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Abstract

The goals of causal inference are inherently different from the ones of
classical statistics. Instead of measuring statistical associations between
variables, the main focus is on the characterization of the underlying causal
mechanisms. This is typically achieved via the estimation of causal graphs
(structure learning) or the prediction of causal effects under interventions.
Both problems are well-understood and elaborated for linear structural
equation models (SEMs). This thesis addresses them for specific classes of
semiparametric and nonparametric SEMs.

First, we study structure learning for causal additive models (CAMs).
CAMs constitute a natural semiparametric extension of linear Gaussian
SEMs: while still relying on the additivity of the functions and Gaus-
sianity of the noise, all functions are assumed to be exclusively nonlinear.
We present a score-based structure learning methodology based on (re-
stricted) maximum likelihood estimation that is consistent in low- and
high-dimensional settings. The key idea of our approach is to decouple or-
der search among the variables from subsequent edge selection in the graph.
We provide an efficient implementation of our proposed methodology in
the R-package CAM and evaluate its performance in extensive simulations.

In the second part of the thesis, we study the identifiability and estimation
of partially linear additive SEMs with Gaussian noise (PLSEMs). Thus,
we drop the assumption of exclusivity of the functional type and with
that we address one of the major limitations of both, linear SEMs and
CAMs. We precisely specify how linear and nonlinear additive functions
impose restrictions on the underlying causal model and derive a systematic
characterization of the identifiability of PLSEMs. Thereby, we close a
relevant gap, as the identifiability theory of additive models with Gaussian
noise was only elaborated for linear SEMs and CAMs. We complement



xii Abstract

the theoretical findings with an efficient score-based estimation procedure
that, given one PLSEM, finds all equivalent PLSEMs. We prove low- and
high-dimensional consistency results for our algorithm and evaluate its
performance on simulated datasets.

In the last part, we additionally relax the additivity and Gaussianity as-
sumptions. Structure learning for unstructured nonparametric SEMs is a
highly ambitious task as it is plagued by the curse of dimensionality. Inter-
estingly, the situation is different for the estimation of (total) causal effects.
We show that a specific marginal integration regression technique (S-mint)
theoretically achieves the optimal univariate convergence rate of nonpara-
metric regression for a very general class of nonparametric SEMs with
known (or approximately known) structure (assuming sufficient smooth-
ness). Specifically, S-mint does not suffer from the curse of dimensionality.
We propose an implementation based on an additive regression approxima-
tion with subsequent L2-boosting. In extensive simulations, our method
demonstrates a more pronounced robustness with respect to model mis-
specification than other methods that rely more heavily on the correct
estimation of the causal structure.



Zusammenfassung

Das Gebiet der kausalen Inferenz hat eine grundsätzlich andere Zielset-
zung als die klassische Statistik. Statt statistische Assoziationen zwischen
Variablen zu messen, besteht der Hauptfokus der kausalen Inferenz darin,
die zugrundeliegenden kausalen Zusammenhänge zu charakterisieren. Dies
kann auf verschiedene Arten angegangen werden. Zum Beispiel, indem man
einen Graphen schätzt, der die kausalen Mechanismen abbildet. Alterna-
tiv kann man versuchen, direkt die kausalen Effekte vorherzusagen, welche
durch Interventionen verursacht werden. Beide Ansätze sind seit längerem
bekannt und ausgereift für lineare Strukturgleichungsmodelle. Die vorlie-
gende Doktorarbeit untersucht diese Ansätze in spezifischen Klassen von
semiparametrischen und nichtparametrischen Strukturgleichungsmodellen.

Eine naheliegende semiparametrische Erweiterung der linearen Gauss’schen
Modelle sind sogenannte kausale additive Modelle. Sie sind immer noch
additiv mit Gauss’schen Fehlertermen, bestehen jedoch ausschliesslich aus
nichtlinearen Funktionen. Wir entwickeln eine score-basierte Maximum-
Likelihood Methode, um für diese Modellklasse die zugrundeliegenden kau-
salen Graphen zu schätzen und zeigen deren Konsistenz für den tief- und
hoch-dimensionalen Fall. Die entscheidende Idee der Methode besteht dar-
in, die Suche nach einer korrekten kausalen Ordnung der Variablen von
der Suche nach individuellen Kanten im kausalen Graphen zu entkoppeln.
Wir stellen eine effiziente Implementierung der Methode im R-Paket CAM
zur Verfügung und untersuchen deren Leistungsfähigkeit in diversen nu-
merischen Experimenten.

Sowohl die linearen Gauss’schen Modelle als auch die kausalen additiven
Modelle besitzen den grossen Nachteil, dass alle additiven Komponenten
vom selben Typ sein müssen, das heisst, entweder alle linear oder alle nicht-
linear. Diese restriktive Annahme kann umgangen werden, indem man
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beide Funktionstypen im gleichen Modell zulässt, das heisst, durch Be-
trachten von partiell linearen additiven Strukturgleichungsmodellen mit
Gauss’schen Fehlertermen. Wir untersuchen, wie lineare und nichtlineare
Funktionen das zugrundeliegende kausale Modell einschränken, und lei-
ten daraus eine systematische Charakterisierung der Identifizierbarkeit der
gesamten Modellklasse her. Dadurch schliessen wir eine grosse Lücke in
der Identifizierbarkeitstheorie additiver Modelle, welche bisher nur für li-
neare Gauss’sche und kausale additive Modelle ausgearbeitet wurde. Wir
ergänzen die Theorie durch einen effizienten Algorithmus, der für ein ge-
gebenes partiell lineares Modell alle dazu äquivalenten Modelle auflistet.
Wir beweisen dessen Konsistenz im tief- und hoch-dimensionalen Fall und
untersuchen die Leistungsfähigkeit auf simulierten Datensätzen.

Zuguterletzt stellen wir uns die Frage, welche Aussagen ohne die Annahme
von additiven Funktionen und Gauss’schen Fehlertermen getroffen werden
können. Unglücklicherweise ist das Schätzen von unstrukturierten nichtpa-
rametrischen Modellen geprägt vom sogenannten Fluch der Dimensiona-
lität. Dies ist interessanterweise nicht der Fall, wenn wir versuchen, (totale)
kausale Effekte zu schätzen. Wir zeigen, dass eine spezifische Regressions-
methode, die auf marginaler Integration beruht, für eine allgemeine Klasse
von nichtparametrischen Strukturgleichungsmodellen mit bekannter (oder
ungefähr bekannter) Struktur die optimale univariate Konvergenzrate für
nichtparametrische Regression erreicht (unter Annahme genügender Dif-
ferenzierbarkeit). Insbesondere umgeht diese Methode den Fluch der Di-
mensionalität. Als Ergänzung zur Theorie schlagen wir eine Implemen-
tierung der Methode vor, welche auf einer additiven Approximation mit
anschliessendem L2-boosting beruht. In ausgiebigen Simulationen erweist
sich diese Methode als robuster gegenüber Abweichungen vom Modell als
andere Schätzverfahren, welche stärker von der korrekten Schätzung der
kausalen Struktur abhängig sind.
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Chapter 1

Introduction

In this chapter we first give a general introduction to the field of causal
inference from observational data and discuss its main goals. Next, we ex-
plain the key concepts behind directed acyclic graph models and structural
equation models, and question the commonly used assumptions. Finally,
we outline the scope of this thesis, assess the novelty of our contributions
and explain how they relate to the existing framework.

1.1 Causal inference from observational data

The research questions that motivate most quantitative stud-
ies in the health, social and behavioral sciences are not sta-
tistical but causal in nature.

– Judea Pearl, The Science and Ethics of Causal Modeling, 2010

The wish to establish cause-effect relations is omnipresent in science and
everyday life. A researcher may want to investigate new genetic causes
of cancer; a pharmaceutical company may want to assess the efficacy of a
new sleeping pill; a car insurance company may be interested in predicting
the reduction of the number of accidents if they enforce the installation of
drive recorders in all the policyholders’ cars; or a person lying awake in
bed may wonder whether he would be sleeping now if he had not drunk
two cups of coffee after dinner.
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Establishing cause-effect relations is fundamentally different from finding
statistical associations. Nevertheless, these two concepts are frequently
mixed up (which is referred to as the correlation-implies-causation-fallacy).
Suppose that a news article proclaims: “Employees with grey hair earn
more money”. Does that mean that dyeing my hair grey will make my
salary increase? The answer is: maybe. While the statement in the news
reports an association (a co-occurrence of grey hair and a higher salary),
we tried to draw the conclusion that grey hair is a cause of a higher salary.
This may, indeed, be true: grey hair may make us look more experienced
and knowledgeable and that could cause an increase in salary. However, it
could also be the opposite, namely, that people who earn more money are
under higher pressure to perform which causes their hair to turn grey. Or,
it may be the case that grey hair and a high salary are not causally related
at all. There may be a third confounding variable that affects both, grey
hair and a high salary, that is responsible for the observed association. For
example, the age of the employees. So how can we specifically address a
causal question?

Randomized controlled trials

The gold-standard is to conduct a randomized controlled trial (RCT). Con-
sider the example of the pharmaceutical company that wants to assess the
efficacy of a new sleeping pill. In an RCT, participants are randomly se-
lected and randomly assigned to either the treatment group (receiving the
new sleeping pill) or the control group (receiving a placebo). The ran-
domization (ideally) controls for the effects of confounding variables (such
as the age or previous medical history of the participants), and the only
difference between the groups lies in the type of treatment. This allows
us to draw conclusions about the (unconfounded) effect of the treatment
(sleeping pill versus placebo) directly.

Undoubtedly, having experimental data from an RCT that is designed
specifically for answering the causal question of interest is one of the best
scenarios for causal inference. So why is it not always possible to rely on
it?

The need for approaches different from randomization

Practically, there are many scenarios in which it is impossible to perform
suitable RCTs to test the causal hypotheses at hand. The most common
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example is the one where performing an RCT would be unethical. Suppose
we want to address the question whether obesity causes heart disease. In
an RCT, we would randomly split the participants of the given population
into two groups and constrain the participants of one group to become
obese. For obvious reasons, it is rather unethical to expose a randomly
selected subset of our population to a risk factor in order to determine
whether or not it is a cause of the disease.

Another major problem that can arise in many scientific disciplines is
that the sheer number of causal hypotheses is simply too large to test ex-
perimentally. Good examples are gene knockout experiments, where one
wants to assess the function of particular genes (on an outcome of interest)
by intervening on these genes and rendering them inoperative. In these
intervention experiments, the number of potential candidate genes for sin-
gle knockout experiments typically lies in the thousands, not to mention
the number of potential experiments when also allowing for simultaneous
knockouts of several genes. In this situation, it can be too time-consuming
or too expensive to perform all these experiments. The ability to predict
a priori which (combinations) of the intervention targets are most likely
to have a strong effect on the outcome of interest would be tremendously
useful for the design and prioritization of knockout experiments.

Observational data

In this thesis, we focus on the setting where experimental data from RCTs
is not available. That means, we have to rely on observational data to
answer causal questions. As the name implies, observational data is ob-
tained by pure observation of a system of interest without subjecting it
to any kind of external manipulations. The good news is that in most
applications, observational data is either readily available or quite cheap
to collect.

Inferring causal relations from observational data is one of the most tra-
ditional areas of causal inference and many different concepts and frame-
works were established over the last decades. Examples include structural
equation modeling (cf. Bollen, 1998), the theory of potential outcomes and
counterfactuals (cf. Dawid, 2000; Rubin, 2005) or the use of instrumental
variables (cf. Angrist et al., 1996; Didelez et al., 2010).

More recent approaches try to exploit heterogeneity in the data and to
account for all kinds of additional sources of data (e.g., interventional
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data) or background information (e.g., expert or prior knowledge). Exam-
ples are the greedy interventional equivalence search (GIES) (Hauser and
Bühlmann, 2012), the method of invariant prediction (Peters et al., 2015)
or constraint-based optimization techniques encoding causal constraints as
SAT instances (cf. Hyttinen et al., 2013, 2014; Triantafillou and Tsamardi-
nos, 2015; Triantafilou et al., 2010).

Causal sufficiency

Throughout the thesis, we make the assumption that our observed system
of variables satisfies causal sufficiency. This means that we do not allow
for any unknown (hidden) common causes of any of the observed variables.

Let us go back to the example where we want to assess whether obesity
causes heart disease. To establish a causal relation, we have to rule out
that the observed association between obesity and heart disease is spurious,
that is, only due to a common cause. The assumption of causal sufficiency
now requires that all possibly relevant common causes are measured. It is
highly questionable whether we can think of all potential common causes of
obesity and heart disease and measure all of them. Hence, the assumption
of causal sufficiency is highly unlikely to hold in this example. Remedial
action is taken by approaches that address causal inference in the presence
of hidden variables, see Colombo et al. (2012), Maathuis and Colombo
(2015), Perković et al. (2016), Richardson and Spirtes (2002), Shpitser et
al. (2011), Spirtes et al. (2000), and Zhang (2008) and references therein.

Realistically, the assumption of causal sufficiency is probably violated in
most practical scenarios. Still, there is a legitimate hope that in some
cases, the influence of unmeasured variables is relatively small.

1.2 Directed acyclic graph models

In the area of causal inference from observational data one commonly
assumes that the observed system of variables is driven by an underlying
causal mechanism and typically pursues the aim of either recovering (parts
of) that causal mechanism (structure learning) or predicting the response
to external manipulations of the system (estimation of causal effects under
interventions).
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Throughout the thesis, we assume that these underlying causal mecha-
nisms can be represented in terms of directed acyclic graphs (DAGs). We
give an illustrative example of a DAG in Figure 1.1, precise definitions can
be found in Section 3.1.1.

1

2

3

4 5

Figure 1.1: Example of a DAG. All edges are directed and there are no directed cycles.
The nodes 1, . . . , 5 correspond to the observed random variables X1, ..., X5.

The use of directed graphs over undirected graphs has the natural advan-
tage that edge orientations come along with an intuitive causal interpreta-
tion in the sense that an edge 2→ 4 in the DAG reflects a (direct) causal
influence of X2 (cause) on X4 (effect). This means that if we intervene on
the variable X2, the effect of this manipulation will be propagated accord-
ing to the direction of the edges and affect the variable X4 (and also X5,
but not X1 and X3). In case of an intervention on X4, the variable X2

remains unaffected. In Section 1.3, we introduce the concept of structural
equation models to formalize this notion.

The assumption of acyclicity of the causal structure is quite standard, but
comes with the limitation that our model doesn’t allow for the incorpora-
tion of any sort of feedback mechanisms, which are widespread, especially
in biological systems. In principle, the assumption can be justified by ar-
guing that the underlying driving mechanisms are indeed acyclic, when
the system of variables is observed in a sufficiently fine time interval.

Models that account for feedback mechanisms and address cyclic structures
are discussed in Lacerda et al. (2008), Mooij et al. (2011), Mooij and Heskes
(2013), Richardson (1996), Rothenhäusler et al. (2015), and Spirtes (1995)
and references therein.

Causal Markov condition

DAGs are most commonly used to represent conditional independences in
a given distribution. This can be done via the causal Markov condition,
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which requires that every variable is independent of its non-descendants
in the DAG (excluding the parents) given its parents in the DAG (cf.
Spirtes et al., 2000, Sections 3.4.1 and 3.5.1). As an example, the causal
Markov condition applied to the DAG in Figure 1.1 encodes the (non-
trivial) conditional independences X2 ⊥⊥ X3 | X1, X4 ⊥⊥ X1 | {X2, X3}
and X5 ⊥⊥ {X1, X2, X3} | X4.

The causal Markov condition allows us to relate distributional properties
of the variables to graphical properties of the DAG. For example, the joint
distribution factorizes according to the DAG structure (Lauritzen, 1996,
Theorem 3.27). Also, the DAG encodes conditional independences in the
distribution via the criterion of d-separation. In words, the d-separation
criterion characterizes how to “read off” conditional independences from
specific edge constellations in the DAG, see Section 1.2.3 in Pearl (2009)
for precise definitions.

Suppose that we have observational data and we want to address structure
learning for DAG models, or even simpler, find out whether two specific
variables in the system are causally related. In general, the causal Markov
condition alone is not enough to help us address that problem. By defi-
nition, many different graphs satisfy the causal Markov condition with
respect to the given distribution. In particular, all complete DAGs (DAGs
in which any pair of nodes is connected by an edge), as they do not en-
code any non-trivial conditional independences in the distribution via the
causal Markov condition. This implies that for any pair of variables X
and Y it is not possible to draw conclusions about their causal relation
only based on the causal Markov condition. There always exist two DAGs
that both satisfy the causal Markov condition with respect to the observed
distribution, such that X causes Y in one DAG and Y causes X in the
other DAG.

Faithfulness condition

One common approach to address causal structure learning from observa-
tional data is to assume the faithfulness condition in addition to the causal
Markov condition. It requires that every conditional independence that
holds in the distribution must be entailed by the causal Markov condition
applied to the DAG (cf. Spirtes et al., 2000, Sections 3.4.3 and 3.5.2). In
particular, the faithfulness condition enforces a one-to-one correspondence
between conditional independences in the distribution and d-separation
statements in the DAG.
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While the causal Markov condition is widely accepted, the (generally
untestable) faithfulness condition is more often criticized. For a detailed
discussion, see Zhang and Spirtes (2008) and references therein. Through-
out the thesis, we try not to assume the faithfulness condition whenever
possible. We only rely on it in Sections 3.2.1 and 3.3 to prove similarities
of our theoretical approach to earlier results in the field.

Markov equivalence classes

The space of DAGs clusters in Markov equivalence classes, which con-
sist of all DAGs that satisfy the same set of d-separation statements (and
hence entail the same conditional independence relations in the distribu-
tion via the causal Markov condition). Markov equivalence classes are
well-understood and various characterizations of them exist. For exam-
ple, all DAGs in a Markov equivalence class share the same skeleton and
v-structures (Verma and Pearl, 1990), can be compactly represented by a
single partially directed acyclic graph (cf. Andersson et al., 1997; Chicker-
ing, 2002; Meek, 1995), or can be transformed into each other via sequences
of covered edge reversals (Chickering, 1995). We discuss these results in
detail in Chapter 3.

