNLO) accuracy in perturba-
tive quantum chromodynamics (QCD). The dominant W±
boson production occurs through the annihilation of a valence
quark from one of the protons with a sea antiquark from the
other: ud → W+ and du → W−. Because of the presence
of two valence u quarks in the proton, W+ bosons are pro-
duced more often than W− bosons. Precise measurement of
the charge asymmetry as a function of the muon η,

*e-mail: cms-publication-committee-chair@cern.ch

A(η) = σ+
η − σ−

η

σ+
η + σ−

η

, (2)

provides significant constraints on the ratio of u and d quark
distributions in the proton for values of x , the Bjorken scaling
variable [1], between 10−3 and 10−1.

The W± boson production asymmetry was previously
studied in pp collisions by the CDF and D0 collaborations [2–
6]. At the LHC, the first measurements of the lepton charge
asymmetries were performed by the CMS, ATLAS, and
LHCb experiments using data collected in 2010 [7–9]. The
CMS experiment has further improved the measurement pre-
cision in both the electron and muon decay channels using
data from pp collisions at

√
s = 7 TeV corresponding to inte-

grated luminosities of 0.84 and 4.7 fb−1 in the electron [10]
and muon [11] decay channels, respectively.

This measurement is based on a data sample of pp col-
lisions at

√
s = 8 TeV collected by CMS during 2012,

corresponding to an integrated luminosity of 18.8 fb−1. At√
s = 8 TeV the average value of the Bjorken scaling vari-

able for the interacting partons in W± boson production is
lower than at

√
s = 7 TeV, which is expected to result in a

lower W± boson production charge asymmetry. This mea-
surement provides important constraints on the proton PDFs,
which is illustrated by the QCD analysis also presented in this
paper.

2 CMS detector

The central feature of the CMS apparatus is a superconduct-
ing solenoid of 6 m internal diameter, providing a magnetic
field of 3.8 T. Within the solenoid volume are a silicon pixel
and strip tracker, a lead tungstate crystal electromagnetic
calorimeter, and a brass and scintillator hadron calorimeter,
each composed of a barrel and two endcap sections. Muons
are measured in gas-ionization detectors embedded in the
steel flux-return yoke outside the solenoid. Extensive for-
ward calorimetry complements the coverage provided by the
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barrel and endcap detectors. A more detailed description of
the CMS detector can be found in Ref. [12].

3 Data selection and simulation

A W± → μ±ν event is characterized by an isolated muon
with a high transverse momentum pT and a large missing
transverse energy E/T associated with an undetected neutrino.
Events in this sample are collected with an isolated single-
muon trigger with a pT threshold of 24 GeV. To reduce the
background, identification and isolation criteria are applied
to the reconstructed muons. These requirements are similar
to those used in the previous measurement [11]. Muon tracks
must be reconstructed in both the silicon tracker and the muon
detectors. The global muon fit is required to have a χ2 per
degree of freedom less than 10. The pseudorapidity coverage
for reconstructed muons is restricted to |η| < 2.4. Cosmic ray
contamination is largely reduced by rejecting the muon can-
didates with a large (>0.2 cm) distance of closest approach to
the primary vertex in the transverse plane. The isolation cri-
terion is based on additional tracks reconstructed in a cone
of

√
(�η)2 + (�φ)2 < 0.3 around the muon, where φ is

the azimuthal angle (in radians) in the laboratory frame. The
muon candidate is rejected if the scalar pT sum of these tracks
is more than 10 % of the muon pT. The selected muon can-
didate with the largest pT, identified as a signal muon from
the W boson decay, is required to have a pT > 25 GeV and
also to be the particle that triggered the event. To reduce the
background from Drell–Yan (DY) dimuon production, events
containing a second identified muon with pT > 15 GeV are
rejected.

A total of about 61 million W+ → μ+ν and 45 million
W− → μ−ν candidate events are selected. The W± →
μ±ν signal is contaminated with backgrounds that also pro-
duce a muon with high pT. The major background sources
are (i) multijet (QCD) events with high-pT muons pro-
duced in hadron decays (about 10 % of the selected sam-
ple), and (ii) Z/γ ∗ → μ+μ− events (5 % of the sam-
ple). The contribution from other backgrounds, such as
W± → τ±ν (2.6 %), Z/γ ∗ → τ+τ− (0.5 %), and tt (0.5 %)
events, is relatively small. The contributions from single top
quark (0.14 %) and diboson (0.07 %) events, as well as from
cosmic muons (10−5), are negligible.

Simulated samples are used to model the signal and back-
ground processes. The signal, as well as the electroweak
and tt background samples, is based on the next-to-leading-
order (NLO) matrix element calculations implemented in the
powheg Monte Carlo (MC) event generator [13–16], inter-
faced with pythia6 [17] for parton showering and hadroniza-
tion, including electromagnetic final-state radiation (FSR).
The CT10 NLO PDFs [18] are used. The τ lepton decays
in relevant processes are simulated with tauola [19]. The

QCD background is generated with pythia6 using CTEQ6L
PDF [20].

The MC events are overlaid by simulated minimum-bias
events to model additional pp interactions (pileup) present
in data. The detector response to all generated particles is
simulated with Geant4 [21]. Final-state particles are recon-
structed with the same algorithms used for the data sample.

4 Corrections to the data and simulations

The fiducial cross sections are measured for muon pT >

25 GeV in 11 bins of absolute pseudorapidity, covering the
range |η| < 2.4. The |η| binning is such that the migration
effects due to the finite η resolution are negligible. In each
|η| bin, the number of W+ → μ+ν and W− → μ−ν events
is extracted by fitting the E/T distributions with signal and
background distributions (templates). The template shapes
and initial normalizations are derived from MC simulations.
To improve the simulation, several corrections are applied to
the MC samples. The corrections, which are similar to those
used in the previous measurement [11], are briefly summa-
rized below.

All simulated events are weighted to match the pileup dis-
tribution in data. The weight factors are based on the mea-
sured instantaneous luminosity and minimum-bias cross sec-
tion leading to a good description of the average number of
reconstructed vertices in the data.

