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Abstract

Due to environmental concerns related to burning fossil fuels and nu-
clear waste disposal, the energy mix has been changing during the last
decades with the integration of Renewable Energy Sources (RES). How-
ever, RES inject fluctuating electric power into the grid because they
depend on the availability of primary natural resources such as wind
and solar power. These fluctuating power injections create frequency
and voltage deviations from their nominal values, which have to be mit-
igated to maintain a secure and reliable power supply. Traditionally, the
power system operators control the frequency and voltage using active
and reactive power reserves offered by conventional generators. There-
fore, a large integration of RES will challenge the traditional power
system operation because the need for reserves increases and at the
same time the portion of controllable generation resources decreases.

Although the traditional operation paradigm in power systems is to dis-
patch controllable generators to follow a variable electricity demand, it is
also conceptually possible to control some portion of the demand to fol-
low a variable generation power infeed. This idea was already proposed
in the 1980’s, and since then industrial loads participate in programs to
support power system operation in many countries. However, there is
a lot of potential for reserve provision from residential and commercial
loads that remains widely untapped due to challenges related to control
complexity, implementation costs, and regulatory aspects.

The main goal of this thesis is to develop methods to enable provision of
power system reserves from residential and commercial loads, and verify
their suitability for practical implementation in simulation and experi-
mental studies. In addition, this thesis investigates using load control
to reduce the electricity cost of individual customers in a way that is
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beneficial for the power system. We consider thermal loads, such as re-
frigerators and Electric Water Heaters (EWHs) in residential buildings,
as well as the Heating, Ventilation and Air-Conditioning (HVAC) sys-
tems of commercial buildings, because temporary interruptions in their
operation are not noticed by the users due to thermal inertia.

The first part of this thesis presents predictive and rule-based controllers
to minimize the electricity cost of buildings by shifting the energy con-
sumption to the low-price intervals or consuming the energy produced
by rooftop Photovoltaics (PV) within the building premises. The sec-
ond part of this thesis develops several methods to provide power sys-
tem Ancillary Services (AS), namely Primary Frequency Control (PFC),
Secondary Frequency Control (SFC) and voltage regulation.

More specifically, we propose a decentralized stochastic control method
to allow a large aggregation of refrigerators to provide PFC without
real-time communication. In addition, we present centralized control
algorithms to allow an aggregation of EWHs to track a SFC signal with
different levels of information feedback. These algorithms are then ex-
tended to account for the constraints of Distribution Networks (DNs)
and provide frequency reserves while regulating the DN voltage at the
same time. Furthermore, we develop a state estimation method to en-
able SFC without the need for real-time communication between the
central controller and the loads.

A main outcome of this thesis is the development of a hierarchical con-
troller to allow aggregations of commercial buildings to provide SFC
reserves reliably and accurately, while trying to maximize energy ef-
ficiency. The controller’s performance is demonstrated in simulations
with models of Swiss office buildings, and its technical feasibility is ver-
ified in frequency regulation experiments at a commercial building test
facility at the Lawrence Berkeley National Laboratory (LBNL).

The results of this thesis show that with proper control design the flexi-
bility of residential and commercial thermal loads can be used to provide
reserves to the power system. Moreover, dynamic frequency studies with
a two-area power system model show that a large integration of hetero-
geneous thermal loads in frequency control will help to reduce frequency
deviations and enhance frequency stability.



Kurzfassung

Aufgrund von zunehmenden ökologischen Bedenken bezüglich der Nut-
zung von fossilen Brennstoffen und der Entsorgung von nuklearen Ab-
fällen wird elektrische Energie in den letzten Jahrzenten vermehrt aus
erneuerbaren Energiequellen (Renewable Energy Sources, RES) gewon-
nen. Da RES von natürlichen Ressourcen wie Wind und Sonneneinstrah-
lung abhängen, fluktuiert die elektrische Einspeisung ins Netz. Diese
Fluktuationen verursachen wiederum Spannungs- und Frequenzabwei-
chungen, welche entsprechend kontrolliert werden müssen um eine si-
chere und zuverlässige Energieversorgung zu garantieren. Frequenz und
Spannung werden traditionellerweise durch Wirk- und Blindleistungsre-
serven, bereitgestellt durch konventionelle Kraftwerke, kontrolliert. Eine
grossflächige Integration von RES ist deshalb eine Herausforderung für
die herkömmliche Betriebsweise, da zum einen die Reserveanforderun-
gen steigen und andererseits der Anteil an herkömmlichen regelbaren
Generatoren sinkt.

Obwohl in diesem traditionellen Betriebsparadigma von Energiesyste-
men die Generatoren dem variablen Bedarf der Lastseite folgen, ist es
konzeptionell auch möglich einen bestimmten Teil der Last so zu kon-
trollieren, dass sie einer variablen Energieeinspeisung folgt. Diese Idee
wurde in den 1980er Jahren bereits vorgeschlagen, und seitdem un-
terstützen in vielen Ländern industrielle Lasten den Betrieb des Ener-
giesystems. Trotzdem gibt es Potenzial für die Bereitstellung von Re-
serven aus häuslichen und kommerziellen Lasten, welche diesbezüglich
bis heute weitgehend unerschlossen bleiben. Die Hauptgründe sind die
Komplexität der Regelung eines solchen Systems, die Kosten einer Im-
plementation und regulatorische Aspekte.

Das Hauptziel dieser Doktorarbeit ist die Entwicklung von Methoden,
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welche die Kleinverbraucher und kommerzielle Lasten für Regelreser-
ven nutzbar machen, sowie die Beurteilung der Umsetzbarkeit in Simu-
lationen und Experimenten. Zudem untersucht diese Arbeit, wie mit-
tels Laststeuerung die Elektrizitätskosten von einzelnen Kunden redu-
ziert werden können und gleichzeitig Vorteile für den Systembetrieb
bringen. Es werden thermische Lasten, wie Kühlschränke und elek-
trische Boiler (Electric Water Heaters, EWHs) in Wohnhäusern, als
auch die Heiz-, Lüftungs- und Klimaanlagen in kommerziellen Gebäuden
berücksichtigt, da kurzzeitige Betriebsunterbrüche aufgrund der thermi-
schen Trägheit von Benutzern kaum bemerkt werden.
Im ersten Teil werden prädiktive und regelbasierte Regelungen zur Mi-
nimierung der Elektrizitätskosten von Gebäuden präsentiert. Diese ver-
schieben den Energieverbrauch in Zeiträume mit niedrigeren Preisen
oder konsumieren die Energie von Photovoltaik-Anlagen, welche in der
Nähe der Gebäude vorhanden sind. Im zweiten Teil werden verschiede-
ne Methoden entwickelt um Systemdienstleistungen anzubieten, vor al-
lem Primärregelreserven (Primary Frequency Control, PFC), Sekundär-
regelreserven (Secondary Frequency Control, SFC) und Spannungshal-
tung.
Insbesondere wird eine dezentralisierte, stochastische Regelmethode vor-
geschlagen. Diese ermöglicht die Aggregation von vielen Kühlschränken
um PFC zu erbringen, ohne dass dabei Kommunikation in Echtzeit
nötig ist. Zusätzlich werden zentralisierte Regelalgorithmen präsentiert,
welche es erlauben einem SFC Signal mit einer Aggregation von EWH
zu folgen. Dabei werden verschiedene Signale benutzt. Die Algorith-
men werden anschliessend so erweitert, dass sie in Verteilnetzen einge-
setzt werden können und neben der Frequenz auch die Spannung re-
gulieren können. Des Weiteren entwickeln wir eine Methode zur Zu-
standsschätzung, welche es erlaubt SFC anzubieten, ohne dass eine
Echtzeitkommunikation zwischen einem zentralen Regler und den Las-
ten besteht.
Ein Hauptresultat der Dissertation ist der entwickelte hierarchische Reg-
ler, der eine SFC-Bereitstellung aus einer Aggregation von kommer-
ziellen Gebäuden ermöglicht. Dieser Regler garantiert eine zuverlässige
und genaue Bereitstellung und maximiert gleichzeitig die Energieeffi-
zienz. Die Leistungsfähigkeit wird mittels Simulationen von Schweizer
Bürogebäuden durchgeführt und die technische Machbarkeit wurde in
Experimenten zur Frequenzregelung in einer Testumgebung für kom-
merzielle Gebäude des Lawrence Berkeley National Laboratory (LBNL)
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untersucht.

Die Resultate dieser Dissertation zeigen auf, dass Wohnhäuser als auch
kommerzielle Gebäude Reserven mit einem geeigneten Reglerdesign be-
reitstellen können. Zudem zeigen dynamische Frequenzstudien in einem
Energiesystem mit zwei Regionen, dass eine grossflächige Integration
von heterogenen thermischen Lasten im Prozess der Frequenzregelung
zu einer Reduktion von Frequenzabweichungen führt und die Frequenz-
stabilität erhöht.
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Chapter 1

Introduction

1.1 Background and Motivation

The power grid operation and planning is currently undergoing large
changes due to increasing shares of Renewable Energy Sources (RES)
such as wind and solar power. Although they are clean sources of energy,
the power output of RES is typically variable and not fully controllable.
The RES variability brings new challenges to the traditional transmis-
sion system operation because the generation and demand of electric
power must be balanced at all times.
Power system frequency reflects the instantaneous balance between gen-
eration and demand of electric power. As long as the generation exactly
meets the demand, the frequency is at its nominal value, e.g., 50 Hz in
Europe and 60 Hz in North America. On the other hand, if the gen-
eration becomes lower than the demand, the frequency drops and vice
versa. However, the grid frequency must remain close to its nominal
value for reliability reasons. For this purpose, the Transmission System
Operators (TSOs) rely on primary, secondary and tertiary frequency
control reserves in the form of Ancillary Services (AS) to stabilize fre-
quency after a disturbance and restore it to its nominal value.
It is generally accepted that larger shares of fluctuating RES will in-
crease the amount and magnitude of frequency deviations and conse-
quently the need for frequency control reserves [5]. Although reserves
come traditionally from conventional generators, as RES shares increase

1
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less generators will be in the energy mix and therefore additional re-
sources are needed to provide frequency reserves.
Conceptually, loads can also provide frequency control by reducing their
consumption when the frequency is low, and by increasing it when the
frequency is high. The idea of controlling loads to provide power system
AS (including frequency control) was already proposed in the 1980’s [6].
Although mostly large industrial loads provided such services in the
past, there is a growing interest in exploiting the flexibility of residential
and commercial loads as well. If properly aggregated, loads can provide
ancillary services more efficiently and at a lower cost compared with
generators [7].
Apart from frequency deviations at the transmission system level, RES
may create overvoltages and/or overloading of cables and transformers
in the local Distribution Networks (DNs), where they are often con-
nected. Load control can, in principle, help to mitigate these problems
locally by increasing consumption to absorb the RES power surplus or
by reducing consumption to compensate for RES power deficits.
During the intervals when power from RES is abundant, wholesale mar-
ket electricity prices drop due to the low marginal costs of RES. If this
is eventually reflected on the retail market, it can lead to time-varying
end-customer electricity prices [8]. In this case, the customers will have
an incentive to optimize their load profile by shifting the consumption
to the low-price intervals in order to minimize electricity costs.
From the above discussion it becomes clear that new roles and op-
portunities arise for controllable loads in power systems. Controlling
loads to minimize the cost of consumers or provide AS to the power
system is commonly referred to as Demand Response (DR). Ther-
mal loads are appropriate for DR because their consumption can be
shifted in time without user discomfort due to thermal inertia. Ex-
amples of thermal loads are small residential Thermostatically Con-
trolled Loads (TCLs) such as refrigerators, air conditioners, as well as
Electric Water Heaters (EWHs), and large Heating, Ventilation and
Air-Conditioning (HVAC) systems of commercial buildings.
TCLs are typically controlled by a hysteresis controller based on a tem-
perature setpoint and a deadband. For heating loads, whenever the
temperature falls below the lower deadband limit, the appliance turns
on and keeps heating until the temperature reaches the higher deadband
limit. At this point, the appliance turns off and a new cycle begins. To
preserve the user comfort, the temperature must be kept within the
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deadband. However, the actual on/off state of the appliance at a par-
ticular instance is not important, and this is why the consumption can
be shifted in time.
The goal of this thesis is to develop new methods to enable efficient
DR programs with thermal loads. In the first part of the thesis, we
focus on customer-oriented DR applications aiming to minimize elec-
tricity costs by shifting consumption to low-price intervals or maximiz-
ing the absorption of locally generated RES energy, for example from
rooftop Photovoltaics (PV). In the second part of the thesis, we con-
sider provision of frequency control AS from aggregations of thermal
loads, similarly to conventional generators.
The next section introduces the terminology adopted in this thesis for
power system frequency control, Section 1.3 summarizes the contribu-
tions of this thesis, Section 1.4 presents its organization, whereas Sec-
tion 1.5 provides a list of the publications published or submitted during
the course of the thesis.

1.2 Frequency Control Terminology

Typically, a TSO controls the frequency in three steps, namely primary,
secondary and tertiary control. In this thesis, we investigate the pro-
vision of Primary Frequency Control (PFC) and Secondary Frequency
Control (SFC) from loads. PFC is sometimes referred to as governor
control action, frequency response, droop control, or frequency contain-
ment reserve (FCR), and the name PFC is used throughout this thesis.
SFC is also known as automatic generation control (AGC), load fre-
quency control (LFC), automatic frequency restoration reserve (FRR),
or regulation service (mainly in the USA). In this thesis, we adopt the
names SFC and frequency regulation, which we use interchangeably.

1.3 Contributions

The main contributions of this PhD thesis are the following:

• A Model Predictive Control (MPC) scheme to minimize costs
in buildings under dynamic day-ahead and real-time electricity
prices.
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• Rule-Based Control (RBC) algorithms to maximize PV self-con-
sumption in buildings, and the algorithms’ integration in the com-
mercial software tool Polysun.

• A decentralized stochastic control scheme to provide PFC reserves
from refrigerators without real-time communication.

• RBC algorithms to provide SFC reserves from EWHs with various
levels of information feedback to the central controller.

• A hierarchical control scheme to provide SFC and voltage regula-
tion at the DN level simultaneously from the same load aggrega-
tion.

• A method to estimate the states of individual loads from aggregate
power measurements while providing SFC.

• A hierarchical control framework to allow an aggregation of com-
mercial buildings to participate in SFC reserve markets.

• Experimental demonstration of SFC reserve provision from a com-
mercial building using historical and real-time signals from the
Pennsylvania, Jersey, and Maryland Power Market (PJM).

• Dynamic frequency simulations using a two-area power system
model to evaluate the effect of large shares of loads in PFC and
SFC.

1.4 Thesis Organization
The thesis is organized into two parts: Part I focuses on customer-
oriented DR applications and includes two chapters, whereas Part II
focuses on provision of AS from load aggregations and includes eight
chapters. The thesis is divided into the following chapters:
Part I

• Chapter 2 develops a residential building model with a Heat
Pump (HP), an EWH, a battery and PV panels for price-based
DR applications. Using the building model, we design an MPC
framework for building climate control. We use the MPC con-
troller to evaluate the potential for electricity cost minimization
by load shifting, as well as the building’s response to day-ahead
and real-time dynamic electricity prices.
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• Chapter 3 introduces simple and practical RBC algorithms to
maximize the PV self-consumption in buildings using the flexi-
bility of thermal loads and batteries. We integrate the RBC al-
gorithms and the battery model of Chapter 2 in the commercial
software tool Polysun, and perform building simulations to eval-
uate the financial benefits of PV self-consumption and to identify
the optimal battery size.

Part II

• Chapter 4 provides an overview of frequency control in power
systems, with an emphasis on PFC and SFC, and discusses rele-
vant control approaches for TCLs and commercial buildings from
the literature.

• Chapter 5 presents a decentralized stochastic control scheme to
provide PFC reserves from aggregations of residential refrigera-
tors without real-time communication. The controller has a high
performance, avoids load synchronization, addresses a number of
practical limitations, and is simple and cheap to implement. Ex-
tensive simulations show the controller’s robustness and its suit-
ability for PFC reserve provision.

• Chapter 6 presents a modeling approach for populations of EWHs
subject to random water draw events. The State of Charge (SoC)
concept for EWHs is introduced and used within four RBC algo-
rithms to control the aggregate consumption of EWHs, such that
a SFC signal is tracked. Simulations with realistic EWH data and
historical SFC signals highlight the value of state information in
the control loop.

• Chapter 7 proposes a hierarchical control algorithm to provide
SFC reserves from aggregations of TCLs without stress on DNs
with large penetration of RES. The algorithm relies on AC Optimal
Power Flow (OPF) and integer optimization, and is tractable
due to the hierarchical structure. The algorithm’s performance
is demonstrated in a simulation study with a benchmark DN.

• Chapter 8 develops a Moving Horizon State Estimation (MHSE)
method to estimate the states of individual TCLs in SFC schemes.
The estimator works with limited communication, namely aggre-
gate power measurements from substations and infrequent TCL
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measurements from smart meters. Detailed simulations demon-
strate the estimator’s performance under different levels of process
and measurement noise, as well as different types of SFC signals.

• Chapter 9 introduces a hierarchical control framework to provide
SFC from aggregations of commercial buildings. The framework
is comprised of a day-ahead reserve scheduler, a building climate
MPC, and a feedback controller to track the SFC signal. Differ-
ent formulations are proposed leveraging techniques from robust
and stochastic optimization. The potential for SFC reserves from
buildings is estimated in extensive simulations.

• Chapter 10 presents results from an experimental demonstration
of SFC reserve provision by a commercial building. Using the con-
trol framework of Chapter 9 as a basis, we performed experiments
over a two-week period using historical and real-time SFC signals
from PJM. The results are very promising and show that SFC
reserves can be indeed provided from commercial buildings at a
high quality.

• Chapter 11 combines the controllers developed in Chapters 5,
6 and 9 for PFC and SFC into a general control scheme. This
scheme is used to perform dynamic frequency simulations with
a two-area power system model for different shares of loads in
frequency control. The results show that, with proper control
design, loads can indeed replace conventional generators in PFC
and SFC.

Finally, Chapter 12 summarizes the key findings of this thesis and
suggests directions for future work.

1.5 List of Publications

The work presented in this thesis has been reported in the following
publications:
Journal Papers

1. E. Vrettos, E. Can Kara, J. MacDonald, G. Andersson, and D.
Callaway, Experimental demonstration of frequency regulation by
commercial buildings – Part I: Modeling and hierarchical control
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design, IEEE Transactions on Smart Grid (Early Access Article),
2016.

2. E. Vrettos, E. Can Kara, J. MacDonald, G. Andersson, and D.
Callaway, Experimental demonstration of frequency regulation by
commercial buildings – Part II: Results and performance evalu-
ation, IEEE Transactions on Smart Grid (Early Access Article),
2016.

3. E. Vrettos, C. Ziras, and G. Andersson, Fast and reliable primary
frequency reserves from refrigerators with decentralized stochastic
control, IEEE Transactions on Power Systems (Early Access Ar-
ticle), 2016.

4. E. Vrettos, F. Oldewurtel, and G. Andersson, Robust energy-
constrained frequency reserves from aggregations of commercial
buildings, IEEE Transactions on Power Systems, vol. 31, no. 6,
pp. 4272-4285, 2016.

5. E. Vrettos and G. Andersson, Scheduling and provision of sec-
ondary frequency reserves by aggregations of commercial buildings,
IEEE Transactions on Sustainable Energy, vol. 7, no. 2, pp. 850-
864, 2016.

Conference Papers

1. C. Ziras, E. Vrettos, and G. Andersson, Primary frequency con-
trol with refrigerators under startup dynamics and lockout con-
straints, in IEEE PES General Meeting, Denver, USA, July 2015.

2. X. Zhang, E. Vrettos, M. Kamgarpour, G. Andersson, and J.
Lygeros, Stochastic frequency reserve provision by chance-constrai-
ned control of commercial buildings, in European Control Confer-
ence (ECC), Linz, Austria, July 2015.

3. E. Vrettos, C. Ziras, and G. Andersson, Integrating large shares
of heterogeneous thermal loads in power system frequency con-
trol, in IEEE PowerTech Conference, Eindhoven, the Netherlands,
June 2015.

4. E. Vrettos, F. Oldewurtel, F. Zhu, and G. Andersson, Robust
provision of frequency reserves by office building aggregations, in
World Congress of the International Federation of Automatic Con-
trol (IFAC), Cape Town, South Africa, August 2014.
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5. E. Vrettos, J. L. Mathieu, and G. Andersson, Control of ther-
mostatic loads using moving horizon estimation of individual load
states, in Power Systems Computation Conference (PSCC), Wro-
claw, Poland, August 2014.

6. E. Vrettos, J. L. Mathieu, and G. Andersson, Demand response
with moving horizon estimation of individual thermostatic load
states from aggregate power measurements, in American Control
Conference (ACC), Portland, USA, June 2014.

7. E. Vrettos and G. Andersson, Combined load frequency control
and active distribution network management with thermostatically
controlled loads, in IEEE International Conference on Smart Grid
Communications, Vancouver, Canada, October 2013.

8. E. Vrettos, K. Lai, F. Oldewurtel, and G. Andersson, Predictive
control of buildings for demand response with dynamic day-ahead
and real-time prices, in European Control Conference (ECC), Zuri-
ch, Switzerland, October 2013.

9. E. Vrettos, A. Witzig, R. Kurmann, S. Koch, and G. Ander-
sson, Maximizing local PV utilization using small-scale batteries
and flexible thermal loads, in European Photovoltaic Solar Energy
Conference (PVSEC), Paris, France, October 2013.

10. E. Vrettos, S. Koch, and G. Andersson, Load frequency control by
aggregations of thermally stratified electric water heaters, in IEEE
PES Innovative Smart Grid Technologies Europe (ISGT Europe),
Berlin, Germany, October 2012.

Other Publications

1. E. Vrettos, G. Andersson, S. Koch, A. Witzig, SmartGrid - Poly-
sun: Design tool for local load management, Final report of a
project funded by the Swiss Federal Office of Energy (BFE), avail-
able online at www.bfe.admin.ch, September 2015.

2. E. Vrettos, X. Zhang, F. Oldewurtel, M. Kamgarpour, J. Lygeros,
and G. Andersson, Exploring the potential of buildings in the
Swiss ancillary service market, in Computational Optimization of
Low-Energy Buildings Workshop (COLEB), Zurich, Switzerland,
March 2014.
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lez Vayá, T. Haring, J. L. Mathieu, O. Mégel, E. Vrettos, and G.
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Chapter 2

Price-Based Optimal
Building Control

2.1 Introduction

This chapter concerns the optimal building operation in the presence
of time-varying end-customer electricity tariffs. In principle, and with
the appropriate price incentives, part of a building’s consumption can
be shifted in time due to thermal inertia. Optimal building control
has gained a lot of attention in the literature, and some of the relevant
previous works are summarized below.
Most of the early work investigated the use of building thermal mass
for load shifting and peak shedding (see [9] for an overview of relevant
simulation and experimental results up to 2003). For example, [10] in-
vestigated in a simulation study how the zone temperature setpoints
can be optimally varied to reduce peak demand and take advantage
of low nighttime electrical rates, whereas [11] experimentally demon-
strated the potential for load shifting with optimal control. Predictive
optimal control was compared against conventional control strategies
(chiller-priority and storage-priority control) in [12] considering the min-
imization of either energy charges or peak demand charge, and in [13]
considering real-time pricing.
Load shifting and peak load reduction have been addressed in more re-
cent works as well. In [14], a simple optimization model that allows a

13
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Table 2.1: Nomenclature of Chapter 2: symbols

Symbol Unit Description
A, kb, q - PV model parameters
b1 - Battery capacity ratio parameter
b2 1/h Battery rate constant
C J/K Thermal capacity
CFL - Numbers of battery cycles to failure
cw J/(Kg K) Specific heat capacity of water
c0 - Parameter of HP model

c1, c2 K−1 Parameters of HP model
E,Emax Wh Total battery energy and battery capacity
E1, E2 Wh Available and chemically bound battery energy
G W/m2 Solar radiation
g m/s2 Gravitational acceleration
I A Electric current

K1, K2 - PV model parameters
kfz W/K Heat exchange coeff. between Tf and Tz
kth 1/s Heat loss coefficient
kwf W/K Heat exchange coeff. between Tw,r and Tf
m kg Mass
ṁw kg/s Water mass flow rate
NPV - Number of PV panels
nc - Battery charging efficiency
nconv - Battery converter efficiency
nd - Battery discharging efficiency
P W Power
R - Range of a charge/discharge battery cycle
q1 Ah Available battery charge
q2 Ah Chemically bound battery charge
T ◦C Temperature

T c
min, T c

max
◦C RBC room cooling thresholds

Th
min, Th

max
◦C RBC room heating thresholds

Tw
min, Tw

max
◦C RBC water heating thresholds

U V Voltage
u - Building input
V m/s Vertical water velocity in the EWH
v - Building disturbance
x - Building state

∆Ip, ∆Up - PV model parameters
∆t s Discretization in time for EWH model
∆y m Discretization in space for EWH model

α1 − α5 - Parameters of the battery lifetime model
εeff - EWH turbulent mixing parameter
ρ kg/m3 Density

consumer to adapt its demand profile in response to electricity prices
was developed assuming all loads to be shiftable. Reference [15] pre-
sented a prototype that applies stochastic dynamic programming with
weather forecasts to minimize the electricity cost by shifting heating
and cooling loads as well as event-based loads (e.g., dishwashers).
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Table 2.2: Nomenclature of Chapter 2: subscripts and superscripts

Subscript / superscript Description
a Ambient temperature
b Battery-related variable
c Battery charge power

cell PV cell temperature
cw Cold water
d Battery discharge power
el Electric power
f Floor
k Discrete time index

MPPT Maximum power point tracking value
min/max Minimum/maximum value of a variable
NOCT Normal operating PV cell temperature

p Peak value
s Standard conditions (used in the PV model)
t Continuous time index
th Thermal power
w Water (temperature)
wh EWH-related variable
wr Water return
ws Water supply
z Room temperature

In [16], the authors developed a stochastic Model Predictive Control
(MPC) scheme based on a bilinear building model and weather pre-
dictions with the goal of increasing the energy efficiency. An MPC
controller for building cooling systems equipped with thermal energy
storage was proposed in [17] with the aim of achieving lower electric-
ity costs. Reference [18] presented the practical implementation of an
MPC controller in a building, in order to stabilize the power fluctua-
tions due to high penetration of wind power. In [19], the minimization
of electricity costs for residential buildings with elastic demand, stor-
age, local generation and real-time pricing was formulated as a stochas-
tic optimization problem and approximately solved using the so-called
Lyapunov approach.

In this chapter, we develop a state-of-the-art model of a residential
building and investigate its potential for Demand Response (DR). The
building model includes a Heat Pump (HP) for space heating, Slab
Cooling (SC) for space cooling, an Electric Water Heater (EWH), Pho-
tovoltaics (PV) and battery storage. We use the developed model within
an MPC to estimate upper bounds on the potential for electricity cost
reduction in a dynamic end-customer electricity price environment. In
addition, we investigate the sensitivity of the building’s response to day-
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ahead and real-time price signals, and furthermore the effectiveness of
employing real-time price control on top of day-ahead price profiles.

The remainder of this chapter is organized as follows. In Section 2.2,
we introduce the building model including a detailed description of its
components. In Section 2.3 we design the MPC controller, and in Sec-
tion 2.4 we present simulation results from several case studies. Finally,
Section 2.5 concludes this chapter, which is based on the work published
in [20–22]. The chapter’s nomenclature is introduced in Tables 2.1 and
2.2 (some of the EWH variables are summarized in Table 2.3).

2.2 Modeling

2.2.1 Building Thermal Model

We use a thermal model for buildings with Integrated Room Automa-
tion (IRA) systems (where heating, cooling, ventilation, blinds, and
lighting are jointly controlled), which was developed in the course of the
OptiControl project [23–25]. A single-zone model was obtained within
this project by applying a common method to aggregate building zones
in order to compute the building-wide energy use.

Figure 2.1a shows a schematic representation of the OptiControl build-
ing model. It includes 12 states that represent the temperatures in the
room and in different layers in the floor, walls and ceiling. Different
layers are used to model the heat transfer properties of different mate-
rials, as well as the influence of different heating and cooling actuators,
e.g., the fact that floor heating affects the room temperature with some
delay.

The model is a Resistance-Capacitance (RC), multiple-input-multiple-
output bilinear model and it is validated against the well-known building
simulation software TRNSYS [25]. The model’s satisfactory accuracy
and its relatively low complexity make it suitable for MPC. A model
similar to the one considered here was used in an MPC implementa-
tion in a real building and was found to capture the building’s thermal
dynamics well [26]. Furthermore, this model is flexibly customizable
and allows us to perform large-scale simulation studies with different
representative building types.



2.2. Modeling 17

X1
b

bX2

X7
bX8

bX9
b

X10
bX11

bX12
b

X13
bX14

b

Heat Pump

Pel

Pth

X1
b

X1
b

bX6

X5
b

X4
b

bX2

X3
b

(a) Schematic of the building thermal
model with states the tempera-
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(b) Integration of an HP model into
the building thermal model. The
water supply and return tempera-
tures are additional states.

Figure 2.1: Extension of the OptiControl building model with a HP model.

The discrete-time bilinear model can be written in the form

xk+1 = Axk +Buuk +Bvvk +
nu∑
i=1

(Bvu,ivk +Bxu,ixk)uk,i , (2.1)

where xk, uk, vk are the state, input and disturbance vectors, respec-
tively, and A,Bu, Bv and Bvu,i, Bxu,i i = 1, . . . nu are appropriate ma-
trices that define the building dynamics. The nx states include the tem-
peratures of the room, walls, floor and ceiling (all measured in ◦C). The
nu IRA control inputs include heating and cooling power, ventilation,
blind position, and lighting. The heating and cooling are represented in
the thermal model as heat fluxes affecting the system states and their
units are W/m2, i.e., the heat fluxes are normalized by the floor area.
The blind position is a number between 0 (fully closed) and 1 (fully
open). The lighting is also normalized by the floor area and measured
in W/m2. The nv disturbances include the ambient temperature in ◦C,
the solar radiation in W/m2, and the internal heat gains by the occu-
pants and equipment in W/m2.
Note that bilinearities exist in (2.1) between the control inputs uk and
the disturbances vk, as well as between uk and the states xk. Three typ-
ical examples are: (i) bilinearity between the blind position and solar
radiation; bilinearity between the blind position and room temperature;
and (iii) bilinearity between the ventilation air flow rate and room tem-
perature.
For optimization purposes, it is desirable to have a linear model because
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any nonlinear model would result in a non-convex optimization problem.
If the disturbances are fixed, for example according to their predicted
values, the bilinearity between uk and vk vanishes and the system be-
comes time-varying. We handle the remaining bilinearity between xk
and uk using a Sequential Linear Programming (SLP) technique, where
the bilinear xk terms are iteratively linearized around the most recently
calculated xk trajectory and the resulting convex Linear Program (LP)
is solved until convergence, i.e., until the change in optimal solution
between two iterations is smaller than a threshold. This SLP technique
was shown to be a very good approximation of the original problem
in [23, 24, 26] because the non-linearities are mild. Although the SLP
is a heuristic approach and there are no guarantees for convergence to
the globally optimal solution, practical experience has shown that con-
vergence is usually achieved within a few iterations. Using the SLP
technique, the building model can be written as the linear system

xk+1 = Axk +Bu,kuk +Bvvk , (2.2)

where the input matrix Bu,k is now time-varying.
In this chapter, we consider different building types that vary in terms of
the actuators of the Heating, Ventilation and Air-Conditioning (HVAC)
system, the insulation level of the building envelope, the window area
fraction, and the magnitude of the internal heat gains. The interested
reader is referred to [23, 24] for more information about the building
models.

2.2.2 Heat Pump Model

In this section we integrate a steady-state HP model into the building
thermal model of Section 2.2.1. The HP is modeled by the Coefficient
of Performance (COP), i.e., the ratio of the output thermal power Pth
to the input electric power Pel. In general, the COP is a function of
the ambient temperature Ta and the water supply temperature Tws. In
this chapter, a linear function is assumed as in [27], which results in the
following equations for COP and Pth

COP = c0 + c1Ta + c2Tws (2.3)
Pth = (c0 + c1Ta + c2Tws) · Pel . (2.4)

To account for the interaction between the HP and the building, we
model the thermal dynamics of the water heating loop by considering
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two additional states: the water supply temperature Tws, and the water
return temperature Twr. These dynamics can be modeled using the
following state space model [27]Ṫws

Ṫwr
Ṫf

 =

−
ṁwcw
Cws

ṁwcw
Cws

0
ṁwcw
Cwr

− ṁwcw+kwf
Cwr

kwf
Cwr

0 kwf
Cf

−kwf+kfz
Cf

 ·
Tws
Twr
Tf

+

 1
Cws
0
0

 · Pth,

(2.5)

where Tf denotes the floor temperature; ṁw is the mass flow rate of the
water loop; cw is the specific heat capacity of water; Cws is the thermal
capacity of supply water at temperature Tws; Cwr is the thermal capacity
of return water at temperature Twr; Cf is the thermal capacity of floor
at temperature Tf; kwf is the heat exchange coefficient between Twr and
Tf; and kfz is the heat exchange coefficient between Tf and the room
temperature Tz. The HP parameters are given in Appendix B.
Since the input Pel depends on the state Tws, the HP dynamics are
nonlinear. To keep the resulting MPC problem convex, we linearize the
dynamics by fixing Tws in (2.3) to its steady state value. We estimate
the steady state value of Tws by taking the continuous-time building
model, fixing the disturbance vector to its expected value, setting the
derivatives to zero (ẋ = 0), and solving the resulting system of linear
equalities. If this linearization approach is combined with a mixed cost
function with a linear penalty for the electricity cost and a quadratic
penalty for the HP power, then the resulting convex optimization prob-
lem will be a good approximation of the original one [27].
As depicted in Fig. 2.1b, we assume that the produced heat from the HP
acts on the temperature of the first layer of the floor, i.e., Tf corresponds
to Xb

2 . We augment the state vector with Tws, Twr and integrate (2.5)
in (2.2).

2.2.3 Electric Water Heater Model

Different types of EWH models have been proposed in the literature.
Most of these models have only one state and assume a uniform tem-
perature distribution in the water tank [28,29]. Such models might not
predict the EWH consumption accurately enough, because they do not
capture the thermal stratification in the tank. For this reason, some
researchers have considered thermal stratification. Reference [30] pro-
posed a simplified stratified model considering only an upper hot water
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layer and a lower cold water layer. A more detailed stratified model
with six water layers was developed in [31], but without considering
convective heat transfer phenomena.
In this section, we present a detailed thermally-stratified model for
EWHs, which accounts for the heat transfer mechanisms inside the
storage tank and demonstrates a good tradeoff between accuracy and
complexity.

Governing Partial Differential Equation

If natural convection is neglected, the heat flow in the water tank is
governed by the one-dimensional Partial Differential Equation (PDE)

∂T

∂t
+ V

∂T

∂y
= aεeff

∂2T

∂2y
− kth(T − Ta) +Q(y, t) , (2.6)

where y denotes the position along the vertical axis of the tank, t denotes
time, V is the vertical water velocity in the tank during a water draw, a
is the thermal diffusivity, kth is the heat loss coefficient, Ta is the ambient
temperature, Q(y, t) corresponds to the internal heat generation from
the heater, and εeff accounts for the turbulent mixing at the tank inlet
during a water draw [32].
If εeff = 1, the incoming water flow is laminar, whereas if εeff � 1,
the flow is turbulent. Including εeff in (2.6) allows us to model the
initial cooling of the whole tank right after a water draw occurs, which
is observed in relevant experiments with EWHs.1

Numerical Solution Scheme

Equation (2.6) is a parabolic PDE with the additional convective term
V ∂T
∂y . A standard approach to numerically solve a parabolic PDE is

a first-order upwind differencing scheme. However, such a scheme suf-
fers from numerical diffusion problems that might lead to severe inac-
curacies. For this reason, we use the second-order, three-level, finite
difference Crank-Nicolson scheme proposed in [34] to numerically solve
(2.6).

1Note that εeff is fixed to 1 in (2.6) if the simulation time step is greater than a
few seconds due to numerical stability issues [33].
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Figure 2.2: Schematic of the thermally-stratified EWH model.

The water tank is divided into a number of layers of the same volume
along the tank’s vertical axis, as shown in Fig. 2.2. The discretization
in time is denoted by ∆t, the discretization in space by ∆y, the number
of grid points in the y direction by n, and the temperature of the ith
layer at time step k by T ki . Equation (2.6) can be written in the more
general form

∂T

∂t
= aεeff

∂2T

∂2y
+ f

(
T,
∂T

∂y

)
(2.7)

f

(
T,
∂T

∂y

)
= −V ∂T

∂y
− kth(T − Ta) +Q(y, t) . (2.8)

The Crank-Nicolson scheme is defined by the substitutions

∂T

∂t
→ T ki − T

k−1
i

∆t (2.9)

∂2T

∂2y
→ 1

2

[
T ki−1 − 2T ki + T ki+1

∆y2 +
T k−1
i−1 − 2T k−1

i + T k−1
i+1

∆y2

]
(2.10)

f

(
T,
∂T

∂y

)
→ f

[
T ki + T k−1

i

2 , D
(T ki + T k−1

i

2
)]

(2.11)

D

(
T ki + T k−1

i

2

)
=

Tki+1+Tk−1
i+1

2 − Tki−1+Tk−1
i−1

2
2∆y . (2.12)
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Applying this scheme on (2.7) results in the following expressions for
all tank layers apart from the top and bottom layers

− q1T
k
i−1 + q2T

k
i + q3T

k
i+1 =

q1T
k−1
i−1 + q4T

k−1
i − q3T

k−1
i+1 + kthTa +Q(x, t) , (2.13)

where: q1 = e

2 + d, q2 = 1
∆t + e+ kth

2 , q3 = d− e

2 , (2.14)

q4 = 1
∆t − e−

kth

2 , d = V

4∆y , e = aεeff

∆y2 . (2.15)

We consider two artificial layers to represent the incoming water tem-
perature (T1 = Tcw) and the ambient temperature (Tn+2 = Ta), in order
to facilitate the problem formulation in matrix form. Thus, the temper-
ature of the bottom layer is denoted by T2, and the temperature of the
top layer by Tn+1. We use the following Ordinary Differential Equa-
tions (ODEs) as boundary conditions for the top and bottom layer

dT2

dt
= −aεeff

∆y2 (T2 − T3) + V

∆y (Tcw − T2)− k′th(T2 − Ta) , (2.16)

dTn+1

dt
= aεeff

∆y2 (Tn−Tn+1) + V

∆y (Tn−Tn+1)−k′th(Tn+1 − Ta). (2.17)

By applying an explicit discretization scheme on these ODEs, we obtain

1
∆tT

k
2 − 4dTcw − k′thTa = q5T

k−1
2 + eT k−1

3 (2.18)
1

∆tT
k
n+1 − k′thTa = q5T

k−1
n+1 + q6T

k−1
n (2.19)

where: q5 = 1
∆t − e− 4d− k′th, q6 = e+ 4d . (2.20)

In (2.16)–(2.20), k′th is the heat loss coefficient of the top and bottom lay-
ers (k′th > kth due to larger heat loss area). Equations (2.13),(2.18),(2.19)
can be expressed in the matrix form

Z1Tk+1 = Z2Tk + Z3uk , (2.21)

where Tk ∈ Rn+2 is the temperature vector, uk ∈ {0, 1} is a binary
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on/off variable, and Z1,Z2,Z3 are defined as

Z1 =



1 0 0 0 0 . . . 0 0 0 0
−4d 1/∆t 0 0 0 . . . 0 0 0 −k′th

0 −q1 q2 q3 0 . . . 0 0 0 −kth
...

...
...

...
... . . .

...
0 0 0 0 0 . . . −q1 q2 q3 −kth
0 0 0 0 0 . . . 0 0 1/∆t −k′th
0 0 0 0 0 . . . 0 0 0 1


(2.22)

Z2 =



1 0 0 0 0 . . . 0 0 0 0
0 q5 e 0 0 . . . 0 0 0 0
0 q1 q4 −q3 0 . . . 0 0 0 0
...

...
...

...
... . . .

...
...

0 0 0 0 0 . . . q1 q4 −q3 0
0 0 0 0 0 . . . 0 q6 q5 0
0 0 0 0 0 . . . 0 0 0 1


(2.23)

Z3 =
[
0 . . . 0 ηPel

micw
0 . . . 0

]
, (2.24)

where Pel is the nominal electric power of the heating element, η is the
electric efficiency, mi is the water mass of the ith layer and cw is the
specific heat capacity of water. Although (2.24) implies that the heating
zone has only one layer, larger zones can also be considered.
It is easy to show that matrix Z1 is nonsingular by construction, and
thus invertible. Therefore, (2.21) can be rewritten in the form

Tk+1 = AkTk + Bkuk , (2.25)

where Ak = Z−1
1 Z2 and Bk = Z−1

1 Z3.

Modeling Natural Convection

Natural convection is the combined effect of two opposite forces: buoy-
ancy that accelerates warm water layers upwards, and viscous friction
that opposes the fluid motion. To account for natural convection, the
buoyant force at each water layer is calculated with

F b
i = min

[
0, gmi ·

ρref − ρi
ρref + ρi

]
, (2.26)
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Figure 2.3: EWH model validation: comparison of simulation results (right)
with experimental data (left). The model predicts the thermal
stratification within the water storage tank sufficiently well.

where ρi is the density of the ith water layer, and ρref is the minimum
between ρi+1 and the average density of the water layers above layer i.
Using the natural convection velocity Vi, the viscous force at each layer
is calculated with

F v
i = −b Vi . (2.27)

The parameter b depends both on the water viscosity and tank geom-
etry. With both forces known, applying the Newton’s law of motion
gives us the displacement ∆i of each water layer, which determines the
degree of mixing with the upper layers according to

Tj,k+1 = rTj+1,k + (1− r)Tj,k, for j ∈ [i, i+ ∆i] , (2.28)

where r ∈ [0, 1] is the mixing ratio parameter. Both b and r can be iden-
tified from temperature measurements at different layers in the tank.
Modeling buoyancy in such a way captures the initial cooling of the
upper part of the tank, while the lower part is heated up, which is ob-
served in relevant experiments. Equations (2.26), (2.27) and (2.28) are
applied after (2.6) is numerically solved at each time step.
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Model Tuning and Experimental Validation

The model was validated and tuned using measurements from ten dif-
ferent positions along the vertical axis of a cylindrical water tank from
the Lawrence Berkeley National Laboratory (LBNL) [35]. The tank
was subject to six water draws with a flow rate of 11.4 l/min, lasting
for 3.5 minutes each, which occurred at the beginning of each hour. Six
of the thermometers were placed in the center of six zones with equal
volumes. The exact position of the other four thermometers was not
specified, but a preliminary analysis suggested that they were clustered
around the lowest thermometer.

Table 2.3: EWH Model Parameters

Parameter Symbol Value
Volume - 190 l
Height - 1.19 m
Power Pel 4.1 kW

Efficiency η 0.95
Heater position - 0.24 m

Water thermal diffusivity a 0.1434 · 10−6 m2/s
Water specific heat capacity c 4185.5 J/(kg K)

Tank heat loss coeff. 1 kth 6.3588 · 10−7 1/s
Tank heat loss coeff. 2 k′th 1.2382 · 10−6 1/s

Heating zone size - 2
Friction parameter b 1 kg/s

Mixing ratio r 0.7
Discretization in time ∆t 10 s
Discretization in space ∆y 0.119 m

Number of layers n 10
Inlet water temperature Tcw 14.4◦C
Ambient temperature Ta 19.7◦C

We give the fitted EWH parameters in Table 2.3, whereas Fig. 2.3 shows
the model validation results. The plots on the left correspond to mea-
surements, whereas the plots on the right correspond to model predic-
tions. From top to bottom Fig. 2.3 shows: (i) the temperature distribu-
tion in the water tank, (ii) the temperature evolution at the top of the
tank and at the heating element, (iii) the electric power consumption,
and (iv) the Root Mean Squared Error (RMSE) and the Mean Absolute
Percentage Error (MAPE) of the model predictions.



26 Chapter 2. Price-Based Optimal Building Control

With the exception of the lowest water layer, the temperature errors
are small, particularly for the upper tank layers (less than 3%). The
increased model mismatch at the bottom of the tank is due to the un-
certainty related with the lower thermometers’ position. In addition,
the heater operating intervals predicted by the model match the exper-
imental results very well.

2.2.4 Battery Model

In this thesis, we consider lead-acid batteries as a storage technology due
to their low investment cost, which makes them preferable for stationary
applications. Since we are interested in the energy flows among the
battery, the building loads, the PV and the grid, a model that describes
the evolution of the stored energy is sufficient.
The Kinetic Battery Model (KiBaM) is appropriate to simulate lead-
acid batteries [36].2 This model considers the battery as a two-well
system, where the first well contains the directly available charge q1
and the second one contains the chemically bound charge q2, which can
be transformed to electricity only at a limited rate. KiBaM accounts
for the capacity reduction at increased charge or discharge current, as
well as the so-called battery recovery effect.
A schematic of the KiBaM model is shown in Fig. 2.4. The ratio between
the widths of the two wells is called capacity ratio parameter and is
denoted by b1. The rate at which the bound charge becomes available
is proportional to the difference in head of the two wells (h1 and h2)
and is denoted by b2. The battery can be described as the system of
ODEs

dq1

dt
= −I − b′2 · (h1 − h2) (2.29)

dq2

dt
= b′2 · (h1 − h2) , (2.30)

where I is the charge/discharge current and b′2 = b2b1(1− b1).

2The KiBaM equations for battery voltage hold for lead-acid batteries because
of their flat discharge profile. These equations do not hold for lithium-ion batteries,
which have a sloped discharge profile. However, if the goal is not to model the battery
voltage during discharge, but instead to model the energy transfer and the battery
lifetime, the two-well model of KiBaM is also applicable for lithium-ion batteries [37].
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Figure 2.4: KiBaM models the battery as a two-well system, where the first
well contains the available charge (q1) and the second well con-
tains the chemically bound charge (q2).

Energy and Power Models

Since we are not interested in electrical quantities such as voltages and
currents, we use the KiBaM variant proposed in [22]. Assuming that the
battery terminal voltage is constant, the time evolution of the available
energy E1

k and the chemically bound energy E2
k can be described by the

discrete-time state space model[
E1,k+1
E2,k+1

]
︸ ︷︷ ︸

xbat
k+1

=
[
b1 + b3b4 b1(1− b4)
b3(1− b4) b3 + b1b4

]
︸ ︷︷ ︸

Abat

·
[
E1,k
E2,k

]
︸ ︷︷ ︸
xbat
k

+

[
b3b4+b1(1−b2∆t)−1

b2
· 1
nd

b3b4+b1(1−b2∆t)−1
b2

· nc
−b3(b2∆t−1+b4)

b2
· 1
nd

−b3(b2∆t−1+b4)
b2

· nc

]
︸ ︷︷ ︸

Bbat

·
[
P d
k

P c
k

]
︸ ︷︷ ︸
ubat

, (2.31)

where the total energy stored in the battery is equal to Ek = E1,k+E2,k,
the subscript k denotes time, b3 = 1 − b1, b4 = e−b2∆t, ∆t is the
discretization time, nd is the discharging efficiency, nc is the charging
efficiency, P d

k is the discharge power, and P c
k is the charge power.
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The battery round-trip efficiency is equal to nrt = ncnd. The DC/AC
converter is simply modeled by its rated capacity and efficiency nconv,
which is assumed to be constant.
Apart from the energy model (2.31), KiBaM also models the maximum
charge Pmax

ch,k and discharge Pmax
dis,k power as a function of the stored

energy in the battery according to

Pmax
ch,k = −b2 · b1 · Emax + b2 · E1,k · e−b2·∆t + Ek · b2 · b1 · (1− e−b2·∆t)

1− e−b2·∆t + b1 · (b2 ·∆t− 1 + e−b2·∆t)
(2.32)

Pmax
dis,k = b2 · E1,k · e−b2·∆t + Ek · b2 · b1 · (1− e−b2·∆t)

1− e−b2·∆t + b1 · (b2 ·∆t− 1 + e−b2·∆t) , (2.33)

where Emax is the nominal battery capacity. The SoC is defined as

SOCk = Ek
Emax

. (2.34)

Battery Lifetime Model

Battery lifetime estimation is essential to quantify the return on a bat-
tery investment. For this purpose, we apply the rainflow cycle counting
method [22,38] that models the dependence of the lifetime on the range
and number of charge/discharge cycles. The number of cycles to fail-
ure CFL is a double exponential function of the charge/discharge cycle
range R

CFL = α1 + α2 · eα3·R + α4 · eα5·R . (2.35)

The parameters α1 to α5 may be available from the battery manufac-
turer or obtained via a non-linear regression on lifetime data.
We consider twenty bins of the same width and allocate the battery
cycles to them depending on their range. Let Mi denote the annual
number of cycles with a range Ri, and CFL,i denote the respective cycles
to failure. In each of these cycles, 1/CFL,i of the entire battery lifetime
is consumed, and so the cumulative annual damage is

D =
∑
i

Mi

CFL,i
. (2.36)
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For instance, if D = 0.5 at the end of an annual simulation, half of the
battery lifetime has been consumed. In other words, the battery needs
replacement every two years. Since the battery lifetime is drastically
affected by deep discharge cycles, we use only part of the available
capacity for daily cycling by introducing the constraint SOC > SOCmin.
The battery parameters are given in Appendix B.

2.2.5 Photovoltaic Model

We adopt a simple PV model for rooftop panels equipped with a Maximum
Power Point Tracker (MPPT) from [39,40]. The model parameters are
based on the commercial product BP 3160 photovoltaic module and
were verified with experimental data. The MPPT power of the array of
PV panels is given by

PPV = IMPPT · UMPPT ·NPV , (2.37)

where NPV is the number of panels. The variables IMPPT and UMPPT
are the MPPT current and voltage computed with

IMPPT = Ip ·
G

Gs
· [1 + ∆Ip · (Tcell − Ts)] (2.38)

UMPPT = Up · [1 + ∆Up(Tcell − Ts)] +K1 · Uth · ln
(
G

Gs

)
+K2 ·

[
Uth · ln

(
G

Gs

)]2
(2.39)

Uth = A · kb · Tcell

q
, (2.40)

where G is the solar radiation; Ip and Up are the peak power current
and voltage, respectively; ∆Up and ∆Ip are the temperature effects on
peak power voltage and current, respectively; and K1, K2 are constant
coefficients. The variables Gs, Ts, A, kb and q are the standard temper-
ature, the standard radiation, the diode ideality factor, the Boltzmann
constant and the charge of an electron, respectively. An approximate
expression to calculate the cell temperature Tcell is [41]

Tcell = Ta +G · (TNOCT − 20) , (2.41)

where TNOCT denotes the normal operating cell temperature and Ta is
the ambient temperature. The PV parameters are given in Appendix B.
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Figure 2.5: Schematic representation of the building system with all com-
ponents and power flows between them.

2.2.6 Overall Building Model

An overview of the complete building model is given in Fig. 2.5. For
optimization purposes one has to distinguish the power sources, because
the power for the EWH, HP, SC, battery and Uncontrollable Load (UL)
can come from the grid, from the PV, or from the battery. This is
modeled by introducing separate control inputs (as shown in Fig. 2.5)
and constraining them to sum up to the total power input for each
component. The dynamics of the overall system are given by (2.42),
where xk ∈ R28, uk ∈ R14 and vk ∈ R5 are the overall system state,
input and disturbance vectors, respectively

xk+1 = Akxk +Buuk +Bvvk . (2.42)

Observe that there is no arrow going from the PV to the grid in Fig. 2.5.
This is because our controller prioritizes PV consumption by the build-
ing loads, instead of feeding the PV power to the grid. Of course, if
there is excess PV power after supplying the building loads and charg-
ing the battery, this excess power will be fed to the grid. Prioritizing
the PV self-consumption is an interesting control strategy in systems
with low Feed-In Tariffs (FITs) for PV.
A typical Swiss-average residential building with an area of 100 m2,



2.3. Optimal Building Control 31

Chapter 13

Receding Horizon Control

In the previous chapter we discussed the solution of constrained finite time and
infinite time optimal control problems for linear systems. An infinite horizon sub-
optimal controller can be designed by repeatedly solving finite time optimal control
problems in a receding horizon fashion as described next.

past future

reference

t t+ 1 t+Nm t+Np

t+ 1t+ 2 t+ 1 +Nm t+ 1 +Np

u(t)

u(t)

predicted outputs y(t+ k|t)

predicted outputs y(t+ 1 + k|t+ 1)

manipulated inputs u(t+ k)

manipulated inputs u(t+ 1 + k)

Figure 13.1 Receding Horizon Idea.

At each sampling time, starting at the current state, an open-loop optimal
control problem is solved over a finite horizon (top diagram in Figure 13.1). The
computed optimal manipulated input signal is applied to the process only during
the following sampling interval [t, t+1]. At the next time step t+1 a new optimal
control problem based on new measurements of the state is solved over a shifted

Figure 2.6: Schematic of receding horizon control in MPC [1].

heavy construction, low window area fraction, and south facade orien-
tation is considered for the simulations of this chapter. The building
is equipped with an HP with a nominal electric power of 2 kW, an SC
installation with a nominal electric power of 1.2 kW and an EWH with a
nominal power of 4.1 kW. The building may additionally include 12 PV
panels with nominal power 160 W each, and a battery with a capacity
of 5 kWh.

2.3 Optimal Building Control

2.3.1 Introduction to MPC

MPC is a predictive controller that uses a model of the system under
control to account for the future evolution of the states, when deciding
the control input at the current time step. MPC involves solving an
optimization problem at each time step, and is executed in a receding
horizon fashion. With reference to Fig 2.6, the MPC controller calcu-
lates the optimal control sequence across a prediction horizon, but it
only applies the first input of the sequence. At the next time step the
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Figure 2.7: The temperature deadband logic considered for RBC. The solid
lines correspond to the temperature thresholds to turn on heat-
ing or cooling. The dashed lines correspond to the temperature
thresholds to turn off heating or cooling.

optimization problem is solved again and the process continues accord-
ingly. The reader is referred to [1, 42] for an introduction to MPC.

2.3.2 Benchmark: Rule-Based Control

MPC is benchmarked against a Rule-Based Control (RBC) approach,
which is a standard practice in building control. As the name indicates,
RBC determines the control inputs based on rules of the type “if con-
dition then action”. Typically, the conditions in RBC correspond to
crossings of temperature deadband thresholds.
We consider a temperature deadband with four thresholds for room
temperature control, as shown in Fig. 2.7. The variables T h

min and T h
max

are the lower and upper thresholds for heating operation, whereas T c
min

and T c
max are the lower and upper thresholds for cooling operation. We

consider the simple RBC design described by Algorithm 1.
The RBC parameters are selected as follows: T h

min = 21◦C, T h
max =

21.5◦C, T c
min = 22.5◦C, and T c

max = 23◦C. Therefore, two distinct
and not overlapping temperature deadbands are considered for heating
and cooling to avoid consecutive heating and cooling cycles and reduce
unnecessary energy consumption. These thresholds result in an average
room temperature of approximately 22◦C during the whole year, which
is equal to the middle of the deadband.
A simple RBC design (Algorithm 2) is used for water temperature con-
trol based on temperature measurements Tw at the 8th layer of the
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Algorithm 1 RBC for room temperature control
1: Current heating on/off state ← Previous heating on/off state
2: Current cooling on/off state ← Previous cooling on/off state
3: if cooling is on and Tz ≤ T c

min then
4: Turn cooling off
5: else if cooling is off and Tz ≥ T c

max then
6: Turn cooling on
7: end if
8: if heating is on and Tz ≥ T h

max then
9: Turn heating off

10: else if heating is off and Tz ≤ T h
min then

11: Turn heating on
12: end if

Algorithm 2 RBC for water temperature control
1: if Tw ≤ Tw

min then
2: Turn heater on
3: else if Tw ≥ Tw

max then
4: Turn heater off
5: else if Tw

min < Tw < Tw
max then

6: Current heater state ← Previous heater state
7: end if

water tank (counting from the bottom). The deadband limits are fixed
to Tw

min = 50◦C and Tw
max = 60◦C, such that the average water values

during the year are similar to the values obtained by the MPC controller.

2.3.3 MPC Problem Formulation

The goal of MPC is to minimize the electricity cost by using the building
model (2.42) and predictions of future disturbances, i.e., weather con-
ditions, occupancy, hot water consumption and electricity prices, while
respecting system constraints. In this work perfect predictions of all
disturbances are assumed, which provides us with an upper bound of
the cost reduction with predictive control.

The following state constraints on room temperature, average water
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tank temperature x̄wh
k and battery SoC are considered
21 ≤ xb

k,1 ≤ 23 [◦C] (2.43)
55 ≤ x̄wh

k ≤ 70 [◦C] (2.44)
0.2 · Emax ≤ E1,k + E2,k ≤ Emax = 5 [kWh] . (2.45)

Referring to the numbering convention of Fig. 2.5, the input constraints
can be written as

0 ≤ uk,i ∀ i ∈ 1 . . . 14 (2.46)
0 ≤ uk,1 + uk,2 + uk,3 ≤ Pmax

EWH = 4.1 (2.47)
0 ≤ uk,3 + uk,4 + uk,5 + uk,6 ≤ Pmax

d,k (2.48)
0 ≤ uk,7 + uk,8 ≤ Pmax

c,k (2.49)
0 ≤ uk,4 + uk,9 + uk,10 ≤ Pmax

HP = 2 (2.50)
0 ≤ uk,5 + uk,11 + uk,12 ≤ Pmax

SC = 1.2 (2.51)
0 ≤ uk,2 + uk,7 + uk,9 + uk,11 + uk,13 ≤ PPV,k (2.52)

Pmax
d,k = ξT

1 x
bat
k−1 (2.53)

Pmax
c,k = ξT

2 x
bat
k−1 (2.54)

PUL,k = uk,6 + uk,13 + uk,14 , (2.55)
where Pmax

EWH is the maximum EWH power, Pmax
HP is the maximum HP

power, Pmax
SC is the maximum SC power, PPV,k and PUL,k are the avail-

able PV power and the uncontrollable load, respectively, both at time
step k. All inputs are given in kW. In (2.53) and (2.54) ξ1, ξ2 ∈ R2 are
constant vectors obtained directly from (2.32) and (2.33).
Consider a prediction horizon N and define

x := [x>0 , . . . , x>N ]> ∈ R28(N+1) (2.56)
u := [u>0 , . . . , u>N−1]> ∈ R14N (2.57)
v := [v>0 , . . . , v>N−1]> ∈ R5N . (2.58)

With this notation, the MPC problem can be formulated as
min

u
w0c>u + w1u>Qu + w2(x−Tref)>H(x−Tref) (2.59a)

s.t. Su ≤ s (2.59b)
Gx ≤ g (2.59c)
Fx = f (2.59d)

x = Ax0 + Buu + Bvv , (2.59e)
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where c ∈ R14N denotes the electricity cost vector for the whole horizon,
w0, w1, w2 are weighting factors, and the matrices A,Bu,Bv,S,G,F
and vectors s,g, f are of appropriate sizes. Equations (2.59b) and
(2.59c) are the input and state inequality constraints, respectively, (2.59b)
is the equality constraints, and (2.59b) represents the building dynam-
ics.
The objective function in (2.59a) consists of three terms: (a) a linear
penalty for the electricity cost, (b) a quadratic term penalizing the
HP power, and (c) a quadratic term penalizing the deviations of room
temperature from a reference value. The entries of matrices Q and
H are either 0 or 1 such that the quadratic penalties are applied only
to the HP inputs (u4, u9 and u10 in Fig. 2.5), and room temperature
deviations from the center of the comfort zone (22◦C), respectively.
The three terms of the objective function are given different weights
w0, w1 and w2. The quadratic penalty for the HP power is required
to linearize the HP dynamics (see Section 2.2.2). By incorporating
the penalty for the room temperature deviations, an average annual
temperature close to 22◦C can be achieved, which is also the average
annual temperature with RBC. This ensures that the energy and cost
savings achieved by MPC are due to its predictive nature, rather than
reduction of user comfort. We tuned the weighting factors in order to
achieve a good trade-off among cost minimization, smooth HP operation
and reference temperature tracking, and the values w0 = 1, w1 = 0.2
and w2 = 0.2 were chosen, because they performed well in preliminary
simulations. A larger w1 value would penalize the HP power more
and result in spreading its operation during the day, thus drastically
reducing the potential for load shifting. Similarly, a larger w2 value
would penalize aggressively small temperature deviations from 22◦C
and limit the potential for load shifting.
We perform the optimization with an hourly time step and a prediction
horizon of 16 hours. Preliminary simulations showed that increasing the
prediction horizon up to 16 hours reduces the cost drastically, whereas
an horizon longer than 16 hours does not reduce the cost significantly.
Each optimization problem is solved in 3 seconds on average, using
CPLEX through a YALMIP interface [43] in a 4-core machine (2.83
GHz) with 8 GB RAM. Due to the short computation time, a larger
optimization problem with shorter time steps would also be tractable.
Note that the power consumption of the EWH, HP and SC are assumed
to be continuous variables in (2.59). We made this simplifying assump-
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tion to speed up the solution of the optimization problem. In practice,
continuous power modulation is possible with the so-called modulating
HPs, whereas continuous power control of an EWH can be achieved
with voltage control [44]. However, today most of small HPs are not
modulating and most EWHs operate in an on/off mode without power
modulation. The on/off mode of operation can be integrated into (2.59)
by introducing binary variables, which will of course increase the com-
putation time.
Recall that the disturbance predictions are assumed to be perfect. If the
building model was also perfect, (2.59) could be applied in an open-loop
fashion: at time step k the MPC problem is solved and the optimal con-
trol sequence is applied for all time steps within the prediction horizon
N without resolving the MPC problem. However, we do not follow this
approach because the building model is not perfect due to linearization
of the nonlinear HP model.

2.4 Cost Savings and Price Sensitivity

2.4.1 Case Study Description

Building Configurations

Depending on the availability of PVs and batteries, we differentiate
among the four building configurations of Table 2.4. Note that IRA is
typically used in office buildings because it provides high comfort while
being energy efficient. Therefore, the building models developed within
the OptiControl project are targeted to office buildings. However, we
use a modified model version in this chapter to model a residential
building. We simplify the model by neglecting lighting and ventilation,
and by fixing the blinds’ position to 0.5. In addition, we augment the
model’s state vector by introducing the HP model of Section 2.2.2. As
a result, the heating control input is the HP electric power consumption
instead of the heat flux.

Price Signals

The building is controlled using price signals for energy purchases from
the grid. Three different price signals are considered in this chapter as
summarized in Table 2.5.
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Table 2.4: Building configurations

Component Case I Case II Case III Case IV
PV - - X X

Battery - X - X

Table 2.5: Price signals

Case A Case B Case C
Price signal day-night day-ahead dynamic real-time

First, we consider a simple day-night tariff, which is a common practice
today in many countries. More specifically, we use the tariff from Elek-
trizitätswerk der Stadt Zürich (EWZ), which has a day tariff of 0.185
CHF/kWh (from Monday to Saturday, 6h-22h), and a night tariff of
0.095 CHF/kWh (from Monday to Saturday 22h-6h); the night tariff is
also used on Sundays and public holidays [8].
Second, we consider a day-ahead time-varying tariff that reflects the
marginal electricity costs of the wholesale market. This tariff is based
on the Swiss spot market prices of 2009, and can be used to shift de-
mand towards time periods with high RES infeed, and consequently low
marginal costs [8].
And third, we consider real-time pricing, namely instantaneous price
changes occurring at delivery time. Real-time price signals can be used
to control the consumption of an aggregation of buildings in order to
track a power reference signal.
In order to prioritize the local PV utilization, we use a zero FIT for the
PVs in the MPC problem formulation. However, to achieve reasonable
estimates of the annual operational costs, we apply a FIT equal to half
of the day tariff for the PVs when post-processing the economic results.

Uncontrollable Building Loads

The electricity consumption of ULs (lighting, televisions, ovens, etc.)
is modeled using the data from [45]. The data include power measure-
ments of different loads with a resolution of 1 second from a typical
household for the week 21 − 28 April 2011, which is repetitively used
throughout the whole year. While this assumption is reasonable for
most uncontrollable loads, this is generally not the case for lighting that
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has a strong seasonal dependence. Seasonality effects on uncontrollable
loads are neglected in this work due to lack of appropriate data, but
they could be easily incorporated.

External Inputs

External inputs to the building include weather data, internal heat gains
due to people and equipment, and hot water consumption. The weather
data are comprised of the outside dry-bulb air temperature, the wet-
bulb temperature and the solar radiation, and are taken from archived
forecasts of the COSMO-7 numerical weather prediction model operated
by MeteoSwiss. A residential building is considered in this work with
an occupancy profile from 6 pm each day till 7 am next day. Typical
values for internal gains are taken from the Swiss standard SIA [20]. A
probability profile of water draws from [21] is used to simulate daily hot
water consumption, which is taken as equal to 280 liters.

2.4.2 MPC Performance

Figures 2.8 and 2.9 depict the optimal building operation for Case IV-
B during a typical week in winter and summer, respectively. The HP
and SC power consumption is shifted towards low-price intervals, which
indicates that the controller exploits the thermal inertia. Similarly, the
battery charges from the grid when the price is low, and supplies the load
when the price is high. Note that the battery charge power decreases
as the SoC approaches 100% due to the charge transfer constraints of
the KiBaM model in (2.32). In summer, most of the EWH energy is
shifted to low-price intervals using the battery rather than the EWH.
In contrast, in winter, the EWH additionally consumes power from the
grid during low-price periods and stores this energy in its thermal mass.
During the summer week, the PV production is high enough to cover
both the controllable and uncontrollable loads, while the excess energy
is stored in the battery.
The EWH dominates the electricity consumption in both weeks, whereas
the shares of the HP and SC are significantly smaller. The need for cool-
ing is low even during the summer week, because the average ambient
temperature is around 20◦C. Although the average ambient tempera-
ture during the winter week is approximately 1.5◦C, the space heating
needs are reduced due to the high internal gains and the high COP of
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Figure 2.8: Optimal building operation during a typical winter week [Case
IV-B]. (a) Electricity price; (b) Ambient temperature; (c) Room
and water temperatures; (c) Battery SoC; (d) Battery charge-
discharge profile; (e) Power of controllable loads and ULs.
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Figure 2.9: Optimal building operation during a typical summer week [Case
IV-B]. (a) Electricity price; (b) Ambient temperature; (c) Room
and water temperatures; (c) Battery SoC; (d) Battery charge-
discharge profile; (e) Power of controllable loads and ULs.
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Table 2.6: Room temperature comparison between RBC and MPC

Controller Min Temp. Max Temp. Mean Temp.
RBC 20.55◦C 23.00◦C 21.97◦C
MPC 21.08◦C 23.00◦C 21.95◦C

Table 2.7: Water temperature comparison between RBC and MPC

Controller Min Temp. Max Temp. Mean Temp.
RBC 50.19◦C 59.97◦C 55.57◦C
MPC 54.88◦C 62.11◦C 55.47◦C

the HP (the COP is 4.2 on average). On the other hand, the EWH con-
sumes a lot of energy due to the high thermostat setpoints (55− 70◦C)
and the large hot water demand.

2.4.3 Cost Savings Potential

In this section, we assess the potential of MPC to minimize electricity
costs in buildings compared with RBC. We perform annual simulations
with the four building configurations of Table 2.4, and for the price
cases A and B. Tables 2.8 and 2.9 compare RBC and MPC in terms of
annual electricity costs and energy imports from the grid.3

As mentioned in Section 2.3.2, the temperature thresholds of RBC were
selected with two criteria in mind: (a) excessive cycling is avoided;
and (b) the average room and water temperatures during the year are
roughly the same for RBC and MPC. Indeed, the resulting average
temperatures are nearly identical for RBC and MPC according to Ta-
bles 2.6 and 2.7. Therefore, the comparison between MPC and RBC is
fair, i.e., any cost reduction achieved by MPC can be attributed to the
prediction of disturbances and prices rather than on compromising user
comfort.

3Similar simulations were performed in [20], but the savings calculated in this
thesis are generally smaller than those reported in [20]. There are two reasons for
this. First, a seasonal setting was applied in [20] where heating was only allowed
during winter months and cooling only during summer months. In contrast, this
seasonal setting was not used in the simulations of this thesis. Second, in order to
avoid consecutive heating and cooling cycles, a more advanced RBC that consists of
four threshold temperatures (see Section 2.3.2) was implemented in this thesis but
not in [20].
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Table 2.8: Comparison between RBC and MPC for case A

Benchmark (RBC)
Electricity cost Energy consumption
[CHF] [%] [kWh] [%]

RBC: I-A, II-A 1349.90 - 8379.80 -
RBC: III-A, IV-A 1058.10 - 7088.90 -

Performance bound (MPC)
Electricity cost Energy consumption
[CHF] [%] [kWh] [%]

I-A 1180.96 −12.52 8182.04 −2.36
II-A 1138.90 −15.63 8468.37 +1.06
III-A 833.95 −21.18 6140.32 −13.38
IV-A 797.42 −24.64 6371.58 −10.12

Table 2.9: Comparison between RBC and MPC for case B

Benchmark (RBC)
Electricity cost Energy consumption
[CHF] [%] [kWh] [%]

RBC: I-B, II-B 1299.80 - 8379.80 -
RBC: III-B, IV-B 1021.60 - 7088.90 -

Performance bound (MPC)
Electricity cost Energy consumption
[CHF] [%] [kWh] [%]

I-B 1190.54 −8.41 8216.27 −1.95
II-B 1142.34 −12.11 8473.00 +1.11
III-B 874.33 −14.42 6160.60 −13.10
IV-B 835.95 −18.17 6364.87 −10.21

In case I-A, the MPC reduces the cost by approximately 12% and the
energy consumption by approximately 2% compared with the RBC. By
adding a battery to the system the additional savings are approximately
3%. However, the cost reduction comes with an increase in energy
consumption due to battery efficiency losses (note that in case II-A, the
MPC results in a consumption 1% higher than that of RBC, yet it still
reduces the cost).
In a building with PVs the benefits of using MPC are pronounced. In
case III.A energy imports from the grid and costs decrease by approx-
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Figure 2.10: Explanation of the price step used in the sensitivity analysis
for the day-ahead price signals.

imately 21% and 13%, respectively. Therefore, the building thermal
inertia can be efficiently used to increase local PV utilization in build-
ings. If a battery is used with a PV installation, the battery achieves
additional savings of around 3%. Qualitatively similar results are ob-
tained for the day-ahead dynamic tariff (case B), but the savings are
smaller in absolute terms.4

Based on these results, we carry out a simple economic evaluation of a
battery installation for electricity cost reduction. Assuming a capital
cost of 200 CHF/kWh for lead-acid batteries [46] and constant savings
for every year equal to 48.2 CHF (which is the best case according to
Table 2.9), the investment’s payback period is approximately 20 years.
Since the typical battery lifetime is 5− 15 years [46], using batteries for
this application is not economically viable with the current electricity
price levels, battery efficiencies and capital costs. According to our
results, a battery price less than 145 CHF/kWh is necessary to render
the investment in battery profitable.