Under the additional assumption of faithfulness, the conditional indepen-
dences in the distribution of the variables (due to the one-to-one correspon-
dence with d-separation statements in the graph) precisely characterize the
Markov equivalence class of the true underlying DAG (as all these DAGs
satisfy the same set of d-separation statements). In this case, we say that
the Markov equivalence class of the underlying DAG is identifiable from
the distribution. Many common structure learning methods rely on the
faithfulness condition. A well-known example is the PC-algorithm (Spirtes
and Glymour, 1991), which seeks to infer the Markov equivalence class of
the underlying DAG from conditional independences in the distribution.

Without making additional assumptions on the data-generating process,
the DAGs in a Markov equivalence class cannot be further distinguished
based on the properties of the distribution. This is where structural equa-
tion models play a crucial role, as they are a means of putting specific
restrictions on the (causal) data-generating process.
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1.3 Structural equation models

... Whether data can prove an employer guilty of hiring dis-
crimination? What fraction of past crimes could have been
avoided by a given policy? What was the cause of death of
a given individual, in a specific incident? These are causal
questions because they require some knowledge of the data-
generating process;

– Judea Pearl, The Science and Ethics of Causal Modeling, 2010

Throughout the thesis, we encode our “knowledge of the data-generating
process” via the assumption that the joint distribution of the variables has
been generated by a structural equation model (SEM) with an underlying
DAG structure (which we will also refer to as the associated or correspond-
ing DAG). A SEM functionally relates the marginal distribution of each
variable to the distribution of its direct effects (the parents in the associ-
ated DAG) and random noise. For a detailed description of the general
model and precise assumptions, we refer the reader to Section 3.1.1.

SEMs naturally relate to the previously discussed framework. In fact,
SEMs have the nice property that, by construction, the distribution gen-
erated by them satisfies the Markov factorization property and the causal
Markov condition with respect to the associated DAG, see Theorem 1.4.1
in Pearl (2009) and the related discussion.

The SEM corresponding to our model-DAG in Figure 1.1 is given as

X1 = f1(ε1)

X2 = f2(X1, ε2)

X3 = f3(X1, ε3)

X4 = f4(X2, X3, ε4)

X5 = f5(X4, ε5),

(1.1)

where ε1, . . . , ε5 are the noise variables, which in our context are always
mutually independent due to the assumption of causal sufficiency. The
functions f1, . . . , f5 represent the causal mechanisms underlying the sys-
tem, which makes SEMs inherently asymmetric and their interpretation
different from classical mathematical equations. Notably, the variables on
the right hand side of the equal sign are considered to be direct causes
of the variables on the left hand side. We sometimes write arrows (←)
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instead of equal signs to account for this interpretation. The associated
DAG can easily be recovered from the SEM by drawing directed edges
from the variables on the right hand side of the equation to the variables
on the left hand side.

The generality of SEMs

Regarding the task of causal structure learning, SEMs, in their most gen-
eral form, face the same limitation as the DAG models. Suppose we only
know the distribution generated by SEM (1.1) and want to draw con-
clusions about the underlying causal structure (the associated DAG in
Figure 1.1). Without additional restrictions or assumptions, SEMs are
simply too general to do that. Recall from Section 1.2 that every distri-
bution satisfies the causal Markov condition with respect to all complete
DAGs. In fact, one can easily construct corresponding SEMs that gener-
ate the given distribution for all these complete DAGs (Peters et al., 2014,
Proposition 9).

Restricted SEMs

A recent approach to achieve better identifiability and estimation prop-
erties is to consider specific classes of restricted SEMs, where one puts
restrictions on the functions (fj), the noise variables (εj), or both.

The main research problems that are addressed for restricted SEMs can
typically be categorized into the following three distinct (but closely re-
lated) tasks:

1. Identifiability of the restricted SEM and the associated DAG.
Given an infinite sample from a distribution generated by a spe-
cific class of restricted SEM: can we recover the true data-generating
SEM and its associated DAG from the distribution? If not, do all
the SEMs (and their associated DAGs) that generate the same dis-
tribution share certain structural properties? For example, given a
specific pair of variables, is there a causal relation between them and
is it the same in all the SEMs?

2. Structure learning of the associated DAG.
Given a finite sample from a distribution generated by a specific
class of restricted SEM: can we design an estimation methodology to
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learn the associated DAG (or the set of all possible DAGs) from the
distribution? What kind of properties does the methodology have?
For example, is it consistent in low- or high-dimensional settings?

3. Estimation of causal effects under interventions.
Given a finite or infinite sample from a distribution generated by
a specific type of restricted SEM and additionally assuming that
the underlying DAG (or the set of all possible underlying DAGs) is
known: how can we estimate the causal effect of an intervention on
one or several of the variables on a response variable of interest?

Until recently, these three problems were mainly studied for linear SEMs,
as the assumption of linearity of the functions entails good estimation prop-
erties. The identifiability and structure learning properties of linear SEMs
crucially depend on the assumption on the noise distributions: see Chick-
ering (2002), Kalisch and Bühlmann (2007), Nandy et al. (2016), Spirtes
et al. (2000), and Spirtes and Zhang (2016) for the (most common) case
of Gaussian noise; Shimizu et al. (2006) and Shimizu et al. (2011) for non-
Gaussian noise; and Hoyer et al. (2008) for arbitrary noise distributions.
An in-depth discussion of these references is given in Section 3.1.2. Pearl
(2009) gives a broad overview of the framework of do-calculus for the es-
timation of causal effects under interventions; see also Section 4.1.1 for a
brief introduction.

Unfortunately, the exclusive linearity assumption is restrictive and at best
approximately true in most practical situations. This brings up the ques-
tion of what can be done in more general classes of restricted SEMs.

1.4 Scope of this thesis

The central theme of this cumulative dissertation is the study of specific
classes of semiparametric and nonparametric extensions of linear SEMs.
More precisely, we examine combinations of the following types of restric-
tions:



1.4 Scope of this thesis 11

Additivity

Exclusivity

Gaussianity

The functions fj are additive in all arguments.

The functions fj are of exclusively nonlinear form.

Gaussianity of noise: εj ∼ N (0, σ2
j ) with σ2

j > 0.

On our way through the chapters, we relax more and more of the as-
sumptions involved and increase the generality of the considered classes of
restricted SEMs.

Chapter 2: Structure learning for causal additive models

Exclusivity Additivity Gaussianity

In Chapter 2, we consider structure learning for a recently proposed model
class that relies on all three restrictions, which we denote as causal additive
models (CAMs). For the DAG in Figure 1.1, the corresponding CAM is of
the form

X1 = ε1

X2 = f2,1(X1) + ε2

X3 = f3,1(X1) + ε3

X4 = f4,2(X2) + f4,3(X3) + ε4

X5 = f5,4(X4) + ε5,

(1.2)

where all fj,i(·) : R → R are assumed to be nonlinear and three times
differentiable functions and εj ∼ N (0, σ2

j ), σ
2
j > 0. With the additivity

of the functions and the Gaussianity of the noise variables, CAMs con-
stitute a natural structured semiparametric extension of linear Gaussian
SEMs. In terms of identifiability, however, they are crucially different:
while the associated DAG of a linear Gaussian SEM is only identifiable
up to a Markov equivalence class under the assumption of the faithfulness
condition (see, e.g., Spirtes and Zhang, 2016), it is fully identifiable in
CAMs even without assuming the faithfulness condition. This result was
first presented as a corollary of the general identifiability result of additive
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noise models in Peters et al. (2014) and is restated in Lemma 1 (due to its
importance).

In Chapter 2, we address structure learning of the (unique) associated
DAG for CAMs. We develop a score-based (restricted) maximum likeli-
hood methodology that is consistent in the low- and high-dimensional set-
tings (assuming sufficient sparsity). The treatment of the high-dimensional
scenario with a restricted maximum likelihood approach is novel.

We additionally propose an algorithm to efficiently estimate the associated
DAG based on a greedy search strategy. We evaluate its performance in
various experiments on simulated and real data. It is the first algorithm
that addresses structure learning for low- and high-dimensional CAMs.

Chapter 3: Identifiability & estimation of partially linear SEMs

Exclusivity Additivity Gaussianity

As a motivation for the search of generalizations of linear SEMs we ques-
tioned the validity of the linearity assumption in practical situations. Even
though CAMs are more general, the same criticism can be brought up for
them, as they rely on the assumption of exclusively nonlinear functions.

In Chapter 3, we relax the assumption of exclusivity of the functional
type and consider partially linear additive structural equation models with
Gaussian noise (PLSEMs). As an example, the PLSEM corresponding to
the DAG in Figure 1.1 is given by equation (1.2) except that we drop
the nonlinearity assumption on the functions, that is, we allow for general
fj,i ∈ C2(R).
First, we address the question of identifiability of the class of PLSEMs.
Intuitively, it is evident from the respective identifiability results for linear
Gaussian SEMs and CAMs that the presence of nonlinear functions in
the model improves the identifiability properties of the associated DAG.
We show, that this intuition is indeed correct. Our results in Chapter 3
precisely characterize how and to what extent single nonlinear additive
functions improve the identifiability of the associated DAG. From that,
we derive a systematic characterization of the identifiability of PLSEMs.
To our knowledge, these are the first results that address and completely
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characterize the identifiability of additive SEMs with Gaussian noise and
non-exclusive functional type.

Second, we present an efficient score-based methodology to estimate all
PLSEMs that are equivalent to a given PLSEM and derive its consis-
tency in low- and high-dimensional settings. The ability to characterize
and algorithmically learn distribution equivalence classes of PLSEMs is
an important first step towards the development of a structure learning
methodology for the class of PLSEMs.

Chapter 4: Estimation of causal effects in nonparametric SEMs

Exclusivity Additivity Gaussianity

As a last step, we additionally drop the additivity and Gaussianity restric-
tions, and go back to the general SEM that we introduced in equation (1.1).
As motivated in Section 1.3, the identifiability and structure learning of
the associated DAG suffer from the generality of the SEM.

In Chapter 4, we ask a different question: suppose we (approximately)
know the structure of the causal mechanisms (the associated DAG), is it
possible to estimate causal effects under interventions for this general class
of SEMs? Interestingly, this problem is much better posed than the ones of
identifiability and structure learning of the associated DAG. Intuitively, the
total causal effect of a single variable intervention on a response variable of
interest is a one-dimensional function of the intervention value. Therefore,
its estimation should not be exposed to the curse of dimensionality. We
show that this is indeed the case: under suitable smoothness conditions,
a specific marginal integration regression technique achieves the optimal
univariate convergence rate of nonparametric function estimation for the
estimation of single variable intervention effects. We propose a reasonably
robust way of implementing our methodology based on an additive ap-
proximation and subsequent L2-boosting and evaluate its performance in
extensive simulation studies.





Chapter 2

Structure learning for
causal additive models1

We develop estimation for potentially high-dimensional additive structural
equation models. A key component of our approach is to decouple order
search among the variables from feature or edge selection in a directed
acyclic graph encoding the causal structure. We show that the former can
be done with non-regularized (restricted) maximum likelihood estimation
while the latter can be efficiently addressed using sparse regression tech-
niques. Thus, we substantially simplify the problem of structure search
and estimation for an important class of causal models. We establish con-
sistency of the (restricted) maximum likelihood estimator for low- and high-
dimensional scenarios, and we also allow for misspecification of the error
distribution. Furthermore, we develop an efficient computational algorithm
which can deal with many variables, and the new method’s accuracy and

1This chapter is a slightly modified version of the published article Bühlmann, P.,
Peters, J., and Ernest, J. (2014).

”
CAM: Causal Additive Models, high-dimensional

order search and penalized regression“. Annals of Statistics 42 (6), pp. 2526–2556.
doi: 10.1214/14-AOS1260. Jan Ernest’s main contributions (in joint work with Jonas
Peters) are the conceptual development of the CAM algorithm, its implementation
in the corresponding R-package CAM and the realization of the numerical experiments.
The theoretical results in Section 2.4 have been derived and proved by Peter Bühlmann
and major parts of the paper were written by the two co-authors. To motivate the
algorithm, we include the theoretical results (as given in the main text of Bühlmann
et al. (2014)), but omit their proofs. All proofs can be found in the supplement to the
original article.

http://dx.doi.org/10.1214/14-AOS1260
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performance is illustrated on simulated and real data.

2.1 Introduction

Inferring causal relations and effects is an ambitious but important task
in virtually all areas of science. In absence of prior information about un-
derlying structure, the problem is plagued, among other things, by iden-
tifiability issues (cf. Pearl, 2000; Spirtes et al., 2000) and the sheer size of
the space of possible models, growing super-exponentially in the number of
variables, leading to major challenges with respect to computation and sta-
tistical accuracy. Our approach is generic, taking advantage of the tools in
sparse regression techniques (cf. Bühlmann and van de Geer, 2011; Hastie
et al., 2009) which have been successively established in recent years.

More precisely, we consider p random variables X1, . . . , Xp whose distribu-
tion is Markov with respect to an underlying causal directed acyclic graph
(causal DAG). We assume that all variables are observed, that is, there
are no hidden variables, and that the causal influence diagram doesn’t al-
low for directed cycles. Generalizations to include hidden variables, for
example, unobserved confounders, or directed cycles are briefly discussed
in Section 2.8.2. To formalize a model, one can use the concepts of graphi-
cal modeling (cf. Lauritzen, 1996) or structural equation models (cf. Pearl,
2000). The approaches are equivalent in the nonparametric or multivariate
Gaussian case, but this is not true anymore when placing additional re-
strictions which can be very useful (cf. Peters and Bühlmann, 2014; Peters
et al., 2014; Shimizu et al., 2006). We use here the framework of structural
equation models.

2.1.1 Problem and main idea

Our goal is estimation and structure learning for structural equation mod-
els, or of the corresponding Markov equivalence class of an underlying
DAG. In particular, we focus on causal additive models, that is, the struc-
tural equations are additive in the variables and error terms. The model
has the nice property that the underlying structure and the corresponding
parameters are identifiable from the observational distribution. Further-
more, we can view it as an extension of linear Gaussian structural equation
models by allowing for nonlinear additive functions.
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In general, the problem of structure learning (and estimation of corre-
sponding parameters) can be addressed by a variety of algorithms and
methods: in the frequentist setting, the most widely used procedures for
structure learning (and corresponding parameters) are greedy equivalence
search for computing the BIC-regularized maximum likelihood estimator
(Chickering, 2002) or the PC-algorithm using multiple conditional inde-
pendence testing (Spirtes et al., 2000). However, for the latter, the con-
straint of additive structural equations cannot be (easily) respected, and
regarding the former, maximum likelihood estimation among all (e.g., lin-
ear Gaussian) DAG models is computationally challenging and statistical
guarantees for high-dimensional cases (and for uniform convergence with
respect to a class of distributions) are only available under rather strong
assumptions (van de Geer and Bühlmann, 2013).

Our proposed approach for estimation and selection of additive structural
equation models is based on the following simple idea which is briefly
mentioned and discussed in Teyssier and Koller (2005) and Schmidt et al.
(2007). If the order among the variables would be known, the problem boils
down to variable selection in multivariate (potentially nonlinear) regres-
sion, see formula (2.5). The latter is very well understood: for example,
we can follow the route of hypothesis testing in additive models, or sparse
regression can be used for additive models (Meier et al., 2009; Ravikumar
et al., 2009; Yuan and Lin, 2006). Thus, the only remaining task is to es-
timate the order among the variables. We show here that this can be done
via the maximum likelihood principle, and we establish its consistency.
In particular, for low or “mid”-dimensional problems, there is no need to
consider a penalized likelihood approach. The same holds true for high-
dimensional settings when using a preliminary neighborhood selection and
then employing a corresponding restricted maximum likelihood estimator.
Therefore, we can entirely decouple the issue of order estimation without
regularization and variable selection in sparse regression with appropriate
regularization. This makes our approach very generic, at least within the
framework where the underlying DAG and a corresponding order of the
variables are identifiable from the joint distribution. Empirical results in
Section 2.6 support that we can do much more accurate estimation than
for non-identifiable models such as the popular linear Gaussian structural
equation model. On the superficial level, our approach can be summarized
as follows:

1. Mainly for high-dimensional settings: preliminary neighborhood se-
lection for estimating a superset of the skeleton of the underlying
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DAG. This is done by additive regression of one variable against all
others. See Section 2.3.1.

2. Order search for the variables (or best permutation for the indices
of the variables) using (restricted) maximum likelihood estimation
based on an additive structural equation model with Gaussian errors:
the restricted version is employed if the preliminary neighborhood
selection in Step 1 is used, and the order search is then restricted
to the structure of the superset of the skeleton. See Sections 2.2.4
and 2.3.2.

3. Based on the estimated order of the variables in Step 2, sparse ad-
ditive regression is used for estimating the functions in an additive
structural equation model. See Section 2.2.5.

2.1.2 Related work

We consider (nonlinear) additive structural equation models. As natu-
ral extensions of linear structural equation models, they are attractive for
many applications, see Imoto et al. (2002). Identifiability results for this
model class have been recently derived (Mooij et al., 2009; Peters et al.,
2014). The approach in Mooij et al. (2009) is based on conditional inde-
pendence testing and is limited to small dimensions with a few variables
only. Instead of multiple testing of conditional independences, we propose
and develop maximum likelihood estimation in a semiparametric additive
structural equation model with Gaussian noise variables: fitting such a
model is often appropriate in situations where the sample size is not too
large, and we present here for the first time the practical feasibility of fit-
ting additive models in the presence of many variables. An extension of our
additive structural equation model with Gaussian errors to the case with a
nonparametric specification of the error distribution is presented in Now-
zohour and Bühlmann (2016), but the corresponding maximum likelihood
estimator is analyzed (and feasible) for problems with a small number of
variables only. When the order of the variables is known, which is a much
simpler and different problem than what we consider here, Voorman et al.
(2014) provide consistency results for additive structural equation models.