Accurate calibration of the muon momentum is important
for the proper modeling of the yields of W± events and of
the shapes of E/T templates. Dominant sources of the muon
momentum mismeasurement are the mismodeling of the
tracker alignment and the magnetic field. Muon momentum
correction factors are derived using Z/γ ∗ → μ+μ− events
in several iterations [22]. First, “reference” distributions are
defined based on the MC generated muons, with momenta
smeared by the reconstruction resolution. Then, corrections
to muon momentum in bins of η and φ are extracted sep-
arately for positively and negatively charged muons. These
corrections match the mean values of reconstructed 1/pT

spectra to the corresponding reference values. Finally, cor-
rection factors are tuned further by comparing the recon-
structed dimuon invariant mass spectra in each μ+ and μ−
pseudorapidity bin with the reference. The correction fac-
tors are determined separately for data and simulated events
following the same procedure.

The overall muon selection efficiency includes contribu-
tions from reconstruction, identification, isolation, and trig-
ger efficiencies. Each component is measured from Z/γ ∗ →
μ+μ− events using the “tag-and-probe” method [23,24].
The efficiencies are measured in bins of η and pT for μ+ and
μ− separately. Each η bin of the efficiency measurement is
fully contained in a single |η| bin used for the asymmetry
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measurement. The total average efficiency is about 85 % at
central rapidities and drops to about 50 % in the last |η| bin.
The ratio of the average μ+ and μ− efficiencies varies within
0.6 % of unity in the first 10 |η| bins. In the last bin the ratio is
0.98. The same procedure is used in data and MC simulation,
and scale factors are determined to match the MC simulation
efficiencies to data.

Template shapes, used in the fits, are based on the miss-
ing transverse momentum ( �pmiss

T ) reconstructed with the
particle-flow algorithm [25,26]. The �pmiss

T is defined as the
projection on the plane perpendicular to the beams of the neg-
ative vector sum of the momenta of all reconstructed particles
in an event. A set of corrections is applied to �pmiss

T in order
to improve the modeling of distributions of E/T = | �pmiss

T | in
data and MC templates. First, the average bias in the �pmiss

T -
component along the direction of �pT-sum of charged parti-
cles associated with the pileup vertices is removed [27]. Sec-
ond, the muon momentum correction to �pT, described above,
is added vectorially to �pmiss

T . In addition, the “φ-modulation”
corrections, which increase linearly as a function of pileup,
make the φ( �pmiss

T ) distributions uniform [27]. The above cor-
rections are applied to both data and simulated events. The
final set of corrections, derived from the “hadronic recoil”
technique [28,29], is applied to simulated W± → μ±ν,
Z/γ ∗ → μ+μ−, and QCD events to match the average �pmiss

T
scale and resolution to data.

The modeling of the multijet events is further improved
with a set of corrections derived from a QCD control sam-
ple selected by inverting the offline isolation requirement for
events collected using a prescaled muon trigger with no iso-
lation requirement. Muon pT-dependent weight factors are
determined for the QCD simulation that match the muon pT

distributions with data. The QCD control sample is also used
to derive ratios between the yields with positive and negative
muons in each muon |η| bin. These ratios are used to con-
strain the relative QCD contributions to W+ and W− events,
as described in Sect. 5.

5 Signal extraction

In each of the 11 muon |η| bins, yields of W+ and W− events
are obtained from the simultaneous χ2-fit of the E/T distribu-
tions of μ+ and μ− events. The definition of χ2 used in
the fit takes into account the statistical uncertainties in the
simulated templates. The shapes of the E/T distributions for
the W± → μ±ν signal and the backgrounds are taken from
the MC simulation after correcting for mismodeling of the
detector response and for the pT distribution of W bosons. All
electroweak and tt background samples are normalized to the
integrated luminosity using the theoretical cross sections cal-
culated at NNLO. Each simulated event is also weighted with
scale factors to match the average muon selection efficien-
cies in data. In addition, mass-dependent correction factors
are applied to Z/γ ∗ → μ+μ− simulated events to match the
observed mass distribution of dimuon events in data.

The W+ and W− signal yields and the total QCD back-
ground normalization are free parameters in each fit. The
relative contributions of QCD background events in the W+
and W− samples are constrained to values obtained from the
QCD control sample. The W± → τ±ν background is nor-
malized to the W± → μ±ν signal, for each charge, using the
scale factors corresponding to the free parameters of the sig-
nal yield. The normalizations of the remaining electroweak
and tt backgrounds are fixed in the fit.

Table 1 summarizes the fitted yields of W+ (N+) and W−
(N−) events, the correlation coefficient (ρ+,−), and the χ2

value for each fit. Examples of fits for three |η| ranges are
shown in Fig. 1. The ratio of the data to the final fit, shown
below each distribution, demonstrates good agreement of the
fits with data. It should be noted that the χ2 values reported
in Table 1 are calculated using the statistical uncertainties of
both data and simulated templates; systematic uncertainties
are not taken into account.

For each muon charge and |η|bin, the fiducial cross section
is calculated as

Table 1 Summary of the fitted
N+, N−, the correlation (ρ+,−)
between the uncertainties in N+
and N−, and the χ2 of the fit for
each |η| bin. The number of
degrees of freedom (ndof) in
each fit is 197. The quoted
uncertainties are statistical and
include statistical uncertainties
in the templates. The correlation
coefficients are expressed as
percentages

|η| bin χ2 (ndof = 197) N+ (103) N− (103) ρ+,− (%)

0.00–0.20 238 4648.5 ± 4.2 3584.9 ± 3.8 18.9

0.20–0.40 242 4414.5 ± 4.0 3360.9 ± 3.7 18.8

0.40–0.60 248 4893.8 ± 4.3 3692.5 ± 3.9 18.9

0.60–0.80 199 4900.1 ± 4.3 3621.3 ± 3.8 19.2

0.80–1.00 218 4420.8 ± 4.0 3218.0 ± 3.6 18.7

1.00–1.20 204 4235.7 ± 3.9 2949.2 ± 3.4 18.5

1.20–1.40 193 4176.8 ± 3.9 2827.0 ± 3.5 19.3

1.40–1.60 213 4351.2 ± 4.2 2864.7 ± 3.7 19.3

1.60–1.85 208 4956.2 ± 4.4 3134.1 ± 3.9 19.5

1.85–2.10 238 5292.9 ± 4.4 3229.6 ± 3.8 18.5

2.10–2.40 229 4023.7 ± 3.9 2428.2 ± 3.3 17.6
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Fig. 1 Examples of fits in three |η| ranges: 0.0 < |η| < 0.2 (top), 1.0 < |η| < 1.2 (center), and 2.1 < |η| < 2.4 (bottom). For each η range,
results for W+ (left) and W− (right) are shown. The ratios between the data points and the final fits are shown at the bottom of each panel