2.4.4 Sensitivity to Day-Ahead Price Signals

We carry out a sensitivity analysis to investigate the building’s response
to day-ahead price signals in winter. For this purpose, we apply a
constant price for every hour of the next day, with the exception of

4The values reported in this chapter are upper bounds of the potential savings
for two main reasons. First, the disturbance predictions are assumed to be perfect in
the MPC. And second, the gap between the MPC and the RBC can be, in principle,
reduced by appropriately tuning the RBC, e.g., based on experience.
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Figure 2.11: Energy shifting potential as a function of the magnitude and
duration of the day-ahead price steps (Case IV).

hour 10 when we apply a price step of variable magnitude and duration,
as shown in Fig. 2.10. We choose hour 10 as the starting time of the
price step because both the HP and the EWH normally operate during
this hour. We present the results of the sensitivity analysis for Case
IV in Fig. 2.11, where the energy shifting potential is defined as the
consumption during the price step divided by the consumption without
any price step.

Percentage-wise the building is more responsive to negative than posi-
tive price steps, in particular if the duration of the negative price step
is short. Interestingly, most of the energy shifting potential can be
achieved by a price step duration of up to 2 hours. For a −100% price
step with a duration of 1 hour the energy consumption increases by a
factor of 7, whereas for a +100% price step with a duration of 1 hour the
energy consumption decreases by approximately 93%. This means that
the building is very sensitive to price signals that are known day-ahead.
For price steps with a magnitude less than 30%, the energy is shifted
using only the thermal inertia of the building and EWH. For larger
price steps, the battery is also used because the round-trip efficiency is
around 74% (including converter losses).
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Figure 2.12: HP Response to −50% and +50% real-time price signals.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

E
W

H
 p

ow
er

 (
kW

)

Time (h)

 

 

No price step −50% price step at hour 8 +50% price step at hour 8

Figure 2.13: EWH Response to −50% and +50% real-time price signals.

2.4.5 Sensitivity to Real-Time Price Signals

A real-time price signal is a signal sent to the building at the time
when the energy delivery takes place, i.e., it is not known a priori like
in Section 2.4.4. In this section, we assume that a building uses MPC
to optimize its operation based on a day-ahead price profile. However,
an additional price signal may be superimposed on the day-ahead price
profile during physical energy delivery.
Figure 2.12 and Fig. 2.13 depict the HP and EWH response, respec-
tively, to a −50% and a +50% price signal occurring at hour 8. Both
the HP and the EWH are able to respond to negative price signals
by instantly increasing their consumption and shifting energy from the
following hours. However, the behavior is different for positive price sig-
nals. The HP switches off during hour 8 and compensates by increasing
its consumption in the following 5 hours, whereas the EWH cannot
modify its consumption at all. Although these results are only for hour
8, a similar behavior was observed for any other hour when both the
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Figure 2.14: Building demand-price curves for real-time price signals at
hour 8 (Case IV-C). The curves show the sensitivity of de-
mand on the magnitude of the price signal.

HP and the EWH operate. Of course, positive price signals occurring
at times when the consumption is zero, as well as negative price signals
occurring at times when the consumption is maximum, will not affect
the building behavior.

There are two reasons why the the EWH cannot respond to positive
real-time price signals. First, the EWH dynamics are faster than the
HP dynamics and the EWH thermal inertia is lower. Second, recall that
the deviation of EWH temperature from the setpoint is not penalized in
the objective function (2.59a), as it is done for the room temperature.
Therefore, the EWH temperature remains close to the lower deadband
limit for most of the day in order to minimize energy consumption, and
so there is practically no slack for further power reduction. Note that
the HP potential for power reduction depends heavily on the weighting
factor w2 in (2.59a): the better the tracking of 22◦C (staying in the
middle of the comfort zone), the higher the potential.

By repeating the same analysis for several price steps in the range
[−100%, 100%] and by aggregating the responses of all building com-
ponents, we derive the demand-price curves of Fig. 2.14. This figure
shows how much the building consumption of the following hours will
change if a real-time price signal is sent at hour 8. For the building
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under consideration, real-time price signals modify consumption up to
6 hours in the future. Again, it is obvious that the effect of negative
price signals on the consumption is much higher than that of positive
price signals. Demand-price curves of different buildings can be used
by load aggregators to incorporate the economic value of electricity for
end-users in power markets, as in [47], or to minimize balancing energy
costs due to RES infeed prediction errors.

2.5 Conclusion

In this chapter, we introduced a benchmark residential building model
with an HP, an EWH, a battery and PV panels. We used the model
within an MPC scheme to optimize the building’s consumption under
dynamic end-customer electricity prices. Simulations showed that the
MPC outperforms a conventional RBC and results in cost reductions
in the range 8 − 25%, depending on the building configuration and
electricity price profile.
Furthermore, we investigated the response of a building controlled with
an MPC to day-ahead and real-time step price signals. The results
showed that the building consumption is much more sensitive to nega-
tive price signals (decreased price) than positive price signals (increased
price).





Chapter 3

PV Self-Consumption
Maximization in
Buildings

3.1 Introduction

Large shares of Photovoltaics (PVs) have been introduced in the power
system over the last years, and projections show that the worldwide in-
stalled PV capacity will continue to increase [48]. A large portion of the
PV power worldwide is installed on the roofs of residential and commer-
cial buildings [49]. Depending on financial incentives, locally produced
PV energy can be either self-consumed in the building premises or fed
into the grid. Maximizing self-consumption of PV energy is preferable
from a technical point of view for the following reasons [50]: (a) fewer
overvoltages occur, (b) violations of cable and transformer thermal lim-
its are less likely, and (c) the losses in the distribution network are
reduced.
The technical advantages of PV self-consumption are understood by
power system regulators in some countries, which have adopted (or are
discussing) regulatory measures to motivate local utilization of PV en-
ergy in buildings. For example, in Germany the Feed-In Tariff (FIT) for
PVs has fallen below the residential customer electricity tariff [51]. This

49



50 Chapter 3. PV Self-Consumption in Buildings

Table 3.1: Nomenclature of Chapter 3: symbols

Symbol Unit Description
b1 − b4, γ - PV model parameters
Cbat e/kWh Battery capital cost
Cel cents/kWh Electricity cost
CFIT cents/kWh PV feed-in tariff
CI e/year Annual cash inflow
CO e/year Annual cash outflow
d % Discount rate
E Wh Electric energy
G W/m2 Solar radiation
N years Investment horizon
P W Power
R e/year Annual cash flow
r %/year Annual electricity price increase

Qbat kWh Battery energy capacity
SHP - On/off state of the HP
T ◦C Temperature
t - Time index
η - PV efficiency
ξ - PV self-consumption ratio
α - PV excess energy parameter

Table 3.2: Nomenclature of Chapter 3: subscripts and superscripts

Subscript / superscript Description
a Ambient temperature
b Building temperature
c PV cell temperature
ch Battery charge power
dis Battery discharge power
el Electric power

exp Energy export
imp Energy import

l Uncontrollable load
min/max Minimum/maximum value of a variable

n Net power
s,i The ith layer of the water storage tank
k Year index
th Thermal power

creates an interest for self-consumption of PV electricity even in the ab-
sence of additional regulatory measures, such as the previously existing
bonus on self-consumed PV electricity in Germany [52]. However, fur-
ther investigation is needed to verify whether this interest translates
into a business case.
The financial advantages of PV self-consumption must be taken into
account in the planning phase of rooftop PV installations. For this
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purpose, algorithms to maximize local PV utilization should be incor-
porated into software for energy simulations in buildings. In this con-
text, this chapter presents four control algorithms to maximize PV self-
consumption with controllable thermal loads and batteries. To illustrate
their practical applicability, the algorithms were integrated into Poly-
sun, a commercial software for energy simulations in buildings [53, 54],
which was extended with new features.

Optimal operation strategies for residential and commercial buildings
with PV installations and battery storage have attracted the interest
of many researchers. Some papers, for example [19, 20, 55, 56], in-
vestigated planning and operation strategies for residential buildings
with flexible thermal loads and/or battery storage to reduce electric-
ity costs, but without explicitly addressing the problem of PV self-
consumption. Other papers, such as [57,58], studied the potential of PV
self-consumption increase using stationary lithium-ion batteries and/or
electric vehicles. More relevant to this chapter is the work presented
in [59], where control of event-based loads (e.g., washing machines and
dishwashers) and storage are compared in terms of potential for PV
self-consumption optimization in residential buildings.

The contribution of this chapter is threefold: (a) we develop four simple
rule-based control algorithms for batteries and flexible thermal loads
and integrate them in Polysun; (b) we evaluate the potential for PV
self-consumption maximization and estimate the respective cost savings
by performing annual energy simulations; and (c) we investigate the
effect of uncertain parameters, such as the battery costs and FITs, on
the optimal building configuration. In this chapter, the thermal load
is a Heat Pump (HP) and the goal is to shift its consumption towards
intervals with large PV production.

This chapter is based on the results published in [60] and is organized
as follows. Section 3.2 starts with a brief overview of Polysun and then
introduces the models used to simulate the PV, HP, hydronic system,
and battery. Section 3.3 presents the developed control algorithms for
PV self-consumption maximization. Finally, Section 3.4 discusses sim-
ulation results from a case study, which are used to estimate the PV
self-consumption potential and the respective savings. The chapter’s
nomenclature is shown in Tables 3.1 and 3.2.
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3.2 Building Modeling in Polysun
Polysun is a software tool developed by the Swiss company Vela Solaris
AG for thermal simulations in buildings [53,54]. It includes a large num-
ber of building components and templates, and enables annual energy
simulations with realistic weather and heat demand data. In addition to
thermal simulations, Polysun also supports simulations of rooftop PV
systems. In this section, we present the mathematical models used in
Polysun to simulate the PV, HP and hydronic system.

3.2.1 Photovoltaic Model

PV modules are modeled using the general purpose model proposed
in [61]. The model assumes that the PV is equipped with a Maximum
Power Point Tracker (MPPT), and expresses the module efficiency η as
a function of solar radiation G and cell temperature Tc

η(G,Tc = 25oC) = b1 + b2G+ b3 lnG (3.1)
η(G,Tc) = η(G, 25oC)[1 + b4(Tc − 25)] , (3.2)

where b1, b2, b3 are fitting parameters, and b4 is the module temperature
coefficient. The cell temperature can be calculated based on the ambient
temperature Ta according to

Tc = Ta + γG

1000 , (3.3)

where γ is a parameter related to the rear ventilation of the PV module.
The necessary data to identify the four model parameters using linear
fitting techniques are:

• Three values of PV module efficiency at different radiation condi-
tions.

• The PV module efficiency at standard test conditions of 1000 W/m2

radiation and 25◦C cell temperature, as well as the efficiency at
1000 W/m2 but at a different temperature.

Due to its simplicity, the model can be applied for a variety of PV cell
technologies including crystalline silicon (cSi), amorphous silicon (a-
Si) and copper-indium-diselenite (CIS) cells. The inverter efficiency is
modeled based on measured values at 100%, 50% and 10% partial load.
Efficiencies for other load levels are calculated with linear interpolation
between these values.
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3.2.2 Building and Hydronic System Model

The dynamic thermal response of a building is highly dependent on the
topology of pipes and pumps, on the size of water storage tank, and on
the controller’s settings. An adequate representation of the hydronic
system is necessary to accurately predict the seasonal performance fac-
tor of a HP [62], and reference [63] showed that Polysun algorithms are
suitable for this purpose.

The numerical model of Polysun implements the plug-flow approach [64]
in which fluid elements such as pipes, heat exchangers, and storage tanks
realize the mass transport at every time step. In order to calculate the
thermal energy demand, a single-node building model is used with an
empirical heat transfer coefficient for the heating device (e.g., radia-
tor or floor heating). Adequate modeling of the building envelope is
critical, because it is a key thermal storage element in addition to the
water storage tank. The hot water storage tank is divided into eleven
water layers with different temperatures in order to capture the ther-
mal stratification effects. Numerical weather data from the Meteonorm
database [65] are used as external input to calculate the thermal energy
demand of the building.

3.2.3 Heat Pump Model

Air-to-water HPs for heating and cooling are considered as flexible ther-
mal loads. The HP model is based on the thermal and electric power
consumption at different temperatures at the evaporator side (Tevap)
and at the air side (Tair). These values are typically measured on pre-
defined sampling points according to the test standards EN 255 or EN
14511 (e.g., the notation A2/W35 indicates measurement at an air in-
take temperature of 2◦C and a heating water outlet temperature of
35◦C). Additional sampling points can be used as input values in order
to improve the accuracy and application range of the simulation model.
A similar approach could be applied for water-water or brine-water HPs.

In the time-domain simulation algorithm, the operating point of the
HP is evaluated at each calculation step. The electric and thermal HP
power, Pel and Pth respectively, are evaluated by interpolation between
the sampling points. These two quantities are related with the Coeffi-
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cient of Performance (COP) according to

COP = Pth

Pe
. (3.4)

3.2.4 Battery Model

The battery model developed in Section 2.2.4 was integrated in Polysun
and used for the simulations of this chapter.

3.3 Rule-Based Control Design

3.3.1 Problem Statement

We define the PV self-consumption ratio as the ratio between the PV en-
ergy consumed in the building premises EPV→bld, i.e., before the Point
of Common Coupling (PCC), and the total PV energy yield EPV. We
assume the meter configuration of Fig. 3.1, but a single bi-directional
meter could also be used instead of the two one-directional meters M1
and M2. Let us denote by Eexp the energy exported to the grid and
recorded by meter M1, and by Eimp the energy imported from the grid
and recorded by meter M2. With this notation, the PV self-consumption
ratio can be defined as

ξ = EPV→bld

EPV
= EPV − Eexp

EPV
. (3.5)

To maximize ξ, the export to the grid Eexp should thus be minimized.
We develop four rule-based control algorithms for the HP and the bat-
tery in order to maximize ξ. In principle, the MPC approach of Chap-
ter 2 could be used for the same purpose. However, the goal of this
chapter is to model the thermal distribution system in detail (in addi-
tion to modeling the building envelope), and using an MPC with such
a model would be computationally intensive. Instead, we attempt to
investigate if simple rule-based control algorithms can increase the PV
self-consumption ratio significantly.
The key idea of the algorithms is that PV energy should be utilized
preferably within the building premises, instead of being fed to the grid.
For this reason, the HP operation is shifted to intervals when the PV



3.3. Rule-Based Control Design 55

transformed to electricity only at a limited rate. KiBaM 

accounts for the capacity reduction at increased charge or 

discharge currents, as well as the recovery effect.  

 In particular, the variant of KiBaM proposed in [20] 

is implemented in Polysun. This variant assumes that the 

battery terminal voltage is constant. The available and the 

bound energy at the end of a charge/discharge interval are 

given by: 
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where Δt is the time step duration in hours, E1,t , E2,t, and 

E0,t are the available, bound, and total energy stored in 

the battery (E0,t = E1,t + E2,t), respectively, P is the 

charge/discharge power, c = E1,t/E0,t is the capacity ratio 

parameter, and k is the rate constant parameter that 

corresponds to the rate at which chemically bound energy 

becomes available for output. According to our 

convention, P is positive during discharging and negative 

during charging.  

 KiBaM also models the maximum discharge (Pdis,max) 

and charge (Pch,max) power as a function of the stored 

energy in the battery according to:  

1, 0,

dis,max

(1 )
  ,

1 ( 1 )

k t k t

t t

k t k t

k E e E k c e
P

e c k t e

   

   

      


     

               (8) 

max 1, 0,

ch,max

(1 )
  ,

1 ( 1 )

k t k t

t t

k t k t

k c E k E e E k c e
P

e c k t e

   

   

          


     

 (9) 

where Emax is the nominal battery capacity. With this 

notation, the State of Charge (SOC) is defined as:  

0,
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                                                               (10) 

 In reality, losses depend on the battery terminal 

voltage, which in turn depends on the SOC. However, in 

this paper we are not interested in voltages; for this 

reason, we represent losses using an aggregate efficiency 

coefficient. Assuming that charge and discharge 

efficiencies, nbat,ch and nbat,dis, are equal, the following 

relation holds for the round-trip efficiency of a complete 

charge/discharge cycle of the battery (nbat,rt = 

Edischarge/Echarge): 

bat,ch bat,dis bat,rt   .n n n                                             (11)                     

 The battery is connected to the AC side via a DC/AC 

converter, which is simply modeled by its rated capacity 

and efficiency. The efficiency is assumed to be constant 

throughout the converter operating range. 

 Battery lifetime estimation is essential to quantify the 

return of a battery investment. For this purpose, we apply 

the rainflow cycle counting method [20, 21], which 

assumes the lifetime to depend on the range and number 

of charge/discharge cycles. The relationship between the 

number of cycles to failure (CFL) and the range (R) of a 

charge/discharge cycle is modeled via a double 

exponential function:  
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Parameters α1 to α5 can be directly provided by the 

battery manufacturer, or obtained via non-linear 

regression on empirical lifetime test data.  

 We consider twenty bins of the same width and 

allocate the cycles to them depending on their range. 

Denote by Mi the annual number of cycles with a range 

Ri, and let CFLi denote the respective cycles to failure. In 

each of these cycles, 1/CFL,i of the entire battery lifetime 

is consumed. Therefore, the cumulative annual damage 

can be calculated by: 

FL,
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 For instance, if D=0.5 at the end of an annual 

simulation, half of the battery lifetime has been 

consumed. In other words, the battery will need 

replacement every two years. Since battery lifetime is 

drastically affected by deep discharge cycles, we use only 

part of the available capacity for daily cycling by 

introducing a constraint SOC≥SOCmin. The SOCmin value 

can be determined based on manufacturer data. 
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Figure 1: Layout of the system and metering topology. 

The controllable components and electricity meters are 

shown in green and orange, respectively. UL stands for 

uncontrollable load, i.e. all other load apart from the HP 

 

Four simple rule-based control algorithms for HPs and 

batteries are developed in this paper to maximize ξ. 

Although more advanced predictive optimization 

algorithms for building control have been proposed, e.g., in 

[7], they usually rely on simplified single zone building 

thermal models, which neglect the thermal distribution 

system. Instead, in our work heating appliances and the 

hydronic system are modeled in detail, which makes 

model-based control schemes computationally intensive. 

Our goal is to investigate if even simple control algorithms 

can significantly increase the PV self-consumption ratio. 

The key idea of the algorithms is that PV energy 

should be utilized as much as possible within the building 

premises, instead of being fed to the grid. For this reason, 

HP operation can be shifted to intervals when the PV 

production is at its maximum. The PV energy is stored as 

heat in the hot water storage tank and can be utilized later 

on according to the building thermal energy demand. 

Similarly, PV energy surpluses can be stored in the battery 

provided that it is not fully charged. During hours with low 

Figure 3.1: The layout of the system and the metering topology. The con-
trollable components and electricity meters (M1-M3) are high-
lighted with dark color. The grid is shown only to explain the
metering topology, but no grid constraints are considered in this
chapter.

production is high. The PV energy is stored as heat in the hot water
storage tank and can be utilized later depending on the building thermal
energy demand. Similarly, any PV energy surpluses can be stored in
the battery provided that it is not fully charged. During hours with low
or zero PV production, the battery discharges to cover the load in order
to reduce the electricity import from the grid.
Therefore, two storage options are available in the building: thermal
storage and battery. Algorithm 1 (A1) assumes that only the thermal
storage is present. Algorithm 2 (A2) considers the battery but does
not use the thermal storage for PV self-consumption. Algorithms 3 and
4 consider both storage options, but employ different control priorities
with respect to PV energy surpluses. Algorithm 3 (A3) prioritizes the
HP, whereas Algorithm 4 (A4) stores energy first in the battery. The
choice of the priority depends on various efficiencies, the thermal energy
demand of the building, the electricity consumption profile, and it might
exhibit seasonal patterns. Since it is generally difficult to identify a
priori the appropriate priority, annual simulations can be used for this
purpose.

3.3.2 Conventional Control

The proposed algorithms are compared with a conventional control al-
gorithm (A0), where there is no battery and the HP is operated based
on its internal controller. The operation principle of this controller is
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Base Case

HP internal control

START

(Ts7(t)≤Ts7,min OR 

Tb(t)≤Tb,min) AND 

THP(t)≤THP,max

Ts10(t)≥Ts10,max OR 

Tb(t)≥Tb,max OR 

THP(t)≥THP,max

Turn HP ON

SHP(t) = 1

Turn HP OFF 

SHP(t) = 0

Keep previous HP state

SHP(t) = SHP(t-1)

END

YES YES NO

NO

Figure 3.2: Flowchart of the conventional control algorithm without consid-
eration of PV self-consumption (algorithm A0).

shown in Fig. 3.2. The water temperatures at the 7th and 10th layer of
the storage tank (Ts,7 and Ts,10), as well as the building temperature
Tb, are used as feedback for the controller, and the respective setpoints
are denoted by Ts,7,min, Ts,10,max, Tb,min, and Tb,max. The internal tem-
perature of the HP (THP) is also used as a feedback variable to allow
switching off for security reasons whenever a limit THP,max is exceeded.
We denote the HP state by SHP, and the current time step by t. Accord-
ing to Fig. 3.2, the HP state changes when any of the aforementioned
setpoints is reached. In any other case, the HP state remains the same
as in the previous time step. Note that the internal controller can also
handle minimum operation time constraints; however, these are not
shown in Fig. 3.2 for the sake of simplicity.

3.3.3 Heat Pump-Only Smart Control

The control logic of algorithm A1 for smart HP control is shown in
Fig. 3.3. Let us denote the available PV power by PPV and the total
uncontrollable load by Pl. Similarly to algorithm A0, whenever any of
the setpoints Ts,7,min, Ts,10,max, Tb,min and Tb,max is reached, the HP
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Pn(t) = PPV(t) - Pl(t) - α PHP,exp(t)

Algorithm 1

HP smart control

START

(Ts7(t)≤Ts7,min OR 

Tb(t)≤Tb,min) AND 

THP(t)≤THP,max

Ts10(t)≥Ts10,max OR 

Tb(t)≥Tb,max OR 

THP(t)≥THP,max

Turn HP ON

SHP(t) = 1
Turn HP OFF 

SHP(t) = 0

YES
YES

NO

NO

END

Pn(t) > 0

YES NO

Figure 3.3: Flowchart of the HP-only smart control algorithm for PV self-
consumption maximization (algorithm A1).

turns on or off based on its internal controller. In any other case, the
HP state is determined based on the net power Pn, which represents the
power surplus in the building. In Fig. 3.3, PHP,exp denotes the power
that the HP is expected to consume if it turns on at the current time
step. The parameter α ∈ [0, 1] determines which part of PHP,exp must
be covered by PPV to allow HP operation (higher α values will result in
a less frequent HP operation).

3.3.4 Battery-Only Smart Control

Figure 3.4 presents the system operation under algorithm A2. The HP
is not utilized for PV energy management in this case, but it operates
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Algorithm 2

Battery smart control

START

Pn(t) = PPV(t) - Pl(t) - PHP(t)

Pn(t) > 0
YES NO

Battery charging Battery discharging

Base Case

HP internal control

Figure 3.4: Flowchart of the battery-only smart control algorithm for PV
self-consumption maximization (algorithm A2). The battery
charging and discharging algorithms are shown in Fig. 3.5.

based on algorithm A0 and is treated as an uncontrollable load in the
calculation of Pn. The battery control during charging and discharg-
ing is shown in Fig. 3.5. If a power surplus occurs and the battery is
not fully charged, the charging mode is enabled. On the other hand, if
a power deficit occurs and the battery is not fully discharged, the dis-
charging mode is enabled. If the discharging or charging limit is reached,
any additional power is imported from or fed to the grid, respectively.
Finally, the battery idles if the State of Charge (SoC) is 100% or below
SOCmin.

3.3.5 Heat Pump-Priority Smart Control

Algorithm 3 is described in Fig. 3.6. Since the HP has priority over the
battery, the first part of algorithm A3 is identical to algorithm A1. After
the HP state is fixed, the battery enters the charging or discharging
mode depending on the sign of Pn. The same logic as in algorithm A2
applies here for the control of battery charging and discharging.
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Battery charging

SOC(t) < 100%

Feed Pn(t) to the grid

Battery in 

idle mode

Battery in 

charging mode

Pch(t) = min[Pn(t), Pch,max(t)]

Pn(t) = Pn(t) - Pch(t)

Pn(t) > 0

START

END

YES

NO

YES

NO

Battery discharging

SOC(t) > SOCmin

Import Pn(t) from the grid

Battery in 

idle mode

Battery in 

discharging mode

Pdis(t) = min[|Pn(t)|, Pdis,max(t)]

Pn(t) = Pn(t) + Pdis(t)

Pn(t) < 0

START

END

YES

NO

YES

NO

Figure 3.5: Flowchart of the battery charging and discharging algorithms,
which are used within algorithms A2-A4.

3.3.6 Battery-Priority Smart Control

Algorithm 4 is the most involved of the developed algorithms and is
shown in Fig. 3.7. The discharging phase is identical to algorithm A3 but
the charging priority is reversed, i.e., in the presence of a power surplus
the battery is charged first. If the charging power limit is reached or the
battery is fully charged, the remaining power is consumed by the HP (if
it is more than the expected power consumption of the HP; otherwise,
it is fed to the grid).

3.3.7 Control Implementation into Polysun

We implement algorithms A0-A4 using logic statements and incorporate
them into Polysun using a component called programmable controller.
This component allows us to program logical statements in a high-level
user-friendly language. In addition, specific operation intervals for the
thermal loads can be defined using the same component.
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Algorithm 3

HP & battery smart 

control – priority to HP

Pn(t) = PPV(t) - Pl(t) - PHP(t)

Pn(t) > 0

Battery charging Battery discharging

YES NO

START

Algorithm 1

HP smart control

Figure 3.6: Flowchart of the smart control algorithm for PV self-
consumption maximization that considers both the HP and the
battery, and gives priority to the HP (algorithm A3). The bat-
tery charging and discharging algorithms are shown in Fig. 3.5.

3.4 Potential for PV Self-Consumption

3.4.1 Case Study Description

We show the algorithms’ performance considering a single-family resi-
dential building (2 parents both working and 1 child) as a case study.
We design the system in Polysun with the parameters and assumptions
summarized below:

• The HP is rated at 10.1 kW thermal power and 3.3 kW electric
power at W2/W35 operating conditions.

• The capacity of the hot water storage tank is equal to 500 liters.

• The rooftop PV system consists of 60 panels rated at 180 W each,
which leads to a total installed power of 10.8 kWp.
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Algorithm 4

HP & battery smart control – 

priority to battery

Pn(t) = PPV(t) - Pl(t) - PHP(t)

Pn(t) > 0

Battery charging Battery discharging

YES NO

START

(Ts7(t)≤Ts7,min OR 

Tb(t)≤Tb,min) AND 

THP(t)≤THP,max

Ts10(t)≥Ts10,max OR 

Tb(t)≥Tb,max OR 
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SHP(t) = 1

Turn HP OFF 

SHP(t) = 0
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Pn(t) = PPV(t) - Pl(t)

NO
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Turn HP OFF 

SHP(t) = 0
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Battery in 
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Battery in 
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Pch(t) = min[Pn(t), Pch,max(t)]
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Feed Pn(t) to the grid END

Turn HP OFF 
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SHP(t) = 1
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Pn(t) = Pn(t) - PHP(t) Pn(t) > 0
NO

YES

Turn HP OFF 

SHP(t) = 0

Figure 3.7: Flowchart of the smart control algorithm A4 for PV self-
consumption maximization that considers both the HP and the
battery, and gives priority to the battery. The battery charging
and discharging algorithms are shown in Fig. 3.5.

• The battery is a Hoppecke 24 OpzS 3000 module with a nominal
cell voltage of 2 V and a total capacity of 6 kWh. The values of
the battery lifetime parameters are taken from [22] and are given
in Appendix B.

• The hot water temperature setpoint is fixed to 50◦C, and the
average hot water demand is assumed equal to 200 liters/day.

• The electric Uncontrollable Load (UL) is modeled adopting a pro-
file with an annual consumption of 3103 kWh. The profile was
generated using a load profile generator, which simulates the oc-
cupants’ behavior based on a desire model, and includes typical
operation patterns for more than 100 electrical devices [66, 67].
After individual load curves are generated for each device using
the desire model, the total UL profile is calculated by adding up
the energy use of each device at each point in time.
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Figure 3.8: The building diagram in Polysun.

Table 3.3: Controller parameters for algorithms A0-A4

Parameter Symbol Value
Tank lower temperature setpoint Ts,7,min 45◦C
Tank upper temperature setpoint Ts,10,max 70◦C

Building lower temperature setpoint Tb,min 21◦C
Building upper temperature setpoint Tb,max 25◦C

HP maximum temperature THP,max 65◦C
Minimum battery charge SOCmin 30%

PV excess energy parameter α 1

The building diagram in Polysun with all components and the details
of the hydronic system is shown in Fig. 3.8. The programmable con-
troller is in the center of the diagram; its inputs are indicated with
blue arrows, whereas its outputs with red arrows. Note that apart from
the programmable controller there are two more components with the
same icon, which are controllers for the internal electric heating element
of the water tank and the position of the two-way mixing valves. We
keep separate controllers for these devices, because they are not used
for PV self-consumption maximization. The chosen control parameters
for algorithms A0-A4 are shown in Table 3.3.
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Figure 3.9: Production and consumption of system components during two
typical days in winter (January).
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Figure 3.10: Building temperature, HP temperature, and battery SoC dur-
ing two typical days in winter (January).

3.4.2 Seasonal Operation Results

In this section, we present operation results from typical days in winter,
spring, summer and autumn for algorithm A3 (control with priority
to HP), which demonstrates the best performance over the year. We
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Figure 3.11: Production and consumption of system components during two
typical days in spring (April).
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Figure 3.12: Building temperature, HP temperature, and battery SoC dur-
ing two typical days in spring (April).

focus on PV production, UL and HP consumption, battery charge and
discharge energy, building temperature, battery SoC, and HP internal
temperature, and show simulation results in Figs. 3.9-3.16.
The seasonal patterns of HP operation can be clearly seen in the figures.
The HP runs most of the time during a cold winter day, whereas it
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Figure 3.13: Production and consumption of system components during two
typical days in summer (July).
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Figure 3.14: Building temperature, HP temperature, and battery SoC dur-
ing two typical days in summer (July).

turns on only a few times during a summer day. In winter, when PV
production is low, the HP operation is determined by the building heat
demand, i.e., the HP consumes the minimum amount of energy that is
required to keep the building temperature at 21◦C. Thus, the potential
for PV energy management via HP control is very limited.
In summer, the PV production is high; however, only a small part of
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Figure 3.15: Production and consumption of system components during two
typical days in fall (October).

6650 6660 6670 6680 6690

21

22

23

24

B
ui

ld
in

g 
   

   
  

te
m

pe
ra

tu
re

 (o C
)

6650 6660 6670 6680 6690

30

40
50

60
70

H
ea

t p
um

p 
   

   
 

te
m

pe
ra

tu
re

 (o C
)

6650 6660 6670 6680 6690
20

40

60

80

100

Time (hours)

B
at

te
ry

 
S

O
C

 (
%

) 

Figure 3.16: Building temperature, HP temperature, and battery SOC dur-
ing two typical days in fall (October).

the PV energy surplus is stored as thermal energy. This is because the
prolonged HP operation leads to overheating due to the low building
heat demand. This can be seen in Fig. 3.14, where the HP temperature
remains often at or above THP,max. This is in contrast to Fig. 3.10,
where the HP temperature in winter is significantly lower on average.
Our simulations indicate that the potential for PV self-consumption
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maximization via HP control is higher in spring, and to a lesser extent
in autumn. For example, the HP can effectively absorb the excess PV
power during the first day of Fig. 3.11, because high PV production
coincides with increased heat demand and low HP temperatures (see
Fig. 3.12).
If PV power surpluses exist during daytime, the battery exhibits the ex-
pected pattern: it charges during daytime and discharges in the evening
and night hours to cover the load. Note that the charging cycles might
be interrupted by smaller discharging cycles, if the HP turns on and
the PV power is not sufficient. Due to low PV production in winter,
the battery might stay at low SoC (even below SOCmin) for prolonged
periods of time.
Recall that algorithm A3 prioritizes the HP over the battery, as shown in
Fig. 3.15. During the interval 6655− 6658 hours, PV power is available
but PPV < PHP + PUL; therefore, the HP is off and the excess power
charges the battery. Afterwards, the PV power increases and the UL
demand decreases, so that the algorithm follows the predefined priority
and turns on the HP.

3.4.3 Annual Economic Results

This section presents economic results based on annual simulations us-
ing Polysun. Note that in these simulations the battery capacity is not
optimized, but this will be investigated in Section 3.4.4. Table 3.4 com-
pares the algorithms A0-A4 with respect to the energy imports from
the grid, the energy exports to the grid, the HP and total electricity
consumption, the battery charging and discharging energy, the PV self-
consumption ratio, and the resulting electricity costs.
Using only the HP and the building thermal inertia in algorithm A1
increases the PV self-consumption by approximately 1.5% compared
with algorithm A0. On the other hand, the battery alone (algorithm
A2) demonstrates a much higher potential, and leads to a PV self-
consumption increase of roughly 15.5%. When the HP and the battery
are controlled simultaneously, a marginally higher self-consumption ra-
tio is achieved when the priority during charging is given to the HP.
Algorithm A3 leads to the highest PV self-consumption ratio, which is
equal to 36.46%.
Algorithm A3 gives the best results also in terms of savings for the build-
ing owner, which are approximately 85 e per year. Although increasing
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Table 3.4: Annual simulation results for algorithms A0-A4

A0 A1 A2 A3 A4
Import (MWh) 8.83 8.76 7.73 7.64 7.70
Export (MWh) 8.15 8.00 6.58 6.45 6.55

HP consum. (MWh) 7.73 7.80 7.76 7.80 7.77
Total consum. (MWh) 10.83 10.90 10.86 10.90 10.87

Bat. charge (MWh) − − 1.66 1.66 1.60
Bat. discharge (MWh) − − 1.22 1.22 1.18
Self-consumption (%) 19.71 21.14 35.19 36.46 35.49

Electricity bill (e) 1248.6 1249.2 1169.3 1163.0 1163.4

the PV self-consumption usually reduces the electricity bill, this is not
the case for algorithm A1. The reason is that A1 operates the system in
a less energy efficient way, increases the thermal losses, and eventually
requires more electric energy imports for the HP.
Clearly, the battery alone achieves most of the potential for PV self-
consumption maximization. HP control further reduces the annual cost
only by 6 e. However, this reduction comes likely at virtually zero cost,
since the marginal cost of integrating the HP in the already installed
controller is expected to be negligible. Similarly to algorithm A1, shift-
ing the HP demand in algorithm A3 increases the thermal losses and
the annual HP consumption. Nevertheless, these additional losses are
covered by battery discharge energy, instead of energy imports from
the grid. This explains why algorithm A3 achieves a lower cost than
algorithm A2, whereas algorithm A1 increases the cost compared with
algorithm A0.
Intuitively, the potential for PV self-consumption maximization with
smart HP control depends on the volume of the hot water storage tank.
We investigate this dependence by running annual simulations with two
larger tanks (1000 l and 1500 l) and compare the results with the base-
case tank of 500 l. In these simulations we consider a system without
battery and use the control algorithms A0 and A1. Furthermore, we
keep the PV installed capacity and HP nominal power constant, because
they are in practice determined by the available roof area and building
thermal energy needs, respectively.
Table 3.5 summarizes the simulation results for the tanks of 1000 l
and 1500 l with respect to PV self-consumption ratio, electricity costs,
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Table 3.5: Effect of hot water tank volume on PV self-consumption

1000 liters 1500 liters
A0 A1 A0 A1

HP consumption (MWh) 8.15 8.27 8.87 8.82
Self-consumption (%) 20.03 22.46 20.83 28.96

Electricity bill (e) 1356.4 1355.5 1537.9 1416.9

and HP electrical consumption. Results for a tank volume of 500 l are
presented in Table 3.4. The system behaves in a similar way for water
tank volumes of 500 l and 1000 l. However, with a tank of 1500 l,
algorithm A1 clearly outperforms the base-case algorithm A0, in terms
of both PV self-consumption and electricity costs. In this case, the
building thermal inertia is high enough to allow efficient shifting of
the HP consumption without increasing the energy losses. Note that
increasing the tank volume leads to a higher HP consumption, because
more energy is needed to heat up a larger water volume at the same
temperature setpoint.
Our analysis indicates that in the presence of a large water tank, HP
control is efficient for PV self-consumption maximization. If the tank
volume is below a threshold, then the HP alone does not improve the
local PV utilization significantly. In such cases, additional control ac-
tions might be necessary, for example, the pumps and mixing valves in
Fig. 3.8 could be also controlled in parallel to the HP to improve perfor-
mance. Doing so is likely to avoid high HP temperatures that prohibit
HP operation when PV energy surpluses are available, as explained in
Section 3.4.2.

3.4.4 Investment Evaluation

In this section, we perform annual simulations using algorithm A3 with
six different battery capacities (Qbat = {0.6, 1.6, 3, 6, 12, 18} kWh), while
keeping the storage tank volume constant at 500 liters. In this case, we
also assess the battery investment over the PV installation’s lifetime
via parametric analysis with respect to the battery capacity, the bat-
tery capital cost, and the FITs.
The FIT for residential PV installations up to 40 kW was 13.54 cents/kWh
in October 2013 [51]. Once the PV installation is completed, the build-
ing owner will receive the FIT for every kWh exported to the grid for 20
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years [68]. For electricity costs we use the EON tariff for end-customers
in Stuttgart, which is Cel,0 = 26.64 cents/kWh (almost twice as much as
the FIT). According to [52], the average residential electricity price in
Germany increased from 17.14 cents/kWh in 2004 to 26.79 cents/kWh
in 2013. This corresponds to an average annual increase of r = 4.5%,
and it was considered for the analysis of this chapter.
The capital cost of lead-acid batteries has been decreasing recently as
the technology is getting more mature. Reference [46] reported a capital
cost range of 150 − 300 e/kWh for lead-acid batteries in 2009. The
battery type Hoppecke OpzS could be purchased in 2013 at a price
range of 60 − 200 e/kWh, depending on the battery capacity and the
retailer. Based on this information, we consider the ten different battery
costs Cbat = {60, 80, 100, 120, 140, 160, 180, 200, 220, 240} e/kWh. The
annual operation and maintenance cost is assumed equal to 2% of the
battery capital cost [22]. The controller cost is hard to estimate, but it
is expected to be significantly lower than the cost of the battery due to
its simplicity, therefore it is neglected here. The investment is assessed
considering a period of N = 20 years, which is a typical value for PV
lifetime, assuming a discount rate of d = 8%.
We use the annual simulation results along with the economic parame-
ters to assess the battery investment using the Net Present Value (NPV)
as a performance indicator. With the exception of the battery, we as-
sume that the other building components exhibit the same behavior for
each year of the investment period. This means that the occupant con-
sumption patterns do not change, the PV module’s performance does
not degrade over time, and the HP, hydronic system, and storage tank
operate reliably without maintenance or replacement costs. Since this
assumption is not valid for the battery, we calculate the expected bat-
tery lifetime using the lifetime model of Section 2.2.4, as well as the
number of replacements needed within N years. We discount the costs
associated with the battery replacements using the discount rate d, and
include them in the NPV calculation. However, the same battery effi-
ciency is assumed throughout the whole investment period.
The FIT of the German renewable energy act (EEG) for residential
PVs was decreasing in 2013, with a monthly degression dependent on
the amount of new PV capacity connected to the network [52]. For
this reason, it is hard to estimate the evolution of the FIT even in the
near future. To investigate the effect of this uncertainty on investment
decisions, we repeat our analysis for three different FITs, namely CFIT =
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Figure 3.17: The dependence of investment NPV on battery capacity and
capital cost for a FIT of 13.54 cents/kWh.

Table 3.6: Dependence of battery lifetime on battery capacity

Battery capacity (kWh) 0.6 1.6 3 6 12 18
Battery lifetime (years) 2.8 3.6 4.3 4.5 4.5 4.8

{13.54, 12.00, 10.63} cents/kWh. The first value corresponds to the FIT
in October 2013, whereas the other two tariffs correspond to expected
tariffs in October 2014 assuming monthly degressions of 1%, and 2%,
respectively.
Based on the above, the investment NPV can be calculated with

NPV =
N∑
k=0

Rk
(1 + d)k (3.6)

Rk = CIk − COk, ∀k ≥ 1 (3.7)
CIk = BC − |CFIT · Eexp,k − Cel,k · Eimp,k|, ∀k ≥ 1 (3.8)
COk = 0.02 · Cbat ·Qbat +m · Cbat ·Qbat, ∀k ≥ 1 (3.9)
Cel,k = Cel,0 · (1 + r)k, ∀k ≥ 1 (3.10)
R0 = Cbat , (3.11)

where Rk is the net cash flow in year k, CIk and COk are the cash
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Figure 3.18: The dependence of investment NPV on battery capacity and
capital cost for a FIT of 12.00 cents/kWh.

inflows and outflows, respectively, and BC is the annual electricity cost
for the base case. The interpretation of (3.8) is that the cash inflows are
the annual savings resulting from the battery investment. The cash out-
flows include the annual battery operation and maintenance cost, and
the battery replacement cost. Note that the replacement cost occurs
only when the battery reaches the end of its lifetime (m = 1). Equa-
tion (3.10) expresses the annual increase in electricity cost and (3.11)
represents the fact that the net flow at the beginning of the investment
is equal to the battery capital cost.
The calculated lifetimes for each Qbat are reported in Table 3.6. In
general, increasing the battery capacity leads to longer lifetimes because
the battery operates at a higher SoC on average, and the number of deep
discharge cycles is reduced.
The parametric analysis results are shown in Figs. 3.17-3.19, for a FIT of
13.54 cents/kWh, 12.00 cents/kWh, and 10.63 cents/kWh, respectively.
Based on these results, a number of interesting observations can be
made. If Cbat = 60 e/kWh, the capacity Qbat = 12 kWh results in the
highest NPV for all FITs (in excess of 2000 e). On the other hand, if
Cbat = 240 e/kWh, the capacity Qbat = 0.6 kWh performs the best
but the investment is not viable. In all cases, small capacities lead to
NPVs that are less sensitive to Cbat. On the contrary, large capacities
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Figure 3.19: The dependence of investment NPV on battery capacity and
capital cost for a FIT of 10.63 cents/kWh.

result in a higher NPV for low battery costs, but increasing the battery
cost quickly leads to a negative NPV. Note that in Fig. 3.19, a 0.6 kWh
capacity achieves a positive NPV for all costs in the considered range.
In addition, the capacity Qbat = 18 kWh is a dominated solution for
all FITs, because there exists always another capacity that achieves a
higher NPV for any Cbat.
Although the battery capital cost is known at the time of investment,
the annual cash flows will be affected by the uncertainty related to
battery costs due to the necessary replacements. Depending on the
expected evolution of battery costs and the investor’s attitude against
risk, larger or smaller capacities can be selected based on Figs. 3.17-3.19.
As a final remark, a battery may further reduce the costs in the presence
of time-varying retail electricity prices. In this case, a predictive control
approach (as the one of Chapter 2) is more appropriate, but the control
design becomes more demanding.

3.5 Conclusion

In this chapter, we investigated the potential for PV self-consumption
maximization in buildings using batteries and flexible thermal loads.
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For this purpose, we developed four rule-based control algorithms and
integrated them in the commercial software Polysun. We illustrated
the algorithms’ performance considering a residential building with a
HP and lead-acid batteries as a case study.
We found that controlling the HP alone has a small potential for PV
self-consumption maximization, especially for small water tanks. In
addition, the HP-only control might increase the annual electricity costs
due to higher thermal losses. These results are qualitatively different to
the ones of Chapter 2 and highlight the importance of using detailed load
models. Engaging HPs in PV energy management applications might
also require control of other building components, such as mechanical
pumps and mixing valves.
On the other hand, batteries demonstrate a good potential for PV self-
consumption maximization and cost minimization. Combining thermal
with battery storage achieves the best results, because the synergies be-
tween them are efficiently exploited. Our results showed that installing
batteries for local PV utilization is becoming an attractive investment
due to the decreasing trends in battery costs and FITs.
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Chapter 4

Demand-Side Ancillary
Services in Power
Systems

4.1 Introduction

With increasing shares of fluctuating Renewable Energy Sources (RES),
more Ancillary Services (AS) are required in power systems [5]. AS are
those services that are necessary to support the transmission of energy
from the production resources to the loads in a reliable way. Although
different Transmission Systems Operators (TSOs) might procure differ-
ent types of AS, the following AS are generally common [69]:

• Frequency control (active power reserves)

• Voltage control (reactive power reserves)

• Black start

• Compensation of active power losses
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Frequency control reserves are the focus of this thesis. Although fre-
quency reserves come mainly from generators, flexible loads can in prin-
ciple also provide reserves. The idea of using flexible loads to balance
the power grid, which is known as Demand Response (DR), was al-
ready proposed in the 1980’s [6]. Nowadays, DR has become a very
active field of research firstly, because the need for AS is increasing and
secondly, due to recent advancements in communication technologies.
Loads with thermal storage are particularly suitable for AS, because
their consumption can be shifted in time without impact on consumer
comfort.
It is common in the literature to differentiate between (i) large aggre-
gations of small residential Thermostatically Controlled Loads (TCLs)
such as refrigerators, air conditioners, space and water heaters, and (ii)
small aggregations of large Heating, Ventilation and Air-Conditioning
(HVAC) systems of commercial buildings. Typically, TCLs are eas-
ier to control but the main challenge is to achieve coordinated control
of thousands of devices without excessive communication. Commer-
cial buildings are well-suited for reserve provision because they have a
large thermal inertia, and they typically include a Building Automation
System (BAS), i.e., some communication and control infrastructure is
already in place. However, the challenge is that the HVAC systems
are typically complex with many control variables and cascaded control
loops.
In the second part of this thesis, we develop methods to allow aggrega-
tions of residential and commercial thermal loads to provide frequency
reserves. The goal of this chapter is to recap relevant aspects of fre-
quency control in power systems and summarize the existing literature.

4.2 Frequency Control in Power Systems

Typically, a TSO controls the frequency in three steps: primary, sec-
ondary and tertiary control. Primary control is a decentralized, propor-
tional controller that stabilizes the frequency after a disturbance. Sec-
ondary control is a centralized controller that restores the frequency to
its nominal value, and maintains the desired exchanges between neigh-
boring control areas. Tertiary control releases secondary control in case
of prolonged disturbances and is typically manually activated. This
sequential activation of frequency control reserves is shown in Fig. 4.1.
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Figure 4.1: The sequential activation of primary, secondary and tertiary
frequency control reserves (source: www.swissgrid.ch).

In this thesis, we focus on primary and secondary frequency control be-
cause they are automatic. In the following sections, we summarize some
important aspects of scheduling and activation of Primary Frequency
Control (PFC) and Secondary Frequency Control (SFC) in power sys-
tems [70].

4.2.1 Primary Frequency Control

In some countries provision of PFC reserves is mandatory for specific
generators, whereas in other countries there exist organized markets for
PFC. In the first case the reserve price is typically regulated, whereas in
the second case the providers bid their PFC reserve capacity in pay-as-
bid or marginal pricing auctions. Minimum resolution limitations of the
bid PFC reserve capacity exist in some countries, and they are typically
less than 1 MW. In addition, the PFC reserves are mostly symmetrical
(i.e., the up- and down-reserve capacities must be equal) with a few
exceptions, for example Denmark and the Netherlands.
An important aspect of PFC is that it must be activated very fast, for
example, within 30 seconds in Switzerland (see Fig. 4.1). Furthermore,
PFC is decentralized since each generator responds proportionally to
the local frequency measurements according to its droop characteristic
[71]. PFC is critical for power system stability, and in order to keep
the control robust, it does not rely on communication. Due to the
proportional control and the lack of communication, PFC results in a
steady-state frequency error after a disturbance, and it is the task of
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SFC to compensate for this error.
Theoretically, the PFC action is finalized after approximately 5 minutes
because SFC has taken over (see Fig. 4.1). Therefore, provision of PFC
reserves involves little energy delivery, and remuneration is typically
awarded only for the PFC capacity (not for the energy). Typically, the
TSOs have prequalification tests to assess the suitability of a reserve
provider for PFC.
Different names are sometimes used to refer to PFC, for example, gov-
ernor control action, droop control, frequency response, and frequency
containment reserve (FCR). Throughout this thesis we use the name
PFC.

4.2.2 Secondary Frequency Control

In most of Europe, SFC reserves are procured in a market setting, i.e.,
the generators bid their reserve capacity and price in weekly or daily
auctions. The requirements of the auctions and SFC reserve products
vary among countries. The minimum bid size is typically in the range
1 to 10 MW, e.g., 5 MW in Switzerland [72]. However, there exist
some markets with low minimum bid sizes, for example, the Pennsyl-
vania, Jersey, and Maryland Power Market (PJM) with a minimum
bid size of 100 kW [73]. In many countries only symmetric reserves
are allowed (equal up- and down-reserve capacities), whereas in other
countries asymmetric reserves are also accepted.
The reserve is requested from the generators via a signal sent by the
TSO, typically every 2−4 seconds. There are two main activation rules:
(a) the pro-rata activation, where the reserve request is proportional to
the capacity; and (b) the merit-order activation, where the reserve is
requested based on the short-term marginal costs of the generators. In
this thesis, we treat the future reserve requests as uncertain, because
they are unknown at the time when the reserve capacities are scheduled.
It is a standard practice today to have a single SFC signal in a control
area, which is typically the output of a Proportional-Integral (PI) con-
troller with the Area Control Error (ACE) as an input [71]. However, a
TSO could alternatively provide a number of reserve products and each
provider could choose the product to offer its reserve capacity. This
can be achieved by decomposing the original signal into multiple SFC
signals with different energy contents and ramping rates using filtering
or optimization-based techniques [74–78]. Such an approach is already
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applied in the PJM control area, where the SFC signal is split into a
slow (RegA) and a fast (RegD) component [73].

Typically, the provision of SFC reserves is remunerated separately for
the accepted reserve capacity in the auction (availability) and the re-
quested reserve energy by the TSO (utilization). In some countries the
reserve capacity auctions are pay-as-bid, whereas in others the auctions
have a common clearing price. The remuneration of reserve energy is
also country dependent; for example, in Switzerland the reserve energy
remuneration is coupled with the energy price in the spot market. In
PJM, the reserve provider is additionally remunerated based on the
tracking performance of the SFC signal [79].

Different names are used to refer to SFC, for example, Automatic Gen-
eration Control (AGC), load frequency control (LFC), automatic fre-
quency restoration reserve (FRR), or frequency regulation service (main-
ly in the USA). In this thesis we adopt the names SFC and frequency
regulation, which we use interchangeably.

4.2.3 Specific Frequency Reserve Products

Many AS markets have specific frequency reserve products. In this sec-
tion, we briefly describe some products commonly used in AS markets in
the USA [69]. However, a complete review of frequency reserve products
is outside the scope of this thesis.

The AS for frequency support can be divided in two groups. The first
group contains AS for normal conditions, such as regulating reserve
and load following. The second group consists of AS for contingency
conditions, such as spinning and non-spinning reserve, and replacement
reserve.

Regulating Reserve (Frequency Regulation)

As already mentioned, frequency regulation is the term commonly used
in the USA to refer to SFC. Frequency regulation is automatically pro-
vided by resources that are online (i.e., connected to the system) and
its goal is to correct for the minute-to-minute deviations between the
total generation and the load, under normal conditions.
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Load Following

This AS is similar to frequency regulation, but it has a slower ramp rate
and fewer sign changes per unit of time. The goal of load following is to
bridge the gap between the hourly energy markets and frequency regu-
lation, also under normal conditions. Another difference with frequency
regulation is that load following can be manually activated.
In systems with load following, the frequency regulation signal is usually
uncorrelated and crosses zero often. In contrast, if there is only one SFC
reserve product that combines frequency regulation and load following,
then the SFC signal can be biased to the positive or negative direction
for a significant amount of time.

Spinning Reserve

Spinning reserve is an AS supplied by generators that are online and
not fully loaded. The resource starts providing the spinning reserve
immediately after the contingency, the full reserve must be deployed
within 10 minutes, and the resource must be able to sustain the reserve
for two hours. Spinning reserve is typically activated automatically
using an AGC signal.

Non-Spinning Reserve

In contrast to spinning reserve, the non-spinning reserve is provided by
generators that are not necessarily online and synchronized to the grid.
However, the spinning and non-spinning reserve have the same response
requirements: the full reserve must be provided within 10 minutes after
the contingency, and the resource must be able to sustain the reserve
for two hours. Typically, non-spinning reserves are dispatched using an
AGC signal.

Replacement (Supplemental) Reserve

This contingency reserve must be fully deployed within 30 or 60 minutes,
and can last for two to four hours. Both online and offline resources can
provide this reserve, and AGC is not necessary for activation. The
replacement reserve is a type of tertiary control reserve.
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4.3 Demand-Side Primary Frequency Con-
trol

Reference [6] proposed already in 1980 a simple frequency-responsive
controller to adjust the temperature limits of TCLs based on frequency
measurements to provide a governor-type action. Much of the early
work on DR focused on modeling populations of TCLs based on first
principles [80–83]. For example, [82] proposed a well-known model con-
sisting of a set of Fokker-Planck equations that describe the Probability
Distribution Function (PDF) of temperature in a TCL aggregation. In
the rest of this section, we summarize the most relevant approaches
from the literature to provide PFC with TCL aggregations.

4.3.1 Deterministic Decentralized Approaches

References [84, 85] developed deterministic approaches that rely on a
proportional frequency-dependent temperature deadband of the ther-
mostat to provide PFC. The authors found that load control reduces
the frequency excursions after a sudden loss of generation, and smoothes
the short-term frequency fluctuations. Reference [86] introduced a more
generic decentralized approach for load participation in PFC, which is
based not only on the frequency deviation but also on its evolution
over time. A simple rule-based controller with delays was developed
in [87] and used in an experimental demonstration to provide PFC with
residential appliances using a commercially available smart meter for
frequency measurements, a smart load controller, and smart sockets.
Such deterministic approaches provide an effective initial response to
frequency deviations. For this reason, the European Network of Trans-
mission System Operators for Electricity (ENTSO-E) published a de-
mand connection code that suggests a proportional shift of the setpoint
temperatures of thermal loads in response to frequency deviations. De-
spite their simplicity, deterministic approaches have an important lim-
itation: they cause rebound effects and tend to synchronize the on/off
cycles of individual devices, which might introduce non-decreasing os-
cillations in system frequency [88,89]. Furthermore, [90] showed a main
disadvantage of the ENTSO-E demand connection code: it allows for
various controller implementations that are compatible with the code,
but result in very different power response signatures.
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4.3.2 Randomized Decentralized Approaches

In order to de-synchronize the responses of TCLs while providing PFC,
a number of randomized approaches were proposed in the literature.
For example, a control approach with random on/off frequency thresh-
olds and turn-on delay times was used in an experimental demonstration
with 150 residential cloth dryers and 50 Electric Water Heaters (EWHs)
in [91]. Reference [92] proposed a randomized load control scheme,
where each load monitors the frequency over random time instances
and responds according to a simple control policy based on frequency
thresholds. Using this scheme the authors derived the evolution of fre-
quency’s mean value and variance over time, as well as estimates of the
frequency recovery time and probability of frequency overshoot after a
contingency.
Reference [88] proposed an interesting stochastic approach to control a
population of refrigerators. Each device is modeled as a Markov-jump
linear system with transition probabilities between the on and off states
that depend indirectly on the frequency deviation. The authors derived
closed-form expressions for the mean value and the variance of the aver-
age temperature within the population, and proved that the closed-loop
system is asymptotically stable. However, the main limitation of this
approach is that the control adjusts the properties of the temperature’s
PDF at steady state, and therefore results in slow responses that are
unacceptable for PFC.
Another relevant work is [93], where a a decentralized stochastic con-
troller was developed to allow a TCL aggregation to collectively track
a desired aggregate power profile. The main innovation of [93] over
previous works is that the average heating rate of the population itself
is used as a control variable. The formulations of [93] result in con-
trol laws for individual appliances, namely temperature limit changes
and switching rates, and allow an aggregator to estimate the available
flexibility from the aggregation. However, the control approach of [93]
is able to respond to demand reduction requests, but not to demand
increase requests, and therefore it is not appropriate for PFC.
More related to our work is [94] where a decentralized stochastic con-
troller based on probabilistic switching was proposed for refrigerators to
provide PFC. This controller results in very fast responses that are suit-
able for PFC, but it has a number of limitations that will be discussed
in Chapter 5.
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4.3.3 Approaches based on Utility Maximization

A number of works have proposed methods to provide PFC while min-
imizing the cost of reserve provision or maximizing the social welfare.
For example, [95] proposed a mixed integer linear optimization prob-
lem formulation to allocate trigger frequencies to a set of on/off devices
such that they collectively provide PFC reserves at minimum cost. The
authors of [96] designed a decentralized PFC strategy for loads whose
power can be modulated within a certain range around their nominal
value. In addition, they developed an optimization scheme to maximize
the participation of loads in PFC, while compensating for the payback
energy in an optimal way.
Reference [97] proposed a frequency support method for residential loads
based on utility functions and bidding, which guarantees maximal so-
cial welfare. The authors showed that by adding a frequency-dependent
price component to the market price, the contribution of each load to
the PFC reserve can be computed in a decentralized way. A similar topic
was investigated in [98], where the authors formulated a load control op-
timization problem, and developed a synchronous and an asynchronous
algorithm to solve it in a decentralized way based on local frequency
measurements. The follow-up work [99] extended the methods of [98]
for a multi-machine power system and proved that the system under
the proposed load-side PFC is asymptotically stable.

4.4 Demand-Side Secondary Frequency
Control

4.4.1 SFC with Thermostatically Controlled Loads

Thermostat and On/Off Load Control Approaches

The early work on centralized control of TCL aggregations focused on
provision of load following or frequency regulation. Reference [100] de-
veloped control strategies to provide such services via a thermostat set-
point manipulation, and showed that a simple linear model can describe
the TCL aggregate transient dynamics. The authors of [101] developed a
controller based on an input-output, second-order, linear time-invariant
model to regulate the aggregate power of a TCL aggregation via broad-
casts of thermostat setpoint changes. The aggregate TCL dynamics
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under thermostat setpoint control were described by a transfer func-
tion in [102], and a linear quadratic regulator was used to control the
aggregate power.
Other researchers developed control strategies based on direct on/off
control of loads. A strategy that relies on two-way communication links
between the aggregator and each TCL was proposed in [103]. Coor-
dinated control using signal broadcasts is possible with probabilistic
switching, where a fraction of the devices switches stochastically to
provide the desired service. Reference [104] showed how bi-directional
control (up- and down-regulation) can be achieved by broadcasting a
switching fraction signal that only switches off devices. In [105], a statis-
tical load modeling approach based on Markov Chains was introduced
and a Model Predictive Control (MPC) scheme was used to control a
population of TCLs with switching probability broadcasts.
A broadcast controller was used in [106] together with an optimization
process to determine the switching fractions that result in good tracking
of a given reference power trajectory. The control design of [106] relied
on the evolution of the PDF of temperature extending the work of [82].
Reference [107] proposed a hierarchical framework for demand-side fre-
quency control. The upper layer is centralized and computes optimal
control gains for the participating loads depending on the bus where
they are connected. The lower layer is decentralized, and each device
computes switching probabilities based on the control gains.
While most of the works considered generic TCL models, some papers
used more detailed device-specific models in direct load control studies.
For example, [28] and [29] used “single point” EWH models assuming
a uniform temperature profile within the water tank. In [30], an EWH
stratified model was used, where only an upper hot water layer and a
lower cold water layer were considered. In [31], the authors developed a
six-layer stratified model (without considering convection) to simulate
EWHs subject to off-peak schedules. In addition, a broadcast controller
was proposed in [108] to allow the aggregate power of a population of
air conditioners to track a power reference signal taking into account
compressor lockout times.

State Estimation to Reduce Communication

The above works, as well as other relevant approaches that rely either
on probabilistic switching or rule-based controllers [21,30], assumed ac-
cess to TCL state measurements (temperature and on/off state). More
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recent works proposed state estimation methods to reduce the needs
for real-time state measurements and consequently the implementation
costs. For example, [3] used a Kalman Filter to estimate the state of
a Markov model for a TCL aggregation, whereas [109] used a similar
model and a Moving Horizon State Estimation (MHSE) approach. Ref-
erence [110] developed a particle filter to estimate the states of a simple
four-state aggregate system model, whereas [111] proposed a state esti-
mation scheme based on Partial Differential Equations (PDEs).

4.4.2 SFC with Commercial Buildings

Most of the early work on commercial buildings focused on the de-
velopment of models for DR applications [112, 113], and on using the
building’s thermal mass for load shifting and peak shedding to minimize
the energy costs and demand charges [10, 11, 13]. Similar applications
were considered more recently in [17,114], where MPC approaches were
proposed.

Early Work on Ancillary Services

Some works investigated the potential of commercial buildings to partic-
ipate in AS markets. A retail store and an office building participated in
a pilot program for non-spinning reserves in the California Independent
System Operator’s AS market using global temperature adjustments
and the OpenADR protocol [115]. In [116], spinning reserve experi-
ments with a duration of 15 minutes were performed curtailing the air
conditioning load of a hotel. The results showed that the load response
is fast and that the room temperature rise remains acceptable.
More recently, [117] used a detailed model of a Variable Air Volume
(VAV) HVAC system to simulate the performance of setpoint adjust-
ments in zone temperature, duct static pressure, supply air temperature,
and chilled water temperature while providing spinning reserve. How-
ever, there is a limited amount of theoretical, simulation or experimental
work on frequency regulation with commercial buildings.

Feasibility of Tracking SFC Signals

A few recent papers studied the feasibility of tracking SFC signals by
controlling the power consumption of various HVAC system compo-
nents. Reference [118] investigated the control of Heat Pumps (HPs)
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via regulation of the refrigerant’s flow rate with valves. A dynamic
model was fitted based on step response tests on a real medium-size
HP of a commercial building, and simulation results showed that the
refrigerant flow rate control is appropriate for frequency regulation.
The suitability of static pressure and zone temperature setpoint adjust-
ments for frequency regulation was investigated in [119] in a simulation
study with a very detailed commercial building model. According to the
results, static pressure setpoint changes provide a faster initial power
response, but the control performance gradually degrades due to the
compensating reactions of the dampers.
The authors of [120,121] investigated frequency regulation via fan power
control in buildings with VAV systems. Simulations showed that up to
15% of a building’s fan power can be successfully offered as reserves, if
the frequency band of the regulation signal is f ∈ [1/(10 min), 1/(4 sec)].
The follow-up work [122] included chiller control enlarging the frequency
band to 1/(60 min).

SFC Reserve Capacity Estimation

A challenge in frequency regulation with commercial buildings is to
determine the reserve capacity that can be offered reliably to the TSO.
This is a very important topic because buildings are energy-constrained
resources, and it is only marginally discussed in the literature. MPC
was used in [123] to quantify the flexibility of a commercial building
online and offer it to a utility. Reference [124] proposed a simulation-
based method to estimate the reserve capacity, but without considering
the time-coupling across different scheduling intervals. Recently, [125]
developed a virtual battery model for a commercial building and used it
to estimate the building’s rate limits and energy capacity for frequency
regulation.

Baseline Estimation and Building Aggregations

An important challenge for both the SFC performance and financial
settlement is to estimate the baseline consumption of the building, i.e.,
the consumption without frequency regulation [126]. Baseline estima-
tion was performed online in [127] using a low-pass filter. If MPC is
used, as in [123], the baseline power is known ahead of time, which is
advantageous because it facilitates the financial settlement.
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Due to the minimum bid size limitations of several AS markets, aggrega-
tions of a few tenths or hundreds of commercial buildings are necessary
to gain access to the market. Unfortunately, SFC from commercial
building aggregations is not sufficiently studied in the literature.
An MPC scheme was designed in [128] to provide reserves from build-
ing HVAC systems in parallel to generators. However, approximate
ramping rates were used in [128] to represent the building aggrega-
tion instead of realistic building models. Reference [129] investigated
the real-time allocation of control actions within a building aggregation
while providing frequency regulation, but without a priori reserve ca-
pacity scheduling. Different thermal load types were considered in [130],
but the participation factors were empirically estimated instead of sys-
tematically determined.

Experimental Demonstrations

Although the above simulation works provide some evidence that fre-
quency regulation can be provided by commercial buildings, experi-
mental verification is necessary to build confidence for wide-spread im-
plementation. To the best of our knowledge, there have been only a
few experimental demonstrations and field tests so far. Perhaps the
first demonstration project was reported in [131], where the feasibility
of offering up- and down-regulation products with university campus
buildings was investigated using global temperature adjustments and
changing the ventilation power.
Reference [132] experimentally demonstrated that fans in commercial
buildings can provide frequency regulation. The experiment was per-
formed using archived regulation signals from PJM and the OpenADR
protocol, whereas the frequency of the fan’s Variable Frequency Drive
(VFD) was used as a control variable in an open-loop fashion. The re-
sults showed that the delays introduced by OpenADR and the BAS are
low enough to allow for a sufficient tracking accuracy.
Experimental results for frequency regulation via fan control in an au-
ditorium of a university campus building were reported in [127]. Two
control approaches were tested and shown to perform well: (i) superim-
posing a fan command on the output of the existing fan controller, and
(ii) changing the air flow rate setpoint. Reference [123] reported results
from a small set of experiments where the static duct pressure setpoint
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was randomly varied within a range every minute, and the effects on
fan speed and room temperatures were monitored.
A data-driven dynamic model for a variable speed HP was developed
in [133, 134] and used in frequency regulation experiments in a lab-
scale microgrid in [134]. The authors concluded that although using
the supply water temperature setpoint as a control variable is sufficient
to pass PJM’s prequalification test, direct control of the compressor’s
frequency results in a much faster response.
Reference [135] developed a frequency regulation controller for a chiller
consisting of a Proportional-Integral-Derivative (PID) loop with the
chilled water supply temperature setpoint as a control variable, a high-
pass filter of the regulation signal, and a baseline estimator. The authors
demonstrated the effectiveness of the controller in an experiment with an
office building using actual RegA and RegD signals from PJM [73]. The
follow-up work [136] performed an additional set of experiments on an-
other building and identified the BAS delay time, the chiller ramp-rate
limits, the chiller minimum cooling power constraints, and the transient
variations in the Coefficient of Performance (COP) as important issues
for practical implementation. Relevant is also the work of [137], where
experiments were performed to analyze the efficiency of fast DR actions
in a commercial building.



Chapter 5

Primary Frequency
Control with
Refrigerators

5.1 Introduction

A literature review on Primary Frequency Control (PFC) methods for
aggregations of Thermostatically Controlled Loads (TCLs) was pro-
vided in Chapter 4. References [88, 92–94] are particularly interest-
ing because they designed decentralized stochastic controllers to con-
trol an aggregation of refrigerators without real-time communication
and avoided synchronization.
We follow this line of research and develop a new decentralized con-
troller for refrigerators1 that relies on switching probabilities, which are
computed directly based on the frequency deviation. This is in contrast
to [92], where the randomization is with respect to the time instance
when each load reacts to a given frequency deviation. Our approach
is also fundamentally different to [88, 93], where the devices’ switching

1Although we consider refrigerators, the proposed approach can be applied to
other TCLs with compressors and similar dynamics.

91
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Table 5.1: Nomenclature of Chapter 5: symbols

Symbol Unit Description
C kJ/◦C Refrigerator thermal capacitance
er % Instantaneous reserve error

eb,mape % Baseline MAPE
er,mape % Reserve MAPE
ep,rmse - Switching probability RMSE
D - Duty cycle
Da - Actual duty cycle (with PFC)
Dn - Nominal duty cycle (without PFC)
Dd - Desired duty cycle (with PFC)
Dr - PFC reserve capacity in terms of duty cycle
Ed

cl kJ Daily energy consumption without door openings
Ed

op kJ Daily energy consumption with door openings
Foff - CDF of the lock-off time in the aggregation
Fon - CDF of the lock-on time in the aggregation
Kc - Corrective temperature gain
Kr,t

◦C Resetting factor for the thermostat limits
loff - Lock-off event as a random variable
lon - Lock-on event as a random variable
Lst

off - Steady-state fraction of refrigerators locked-off
Lst

on - Steady-state fraction of refrigerators locked-on
Ltr

off,t - Transient fraction of refrigerators locked-off
Ltr

on,t - Transient fraction of refrigerators locked-on
m - Refrigerator on/off state

rates are post-calculated based on the desired evolution of mean temper-
ature and the average heating rate, respectively. The main advantage
of the probabilistic switching approach is that it achieves a much faster
PFC response compared with previous works.

A similar probabilistic switching approach for PFC with refrigerators
was recently proposed in [94]. This approach relies on four main as-
sumptions: (i) each refrigerator consumes a constant amount of power
in the on state; (ii) each refrigerator can cycle on and off arbitrar-
ily often; (iii) the frequency deviation signal is filtered in order to be
zero-mean, i.e., it crosses zero very often; and (iv) the refrigerators are
not exposed to door openings. Assumptions (i), (ii) and (iv) were also
made in [93]. However, these four assumptions will likely not hold in a
real-world implementation. The power consumption of a refrigerator is
typically higher at the beginning of each on cycle, its compressor cannot
turn on and off arbitrarily often, and its temperature is affected by door
openings. Furthermore, in practice the frequency deviation signal can
be significantly biased to the positive or negative direction.