A key aspect of our method is that we decouple regularization for feature
selection and order estimation with non-regularized (restricted) maximum
likelihood. The former is a well-understood subject thanks to the broad
literature in sparse regression and related techniques (cf. Meinshausen and
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Bühlmann, 2006; Tibshirani, 1996; Wainwright, 2009; Yuan and Lin, 2006;
Zhao and Yu, 2006; Zou, 2006). Regarding the latter issue about order se-
lection, a recent analysis in van de Geer (2014) extends our low-dimensional
consistency result for the (non-restricted) maximum likelihood estimator
to the scenario where the number of variables can grow with sample size,
in the best case essentially as fast as p = p(n) = o(n). The treatment of
the high-dimensional case with a restricted maximum likelihood approach
is new here, and we also present the first algorithm and empirical results
for fitting low- and high-dimensional causal additive models (CAMs).

2.2 Additive structural equation models

Consider the general structural equation model (SEM):

Xj = fj(XpaD(j), εj),

where paD(j) denotes the set of parents of node j in DAG D, fj is a
function from R

|paD(j)|+1 → R and ε1, . . . , εp are (random) noise variables
which are assumed to be (mutually) independent. Thus, a SEM is specified
by an underlying (causal) structure in terms of a DAG D, the functions
fj(·) (j = 1, . . . , p) and the distributions of εj (j = 1, . . . , p). Most parts
of this chapter can be interpreted in absence of causal inference issues:
clearly though, the main motivations are understanding models and de-
veloping novel procedures allowing for causal or interventional statements,
and if we do so, we always assume that the structural equations remain
unchanged under interventions at one or several variables (cf. Pearl, 2000).
The model above is often too general, due to problems of identifiability
and the difficulty of estimation (curse of dimensionality) of functions in
several variables.

Our main focus is on a special (and more practical) case of the model
above, namely the additive SEM with potentially misspecified Gaussian
errors:

Xj =
∑

k∈paD(j)

fj,k(Xk) + εj , (2.1)

where ε1, . . . , εp are independent with εj ∼ N (0, σ2
j ), σ

2
j > 0, (j = 1, ..., p),

and fj,k(·) are smooth functions from R → R with E[fj,k(Xk)] = 0 for
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all j, k. A special case thereof is the linear Gaussian SEM

Xj =
∑

k∈paD(j)

βj,kXk + εj , (2.2)

with ε1, . . . , εp independent with εj ∼ N (0, σ2
j ), σ2

j > 0, (j = 1, . . . , p).
Although model (2.2) is a special case of (2.1), there are interesting differ-
ences with respect to identifiability. If all functions fj,k(·) are nonlinear,
the DAG is identifiable from the distribution P of X1, . . . , Xp (Peters et
al., 2014, Corollary 31). We explicitly state this result as a lemma since
we will make use of it later on.

Lemma 1 (Corollary 31 in Peters et al. (2014)2). Consider a distribu-
tion P that is generated by model (2.1) with DAG D and nonlinear, three
times differentiable functions fj,k. Then, any distribution Q that is gener-
ated by (2.1) with a different DAG D′ 6= D and non-constant, three times
differentiable functions f ′j,k is different from P : we have Q 6= P .

This result does not hold, however, for a general SEM or for a linear Gaus-
sian SEM as in (2.2); one can then only identify the Markov equivalence
class of the DAG D0, assuming faithfulness. An exception arises when as-
suming same error variances σ2

j ≡ σ2 for all j in (2.2) which again implies

identifiability of the DAG D0 from P (Peters and Bühlmann, 2014). In
the sequel, we consider the fully identifiable case of model (2.1).

2.2.1 The likelihood

We slightly re-write model (2.1) as

Xj =
∑

k∈paD(j)

fj,k(Xk) + εj =
∑

k 6=j

fj,k(Xk) + εj (j = 1, . . . , p),

fj,k(·) 6≡ 0 if and only if there is a directed edge k → j in D,

E[fj,k(Xk)] = 0 for all j, k,

ε1, . . . , εp independent and εj ∼ N (0, σ2
j ), σ2

j > 0.

(2.3)

The structure of the model, or the so-called active set, {(j, k); fj,k 6≡ 0}
is identifiable from the distribution P (Peters et al., 2014, Corollary 31).

2Corollary 31 in Peters et al. (2014) contains a slightly different statement using “non-
linear” instead of “non-constant”. The proof, however, stays exactly the same.
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Denote by θ the infinite-dimensional parameter with additive functions
and error variances, that is:

θ = (f1,2, . . . , f1,p, f2,1, . . . , fp,p−1, σ1, . . . , σp).

Moreover, we denote by D0 the true DAG and by θ0 (and {f0
j,k}, {σ0

j }) the
true infinite-dimensional parameter corresponding to the data-generating
true distribution. We use this notation whenever it is appropriate to make
statements about the true underlying DAG or parameter.

The density pθ(·) for the model (2.3) is of the form:

log(pθ(x)) =

p∑

j=1

log

(
1

σj
ϕ

(
xj −

∑
k 6=j fj,k(xk)

σj

))
,

where ϕ(·) is the density of a standard Normal distribution. Furthermore,

σ2
j = E[(Xj −

∑

k 6=j

fj,k(Xk))
2],

and the expected negative log-likelihood is:

Eθ[− log pθ(X)] =

p∑

j=1

log(σj) + C, C =
p

2
log(2π) +

p

2
.

2.2.2 The function class

We assume that the functions in model (2.1) or (2.3) are from a class
of smooth functions: F is a subset of L2(Pj), where Pj is the marginal
distribution for any j = 1, . . . , p; assume that it is closed with respect to
the L2(Pj) norm. Furthermore,

F ⊆ {f : R→ R, f ∈ Cα, E[f(X)] = 0},

where Cα denotes the space of α-times differentiable functions and the
random variable X is a placeholder for the variables Xj , j = 1, . . . , p.
Note that this is a slight abuse of notation since F does not specify the
variable X; it becomes clear from the context.

Consider also basis functions {br(·); r = 1, . . . , an} with an → ∞ suffi-
ciently slowly, for example, B-splines or regression splines. Consider fur-
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ther the space

Fn =

{
f ∈ F , f = c+

an∑

r=1

αrbr(·) with c, αr ∈ R (r = 1, . . . , an)

}
.

(2.4)
We allow for constants c to enforce mean zero for the whole function.
Furthermore, the basis functions can be the same for all variables Xj ,
j = 1, . . . , p. For theoretical analysis, we assume that Fn is deterministic
and does not depend on the data. Then, Fn is closed. Furthermore, the
space of additive functions is denoted by

F⊕ℓ =
{
f : Rℓ → R; f(x) =

ℓ∑

k=1

fk(xk), fk ∈ F
}
,

F⊕ℓn =

{
f : Rℓ → R; f(x) =

ℓ∑

k=1

fk(xk), fk ∈ Fn

}
,

where ℓ = 2, . . . , p. Clearly F⊕ℓn ⊆ F⊕ℓ. In our definitions, we assume that
the functions in F and Fn have expectation zero. Of course, this depends
on the variables in the arguments of the functions. For example, when
requiring E[f(Xj)] = 0 for f ∈ F , the function class F = Fj depends on
the index j due to the mean zero requirement; and likewise F⊕ℓ depends on
the indices of the variables occurring in the corresponding additive function
terms. We drop this additional dependence on the index of variables as it
does not cause any problems in methodology or theory.

Later, we consider projections of distributions onto the spaces F⊕ℓ and
F⊕ℓn , see (2.6). We assume throughout the chapter that these spaces are
closed with respect to the L2 norm. Lemma 2 guarantees this condition
by requiring an analogue of a minimal eigenvalue assumption.

Lemma 2. Let the distribution P be generated according to (2.1) and
assume that there is a φ2 > 0 such that for all γ ∈ R

p

∥∥
p∑

j=1

γjfj(Xj)
∥∥2
L2
≥ φ2 ‖γ‖2 for all fj ∈ F with ‖fj(Xj)‖L2

= 1 .

For any subset I ⊆ {1, . . . , p} of ℓ variables the spaces F⊕ℓ and F⊕ℓn are
then closed with respect to the L2(PI) norm. Here, PI denotes the marginal
distribution over all variables in I.

The question of closedness of additive models has also been studied in
Breiman and Friedman (1985), for example; see also Rényi (1959).
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2.2.3 Order of variables and the likelihood

We can permute the variables, inducing a different ordering; in the sequel,
we use both terminologies, permutations and order search, which mean
the same thing. For a permutation π on {1, . . . , p}, define:

Xπ, Xπ
j = Xπ(j).

There is a canonical correspondence between permutations and fully con-
nected DAGs: For any permutation π we can construct a DAG Dπ, in
which each variable π(k) has a directed arrow to all π(j) with j > k.
The node π(1) has no parents and is called the source node. For a given
DAG D0 we define the set of true permutations as

Π0 = {π0; the fully connected DAG Dπ0

is a super-DAG of D0},

where a super-DAG of D0 is a DAG whose set of directed edges is a
superset of the one corresponding to D0. If the true DAG D0 is not fully
connected, there is typically more than one true order or permutation,
that is the true order is typically not unique. It is apparent that any true
ordering or permutation π0 allows for a lower-triangular (or autoregressive)
representation of the model in (2.3):

Xπ0

j =

j−1∑

k=1

fπ0

j,k(X
π0

k ) + επ
0

j (j = 1, . . . , p), (2.5)

where fπ0

j,k(·) = f0
π0(j),π0(k)(·) and επ

0

j = ε0π0(j), that is, with permuted in-

dices in terms of the original quantities in (2.3). If all functions fj,k(·) are
nonlinear, the set of true permutations is identifiable from the distribution
(Peters et al., 2014, Corollary 33), and Π0 consists of all orderings of the
variables which allow for a lower-triangular representation (2.5). We will
exploit this fact in order to provide a consistent estimator π̂n of the order-
ing: under suitable assumptions the probability that π̂n ∈ Π0 converges
to one.

Remark 1. For the linear Gaussian SEM (2.2), all orderings allow for a
lower-triangular representation (2.5), even those that are not in Π0. Thus,
we cannot construct a consistent estimator in the above sense. However,
assuming faithfulness of the true distribution, the orderings of variables
which are consistent with the arrow directions in a DAG of the Markov
equivalence class of the true DAG D0 lead to sparsest representations with
fewest number of non-zero coefficients.
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In principle, one can check whether the data come from a linear Gaus-
sian SEM. Lemma 1 guarantees that if this is case, there is no CAM with
nonlinear functions yielding the same distribution. Thus, if the structural
equations of the estimated DAG look linear with Gaussian noise, one could
decide to output the Markov equivalence class instead of the DAG. One
would need to quantify closeness to linearity and Gaussianity with, for ex-
ample, a test: this would be important for practical applications, but its
precise implementation lies beyond the scope of this work.

In the sequel, it is helpful to consider the true underlying parameter θ0

with corresponding nonlinear function f0
j,k and error variances (σ0

j )
2. For

any permutation π /∈ Π0, we consider the projected parameters, defined as

θπ,0 = argmin
θπ

Eθ0 [− log(pπθπ (X))],

where the density pπθπ is of the form:

log(pπθπ (x)) = log(pθπ (xπ)) =

p∑

j=1

log

(
1

σπ
j

ϕ

(
xπ
j −

∑j−1
k=1 f

π
j,k(x

π
k )

σπ
j

))
.

(Note that if π ∈ Π0, then θπ,0 = θ0.) For such a misspecified model with
wrong order π 6∈ Π0, we have

{fπ,0
j,k }k=1,...,j−1 = argmin

gj,k∈F, k=1,...,j−1
Eθ0



(
Xπ

j −
j−1∑

k=1

gj,k(X
π
k )

)2

 (2.6)

= argmin
gj∈F⊕j−1

Eθ0 [(Xπ
j − gj(X

π
1 , . . . , X

π
j−1))

2].

It holds that:

(σπ,0
j )2 = argmin

σ2


log(σ) +

1

2σ2
Eθ0



(
Xπ

j −
j−1∑

k=1

fπ,0
j,k (Xπ

k )

)2





= Eθ0



(
Xπ

j −
j−1∑

k=1

fπ,0
j,k (Xπ

k )

)2

 . (2.7)

The two displayed formulae above show that autoregression with the wrong
order π leads to the projected parameters {fπ,0

j,k } and {(σ
π,0
j )2}. Finally,
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we obtain:

Eθ0 [− log(pπθπ,0(X))] =

p∑

j=1

log(σπ,0
j ) + C, C =

p

2
log(2π) +

p

2
.

All true permutations π ∈ Π0 correspond to super-DAGs of the true DAG
and therefore, all of them lead to the minimal expected log-likelihood
Eθ0 [− log(pπθπ,0(X))] = Eθ0 [− log(pθ0(X))]. The permutations π /∈ Π0,
however, cannot lead to a smaller expected negative log-likelihood (since
it would lead to a negative KL-divergence between the true and best pro-
jected distribution). Let us therefore define

ξp := min
π/∈Π0

p−1(Eθ0 [− log(pπθπ,0(X))]− Eθ0 [− log(pθ0(X))]) ≥ 0. (2.8)

If all true functions f0
j,k are nonlinear, we obtain ξp > 0 as follows.

Lemma 3. Consider a distribution P that allows for a density p with re-
spect to the Lebesgue measure and is generated by model (2.1) with DAG D0

and nonlinear, three times differentiable functions f0
j,k. Assume further the

condition from Lemma 2. Then ξp > 0.

Proof. Because of the closedness of F⊕j (Lemma 2), the minimum in (2.6)
is obtained for some functions fj,k. Without loss of generality, we can
assume that all constant additive components are zero. But then ξp = 0
would contradict Lemma 1.

The number ξp describes the degree of separation between the true model
and misspecification when using a wrong permutation. As discussed in
Remark 1, ξp = 0 for the case of linear Gaussian SEMs. Formula (2.8) can
be expressed as

ξp = min
π/∈Π0

p−1
p∑

j=1

(log(σπ,0
j )− log(σ0

j )) ≥ 0. (2.9)

Remark 2. Especially for situations where p is very large so that the
factor p−1 is small, requiring a lower bound ξp > 0 can be overly restrictive.
Instead of requiring a gap with the factor p−1 between the likelihood scores
of the true distribution and all distributions corresponding to permutations,
one can weaken this as follows. Let H(D,D0) = {j; paD0(j) 6⊆ paD(j)}.
We require that

ξ′p := min
D 6=D0

|H(D,D0)|−1
∑

j∈H(D,D0)

(log(σD,0
j )− log(σ0

j )) ≥ 0, (2.10)
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where (σD,0
j )2 is the error variance in the best additive approximation of Xj

based on {Xk; k ∈ paD(j)}. Such a weaker gap condition is proposed in
Loh and Bühlmann (2014, Section 5.2). All our theoretical results still
hold when replacing statements involving ξp in (2.9) by the corresponding
statements with ξ′p in (2.10).

2.2.4 Maximum likelihood estimation for order:
Low-dimensional setting

We assume having n i.i.d. realizationsX(1), . . . , X(n) from model (2.3). For
a n×1 vector x = (x(1), . . . , x(n))T , we denote by ‖x‖2(n)= n−1

∑n
i=1(x

(i))2.

Depending on the context, we sometimes denote by f̂ a function and some-
times an n × 1 vector evaluated at (the components of) the data points
X(1), . . . , X(n); and similarly for Xπ

j . We consider the unpenalized maxi-
mum likelihood estimator:

f̂π
j = argmin

gj∈F
⊕j−1
n

∥∥∥∥∥X
π
j −

j−1∑

k=1

gj,k(X
π
k )

∥∥∥∥∥

2

(n)

,

(σ̂π
j )

2 =

∥∥∥∥∥X
π
j −

j−1∑

k=1

f̂π
j,k(X

π
k )

∥∥∥∥∥

2

(n)

.

Denote by π̂ a permutation which minimizes the unpenalized negative log-
likelihood:

π̂ ∈ argmin
π

p∑

j=1

log(σ̂π
j ). (2.11)

The estimation of f̂π
j is based on Fn with pre-specified basis functions br(·)

with r = 1, . . . , an. In practice, the basis functions could depend on the
predictor variable or on the order of variables, for example, when choosing
the knots in regression splines. The classical choice for the number of
basis functions is an ≍ n1/5 for twice differentiable functions: here, and
as explained in Section 2.4, however, a smaller number such as an = O(1)
to detect some nonlinearity might be sufficient for estimation of the true
underlying order.
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2.2.5 Sparse regression for feature selection

Section 2.4 presents assumptions and results ensuring that with high prob-
ability π̂ = π0 for some π0 ∈ Π0. With such an estimated order π̂, we ob-
tain a complete super-DAG Dπ̂ of the underlying DAG D0 in (2.3), where
the parents of a node π̂(j) are defined as paDπ̂ (π̂(j)) = {π̂(k); k < j}
for all j. We can pursue consistent estimation of intervention distribu-
tions based on Dπ̂ without any additional need to find the true underlying
DAG D0; see Section 2.2.6.

However, we can improve statistical efficiency for estimating the interven-
tion distribution when it is ideally based on the true DAG D0 or realisti-
cally a not too large super-DAG D̂π̂ ⊇ D0. The task of estimating such
a super-DAG D̂π̂ ⊇ D0 is conceptually straightforward: starting from the
complete super-DAG Dπ̂ of D0 as discussed above, we can use model selec-
tion or a penalized multivariate (auto-) regression technique in the model
representation (2.5). For additive model fitting, we can either use hypoth-
esis testing for additive models (Marra and Wood, 2011) or the Group
Lasso (Ravikumar et al., 2009), or its improved version with a sparsity-
smoothness penalty proposed in Meier et al. (2009). All the techniques
mentioned above perform variable selection, where we denote by

D̂π̂ = {(π̂(k), π̂(j)); f̂ π̂
j,k 6≡ c},

(the constant c = 0 when assuming that f̂ π̂
j,k have mean zero when eval-

uated over all data-points) the selected variables indexed in the original

order (we obtain estimates f̂ π̂
j,k in the representation (2.5) with correspon-

dence to the indices π̂(k), π̂(j) in the original order); we identify these
selected variables in D̂π̂ as the edge set of a DAG. For example with the
Group Lasso, assuming some condition avoiding near collinearity of func-
tions, that is, a compatibility condition for the Group Lasso (Bühlmann
and van de Geer, 2011, Chapter 5.6, Theorem 8.2), and that the ℓ2-norms
of the non-zero functions are sufficiently large, we obtain the screening
property (since we implicitly assume that π̂ ∈ Π0 with high probability):
with high probability and asymptotically tending to one,

D̂π̂ ⊇ D0 = {(k, j); f0
j,k 6≡ 0} (2.12)

saying that all relevant variables (i.e., edges) are selected. Similarly with
hypotheses testing, assuming that the non-zero f0

j,k have sufficiently large
ℓ2-norms, we also obtain that (2.12) holds with high probability.
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The same argumentation applies if we use Dπ̂
restr from Section 2.3.2 instead

of Dπ̂ as an initial estimate. This then results in D̂π̂
restr, replacing D̂π̂

above.