σ±
η = 1

2�η

N±

ε±ε±
FSRLint

, (3)

where ε± is the average μ± selection efficiency per |η| bin,
εFSR takes into account the event loss within the muon pT

acceptance due to the final-state photon emission, and Lint

is the integrated luminosity of the data sample. Each ε±
FSR

factor, defined as a ratio of the numbers of events within the
pT acceptance after and before FSR, is evaluated using the
signal MC samples.
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6 Systematic uncertainties

To estimate the systematic uncertainties in the muon selec-
tion efficiencies, several variations are applied to the mea-
sured efficiency tables. First, the efficiency values in each
η–pT bin are varied within their statistical errors for data
and simulation independently. In each pseudo-experiment the
varied set of efficiencies is used to correct the MC simula-
tion templates and extract the cross sections using Eq. (3).
The standard deviation of the resulting distribution is taken
as a systematic uncertainty for each charge and |η| bin. The
statistical uncertainties between the two charges and all η–
pT bins are uncorrelated. Second, the offline muon selection
efficiency scale factors are varied by ±0.5 % coherently for
both charges and all bins. The trigger selection efficiency
scale factors are varied by ±0.2 %, assuming no correlations
between the η bins, but +100 % correlations between the
charges and pT bins. The above systematic variations take
into account uncertainties associated with the tag-and-probe
technique and are assessed by varying signal and background
dimuon mass shapes, levels of background, and dimuon mass
range and binning used in the fits. Finally, an additional
±100 % correlated variation is applied based on the bin-by-
bin difference between the true and measured efficiencies in
the Z/γ ∗ → μ+μ− MC sample. This difference changes
gradually from about 0.5 % in the first bin to about −2 % in
the last bin. This contribution is the main source of negative
correlations in the systematic uncertainties between the cen-
tral and high rapidity bins. The total systematic uncertainty
in the efficiency is obtained by adding up the four covariance
matrices corresponding to the above variations.

A possible mismeasurement of the charge of the muon
could lead to a bias in the observed asymmetry between the
W+ and W− event rates. The muon charge misidentification
rate has been studied in detail and was found to be negligible
(10−5) [7].

The muon momentum correction affects the yields and the
shapes of the E/T distributions in both data and MC simulation.
To estimate the systematic uncertainty, the muon correction
parameters in each η–φ bin and overall scale are varied within
their uncertainties. The standard deviation of the resulting
cross section distribution for each charge and muon |η| bin
is taken as the systematic uncertainty and the corresponding
correlations are calculated. Finite detector resolution effects,
which result in the migration of events around the pT thresh-
old and between |η| bins, have been studied with the signal
MC sample and found to have a negligible impact on the
measured cross sections and asymmetries.

There are two sources of systematic uncertainties associ-
ated with the QCD background estimate. One is the uncer-
tainty in the ratio of QCD background events in the W+ and
W− samples (RQCD

± ). Whereas the total QCD normalization

is one of the free parameters in the fit, RQCD
± is constrained to

|ηMuon |
0 0.5 1 1.5 2

- (
Q

C
D

)
μ

+/μ

0.8

0.9

1

1.1

1.2

Data : Background Control Region
QCD MC : Background Control Region

- (QCD) during fitsμ+/μData : On floating 
QCD MC : Signal Region
5% Uncertainty band

 = 8 TeVs at -1CMS, L = 18.8 fb

Fig. 2 Distribution of RQCD
± in QCD control region for data (solid

circles), QCD control region for simulation (solid squares), and sig-
nal region for simulation (open squares). Open circles show the
RQCD

± distribution when QCD contributions in W+ and W− events are
not constrained. Shaded area indicates assigned systematic uncertainty

the value observed in the QCD control sample, which varies
within 3 % of unity depending on the |η| bin. The corre-
sponding systematic uncertainty is evaluated by changing it
by ±5 % in each |η| bin. This variation covers the maxi-
mum deviations indicated by the QCD MC simulation, as
indicated in Fig. 2. The resulting systematic uncertainties
are assumed to be uncorrelated between the |η| bins. Addi-
tionally, to take into account possible bias in this ratio due
to different flavor composition in the signal and QCD con-
trol regions, the average difference of this ratio between the
signal and QCD control regions is evaluated using the QCD
MC simulation. This difference of about 3 % is taken as an
additional 100 %-correlated systematic uncertainty in RQCD

± .
As a check, using the same shape for the QCD background
in μ+ and μ− events, its normalization is allowed to float
independently for the two charges. The resulting values of
RQCD

± are covered by the above systematic uncertainties.
The other component of systematic uncertainty, associ-

ated with the QCD background, is the E/T shape. To estimate
the systematic uncertainty in modeling the shape of the E/T
distributions in QCD events, additional fits are performed
using the E/T distributions without the hadronic recoil cor-
rections and the pT-dependent scale factors; this results in
a variation of about 2 % in the average E/T resolution. The
resulting shifts in the extracted cross section values in each
|η| bin are taken as systematic uncertainties. The correlations
between the |η| bins and the two charges are assumed to be
100 %.

The normalization of the Z/γ ∗ → μ+μ− background
in the signal region is corrected with mass-dependent scale
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factors that match the dimuon mass distribution in MC sim-
ulation with data. The systematic uncertainty is the differ-
ence between the cross sections calculated with and without
applying these corrections to the DY background normaliza-
tions. An uncertainty of 7 % is assigned to the tt theoretical
cross section [30], which is used to normalize the tt back-
ground to the integrated luminosity of the data sample. In
the fits, the W± → τ±ν background is normalized to the
W± → μ±ν yields in data with a ratio obtained from the sim-
ulation. A ±2 % uncertainty is assigned to the W± → τ±ν

to W± → μ±ν ratio [31]. Each of the above variations is
assumed to be fully correlated for the different bins and the
two charges.