In this chapter, we maintain the same basic probabilistic switching
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Table 5.2: Nomenclature of Chapter 5: symbols (continued)

Symbol Unit Description
Nev s Duration of a step frequency deviation event
Non s Maximum lock-on time within the aggregation
Noff s Maximum lock-off time within the aggregation
Nr - Size of refrigerator aggregation
Nrec s Recovery period after a step frequency deviation
Nr,a - Number of refrigerators activated for PFC
Ns s Duration of startup dynamics
Nsim s Simulation period
Nδ s Half-period of the frequency deviation signal
Pagg W Actual aggregate electric power
Pb W Uncontrolled aggregate electric power
Pd W Desired aggregate electric power (with PFC)
Pres W Reserve capacity of the aggregation
Pn W Nominal refrigerator electric power
q - Switching probability of the benchmark controller
R ◦C/kW Refrigerator’s thermal resistance with closed door
Rop

◦C/kW Refrigerator’s thermal resistance with open door
r - Normalization factor for the resetting factor
Soff - Survival function of the lock-off time in the aggregation
Son - Survival function of the lock-on time in the aggregation
Su - Refrigerator startup dynamics profile
snet,t - Average net switching rate in the aggregation
soff,t - Average rate at which refrigerators switch off
son,t - Average rate at which refrigerators switch on

structure, which is recapped in Section 5.2, but enhance it with sev-
eral additions to drop the aforementioned limiting assumptions. Specif-
ically, we design a controller that can cope with loads with time-varying
power profiles during the startup phase, as well as limitations on com-
pressor cycling (the so-called lockout constraints). These are the topics
of Sections 5.3, 5.4, and 5.5.
We show that the control performance is improved if the probabilis-
tic switching is combined with a deterministic resetting of thermostat
temperature limits. We investigate this in Section 5.7 and analytically
calculate the necessary resetting factor.
In Section 5.8, we show the need for an additional control loop to sat-
isfy temperature requirements and we provide analytical expressions for
upper and lower bounds of the control gain of this loop. In addition, we
present a simple method to estimate the population’s mean temperature
in a decentralized way.
A common limitation in approaches that rely on resetting of the thermo-
stat’s temperature limits is the thermostat resolution. We address this
issue in Section 5.9 by adding another randomization layer in the con-
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Table 5.3: Nomenclature of Chapter 5: symbols (continued)

Symbol Unit Description
T ◦C Refrigerator temperature
Ta

◦C Ambient temperature
Tmax

◦C Higher deadband limit of thermostat
Tmin

◦C Lower deadband limit of thermostat
T̄nom

◦C Nominal mean temperature (without PFC)
Tset

◦C Thermostat setpoint [Tset = 0.5 · (Tmax + Tmin)]
Ṫd

◦C/s Average temperature decrease rate
Ṫi

◦C/s Average temperature increase rate
T̄cl

◦C Average refrigerator temperature with closed door
T̄op

◦C Average refrigerator temperature with open door
toff s Duration of refrigerator’s off cycle
tloff s Refrigerator lock-off time
ton s Duration of refrigerator’s on cycle
tlon s Refrigerator lock-on time
u - Peak power factor for startup dynamics modeling
w ◦C/s Noise term for refrigerator’s external disturbances
x - Fraction of switched loads for PFC under startup dynamics
z - Thermostat resetting event as a Bernoulli random variable

troller, and we analytically show that the side-effect of the new control
layer is a monotonic increase in the variance of refrigerator temperatures
within the aggregation. This side-effect is mitigated by introducing a
bound on the maximum deviation from the population’s mean tem-
perature. Another addition compared with [88, 94] is that we model
the refrigerator’s door opening events, and propose a simple way to
explicitly account for them in the control design. This is the topic of
Section 5.10.
In Section 5.11, we introduce the model parameters as well as the met-
rics and benchmarks used to assess the control performance. In Sec-
tion 5.12, we analytically investigate the dependence of PFC perfor-
mance on the size of refrigerator aggregation, and we backup our find-
ings with simulations. The controller’s sensitivity on important design
and load parameters such as the reserve capacity, the peak power during
the startup phase, the lockout time and the PFC activation deadband
is investigated in detail in Section 5.13.
Sections 5.14, 5.15 and 5.16 present simulation results showing the con-
troller’s performance with biased frequency deviations, limited ther-
mostat resolution, and door openings. Last, we discuss some prac-
tical issues for a real-world implementation in Section 5.17, whereas
Section 5.18 concludes. This chapter is based on the work reported
in [138,139], and its nomenclature is summarized in Tables 5.1-5.6.



5.2. Modeling and Basic Control Design 95

Table 5.4: Nomenclature of Chapter 5: Greek letters

Symbol Unit Description
α 1/s Thermal parameter of continuous-time model
β ◦C/kJ Thermal parameter of continuous-time model
γ ◦C/Hz Auxiliary variable for PFC

∆D - Duty cycle change
∆Dop

t - Increase in duty cycle due to door openings
ζ - Auxiliary variable for thermostat resetting events

∆f Hz Frequency deviation
∆T ◦C Width of thermostat’s deadband
∆Tb

◦C Bound for refrigerator’s thermostat limits deviation
∆Tlim

◦C Change in refrigerator’s thermostat limits
∆Tres

◦C Minimum resolution of refrigerator’s thermostat
∆t s Discretization time step
δ Hz Magnitude of frequency deviation signal
ε ◦C Tolerance for temperature deviation during a frequency event
ε ◦C Tolerance for temperature deviation after a frequency event
η - Coefficient of performance
λ - Auxiliary variable equal to 1−Kc

µdur s Mean duration of a door opening event
µop - Average number of door openings per day
ν - Parameter for modeling of startup dynamics
ξ - Normalized energy consumption increase due to door openings
ρ - Switching probability of the proposed controller
% - Switching probability for resetting of thermostat limits

σdur s Standard deviation of the duration of a door opening event
σop - Standard deviation of the number of door openings per day
χ - Switching action of a refrigerator (Bernoulli random variable)

Table 5.5: Nomenclature of Chapter 5: probability operators

Operator Description
E [·] Expected value of a random variable
N Normal probability distribution

P [·] Probability of a random variable
SD [·] Standard deviation of a random variable
U Uniform probability distribution

Var [·] Variance of a random variable

5.2 Modeling and Basic Control Design

5.2.1 Refrigerator Model

Consider a refrigerator i without freezer controlled by an on/off hys-
teresis controller. We use a standard first-order differential equation to
model the lumped temperature Ti(t) of the refrigerator including the
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Table 5.6: Nomenclature of Chapter 5: subscripts and superscripts

Subscript/Superscript Description
i Refrigerator index within an aggregation

min/max Minimum/maximum value of a variable or parameter
k, t Time indexes
(̄·) Average value of a variable or parameter
(̂·) Estimated value of a variable or parameter
[·]+ Caps a variable to non-negative values

air and solid mass (compartment and content) [83,88,140]

Ṫi(t) = αi
[
Ta,i − Ti(t)

]
+ wi(t) when OFF (5.1)

Ṫi(t) = αi
[
Ta,i − Ti(t)

]
− βiPn,i + wi(t) when ON, (5.2)

where α = 1/RC, β = η/C, C is the thermal capacitance, R is the
thermal resistance, Ta is the room temperature, η is the Coefficient of
Performance (COP), and Pn is the nominal power. The variable w(t)
is a noise term that aggregates the effect of external disturbances, e.g.,
door openings, changes in food content, and variations of Ta. In this
chapter, we first design the decentralized controller neglecting these
external disturbances. Then, in Section 5.10 we show how the effect
of door openings, which is the dominant external disturbance, can be
integrated in the refrigerator model and control design.
The model is discretized with a discretization time step ∆t. Let Tmin,i
and Tmax,i denote the deadband limits of the thermostat’s hysteresis
controller and mi,t ∈ {0, 1} denote the compressor’s on/off state. Using
the discrete-time model we can derive the duration of the on and off
cycles

ton,i = RiCi ln
[
Tmax,i − Ta,i + ηiRiPn,i

Tmin,i − Ta,i + ηiRiPn,i

]
(5.3)

toff,i = RiCi ln
[
Tmin,i − Ta,i

Tmax,i − Ta,i

]
, (5.4)

and the device’s duty cycle Di = ton,i/(ton,i + toff,i).

5.2.2 Aggregation Model

Consider a population of Nr refrigerators providing PFC. For control
purposes we are interested in the aggregate power of the population
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Pagg,t, which depends on the aggregate duty cycle, i.e., the proportion
of loads that are in the on state

Dt =
∑
im

i
t

Nr
, (5.5)

where i ∈ [1, Nr] is the refrigerator index. If Nr is sufficiently large,
then the aggregate power at any time will be approximately equal to

Pagg,t ≈ NrDtP̄n , (5.6)

where P̄n is the mean refrigerator power in the aggregation. Without
PFC, and if wt is sufficiently small, the duty cycle will be approximately
constant and equal to a nominal value Dn.

5.2.3 PFC with Probabilistic Switching

PFC reserves can be provided by perturbing the population’s duty cycle
around Dn proportionally to the frequency deviation ∆ft with a gain
Dr that corresponds to the PFC reserve capacity. Therefore, to activate
the correct amount of reserve power after a frequency deviation ∆ft, the
duty cycle should be controlled to the desired value

Dd
t = Dn +Dr · ∆ft

∆fmax
, (5.7)

where ∆fmax is the frequency deviation for full PFC reserve activation,
e.g., ∆fmax = 0.2 Hz in continental Europe.
Denote by ∆Dt = Dd

t − Dd
t−1 the change in the desired duty cycle

between two consecutive time steps. Note that ∆Dt depends on ∆ft
and ∆ft−1, which can be measured locally by each refrigerator, and
so the duty cycle change can be achieved in a decentralized way with
probabilistic switching. Each device calculates the switching probability

qt =


∆Dt

1−Dd
t−1

, if ∆Dt ≥ 0
− ∆Dt
Dd
t−1

, if ∆Dt < 0 ,
(5.8)

and generates a random number uniformly distributed in [0, 1]. If the
number is smaller than qt, the device will switch to contribute to PFC.
The first line of (5.8) is the probability for devices that are off to switch
on, whereas the second line is the probability for devices that are on to
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switch off. Due to the law of large numbers, the proportion of switched
devices will be very close to qt, and the population will collectively
provide the required PFC reserve.
In the remainder of this chapter, we extend the basic probabilistic
switching approach of this section to account for startup dynamics,
lockout constraints, biased frequency deviations, limited thermostat res-
olution, and door openings.

5.2.4 Communication Aspects

Assuming that the refrigerators know the value of Dr and measure the
frequency deviation locally, they can provide PFC in a decentralized way
without real-time communication. However, some infrequent communi-
cation might be needed (or desired) for the proposed control scheme to
work effectively.
For example, the value of Dr reflects the PFC reserve capacity, which is
in some cases periodically determined by the reserve market. Therefore,
whenever the reserve market is cleared (e.g., once a week), the updated
value of Dr should be communicated to the refrigerators. As it will
be shown in the following chapters, some of the controller parameters
depend on the properties of the refrigerator population. Therefore, if
these properties change over time, the respective controller parameters
should be updated. A communication channel with low data transfer
can be used to enable these types of infrequent communication.
In the above cases, the refrigerators provide PFC reserves in a semi-
autonomous way: the real-time control is decentralized, while some of
the controller parameters are updated infrequently through a commu-
nication link. We provide a more detailed discussion on the communi-
cation aspects in Section 5.17.

5.3 Refrigerator Startup Dynamics

Typically, a refrigerator’s compressor consumes more power during the
startup phase (approximately 30 seconds) due to a smaller COP, higher
evaporator temperature, and higher motor current [141].2 Since this

2The higher motor current is the dominant factor for the first few seconds after
the startup, whereas the smaller COP is the main factor afterwards.
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additional power can be as high as 25% of the nominal power Pn, it is
important to account for it in PFC to avoid large overshoots.
The startup dynamics of a refrigerator i are modeled using a peak power
factor ui > 0 and the duration of the startup phase Ns,i. We assume
that the power becomes immediately equal to (1 + ui)Pn,i when the
refrigerator switches on, and then it linearly decreases until it becomes
equal to Pn,i after Ns,i seconds. Therefore, the refrigerator power in the
on state can be expressed as

Pi,t = Pn,i[1 + Su,i(t)] = Pn,i

[
1 + ui

[
1− t

Ns,i

]
+

]
, (5.9)

where Su,i is the startup power profile and [·]+ caps its argument to
positive values, i.e., Su,i(t) = 0 for t > Ns,i.
∆Dt in (5.8) is the fraction of loads that need to switch at each time
step, and it depends only on ∆ft and ∆ft−1. However, in the presence
of startup dynamics, the fraction of loads that need to switch at the
current time step depends additionally on the number of loads that
switched due to previous reserve activations. Therefore, the fraction of
loads to be switched is in general different from ∆Dt, and it is denoted
by xt in the rest of this chapter.
For control design we assume to know only the average values P̄n =
E [Pn,i], ū = E [ui] and N̄s = E [Ns,i] in the population. Based on the
average values, we define the average startup duty cycle profile

S̄u(t) = ū ·
[
1− t

N̄s

]
+
, (5.10)

and we use it to recursively calculate xt with

xt = 1
1 + νt

[
Dd
t −Da

t−1 −
t−1∑

k=t−Ns+1
xkS̄u(t− k + 1)

]
(5.11)

Da
t = Da

t−1 + xt . (5.12)

Da
t is the actual duty cycle of the population, whereas νt = S̄u(1) holds

if the value of the bracket at the right hand side of (5.11) is non-negative,
and νt = 0 holds if the value of the bracket is negative. This differen-
tiation is necessary because there exist no dynamics at shutdown. The
term 1/(1 + νt) in (5.11) reduces the fraction of switched loads xt as
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much as the expected overshoot due to the current startup dynamics,
whereas the summation term of (5.11) recursively accounts for the effect
of startup dynamics of past control actions on the current xt.
Using (5.11) and (5.12) in the controller, we estimate the effect of refrig-
erators’ startup dynamics on aggregate power and modify the switching
probability accordingly. Since the startup dynamics are accounted for
using the mean values P̄n, ū and N̄s, the control will not be perfect.
However, it is possible to characterize its performance analytically as
shown by Proposition 1.

Proposition 1. Denote by Ns,min and Ns,max the minimum and maxi-
mum startup duration in the population of refrigerators. The estimated
aggregate power due to refrigerator startup dynamics obtained using the
average values P̄n, ū, N̄s and (5.10) is an upper bound of the actual
aggregate power up to Ns,min seconds after the reserve activation, irre-
spective of the probability distribution of Ns,i.
Furthermore, if the random variable Ns,i follows the uniform distri-
bution Ns,i∼[Ns,min, Ns,max], then the estimated aggregate power is an
upper bound for up to tlim seconds after the reserve activation, whereas
it is a lower bound afterwards, where tlim is given by

tlim = Ns,max (Ns,min +Ns,max)
3Ns,max −Ns,min

. (5.13)

Proof. The proof is given in Appendix A. �

Another effect of the startup dynamics is that they increase the re-
frigerator’s average power, both with and without PFC. This happens
because typically the COP is low during the startup phase, and so the
additional electric power does not translate into more cooling. With
reference to the left plot of Fig. 5.1, and using (5.9), it is easy to derive
the following relationship between the parameters of startup dynamics
and the mean power of an individual refrigerator

P̄i =
∑ton,i+toff,i
t=0 Pi,t∆t
ton,i + toff,i

= DiPn,i + 0.5 · uiPn,iNs,i

ton,i + toff,i
. (5.14)

The first term of (5.14) is the refrigerator’s mean power in the absence
of startup dynamics. The numerator of the second term is the area of
the triangle shown in the left plot of Fig. 5.1. Using the mean values
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Figure 5.1: Left: Effect of startup dynamics on a refrigerator’s power and
duty cycle. Right: Evolution of the refrigerator’s temperature
during an on/off cycle.

of the parameters in (5.14), we can get a similar expression for the
population’s increased aggregate power that is used as a baseline for
PFC evaluation purposes.

5.4 Compressor Lockout Constraints

Lockout times are usually employed to avoid the compressor’s frequent
switching that decreases efficiency and reduces lifetime [108]. Let us
denote by tlon the lock-on time, i.e., the minimum duration the device
must operate after switching on, and by tloff the lock-off time, i.e., the
minimum duration the device must remain off after switching off. When
a compressor is locked, it cannot react to frequency deviations; there-
fore, it is important to estimate the fraction of locked devices. In the
rest of this section, we present a simple estimation method based on
local frequency measurements to keep the PFC fully decentralized.

5.4.1 Steady-State Lockout due to Thermostatic Co-
ntrol Actions

Even without PFC (at steady state), at any time step t a fraction Lst
on

of refrigerators is locked in the on state and a fraction Lst
off is locked

in the off state due to thermostatic control actions. Considering the
cycle of an individual refrigerator in the right plot of Fig. 5.1, the lock
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event at the off state loff can be modeled as the Bernoulli probability
distribution

f loff(loff) =
{

tloff
ton+toff

, if loff = 1
1− tloff

ton+toff
, if loff = 0 .

(5.15)

Using the properties of Bernoulli distribution, the fraction of refrigera-
tors that is locked at the off state is

Lst
off := 1

Nr
·
∑Nr

i=1
loff,i = E [loff] = tloff

ton + toff
. (5.16)

Since tloff, ton and toff are random variables, Lst
off is also a random variable

with a so-called ratio distribution. Without knowledge of the probability
distribution of tloff, ton, toff, the expectation of Lst

off can be approximated
with a first order Taylor expansion [142]

E
[
Lst

off
]

= E
[

tloff
ton + toff

]
≈

E
[
tloff
]

E [ton] + E [toff] . (5.17)

A second order approximation can be also used if the variance of ton+toff
is known. Using a similar procedure, one can get the approximation for
the steady-state lockout at the on state

E
[
Lst

on
]
≈

E
[
tlon
]

E [ton] + E [toff] . (5.18)

5.4.2 Transient Lockout due to PFC

When providing PFC the refrigerators are exposed to additional switch-
ing actions that increase the fraction of locked devices. Let us denote by
Ltr

on,t and Ltr
off,t the time-varying fractions of the devices that lock at the

on and off state due to PFC. Since Ltr
on,t and Ltr

off,t depend on the past
reserve activations, they can be estimated recursively given sufficient
statistical information. We assume that the Cumulative Distribution
Functions (CDFs) of the lockout times are known and we denote them
by Fon(tlon) for lock-on time and Foff(tloff) for lock-off time. We further
define Non = max

[
tlon
]

and Noff = max
[
tloff
]
. The fractions Ltr

on,t and
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Ltr
off,t can be computed using

Ltr
on,t =

∑t−1

k=0
ckxkSon(t− k), ck =

{
1, if xk ≥ 0
0, if xk < 0

(5.19)

Ltr
off,t =

∑t−1

k=0
dkxkSoff(t− k), dk =

{
0, if xk ≥ 0
1, if xk < 0

, (5.20)

where Son = 1−Fon and Soff = 1−Foff are the survival functions of the
CDFs, Son(t−k) = 0 for t−k > Non, and Soff(t−k) = 0 for t−k > Noff.
The total fraction of locked devices is obtained by adding the steady-
state and transient contributions

Lon,t = E
[
Lst

on
]

+ Ltr
on,t, Loff,t = E

[
Lst

off
]

+ Ltr
off,t . (5.21)

5.5 Improved Probabilistic Switching
In Sections 5.3 and 5.4 we presented methods to account for the startup
dynamics and lockout constraints when providing PFC with an aggre-
gation of refrigerators. To integrate these methods in the probabilistic
switching approach of Section 5.2.3, it suffices to substitute the switch-
ing probability calculation of (5.8) with

ρt =


xt

1−Da
t−1−Loff,t−1

, if xt ≥ 0
− xt
Da
t−1−Lon,t−1

, if xt < 0 .
(5.22)

Observe that the total fraction of loads that need to switch (xt) is
normalized by the fraction of the loads that are available to respond. If
xt ≥ 0, the loads that can respond are those that are off and unlocked,
i.e., the normalization factor is 1−Da

t−1−Loff,t−1. On the other hand,
if xt < 0, the loads that can respond are those that are on and unlocked,
i.e., the normalization factor is Da

t−1 − Lon,t−1.
The proposed controller is easy to implement at the device level. The re-
quired hardware is shown in Fig. 5.2 and includes a frequency meter and
a micro-controller to control the switch of the compressor. The micro-
controller consists of a random number generator and a floating-point
unit able to perform elementary mathematical operations (additions,
subtractions, multiplications and divisions). In addition, a link to the
thermostat is established in order to modify its temperature limits while
providing PFC; this is the topic of Section 5.7.
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Wall outlet

  Frequency 

  meter

Micro-controller

  

  Compressor

  Thermostat

Figure 5.2: The required hardware at the device level to implement the
proposed decentralized stochastic controller.

5.6 Robustness to Excessive Locking

The switching probability in (5.22) reflects the fraction of the population
that needs to switch to provide PFC at each time step. The reserve will
be provided reliably as long as there are enough refrigerators available
to switch or, in other words, as long as ρt ≤ 1. However, the control-
lability might be lost due to the lockout constraints. In the following
sections, we identify the key parameters that contribute to the risk for
loss of controllability, and propose countermeasures to build robustness
to excessive refrigerator locking.

5.6.1 Risk for Loss of Controllability

In general, loss of controllability can occur in both directions (both
when increasing and decreasing power). However, it is more likely to
lose controllability in the positive PFC direction, i.e., while reducing
the aggregate power, because the duty cycle is typically less than 0.5.
In the rest of this section, we provide intuition on when controllability
is lost without considering the startup dynamics for simplicity.
Consider a time step t when positive PFC is requested, i.e., xt < 0. If
startup dynamics are neglected, then xt = Dd

t −Dd
t−1, and Da

t−1 is the
same as Dd

t−1. Therefore, the lower branch of (5.22) can be written as

ρt = −
Dd
t −Dd

t−1
Dd
t−1 − Lon,t−1

. (5.23)

The condition to lose controllability gives

ρt > 1 ⇔ Dd
t − Lon,t−1 < 0 . (5.24)
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For this to occur, Dd
t must take its minimum value, i.e., Dd

t = Dn−Dr,
which leads to3

Dn −Dr − Lon,t−1 < 0 . (5.25)

In addition, controllability is at risk when the fraction of devices locked
in the on state (Lon,t−1) is high. Recall that Lon,t−1 consists of a con-
stant steady-state part and a transient part that can be simplified in
our case to

Ltr
on,t−1 =

t−1∑
k=0

ck ·
(
Dd
k −Dd

k−1
)
· Son(t− 1− k) , (5.26)

where ck is defined in (5.19). Intuitively, Ltr
on,t−1 is maximized when

there exist frequent increases in duty cycle between two consecutive
time steps k and k+ 1 within an interval [0, t− 1]. For example, this is
the case when the frequency oscillates for k ∈ [0, t− 1].
Consider a signal ∆ft that oscillates around zero with a magnitude δ
and a period 2Nδ seconds for k ∈ [0, t − 1], and an under-frequency
event equal to ∆fmax at time step t. Assuming that the oscillation is a
triangle wave, the differential dfk = ∆fk −∆fk−1 for each time step k
of any increasing half-period of the wave is dfk = δ/Nδ. Consequently,
Dd
k −Dd

k−1 is computed using (5.7) as

Dd
k −Dd

k−1 = Dr · ∆fk −∆fk−1

∆fmax
= Drδ

∆fmaxNδ
. (5.27)

For the increasing half-periods of the wave ck = 1 holds, whereas for
the decreasing half-periods ck = 0 holds. Using (5.27), equation (5.26)
can be equivalently written as

Ltr
on,t−1 =

n1∑
k=0

n3∑
j=n2

Drδ

∆fmaxNδ
· Son(t− 1− j) , (5.28)

3We can verify that the loss of controllability is more likely to occur in the positive
PFC direction (while reducing the aggregate power) by comparing the condition
(5.25) with the respective condition for the negative PFC direction, which can be
obtained with similar arguments and is 1 − Dn − Dr − Loff,t−1 < 0. The risk for
loss of controllability is higher to the positive direction if Dn − Dr − Lon,t−1 <
1 − Dn − Dr − Loff,t−1, which is equivalent to Loff,t−1 − Lon,t−1 < 1 − 2Dn. For
typical values of the nominal duty cycle (around 0.25), typical lock-on times, and
typical lock-off times, the last condition is satisfied. Note that the nominal duty
cycle can be as high as 0.4 for parts of the day in the presence of door openings;
in this case, the last condition might not hold, and therefore it is also likely to lose
controllability to the negative PFC direction.
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where n1 = (t−Nδ−1)/2Nδ, n2 = 2Nδk, and n3 = 2Nδk+Nδ−1. Com-
bining (5.23), (5.21) and (5.28), the condition for loss of controllability
for the considered signal ∆ft is

Dn −Dr − E
[
Lst

on
]
− Drδ

∆fmaxNδ

n1∑
k=0

n3∑
j=n2

Son(t− 1− j) < 0. (5.29)

From (5.29) one can see that controllability is at stake if (i) a large PFC
reserve band is offered (if Dr is high), (ii) the magnitude of oscillation δ
of ∆ft is high, (iii) the period of oscillation 2Nδ of ∆ft is low, or (iv) the
double summation is a large number, i.e., the maximum lock-on time
Non is high.4

Using the parameter values Dn = 0.25, Dr = 0.12, ∆fmax = 0.2 Hz,
E [Lst

on] = 0.02, and Non = 80 s in (5.29), we can calculate the critical
magnitude of oscillation to lose controllability for different periods of
oscillation.5 For example, if Nδ = 1 s the critical magnitude is δ =
6 mHz, if Nδ = 10 s we get δ = 57 mHz, whereas if Nδ = 20 s the
critical magnitude is δ = 96 mHz.

5.6.2 Countermeasures and Robustness

Frequency oscillations with the δ and Nδ values reported above did not
exist in the frequency data set that we used. However, such oscilla-
tions might appear in power systems with lower inertia constants, for
example, in systems with large shares of RES that are connected via
power electronics. In this case, countermeasures are needed to ensure
the controller’s robustness. A potential solution would be to define
three different operation states, namely “Normal”, “Alert” and “Emer-
gency”, depending on how close the refrigerator aggregation is to loss
of controllability.
The state in which the system is depends on the value of the expression
at the left hand side of (5.29), which is called “controllability index”.
If the controllability index is above a positive threshold, then the sys-
tem is in the Normal state and the refrigerators respond to frequency

4In practice, the width of PFC deadband is also important because no reserve is
activated as long as ∆ft is within the deadband, and therefore no refrigerators are
locked despite the oscillations in frequency.

5∆fmax = 0.2 Hz is the frequency deviation for full PFC reserve activation in
ENTSO-E, whereas the other parameter values are typical for refrigerator aggrega-
tions. More details on the parameters are given in Section 5.11.
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CI < threshold 1
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CI ≥  threshold 2CI ≥  threshold 1
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Figure 5.3: The three system states namely Normal, Alert and Emergency,
depending on the controllability index (CI).

deviations according to (5.22). While being in the Normal state, the
refrigerators also monitor the value of the controllability index.
If the controllability index gets smaller than the threshold, then each
refrigerator assumes that the system has moved into the Alert state,
and smoothes the local frequency deviation measurement with a filter
before responding to it. This is expected to reduce the fraction of locked
devices due to transient locking (Lon,t and Loff,t). The refrigerators
remain in the Alert state for as long as the controllability index is below
the threshold, otherwise they return to the Normal state. In practice,
a deadband around the threshold controllability index can be used to
avoid frequent switching from the Normal to the Alert state.
On the other hand, if the controllability index continues to decrease and
becomes smaller than a second threshold value, then the system moves
to the Emergency state. In this state, it is critical to reduce the fraction
of locked devices in order to avoid loss of controllability. This can be
achieved if the micro-controller of each refrigerator forces its compressor
to unlock. Of course, this might introduce wear on the compressor but it
is a reasonable sacrifice if system stability is at stake. The three system
states and the transition from one to the other is shown in Fig. 5.3.

5.7 Modification of Thermostat Limits

The probabilistic switching of Section 5.5 provides accurate PFC re-
serves immediately after a frequency deviation. However, if the fre-
quency deviation remains, the accuracy of reserve provision will deterio-
rate because the aggregate power of the refrigerators will decay towards
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the pre-disturbance value. In this section, we propose to modify the
temperature limits of the refrigerators’ thermostats to provide accurate
reserves in case of prolonged frequency deviations.

5.7.1 Derivation of Temperature Resetting Factor

If the startup dynamics and lockout constraints are neglected, it is
straightforward to verify that the refrigerators’ aggregate power will de-
cay towards the pre-disturbance value in case of a prolonged frequency
deviation.
Let us denote by soff,t and son,t the rates at which the refrigerators
switch off and on at time step t, respectively. These rates can be ap-
proximated with

soff,t ≈ Dd
t · Ṫd(T̄ ), son,t ≈ (1−Dd

t ) · Ṫi(T̄ ) , (5.30)

where Ṫd(T̄ ) < 0 and Ṫi(T̄ ) > 0 are the temperature decrease and
increase rates evaluated at the mean temperature, respectively. Ṫd(T̄ )
can be obtained from (5.2) and Ṫi(T̄ ) from (5.1), and for the average
parameter values used in this chapter, we get Ṫd(T̄ ) = −0.0026◦C/s and
Ṫi(T̄ ) = 0.0009◦C/s. Combining (5.30) with (5.7), the net switching
rate can be expressed as

snet,t = soff,t + son,t

≈ DnṪd(T̄ ) + (1−Dn)Ṫi(T̄ ) +Dr ∆ft
∆fmax

[
Ṫd(T̄ )− Ṫi(T̄ )

]
= soff + son +Dr ∆ft

∆fmax

[
Ṫd(T̄ )− Ṫi(T̄ )

]
= Dr ∆ft

∆fmax

[
Ṫd(T̄ )− Ṫi(T̄ )

]
. (5.31)

In (5.31), soff = Dn · Ṫd(T̄ ) and son = (1−Dn) · Ṫi(T̄ ) are the switching
rates at steady state, and soff + son = 0 holds because the aggregate
baseline power is approximately constant.
If ∆ft > 0, some refrigerators will switch on to provide PFC reserve,
and shortly snet,t will become negative because Ṫd(T̄ ) − Ṫi(T̄ ) < 0 in
(5.31). This means that some refrigerators will start switching off, and
therefore the aggregate power will start decreasing towards the baseline.
A similar argument can be made for the case ∆ft < 0, when the ini-
tially lower aggregate power will start increasing towards the baseline.
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As a result, the probabilistic switching approach of Section 5.5 cannot
provide constant PFC reserve over time.
A simple solution to this problem is to dynamically modify the devices’
thermostat limits (temperature deadband) in order to always keep snet,t
close to zero. For this purpose, we apply the temperature resetting
factor

Kr,t [◦C] = snet,t ·∆t = −Dr∆tβ̄P̄n ·
∆ft

∆fmax
, (5.32)

where Ṫd(T̄ ) − Ṫi(T̄ ) = −β̄P̄n from (5.1) and (5.2). If ∆ft > 0, the
resetting factor is negative, which means that both thermostat limits
will decrease at a rate equal to Kr,t such that the population reaches an
equilibrium at an aggregated power higher than the baseline. Similarly,
if ∆ft < 0, both thermostat limits increase at a rate equal to Kr,t.
If the frequency deviation is biased for a long period of time, applying
(5.32) might change the refrigerator temperatures significantly. The
implications of large changes in the average refrigerator temperature
will be discussed in Section 5.8.

5.7.2 Inclusion of Startup Dynamics and Lockouts

To account for the startup dynamics and lockout constraints three mod-
ifications are needed in (5.32). The first modification is to substitute the
term Dr · (∆ft/∆fmax) with xt from (5.11) to account for the modified
number of activated loads for PFC due to the startup dynamics.
A second modification is needed because the refrigerators that are locked
(and cannot switch) do not contribute to the decay of the aggregate
power towards the pre-disturbance value. To account for this, we incor-
porate the sequential unlocking of refrigerators after a frequency devia-
tion event based on the CDFs of lockout times Fon(tlon) and Foff(tloff).
Consider a positive ∆ft starting at time step t = 0, which will induce a
positive xt. Instantaneously, some refrigerators will switch on to provide
PFC and will lock in the on state. Therefore, at t = 0 fewer devices
will be in the off state, son,t will start decreasing, and an instantaneous
resetting factor of −xtṪi(T̄ ) is needed to keep snet,t close to zero.
However, as time elapses, some of the refrigerators that switched on
will unlock based on Fon(tlon), and larger changes in the temperature
deadband limits will be required to maintain the same aggregate power.
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Therefore, the resetting factor is determined by xt[Ṫd(T̄ )Fon(t)−Ṫi(T̄ )]∆t
for ∆ft > 0, and by xt[Ṫd(T̄ )− Ṫi(T̄ )Foff(t)]∆t for ∆ft < 0.
To generalize for multiple events, the resetting factor at time step t
should accumulate all contributions from the previous time steps due to
the recursive definition of xt in (5.11). Therefore, the resetting factor
is given by

Kr,t = ∆t ·
∑t−1

k=0
xk ·

[
ck · [Ṫd(T̄ ) · Fon(t− k)− Ṫi(T̄ )]

+ dk · [Ṫd(T̄ )− Ṫi(T̄ ) · Foff(t− k)]
]
, (5.33)

where ck and dk are defined in (5.19) and (5.20). Recall that Fon, Foff
are CDFs, and so Fon(t− k) = 1 for t− k > Non and Foff(t− k) = 1 for
t− k > Noff in (5.35).
A last modification is needed because only the thermostat resetting of
the unlocked devices affects the net switching rate during PFC reserve
provision. For this reason, the temperature resetting is applied only to
the unlocked refrigerators, and this is accounted for by including the
normalization factor

rt = 1− E [Lst
on]− E [Lst

off]
1− Lon,t − Loff,t

(5.34)

in the temperature resetting factor, which is finally computed with

Kr,t = rt ·∆t ·
∑t−1

k=0
xk ·

[
ck · [Ṫd(T̄ ) · Fon(t− k)− Ṫi(T̄ )]

+ dk · [Ṫd(T̄ )− Ṫi(T̄ ) · Foff(t− k)]
]
. (5.35)

Note that rt > 1 as long as Ltr
on,t 6= 0 or Ltr

off,t 6= 0, whereas rt = 1 if
Ltr

on,t = Ltr
off,t = 0, i.e., at steady state.

By modifying the thermostat limits using (5.35), we effectively trans-
form the electric energy surplus or deficit due to the PFC reserve into
thermal energy. In this way, we avoid the decay of aggregate power to
the pre-disturbance value and achieve a constant reserve provision.

5.8 Robustness to Biased Frequency Devi-
ations

If the frequency deviation is approximately zero-mean, the average re-
frigerator temperatures do not change significantly and the duty cycle



5.8. Robustness to Biased Frequency Deviations 111

remains close to the nominal value Dn. However, in case of biased
frequency deviations, the prolonged reduction or increase of the ther-
mostat limits according to (5.35) results in unacceptable high or low
refrigerator temperatures, which affect negatively the user utility.
Biased frequency deviations affect also the baseline power consumption.
After a time interval with a biased frequency deviation, the refrigera-
tors’ thermostat limits, and consequently the average temperature of the
population, will be different from the nominal values. However, the ag-
gregate refrigerator power depends directly on the average temperature
of the population. Specifically, if the average temperature decreases, the
aggregate baseline power will increase due to higher thermal losses to
the ambient, and vice versa. Therefore, biased frequency deviations will
create steady-state deviations in the baseline power consumption. Since
the activation of PFC reserve is measured with respect to the baseline,
these steady-state deviations will increase the control error.
Without any reaction, the baseline deviation and control error will per-
sist until the thermostat limits return to their nominal values, when
the aggregation sustains an opposite bias in the frequency deviation.
A simple approach to reduce the control error would be to filter the
frequency deviation signal in order to eliminate the bias, as proposed
in [94]. However, the disadvantage of this approach is that the bias
needs to be absorbed by other available PFC resources or transferred to
SFC. In this chapter, we propose a different approach that allows us to
account for biased frequency deviations without relying on additional
resources.

5.8.1 Corrective Temperature Control

Instead of relying on an opposite frequency deviation bias to eliminate
the baseline deviation, we impose an opposite control action – called
“corrective temperature control” – on the thermostat limits, such that
they return to the nominal values in the long run. The corrective tem-
perature control is designed as a proportional feedback control on the
average temperature across the population using a gain Kc. Thus, the
temperature limits of refrigerator i evolve in time according to

Tmin,i,t = Tmin,i,t−1 +Kr,t −Kc · (T̄t−1 − T̄nom) (5.36)
Tmax,i,t = Tmax,i,t−1 +Kr,t −Kc · (T̄t−1 − T̄nom) , (5.37)
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where T̄t−1 is an estimate of the population’s average temperature, and
T̄nom is the population’s nominal mean temperature without PFC. Note
that (5.36) and (5.37) are applied only to the unlocked refrigerators.
The goal of the corrective temperature control is to eliminate the per-
sistent errors in activation of PFC due to steady-state baseline devi-
ations resulting from biases in past frequency deviations. Recall that
the temperature resetting factor Kr,t modifies the thermostat limits to
improve the PFC accuracy. Although both the temperature resetting
factor and the corrective temperature control modify the thermostat
limits, the two control loops will not fight against each other, if the
gains are appropriately selected. In particular, if Kc is sufficiently low,
the corrective temperature control loop will act much slower than the
resetting of thermostat limits with Kr,t. In principle, this allows us to
correct the deviations in the average temperature and the baseline con-
sumption without compromising the accuracy of PFC. Tuning the gain
of the corrective temperature control loop is the topic of Section 5.8.3.

5.8.2 Temperature and Duty Cycle Estimation

The mean temperature T̄t depends on the past temperature resetting
and corrective control actions, which in turn depend on the past fre-
quency deviations, and can be estimated using

T̄t = T̄t−1 + [Kr,t −Kc(T̄t−1 − T̄nom)] · (1− Lon,t − Loff,t) . (5.38)

The term (1− Lon,t − Loff,t) in (5.38) is needed because the temperature
resetting and corrective control actions are applied only to the unlocked
devices, and it can be calculated from (5.21) based on E [ton], E [toff]
and (5.18), (5.17). However, as the mean temperature changes, E [ton]
and E [toff] change as well and can be approximated with

E [ton,t] ≈ R̄C̄ · ln
[
T̄max,t−1 − T̄a + η̄R̄P̄n

T̄min,t−1 − T̄a + η̄R̄P̄n

]
(5.39)

E [toff,t] ≈ R̄C̄ · ln
[
T̄a − T̄min,t−1

T̄a − T̄max,t−1

]
, (5.40)

where R̄, C̄, η̄, T̄a, P̄n are the expected values of the respective variables,
and T̄min,t−1 = T̄t−1 − 0.5 ·∆T , T̄max,t−1 = T̄t−1 + 0.5 ·∆T , where ∆T
is the population’s mean (time-invariant) deadband width.
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Using T̄t it is also possible to keep track of the population’s duty cycle
with the approximation

D̄n
t ≈

E [ton,t]
E [ton,t] + E [toff,t]

. (5.41)

In this case, equation (5.12) that gives the actual duty cycle should be
substituted with

Da
t = Da

t−1 + xt + (D̄n
t − D̄n

t−1) , (5.42)

such that the fraction of loads activated for PFC (xt) accounts for the
change in baseline power.

5.8.3 Analytical Tuning of the Corrective Temper-
ature Gain

From a user point of view, high Kc values are preferable to keep the
refrigerator temperature deviations as low as possible. However, from
a power system point of view, there is a tradeoff to consider when de-
ciding the value of Kc. If the gain is very small, prolonged temperature
deviations will change the aggregation’s baseline consumption and intro-
duce steady-state reserve errors. On the other hand, a very large gain
might introduce oscillations in the aggregate power and consequently
increased reserve errors. In fact, upper and lower bounds on the gain
can be computed analytically in a simple case without startup dynamics
and lockout constraints.
The correction of the average temperature with the gain Kc can be
thought as a temperature resetting with the Kr,t defined in (5.32), but
for an opposite frequency deviation signal. Assuming that the applica-
tion of the temperature resetting factor Kr,t does not create oscillations
in aggregate power, and if the opposite temperature change due to Kc
is in absolute terms smaller than the average K̄r,t, then no oscillations
in aggregate power should occur. Therefore, an upper bound on Kc can
be obtained from∣∣Kc · (T̄t − T̄nom)

∣∣ ≤ ∣∣K̄r,t
∣∣ ⇔

Kc · |T̄t − T̄nom| ≤ ∆tβ̄P̄n

∣∣∣∣Dr∆̄f t
∆fmax

∣∣∣∣ = ∆tβ̄P̄n · |D̄n
t −Dn| , (5.43)
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where ∆̄f t is the average frequency deviation, and (5.7) was used.
From (5.41) we can see that D̄n

t is a function of the mean temperature
T̄t. Therefore, the upper bound on Kc obtained from (5.43) is in general
a function of T̄t itself. However, a temperature-independent bound can
be obtained by a first order Taylor expansion of (5.41) that gives

D̄n
t (T̄ ) ≈ D̄n

t

(
T̄nom

)
+
dD̄n

t

(
T̄
)

dT̄

∣∣∣
T̄nom

·
(
T̄ − T̄nom

)
⇔

D̄n
t −Dn = D̄n

t (T̄ )− D̄n
t (T̄nom) ≈

dD̄n
t

(
T̄
)

dT̄

∣∣∣
T̄nom

· (T̄ − T̄nom) . (5.44)

Substituting now (5.44) in (5.43) gives us the upper bound

Kc ≤
∣∣∣∣∆tβ̄P̄n ·

dD̄n
t

(
T̄
)

dT̄

∣∣∣
T̄nom

∣∣∣∣ . (5.45)

A lower bound on Kc can be obtained based on the minimum/maximum
acceptable mean temperature and the maximum acceptable settling
time (i.e., the time needed to restore T̄t sufficiently close to T̄nom after
the biased frequency deviation event is over). Without lockout con-
straints (Lon,t = Loff,t = 0) equation (5.38) can be written as

T̄t = λ · T̄t−1 − γ ·∆ft + (1− λ) · T̄nom , (5.46)

where λ = 1−Kc and γ = Dr∆tβ̄P̄n/∆fmax. With an initial condition
T̄0, equation (5.46) has the solution

T̄t = λt · T̄0 − γ ·
t−1∑
k=0

λk ·∆ft−k−1 + (1− λt) · T̄nom . (5.47)

Assume that T̄0 = T̄nom and that the refrigerator aggregation faces the
step frequency deviation

∆ft =
{
δ, if 0 ≤ t ≤ Nev

0, if t > Nev
, (5.48)

which represents a frequency deviation signal with a bias approximately
equal to δ over a period Nev. Let us denote by ε the tolerance in terms
of the mean temperature during the frequency deviation event, i.e., T̄t
must satisfy T̄nom−ε ≤ T̄t ≤ T̄nom +ε ∀t. Furthermore, let us denote by
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Nrec the maximum acceptable settling time, i.e, T̄nom−ε ≤ T̄t ≤ T̄nom+ε
should hold for t ≥ Nev+Nrec after the frequency deviation event is over,
where ε < ε is another tolerance. If δ, ε and ε are fixed, a lower bound on
the corrective temperature gain can be computed using Proposition 2.

Proposition 2. If T̄0 = T̄nom and ∆ft is given by (5.48), then T̄nom−
ε ≤ T̄t ≤ T̄nom + ε ∀t and T̄nom − ε ≤ T̄t ≤ T̄nom + ε for t ≥ Nev +Nrec
hold if the corrective temperature gain is computed as Kc = 1−λ, where
λ satisfies

1− λNev

1− λ ≤ ε

γδ
(5.49)

λNrec · 1− λNev

1− λ ≤ ε

γδ
. (5.50)

Proof. The proof is given in Appendix A. �

Remark 1. Although (5.49) and (5.50) cannot be solved analytically,
a lower bound on Kc can be obtained numerically by starting with a
value of λ very close to 1, and gradually reducing it until it satisfies
both (5.49) and (5.50).

Equation (5.45), Proposition 2 and Remark 1 provide theoretical lower
and upper bounds on Kc that can serve as an initial range when de-
termining the final value of the gain via simulations with realistic ∆ft
signals, startup dynamics, and lockout constraints.

5.9 Considering Thermostat Resolution

Typically, the necessary change in the thermostat’s temperature lim-
its calculated by (5.36) and (5.37) is very small, for example, 10−4 ◦C
per second. Therefore, the temperature limits of some of the refrig-
erators will likely not change due to limited thermostat resolution or
measurement noise, and so the aggregate power might decay towards
its pre-disturbance value.6

We address this practical issue by allowing the temperature limits to
change only by a sufficiently large fixed rate ∆Tres

◦C per second. This
6For example, the accuracy of temperature measurements in a refrigerator was

±0.2◦C in the experimental work of [143].
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is possible if we introduce an additional layer of randomization in the
control algorithm. The underlying idea is simple: instead of distribut-
ing the temperature change over the whole unlocked population and
requesting a small change from every device, we impose a much larger
change on the temperature limits of fewer devices.

5.9.1 Probabilistic Implementation

At time step t, the required change in temperature limits of each refrig-
erator is

∆Tlim,t = Kr,t −Kc · (T̄t−1 − T̄nom) . (5.51)

Equation (5.51) is applied by each refrigerator in a decentralized way
using the locally obtained estimate of the average temperature.
If the temperature limits of an individual device change only by ∆Tres,
we can get the same total change in temperature by applying ∆Tres to
a fraction of the population equal to

%t = |∆Tlim,t|
∆Tres

. (5.52)

The implementation of this approach is straightforward: each refriger-
ator draws a random number uniformly distributed between 0 and 1,
and if it is smaller than %t and the refrigerator is unlocked, then it mod-
ifies its temperature limits by ∆Tres, otherwise it does not. The limits
increase by ∆Tres if ∆Tlim,t > 0, and decrease by ∆Tres if ∆Tlim,t < 0.

5.9.2 Drawbacks and Countermeasure

Despite its simplicity, this approach introduces two sources of inaccu-
racy in the control. First, as ∆Tres increases, fewer devices are required
to change their thermostat limits and therefore the control is exposed to
inaccuracies from random number generation. Second, large ∆Tres val-
ues might synchronize the population. Without the fixed rate ∆Tres, the
temperature limits change in a continuous fashion, the devices switch
when they are very close to the thermostat limits, and this avoids syn-
chronization. In contrast, if a large ∆Tres value is used, some devices
will switch at a temperature considerably different from the nominal
thermostat limits.
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If a fixed rate ∆Tres is used, the change in temperature limits ∆Tlim,i,t is
different for each refrigerator i. Another disadvantage of this approach
is that the variance of ∆Tlim,i,t increases monotonically, as shown by
Proposition 3 and Remark 2.

Proposition 3. If the refrigerators’ temperature limits change proba-
bilistically according to (5.52), then the mean and variance of ∆Tlim,i,t
are given by

E [∆Tlim,i,t] =
∑t−1

k=0
∆Tlim,k (5.53)

Var [∆Tlim,i,t] =
∑t−1

k=0
|∆Tlim,k| · (∆Tres − |∆Tlim,k|) . (5.54)

Proof. The proof is given in Appendix A. �

Remark 2. If the fixed rate ∆Tres is not applied, all refrigerators
change their temperature limits by

∑t−1
k=0 ∆Tlim,k, and so the mean value

is equal to
∑t−1
k=0 ∆Tlim,k and the variance is zero. Note that in our sim-

ulations, the mean value is slightly different and the variance is non-zero
but small, because the thermostat limit changes are applied only to the
unlocked devices.

Equation (5.53) shows that using the fixed rate ∆Tres does not affect the
mean value of the temperature limit change. In contrast, the variance
monotonically increases over time (linearly with ∆Tres) because typically
∆Tres − |∆Tlim,k| ≥ 0 in (5.54).

Due to the monotonic increase in variance, some devices will likely sus-
tain larger and prolonged deviations from the nominal temperature lim-
its, which is undesirable. The variance can be bounded by imposing a
restriction on the maximum deviation from the mean temperature of
the population. To implement this, we require each unlocked device i
that drew a random number smaller than %t at time step t to change
its limits only if

T̄t−1 −∆Tb ≤ ∆Tlim,i,t−1 + ζi∆Tres ≤ T̄t−1 + ∆Tb (5.55)

holds, where ∆Tb is a temperature deviation bound, and ζi is equal to
1 or −1 depending on the sign of ∆Tlim,t.
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Figure 5.4: Left: The histogram of door openings during a day. Right:
Door opening events for a refrigerator generated based on the
histogram.

5.10 Accounting for Door Openings

The analysis so far neglected the door openings that significantly affect
the operation not only of individual refrigerators, but also of the aggre-
gation as a whole. In this section, we present a method to model door
openings and account for them in PFC design.

5.10.1 Stochastic Model for Door Opening Events

There exist only a few papers that consider door openings in power
system studies with refrigerators [89, 104]. In this chapter, we assume
that the number of door openings per day follows a normal distribution
with mean value µop and standard deviation σop. Furthermore, we
assume that the duration of a door opening event follows a normal
distribution with mean value µd and standard deviation σd. The door
opening events are distributed within the day based on the hourly profile
from [144], which is shown in the left plot of Fig. 5.4. Based on [144]
we select µop = 40, whereas we fix σop = 5, µd = 20 s and σd = 3 s [89].
The right plot of Fig. 5.4 shows a time-series example of door opening
events for a refrigerator, which is generated using the probability profile
of the left plot.

5.10.2 Modeling the Effect of Door Openings

The door openings increase the refrigerator’s daily energy consumption
by ξ · 100% (we assume ξ = 0.22 [144]). The effect of door openings
on refrigerator temperature can be modeled by reducing the thermal
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resistance during each door opening event in (5.1) and (5.2), i.e., by
increasing the thermal losses to the ambient. If µop, µd and ξ are
known, then an upper bound to the thermal resistance can be obtained
as shown by Proposition 4.

Proposition 4. Recall that the refrigerator’s thermal resistance with
closed door is denoted by R, and let us denote by Nd = 86, 400 seconds
the duration of a day. An upper bound to the estimate of the thermal
resistance Rop during a door opening event can be obtained from

Rop ≤ R ·
1

1 + Nd

µop·µd
· ξ

. (5.56)

Proof. The proof is given in Appendix A. �

Remark 3. Evaluating (5.56) as an equality gives us an initial esti-
mate of Rop. For the parameters assumed in this chapter, (5.56) gives
Rop ≤ R/24.76, and so we used the value Rop = R/25 in our simula-
tions.

5.10.3 Modifications in PFC Design

The proposed controller can be easily extended to account for door
openings. Even without PFC, the aggregation’s duty cycle and baseline
power are not constant any more, but they depend on the distribution
of door openings within the day. The duty cycle without PFC can be
expressed as

Dn
t = Dn + ∆Dop

t , (5.57)

where Dn is the nominal duty cycle and ∆Dop
t ≥ 0 is the additional

duty cycle due to door openings. In practice, a smoothed version of
∆Dop

t can be obtained by comparing historical data of aggregate power
consumption with and without door openings.
If the duty cycle is now estimated using

D̄n
t ≈

E [ton,t]
E [ton,t] + E [toff,t]

+ ∆Dop
t (5.58)

instead of (5.41), then the necessary information about the door open-
ings is passed to the switching probability calculation (5.22) through
(5.42), and no other modification in the control design is needed.
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Figure 5.5: The proposed decentralized stochastic controller. Red arrows
indicate the controller’s input/output signals, green arrows in-
dicate input from stored parameter values in the controller’s
memory, and black arrows indicate internal control and feed-
back signals.

Figure 5.5 shows the control block of the decentralized stochastic con-
troller including all components presented so far. In the rest of this
chapter, we demonstrate the controller’s performance in detailed simu-
lation studies.

5.11 Parameters and Performance Metrics

In this section, we present the refrigerator parameters and introduce
the metrics and benchmarks that we use to quantify the performance
of the proposed controller. Note that the thermal parameter β and the
lock-off time duration tloff do not follow a standard Probability Distri-
bution Function (PDF) because they are post-calculated based on the
imposed PDFs on other variables. The resulting PDFs resemble nor-
mal distributions with the mean value and standard deviation shown in
Table 5.7, but with positive skewness and kurtosis.
We fix Dr = 0.15 and the PFC reserve capacity is given by

Pres = NrP̄nD
r . (5.59)
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Table 5.7: Refrigeration aggregation parameters

Parameter Value Parameter Value
Ta (◦C) U[20, 24] α (s−1) U[4, 6] · 10−5

∆T (◦C) U[1.7, 2.3] β (◦C/kJ) (µ, σ) = (4.4, 0.7) · 10−5

Tset (◦C) U[4.5, 5.5] Pn (W) U[70, 90]
u (-) N[0.25, 0.025] tlon (s) N[60, 5]
Ns (s) N[30, 3] tloff (s) (µ, σ) = (189, 31.5)

The desired aggregate power at time step t with PFC is

Pd,t = P̄b,t + Pres · (∆ft/∆fmax) , (5.60)

where P̄b,t is the population’s baseline power, i.e., a smoothed version
of historical measurements of the aggregate power Pb,t without PFC.
If there are no door openings, then the baseline is constant and equal
to P̄b = NrP̄nD

n, whereas it is time-varying in the presence of door
openings.
We define the control error as Pd,t − Pagg,t, where Pagg,t is the actual
aggregate power. We use the instantaneous percentage reserve error
(5.61), the reserve Mean Absolute Percentage Error (MAPE) defined in
(5.62), and the tracking MAPE defined in (5.63) as control performance
metrics. In addition, we use the baseline MAPE (5.64) as a metric of
the natural oscillations in an uncontrolled aggregation of refrigerators.
Denoting by Nsim the simulation period, the metrics can be expressed
as

er,t = 100 · (Pd,t − Pagg,t)/Pres (5.61)

er,mape = (100/Nsim) ·
∑Nsim−1

t=0
|er,t| (5.62)

et,mape = (100/Nsim) ·
∑Nsim−1

t=0
|(Pd,t − Pagg,t)/Pd,t| (5.63)

eb,mape = (100/Nsim) ·
∑Nsim−1

t=0

∣∣(P̄b,t − Pb,t)/Pres
∣∣ . (5.64)

In the rest of this chapter, we demonstrate the performance of the pro-
posed decentralized control scheme, which we call “proposed controller”
hereafter, and benchmark it against two simpler controllers. The “sim-
ple controller 1” neglects the startup dynamics and lockout constraints,
and is similar to the approach presented in [94]. The only difference
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is that the temperature resetting factor Kr,t is computed analytically
from (5.32) and not heuristically as in [94]. The “simple controller 2”
neglects the startup dynamics and lockout constraints, and addition-
ally does not reset the thermostat limits. We compare the controllers
via detailed simulations with actual frequency deviation data from the
control area of Switzerland in 2009 and 2011.

5.12 Benchmarking and Aggregation Size

The control performance is expected to improve as the size of the refrig-
erator aggregation increases for three main reasons. First, the controller
relies on probabilistic switching using random number generators, and
thus the larger the aggregation the closer the resulting switching proba-
bilities are to the desired values. The second reason is that the controller
assumes a constant uncontrolled duty cycle Dn in the absence of door
openings (which is increased by a smooth power profile ∆Dop

t to ac-
count for door openings). The assumption that Dn is constant (or that
Dn + ∆Dop

t is time-varying but smooth) is reasonable only for suffi-
ciently large aggregations, where the oscillations from individual load
cycles cancel out. The third reason is that the controller is designed
based on the average refrigerator parameters and, obviously, the larger
the population the better it is described by these average values.

5.12.1 Reserve Error vs Aggregation Size

In this section, we investigate the dependence of the controller’s perfor-
mance on the aggregation size in simulations with different sizes using
30 five-hour samples of the frequency deviation signal. The simulations
are performed with the proposed controller and the simple controller
1. Since the simple controller 1 is not robust to biased frequency de-
viations, we use only zero-mean frequency deviation signals in these
simulations.
The left plot of Fig. 5.6 shows the reserve MAPE (er,mape) for the pro-
posed and the simple controller 1. A population of 1, 000 refrigerators
results in a large reserve error, whereas increasing the size up to 10, 000
refrigerators drastically decreases the error. After this point the reserve
error decreases asymptotically and it practically saturates at an aggre-
gation size of 70, 000. For this reason, all simulations in Sections 5.13-
5.16 were performed with a population of 70, 000 refrigerators. Observe
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Figure 5.6: Dependence of control performance on the size of refrigerator
aggregation for the proposed and the simple controller 1 using
zero-mean frequency deviation signals. Left: reserve MAPE.
Right: RMSE of switching probability (theoretical values and
values obtained by simulations).

that the proposed controller outperforms the simple controller 1 for all
aggregation sizes with the exception of a small aggregation of 2, 000
refrigerators. For populations of 70, 000 loads or more, the proposed
controller reduces the reserve error by approximately 16% compared
with the simple controller 1.
There are two error components hidden behind the reserve error: (i)
the switching probability error, and (ii) the baseline error. In the rest
of this section, we attempt to disaggregate the total reserve error into
these two components.

5.12.2 Switching Probability Error vs Aggregation
Size

The right plot of Fig. 5.6 shows the Root Mean Squared Error (RMSE)
of switching probability ρt for the proposed controller and the simple
controller 1, which is calculated with

ep,rmse =

√
1

Nsim
·
∑Nsim−1

t=0

(∑Nr
i=1 χi,t
Nr

− ρt
)2

. (5.65)

The switching action of each device i at time step t is a binary ran-
dom variable χi,t with a Bernoulli distribution. Therefore, the term
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1/Nr ·
∑Nr
i=1 χi,t denotes the percentage of loads that switch at each

time step. Note that the success probability of χi,t is time-varying and
equal to the switching probability ρt calculated with (5.22).
The dependence of the switching probability error on the aggregation
size Nr can be derived analytically by making the simplifying assump-
tion that the population applies the average value of the switching
probability ρ̄ for the whole simulation horizon. In this case, χi,t will
have a constant success probability ps = ρ̄ and a standard deviation
σχi =

√
p̄s · (1− p̄s) =

√
ρ̄ · (1− ρ̄). Therefore, the switching probabil-

ity RMSE can be written as

ep,rmse (Nr) =

√
1

Nsim
·
∑Nsim−1

t=0

(∑Nr
i=1 χi
Nr

− ρ̄
)2

= (5.66a)

SD
(∑Nr

i=1 χi
Nr

)
= SD (χ̄i) = σχi√

Nr
=

√
ρ̄(1− ρ̄)
Nr

, (5.66b)

where we used the square root law in (5.66b) and SD denotes the stan-
dard deviation of the sample mean χ̄i.
According to (5.66), the switching probability error decreases with the
square root of aggregation size. We calculate ep,rmse for all considered
population sizes using (5.66) and plot the theoretically expected curve
in the right plot of Fig. 5.6, which is in agreement with the simulation
results (bar plot) obtained with (5.65).

5.12.3 Baseline Error vs Aggregation Size

The left plot of Fig. 5.7 shows the reserve MAPE (er,mape) together with
the baseline MAPE (eb,mape). The baseline error decreases as the aggre-
gation size increases because the uncontrolled aggregate power and duty
cycle become smoother. This is graphically illustrated in the right plot
of Fig. 5.7, where the duty cycle of a population of 1, 000 and 100, 000
refrigerators is shown. Observe that for aggregations up to 15, 000 loads
the baseline error is dominant and sometimes even larger than the re-
serve error. This means that the PFC response of small aggregations
is covered by the large natural oscillations of the uncontrolled baseline.
Interestingly, even for an aggregation of 100, 000 loads the baseline error
comprises a significant part (approximately 62%) of the reserve error.
In other words, the control inaccuracy due to probabilistic switching
contributes to only 38% of the reserve MAPE.
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Figure 5.7: Left: comparison of the reserve and baseline MAPE of the pro-
posed controller for different aggregation sizes. Right: The un-
controlled duty cycle of 1, 000 and 100, 000 refrigerators.

5.13 Sensitivity Analysis

In this section we investigate the sensitivity of the controller’s perfor-
mance to four important parameters: (i) the reserve capacity, (ii) the
peak power during the startup phase, (iii) the lockout duration, and
(iv) the PFC activation deadband. For this purpose, we run simula-
tions over a period of 10 days for different values of these parameters.
The frequency deviation is approximately zero-mean during the first
5 days of the data set, whereas it has a large bias during the remaining
5 days (up to 0.011 Hz).

5.13.1 Sensitivity to Reserve Capacity

Figures 5.8 and 5.9 show the sensitivity analysis results with respect
to the reserve capacity Dr. Figure 5.8 corresponds to the part of the
frequency deviation signal with small bias, whereas Fig. 5.9 is for the
signal with large bias. In both figures, the left plot shows the reserve
MAPE (er,MAPE), whereas the right plot shows the tracking MAPE
(et,MAPE).7

A first observation is that asDr increases, et,MAPE increases but er,MAPE
decreases. This means that as the reserve capacity increases the abso-

7The difference between the proposed controller and the simple controller 1 is
larger in Fig. 5.8 compared with Fig. 5.6. The reason is that there exists some small
bias in the signal used for the simulations of Fig. 5.8, but there exists no bias in the
signal used for the simulations of Fig. 5.6.
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Figure 5.8: Sensitivity to reserve capacity in simulations with a small fre-
quency deviation bias. Left: Reserve MAPE. Right: Tracking
MAPE.
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Figure 5.9: Sensitivity to reserve capacity in simulations with a large fre-
quency deviation bias. Left: Reserve MAPE. Right: Tracking
MAPE.

lute tracking error increases, but the relative error decreases. A second
observation is that the proposed controller results in lower errors com-
pared with the simple controller 1 for all cases. In addition, the simple
controller 2 performs worse than the simple controller 1, which illus-
trates the need for resetting of the thermostat temperature limits, as
explained in Section 5.7.1.

Observe that the difference between the proposed controller and simple
controller 1 is much more pronounced for the biased frequency deviation
signal. This shows the effectiveness of the corrective temperature control
of Section 5.8. In fact, there is only a small difference between the simple
controller 1 and simple controller 2 for biased frequency deviations. In
this case, most of the reserve error is attributed to steady-state baseline
errors, and so the improvement of the temperature resetting action is
only marginal.
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Figure 5.10: Sensitivity of reserve MAPE to the peak power during startup
dynamics. Left: small frequency deviation bias. Right: large
frequency deviation bias.
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Figure 5.11: Sensitivity of reserve MAPE to the compressor’s lock-on time.
Left: small frequency deviation bias. Right: large frequency
deviation bias.

5.13.2 Sensitivity to Startup Dynamics’ Peak Power

The dependence of er,MAPE on the peak power factor during the startup
phase (u) is presented in Fig. 5.10. The error of the proposed controller
is not sensitive to u, whereas the error of the simple controller 1 clearly
increases as u increases. This is expected because a larger u results in
larger overshoots in the aggregate power consumption, if the effect of
startup dynamics is not considered in the control design.

5.13.3 Sensitivity to Lockout Times

Figure 5.11 shows the dependence of the reserve error to the lock-on
time tlon. The error of the proposed controller steadily increases as tlon
increases, which indicates that the estimate of the number of locked
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Figure 5.12: Reserve MAPE with and without a PFC activation deadband
of ±10 mHz. Left: small frequency deviation bias. Right:
large frequency deviation bias.

devices – obtained by (5.21) – deteriorates.
On the other hand, the error of the simple controller 1 is unaffected
by tlon, and it remains constant at a level significant higher than that
of the proposed controller. This can be explained because the simple
controller 1 neglects both the lockout times and startup dynamics. With
reference to (5.22), the simple controller 1 overestimates the value of
the denominator (because it neglects Loff,t−1 and Lon,t−1) and so fewer
loads than needed are activated for PFC. However, each of the activated
loads consumes more power than expected due to the startup dynamics,
which counteracts the error in the number of activated loads.

5.13.4 Effect of PFC Activation Deadband

In practice, a frequency deadband is used to avoid unnecessary PFC
activation and to prevent PFC activation to the wrong direction due to
frequency measurement error. For example, a deadband of ±10 mHz
is used in the ENTSO-E system [145]. To investigate the effect of fre-
quency deadband on the performance of the proposed controller, we
repeated the simulations for our base case scenario with a deadband of
±10 mHz and we present the results in Fig. 5.12.
Even with a deadband, the proposed controller significantly reduces the
reserve error compared with the benchmark controller for both zero-
mean and biased frequency deviation signals. However, the difference
between the controllers is smaller if a deadband is used. Note that
when using a frequency deadband of ±10 mHz, the PFC is active only
for approximately 58% of the time in our simulations. Figure 5.13 shows
the desired and activated reserve for the proposed controller and simple
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Figure 5.13: Droop characteristic with a PFC activation deadband of
±10 mHz. Left: Small frequency deviation bias. Right: Large
frequency deviation bias.

controller 1 with a PFC deadband for zero-mean and biased frequency
deviations. The proposed controller follows the desired droop charac-
teristic of PFC much closer than simple controller 1, in particular for
biased frequency deviations.

5.14 Performance with Biased Frequency
Deviations

In this section, we present results on tuning of the corrective temper-
ature gain Kc via 10 day-long simulations. Figure 5.14 compares the
reserve error er,t and the temperature deviations for three different Kc
values, as well as for a case without corrective control. The results corre-
spond to simulations with a frequency deviation signal that is positively
biased for the first 15 hours (with an average bias of δ = 0.0192 Hz),
and zero-mean for the rest of the day.
If Kc = 0, there is a steady-state error both in the temperature and
reserve provision at the end of the day due to a permanent baseline error.
On the other hand, all three non-zero gains bring the mean temperature
close to the nominal value of 5◦C and eliminate the steady-state reserve
error. As expected, higher Kc values allow a faster temperature recovery
but introduce oscillations in the baseline power, which translate into
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Figure 5.14: Time-domain simulation results of reserve error and mean tem-
perature deviation for four different values of the corrective
temperature gain.
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Figure 5.15: Dependence of reserve MAPE and temperature RMSE on the
corrective temperature gain.

increased reserve errors at the beginning of the recovery period (around
hour 5 in Fig. 5.14).

Results over the 10 day-long simulations for Kc in the range [0.1, 1]·10−4

are presented in Fig. 5.15. The frequency deviation is positively biased
in 4 of the days, negatively biased in another 4 of the days, and zero-
mean in the remaining 2 days. The blue bars show the average values
of the reserve MAPE and temperature RMSE, whereas the red lines
indicate the range spanned from the minimum to the maximum value.
In accordance with our intuition in Section 5.8.3, the reserve MAPE
demonstrates a convex dependence on Kc and the minimum is achieved
for Kc = 0.5 · 10−4. This gain results in a reserve MAPE of 1.15%,
which is very close to the baseline MAPE of 0.85% due to the system’s
natural dynamics (shown with the green bar in Fig. 5.15). Of course,
from a user point of view, the larger the temperature corrective gain is,
the smaller the temperature deviations are.
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Figure 5.16: Left: The PDF of temperature deviations at the end of the
simulation. Right: The PDF of mean absolute temperature
deviations during the simulation.

Note that the results of Fig. 5.14 are in agreement with Proposition 2.
With δ = 0.0192 Hz, Nev = 15 h, Nrec = 9 h, ε = 1◦C, ε = 0.2◦C,
Dr = 0.15, P̄n = 80 W and β̄ = 4.4 · 10−5, the lower bound on Kc that
satisfies (5.49) and (5.50) is Kc = 0.4863 · 10−4. From Fig. 5.14 we can
see that Kc = 0.5 · 10−4 is consistent with the design criteria: (i) the
minimum temperature is approximately 4◦C (ε = 1◦C); and (ii) at the
end of the day (Nrec = 9 h after the frequency bias has disappeared)
the mean temperature is less than ε = 0.2◦C away from the nominal
value of 5◦C.
In addition, the results of Fig. 5.15 are in agreement with (5.45). For the
considered values ∆̄T = 2◦C, T̄a = 22◦C, η̄R̄P̄n = 70◦C and ∆t = 1 s,
(5.45) provides us with the upper bound Kc = 0.5004 · 10−4. Based on
our simulations results, the theoretical lower and upper bounds on the
gain of the corrective temperature control loop are very tight.

5.15 Limited Thermostat Resolution

To investigate the effect of minimum thermostat resolution ∆Tres on the
temperature deviations and control performance, we perform 10 day-
long simulations with 9 different ∆Tres values and present the results in
Fig. 5.16. The left plot shows the PDFs of temperature deviations at
the end of the simulation. The PDFs are fitted based on the histogram
of observations and they match very closely normal distributions. The
mean temperature deviation is approximately the same for all values of
∆Tres, whereas the variance increases as ∆Tres increases. This means
that larger deviations are expected for higher ∆Tres values.
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Figure 5.17: The effect of limited thermostat resolution on the temperature
deviations, with and without a temperature deviation bound.
Left: The PDFs of temperature deviations at the end of the
simulation. Right: The evolution of the standard deviation of
temperature deviations during the simulation.

The right plot of Fig. 5.16 shows the PDFs of the mean absolute temper-
ature deviations during the simulation period. In this case, apart from
the variance, the mean value of the distribution also increases for higher
∆Tres. This is expected because (i) the absolute temperature deviation
ψ follows a half-normal distribution (since the temperature deviation ω
follows a normal distribution) with a mean value E[ψ] = (σω

√
2)/
√
π,

and (ii) σω increases as ∆Tres increases. These simulation results are in
agreement with Proposition 3 and Remark 2.
Figure 5.17 compares the results in terms of the temperature limit de-
viations for three cases: (i) ∆Tres = 0◦C, (ii) ∆Tres = 0.1◦C and no
temperature deviation bound ∆Tb is used, and (iii) ∆Tb = 0.1◦C and
∆Tb = 1◦C. The left plot shows the histogram of temperature limit de-
viations at the end of a 5-day simulation, whereas the right plot shows
the evolution of the standard deviation of temperature limit changes
over time.
If ∆Tres = 0◦C (blue color), the histogram resembles a normal distri-
bution and the standard deviation slowly increases and stabilizes to a
small value, as explained in Remark 2. If the thermostat resolution is
∆Tres = 0.1◦C and no ∆Tb is used (red color), the histogram resembles
again a normal distribution but the standard deviation monotonically
increases, as shown in Proposition 3. However, if a bound ∆Tb = 1◦C
is used (green color), the standard deviation is capped at a significantly
lower value. Observe that the effect of bounding is a more uniform prob-
ability distribution of temperature deviations across the population.
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Figure 5.18: The dependence of reserve MAPE on the thermostat resolu-
tion.