2.2.6 Consistent estimation of causal effects

The property in (2.12) has an important implication for causal inference3:
all estimated causal effects and estimated intervention distributions based
on the estimated DAG D̂π̂ are consistent. In fact, using the do-calculus (cf.
Pearl, 2000, (3.10)), we have for the single intervention (at variable Xk)
distribution for Xj , for all j 6= k:

pD0(xj |do(Xk = x)) = pD̂π̂ (xj |do(Xk = x)), for all x,

where pD(·|do(·)) denotes the intervention density based on a DAG D.

We note that the screening property (2.12) also holds when replacing D̂π̂

with the full DAG induced by π̂, denoted by Dπ̂. Thus, the feature se-
lection step in Section 2.2.5 is not needed to achieve consistent estimation
of causal effects. However, a smaller DAG D0 ⊆ D̂π̂ ⊆ Dπ̂ typically
leads to better (more statistically efficient) estimates of the interventional
distributions than the full DAG Dπ̂.

2.3 Restricted maximum likelihood estima-
tion: computational and statistical bene-
fits

We present here maximum likelihood estimation where we restrict the per-
mutations, instead of searching over all permutations in (2.11). Such a re-
striction makes the computation more tractable, and it is also statistically
crucial when dealing with high-dimensional settings where p > n.

2.3.1 Preliminary neighborhood selection

We first perform neighborhood selection with additive models, following
the general idea in Meinshausen and Bühlmann (2006) for the linear Gaus-

3We assume that interventions at variables do not change the other structural equations,
and that there are no unobserved hidden (e.g., confounder) variables.
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sian case. We pursue variable selection in an additive model of Xj versus
all other variables X{−j} = {Xk; k 6= j}: a natural method for such a fea-
ture selection is the Group Lasso for additive models (Ravikumar et al.,
2009), ideally with a sparsity-smoothness penalty (Meier et al., 2009); see
also Voorman et al. (2014). This provides us with a set of variables

Âj ⊆ {1, . . . , p} \ j,
which denotes the selected variables in the estimated conditional expecta-
tion

Êadd[Xj |X{−j}] =
∑

k∈Âj

ĥjk(Xk)

with functions ĥjk satisfying n−1
∑n

i=1 ĥjk(X
(i)
k ) = 0 (i.e., a possible in-

tercept is subtracted already): that is,

Âj = {k; k 6= j, ĥj,k 6≡ 0}.

We emphasize that the functions ĥj,k(·) are different from f̂π
j,k(·) in Sec-

tion 2.2.4 because for the former, the additive regression is against all other
variables.

We give conditions in Section 2.4.2, see Lemma 4, ensuring that the neigh-
borhood selection set contains the parental variables from the structural
equation model in (2.1) or (2.3), that is, Âj ⊇ pa(j).

2.3.2 Restricted maximum likelihood estimator

We restrict the space of permutations in the definition of (2.11) such
that the permutations are “compatible” with the neighborhood selection
sets Âj . Note that for the estimator σ̂π

j in (2.11), we regress Xπ(j) against
{Xk; k ∈ {π(j−1), . . . , π(1)}}. We restrict here the set of regressors to the
indices Rπ,j = {π(j − 1), . . . , π(1)} ∩ Âπ(j) and calculate the π(j)-th term
of the log-likelihood using this set of regressors XRπ,j

= {Xk; k ∈ Rπ,j}.
More precisely, we estimate

f̂π,R
j = argmin

gj,k∈Fn

∥∥∥∥∥∥
Xπ

j −
∑

k;π(k)∈Rπ,j

gj,k(X
π
k )

∥∥∥∥∥∥

2

(n)

,

(σ̂π,R
j )2 =

∥∥∥∥∥∥
Xπ

j −
∑

k;π(k)∈Rπ,j

f̂π,R
j,k (Xπ

k )

∥∥∥∥∥∥

2

(n)

,
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and the restricted maximum likelihood estimator is

π̂ ∈ argmin
π

p∑

j=1

log(σ̂π,R
j ). (2.13)

If maxj |Âj | < n, the estimators σ̂π,R
j are well-defined.

The computation of the restricted maximum likelihood estimator in (2.13)
is substantially easier than for the unrestricted MLE (2.11) if maxj |Âj |
is small (which is ensured if the true neighborhoods are sparse). The set
of all permutations can be partitioned in equivalence classes ∪rRr and
the minimization in (2.13) can be restricted to single representatives of
each equivalence class Rr. The equivalence relation can be formulated
with a restricted DAG Dπ

restr whose parental set for node π(j) equals
paDπ

restr
(π(j)) = Rπ,j . We then have that

π ∼ π′ if and only if Dπ
restr = Dπ′

restr.

Computational details are described in Section 2.5.

2.4 Consistency in correct and misspecified
models

We prove consistency for the ordering among variables in additive struc-
tural equation models, and under an additional identifiability assumption
even for the case where the model is misspecified with respect to the error
distribution or when using highly biased function estimation.

2.4.1 Unrestricted MLE for low-dimensional settings

We first consider the low-dimensional setting where p < ∞ is fixed and
n → ∞, and we establish consistency of the unrestricted MLE in (2.11).
We assume the following:

(A1) Consider a partition of the real line

R = ∪∞m=1Im

in disjoint intervals Im. The individual functions in F are α-times
differentiable, with α ≥ 1, whose derivatives up to order α are
bounded in absolute value by Mm in Im.
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(A2) Tail and moment conditions:

(i) For V = 1/α and Mm as in (A1):

∞∑

m=1

(
M2

mP[Xj ∈ Im]
)V/(V+2)

<∞, j = 1, . . . , p.

(ii)

E|Xj |4 <∞, j = 1, . . . , p

sup
f∈F

E|f(Xj)|4 <∞, j = 1, . . . , p.

(A3) The error variances satisfy (σπ,0
j )2 > 0 for all j = 1, . . . , p and all π.

(A4) The true functions f0
j,k can be approximated on any compact set

C ⊂ R: for all k ∈ paD0(j), j = 1, . . . , p,

E[(f0
j,k(Xk)− f0

n;j,k(Xk))
2I(Xk ∈ C)] = o(1),

where

f0
n;j = argmin

gj∈F
⊕j−1
n

E





Xj −

∑

k∈paD0 (j)

gj,k(Xk)




2

 .

All assumptions are not very restrictive. The second part of assump-
tion (A2)(ii) holds if we assume, for example, a bounded function class F ,
or if |f(x)| ≍ |x| as |x| → ∞ for all f ∈ F .

Theorem 1. Consider an additive structural equation model as in (2.3).
Assume (A1)-(A4) and ξp > 0 in (2.8) (see also Lemma 3 and Remark 2).
Then we have

P[π̂ ∈ Π0]→ 1 (n→∞).

A proof is given in the supplement to Bühlmann et al. (2014). Theorem 1
says that one can find a correct order among the variables without pursuing
feature or edge selection for the structure in the SEM.

Remark 3. Studying near non-identifiable models, for example, near lin-
earity in a Gaussian structural equation model, can be modeled by allowing
ξp = ξn,p to converge to zero as n→∞. If one requires ξn,p ≫ n−1/2, the
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statement of Theorem 1 still holds. We note that Theorem 3 for the high-
dimensional case implicitly allows ξp = ξpn

to change with sample size n.
However, it is a non-trivial issue to translate such a condition in terms of
closeness of one or several nonlinear functions f0

j,k to their closest linear

approximations. Similarly, if some error variances σπ,0
j would be close to

zero (e.g., converge to zero as n → ∞ asymptotically), this could cause
identifiability problems such that ξp might be close to (e.g., converge fast
to) zero.

Related to Remark 3 is the question about uniform convergence in the
statement of Theorem 1, over a whole class of structural equation models.
This can be ensured by strengthening the assumptions to hold uniformly:

(U1) The quantities in (A2)(i) and (ii) are upper-bounded by positive
constants C1 <∞, C2 <∞ and C3 <∞.

(U2) The error variances in (A3) are lower bounded by a finite constant
L > 0.

(U3) The approximation in (A4) holds uniformly over a class of func-
tions F : for any compact set C and any j, k:

sup
f0∈F

E[(f0
j,k(Xk)− f0

n;j,k(Xk))
2I(Xk ∈ C)] = o(1)

(U4) The constant ξp ≥ B > 0 for some finite constant B > 0.

Denote the class of distributions in an additive SEM which satisfy (U1)-
(U4) by P(C1, C2, C3, L,F , B). We then obtain a uniform convergence
result

inf
P∈P(C1,C2,C3,L,F,B)

PP [π̂ ∈ Π0]→ 1 (n→∞). (2.14)

This can be shown exactly along the lines of the proof of Theorem 1 in the
supplement to Bühlmann et al. (2014).

Misspecified error distribution and biased function estimation

Theorem 1 generalizes to the situation where the model in (2.3) is misspeci-
fied and the truth has independent, non-Gaussian errors ε1, . . . , εp with
E[εj ] = 0. As in Theorem 1, we make the assumption ξp > 0 in (2.9):
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its justification, however, is somewhat less backed up because the identi-
fiability results from Peters et al. (2014) and Lemma 3 do not carry over
immediately. The latter results say that the set of correct orderings Π0 can
be identified from the distribution of X1, . . . , Xp, but we require in (2.9)
that identifiability is given in terms of all the error variances, that is,
involving only second moments. It is an open problem whether (or for
which subclass of models) identifiability from the distribution carries over
to automatically ensure that ξp > 0 in (2.9).

Furthermore, assume that the number of basis functions an for functions
in Fn is small such that assumption (A4) does not hold, for example,
an = O(1). We denote by

(σπ,0,an

j )2 = min
gj∈F

⊕j−1
n

Eθ0



(
Xπ

j −
j−1∑

k=1

gj,k(X
π
k )

)2

 ,

which is larger than (σπ,0
j )2 in (2.7). Instead of (2.9), we then consider

ξan
p := min

π/∈Π0, π0∈Π0
p−1

p∑

j=1

(log(σπ,0,an

j )− log(σπ0,0,an

j )). (2.15)

Requiring
lim inf
n→∞

ξan
p > 0

is still reasonable: if (2.9) with ξp > 0 holds because of nonlinearity of
the additive functions (Peters et al., 2014), and see the interpretation
above for non-Gaussian errors, we believe that it typically also holds
for the best projected additive functions in F⊕n as long as some non-
linearity is present when using an basis functions; here, the best pro-
jected additive function for the j-th variable Xπ

j is defined as fπ
n;j =

argmingj∈F⊕j−1
n

E[(Xπ
j −
∑j−1

k=1 gj,k(X
π
k ))

2]. We also note that for an →∞,

even when diverging very slowly, and assuming (A4) we have that ξan
p → ξp

and thus lim infn→∞ ξan
p > 0. In general, the choice of the number of basis

functions an is a trade-off between identifiability (due to nonlinearity) and
estimation accuracy: for an small we might have a smaller value in (2.15),

that is, it might be that ξan
p ≤ ξ

a′
n

p for an ≤ a′n, which makes identifiability
harder but exhibits less variability in estimation; and vice versa. In par-
ticular, the trade-off between identifiability and variance might be rather
different than the classical bias-variance trade-off with respect to predic-
tion in classical function estimation. A low complexity (with an small)
might be better than a prediction optimal number of basis functions.
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Theorem 2 below establishes the consistency for order estimation in an
additive structural equation model with potentially non-Gaussian errors,
even when the expansion for function estimation is truncated at few basis
functions.

Theorem 2. Consider an additive structural equation model as in (2.3)
but with independent potentially non-Gaussian errors ε1, . . . , εp having
E[εj ] = 0 (j = 1, . . . , p). Assume either of the following:

1. (A1)-(A4) hold, and ξp > 0 in formula (2.9) (see also Remark 2).

2. (A1)-(A3) hold, and lim infn→∞ ξan
p > 0 in formula (2.15).

Then,
P[π̂ ∈ Π0]→ 1 (n→∞).

A proof is given in the supplement to Bühlmann et al. (2014). Again, as
appearing in the discussion of Theorem 1, one can obtain uniform conver-
gence by strengthening the assumptions to hold uniformly over a class of
distributions.

2.4.2 Restricted MLE for sparse high-dimensional set-
tings

We consider here the restricted MLE in (2.13) and show that it can cope
with high-dimensional settings where p≫ n.

The model in (2.1) is now assumed to change with sample size n: the
dimension is p = pn and the parameter θ = θn depends on n. We consider
the limit as n→∞ allowing diverging dimension pn →∞ where pn ≫ n.
For notational simplicity, we often drop the sub-index n.

We make a few additional assumptions. When fitting an additive model
of Xj versus all other variables X{−j}, the target of such an estimation is
the best approximating additive function:

Eadd[Xj |X{−j}] =
∑

k∈{−j}

h∗jk(Xk),

{h∗jk; k ∈ {−j}} = argmin
hj∈F⊕p−1

E





Xj −

∑

k∈{−j}

hjk(Xk)




2

 .
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In general, some variables are irrelevant, and we denote the set of relevant
variables by Aj : Aj ⊆ {1, . . . , p} \ j is the (or a) smallest set4 such that

Eadd[Xj |X{−j}] = Eadd[Xj |XAj
].

We assume the following:

(B1) For all j = 1, . . . , p: for all k ∈ pa(j),

Eadd[(Xj − Eadd[Xj |XAj\k])|Xk] 6≡ 0.

Assumption (B1) requires that for each j = 1, . . . , p: Xk (k ∈ pa(j)) has
an additive influence on Xj given all additive effects from XAj\k.

Lemma 4. Assume that (B1) holds. Then, for all j = 1, ..., p,

pa(j) ⊆ Aj .

A proof is given in the supplement to Bühlmann et al. (2014). Lemma 4
justifies, for the population case, to pursue preliminary neighborhood selec-
tion followed by restricted maximum likelihood estimation: as pa(j) ⊆ Aj ,
the restriction in the maximum likelihood estimator is appropriate and a
true permutation in π0 ∈ Π0 leads to a valid restriction Rπ0,j ⊇ pa(π0(j))
(when defined with the population sets Aj).

For estimation, we assume the following:

(B2) The selected variables in Âj from neighborhood selection satisfy:
with probability tending to 1 as n→∞,

(i) Âj ⊇ Aj (j = 1, . . . , p),

(ii) maxj=1,...,p |Âj | ≤M <∞ for some positive constant M <∞.

Assumption (B2)(i) is a rather standard screening assumption. It holds
for the Group Lasso with sparsity-smoothness penalty: using a basis ex-
pansion as in (2.4), the condition is implied by a sparsity assumption, a
group compatibility condition (for the basis vectors), and a beta-min con-
dition about the minimal size of the ℓ2-norm of the coefficients for the
basis functions of the active variables in Aj ; see Theorem 8.2 in Chap-
ter 5.6 of Bühlmann and van de Geer (2011). The sparsity and group

4Uniqueness of such a set is not a requirement but implicitly ensured by the compati-
bility condition and sparsity which we invoke to guarantee B2(ii).
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compatibility condition ensure identifiability of the active set and hence,
they exclude concurvity (or collinearity) among the additive functions in
the structural equation model. Assumption (B2)(ii) can be ensured by
assuming maxj |Aj | ≤ M1 < ∞ for some positive constant M1 < ∞ and,
for example, group restricted eigenvalue assumptions for the design matrix
(with the given basis); see van de Geer et al. (2011) and Zhang and Huang
(2008) for the case without groups.

Finally, we need to strengthen assumptions (A2) and (A3).

(B3) (i) For B ⊆ {1, . . . , p}\j with |B| ≤M , with M as in (B2), denote
by hB

j,g = (Xj−
∑

k∈B gk(Xk))
2. For some 0 < K <∞, it holds

that

max
j=1,...,p

max
B⊆{1,...,p}\j
|B|≤M

sup
g∈F⊕|B|

ρK(hB
j,g) ≤ D1 <∞,

where

ρ2K(hB
j,g) = 2K2

Eθ0 [exp(|hB
j,g(X)|/K)− 1− |hB

j,g(X)|/K].

(ii) For V = 1/α,

max
j=1,...,p

(
∞∑

m=1

(M2
mP[Xj ∈ Im])V/(V+4)

)(V+4)/8

≤ D2 <∞.

This assumption is typically weaker than what we require in
(B3)(i), when assuming that the values Mm are reasonable
(e.g., bounded).

(iii)

max
j

E|Xj |4 ≤ D3 <∞,

max
j

sup
f∈F

E|f(Xj)|4 ≤ D4 <∞.

(B4) The error variances satisfy minπ minj(σ
π,0
j )2 ≥ L > 0.

Assumption (B3)(i) requires exponential moments. We note that the sum
of additive functions over the set B is finite. Thus, we essentially require
exponential moments for the square of finite sums of additive functions.
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Theorem 3. Consider an additive structural equation model as in (2.3)
with independent potentially non-Gaussian errors ε1, . . . , εp with E[εj ] = 0
(j = 1, . . . , p). Assume either of the following:

1. (A1), (A4) and (B1)-(B4) hold, and for ξp in (2.9) (see also Re-
mark 2):

max

(√
log(p)/n,max

j,k
E[(f0

j,k(Xk)− f0
n;j,k(Xk))

2]

)
= o(ξp).