There are several sources of systematic uncertainty that
affect the E/T shapes. The systematic uncertainty associated
with the φ modulation of �pmiss

T is small and is evaluated
by removing the corresponding correction to �pmiss

T . A 5 %
uncertainty is assigned to the minimum bias cross section
used to calculate the expected pileup distribution in data. To
improve the agreement between data and simulation, the W
boson pT spectrum is weighted using factors determined by
the ratios of the pT distributions in Z/γ ∗ → μ+μ− events
in data and MC simulation. The difference in measured cross
sections with and without this correction is taken as a sys-
tematic uncertainty. Each of the sources above are assumed
to be fully correlated between the two charges and differ-
ent bins. Systematic uncertainties associated with the recoil
corrections are evaluated by varying the average recoil and
resolution parameters within their uncertainties. The stan-
dard deviation of the resulting cross section distribution is
taken as the systematic uncertainty and correlations between
the two charges and different bins are calculated.

The emission of FSR photons tends, on average, to reduce
the muon pT. The observed post-FSR cross sections within
the pT acceptance are corrected using the ε±

FSR factors derived
from the signal MC sample. The difference between the pT

spectra of positive and negative muons results in smaller
charge asymmetries after FSR compared with those before
FSR within the same pT > 25 GeV acceptance. These differ-
ences, which vary between 0.07 and 0.11 % depending on the
|η| bin, are corrected by the charge-dependent ε±

FSR efficiency
factors. The systematic uncertainty in the FSR modeling is
estimated by reweighting events with radiated photons with
correction factors that account for missing electroweak cor-
rections in the parton shower [32,33]. The ε±

FSR correction
factors are reevaluated after such reweighting, and the differ-
ence between the cross sections, calculated with the new and
default ε±

FSR values, is taken as a systematic uncertainty. The
correlations between the two charges and different |η| bins
are assumed to be 100 %. The effects of migration between
the |η| bins due to final-state photon emission have been
evaluated with the signal MC sample and are found to be
negligible.

The PDF uncertainties are evaluated by using the NLO
MSTW2008 [34], CT10 [18], and NNPDF2.1 [35] PDF sets.
All simulated events are weighted according to a given PDF
set, varying both the template normalizations and shapes. For
CT10 and MSTW2008 PDFs, asymmetric master equations
are used [18,34]. For the NNPDF2.1 PDF set, the standard
deviation of the extracted cross section distributions is taken
as a systematic uncertainty. For the CT10, the 90 % confi-
dence level (CL) uncertainty is rescaled to 68 % CL using
a factor of 1.645. The half-width of the total envelope of
all three PDF uncertainty bands is taken as the PDF uncer-
tainty. The CT10 error set is used to estimate the correlations
between the two charges and different |η| bins.

Finally, a ±2.6 % uncertainty [36] is assigned to the inte-
grated luminosity of the data sample. The luminosity uncer-
tainty is fully correlated between the |η| bins and two charges.
Therefore, this uncertainty cancels in the measured charge
asymmetries. The uncertainty in the normalization of the
electroweak backgrounds due to the luminosity uncertainty
has a negligible impact on the measurements.

Table 2 summarizes the systematic uncertainties in the
measured cross sections and asymmetries. For comparison,
the statistical and luminosity uncertainties are also shown.
The uncertainty in the integrated luminosity dominates the
total uncertainties in the measured cross sections, while the
uncertainty in the QCD background estimation dominates
the uncertainties in the charge asymmetries. The uncertain-
ties for the muon charge asymmetries are calculated from
those in the differential cross sections, taking into account
the correlations between the two charges.

The correlations in the systematic uncertainty between the
charges and different |η| bins are shown in Table 3. The full
22×22 correlation matrix C is split into four 11×11 blocks
as

C =
[
C++ C+−
CT+− C−−

]
, (4)

where the C++ and C−− matrices represent the bin-to-
bin correlations of systematic uncertainties in σ+

η and σ−
η ,

respectively, and C+− describes the correlations between
the two charges. To construct the total covariance matrix,
the covariance matrix of the systematic uncertainties should
be added to those of the statistical and integrated luminosity
uncertainties. The latter are fully correlated between the two
charges and |η| bins. For the statistical uncertainties bin-to-
bin correlations are zero; the correlations between the two
charges are shown in Table 1.

7 Results

The measured cross sections and charge asymmetries are
summarized in Table 4 and displayed in Fig. 3. The error bars
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Table 2 Systematic uncertainties in cross sections (δσ±
η ) and charge asymmetry (δA) for each |η| bin. The statistical and integrated luminosity

uncertainties are also shown for comparison. A detailed description of each systematic uncertainty is given in the text

|η| bin 0.0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1.0 1.0–1.2 1.2–1.4 1.4–1.6 1.6–1.85 1.85–2.1 2.1–2.4

δσ+
η (pb)

Efficiency 5.5 7.0 6.3 6.2 6.6 4.5 4.3 4.3 5.3 6.9 17.7

Muon scale 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.4

QCD +/− 1.1 1.1 1.1 1.1 1.1 1.1 1.2 1.3 1.2 1.0 0.7

QCD shape 2.0 1.9 2.0 2.0 1.9 1.9 2.0 2.3 2.1 1.5 1.0

EW+tt bkg 0.6 0.6 0.6 0.6 0.6 0.7 0.8 0.9 1.0 1.2 1.3

E/T shape 2.4 2.4 2.5 2.4 2.4 2.5 2.8 2.9 2.9 2.4 1.9

PDF 0.6 0.5 0.5 0.5 0.7 0.9 1.1 1.3 1.6 1.8 2.0

FSR 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.0 0.0

Total syst. 6.5 7.7 7.2 7.1 7.4 5.8 5.8 6.1 6.8 7.9 18.0

Int. lum. 19.3 19.5 19.5 19.6 19.8 19.9 20.1 20.1 20.2 20.0 19.5

Stat. 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.7

Total unc. 20.4 21.0 20.8 20.9 21.2 20.7 21.0 21.0 21.3 21.6 26.5

δσ−
η (pb)

Efficiency 4.3 5.5 4.8 4.6 4.4 3.2 2.9 2.8 3.4 4.0 10.1

Muon scale 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.3 0.3

QCD +/− 0.9 0.9 0.9 0.9 0.9 0.9 1.0 1.0 1.0 0.8 0.5

QCD shape 1.8 1.8 1.9 1.8 1.8 1.8 2.0 2.1 2.1 1.5 1.0

EW+tt bkg 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.8 0.9 1.1 1.2

E/T shape 2.2 2.2 2.3 2.2 2.3 2.4 2.5 2.8 2.7 2.3 1.7

PDF 0.6 0.6 0.5 0.5 0.7 0.8 1.1 1.2 1.5 1.6 1.9

FSR 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Total syst. 5.3 6.4 5.7 5.5 5.5 4.6 4.6 4.9 5.2 5.3 10.6

