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Abstract Avalanche activity is an important factor when estimating the regional ava-

lanche danger. Moreover, a complete and detailed picture of avalanche activity is needed

to understand the processes that lead to natural avalanche release. Currently, information

on avalanche activity is mainly obtained through visual observations. However, this

involves large uncertainties in the number and release times, influencing the subsequent

analysis. Therefore, alternative methods for the remote detection of snow avalanches in

particular in non-observed areas are highly desirable. In this study, we use the excited

ground vibration to identify avalanches automatically. The specific seismic signature of

avalanches facilitates the objective detection by a recently developed classification pro-

cedure. A probabilistic description of the signals, called hidden Markov models, allows the

robust identification of corresponding signals in the continuous data stream. The procedure

is based upon learning a general background model from continuous seismic data. Then, a

single reference waveform is used to update an event-specific classifier. Thus, a minimum

amount of training data is required by constructing such a classifier on the fly. In this study,

we processed five days of continuous data recorded in the Swiss Alps during the avalanche

winter 1999. With the restriction of testing large wet-snow avalanches only, the presented

approach achieved very convincing results. We successfully detect avalanches over a large

volume and distance range. Ninety-two percentage of all detections (43 out of 47) could be

confirmed as avalanche events; only four false alarms are reported. We see a clear

dependence of recognition capability on run-out distance and source–receiver distance of

the observed events: Avalanches are detectable up to a source-receiver distance of eight

times the avalanche length. Implications for analyzing a more comprehensive data set

(smaller events and different flow regimes) are discussed in detail.
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1 Introduction

Detailed information on avalanche activity, i.e., the number and volume of snow ava-

lanches within a specific time and area, is a crucial aspect in a variety of different research

areas (e.g., Marienthal et al. 2015; Graveline and Germain 2016). The investigation of

potential trigger mechanisms (e.g., Schweizer et al. 2003; Lacroix et al. 2012; Pérez-

Guillén et al. 2014), the identification of possible precursors (e.g., Van Herwijnen and

Schweizer 2011b; Reiweger and Schweizer 2013; Reiweger et al. 2015) or the determi-

nation of return periods (Schweizer et al. 2009) requires a reliable and complete recog-

nition of avalanche events. The reliable identification is also needed at avalanche control

sites to measure the effectiveness of the artificial triggering by explosions (Schweizer and

van Herwijnen 2013). Moreover, the seismic detection of snow avalanche signals can serve

to remove them as ’’noise,’’ masking other potentially important seismic signals of interest

such as earthquakes or man-made explosions (Horasan et al. 2009). Therefore, the remote

detection of snow avalanches in particular in non-observed areas is highly desirable.

However, most catalogs of snow avalanches are based on visual observations. These

catalogs are often incomplete due to a lack of data during low-visibility conditions and

have a poor time resolution (Laternser and Schneebeli 2002). Thus, any reliable correlation

with potential precursors, trigger mechanisms or meteorological parameters is hardly to

find.

Moreover, in alpine regions the reliable recognition of avalanche activity is important

for estimating the current avalanche danger. Besides snow pack (e.g., Stoffel et al. 1998;

McClung and Schaerer 2006) and (with minor importance) weather (e.g., Ancey et al.

2003; Schweizer et al. 2008; Lacroix et al. 2012) conditions, avalanches are one of the key

input parameters for avalanche forecasting. Schweizer and van Herwijnen (2013) showed

that the waiting time between avalanches clearly decreases toward peak avalanche activity,

suggesting that an early warning based on accurate and near-real-time avalanche activity is

possible. However, avalanches occurring at higher altitudes or during nighttimes may go

unnoticed for days or weeks by traditional observation techniques. A large number of

missed events due to a lack of observations and/or the subjective interpretation of the

observer (e.g., regarding the time of avalanche release) affect a correct hazard estimate.

Thus, a prerequisite for applying an operational early warning tool is the robust automatic

signal detection.

In the past, the identification of snow avalanches has been carried out on a variety of

different signal types. Due to regular measurements and the good coverage of satellites,

remote sensing enables a comprehensive monitoring of snow avalanches across different

spatial scales. Eckerstorfer et al. (2016) give a detailed overview on available remote

sensing techniques including respective advantages and limitations. To give but one

example, remote sensing photography enables the assessment of avalanche activity with

high spatial resolution (Lato et al. 2012). However, its applicability strongly depends on

visibility. Recently, Prokop et al. (2013) proposed distributed acoustic fiber optic systems

to detect small-sized snow avalanches. In other studies, infrasound has been used to

identify snow avalanches (Scott et al. 2006; Ulivieri et al. 2011; Kogelnig et al. 2011b).
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Thüring et al. (2015) successfully apply a support vector machine approach to automati-

cally separate noise from small avalanche events in infrasound data.