2. (A1) and (B1)-(B4) hold, and for ξan
p in (2.15):

max

(√
log(p)/n,max

j,k
E[(f0

j,k(Xk)− f0
n;j,k(Xk))

2]

)
= o(ξan

p ).

Then, for the restricted maximum likelihood estimator in (2.13):

P[π̂ ∈ Π0]→ 1 (n→∞).

A proof is given in the supplement to Bühlmann et al. (2014). The as-
sumption that E[(f0

j,k(Xk)− f0
n;j,k(Xk))

2] is of sufficiently small order can
be ensured by the following condition.

(Badd) Consider the basis functions br(·) appearing in Fn: for the true
functions f0

j,k ∈ F , we assume an expansion

f0
j,k(x) =

∞∑

r=1

αf0
j,k

;rbr(x)

with smoothness condition
∞∑

r=k

|α0
f0
j,k

;r| ≤ Ck−β .

Assuming (Badd) we have that E[(f
0
j,k(Xk)−f0

n;j,k(Xk))
2] = O(a

−(β−1−κ)
n )

for any κ > 0: for example, when using an → ∞, it holds for β > 1 that
E[(f0

j,k(Xk)− f0
n;j,k(Xk))

2]→ 0.

Uniform convergence can be obtained exactly as described after the dis-
cussion of Theorem 1: when requiring the additional uniform versions
(U3)-(U4) (since (B3) and (B4) invoke already uniform bounds we do not
need (U1) and (U2)), and requiring uniform convergence of the probabil-
ity in (B2), we obtain uniform convergence over the corresponding class of
distributions analogously as in (2.14).
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2.5 Computation and implementation

In Section 2.2 we have decomposed the problem of learning DAGs from
observational data into two main parts: finding the correct order (Sec-
tion 2.2.4) and feature selection (Section 2.2.5). Our algorithm and imple-
mentation consists of two corresponding parts: IncEdge is a greedy pro-
cedure providing an estimate π̂ for equation (2.11) and Prune performs
the feature selection. Section 2.3.1 discusses the benefits of performing
a preliminary neighborhood selection before estimating the causal order,
and we call the corresponding part PNS. The combination PNS + IncEdge
provides an estimate for equation (2.13).

The three components of our implementation are described in the following
sections, Figures 2.1, 2.2 and 2.3 present the steps graphically. We regard
the modular structure of the implementation as an advantage; each of the
three parts could be replaced by an alternative method (as indicated in
the subsections below).

The code for CAM is provided in the R-package CAM.

2.5.1 Preliminary Neighborhood Selection: PNS

As described in Section 2.3.1 we fit an additive model for each vari-
able Xj against all other variables X{−j}. We implement this with a
boosting method for additive model fitting (Bühlmann and Hothorn, 2007;
Bühlmann and Yu, 2003), using the R-function gamboost from the package
mboost (Hothorn et al., 2010). We select the ten variables that have been
picked most often during 100 iterations of the boosting method; hereby, we
only consider variables that have been picked at least three times during
the iterations. The sets Âj obtained by this procedure estimate Aj ⊇ pa(j)

as shown in Lemma 4. We construct a graph in which for each j, the set Âj

is the parental set for node j corresponding to the variable Xj . Figure 2.1
summarizes this step. We say that the set of “possible parents” of node j
has been reduced to the set Âj . Importantly, we do not disregard true
parents if the sample size is large enough (Section 2.4.2, Lemma 4).

Instead of the boosting method, we could alternatively use additive model
fitting with a sparsity- or sparsity-smoothness penalty (Meier et al., 2009;
Ravikumar et al., 2009).
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X1

X2

X3

X4

X5

X6

PNS−→
by variable selection

X1

X2

X3

X4

X5

X6

Figure 2.1: Step PNS. For each variable the set of possible parents is reduced (in this

plot, a directed edge from Xk to Xj indicates that Xk is a selected variable in Âj and
a possible parent of Xj). This reduction leads to a considerable computational gain in
the remaining steps of the procedure.

2.5.2 Estimating the correct order by greedy search:
IncEdge

Let us first consider the situation without PNS. Searching over all permuta-
tions π for finding π̂ in (2.11) is computationally infeasible if the number of
variables p is large. We propose a greedy estimation procedure that starts
with an empty DAG and adds at each iteration the edge k → j between
nodes k and j that corresponds to the largest gain in log-likelihood. We
therefore compute the score function in (2.11), with D corresponding to
the current DAG,

p∑

j=1

log(σ̂D
j ) =

p∑

j=1

log




∥∥∥∥∥∥
Xj −

∑

k∈paD(j)

f̂D
j,k(Xk)

∥∥∥∥∥∥
(n)




and construct a matrix, whose entry (k, j) specifies by how much this
score is reduced after adding the edge k → j and, therefore, allowing a
non-constant function fj,k (see Figure 2.2). For implementation, we em-
ploy additive model fitting with penalized regression splines (with ten basis
functions per variable), using the R-function gam from the R-package mgcv,

in order to obtain estimates f̂j,k and σ̂j . After the addition of an edge,
we only need to recompute the jth column of the score matrix (see Fig-
ure 2.2) since the score decomposes over all nodes. In order to avoid cycles
we remove further entries of the score matrix. After p(p− 1)/2 iterations
the graph has been completed to a fully connected DAG. The latter cor-
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– 0.2 0.1 – – 0.3

0.4 – – – – –

– 0.6 – – – 0.4

– – – – – –

– – – – – –

0.3 – – – – – include best edge−→
recompute column

X1

X2

X3

X4

X5

X6

Figure 2.2: Step IncEdge. At each iteration the edge leading to the largest decrease of
the negative log-likelihood is included.

responds to a unique permutation π̂. This algorithm is computationally
rather efficient and can easily handle graphs of up to 30 nodes without
PNS (see Section 2.6.2).

If we have performed PNS as in Section 2.5.1 we sparsify the score matrix
from the beginning. We only consider entries (k, j) for which k is consid-
ered to be a possible parent of j. This way the algorithm is feasible for up
to a few thousands of nodes (see Section 2.6.3).

Alternative methods for (low-dimensional) additive model fitting include
backfitting (cf. Mammen and Park, 2006).

2.5.3 Pruning of the DAG by feature selection: Prune

Section 2.2.5 describes sparse regression techniques for pruning the DAG
that has been estimated by Step IncEdge, see Figure 2.3. We implement
this task by applying significance testing of covariates, based on the R-
function gam from the R-package mgcv and declaring significance if the
reported p-values are lower or equal to 0.001, independently of the sample
size (for problems with small sample size, the p-value threshold should be
increased).

If the DAG estimated by (PNS and) IncEdge is a super-DAG of the
true DAG, the estimated interventional distributions are correct, see Sec-
tion 2.2.6. This does not change if Prune removes additional “superfluous”
edges. The structural Hamming distance to the true graph, however, may
reduce significantly after performing Prune, see Section 2.6.2. Alternative
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X1

X2

X3

X4

X5

X6

remove edges−→
by variable selection

X1

X2

X3

X4

X5

X6

Figure 2.3: Step Prune. For each node, variable selection techniques are exploited to
remove non-relevant edges.

methods for hypothesis testing in (low-dimensional) additive models are
possible (cf. Wood, 2006), or one could use penalized additive model fitting
for variable selection (Meier et al., 2009; Ravikumar et al., 2009; Yuan and
Lin, 2006).

2.6 Numerical results for simulated data

We show the effectiveness of each step in our algorithm (Section 2.6.2)
and compare the whole procedure to other state-of-the-art methods (Sec-
tion 2.6.3). We investigate empirically the role of non-injective functions
(Section 2.6.4) and discuss the linear Gaussian case (Section 2.6.5). In
Section 2.6.6 we further check the robustness of our method against model
misspecification, that is, in the case of non-Gaussian noise or non-additive
functions. For evaluation we compute the structural intervention distance
that we introduce in Section 2.6.1.

For simulating data, we randomly choose a correct ordering π0 and connect
each pair of variables (nodes) with a probability pc. If not stated otherwise,
each of the possible p(p− 1)/2 connections is included with a probability
of pc = 2/(p − 1) resulting in a sparse DAG with an expected number of
p edges. Given the structure, we draw the functions fj,k from a Gaussian
process with a Gaussian (or RBF) kernel with bandwidth one and add
Gaussian noise with standard deviation uniformly sampled between 1/5
and
√
2/5. All nodes without parents have a standard deviation between 1

and
√
2. The experiments are based on 100 repetitions if the description

does not say differently.
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2.6.1 Structural Intervention Distance

As a performance measure, we consider the recently proposed structural
intervention distance (SID), see Peters and Bühlmann (2015). The SID
is well-suited for quantifying the correctness of an order among variables,
mainly in terms of inferring causal effects afterwards. It counts the num-
ber of wrongly estimated causal effects. Thus, the SID between the true
DAG D0 and the fully connected DAGs corresponding to the true permu-
tations π0 ∈ Π0 is zero, see Section 2.2.6.

2.6.2 Effectiveness of preliminary neighborhood selec-
tion and pruning

We demonstrate the effect of the individual steps of our algorithm. Fig-
ure 2.4 shows the performance (in terms of SID and SHD) of our method
and the corresponding time consumption (using eight cores) depending on
which of the steps are performed.
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Figure 2.4: The plots show the effect of the individual steps of our method. Prune

reduces the SHD to the true DAG but leaves the SID almost unchanged. PNS reduces
the computation time, especially for large p.

If only IncEdge is used, the SHD is usually large because the output is a
fully connected graph. Only after the Step Prune the SHD becomes small.
As discussed in Section 2.2.6 the pruning does not make a big difference
for the SID. Performing these two steps is not feasible for large p. The
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time consumption is reduced significantly if we first apply the preliminary
neighborhood selection PNS. In particular, this first step is required in the
case of p > n in order to avoid a degeneration of the score function.

2.6.3 Comparison to existing methods

Different procedures have been proposed to address the problem of infer-
ring causal graphs from a joint observational distribution. We compare the
performance of our method to greedy equivalence search (GES) (Chicker-
ing, 2002), the PC algorithm (Spirtes et al., 2000), the conservative PC
algorithm (CPC) (Ramsey et al., 2006), LiNGAM (Shimizu et al., 2006)
and regression with subsequent independence tests (RESIT) (Mooij et al.,
2009; Peters et al., 2014). The latter has been used with a significance
level of α = 0, such that the method does not remain undecided. Both
PC methods are equipped with α = 0.01 and partial correlation as inde-
pendence test. GES is used with a linear Gaussian score function. Thus,
only RESIT is able to model the class of nonlinear additive functions. We
apply the methods to DAGs of size p = 10 and p = 100, whereas in both
cases, the sample size is n = 200. RESIT is not applicable for graphs with
p = 100 due to computational reasons. Figure 2.5 shows that our proposed
method outperforms the other approaches both in terms of SID and SHD.
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Figure 2.5: SHD (left) and SID (right) for different methods on sparse DAGs with
p = 10 (top) and p = 100 (bottom); the sample size is n = 200.
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The difference between the methods becomes even larger for dense graphs
with an expected number of 4p edges and strong varying degree of nodes
(results not shown).

Only the PC methods and the proposed method CAM scale to high-
dimensional data with p = 1000 and n = 200. Keeping the same (sparse)
setting as above results in SHDs of 1214±37, 1330±40 and 477±19 for PC,
CPC and CAM, respectively. These results are based on five experiments.

2.6.4 Injectivity of model functions

In general, the nonlinear functions that are generated by Gaussian pro-
cesses are not injective. We therefore test CAM for the case where every
function in (2.1) is injective. Correct direction of edges (j, k) is a more
difficult task in this setting. We sample sigmoid-type functions of the
form

fj,k(xk) = a · b · (xk + c)

1 + |b · (xk + c)|
with a ∼ Exp(4) + 1, b ∼ U([−2,−0.5] ∪ [0.5, 2]) and c ∼ U([−2, 2]); as
before, we use Gaussian noise. Note that some of these functions may
be very close to linear functions which makes the direction of the corre-
sponding edges difficult to identify. Figure 2.6 shows a comparison of the
performance of CAM in the previously applied setting with Gaussian pro-
cesses and in the new setting with sigmoid-type functions. As expected,
the performance of CAM decreases in this more difficult setting but is still
better than for the competitors such as RESIT, LiNGAM, PC, CPC and
GES (not shown).
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Figure 2.6: SHD (left) and SID (right) for various values of p and n = 300. The plots
compare the performances of CAM for the additive SEM (2.1) with functions generated
by Gaussian processes (non-injective in general) and sigmoid-type functions (injective).
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2.6.5 Linear Gaussian SEMs

In the linear Gaussian setting, we can only identify the Markov equivalence
class of the true graph (if we assume faithfulness). We now sample data
from a linear Gaussian SEM and expand the DAGs that are estimated by
CAM and LiNGAM to CPDAGs, that is, we consider the corresponding
Markov equivalence classes. The two plots in Figure 2.7 compare the
different methods for p = 10 variables and n = 200. They show the
structural Hamming distance (SHD) between the estimated and the true
Markov equivalence class (left), as well as lower and upper bounds for the
SID (right). By the definition of lower and upper bounds of the SID, the
SID between the true and estimated DAG lies in between those values. The
proposed method has a disadvantage because it uses nonlinear regression
instead of linear regression. The performance is nevertheless comparable.
Remark 1 discusses that at least in principle, this scenario is detectable.
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Figure 2.7: Comparison to existing methods for data generated by linear Gaussian
SEM. SHD between true and estimated CPDAG (left), lower and upper bounds for SID
between true DAG and estimated CPDAG (right).

2.6.6 Robustness against non-additive functions and
non-Gaussian errors

All of Chapter 2 focuses on the additive model (2.1) and Gaussian noise.
The score functions (2.11) and (2.13) and their corresponding optimization
problems depend on these model assumptions. The DAG remains identifi-
able (under weak assumptions) even if the functions of the data generating
process are not additive or the noise variables are non-Gaussian (cf. Peters
et al., 2014). The following experiments analyze the empirical performance
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of our method under these misspecifications. The case of misspecified error
distributions is discussed in Section 2.4.1.

As a first experiment we examine deviations from the Gaussian noise as-
sumption by setting εj = sign(Nj)|Nj |γ with Nj ∼ N (0, σ2

j ) for different
exponents 0.1 ≤ γ ≤ 4. Only γ = 1 corresponds to normally distributed
noise. Figure 2.8 shows the change in SHD and SID when varying γ.
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Figure 2.8: SHD (top) and SID (bottom) for p = 25 and n = 300 in the case of
misspecified models. The plot shows deviations of the noise from a normal distribution
(only γ = 1 corresponds to Gaussian noise).

As a second experiment, we examine deviations from additivity by simu-
lating from the model

Xj = ω ·
∑

k∈paD(j)

fj,k(Xk) + (1− ω) · fj(XpaD(j)) + εj

for different values of ω ∈ [0, 1] and Gaussian noise. Both, fj,k and fj are
drawn from a Gaussian process using an RBF kernel with bandwidth one.
Note that ω = 1 corresponds to the fully additive model (2.3), whereas
for ω = 0, the value of Xj is given as a non-additive function of all its
parents. Figure 2.9 shows the result for a sparse truth with expected
number of p edges (top) and a non-sparse truth with expected number
of 4p edges (lower). In sparse DAGs, many nodes have a small number of
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Figure 2.9: SHD (left) and SID (right) for p = 25 and n = 300 in the case of misspecified
models. The plot shows deviations from additivity for sparse (top) and non-sparse
(bottom) truths, respectively (only ω = 1 corresponds to a fully additive model).

parents and our algorithm yields a comparably small SID even if the model
contains non-additive functions. If the underlying truth is non-sparse, the
performance of our algorithm becomes worse but it is still slightly better
than PC which achieves average lower bounds of SID values of roughly 520,
both for ω = 1 and for ω = 0 (not shown).

2.7 Real data application

We apply our methodology to microarray data described in Wille et al.
(2004). The authors concentrate on 39 genes (118 observed samples) on
two isoprenoid pathways in Arabidopsis thaliana. The dashed edges in
Figures 2.10 and 2.11 indicate the causal direction within each pathway.
While graphical Gaussian models are applied to estimate the underlying
interaction network by an undirected model in Wille et al. (2004), our
CAM procedure estimates the structure by a directed acyclic graph.

Given a graph structure, we can compute p-value scores as described in
Section 2.5.3. Figure 2.10 shows the twenty best scoring edges of the graph
estimated by our proposed method CAM (the scores should not be inter-
preted as p-values anymore since the graph has been estimated from data).
We also apply stability selection (Meinshausen and Bühlmann, 2010) to
this data set. We therefore consider 100 different subsamples of size 59
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Figure 2.10: Gene expressions in isoprenoid pathways. The twenty best scoring edges
provided by the method CAM.

and record the edges that have been considered at least 57 times as being
among the 20 best scoring edges. Under suitable assumptions this leads
to an expected number of false positives being less than two (Meinshausen
and Bühlmann, 2010). These edges are shown in Figure 2.11. They con-
nect genes within one of the two pathways and their directions agree with
the overall direction of the pathways. Our findings are therefore consis-
tent with the prior knowledge available. The link MCT → CMK does not
appear in Figure 2.10 since it was ranked as the 22nd best scoring edge.

2.8 Conclusions and extensions

2.8.1 Conclusions

We have proposed maximum likelihood estimation and its restricted ver-
sion for the class of additive structural equation models (i.e., causal ad-
ditive models, CAMs) with Gaussian errors where the causal structure
(underlying DAG) is identifiable from the observational probability dis-
tribution (Peters et al., 2014). A key component of our approach is to
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Figure 2.11: Gene expressions in isoprenoid pathways. Edges estimated by stability
selection: all directions are in correspondence with the direction of the pathways.

decouple order search among the variables from feature or edge selection
in DAGs. Regularization is only necessary for the latter while estima-
tion of an order can be done with a non-regularized (restricted) maximum
likelihood principle. Thus, we have substantially simplified the problem
of structure search and estimation for an important class of causal mod-
els. We established consistency of the (restricted) maximum likelihood
estimator for low- and high-dimensional scenarios, and we also allow for
misspecification of the error distribution. Furthermore, we developed an
efficient computational algorithm which can deal with many variables, and
the new method’s accuracy and performance is illustrated with a variety
of empirical results for simulated and real data. We found that we can do
much more accurate estimation for identifiable, nonlinear CAMs than for
non-identifiable linear Gaussian structural equation models.