The effect of minimum thermostat resolution on control accuracy is
shown in Fig. 5.18. The bars are the mean values of reserve MAPE over
10 simulations, whereas the lines indicate the minimum and maximum
values. The reserve MAPE generally increases as ∆Tres increases but the
increase is rather small; therefore, the thermostat resolution limitations
only slightly reduce the control accuracy. In addition, we compared the
reserve MAPE for ∆Tres = 0.1◦C, with and without a bound ∆Tb =
1◦C, and no observable reduction in control accuracy was found.

5.16 Performance with Door Openings

In this section, we investigate the controller’s performance in a realistic
case with random door opening events. We performed simulations for
the base case scenario with and without door openings and compare
the control performance in Table 5.8. Due to the door openings, the
reserve MAPE increases by approximately 40% for zero-mean frequency
deviation signals and by 80% for biased signals. However, in both cases
the error is still small, and therefore the proposed controller is applicable
despite the random door openings.
Observe that the baseline MAPE decreases with door openings due to
the smoother baseline power during the load ramps, especially around
3 pm and 7 pm. To illustrate this, Fig. 5.19 shows the baseline power
with and without door openings, as well as the aggregate power without
PFC. Notice that the natural fluctuations around the baseline are less
pronounced in the presence of door openings.
Figure 5.20 shows the activation of PFC reserve (“desired power”) around
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Table 5.8: Baseline and reserve MAPE with and without door openings

Baseline
MAPE (%)

Reserve MAPE (%)
Small bias

Reserve MAPE (%)
Large bias

Without With Without With Without With
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Figure 5.19: Aggregate power and baseline of the refrigerator population
with and without door openings.

the baseline with and without door openings. The baseline with door
openings has an increasing trend, but the PFC activation is the same as
that without door openings. Furthermore, observe that the door open-
ings do not have a significant effect on the tracking performance of the
desired power.

5.17 Implementation Issues

In this section, we discuss a number of additional issues that need to be
considered for a real-world implementation.
Refrigerator model: Our analysis is based on the commonly used first-
order refrigerator model without a freezer. As shown in [143], using sep-
arate states for the temperature of the refrigerator compartment’s air,
refrigerator’s content, and evaporator significantly improves the model’s
performance. Modeling a refrigerator with a freezer is possible following
the approach of [104].
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Figure 5.20: PFC activation around the baseline from 7 pm to 8 pm with
and without door openings.

The above improved model versions can be used with only small changes
in control design. Equations (5.39), (5.40) and (5.41) used to estimate
the on/off times and the duty cycle and, possibly, the modeling of
startup dynamics must be modified. Our analysis assumed that the
profile of startup dynamics is time invariant; however, in reality it de-
pends on the evaporator temperature when the refrigerator switches on.
Because this temperature depends on the time elapsed since the previ-
ous on cycle, which is not constant when providing PFC, the startup
dynamics profile will likely be time-varying. This dependence can be
considered with a two-state refrigerator model.

Communication links: The control is decentralized and so there is no
real-time communication required between the loads and an aggregator.
However, in practice a communication channel with a low data trans-
fer rate might be preferable leading to a semi-autonomous operation
mode. For example, in several countries PFC is organized in a market
setting where the reserve capacity is auctioned on a weekly or daily ba-
sis [70]. Whenever the market is cleared, a new value for Dr must be
communicated to the refrigerators’ micro-controllers.

The control design relies on mean values of several parameters in the
population. Therefore, if the statistical properties of the population
change (e.g., if at some point new refrigerators are added) the new
mean values must be communicated to the refrigerators. Furthermore,
the micro-controllers need estimates of the population’s duty cycle and
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average temperature. Although this can be done in a decentralized
way, the estimates could be reset to the actual values periodically, if
a low data transfer communication link is available. This will enhance
the robustness to accumulated estimation errors (although this problem
was not observed in our simulations).
Note that the above communication exchanges are not necessary for im-
plementation, and if established, they are only needed very infrequently,
e.g., once a day or once a week. This type of communication with the
aggregator can be achieved via existing smart metering technologies,
whereas the communication from the refrigerator’s micro-controller to
the smart meter is possible with a simple home area network [87].
Noisy frequency measurements: Since the control relies on frequency
measurements at the wall outlet level, a valid question is how mea-
surement noise affects the controller’s performance. According to [85],
a moving average filter can be used to reduce the measurement noise.
The authors of [146] performed a correlation analysis of frequency mea-
surements at the transmission level (230 kV) and at the wall outlet
level (120 V). The results were promising for PFC and showed that the
frequency measurements at the two voltage levels are highly correlated.
Cost and business cases: A common concern in load control schemes
is that implementation cost should be low enough to enable customer
adoption. According to [85], the estimated cost of a simple controller
based on frequency thresholds is 20 e including the frequency meter.8
We believe that the micro-controller would incur an additional cost of
only a few e due to its simplicity.
We perform a simple revenue estimation for each refrigerator that pro-
vides PFC, using a price of 21.5 e/MW/h for the PFC reserve capacity
(average price from January to September 2014 in Switzerland [150])
and neglecting the discount rate. According to our simulations, a pop-
ulation of 70, 000 refrigerators can provide a PFC reserve capacity of

8The accuracy of this frequency meter was not reported in [85] and the references
therein. Although high-accuracy meters of mains frequency are typically costly,
some low-cost designs have been proposed; for example, [147] and [148] developed
frequency meters with an accuracy of 1 mHz, but did not report the selling price. At
the time when this thesis was written, a typical selling price for a frequency meter
with accuracy 10 mHz was approximately 40 e [149]. Apart from the cost, another
important aspect is the number of cycles (of the sinusoidal quantity in an AC system,
typically the voltage) that are needed to achieve a certain measurement accuracy.
In general, the higher the accuracy is, the more cycles are required, and therefore
the longer it takes for the meter to produce a single frequency measurement.
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1.103 MW on average (this value corresponds to Dr = 0.2); there-
fore, approximately 63, 500 refrigerators are needed to provide 1 MW
of capacity. The average revenue from selling 1 MW of capacity is
21.5 e/MW/h · 1 MW · 8760 h/year = 188, 340 e/year. Thus, the av-
erage revenue per refrigerator is as low as 188, 340/63, 500 ≈ 3 e/year.
Assuming an average lifetime of 14 years [151], each refrigerator will
recover approximately 3 · 14 = 42 e, which is slightly higher than the
implementation cost. Although the implementation cost per device is
low, investing in the proposed controller is not a profitable investment
due to the large number of devices that are needed to provide a mean-
ingful amount of reserve capacity.
Retrofits are possible but standardization will help reduce the costs
because new refrigerators could be sold with the necessary hardware
already integrated. If the revenues per device from selling PFC reserves
are still very low, a different business case is needed to enable customer
adoption. One possibility is to offer an electricity price rebate to the
customers who participate in PFC.

5.18 Conclusion

In this chapter, we presented a decentralized stochastic control scheme
to enable PFC reserve provision from an aggregation of refrigerators.
The control is based on probabilistic switching to avoid load synchro-
nization, and accounts for refrigerator startup dynamics and lockout
constraints. Reliable reserve provision during persistent frequency de-
viations is achieved by introducing a deterministic resetting of thermo-
stat temperature limits. The controller’s implementation at the device
level is simple and does not require communication with an aggregator.
Furthermore, the controller is robust to biased frequency deviations,
limited thermostat resolution and door openings. Extensive simulation
results showed that the proposed control scheme outperforms a rele-
vant benchmark controller from the literature, and allows a refrigerator
aggregation to provide fast and reliable PFC without communication.





Chapter 6

Secondary Frequency
Control with Electric
Water Heaters

6.1 Introduction

A large amount of literature has focused on provision of Secondary
Frequency Control (SFC) reserves from Electric Water Heaters (EWHs)
or other types of Thermostatically Controlled Loads (TCLs). A detailed
literature review was provided in Chapter 4. In this chapter, we design
four rule-based controllers with different complexity and communication
requirements for SFC with EWHs. Furthermore, we develop a statistical
model for a population of EWHs based on the thermally stratified EWH
model of Section 2.2.3, and use the statistical model to evaluate the
performance of the rule-based controllers in a simulation study.
The remainder of this chapter is organized as follows. In Section 6.2, we
present a statistical model for EWH populations, and in Section 6.3 we
define the State of Charge (SoC) for thermally stratified EWHs. The
rule-based controllers for EWH aggregations are presented in Section 6.4
and evaluated based on different indicators in Section 6.5. Last, Section
6.6 concludes this chapter that is based on [21]. The nomenclature of
this chapter is summarized in Tables 6.1, 6.2 and 6.3.

139
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Table 6.1: Nomenclature of Chapter 6: symbols

Symbol Unit Description
b - Binary signal used in stochastic blocking control
c J/kg◦C Specific heat capacity of water
E Wh or - Energy
m kg Water mass
mcat - EWH water mass categories
ṁnorm - Normalized mass flow rate during a water draw
ṁdraw l/min Mass flow rate during a water draw
N - Set of EWHs
Nd - Number of EWH devices

navg
hourly - Average number of water draws for each hour
ndaily - Total number of water draws per day
P W Electric power

P rated
el,cat W EWH rated power categories
Pel,i W Rated power of EWH i

pcat - Probability vector of mass categories
pdraw - Probability of draw event for each hour
R ◦C or - EWH thermal energy content
u - Switching signal in direct and indirect control
s - Signal for deadband crossing event
T ◦C Temperature

tdraw - Time instance when a water draw event starts
U W/(m2◦C) EWH thermal loss coefficient
w - Normalized SFC signal
γ - Control parameter used in stochastic blocking control

∆P W Difference between Pref and Pagg
∆Pef W Effective ∆P after accounting for natural switching

∆tdraw s Time between two consecutive water draw events
∆tduration s Duration of a water draw event

µ - Mean value of a random variable
ρ - Random number uniformly distributed in [0, 1]
σ - Standard deviation of a random variable
ω - Weighting factor for SoC calculation

Table 6.2: Nomenclature of Chapter 6: probability operators

Operator Description
N Normal probability distribution
U Uniform probability distribution

EXP Exponential probability distribution

6.2 Water Heater Population Model

In this section, we develop a representation of a population of EWH
models by assembling statistical distributions for the governing param-
eters. The main purpose of this model is the investigation of the ag-
gregate power consumption of an EWH population with and without
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Table 6.3: Nomenclature of Chapter 6: subscripts and superscripts

Symbol Description
agg Aggregate power

av,off EWH that is available to switch off
av,on EWH that is available to switch on
base Baseline power
cat Category vector
cb SFC control band

cold EWH with a temperature below the minimum thermostat limit
daily Daily water consumption
day Daily energy consumption with SFC
db Thermostat temperature deadband
el Water layer of the heating element
est Estimated temperature
hot EWH with a temperature above the maximum thermostat limit
i EWH index
j Water layer index within an EWH

long Long water draw
off EWH that is in the off state
on EWH that is in the on state
r Reference energy content of an EWH

ref Target power profile (reference)
rel Relative energy content of an EWH

min/max Minimum/maximum value of a variable or parameter
set Thermostat temperature setpoint

short Short water draw
sim Simulation horizon

sw,off EWH that is switched off by the external controller
sw,on EWH that is switched on by the external controller
t Time index

th,off EWH that is switched off by its thermostatic controller
th,on EWH that is switched on by its thermostatic controller
top Top layer of the water tank
0 Initial temperature vector

external control actions from a central coordination entity. The EWH
population model consists of two parts: (a) the EWH thermal model
and (b) the water draw model.

6.2.1 Modeling of Population Parameters

We describe a routine that creates an heterogeneous set of parameters
such as tank volume, heater power rating, and daily water consumption
for any desired number of EWHs. We consider a certain correlation
between these parameters, e.g., a small EWH is more likely to have a
low-power heating element. The methodology consists of the following
steps:
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Figure 6.1: Profile describing the probability of a water draw occurring in
the course of the day (pdraw).

1. We define the EWH category vector mcat that contains the con-
sidered tank sizes. The individual EWH sizes are drawn from
mcat based on a predefined probability vector pcat.

2. We define the matrix P rated
el,cat , the column l of which contains pos-

sible power ratings of EWHs of category l. The rated power Pel,i
of EWH i of category l is drawn from column l of P rated

el,cat based on
a discrete uniform distribution.

3. For each EWH category, we define an interval [mmin
daily,cat, mmax

daily,cat]
for the daily water consumption in kg. The actual daily water con-
sumption mdaily,i of EWH i is drawn from a uniform distribution
between these bounds.

4. The center and width of the thermostat’s deadband of EWH i,
Tset,i and Tdb,i respectively, are drawn from uniform distributions
in the intervals [Tmin

set , Tmax
set ] and [Tmin

db , Tmax
db ].

5. The thermal loss coefficient Ui is drawn from a uniform distribu-
tion in the interval [Umin, Umax].

6.2.2 Modeling of Water Draws

In order to model random water draw events induced by customer be-
havior, we generate a draw scenario for each EWH by taking random
values for the draw starting time, the draw duration, and the water
flow rate from predefined probability distributions. In the rest of this
section, we describe how we assemble the probability distributions and
show an example of a water draw time series.

1. To determine the probability of a draw event, we utilize the prob-
ability profile (vector) from [152] depicted in Fig. 6.1 and denoted
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by pdraw ∈ R24. Furthermore, we determine the total number of
water draws per day by drawing from

ndaily,i ∼ U
(
nmin

daily, n
max
daily

)
, (6.1)

where U denotes the uniform distribution between a minimum
and a maximum value. We multiply the hourly draw probability
vector with the total number of draws per day to determine a
vector with the average number of water draws for each hour

navg
hourly,i = pdraw · ndaily,i . (6.2)

2. We determine the time intervals ∆tdraw,i between water draws in
the course of the day by drawing from the distribution

∆tdraw,i ∼ EXP
(

1
navg

hourly,i

)
, (6.3)

where EXP is the exponential distribution with the expected value
as a parameter, and navg

hourly,i is the appropriate element of navg
hourly,i

depending on the hour. By calculating the cumulative sum of
∆tdraw,i, we assemble a vector containing the time instances tdraw,i
when a water draw event starts.

3. We distinguish between two types of water draws: long draws
that correspond to showers or baths, and shorter draws related to
activities such as washing hands or cooking. We assume that a
water draw is more likely to be long during times of the day when
a lot of water is used. The draw duration times ∆tlong

duration,i and
∆tshort

duration,i are random variables drawn from normal distributions,
and the draw durations ∆tduration,i are assembled in a vector.

4. In order to induce a variation in the water flow rate, we draw a
normalized flow rate for every draw event from the normal distri-
bution

ṁdraw,i ∼ N (µṁdraw , σṁdraw) . (6.4)

5. The resulting normalized mass flow time series ṁnorm,i is as-
sembled with the information contained in tdraw,i, ṁdraw,i, and
∆tduration,i. The draw time series is then scaled so that the total
daily consumption equals mdaily,i.
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Table 6.4: EWH population parameters

Symbol Parameter Value Unit
mcat Water mass

categories
[50, 100, 200, 300] [kg]

pcat Category
probability

[0.1, 0.25, 0.25, 0.4] [-]

P rated
el,cat Rated power

per cat.

 2 3 4 4
2.5 3.5 4.5 5
3 4 5 6

 [kW][
Tmin

set , T
max
set

]
Temp. set-
point bounds

[55, 65] [◦C][
Tmin

db , Tmax
db

]
Deadband size
bounds

[5, 15] [◦C][
Umin, Umax] Heat loss coef-

ficient bounds
[0.2, 1] [ W

m2 K ]

T0 Initial tem-
perature

60 [◦C]

Table 6.5: Parameters of the probabilistic water draw model

Variable Distr. Parameters
ndaily,i U (nmin

daily, n
max
daily) = (50, 80)

∆tlong
duration,i N µ = 600 s, σ = 60 s

∆tshort
duration,i N µ = 60 s, σ = 6 s
ṁdraw,i N µ = 0.7 l/min, σ = 0.3 l/min

6.2.3 Population and Water Draw Parameters

Table 6.4 shows the parametrization for the water heater population
used in the simulations of this chapter. The temperature of all EWHs
at the beginning of the simulation is assumed to be equal to 60◦C (all
water layers of each EWH are at 60◦C, i.e, there is no stratification).
The daily water draw volume is assumed to be equal to 200 l for all
EWHs, i.e., mmin

daily,cat = mmax
daily,cat = 200 l. The parameters of the

probability distributions of the water draw model are given in Table 6.5,
whereas an example of a water draw scenario is shown in Fig. 6.2.
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Figure 6.2: An example of a water draw scenario.

6.3 SoC Definition

In this section we discuss three approaches to quantify the energy stored
in the thermal mass of an EWH. A simple way to do so is by compar-
ing the difference between the reading of the temperature sensor and
the lower temperature limit of the thermostat Tmin,i, with the size of
the thermostat’s deadband Tmax,i − Tmin,i. Let us denote by Tel,i,t the
temperature measurement of a sensor placed close to the heating ele-
ment (which is typically the case) of EWH i at time step t. In this
case, we can quantify the relative energy stored in the EWH according
to [103,153]

Erel,i,t = Tel,i,t − Tmin,i

Tmax,i − Tmin,i
. (6.5)

An alternative simple way to calculate the relative energy is based on
the temperature perceived by the user, when water is drawn from the
top of the water tank (Ttop,i,t), according to1

Erel,i,t = Ttop,i,t − Tmin,i

Tmax,i − Tmin,i
. (6.6)

Despite their simplicity, (6.5) and (6.6) do not capture the distribution
of temperature within the water tank. A more detailed calculation of
the stored energy should account for the thermal stratification along
the vertical axis of the water tank. To this end, we define the reference
energy content Er,i as the thermal energy stored in the EWH when

1Typically, cold water enters an EWH at the bottom of the tank, whereas hot
water is drawn from the top of the tank, to maintain the thermal stratification.
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the temperature of all water layers is equal to the thermostat’s upper
temperature limit Tmax,i

Er,i =
∑
j

mjc(Tmax,i − Tmin,i) , (6.7)

where mj is the water mass contained in each layer, and c is the thermal
capacity of water.
The stored energy in a thermally stratified EWH can be expressed us-
ing the SoC concept, which is typically used for batteries. Using the
thermostat’s lower temperature limit Tmin,i as a reference temperature,
the SoC is given by

SOCi,t =
n
∑
j ωjmjc ·max [(Tj,i − Tmin,i), 0]

Er,i
. (6.8)

Since Tmin,i is considered as a reference energy value, the water layers
with temperature Tj,i below Tmin,i have zero thermal energy content
and do not contribute to the total SoC. The weighting factors ωj are
used in (6.8) to reflect the dependency of the value of thermal energy
on layer position along the vertical axis of the tank, and they satisfy∑
j ωj = 1. In the simpler case, this dependency can be neglected and

all ωj can be set equal to 1/n. Alternatively, the layers close to the
top of the tank can be given a larger weight, because they affect the
temperature perceived by the user during a water draw. According to
(6.8), the lowest SoC value is 0 and the maximum value can be greater
than 1, which corresponds to average water temperatures greater than
Tmax,i.

6.4 Control Strategies

We use the models and definitions introduced in Sections 2.2.3, 6.2, and
6.3 to develop four strategies for EWH aggregate power control. The
goal is to track a given power reference Pref,t that depends on the SFC
signal (the way to construct Pref,t is presented in Section 6.5.2). The
strategies differ with respect to: (i) the amount of information that
is exchanged between each device and the central coordination unit;
and (ii) the degree to which the central controller can interact with the
device’s internal duty cycle.
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6.4.1 Stochastic Blocking Control (C1)

In this strategy, only the reference power Pref,t, the measured aggregate
load Pagg,t, and the maximum power demand of the population Pmax
(the total power when all EWHs are on) are available to the central con-
troller. The controller can only block (or release from blocking) individ-
ual EWHs, but not actively switch on an EWH. A blocking command
overrides a potential on signal from the internal hysteresis controller,
which means that an EWH might be off even if the temperature is out-
side the deadband. On the other hand, if an EWH is not blocked, then
the on/off state of the heating element is determined by the internal
hysteresis controller.
This approach builds on the work of [104, 153] and is based on the
broadcast control parameter γt, which indicates the fraction of appli-
ances that shall be blocked (or released from blocking) at each time step

γt = Pagg,t − Pref,t

Pmax
. (6.9)

If 0 < γt ≤ 1 holds, a blocking action is required, whereas if −1 ≤
γt < 0 holds, some of the EWHs that were previously blocked should be
released. The decision about blocking or releasing devices is made by
generating a uniformly distributed random number ρi,t for each device
i (0 ≤ ρi,t ≤ 1). At time step t, a binary block signal bi,t is assigned
to each EWH according to the rule (the value bi,t = 1 means that the
EWH is blocked)

bi,t =


1 if (bi,t−1 = 0) ∧ (γt > 0) ∧ (ρi,t ≤ γt)
0 if (bi,t−1 = 1) ∧ (γt < 0) ∧ (−ρi,t ≥ γt) .
bi,t−1 otherwise

(6.10)

If γt > 0, only the EWHs that are unblocked at time step t − 1 draw
a random number ρi,t, and therefore the uniform distribution of ρi,t
ensures that the percentage of EWHs that block at time step t is close
to γt. Similarly, if γt < 0, the percentage of EWHs that unblock at time
step t is close to |γ|.
The control error Pagg,t − Pref,t in (6.9) is normalized by the maximum
power demand of the population Pmax. Although this is a very simple
approach, it introduces some inaccuracy in the control because not all
EWHs are available to respond to the broadcast signal γt. A better



148 Chapter 6. Secondary Frequency Control with EWHs

approach would be to normalize Pagg,t − Pref,t with an estimate of the
total power of the unblocked devices if γt > 0, and with an estimate of
the total power of the blocked devices if γt < 0.
However, even with an improved calculation of γt, the control will not
be perfect because this strategy does not actively switch on or off the
EWHs. More specifically, blocking an EWH at time step t does not
necessarily reduce the aggregate power at time step t, because the EWH
might be off already from time step t − 1. In addition, unblocking a
blocked EWH does not guarantee that the EWH will switch on, because
this depends on the EWH temperature and its internal controller.
Overall, the stochastic blocking strategy C1 has a very simple control
implementation, it is based on broadcasting, and it does not require
any feedback from the loads or estimation of unmeasured quantities.
We include strategy C1 in our analysis to investigate the potential of
simple control approaches in SFC.

6.4.2 Direct Temperature Feedback Control (C2)

In this approach, the controller receives information about the on/off
state and the temperature of each EWH through individual communica-
tion links, and it also knows the thermostat’s temperature limits Tmin,i
and Tmax,i ∀i. Unlike approach C1, the controller can actively switch
both on and off individual devices. This strategy consists of two parts:
(i) the selection of the subset of EWHs that is in principle available for
external control, and (ii) the ranking of this subset to specify the EWHs
that will actually provide the reserve. The algorithm is outlined in the
rest of this section.

Selection

At each time step t, the external controller divides the EWHs into sub-
populations based on their temperature and on/off state. Let Noff,t
denote the set of EWHs that are currently off, and by Non,t the set of
EWHs that are currently on. Ncold,t and Nhot,t are the sets of EWHs
that are not available for external control actions because their tem-
perature is either below the minimum setpoint or above the maximum
setpoint. Therefore, the set of EWHs that are within the temperature
deadband is defined as

Ndb,t = ¬(Ncold,t ∪Nhot,t) . (6.11)
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Let Nth,on,t and Nth,off,t denote the sets of EWHs that will be switched
on and off by their internal thermostatic controllers due to very low and
very high temperatures, respectively

Nth,on,t = Noff,t ∩Ncold,t (6.12)
Nth,off,t = Non,t ∩Nhot,t . (6.13)

The sets of EWHs that are available for SFC actions are defined as

Nav,off,t = Non,t ∩Ndb,t (6.14)
Nav,on,t = Noff,t ∩Ndb,t . (6.15)

Ranking

The control error at each time step is equal to the difference between
the reference and the actual aggregate power of the population

∆Pt = Pref,t − Pagg,t . (6.16)

Taking into account the thermostat switching actions of (6.12) and
(6.13), the effective difference in power that needs to be achieved by
additional switching actions is equal to

∆Pef,t = ∆Pt + Pth,off,t − Pth,on,t , (6.17)

where Pth,off,t is the total power of the EWHs that belong to the set
Nth,off,t , and Pth,on,t is the total power of the EWHs in Nth,on,t .
If ∆Pef,t < 0 additional switching off action is required, whereas if
∆Pef,t > 0 switching on action is desired. The list of EWHs that will
switch is constructed depending on the sign of ∆Pef,t as follows:

• If ∆Pef,t < 0, the EWHs in the set Nav,off,t are ranked in de-
scending order of the thermal energy content Ri,t, such that the
hotter an EWH is the higher its switching off priority. The set of
EWHs that will receive a switch off signal Nsw,off,t is determined
by selecting from the ordered list the number Nd,t of devices that
minimizes ∣∣∣∣∆Pef,t +

Nd,t∑
i=0

Pel,i

∣∣∣∣ , (6.18)

where Pel,i is the power of the ith heater in the list.
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• If ∆Pef,t > 0, the EWHs in the set Nav,on,t are ranked in ascending
order of thermal energy content, such that the colder an EWH is
the higher its switching on priority. The set of EWHs that will
receive a switch on signal Nsw,on,t is determined by selecting from
the ordered list the number Nd,t of devices that minimizes∣∣∣∣∆Pef,t −

Nd,t∑
i=0

Pel,i

∣∣∣∣ . (6.19)

Depending on the definition of the sets Ncold,t and Nhot,t , as well as
the thermal energy content Ri,t, different variations of control strategy
C2 can be considered. In this chapter, we investigate the six different
variations C2a – C2f for which Ncold,t , Nhot,t and Ri,t are defined as

Ncold,t =


{i | Tel,i,t ≤ Tmin,i} for C2a, C2b, C2c
{i | Ttop,i,t ≤ Tmin,i} for C2d ,

{i | SOCi,t ≤ SOCmin,i} for C2e, C2f
(6.20)

Nhot,t =


{i | Tel,i,t ≥ Tmax,i} for C2a, C2b, C2c
{i | Ttop,i,t ≥ Tmax,i} for C2d ,

{i | SOCi,t ≥ SOCmax,i} for C2e, C2f
(6.21)

Ri,t =



Tel,i,t − Tmin,i for C2a and ∆Pef,t < 0
Tel,i,t − Tmax,i for C2a and ∆Pef,t > 0
Ttop,i,t − Tmin,i for C2b and ∆Pef,t < 0 .
Ttop,i,t − Tmax,i for C2b and ∆Pef,t > 0
SOCi,t for C2c, C2d, C2e, C2f

(6.22)

In strategies C2a, C2b and C2c, we determine the EWHs that are out-
side the deadband (the sets Ncold,t and Nhot,t), as well as the thermal
energy content Ri,t, based on the temperature measurement from the
sensor close to the heating element. In strategy C2d, we determine the
sets Ncold,t and Nhot,t , as well as the thermal energy content Ri,t, based
on the temperature measurement from the sensor at the top of the water
tank.
In contrast, in strategies C2e and C2f, we use the SoC defined in (6.8) to
identify the setsNcold,t andNhot,t , as well as to rank the EWHs based on
the stored energy. The only difference between strategies C2e and C2f
is the selection of the boundary value SOCmin,i of the set Ncold,t , which
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is fixed to 0.3 for strategy C2e and 0.4 for strategy C2f. Strategy C2e is
more aggressive than strategy C2f, because it utilizes the flexibility of
EWHs with lower energy content due to the lower SOCmin,i value. On
the other hand, the boundary value SOCmax,i of the set Nhot,t is fixed
to 0.9 for both strategies, because preliminary simulations showed that
the results are not sensitive to this parameter.
The central controller sends the switching signal ui,t to each EWH ac-
cording to the rule

ui,t =


1 if i ∈ Nsw,on,t ∪Nth,on,t

0 if i ∈ Nsw,off,t ∪Nth,off,t .

ui,t−1 otherwise
(6.23)

From (6.12), (6.13), (6.20) and (6.21) one can see that, in contrary to
C2a, C2b and C2c, in variations C2d, C2e and C2f the external SFC
controller overrides the internal thermostatic controllers becauseNth,on,t
and Nth,off,t are not based on Tel,i,t.

6.4.3 Indirect Temperature Feedback Control (C3)

In this approach, the controller does not receive any direct temperature
information. The controller is aware of the on/off state of each EWH
and the temperature deadband crossing events, which can be commu-
nicated by transmitting the signal

si,t =


1 if Tel,i,t ≤ Tmin,i

0 if Tmin,i ≤ Tel,i,t ≤ Tmax,i

−1 if Tel,i,t ≥ Tmax,i

. (6.24)

The signal si,t is sent only when a deadband crossing occurs, thus the
communication burden is much lower compared with strategy C2. The
selection and ranking steps of Section 6.4.2 are applied also here and
the subsets Ncold,t , Nhot,t and Ndb,t are defined as

Ncold,t = {i | si,t = 1} (6.25)
Nhot,t = {i | si,t = −1} (6.26)
Ndb,t = {i | si,t = 0} . (6.27)

With these definitions, (6.16) and (6.17) can be used to calculate ∆Pef,t.
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The central controller models each EWH in the aggregation using (2.25)-
(2.28) and historical data of the hourly water consumption. During
real-time operation, the controller uses these data to simulate the pop-
ulation and estimate the temperature of each EWH Test

i,t .2 In addition,
whenever a signal si,t from an individual EWH is received, the vector
Test
i,t is updated according to

Test
i,t =


Tmax,i · [0.32 1 0.995 0.992 0.991 0.99 0.989 0.989 0.988 0.988]>

if (si,t−1 = 0 ∧ si,t = −1) ∨ (si,t−1 = −1 ∧ si,t = 0) ,

Tmin,i · [0.37 1 1.14 1.16 1.16 1.16 1.16 1.16 1.16 1.16]>

if (si,t−1 = 0 ∧ si,t = 1) ∨ (si,t−1 = 1 ∧ si,t = 0) .

(6.28)

The numeric values of (6.28) were estimated from simulation results
with a population of EWHs without external control.
In this algorithm, the thermal energy content is Ri,t = SOCi,t and it is
calculated using the temperature estimates Test

i,t . With this information,
the sets Nsw,off,t and Nsw,on,t are calculated applying (6.18) and (6.19),
whereas the switching signals are computed with (6.23).

6.4.4 Aggregate Power Feedback Control (C4)

Similarly to C1, in strategy C4 the central controller receives measure-
ments of Pref,t and Pagg,t, but it has no information about the on/off
state or temperature of individual EWHs. The main difference with
C1 is that in strategy C4 bidirectional switching actions are possible by
broadcasting control signals to all EWHs. Due to the absence of state
feedback from individual EWHs, the controller in strategy C4 has a
model for each EWH and historical data of the hourly water consump-
tion to estimate Test

i,t , similarly to strategy C3.
At each time step, the central controller computes ∆Pt with (6.16). The
controller sets upper and lower limits on SoC (SOCmax and SOCmin)
to avoid using very hot or very cold devices for SFC. Based on these
limits, Ncold,t and Nhot,t are defined similarly to strategies C2e and C2f
in (6.20) and (6.21), whereas Ndb,t is defined as in (6.11). All EWHs

2Test
i,t denotes the temperature distribution along the vertical axis of the hot water

storage tank.
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in Ncold,t are expected to switch on with a total power Pcold,t , whereas
all EWHs in Nhot,t are expected to switch off with a total power Phot,t .
The controller calculates ∆Pef,t using

∆Pef,t = ∆Pt + Phot,t − Pcold,t . (6.29)

Equation (6.29) is similar to (6.17) with the difference that Pcold,t and
Phot,t are estimates of the aggregate power, instead of the actual values,
because there is no real-time feedback from the EWHs to the controller.
The EWHs in the set Ndb,t are ranked in descending SoC order if
∆Pef,t < 0, and in ascending order if ∆Pef,t > 0. The controller builds
the list of the EWHs that have to be switched by finding the number
of devices Nd,t that minimizes (6.18) or (6.19). The SoC of the last
EWH that enters the list is called “threshold SoC” and is denoted by
SOCth,t. The values of SOCmin, SOCmax and SOCth,t are broadcasted
to all devices along with an auxiliary binary signal defined as

st =
{

1 if ∆Pef,t > 0
0 if ∆Pef,t < 0

. (6.30)

Each EWH responds to the broadcasted signal according to (6.31),
where ui,t denotes the actual on/off state of EWH i at time t.

ui,t =


on if (st = 1 ∧ SOCi,t ≤ SOCth,t) ∨ SOCi,t ≤ SOCmin

off if (st = 0 ∧ SOCi,t ≥ SOCth,t) ∨ SOCi,t ≥ SOCmax

ui,t−1 otherwise
.

(6.31)

6.5 Evaluation of Control Strategies

In this section, we evaluate the proposed rule-based control strategies
with respect to the control accuracy, device operation and user comfort.
We quantify the control accuracy using the Root Mean Squared Error
(RMSE) defined as

RMSE =

√
1

Nsim
·
∑Nsim−1

t=0

(
Pagg,t − Pref,t

)2
, (6.32)
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where Nsim is the simulation horizon. We quantify the effect on user
comfort by computing the amount of time that an EWH operates out-
side the temperature deadband. Finally, we quantify the effect of SFC
on the EWHs by counting the number of switching actions per device.
We run simulations with a population of 500 EWHs and the goal of
tracking a 24-hour target power profile with a resolution of 10 seconds.
Two different case studies are considered: a constructed target power
profile and a target profile based on an actual SFC signal.

6.5.1 Constructed Target Power Profile

In this case, the power profile includes ramps, step increases and de-
creases, as well as a sinusoidal part, and it is shown in Fig. 6.3. This
figure shows also the tracking performance of the four control strategies
using the variation C2e for strategy C2.3 The tracking RMSE, effect
on user comfort and number of switching actions for the four strategies
(including all variations of strategy C2) are shown in Fig. 6.4.
None of the strategies manages to fully track the sinusoidal part of the
signal, not even strategy C2e that has full state feedback from each
EWH in the population. The reason is that the target power profile
lies above the population’s baseline (shown with the green curve in
Fig. 6.3) for most of the day. Therefore, the thermal energy storage
of the population is full, i.e., all EWHs are at the higher end of the
temperature deadband, and there is no more controllability for SFC.
Disregarding the sinusoidal part, the stochastic blocking strategy C1
tracks the target profile accurately and results in a small RMSE. How-
ever, it does not perform well with respect to user comfort, since ap-
proximately 40% of the devices do not have warm water for at least 30
minutes during the day.
Among the variations of strategy C2, the lowest tracking error is achieved
by C2d. However, this comes with a high impact on customer comfort
because approximately 35% of the EWHs do not have warm water for
more than 30 minutes. Strategies C2a, C2b and C2c demonstrate the
same performance in terms of tracking error and user comfort. An in-
teresting result is the superior performance of strategies C2e and C2f

3There is an initial transient phase at the beginning of the simulation period in
Fig. 6.3 and Fig. 6.5 due to the random initialization of EWH states. This transient
period is disregarded when evaluating the control performance.
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Figure 6.3: Tracking performance of strategies C1, C2e, C3 and C4 when
using a constructed target power profile.

over strategies C2a, C2b and C2c. Therefore, using the SoC defined in
(6.8), instead of the relative energy content defined in (6.5) and (6.6),
reduces the tracking error significantly with very little compromise on
user comfort. Comparing strategies C2e and C2f, we conclude that the
parameters SOCmin and SOCmax can be tuned to achieve the desired
tradeoff between tracking accuracy and customer comfort. Strategy C2e
is more aggressive than C2f (due to a lower SOCmin value) and results
in a lower tracking error, but with a higher user discomfort.
Strategy C3 respects the control signals from the EWH internal ther-
mostatic controllers, therefore the effects on user comfort are negligi-
ble. Due to the absence of continuous temperature feedback, the track-
ing quality deteriorates resulting in power spikes especially during the
ramp-up part of the target power profile.
It is interesting to note that strategy C4 has a much lower RMSE com-
pared with C3, which is counterintuitive since the controller in C4 re-



156 Chapter 6. Secondary Frequency Control with EWHs

C1 C2a C2b C2c C2d C2e C2f C3 C4
0

50

100

150

Control strategies

R
M

S
E

 (
kW

)

0 0−10 10−20 20−30 >30
0

200

400

600

Total duration below lower deadband limit [min]

N
um

pe
r 

of
 

ap
pl

ia
nc

es

 

 

C1 C2a C2b C2c C2d C2e C2f C3 C4

C1 C2a C2b C2c C2d C2e C2f C3 C4
0

200

400

600

Control strategies

A
ve

ra
ge

 n
um

be
r

of
 s

w
itc

hi
ng

s 

Figure 6.4: Comparison of control strategies with respect to tracking perfor-
mance, user comfort, and device operation using a constructed
target power profile.

ceives less information in real time. This is because there are no spikes
in the aggregate power consumption in strategy C4.
According to Fig. 6.4, strategies C1, C2d and C4 result in the lowest
average number of switching actions, whereas strategy C3 in the high-
est. Strategy C3 increases the number of switching actions because
the decisions of the central controller are very sensitive to temperature
estimation errors. Note that the direct temperature feedback control
approaches C2e and C2f, which are based on the SoC defined in (6.8),
reduce the number of switching actions compared with strategies C2a-
C2d, which use the relative energy content defined in (6.6) or (6.5).

6.5.2 Target Power Profile based on a SFC Signal

To assess the algorithms’ performance in a more realistic case, we repeat
the simulations for strategies C1, C2e, C3 and C4 using an extract of
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an actual SFC signal from the control area of Switzerland in 2009. The
SFC signal for 24 hours is shown with the black curve in Fig. 6.6 as
a percentage of the control band, i.e., a value of +100% denotes full
activation of positive SFC reserve. We obtain the target power profile
for the EWH population applying the following procedure.
We calculate the daily energy consumption without external control
Eday, and construct a baseline power profile Pbase using Eday and the
water draw probability profile of Fig. 6.1. We assume that the popula-
tion can participate in SFC with hourly reserve bids and a control band
defined as Pcb = ±20% · Pbase (both Pbase and Pcb are vectors with di-
mension 24). We obtain the target power profile (reference power Pref,t)
by superimposing the reserve request on the base power profile

Pref,t = Pbase + wt · Pcb , (6.33)

where wt is the normalized SFC signal, and the value of Pbase and Pcb
depends on the hour of the day.
Figure 6.5 shows the tracking performance, Fig. 6.6 the relative in-
stantaneous tracking error, and Fig. 6.7 the evaluation results for the
four control strategies. Note that in case of control without tempera-
ture feedback (strategies C1 and C4), there are intervals with very high
tracking errors that can exceed 50%. As expected, strategy C2e achieves
the lowest tracking error with a normalized RMSE of = 1.18%. Strat-
egy C3 performs significantly better with the actual SFC signal than the
constructed target profile. In this case, the maximum relative error is
approximately 30%, whereas the normalized RMSE is 8.7%. Note also
that the impact of both C2e and C3 on customer comfort is minimal.
Based on these results, the direct temperature feedback control strat-
egy C2 is in principle suitable for SFC with aggregations of EWHs,
but it requires more communication than the other strategies. Indirect
temperature feedback control (strategy C3) demonstrates a limited po-
tential for SFC applications. From Fig. 6.5 and Fig. 6.6, one can observe
that larger tracking errors with strategy C3 occur during the two peak
power intervals, i.e., between hours 8− 10 am and 6− 7 pm. This indi-
cates that the performance of strategy C3 decreases with larger control
bands.
Based on our simulations, the stochastic blocking strategy C1 and the
aggregate power feedback strategy C4 are not very appropriate for SFC.
Strategy C4 might lead to inaccurate SFC signal tracking because the
control decisions rely on EWH temperature information, even though
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Figure 6.5: Tracking performance of strategies C1, C2e, C3 and C4 when
using a target power profile based on an actual SFC signal.

there is no feedback from the loads. On the other hand, strategy C1
generally achieves good tracking performance4, but its limitation is that
control decisions are taken randomly and without considering the EWH
states. Although a relevant probabilistic control approach was success-
fully used for PFC in Chapter 5, strategy C1 results in significant user

4The tracking performance of strategy C1 is low during the interval 5 − 7 am
when step changes in the target power profile occur due to large changes in the
aggregate water draw. Since these step changes are due to the hourly resolution of
Pbase, better tracking performance is expected if a smoother Pbase profile is used.
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Figure 6.6: Normalized SFC signal and tracking error for strategies C1, C2e,
C3 and C4.

discomfort (see Fig. 6.4 and Fig. 6.7) because, in contrast to the fre-
quency deviation signal, the SFC signal is not zero-mean.

6.6 Conclusion

In this chapter, we presented four rule-based control strategies to man-
age the aggregate power consumption of a population of EWHs. The
control strategies differ with respect to complexity and communication
requirements from individual EWHs to the central controller, and their
suitability for SFC was evaluated using the stratified EWH thermal
model of Chapter 2.2.3.
Our simulation results show that information about EWH states, namely
temperature and on/off state, is necessary to track the SFC signal accu-
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Figure 6.7: Comparison of control strategies C1, C2e, C3 and C4 with re-
spect to tracking performance, user comfort and device opera-
tion using a target power profile based on an actual SFC signal.

rately. This information can be available through dedicated communica-
tion links between each EWH and the central controller. If information
is available in real time, the control performance is very high, especially
if the SoC of each EWH is defined taking into account the tempera-
ture distribution within the water tank. To reduce the communication
burden, information may be transmitted from the EWHs to the cen-
tral controller only when temperature deadband crossing events occur.
The reduced communication leads to a relatively small reduction in the
control performance.
SFC approaches with EWHs based only on aggregate power feedback
might result in poor tracking performance or significant user discomfort.
However, such approaches might be appropriate for other power system
applications with lower accuracy requirements, e.g., load shifting to low-
price periods.



Chapter 7

Combined Secondary
Frequency Control and
Voltage Regulation

7.1 Introduction

In Chapter 6 we presented methods to provide Secondary Frequency
Control (SFC) reserves using the flexibility of Electric Water Heaters
(EWHs). Apart from system-wide frequency deviations, supply-demand
imbalances due to large shares of Renewable Energy Resources (RES)
are expected to increase the voltage deviations in Distribution Networks
(DNs). Traditionally, the DNs voltages are controlled using tap changers
in distribution transformers or by reactive power compensation.
In this chapter, we develop a method that allows an aggregation of Ther-
mostatically Controlled Loads (TCLs) to provide SFC reserves and at
the same time regulate the DN voltage. Multi-tasking with controllable
loads, i.e., the concurrent provision of two or more Ancillary Services
(AS) to the grid, will leverage the full potential of demand-side re-
sources for power system control tasks. On the other hand, offering
each service separately may have adverse effects due to possibly con-
flicting objectives.

161
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Table 7.1: Nomenclature of Chapter 7: symbols

Symbol Unit Description
Al m2 Total external EWH surface
c J/kg◦C Specific heat capacity of water
cel e/MWh Electricity cost
D m3/s Water draw
d - Vector of rated power of EWHs in NCL
Ed

wc % Worst case down-regulation energy (% of control band)
Eu

wc % Worst case up-regulation energy (% of control band)
m kg Water mass
NCL - Set of EWHs within their deadband
Nh h Horizon of day-ahead scheduling
nap - Number of EWHs
nb - Number of buses
P W Active power
Pn W Rated active power
P tot

n,a W Aggregated active power rating
Q Var Reactive power
S VA Apparent power
S - Set of EWHs connected to a substation

s−, s+ - Vectors of slack variables
T ◦C Temperature
U W/(m2◦C) Inverse of tank thermal resistance
u - On/off state
V V Voltage

w1, w2 - Weighting factors
w - Allocation factor of reserve energy per bus
α % Normalized SFC reserve capacity
∆t s Simulation time step
δ degrees Phase angle
η - EWH efficiency
ρ kg/m3 Water density

For instance, consider the case where a load aggregation situated at a
Medium-Voltage (MV) network with a large Photovoltaic (PV) penetra-
tion participates in SFC. In cases when down regulation is requested for
a prolonged period of time, the reduced power consumption of the ag-
gregation in combination with a large PV production may lead to over-
voltages in certain network locations. In this case, a more sophisticated
reserve allocation algorithm that takes into account the DN topology
could minimize the adverse effects. This is the motivation of this chap-
ter: the development of an algorithm that allows a TCL aggregation to
provide frequency and voltage regulation simultaneously.

Although many works investigated how TCL aggregations can provide
either voltage or frequency control, the concurrent provision of both
services is not explored in the literature. However, relevant approaches



7.1. Introduction 163

Table 7.2: Nomenclature of Chapter 7: subscripts and superscripts

Symbol Description
CL Controllable load (EWH)
cb SFC control band
G Generator
i Bus index
in Incoming water temperature
inj Power injection
j EWH index at a specific bus
L Uncontrollable load

min/max Minimum/maximum value of a variable or parameter
out Ambient temperature
P Active power
Q Reactive power
t Time index
tp Target power (reference)
0 Initial value of a variable

have been proposed for electric vehicles. In [154], a co-optimization
of smart-charging and frequency regulation for an aggregation of elec-
tric vehicles was proposed. It consists of a day-ahead multi-period DC
Optimal Power Flow (DC-OPF) for scheduling, and a decentralized ap-
proach for the real-time dispatch of the regulation signal. The combined
provision of frequency and voltage regulation by electric vehicle aggre-
gations was explicitly addressed in [155], but without including the DN
constraints.
The contribution of this chapter is the development of a hierarchical
algorithm that enables multi-tasking with EWHs.1 The algorithm con-
sists of a day-ahead scheduling phase, which determines the optimal load
dispatch by solving a multi-period AC-OPF, and a real-time operation
phase to dynamically allocate setpoints to the available resources. The
setpoints satisfy specific requirements for SFC provision, RES integra-
tion, and user comfort. Although the underlying optimization problems
are demanding, the algorithm is designed in a computationally efficient
way. Moreover, the algorithm is robust to uncertainties in demand and
RES predictions, as well as model mismatches, and achieves a successful
reserve provision exploiting statistical information about the SFC signal
obtained from historical data.
The remainder of this chapter, which is based on the methods and re-

1Although EWHs are used in the simulations of this chapter, the hierarchical
algorithm for combined frequency and voltage control is generic and applies also to
other types of TCLs.
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sults presented in [156], is organized as follows. In Section 7.2 simplified
EWH models are introduced, Section 7.3 presents the control algorithm,
Section 7.4 analyzes simulation results from a case study, whereas Sec-
tion 7.5 concludes. The nomenclature of this chapter is summarized in
Tables 7.1 and 7.2, and bold symbols indicate vectors and matrices.

7.2 Simplified EWH Modeling

In this section we introduce two simplified EWH models: the first model
is for an individual device, whereas the second one is for a population
of EWHs.

7.2.1 Individual EWH Model

An EWH is modeled as a hybrid system with a hysteresis controller
based on a deadband. The temperature evolution is described by [29]

Tt+1 = atTt + btut + et (7.1)
at = exp(−∆t/RC) , bt = ηRPn(1− at) (7.2)
et = (GRTout +BRTin)(1− at) (7.3)
R = 1/(G+B) , B = ρDtc , G = AlU , C = mc , (7.4)

where Tt is the water temperature, ut ∈ {0, 1} is the on/off state, ∆t is
the simulation time step, Pn is the rated EWH electric power, η is the
EWH efficiency, Tout is the ambient temperature, Tin is the incoming
water temperature, ρ is the water density, Dt is the water draw at time
step t, c is the specific heat capacity of water, Al is the total EWH
surface, U is the inverse of the tank thermal resistance, and m is the
mass of the contained water.
Although a more detailed stratified EWH model was developed in Chap-
ter 2, it is not used here because it is overly complex for real-time
optimization-based control.

7.2.2 EWH Population Model

Aggregate EWH models are needed for scheduling and control purposes,
especially if the control involves solving optimization problems. Two
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different aggregate models are considered in this chapter. The first one
is obtained by simply stacking individual EWH models one on top of
the other. If we denote by nap the total number of EWHs and apply
(7.1)-(7.4) for each of them, we result in the following aggregate model

Tt+1 = AtTt + BtUt + Et (7.5)
At = diag

(
[a1
t . . . a

nap
t ]

)
, Bt = diag

(
[b1t . . . b

nap
t ]

)
(7.6)

Et = diag
(
[e1
t . . . e

nap
t ]

)
(7.7)

Tt = [T 1
t . . . T

nap
t ]> , Ut = [u1

t . . . u
nap
t ]> , (7.8)

where the diag operator transforms a vector to a diagonal matrix with
this vector in the diagonal.
If the model (7.5)-(7.8) with nap in the order of a few hundreds or thou-
sands was included in a day-ahead multi-period AC-OPF, this would
lead to a large scale nonlinear optimization problem with binary vari-
ables, which is computationally intractable even for relatively small net-
work sizes. To render the optimization problem tractable, a simpler ag-
gregate EWH model is needed. Construction of aggregate state-space
models for heterogeneous populations of thousands of TCLs was studied
in [3,157]. In this chapter, each aggregate model represents a few tenths
or hundreds of EWHs connected to a MV/Low-Voltage (LV) substation,
and therefore a different approach is required.
Let Si denote the set of all EWHs connected to substation i. Each set is
represented by an equivalent or “parent” EWH with a tank volume and
a water draw equal to the sum of the volumes and the sum of the water
draws of the “children” EWHs, respectively. The deadband limits of
the parent EWH i, T imin and T imax, are calculated as a weighted average
of the deadband limits of the children EWHs, where their volumes are
used as weighting coefficients. The state of parent EWH i at time step
t is defined using the State of Charge (SoC) concept

SOCit := (T it − T imin)
(T imax − T imin) , (7.9)

where T it is its water temperature [21]. Let us define the input for each
parent EWH as the total power consumption of the group, and denote
it by P iCL,t. By defining SOCt := [SOC1

t . . . SOCnb
t ]> and PCL,t :=

[P 1
CL,t . . . P

nb
CL,t]>, where nb is the number of buses of the MV network,

the aggregated EWH dynamics can be written in the compact form
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SOCt+1 = ÃtSOCt + B̃tPCL,t + Ẽt , (7.10)

where Ãt, B̃t and Ẽt are appropriate matrices calculated applying (7.2)-
(7.4) for the parent EWHs. Model (7.10) was compared to model (7.5)
to assess its accuracy in terms of predicting the aggregated SoC of
EWH groups at each substation. The Mean Absolute Percentage Error
(MAPE) between the two models is 9.7%.

7.3 Scheduling and Control Algorithm

We consider a population of EWHs managed by an aggregator in order
to participate in the SFC market. The same aggregator is responsible
for dispatching the EWHs in a way that maximizes RES penetration
without stresses on the local DN. Although the voltage and power flow
constraints of the MV network are explicitly modeled, the underlying
LV networks are not considered in this chapter.
Two-way real-time communication is assumed between the aggregator
and each EWH through direct wired or wireless communication links.
These links can be used to send control signals and receive informa-
tion about EWH temperatures and on/off states. Although alternative
approaches based on signal broadcasting exist [3,21,104,154], their ap-
plicability in our problem is limited since they cannot easily handle the
requirement of spatial allocation of the control actions. Note that the
requirement for real-time load measurements can be relaxed using es-
timates, provided that a reliable state estimation method is available.
State estimation for Demand Response (DR) applications will be the
topic of Chapter 8.
The communication is assumed perfect, i.e., there are neither band-
width constraints nor communication delays. Even in the presence of
communication delays, the proposed algorithm can be effective in prac-
tice because the Transmission System Operators (TSOs) usually allow
a sufficient time for the response to the SFC signal. For example, swiss-
grid, the Swiss TSO, allows a response time of 20 seconds [158].
The algorithm consists of two phases: a day-ahead scheduling phase that
determines the optimal EWH dispatch at each substation, and a real-
time control phase that allocates control actions to individual EWHs.
A schematic of the algorithm is shown in Fig. 7.1.
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Figure 7.1: The scheduling and control algorithm for combined provision of
SFC reserves and voltage regulation in DNs with EWHs.

7.3.1 Day-Ahead Scheduling

At the end of each day the aggregator predicts the demand, RES pro-
duction and water draws, and builds aggregate EWH models for each
MV/LV substation in the form of (7.10). The aggregator also knows
the SFC reserve capacity of the EWH aggregation, which is defined as
a percentage α% of the hourly scheduled power consumption.2 All this
information is used in a multi-period AC-OPF to determine the opti-
mal EWH dispatch, i.e., the aggregate hourly EWH consumption at
each MV/LV substation that minimizes electricity costs by maximizing
local RES energy absorption, while leaving enough slack for provision
of SFC reserves. The optimization problem is formulated as

min
PG,t,PCL,t,Vt,δt

Nh∑
t=1

c>el,P,tPG,t + c>el,Q,tQG,t (7.11a)

s.t. PG,t −PCL,t −PL,t = Pinj,t ∀ t (7.11b)
QG,t −QL,t = Qinj,t ∀ t (7.11c)
Pmin

G,t ≤ PG,t ≤ Pmax
G,t ∀ t (7.11d)

2An AS market with hourly reserve bids is implicitly assumed to facilitate the
demand-side participation. The reserve capacity factor α shows the relative size of
the hourly reserve capacity with respect to the uncontrolled hourly load consump-
tion, and it is fixed to α = 40% based on preliminary simulations. If the market
requires the reserve providers to bid the same reserve capacity for each hour of the
day, then the formulation (7.11) should be modified accordingly.
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Qmin
G,t ≤ QG,t ≤ Qmax

G,t ∀ t (7.11e)
Vmin ≤ Vt ≤ Vmax ∀ t (7.11f)
δt(i) = 0 (for the slack bus), ∀ t (7.11g)
St ≤ Smax ∀ t (7.11h)
SOCt+1 = ÃtSOCt + B̃tPCL,t + Ẽt ∀ t (7.11i)
0 ≤ PCL,t ≤ Pmax

CL ∀ t (7.11j)
SOC0 = SOCNh (7.11k)
α(1>PCL,t) ≥ βP tot

n,a ∀ t (7.11l)
SOCt+1 + αEu

wcB̃tw(1>PCL,t) ≤ SOCmax · 1 ∀ t (7.11m)
SOCt+1 − αEd

wcB̃tw(1>PCL,t) ≥ SOCmin · 1 ∀ t (7.11n)
(1 + α)(1>PCL,t) ≤ P tot

n,a ∀ t , (7.11o)

where nl is the number of lines in the network, Nh is the number of steps
for the day-ahead AC-OPF (Nh = 24 if hourly time steps are used), P in,a
is the total installed power of the EWHs connected to substation i, and
P tot

n,a is the total installed power of all EWHs in the DN. In (7.11a)-
(7.11o), PG,t ∈ Rnb and QG,t ∈ Rnb are the generation active and
reactive power vectors, respectively; PL,t ∈ Rnb and QL,t ∈ Rnb are the
uncontrollable active and reactive power demand vectors, respectively;
PCL,t ∈ Rnb is the controllable active power demand vector (EWH
aggregation); Pinj,t ∈ Rnb and Qinj,t ∈ Rnb are the active and reactive
power injection vectors, respectively; Vt ∈ Rnb and δt ∈ Rnb are the
voltage magnitudes and angles, respectively; St ∈ Rnl is the power flow
vector; cel,P,t ∈ RNh and cel,Q,t ∈ RNh are the cost vectors for active and
reactive power, respectively. Note that Pmin

G,t , Pmax
G,t , Qmin

G,t and Qmax
G,t are

determined by the generator capabilities and Smax is determined by the
line properties. The voltage limits are fixed to Vmin = 0.9 · 1> pu and
Vmax = 1.1 · 1> pu.
There are three types of constraints in (7.11). Constraints (7.11b)-
(7.11h) are the standard AC-OPF constraints. In particular, constraints
(7.11b) and (7.11c) are the power balance equations, (7.11d) and (7.11e)
represent the generation limits, whereas (7.11f) and (7.11h) describe
the voltage and thermal limits, respectively. The apparent power flow
vector St in (7.11h) is a nonlinear function of the voltage magnitudes
and angles, which is omitted here for simplicity but can be found in
[159]. The problem formulation (7.11) assumes that the active power
injection at each bus can be controlled by the aggregator, for example
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by curtailing the available PV power.
Constraints (7.11i)-(7.11k) correspond to the controllable aggregation of
EWHs: (7.11i) models the aggregate thermal dynamics, (7.11j) sets lim-
its to the aggregated power, and (7.11k) requires that the SoC between
two consecutive days is the same. In general, it suffices that SOC0 and
SOCNh are given, i.e., it is not necessary that they are equal.
Constraints (7.11l)-(7.11o) guarantee a secure provision of SFC reserves.
Constraint (7.11l) requires that a minimum amount of reserves, defined
as β% of P tot

n,a , is procured throughout the whole day. The parameter β
can be tuned to avoid offering a very small reserve capacity; of course, if
β = 0, the aggregator is free to schedule zero capacity for some parts of
the day. Constraint (7.11o) guarantees that the aggregator can increase
the aggregate EWH power as much as the scheduled reserve capacity.
To ensure that the aggregate EWH power can be decreased as much as
the scheduled reserve capacity, it suffices to fix α to a value less than 1.
Constraints (7.11m) and (7.11n) ensure that the EWH virtual storage
will not be full (depleted) even in the worst-case scenario of prolonged
down (up) regulation.3 We calculated the worst-case scenarios for pro-
longed up and down regulation using SFC data from the Swiss control
area in 2009. We identified the intervals during which the SFC signal
did not change sign for up to an hour, and calculated the corresponding
energy requirements. Based on this analysis, the worst-case amounts
of energy that can be requested within an hour during down and up
regulation are equal to Ed

wc = 96.2% and Eu
wc = 97.8% of the control

band, respectively.
There are two assumptions implicitly made by (7.11i), (7.11m) and
(7.11n). The first assumption is that the effect of the worst-case re-
serve energy request during time step t does not carry over to the EWH
aggregate SoC at time step t + 1. This assumes that if the worst-case
up or down regulation is requested at time step t, then the SFC sig-
nal at time step t + 1 will be such that the aggregation’s SoC will be
restored to the nominal value without SFC. This will be the case if
the SFC signal is energy-constrained and crosses zero sufficiently of-
ten. The second assumption is that the worst-case reserve energy is
allocated to the MV/LV substations proportionally to their EWH in-
stalled load. This is performed in (7.11m) and (7.11n) by defining
Pmax

CL := [P 1
n,a . . . P

nb
n,a]> and w := Pmax

CL /P tot
n,a . In Chapter 9, we will

3Up-regulation denotes the increase of generator power or decrease of load power.
Down-regulation is the decrease of generator power or increase of load power.
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present a relevant reserve scheduling formulation for commercial build-
ing aggregations, where these two assumptions are dropped.
The values of SOCmax and SOCmin in (7.11m) and (7.11n) depend on
the desired level of robustness to uncertainties introduced by the water
draw predictions and the aggregate model mismatch. We can increase
the robustness by reducing SOCmax and increasing SOCmin. Note that
problem (7.11a)-(7.11o) is a multi-period AC-OPF, because constraint
(7.11i) couples different time periods.
The outcome of the day-ahead AC-OPF consists of {P∗G,t, P∗CL,t, V∗t ,
δ∗t }, ∀ t ∈ [1, Nh], which are the optimal values for each bus and each
time step. P∗CL,t is the baseline part of the target profile for the next
day at each time step t ∈ [1, Ns], where Ns = Nh · (3600/∆t). The
variable part of this profile is determined during real-time operation by
the normalized SFC signal PSFC,t and the control band of the EWH
aggregation Pcb,t = α(1>P∗CL,t). Therefore, for an arbitrary SFC signal
the target power profile (reference) is

Ptp,t = 1>P∗CL,t + PSFC,tPcb,t

= (1 + αPSFC,t)(1>P∗CL,t) ∀ t ∈ [1, Ns] . (7.12)

7.3.2 Real-Time Coordinated Control

During real-time operation, the aggregator receives measurements of the
current RES production, the demand, the temperatures of EWHs, as
well as the normalized SFC signal, and it calculates the power reference
applying (7.12). Next, the aggregator needs to control the on/off states
of the EWHs such that the aggregate power tracks the power reference.
The on/off control actions must satisfy the following requirements: (a)
the scheduled SFC reserves must be provided with nearly 100% relia-
bility, (b) the adverse effects on the DN operation should be minimal,
and (c) user comfort should be respected.
Ideally, a single-period AC-OPF for the whole MV network incorpo-
rating the dynamics of individual EWHs as in (7.5) would provide the
optimal on/off control actions; however, the corresponding optimization
problem would be intractable. To enable real-time implementation, we
devise a two-step optimization-based method as an approximate scheme
for the original problem. We address requirements (a) and (b) in the
first step by solving a simplified version of the single-period AC-OPF
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problem, while we address requirement (c) in the second step by solv-
ing a number of computationally tractable Mixed-Integer Linear Pro-
grams (MILPs). The two-step method, which is solved whenever the
SFC signal is received (typically every 2 − 4 seconds), is explained in
the rest of this section.

Single-period AC-OPF

First, the aggregator divides the EWHs into subsets based on their
SoC using the approach presented in Section 6.4.2. Specifically, the
aggregator identifies the subset of EWHs at each MV/LV substation
that will be automatically switched by their internal controllers because
their temperature is outside the deadband. It also identifies the subset
of EWHs that are within their deadbands and thus available for external
control actions, which is denoted by N i

CL,t = {j ∈ Si | 0 ≤ SOCj(t) ≤ 1}
for substation i.

Second, the aggregator determines the aggregate EWH power at each
substation that minimizes the electricity cost at the current time step
by solving the following single-period AC-OPF problem

min
PG,t,PCL,t,Vt,δt

c>el,P,tPG,t + c>el,Q,tQG,t (7.13a)

s.t. constraints (7.11b)− (7.11h)
Ptp,t = 1>PCL,t (7.13b)

0 ≤ PCL,t ≤ Pmax
CL,t , Pmax

CL,t(i) =
∑

j ∈ N i
CL,t

P jn , (7.13c)

where P jn is the power rating of EWH j. Constraint (7.13b) ensures
that the SFC reserves are provided successfully.

The outcome of the single-period AC-OPF is the set {P∗G,t,P∗CL,t,V∗t , δ∗t },
where P∗CL,t represents the optimal allocation of the power reference
Ptp,t among the MV/LV substations at the current time step. Prob-
lem (7.13) is a nonlinear optimization problem, but it does not involve
integer variables because it uses the aggregate EWH model.
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Independent MILPs

The algorithm further allocates P∗CL,t to individual EWHs by solving
the following MILP separately for each MV/LV substation i

∀ i min
ut,s−,s+

w1|d>ut −P∗CL,t(i)|+ w2(|s−|+ |s+|) (7.14a)

s.t. Tt+1 = AtTt + Btut + Et (7.14b)
Tmin − s− ≤ Tt+1 ≤ Tmax + s+ (7.14c)

s− ≥ 0 , s+ ≥ 0 , (7.14d)

where ut ∈ {0, 1} is the vector of on/off control actions, d is the vector
of the power ratings of the EWHs that belong to N i

CL,t , At, Bt and
Et are taken from (7.5), Tmin and Tmax are the vectors of upper and
lower limits of the deadbands, respectively, and w1, w2 are weighing
factors. Note that problems (7.14) are independent across substations,
and therefore can be solved in parallel.
We introduce the slack variables s− and s+ to obtain soft constraints
on temperature, which guarantee feasibility of the problem under all
circumstances. The EWH states at the end of each time step are pre-
dicted internally in the optimization using (7.14b), i.e., the problem is
basically an MPC with a prediction horizon of 2 steps. Since the abso-
lute value of the slack variables is penalized in the objective function,
solutions that would result in significant violations of the temperature
limits or undesired on/off cycling can be excluded.

7.4 Performance of Control Algorithm

7.4.1 Case Study Description

We investigate the effectiveness of the proposed algorithm in simulation
studies using the benchmark MV DN shown in Fig. 7.2 [2]. The net-
work has a nominal voltage of 20 kV and consists of 11 buses and 10
lines. Although the network has a meshed structure, we assume a radial
topology in our simulations (see Fig. 7.2). The network supplies a rural
area with both residential and industrial customers and a peak demand
of 3.55 MW. The network parameters are given in Appendix B.
A large PV penetration is assumed in the network. According to [160],
the average PV potential in rural areas in Germany is 13.7 kWp for
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At the same time it is made sure that at any level the entries 
are mutually exclusive and collectively exhaustive. 

The electric power system is described by the underlying 
network and the resources connected to its nodes. A resource 
node by itself is an interesting candidate for a benchmark 
since many of the techniques for the integration of DG units 
rely on source side control and power electronic conversion. 
Further specialization is needed for the network, and 
transmission and distribution networks must be distinguished 
from one another. The latter can vary significantly in their 
characteristics depending on whether rural or urban types are 
considered. Together, low-voltage urban distribution, 
medium-voltage rural distribution, and high-voltage 
transmission networks represent a suitable set of candidates 
for DG benchmarking. 

 

III.  MAIN CHARACTERISTICS OF THE MEDIUM-VOLTAGE 
RURAL DISTRIBUTION NETWORK 

As discussed above, three benchmark networks are 
established in order to deal with studies that are mainly 
concerned with the network side of DG integration.  
The medium-voltage (MV) rural distribution network 
benchmark is derived from a German MV distribution 
network, which is shown in Fig. 2 [3].  

 

 

 
 

Fig. 2.  Test network derived from German MV distribution 

The network has rural character and supplies a small town 
and the surrounding rural area. The rated voltage level of the 
network is 20 kV. It is supplied from a 110 kV transformer 
station. Most connections are made with cables, but there are 
also sections of overhead lines. The network in Fig. 2 has 30 
nodes. To reduce the size to a level that is required for DG 
integration studies while maintaining the realistic character, 
the number of nodes was reduced. The resulting network 
proposed as a benchmark is shown in Fig. 3. The benchmark 
network is decomposed into two separate subnetworks 1 and 
2. The subnetworks are supplied by 110/20 kV transformers, 
which are referred to as TR1 and TR2, respectively. The 
medium-voltage DC coupler (MVDC) is optional and the 
purpose of subnetwork 2 is to study such coupling.  

For many types of case studies, it is sufficient to consider 
subnetwork 1 only. If its coupling switches, indicated with T 
in Fig. 3, are opened, the network has a radial structure. But 
depending on the interests of the user, it can be simulated as a 
closed ring network, too. The total length of the lines in the 
subnetwork 1 is equal to about 15 km.  

Due to the fact that different countries have varying 
distribution network parameters, the original values given for 
the German network were transferred into the per unit system. 
This facilitates the adaptation of the benchmark to regionally 
varying parameters. 

 
 

 
 

Fig. 3.  Medium-voltage rural distribution benchmark network 
 

Sub- 
network 1

Sub- 
network 2

Figure 7.2: The benchmark MV grid used in the simulation studies (taken
from [2]). Only subnetwork 1 is considered and the disconnec-
tors between buses 4-11 and 6-7 are open, i.e., a radial grid
topology is used.

residential buildings and 53.9 kWp for agricultural buildings. Based
on this information, we consider an optimistic scenario of 1.5 MWp
installed PV power at MV/LV substations 3, 4, 5, 8, 9 and 11, adding
up to a total installed power of 9 MWp. The standard deviation of the
PV day-ahead prediction errors is taken equal to 12% of the predicted
value for each hour of the next day. Furthermore, we assume that the
PV inverters operate at a constant unity power factor and do not control
reactive power to contribute to voltage control.
In our simulations, we consider a population of 500 EWHs uniformly dis-
tributed among the MV/LV substations. We use the statistical method
presented in Section 6.2 to generate the EWH population parameters
and the water draw time series. We simulated the EWH population
without external control actions and calculated the aggregate power
consumption profile. We subtracted this profile from the total load pro-
file to obtain the profile of the uncontrollable loads. We fix the two
control parameters of problem (7.11) to α = 40% and β = 2%.
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7.4.2 Simulation Results

Day-Ahead Scheduling

We start the analysis of the simulation results with the day-ahead
scheduling phase of the algorithm considering the three cases of Ta-
ble 7.3. Case A is the uncontrolled case where only constraints (7.11b)-
(7.11h) are considered in the day-ahead AC-OPF and there is no real-
time control. In case A, a part of the PV energy is curtailed if voltage
deviations occur, whereas the EWHs operate based on their internal
temperature controllers. In cases B and C, the EWHs are controlled to
provide SFC reserves and at the same time regulate the DN voltages
to minimize the curtailed PV energy. Different SOCmin and SOCmax

values are used in cases B and C to illustrate the effect of different levels
of robustness on algorithm performance.

Table 7.3: Simulation cases

Case Description
A No external control
B External control with SOCmin = 0.2 and SOCmax = 0.8
C External control with SOCmin = 0.3 and SOCmax = 0.7

Figure 7.3 shows the optimal EWH dispatch, Fig. 7.4 shows the resulting
SoC profile, and Fig. 7.5 shows the total PV power that can be injected
in the grid without violating the network constraints. To maximize the
PV integration, a major part of the EWH consumption is shifted to
hours 13.00 − 15.00, when the available PV energy is at a maximum.
Note that at hour 13.00 the scheduled EWH power in cases B and
C is more than 2 times higher than that of case A. The significant
energy consumption in the interval 20.00− 24.00 is not only due to the
large amount of water draws, but also due to constraint (7.11k). The
scheduled SoC keeps far from SOCmin and SOCmax to satisfy constraints
(7.11m) and (7.11n). In case C the SoC keeps closer to 50%, which
provides additional robustness to aggregate EWH modeling errors. In
cases B and C there are periods of time when the scheduled power is
equal to the minimum allowed by constraint (7.11l) (e.g., hours 01.00−
07.00).
Table 7.4 compares the absorbed PV energy in the three cases. The
day-ahead scheduling algorithm increases the PV energy yield by 3.80%
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Figure 7.3: Day-ahead optimal dispatch of the EWH aggregation.
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Figure 7.4: Day-ahead optimal SoC of the EWH aggregation.

and 3.04% in cases B and C, respectively, compared with case A. This
is achieved with an increase of only 0.34% and 1.53% in EWH energy
consumption for cases B and C, respectively.