Besides the described approaches, also the excited ground vibration can be used to

identify gravitational mass movements such as debris flows and avalanches (e.g., Leprettre

et al. 1998; Marchi et al. 2002; Suriñach et al. 2005; Vilajosana et al. 2008; Deparis et al.

2008; Van Herwijnen et al. 2014). Avalanches are characterized by specific seismic sig-

nals (Suriñach et al. 2000; Biescas et al. 2003). Van Herwijnen and Schweizer (2011a)

reported that many more avalanches can be detected by seismic monitoring than by visual

observation with cameras. However, the manual detection on seismic traces is not feasible

since it is extremely costly in terms of time and workload. Setting up an automatic

procedure results in a reduced manual workload, and consistent and time-invariant results

could be provided for further processing. Moreover, without quasi-real-time automatic

avalanche detection, seismic monitoring can hardly be used for operational avalanche

forecasting. The seismic detection in real or quasi-real time of snow avalanches would

allow timely warnings given to people and would reduce the associated risk.

The use of seismic devices in alpine warning systems is a challenging task (Arattano

1999). Other events such as earthquakes, quarry blasts or man-made noises must be

rejected. An approach of progressive elimination of non-avalanche signals is suggested by

Leprettre et al. (1996) and further developed by Navarre et al. (2009). Their fuzzy logic

rules, defined to see whether a signal was generated by an avalanche event, are based on

manual analysis. Hence, a costly preparation of the system is required beforehand. Other

systems that are able to automatically detect mass movements such as avalanches, rockfalls

or debris flows in an objective way show unsatisfactory results (e.g., Bessason et al. 2007;

Arattano and Marchi 2008; Rubin et al. 2012). Bessason et al. (2007) compared observed

events (i.e., avalanches, rockfalls, debris flows and earthquakes) to an existing database of

more than 300 events using an nearest neighbor approach. However, not more than 74% of

all avalanches were identified correctly by the automatic system. Rubin et al. (2012) tested

ten different machine learning approaches. In contrast to Bessason et al. (2007), they could

detect most of the avalanches (about 90%), but the system reports a large number of false

alarms (precision of 13%). Thus, interesting events (i.e., avalanches, debris flows) cannot

be identified reliably in an automatic fashion based on their seismic signature resulting in a

large number of missed events and/or many false alarms. The reason for this is the clas-

sifier, learned from existing waveform samples. Most algorithms require large databases to

learn from existing waveform samples. The variability of waveforms, for instance with

regard to signal length or frequency content, is generally not captured by the classifier due

to a limited number of training events (e.g., Bessason et al. 2007). Especially for observing

rare events, this leads to a restricted system performance. Given the former, rather

unsatisfying results, there is considerable room for improvement which we begin to fill in

this study. The current application does not claim to provide a comprehensive solution but

a first step toward robust and complete automatic avalanche identification.

We use a classification procedure based on hidden Markov models (HMM) (Rabiner

1989) to automatically detect large, wet-snow avalanches. As described in similar appli-

cations by Hammer et al. (2012, 2013), the advantages are manyfold:

a. Interesting events can be detected automatically in the continuous seismic data stream.

b. Very rare and highly variable signals can be identified successfully.

c. A minimum workload is required to set up the detection and classification system.

d. Detection and classification is carried out in a single step, and no pre- or post-

processing is needed.
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The method has been tested successfully on a variety of applications, ranging from the

automatic identification of volcano seismic signals (Hammer et al. 2012) via the detection

of icequakes (Hammer et al. 2015) through to the classification of non-terrestrial signals

(Knapmeyer-Endrun and Hammer 2015).

In the next sections, we describe the seismic signature of avalanches followed by an

introduction of the analyzed data set. Following this, we explain the classifier and show

corresponding results. Finally, we discuss in detail the detection performance including

operational considerations.

2 Seismic signature of avalanches

The recorded seismic wavefield of avalanches is complex since the wavefield obtained at

the receiver is composed of many phase arrivals. This is due to the moving seismic source

and the topography that usually accompanies these phenomena. The seismic signature of

snow avalanches is well known and described in several publications (e.g., Suriñach et al.