2.8.2 Extensions

The estimation principle of first pursuing order search based on non-
regularized maximum likelihood and then using penalized regression for
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feature selection works with other structural equation models where the
underlying DAG is identifiable from the observational distribution. Closely
related examples include nonlinearly transformed additive structural equa-
tion models (Zhang and Hyvärinen, 2009) or Gaussian structural equation
models with same error variances (Peters and Bühlmann, 2014).

If the DAG D is non-identifiable from the distribution P , the methodology
needs to be adapted; see also Remark 1 considering the linear Gaussian
SEM. The true orders Π0 can be defined as the set of permutations which
lead to most sparse autoregressive representations as in (2.5): assuming
faithfulness, these orders correspond to the Markov equivalence class of
the underlying DAG. Therefore, for estimation, we should use regular-
ized maximum likelihood estimation leading to sparse solutions with, for
example, the ℓ0-penalty (Chickering, 2002; van de Geer and Bühlmann,
2013).

Finally, it would be very interesting to extend (sparse) permutation search
to (possibly non-identifiable) models with hidden variables (Colombo et
al., 2012; Janzing et al., 2009; Pearl, 2000; Spirtes et al., 2000) or with
graph structures allowing for cycles (Mooij et al., 2011; Mooij and Heskes,
2013; Richardson, 1996; Spirtes, 1995). Note that unlike linear Gaussian
models, CAMs are not closed under marginalization: if X,Y and Z follow
a CAM (2.1), thenX and Y do not necessarily remain in the class of CAMs.



Chapter 3

Identifiability and
estimation of partially
linear additive models1

We consider the identifiability and estimation of partially linear additive
structural equation models with Gaussian noise (PLSEMs). Existing iden-
tifiability results in the framework of additive SEMs with Gaussian noise
are limited to linear and nonlinear SEMs, which can be considered as spe-
cial cases of PLSEMs with vanishing nonparametric or parametric part,
respectively. We close the wide gap between these two special cases by pro-
viding a comprehensive theory of the identifiability of PLSEMs by means of
(A) a graphical, (B) a transformational, (C) a functional and (D) a causal
ordering characterization of PLSEMs that generate a given distribution P.
In particular, the characterizations (C) and (D) answer the fundamental
question to which extent nonlinear functions in additive SEMs with Gaus-

1This chapter is a slightly modified version of the preprint Ernest, J., Rothenhäusler,
D., and Bühlmann, P. (2016). Causal inference in partially linear structural equation

models: identifiability and estimation. arXiv:1607.05980. Jan Ernest and Dominik
Rothenhäusler are shared first authors and contributed equally to this work. The main
contributions of Jan Ernest are the graphical and transformational characterizations
(the proof of the transformational characterization was mostly done by D.R.), the
conceptual development and implementation of the estimation procedures, major parts
of the proofs of their correctness and consistency, and the realization of all simulation
experiments. Jan Ernest wrote the main text (excluding Sections 3.2.2 and 3.2.3).



52 Chapter 3: Identifiability & estimation of PLSEMs

sian noise restrict the set of potential causal models and hence influence the
identifiability. On the basis of the transformational characterization (B)
we provide a score-based estimation procedure that outputs the graphical
representation (A) of the distribution equivalence class of a given PLSEM.
We derive its (high-dimensional) consistency and demonstrate its perfor-
mance on simulated datasets.

3.1 Introduction

Causal inference is relevant in many scientific disciplines. Examples are
the identification of causal molecular mechanisms in genomics (Statnikov
et al., 2012; Stekhoven et al., 2012), the investigation of causal relations
among activity in brain regions from fMRI data (Ramsey et al., 2010) or
the search for causal associations in public health (Glass et al., 2013).

A major research topic in causal inference aims at establishing causal
dependencies based on purely observational data. The notion “observa-
tional” commonly refers to the fact that one obtains the data from the
system of variables under consideration without subjecting it to external
manipulations. Typically, one then assumes that the observed data has
been generated by an underlying causal model and tries to draw conclu-
sions about its structure.

Two main research tasks in this setting are the identifiability and estima-
tion of the underlying causal model. In this chapter we address both of
them for partially linear additive structural equation models with Gaus-
sian noise (PLSEMs). Unlike in regression where partially linear models
are mainly studied because of efficiency gains in estimation, the use of par-
tially linear models has a deeper meaning in causal inference. In fact, as
we will show, it is closely connected to identifiability. The functional form
of an additive component directly influences the identifiability of the cor-
responding (and also other) causal relations. For this reason we strongly
believe that the understanding of the identifiability of PLSEMs is impor-
tant. First and foremost, it raises the awareness of potentially limited (or
increased) identifiability in the presence of linear (or nonlinear) relations
in the data. Second, by not restricting the functions to be either all linear
or all nonlinear, PLSEMs allow for a flexible modeling approach.

We start by reviewing and introducing important concepts in Section 3.1.1.
We then provide a brief overview of related work in Section 3.1.2 and
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explicitly state the main contributions of this work in Section 3.1.3.

3.1.1 Problem description and important concepts

We consider p random variables X = (X1, ..., Xp) with joint distribution P,
which is assumed to be Markov with respect to an underlying directed
acyclic graph (DAG). A DAG D = (V,E) is an ordered pair consisting of
a set of vertices V = {1, ..., p} associated with the variables {X1, ..., Xp},
and a set of directed edges E ⊂ V 2 such that there are no directed cycles.
A directed edge between the nodes i and j in D is denoted by i → j.
Node i is called a parent of node j and j is called a child of i. Moreover,
the edge is said to be oriented out of i and into j. If i → j or i ← j, i
and j are called adjacent and the edge is incident to i and j. The degree
of a node i, denoted by degD(i), counts the number of edges incident to
node i in DAG D. A node k that can be reached from i by following
directed edges is called descendant of i. We use the convention that any
node is a descendant of itself. The set paD(j) = {i | i→ j in D} consists
of all parents of node j. The multi-index notation XpaD(j) denotes the
set of variables {Xi}i∈paD(j). An edge i → j is said to be covered in D,
if paD(i) = paD(j) \ {i}. In that case, paD(i) is a cover for edge i → j.
The process of changing the orientation of a covered edge from i → j to
i ← j is referred to as a covered edge reversal. A triple (i, j, k) is called
a v-structure, if {i, j} ⊆ paD(k) and i and j are not adjacent. The graph
obtained by replacing all directed edges i→ j by undirected edges i — j is
called skeleton of D. The pattern of a DAG D is the graph with the same
skeleton as D and i→ j is directed if and only if it is part of a v-structure
in D. A permutation σ : V → V is a causal ordering of D if σ(i) < σ(j) for
all i→ j in D. DAGs may be used as underlying structures for structural
equation models (SEMs). A SEM relates the distribution of every random
variable {X1, ..., Xp} to the distribution of its direct causes (the parents in
the corresponding DAG D) and random noise. In its most general form,

Xj = fj(XpaD(j), εj), j = 1, ..., p, (3.1)

where {fj}j=1,...,p are functions from R
|paD(j)|+1 → R and {εj}j=1,...,p are

mutually independent noise variables. Lastly, for a function F : Rp → R
p,

we write DF for the Jacobian of F .
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Main focus: PLSEMs

In this work we study the restriction of the general SEM in equation (3.1)
to partially linear additive SEMs with Gaussian noise (PLSEMs):

Xj = µj +
∑

i∈paD(j)

fj,i(Xi) + εj , (3.2)

where µj ∈ R, fj,i ∈ C2(R), fj,i 6≡ 0, such that E[fj,i(Xi)] = 0, and
εj ∼ N (0, σ2

j ) with σ2
j > 0 for j = 1, ..., p. Likewise, we may write

Xj = µj +
∑

i∈paL
D
(j)

αj,iXi +
∑

i∈paNL
D

(j)

fj,i(Xi) + εj ,

with αj,i ∈ R \ {0}, µj , fj,i, εj as above, paLD(j) ∪ paNL
D (j) = paD(j)

and paLD(j) ∩ paNL
D (j) = ∅. Note that we do not a priori fix the sets

paLD(j) and paNL
D (j). For P generated by a PLSEM with DAG D, the

PLSEM corresponding to D is unique (Lemma 8). Therefrom, we call an
edge i → j in D a (non-)linear edge, if fj,i in the PLSEM corresponding
to D is (non-)linear. Note that the concept of (non-)linearity of an edge is
defined with respect to a specific DAG D. Depending on the orientations
of other edges, the status of an edge i → j may change from linear to
nonlinear. An example is given in Figure 3.1.

1

2 3 2

1

3

D1 D2

Figure 3.1: Two DAGs D1 and D2 with linear edges (dashed) and nonlinear edges
(solid). Let us give a brief outlook: let P be generated by a PLSEM with DAG D1.
In this work we prove that there exists a PLSEM with DAG D2 that generates the
same distribution P. Moreover, we show that D1 and D2 are the only two DAGs with
a corresponding PLSEM that generates P. For now, simply note that 1 → 3 is linear
in D1, but nonlinear in D2.

The restriction to additive SEMs is interesting from both a statistical
and computational perspective as the estimation of additive functions is
well understood and one largely avoids the curse of dimensionality. The
assumption of Gaussian noise is necessary for our theoretical results to
hold. In fact, identifiability properties may deteriorate in partially linear
models with arbitrary noise distributions, see Section 3.1.2. We therefore
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consider PLSEMs to be among the most general SEMs with reasonable
estimation properties.

Main task: characterization of all PLSEMs that generate P

The main task of this chapter is the systematic characterization of all
PLSEMs that generate a given distribution P under very general assump-
tions. In particular: how do edge functions in different PLSEMs relate to
each other? How does changing a single linear edge to a nonlinear edge
affect the set of potential underlying PLSEMs? Do causal orderings of
different DAGs corresponding to PLSEMs that generate P share certain
properties?

Under faithfulness, it may be natural to characterize all PLSEMs that
generate P by their corresponding DAGs as these DAGs are restricted
to a subset of the Markov equivalence class (see Section 3.1.2). For a
distribution P that has been generated by a faithful PLSEM, we call the
set of DAGs

D(P) :=

{
D

P is faithful to D and there exists a
PLSEM with DAG D that generates P

}

the (PLSEM) distribution equivalence class. Can we build on characteriza-
tions of the Markov equivalence class to characterize D(P)? For example,
can D(P) also be graphically represented by a single PDAG? Is it possible
to efficiently estimate D(P)? Before we explain our approaches to answer
these questions in Section 3.1.3, let us briefly summarize related work.

3.1.2 Related work

First, we discuss the identifiability of general SEMs. We then motivate
why our theoretical results close a relevant “gap” by reviewing existing
identifiability results for two special cases of PLSEMs where either all the
functions fj,i are exclusively linear or exclusively nonlinear. Finally, we
briefly comment on the assumption of Gaussian noise.

Identifiability of general SEMs

In the general SEM as defined in equation (3.1) one cannot draw any
conclusions about D given P without making further assumptions. One
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such assumption commonly made is faithfulness (cf. Section 3.2.1). Un-
der faithfulness, one can identify the Markov equivalence class of D (a
set of DAGs that all entail the same conditional independences), see, for
example, Pearl (2009). Markov equivalence classes are well-characterized.
In fact, the Markov equivalence class of a DAG D consists of all DAGs
with the same skeleton and v-structures as D (Verma and Pearl, 1990)
and can be graphically represented by a single partially directed graph
(cf. Section 3.2.1). Moreover, any two Markov equivalent DAGs can be
transformed into each other by a sequence of distinct covered edge rever-
sals (Chickering, 1995).

The estimation of the general SEM is difficult due to the curse of di-
mensionality in fully nonparametric estimation. In combination with the
unidentifiability, this motivates the use of restricted SEMs, which have
better estimation properties and for which it is possible to achieve (par-
tial) identifiability of the SEM (even without assuming faithfulness), see
Section 3.2.2 or the paper of Peters et al. (2014) for an overview.

Special case of PLSEM: Linear Gaussian SEM

A widespread specification of PLSEMs are linear Gaussian SEMs, which
have the same identifiability properties as the general SEMs: without ad-
ditional assumptions they are unidentifiable, whereas under faithfulness,
their distribution equivalence class equals the Markov equivalence class,
see, for example, Spirtes and Zhang (2016).

The estimation of the Markov equivalence class of linear Gaussian SEMs
in the low-dimensional case has been addressed in, e.g., Chickering (2002)
and Spirtes et al. (2000), whereas the high-dimensional scenario (requir-
ing sparsity of the true underlying DAG) is discussed in, e.g., Bühlmann
(2013), Kalisch and Bühlmann (2007), Nandy et al. (2016), and van de
Geer and Bühlmann (2013).

An exception of identifiability of linear Gaussian SEMs occurs if all εj
have equal variances σ2

j = σ2 > 0, ∀j. Under this assumption, the true
underlying DAG D is identifiable (Peters and Bühlmann, 2014). Yet, the
assumption of equal noise variances seems to be overly restrictive in many
scenarios. In general, the linearity assumption may be rather restrictive if
not implausible in some cases.
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Special case of PLSEM: Causal additive model (CAM)

Interestingly, the assumption of exclusively nonlinear functions fj,i in equa-
tion (3.2) greatly improves the identifiability properties, see Hoyer et al.
(2009) for the bivariate case and Peters et al. (2014) for a general treat-
ment. In fact, if all fj,i are nonlinear and three times differentiable, D(P)
only consists of the single true underlying DAG D (Peters et al., 2014,
Corollary 31 (ii)); see also Lemma 1 in Chapter 2. The nonlinearity as-
sumption is crucial, though. The authors provide an example where two
DAGs are distributionally equivalent if one of the nonlinear functions is
replaced by a linear function (Peters et al., 2014, Example 26).

Various estimation methods have been introduced for additive nonlinear
SEMs to infer the underlying DAG (Nowzohour and Bühlmann, 2016;
Peters et al., 2014; van de Geer, 2014). In particular, a restricted max-
imum likelihood estimation method called CAM (cf. Chapter 2), which
is consistent in the low- and high-dimensional setting (assuming a sparse
underlying DAG), has been proposed specifically for nonlinear additive
SEMs with Gaussian noise (Bühlmann et al., 2014).

Importance of Gaussian noise for the identifiability of PLSEMs

The identifiability properties of linear SEMs generally improve if one allows
for non-Gaussian noise distributions. In fact, if all but one εj are assumed
to be non-Gaussian (commonly referred to as LiNGAM setting), the un-
derlying DAG D is identifiable (Shimizu et al., 2006). A general theory for
linear SEMs with arbitrary noise distributions is presented in Hoyer et al.
(2008). Both papers also propose estimation procedures for the respective
model classes.

Unfortunately, the situation is different for PLSEMs: identifiability can
be lost if one considers PLSEMs with non-Gaussian (or arbitrary) noise
distributions. This can be seen from a specific example of a bivariate
linear SEM with Gumbel-distributed noise, which is identifiable in the
LiNGAM framework, but for which there exists a nonlinear additive back-
ward model (Hoyer et al., 2009). Still, this example seems to be rather
particular. In fact, for bivariate additive SEMs, all unidentifiable cases
of additive models can be classified into five categories, see Peters et al.
(2014) and Zhang and Hyvärinen (2009).
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3.1.3 Our contribution

As discussed in Section 3.1.2, there exists a wide “identifiability gap” for
PLSEMs. Their identifiability has only been studied for the two special
cases of linear SEMs and entirely nonlinear additive SEMs. Moreover,
to the best of our knowledge, it has not yet been understood to what
extent (single) nonlinear functions in additive SEMs with Gaussian noise
restrict the underlying causal model. We close the “identifiability gap”
for PLSEMs and answer the questions raised in Section 3.1.1 with the
following theoretical results:

(A) A graphical representation of D(P) with a single partially directed
graph GD(P) in Section 3.2.1 (analogous to the use of CPDAGs to
represent Markov equivalence classes).

(B) A transformational characterization of D(P) through sequences of
covered linear edge reversals in Section 3.2.1 (analogous to the char-
acterization of Markov equivalence classes via sequences of covered
edge reversals in Chickering (1995)).

(C) A functional characterization of PLSEMs in Section 3.2.2: PLSEMs
that generate the same distribution P are constant rotations of each
other.

(D) A characterization of PLSEMs based on causal orderings in Sec-
tion 3.2.2, which, in particular, precisely specifies to what extent
nonlinear functions in PLSEMs restrict the set of potential causal
orderings.

The first two characterizations hold only under faithfulness, the third and
fourth are general. We will give details on the precise interplay between
nonlinearity and faithfulness in Section 3.2.3. Building on the transfor-
mational characterization result in (B) we provide an efficient score-based
estimation procedure that outputs the graphical representation GD(P) in
(A) given P and one DAG D ∈ D(P). The proposed algorithm only relies
on sequences of local transformations and score computations and hence
is feasible for large graphs with numbers of variables in the thousands
(assuming reasonable sparsity). We demonstrate its performance on sim-
ulated data and derive its (high-dimensional) consistency based on the
consistency proof of the CAM methodology in Section 2.4.
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3.2 Comprehensive characterization of the
identifiability of PLSEMs

This section contains our main theoretical results. They consist of charac-
terizations of PLSEMs that generate a given distribution P from various
perspectives. In Section 3.2.1 we assume that P is faithful to the under-
lying causal model and demonstrate that this leads to a transformational
characterization and a graphical representation of D(P) very similar to the
well-known counterparts characterizing a Markov equivalence class. Our
main theoretical contributions, which hold under very general assumptions
and, in particular, do not rely on the faithfulness assumption, are pre-
sented in Section 3.2.2. They fully characterize all PLSEMs that generate
a given distribution P on a functional level. Moreover, they explain how
nonlinear functions impose very specific restrictions on the set of potential
causal orderings. Section 3.2.3 brings together the two previous sections
by discussing the precise interplay of nonlinearity and faithfulness.