Real-Time Operation

In the rest of this section, we present results from the real-time opera-
tion algorithm during a typical day. Figure 7.6 shows the SFC signal re-
quested from the EWH aggregation as a percentage of its control band.4
Figure 7.7 shows the corresponding target power trajectory (reference)
and the aggregate EWH power of the whole MV network for cases B
and C. The MAPE between the target trajectory and the aggregate

4Although the SFC signal is available with a resolution of 10 seconds, we down-
sample it to 1 minute in the simulations to decrease the computation time.
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Figure 7.5: Day-ahead optimal dispatch of PV.

EWH power is given in Table 7.4, and the tracking accuracy is very
high in both cases. In Case B, the tracking error increases during hours
7 and 11 because the energy storage level of the EWH aggregation is
low. Observe that the tracking error increases whenever the aggregate
SoC falls below 30% and the target power is much lower than the EWH
aggregate power in the uncontrolled case A. On the other hand, Case C
results in a lower MAPE due to the increased robustness to aggregate
EWH modeling errors and water draw prediction errors.
Figure 7.8 shows the evolution of the aggregate EWH SoC per substa-
tion in case C. The solid curves correspond to buses with installed PV
power, the dashed curves correspond to buses with load only, whereas
the black curve indicates the SoC of the whole aggregation. Although
the black curve generally follows the day-ahead optimal SoC curve from
Fig. 7.4, the two curves are not identical for two reasons: (a) SFC re-
serves are provided, and (b) the aggregate EWH model is not perfect.
Observe that the EWHs connected to remote buses with installed PV
power (e.g., buses 9 and 11) are at around 100% SoC during most of
the daytime to avoid overvoltages.
To maximize PV integration, the contribution of remote buses with PV
to up regulation is zero for many hours during daytime. In addition,
since the SoC of these buses is close to 100% during most of the daytime,
their contribution to down regulation is also limited. The maximum
potential for up and down regulation for a remote bus with PV (bus 11)
is shown in Fig. 7.9, and it is contrasted with the larger potential of a
bus without PV (bus 7).
To assess the impact of the proposed algorithm on user comfort and de-
vice operation, we show the temperature deviations from the deadband
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Figure 7.6: The SFC signal of the Swiss control area in 2009 during a sample
day.

and the average number of switching actions in Fig. 7.10 and Table 7.4.
In cases B and C, the worst case deviations from the lower and upper
deadband limits are −0.006◦C and +0.027◦C, respectively. The de-
viations are kept negligible by considering only the EWHs within the
deadband in problem (7.13a)-(7.13c), and by formulating the predictive
optimization problem (7.14). Although the user comfort is nearly al-
ways respected, many EWHs have to operate at their upper deadband
limit for several hours per day to maximize the PV energy integration.
This, in combination with the SFC provision, drastically increases the
average number of switching actions per EWH, which might increase
the wear of the devices. Furthermore, the switching actions are not uni-
formly distributed among the EWHs, but instead the EWHs that are
connected to substations with PV switch more often. This distinction
should be taken into account when designing remuneration schemes for
the participants in such DR programs.

Table 7.4: Comparison of the controllers’ performance

Case Tracking
MAPE (%)

PV energy
(MWh)

EWH energy
(MWh)

Switching
actions

A N/A 36.89 5.89 7
B 0.92 38.29 5.91 217
C 0.15 38.01 5.98 242
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Figure 7.7: Tracking performance of the target power trajectory. The top
plot corresponds to case B, and the bottom plot corresponds to
case C.

7.4.3 Implementation Issues

Based on our results, SFC and active DN management for PV inte-
gration can be simultaneously provided by the same TCL aggregation
using the proposed algorithm. The more robust the algorithm is, the
higher the SFC tracking accuracy, but the less the PV energy yield and
the higher the EWH consumption and the number of switching actions.
The computation time of the algorithm is low enough to allow a real-
world implementation. We solve problems (7.11) and (7.13a)-(7.13c)
using the solver IPOPT, whereas we solve problem (7.14) using the
solver GLPK. We call both solvers through a MATLAB-YALMIP in-
terface [43] using a 4 core machine (2.83 GHz) with 8 GB RAM. Prob-
lem (7.11) takes 20 minutes on average, problem (7.13a)-(7.13c) takes
around 2 seconds, whereas each of the problems (7.14) is solved in ap-
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Figure 7.8: Evolution of the aggregated SoC per substation for case C.
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Figure 7.9: Maximum potential for up and down regulation for a bus with-
out PV (left) and a bus with PV (right). Note that the two
plots have different scales.

proximately 0.1 seconds. Note that single-period AC-OPF problems,
like (7.13a)-(7.13c), can be solved using specialized packages, for exam-
ple MATPOWER, in less than a second even for networks with hundreds
of buses [161]. Moreover, problems (7.14) are independent and thus can
be solved in parallel, which indicates the scalability of the approach for
larger networks.

In our simulations, the residual |d>ut−P∗CL,t(i)| in (7.14a) is 0.025 kW
on average with its maximum value being 1.256 kW. Therefore, problems
(7.13a)-(7.13c) and (7.14) are a good approximation of the original real-
time operation problem.
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Figure 7.10: Effect of control algorithm on user comfort.

7.5 Conclusion

In this chapter, we presented a hierarchical control algorithm to enable
multi-tasking with TCLs, namely frequency and voltage regulation, as-
suming a real-time, two-way communication infrastructure between an
aggregator and individual loads. The scheduling phase of the algorithm
determines the optimal dispatch of the loads and is robust to uncertain-
ties related to prediction errors and model mismatches. The real-time
operation phase allocates control actions to loads to securely provide
frequency reserves while respecting DN and user comfort constraints.
Moreover, the optimization problems are tractable and therefore the
proposed algorithm is implementable for realistic network sizes. The
algorithm can be used to provide SFC with TCL aggregations without
adverse side-effects such as overvoltages in DNs with large RES shares.



Chapter 8

Reduced Communication
Needs in Demand
Response by State
Estimation

8.1 Introduction
Chapter 6 illustrated the importance of communicating state measure-
ments from Thermostatically Controlled Loads (TCLs) to the central
controller when providing Secondary Frequency Control (SFC) reserves.
However, real-time communication with every load entails significant
implementation costs. A number of state estimation methods have been
proposed to reduce communication costs, e.g., [3, 109–111]. Neverthe-
less, these approaches rely on aggregate load models and estimate the
distribution of TCLs in a normalized temperature state space, which
does not perfectly capture the states of individual loads.
In contrast to the above work, we attempt to estimate individual TCL
states, i.e. temperatures and on/off modes. Estimating the states of in-
dividual TCLs instead of the states of aggregate models could improve
the control performance. Individual state estimates help us better esti-
mate the effect of TCLs’ internal controllers and aggregator’s external
control actions on the aggregate power consumption of TCLs.
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Table 8.1: Nomenclature of Chapter 8: symbols

Symbol Unit Description
C kWh/◦C Thermal capacitance
Cp - Coefficient of performance
M ◦C Upper limit of temperature deadband

Mu,mu - Upper and lower bound on u (for the MLD model)
Mx,mx - Upper and lower bound on xc (for the MLD model)
m ◦C Lower limit of temperature deadband

m1 −m5 - Weighting factors
N - Estimation horizon (number of steps)
Nsim s Simulation horizon
nap - Number of TCLs
nsub - Number of substations
P W Active power
Q ◦C2 Covariance matrix of process noise
R ◦C/kW Thermal resistance
R W2 Covariance matrix of measurement noise
rs - Bernoulli random variable with success probability Ps
rsoc - Uniform random variable

SOCth - Threshold SoC value (control signal)
s - Auxiliary binary control signal
Tdb

◦C Thermostat deadband width
Tm min Period of TCL measurements
Tsp

◦C Thermostat temperature setpoint
Tα

◦C Ambient temperature
u - Fraction of rated power consumed at the on state
V - Known statistic of measurement noise
v W Measurement noise
W - Known statistic of process noise
w ◦C Process noise
xc

◦C TCL temperature (continuous variable)
xl - TCL on/off state (binary variable)
xth

◦C Temperature threshold corresponding to SOCth
Y - Normalized SFC signal
z - Continuous auxiliary variable

Separate state estimation and control is not optimal for stochastic hy-
brid systems (such as TCLs), because the separation principle does not
apply to such systems [162]. However, it is a common practice to heuris-
tically separate the two tasks in the interest of simplicity. The control
performance generally improves with better state estimates, but this
must be verified through experiments or simulation. State estimation
problems for stochastic hybrid systems are often solved with “multiple
model” estimation schemes that involve a filter for each mode [163].
However, with large numbers of modes these approaches become in-
tractable [164].

In this chapter we follow a different approach. First, we transform
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Table 8.2: Nomenclature of Chapter 8: Greek letters

Symbol Unit Description
α - SFC control band

∆P W Power change
∆Pint W Power change due to thermostatic actions

∆t s Simulation time step
δ1 − δ5 - Binary auxiliary variables
εagg W Aggregate power estimation error
εon/off - Estimation error of on/off states
εsoc - SoC estimation error
ε - Tolerance for the MLD model
µ - Mean value of a random variable
σ - Standard deviation of a random variable

Table 8.3: Nomenclature of Chapter 8: subscripts and superscripts

Symbol Description
agg Aggregate power in the system
CL Load cluster
i TCL index
l Substation index

meas Measured power
n Rated power (nominal)

set Setpoint power (reference)
sub Aggregate power at a substation
t Time index

UL Power of uncontrollable loads
(̂·) Estimate of a variable

our stochastic hybrid system into a Mixed Logical Dynamical (MLD)
system [165], which allows us to represent a TCL aggregation as a sys-
tem of mixed-integer linear inequalities. Second, we propose a Moving
Horizon State Estimation (MHSE) method based on a Mixed-Integer
Linear Program (MILP) to estimate the states of individual TCLs from
aggregate power measurements and periodic TCL state measurements
under process and measurement noise. Third, we combine the estima-
tor with a scalable hierarchical broadcast controller to enable provision
of SFC with minimal investment in new infrastructure. We investigate
the performance of the proposed control-estimator loop with respect to
estimation and control accuracy. Finally, we benchmark the proposed
control-estimator loop against a controller with a simpler “predictor”
considering different aggregation sizes, process and measurement noise
levels, estimation horizons, and control trajectory characteristics.
The remainder of this chapter is organized as follows. Section 8.2 pro-
vides a high-level introduction to the problem and describes the control
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and communication architecture. Section 8.3 introduces the MLD sys-
tem model, Section 8.4 presents the controller, and Section 8.5 develops
the MHSE scheme. Simulation results under different conditions are
analyzed in Section 8.6 in order to benchmark the proposed estimator
against the simpler predictor, and assess its usefulness in SFC. Fi-
nally, Section 8.7 concludes this chapter that is based on the methods
and results presented in [166, 167]. The nomenclature of this chapter
is introduced in Tables 8.1-8.3, and bold symbols indicate vectors or
matrices.

8.2 Problem Description

We consider the problem of an aggregator managing a population of
TCLs in a Distribution Network (DN) with the goal of providing power
system Ancillary Services (AS). We assume that aggregate power mea-
surements from MV/LV distribution substations are available to the
aggregator at every time step. We also assume there exists a two-way
communication network with bandwidth constraints. Specifically, the
TCLs interact with home energy management systems, which in turn
communicate with smart meters that transmit data to the aggregator.
The TCL state measurements are obtained by the home energy man-
agement system with a high resolution (e.g., every 10 seconds [168]1),
but they are transmitted from the smart meters to the aggregator at a
lower rate (e.g., every 15 minutes) due to communication network con-
straints. Note that TCL state measurements are sent in packets that
include all past state measurements since the last transmission. We also
assume that the control signals are broadcasted to all TCLs, i.e., TCLs
are not individually addressed by the aggregator.
Our goal is to estimate the states of individual TCLs between consecu-
tive state measurements with the overarching goal of improving control
performance. This is a challenging task due to process and measurement
noise. Process noise includes plant-model mismatch (TCL modeling er-
rors) and errors in predictions of external forcing, such as ambient tem-
perature and consumer behavior. Measurement noise includes errors in
aggregate power measurements. To obtain aggregate power measure-
ments, we subtract the predicted uncontrolled load from the measured

1Apart from enabling estimation of individual TCL states, high resolution mon-
itoring of TCLs is also necessary for auditing purposes.
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Figure 8.1: The proposed control and communication architecture that re-
lies on MHSE of individual load states.

load at the substation, which results in a noisy estimate of the aggregate
power consumption of the TCLs.
The proposed MHSE method is efficient and computationally tractable
for small TCL aggregations. In practice, larger TCL aggregations can be
managed by solving parallel MHSE problems at several substations but
as a single control problem. With this architecture, the proposed MHSE
method is scalable and allows us to offer a significant amount of AS. A
major difference between this work and the previous works [3,4,109,110]
is that the MHSE method efficiently utilizes measurements from MV/LV
substations, instead of only aggregate measurements from high-medium
voltage substations.
The control and communication architecture is shown in Fig. 8.1. Solid
lines represent high-frequency communication flows (e.g., every 10 sec-
onds), whereas dashed lines show low-frequency communication flows
(e.g., every 15 minutes). The blue lines represent the measurements,
and the red lines the control signals. Note that the control signal is
broadcast to all substations, whereas estimation is performed indepen-
dently for each substation.
The developed controller/estimation loop can cope with constrained
communication networks with limited bandwidth. In parallel to this
work, we developed a related method based on Model Predictive Control
(MPC) and Kalman filtering that can additionally handle communica-
tion delays and packet losses. The interested reader is referred to [169]
for relevant results.
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8.3 Modeling

8.3.1 Individual TCL Modeling

Processes that evolve according to continuous dynamics, discrete dy-
namics, and logic rules can be modeled as hybrid systems [165]. Here,
we use the two-state hybrid TCL model developed in [80,170,171]. Let
us denote the TCL temperature at time step t by xc,t ∈ R and the
on/off state at time step t by xl,t ∈ {0, 1}. A heating TCL’s stochastic
discrete-time dynamics can be expressed as

xc,t+1 = axc,t + butxl,t + fTα,t + wt , (8.1)

xl,t+1 =


0 if xc,t+1 ≥M
1 if xc,t+1 ≤ m
xl,t otherwise

, (8.2)

where a = e−∆t/(CR), b = (1 − a)RCpPn, f = (1 − a), ∆t is the dis-
cretization time step, C is the thermal capacitance, R is the thermal
resistance, Cp is the Coefficient of Performance (COP), Pn is the rated
power, ut ∈ [0, 1] is the fraction of the rated power consumed by the
TCL if it is on, Tα,t is the ambient temperature, and wt is the process
noise. Additionally, M = Tsp + 0.5Tdb and m = Tsp − 0.5Tdb are the
upper and lower temperature deadband limits, respectively, where Tsp
is the thermostat temperature setpoint and Tdb is the deadband width.

The stochastic hybrid system (8.1)-(8.2) can be described using the
MLD framework. Following the approach proposed in [165], we intro-
duce the auxiliary binary variables δ1,t, δ2,t, δ3,t and δ4,t defined as

[δ1,t = 1]↔ [xc,t ≥M ] , (8.3)
[δ2,t = 1]↔ [xc,t ≤ m] , (8.4)

δ3,t = xl,t+1 , (8.5)
δ4,t = xl,t . (8.6)

Additionally, since (8.1) is bilinear between xl,t and ut, we introduce the
auxiliary continuous variable zt = xl,tut = δ4,tut to linearize the model.
By defining xt := [xc,t xl,t]> and δt := [δ1,t δ2,t δ3,t δ4,t]>, equation
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(8.1) is rewritten as

xt+1 =
[
a 0
0 0

]
︸ ︷︷ ︸

A

xt +
[
0 0 0 0
0 0 1 0

]
︸ ︷︷ ︸

B2

δt +
[
b
0

]
︸︷︷︸
B3

zt +
[
f
0

]
Tα,t︸ ︷︷ ︸
Ft

+
[
wt
0

]
.

(8.7)
Note that (8.7) is similar to (11a) in [165], except that we include two
additional terms: ambient temperature and process noise.
The TCL internal hysteresis controller (8.2) can be described by the
logic relations

[δ1,t = 1]→ [δ3,t = 0] , (8.8)
[δ2,t = 1]→ [δ3,t = 1] , (8.9)

[δ1,t = 0] ∧ [δ2,t = 0]→ [δ3,t = δ4,t] , (8.10)
which are transformed into the mixed-integer linear inequalities

E2δt + E3zt ≤ E1ut + E4xt + E5 . (8.11)
Equation (8.11) describes the deadband crossing events, and therefore
represents the switching actions imposed by the thermostatic hysteresis
controller of each TCL. More specifically, the dynamics (8.7) together
with the inequalities (8.11) fully describe the evolution of the on/off
mode and temperature of a TCL. The matrices E1, E2, E3, E4, and E5
are defined as follows
E1 = [0 0 0 0 0 0 0 0 0 0 0 0 0 1 − 1]> , (8.12)

E2 =



0 Mx −m 0 0
0 mx −m− ε 0 0

M −mx 0 0 0
M −Mx − ε 0 0 0

1 1 0 0
0 1 −1 0
1 0 1 0
−1 −1 1 −1
−1 −1 −1 1
0 0 0 −1
0 0 0 1
0 0 0 −Mu

0 0 0 mu

0 0 0 −mu

0 0 0 Mu



, (8.13)
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E3 = [0 0 0 0 0 0 0 0 0 0 0 1 − 1 1 − 1]> , (8.14)

E4 =
[
−1 1 1 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0

]>
,

(8.15)
E5 = [Mx (−m− ε) −mx (M − ε) 1 0 1 0 0 0 0 0 0 −mu Mu]> ,

(8.16)
where mx = 0 and Mx = 100 are lower and upper bounds on the
continuous state xc,t, mu = 1 and Mu = 30 are lower and upper bounds
on ut, and ε = 10−6 is a small tolerance.

Simplification for Constant Power Loads

If the power consumption is constant when the TCL is on (ut = 1), the
auxiliary variable zt is equal to δ4,t and thus it is redundant. Therefore,
(8.7) and (8.11) can be simplified to

xt+1 =
[
a 0
0 0

]
︸ ︷︷ ︸

A

xt +
[
0 0 0 b
0 0 1 0

]
︸ ︷︷ ︸

B

δt +
[
f
0

]
Tα,t︸ ︷︷ ︸
Ft

+
[
wt
0

]
, (8.17)

Ẽ1δt ≤ Ẽ2xt + Ẽ3 , (8.18)

where Ẽ2 = E4, Ẽ3 = E1 + E5. The first three columns of Ẽ1 are
identical to the first three columns of E2. The fourth column of Ẽ1 is
denoted by Ẽ1(:, 4) and is calculated as

Ẽ1(:, 4) = E2(:, 4) + E3 , (8.19)

where E2(:, 4) denotes the fourth column of E2. In the rest of this
chapter we make this simplification, which is typical for many TCLs.

8.3.2 TCL Aggregation Modeling

An heterogeneous aggregation of nap TCLs can be modeled by drawing
the parameters R, C, Cp, Pn, M and m from suitable distributions
and stacking together the models of individual TCLs. This leads to the
following state-space representation

xt+1 = Axt +Bδt + Ft +wt (8.20)
E1δt ≤ E2xt +E3 , (8.21)
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where xt, δt, wt, E3 are stacked vectors, e.g., xt = [(x1
t )> . . . (x

nap
t )>]>,

and A, B, Ft, E1 and E2 are block diagonal matrices with the matrices
of the individual TCLs on the diagonals.
The output depends upon whether full state information or only noisy
aggregate power measurements are available and is given by

yt =
{
C1xt , if t = jTm , j ∈ N
C2xt + vt , otherwise

, (8.22)

where C1 = I (identity matrix), C2 =
[
0 P 1

n 0 P 2
n . . . 0 P

nap
n
]
, vt is the

measurement noise, and Tm is the period of the TCL measurements.

8.4 Controller Design

The controller broadcasts signals to the TCLs with the goal of tracking
a power trajectory. At each time step t, the controller calculates the
required change in power

∆Pt = Pset,t − P̂agg,t −∆P̂int,t , (8.23)

where Pset,t is the desired setpoint, P̂agg,t is the measured or estimated
TCL aggregate power, and ∆P̂int,t is the estimated change in power
resulting from the TCLs’ internal hysteresis controller actions, com-
putable from the TCL state estimates x̂l,t. Let Pn denote the vector
of TCL power ratings, nsub the number of MV/LV substations in the
network, P lagg,t the actual TCL aggregate power, P̄ lUL,t the predicted
uncontrolled load, P lUL,t = P̄ lUL,t + vt the actual uncontrolled load, and
P lmeas,t = P lagg,t + P lUL,t the noisy aggregate power measurement, all
at substation l. There are two ways to calculate P̂agg,t. The first one
(“Method A”) is based on the state estimates, namely

P̂agg,t = Pnx̂l,t . (8.24)

The second one (“Method B”) is based on the aggregate power mea-
surements, namely

P̂agg,t =
nsub∑
l=1

(
P lmeas,t − P̄ lUL,t

)
. (8.25)
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If ∆Pt < 0 additional off switching is required, whereas if ∆Pt > 0
additional on switching is required. The TCLs that will be switched are
determined according to a priority list based on their estimated SoC

ˆSOCt = x̂c,t −m
M −m

, (8.26)

where x̂c,t is the TCL’s estimated temperature.
If ∆Pt < 0, the TCLs that are on and within the deadband are candi-
dates for switching off actions. An ordered list of these TCLs is obtained
by ranking them in descending order based on ˆSOCt. The TCLs at the
top of this list are hotter, and therefore have a higher switching off pri-
ority. Starting from the top of the list, we determine the number of
TCLs that will be actively switched off such that their aggregate power
consumption is as close as possible to |∆Pt|. Analogously, if ∆Pt > 0,
the TCLs that are off and within the deadband are ranked in ascending
order based on ˆSOCt. We select the appropriate number of TCLs that
will be actively switched on from the top of the ordered list, since they
are colder and thus have a higher switching on priority. The ˆSOCt of
the last TCL of the priority list that is actively switched on or off is
called threshold SoC and is denoted by SOCth,t ∈ [0, 1].
At each time step, the controller broadcasts a pair [SOCth,t, st], where
st ∈ {0, 1} is a signal indicating whether an increase in consumption
(st = 1 if ∆Pt > 0) or a decrease in consumption (st = 0 if ∆Pt <
0) is required. The TCLs that are outside of their deadband are not
controllable and ignore the control signal, whereas the rest respond
based on their SoC. For each TCL, SOCth,t can be mapped to the
temperature threshold

xth,t = SOCth,t(M −m) +m. (8.27)

The desired control actions are described by the state transitions in Ta-
bles 8.4a and 8.4b, which can be incorporated into the MLD framework
of Section 8.3 by introducing a new auxiliary variable δ5,t defined as

[δ5,t = 1]↔ [xc,t ≤ xth,t] . (8.28)

However, an equivalent formulation can be obtained without adding a
new auxiliary variable in the following way. Set M̃ = xth,t and m̃ = m
if st = 0, and M̃ = M and m̃ = xth,t if st = 1. With this notation
and given that SOCth,t ∈ [0, 1], Tables 8.4a and 8.4b are equivalent to
Table 8.4c by inspection.



8.4. Controller Design 191

Table 8.4: State transition tables

(a) State transitions if st = 0

xc,t ≤ m m < xc,t < xth,t xth,t ≤ xc,t < M M ≤ xc,t

δ3,t = 1 δ3,t = δ4,t δ3,t = 0 δ3,t = 0

(b) State transitions if st = 1

xc,t ≤ m m < xc,t ≤ xth,t xth,t < xc,t < M M ≤ xc,t

δ3,t = 1 δ3,t = 1 δ3,t = δ4,t δ3,t = 0

(c) Equivalent transitions

xc,t ≤ m̃ m̃ < xc,t < M̃ M̃ ≤ xc,t

δ3,t = 1 δ3,t = δ4,t δ3,t = 0

M M M

m m m

xth,t

xth,t

Down control,

 st = 0

Up control, 

st = 1
No control
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Figure 8.2: Dynamic tightening of TCL deadband under external control
actions (the light color denotes the active deadband).

The state transitions of Table 8.4c are described by the logic relations

[δ1,t = 1]↔ [xc,t ≥ M̃ ] (8.29)
[δ2,t = 1]↔ [xc,t ≤ m̃] , (8.30)

along with (8.5), (8.6), (8.8)–(8.10). Therefore, the external control
actions can be directly incorporated into the MLD framework of Sec-
tion 8.3 using (8.11). The only difference is that matrix Ẽ1 and vector
Ẽ3 now depend on M̃ , m̃ and are time-varying. The external control
can be seen as a dynamic tightening of a TCL’s deadband, which is
visualized in Fig. 8.2. This control approach is similar to approaches
based on temperature setpoint control [100]; however, in our approach
user comfort is guaranteed because M̃ ≤M and m̃ ≥ m.
The control loop is shown in Fig. 8.3. Note that the aggregator applies
the MHSE method independently for each substation i.
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Figure 8.3: Control loop including the broadcast controller and the moving
horizon state estimator for each substation.

8.5 State Estimator Design

We propose an MHSE method to estimate the TCL states when cur-
rent TCL state measurements are unavailable. At each time step t 6=
jTm, j ∈ N we solve a multi-period MILP with the TCL tempera-
tures, on/off modes, auxiliary binary variables, as well as process and
measurement noise as optimization variables. Let us define the opti-
mization vector as

xopt
t := [x̂t−N+1|t, ψ̂t−N+1|t, . . . , ψ̂t|t] (8.31)
ψ̂k|t := [δ̂k|t, ŵk|t, v̂k|t] , (8.32)

where δ̂k|t ∈ {0, 1}4nap are the auxiliary binary variables, ŵk|t ∈ Rnap

are the process noise variables, v̂k|t ∈ R are the measurement noise
variables, k ∈ [t−N + 1, t], N is the estimation horizon, and ·̂k|t is the
estimate of · at time step k using measurements up to time step t. Note
that x̂t−N+2|t, . . . , x̂t|t can be determined from δ̂k|t, k ∈ [t −N + 1, t],
and therefore these additional optimization variables are not needed.
With this notation, the estimation problem can be written as

min
xopt
t

t∑
k=t−N+1

(
m1 |ŷk|t − yk|+m2 ||Q−1ŵk|t||1

+m3 |R−1v̂k|t|
)

+
t−1∑

k=t−N+1

(
m4 ||Q−1 (x̂c,k|t − x̂c,k|t−1

)
||1
)
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+m5

nap∑
i=1

(∣∣Ŵ i
k|t −W

i
∣∣)+m6

∣∣V̂k|t − V ∣∣ , (8.33)

s.t. x̂k+1|t = Ax̂k|t +Bδ̂k|t + Ft + ŵk|t , (8.34)
ŷk|t = C2x̂k|t + v̂k|t , (8.35)
E1δ̂k|t ≤ E2x̂k|t +E3 , (8.36)
x̂k|t = xk|t , ∀ t ∈ [jTm + 1, jTm +N − 1] ,

∀ k ∈ [t−N + 1, jTm] , (8.37)

where Q−1 and R−1 are the inverses of the process and measurement
noise covariance matrices, respectively, m1 −m6 are weighting factors,
W i is a known statistic on the process noise of TCL i (e.g., the mean
value), V is a known statistic on the measurement noise, and Ŵ i

k|t, V̂k|t
are estimates of those statistics computed from ŵk|t and v̂k|t.
The first term of (8.33) minimizes the difference between the measured
aggregate power and the output calculated from the estimated states.
The second and third terms penalize the process and measurement noise.
The fourth term is needed to link the current estimation problem to
the results of the previous estimation problems. Note that only the
continuous states are included in the fourth term. The fifth and sixth
terms require that the current noise statistics are close to their known
values. Equations (8.34)-(8.36) describe the TCL hybrid dynamics. For
t ∈ [jTm+1, jTm+N−1], j ∈ N, noise-free TCL state measurements are
available (because the estimation horizon includes the last time when
a packet of TCL measurements was received), which are taken into
account by introducing the equality constraint (8.37) and settingm4 = 0
in (8.33). For t ≥ jTm +N , (8.37) is not considered and m4 6= 0.
Note that the terms of (8.33) that are related to either w or v are normal-
ized by either Q or R, which are assumed to be known. This ensures that
the numeric values of the penalties on process and measurement noise
are in the same range, which is essential for good performance. How-
ever, no assumption on the Probability Distribution Functions (PDFs)
of the noises is needed.
The MHSE performance can be improved by tuning the weighting fac-
tors m1 −m6. For example, for longer estimation horizons higher m5
and m6 values might be preferable, because the statistics W i and V
can be estimated more accurately due to the larger sample size. In
addition, m4 can be time-varying, i.e., a function of the quality of re-
cent estimates. If no noise statistics are available, the last two terms of
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(8.33) are dropped, and m2, m4 can be tuned based on the magnitude
of w, whereas m3 based on the magnitude of v.
Let nd = 4 denote the number of auxiliary binary variables per TCL,
nw = 1 denote the number of process noise variables per TCL, and
nv = 1 denote the number of measurement noise variables per time step.
The total number of variables is nvar = 2nap +N [nap(nd +nw) +nv], of
which nbi = nap +Nnapnd are binary variables. Therefore, the MHSE
problem is a large scale mixed-integer optimization problem, even for
small TCL aggregations and estimation horizons. For example, if nap =
20 and N = 10, the estimation problem for each substation will have
820 binary variables.
Due to the size of the problem, we use a 1-norm minimization in (8.33),
which can be reformulated as a MILP, instead of a least-squares min-
imization as in [165, 172, 173], which would lead to a quadratic integer
program. Using the 1-norm enhances the tractability of our approach,
but it might reduce the performance compared with a least-squares
formulation. Adopting the hierarchical architecture of Section 8.2, the
estimation problem can be solved independently and in parallel for each
substation, which makes it tractable in real time since the number of
consumers per substation and/or feeder is typically low, e.g., 20 to 40
consumers.

8.6 Performance of the MHSE Method

In this section, we demonstrate the performance of the MHSE method
in autonomous operation (i.e., when the TCLs are solely controlled by
their hysteresis controllers), and under external control with and with-
out measurement noise. Furthermore, we benchmark the MHSE method
against a simple “model-based predictor”, which receives TCL measure-
ments whenever they are available and evolves the TCL dynamics as-
suming zero process noise, but does not utilize the noisy aggregate power
measurements. In addition, we investigate the value of using MHSE in
SFC with TCLs.
For all case studies we consider space heaters and parameterize them by
drawing their parameters from the uniform probability distributions of
Table 8.5. All simulations are performed with a time step of 10 seconds
in MATLAB using a 4 core machine (2.83 GHz) with 8 GB RAM, and
the MHSE problem was solved using CPLEX.
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Table 8.5: Space heater parameters, adapted from [3,4]

Pn ∼ U(5, 9) kW C ∼ U(5, 9) kWh/◦C R ∼ U(1.5, 2.5) ◦C/kW
Cp ∼ U(2, 3) Tsp ∼ U(19, 23) ◦C Tdb ∼ U(0.25, 1) ◦C

8.6.1 Autonomous Operation without Measurement
Noise

In the first investigation, we consider the autonomous operation of a
TCL aggregation connected to a single distribution substation, and es-
timate the states without external control actions to gain insight into
the estimation process. In this case, the TCLs are controlled only by
their internal thermostats. To understand how process noise affects the
estimation quality, we set the measurement noise to zero (vt = 0). The
weighting factors m1 to m4 in (8.33) are all chosen equal to 1, which
was shown to perform well. We also disregard the last two terms of
(8.33) by setting m5 = m6 = 0, i.e., we do not assume knowledge of
noise statistics.

We consider 20 TCLs and use only integer values of the rated power Pn,
which complicates the estimation process since different TCLs appear
similar to the estimator. The process noise for each TCL follows a
normal distribution with mean value µ = 0 and standard deviation
σ = 10−3. We run hourly simulations with an estimation horizon of
N = 10 steps (100 seconds), while TCL measurements are received
every Tm = 20 minutes.

Figure 8.4 shows the actual, estimated, and predicted temperature tra-
jectories of a single TCL. During the first 36 minutes, there is practi-
cally no difference between the MHSE and the model-based predictor.
At this point, the estimator notices a significant mismatch between the
expected and actual aggregate power. Afterwards, the temperature es-
timate converges to the actual value and the MHSE clearly outperforms
the predictor. Notice that even small process noise can lead to signifi-
cant discrepancy between the actual and predicted trajectories due to
the on/off type of operation of TCLs.

The quality of estimates provided by the MHSE and the predictor at
each time step t is quantified using the Mean Absolute Error (MAE)
for the temperatures and the 1-norm error (L1) for the on/off states,
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Figure 8.4: The evolution of the actual, predicted and estimated tempera-
ture trajectories of a single TCL.

which are defined according to

MAEt = 1
nap

nap∑
i=1
|xic,t − x̂ic,t| , (8.38)

L1,t =
nap∑
i=1
|xil,t − x̂il,t| . (8.39)

The evolution of estimation errors over time is shown in Fig. 8.5. The
on/off state of each TCL is almost always correctly estimated by the
MHSE, whereas the predictor produces significant errors. Although the
on/off estimate diverges from the actual state around the 42nd minute,
afterwards the estimation error goes to zero. Therefore, even in case of
temporary wrong estimates, the on/off state estimates eventually con-
verge to the actual states. The temperature prediction error generally
increases with time, whereas the MHSE temperature estimation error
is kept at lower values. A perfect temperature estimation is not pos-
sible because the estimator retrieves information only when differences
between the predicted and measured power occur. In between, the tem-
perature estimation error might grow depending on the process noise.
The optimal estimation period N depends on the aggregation size and,
in practical applications, would likely be determined by real-time com-
putational limitations. For these reasons, we do not choose N based
on the observability tests proposed in [165], but select it empirically.
Figure 8.6 shows results from simulations with nap = {10, 20, 30} and
N = {5, 10, 15, 20}. To ensure a fair comparison, exactly the same pro-
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Figure 8.5: Evolution of the estimation errors for a population of 20 TCLs.
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Figure 8.6: Dependence of the estimation error on the estimation horizon
N for different TCL aggregation sizes.

cess noise time series were used to simulate a given aggregation for each
value of N .
In all cases, an horizon of N = 10 performs very well, while further
increasing N does not reduce the estimation errors. Shorter horizons
degrade the estimation quality for aggregations of 20 or 30 TCLs; how-
ever, for very small aggregations of 10 TCLs even an horizon of N = 5 is
enough. Note that since we have considered specific TCL aggregations
and process noise time series, these results are only meant to provide
intuition. More general conclusions regarding the best choice of N could
be obtained by Monte Carlo simulations.
The problem (8.33)-(8.37) can be solved quickly for the aggregation sizes
considered here. Table 8.6 shows how the average computation time
(first number) and the maximum computation time (second number)
depend on nap and N . Not surprisingly, increasing nap or N leads to
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Table 8.6: Mean/max computation time (in seconds)

nap N = 5 N = 10 N = 15 N = 20
10 0.06/0.23 0.09/0.36 0.12/0.40 0.17/0.49
20 0.10/1.93 0.15/0.47 0.28/0.76 0.42/1.01
30 0.20/4.15 0.27/0.96 0.47/1.34 0.72/1.74

longer solution times. Note that increasing N has a larger impact on
the computation time since this introduces more binary variables in
the problem. The reported computation times are likely acceptable for
real-time estimation applications.

8.6.2 Controlled Operation without Measurement
Noise

In the second investigation, we perform state estimation on a TCL ag-
gregation that is externally controlled to track a power trajectory. The
purpose of this investigation is to quantify the improvement of con-
troller’s performance with better TCL state estimates. We consider the
same 20 TCLs of Section 8.6.1 and run a simulation over 20 minutes
with m1 to m4 equal to 1, m5 = m6 = 0, N = 10, Tm = 20, vt = 0, and
the same process noise parameters as in Section 8.6.1. Since Tm and
the simulation horizon are both equal to 20 minutes, there are no TCL
measurements received apart from the initial measurements.
We control the TCL aggregation using the controller of Section 8.4. We
calculate the power trajectory Pset by superimposing a random signal
upon the predicted TCL aggregation baseline, i.e., the power trajectory
without external control actions, as in [21,156].
The model-based predictor leads to an MAE of 6.40 kW, whereas the
MHSE method reduces the MAE to 4.04 kW, which represents an im-
provement of about 37%. The absolute tracking errors for both cases
are shown in Fig. 8.7a. Note that we have smoothed the error time se-
ries using a moving window of 1 minute to enhance the visibility of the
trend. Fig. 8.7b shows the broadcasted control signal SOCth for both
cases. One can see that the improved state estimates with MHSE also
lead to less aggressive control signals compared with the model-based
prediction approach.
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(b) Broadcasted control signal.
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(c) Estimation and prediction errors.

Figure 8.7: Closed-loop control of 20 TCLs with MHSE, with process noise
but without measurement noise.

Figure 8.7c shows the evolution of estimation errors over time. The
on/off state estimation error of the MHSE method is generally larger
than the values reported in Section 8.6.1 due to the external control
actions. There exist intervals where the estimates of the on/off state
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and temperature produced by the MHSE method are worse than those
produced by the model-based predictor. However, the controller per-
forms better with MHSE than with prediction during the same intervals,
which indicates that the MHSE improves controller performance even
with temporarily poor TCL-level state estimates.

8.6.3 Controlled Operation with Measurement Noise

In the third investigation, apart from the process noise (wt), we addi-
tionally consider measurement noise (vt). We assume that wt and vt
follow zero-mean normal distributions with known variances, no auto-
correlation, and no correlation between TCLs. In this case, the last two
terms of (8.33) become

m5

nap∑
i=1

1
σiw

∣∣∣µ̂iw,k|t − µiw∣∣∣+m6
1
σv

∣∣µ̂v,k|t − µv
∣∣ , (8.40)

where σiw is the process noise standard deviation for TCL i, and σv
is the measurement noise standard deviation. The mean values of the
process and measurement noise are fixed to µiw = µv = 0. In this case
Q is diagonal.
Measurements of TCL states are assumed to be available every Tm =
15 minutes. We fix m1 = 108 such that the first term of (8.33) is a soft
constraint, and we set m2 to m6 equal to 1. The choice of m4 is critical
for the convergence of the estimator [173], and an empirical investigation
showed that m4 = 1 leads to a good performance. Similarly to the
previous case studies, we set the estimation horizon to N = 10.
Consider a population of 20 TCLs connected to a substation along with
other uncontrolled loads, and assume a TCL coincident load equal to
20% of the total substation load Psub. Assume σw = 10−3 and σv =
0.02 ·Psub, where the measurement noise is given as a percentage of Psub
since it represents the prediction error of the uncontrolled demand.

Open-Loop Controller with Random Control Signals

We run simulations for 15 minutes using an open-loop controller that
broadcasts the random control signals

st = |st−1 − rs| (8.41a)
SOCth,t = SOCth,t−1 − rsoc(−1)st , (8.41b)
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where rs ∈ {0, 1} is a Bernoulli random variable with success probability
Ps, and rsoc ∈ [0, Rsoc] is a continuous uniformly distributed random
variable. The parameter Ps is the probability with which the control
direction changes between two consecutive time steps. The parameter
Rsoc describes the change in the control signal magnitude between two
consecutive time steps. Therefore, higher values of Ps and/or Rsoc result
in more aggressive control actions. In this chapter, two different forcing
levels are investigated: (a) a low forcing scenario with Ps = 0.1, and (b)
a high forcing scenario with Ps = 0.5. In both cases, we fix Rsoc = 0.025.

TCL Clustering for Estimation Evaluation

The estimation quality is evaluated using as indicators the estimation
errors of temperature, on/off mode, and aggregate power consumption
at each time step. Depending on the measurement noise level, a group
of TCLs with similar power ratings might not be distinguishable by
the MHSE method. However, what matters most is to estimate the
aggregate power and the SoC of the group.
For this reason, we cluster the TCLs according to their power ratings
and use these clusters to assess the estimation quality. Let us denote
the number of clusters by ncl, cluster i by CLi, and define its SoC as

SOCCLi,t =
∑
j ∈ CLi(x

j
c,t −mj)∑

j ∈ CLi(M j −mj) . (8.42)

The estimated SoC of cluster i can be defined similarly using x̂jc,t. We
define the SoC and on/off mode estimation errors as

εsoc,t =
ncl∑
i=1

∣∣∣SOCCLi,t − ˆSOCCLi,t

∣∣∣ (8.43)

εon/off,t =
ncl∑
i=1

∣∣∣∣∣∣
∑

j ∈ CLi

ujt −
∑

j ∈ CLi

ûjt

∣∣∣∣∣∣ . (8.44)

We define the TCL aggregate power estimation error as

εagg,t = C2xt −C2x̂t . (8.45)

The MAE over the simulation horizon Nsim is computed with MAE =
(1/Nsim) ·

∑Nsim
t=1 |εt|, where εt is any of εsoc,t, εon/off,t, and εagg,t.
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Figure 8.8: Estimation errors for the MHSE and the model-based predictor
in a simulation with the external open-loop controller (8.41).

Indicative Simulation Results

In Fig. 8.8 we present estimation results for the MHSE and the model-
based predictor from a simulation with the external open-loop controller
(8.41). High controller forcing (Ps = 0.5) and ncl = 5 clusters are as-
sumed in the simulation. The MHSE method provides better estimates
compared with the model-based predictor most of the time, and it re-
duces MAEsoc by 13%, MAEon/off by 19%, and MAEagg by 47%.

8.6.4 Benchmarking of MHSE Method

In this section, we benchmark the MHSE method against the model-
based predictor for different process and measurement noise levels, and
different controller forcing levels. The goal is to provide insights on
the noise levels that could be handled by the estimator in real-world
applications.
We consider the three process noise levels σw = {5·10−4, 10−3, 5·10−3},
referred to as “low”, “medium”, and “high” process noise, and the four
measurement noise levels σv = {0, 0.02, 0.05, 0.1} ·Psub, referred to as
“zero”, “low”, “medium”, and “high” measurement noise. In addition,
we consider a low controller forcing level with Ps = 0.1 and a high forcing
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(a) Histograms of SoC estimation improvement.
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Figure 8.9: Comparison of MHSE method versus the model-based predic-
tion approach for high forcing control. The light-colored lines
indicate the medians of performance improvement.
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Figure 8.10: Comparison of MHSE method versus the model-based predic-
tion approach for low forcing control. The light-colored lines
indicate the medians of performance improvement.
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level with Ps = 0.5. This leads to a total combination of 24 simulation
cases for each of which we run 200 simulations with randomly generated
TCL populations and noise realizations.

Figure 8.9 shows the histograms of estimation improvement for the high
forcing case, where the light-colored lines correspond to the medians.
We quantify the improvement of estimation performance according to

−100 · MAEest −MAEpred

MAEpred
% , (8.46)

where MAEpred is the MAE of the model-based predictor and MAEest
is the MAE of the estimator. With the exception of the cases {low w,
zero v} and {medium w, zero v}, the MHSE method does not improve
the SoC estimates. This is because the TCL temperatures cannot be
observed directly, but only through the on/off mode estimates. How-
ever, even with poor SoC estimates, the MHSE estimates the on/off
modes and aggregate power better than the model-based predictor for
most of the cases.

If there is no measurement noise (v = 0), the MHSE method drastically
improves the estimation quality, especially in terms of aggregate power.
For all cases with low v and for the case {high w, medium v}, the
estimates of the on/off modes and aggregate power generally improve,
resulting in positive medians in the range 1.1%− 33.9%. Interestingly,
for the case {high w, low v} the MHSE method achieves better aggregate
power estimates for all 200 scenarios, and better on/off mode estimates
for 87% of them. On the other hand, for all cases with high v, the
MHSE method performance is poor.

Figure 8.10 shows the results for on/off mode and aggregate power esti-
mation for the low forcing case. For SoC estimates and for all cases with
zero or high v, we observed patterns similar to those seen in the high
forcing case and thus those histograms are omitted. The MHSE method
outperforms the model-based prediction only for the cases {medium w,
low v}, and {high w, low v}. Also, note that the resulting improvement
is worse than in the high forcing cases. This provides useful intuition:
the higher the forcing level is, the more information is retrieved from
the aggregate power measurements improving the estimation quality.
Overall, our results indicate that the MHSE method performs better in
applications with high process and low measurement noise, irrespective
of the forcing level.
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Figure 8.11: The standard SFC as well as its high and low frequency com-
ponents.

8.6.5 Application of MHSE in SFC

In the last case study we investigate the value of MHSE in SFC. Con-
sider a population of nap TCLs evenly distributed among nsub distri-
bution substations. Based on the results of Section 8.6.4, we select
σw = 5 · 10−3 (high process noise) and σv = 0.02 · Psub (low measure-
ment noise), and fix the noise realizations. The desired setpoint is a
function of the baseline consumption of the TCL population Pb,t, the
control band α, and the normalized control signal Yt (it takes values in
the range [−1, 1])

Pset,t = Pb,t + αYtPb,t . (8.47)

We test two control signals: (a) an extract of the Swiss SFC signal
from 2009 with α = 0.5, and (b) the high-frequency component of the
same signal obtained by applying a high-pass filter with cutoff frequency
1/30 Hz and α = 3. Both signals are shown in Fig. 8.11. The reason why
we investigate (b) is that a larger control band can be offered without
energy constraint violations, and more forcing will be necessary, which
is expected to improve the estimation/control performance according to
Section 8.6.4.
A controller with MHSE is compared against a controller with the
model-based predictor, using Methods A and B to calculate P̂agg,t –
see (8.24) and (8.25). We consider a reference case with perfect TCL
state information that gives us a performance bound. Two aggregation
sizes are considered: nap = 40 TCLs distributed among nsub = 2 sub-
stations, and nap = 400 TCLs distributed among nsub = 20 substations.
All simulations are performed for 1 hour with a time step of 10 seconds.



8.6. Performance of the MHSE Method 207

0 10 20 30 40 50 60
0

50

100

150
A

bs
ol

ut
e 

tr
ac

ki
ng

er
ro

r 
(k

W
)

 

 

MHSE Prediction

0 10 20 30 40 50 60
0

0.5

1

Time (min)

C
on

tr
ol

si
gn

al
s 

(−
)

 

 

s SOC
th

Figure 8.12: Tracking performance and broadcasted control signal for the
standard SFC signal.
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Figure 8.13: Tracking performance and broadcasted control signal for the
high frequency part of the SFC signal.

We assess the controller’s performance by calculating the Root Mean
Squared Error (RMSE) between the desired setpoint and the TCL ag-
gregate power consumption, and we summarize the results in Table 8.7.
For all cases, the MHSE method outperforms the model-based predictor
resulting in lower RMSE values. The improvement is more pronounced
for the high-frequency signal due to higher forcing, which is consistent
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Table 8.7: RMSE values for setpoint tracking in SFC

2 Substations 20 Substations
P̂agg,t Method A B A B

Standard SFC
Reference (kW) 2.21 N/A 2.13 N/A
Prediction (kW) 11.84 16.40 31.66 36.67
MHSE (kW) 10.26 14.56 28.55 35.09
Improvement (%) 13.34 11.22 9.82 4.31

High frequency part of SFC
Reference (kW) 2.29 N/A 2.18 N/A
Prediction (kW) 23.29 18.26 75.75 44.08
MHSE (kW) 18.13 15.67 55.18 40.18

Improvement (%) 22.16 14.18 27.16 8.85

with the results of Section 8.6.4.
Interestingly, the best way to calculate P̂agg,t depends on the signal. For
the standard SFC signal Method A (based on the estimated states) is
preferable, whereas for the high-frequency signal Method B (based on
the aggregate power measurements) performs better. The reason is that
the higher the frequency content of the signal, the higher the signal-to-
measurement noise ratio; therefore, the aggregate power measurements
P imeas,t can be trusted more.
The above observations are valid for both nsub = 2 and nsub = 20. The
best results for each case are highlighted with bold font in Table 8.7.
Overall, the MHSE method reduces the RMSE by approximately 14%
for nsub = 2 and 9% for nsub = 20.
The tracking performance and the broadcasted control signals for nsub =
20 are shown in Figs. 8.12 and 8.13. Note that the high-frequency signal
results in a more aggressive st time series, and therefore the SOCth
values are much closer to 0.5, compared with that of the standard SFC
signal.
Table 8.8 shows the average number of switching actions per TCL for the
highlighted cases of Table 8.7. Similarly to Table 8.7, in the reference
case the TCL states are known at every time step. For the standard SFC
signal, MHSE slightly increases the number of switching actions com-
pared to the model-based predictor. However, for the high-frequency
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Table 8.8: Average number of switching actions per TCL

2 Substations 20 Substations
Standard SFC

Reference 3.82 2.56
Prediction 3.93 2.57
MHSE 4.63 2.63

High frequency part of SFC
Reference 10.40 9.57
Prediction 23.23 10.69
MHSE 17.68 9.43

signal, MHSE significantly reduces the number of switching actions, in
particular for nsub = 2. In this case, MHSE not only improves the
controller’s performance, but also decreases the wear on TCLs.
Beyond filtering the SFC signal, there are additional ways to increase
the forcing levels to improve the MHSE/controller performance. For
example, the TCL population could be divided into two groups, each
tasked with following a high frequency signal that sum to the original
SFC signal. Additionally, one could add an artificial signal to the SFC
signal, and that signal could be balanced by another resource.

8.7 Conclusion

In this chapter, we presented an MHSE method to extract the tem-
peratures and on/off states of individual loads in a TCL aggregation.
The method assumes a two-way constrained communication infrastruc-
ture between an aggregator and each TCL, and is designed to work
with realistic measurements, i.e., real-time noisy aggregate power mea-
surements from distribution substations and TCL state measurements
from smart meters that arrive at lower frequency intervals. We also
proposed a scalable hierarchical closed-loop controller for SFC provi-
sion with TCLs, which uses the MHSE method and is based on signal
broadcasts.
We demonstrated the performance of the MHSE method under differ-
ent process and measurement noise characteristics and controller forc-
ing levels, and benchmarked it against a simpler model-based predictor.
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Simulations showed that the MHSE method provides accurate estimates
for a certain spectrum of process and measurement noise. Addition-
ally, our investigations revealed some interesting observations: (i) the
MHSE method works better with aggressive control trajectories; (ii) the
controller can achieve good tracking even with temporarily poor state
estimates for individual TCLs; and (iii) for aggregation sizes up to 30
TCLs, an estimation horizon N = 10 is a reasonable tradeoff between
estimation accuracy and computation time.
There are several interesting avenues for future work. For example, one
can analyze the convergence properties of the proposed MHSE method
from a theoretical point of view. Moreover, the proposed method can
be extended to include different types of noise distributions and auto-
correlation.



Chapter 9

Secondary Frequency
Control with
Commercial Buildings

9.1 Introduction

The goal of this chapter is to develop methods to allow aggregations
of commercial buildings to participate in Secondary Frequency Control
(SFC). The Heating, Ventilation and Air Conditioning (HVAC) systems
of commercial buildings are widely considered for Demand Response
(DR) applications in the literature because they provide a number of
advantages. First, commercial buildings are responsible for a signif-
icant percentage of the total energy consumption (for example, 20%
in the USA), whereas the HVAC system represents a large percentage
of a building’s overall energy consumption (for example, 50% in the
USA) [174]. Second, commercial buildings typically have a large ther-
mal inertia and therefore changes in heating and cooling power are not
instantaneously realized by the occupants. Third, many buildings (for
example, one third of them in the USA [120]) are equipped with a Build-
ing Automation System (BAS) that facilitates DR implementation.
Chapter 4 provided a detailed literature review of early work on mod-
eling [112, 113], load shifting [9–13], and recent work on SFC track-
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Table 9.1: Nomenclature of Chapter 9: symbols

Symbol Unit Description
Āw - Matrix of polyhedral constraint
a - Auxiliary variable to describe L2

b̄w - Vector of polyhedral constraint
b - Auxiliary variable to describe L2
c CHF/kWh Electricity price
d - Binary variable to denote the on/off HP state
H - Affine disturbance feedback matrix
h W/m2 Scheduled heat flux by the HP if w = 0
L - Number of buildings in the aggregation

L1, L2 Wh/m2 Lost thermal energy due to HP dynamics
Ns - Total number of samples for chance constraints
Nst s Prediction horizon of short-term capacity allocation

N1, N2 hours Prediction horizon of reserve scheduling and MPC
nu, nd - Up and down rate limits of the HP
P W HP electric power
r W/m2 Symmetric reserve capacity in the heat flux domain
re W/m2 Symmetric electric reserve capacity

r+, r− W/m2 Down- and up-reserve capacity in heat flux domain
S - Sample size for chance constraints

su, sd - Auxiliary continuous variables to model HP constraints
TD, TU h Minimum HP down- and up-time

u W/m2 or - Vector of HVAC system control inputs
us,uth W/m2 HP thermal power setpoint and actual value
ulth W/m2 HP thermal power based on the linear model
v ◦C or W/m2 Vector of weather and occupancy disturbances
w - Uncertain SFC signal (scalar)
w - Uncertain SFC signal along an horizon (vector)
x ◦C Vector of building states
T h Averaging period of energy-constrained SFC signals
α, σ - Auxiliary variables for the poles of the HP model
∆u W/m2 Heat flux disturbance due to SFC

ε+, ε− - Bias coefficients of energy-constrained SFC signals
ε - Violation probability for the chance constraints
λ - Dual variable of an optimization problem

λc, λe CHF/kW/h Reserve capacity and reserve energy payment
λ1, λ2 - Poles of the HP thermal model
ρ - Correlation of two random variables
τd s Dead-time of the HP model
τf s Lower cutoff period of the band-pass filter

τ1 − τ4 s Time constants of the HP model
ξ - Efficiency vector for HVAC control inputs

ing [118–122, 131]. More relevant to this chapter are [123–125] that
proposed methods to estimate the SFC reserve capacity of individual
commercial buildings.

We follow this line of research and investigate how SFC reserves can
be provided by aggregations of commercial buildings. The problem we
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Table 9.2: Nomenclature of Chapter 9: sets and probability operators

Operator Description
U Constraint set for HVAC inputs
X Constraint set for building states

WPC Uncertainty set for conventional SFC signals
WPEC Uncertainty set for energy-constrained SFC signals
cov [·] Covariance of random variables
E [·] Expected value of a random variable
P [·] Probability of a random variable

Table 9.3: Nomenclature of Chapter 9: subscripts and superscripts

Symbol Description
b Building index within the aggregation
d Desired power of HP aggregation
i Row index in a matrix constraint

k, j, l Time indexes
Lv2, Lv3 HVAC setpoints in level 2 and level 3
min, max Minimum and maximum values of a variable

s Short-term power schedule of HP aggregation
∗ Optimal value of a variable

+,− Down- and up-reserve in levels 1 and 2
↑, ↓ Down- and up-reserve in the short-term capacity allocation

(·), (·) Upper and lower bound on a variable
[·]+, [·]− Caps a variable to non-negative and non-positive values

consider is how a building aggregation can determine the amount of
reserves it can collaboratively offer, and how the buildings should be
controlled to achieve reserve provision without (or with minimal) occu-
pant discomfort.
For this purpose, we develop a control framework for scheduling and pro-
vision of SFC reserves that relies on a three-level hierarchical control
scheme. In level 1 an aggregator determines the aggregation’s reserve
capacity, in level 2 a robust Model Predictive Control (MPC) scheme op-
timizes the building’s HVAC system setpoints, and in level 3 a feedback
controller tracks the SFC signal. The proposed framework can handle
energy-constrained SFC signals, i.e., signals that are not zero-mean but
their integral over time is bounded, and it additionally allows us to
model the SFC signal with scenarios generated from available statistics.
The remainder of this chapter is organized as follows. In Section 9.2
we provide a high-level introduction to the control framework and in
Section 9.3 we introduce the building models. Sections 9.4, 9.5, and
9.6 present the control formulations in the three levels of the hierarchy.
Sections 9.7, 9.8, 9.9, and 9.10 present extensive simulation and sensi-
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tivity analysis results, Section 9.11 discusses practical implementation
aspects, and Section 9.12 concludes. The methods and results of this
chapter are based on [175–178]. The nomenclature of this chapter is
given in Tables 9.1 - 9.2, and bold symbols correspond to vectors and
matrices.

9.2 Reserve Scheduling and Provision
Framework

9.2.1 Problem Statement and the Role of Aggrega-
tion

The framework’s goals are (a) to enable an aggregation of buildings to
schedule the reserve capacity that they can collaboratively offer to the
Transmission System Operator (TSO), and (b) to operate the buildings
such that the reserves are provided with sufficient accuracy. This is a
challenging task for a number of reasons. First, the reserve capacity
must be reliably available at any time. Second, to provide reserves the
buildings must deviate from the energy-optimal operation [177], and so
there exists a tradeoff between maximizing the amount of reserves and
minimizing energy consumption. Third, reserve provision should not
compromise the primary goal of building control, which is to maintain
an acceptable comfort level for the occupants. And last, tracking the
SFC signal should not rely on excessive communication between the
TSO and the buildings to facilitate real-world implementations.
In contrast to [122,123,127,133,179] that assumed individual buildings
participating in the reserve market, we are interested in building aggre-
gations for two main reasons. First, aggregators act as intermediaries
between the reserve market and the buildings, and can take over the
following responsibilities: (i) determination of the reserve capacity and
bidding in the market, (ii) interaction with the TSO during reserve acti-
vation, and (iii) a-posteriori financial settlement with the TSO. Without
an aggregator, these tasks would be a large overhead for the building
managers.
Second, many reserve markets have requirements on the minimum size
of the reserve bid, which cannot be met by individual buildings [70].
Moreover, reserve markets usually have additional requirements such as
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Figure 9.1: Overview of the control framework. Thin arrows are real-time
signals (level 3), thick arrows are signals every 1 hour (level 2),
and thick-dashed arrows are daily signals (level 1).

symmetric bids (equal up- and down-reserve capacities)1, and minimum
duration of the bid capacity. If each building calculated its capacity sep-
arately and without any coordination, it would be very unlikely that the
aggregate reserve capacity meets the aforementioned requirements. In
contrast, an aggregator can exploit the different building characteristics
and coordinate the reserve allocation to meet these requirements and
maximize the reserve capacity.

9.2.2 Hierarchical Control and High-Level Problem
Formulation

To address the aforementioned challenges, we develop the hierarchical
control scheme of Fig. 9.1, which consists of three levels. Level 1 is
related to reserve scheduling, level 2 to building control, and level 3 to
SFC signal tracking.

1In the context of SFC, the term up-reserves denotes increase of a generator’s pro-
duction or decrease of a load’s consumption to increase system frequency. Similarly,
the term down-reserves denotes decrease of a generator’s production or increase of
a load’s consumption to decrease system frequency.
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Level 1 - Reserve Scheduling

On a daily basis, an aggregator determines the optimal reserve capacity
of the building aggregation, as well as the contribution of each building
to the total capacity. The aggregator’s goal is to minimize the total
cost along the scheduling horizon defined as the sum of electricity cost
and profit in the reserve market. The reserve capacity is determined
by solving a centralized optimization problem given electricity and re-
serve costs, the current building states, and predictions of disturbances.
The reserve scheduling optimization problem incorporates the building
dynamics, the HVAC system and comfort constraints, and market re-
quirements such as symmetry of the reserve capacity.

Level 2 - Building Control

In this level, control setpoints for the HVAC system are determined
locally at each building typically every 15 minutes to 1 hour. This is
achieved by an MPC controller with the goal of minimizing energy con-
sumption, while leaving enough slack to provide reserves, if requested.
The MPC formulation is similar to level 1 and uses as inputs the elec-
tricity cost, the current building states, predictions of disturbances, as
well as the reserve capacities fixed by the aggregator in level 1.

Level 3 - SFC Signal Tracking

In real time (typically every few seconds), the TSO sends the SFC signal
to the aggregator who passes it to the buildings, possibly after appro-
priate filtering. Each building modifies the power consumption of the
HVAC system to track the signal using a feedback controller. For this
purpose, we rely on control of the Heat Pump (HP) electric power by
modifying the refrigerant’s flow rate via valves [118]. The reference
power of the HP controller at each time step is calculated based on (i)
the MPC setpoint from level 2, (ii) the building’s reserve capacity from
level 1, and (iii) the SFC signal.
It is important to note that there is no communication between the
aggregator and the buildings in level 2. In level 3 the only necessary
communication is the SFC signal broadcast, but no state feedback from
the buildings to the aggregator is needed. This is a merit of the central-
ized formulation in level 1, which reduces the communication burden in



9.3. Modeling 217

real time to a minimum. Detailed mathematical formulations for levels
1, 2 and 3 of the control framework will be presented in Sections 9.4,
9.5 and 9.6.

9.3 Modeling

An appropriate building model for our application should consider both
the slow thermal dynamics, i.e., the heat transfer and temperature evo-
lution within the building, as well as the HP fast electric dynamics, i.e.,
the HP’s response to step changes in the power reference during reserve
provision. Developing a single model that accounts for both the slow
and fast dynamics would be rather impractical, and it is not necessary.
The thermal model is needed in levels 1 and 2 to predict the temperature
evolution using time steps in the range 15 min to 1 hour. The HP electric
dynamics are much faster and, due to the time-scale separation, we can
assume that the HP operates at steady-state during each time step of
levels 1 and 2. Therefore, we develop a fast HP model for use in level
3, and a separate thermal model for use in levels 1 and 2 in which the
HP’s steady-state depends on the properties of the fast HP model.

9.3.1 Slow Thermal Building Dynamics

We consider buildings where heating, cooling, ventilation, blinds, and
lighting are jointly controlled with MPC, and represent their thermal
dynamics using the 12th order multiple-input-multiple-output bilinear
model presented in Section 2.2.1. Using an established sequential lin-
earization approach [24], the model can be transformed to a linear time-
varying system of the form

xk+1 = Axk +Bu,kuk +Bv,kvk +R∆uk . (9.1)

The vector xk ∈ Rnx denotes the model states at time step k, i.e., the
room, wall, floor and ceiling temperatures, all measured in ◦C. The
vector uk ∈ Rnu , denotes the HVAC control inputs, i.e., heating and
cooling power, ventilation, blind position, and lighting. We model the
effect of heating and cooling on system states using the heat fluxes as
control inputs in the thermal model instead of the HP control command,
which simplifies the model significantly and is justified by the time-scale
separation explained before. The heat fluxes and the lighting power are
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normalized by the floor area and measured in W/m2, whereas the blind
position is a number between 0 (fully closed) and 1 (fully open).

There are two sources of disturbances that affect the building states.
First, weather and occupancy disturbances (denoted by vk ∈ Rnv ),
namely the ambient temperature in ◦C, solar radiation in W/m2, and
internal heat gains by occupants and equipment in W/m2. Second, the
SFC signal wk is also a disturbance because it modifies the HP con-
sumption during reserve provision and consequently perturbs the heat
fluxes in the building. We denote by ∆uk ∈ Rnr the heat flux distur-
bance due to the SFC signal, where nr ≤ nu is the number of actuators
that provide reserves.

A building can provide up-reserves by decreasing its consumption, and
down-reserves by increasing it. Let us denote by re,k the electric reserve
capacity of the building at time step k. Since the HVAC control input
for heating and cooling is defined as a heat flux, it is convenient to define
also the “thermal” reserve capacity rk (in W/m2). The electric reserve
capacity re,k can be obtained from rk by division with the Coefficient of
Performance (COP). For notational convenience, we use the variable rk
in the problem formulations and call it simply reserve capacity, keeping
in mind that it is actually the “thermal” reserve capacity. Typically, the
TSO requests the reserve energy from the reserve providers as a per-
centage of the reserve capacity by broadcasting a normalized SFC signal
wk ∈ [−1, 1]. Therefore, the heat flux disturbance can be parameterized
as ∆uk = rkwk.

The thermal model (9.1) is used in level 1 to determine the capacities
rk, and in the MPC of level 2 to calculate the optimal HVAC control
inputs uk. Reserve provision is subject to HVAC input and comfort zone
constraints of the form umin ≤ uk+∆uk ≤ umax and xmin ≤ xk ≤ xmax,
respectively, that we write compactly as

Uk = {uk : G(uk + ∆uk) ≤ g} (9.2)
Xk = {xk : Fxk ≤ f}, (9.3)

for appropriate matrices G and F and vectors g and f . Note that the
bounds on xk can be time-varying (Fk, fk) to account for comfort zone
setbacks during non-working hours.

To allow for more flexibility when determining uk and rk, we parame-
terize the heating/cooling control inputs based on past reserve requests
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with the affine disturbance feedback on wk

uk = hk +
∑k−1

j=0
Hk,jwj , (9.4)

where hk is the scheduled input (the heat fluxes that would occur if
the SFC signal was zero), and Hk,j ∈ Rnu for j ∈ [0, k − 1] are column
vectors that comprise the feedback policy matrix H ∈ Rnu×k. Although
an affine disturbance feedback could be also applied for the weather and
occupancy disturbances vk, this is not done here because it has been
widely explored in the literature of building climate control [24].

9.3.2 Fast Heat Pump Dynamics

We consider buildings with water-based HVAC systems, where water is
heated or cooled centrally with an HP, and then distributed to differ-
ent zones via pipes.2 The desired heat flux uk in (9.1) is obtained by
controlling the HP’s thermal power output, which depends on the com-
pressor’s electric power consumption. Using the COP, we can calculate
the necessary compressor power to obtain the desired heat flux. On the
device level, the compressor power can be controlled by modifying the
refrigerant’s flow rate via valves or inlet guide vanes.3

In this chapter, we do not rely on a first-principles model to describe
the relationship between the refrigerant’s flow rate and HP power. In-
stead, we assume that a low-level controller controls the flow given a
compressor power reference, and we derive a data-driven model for the
closed-loop system with the power reference as an input and the ac-
tual electric and thermal power as outputs. The model is non-linear
and consists of linear terms and dead-times that capture the delays in
mechanical and electrical parts (valve, compressor, motor), as well as
a rate limiter to account for the non-linearity in the response. The

2Water-based HVAC systems are very common in Europe. The consumption of
water circulation pumps is typically small, and the fresh air flow rate is usually con-
stant to avoid occupants’ discomfort, thus reserves are offered by the HP. However,
the control framework of Sections 9.4, 9.5 and 9.6 applies also to air-based systems.

3Using inlet guide vanes is a standard practice to control the power of fixed-
speed centrifugal compressors. In case of compressors with variable speed drives,
higher efficiency can be achieved by combined control of the inlet guide vane position
and compressor speed [180]. The part load operation of the compressor affects its
efficiency and the overall COP in a non-linear way [118]. However, a constant COP
is assumed in this thesis because a non-linear COP model would result in non-convex
optimization problems.
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Figure 9.2: Overview of the heat pump and building thermal dynamics.
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Figure 9.3: HP step response. Left: Electric power from the non-linear
model. Right: Thermal power from both the non-linear and
the linearized model.

model is shown in Fig. 9.2, where τ1− τ4 are time constants fitted using
experimental data from [118].
In Fig. 9.3, we show the HP’s electric power response Pk(t) and the
thermal power response uth,k(t) to a step-up reference4 us,k. Notice
that there is a significant delay between us,k and uth,k(t): the HP needs
200 seconds to reach the new thermal power setpoint. The building
thermal model (9.1) assumes that the HP operates in steady-state, i.e.,
that the setpoint us,k has been reached. Since the time it takes to reach
the setpoint is not negligible, and because the effective thermal power
provided to the building is less than the desired setpoint during the
transient phase, the model (9.1) will overestimate the building temper-
ature. Therefore, the HP delay must be considered when determining
the reserve capacities and HP schedules in level 1 and level 2 to ensure
occupants’ comfort.
However, it is not necessary to account for the exact dynamic evolution
of uth,k(t). This would require a time step in the order of seconds in
level 1 and level 2, and would drastically increase the computational

4The thermal power setpoint us,k is the heat flux created by the HP, and it is
part of the HVAC control input vector uk in (9.1).
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complexity. Instead, it is sufficient to estimate the amount of “lost
thermal energy” in the right plot of Fig. 9.3, i.e., the area between
the reference power (curve with circles) and the actual thermal power
(dashed curve), and account for it in level 1 and level 2. An approach
to do so is presented in the next section.

9.3.3 Accounting for Heat Pump Dynamics in the
Thermal Model

The lost thermal energy due to HP dynamics consists of two parts L1(t)
and L2(t). The first part L1(t) is due to the HP dead-times and corre-
sponds to the dark-grey area in Fig. 9.3, whereas L2(t) is due to the HP
delays and rate limits and corresponds to the light-grey area in Fig. 9.3.
We propose to account for L1(t) and L2(t) in three steps: (a) linear
approximation of the HP thermal dynamics, (b) analytical expression
for L1(t) and L2(t) based on the linear model, and (c) augmentation of
the state vector of building model (9.1) to include L1(t) and L2(t).
The first step is to approximate the thermal HP dynamics with an over-
damped 2nd order linear model with a dead-time τd and two negative
real poles λ1 and λ2 given by

λ1,2 = −σ ± α (9.5)
σ = ω0ζ (9.6)
α = ω0

√
ζ2 − 1 , (9.7)

where ζ > 1 is the damping ratio and ω0 is the natural frequency. We ex-
pose the non-linear HP model of Fig. 9.2 to a sequence of step commands
and identify the parameters ζ and ω0 that maximize the fit between the
linear and non-linear models. The step response of the identified linear
model is shown with the solid curve in Fig. 9.3. Neglecting the dead-
time, the linear model’s thermal power output y(t) = ulth,k(t) for a step
input us,k and with initial conditions y(0) = us,k−1 and ẏ(0) = 0 is the
solution of the Ordinary Differential Equation (ODE)

ÿ(t) + 2ζω0ẏ(t) + ω2
0y(t) = ω2

0us,k . (9.8)

In a second step, the ODE is solved and y(t) = ulth,k(t) is analytically
derived. With reference to Fig. 9.3, the lost thermal energy L2(t) is
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calculated as the area between ulth,k(t) and us,k, which results in the
expression (the calculation steps are given in Appendix A)

L2(t) =
∫ t

0

[
ulth,k(τ)− us,k

]
dτ = a(t) · us,k−1 + b(t) · us,k , (9.9)

where the functions a(t) and b(t) are defined based on the linear model
parameters and are given by

a(t) = λ2 · (eλ1t − 1)
λ1 · (λ2 − λ1) −

λ1 · (eλ2t − 1)
λ2 · (λ2 − λ1) (9.10)

b(t) = 1
σ2 − α2 ·

[
2σ
[
1− e−σt cosh(αt)

]
−
(
σ2 + α2

α

)
e−σt sinh(αt)

]
.