2000; Biescas et al. 2003; Suriñach et al. 2005). Recently, Pérez-Guillén et al. (2016)

showed that different flow regimes cause different seismic signal characteristics. However,

independent of flow regime snow avalanches have a smoother beginning than local

earthquakes (Fig. 1). The sliding mass is responsible for the characteristic seismic signal.

Correspondingly, other mass movements, such as landslides or debris flows, show similar

characteristics (Suriñach et al. 2005; Kogelnig et al. 2011a). The material propagation

down slope produces a ground vibration. The force transmitted to the ground increases

with increasing energy of the avalanche, which depends on its mass and velocity. Any

mass increase is converted into an increase in the net force applied to the ground (Suriñach

et al. 2005). Therefore, the entrainment of snow during an avalanche release generates

signals which increase in amplitude as the mass increases. This characteristic also affects

the onset detection. The onset of the seismic signal does not correspond to the avalanche

onset, as first a given amount of snow is necessary to generate enough seismic energy to be

detected by the sensors (Suriñach et al. 2001). The entrainment of snow also influences the

temperature and the humidity of the flowing mass so that the flow regime may change from

dry to a denser granular flow (Steinkogler et al. 2014). Different wave trains are due to

Fig. 1 Waveforms (top) and spectrograms (bottom) of avalanche (a) and local earthquake signal
(b) recorded at station LLS in the Swiss Alps. The avalanche signal corresponds to event no. 2 in Table 1.
Data are bandpass filtered between 1.0 and 30.0 Hz. Window length of fft is 10 s. Note the different time
scales in plot (a, b)
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slope changes, interactions with obstacles such as trees or ski lifts and the stopping phase

of the avalanche (e.g., Sabot et al. 1998; Suriñach et al. 2000, 2001). Large amplitude

peaks in the signal tail are probably related to abrupt mass depositions once the avalanche

flow stops suddenly (Pérez-Guillén et al. 2016).

In addition to waveform analysis, the spectral analysis of snow avalanche seismic

signals provides several benefits. The overall frequency content can be used to discriminate

different avalanche flow regimes (Pérez-Guillén et al. 2016). While wet-snow avalanches

generate higher frequencies, powder-snow avalanches are characterized by a lower-fre-

quency content. The difference lies in the distinct flow dynamics. In dense wet-snow

avalanches, rapid density and pressure fluctuations generate high-frequency vibrations. In

comparison, the low-frequency signals of powder-snow avalanches are due to turbulences

in the energetic part of the mass flow (Pérez-Guillén et al. (2016). Independent of flow

regime, the spectrograms of avalanches and earthquakes show clear differences (Fig. 1).

Snow avalanches are characterized by an increase in frequency content and show a tri-

angular spectrogram (e.g., Suriñach et al. 2001, 2005) which cannot be explained with the

Doppler effect (Biescas et al. 2003). The characteristic shape results from a combination of

different factors: first, from the frequency-dependent anelastic attenuation of the seismic

waves (Suriñach et al. 2005). High frequencies attenuate faster than low frequencies.

Therefore, the frequency content increases when the source–receiver distance decreases,

i.e., when the avalanche moves toward the recording sensor. The frequency content

decreases again after passing the sensor. However, this holds only for the specific case if

the receiver is in or at least close to the avalanche path. In addition, the entrainment of

snow shapes the spectrogram. The mass increase during the sliding process induces an

amplitude increase at all frequencies (Suriñach et al. 2005). Similar observations have

been reported for rockfalls and landslides (Suriñach et al. 2005; Jolly et al. 2002). This

unique triangular shape unlike many other sources of seismic events in the Swiss Alps

(e.g., earthquakes, quarry blasts) suggests that automatic detection and classification is

possible. The presented classification approach makes use of this characteristic pattern and

successfully detected other mass movements, such as rockfalls, with detection rates of

up to 98% (Hammer et al. 2012, 2013; Dammeier et al. 2016).