Int. lum. 14.8 14.8 14.7 14.5 14.3 13.9 13.6 13.2 12.7 12.1 11.4

Stat. 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Total unc. 15.7 16.1 15.8 15.5 15.3 14.7 14.3 14.1 13.7 13.2 15.6

δA × 100

Efficiency 0.06 0.07 0.06 0.06 0.09 0.09 0.10 0.09 0.09 0.08 0.14

Muon scale 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.03 0.03

QCD +/− 0.15 0.15 0.15 0.15 0.15 0.15 0.16 0.18 0.17 0.14 0.10

QCD shape 0.02 0.03 0.03 0.03 0.04 0.04 0.05 0.06 0.07 0.05 0.04

EW+tt bkg 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.05

E/T shape 0.03 0.04 0.04 0.04 0.05 0.06 0.06 0.09 0.09 0.09 0.07

PDF 0.03 0.02 0.02 0.02 0.02 0.03 0.04 0.05 0.05 0.09 0.08

FSR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

Total syst. 0.17 0.18 0.18 0.18 0.19 0.20 0.22 0.23 0.23 0.22 0.21

Stat. 0.06 0.06 0.06 0.06 0.06 0.07 0.07 0.07 0.06 0.06 0.07

Total unc. 0.18 0.19 0.19 0.19 0.20 0.21 0.23 0.24 0.24 0.23 0.22

of the measurements represent both statistical and system-
atic uncertainties, including the uncertainty in the integrated
luminosity. The measurements are compared with theoreti-
cal predictions based on several PDF sets. The predictions
are obtained using the fewz 3.1 [37] NNLO MC calculation
interfaced with CT10 [18], NNPDF3.0 [38], HERAPDF1.5

[39], MMHT2014 [40], and ABM12 [41] PDF sets. No elec-
troweak corrections are included in these calculations. The
error bars of the theoretical predictions represent the PDF
uncertainty, which is the dominant source of uncertainty in
these calculations. For the CT10, MMHT, HERA, and ABM
PDFs, the uncertainties are calculated with their eigenvec-
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Table 3 Correlation matrices of systematic uncertainties for σ±
η andA.

The statistical and integrated luminosity uncertainties are not included.
The full 22×22 correlation matrix for σ±

η is presented as four blocks of
11×11 matrices, as shown in Eq. (4). The C++ and C−− blocks on the

diagonal represent the bin-to-bin correlations of δσ+
η and δσ−

η , respec-

tively. The off-diagonal C+− and CT+− blocks describe the correlations
between the two charges. The values are expressed as percentages

|η| bin 0.0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1.0 1.0–1.2 1.2–1.4 1.4–1.6 1.6–1.85 1.85–2.1 2.1–2.4

Correlation matrix of systematic uncertainties in σ±
η

C++
0.00–0.20 100.0 90.3 91.3 91.2 90.2 81.8 69.4 63.3 32.9 6.1 −37.2

0.20–0.40 100.0 92.5 92.4 92.2 74.9 58.6 51.1 16.2 −11.8 −54.7

0.40–0.60 100.0 92.5 92.1 79.2 64.8 57.9 25.0 −2.8 −46.6

0.60–0.80 100.0 92.2 79.5 65.4 58.6 25.8 −1.9 −46.0

0.80–1.00 100.0 78.3 63.7 56.7 23.2 −4.5 −48.7

1.00–1.20 100.0 82.8 79.9 60.0 38.5 −3.9

1.20–1.40 100.0 85.6 74.8 58.4 20.5

1.40–1.60 100.0 79.8 65.6 30.0

1.60–1.85 100.0 86.6 64.5

1.85–2.10 100.0 83.8

2.10–2.40 100.0

C−−
0.00–0.20 100.0 91.1 92.1 91.9 91.2 81.8 64.8 65.6 38.5 19.0 −31.5

0.20–0.40 100.0 92.8 92.3 91.2 74.6 53.0 54.4 23.1 2.2 −48.8

0.40–0.60 100.0 92.8 92.1 80.1 61.2 62.5 33.3 12.8 −38.7

0.60–0.80 100.0 92.3 81.3 63.4 64.6 36.2 15.8 −35.9

0.80–1.00 100.0 82.5 65.4 66.8 39.0 18.6 −33.3

1.00–1.20 100.0 83.5 84.1 67.9 52.2 5.4

1.20–1.40 100.0 88.9 83.9 73.2 35.4

1.40–1.60 100.0 83.8 72.6 33.1

1.60–1.85 100.0 88.5 64.4

1.85–2.10 100.0 80.4

2.10–2.40 100.0

C+−
0.00–0.20 92.7 89.5 90.1 89.9 89.0 78.7 61.1 61.7 34.6 16.0 −32.9

0.20–0.40 88.9 94.4 90.7 90.1 88.8 71.2 49.0 50.1 18.8 −1.2 −50.5

0.40–0.60 90.0 91.7 93.6 90.9 89.9 76.0 55.9 56.9 27.4 7.6 −42.2

0.60–0.80 89.7 91.4 90.9 93.2 89.9 76.2 56.4 57.3 28.1 8.3 −41.6

0.80–1.00 88.8 91.3 90.5 90.4 92.0 74.9 54.6 55.7 25.9 5.9 −44.1

1.00–1.20 80.4 74.4 78.8 80.1 80.8 87.9 77.4 77.4 60.4 45.7 0.8

1.20–1.40 68.5 58.5 65.4 67.3 68.7 82.1 86.3 82.8 74.5 63.8 25.2

1.40–1.60 62.6 51.2 59.0 61.2 62.9 80.1 84.7 86.4 79.6 70.5 34.8

1.60–1.85 32.7 16.8 26.9 29.8 32.2 61.8 78.4 77.1 89.1 87.0 68.2

1.85–2.10 6.0 −11.4 −0.8 2.3 4.9 40.4 63.9 61.7 82.1 91.4 86.0

2.10–2.40 −36.9 −54.0 −44.2 −41.7 −39.3 −1.0 29.0 26.2 58.5 75.1 98.2

Correlation matrix of systematic uncertainties in A
0.00–0.20 100.0 27.2 27.4 26.8 24.8 26.7 24.3 27.0 26.1 25.0 19.7