3.2.1 Characterizations of D(P) under faithfulness

Let P be generated by a PLSEM with DAG D ∈ D(P). The goal of this
section is to characterize D(P). Recall that D(P) is the set of all DAGs D
such that P is faithful to D and there exists a PLSEM with DAG D that
generates P. In words, faithfulness means that no conditional indepen-
dence relations other than those entailed by the Markov property hold,
see, e.g., Spirtes et al. (2000). In particular, it implies that D(P) is a
subset of the Markov equivalence class and all DAGs in D(P) have the
same skeleton and v-structures (Verma and Pearl, 1990). Markov equiva-
lence classes can be graphically represented with single graphs, known as
CPDAGs (also referred to as essential graphs, maximally oriented graphs
or completed patterns) (Andersson et al., 1997; Chickering, 1995; Meek,
1995; Verma and Pearl, 1990), where an edge is directed if and only if it
is oriented the same way in all the DAGs in the Markov equivalence class,
else, it is undirected. The Markov equivalence class then equals the set of
all DAGs that can be obtained from the CPDAG by orienting the undi-
rected edges without creating new v-structures. We derive an analogous
graphical representation of D(P).

Another useful (transformational) characterization result says that any
two Markov equivalent DAGs can be transformed into each other by a
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sequence of distinct covered edge reversals (Chickering, 1995). We will
demonstrate that a very similar principle transfers to D(P).

Graphical representation of D(P)

The distribution equivalence class D(P) can be graphically represented by
a single partially directed acyclic graph (PDAG). A PDAG is a graph with
directed and undirected edges that does not contain any directed cycles.
A consistent DAG extension of a PDAG is a DAG with the same skeleton,
the same edge orientations on the directed subgraph of the PDAG, and no
additional v-structures.

Definition 1. Let E be a set of Markov equivalent DAGs. We denote
by GE the PDAG that has the same skeleton as the DAGs in E and i→ j
in GE if and only if i→ j in all the DAGs in E, else, i — j. We say that
GE is maximally oriented with respect to E.

For a given distribution equivalence class D(P), the corresponding PDAG
GD(P) is uniquely defined by Definition 1. Moreover, GD(P) is a graphical
representation of D(P) in the following sense:

Theorem 4. D(P) is equal to the set of all consistent DAG extensions
of GD(P).

A proof can be found in Appendix 3.A.1. Theorem 4 states that one can
represent D(P) with a single PDAG GD(P) without loss of information,
as D(P) can be reconstructed from GD(P) by listing all consistent DAG
extensions. An example is given in Figure 3.2.

1

2

3

4

GD(P)

1

2

3

4

1

2

3

4

1

2

3

4

D(P)

Figure 3.2: Graphical representation of D(P) with the single PDAG GD(P). D(P) equals
the set of all consistent DAG extensions of GD(P). The graph with 2 → 3 → 1 is not
a consistent DAG extension of GD(P) as it contains a cycle. Linear edges are dashed,
nonlinear edges are solid.
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Note that GD(P) can be interpreted as a maximally oriented graph with
respect to some background knowledge as defined in Meek (1995). For
details, we refer to Section 3.3.2.

Conceptually, this result is completely analogous to the use of CPDAGs
to represent Markov equivalence classes. There are important differences,
though: first of all, necessary and sufficient conditions have been derived
for a graph to be a CPDAG of a Markov equivalence class (Andersson et
al., 1997, Theorem 4.1). These properties do not all transfer to GD(P). For
example, GD(P) typically is not a chain graph, see Figure 3.2. Secondly,
given a DAG D, the CPDAG (and hence a full characterization of the
Markov equivalence class) can be obtained by an iterative application of
three purely graphical orientation rules (R1-R3 in Figure 3.6) applied to
the pattern of D (Meek, 1995). This is not true for GD(P) and D(P). It
is still feasible to obtain GD(P) from a DAG D ∈ D(P), but it is crucial
to know which of the functions in the (unique) corresponding PLSEM (cf.
Lemma 8) are linear and which are nonlinear. We will show in Section 3.3
that the transformational characterization in Theorem 5 gives rise to a
consistent and efficient score-based procedure to estimate GD(P) based on
D ∈ D(P) and samples of P.

Transformational characterization of D(P)

Given D ∈ D(P), the distribution equivalence class D(P) can be compre-
hensively characterized via sequences of local transformations of DAGs.

Theorem 5. Assume that P has been generated by a PLSEM and that it
is faithful to the underlying DAG. Then, the following two results hold:

(a) Let D ∈ D(P), i → j covered in D, and D′ be the DAG that differs
from D only by the reversal of i→ j. Then, D′ ∈ D(P) if and only if
i→ j is linear in D. Furthermore, if i→ j is covered and nonlinear
in D, then i→ j in all DAGs in D(P).

(b) Let D,D′ ∈ D(P). Then there exists a sequence of distinct covered
linear edge reversals that transforms D to D′.

A proof can be found in Appendix 3.A.2 and an illustration is provided
in Figure 3.3. Note that the interesting part of this result is that D(P)
is connected with respect to covered linear edge reversals. It will be of
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1
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D1

1

2

3

4

D2

reversal of
covered linear

edge 3→1

reversal of
covered linear

edge 3→2

Figure 3.3: Transformational characterization of D(P) from Figure 3.2. Let 1→ 2 in D
be nonlinear (solid) and all other edges in D be linear (dashed). Then, D1 and D2 can
be reached from D by the displayed sequence of covered linear edge reversals. Note
that in D and D2, 1 → 2 is covered but nonlinear and hence cannot be reversed by
Theorem 5 (a). Moreover, 2 → 4 is not covered in any of D,D1 and D2 and hence
cannot be reversed.

particular importance in the design of score-based estimation procedures
for D(P) and GD(P) in Section 3.3.

Theorem 5 covers the two special cases discussed in Section 3.1.2: if all
the functions fj,i in equation (3.2) are linear, D(P) (which, in this setting,
is equal to the Markov equivalence class) can be fully characterized by
sequences of covered edge reversals of D (as all the edges are linear). If,
on the contrary, all the functions fj,i in equation (3.2) are nonlinear, D(P)
only consists of the DAG D as there is no covered linear edge in D.

3.2.2 Characterizations not assuming faithfulness

In this section we give general characterizations of PLSEMs that generate
the same distribution P, both, from a functional viewpoint and from the
perspective of causal orderings. The former describes how the fj,i of dif-
ferent PLSEMs relate to each other, the latter describes the set of causal
orderings, such that there exists a corresponding PLSEM that generates
the given distribution P. It will show that nonlinear functions impose a
very specific structure on the model, which (perhaps surprisingly) is com-
patible with some of the previous theory on graphical models, as described
in Section 3.1.2. Furthermore it will help us understand in the general
case how nonlinear functions restrict the set of PLSEMs that generate P.
Lastly, we give some additional intuition on the functional characteriza-
tion. Throughout this section, we assume that P is generated by a PLSEM
as defined in equation (3.2).
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Functional characterization

Let us first characterize the result on the level of SEMs. Consider a PLSEM
that generates P,

Xj = µj +
∑

i∈paD(j)

fj,i(Xi) + εj ,

where fj,i, D, εj , µj and σ2
j = Var(εj) satisfy the assumptions from Sec-

tion 3.1.1.

Let us define the function F : Rp → R
p by

F (x)j :=
1

σj


xj − µj −

∑

i∈paD(j)

fj,i(xi)


 . (3.3)

It turns out to be convenient to work with this function F . Notably, we
do not lose any information by working with F instead of fj,i, paD(j), µj

and σj as these quantities can be recovered from F . Specifically, we can
easily obtain the distribution of the errors from the function F as

σj := 1/∂jFj . (3.4)

By definition, F (X) ∼ N (0, Idp). Hence, for Z ∼ N (0, Idp) it holds that
F−1(Z) ∼ X. Using this, we obtain µj = EZ [F

−1(Z)j ] and we can recover
the functions fj,i from the function F using the equations

f ′j,i = −σj∂iFj and EZfj,i(F
−1(Z)i) = 0. (3.5)

Note that the equation on the left hand side determines fj,i up to a con-
stant, whereas the equation on the right hand side determines the constant
using only quantities that can be calculated from F . In the same spirit,
paD(j) can be recovered from F via

paD(j) = {i 6= j : ∂iFj 6≡ 0}. (3.6)

In this sense, instead of describing the PLSEM by fj,i, paD(j), µj and σj

it can simply be described by the function F : Rp → R
p. Now let us define

F(P) := {F : Rp 7→ R
p | F suffices (3.3) for a PLSEM that generates P} .

We call the functions in this set PLSEM-functions. Let us define the set
of orthonormal matrices On(R) = {O ∈ R

p×p : OOt = Id}. The following
theorem follows from Theorem 10 that is given in Appendix 3.A.3. It
states that we can construct all PLSEMs that generate P by essentially
rotating F .
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Theorem 6 (Characterization of potential PLSEMs). For F ∈ F(P) there
exists a set of (constant) rotations OF(P) ⊂ On(R) such that

F(P) =
{
O · F : O ∈ OF(P)

}
.

A description and explicit formulae for each O ∈ OF(P) are given in Re-
mark 8 in Appendix 3.A.3.

Astonishingly, in this sense, all PLSEMs that generate P are rotations of
each other. The importance of this result lies in its simplicity: There
are very simple linear relationships between the fj,i in one PLSEM and

the f̃j,i in another PLSEM. The formulae in Appendix 3.A.3 permit to
fully characterize these matrices OF(P). In fact, the characterization in
Theorem 10 is the first step towards all other characterizations.

Intuition on the functional characterization

This section motivates Theorem 6. Consider two functions F,G ∈ F(P)
that correspond to two different PLSEMs that generate P. By Proposi-
tion 1 in Appendix 3.A.3,

F (X) ∼ N (0, Id) and G(X) ∼ N (0, Id). (3.7)

Moreover, it follows from the definition of PLSEMs that F is invertible.
Let Z ∼ N (0, Idp). Using equation (3.7) twice,

F−1(Z) ∼ X and G(F−1(Z)) ∼ N (0, Id).

Hence J : Rp → R
p, J := G ◦ F−1 suffices J(Z) ∼ Z ∼ N (0, Id). Fur-

thermore, it can be shown that | detDJ | = 1. Using the transformation
formula, we obtain

1

(2π)p/2
exp

(
−‖J(x)‖

2
2

2

)
=

1

(2π)p/2
exp

(
−‖x‖

2
2

2

)
for all x ∈ R

p.

By rearranging,

‖J(x)‖2 = ‖x‖2 for all x ∈ R
p.

If we admit that J must be a linear function (which requires some work),
this formula gives us J ∈ On(R) := {O ∈ R

p×p : OOt = Id} and it
immediately follows that G = JF . This reasoning shows that the main
work in proving Theorem 6 lies in showing that J is a linear function.
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Characterization via causal orderings

This section discusses a characterization of all potential causal orderings
of a given PLSEM. Let us define the set of potential causal orderings as

S(P) :=





σ permutation on {1, ..., p} : there exists
a PLSEM with DAG D that generates P
such that σ(i) < σ(j) for all i→ j in D



 .

Without assuming faithfulness, if all fj,i are linear, all permutations of
{1, ..., p} are a causal ordering of a DAG corresponding to a PLSEM
that generates P. That is, S(P) is equal to the set of all permutations
of {1, . . . , p}. Roughly, the more nonlinear functions in the PLSEM, the
smaller the resulting set S(P). The interesting point is that nonlinear
edges restrict S(P) in a very specific way. Before we state the theorem,
consider a PLSEM that generates P, define the function F : Rp → R

p as
in equation (3.3) and define the set

V := {(i, j) ∈ {1, ..., p}2 : etj(DF )−1∂2
i F 6≡ 0}, (3.8)

where ej , j = 1, . . . , p denotes the standard basis of Rp and DF is the
Jacobian of F . In some sense, we can think of etj(DF )−1∂2

i F 6≡ 0 as “the
effect from variable i to variable j is nonlinear”. We will discuss the set V in
more detail later. The potential causal orderings can now be characterized
as follows:

Theorem 7 (Characterization of potential causal orderings).

S(P) = {σ permutation on {1, . . . , p} : σ(i) < σ(j) for all (i, j) ∈ V}

A proof of this theorem can be found in Appendix 3.A.4. In words, all
permutations of the indices that do not swap any of the tuples in V are
a causal ordering of a DAG corresponding to a PLSEM that generates P.
And for all permutations of indices for which one of the tuples in V is
switched, there exists no PLSEM with this causal ordering that gener-
ates P. Moreover, by Theorem 11 (b), if (i, j) ∈ V, then j is a descendant
of i in every PLSEM that generates P. Now let us give some intuition on
the index tuples in the set V.
Example 1. Consider the DAG

1 2 3
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and the distribution P that has been generated by a PLSEM of the form

X1 = ε1

X2 = f2,1(X1) + ε2

X3 = f3,2(X2) + ε3,

with ε ∼ N (0, Id3).

(a) Let f2,1(x) = 0.5x be linear, f3,2(x) = x3 be nonlinear. The corre-
sponding PLSEM-function is F (x) = (x1, x2−0.5x1, x3−x3

2)
t. Using

elementary calculations it can be seen that etj(DF )−1∂2
i F 6≡ 0 only

for (i, j) = (2, 3). Hence, V = {(2, 3)} and all permutations σ re-
specting σ(2) < σ(3) are a causal ordering of a DAG corresponding
to a PLSEM that generates P. For example, for the causal order-
ing σ(2) < σ(3) < σ(1), there exists a (unique) PLSEM with DAG
1← 2→ 3 that generates P.

(b) Let f2,1(x) = x3 be nonlinear, f3,2(x) = 0.5x be linear. The corre-
sponding PLSEM-function is F (x) = (x1, x2 − x3

1, x3 − 0.5x2)
t. We

obtain V = {(1, 2), (1, 3)} and all permutations σ with σ(1) < σ(2)
and σ(1) < σ(3) are a causal ordering of a DAG corresponding to
a PLSEM that generates P. In particular, for σ(1) < σ(3) < σ(2)
we obtain that the PLSEM corresponding to the (unfaithful) DAG
1→ 3→ 2 with 1→ 2 generates P.

Let us make several concluding remarks: in (a), the causal ordering be-
tween nodes 1 and 3 is not fixed, whereas in (b), it is fixed. Hence, the
set V sometimes also fixes the causal ordering between two nodes that are
not adjacent in the DAG corresponding to F . Secondly, in both examples,
the causal ordering of nodes incident to nonlinear edges is fixed. This raises
the question whether it is true in general that nonlinear edges cannot be
reversed. The answer is no (see Figure 3.4), but in some sense, the models
with “reversible nonlinear edges” are rather particular. Finally, if we make
additional mild assumptions, stronger statements can be made about the
index tuples in V. This will be discussed in the next section.

3.2.3 The interplay of nonlinearity and faithfulness

As indicated in Section 3.2.2, without further assumptions, some nonlinear
edges can be reversed. An example is given in Figure 3.4.
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1

2 3 2

1

3

D1 D2

Figure 3.4: Nonlinear edges can be reversed if nonlinear effects cancel out. X1 = ε1,
X2 = X2

1 +X1 + ε2, X3 = X2 −X2
1 + ε3 with ε ∼ N (0, Id3) generates the same joint

distribution of (X1, X2, X3) as X3 = ε̃3, X1 = X3/3+ ε̃1, X2 = X1/2+X2
1 +X3/2+ ε̃2

with ε̃3 ∼ N (0, 3), ε̃1 ∼ N (0, 2/3), ε̃2 ∼ N (0, 1/2) independent. This stems from the
fact that the nonlinear parts of the functions f2,1(x) and f3,1(x) cancel out, that is,
f ′′
2,1 + f ′′

3,1 = 0. Note that this example does not contradict the previous theoretical

results. It holds that et3(DF )−1∂2
1F ≡ 0 for the PLSEM-function F corresponding

to D1. Hence the causal ordering of D2 does not contradict Theorem 7.

The edge 1 → 3 in D1 can be reversed even though f3,1 is a nonlinear
function in the PLSEM corresponding to D1. This issue arises because
the nonlinear effect from X1 to X3 in D1 cancels out over two paths. If
we write X3 as a function of ε1, ε2, ε3, that function is linear. The setting
of D1 in Figure 3.4 is rather particular as ∂2

1f2,1 and ∂2
1f3,1 are linearly

dependent. As the function space C2(R) is infinite dimensional, this is
arguably a degenerate scenario. Note that faithfulness does not save us
from this cancellation effect as P is faithful to both, D1 and D2.

Nevertheless, we can rely on a different, rather weak assumption: consider
a node i in a DAG D and assume that the corresponding functions in the
set

{∂2
i fj′,i : j

′ is a child of i in D and fj′,i is nonlinear}
are linearly independent. In other words: assume that the “nonlinear
effects” from Xi on its children are linearly independent functions. Then
these nonlinear edges cannot be reversed.

The following corollary is a direct implication of Theorem 11 (a) and (b)
in Appendix 3.A.5.

Corollary 1. Consider a PLSEM and the corresponding distribution P.
Let j be a child of i in D and let fj,i be a nonlinear function. If the
functions in the set {∂2

i fj′,i : j
′ is a child of i in D and fj′,i is nonlinear}

are linearly independent, then j is a descendant of i in any other DAG D′

of a PLSEM that generates P.

Intuitively, this should not be the end of the story: if an edge i → j
is nonlinear, then usually there should also be a nonlinear relationship
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between i and the descendants of j. Hence it should be possible to infer
some statements about the causal ordering of i and the descendants of j.
In general, this is not true as demonstrated in Figure 3.5.

1

2

3 4 3

2

4

1
D1 D2

Figure 3.5: If P is not faithful to D, descendants are not fixed. Node 4 is a descendant of
node 1 inD1 but not inD2. On the left hand side, X1 = ε1, X2 = X2

1+ε2, X3 = X2+ε3,
X4 = X3−X2+ε4, with ε ∼ N (0, Id4). On the right hand side, X1 = ε̃1, X2 = X2

1+ε̃2,
X3 = X2 + 1/2 · X4 + ε̃3, X4 = ε̃4, where ε̃1 ∼ N (0, 1), ε̃2 ∼ N (0, 1), ε̃3 ∼ N (0, 1/2)
and ε̃4 ∼ N (0, 2). Both PLSEMs generate the same distribution. Note that in this
case, additional assumptions on the nonlinear function f2,1 would not resolve the issue.