3 Data set

In this study, we concentrate on the automatic detection of wet-snow avalanches in the

Swiss Alps. We processed five days of data recorded during the avalanche winter in 1999

when more than 1300 destructive avalanches took place. We picked this extreme data set to

test and tune the new approach extensively for a period of frequent avalanche release. Any

implications following the data selection are discussed in the last section. In the following,

only a brief overview is given. A detailed description of the avalanche winter is given in

Wilhelm et al. (2000). Due to three orographic lifts, three precipitation periods brought

large amounts of snow in the Swiss Alps between January 27 and February 25. During

these 30 days, the amount of new snow was more than 5 m with most of the snow on the

northern flanks of the Alps. The longest precipitation period between February 17 and 25

exhibited the most widespread and longest avalanche cycle known and recorded. The

combination of intense snowfalls, strong winds which further accumulated drifted snow

and a rising air temperature led to the most intense avalanche activity between February 20

and 23.
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In light of the above, we processed five days of continuous data recorded between

February 20 and 24. The data were recorded at a broadband station operated by the Swiss

Seismological Service (SED). The station Linth–Limmern (LLS) is part of the Swiss

Seismological Network and is located on the northern flanks of the Alps in the Canton of

Glarus (Fig. 2). Data are recorded with a Streckeisen STS2 broadband sensor and are

sampled with a frequency of 120 Hz.

The reference for all avalanches is the avalanche database maintained by the WSL

Institute for Snow and Avalanche Research SLF. The database is compiled based on

observations. Given this context, not all avalanches are given with an exact release time.

Uncertainties up to several hours exist, and for some only the day of release is known. In

addition, there might be several missing events. For our study, we considered avalanches

within a radius of 30 km around station LLS as test data set. Within this distance range, 19

avalanches are listed with an exact release time. We call these timed avalanches part A of

the data set. In addition, 41 avalanches are listed without an exact release time. We call

these undetermined events part B of the data set. All events are shown in Fig. 2 and

described in Table 1. The avalanche length (the descended path or run-out) ranges from

1170 to 3470 m. That means in terms of the classification scheme proposed by Greene

et al. (2010), we deal with avalanche events of size 3, 4 and 5. We estimated the duration

of the avalanches as the length of the generated seismic signal recorded at station LLS. The

beginning of the signal is defined at the instant when the amplitude starts to stand out from

the background noise. Similarly, the end of the signal is defined at the instant when the

amplitude is lost in the background noise. Therewith, we obtained signal durations from 43

to 244 seconds. Signals, for which no duration is given in Table 1, are not visible in the

seismic data recorded at station LLS (Fig. 3). The data set comprises wet avalanches only.

Example waveforms are shown in Fig. 4. Avalanche (a) is released at a distance of

11.9 km and a backazimuth of 56� from station LLS. In contrast, avalanche (b) is released

at a distance of 19.8 km and a backazimuth of 320� from station LLS. Although recorded

at different distances and backazimuths, both signals show the typical waveform. The

triangular shape of the spectrogram is also present at both signals but much flatter at the

Fig. 2 Location of station LLS in the Alps. The station is indicated by the red triangle. The circle shows a
radius of 30 km around station LLS. Confirmed snow avalanche events that occurred within the given radius
between February 20 and 24 are shown. The numbers correspond to avalanche numbers in Table 1.
Classification results are color coded:\blue[ detected,\yellow[ non-detected
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Table 1 Snow avalanches given in the SLF database occurred within a radius of 30 km around station LLS
between February 20 and 24. Known avalanche locations are shown in Fig. 2. Signals, for which no duration
is given, are manually not detectable in the seismic data recorded at station LLS

No Potential release time
(UTC)

Source–receiver
distance (km)

Duration
(sec)

Run-out
distance (m)