0.20–0.40 100.0 27.8 27.2 24.5 27.3 24.1 28.9 27.8 28.1 22.5

0.40–0.60 100.0 28.3 27.4 28.6 27.0 29.9 29.5 28.0 21.4

0.60–0.80 100.0 29.3 29.0 29.1 30.6 30.9 28.7 22.2

0.80–1.00 100.0 29.7 32.8 32.0 33.0 28.4 20.7

1.00–1.20 100.0 31.2 33.6 34.3 31.9 25.4

1.20–1.40 100.0 34.2 36.8 30.6 25.1

1.40–1.60 100.0 39.1 37.4 31.0

1.60–1.85 100.0 38.6 33.3

1.85–2.10 100.0 42.0

2.10–2.40 100.0
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tor sets using asymmetric master equations where applica-
ble. For the NNPDF set the standard deviations over its 100
replicas are evaluated.

The numerical values of the predictions are also shown in
Table 4. We note that the previous lepton charge asymme-
tries measured by CMS at

√
s = 7 TeV have been included

in the global PDF fits for the NNPDF3.0, MMHT2014,
and ABM12 PDFs. The measured cross sections and charge
asymmetries are well described by all considered PDF sets
within their corresponding uncertainties.

8 QCD analysis

The muon charge asymmetry measurements at 8 TeV pre-
sented here are used in a QCD analysis at NNLO together
with the combined measurements of neutral- and charged-
current cross sections of deep inelastic electron(positron)-
proton scattering (DIS) at HERA [42]. The correlations of
the experimental uncertainties for the muon charge asymme-
try and for the inclusive DIS cross sections are taken into
account. The theoretical predictions are calculated at NLO
by using the mcfm 6.8 program [43,44], which is inter-
faced to applgrid 1.4.56 [45]. The NNLO corrections are
obtained by using k-factors, defined as ratios of the predic-
tions at NNLO to the ones at NLO, both calculated with the
fewz 3.1 [37] program, using NNLO CT10 [18] PDFs.

Version 1.1.1 of the open-source QCD fit framework
for PDF determination herafitter [46,47] is used with the
partons evolved by using the Dokshitzer–Gribov–Lipatov–
Altarelli–Parisi equations [48–53] at NNLO, as implemented
in the qcdnum 17- 00/06 program [54].

The Thorne–Roberts [34,55] general mass variable fla-
vor number scheme at NNLO is used for the treatment of
heavy-quark contributions with heavy-quark masses mc =
1.43 GeV and mb = 4.5 GeV. The renormalization and
factorization scales are set to Q, which denotes the four-
momentum transfer in case of the DIS data and the mass of
the W boson in case of the muon charge asymmetry, respec-
tively.

The strong coupling constant is set to αs(mZ) = 0.118.
The Q2 range of HERA data is restricted to Q2 ≥ Q2

min =
3.5 GeV2 to assure the applicability of perturbative QCD over
the kinematic range of the fit.

The procedure for the determination of the PDFs follows
the approach used in the analysis in Ref. [11]. The parame-
terised PDFs are the gluon distribution, xg, the valence quark
distributions, xuv , xdv , and the u-type and d-type anti-quark
distributions, xU , xD. At the initial scale of the QCD evo-
lution Q2

0 = 1.9 GeV2, the PDFs are parametrized as:

xg(x) = Agx
Bg (1 − x)Cg (1 + Dgx), (5)

xuv(x) = Auv x
Buv (1 − x)Cuv (1 + Euv x

2), (6)

xdv(x) = Adv x
Bdv (1 − x)Cdv , (7)

xU (x) = AU x
BU (1 − x)CU (1 + EU x

2), (8)

xD(x) = ADx
BD (1 − x)CD , (9)

with the relations xU = xu and xD = xd + xs assumed.
The normalization parameters Auv , Adv , and Ag are deter-

mined by the QCD sum rules, the B parameter is responsi-
ble for small-x behavior of the PDFs, and the parameter C
describes the shape of the distribution as x → 1. Additional
constraints BU = BD and AU = AD(1 − fs) are imposed
with fs being the strangeness fraction, fs = s/(d+ s), which
is fixed to fs = 0.31 ± 0.08 as in Ref. [34], consistent with
the determination of the strangeness fraction by using the
CMS measurements of W + charm production [11]. The χ2

definition in the QCD analysis follows that of Eq. (32) of [42]
without the logarithmic term. The parameters in Eqs. (5)–(9)
were selected by first fitting with all D and E parameters set
to zero. The other parameters were then included in the fit one
at a time independently. The improvement of the χ2 of the fits
was monitored and the procedure was stopped when no fur-
ther improvement was observed. This led to a 13-parameter
fit.

The PDF uncertainties are estimated according to the gen-
eral approach ofHERAPDF1.0 [56] in which the experimen-
tal, model, and parametrization uncertainties are taken into
account. A tolerance criterion of �χ2 = 1 is adopted for
defining the experimental uncertainties that originate from
the measurements included in the analysis.

Model uncertainties arise from the variations in the values
assumed for the heavy-quark masses mb, mc with 4.25 ≤
mb ≤ 4.75 GeV, 1.37 ≤ mc ≤ 1.49 GeV, following
Ref. [42], and the value of Q2

min imposed on the HERA data,
which is varied in the interval 2.5 ≤ Q2

min ≤ 5.0 GeV2. The
strangeness fraction fs is varied by its uncertainty.

The parametrization uncertainty is estimated by extend-
ing the functional form of all parton densities with additional
parameters. The uncertainty is constructed as an envelope
built from the maximal differences between the PDFs result-
ing from all the parametrization variations and the central
fit at each x value. The total PDF uncertainty is obtained by
adding experimental, model, and parametrization uncertain-
ties in quadrature. In the following, the quoted uncertainties
correspond to 68 % CL.

The global and partial χ2 values for the data sets used
are listed in Table 5, illustrating the consistency among the
data sets used. The somewhat high χ2/ndof values for the
combined DIS data are very similar to those observed in
Ref. [42], where they are investigated in detail.