(9.11)

Equation (9.9) describes the time evolution of the lost thermal energy
during the transient phase. Denote by ∆t the discretization time step
of level 1 and level 2. The cumulative lost thermal energy during ∆t
is obtained by evaluating the function L2(t) at t = ∆t. For notational
simplicity, we denote L2(∆t), a(∆t), and b(∆t) by L2, a, and b, respec-
tively, and so

L2 = aus,k−1 + bus,k . (9.12)

The dead-time τd is approximately 50 seconds and typically smaller than
∆t. Therefore, L1(t) for t = ∆t is equal to the area of the dark-grey
rectangle in Fig. 9.3

L1 = (us,k−1 − us,k)τd . (9.13)

The effective thermal power provided to the building can be written as

uth,k = us,k + L1 + L2 , (9.14)

where L1, L2 ≤ 0 because they represent lost thermal energy. The input
matrix of system (9.1) is Bu,k = [Br

k R], where R corresponds to the HP
input and Br

k corresponds to the rest of the actuators. Focusing only
on the HP, neglecting the disturbance terms, and using the derived
expressions for L1 and L2, the building thermal dynamics will evolve
according to

xk+1 = Axk +Ruth,k = Axk +R · (us,k + L1 + L2)
= Axk +R · (1− τd + b) · us,k +R · (τd + a)us,k−1 . (9.15)
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The last step of the procedure is to define

R̄ = R · (τd + a) (9.16)
R̃ = R · (1− τd + b) , (9.17)

and augment the state of the building thermal model as

x̂k = [x>k u>s,k−1]> , (9.18)

which leads to the linear model

x̂k+1 = Âxk + B̂kuk + Êvk + R̂∆uk, (9.19)

Â =
[
A R̄
0 0

]
, B̂k =

[
Br
k R̃

0 1

]
, Ê =

[
E
0

]
, R̂ =

[
R
0

]
. (9.20)

The presented approach allows us to introduce the lost thermal energy
due to fast HP dynamics in the building thermal model of level 1 and
level 2 in a tractable way. For simplicity, we drop the ·̂ notation for the
augmented state in the rest of the chapter.

9.3.4 Modeling of Uncertain SFC Reserves

The SFC signal is a disturbance for the buildings, and we treat it as
uncertain because it is unknown when the reserve capacities are de-
termined. The SFC signal uncertainty affects both the HVAC input
constraints (9.2) and the comfort constraints (9.3). In this section, we
discuss various approaches to model the reserve uncertainty.

HVAC Input Constraints

The TSO typically requests the reserves via a normalized frequency
signal wk ∈ [−1, 1], where wk = −1 and wk = 1 indicate full activation
of up- and down-reserves, respectively. In practice, the TSOs require
100% availability of the reserve capacity because reserves are critical for
power system security [72]. Thus, the heating and/or cooling actuators
should be always able to modify their power consumption as much as the
reserve capacity. Given a scheduling horizon N , the reserve uncertainty
can be mathematically described by the box set

WPC = {wk ∈ RN : ||wk||∞ ≤ 1} , (9.21)
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which represents the signal’s power bounds and is called Power Con-
straints (PC). To comply with the TSO requirements, we treat the
HVAC input constraints as robust constraints that need to be satisfied
for any wk ∈WPC.

SFC Signal with Energy Constraints

In order to facilitate the participation of energy-constrained resources
in frequency control, some TSOs offer reserve products for energy-
constrained SFC signals [73]. We model energy constraints as linear
constraints on the signal’s mean value along an averaging period T

−ε− ≤
1
T
·
t+T−1∑
k=t

wk ≤ ε+ , (9.22)

where ε+, ε−, are the bias coefficients for down- and up-reserves, re-
spectively. Equation (9.22) bounds the bias of the signal based on the
triplet (T, ε−, ε+), which is fixed by the TSO for a given product.
If we stack (9.22) along N , we get the polyhedral constraint on the
uncertainty Awwt ≤ bw, where Aw is a matrix with entries −1, 0 or
1, and bw is a vector with entries ε−T or ε+T . The power constraints
(9.21) are still present, since the full reserve capacity could be requested
anytime. Denote by IN the N-dimensional identity matrix, and by 1N
the N-dimensional vector with ones. Defining Āw = [Aw; IN ;−IN ] and
b̄w = [bw; 1N ; 1N ], the uncertainty set can be written as

WPEC = {wt ∈ RN : Āwwt ≤ b̄w} , (9.23)

which we call Power and Energy Constraints (PEC).

Comfort Constraints

Different modeling approaches can be used for the comfort constraints
depending on (a) how critical it is to respect the comfort zone, and (b)
whether the SFC signal is energy-constrained or not. In certain cases
(e.g., laboratories with sensitive equipment) the temperature might be
strictly constrained within a range. In such cases, the comfort con-
straints can be modeled as robust using (9.21) for conventional uncon-
strained SFC signals or (9.22) for energy-constrained signals.
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In most cases, however, respecting the comfort zone is not a critical
requirement. Indeed, it is typical in office building control to interpret
comfort constraints as chance (probabilistic) constraints that can be
violated with a predefined small probability [24]. In such cases, one
can think of wk as a random variable with an unknown probability
distribution, which can be approximated by generating scenarios based
on historical SFC signals (conventional or energy-constrained).

If comfort constraints are modeled as robust constraints, then in the
worst case wk will be an extreme point of the uncertainty set (9.21)
or (9.22). However, the realized wk will usually lie in the interior of
the set, and thus minimization for the worst-case realization will likely
result in conservative solutions. In contrast, a probabilistic approach is
expected to reduce the conservatism by disregarding scenarios that are
hardly ever realized.

9.3.5 Weather, Occupancy, and Price Uncertainty

Apart from the SFC signal, there are two other sources of uncertainty
in our problem: (a) weather and occupancy uncertainties, i.e., devia-
tions from the predicted values, and (b) electricity and reserve price
uncertainties. For simplicity, weather and occupancy predictions are
assumed perfect in the formulations of Sections 9.4 and 9.5. There ex-
ist approaches in the literature to build robustness to model prediction
errors [181] and to imperfect weather/occupancy predictions [24, 182],
which are easy to integrate in our framework. Note, however, that we
also report simulation results under weather uncertainty in Section 9.8.3.

We assume that the building aggregation acquires energy in the retail
market, and since the retail tariffs do not change frequently, there is no
electricity price uncertainty. However, the situation is different for the
reserve prices. Although the capacity bid’s price is chosen by the aggre-
gator, the bid might not be accepted in the auction. Incorporating this
uncertainty requires a reserve market model, which is beyond the scope
of this thesis. In Switzerland, the reserve energy payments are coupled
with the spot price. We assume perfect spot price forecasts and expect
imperfect forecasts to have minor effects on the results because the ca-
pacity payments are dominant, especially for energy-constrained SFC
signals. If necessary though, spot price uncertainty is straightforward
to incorporate in the framework.
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9.4 Level 1: Reserve Scheduling

Recall that the goal of level 1 is to determine the optimal reserve capac-
ity of each building b within the aggregation (rb,∗k ) for each time step k
of the next day. The reserve scheduling problem is solved centrally by
the aggregator once a day, and the reserve capacities are communicated
to the buildings. Since we use an affine disturbance feedback on the
uncertain SFC signal wk, the scheduled input hk and the policy matrix
Hk,j ∀j are also used as optimization variables. Although the optimal
values of these variables hb,∗k and Hb,∗

k,: are computed, they are not used
in level 1 of the control hierarchy, but instead they are recomputed in
level 2.
In this section, we present four different formulations for the day-ahead
reserve scheduling problem, as well as an additional short-term capacity
allocation process. First, we assume symmetric reserve capacities and
neglect HP compressor constraints. The formulations will be extended
in Sections 9.4.5 and 9.4.6 to account for asymmetric reserves and HP
constraints.

9.4.1 Robust Scheduling with Power Constraints

The first formulation models both the input constraints (9.2) and the
comfort constraints (9.3) using the uncertainty set (9.21), and without
considering energy-constrained SFC signals. This formulation is called
Robust Problem with Power Constraints (RPC) and can be written as

min
hb
k
,Hb
k,:,r

b
k

N1−1∑
k=0

[
ck

L∑
b=1

ξ>b u
b
k −

(
λc
k − λe

kE[wk]
) L∑
b=1

ξ>b r
b
k

]
(9.24a)

s.t. xbk+1 = Abxbk +Bbu,ku
b
k +Bbvv

b
k +Rbwkr

b
k, ∀b,∀k (9.24b)

ubk = hbk +
∑k−1

j=0
Hb
k,jwj , ∀b, ∀k (9.24c)

(ubk + wkr
b
k) ∈ Ubk, ∀wk ∈WPC, ∀b, ∀k (9.24d)

xbk+1 ∈ Xbk+1, ∀wk ∈WPC, ∀b, ∀k (9.24e)∑L

b=1
ξ>b (rb,k − rb,k+j) = 0,∀j ∈ {1, . . . , Tr},∀k (9.24f)

rbk ≥ 0, ∀b, ∀k , (9.24g)
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where b ∈ {1 . . . L} is the building index, N1 is the prediction horizon,
ck is the electricity cost, λc

k is the reserve capacity payment, λe
k is the

reserve energy payment, and ξb is an efficiency vector that maps the
heat fluxes to electric power.

The objective function (9.24a) optimizes the tradeoff between electricity
costs and reserve profits along the prediction horizon by minimizing the
expected value of the total cost. The expected reserve energy profit is
equal to the product of the reserve energy payment λe

k and the average
activated reserve energy. The latter is equal to the product of the re-
serve capacity

∑L
b=1 ξ

>
b r

b
k and the average normalized SFC signal E[wk]

(recall that −1 ≤ wk ≤ 1). Constraints (9.24b) and (9.24c) are the
building thermal dynamics and the affine feedback policy on wk. Equa-
tion (9.24d) models the robust HVAC input constraints, (9.24e) models
the robust comfort zone constraints, (9.24f) requires the capacity to be
constant over a period Tr, whereas (9.24g) is a non-negativity constraint
on the capacities. From (9.24c) and (9.24d), one can see that

ubk + wkr
b
k = hbk +

k∑
j=0

Hb
k,jwj , (9.25)

with Hb
k,k = rbk, i.e., the reserve capacities can be seen as the diagonal

entries of the policy matrix H. In order to solve problem (9.24) we must
reformulate the robust constraints.

The robust constraint (9.24d) is reformulated applying standard tech-
niques from robust optimization. Recall from (9.2) that ubk+wkr

b
k ∈ Ubk

is equivalent to G(ubk + wkr
b
k) ≤ g, and denote by G>i the ith row of

G and by gi the ith element of g. The ith robust input constraint is
reformulated according to

max
wk∈WPC

[
G>i (ubk + wkr

b
k)
]
≤ gi ⇒

G>i h
b
k +

∑k

j=0

∣∣∣ (Hb
k,j

)>
Gi

∣∣∣ ≤ gi . (9.26)

By doing the same for all rows ofG and repeating the same procedure for
the state constraints, we result in a problem with l1-norm constraints,
which can be expressed as a Linear Program (LP) [183,184].
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9.4.2 Robust Scheduling with Power and Energy
Constraints

In this formulation we consider energy-constrained SFC signals, and the
comfort constraints (9.3) are modeled with the uncertainty set (9.23) in
a robust way according to

xbk+1 ∈ Xbk+1,∀ wk ∈WPEC ⇔ Fxbk+1 ≤ f, ∀ wk ∈WPEC. (9.27)

To derive the robust counterpart problem, we first combine the dynam-
ics (9.24b) with the policy equation (9.24c), and write the state at time
step k + 1 as

xk+1 = Ak+1x0 +
k∑
j=0

Ak−jBvvj +
k∑
j=0

Ak−jBu,khj

+
k∑
j=0

[ k∑
l=j+1

Ak−lBu,kHl,j +Ak−jRrj

]
wj , (9.28)

where the building index b is dropped for clarity. Combining (9.27) with
(9.28), the ith row of the state constraint can be written in the form

f̃i︷ ︸︸ ︷
F>i

[
Ak+1x0 +

k∑
j=0

Ak−jBvvj +
k∑
j=0

Ak−jBuhj

]

+
k∑
j=0

F>i

[ k∑
l=j+1

Ak−lBuHl,j +Ak−jRrj

]
wj︸ ︷︷ ︸

w>
k
Yir̃k

≤ fi . (9.29)

Denote by f̃i the first term of (9.29), which does not depend on wk. The
second term of (9.29) can be written as w>k Yir̃k, where r̃k is a column-
wise vectorized version of H and Yi is an appropriate matrix. The
interested reader is referred to [177] for details. Since (9.29) must hold
∀ wk ∈ WPEC, we write (9.29) as the following maximization problem
over wk

max
wk

(
w>k Yir̃k

)
+ f̃i ≤ fi (9.30a)

s.t. Āwwk ≤ b̄w . (9.30b)
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Using standard procedures [183,184] we obtain the dual of (9.30)

min
λi

b̄>wλi + f̃i − fi ≤ 0 (9.31a)

s.t. Ā>wλi = Yir̃k (9.31b)
λi ≥ 0 , (9.31c)

where λi are the dual variables. Finally, we drop the minimization in
(9.31a) and substitute each row of (9.27) with the constraints (9.31a)–
(9.31c), i.e., we relax the optimization problem (9.31). Any feasible λi
in (9.31) will provide an upper bound of the maximization in (9.30) and,
due to strong duality of LP, this relaxation will be tight.
Therefore, for each building b and time step k, the robust constraint
(9.27) is replaced by the inequality and equality constraints

b̄>wλbi,k + f̃ bi − f bi ≤ 0 ∀i, ∀b, ∀k (9.32a)
Ā>wλbi,k = Y bi r̃

b
k ∀i, ∀b, ∀k (9.32b)

λbi,k ≥ 0 ∀i, ∀b, ∀k , (9.32c)

where i indexes the rows of matrix F of the state constraints. The num-
ber of constraints per building and time step depends on the dimensions
of Āw and b̄w, which in turn depend on the prediction horizon N1 and
the averaging period T . In addition, the dimensions of Āw and b̄w de-
pend on the dimension of wk, and so they are different for each k. The
input constraints are reformulated using (9.26), exactly as was done for
RPC. The resulting problem is called Robust Problem with Power and
Energy Constraints (RPEC).

9.4.3 Hybrid Robust and Stochastic Scheduling with
Power Constraints

In this hybrid formulation the input constraints are still modeled as ro-
bust constraints with (9.24d), but the state constraints are modeled as
chance constraints that need to be satisfied with a predefined probabil-
ity. Therefore, we substitute (9.24e) with

P
[
xbk+1 ∈ Xbk+1

]
≥ 1− ε, ∀b, ∀k , (9.33)

where the probability P is over the uncertain SFC signal wk, and ε
is the violation probability. The chance constraint (9.33) limits the
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number of comfort zone violations, but not the size of the violations. In
practice, large comfort zone violations while providing SFC reserves are
unlikely due to thermal inertia (especially if the SFC signal is energy
constrained).
Reformulating the chance constraint (9.33) into a tractable constraint is
challenging. One way of doing this is by using the so-called scenario ap-
proach, which approximates the chance constraint by randomly drawing
a finite number of independent and identically distributed (i.i.d.) sam-
ples of the uncertain variable. An advantage of the scenario approach is
that no specific knowledge of the underlying probability distribution of
the uncertain variable (wk in our case) is required. The samples of the
uncertain variable are used to obtain a finite number of sampled state
constraints.
The challenge in this so-called scenario approach is to select the num-
ber of samples such that the chance constraints are satisfied with a
probability of at least 1− ε. General bounds for convex programs were
given in [185], whereas [186] proposed tighter bounds for multi-stage
optimization problems with affine uncertainty.
Denote by nf the number of state constraints for each time step k. If
the chance constraints are applied separately for each building, then we
have nf = 2 to describe the upper and lower comfort zone limits. If the
sample size at time step k satisfies

Sk ≥
nf (k + 2)

ε
− 1 , (9.34)

then the optimal solution of the sampled problem satisfies the chance
constraint. For a proof of (9.34) and technical details, the reader is
referred to [176]. We generate a total number of

Ns =
N1−1∑
k=0

Sk (9.35)

samples (scenarios) using historical SFC signals, where the nth sample
w(n)
k contains values for the time steps from 0 to k. Each sample w(n)

k

is inserted into (9.28) and generates a sampled state trajectory xb,nk+1.
Substituting each sampled state trajectory into xbk+1 ∈ Xbk+1, the chance
constraint (9.24e) can be replaced by Ns linear inequalities

P
[
xbk+1 ∈ Xbk+1

]
≥ 1− ε, ∀b, ∀k ⇔

F bxb,nk+1 ≤ f
b, ∀b, ∀k, for n = [1, Sk] . (9.36)
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By replacing (9.24d) with (9.26), and (9.24e) with (9.36), we result in a
tractable LP, which we call Stochastic Problem with Power Constraints
(SPC) in the rest of this chapter.

9.4.4 Hybrid Robust and Stochastic Scheduling with
Power and Energy Constraints

This formulation, which is called Stochastic Problem with Power and
Energy Constraints (SPEC), is mathematically identical with the one
of Section 9.4.3. The only difference is that the scenarios are now for
energy-constrained SFC signals. If sufficient historical data exist, they
can be used directly to generate scenarios. Otherwise, one can pass the
historical unconstrained SFC signals through a high-pass filter with a
time constant equal to the averaging period T in order to generate the
scenarios.
In the rest of this section we show how asymmetric reserves and HP
constraints can be introduced into (9.24).

9.4.5 Asymmetric reserve capacities

RPC Formulation

It is straightforward to introduce asymmetric reserves for each building
in (9.24). Let us define rb+,k ≥ 0 as the down-reserve capacity and
w+,k ≥ 0 as the positive part of the SFC signal. Similarly, we define
rb−,k ≥ 0 as the up-reserve capacity and w−,k ≤ 0 as the negative part
of the SFC signal. If we fix the diagonal elements of the policy matrix
H to zero, the robust input constraint (9.26) will be

G>i h
b
k +

∑k

j=0

∣∣ (Hb
k,j

)>
Gi
∣∣+ max

wk∈WPC

[
∆uk

]
≤ gi . (9.37)

Due to non-negativity of rb−,k and rb+,k, the maximization in (9.37) is
trivial: the worst case for the uk+∆uk ≤ umax part of the constraints is
max

[
∆uk

]
= rb+,k, whereas the worst case for the umin ≤ uk+∆uk part

of the constraints is max
[
∆uk

]
= rb−,k. Exactly the same procedure is

followed for the robust state constraints.
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RPEC Formulation

With energy constraints, the problem becomes more complicated be-
cause the non-linear constraint w−,k ·w+,k = 0 is needed to ensure that
up- and down- reserves are not requested simultaneously. Without in-
cluding this constraint, the worst-case reserve request might consist of
w−,k and w+,k that are both non-zero, which cannot happen in real-
ity.5 However, adding this constraint to (9.23) leads to an uncertainty
set which is not a polyhedron any more, and so the dualization tech-
nique of Section 9.4.2 cannot be applied to derive the robust counterpart
problem.

SPC and SPEC Formulations

Approximating the chance constraints with sampling allows us to easily
account for asymmetric reserves. The sampled state constraints are still
in the form of (9.36), where xb,nk+1 is now given by

xk+1 = Ak+1x0 +
k∑
j=0

Ak−jBvvj +
k∑
j=0

Ak−jBu,khj (9.38)

+
k∑
j=0

k∑
l=j+1

Ak−lBHl,jw
(n)
j +Ak−jR

(
r+,j

[
w

(n)
j

]
+ + r−,j

[
w

(n)
j

]
-

)
,

where [·]+ ≥ 0 and [·]- ≤ 0 cap their arguments to non-negative and
non-positive values, respectively, and the index b is dropped for clarity.
Apart from increasing the number of optimization variables, consider-
ing asymmetric reserves does not change the structure of the reserve
scheduling problem. Note that even with asymmetric reserve capacities
on the building level, symmetric reserves in aggregate can be achieved
imposing constraints of the form

L∑
b=1

ξ>b r
b
+,k =

L∑
b=1

ξ>b r
b
−,k . (9.39)

5It is easy to show that without energy constraints, one of w−,k and w+,k will
always be zero in the worst-case reserve request. For this reason, the non-linear
constraint w−,k · w+,k = 0 is not required in the RPC formulation.
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9.4.6 Modeling of Heat Pump Constraints

Minimum compressor loading constraints can be expressed by introduc-
ing binary auxiliary variables dbk ∈ {0, 1} to keep track of the on/off
state of each HP b. The input constraints (9.24d) are now written as

dbk u
b
min ≤ ubk + wkr

b
k ≤ dbk ubmax,∀wk ∈WPC, ∀b,∀k . (9.40)

The binary variables dbk do not alter the way the uncertainty wk enters
the constraints. Therefore, the reformulation (9.26) still holds [184]
with the only difference that gi at the right hand side is substituted
with [−ubmax u

b
min]>dbk.

Frequent HP cycling reduces its COP and, possibly, the compressor’s
lifetime. For these reasons, minimum up-times (TU) and/or down-
times (TD) might be required. The auxiliary binary variables subk and
sdbk that represent the start-up and shut-down events of the HPs, re-
spectively, are needed to model TU and TD [187]. More specifically,
subk ∈ [0, 1] takes the value 1 if HP b starts up at time step k and 0
otherwise, whereas sdbk ∈ [0, 1] takes the value 1 if HP b shuts down at
time step k and 0 otherwise. Using subk, sdbk, we model TU and TD as∑k

k−TU+1
subk ≤ dbk,

∑k

k−TD+1
sdbk ≤ 1− dbk (9.41)

dbk − dbk−1 = subk − sdbk . (9.42)

Equation (9.42) forces subk and sdbk to take binary values, since dbk is
defined as a binary variable. Therefore, subk and sdbk can be declared
as continuous variables in the formulation of the optimization problem.
Constraints (9.40)-(9.42) will turn the reserve scheduling problem into
a Mixed-Integer Linear Program (MILP).

9.4.7 Short-Term Capacity Allocation

The result of (9.24) is a sequence of reserve capacities with step changes,
for example every 1 hour. Such step changes at the beginning of each
hour will likely result in poor SFC signal tracking due to the HP ramp-
ing constraints [188]. To avoid this, we adjust the short-term reserve
capacities (at the beginning of each hour) taking into account the HP
ramping constraints, but without considering the building thermal dy-
namics. Note that the adjusted capacities of all buildings sum up to the
capacities calculated by the day-ahead reserve scheduling problem.
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The short-term capacity allocation is formulated as the convex optimiza-
tion problem (9.43), where Nst is the prediction horizon; P bs,t, rb↑,t, rb↓,t
denote the short-term HP schedules, and down- and up-reserve capac-
ities; Pd,t is the desired aggregate HP power; ŵ = 0.85 and w̌ = 0.5
are “bad case” normalized SFC signals; ∆ŵ = 0.005 is a “bad case”
increase/decrease rate of the signal between two consecutive time steps;
and nbu, nbd are the maximum increase and decrease rates of HP power,
respectively.
Note that (9.43) is solved for every scheduling interval k of the day-
ahead reserve scheduling problem of Sections 9.4.1 to 9.4.4. The desired
power Pd,t is defined as an 8-minute ramp from the total scheduled HP
power at step k − 1 to the total scheduled HP power at step k.
We choose ŵ = 0.85 and w̌ = 0.5 instead of the worst case values
ŵ = w̌ = 1 to allow for more flexibility (actually w̌ ≤ 0.5 holds for
90% of the time). In general, nu and nd are non-linear functions of P bs,t,
which can be approximated in a piece-wise linear fashion. Due to the
minimum loading constraints, and in case of symmetric reserve capac-
ities, two pieces are enough to model the non-linearity: nu = 0.25%/s,
nd = 0.2%/s (% of HP rated power) for low HP operating points, and
nu = 0.5%/s, nd = 0.8%/s for high HP operating points.

min
P bs,t,r

b
↑,t,r

b
↓,t

Nst∑
t=1

[∣∣∣∣∣Pd,t −
L∑
b=1

P bs,t

∣∣∣∣∣+
L∑
b=1

(
P bs,t − P bs,t−1

)2] (9.43a)

s.t. P bt ≤ P bs,t ≤ P
b

t , ∀b,∀t (9.43b)
rb↑,t ≤ rb↑,t ≤ rb↑,t, rb↓,t ≤ rb↓,t ≤ rb↓,t, ∀b,∀t (9.43c)

P bs,t + ŵrb↑,t ≤ P bmax, P
b
s,t − ŵrb↓,t ≥ P bmin, ∀b,∀t (9.43d)∑L

b=1
rb↑,t =

∑L

b=1
rb+,k,

∑L

b=1
rb↓,t =

∑L

b=1
rb−,k,∀t (9.43e)

P bs,t − P bs,t−1 ≤ nbuP bmax −∆ŵ max{rb↑,t, rb↓,t}
− w̌ max{rb↑,t − rb↑,t−1, r

b
↓,t−1 − rb↓,t, 0},∀b,∀t (9.43f)

P bs,t − P bs,t−1 ≥ nbdP bmax + ∆ŵ max{rb↑,t, rb↓,t}
+ w̌ max{rb↑,t−1 − rb↑,t, rb↓,t − rb↓,t−1, 0},∀b,∀t . (9.43g)

The first term of (9.43a) minimizes the deviation of the HP aggregate
power from Pd,t, while the second term keeps the resulting short-term
HP schedules smooth. Constraints (9.43b) and (9.43c) impose lower and
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upper bounds on P bs,t, rb↑,t, rb↓,t, which depend on the solution of the day-
ahead reserve scheduling problem, on HP ramp limits, and on whether
a HP starts up, shuts down, or simply changes its setpoint. Constraints
(9.43d) ensure that the HP schedules and reserve capacities respect
the minimum (P bmin) and maximum (P bmax) HP power. Constraints
(9.43e) enforce that the short-term reserve capacities add up to the fixed
capacities of the day-ahead reserve scheduling problem. Finally, (9.43f)
and (9.43g) ensure that the short-term reserve allocation respects the
HP ramp limits for the considered bad cases of the SFC signal and its
rate of change.

9.5 Level 2: Building Climate Control

In level 2, an MPC controller determines the HVAC control inputs that
minimize energy consumption, while ensuring that the scheduled re-
serves can be provided. The MPC runs typically every 15 minutes to 1
hour, and it has four main differences with the reserve scheduling prob-
lem of Section 9.4. First, the MPC problem is solved separately and
locally at each building. Second, the optimization is performed only
over the HVAC control inputs hbk and feedback policy Hb

k,:, because the
reserve capacities are fixed to rb,∗k from level 1. Third, the only objective
is to minimize the electricity cost. And fourth, the constraints (9.24f),
(9.24g) on the reserve structure are not present, because the reserve is
fixed. The MPC formulation is dependent on the level 1 formulation
and can be any of RPC, RPEC, SPC, and SPEC.

RPC Formulation

The robust MPC formulation with power constraints (RPC) is

min
hb
k
,Hb
k,:

N2−1∑
k=0

ck ·
(
ξ>b u

b
k

)
(9.44a)

s.t. xbk+1 = Abxbk +Bbu,ku
b
k +Bbvv

b
k +Rbwkr

b
k,∀k (9.44b)

ubk = hbk +
∑k−1

j=0
Hb
k,jwj , ∀k (9.44c)

ubk + wkr
b
k ∈ Ubk, ∀wk ∈WPC, ∀k (9.44d)

xbk+1 ∈ Xbk+1, ∀wk ∈WPC, ∀k . (9.44e)



236 Chapter 9. SFC with Commercial Buildings

The robust counterpart of (9.44) can be obtained by applying exactly
the same procedure as in Section 9.4.1. Since the reserve capacities are
fixed, the diagonal elements of the policy matrix H in (9.26) are also
fixed in this case.

RPEC Formulation

In the presence of energy constraints, a tractable robust MPC formula-
tion (RPEC) can be obtained by applying the dualization technique of
Section 9.4.2. The constraint xbk+1 ∈ Xbk+1, ∀wk ∈ WPEC is reformu-
lated to

min
λi

b̄>w,tλi + f̃i − fi ≤ 0 (9.45a)

s.t. Ā>w,tλi = Y r̃∗k (9.45b)
λi ≥ 0 , (9.45c)

where Āw,t, b̄w,t are time-varying. For a time step t in the averaging
interval [t1, t2] of length T , (9.22) can be written as

−ε−T − wp,t ≤
t2∑
k=t

wt ≤ ε+T − wp,t (9.46)

wp,t =
t−1∑
k=t1

wk , (9.47)

where wp,t is known because the uncertainty up to t − 1 is realized.
Thus, the coupling constraint on {wt, . . . , wt2} depends on the energy
content of the SFC signal in the previous time steps of the averaging
interval, and this is reflected in the time-varying matrices Āw,t and b̄w,t.

SPC and SPEC Formulations

If the state constraints are modeled as chance constraints, the MPC
problem is very similar to that of level 1 for both unconstrained SFC
signals (SPC) and energy-constrained signals (SPEC). Of course, the
SFC scenarios might be updated at each MPC time step, if new infor-
mation becomes available.



9.6. Level 3: Frequency Signal Filtering and Tracking 237

Declaration of Baseline Power

The first input of the optimal control sequence of the MPC determines
the HVAC system setpoints for the next time step

ub,Lv2
k = hb,∗k . (9.48)

Although a consumption schedule hb,∗k is calculated already in level 1,
the MPC of level 2 can reduce both the cost due to less uncertainty (re-
cent reserve requests are known), as well as the constraint violations in
case of plant-model mismatch. The HP thermal power setpoint ub,Lv2

s,k is
an element of ub,Lv2

k and can be translated to an electric power setpoint
according to

P b,Lv2
k =

ub,Lv2
s,k

COP . (9.49)

Equation 9.49 provides us with an estimate of the building’s base-
line power consumption (i.e., the power consumption without providing
SFC) ahead of time, which is beneficial for the financial settlement with
the aggregator or the TSO.
Note that the MPC problem might be infeasible for two reasons. The
first reason is imperfections in the building model used within the MPC,
or imperfect predictions of weather and/or occupancy. The second rea-
son is that the comfort constraints might be violated with a small prob-
ability due to the probabilistic interpretation of the comfort constraints
in SPC and SPEC. To ensure that a feasible solution can always be
found and achieve continuous control without interruptions, we model
the comfort constraints as soft constraints and penalize the constraint
violation with a very high penalty to ensure that the MPC will not
choose to violate the constraints.

9.6 Level 3: Frequency Signal Filtering and
Tracking

In level 3, the HP electric power is controlled around P b,Lv2
k to track

the SFC signal. The power reference of HP b is

P b,Lv3
k = P b,Lv2

k + wkr
b,∗
e,k (9.50)
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rb,∗e,k = rb,∗k
COP , (9.51)

where the electric reserve capacity rb,∗e,k is fixed from level 1. The set-
point P b,Lv3

k is tracked controlling the refrigerant’s flow rate with a
Proportional-Integral (PI) controller, which creates the heat flux

ub,Lv3
k = ub,Lv2

k + wkr
b,∗
k . (9.52)

If there is no mismatch between the model and the real building, the
room temperature will be within the comfort zone always for the RPC
and RPEC formulations, and with probability at least 1−ε for the SPC
and SPEC formulations.
The tracking quality depends on HP delays and ramping limits, as well
as on how fast the SFC signal is changing. Two options to improve
the tracking quality are envisaged. First, the TSO could split the SFC
signal into a number of products with different ramping requirements
using an appropriate filter bank, and the buildings could choose the
reserve product with the appropriate ramping requirements. Second, if
specialized reserve products are unavailable, the buildings could form
a pool with faster resources (e.g., an aggregation of EWHs), exclude
very high frequency components of the SFC signal using an appropriate
band-pass filter, and send them to the faster resources. We use a band-
pass Chebyshev filter with a lower cutoff period τf to consider these two
options in our simulations.

9.7 Investigation Setup

9.7.1 Building Parameters

We investigate the performance of the proposed control framework in
simulations with an aggregation of typical Swiss office buildings. Two
HVAC systems are considered: in system A, heating is performed via
radiators, and cooling with cooled ceilings; in system B, both heating
and cooling are performed using Thermally Activated Building Systems
(TABS). We also differentiate between heavy or light building envelope,
high or low window area fraction, and high or low internal gains. In our
simulations, we consider an aggregation of 6 large buildings (15, 000 m2

each) with the characteristics of Tables 9.4 and 9.5. More information
regarding the buildings can be found in [24,175,177,178].



9.7. Investigation Setup 239

Table 9.4: Commercial building configurations

Building
type

HVAC
system

Building
envelope

Window
area fraction

Internal
gains

A1 A heavy high high
A2 A heavy low low
A3 A light low low
B1 B heavy high high
B2 B heavy low low
B3 B light low low

Table 9.5: Heat pump parameters (U [a, b] denotes the uniform probability
distribution with bounds a and b)

Parameter Value Parameter Value
Rated power U [95, 205] kW τ1, τ2 U [0.5, 3] s

Minimum loading U [15, 30] % τ3 U [25, 75] s
COP U [2.5, 3.5] τ4 U [10, 20] s

Typical occupancy profiles are used and weather data are provided by
Meteoswiss (the Swiss federal office of meteorology and climatology).
The temperature comfort zone during working hours is [21, 24]◦C in win-
ter and [22, 25]◦C in summer, which is in accordance with the ASHRAE
55-2013 standard [189]. During non-working hours and weekends, the
comfort zone is relaxed to [12, 35]◦C in both seasons.6 The reserve en-
ergy payments in (9.24) were modeled using spot price data from the
Swiss market in winter 2013.

We perform the simulations in MATLAB and solve the optimization
problems with CPLEX. The reserve scheduling and MPC problems are
solved with prediction horizons N1 = 2 days and N2 = 1 day, respec-
tively. The optimization time step is either 30 minutes or 1 hour de-
pending on the simulation case. The short-term capacity allocation
problem (9.43) is solved with an horizon of Nst = 600 seconds and a
time step of 1 second.

6Such a wide comfort zone is typically used for unoccupied periods of time in MPC
controllers for energy-efficient building operation [24]. Nevertheless, in practice the
temperature remains much higher than 12◦C and much lower than 35◦C.



240 Chapter 9. SFC with Commercial Buildings

Table 9.6: Bias coefficients (ε) for the normalized SFC signal (−1 ≤ wk ≤ 1)
and its high-frequency component (HF) for different averaging
periods (T )

T 1 h 2 h 4 h 6 h 8 h 12 h
SFC 2009 1.000 0.989 0.952 0.796 0.592 0.505
HF 2009 0.528 0.467 0.337 0.273 0.384 0.229
SFC 2012 0.927 0.781 0.674 0.624 0.553 0.448
HF 2012 0.382 0.300 0.317 0.290 0.237 0.203

9.7.2 Parameters of Energy Constraints

To apply energy constraints in the form of (9.22), we consider six differ-
ent averaging periods (T = {1, 2, 4, 6, 8, 12} hours) and determine the
respective bias coefficients ε− and ε+ based on the historical normal-
ized SFC signals from the Swiss control area in 2009 and 2012. For this
purpose, we use the Chebyshev filter

H(z) =
∑nf
i=0 biz

−i

1 +
∑nf
i=1 aiz

−i , (9.53)

where nf is the filter’s order (fixed to nf = 3 that showed a good per-
formance in preliminary simulations), and ai, bi are its coefficients that
can be computed based on the pass-band edge frequency fc [190], which
is related to the averaging period with fc = 1/T .
For each value of T , we filter the historical SFC signals using the cor-
responding filter (9.53) and get the high-frequency (HF) part of the
signals for 2009 and 2012. For each of the four signals and for each
value of T , we calculate ε+ and ε− based on the largest and the small-
est average values of the signal wk, respectively, over any time interval
with duration T according to

ε+ = max
(

1
T
·
∑T

k=1
wk

)
(9.54)

ε− = −min
(

1
T
·
∑T

k=1
wk

)
. (9.55)

The results are summarized in Table 9.6, where the reported ε values
are computed using

ε = max (ε−, ε+) . (9.56)
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Figure 9.4: Left: A 4-hour extract of the original SFC signal, its low-
frequency (LF), and its high-frequency (HF) components for
a sample day. Right: The moving averages of the signals for the
whole sample day.

Observe that the original SFC signals are in the worst case biased over
periods of several hours. Note that the biases of the HF signals are
significantly lower than those of the original SFC signals, and that the
signals in 2012 are generally less biased than in 2009. This is because
from March 2012 the ACE of Switzerland is combined with that of other
European countries before generating the SFC signal.

In Fig. 9.4, we show a 4-hour extract of the SFC, the low-frequency
part of it (LF signal), and the high-frequency part of it (HF signal) for
a sample day, as well as the 2-hour moving averages of the signals for
the whole day. Although the original SFC signal is mostly negative,
the bias is absorbed by the LF signal and so the HF signal crosses zero
often. As shown in the right plot of Fig. 9.4, the largest bias of the
SFC signal for the sample day is approximately 0.3 (to the negative
direction), i.e., the worst-case reserve request averaged over periods of
two hours is negative and approximately equal to 30% of the reserve
capacity. On the other hand, the energy-constrained HF signal has a
bias less than 0.15 during the same day, i.e., the worst-case average
reserve request is less than 15% of the reserve capacity.

9.7.3 SFC Signal Scenarios

The SFC scenarios to reformulate the chance constraints are obtained
based on historical SFC signal data in 2009. The data are available
with a resolution of 10 seconds, but are averaged over 1 hour intervals
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Figure 9.5: Scatter plot of historical SFC signals. Colored boxes correspond
to different probability levels.

to fit our reserve scheduling framework.7 Figure 9.5 shows a scatter
plot of all measured SFC signal pairs. Each circle corresponds to a pair
(wk, wk+1), where k ∈ {1, . . . , 8760} indexes each hour during the year.
The data are strongly positively correlated and centered around (0, 0),
with a few outliers taking extreme values.
The blue box in Fig. 9.5 contains all realized regulation signals. It is
interesting to notice that from the four theoretical worst-case combina-
tions of (wk, wk+1) of the form (±1,±1), only the combination (1, 1) is
observed in the data. The cyan, green, and red boxes contain 99%, 95%,
and 90% of all historical data, respectively. Observe that the volumes
of the boxes shrink rapidly if we accept a small risk of not satisfying the
comfort zone requirements for all reserve demands. For example, if we
consider the cyan box, any SFC signal pair (wk, wk+1) will lie in the rect-
angle defined by the vertices (−0.56,−0.57), (−0.56, 0.71), (0.71, 0.71),
(0.71,−0.57) with a probability of 99%. Although Fig. 9.5 shows only
consecutive signal pairs, our analysis can be repeated in higher dimen-
sions, where the volume of the probability-boxes will shrink even faster.
This indicates that if we allow small violations of the state (comfort)
constraints, we could restrict ourselves to a smaller subset of the original

7Recall that the scenarios are used in level 1 and level 2 of the control hierarchy.
The necessary information at this level of control is the bias of the SFC signal during
each scheduling interval.
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Figure 9.6: Empirical correlation matrix of the SFC signal.

uncertainty set, which in turn allows us to increase the reserve capacity
and obtain a higher reserve profit.
Apart from the size of the probability-boxes and the frequency of oc-
currence of extreme events, the temporal interdependence of the SFC
signals within a day is important. Figure 9.6 visualizes the autocor-
relation matrix of the random variable w. The correlation coefficient
between the random variables wi and wj at two different time steps i
and j is calculated with

ρwi,wj = cov(wi, wj)
σiσj

, (9.57)

where cov(·) denotes the covariance operator, and σi denotes the stan-
dard deviation of wi. We see from Fig. 9.6 that the correlation values
sharply decrease as the gap between the time steps increases. Moreover,
the patterns indicate a complex interdependence of the SFC signal along
the horizon, which can vary significantly during the day.
From this analysis we can conclude that a hybrid robust/stochastic re-
serve formulation, which takes into account the probability distribution
of the SFC signal when enforcing chance constraints on the states, may
potentially lead to significantly higher reserve capacities compared with
a fully robust approach, where the state constraints are required to be
satisfied for all admissible reserve demands. There are two main rea-
sons for this. First, we may ignore highly unlikely SFC signals that
form the extreme points of the uncertainty set, and therefore limit the
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Figure 9.7: Optimal reserve allocation among the buildings during a winter
week (the plot starts on Monday).

reserve capacity. Second, the use of historical data naturally preserves
the correlation information between reserve requests at different times,
motivating a sampling-based reformulation of the chance-constrained
problem from a practical point of view.

9.8 Building Aggregation Simulation Re-
sults

9.8.1 Reserve Scheduling and Building Control

In this section, we demonstrate how the control framework can be used
to estimate the amount of reserves of a building aggregation, assess
the quality of SFC signal tracking, and investigate the effect of reserve
provisioning on building control.

Reserve Capacity Scheduling and Allocation

Fully Robust Formulation (RPEC):
In Fig. 9.7 we present the optimal reserve capacity of the aggregation
and its allocation among the buildings for a winter week. These results
correspond to simulations with the RPEC formulation assuming sym-
metric reserves at each building with a daily duration (constant reserve
capacity over a day). An extract of the high-frequency part of the SFC
signal of 2012 is used, which is obtained using the averaging period
T = 2 h and the bias coefficient ε = 0.3. The capacity payments are
10% higher than the electricity price (λc

k = 1.1 · ck), whereas no reserve
energy payments are considered (λe

k = 0).
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Figure 9.8: Optimal allocation of down-reserves (left) and up-reserves
(right) during a winter week (the plot starts on Monday).

The capacity is constant for each day and ranges from approximately
260 kW on Friday to 380 kW on Saturday with an average weekly value
of 313 kW. Note that the capacity is shifted among the buildings in
a way that maximizes the total capacity of the aggregation. Interest-
ingly, the buildings offer higher reserve capacities when they normally
consume less power. For example, buildings with HVAC system A con-
tribute mainly at night, whereas buildings with HVAC system B offer
more reserves during working hours, because they prefer to preheat at
night. The scheduled energy consumption of the aggregation is spread
throughout the whole week to maximize the reserve potential. During
the weekend, the buildings are not occupied and the comfort zone is re-
laxed, which results in higher reserve capacities compared with working
days.
Hybrid Robust/Stochastic Formulation (SPEC):
Figure 9.8 shows the reserve scheduling results for the same winter week,
but using the SPEC formulation and a violation probability ε = 0.2.
The reserve capacities are now asymmetric at each building but sym-
metric in aggregate. The capacity is assumed constant over a day, the
capacity payments are fixed to a value 30% higher than the electricity
price (λc

k = 1.3 · ck), and reserve energy payments are considered.
The total capacity has an average weekly value of 134 kW, but it highly
depends on the building and ambient conditions, and varies from zero
to approximately 300 kW. This illustrates the importance of daily SFC
reserve bidding that gives more flexibility to buildings compared with
weekly reserve auctions, which are still applied in several countries, e.g.,
in Switzerland [70].
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Although higher capacity payments are selected for the simulations with
the SPEC formulation compared with the simulations with the RPEC
formulation, the average reserve capacity in Fig. 9.8 is lower than that of
Fig. 9.7. This happens because the minimum loading constraints of HP
compressors are taken into account in the simulations with the SPEC
formulation, but not in the simulations with the RPEC formulation.
Estimation of Necessary Aggregation Size:
Based on our simulations in winter, the considered 6 buildings with floor
area 15, 000 m2 and average rated heating power 27 W/m2 provide a
reserve capacity equal to 134 kW or 313 kW on average, depending
on the assumptions. Using simple linear extrapolation, we find that
the required minimum reserve capacity of 5 MW in Switzerland can be
offered by approximately 100− 225 (similar) buildings.
Note that this is only a rough estimate because: (a) it is based on the
average reserve capacity values; and (b) the extrapolation might over-
estimate the required number of buildings to meet the 5 MW limit,
because the larger the aggregation the more flexibility exists in allocat-
ing reserves among buildings. However, it is clear that the amount of
reserves per building and the necessary aggregation size depend highly
on the formulation and the underlying assumptions. In Sections 9.9 and
9.10 we will investigate these dependencies in detail.

Building Climate Control

We show results from the daily operation of building A1 in Figs. 9.9 and
9.10 using the SPEC formulation. Figure 9.9 shows the heating power
of the HVAC system and Fig. 9.10 shows the temperature trajectories.
The blue-dashed and black-solid curves indicate the scheduled HVAC
power and temperature in levels 1 and 2, respectively, the red-solid
curves correspond to the values after tracking the SFC signal (level 3),
and the green-solid curves are the HVAC and comfort constraints.
Since building A1 offers mainly up-reserves (consumption decrease), the
room temperature in level 3 is lower than the scheduled value in level 1
and level 2. The grey envelope in Fig. 9.9 is the robust region, meaning
that the HVAC power can move anywhere within this region without
violating the constraints. The grey envelope in Fig. 9.10 shows the
temperature trajectories that correspond to 50, 000 randomly generated
SFC signal scenarios. The envelope spanned by the scenarios is narrow
because the energy content of the SFC signal is limited. The comfort
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Figure 9.9: HVAC consumption in levels 1, 2 and 3 during a winter day.
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Figure 9.10: Room temperature in levels 1, 2 and 3 during a winter day.

zone is violated only for 1.9% of the scenarios, thus the chance constraint
is satisfied with a probability much higher than the design probability
of 1− ε = 0.8.

SFC Signal Tracking

In Fig. 9.11, we show the SFC signal tracking over a 2-hour period
using a filter with lower cutoff period τf = 40 seconds. The tracking
is generally good but it deteriorates due to HP ramping limits in two
cases: (a) when the signal changes very rapidly, and (b) when the HP
schedules change at the beginning of each hour. The three hour changes
are indicated with a rectangle in Fig. 9.11; in the first two, the short-
term capacity allocation problem (9.43) is not used, whereas in the third
one it is considered. In the latter case, the performance is significantly
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Figure 9.11: Tracking of the SFC signal by the aggregation’s HPs over a
period of two hours.

better and the tracking Mean Absolute Percentage Error (MAPE) is
less than 5% during the second half of the 2-hour period.

9.8.2 Effect on Energy Consumption

To maximize the reserve capacity, the buildings operate in a less energy-
efficient way. For example, during the considered winter week reserve
provision using the SPEC formulation resulted in a consumption 60%
higher than that of energy-efficient building control, i.e., an MPC with
the objective of minimizing electricity cost without offering reserves. In
order to provide reserves in both directions, the buildings try to operate
close to the middle of the heating/cooling device’s power range. This is
in contrast to an energy efficient operation, where the power consump-
tion would be as close as possible to the minimum value. However, the
increase in energy consumption does not mean that the building control
is suboptimal. For the given electricity and reserve prices, this building
operation minimizes the total cost defined as the sum of electricity cost
and reserve profit.

In fact, there is a tradeoff between increasing the reserve capacity and
reducing the energy consumption, which depends on the capacity pay-
ment. To illustrate this, we report the increase in energy consumption
for different reserve capacity levels (expressed as a percentage of the
maximum possible capacity) in Fig. 9.12a. Note that reserve capacities
up to 15% of the maximum capacity do not practically increase the en-
ergy consumption, that 50% of the maximum capacity can be offered
with approximately 30% increase in energy consumption, and that in
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Figure 9.12: Fig. 9.12a (left): The dependence of increase in energy con-
sumption on the reserve capacity offered by the buildings.
Fig. 9.12b (right): The effect of increase in energy consump-
tion on the average room temperature.

order to maximize the reserve capacity the energy consumption must
be increased by 60%.

The effect of increased energy consumption is a higher average room
temperature during the considered winter week, as shown in Fig. 9.12b.
In theory, the increase in energy consumption is proportional to the
room temperature increase with a proportionality constant equal to the
building’s thermal resistance. This linearity is reflected in the data
points of Fig. 9.12b. The rightmost data point of Fig. 9.12b does not
fall on the same line as the other points because the blinds are set to
different positions, which affects the thermal resistance.

Note that the reported increase in energy consumption is in compar-
ison with a building with an energy-efficient MPC. If the comparison
was performed considering supervisory rule-based controllers, which are
used in most buildings today, a smaller increase in energy consumption
would be expected.

In addition, note that the increase in energy consumption is qualita-
tively different to the results of [137]. The authors of [137] calculated
the round-trip efficiency of buildings while offering fast DR services, i.e.,
the efficiency loss due to the utilization of reserves. On the contrary,
the reported increase in energy consumption in this chapter is the result
of scheduling the building consumption in a way that large amounts of
reserves can be offered reliably. The energy consumption increase that
we report will occur even if no reserve is actually called, i.e., it is the
price to pay for the availability of reserves.
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9.8.3 Effect of Imperfect Disturbance Predictions

The SPEC formulation guarantees the satisfaction of the comfort zone
with a given probability for any admissible reserve request and perfect
weather and occupancy predictions. Although this probabilistic guar-
antee does not hold in case of imperfect predictions, some intuition on
the expected comfort zone violations can be provided.
As shown in Fig. 9.10, the room temperature is close to the middle of
the comfort zone under reserve provision in order to maximize the po-
tential for up and down regulation. For this reason, we expect weather
and occupancy prediction errors to lead to fewer comfort zone violations
compared with an MPC-based energy-efficient building control, where
the temperature remains close to one of the comfort zone limits. In-
deed, we repeated the simulations with imperfect weather predictions
and observed comfort zone violations for 9.3% of the time when the
building operated under reserve provision, and 12.9% of the time when
the building operated with an energy-efficient MPC.

9.9 Comparison of Reserve Scheduling
Methods

The goal of this section is to compare the four reserve scheduling formu-
lations with respect to the reserve capacity, baseline energy consump-
tion, total cost (sum of electricity cost, capacity and reserve energy prof-
its), and computation time. For this purpose, we run simulations for two
weeks in winter assuming that each building offers symmetric reserve ca-
pacities that are constant for each day. The capacity payments are fixed
to 110% of the electricity price (λc

k = 1.1 ·ck). Furthermore, no HP min-
imum loadings or up- and down-times are considered, and the violation
probability is fixed to ε = 0.1. An energy-constrained SFC signal with
averaging period T = 2 h and bias coefficients (ε+, ε−) = (0.336, 0.467)
is assumed. The simulation results are presented in Table 9.7.
For conventional SFC signals, the hybrid robust/stochastic SPC for-
mulation increases the reserves by 5.6% and reduces the cost by 5%
compared with the robust RPC formulation. The improvement is less
pronounced for energy-constrained signals, where the SPEC formulation
increases the reserves by 3.6% and reduces the cost by 1.2% compared
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Table 9.7: Comparison of robust and stochastic formulations

Method Reserve
(MW)

Consumption
(MWh)

Cost
(CHF)

Time (s)
Mean Max

RPC 109.5 143.6 10719 10 112
RPEC 115.2 (+5.2%) 148.9 (+3.7%) 9960 (−7.1%) 23 134
SPC 115.6 (+5.6%) 149.6 (+4.1%) 10177 (−5.0%) 290 518

SPEC 119.2 (+8.8%) 152.9 (+6.5%) 9831 (−8.3%) 216 454

with the RPEC formulation. Not surprisingly, higher reserve capaci-
ties require a higher baseline energy consumption; however, the energy
consumption increases at a lower rate than the reserve capacity. The
performance improvement achieved by the SPC and SPEC formulations
comes at the cost of longer computation times. The average computa-
tion time of SPC is approximately 30 times higher than that of RPC,
whereas it takes approximately 10 times longer to solve SPEC compared
with RPEC. The SPEC formulation achieves the maximum savings of
8.3% without further increase in computation time compared with SPC.
We also compared closed-loop formulations (where all diagonal and
lower-diagonal elements of the policy matrix H in (9.4) are free op-
timization variables) against simpler open-loop formulations without
affine disturbance feedback (in this case the policy matrix H is con-
strained to be a diagonal matrix, because all lower-diagonal elements
are fixed to zero). Our results show that the closed-loop formulation
slightly outperforms the open-loop formulation for the RPC case, and
achieves a small cost reduction of 0.6% with only a marginal increase
in computation time. On the other hand, the closed-loop formulation
does not reduce the cost compared with the open-loop formulation for
the RPEC, SPC, and SPEC cases, while it increases computation time
by up to a factor of 3.

9.10 Sensitivity Analysis

9.10.1 Capacity and Reserve Energy Payments

The proposed reserve scheduling methods identify the optimal tradeoff
between minimizing energy consumption and leaving enough slack for
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Figure 9.13: Bid curves of the building aggregation in winter and summer
for the RPC and RPEC formulations and ratios λc/c > 1.

reserve provision. The buildings would not have any incentive to devi-
ate from the energy-efficient control and offer reserves if the additional
electricity cost occurring due to this deviation was higher than the re-
ward received for providing reserves. The reward comes from capacity
payments λc

k (the remuneration for the availability of each kW of re-
serve capacity) and reserve energy payments λe

k (the remuneration for
the utilization of each kWh of reserves by the TSO).

In this section, we investigate the relationship between reserve pay-
ments and reserve capacity by running simulations over 2-week periods
in winter and summer and for various λc/c ratios. Figures 9.13 and 9.14
correspond to the fully robust formulations RPC and RPEC, whereas
Fig. 9.15 is for the SPEC formulation. These plots represent the ag-
gregation’s bid curves because they communicate how much capacity
the aggregation is willing to bid in the reserve market depending on the
payment it receives for each kW of the capacity.

Figure 9.13 presents the results for λc/c > 1, where the black curves cor-
respond to the winter weeks (“win”) and the grey curves to the summer
weeks (“sum”), whereas the dashed curves are for RPC and the solid
curves for RPEC. Our simulations show that the buildings are willing
to offer up to 10% more reserves if energy constraints are considered.
Note that the gap between RPC and RPEC is generally larger for lower
λc/c ratios, particularly in winter. In winter, the capacity saturates
at its maximum value at λc/c = 1.1, whereas in summer it increases
monotonically as the ratio increases up to 2.
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Figure 9.14: Bid curves of the building aggregation in winter and summer
for the RPEC formulation and ratios λc/c ≤ 1.

The analysis of Fig. 9.13 considered only ratios λc/c > 1, which is a
necessary condition for reserve provision with the RPC formulation. If
λc < c, the optimal solution is (u∗k, r∗k) = (uopt

k , 0) ∀k, where uopt
k is

the energy optimal scheduling and no reserves are provided. If λc = c,
the total cost (cost from electricity consumption plus profit from re-
serve provision) is 0, and any solution within the feasible range of rk
will be optimal (degenerate case). If λc > c, the optimal solution is
(rmax
k , rmax

k ), where rmax
k is the upper limit of r, and the optimal cost

will be negative, i.e., the aggregation earns profit. The limit rmax
k de-

pends on the HVAC and comfort zone constraints, and therefore differ-
ent solutions are obtained for different λc/c > 1 ratios.8

However, with energy-constrained SFC signals and the RPEC formu-
lation, reserves can be provided also with ratios λc/c < 1. It is easier
to explain this with an example. Assume that the buildings have de-
clared a capacity r(t) for day d, and that up-regulation (consumption
decrease) is mainly requested during day d. If the signal is energy con-
strained, only a fraction of the worst-case reserve energy

∫
r(t)dt will

be requested as consumption decrease from the buildings. The part of∫
r(t)dt that is not requested as reserve energy will be stored as thermal

energy in the buildings, and will reduce the required heating/cooling en-
ergy (and the respective costs) during day d + 1. For this reason, the

8In case of daily reserves, λc/c > 1 need not to be satisfied point-wise throughout
the whole day. Instead, λc/c < 1 can be chosen during daytime, and λc/c > 1 at
night when electricity prices might be lower. Reserve provision will be triggered if
the capacity payment is on average higher than the electricity price.
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Figure 9.15: Bid curves of building aggregation in winter for the SPEC
formulation, with and without reserve energy payments.

buildings are willing to provide reserves even if λc/c < 1. We present
simulation results for the RPEC formulation in winter and summer in
Fig. 9.14. The capacity is zero for λc/c < 0.32, it increases slowly in
the ratio range [0.32− 0.99], and it suddenly jumps to higher values as
λc/c approaches to 1.
Figure 9.13 shows that for unconstrained SFC signals a ratio λc/c = 1.01
already taps most of the reserve potential. Assuming an average elec-
tricity price of 146.6 CHF/MWh9, with a ratio λc/c = 1.01 capac-
ity payments around 148 CHF/MW/h are needed. This is signifi-
cantly lower than the most expensive accepted bids, but approximately
4 times higher than the average capacity payment in 2013 [191]. Fig-
ure 9.14 shows that energy-constrained SFC signals can reduce the nec-
essary capacity payments down to 32% of the retail electricity price
(λc/c = 0.32), but with a large reduction in the reserve capacity.
Figure 9.15 presents the bid curves for the SPEC formulation with only
capacity payments (dashed curve), as well as with both capacity and re-
serve energy payments (solid curve). The bid curve with reserve energy
payments has two distinct regions: for λc/c < 1 the reserve capacity
increases slowly with λc/c, at a ratio equal to 1 there is a sudden jump
in the capacity, and for λc/c > 1 the capacity is constant. Neglecting
the reserve energy payments results in only a slight underestimation
of the reserve capacity for ratios λc/c < 0.9. However, the considera-
tion of reserve energy payments affects the critical price ratio which is
needed for the aggregation to maximize the reserve capacity. If reserve
energy payments are considered the critical ratio is λc/c = 1, otherwise

9This is the case for consumers who consume more than 60 MWh/year in Zurich.
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it increases to 1.1.
Our results show that reserves are actually costly for buildings already
equipped with MPC for energy-efficient (optimal) control, especially if
the SFC signal is not energy-constrained. However, note that the cal-
culations are based on the prevailing case where the buildings acquire
energy in the retail electricity market. In another market setting where
the buildings acquired energy directly in the spot market, the buildings
could offer reserves at more competitive prices, because the retail elec-
tricity prices are typically significantly higher than the wholesale spot
electricity prices.
The analysis of this section provides intuition on the relationship be-
tween the amount of reserves from building aggregations and the capac-
ity payments. In practice, estimating the capacity payment is a chal-
lenging task that needs to consider additional costs (e.g., due to device
wear) but also the competition (the expected bid prices of generators
and/or other load aggregations).

9.10.2 Reserve Product Characteristics

To identify appropriate reserve products from a building aggregation
point of view, we perform simulations for: (i) reserve capacities that are
constant over a day or over hourly intervals; and (ii) symmetric reserves
at each building, symmetric reserves in aggregate (but possibly asym-
metric at each building), or asymmetric reserves in aggregate. More
specifically, we consider the following cases: Daily-Symmetric Reserves
at each Building (DSB), Daily-Symmetric Reserves in Aggregate (DSA),
Daily-Asymmetric Reserves at each Building (DA), Hourly-Symmetric
Reserves at each Building (HSB), Hourly-Symmetric Reserves in Aggre-
gate (HSA), and Hourly-Asymmetric Reserves at each Building (HA).
In addition, we investigate five different combinations of (T, ε+, ε−) for
energy-constrained SFC signals. In total, we run 30 simulations and
summarize the results in Tables 9.8 and 9.9. The simulations are per-
formed with the SPEC formulation and ε = 0.1.
For the symmetric cases (DSB, DSA, HSB, and HSA), the capacity
shown is in one direction only, so the total capacity is the double of the
reported value. For the asymmetric cases (DA and HA), positive values
denote up-reserves and negative values denote down-reserves. There is
a benefit in allowing asymmetric reserves, because moving from DSB
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Table 9.8: Maximum reserve capacity for daily reserve products with differ-
ent symmetry requirements

Parameters Daily reserves (MW)
T (h) ε+ (-) ε− (-) DSB DSA DA

2 0.336 0.467 119.2 119.4 +33.9/-216.3
4 0.337 0.237 118.9 119.1 +33.9/-215.4
6 0.273 0.252 114.9 119.1 +33.5/-214.2
8 0.384 0.343 118.2 118.5 +32.3/-213.9
12 0.197 0.229 118.4 118.0 +30.5/-214.2

Table 9.9: Maximum reserve capacity for hourly reserve products with dif-
ferent symmetry requirements

Parameters Hourly reserves (MW)
T (h) ε+ (-) ε− (-) HSB HSA HA

2 0.336 0.467 121.0 123.8 +39.3/-234.1
4 0.337 0.237 120.7 122.8 +39.0/-232.9
6 0.273 0.252 120.7 123.3 +36.8/-233.9
8 0.384 0.343 120.5 122.2 +35.4/-233.2
12 0.197 0.229 120.5 122.3 +32.9/-232.3

to DSA increases the reserve capacities by approximately 1%, whereas
moving from DSA to DA the increase is approximately 7%.
If asymmetric reserves are allowed, the aggregation offers much more
down- than up-reserves. This happens because the buildings provide
down-reserves (HP power increase) while operating close to the minimum-
energy control trajectory and without increasing the buildings’ baseline
consumption. For any (T, ε+, ε−) and symmetry case, adopting hourly
instead of daily reserves increases the capacities in the range 2−9%. Fi-
nally, we observe that T = 2 h maximizes the capacities for all products
and that the capacity generally decreases for longer T .

9.10.3 Comfort Zone and Violation Probability

The buildings are able to provide reserves because of their thermal in-
ertia, and the fact that the occupants are not disturbed as long as the
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Figure 9.16: Dependence of reserve capacity (left) and total cost (right) on
the comfort zone’s width.

temperature is kept within the comfort zone. Therefore, the reserve ca-
pacity depends directly on the comfort zone’s width. To investigate this
dependence we conducted simulations with the SPEC formulation for
five different comfort zones, namely [22, 23]◦C, [21.5, 23.5]◦C, [21, 24]◦C,
[20.5, 24.5]◦C and [20, 25]◦C, and present the resulting reserve capaci-
ties and total costs in Fig. 9.16. The capacity scales linearly with the
comfort zone’s width, whereas the cost decays exponentially, i.e., it de-
creases significantly as the width of an initially narrow comfort zone
increases, but it saturates for wider comfort zones.
Recall that the violation probability ε determines the necessary number
of SFC signal scenarios to approximate the chance constraints based
on (9.34). As ε decreases, more scenarios are needed and more sam-
pled state (comfort) constraints are added in (9.24). This means that
with lower ε the problem becomes more conservative, and thus higher
costs should be expected. Interestingly, our simulations show that this
is not always the case. Figure 9.17a shows the cost over a 2-week sim-
ulation period for ε = {0.2, 0.15, 0.1, 0.05, 0.025}, which corresponds to
{250, 333, 500, 1000, 2000} scenarios. Clearly, more scenarios do not al-
ways increase the cost.
We have identified three main reasons for this: (i) with more scenar-
ios the expected energy payments λe

kE[wk] in the objective function are
approximated better; (ii) since the reserve scheduling is a finite horizon
optimization problem, the results of previous problems affect the aggre-
gation’s availability to provide reserves in the future; and (iii) the com-
fort zone [21, 24]◦C is wide enough to make the HVAC input constraints
usually active instead of the comfort constraints.10 To illustrate this, we

10An additional reason why the cost does not monotonically increase with the
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Figure 9.17: Cost (left) and computation time (middle) for a 2-week simu-
lation period. Right: Cost for a simpler case and simulation
over 1 day.

show in Fig. 9.17c the cost from a 1-day simulation with the narrower
comfort zone [22, 23]◦C and without energy payments. In this case,
smaller values of ε indeed increase the cost, but still only marginally.
As expected and shown in Fig. 9.17b, the computation time increases
exponentially as ε decreases.

9.10.4 HP Dynamics and Constraints

In this section, we investigate the sensitivity of reserve capacity to: (i)
the HP minimum loading constraints (Pmin), expressed as a percentage
of the HP rated power; and (ii) the minimum up- (TU) and down-
time (TD) HP constraints. Assuming λc = 1.3 · c and ε = 0.2, we
consider four different Pmin values and compare them with the case of an
unconstrained HP in terms of reserve capacity, total cost (electricity cost
and reserve profit), and computation time. Table 9.10 presents results
from a simulation period of two weeks. The results show that as Pmin
increases, the reserves decrease rapidly and the cost and computation

number of scenarios is that the scenarios are randomly drawn. Say that a set of 250
scenarios is available, which corresponds to the violation probability ε = 0.2. When
increasing the number of scenarios to 333 in order to model a violation probability
of ε = 0.15, a completely new set of scenarios is created, instead of extending the
existing set of 250 scenarios with 83 new scenarios. Although the scenarios are i.i.d.,
it is still possible that a smaller set of scenarios contains “worse” scenarios than a
larger set. Of course, if the chance-constrained optimization problem is solved many
times and the results are averaged, the effect of drawing scenarios randomly will be
eliminated.
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Table 9.10: Effect of HP constraints

Pmin
(%)

TU

(h)
TD

(h)
Reserve
(MW)

Cost
(CHF)

Time (s)
Mean Max

0 0 0 120.1 5352 19 65
10 0 0 92.3 10819 37 88
20 0 0 34.9 16570 227 711
30 0 0 24.7 18641 237 1132
20 2 2 34.7 16822 235 852

Table 9.11: Effect of HP dynamics

τf
(s)

Symmetry
(-)

MAPE
(%)

N/A DSA 4.12
20 DSA 3.73
40 DSA 2.91
60 DSA 2.53
40 DSB 2.12

time increase. On the other hand, TU and TD do not have a significant
impact on the results.
In Table 9.11, we show the dependence of tracking MAPE on the filter’s
lower cutoff period τf . As expected, larger τf reduce MAPE because
the reference power signal to be tracked is smoother. For fixed τf , we
observe that symmetric reserves on the building level (DSB) result in
better tracking performance than asymmetric reserves at each building
but symmetric in aggregate (DSA). The reason is that with DSB the
HPs usually operate at a power significantly higher than Pmin. Since
the ramping limits are tighter at a low operating power, DSB results in
smaller errors than DSA, where some HPs operate close to Pmin.

9.11 Implementation Aspects

In this section, we discuss a number of additional issues that need to be
considered for a real-world implementation of the proposed framework.
Since the reserve scheduling formulation relies on building models, the
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building managers need to identify these models and share them with
the aggregator. This might raise privacy concerns and discourage build-
ing managers from participating in such programs, and a potential so-
lution could be to solve the reserve scheduling problem in a distributed
way. In addition, the buildings might need to periodically send up-
dated versions of the models to the aggregator, e.g., if the models are
seasonal. Moreover, a systematic way to fairly divide the profits from
reserve provision between the aggregator and the buildings is needed.
The simulation results presented in this chapter are based on four main
assumptions: (a) there is no plant-model mismatch; (b) the predictions
of weather and occupancy are perfect; (c) all building states can be mea-
sured; and (d) the reaction of heating/cooling devices is fast and does
not cause any wear. For a real implementation of the proposed control
framework, additional care must be taken for (a)-(d): accounting for
modeling and weather/occupancy prediction errors, use of state esti-
mators, and modeling of the fast dynamics of heating/cooling devices.
These aspects will be discussed in Chapter 10.
An important question is if participating in reserve markets is a viable
option for the buildings. There are three relevant aspects that need to
be considered. First, the operational profits are highly dependent on
the capacity payments (which reflect the cost of reserves in the system)
and the cost of electricity. The reserves from buildings will become
important as the shares of Renewable Energy Sources (RES) increase,
because fewer dispatchable power plants will exist in the energy mix.
With increasing RES shares, the reserves from buildings will also be-
come more cost-competitive due to the expected drop in electricity cost
and increase in reserve cost. Second, the buildings will need to mod-
ify the existing building management system to integrate the proposed
controllers. The associated cost is expected to be manageable for build-
ings already equipped with MPC for energy-efficient control; however,
the cost might be significant for buildings with conventional controllers.
Third, reserve provision might cause wear or even reduce the lifetime
of HPs or chillers. The buildings would need to verify if the wear is
significant and, if yes, to consider the associated cost when making the
investment decision.
Although the proposed framework is designed for SFC, it can be ap-
plied to other ancillary services (e.g., tertiary control, synchronized re-
serves, or day-ahead scheduling reserves) with reasonable modifications.
Building aggregations could participate also in load management prod-
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ucts that exist in some capacity markets, e.g., in PJM. One opportunity
would be the limited DR program [192], where the buildings must be
available to curtail load for at least 10 times during the summer pe-
riod and maintain the load reduction for at least 6 hours with a 2-hour
notification. Such DR events can be incorporated into the framework
considering relevant load reduction scenarios and payments from the
capacity market.

9.12 Conclusion

In this chapter, we developed a hierarchical control framework to allow
an aggregation of commercial buildings to participate in SFC reserve
markets with HVAC system control. The framework has three control
layers and it is based on techniques from robust and stochastic optimiza-
tion and MPC. A main attribute of the framework is that it estimates
the reserve capacity that can be offered reliably to the TSO without
occupant discomfort.
To illustrate the framework’s performance, we considered a case study
with typical Swiss office buildings and ran simulations during a winter
and a summer week. The results show that an aggregation of 100− 225
buildings is needed to meet the minimum bid size requirement of 5
MW of the Swiss ancillary service market. The case study results in-
dicate that asymmetric reserves are preferable for buildings in case of
traditional unconstrained SFC signals. In addition, we observed that
energy-constrained SFC signals can reduce the necessary capacity pay-
ments and increase the reserves significantly (for example, by up to
∼10% in our case study) compared with traditional SFC signals. Fur-
thermore, reducing the duration of reserve products from 1 day to 1 hour
also increases the reserves significantly (for example, by up to ∼9% in
our case study).





Chapter 10

Experimental
Verification of Frequency
Regulation with
Commercial Buildings

10.1 Introduction

Chapter 4 reviewed the few experimental demonstrations of frequency
regulation with commercial buildings that have taken place so far.
To the best of our knowledge, this chapter presents the first experimen-
tal demonstration of frequency regulation from a commercial building
that simultaneously addresses the following challenges: (i) a priori de-
termination of reserve capacity, (ii) a priori declaration of base-point
power (i.e., short-term operating power around which we provide fre-
quency regulation), (iii) guarantees on satisfaction of occupant comfort,
and (iv) accurate tracking of the regulation signal. This is achieved
by adopting the hierarchical control framework of Chapter 9, which is
extended and adjusted in order to fit the needs of the demonstration
project.