RD
factor

Detected

Part A, avalanches with exact release time

1 02.20.1999, 01:00 16.4 45 2500 0.152 Yes

2 02.20.1999, 03:20 4.7 111 2130 0.457 Yes

3 02.20.1999, 07:30 11.5 103 2650 0.230 Yes

4 02.20.1999, 09:30 23.6 – 1900 0.081 No

5 02.20.1999, 10:50 24.6 – 1230 0.050 No

6 02.20.1999, 14:55 18.6 51 2330 0.125 Yes

7 02.20.1999, 17:00 18.8 – 2100 0.112 No

8 02.21.1999, 00:30 14.4 – 1750 0.121 No

9 02.21.1999, 08:00 2.9 202 3300 1.148 Yes

10 02.21.1999, 17:30 11.9 52 3130 0.262 Yes

11 02.21.1999, 20:45 15.7 114 2930 0.187 Yes

12 02.21.1999, 21:30 13.6 244 2320 0.171 Yes

13 02.22.1999, 10:30 25.6 – 1800 0.070 No

14 02.22.1999, 15:45 18.2 69 2050 0.113 Yes

15 02.22.1999, 18:45 19.8 43 2870 0.145 Yes

16 02.23.1999, 06:30 23.7 92 2850 0.120 Yes

17 02.23.1999, 11:50 9.5 52 3470 0.365 Yes

18 02.24.1999, 00:00 7.8 58 1680 0.216 Yes

19 02.24.1999, 00:10 8.1 62 1520 0.188 Yes

Part B, avalanches without exact release time

20 02.20.1999 18.8 2330 0.124

21 02.20.1999 7.6 1250 0.165

22 02.20.1999 18.5 1830 0.099

23 02.20.1999 18.7 1530 0.082

24 02.20.1999 18.8 1450 0.077

25 02.20.1999 28.2 2302 0.082

26 02.20.1999 29.0 2800 0.097

27 02.20.1999 29.4 2000 0.068

28 02.20.1999 30.3 1170 0.039

29 02.21.1999 11.3 3180 0.281

30 02.21.1999 27.4 2700 0.098

31 02.21.1999 27.5 1270 0.046

32 02.21.1999 28.3 1260 0.045

33 02.21.1999 28.5 1480 0.052

34 02.21.1999 29.8 2300 0.077

35 02.22.1999 20.3 2150 0.106

36 02.22.1999 25.0 1360 0.054

37 02.22.1999 10.1 3400 0.336

38 02.22.1999 13.1 2100 0.160

39 02.22.1999 16.3 2839 0.174
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more distant one. Due to large source–receiver distances, the triangular spectral shape

cannot be caused by anelastic attenuation as described in the previous section. Instead,

solely the entrainment of snow seems to provoke this characteristic shape.

4 Methods

Most of the proposed methods for automatic seismic detection of snow avalanches suffer

from an inappropriate classifier. Often, the variability inherent in each signal class is not

captured by the corresponding classifier. This leads to a large number of false alarms and/

or missed events (e.g., Bessason et al. 2007; Rubin et al. 2012). To overcome this problem,

we will use a novel automatic event spotting procedure based on HMMs. The proposed

technique was developed for the volcanic task force action where a robust system that can

be set up quickly is of great importance (Hammer et al. 2012). In the following, we give

only a very brief description of the used approach. A detailed description is given in

Hammer et al. (2012) and Hammer et al. (2013) for the detection of volcanic signals,

quarry blasts and earthquakes. We keep the basic procedure presented in those former

studies for the current application. Only the window length for feature computation is

adjusted as explained below.

The classification approach is not based on the seismic waveform directly but on

specific attributes extracted from the continuous waveform. Hence, the raw waveform is

Table 1 continued

No Potential release time
(UTC)

Source–receiver
distance (km)

Duration
(sec)

Run-out
distance (m)

RD
factor

Detected

40 02.22.1999 18.8 2530 0.135

41 02.22.1999 19.3 1600 0.083

42 02.22.1999 20.7 1200 0.058

43 02.22.1999 21.4 1430 0.067

44 02.22.1999 26.9 2300 0.085

45 02.22.1999 27.6 1500 0.054

46 02.22.1999 27.7 2500 0.090

47 02.22.1999 28.3 1500 0.053

48 02.22.1999 29.0 3000 0.103

49 02.23.1999 28.9 2960 0.102

50 02.23.1999 24.5 1300 0.053

51 02.23.1999 25.9 1630 0.063

52 02.23.1999 26.0 1580 0.061

53 02.23.1999 27.4 1700 0.062

54 02.23.1999 29.5 1300 0.044

55 02.23.1999 29.8 2300 0.077

56 02.24.1999 18.0 2700 0.150

57 02.24.1999 7.4 2130 0.290

58 02.24.1999 12.3 1750 0.142

59 02.24.1999 24.4 1970 0.081

60 02.24.1999 29.2 3500 0.120
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replaced by a sequence of feature vectors (i.e., short-term wavefield attributes). In that way,

redundant information diminishes and the waveforms are reduced to the substantial

information which is relevant for discriminating different seismic signal classes. Then, for

each signal class of interest a HMM is constructed from available training data. That

means, the feature pattern, characteristic for a specific signal class, is modeled by a

sequence of Gaussian probability distributions (Fig. 5). Using distributions rather than

fixed values allows for a certain variability of the typical event pattern. Within an event,

each distribution is active for a specific time interval. This duration is also given in a

probabilistic fashion, allowing the active interval to vary within a specific time range.

Thus, the signal can be compressed or stretched along the time axis. The approach is

illustrated in Fig. 5.