In the kinematic range probed, the final combined HERA
DIS data currently provide the most significant constraints
on the valence distributions. By adding these muon charge
asymmetry measurements, the constraints can be signifi-
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Table 4 Summary of the measured differential cross sections σ±
η (pb)

and charge asymmetry A. The first uncertainty is statistical, the sec-
ond uncertainty is systematic, and the third is the integrated lumi-

nosity uncertainty. The theoretical predictions are obtained using the
fewz 3.1 [37] NNLO MC tool interfaced with five different PDF sets

|η| bin Measurement Theory

(± stat ± syst ± lumi) CT10 NNPDF3.0 MMHT2014 ABM12 HERAPDF1.5

σ+
η (pb)

0.00–0.20 743.7 ± 0.7 ± 6.5 ± 19.3 759.7+19.3
−25.1 740.5 ± 16.8 750.8+13.2

−10.8 764.2 ± 9.3 762.8+6.8
−7.8

0.20–0.40 749.5 ± 0.7 ± 7.7 ± 19.5 761.2+19.2
−24.9 740.8 ± 16.6 751.8+13.1

−10.6 766.0 ± 9.6 764.7+7.2
−7.8

0.40–0.60 751.9 ± 0.7 ± 7.2 ± 19.5 763.6+19.1
−24.6 743.5 ± 16.5 754.0+13.0

−10.3 769.4 ± 9.7 767.9+6.5
−6.6

0.60–0.80 755.0 ± 0.7 ± 7.1 ± 19.6 769.1+18.6
−23.8 746.9 ± 16.0 759.0+13.1

−10.1 773.8 ± 9.4 772.0+7.8
−7.2

0.80–1.00 761.9 ± 0.7 ± 7.4 ± 19.8 773.4+18.2
−22.8 750.7 ± 16.0 763.6+13.0

−9.8 780.0 ± 9.9 777.5+7.6
−6.4

1.00–1.20 766.0 ± 0.7 ± 5.8 ± 19.9 777.8+17.7
−22.1 756.5 ± 15.8 769.2+12.8

−9.8 784.9 ± 9.7 782.5+8.2
−6.8

1.20–1.40 774.4 ± 0.7 ± 5.8 ± 20.1 785.0+17.7
−21.5 760.9 ± 15.6 775.5+13.1

−10.5 791.5 ± 9.9 787.3+8.7
−6.8

1.40–1.60 774.6 ± 0.7 ± 6.1 ± 20.1 793.7+17.5
−20.8 768.5 ± 15.7 784.0+13.3

−11.3 799.7 ± 10.2 796.7+11.4
−9.5

1.60–1.85 776.4 ± 0.7 ± 6.8 ± 20.2 784.4+16.9
−19.5 761.3 ± 15.4 778.5+13.5

−12.4 792.4 ± 10.3 788.9+15.0
−11.5

1.85–2.10 771.1 ± 0.6 ± 7.9 ± 20.0 785.5+16.9
−18.8 762.2 ± 15.7 780.3+14.0

−14.0 791.6 ± 10.2 788.9+17.6
−11.4

2.10–2.40 748.3 ± 0.7 ± 18.0 ± 19.5 750.0+16.4
−17.7 730.1 ± 15.4 746.9+13.9

−14.6 755.6 ± 9.6 754.8+20.9
−12.3

σ−
η (pb)

0.00–0.20 569.0 ± 0.6 ± 5.3 ± 14.8 574.5+14.5
−20.2 562.2 ± 13.3 576.2+9.4

−10.1 580.2 ± 7.2 578.8+4.1
−7.6

0.20–0.40 568.9 ± 0.6 ± 6.4 ± 14.8 571.0+14.6
−20.1 559.6 ± 13.3 573.2+9.6

−10.3 577.4 ± 7.4 576.1+5.0
−8.1

0.40–0.60 564.1 ± 0.6 ± 5.7 ± 14.7 566.4+14.2
−19.3 555.6 ± 12.8 569.7+8.8

−9.3 572.6 ± 6.9 572.5+4.1
−7.2

0.60–0.80 556.1 ± 0.6 ± 5.5 ± 14.5 558.6+13.7
−18.3 547.5 ± 12.4 561.8+8.6

−8.9 565.9 ± 7.2 565.7+5.8
−8.0

0.80–1.00 549.6 ± 0.6 ± 5.5 ± 14.3 548.6+13.4
−17.3 538.8 ± 11.7 553.6+8.3

−8.3 557.9 ± 7.0 557.4+4.9
−7.0

1.00–1.20 535.7 ± 0.6 ± 4.6 ± 13.9 535.6+12.8
−16.0 526.6 ± 11.6 542.2+8.0

−8.1 544.2 ± 6.8 547.2+5.3
−7.0

1.20–1.40 521.4 ± 0.6 ± 4.6 ± 13.6 521.8+12.4
−14.9 512.4 ± 10.9 527.5+8.0

−8.2 530.9 ± 6.6 534.5+5.3
−7.0

1.40–1.60 508.3 ± 0.6 ± 4.9 ± 13.2 509.3+11.8
−13.9 500.6 ± 10.5 516.3+8.2

−8.4 519.3 ± 6.5 524.2+5.4
−6.7

1.60–1.85 487.7 ± 0.6 ± 5.2 ± 12.7 485.1+11.2
−12.6 478.1 ± 9.9 492.5+8.6

−8.8 494.6 ± 6.0 501.6+6.3
−6.6

1.85–2.10 466.6 ± 0.6 ± 5.3 ± 12.1 467.0+11.0
−11.7 459.9 ± 9.4 473.8+9.1

−9.4 475.1 ± 5.6 483.4+8.7
−7.3

2.10–2.40 439.8 ± 0.6 ± 10.6 ± 11.4 436.0+10.6
−11.1 431.0 ± 9.0 442.3+9.1

−9.4 442.0 ± 5.3 452.4+10.1
−6.6

A (%)