263
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Table 10.1: Nomenclature of Chapter 10: symbols

Symbol Unit Description
a11 − a22 - Entries of the state matrix of building model

b - Entry of the input matrix of building model
C kWh/◦C Thermal capacitance
c e/kWh Electricity cost
cp J/kg◦C Specific heat capacity of water

d11 − d13 - Entries of the disturbance matrix of building model
E Wh Energy consumption
e W Control error metric

eold, enew W Control errors for the PI controller
f - Function mapping air flow rate to fan power
g - Function mapping fan speed to fan power
h - Function mapping fan speed to air flow rate
G W/m2 Solar radiation
Ig W Internal heat gain
K - Kalman gain

Kp, Ki - Proportional and integral gains of the PI controller
ṁ, u cmf Air flow rate (cubic feet per minute)
ṁcw, u gpm Chilled water flow rate (gallons per minute)
Nf % Fan speed (% of rated)

N1, N2 hours Prediction horizons of levels 1 and 2
P W Fan power

P−e , Pe - A priori and a posteriori covariance matrix
Qc W Cooling power from the HVAC system
Rra

◦C/kW Thermal resistance (room to ambient)
Rrm

◦C/kW Thermal resistance (room to lumped mass)
R W Electric reserve
r W Thermal reserve
Sc - PJM correlation score
Sd - PJM delay score
Sp - PJM precision score
Stot - PJM total score
T ◦C Temperature
v ◦C or W/m2 Vector of weather disturbances
w - Normalized SFC signal
wlim - Normalized energy content of SFC signal
x ◦C Vector of building states

The demonstration is unique in that it balances energy consumption
minimization and profit maximization from selling the reserve capacity
in a way that the net profit is maximum. In other words, the control
scheme we designed chooses to favor either energy efficiency or regula-
tion capacity depending on weather and occupancy conditions, building
states, as well as electricity and reserve prices. Furthermore, the re-
serve capacity is determined in a day-ahead fashion using techniques
from robust optimization to ensure that it can be provided without
compromising the occupants’ comfort.
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Table 10.2: Nomenclature of Chapter 10: Greek letters

Symbol Unit Description
α0 − α3 - Parameters of the air flow to fan power model
β0 − β3 - Parameters of the fan speed to fan power model
γ0, γ1 - Parameters of the fan speed to air flow model
γ - Solar radiation absorption factor

∆t min Discretization time step
∆u W/m2 Perturbation around u to provide SFC reserve
ε W Threshold for switching between controllers in level 3
η - Efficiency
λ e/kW/h Reserve capacity payment

Table 10.3: Nomenclature of Chapter 10: subscripts and superscripts

Symbol Description
a Ambient temperature
c Control error

ch,r Return chilled water
ch,s Supply chilled water
d Down-reserve
k Time index
m Lumped thermal mass temperature

mae Mean absolute control error
me Mean control error

min, max Minimum and maximum values of a variable
r Room temperature (Tr)
r Reserve percentage error (er)

rmse Root mean square error
r,mape Mean absolute percentage reserve error

s Supply air temperature
t Tracking percentage error

t,mape Mean absolute percentage tracking error
u Up-reserve
∗, ? Optimal value of a variable

(·), (·) Upper and lower bound on a variable
(̂·) Estimate of a variable

The building climate control is formulated as a robust Model Predictive
Control (MPC) problem, which attempts to minimize the energy con-
sumption while leaving enough slack for reserve provision. The MPC
uses a simple 2nd order building model that can be obtained easily from
historical data, and an extended Kalman filter. The regulation sig-
nal is tracked in real-time using a novel switched controller comprised
of a feedforward and a feedback element. The control variable is the
fan speed, which is shown to achieve a much better tracking perfor-
mance compared with previous approaches that relied on control of the
static duct pressure setpoint, air flow rate setpoint, Supply Air Tem-
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perature (SAT) setpoint, or zone temperature setpoints.
Another unique characteristic of the demonstration is that it is per-
formed on a test building comprised of two identical zones. We use one
zone for the frequency regulation experiment, whereas the other zone
is used as a real-time benchmark to evaluate the effect of our control
actions.
The experiments were performed over a period of two weeks and the
results are very encouraging. A significant amount of regulation reserves
is extracted from the test building, the tracking performance is excellent,
and the effect on occupant comfort and on the Heating, Ventilation
and Air Conditioning (HVAC) system is minimal. Most of the tests
were performed with historical RegD signals from the Pennsylvania,
Jersey, and Maryland Power Market (PJM). In addition, we established
a connection with PJM, received, and tracked the actual RegD signal
in real time for a small part of the experiment.
The remainder of this chapter, which is based on [193,194], is organized
as follows. Section 10.2 introduces the goals of the experiment and the
test facility, whereas Section 10.3 presents the control and communica-
tion architecture. Section 10.4 presents the developed building models
and Section 10.5 the hierarchical controller. Extensive experimental
results are analyzed in Section 10.6, some important observations and
suggestions are summarized in Section 10.7, whereas Section 10.8 con-
cludes. The nomenclature of this chapter is given in Tables 10.1 - 10.3.

10.2 Experiment Goals and Facility

10.2.1 Goals of this Experiment

The main goal of this experiment is to demonstrate that frequency reg-
ulation can be provided by commercial buildings at a high quality. In
particular, we attempt to show the following:

• A building can determine the reserve capacity that it can offer
and bid it in a day-ahead Ancillary Service (AS) market.

• Accurate tracking of the frequency regulation signal is possible
with fan control.

• With proper control design, frequency regulation has no or mini-
mal adverse effect on occupant comfort.
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Figure 10.1: Front (left) and rear (right) view of FLEXLAB.

• A hierarchical controller can operate the building favoring either
frequency regulation or energy efficiency depending on external
parameters and conditions.

We believe that the proposed hierarchical controller is appropriate for
frequency regulation in commercial buildings, and the purpose of this
chapter is to evaluate its performance in a small but highly controllable
test building. This is a necessary first step before field testing in larger
commercial buildings and widespread implementation.

10.2.2 Description of FLEXLAB

The experiment was performed at the Facility for Low Energy eXperi-
ments (FLEXLAB), a new facility for energy efficiency research in build-
ings located at the Lawrence Berkeley National Laboratory (LBNL).
The facility (shown in Fig. 10.1) is comprised of 4 buildings that are
called “bays”, and each of the bays consists of 2 building zones that are
called “cells”. Each pair of cells is designed to be thermally identical,
constructed with the same materials and dimensions.
Although the two cells are semi-attached, i.e., they are built side-by-
side, the walls at the side where the cells are physically connected are
adiabatic. As a result, there is no heat exchange between the two cells
and therefore they can be considered as independent. This is a unique
feature of FLEXLAB that allows us to perform frequency regulation
experiments in one of the two identical cells, while using the other one
as a benchmark to evaluate the effect of our control actions in real time
and under the same external conditions.
One of the bays stands on a rotating platform that can be used to
change the buildings orientation, whereas the other three bays have a
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Figure 10.2: The HVAC system of building cells 1A and 1B of FLEXLAB.

fixed south orientation. For our experiments we used the first of the bays
with south orientation, which has a total floor area of 120 m2 (60 m2

per building cell). In the rest of this chapter, we will call cell “1A” the
cell where the reserve experiments were performed, and cell “1B” the
cell that was used as a benchmark. Although small, the building is a
good representation of commercial buildings with Variable Air Volume
(VAV) systems constructed in the 1980’s.
Three major cascade control loops are present in a VAV HVAC system:
chilled water temperature control, SAT control, and zone (room) tem-
perature control. A chiller plant cools down water that is then piped to
the building’s Air Handling Unit (AHU). The chilled water decreases
the temperature of a mixture of return and outside air in the AHU using
a heat exchanger, and the flow of the chilled water is controlled to main-
tain a constant SAT. The cooled air is circulated to the building zones
through the duct system using a fan. The temperature of each zone
is maintained close to the desired setpoint by controlling the damper
position of the VAV box.
Typically, an AHU provides several building zones with cooled air,
whereas reheating is done locally at the VAV box of each zone. However
as shown in Fig. 10.2, the cells of FLEXLAB are served by dedicated
AHUs that contain also a heating coil, apart from the fan and cooling
coil. Another particularity of FLEXLAB is that the inlet dampers in the
zones are controlled manually, hence, the zone temperature is regulated
by fan control.

10.2.3 Preparation of the Experiment

Since FLEXLAB has no occupants, we had to emulate the internal heat
gains from occupants and equipment. There were two ways to do so:
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(i) using an existing floor heating system that actuates in the building
slab; and (ii) using electric heaters as plug loads. The second option
was used because it additionally allowed us to emulate hotter days by
plugging in more heaters to create a higher temperature differential with
the ambient. The total internal heat gain in both cells was kept lower
than the chiller cooling capacity.
Before the start of the experiment, the manually controlled inlet dampers
in the rooms where fixed to fully open positions, and the SAT was fixed
to 17◦C. In addition, the return air damper was fixed to a 100% open-
ing and the outside air damper to a 0% opening, i.e., the return air
was fully recirculated. The speeds of the primary and secondary chilled
water pumps were fixed to 75% and 100% of their rated speeds, respec-
tively. Moreover, both the floor heating system and the reheating coil
at the AHU were deactivated.
To verify that the the two cells are indeed sufficiently similar, we applied
exactly the same control inputs (fan speeds) in both cells and recorded
the room temperatures. The comparison showed that the two cells
are sufficiently similar, but it also revealed a systematic discrepancy
between the two cells. Analyzing the measurements we found that this
discrepancy was due to calibration differences between the two AHUs,
i.e., the same fan speed command resulted in different supply air flow
rates in the two cells. We used these data to fit a correction model that
slightly modifies the fan speed in cell 1B to achieve the same air flow
rate as in cell 1A.

10.3 Control and Communication Architec-
ture

10.3.1 Hierarchical Control

FLEXLAB is controlled by a Central Working Station (CWS) based
on a predefined control sequence programmed in LabVIEW. From a
TestStand National Instruments user interface, the operator can modify
the setpoints of various control loops and observe the system’s behavior
in the chilled water loop, hot water loop, AHU, and conditioned room.
A screenshot of the user interface for the AHU is shown in Fig. 10.3.
This interface is very useful for infrequent update of control setpoints
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Figure 10.3: Screenshot of the TestStand user interface for the AHU.

or monitoring purposes, but it cannot be used for frequency regulation
because it would require constant human intervention.

One possibility to automate the frequency regulation process would be
to integrate our controllers within the existing LabVIEW environment.
However, the option that was finally adopted was to use an existing
scripting environment to send the control setpoints directly to the CWS.
This allowed us to develop the fan controller for frequency regulation
externally, and therefore to minimize potential conflicts with the Lab-
VIEW code. The only modifications we did in the LabVIEW code were
settings that did not change during the experiment (e.g., deactivation of
the floor heating system). In addition, the SAT was fixed via the Test-
Stand interface because there existed no relevant control point within
the scripting environment. Apart from the fan speed, all other control
variables (e.g., setpoints in the chilled water loop) were calculated by
the default controller in the CWS. Therefore, the designed controllers
work complementarily to the existing ones and do not substitute them.

The hierarchical controller designed for the experiment consists of three
levels: Level 1: reserve scheduler, Level 2: room climate controller, and
Level 3 frequency regulation controller. In this section, we provide a
high-level introduction to the three control levels and explain the un-
derlying communication architecture. The control sequences are shown
in Fig. 10.4 and detailed mathematical formulations for the controllers
will be provided in Section 10.5.
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Figure 10.4: Control sequences of the three levels of the hierarchical control
for frequency regulation.

Level 1: Reserve Scheduler

The goal of the reserve scheduler is to determine the reserve capacity
that the building can offer to the Transmission System Operator (TSO).
Depending on the reserve market requirements, the reserve scheduling
might be performed on a daily or on an hourly basis, but certainly ahead
of real-time operation. In the experiment we assumed a day-ahead re-
serve scheduling occurring at 12.00 of each day to determine the reserve
capacity for the next day. In order to reliably provide the reserve capac-
ity for any possible reserve request, the reserve scheduling is formulated
as a multi-period robust optimization problem and is solved in Matlab.

Level 2: Room Climate Controller

This controller calculates the supply air flow rate setpoints that mini-
mize the energy consumption, while ensuring occupant comfort under
reserve provision. It is important to note that this is a zonal controller
because it regulates the room temperature in the air loop, but not the
control setpoints in the chilled water loop, which are determined by
the default FLEXLAB controller. This controller is implemented as a
robust MPC in Matlab and runs every 15 minutes.

Level 3: Frequency Regulation Controller

The goal of this controller is to track the frequency regulation signal
nearly in real time by modifying the fan power via fan speed control
with a Variable Frequency Drive (VFD). For this purpose, we design a
switched controller comprised of a feedforward model-based controller



272 Chapter 10. Experiment: SFC from Buildings

HVAC system 

control points

Measurements

Setpoints

Python script 

(periodical execution)

Forecast.io

Query
Weather 

forecasts

Python script 

(periodical 

execution)

Query for 

measurements

Level 2: Room climate controller

Air mass flow setpoint 

calculation every 15 min in Matlab

Model predictive control

Level 3: Frequency 

regulation controller

Fan control every 

4 sec in Python

Model-based 

feedforward control

PI feedback control
reserve.csv

Frequency 

signal

forecast.csv

measure.csv

measure.csv

Central working station

Scripting 

interface 

Default 

controller

Fan speed 

setpoint

setpoint.csv

Kalman filter

Level 1: Reserve scheduler

Reserve capacity determination 

on a daily basis in Matlab

Robust optimization Kalman filter

Figure 10.5: The developed control and communication architecture for the
frequency regulation experiment in FLEXLAB.

and a feedback Proportional-Integral (PI) controller with gain schedul-
ing. The controller is implemented in Python and is executed every
4 seconds.

10.3.2 Communication Architecture

A simple communication architecture was designed to coordinate the
operation of the three levels of the hierarchical controller. At the lower
level, an existing scripting environment was used to send control set-
points directly to the CWS by executing ssh-based proxy commands
from a Unix shell. This allowed us to override the default FLEXLAB
controller at the cost of introducing some additional delay in the control
loop.

The scripting environment was also used to query the measurement
points via the CWS. To obtain synchronized measurements and min-
imize the measurement delay, we created three “users”. The “control
user” includes the measurement points related to the fan and the elec-
tric power measurement points, which are queried every 1 second. The
“feedback user” includes all measurement points that are needed as
feedback within the MPC, namely the supply air flow rate, SAT, room
temperature, plug loads and ambient conditions, and it queries these
points every 1 minute. And finally, the “monitor user” includes all other
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measurement points that are useful for post-processing and analysis of
the experimental results, and it queries these points every 5 minutes.
The fan speed control in level 3 and the formation of the appropriate
CWS proxy commands are performed in Python, whereas the optimiza-
tion problem of level 1 and the MPC of level 2 are implemented in
Matlab. We created a simple communication interface between Python
and Matlab based on csv files.
The reserve scheduler stores the computed reserve capacity in the re-
serve.csv file. A Python script periodically queries the three measure-
ment users and stores the measurements in the measure.csv file. An-
other Python script periodically queries the publicly available weather
forecast database of forecast.io and stores the necessary forecasts in the
forecast.csv file. The input to the MPC is obtained by reading the build-
ing measurement points of the feedback user from measure.csv and the
weather forecasts from forecast.csv. The optimal air flow rate setpoint
calculated by Matlab every 15 minutes is stored in the setpoint.csv file.
The setpoint.csv and reserve.csv files are accessed by Python every 4
seconds to determine the fan speed reference, of course based also on the
received frequency regulation signal. The communication architecture
is graphically shown in Fig. 10.5.

10.4 Modeling

10.4.1 Building Thermal Model

We model the building thermal dynamics using the 2-state Resistance-
Capacitance (RC) network of Fig. 10.6. If the heating coil of the AHU
is deactivated, the cooling power of the HVAC system is given by Qc =
ṁcp(Ts−Tr), where Tr is the room temperature, ṁ is the mass air flow
rate in the room, cp is the specific heat capacity of air, and Ts is the
SAT. The differential equations of the RC network are

Cr
dTr

dt
= ṁcp(Ts − Tr) + Ta − Tr

Rra
+ Tm − Tr

Rrm
+ γG+ Ig (10.1)

Cm
dTm

dt
= Tr − Tm

Rrm
, (10.2)

where Tm is the temperature of the lumped thermal mass; Cr is the
room’s thermal capacitance; Cm is thermal capacitance of the lumped
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Cr Cm

RrmRra
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G, Ig Qc

Figure 10.6: The equivalent RC network of the considered building thermal
model. The black nodes are the building states, the grey node
is the control input, and the white nodes are the disturbances.

mass; Ta is the ambient temperature; Rra is the thermal resistance be-
tween the room and the ambient; Rrm is the thermal resistance between
the room and the lumped mass; G is the solar radiation; γ is the solar
radiation absorption factor; and Ig represents the internal heat gains.
The model is bilinear between the control input ṁ and the state Tr. In
general, there exists also a bilinearity between ṁ and Ts; however, Ts is
controlled to a fixed value in our experiment and thus it is treated as a
constant in the model.
By reordering (10.1) and (10.2), the continuous-time model can be writ-
ten in the state-space form[

Ṫr
Ṫm

]
=
[
−
(

1
CrRra

+ 1
CrRrm

)
1

CrRrm
1

CmRrm
− 1

CmRrm

] [
Tr
Tm

]
+

[ cpTs
Cr
0

]
ṁ+

[
− cp
Cr

0
0 0

] [
Tr
Tm

]
ṁ+

[ 1
CrRra

γ
Cr

1
Cr

0 0 0

]Ta
G
Ig

 . (10.3)

Applying a first-order Euler discretization, the structure of the contin-
uous-time matrices is maintained [195], and therefore the discrete-time
model can be written in the form

[
Tr,k+1
Tm,k+1

]
=

A︷ ︸︸ ︷[
a11 a12
a21 a22

] [
Tr,k
Tm,k

]
+

Bu,k︷ ︸︸ ︷[
bTs,k

0

]
ṁk+

Bxu︷ ︸︸ ︷[
−b 0
0 0

] [
Tr,k
Tm,k

]
ṁk +

Bv︷ ︸︸ ︷[
d11 d12 d13
0 0 0

]Ta,k
Gk
Ig,k

 , (10.4)
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where the state, input and disturbance vectors are defined as

xk = [Tr,k Tm,k]> (10.5)
uk = ṁk (10.6)
vk = [Ta,k Gk Ig,k]> . (10.7)

The discrete-time model parameters a11, a12, a21, a22, b, d11, d12, d13 can
be identified by regression on available data of Tr,k, ṁk, Ta,k, Gk, Ig,k.1
Since the state Tm,k is not directly measured, the resulting regression is
a non-linear optimization problem that involves multiplications of the
optimization variables (the model parameters)

min
a11−a22,b,d11−d13,T̂r,k,T̂m,k

∑
k

(
T̂r,k − Tr,k

)2
(10.8a)

s.t.
[
T̂r,k+1
T̂m,k+1

]
=
[
a11 a12
a21 a22

] [
Tr,k
T̂m,k

]
+
[
bTs,k

0

]
ṁk+

[
−b 0
0 0

] [
Tr,k
T̂m,k

]
ṁk +

[
d11 d12 d13
0 0 0

]Ta,k
Gk
Ig,k

 , ∀k (10.8b)

a12 ≥ 0, a21 ≥ 0, b ≥ 0, d11 ≥ 0, d12 ≥ 0, d13 ≥ 0 (10.8c)
T̂min

m,k ≤ T̂m,k ≤ T̂max
m,k , ∀k (10.8d)

|eig(A)| ≤ 1, |eig
(
A+Bxuṁk

)
| ≤ 1, ∀k . (10.8e)

Let us denote by Ac, Bcu, and Bcv the continuous-time state matrix, input
matrix and disturbance matrix, respectively. Due to the first-order dis-
cretization, the discrete-time matrices are obtained from the continuous-
time matrices as A = I+∆t ·Ac, Bu = ∆t ·Bcu and Bv = ∆t ·Bcv, where
∆t is the discretization step. For this reason, the positive elements of
Ac, Bcu, and Bcu in (10.3) remain positive in the discrete-time matrices
of (10.4), which is represented in the regression by constraints (10.8c).
Constraints (10.8d) are lower and upper bounds on the estimated un-
measured state Tm,k to avoid unreasonable values. In this experiment,
the bounds T̂min

m,k = 0.01 · Tr,k and T̂max
m,k = 2.5 · Tr,k were used.

1The entries d21, d22, d23 of the second row of the disturbance matrix Bv are fixed
to zero, which gives more reasonable results. Therefore, the external disturbances act
directly only on the room temperature, which is a practice followed also in previous
works, e.g., in [196].
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Table 10.4: Comparison of building model variants

Model RMSE (◦C)
1-state model with 1-step ahead prediction 0.92
1-state model with 1-day ahead prediction 0.67
2-state model with 1-step ahead prediction 0.89
2-state model with 1-day ahead prediction 0.42

Constraints (10.8e) impose stability of the identified model. More specif-
ically, |eig(A)| ≤ 1 is a standard stability requirement for linear systems,
whereas |eig

(
A+Bxuṁk

)
| ≤ 1 is needed because the system is bilinear.

Note that for a sufficiently large data set (10.8e) are not expected to
be active constraints. However, we include these constraints to avoid
over-fitting when a building model is identified using a relatively small
data set or a data set without sufficient excitation in terms of control
inputs and states.
The optimization problem (10.8) identifies a model based on a “1-step
ahead prediction”, meaning that the estimate T̂r,k+1 at each time step
depends directly on the measurement Tr,k at the previous time step.
This identification problem formulation is a standard practice for MPC
applications, where what matters the most is the quality of the one-step
ahead prediction of the model. In contrast, in our problem the building
model is also used within the day-ahead reserve scheduler, and thus
high-quality day-ahead predictions are important.
To address this requirement, a more sophisticated “1-day ahead predic-
tion” model can be obtained by substituting Tr,k with the optimization
variable T̂r,k in (10.8b), which results in a more complex non-linear re-
gression problem. Note that a 1-state model can be used, if the lumped
thermal mass of the room is neglected. In that case the regression prob-
lem is simplified significantly, especially if the “1-step ahead prediction”
approach is used, which results in a least squares problem with linear
constraints.

Building Model Identification Results

We fitted two sets of building model parameters. The first one used
data from 17 − 21 June, 22 − 25 June, and 4 − 5 July 2015. During
these periods, the system was sufficiently excited by operating it with
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Figure 10.7: The results of the thermal model identification. The 2-state
model with 1-day ahead prediction matches closer the experi-
mental data.

Table 10.5: Parameters of the 2-state model with 1-day ahead prediction
identified with data from June-July 2015

Parameter a11 a12 a21 a22
Value 0.8665 0.0918 0.0374 0.9703

Parameter b d11 d12 d13
Value 0.2996 0.0230 2.0156 · 10−4 1.4242 · 10−4

different combinations of air flow rate, SAT, and heater power. Four
different model variants were compared: (i) 1-state model with 1-step
ahead prediction, (ii) 1-state model with 1-day ahead prediction, (iii)
2-state model with 1-step ahead prediction, and (iv) 2-state model with
1-day ahead prediction. The identification results are shown in Fig. 10.7
and the Root Mean Squared Errors (RMSEs) are given in Table 10.4.
As expected, increasing the number of states from one to two reduces
the RMSE. The error reduces also by increasing the prediction horizon
from one step to one day. Based on Table 10.4, increasing the prediction
horizon reduces the error more effectively than increasing the number
of states. We use the 2-state model with 1-day ahead prediction in the
frequency regulation experiments because it achieves the lowest RMSE.
The identified model parameters are shown in Table 10.5.2

The second set of model parameters was fitted using data from 12− 18
2Different models were identified for cells 1A and 1B and they were similar to

each other because the two cells are nearly identical. Only the model of cell 1A is
shown here.
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Table 10.6: Parameters of the 2-state model with 1-day ahead prediction
identified with data from November 2015

Parameter a11 a12 a21 a22
Value 0.6344 0.2661 0.1021 0.9170

Parameter b d11 d12 d13
Value 0.4716 0.0405 0.0028 3.3686 · 10−4

November 2015, and the identified parameters are given in Table 10.6.
The reason why we used two different parameter sets is to investigate
the importance of periodic calibration of the building model.

10.4.2 Fan Model

A steady-state fan model is required both in the MPC controller to de-
termine the optimal mass air flow setpoints and in the fan controller to
track the frequency regulation signal. In the MPC controller the map-
ping between air flow rate and fan electric power must be considered,
whereas in the fan controller the desired electric power setpoint must
be converted into a fan speed reference, which is the control variable.
According to the fan laws, the mass air flow rate u is proportional to
the fan speed Nf, and the fan power P increases with the cube of the
fan speed. Therefore, a steady-state model can be obtained by fitting
the parameters of

P = f(u) = α3u
3 + α2u

2 + α1u+ α0 (10.9)
P = g(Nf) = β3N

3
f + β2N

2
f + β1Nf + β0 (10.10)

u = h(Nf) = γ1Nf + γ0 , (10.11)

using measurements of Nf, u and P .
For this purpose, we vary the fan speed setpoint from 10% to 90% with
a step of 5%, and record the air flow rate and electric power.3 Each fan
speed setpoint is kept for 6 minutes, but the first 20 seconds of the data
after each step change are discarded to allow enough time for the fan to
reach the new steady state and account for actuation and measurement
delays. The identified parameters are given in Table 10.7.

3The minimum and maximum fan speed setpoints of 10% and 90% were suggested
by the FLEXLAB building manager. The nominal fan power is 2500 W.
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Table 10.7: Fan model parameters

Parameter α3 α2 α1 α0
Value 2.5882 · 103 −1.4580 · 103 630.8961 28.7249

Parameter β3 β2 β1 β0
Value 0.0032 −0.0151 1.4521 55.7634

Parameter - - γ1 γ0
Value - - 0.0133 0.0606
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Figure 10.8: The raw measurements of fan speed, air flow and power from
the fan identification experiment. The data points are scat-
tered due to the measurement delays (average value of 2.89
seconds) and the response time of the fan to step changes.

Note that to avoid very small model parameters, the air flow rate data
are normalized by the rated flow rate of 2700 cfm before identifying the
model, and so the flow rate u in (10.9) is a normalized value. The fan
speed Nf in (10.10) is expressed as percentage of the maximum speed,
whereas the fan power is in W for both (10.9) and (10.10). The raw
measurements are shown in Fig. 10.8, whereas the fit of the identified
models on the filtered fan measurements is shown in Fig. 10.9. The
fitting performance is very high and the RMSE is only 5 W for the
speed-to-power model and 21 W for the flow-to-power model.
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Figure 10.9: The fitting performance of the identified steady-state fan mod-
els on the filtered measurements.

10.5 Hierarchical Control Design

10.5.1 Level 1: Reserve Scheduler

The goal of level 1 is to compute the reserve capacities that the building
can offer to the power system during the following day. The day-ahead
reserve scheduling is formulated as a multi-period robust optimization
problem. Before presenting the mathematical formulation, we discuss
some important assumptions on building operation.

Building Operation Assumptions

We perform the experiment while FLEXLAB operates in cooling mode,
i.e., both the floor heating and the reheating coil at the AHU are deac-
tivated. Furthermore, we make the following assumption on the SAT.

Assumption 1. The SAT is controlled to a setpoint Ts,k (via cooling
valve control) that is always less or equal to the lower bound of the
building’s comfort zone xmin,k:

Ts,k ≤ xmin,k ≤ Tr,k, ∀k . (10.12)

Under this assumption, pushing more air into the room will always
decrease the room temperature.
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The duct static pressure is not modeled and no pressure constraints are
used in the problem formulation. The duct system of FLEXLAB is short
because a dedicated AHU supplies each zone, and thus drastic changes
in pressure are very unlikely. However, additional pressure constraints
might be necessary in large buildings with longer duct systems.

Robust Reserve Scheduling Formulation

For generality, we differentiate between the electric up- and down-reserve
capacity of the building at time step k, which we denote by Ru,k and
Rd,k, respectively. The up-reserve capacity Ru,k is the maximum de-
crease in electric power that can be requested, whereas Rd,k is the max-
imum increase in electric power.4

It is convenient to define also the thermal up- and down-reserve capac-
ities, ru,k and rd,k, as the maximum changes in the mass air flow rate
due to reserve provision. In cooling operation, a request for regulation
up results in a reduction in air mass flow rate, such that Ru,k is related
to rd,k. On the other hand, regulation down results in an increase in
air mass flow rate (Rd,k is related to ru,k).
The relationship between the electric and the thermal reserve capaci-
ties is obtained from the air flow-to-power fan model (10.9). Given an
operating point of air flow uk, Ru,k and Rd,k are expressed as

Ru,k = f(uk)− f(uk − rd,k) (10.13)
Rd,k = f(uk + ru,k)− f(uk) . (10.14)

This nonlinear relationship is very important for the reserve scheduling
formulation and it is graphically shown in Fig 10.10.
The objective of the reserve scheduler is to minimize the total cost
defined as the sum of energy consumption cost and reserve profit

ckPk − λk (Rd,k +Ru,k) , (10.15)

where Pk = f(uk) is the electric power consumption at the scheduled air
flow rate uk. Assuming the same payment for up- and down-reserves,

4In the context of frequency regulation, up-reserve means increase of generation
or decrease of consumption, whereas down-reserve means decrease of generation or
increase of consumption.
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Figure 10.10: The nonlinear fan curve and the simple linearization for opti-
mization purposes. The plot shows the thermal reserves (ru,k

and rd,k) and the electric reserves (Ru,k and Rd,k) around
an air flow operating point (uk). When providing reserve the
new actual operating point f−1(Pk −wlimRu,k) is higher than
the one assumed by the linearization (uk − wlimrd,k).

which is denoted by λk, the reserve profit is given by

λk (Rd,k +Ru,k) = λk
[

[f(uk + ru,k)− f(uk)] + [f(uk)− f(uk − rd,k)]
]

= λk
[
f(uk + ru,k)− f(uk − rd,k)

]
. (10.16)

Typically, the TSO requests the reserve energy as a fraction of the
reserve capacity using a normalized frequency regulation signal [72],
which we denote by wk ∈ [−1, 1]. Therefore, the reserve request at time
step k is

Rk =
{
wkRu,k, if wk < 0
wkRd,k, if wk ≥ 0 .

(10.17)

The electric reserve request can be translated to a perturbation around
uk using the fan curve

∆uk = f−1 (Pk +Rk)− uk . (10.18)

With the above notation, the multi-period robust reserve scheduling
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problem can be written as

min
uk,ru,k,rd,k

N1−1∑
k=0

ckf(uk)− λk
[
f(uk + ru,k)− f(uk − rd,k)

]
(10.19a)

s.t. xk+1 = Axk +BuTs,k · (uk + ∆uk)+
Bxuxk · (uk + ∆uk) +Bvvk, ∀k (10.19b)

umin,1 ≤ uk + ∆uk ≤ umax,1, ∀wk ∈ [−1, 1], ∀k (10.19c)
xmin,k ≤ xk ≤ xmax,k, ∀wk ∈ [−wlim, wlim], ∀k . (10.19d)

Equation (10.19b) represents the building dynamics, whereas (10.19c)
and (10.19d) set upper and lower bounds on the air mass flow rate
and the temperature, respectively. The limits umin,1 and umax,1 are
calculated based on the fan speed limits of 20% and 80% and the speed-
to-flow fan model according to

umin,1 = h (20%) , umax,1 = h (80%) . (10.20)

The time-varying temperature limits xmin,k and xmax,k reflect a time-
varying comfort zone (different limits for working and non-working
hours).
The reserve scheduling problem is subject to uncertainty because the
regulation signal wk is unknown. The formulation (10.19) builds ro-
bustness to any possible wk throughout the whole scheduling horizon by
imposing the robust input and state constraints (10.19c) and (10.19d).
In terms of instantaneous power, the worst case is either full up-reserve
activation or full down-reserve activation. For this reason, we use the
uncertainty set wk ∈ [−1, 1] ∀k in (10.19c). In terms of energy, though,
one has to consider that the regulation signal has usually energy limits
because of activation of tertiary control reserves or redispatch. We ac-
count for these energy limits in the formulation by using the uncertainty
set wk ∈ [−wlim, wlim] ∀k in (10.19d), where 0 < wlim ≤ 1 .

Reformulation and Approximation of the Robust Problem

Problem (10.19) is not directly solvable, but a deterministic robust coun-
terpart problem can be obtained by exploiting the problem’s structure.
It is sufficient to consider only the boundaries of the uncertainty wk
and formulate the input and state constraints based on them, which
results in the robust counterpart problem (10.21), where xk and xk are
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the worst-case higher and lower state trajectories, respectively. Propo-
sition 5 states that problems (10.21) and (10.19) are equivalent. Before
presenting and proving Proposition 5, we first prove two useful lemmas.

min
uk,ru,k,rd,k

N1−1∑
k=0

ckf(uk)− λk
[
f(uk + ru,k)− f(uk − rd,k)

]
(10.21a)

s.t. xk+1 = Axk +BuTs,k · f−1 (Pk − wlimRu,k) +
Bxuxk · f−1 (Pk − wlimRu,k) +Bvvk, ∀k (10.21b)

xk+1 = Axk +BuTs,k · f−1 (Pk + wlimRd,k) +
Bxuxk · f−1 (Pk + wlimRd,k) +Bvvk, ∀k (10.21c)

umin,1 ≤ uk − rd,k,∀k (10.21d)
uk + ru,k ≤ umax,1,∀k (10.21e)
xmin,k ≤ xk, ∀k (10.21f)
xk ≤ xmax,k, ∀k . (10.21g)

Lemma 1. Function f(u) is both monotonic and convex in its domain
for the parameters of Table 10.7.

Proof. The proof is given in Appendix A. �

Lemma 2. If wk ∈ [−wlim, wlim] with 0 < wlim ≤ 1, the following
statements are true:

min
wk

(uk + ∆uk) = f−1 (Pk − wlimRu,k) for wlim ≤ 1 (10.22)

max
wk

(uk + ∆uk) = f−1 (Pk + wlimRd,k) for wlim ≤ 1 (10.23)

min
wk

(uk + ∆uk) = uk − rd,k, for wlim = 1 (10.24)

max
wk

(uk + ∆uk) = uk + ru,k, for wlim = 1 . (10.25)

Proof. The proof is given in Appendix A. �

Proposition 5. Under assumption 1, optimization problems (10.19)
and (10.21) are equivalent.

Proof. The proof is given in Appendix A. �
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The dynamics in (10.21) involve the inverse of a polynomial combination
of optimization variables, which is very complicated. We approximate
(10.21) by a simple linearization of the inverse function that leads to
the following problem:

min
uk,ru,k,rd,k

N1−1∑
k=0

ckf(uk)− λk
[
f(uk + ru,k)− f(uk − rd,k)

]
(10.26a)

s.t. xk+1 = Axk +BuTs,k · (uk − wlim · rd,k)+
Bxuxk · (uk − wlim · rd,k) +Bvvk, ∀k (10.26b)

xk+1 = Axk +BuTs,k · (uk + wlim · ru,k)+
Bxuxk · (uk + wlim · ru,k) +Bvvk, ∀k (10.26c)

(10.21d), (10.21e), (10.21f), (10.21g) .

For the general case 0 < wlim ≤ 1, problems (10.21) and (10.26) are
not equivalent. In fact, (10.26) overestimates both the maximum state
trajectory (highest room temperature) and the minimum state trajec-
tory (lowest room temperature), as shown by Proposition 6. In the
special case wlim = 1 though, the approximation is exact and problems
(10.21) and (10.26) are equivalent, as shown by Proposition 7. The
value wlim = 1 corresponds to the most conservative case where the
energy limits of the frequency regulation signal are neglected.

Proposition 6. Let us denote by x?k and x?k the maximum and min-
imum state trajectories of the original problem (10.21). Furthermore,
let us denote by x∗k and x∗k the maximum and minimum state trajecto-
ries obtained by (10.26). If wlim satisfies 0 < wlim ≤ 1, the inequalities
x∗k ≥ x?k and x∗k ≥ x?k hold for any time step k.

Proof. The proof is given in Appendix A. �

Proposition 7. If wlim is equal to 1, then problems (10.21) and (10.26)
are equivalent.

Proof. The proof is given in Appendix A. �

Remark 4. The overestimation of maximum and minimum tempera-
ture trajectories by (10.26) builds additional robustness to temperature
excursions above xmax,k, but it reduces the robustness to temperature ex-
cursions below xmin,k. However, the reduction of robustness at the lower



286 Chapter 10. Experiment: SFC from Buildings

temperature range is not expected to create significant comfort zone vio-
lations. This is because the state trajectory will generally remain closer
to xmax,k than xmin,k due to minimization of the energy consumption
costs in (10.26a).

Problem (10.26) is a deterministic non-linear optimization problem with
cubic objective function, bilinear equality constraints, and linear in-
equality constraints. Although this is a non-convex problem, it is pos-
sible to solve it in due time using a non-linear solver because of its
relatively small size. The problem is compiled using YALMIP [43] and
solved with IPOPT.
Although not shown in (10.26) for simplicity, the state constraints are
modeled as soft constraints using slack variables with high penalties.
This is done to avoid infeasible solutions due to plant-model mismatch
or prediction errors while running the experiment.
The main outcome of (10.26) is the up-reserve Ru,k and down-reserve
Rd,k capacity for each time slot of the scheduling horizon k ∈ [0, N1 − 1].
Although a schedule for the air mass flow rate over the scheduling hori-
zon uk is also obtained, this is not used at this point. Determining the
air mass flow rate setpoints is the task of the controller of level 2.

Worst-Case Energy Limit of Regulation Signal

The energy limit wlim of the regulation signal corresponds to the worst-
case normalized reserve request. In this chapter, we analyze 2-month
historical data of the RegD signal from PJM (December 2012 to January
2013). Figure 10.11 shows the cumulative distribution of the RegD
signal’s energy content over 15 minute intervals, as well as the actual
worst case, the median, 95%, 97.5%, and 99% percentiles. It is apparent
that considering the actually observed worst case of wlim = 0.88 would
lead to very conservative solutions. Instead, we define the worst case
as the 97.5% percentile of the distribution (wlim = 0.25), because it is
a reasonable trade-off between robustness and conservatism. In other
words, the requested reserve energy by the RegD signal over 15 minutes
will be less than 25% of the reserve capacity with probability 97.5%.
Note that the worst-case reserve request of wlim = 0.25 for each time
step is not conditional on the reserve requests during the previous time
steps. However, due to the predictive nature of reserve scheduler, the
worst-case reserve request has to be defined across the prediction hori-
zon. We define the horizon’s worst-case reserve request by taking the
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Figure 10.11: Cumulative distribution of the RegD signal’s energy content
over 15 minute intervals.

worst-case reserve request for each time step independently, as shown
in (10.19). Modeling the reserve request as an uncertainty that lives in
a multidimensional box constraint is inspired by [175].
Arguably, this approach will lead to conservative solutions, because it
is unlikely that the worst case will be realized for every time step. How-
ever, we adopt this approach because it is simple and allows us to de-
rive a tractable approximation of the robust reserve scheduling problem.
Another advantage of this approach is that it provides some additional
degree of robustness that might be desirable in the presence of other un-
certainties, such as modeling and/or forecast errors, as it will be shown
in our experimental results section.
Another option would be to determine the worst-case reserve energy
request over multiple 15 minute intervals (e.g., over hourly intervals),
and use an approach similar to the one proposed in [177] to derive the
robust counterpart problem. The challenge however would be that the
building model is bilinear in our case, whereas it was linear in [177].

Modeling of Reserve Product Constraints

Problem (10.26) allows us to select different reserve capacities for dif-
ferent time slots, as well as different Ru,k and Rd,k for the same time
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slot. In practice, many reserve markets have requirements on the struc-
ture of the reserve product, in particular reserve blocks with minimum
duration and/or symmetric up- and down-reserves.

Reserve blocks with minimum duration: Reserve blocks with min-
imum duration of Tres ∈ N time steps with a duration of 15 minutes each
can be modeled by adding in (10.26) the constraints

Ru,k = Ru,k+j , (10.27)
Rd,k = Rd,k+j , ∀k = nTres + 1, ∀j ∈ {1, . . . Tres} , (10.28)

where n ∈ N and n ≤ (N1 − 1)/Tres. In this chapter, we select Tres = 4
to require the reserve capacities to be constant over periods of 1 hour.
This is a reasonable assumption, especially for power systems where the
reserve market is co-optimized with the energy market.

Symmetric reserve capacities: Symmetric reserve capacities can
be enforced by introducing in (10.26) the constraints

Ru,k = Rd,k ∀k . (10.29)

These symmetry constraints might limit the amount of reserves signif-
icantly due to the nonlinear flow-to-power fan model. Note that mod-
eling symmetric reserves and/or reserve blocks with minimum duration
increases the complexity because (10.27), (10.28) and (10.29) are non-
linear equality constraints on the optimization variables ru,k and rd,k.

Asymmetric reserve capacities: In general, allowing different val-
ues for the up- and down-reserve capacity increases the flexibility and,
possibly, the total amount of reserves extracted from a building. As
shown in [175, 177], down-reserves are preferable for buildings because
they can be offered without increasing the baseline energy consumption.
Therefore, if asymmetric electric reserves are allowed by removing con-
straint (10.29), the optimal solution of (10.26) is likely to include zero
up-reserves, especially if the same profit is assumed for up- and down-
reserves. Since this is a limiting factor for our experimental demonstra-
tion, a different formulation for asymmetric reserves is used.
We impose the following symmetry constraint on the thermal reserves

ru,k = rd,k ∀k , (10.30)
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but the electric reserves are still asymmetric due to the nonlinear fan
curve and (10.13), (10.14). In this case, the building will still favor
down- over up-reserves, but it has to provide both of them at the same
time. Instead of adding (10.30) in (10.26), the problem can be reformu-
lated by substituting the redundant variables ru,k and rd,k with a new
variable rk, which reduces the total number of optimization variables
and, possibly, the computation time. Note that (10.29) and (10.30) can-
not occur at the same time due to the nonlinear fan curve, i.e., either
the thermal or the electric reserves have to be asymmetric.

Limitations, Alternatives, and Extensions

Although solving (10.26) in due time is possible for FLEXLAB, this
might not be the case for buildings with many zones or in case of reserve
scheduling within building aggregations [175,177,178]. In this case, f(u)
can be approximated by a piecewise affine function, which will remove
the fan curve non-linearity but will introduce binary variables.
The only remaining non-linearity will be the bilinear building dynam-
ics that can be handled using sequential convex optimization, which is
a standard practice in energy-efficient building control [24]. If energy
consumption minimization is the only objective, sequential convex op-
timization usually converges to a good feasible solution. However, if
maximization of reserve profits is an additional objective, it is unclear
whether sequential convex optimization converges smoothly. This is an
interesting direction for further research.
The conservatism of (10.26) can be reduced by using scenario-based
optimization. The reserve uncertainty can be modeled with regulation
signal scenarios obtained from historical data, and ru,k, rd,k can be se-
lected such that the comfort zone is satisfied for all scenarios. However,
selecting the number of scenarios to satisfy the comfort constraints with
a given probability (the so-called chance constraints) is still an open
problem for the general case of non-convex problems.
Note that the disturbances vk are included in (10.26) using the pre-
dicted values, but without accounting for prediction errors. Therefore,
we build robustness only to wk, but not to plant-model mismatch and
disturbance prediction errors. An alternative approach would be to
model the weather uncertainty using scenarios, which would also result
in a scenario program.
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10.5.2 Level 2: Room Climate Controller

MPC Formulation

The goal of level 2 controller is to determine the air mass flow rate set-
point uk, such that the scheduled reserves Ru,k and Rd,k from level 1
can be provided while satisfying room comfort. We use the following ro-
bust MPC formulation for this purpose, where the robustness is against
the uncertain reserve wk:

min
uk,ru,k,rd,k

N2−1∑
k=0

ckf(uk) (10.31a)

s.t. xk+1 = Axk +BuTs,k · (uk − wlim · rd,k)+
Bxuxk · (uk − wlim · rd,k) +Bvvk, ∀k (10.31b)

xk+1 = Axk +BuTs,k · (uk + wlim · ru,k+
Bxuxk · (uk + wlim · ru,k) +Bvvk, ∀k (10.31c)

umin,2 ≤ uk − rd,k,∀k (10.31d)
uk + ru,k ≤ umax,2,∀k (10.31e)
xmin,k ≤ xk, ∀k (10.31f)
xk ≤ xmax,k, ∀k (10.31g)
R∗u,k = f(uk)− f(uk − rd,k), ∀k (10.31h)
R∗d,k = f(uk + ru,k)− f(uk), ∀k . (10.31i)

Problem (10.31) is similar to (10.26) with the main differences being (i)
the electric reserve capacities R∗u,k and R∗d,k are fixed from level 1, and
(ii) the only objective is to minimize the energy cost.
Note that the MPC is free to select a pair (uk, ru,k, rd,k) different to the
one calculated in level 1, provided that the electric reserves R∗u,k and
R∗d,k can be provided, which is enforced by the nonlinear equality con-
straints (10.31h) and (10.31i). Similarly to (10.26), the state constraints
are modeled as soft constraints in (10.31) to avoid infeasible solutions
while running the experiment. In addition, similarly to (10.26), predic-
tions for the disturbances vk are used in (10.31), which are updated at
every time step.
Observe that the upper and lower bounds on the air flow rate umin,2
and umax,2 in the MPC controller are different to the ones used in the
reserve scheduler. We select the following less tight bounds in the MPC
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controller to allow more freedom when setting the air flow rate to meet
the comfort zone constraints:

umin,2 = h (10%) , umax,2 = h (90%) . (10.32)

Kalman Filter

Recall that the MPC controller uses the 2-state building model (10.4)
and that the temperature of the lumped thermal mass cannot be mea-
sured directly. Furthermore, although the room temperature is mea-
sured with a sensor, the resulting measurement is noisy. For these two
reasons, we developed an extended Kalman filter (because the building
model is bilinear) to provide a state estimate x̂k to the MPC controller.
Assuming additive process and measurement noise, the a priori error
covariance P−e,k, a posteriori error covariance Pe,k, and Kalman gain Kk

are given by [197]

P−e,k = FkPe,kF
>
k +Q (10.33)

Kk = P−e,kH
>
k (HkP

−
e,kH

>
k +R)−1 (10.34)

Pe,k = (I −KkHk)P−e,k , (10.35)

where Fk is the Jacobian matrix of partial derivatives of the system
dynamics, and Hk is the Jacobian matrix of partial derivatives of the
output (measurement) function yk = Cxk, both with respect to the
state xk; Q and R are the process and measurement noise covariance
matrices, respectively; and I is the identity matrix. Let us denote by
fx the bilinear dynamics and by fy the linear output equation. The
matrices Fk and Hk are obtained from the building dynamics and the
output equation as

Fk = ∂fx
∂x

∣∣∣∣
x̂k−1,uk−1

= A+Bxux̂k−1uk−1 (10.36)

Hk = ∂fy
∂x

∣∣∣∣
x̂k−1,uk−1

= C . (10.37)

The process and measurement noise covariance matrices are fixed to5

5The measurement noise covariance is set to R = 0.1 based on the accuracy of
the temperature sensors. The RMSE of the building model provides an estimate of
the process noise covariance. With reference to Table 10.4, the diagonal elements of
Q can be set to 0.422 = 0.1764. However, the larger value 0.4 was chosen because
the model’s out-of-sample RMSE will be higher than 0.42.
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Figure 10.12: The control block of the level 3 switched controller.

Q =
[
0.4 0
0 0.4

]
, R = 0.1 . (10.38)

Note that the same Kalman filter is also used before each execution of
the reserve scheduler in level 1.

10.5.3 Level 3: Frequency Regulation Controller

The goal of level 3 is to control the fan speed such that the fan power
tracks the frequency regulation signal. This approach is different from
[132] that used the frequency of the VFD as a control variable. Control-
ling the fan speed setpoint avoids interference with the VFD’s internal
control logic, and it leverages the existing fan speed feedback controller.
In addition, our approach is different from [127], where a fan speed
command was superimposed on the output of the fan controller.
There are four important design requirements for the frequency reg-
ulation controller: (i) fast response, (ii) minimal computation effort,
(iii) accuracy, and (iv) stability. Two classical control approaches are
envisaged. The first approach is a feedforward (open-loop) controller
that uses the static speed-to-power fan model (10.10). The advantage
of this controller is that it is inherently stable due to the absence of
feedback. The disadvantage, of course, is that there will most certainly
be a steady-state control error. The second approach is a model-free,
feedback (closed-loop) controller, for example, a Proportional-Integral
(PI) controller. A PI controller can reduce the steady-state error, but
its stability is not guaranteed and requires gain tuning.
In order to combine the advantages of these two control approaches, we
propose to implement the frequency regulation controller as a switched
controller consisting of two blocks: (i) Ctrl1: a model-based, feedfor-
ward controller, and (ii) Ctrl2: a model-free, feedback PI controller.
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The control block of the switched controller is shown in Fig. 10.12,
whereas its discrete-time implementation is described by Algorithm 3.

Algorithm 3 Implementation of the switched controller
1: initialize old tracking error: eold = 0
2: initialize fan speed: Nf
3: while experiment is running do
4: calculate baseline power: Ps = f(ṁs)
5: calculate reserve request: R = w ·Rd, if w ≥ 0, and
6: R = w ·Ru, if w < 0
7: calculate desired fan power: Pd = Ps +R
8: repeat
9: measure fan power Pf

10: calculate new tracking error: enew = Pd − Pf
11: if |enew| ≤ ε then
12: calculate PI output: Nf,pi =Nf+Kp(enew−eold)+Ki∆tenew
13: cap fan speed: Nf = min[max(Nf,pi, Nf,min), Nf,max]
14: set fan speed to Nf
15: set old tracking error to: eold = enew
16: else
17: set fan speed to: Nf = g(Pd)
18: set old tracking error to: eold = 0
19: end if
20: until elapsed time is equal to control loop duration
21: end while

Step 4 of Algorithm 3 uses the flow-to-power fan model (10.9) to trans-
late the scheduled flow rate by the MPC of level 2 to baseline power
consumption. The desired fan power Pd is computed at step 7 based
on the baseline, the reserve capacity of level 1, and the received regula-
tion signal. The new control error enew is calculated at step 10 as the
difference between Pd and the measured fan power Pf. At step 11 the
condition |enew| ≤ ε is checked to decide whether Ctrl1 or Ctrl2 will be
used at the current time step (ε is a parameter that represents the ac-
curacy of the steady-state fan model). If |enew| ≤ ε holds, then Ctrl2 is
used, and the PI controller’s discrete-time implementation is from step
12 to step 15. On the other hand, if |enew| > ε, Ctrl1 is used, and the
fan speed is determined at step 17 based on the speed-to-power model
(10.10).
After a large power setpoint change, Ctrl1 becomes active and tries to
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restore the fan power close enough to the new setpoint using the fan
speed-to-power model. Ctrl1 remains active for as long as the absolute
tracking error is larger than the tolerance ε. By analyzing the model
fitting results of Section 10.4.2 we observe that the largest deviation
between the model and the filtered data points is approximately 30 W,
and so we fix ε = 30 W.
At the moment when the absolute tracking error becomes smaller than
ε the controller switches from Ctrl1 to Ctrl2, and it remains like this
for as long as the error is less than ε. At the moment when the error
exceeds ε again, we switch back to Ctrl1 and reset the integral error
to zero, as shown at step 18. This practice improves the control per-
formance because it avoids large overshoots due to accumulated errors
when setpoints change suddenly. In addition, whenever the output of
Ctrl2 is larger than 90% (percentage of the maximum fan speed) or
smaller than 10%, we cap or floor the fan speed to these values.
Due to the nonlinear relationship between the fan speed and the fan
power, gain scheduling was used to tune the PI controller. Distinct
operating regions in terms of fan power were defined and different sets
of gains were calculated for each region. Motivated by the speed-to-
power curve of the fan we chose 5 operating regions. We ran several
step response tests and tuned the proportional (Kp) and integral gains
(Ki) for each region using the Ziegler-Nichols method [198]. Following
this method, we initially set Ki = 0 and gradually increase Kp until
a critical value is reached, where stable and consistent oscillations are
observed in the output. The critical proportional gain and the period
of the oscillations are used to set the values of Kp and Ki according to
empirical rules.
Note that the gains obtained with the Ziegler-Nichols method served
only as an initial guess because the controller is switched, rather than
a simple PI controller. The final gain values were determined with trial
and error, and are presented in Table 10.8. The selected integral gains
are significantly higher than the ones suggested by the Ziegler-Nichols
method, whereas the selected proportional gains are slightly lower than
the ones proposed by the method. The reason why the integral gains
turned out to be more important than the proportional gains is because
the goal of the PI controller (Ctrl2) is to correct the bounded steady-
state error of Ctrl1, but not to recover the system after a large setpoint
change.
This switched controller implementation provides advantages in terms
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Table 10.8: Tuning results of the PI controller gains

Operating
region (W)

Proportional
gain (Kp)

Integral
gain (Ki)

Ziegler-Nichols Selected Ziegler-Nichols Selected
[0, 500) N/A 0.004 N/A 0.01

[500, 1000) 0.009 0.004 0.001106 0.0035
[1000, 1500) 0.010125 0.004 0.001245 0.003
[1500, 2000) 0.00675 0.0045 0.00083 0.0025
[2000, 2500) 0.0045 0.004 0.000559 0.002

of stability and performance compared with the open-loop controller
of [132] or the closed-loop controller of [127]. The controlled system is
inherently bounded and stable: even if the PI loop tends to be unstable,
whenever the tracking error is greater than ε, the control will be passed
to the (stable) open-loop controller. Ctrl1 allows us to track fast and
sudden power setpoint changes. To track such changes accurately with a
simple PI controller, much larger gains would be needed at the expense
of compromising stability. In contrast, the role of Ctrl2 in the proposed
implementation is to correct steady-state errors and therefore relatively
small gains can be chosen that achieve a stable response.

10.6 Experimental Results

10.6.1 Experiment Plan

The experiment was organized into two parts. The first part of the
experiment took place in the period 15− 18 November 2015 and relied
on the building model identified with data from June-July 2015 (see
Table 10.5). On 19 November the experiment was paused and the so
far collected data were used to identify a new building model (see Ta-
ble 10.6), which was then used in the second part of the experiment
from 20 to 21 November. In both parts of the experiment the 2-state
model with 1-day ahead prediction was used. In the rest of this section
we present a selection of the most interesting results.
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Figure 10.13: The complete communication architecture from PJM to
FLEXLAB. The LBNL Control Terminal is the developed
hierarchical controller.

10.6.2 Data Sources and Experiment Settings

Before starting with the analysis of the results, we briefly mention the
sources of external data and summarize some important experiment
settings. Most of the experiment was performed using archived data of
PJM’s RegD signal from December 2012 to January 2013. Although the
historical signal was available with a resolution of 2 seconds, we down-
sampled it to 4 seconds due to the communication delays of FLEXLAB.
During the course of the experiment, a connection with PJM was es-
tablished based on the DNP3 protocol and using a Siemens Jetstream
gateway, which provided us with the RegD signal in real time. At
the FLEXLAB side, the received data were translated based on the
DNP3 protocol, saved in an SQL database, and pushed by a “RegD
signal server” to a “RegD signal client” (the hierarchical controller of
this chapter). The complete communication architecture from PJM to
FLEXLAB is graphically shown in Fig. 10.13. However, the connection
was not very reliable at the FLEXLAB side and the RegD signal was
often not received. For this reason, we ran the experiment with the
real-time PJM signal for only one hour.
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Figure 10.14: The heater schedule and the actual power consumption dur-
ing one week. The heater consumption is high during working
hours and low during non-working hours.

The ambient temperature forecasts were obtained from the forecast.io
database. The solar radiation forecasts were obtained from a clear-sky
radiation model, which turned out to be sufficient for the weather con-
ditions during the experiment. Forecast.io provides also cloud cover
forecasts that were used within a neural network to improve the predic-
tions of the clear-sky model. However, the results were not satisfactory
(perhaps due to the limited spatial resolution of the cloud cover forecast)
and therefore the clear-sky predictions were used.
Two electric heaters were used to emulate the internal heat gain. Their
consumption profile was fixed according to the red curve of Fig. 10.14
using digital timer sockets. The actual heater power (blue curve in
Fig. 10.14) generally follows the consumption profile, but it fluctuates
around it due to variations in the socket’s voltage. The temperature
comfort zone was set to 21− 25◦C during working hours.
Recall that the SAT is regulated to 17◦C with a PI controller that
controls the position of a cooling valve. This PI controller was tuned by
FLEXLAB engineers before the start of the experiment. However, since
the tuning was performed for conventional building operation, the SAT
fluctuated a lot when the building was providing regulation. To reduce
the fluctuations we empirically re-tuned the gains of the PI controller,
which resulted in the SAT behavior shown in Fig. 10.15. The mean
deviation from the SAT setpoint is 0.05◦C, i.e., there is a small bias to
larger SAT values, and the mean absolute deviation is 0.37◦C.
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Figure 10.15: The SAT setpoint and actual values during one week.

The electricity cost was assumed constant and equal to ck = 0.18 e/kWh,
whereas the reserve capacity payment was fixed to a 10% higher value,
i.e., λk = 0.198 e/kWh. The goal of this work is to demonstrate the
technical viability of reserve provision from commercial buildings; there-
fore, a relatively high capacity payment was chosen to incentivize reserve
provision. Finally, the penalty for the soft constraints of the optimiza-
tion problems of level 1 and level 2 was set to 105.

10.6.3 Reserve Scheduling Results (Level 1)

In this section, we present results relevant to the reserve scheduler. Two
main factors that determine the amount of reserves are the building’s
energy capacity and the symmetry of reserve capacity. Apart from the
physical properties of the building, the energy capacity depends also on
the comfort zone’s width. In this experiment, we specifically address
the effect of the so-called night setback by enlarging the comfort zone
during unoccupied hours to 12 − 35◦C. We defined four combinations,
namely symmetric or asymmetric reserves and with or without setback,
and performed six full-day experiments. Hourly reserve capacities were
used in all cases.
Figure 10.16 shows results for 20 November when symmetric reserve
capacities were assumed, and for 21 November when asymmetric capac-
ities were used (in both dates night setback was applied). The capacities
are reported in % of the fan rated power that is 2500 W. Observe that
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Figure 10.16: The hourly reserve capacities as a percentage of the nominal
fan power for 20 November 2015 (left) and 21 November 2015
(right). Note that the two plots have different scales.
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Figure 10.17: The hourly reserve capacities as a percentage of the nominal
fan power for 15 November 2015 (left) and 17 November 2015
(right). Note that the two plots have different scales.

the reserve capacity is maximized at night when the comfort zone is
enlarged, and during the hottest part of daytime. In case of symmetric
reserves, the maximum capacity is slightly less than 40% of the rated
fan power. In case of asymmetric reserves, the maximum up-reserve
capacity is approximately 15% of the rated fan power, whereas the
down-reserve capacity is more than 60%. These experimental results
are in agreement with relevant simulation results reported in [175,177],
and show that down-reserves are indeed preferable for commercial build-
ings. The reason is that down-reserves (consumption increase) can be
provided without increasing the building’s baseline and the respective
energy costs.

Figure 10.17 compares the experimental results of 15 November, when
setback was used, with those of 17 November, when no setback was ap-
plied (symmetric reserve capacities were used in both dates). Observe
that the capacity curve is qualitatively different: with setback most of
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Table 10.9: Reserve capacities for different combinations of night setback
and reserve symmetry. The capacities are daily average values
expressed in % of the fan’s nominal power (2500 W).

Date Symmetric,
Setback

Asymmetric,
Setback

Symmetric,
No setback

Asymmetric,
No setback

Ru Rd Ru Rd Ru Rd Ru Rd

15/11 15.61 15.61 6.45 26.15 1.91 1.91 1.64 4.42
16/11 9.09 9.09 3.90 14.88 0.74 0.74 0.90 1.85
17/11 11.44 11.44 5.39 21.21 2.24 2.24 1.85 4.59
18/11 16.70 16.70 7.78 31.75 3.94 3.94 3.28 9.91
20/11 28.95 28.95 11.89 49.66 15.07 15.07 7.82 28.81
21/11 22.10 22.10 10.72 46.55 13.60 13.60 6.79 26.30

the reserve is provided at night, whereas without setback the reserve
provision coincides with the highest cooling load in the middle of the
day. Of course, the reserve capacity depends on the weather conditions
and this is why the capacity profile is considerably different during day-
time on 15 and 20 November, although the experiment was conducted
with setback and symmetric reserves on both dates.6

To allow for a more thorough comparison, we simulated the reserve
capacity scheduling for all combinations of symmetry and setback and
summarize the results in Table 10.9. The capacities are daily average
values in % of the fan’s nominal power. The values in bold indicate
the experimental results of each day, whereas the values in normal font
correspond to the simulation results. The capacity ranges from low
values below 1% to high values nearly 50%, and it heavily depends on
the reserve symmetry, setback, and weather conditions.7

Analyzing the values of Table 10.9 we find that the night setback in-
creases the capacity by 177.0% on average for symmetric reserves, by
107.0% for asymmetric up-reserves, and by 150.7% for asymmetric down-
reserves. Reversely, if setback is already used, adopting asymmetric
capacities instead of symmetric capacities reduces the up-reserves by
55.6%, but increases the down-reserves by 83.1%, and therefore the net

6Another reason why the reserve capacities are quite different is that different
building models were used in these two days (see Section 10.6.1)

7In the symmetric case, the maximum reserve capacity corresponds to 50% of the
fan’s nominal power.
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effect is an increase of 13.7% in the total capacity. Overall, our results
show that asymmetric reserves are preferable for commercial buildings
and that using a night setback significantly increases the reserve poten-
tial.

10.6.4 Room Climate Control Results (Level 2)

In this section, we present results from the operation of cell 1A while
providing frequency regulation, and from cell 1B that is used as a real-
time benchmark. Our analysis focuses on the comfort zone satisfaction,
the performance of the building model and Kalman filter, the effect of
frequency regulation on SAT and energy consumption, and the compu-
tation time of the MPC of level 2.

Comfort Satisfaction

Experimental results for 17, 18, 20 and 21 November are shown in
Figs. 10.18 to 10.21. In all figures, the top plot shows the temperature
trajectories in cells 1A and 1B, the middle plot presents the forecasts
and the actual values for ambient temperature and solar radiation8,
whereas the bottom plot shows the SAT and the air flow rate in cell 1A.
The comfort zone is indicated with red, and two values for the upper
limit can be seen. The actual upper limit (red solid line) is 25◦C, but
a tighter limit of 24◦C (red dashed line) is used within the MPC to
account for modeling and prediction errors.
In Figures 10.18 and 10.19 the cell 1B is under energy-efficient opera-
tion and this is reflected in the temperature, which remains constantly
close to the upper limit of the comfort zone. On the other hand, in
Figs. 10.20 and 10.21 the cell 1B is in a “regulation-ready” operation
mode, namely the HVAC consumption is scheduled identically to cell
1A to allow reserve provision, but no regulation signal is received. For
this reason, the temperature trajectories of the two cells are very close
to each other for most of the time on 20 and 21 November. This result
is also a validation that the two cells are indeed nearly identical.

8The middle plot shows the total global radiation, which includes the long-wave
radiation losses from the building envelope to the atmosphere. The long-wave radi-
ation losses become dominant at night and may result in a negative total radiation.
This effect is known as nighttime radiation cooling [199].
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Figure 10.18: Experimental results for the room climate controller under
frequency regulation on 17 November.

However, there exist discrepancies between the state trajectories from
12.00 to 19.00 on 20 November and from 07.00 to 17.00 on 21 November.
The discrepancies on 20 November are due to calibration differences of
the fan models in the two cells. As a result, small changes in fan speed
result in significant temperature differences due to the high heating load
from the heaters. The discrepancies on 21 November are because of in-
terruptions in the hierarchical control in cell 1B due to server connection
timeout error from approximately 07.00 to 11.00. When the server was
unresponsive, the cell was controlled by an existing fallback controller.
Observe that the temperature trajectory of cell 1B in Figs. 10.18 and
10.19 remains in the band [24 − 25]◦C for most of the day. This illus-
trates the necessity of the applied constraint tightening in the MPC to
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Figure 10.19: Experimental results for the room climate controller under
frequency regulation on 18 November.

compensate for modeling errors. In the same figures, and particularly
in Fig. 10.19, the temperature trajectory of cell 1A is more variable
compared with cell 1B, and it follows the scheduled reserve and air flow
rate. In Fig. 10.18 frequency regulation is provided while respecting the
comfort zone.
However, on 18 November (Fig. 10.19) the comfort zone is violated ap-
proximately from 13.00 to 16.00 in cell 1A, but not in cell 1B. There are
two main reasons for this: (i) the actual ambient temperature is con-
stantly higher than the day-ahead forecast from the beginning of the day
until 15.00; and (ii) asymmetric reserves are used on 18 November, in-
stead of symmetric reserves as on 17 November. The asymmetry allows
for a more aggressive scheduling with a larger down-reserve capacity on
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Figure 10.20: Experimental results for the room climate controller under
frequency regulation on 20 November.

18 November in comparison with 17 November (see Table 10.9). This
clearly shows that if the combined modeling and prediction error ex-
ceeds the robustness margin of the controller, frequency regulation with
day-ahead bidding of the reserve capacity might have an adverse effect
on occupant comfort.
The control performance is significantly better on 20 and 21 November
(Figs. 10.20 and 10.21) despite the large discrepancies between the day-
ahead ambient temperature forecasts and the actual values. No comfort
zone violations occur and moreover the temperature keeps even below
the MPC constraint of 24◦C for most of the time. The performance
improves mainly because a recently calibrated building model is used
in these experiments (see Table 10.6). Therefore, periodic calibration
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Figure 10.21: Experimental results for the room climate controller under
frequency regulation on 21 November.

of the building model is important to account for seasonality and elim-
inate any systematic errors. The calibration can be also done in an
online fashion, where the model parameters are fitted on a daily basis
using recent measurements. From Figs. 10.20 and 10.21 we conclude
that if the model and weather predictions are sufficiently accurate, the
robustness provided by the reserve scheduling formulation allows a com-
mercial building to bid in day-ahead markets for frequency regulation
products.
The pattern of the temperature trajectory in Figs. 10.20 and 10.21 is
typical for a building with night setback. The reserve capacity is high at
night resulting in high cooling power and low temperatures, whereas the
capacity is lower during the working hours (with a higher heating load)



306 Chapter 10. Experiment: SFC from Buildings

0 5 10 15 20 25

20

21

22

23

24

25

Time (h)

R
oo

m
 te

m
pe

ra
tu

re
 (

C
)

17 November

 

 

0 5 10 15 20 25
19

20

21

22

23

24

Time (h)

R
oo

m
 te

m
pe

ra
tu

re
 (

C
) 20 November

 

 

Measurement
Kalman filter
Model (1 day prediction)
Model (1 step prediction)

Figure 10.22: Model performance in predicting the future room temper-
ature and estimating the current room temperature with a
Kalman filter. Left: Results for 17 November with the older
model. Right: Results for 20 November with the new model.

resulting in higher temperatures. A comparison of the temperature
trajectories in cells 1A and 1B shows that tracking the RegD signal has
little effect on the room temperature due to the signal’s limited energy
content.

Model and Estimator Performance

The importance of the building model is further discussed in this sec-
tion. Figure 10.22 compares the out-of-sample performance of the older
model (left plot) and the new model (right plot). The blue curve is the
room temperature measurement, and the green curve is the estimated
temperature using the building model and a Kalman filter. The red
curve corresponds to a day-ahead model prediction, whereas the orange
curve shows the step-ahead temperature predictions. Clearly, the new
model outperforms the older one, especially for the day-ahead predic-
tions. This explains why the performance of the level 2 controller is
much better on 20 November than on 17 November in terms of comfort
zone violations.
Figure 10.23 shows the effect of model accuracy on the MPC operation.
On 17 November the model mismatch is large (because the older model
is used), which results in a significant discrepancy in the scheduled air
flow rate and fan power between level 1 and level 2. The MPC reacts
on the modeling error in an interesting way: compared with level 1, the
cooling power in level 2 is reduced during night hours and increased
during daytime. By shifting cooling energy to the middle of the day,
the MPC can provide the same amount of electric reserve with less
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Figure 10.23: Left: Air flow rate schedule in level 1 and level 2. Right: Fan
power schedule in level 1 and level 2.

change in air flow rate by taking advantage of the nonlinear fan curve.
On the other hand, the model mismatch is small on 20 November (be-
cause the new model is used) and therefore the air flow and fan power
schedules of level 1 and level 2 are close to each other. In fact, level
2 consistently schedules less cooling power than level 1. This is possi-
ble because constraints (10.32) are more relaxed than (10.20), and the
day-ahead scheduling in level 1 is robust and thus conservative.

Fan Heat Gain at High Speeds

In this section, we present results on the dependence of SAT and cooling
valve opening on fan speed. The blue points in Fig. 10.24 are measure-
ments and the red trend represents a polynomial fit on them. The trend
in cooling valve opening is increasing for the whole fan speed operation
range. This is reasonable and it means that the higher the fan speed is,
the more cooling is required from the chilled water loop. On the other
hand the trend in SAT depends on the fan speed. For fan speeds up to
50% the SAT trend is practically a flat line. However, for speeds above
50% (and especially above 70%) there is a clear increasing SAT trend
despite the increased cooling valve opening.
These results lead to an interesting observation: the heat gain due to
the rotation of the fan is significant at high speeds, and it cannot be
effectively rejected by exchanging heat with the chilled water loop. In
other words, if the fan operates at a high speed (70% or higher), then
the SAT will have a steady-state deviation from the setpoint 17◦C,
which can be as high as 1◦C according to Fig. 10.24. Steady-state
SAT deviations will likely result in comfort zone violations, because the
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Figure 10.24: The dependence of SAT and cooling valve opening on fan
speed.

scheduling is performed assuming an SAT fixed to 17◦C. This did not
create problems in our experiment because the scheduled fan speed by
the MPC was at most 70%. Nevertheless, the heat gain by fan rotation
might be important to consider in similar experimental demonstrations
or real-word implementations.