The parameters defining each HMM (i.e., means and variances of Gaussians as well as

residence time for each Gaussian) are learned from pre-classified training data. While the

classical learning approach requires a large amount of training data, here we use a training

procedure recently developed. The procedure is based upon learning a general background

model from a continuous seismic data stream. Then, a single reference waveform is used to

Fig. 3 Waveforms (top) and spectrograms (bottom) of avalanches not visible at station LLS. Signals
correspond to events no. 5 (a) and 7 (b) in Table 1. Data are bandpass filtered between 1.0 and 30.0 Hz.
Window length of fft is 5 s

Fig. 4 Waveforms (top) and spectrograms (bottom) of avalanches at different distances from the station
LLS. The source–receiver distance is (a) 11.9 km and (b) 19.8 km. Signals correspond to events no. 10
(a) and 15 (b) in Table 1. Data are bandpass filtered between 1.0 and 30.0 Hz. Window length of fft is 5 s
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update an event class-specific classifier. In that way, a minimum amount of training data is

required by constructing such a classifier on the fly while enabling the recognition of

highly variable time series. Sparse training data, which do not contain existing waveform

variability, lead to a restricted system performance for most classification methods. Our

algorithm overcomes this problem by enabling the reliable automatic detection of rare and

highly variable events.

In the current study, the description above translates to the following work procedure.

First a set of appropriate features is chosen to discriminate the seismic signal produced by

avalanches from other seismic sources such as earthquakes or ambient noise. Given the

triangular shape of the spectrogram, spectral attributes seem most appropriate for this task.

Thus, we extracted the energy in seven half-octave bands ranging from 1 to 15 Hz, the

central frequency, the instantaneous frequency, the instantaneous bandwidth, the first three

cepstral coefficients and the largest eigenvalue from corresponding events (a detailed

description of these features can be found in Hammer et al. (2012)). The window length for

feature computation is 256 samples (approximately 2.13 seconds), and the window is

shifted with a step size of 0.25 s over the continuous data stream. While window length is

the same as used before for detecting earthquakes and quarry blasts at SED stations, the

step size is much larger (Hammer et al. 2013). The long event duration of avalanches

compared to local earthquakes or quarry blasts allows to use much larger step sizes. As a

result, typical characteristics are preserved, while feature time series are much smoother.

After feature computation, a background model, which captures all non-interesting signals,

is constructed from four hours of continuous recording. Together with this general

wavefield description and an appropriate reference signal (Fig. 1a), an avalanche HMM is

then build immediately. In order to reduce the number of spurious detections, a minimum

Fig. 5 Sketch of the construction of an event HMM
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length of 10 s is required for a valid detection. All detections with a duration shorter than

10 s are rejected.

As noted by Biescas et al. (2003), we expect the detection capability to have a natural

limit which depends on the distance between seismometer and avalanche and the mass

involved. With increasing source–receiver distance, signals are attenuated at an increasing

rate and the larger the avalanche, the larger the net force that is applied to the ground. In

this study, we have no information on the size of considered avalanches. For that reason,

we use the run-out distance as a proxy for the avalanche size. We define the recognition

discriminant (RD)

RD ¼ run�out distance ½m�
source�receiver distance ½m� ð1Þ

to describe the dependency of recognition capability and avalanche parameters in detail. In

the next section, we analyze obtained results with regard to corresponding RD values.

5 Results

The defined test data set of avalanches is given in Table 1. In the radius of 30 km around

station LLS, 19 avalanches with exact release times are listed in the SLF database (part A

in Table 1). In addition, 41 avalanches are listed without an exact release time (part B in

Table 1).

Overall, 47 detections are reported by the automatic system (Fig. 6a). In order to

evaluate this result, the detections can be categorized in two groups: events that can be

matched with listed avalanches and those which cannot. Since the release times are known,

the detections can be only compared with part A of the data set. Fourteen detections

correspond to avalanche events in data set A (i.e., 14 out of 19 timed events are detected,

Fig. 6b). For the remaining 33 detections, no field observations are available. These signals

might either be among confirmed events with unknown release time (data set B in

Table 1), might belong to non-observed avalanches or might be false alarms. Considering

the specific seismic signature described in Sect. 4, we investigated these 33 detections in

detail. Twenty-nine out of 33 detections show the typical triangular shape of the

Fig. 6 Pie diagram of detections. a All detections given by the automatic system. Of these 30% correspond
to events given in the SLF database\blue[, 62% are validated by typical waveforms and spectrograms
\yellow[and 8% are false alarms\red[. b Avalanche events given in data set A. All avalanches showing
RD[ 0:122 (12 in number) are detected\blue[. Two avalanches with RD\0:122 are detected\yellow[.
Five avalanches with RD\0:122 are not detectable\red[
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spectrogram and the typical waveform. Some examples are given in Fig. 7. Based on our

manual analysis of spectrogram and waveform, we conclude that 29 detections correspond

to true avalanche releases. The remaining four detections cannot be confirmed to be

avalanches by the seismic waveform and/or the corresponding spectrogram (Fig. 8). All

four events are shorter than typical avalanche events. Especially, the events in Fig. 8a and

d do not show a triangular spectrogram, but a rather monochromatic frequency content.