0.00–0.20 13.31 ± 0.06 ± 0.17 13.89+0.55
−0.57 13.68 ± 0.25 13.16+0.48

−0.30 13.69 ± 0.20 13.71+0.50
−0.43

0.20–0.40 13.70 ± 0.06 ± 0.18 14.28+0.56
−0.59 13.94 ± 0.23 13.48+0.49

−0.30 14.04 ± 0.20 14.07+0.51
−0.44

0.40–0.60 14.27 ± 0.06 ± 0.18 14.83+0.56
−0.60 14.47 ± 0.21 13.92+0.48

−0.30 14.66 ± 0.23 14.58+0.53
−0.45

0.60–0.80 15.18 ± 0.06 ± 0.18 15.85+0.55
−0.61 15.40 ± 0.19 14.93+0.49

−0.30 15.52 ± 0.21 15.42+0.54
−0.47

0.80–1.00 16.19 ± 0.06 ± 0.19 17.01+0.57
−0.64 16.44 ± 0.19 15.95+0.50

−0.31 16.59 ± 0.22 16.49+0.58
−0.50

1.00–1.20 17.69 ± 0.07 ± 0.20 18.44+0.55
−0.65 17.92 ± 0.19 17.31+0.51

−0.34 18.11 ± 0.21 17.69+0.58
−0.51

1.20–1.40 19.52 ± 0.07 ± 0.22 20.14+0.56
−0.67 19.52 ± 0.20 19.03+0.53

−0.38 19.70 ± 0.23 19.13+0.62
−0.54

1.40–1.60 20.75 ± 0.07 ± 0.23 21.82+0.56
−0.68 21.10 ± 0.21 20.59+0.55

−0.42 21.26 ± 0.23 20.63+0.60
−0.54

1.60–1.85 22.83 ± 0.06 ± 0.23 23.57+0.55
−0.68 22.84 ± 0.23 22.50+0.57

−0.48 23.14 ± 0.23 22.26+0.63
−0.55

1.85–2.10 24.61 ± 0.06 ± 0.22 25.43+0.54
−0.67 24.74 ± 0.25 24.44+0.57

−0.52 24.99 ± 0.24 24.01+0.69
−0.60

2.10–2.40 25.96 ± 0.07 ± 0.21 26.47+0.50
−0.62 25.75 ± 0.28 25.61+0.57

−0.55 26.19 ± 0.29 25.05+0.78
−0.67

cantly improved, as illustrated in Fig. 4 where the xu and
xd valence distributions are shown at the scale of m2

W, rel-
evant for the W boson production. The changes in shapes

and the reduction of the uncertainties of the valence quark
distributions with respect to those obtained with the HERA
data are clear.
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Fig. 3 Comparison of the measured cross sections (upper plot for σ+
η

and middle for σ−
η ) and asymmetries (lower plot) to NNLO predic-

tions calculated using the fewz 3.1 MC tool interfaced with different
PDF sets. The right column shows the ratios (differences) between the
theoretical predictions and the measured cross sections (asymmetries).

The smaller vertical error bars on the data points represent the sta-
tistical and systematic uncertainties. The full error bars include the
integrated luminosity uncertainty. The PDF uncertainty of each PDF
set is shown by a shaded (or hatched) band and corresponds to 68 %
CL

For direct comparison to the results of the earlier CMS
QCD analysis [11] based on the W asymmetry measured at√
s = 7 TeV and the subset of HERA DIS data [56], an alter-

native PDF fit is performed at NLO, following exactly the

data and model inputs of Ref. [11], but replacing the CMS
measurements at

√
s = 7 TeV by those at

√
s = 8 TeV.

Also, a combined QCD analysis of both CMS data sets is
performed. Very good agreement is observed between the
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Table 5 Partial χ2 per number of data points, ndp, and the global χ2 per
degrees of freedom, ndof, as obtained in the QCD analysis of HERA DIS
and the CMS muon charge asymmetry data. For HERA measurements,
the energy of the proton beam is listed for each data set, with electron
energy being Ee = 27.5 GeV

Data sets Partial χ2/ndp

HERA1+2 neutral current, e+p, Ep = 920 GeV 440/377

HERA1+2 neutral current, e+p, Ep = 820 GeV 69/70

HERA1+2 neutral current, e+p, Ep = 575 GeV 214/254

HERA1+2 neutral current, e+p, Ep = 460 GeV 210/204

HERA1+2 neutral current, e−p, Ep = 920 GeV 218/159

HERA1+2 charged current, e+p, Ep = 920 GeV 46/39

HERA1+2 charged current, e−p, Ep = 920 GeV 50/42

Correlated χ2 of HERA1+2 data 141

CMS W± muon charge asymmetry A(ημ),√
s = 8 TeV

3/11

Global χ2/ndof 1391/1143

CMS measurements of W asymmetry at
√
s = 7 TeV and√

s = 8 TeV and a similar effect on the central values of
the PDFs as reported in Ref. [11]. Compared to the PDFs
obtained with HERA only data, the improvement of the pre-
cision in the valence quark distributions is more pronounced,
when the measurements at

√
s = 8 TeV are used compared

to the results of Ref. [11]. Due to somewhat lower Bjorken x
probed by the measurements at 8 TeV, as compared to 7 TeV,
the two data sets are complementary and should both be used
in the future global QCD analyses.

9 Summary

In summary, we have measured the differential cross sec-
tion and charge asymmetry of the W± → μ±ν produc-
tion in pp collisions at

√
s = 8 TeV using a data sample

corresponding to an integrated luminosity of 18.8 fb−1 col-
lected with the CMS detector at the LHC. The measure-
ments were performed in 11 bins of absolute muon pseu-
dorapidity |η| for muons with pT > 25 GeV. The results
have been incorporated into a QCD analysis at next-to-next-
to-leading-order together with the inclusive deep inelastic
scattering data from HERA. A significant improvement in
the accuracy of the valence quark distributions is observed
in the range 10−3 < x < 10−1, demonstrating the power of
these muon charge asymmetry measurements to improve the
main constraints on the valence distributions imposed by the
HERA data, in the kinematics range probed. This strongly
suggests the use of these measurements in future PDF
determinations.
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Fig. 4 Distributions of u valence (left) and d valence (right) quarks
as functions of x at the scale Q2 = m2

W. The results of the fit to the
HERA data and muon asymmetry measurements (light shaded band),
and to HERA data only (hatched band) are compared. The total PDF

uncertainties are shown. In the bottom panels the distributions are nor-
malized to 1 for a direct comparison of the uncertainties. The change
of the PDFs with respect to the HERA-only fit is represented by a solid
line
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