Effect on Energy Consumption

A major concern when providing AS with commercial buildings is the
effect on energy consumption. Reference [137] reported a round-trip
efficiency of approximately 46% in an experiment with a commercial
building. As explained in Chapter 9, there are two types of efficiency
losses relevant to frequency regulation: “reserve availability efficiency
loss” and “reserve utilization efficiency loss”. The first one is the effi-
ciency loss due to scheduling the consumption in an energy suboptimal
way to be able to provide frequency reserves, if requested. The sec-
ond one is the additional efficiency loss while tracking the frequency
regulation signal.
In this section, we briefly report some efficiency results from our experi-
ment; however, a detailed energy efficiency analysis is outside the scope
of this chapter. The efficiency loss is calculated comparing the energy
consumption of cell 1A (E1A) with that of the benchmark cell 1B (E1B)
according to

η = E1A − E1B

E1B
· 100% . (10.39)
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Table 10.10: Effect of frequency regulation on energy consumption

1B operation
mode

Energy efficient
15/11-18/11

Regulation-ready
20/11 (0-24 h) 20/11 (0-12 h)

Cell 1A 1B 1A 1B 1A 1B
Fan energy (kWh) 27.22 16.23 19.24 20.91 9.40 10.19
Cooling (gpm · F) 1989.92 1800.55 772.16 788.69 328.78 331.09
Mean temp. (C) 22.85 24.43 21.45 21.26 21.05 21.05

This is a challenging task because there is a single chiller providing
with cooling power both cells, and it is not obvious how to allocate
the total chiller electric consumption to the two cells. We use two
different definitions of energy consumption in (10.39): (i) electric energy
consumption of the fan, and (ii) thermal cooling power consumption of
each cell. The later is calculated based on the chilled water loop using

Pcool = ṁcw · (Tch,r − Tch,s) , (10.40)

where ṁcw is the chilled water flow rate, whereas Tch,s and Tch,r are the
supply and return chilled water temperatures, respectively.
We report efficiency results in Table 10.10 for: (i) the four-day period
from 15 to 18 November, when cell 1B was under energy-efficient op-
eration, to quantify the “reserve availability efficiency loss”; and (ii) 20
November, when cell 1B was in regulation-ready operation mode, to
quantify the “reserve utilization efficiency loss”.
Based on our results, the “reserve availability efficiency loss” is approx-
imately 68% in terms of fan consumption and 11% in terms of cooling
power from the chiller.9 However, one has to keep in mind that the ad-
ditional consumption in cell 1A is not entirely wasted because it results
in a lower average temperature, as shown in Table 10.10. Therefore,
the reserve scheduling entails a significant efficiency loss compared with

9Note that the efficiency definition used here is different to the one used in [137],
and thus the results are not directly comparable. In [137], a power increase with a
duration of 15 minutes was requested from the building, then a power decrease of
the same magnitude and duration was requested, and in the end a recovery period
of 90 minutes was allowed when no demand response event occurred. The efficiency
was calculated according to E↓

E↑+Erec
· 100%, where E↓ is the energy consumption

during the power decrease, E↑ is the energy consumption during the power increase,
and Erec is the energy consumption during the recovery period.
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Figure 10.25: The average computation time for each MPC problem de-
pending on the time of the day and on reserve symmetry.

an energy-optimal building operation, even if no reserve is actually re-
quested.
When cell 1B is in the regulation-ready mode it applies the air flow
setpoints calculated by the MPC of cell 1A, but it does not track the
regulation signal. Table 10.10 shows that cell 1A has actually less energy
consumption than cell 1B on 20 November despite frequency regulation.
The non-negligible difference in the average temperature of the two
cells is due to imperfections in fan model calibration and the limited
temperature sensor accuracy. However, even if we consider only the
interval 00.00 - 12.00 when the average cell temperatures are identical,
the consumption of cell 1A is still lower than that of cell 1B. This result
indicates that the “reserve utilization efficiency loss” is negligible while
tracking a fast-moving regulation signal like RegD.

MPC Computation Effort

The MPC computation time is relatively low and acceptable for our
demonstration. As shown in Fig. 10.25, the longest computation time
is approximately 150 seconds for symmetric reserves and 65 seconds
for asymmetric reserves. The computation is faster for asymmetric re-
serves because the total number of optimization variables is lower (see
Section 10.5.1) and the nonlinear equality constraints (10.29) are not
used.
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Furthermore, the computation time generally decreases as we move from
the beginning to the end of each day, because a reducing horizon is used
in the MPC problem. After the 70th time step, i.e., when the MPC pre-
diction horizon is 26 time steps (6.5 hours) at most, the computation
time is less than 2 seconds for both types of reserves. Of course, this
would not be the case if an MPC with fixed prediction horizon was
used. Figure 10.25 can be used to select the prediction horizon’s length
depending on the maximum allowable computation time. The computa-
tion time grows exponentially with the number of optimization variables
due to the nonlinear nature of the optimization problem. Therefore, for
larger buildings a lower prediction horizon or model reduction might be
necessary to keep the computation time reasonable.

10.6.5 Regulation Signal Tracking Results (Level 3)

Control Performance Metrics

In this section, we present results from level 3 and analyze the tracking
performance of the regulation signal. We use different metrics to quan-
tify the control performance: the metrics ec,k, et,k and er,k describe the
instantaneous errors, whereas the metrics eme, emae, ermse, et,mape and
er,mape evaluate the control performance over the experiment’s duration.
Note that et,k and er,k are both instantaneous relative (percentage) er-
rors, but the normalization is performed differently. In et,k it is done
using the current desired fan power, whereas in er,k using the current
up- or down-reserve capacity.

Control error: ec,k = Pd,k − Pf,k (10.41)

Tracking percentage error: et,k = ec,k

Pd,k
(10.42)

Reserve percentage error: er,k =
{

ec,k
Ru,k

, if wk < 0
ec,k
Rd,k

, if wk ≥ 0
(10.43)

Mean control error: eme = 1
Nexp

Nexp−1∑
k=0

ec,k (10.44)

MAE: emae = 1
Nexp

Nexp−1∑
k=0

|ec,k| (10.45)
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RMSE: ermse =

√√√√ 1
Nexp

Nexp−1∑
k=0

e2
c,k (10.46)

MAPE (tracking): et,mape = 1
Nexp

Nexp−1∑
k=0

|et,k| (10.47)

MAPE (reserve): er,mape = 1
Nexp

Nexp−1∑
k=0

|er,k| (10.48)

In addition to the generic metrics (10.41) - (10.48), we also use the spe-
cific score applied by PJM to assess the performance of the resources
that provide frequency regulation. The total score Stot consists of three
parts, namely the correlation score Sc, the delay score Sd and the pre-
cision score Sp, which are defined as [79]

Sc = max
τ∈[0,5 min]

(Rcor) (10.49)

τ∗ = argmax
τ∈[0,5 min]

(Rcor) (10.50)

Sd =
∣∣∣∣τ∗ − 5 min

5 min

∣∣∣∣ (10.51)

Sp = 1− 1
n

n−1∑
k=0

∣∣∣∣ ec,k

P̄d,h

∣∣∣∣ (10.52)

Stot = 1
3Sc + 1

3Sd + 1
3Sp . (10.53)

The correlation score is the maximum correlation of the reference signal
(desired power Pd,k) and fan power Pf,k, and τ∗ is the time shift at
which the correlation is maximized (τ takes a value from 0 to 5 minutes
with a step of 10 seconds). The delay score is calculated based on the
time shift with maximum correlation. The absolute control error is
normalized by the average hourly value of the reference signal P̄d,h in
the precision score calculation, whereas the total score is just a weighted
sum of the individual scores.

Experimental Time-Series Results

In Fig. 10.26 we present experimental results from the operation of
level 3 controller from 18.30 to 19:30 on 20 November 2015. With the
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exception of the duct pressure measurements that are available with
a resolution of 1 minute, all other measurements are available with a
resolution of 1 second.
During frequency regulation, the air flow rate is proportional to the
fan speed and the duct pressure is quadratic to the fan speed, as ex-
pected from the fan laws. This is an indication that if the duct system
of FLEXLAB is designed to sustain the pressure corresponding to the
maximum fan speed, then frequency regulation will not create any pres-
sure problems, and thus pressure constraints are not necessary in the
reserve scheduling and MPC formulations.
The direction of the RegD signal changes very often and the signal has
a limited energy content, which is considered in the reserve scheduling
formulation. Observe that during periods of time when the RegD signal
is relatively flat, or the reserve capacity is low, the PI controller (Ctrl2)
is active because relatively smooth changes in fan power are requested.
On the other hand, whenever the changes in fan power are rapid, the
control switches to the model-based feedforward control Ctrl1.
The tracking of the RegD signal is generally very good. However, when
large and rapid changes in fan power are requested, overshoots or under-
shoots might appear. In addition, when the reserve capacities change
at the beginning of every full hour, temporarily high errors might occur
depending on how different the capacities of the two consecutive hours
are.
Similar observations are made on the control error plots. The instanta-
neous control error ec,k is generally higher when the reserve capacity is
high, as well as at the hour change. On the other hand, the instanta-
neous percentage errors et,k and er,k are higher at a low operating fan
power and when the reserve capacity is low. The control error ec,k has
a negative bias equal to −5.9 W during this 1-hour period. Therefore,
the actual fan power is more often higher than the desired setpoint, i.e.,
the overshoots are more significant than the undershoots.

Evaluation of Tracking Performance

The performance of RegD signal tracking during the 6 days of Table 10.9
is evaluated using metrics (10.41)-(10.48), and the results are presented
in Table 10.11. Observe that er,mape is significantly larger than et,mape.
However, one has to consider that er,k and er,mape directly depend on
the magnitude of the reserve capacity.
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Figure 10.26: Control results from level 3 for a 1-hour period.

We investigate the dependence of control performance on the minimum
reserve capacity that can be bid during each hour, which we call “reserve
threshold” and denote by Rthr. The metrics emae, ermse, et,mape and
er,mape are recalculated but the summation is now performed only over
the time steps when Ru,k ≥ Rthr holds if wk < 0, or Rd,k ≥ Rthr holds
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Table 10.11: Performance metrics for tracking the RegD signal during the
experiment

Metric eme emae ermse et,mape er,mape
Value −5.66 W 12.45 W 27.00 W 3.58% 8.23%
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Figure 10.27: Dependence of tracking and reserve errors on the reserve
threshold, i.e., the minimum reserve bid for each hour.

if wk ≥ 0. We repeat this procedure for different values of Rthr and
present the results in Fig. 10.27.
In contrast to et,mape that remains practically constant (in fact, it de-
creases at a small rate), er,mape decreases rapidly as Rthr increases in the
range [0, 200] W. This happens because (for the same absolute control
error) er,k decreases, if Ru,k or Rd,k increase. On the other hand, emae
and ermse generally increase as Rthr increases. This is intuitively ex-
pected because the higher the reserve capacity the larger the requested
changes in fan power, and thus the higher the errors due to the over-
shoots and undershoots. Results similar to those of Fig. 10.27 can be
used to set minimum or maximum thresholds on the reserve capacity
from a tracking performance point of view.
In Table 10.12 we report the PJM scores calculated for the four-day
period 15 - 18 November and the two-day period 20 - 21 November.
The scores are calculated separately for each hour (only for the hours
when the reserve capacity is non-zero) [79], and therefore the values in
Table 10.12 are hourly average values. The quality of frequency regu-
lation is exceptional during the whole experiment. For comparison, the
highest possible total score is 1 and the minimum total score accepted
by PJM is Stot = 0.75. Note that the performance scores are slightly
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Table 10.12: PJM scores for tracking the RegD signal (the minimum ac-
ceptable score is 0.75 and the maximum possible score is 1)

Score Sc Sd Sp Stot
15− 18 Nov. 0.89 0.97 0.96 0.94
20− 21 Nov. 0.96 0.99 0.98 0.98
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Figure 10.28: Air flow rate (top) and SAT (bottom) in cells 1A and 1B
from 00.00 to 12.00 on 20 November. The effect of frequency
regulation is high-frequency oscillations on SAT.

higher for 20−21 November, when the building provides a larger reserve
capacity compared with 15− 18 November.

Effect on Supply Air Temperature

Tracking the fast-moving RegD signal introduces high-frequency oscil-
lations on SAT, as shown in Fig. 10.28. Cell 1A provides frequency
regulation, whereas cell 1B operates in the regulation-ready mode. Ob-
serve that the SAT of cell 1A oscillates more than that of 1B, especially
after sudden changes in the regulation signal that induce sudden changes
in the air flow rate. In addition, large excursions in SAT occur in both
cells when the MPC controller changes the air flow setpoint significantly,
for example at hour 08.00. Moreover, the magnitude of the SAT oscil-
lations is high even without frequency regulation at low air flow rates,
for example from 05.00 to 08.00.
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Figure 10.29: Effect of frequency regulation with the fan on the power con-
sumption of the chiller. Top: Instantaneous and average
power of the fan in cell 1A and the chiller. Bottom: Cooling
power in the chilled water loop for cells 1A and 1B.

Effect of Fan Control on Chiller Power

Since the fan and the chiller are thermally coupled through the chilled
water loop, it is worth investigating if the operation of the chiller is
affected while providing regulation with the fan.
In Fig. 10.29 we present relevant experimental results for a duration
of 10 hours. The top plot shows the instantaneous and hourly-average
electric power of the fan in cell 1A and the chiller (recall that cells 1A
and 1B are served by the same chiller). The bottom plot shows the
thermal cooling power Pcool in the chilled water loop for cells 1A and
1B calculated with (10.40).
The chiller has two stages and the electric power consumption is rela-
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tively constant at each stage. Of course, the chiller’s cycling depends on
the cooling load, which in turn depends on the fan power and ambient
conditions. In general, as the fan power increases, the chiller is expected
to cycle more often and to remain longer at the on state. This can be
seen in Fig. 10.29 where the average chiller power (green line) generally
follows the average fan power (black line).

During these 10 hours the fan in cell 1A tracks the RegD signal, whereas
the fan in cell 1B tracks the setpoint calculated by the MPC controller
of cell 1A, which is constant for each hour. The effect of regulation is
visible on the thermal cooling power, which fluctuates much more in
cell 1A compared with cell 1B. Whenever the fan power increases, the
cooling load also increases and the SAT tends to decrease. This is sensed
by the SAT controller that opens the cooling valve to compensate for the
SAT decrease, which in turn increases the cooling power in the chilled
water loop. Therefore, following a fan power change, the thermal cooling
power is expected to change within some time frame that depends on
the time constant of the cooling valve’s controller.

On the other hand, there is no observable effect on the electric power
consumption of the chiller, i.e., the cycling within each hour does not
practically change. There are two reasons for this: (i) the chilled water
is stored in a tank and from there circulated to the building cells, which
provides some inertia; and (ii) the RegD signal is approximately zero-
mean, and so the hourly-average fan power (black line) is very close to
the scheduled value by the MPC of level 2. Note that the gradual re-
duction in the hourly-averaged electric power consumption of the chiller
from 19.00 to 00.00 in Fig. 10.29 is not a side-effect of frequency regu-
lation. Instead, this is the result of the negative trend in cooling power
that reflects lower cooling needs, e.g., due to ambient temperature drop.

These results show that frequency regulation can be provided with fan
control without observable side-effects on the profile of the chiller’s elec-
tric power consumption. However, this does not necessarily hold if the
regulation signal has a larger energy content, e.g., if RegA is used instead
of RegD. In addition, the chiller’s consumption will be likely affected
during frequency regulation if the chiller is controlled in a continuous
manner using a VFD, especially if there is no chilled water storage
tank. If the effect on chiller power is non-negligible, the control in level
3 should be revised to mitigate it. This is an interesting direction for
future work.
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Figure 10.30: Histogram of communication delays during the experiment.

Analysis of Communication Delays

A challenge in this experiment was the communication delays in mea-
surements and actuation. In Fig. 10.30 we present a histogram of the
experienced delays during the whole experiment. The probability dis-
tribution of the delay is positively skewed with a mean value of 2.89 sec-
onds and a 95%-percentile of 2.99 seconds. In fact, there exist a few very
large delays in excess of 5 seconds due to temporary unresponsiveness
of the CWS, which are not included in Fig. 10.30. Despite the fact that
the average delay is large compared with the time step of the level 3
controller (4 seconds), the tracking performance of RegD signal is good.
Since some of the overshoots and undershoots in fan power in Fig. 10.26
are due to the large communication delays, the tracking performance is
expected to improve if the average communication delay decreases.

10.7 Lessons Learned and Outlook

In this section, we summarize the most important findings from the ex-
periment and provide suggestions for real-world implementation projects.
In addition, we mention a few practical aspects that require more in-
vestigation in future work.

10.7.1 Lessons Learned

Hierarchical control is an efficient way to provide frequency regulation
with commercial buildings because time-separated tasks are considered



320 Chapter 10. Experiment: SFC from Buildings

individually. Three control layers are essential: (i) a day-ahead schedul-
ing of the reserve capacity, (ii) a building climate controller to satisfy
comfort while leaving enough slack for reserves, and (iii) a frequency
regulation controller to track the regulation signal.
Frequency regulation accuracy: High-quality frequency regulation can
be provided by controlling the fan speed of AHUs in commercial build-
ings. The fan power response is very fast and the RegD signal tracking
is excellent, even in the presence of communication delays with an av-
erage value of approximately 3 seconds in the BAS. However, note that
the fan of FLEXLAB has a low rated power of 2500 W and a low iner-
tia; therefore, the control response might not be as fast for larger fans
with a higher inertia. A switched controller consisting of a feedforward
controller and a PI feedback controller with gain scheduling provides
a fast response without compromising stability. This results in a total
PJM score as high as 0.98, which is well above PJM’s limit of 0.75.
Means to increase reserve capacity: In our experiment, the fan pro-
vided 0.74 − 49.66% of its rated power as reserve capacity, depending
on ambient and building conditions and reserve assumptions. Allowing
asymmetric reserve capacities and using a night setback are effective
ways to increase the reserve potential from commercial buildings. In
fact, down-reserves are preferable for buildings because the capacity
can be offered without increasing the baseline energy consumption.
Occupant comfort: If the building bids in a day-ahead AS market, re-
specting occupant comfort might be challenging. In our experiment, the
comfort is satisfied when the building model and weather forecasts are
relatively accurate. Although asymmetric reserves increase the reserve
capacity, they result in a more aggressive scheduling that might increase
the comfort zone violations.
Building model: The accuracy of the building thermal model is the
most important factor in terms of comfort satisfaction. Models with a
good day-ahead prediction performance are necessary in order to bid
in a day-ahead AS market. It is essential to calibrate the building
model periodically to account for seasonality and eliminate any offsets
in modeling error.
Performance of MPC: an MPC controller has some important advan-
tages as a building climate controller in frequency regulation applica-
tions. Perhaps the most important advantage is that it identifies the
optimal balance between leaving enough slack for reserve provision and
favouring energy efficiency. Another advantage is that it provides us
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with a baseline consumption ahead of real-time operation, which is ben-
eficial from a practical point of view. Moreover, due to its predictive
closed-loop nature it reacts to modeling and weather prediction errors
in a smart way, and minimizes the adverse effects on occupant comfort.
Robustness measures: It is important to consider the uncertainty of
the regulation signal when scheduling the reserve capacity. This can
be done by characterizing the worst-case energy content of the signal
based on historical data, and accounting for it using robust sets in re-
serve scheduling and building climate control. Our experience shows
that being conservative in modeling of the regulation signal uncertainty
is beneficial, because it builds robustness to modeling and weather pre-
diction errors. Additional robustness can be obtained by tightening the
comfort zone constraints in the MPC according to the expected mod-
eling error, and allowing a larger fan speed control band in the MPC
compared with the day-ahead reserve scheduling.
Effects of frequency regulation on building control: The experimental
results show that there are two main side-effects from frequency reg-
ulation on building control. First, high-frequency oscillations in SAT
are possible, which might require re-tuning of the existing cooling valve
controller to obtain tighter SAT control. And second, if the MPC sched-
ules the fan speed at very high values, the cooling loop might not be
able to reject the additional heat gain due to fan rotation. However,
our results show that these effects are manageable, and that there is
no observable effect on the electric power consumption of the chiller, at
least while tracking fast-moving frequency regulation signals.
Energy consumption: Provision of frequency reserves entails some effi-
ciency loss. Our results show that the efficiency loss is mainly due to
scheduling the HVAC consumption in a suboptimal way compared with
an energy efficient building control. This source of efficiency loss can be
as high as 67%. On the other hand, the efficiency loss while tracking a
frequency regulation signal with limited energy content is negligible.

10.7.2 Outlook

There are several avenues for future experimental work in this field.
Some direct extensions of the work presented here is to repeat the ex-
periments with the zone reheating loop activated and/or with the RegA
signal of PJM, which is slower but has more energy content. Further-
more, the reliability of the connection between FLEXLAB and PJM can
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be improved, and more experiments with the actual real-time signal of
PJM can be performed.
A very interesting research direction is to perform frequency regula-
tion experiments with multiple buildings to verify the scalability of the
hierarchical control approach. This will leverage the full potential of
hierarchical control and is in principle possible to do with FLEXLAB
using the remaining three buildings.
In large HVAC systems, a duct pressure controller situated downstream
of the fan typically regulates the pressure to a fixed setpoint. When
the fan speed setpoint increases, the dampers will close to regulate the
temperature of the zones, and this will increase the duct pressure. The
pressure controller will reduce the fan speed in an attempt to reduce the
duct pressure, effectively rejecting the frequency regulation action. This
is an important challenge in large systems that could not be addressed
in our experiment due to the small size of FLEXLAB.
The control approach presented here is in principle also applicable to
large commercial buildings with many zones. A simple work-around
is to (i) deactivate the duct pressure controller, and (ii) command the
flow rate setpoint of each VAV box simultaneously with the fan speed
command. Doing so will avoid rejecting the frequency regulation control
actions, but it will likely increase the variations in duct pressure. This
might necessitate the introduction of simplified pressure constraints in
the optimization problems of level 1 and level 2, and/or an emergency
control layer that falls back to the traditional pressure controller when
the pressure exceeds a safety threshold.

10.8 Conclusion

In this chapter, we reported results from a frequency regulation experi-
ment in a commercial building test facility. We developed a hierarchical
controller capable of determining the reserve capacity in a day-ahead
fashion, scheduling the HVAC systems setpoints accordingly, and track-
ing the regulation signal in real time. Experimental results show that
frequency regulation can be provided from commercial buildings reli-
ably, with high accuracy, and with minimal occupant discomfort. We
believe that the proposed hierarchical control can be used in field tests
and real-world implementations in larger buildings.



Chapter 11

Effects of Large Shares
of Loads in Frequency
Control

11.1 Introduction

In this chapter we bring together the approaches developed in Chap-
ters 5, 6, and 9 for Primary Frequency Control (PFC) and Secondary
Frequency Control (SFC), and perform dynamic frequency studies with
a two-area power system model. PFC is provided by generators and
refrigerators, whereas the SFC resources are generators, commercial
buildings and Electric Water Heaters (EWHs). The SFC signal sent
to the demand-side resources is split between the buildings and EWHs
using an appropriate filter, whereas the reserve capacities are allocated
among the buildings using techniques from robust optimization. We
use the developed model to investigate the effects of large load shares
in PFC and SFC on system frequency for different inertia constant val-
ues. This chapter is based on [200] and its nomenclature is given in
Tables 11.1 - 11.3.

323



324 Chapter 11. Large Load Shares in Frequency Control

Table 11.1: Nomenclature of Chapter 11: symbols

Symbol Unit Description
B MW/Hz Frequency bias factor
Cth Wh/◦C Thermal capacitance
Cp - Proportional gain of SFC

1/D MW/Hz Damping
FHP - Parameter of the turbine transfer function
f0 Hz Nominal system frequency
H s System inertia constant
N - Normal probability distribution
PHP kW HP power
Pn W Refrigerator rated power
PPFC MW Total PFC reserve capacity
Pprim MW Activated PFC power
Psec MW Activated SFC power
PSFC MW Total SFC reserve capacity
1/R MW/Hz Droop of primary control
Rth

◦C/W Thermal resistance
r kW Electric reserve capacity
s - Laplace operator
Ta

◦C Ambient temperature
TG s Time constant of the governor’s transfer function
TN s Integral time constant of SFC
TCH s Time constant of the turbine’s transfer function (steam chest)
TRH s Time constant of the turbine’s transfer function (reheater)
tlon s Refrigerator lock-on time
U - Uniform probability distribution
wf % Fast component of the SFC signal
ws % Slow component of the SFC signal

11.2 Frequency Control Scheme

To design an efficient frequency control scheme, thermal loads can be
distinguished based on thermal/electrical dynamics (e.g., ramp rates, re-
sponse times, and switching constraints), local device controllers, power
and energy capacity, and user interaction. We propose to use refriger-
ators for PFC, as well as an aggregation of EWHs and Heating, Venti-
lation, and Air Conditioning (HVAC) systems of commercial buildings
for SFC.
We combine EWHs with commercial buildings because SFC signals can
be significantly biased to the positive or negative direction. Typically,
the HVAC systems of commercial buildings have large thermal inertia,
and the optimization methods of Chapter 9 can be used to robustly
schedule the reserve capacities. However, the dynamic response of Heat
Pumps (HPs) or chillers might be slow. EWHs are controlled by simple
on/off switches and have fast response times, but their consumption
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Table 11.2: Nomenclature of Chapter 11: Greek letters

Symbol Unit Description
α - Load participation factor in PFC
β - Load participation factor in SFC

∆f Hz Frequency deviation from f0
∆Pe MW Total electric power deviation
∆PL MW Load disturbance
∆P f

L MW Response of frequency-dependent loads
∆Pm MW Power contribution of PFC and SFC

∆PEWH MW Contribution of EWHs in SFC
∆PHP MW Contribution of HPs in SFC

∆PGEN MW Contribution of generators in PFC and SFC
∆PREF MW Contribution of refrigerators in PFC
∆PT12 MW Tie-line power deviation
η - Refrigerator’s coefficient of performance
τf s Filter time constant

τ1 − τ4 s HP time constants

Table 11.3: Nomenclature of Chapter 11: subscripts and superscripts

Symbol Description
b Building index
t Time index
↑ Up-reserve capacity
↓ Down-reserve capacity
(̄·) Scheduled power

heavily depends on time-varying water draws. We propose to pool ag-
gregations of commercial buildings and EWHs to collaboratively provide
SFC reserves. By splitting the SFC signal into a fast component sent
to the EWHs and a slow component sent to the HPs, we can obtain the
desired response without user comfort violations.

Remark 5. Chapter 10 demonstrated that the fans of Air Handling
Units (AHUs) in commercial buildings can track fast-moving SFC sig-
nals very well. However, many commercial buildings have water-based
HVAC systems where water is heated or cooled centrally using an HP
or a chiller, and then it is piped to the building zones. The electric
power consumption of these water circulation pumps is typically very
small (e.g., 1 W of installed power per m2 of floor area), and therefore
the HPs or chillers are considered for SFC in buildings with water-based
HVAC systems. This chapter focuses on these types of commercial build-
ings because the response times of HPs and chillers are longer than those
of fans.

The proposed frequency control scheme is shown in Fig. 11.1. The
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Figure 11.1: The proposed frequency control scheme for area 1 of a two-area
power system. The red-solid arrow denotes real-time feedback,
whereas the red-dashed arrow denotes daily feedback. Param-
eter values are given in Table 11.4.

orange part is a linearized power system model incorporating the aggre-
gate system inertia and load damping [71]. The blue and green parts
denote the PFC and SFC loops, respectively, where α and β determine
the share of thermal loads in frequency reserves. Turbine and gover-
nor models for generators are included in the box “GENs”, whereas the
boxes “REFs”, “EWHs”, and “HPs” contain the load controllers and
models for the refrigerators, the EWHs and the HPs from Chapters 5,
6 and 9.
The HPs are the main SFC reserve resources, and the total reserve
capacity is allocated among them day-ahead in a robust way using the
formulations of Section 9.4. In real time, the SFC signal wt is split into
a slow (ws,t) and a fast component (wf,t) using a low-pass Chebyshev
filter. The slow component ws,t is broadcast to all buildings, whereas
the fast component wf,t is sent to the EWH aggregator. The HP of
each building b uses a Proportional-Integral (PI) controller to track the
reference power

P bHP,t = P̄ bHP,t + ws,tr
b
t , (11.1)

where P̄ bHP,t is the scheduled HP power (i.e., the operating point without
SFC), and rbt is the electric reserve capacity for SFC.
The EWH aggregator controls the total EWH demand in order to track
wf,t by allocating on/off commands based on the device states and pri-
ority lists. The aggregator receives measurements of the on/off state
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of each EWH (see Fig. 11.1). The EWH temperatures are not commu-
nicated to the aggregator, but are estimated applying the method of
Chapter 6.4.3 to reduce data transfer. To ensure user comfort, the hys-
teresis controller overrides any external commands if an EWH is outside
its deadband.
Preliminary simulations showed that EWH aggregations can track fast-
moving power setpoints that vary ±50% around their baseline consump-
tion without loss of user comfort. Note that there is a tradeoff between
increasing the filter’s cutoff period τf, which increases the amount of
EWHs’ reserve capacity, and decreasing τf, which results in a more
volatile signal for the HPs. We observed that τf = 40 seconds is a good
tradeoff and results in reserve requests from EWHs with a magnitude
less than 15% of the buildings’ total reserve capacity.

11.3 Case Study

We perform simulations with a two-area power system model using the
parameters of Table 11.4. Area 1 is similar to the Swiss system, whereas
area 2 is similar to the rest of the interconnected European system. The
generators are modeled as steam turbines with reheat and are modeled
with the simplified transfer function [71]

Gt = 1 + sFHPTRH

(1 + sTCH) · (1 + sTRH) , (11.2)

where s is the Laplace operator, FHP is the fraction of the total turbine
power generated by the high pressure section, TRH is the time constant
of the reheater, and TCH is the time constant of the main inlet volume
and steam chest. The governor is modeled as a first-order lag with time
constant TG using the transfer function [71]

Gg = 1
(1 + sTG) . (11.3)

We consider two types of disturbances: (a) large contingencies, e.g.,
a sudden loss of 3 GW of generation in area 2 that will trigger full
activation of PFC reserves; and (b) smaller disturbances, e.g., random
load fluctuations in both areas. Disturbances (a) and (b) are considered
to assess the quality of PFC and SFC reserves from Demand Response
(DR) resources, respectively. We investigate the effect of DR shares,
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Table 11.4: Parameters of the two-area power system

Parameter Variable Area 1 value Area 2 value
Base power SB 8 GW 240 GW
Damping 1/D 120 MW/Hz 3600 MW/Hz

Steam turbine parameter FHP 0.3 0.3
Steam chest time constant TCH 0.3 s 0.3 s

Reheat time constant TRH 7 s 7 s
Governor time constant TG 0.2 s 0.2 s

Primary reserves PPFC 71 MW 2929 MW
Primary control droop 1/R 355 MW/Hz 14645 MW/Hz

SFC reserves PSFC 400 MW 14000 MW
SFC parameters (Cp, TN ) (0.17, 120 s) (0.17, 240 s)

Table 11.5: Refrigeration population parameters

Parameter Value Parameter Value
Ta (◦C) U[20, 24] 1/(RthCth) (s−1) U[4, 6] · 10−5

Temp. deadband (◦C) U[1.7, 2.3] Rth (◦C/W) U[1.6, 2]
Temp. setpoint (◦C) U[4.5, 5.5] Pn (W) U[70, 90]

tlon (s) N(90, 5) η (−) U[1.5, 1.7]

Table 11.6: Electric water heater and water draw parameters

EWH parameter Value Draw parameter Value
Volume U[100, 400] l long duration N(5, 1) min

Rated power [3, 6] kW long flow rate N(8, 1) l/min
Temp. setpoint U[55, 65]◦C medium/low duration N(1, 0.1) min

Temp. deadband U[5, 15]◦C medium flow rate N(6, 1) l/min
Number of draws [10, 60] low flow rate N(1, 2) l/min

power system inertia levels, and the filter’s lower cutoff period on system
performance in simulations with a time step of 0.001 seconds for the
power system dynamics and 1 second for the thermal load dynamics.
The refrigerator aggregation consists of 100, 000 refrigerators with the
parameters of Table 11.5. An aggregation of 500 EWHs is created using
the parameters of Table 11.6. For each EWH, the tank volume, tem-
perature setpoint, and temperature deadband are sampled according to
uniform distributions with the bounds of Table 11.6, whereas the rated
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Table 11.7: Commercial building and heat pump parameters

Parameter Value Parameter Value
Floor area U[10000, 20000] m2 COP U[2.5, 3.5]

Comfort zone [21, 24]◦C τ1, τ2 U[0.5, 3] s
Rated power U[100, 260] kW τ3 U[25, 75] s

Minimum loading U[15, 30] % τ4 U[10, 20] s

power and the daily number of water draws depend on the tank volume.
We differentiate among three types of water draws: high (e.g., shower),
medium (e.g., dishwasher), and low (e.g., hand washing) draws. The
draw duration and the water flow rate follow normal distributions with
the mean values and standard deviations of Table 11.6.1

We consider an aggregation of 16 typical Swiss office buildings. The
buildings differ with respect to the construction type (heavy or light),
the window area fraction (high or low), and the internal heat gains
(high or low). We also consider two possible HVAC systems: (a) heat-
ing with radiators and cooling with cooled ceilings, and (b) heating and
cooling using Thermally Activated Building Systems (TABS). The floor
area, HP rated power, Coefficient of Performance (COP), and the HP
time constants (τ1 − τ4) follow uniform distributions with the bounds
of Table 11.7, whereas the HP minimum loading is a percentage of its
rated power, and the comfort zone is the same for all buildings. Typ-
ical occupancy profiles are used, whereas weather data for a winter
day are provided by Meteoswiss (the Swiss federal office of meteorol-
ogy and climatology). For more information, the reader is referred to
Sections 2.2.1, 9.3 and 9.7.
The reserve capacities are allocated among the buildings by solving the
Robust Problem with Power Constraints (RPC) formulated in (9.24).
An hourly time step is used, constant reserve capacities over a day and
capacity payments 50% higher than the electricity price are assumed
(i.e., λc

k/c = 1.5 using the notation of Chapter 9), and the optimization
problem is solved using CPLEX. The short-term HP capacity allocation
problem is performed applying (9.43) with an horizon of N2 = 600 sec-
onds, it is compiled using YALMIP [43] and solved with CPLEX. Simu-
lations are performed in MATLAB with the aforementioned load aggre-

1The water draw model is very similar to the one presented in Chapter 6.2.2. The
only difference is that three types of water draws are considered here, in contrast to
Chapter 6.2.2, where only two types were considered.
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Figure 11.2: Frequency trajectory after a sudden loss of 3 GW of generation
in area 2, with and without DR and for two inertia levels.
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Figure 11.3: Absolute value of maximum under-frequency for different DR
shares in PFC and for two inertia levels.

gations, and the results are scaled up to match the reserve requirements
of each power system area.

11.4 Simulation Results

11.4.1 Large Disturbances and PFC Performance

In the first set of simulations, we subject the system to a sudden loss of
3 GW of generation in area 2 and investigate the frequency trajectories
for the inertia values H = 3 seconds and H = 6 seconds, as well as
for 0% and 100% DR shares. We assume DR resources in PFC and
conventional resources in SFC in both areas. Figure 11.2 shows that in
case of slow conventional generators (in these simulations we used steam
turbines with reheat), the contingency leads to a significant transient
under-frequency. This is more pronounced for low inertia values, e.g.,
in systems with large shares of Renewable Energy Resources (RES),
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Figure 11.4: Left: Baseline power of the HP aggregation with and without
ramping optimization. Right: Baseline and reserve capacities
of a HP with and without ramping optimization.

where the frequency approaches the statutory limit of 49.5 Hz below
which load shedding occurs. The load control significantly reduces the
magnitude of under-frequency for both inertia levels (the frequency is
above 49.84 Hz), which is due to the refrigerators’ fast response times.
We repeated the same simulations for DR shares α in the range [0%, 100%]
with a step of 10%, and present the resulting maximum under-frequency
values in Fig. 11.3. Due to the refrigerators’ fast response times, the
maximum under-frequency decreases as the DR share increases. Note
that the under-frequency decreases at a faster rate as the DR share
increases up to 60%, compared with larger shares. Since the main con-
tribution of refrigerators is at the beginning of the disturbance, even
small shares can be effective due to their fast reaction. Observe that
the gap between the low and high inertia values decreases as the DR
share increases, and is practically zero for a 100% share. Therefore, in-
tegrating fast PFC resources such as refrigerators is an efficient measure
to counteract inertia reduction in power systems with large RES shares.

11.4.2 SFC Reserve Capacity Allocation

First, we allocate the SFC reserve capacity for each hour of the day
among the 16 buildings by solving problem (9.24). Then, we apply
the HP ramping optimization problem (9.43) to reallocate the reserve
capacities among the HPs during the hour changes.
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Figure 11.5: Load deviations in areas 1 and 2 constructed such that the
resulting SFC signals resemble actual SFC signals from the
Swiss power system.

The left plot of Fig. 11.4 shows the aggregation’s baseline (red solid
curve) without ramping optimization (case C1), where step changes on
the HP schedules and reserve capacities are applied (blue solid curve).
The left plot also shows the baseline (red dashed curve) with ramping
optimization (case C2), which is smoother and very close to the desired
ramp with a duration of eight minutes (blue dashed curve). The right
plot focuses on the ramping process of an HP that switches on at the
hour change. The solid step curves indicate the baseline and reserve
capacity trajectories without HP ramping optimization, whereas the
dashed curves are the respective values with HP ramping optimization.
In the latter case, the HP switches on slightly before the hour change
and different short-term up- and down-reserve capacities are allocated
to achieve a smoother aggregate baseline and accurate reserve provision.

11.4.3 Small Disturbances and SFC Performance

In the second set of simulations, we investigate the system performance
during two hours under regular load fluctuations in both areas that
activate SFC (see Fig. 11.5). We focus our analysis on area 1 that
has a 50% DR share in both PFC and SFC, whereas conventional PFC
and SFC resources are assumed in area 2 (the inertia constant is set
to H = 6 seconds in both areas). The original SFC signal and its
slow (ws,t) and fast components (wf,t) are shown in Fig. 11.6. The
slow component ws,t absorbs the bias of the original SFC signal. The
fast component wf,t absorbs the signal’s high-frequency components, it
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Figure 11.6: Left: The original SFC signal, as well as its slow and fast
components for the 2-hour period. Right: Close-up view of
the signals during the hour change (there are two y-axes in
this plot).
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Figure 11.7: Left: Baseline power, setpoint power, and aggregate power of
the HPs. Right: Close-up view of the setpoint and aggregate
power during the hour change.

is approximately zero-mean, and its magnitude is generally very small
compared with ws,t (notice the two y-axes in the right plot of Fig. 11.6).

The left plot of Fig. 11.7 shows the resulting aggregate HP power after
reserve provision as well as the aggregation’s baseline, i.e., the con-
sumption without reserve provision. The HPs follow ws,t very accu-
rately throughout the whole simulation period with very small tracking
errors, as shown in the right plot of Fig. 11.7.

Similar results are presented for the EWHs and wf,t in Fig. 11.8. Since
the dynamic response of EWHs is practically instantaneous, the small
tracking errors are only due to control with partial state information.
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Figure 11.9: Setpoint tracking by the HPs for three cases. Left: Base case.
Middle: Without ramping optimization. Right: Without fil-
tering.

Recall that only the on/off states of the EWHs are communicated to
the controller, whereas the temperatures are estimated to reduce data
transfer. The temperature estimation errors result in the control over-
shoots or undershoots of Fig. 11.8.
To quantify the importance of filtering and HP ramping optimization,
we compare the following cases: (a) both filtering and HP ramping
optimization are applied (base case), (b) filtering is applied but not HP
ramping optimization, and (c) HP ramping optimization is applied but
not filtering. We present tracking results at the hour change for these
three cases in Fig. 11.9.
The tracking in case (a) is very good with a Mean Absolute Percentage
Error (MAPE) of 0.22% (left plot). Without HP ramping optimization
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(middle plot), large tracking errors occur for approximately 200 sec-
onds, because the ramping constraints prevent the HPs from following
the step changes in the consumption schedules and reserve capacities.
Overall, the MAPE is 4.18% for the considered period. The effect of
filtering on tracking quality is less pronounced than that of HP ramp-
ing optimization, but non-negligible. Without filtering (right plot), the
setpoint power is more volatile, the tracking error is higher due to the
HP latencies and ramping limits, and the MAPE is equal to 0.33%.

An important challenge when offering PFC and SFC reserves with dis-
tinct load aggregations is to avoid interactions that could endanger sys-
tem stability. For example, one needs to make sure that accumulated
errors from tracking the SFC signal do not translate into frequency devi-
ations that cannot be handled by the PFC resources. In our simulations
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the integration of HPs and EWHs in SFC had no noticeable effect on
the performance of refrigerators in PFC. Figure 11.10 shows that the
empirical droop characteristic of refrigerators is very close to the ideal
one, and therefore refrigerators can efficiently substitute generators in
PFC.2

We also simulated the system with DR shares in PFC and SFC from
0% to 100%, with a step of 10%, and present the tracking Mean Abso-
lute Error (MAE) for each case in Fig. 11.11. The left plot corresponds
to simulations where PFC is provided only by generators, and SFC
by commercial buildings and generators. The right plot is for simula-
tions where refrigerators and generators provide PFC, whereas EWHs,
commercial buildings and generators provide SFC. Since the two plots
correspond to slightly different simulation conditions, we compare the
results of the two plots only qualitatively.

If commercial buildings is the only DR resource, then a low-pass filter
with a cutoff period of 40 seconds is used to get the SFC signal for
the buildings, whereas the filter’s residual is sent to the generators.
Of course, for a 100% share of buildings, the SFC signal is sent to the
buildings without filtering. If only generators provide reserves (β = 0%),
the tracking MAE is 2.73 MW, which is slightly reduced to 2.56 MW if
only buildings provide reserves (β = 100%). Since a smoothed version
of the SFC signal is sent to the buildings, one would expect a decrease
in the SFC tracking error as the share of buildings increases. However,
this is not the case in the left plot of Fig. 11.11. Although the tracking
error on the buildings’ side indeed decreases, the total error increases
because the filter’s residual signal is too fast for the generators.

The results are qualitatively different in the right plot of Fig. 11.11. If
EWHs are used to track the filter’s high-frequency residual instead of
the generators, the SFC tracking error monotonically decreases as the
DR shares increase. Similarly to Fig. 11.3, the error decreases rapidly
for low DR shares and then saturates at its minimum value at a 80%
share. This illustrates the benefit of pooling DR resources with large
thermal inertia but slow response (HPs of commercial buildings), with
DR resources with small inertia but fast response (EWHs).

2We observed that using a PFC deadband might lead to oscillatory behavior, if a
single transfer function represents the aggregate dynamics of all generators connected
to the system, as in our case study. Therefore, we did not model the PFC deadband
in these simulations, in contrast to the simulations of Chapter 5, where no dynamic
power system model was used.



11.4. Simulation Results 337

      
0

1

2

3

4

5

M
ea

n 
ab

so
lu

te
tr

ac
ki

ng
 e

rr
or

 (
M

W
)

      
0

0.5

1

1.5

2
x 10

4

l2  n
or

m
 o

f 
tr

ac
ki

ng
 e

rr
or

 (
M

W
)

 

 
Fast Gen
Slow Gen
No filter
τ
f
=20s

τ
f
=40s

τ
f
=60s

Figure 11.12: Comparison of DR resources against generators. Left: Mean
absolute tracking error. Right: Tracking l2 norm error.

11.4.4 Simulations with a Historical SFC signal

We observed that the SFC signal obtained by the two-area power sys-
tem model is slightly smoother than the historical SFC signal. This is
because in a real system there exist: (a) several areas and tie-lines; and
(b) additional control loops, e.g., automatic voltage regulators and/or
power system stabilizers. To test the control scheme’s performance in a
more realistic case, we simulate the tracking of a historical SFC signal
from the Swiss power system in 2012 by DR resources. We consider a
case with HPs only and no filtering, and three cases with both HPs and
EWHs but with different filter time constants (τf). We compare the DR
tracking errors against that of slow reheat steam turbine generators and
faster generators (the model parameters are adopted from [71, p. 427])
in Fig. 11.12. The left plot shows the tracking MAEs, whereas the right
plot shows the l2 norm errors.

All the DR cases achieve much smaller errors compared with the slow
generators, but when comparing them against the fast generators dif-
ferent error metrics lead to qualitatively different results. In terms of
MAE, the performance of fast generators is similar to that of DR; how-
ever, in terms of the l2 norm error, all DR cases clearly outperform the
fast generators. This indicates that the proposed control scheme re-
duces the magnitude of the worst-case tracking errors due to the faster
response times. Observe also that increasing the value of τf improves the
performance; however, this comes at the cost of increasing the EWHs’
reserve capacity.
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11.5 Conclusion

In this chapter, we presented a frequency control scheme that allows
large shares of heterogeneous thermal loads (residential refrigerators
and EWHs, as well as HPs of commercial buildings) to participate in
PFC and SFC. Refrigerators provide reserves in a decentralized fashion
based on local frequency measurements, whereas SFC reserves are allo-
cated among EWHs and HPs using techniques from robust optimization
and signal filtering. The scheme accounts for the loads’ electrical and
thermal dynamics, it provides high-quality reserves without impact on
user comfort, and it is compatible with classical power system control at
the generation side. Dynamic simulations with a two-area power system
model led to a number of interesting observations and recommendations,
which we highlight in the following.
Due to their fast response times, refrigerators significantly reduce the
magnitude of frequency excursions in case of large contingencies. In
particular, it is shown that PFC by refrigerators improves the frequency
response in low-inertia power systems (e.g., systems with large amounts
of RES). HPs of commercial buildings can cope with biased SFC signals,
but tracking errors increase in case of fast-moving signals due to HP
delays and ramping limits. The fast components of the SFC signal
can be followed by EWH aggregations without excessive communication
requirements.
By pooling HPs and EWHs, smaller tracking errors compared with con-
ventional generators can be achieved. Furthermore, in our simulations
the performance of refrigerators in PFC did not deteriorate when HPs
and EWHs were integrated in SFC. This indicates that the control
scheme does not introduce any adverse interactions between distinct
load aggregations. Overall, our results show that if load dynamics and
constraints are understood and modeled properly, thermal loads can
effectively substitute conventional generators in PFC and SFC.



Chapter 12

Conclusions and Outlook

12.1 Summary of this Thesis

This thesis investigated the potential of providing power system ser-
vices with control of residential and commercial loads. The first part
of the thesis focused on optimal control of loads to minimize the elec-
tricity cost of individual consumers (Chapter 2), and maximize the self-
consumption of Photovoltaic (PV) energy (Chapter 3).
The second part of the thesis focused on provision of power system An-
cillary Services (AS) with loads, and was organized in eight chapters.
Chapter 4 provided a detailed literature review of existing load control
approaches for AS. Chapters 5-8 considered aggregations of small res-
idential Thermostatically Controlled Loads (TCLs) as an AS resource,
whereas Chapters 9 and 10 investigated the potential from the Heat-
ing, Ventilation and Air Conditioning (HVAC) systems of commercial
buildings.
More specifically, Chapter 5 presented a method that allows a large ag-
gregation of refrigerators to provide Primary Frequency Control (PFC)
in a decentralized way without real-time communication. Chapter 6
introduced rule-based control algorithms with different complexity and
communication requirements to coordinate the aggregate power of an
aggregation of Electric Water Heaters (EWHs) in order to track Sec-
ondary Frequency Control (SFC) signals. A method to provide SFC

339
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without adverse effects on the Distribution Network (DN) was proposed
in Chapter 7, thereby addressing a topic that is widely neglected in the
literature. Chapter 8 presented a method to estimate the states of indi-
vidual TCLs while providing SFC reserves in order to improve control
performance and reduce communication cost.
Reserve scheduling, allocation and provision within an aggregation of
commercial buildings was the topic of Chapter 9, which proposed a hi-
erarchical control framework for this purpose. This control framework
was used as a basis for an experimental demonstration of SFC provi-
sion from a commercial building test facility, which was presented in
Chapter 10.
Finally, Chapter 11 presented a framework to combine different types
of thermal loads in PFC and SFC. Some of the controllers developed
in previous chapters were put together, and dynamic power system fre-
quency studies with different load shares were performed.

12.2 Conclusions

The main conclusions and findings of this thesis are summarized as
follows:

• Model Predictive Control (MPC) has a significant potential for
energy cost reduction in residential households in the presence of
dynamic end-customer electricity prices.

• Batteries are well-suited for PV self-consumption maximization in
buildings, and even simple control algorithms can be effective.

• Large aggregations of refrigerators can provide PFC reserves more
accurately than generators and in a decentralized fashion without
real-time communication.

• EWH aggregations can track SFC signals accurately and with rea-
sonable information feedback from the loads to the controller.

• With proper control design, TCLs can offer SFC without adverse
effects on the DN, such as overvoltages and transformer or cable
overloadings.
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• Moving Horizon State Estimation (MHSE) can be used to estimate
the states of individual TCLs in SFC applications resulting in a
performance improvement.

• There exists a large potential for SFC from the HVAC systems
of commercial buildings, and techniques from robust/stochastic
optimization and MPC can be used to reliably estimate the reserve
capacity.

• An experimental demonstration verified the technical feasibility
of providing SFC with commercial buildings and showed the ad-
vantages of a hierarchical control design.

• Dynamic frequency studies showed that the frequency quality im-
proves with large shares of heterogeneous loads in PFC and SFC,
if they are properly coordinated and controlled.

12.3 Outlook

There are many avenues for future work on the topics addressed in
this thesis. In the following, we briefly point out the most important
questions that remain unanswered or require further investigation:

• The analysis in Chapter 5 assumed that each refrigerator mea-
sures the frequency locally without measurement error. However,
this will not be the case in a real-world implementation due to the
limited accuracy of the frequency meter and the frequency noise
accumulation in the DN. It is therefore important to study the ro-
bustness of the decentralized controller to frequency measurement
errors.

• As shown in Chapter 9, a priori reserve capacity estimation is pos-
sible within aggregations of commercial buildings. However, doing
the same with TCLs is more involved due to the much larger ag-
gregation size. Therefore, low-order but accurate aggregate TCL
models are needed to enable a priori reserve scheduling. In addi-
tion, calibration of these models should be possible with available
measurements.

• Although MHSE was shown to improve the SFC performance
in Chapter 8, adopting this method in a real-world implementa-
tion is not straightforward because it is computationally intensive.
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Therefore, a cost-benefit analysis and comparison with alternative
estimation approaches from the literature is needed to identify the
suitability of MHSE for practical implementation.

• The MHSE method of Chapter 8 accounts for communication net-
works with limited bandwidth. However, extensions are necessary
to account also for communication delays and packet losses, which
will likely occur in practice, and [169] took a step to this direction.

• Dynamic frequency studies should be performed considering com-
munication delays and packet losses while providing SFC. Further-
more, the power system model can be extended to include more
areas and voltage dynamics.

• The literature on load control for power system AS lacks experi-
mental demonstrations and field tests, which are absolutely nec-
essary to build confidence for widespread implementation. Chap-
ter 10 of this thesis took one of the first steps to this direction, but
we believe that more experimental work is needed. For example,
experiments similar to those of Chapter 10 should be performed
in larger commercial buildings (preliminary results from a follow-
up work are reported in [201]). In addition, experiments with
aggregations of commercial buildings are required to verify the
scalability of the approach. More importantly, there is very little
experimental demonstration of AS with large TCL aggregations,
and much more work is needed in this area.

• A common concern for DR is profitability and realistic business
cases. Various works have shown that the profit margin per par-
ticipant in load control schemes is too small to attract a large
interest. One solution would be to reduce the implementation
cost of load control, for example by standardization that will al-
low new devices to be sold with the necessary controllers already
integrated. An alternative would be to come up with new remu-
neration schemes or to support load control with state subsidies,
similarly to the support of RES.



Appendix A

Proofs

A.1 Proof of Proposition 1
Proof. The estimated aggregate power at time step t after reserve acti-
vation is

P̂agg,t = Nr,aP̄nS̄u(t) , (A.1)
where Nr,a is the number of activated devices. Assuming independence
of random variables Pn,i, ui and Ns,i, the expected actual aggregate
power is computed as

P̄agg,t = E
[∑Nr,a

i=1
Pi,t

]
=
∑Nr,a

i=1
E [Pi,t]

=
Nr,a∑
i=1

E

[
Pn,i

[
1 + ui

[
1− t

Ns,i

]
+

]]

=
Nr,a∑
i=1

P̄n

[
1 + ū · E

[
1− t

Ns,i

]
+

]
. (A.2)

Part 1: If t ≤ Ns,min, then [·]+ is redundant and from (A.2) it follows

P̄agg,t =
∑Nr,a

i=1
P̄n

[
1 + ū

[
1− E

[
t

Ns,i

]]]
≤
∑Nr,a

i=1
P̄n

[
1 + ū

(
1− t

N̄s

)]
=Nr,aP̄nS̄u(t)= P̂agg,t, (A.3)
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where Jensen’s inequality φ(E[Ns,i]) ≤ E[φ(Ns,i)] is invoked with φ(Ns,i)
= t/Ns,i, which is a convex function since t,Ns,i ≥ 0. Therefore, it holds
that P̄agg,t ≤ P̂agg,t for t ≤ Ns,min.
Part 2: For t ≥ N̄s, we obtain P̂agg,t = 0 from (5.10) and (A.1). Since
the expected aggregate power P̄agg,t is non-negative, P̂agg,t is clearly a
lower bound.
For Ns,min < t ≤ N̄s, the estimated aggregate power is also given
by (A.2). Assume that Ns,i follows the uniform probability distribu-
tion Ns,i∼U[Ns,min, Ns,max]. For a given t, the probability that a ran-
domly selected refrigerator contributes to the aggregate startup dynam-
ics is equal to P (Ns,i ≥ t) = (Ns,max − t) / (Ns,max −Ns,min). Denote by
Ñs,i the random startup duration that follows the uniform distribution
Ñs,i∼[t,Ns,max]. The expectation from the last step of (A.2) can be
written as

E
[
1− t

Ns,i

]
+

= E
[
1− t

Ñs,i

]
· Ns,max − t
Ns,max −Ns,min

(A.4a)

≤
(

1− t

E[Ñs,i]

)
· Ns,max − t
Ns,max −Ns,min

(A.4b)

=
[
1− t

0.5 · (t+Ns,max)

]
· Ns,max − t
Ns,max −Ns,min

(A.4c)

= (Ns,max − t)2

(Ns,max −Ns,min) · (Ns,max + t) . (A.4d)

We used Jensen’s inequality in (A.4b) and the fact that Ñs,i follows the
uniform distribution Ñs,i∼[t,Ns,max] in step (A.4c).
The inequality P̂agg,t ≥ P̄agg,t holds if and only if

1− t

N̄s
≥ E

[
1− t

Ns,i

]
+
⇔ (A.5)

Ns,max +Ns,min − 2t
Ns,max +Ns,min

≥ (Ns,max − t)2

(Ns,max−Ns,min)·(Ns,max +t) , (A.6)

where we used the fact that N̄s = 0.5 · (Ns,max + Ns,min). By tedious
but simple algebraic operations (A.6) can be equivalently written as

(Ns,min − 3Ns,max) · t2 + (N2
s,max + 4Ns,minNs,max −N2

s,min) · t
− (N2

s,minNs,max +Ns,minN
2
s,max) ≥ 0 . (A.7)



A.2. Proof of Proposition 2 345

The quadratic form in (A.7) has two real solutions t1 and tlim. The
first one is t1 = Ns,min by inspection. For the second one, we use
Vieta’s formula t1 · tlim = c/a with a = Ns,min − 3Ns,max and c =
−(N2

s,minNs,max +Ns,minN
2
s,max) and find

tlim = Ns,max (Ns,min +Ns,max)
3Ns,max −Ns,min

. (A.8)

The quadratic inequality (A.7) holds for t ∈ [t1, tlim]. Therefore, when
t > Ns,min the inequality P̂agg,t ≥ P̄agg,t holds for t ≤ tlim, which proves
the claim of Proposition 1. �

A.2 Proof of Proposition 2
Proof. Part 1: For 0 ≤ t ≤ Nev+1 using T̄0 = T̄nom and (5.48), equation
(5.47) gives

T̄t = T̄nom − γδ ·
∑t−1

k=0
λk = T̄nom − γδ ·

1− λt−1

1− λ , (A.9)

where a standard property of geometric series is invoked. The minimum
of (A.9) is obtained for t = Nev +1, and thus if T̄nom−ε ≤ T̄t ≤ T̄nom +ε
holds for t = Nev + 1 then it holds ∀t. Assuming δ > 0 without loss of
generality, it should hold

T̄t=Nev+1 ≥ T̄nom − ε ⇒ −γδ · 1− λNev

1− λ ≥ −ε , (A.10)

which is equivalent to (5.49).
Part 2: For t ≥ Nev + 1, ∆ft = 0 and the mean temperature recovers
towards T̄nom. We reset the time index such that t′ = 0⇔ t = Nev + 1.
The new initial condition is T̄(t′=0) = T̄(t=Nev+1) and is computed from
(A.9). Equation (5.47) gives

T̄t′ = T̄nom − γδ ·
1− λNev

1− λ · λt
′
. (A.11)

At time t′ = Nrec, T̄nom − ε ≤ T̄Nrec ≤ T̄nom + ε must hold. Assuming
δ > 0 without loss of generality, we get

T̄t′=Nrec ≥ T̄nom − ε⇒ −γδ · λNrec · 1− λNev

1− λ ≥ −ε , (A.12)

which is equivalent to (5.50). �
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A.3 Proof of Proposition 3

Proof. The change in temperature limits of a randomly selected refrig-
erator i can be expressed as

∆Tlim,i,t =
∑t−1

k=0
∆Tres · ζk · zk , (A.13)

where ζk is equal to 1 or −1 depending on the sign of ∆Tlim,k, and zk
is the Bernoulli random variable

fz(zk) =
{
%k, if zk = 1
1− %k, if zk = 0

. (A.14)

Using the fact E [zk] = %k, the mean value is computed as

E [∆Tlim,i,t] =
∑t−1

k=0
∆TresζkE [zk] =

∑t−1

k=0
∆Tresζk%k

=
∑t−1

k=0
ζk |∆Tlim,k| =

∑t−1

k=0
∆Tlim,k . (A.15)

The variance is computed as

Var [∆Tlim,i,t] = Var
[∑t−1

k=0
∆Tres · ζk · zk

]
(A.16a)

=
t−1∑
k=0

∆T 2
res · ζ2

k ·Var [zk] =
t−1∑
k=0

∆T 2
res · %k · (1− %k) (A.16b)

=
∑t−1

k=0
∆T 2

res ·
|∆Tlim,k|

∆Tres
·
(

1− |∆Tlim,k|
∆Tres

)
(A.16c)

=
∑t−1

k=0
|∆Tlim,k| ·

(
∆Tres − |∆Tlim,k|

)
, (A.16d)

where the random variables zk and zj are assumed to be uncorrelated
∀k 6= j in (A.16a), the fact that Var [zk] = %k ·(1−%k) is used in (A.16b)
since zk is a Bernoulli random variable, and the definition of %k from
(5.52) is used in (A.16c). �

A.4 Proof of Proposition 4

Proof. Denote by Ed
op and Ed

cl the refrigerator’s daily energy consump-
tion with and without door openings, respectively. Consider a refrig-
erator subject to door openings and denote by T̄op and T̄cl the time-
averaged temperature while the door is open and closed, respectively.
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The refrigerator operates on average µop · µd seconds with open door,
and Nd − µop · µd seconds with closed door. The refrigerator’s time
constant with closed door is α = 1/(RC), whereas with open door it is
αop = 1/(RopC).
The refrigerator’s energy consumption is equal to the integral of instan-
taneous thermal losses over time, because its temperature is regulated.
Assuming that T̄cl and T̄op are constant, the daily energy consumption
with and without door openings can be approximated with (5.1) and
(5.2) in the following way

Ed
cl ≈

α

β
· (Ta − T̄cl) ·Nd (A.17)

Ed
op ≈

α

β
· (Ta − T̄cl) · (Nd − µopµd) + αop

β
· (Ta − T̄op) · µopµd,

(A.18)

whereas Ed
op and Ed

cl are related according to

Ed
op = (1 + ξ) · Ed

cl . (A.19)

Combining (A.17), (A.18) and (A.19), we get
α

β
· (Ta − T̄cl) · (Nd − µopµd) + αop

β
· (Ta − T̄op) · µopµd =

(1 + ξ) · α
β
· (Ta − T̄cl) ·Nd , (A.20)

which when solved for αop gives

αop = α · Ta − T̄cl

Ta − T̄op
·
(

1 + Nd

µop · µd
· ξ
)
⇒ (A.21)

αop ≥ α ·
(

1 + Nd

µop · µd
· ξ
)
, (A.22)

because T̄cl ≤ T̄op. Inequality (5.56) now directly follows from (A.22)
using α = (1/RC) and αop = (1/RopC). �

A.5 Derivation of Equation (9.9)
We derive (9.9) by solving the non-homogeneous second order ODE
(9.8). The solution y(t) is the sum of the solution of the respective
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homogeneous ODE yh(t) and a specific solution of the non-homogeneous
ODE yn(t)

y(t) = yh(t) + yn(t) . (A.23)

The homogeneous solution can be obtained directly using the two dis-
tinct real poles λ1 and λ2 of the ODE

yh(t) = A · eλ1t +B · eλ2t . (A.24)

The following specific solution of the non-homogeneous ODE can be
obtained applying a Laplace transformation

yn(t) = us,k ·
[
1− e−σt · cosh (αt)− σ

α
· e−σt · sinh (αt)

]
. (A.25)

The parameters A and B in (A.24) can be determined by using the
initial conditions y(0) = us,k−1 and ẏ(0) = 0. It is easy to verify that
yn(0) = 0 and ẏn(0) = 0, therefore it is sufficient to impose

yh(0) = 0 ⇒ us,k−1 = A+B (A.26)
ẏh(0) = 0 ⇒ 0 = A · λ1 +B · λ2 . (A.27)

Solving the system of equations (A.26) and (A.27) we result in the
following expressions

A = us,k−1 ·
λ2

λ2 − λ1
(A.28)

B = −us,k−1 ·
λ1

λ2 − λ1
. (A.29)

Therefore, the final solution of the ODE is

y(t) =us,k−1 ·
λ2

λ2 − λ1
· eλ1t − us,k−1 ·

λ1

λ2 − λ1
· eλ2t+

us,k ·
[
1− e−σt · cosh (αt)− σ

α
· e−σt · sinh (αt)

]
. (A.30)

The lost thermal energy L2(t), i.e., the area between ulth,k(t) and us,k,
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can be now written as follows

L2(t) =
∫ t

0

[
ulth,k(τ)− us,k

]
dτ =

∫ t

0

[
y(τ)− us,k

]
dτ

=
∫ t

0
us,k−1 ·

λ2

λ2 − λ1
· eλ1τdτ −

∫ t

0
us,k−1 ·

λ1

λ2 − λ1
· eλ2τdτ

−
∫ t

0
us,ke

−στ · cosh (ατ)dτ −
∫ t

0
us,k

σ

α
· e−στ · sinh (ατ)dτ

= us,k−1 ·
[

λ2

λ1 · (λ2 − λ1) · (e
λ1t − 1)− λ1

λ2 · (λ2 − λ1) · (e
λ2t − 1)

]
− us,k

σ2 − α2 ·
[
−e−σt · [σ · cosh (αt) + α · sinh (αt)] + σ

]
− us,k · σ
α · (σ2 − α2) ·

[
−e−σt [α cosh (αt) + σ sinh (αt)] + α

]
. (A.31)

After tedious but simple mathematical operations (A.31) can be written
in the form a(t)us,k−1 + b(t)us,k with the a(t) and b(t) given in (9.10)
and (9.11).

A.6 Proof of Lemma 1

Proof. The monotonicity and convexity can be verified by inspection of
the fan curve in Fig. 10.9. For a formal proof, it is sufficient to show that
the first and second order derivatives f ′(u) and f ′′(u) are non-negative
∀u in the domain of f . From (10.9) we have

f ′(u) = 3α3u
2 + 2α2u+ α1 (A.32)

f ′′(u) = 6α3u+ 2α2 . (A.33)

The discriminant of f ′(u) has no real roots, and therefore f ′(u) ≥ 0 ∀u
because α3 ≥ 0. Furthermore, f ′′(u) ≥ 0 holds if u ≥ − α2

3α3
, which is

satisfied for the parameters of Table 10.7. �

A.7 Proof of Lemma 2

Proof. From the definition of ∆uk in (10.18) and (10.17) we get

min
wk

(uk + ∆uk) = min
wk∈[−wlim,0)

[
f−1 (Pk + wkRu,k)

]
. (A.34)
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Due to monotonicity of f , it holds

argmin
[
f−1 (Pk + wkRu,k)

]
= argmin (Pk + wkRu,k) = −wlim.

(A.35)

Substituting the minimizer −wlim in (A.34) we get (10.22). Equation
(10.24) is a special case of (10.22) derived as

f−1 (Pk − wlimRu,k) = f−1 [f(uk)−Ru,k] =
f−1 [f(uk)− f(uk) + f(uk − rd,k)] = uk − rd,k , (A.36)

where (10.13) is used. The maximization case for (10.23) and (10.25)
can be proved analogously but the proof is omitted for brevity. �

A.8 Proof of Proposition 5

Proof. It is sufficient to show that: (i) the set of input constraints
(10.21d) and (10.21e) is equivalent to (10.19c); and (ii) the set of state
constraints (10.21b), (10.21c), (10.21f) and (10.21g) is equivalent to the
set of constraints (10.19b) and (10.19d).
Input constraints: The equivalence follows directly from (10.24) and
(10.25).
State constraints: We first write (10.19b) as

xk+1 = Axk + (BuTs,k +Bxuxk) · (uk + ∆uk) +Bvvk . (A.37)

Constraint (10.19d) is applied only to the first state Tr,k = Cxk of the
state vector xk, where C = [1 0] is the output matrix. Observing
that CBuTs,k = bTs,k and CBxuxk = −bTr,k, constraint (10.19d) can
be written as

min
wk

[CAxk + b(Ts,k − Tr,k) · (uk + ∆uk) + CBvvk] ≥ xmin,k (A.38)

max
wk

[CAxk + b(Ts,k − Tr,k) · (uk + ∆uk) + CBvvk] ≤ xmax,k . (A.39)

Due to assumption 1, we have b · (Ts,k − Tr,k) ≤ 0; thus, the left hand
side of (A.38) is minimized when uk+∆uk is maximized. From (10.23),
this is achieved when uk + ∆uk = f−1 (Pk + wlimRd,k) holds. Denote
by xk the minimum state trajectory at time step k. The time evo-
lution of xk is therefore obtained by xk+1 = CAxk + b(Ts,k − Cxk) ·
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f−1 (Pk + wlimRd,k) + CBvvk, which is essentially (10.21c). Thus, if
(10.21f) holds (if xmin,k ≤ xk), then the left hand side of (10.19d) also
holds because xk ≤ xk ∀wk.
Analogous arguments can be used to show that (A.39) results in (10.21b)
and (10.21g), which are equivalent to the right hand side of (10.19d),
but this is omitted for brevity. �

A.9 Proof of Proposition 6

Proof. Using definition (10.13) and the fact that f(u) is convex we get

Pk − wlimRu,k = f(uk)− wlim [f(uk)− f(uk − rd,k)]
= (1− wlim)f(uk) + wlimf(uk − rd,k)
≥ f [(1− wlim)uk + wlim(uk − rd,k)] . (A.40)

Using the monotonicity of f(u) on (A.40) we get

f−1 (Pk − wlimRu,k) ≥ (1− wlim)uk + wlim(uk − rd,k)
= uk − wlimrd,k . (A.41)

x∗k ≥ x?k is now obtained by combining (A.41), (10.21b), (10.26b), and
using the same arguments related to b(Ts,k − Tr,k) ≤ 0 as in the proof
of Proposition 5.
Similarly, one can show that uk +wlimru,k ≤ f−1 (Pk + wlimRd,k) holds
and so that x∗k ≥ x?k also holds. Fig. 10.10 provides a graphical inter-
pretation of (A.41). �

A.10 Proof of Proposition 7

Proof. The proof follows directly by rewriting (10.21b) and (10.21c)
using (10.24), (10.25) and (A.36) from Lemma 2. �
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Model Parameters

B.1 Model Parameters of Chapter 2

Table B.1: HP model parameters of Section 2.2.2

Symbol Value
Cf 4.550 · 107 W/K
Cwr 5.156 · 106 W/K
Cws 2.006 · 105 W/K
cw 4.185 · 103 J/(Kg K)
c0 5.593
c1 0.0569 K−1

c2 −0.0661 K−1

kwf 1.160 · 103 W/K
ṁw 0.266 kg/s

B.2 Parameters of Distribution Network of
Chapter 7

The resistance, reactance and branches’ line length of the DN of Fig. 7.2
are based on the benchmark DN of [2]. However, the capacitance pa-
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Table B.2: Battery model parameters of Section 2.2.4

Symbol Value Symbol Value
b1 0.315 SOCmin 40%
b2 1.24 (1/h) α1 1505.89

Emax 5 kWh α2 9687.24
nc 0.8624 α3 4.90
nd 0.8532 α4 9845.09
nconv 0.93 α5 6.59

Table B.3: PV model parameters of Section 2.2.5

Symbol Value Symbol Value
A 1 q 1.6 · 10−19 C
Gs 1000 W/m2 TNOCT 47◦C
Ip 34.478 V Ts 298.15 K
kb 1.38 · 10−23 J/K Up 4.65 A
K1 −10.01 V ∆Ip 2.42 · 10−3

K2 −1850.80 V ∆Up −4.58 · 10−3

rameters are modified based on typical values from Italian DNs reported
in [202]. The final DN parameters are given in Table B.4.
The network’s load is allocated to the buses analogously to [2], while
typical residential and industrial load profiles are adopted from [203].
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Table B.4: Parameters of distribution network of Chapter 7

Bus
From

Bus
to

Resistance
(Ω/km)

Reactance
(Ω/km)

Capacitance
(nF/km)

Length
(km)

1 2 0.579 0.367 9 2.82
2 3 0.164 0.113 500 4.42
3 4 0.262 0.121 420 0.61
4 5 0.354 0.129 350 0.56
5 6 0.336 0.126 350 1.54
7 8 0.294 0.123 350 1.67
8 9 0.339 0.13 350 0.32
9 10 0.399 0.133 350 0.77
10 11 0.367 0.133 350 0.33
3 8 0.172 0.115 420 1.3
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