Hence, we declared them as false alarms.

Fourteen out of 19 confirmed avalanches are detected by the automatic classifier. Five

avalanche events are not detected. It should be noted that none of the five events is

Fig. 7 Example waveforms and spectrograms of events that are identified as avalanche signal by the
automatic system and can be confirmed by manual investigation. Signals might correspond to avalanches in
data set B in Table 1 or might belong to non-observed avalanches. Data are bandpass filtered between 1.0
and 30.0 Hz. Window length of fft is 10 s
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manually identifiable on the seismic data at the assigned time. Given that the non-de-

tectable avalanches are characterized by a small run-out length or by a large source–

receiver distance (events no. 4, 5, 7, 8 and 13 in Table 1), we investigate this dependency

Fig. 8 Waveforms and spectrograms of events that are recognized as avalanche signal by the automatic
system but are identified as false alarms in the manual investigation. Data are bandpass filtered between 1.0
and 30.0 Hz. Window length of fft is 5 s

Fig. 9 Run-out distance and source–receiver distance of detected \� [ and non-detectable \ � [
events. The dashed line corresponds to RD¼ 0:122. Numbers correspond to avalanche numbers in Table 1
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in detail. Figure 9 shows run-out distance and source–receiver distance of detected and

non-detected events. There is a clear link between both parameters and the outcome of the

automatic detection system. The smaller the source–receiver distance, the smaller the size

of avalanches that are detectable. All non-detected avalanches are characterized by

RD\0:122. Except two, all successful detections are characterized by RD[ 0:122. The
exception here is two avalanches that are successfully detected but show a low RD of 0.113

and 0.120 (events no. 14 and 16 in Table 1).

6 Discussion and conclusion

The presented approach shows very promising detections results. For 19 avalanche events,

field evidence is available. All visible avalanches within a source–receiver distance range of

30 km are detected successfully (14 in number). Although events show significant differ-

ences in their waveforms and spectrograms (Fig. 4), the stochastic approach of hidden

Markov models allows the detection of events over a large volume (run-out 1.0–3.5 km),

duration (43–244 s) and source–receiver distance (3–25 km) range. While the prototype is

build from an event that occurred close to station LLS (Fig. 1a), events at a distance of up to

25 km are successfully identified by the automatic system. Five events are not detected as

amplitudes are too small and disappear in the background noise. The reason for this is

attenuation, which increases with increasing distance. Moreover, detection capability

depends on the size of the avalanche as already reported by Biescas et al. (2003). We found

a limit of the detection capability conditioned on avalanche size (defined indirectly by the

run-out distance) and source–receiver distance. All avalanches with RD[ 0:122 are

detected successfully. In addition, two events with lower RD factor are also identified. The

reason for this might be the use of run-out distance as a proxy for volume. Other parameters

such as slope angle or type of avalanche also influence the avalanche length. Moreover,

there might be a general transition zone between detectable and non-detectable events

where values of RD vary within a certain range. The detection performance for avalanches

within this zone is more sensitive to external parameters such as the local noise level or

snow conditions and may change from day to day.

The results above allow to draw conclusions about the potential detection distance with

regard to avalanche size. The value of RD[ 0:122 translates to the following rough

estimate: Avalanches are detectable up to a source–receiver distance of eight times the

avalanche length. This gives a detection radius of 0.4 to 4.1 km for avalanches with a

smaller run-out of 50–500 m. The permanent Swiss seismic broadband network has an

average inter-station distance of 30 km. Consequently, avalanches having a run-out of

more than 1800 m could be identified at least on one station if the algorithm were running

on the complete network. Moreover, in some specific regions the station density in

Switzerland is much higher. In the canton of Valais, the inter-station distance is 10 km on

average. That decreases the minimum detectable avalanche run-out size to 600 m. For

process investigations, often small temporal networks are installed. Station distances of

less than 500 m are common; thus, much smaller avalanches can be detected. Finally, it

should be noted that we expect deviations from the proposed limit of RD ¼ 0:122 for

source–receiver distances close zero as a certain amount of snow is necessary to generate

enough ground vibration to be recorded by the sensors.

Additionally to the avalanches in data part A, the system detected 33 avalanches.

Twenty-nine detections could be confirmed by visually verifying the automatically
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obtained classifications. Four false alarms were declared. However, given the manual

evaluation process, it cannot ruled out that there are flaws in the manually assigned labels.

Most of the events listed in data part B have an RD value below 0.122 (Table 1). Based on

our results yielded from the analysis of RD, we assume that they are not detected by the

automatic system. Consequently, the system detected avalanches not listed in the SLF

database due to incomplete observations.

The reasons for the four false alarms are not clear. While two signals (Fig. 8a, d) are

most likely caused by pumps close to station LLS, the other two are not easily defined. In

addition, there is no straightforward explanation for the results of the HMM-based

detection approach. The selected parametrization is based on time patterns of a set of short-

term wavefield attributes. The only conclusion to be drawn is that the seismic wavefield

attributes of these four events share significantly more similarities to the seismic wavefield

characteristics recorded for avalanches if compared to the characteristics of seismic noise.

Above results summarize to an overall precision of 92% within RD[ 0:122. However,
we have to admit that the high success rate might be the result of the events used in this

study. During the considered observation period, only large, wet avalanches took place.

We are aware of the fact that this data selection provides a significant restriction. As

regards size, all events have a run-out of more than one kilometer, which classifies them as

size 3, 4 or 5 avalanches. As for the flow regime, all events are characterized as wet

avalanches. However, most avalanches that occur during a winter season have a run-out of

less than 500 m. In addition, different kinds of avalanche flow regimes might have a

different seismic signature. Due to higher masses and better acoustic coupling to the

ground, wet avalanches might produce signals with higher amplitudes than dry ones.

Moreover, in the exceptional avalanche period we are considering, the snow cover might

affect attenuation (Pérez-Guillén et al. 2016) influencing the classifier performance.

Finally, all events were observed during a short time period of five days where signal

propagation properties and background noise might not vary much. However, we picked

this data set to test the new approach extensively for a period of frequent avalanche release.

In addition, we wanted to apply the algorithm to a single broadband station, investigating

the gain for existing seismic networks. In order to meet both requirements, we choose the

corresponding data set.

In order to evaluate the local avalanche danger or to understand corresponding pro-

cesses, avalanche forecasting services are interested in a complete overview of avalanche

activity. Although the application does not analyze a comprehensive avalanche data set, it

shows an encouraging path for future research. Especially in combination with results from

other studies, the current approach seems promising. Using the presented algorithm,

Dammeier et al. (2016) automatically identified rockfalls over a large volume and distance

range. Although signals do not always show similar properties, they can be detected

successfully due to the stochastic approach of HMMs. Furthermore, Suriñach et al. (2005)

show that the triangular spectrogram is a general and independent feature regardless of

type of avalanche (e.g., wet/dry). The spectral shape is modeled by the corresponding

HMM and a key parameter to distinguish avalanches from other sources. Thus, a successful

automatic detection of non-wet avalanches seems very likely. Potential noise variations

occurring during a longer observation period can be accounted for by retraining the

background model on a regular basis of days or even hours (e.g., Hammer et al. 2015;

Dammeier et al. 2016). Similarly, substantial changes in avalanche signal characteristics or

propagation properties can be included by constructing new event models. This can be

done immediately after a single example of the new event class has been recorded.
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In this study, the detection is carried out at the vertical component of a single station of

the Swiss broadband network. The obtained results imply that a single station or geophone

may be a practicable and inexpensive option to identify avalanches within a specific

region. But the performance would also gain from setting up the system at a small network.

First, the number of false alarms might be further reduced by combining detection results

of several stations. Second, it would be possible to locate the avalanche events, which

would be of great importance for an operational setup.

Biescas et al. (2003) report on different detection performances for different types of

flow regimes. In this study, we did consider only large wet avalanches. The application of

the proposed method to small, powder avalanches will be subject to future research. In

addition, this opens up another challenge. Given an unknown avalanche size and distance,

wet and powder avalanches cannot be distinguished by seismic detection only. However,

Kogelnig et al. (2011b) showed that a combination of infrasound and seismic sensors

allowed to detect different avalanche regimes. Following this, the joint setup of different

kinds of sensors might be a beneficial direction for future research.
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