Under the assumption of faithfulness, additional statements can be made
about descendants of j. In some sense, the nonlinear effect from i on the
descendants of j, mediated through some of the descendants of j, cannot
“cancel out”. Hence, all descendants of j are fixed. The following corollary
is a direct implication of Theorem 11 (c) and (d) in Appendix 3.A.5.

Corollary 2. Let the assumptions of Corollary 1 be true. In addition,
let P be faithful to the DAG D. Fix k 6= i. Then k is a descendant of i in
each DAG D′ of a PLSEM that generates P if and only if k is a descendant
of a nonlinear child of i in D.

Note that we use the convention that a node is a descendant of itself.
Corollary 2 guarantees that certain descendants of i are descendants of i
in all DAGs D′ of PLSEMs that generate P. In that sense, it provides
a simple criterion that tells us whether or not k is descendant of i in all
of these DAGs. It is crucial to be precise: we do not assume that P is
faithful to D′, that means, we search over all PLSEMs that generate P. If
we search over the smaller space D(P), that is, additionally assume that P
is faithful to D′, the set of potential PLSEMs usually gets smaller. In
many cases, there are some edges that are not fixed if we search over all
PLSEMs, but fixed if we only search over PLSEMs with DAGs in D(P).
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As discussed in Section 3.2.1, D(P) can be represented by a single PDAG
GD(P). In the following, we will discuss the estimation of D(P) and GD(P).

3.3 Score-based estimation

Consider P that has been generated by a PLSEM and assume that P is
faithful to the underlying DAG. We denote by {X(i)}i=1,...,n i.i.d. copies of
X ∈ R

p and by Pn their empirical distribution. The goal of this section is
to derive a consistent score-based estimation procedure for the distribution
equivalence class D(P) based on Pn and one (true) DAG D0 ∈ D(P). We
first describe a “naive” recursive solution that lists all members of D(P)
and motivate the score-based approach in Section 3.3.1. We then present
a more efficient procedure that directly estimates the graphical represen-
tation GD(P) as defined in Section 3.3.2. Both methods rely on the trans-
formational characterization result in Theorem 5.

In practice, we may replace the trueD0 by an estimate, e.g., from the CAM
methodology (Bühlmann et al., 2014); see Chapter 2. If the estimate is
consistent for a DAG in D(P) we obtain consistency of our method for the
entire distribution equivalence class D(P).

3.3.1 Estimation of D(P)

Theorem 5 provides a straightforward way to list all members of D(P).
Starting from the DAG D0, one can search over all sequences of distinct
covered linear edges reversals. By Theorem 5 (a), all DAGs that are tra-
versed are in D(P) and by Theorem 5 (b), D(P) is connected with respect
to sequences of distinct covered linear edge reversals. Moreover, by The-
orem 5 (a), an edge that is nonlinear and covered in a DAG in D(P) has
the same orientation in all the members of D(P). These simple observa-
tions immediately lead to a recursive estimation procedure. Its population
version is described in Algorithm 1. The inputs are D0 (with all its edges
marked as “unfixed”) and an oracle that answers the question if a specific
edge in a DAG in D(P) is linear or nonlinear.

Unfortunately, the (true) information if a selected covered edge i→ j in a
DAG D ∈ D(P) is linear or not is generally not available. Also, it cannot
simply be deduced from the starting DAG D0 as the status of the edge
may have changed in D. For an example, see Figure 3.1: edge 1 → 3 is
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Algorithm 1 listAllDAGsPLSEM (population version)

1: if there is no covered edge in DAG D0 that is marked as unfixed then
2: Add D0 to the distribution equivalence class D(P) and terminate.
3: end if
4: Choose a covered edge i→ j in DAG D0 that is marked as unfixed.
5: if the edge i→ j is linear in D0 then
6: Define a DAG D0

1 := D0 with edge i→ j in D0
1 marked as fixed and

a DAG D0
2 equal to D0 except for a reversed edge i← j marked as

fixed in D0
2.

7: Call listAllDAGsPLSEM recursively for both DAGs D0
1 and D0

2.
8: else
9: Mark i→ j in D0 as fixed and call listAllDAGsPLSEM for DAG D0.

10: end if

not covered and linear in D1 but nonlinear and covered in D2 ∈ D(P), and
hence irreversible.

To check the status of a covered edge in a given DAG D ∈ D(P), one could
either test (non-)linearity of the functional component in the (unique)
PLSEM corresponding to D or rely on a score-based approach. In the
following we are going to elaborate on the latter. We closely follow the
approach presented in Bühlmann et al. (2014), see also Section 2.2.

We assume that the functions fj,i in equation (3.2) are from a class of
smooth functions Fi ⊆ {f ∈ C2(R),E[f(Xi)] = 0}, which is closed with
respect to the L2(PXi

)-norm and closed under linear transformations.
For a set of given basis functions, we denote by Fn,i ⊆ Fi the finite-
dimensional approximation space which typically increases as n increases.
The spaces of additive functions with components in Fi and Fn,i, respec-
tively, are closed assuming an analogue of a minimal eigenvalue condi-
tion. All details are given in Bühlmann et al. (2014) or in Section 2.2.
Without loss of generality, we assume µj = 0 as in the original paper.

For D0 ∈ D(P), let θD
0

:= ({fD0

j,i }j=1,...,p,i∈paD0 (j), {σD0

j }j=1,...,p) be the
infinite-dimensional parameter of the corresponding PLSEM. The expected
negative log-likelihood reads

E
[
− log pθD0 (X)

]
=

p∑

j=1

log(σD0

j ) + C, C =
p

2
log(2π) +

p

2
.

All D0 ∈ D(P) lead to the minimal expected negative log-likelihood, as
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by definition, the corresponding PLSEM generates the true distribution P.
For a misspecified model with wrong DAG D 6∈ D(P) we obtain the pro-
jected parameter θD =

(
{fD

j,i}j=1,...,p,i∈paD(j), {σD
j }j=1,...,p

)
as

{fD
j,i}i∈paD(j) = argmin

gj,i∈Fi

E[(Xj −
∑

i∈paD(j)

gj,i(Xi))
2]

(σD
j )2 = E[(Xj −

∑

i∈paD(j)

fD
j,i(Xi))

2]

with expected negative log-likelihood

E
[
− log

(
pDθD (X)

)]
=

p∑

j=1

log(σD
j ) + C, C =

p

2
log(2π) +

p

2
,

where all expectations are taken with respect to the true distribution P.
We refer to E

[
− log

(
pDθD (X)

)]
as the score of D and to log(σD

j ) as score

of node j in D. For a DAG D0 ∈ D(P), let

C (D0) =

{
D

D and D0 differ by a single
covered nonlinear edge reversal

}
.

Then, for D0 ∈ D(P) and D ∈ C (D0) that (without loss of generality) only
differ by the orientation of the covered edge between the nodes i and j,
the difference in expected negative log-likelihood is given as

E
[
− log

(
pDθD (X)

)]
− E

[
− log

(
pθD0 (X)

)]

= log(σD
i ) + log(σD

j )− log(σD0

i )− log(σD0

j ).
(3.9)

Since the score is decomposable over the nodes, the reversal of a covered
edge only affects the scores locally at the two nodes i and j incident to the
covered edge. We denote by

ξp : = min
D0∈D(P)

D∈C (D0)

(
E
[
− log

(
pDθD (X)

)]
− E

[
− log

(
pθD0 (X)

)])
(3.10)

the degree of separation of true models in D(P) and misspecified models
in C (D(P)) that can be reached by the reversal of one covered nonlinear
edge in any DAG D0 ∈ D(P). From the transformational characterization
in Theorem 5 it follows that ξp > 0. Combining equations (3.9) and (3.10)
motivates the estimation procedure in Algorithm 2 that takes as inputs n
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samples X(1), ..., X(n) and a DAG D0 ∈ D(P) (with all its edges marked

as “unfixed”) and outputs a score-based estimate D̂n,p of D(P).

Algorithm 2 listAllDAGsPLSEM

1: if there is no covered edge in DAG D0 that is marked as unfixed then
2: Add D0 to D̂n,p and terminate.
3: end if
4: Choose a covered edge i → j in DAG D0 that is marked as unfixed.

Let D′ be the DAG that equals D0 except for a reversed edge i← j.
5: Additively regress Xi on XpaD0 (i), Xj on XpaD0 (j), Xi on XpaD0 (i)∪{j},

Xj on XpaD0 (i)

6: Compute the standard deviations of the residuals to obtain σ̂D0

i , σ̂D0

j ,

σ̂D′

i and σ̂D′

j .

7: if | log(σ̂D′

i ) + log(σ̂D′

j )− log(σ̂D0

i )− log(σ̂D0

j )| < α then

8: Set D0
1 := D0 with i→ j marked as fixed and D0

2 := D′ with i← j
marked as fixed.

9: Call listAllDAGsPLSEM recursively for both DAGs D0
1 and D0

2.
10: else
11: Mark i→ j in D0 as fixed and call listAllDAGsPLSEM for DAG D0.
12: end if

To prove the (high-dimensional) consistency of the score-based estimation
procedure, we make the following assumptions. For a function h : R→ R,

we write P (h) = E[h(X)] and Pn(h) =
1
n

n∑
i=1

h(X(i)).

Assumption 1.

(i) Uniform upper bound on node degrees:

max
D∈D(P)∪C (D(P))

j=1,...,p

degD(j) ≤M for some positive constant M <∞.

(ii) Uniform lower bound on error variances:

min
D∈D(P)∪C (D(P))

j=1,...,p

(σD
j )2 ≥ L > 0.
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(iii) Empirical process bound:

max
D∈D(P)∪C (D(P))

j=1,...,p

∆D
n,j = oP (1),

where ∆D
n,j = sup

gj,i∈Fi

|(Pn − P )((Xj −
∑

i∈paD(j)

gj,i(Xi))
2)|.

(iv) Control of approximation error:

max
D0∈D(P)
j=1,...,p

|γD0

n,j | = o(1),

where

γD0

n,j = E[(Xj −
∑

i∈paD0 (j)

fD0

n;j,i(Xi))
2]− E[(Xj −

∑

i∈paD0 (j)

fD0

j,i (Xi))
2]

with
fD0

n;j,i = argmin
gj,i∈Fn,i

E[(Xj −
∑

i∈paD0 (j)

gj,i(Xi))
2]

and Fn,i are the approximation spaces as introduced before.

Assumption 1 (i) is satisfied if D0 has bounded node degrees, as all DAGs
under consideration are restricted to the same skeleton and hence all have
equal node degrees. In the low-dimensional setting, Assumption 1 (iii)
is justified by Lemma 5 in the supplement to Bühlmann et al. (2014)
under the assumptions mentioned there. In the high-dimensional setting,
it follows from Lemma 6 in the supplement to Bühlmann et al. (2014) and√
log(p)/n = o(1) together with Assumption 1 (i) and the assumptions

mentioned in the original paper. Assumption 1 (iv) can be ensured by
requiring a smoothness condition on the coefficients of the basis expansion
for the true functions (Bühlmann et al., 2014, Section 4.2). A proof of
Theorem 8 can be found in Appendix 3.A.6.

Theorem 8. Under Assumption 1 and ξp ≥ ξ0 > 0, for any α ∈ (0, ξ0),

P[D̂n,p = D(P)]→ 1 (n→∞)

Remark 4. The assumption on the degree of separation of true and wrong
models in Bühlmann et al. (2014) is stricter and would imply the uniform
bound ξp/p ≥ ξ0 > 0, whereas here we only require ξp ≥ ξ0 > 0. As we are
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given a true DAG D0 ∈ D(P), we solely perform local transformations of
DAGs thanks to the transformational characterization result in Theorem 5.
This only affects the scores of two nodes and allows us to rely on this much
weaker gap condition.

3.3.2 Estimation of GD(P)

The estimation of all DAGs in D(P) is feasible but may be computationally
intractable in the presence of many linear edges. For example, if D0 is a
fully connected DAG with p nodes and all its edges are linear, the number
of DAGs in D(P) corresponds to the number of causal orderings of p nodes
which is p!. It therefore would be desirable to have a procedure that works
without enumerating all DAGs in D(P). In this section we are going to
describe such a procedure that directly estimates the maximally oriented
PDAG GD(P) defined in Section 3.2.1. Recall that by Theorem 4, this
fully characterizes D(P), as D(P) can be recovered from GD(P) by listing
all consistent DAG extensions.

The main idea is the following: instead of traversing the space of DAGs,
we traverse the space of maximally oriented PDAGs that represent sets of
distribution equivalent DAGs. As an example, let D0 ∈ D(P) and i→ j be
covered and linear in D0. By Theorem 5 (a), the DAG D′ that only differs
from D0 by the reversal of i→ j is in D(P). Instead of memorizing both,
D0 and D′, and recursively searching over sequences of covered linear edge
reversals from both of these DAGs as in Algorithms 1 and 2, we represent
D0 and D′ by the PDAG G that is maximally oriented with respect to the
set of DAGs {D0, D′}. By Definition 1, G equals D0 but for an undirected
edge i — j. To construct GD(P), the idea is now to iteratively modify G by
either fixing or removing orientations of directed edges if they are nonlinear
or linear in one of the consistent DAG extensions of G in which they are
covered. For that to work based on G only, that is, without listing all
consistent DAG extensions of G, the two key questions are the following:

(Q1) For i→ j in a maximally oriented PDAG G, can we decide based on
G only if there is a consistent DAG extension of G in which i→ j is
covered?

(Q2) If i→ j is known to be covered in a consistent DAG extension of G:
can we derive a score-based check if i → j is linear or nonlinear in
this extension based on G?
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Figure 3.6: Orientation rules R1-R4 for Markov equivalence classes with background
knowledge (Meek, 1995). If there is an edge constellation as in the top row, i — j is
oriented as i→ j when closing orientations under R1-R4.

Interestingly, the answer to both questions is yes (cf. Lemma 5) and can
be derived from a related theory on how background knowledge on specific
edge orientations restricts the Markov equivalence class. It was shown in
Theorems 2 and 4 in Meek (1995) that for a pattern P of a DAG, consistent
background knowledge K (in our case: additional knowledge on edge ori-
entations due to nonlinear functions in the PLSEM) can be incorporated
by simply orienting these edges in P and closing orientations under a set
of four sound and complete graphical orientation rules R1-R4, which are
depicted in Figure 3.6. The resulting PDAG, which we denote by GP,K, is
maximally oriented with respect to the set of all Markov equivalent DAGs
with edge orientations that comply with the background knowledge.

It is important to note that we generally do not obtain GD(P) if we simply
add all nonlinear edges in D0 as background knowledge K and close ori-
entations under R1-R4. The resulting maximally oriented PDAG GP,K is
typically not equal to GD(P). For an example, consider D1 in Figure 3.1
and denote by P1 its pattern. For K = {1 → 2} we obtain the PDAG
GP1,K with undirected edge 1 — 3. But 1 → 3 in GD(P) by Definition 1
as D(P) = {D1, D2}. This illustrates that we have to add all edges to K
that are nonlinear in a DAG in D(P) in which they are covered (1→ 3 is
covered and nonlinear in D2).

Lemma 5. Let P be the pattern of a DAG and K a consistent set of back-
ground knowledge (not containing directed edges of P ). Let GP,K denote
the maximally oriented graph with respect to P and K with orientations
closed under R1-R4.
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(a) Edge i→ j in K is not covered in any of the consistent DAG exten-
sions of GP,K if and only if GP,K = GP,K\{i→j}.

(b) If GP,K 6= GP,K\{i→j}, there exists a consistent DAG extension of
GP,K in which paGP,K

(j) \ {i} is a cover for i→ j.

A proof is given in Appendix 3.A.6. By construction, GP,K = GP,K\{i→j}

if and only if the orientation of i → j in GP,K\{i→j} is implied by one of
R1-R4 applied to GP,K with undirected edge i — j. Hence, Lemma 5 (a)
answers (Q1) as it provides a simple graphical criterion to check whether
i→ j in GP,K is covered in one of the consistent DAG extensions of GP,K

based on GP,K only. Note that part (a) is closely related to Section 5 in
Andersson et al. (1997), where the authors construct the CPDAG (repre-
senting the Markov equivalence class) from a given DAG by removing edge
orientations that are not implied by a set of graphical orientation rules,
which contain R1-R3 in Figure 3.6. Lemma 5 (b) answers (Q2): it allows
us to implement a score-based check whether i → j is linear or nonlinear
in a DAG extension of GP,K in which it is covered by simply reading off
the parents of j in GP,K and use them as a cover for i → j. Details are
given in Remark 5.

We now propose the following iterative estimation procedure for GD(P): let

D0 ∈ D(P) be given, P denote its pattern and define K1 := Kinit
1 ∪ Knonl

1 ,
where Kinit

1 contains all directed edges in D0 that are undirected in P
and Knonl

1 := ∅. By construction, GP,K1
= D0. For k ≥ 1, in each

iteration k to k + 1, we apply Lemma 5 (a) and use R1-R4 to select an
edge {i→ j} ∈ Kinit

k (i→ j in GP,Kk
) that is covered in a consistent DAG

extension of GP,Kk
(that is, not implied by any of R1-R4). If Kinit

k = ∅ or
no such edge exists, we stop and output GP,Kk

. Else, we check whether
i → j is linear or nonlinear in a consistent DAG extension in which it
is covered and construct a new set of background knowledge Kk+1 :=
Kinit

k+1 ∪ Knonl
k+1 ⊆ Kk according to the following rules:

Case 1: If i→ j is linear, Knonl
k+1 = Knonl

k and Kinit
k+1 = Kinit

k \ {i→ j}.
Case 2: If i → j is nonlinear, Knonl

k+1 = Knonl
k ∪ {i → j} and Kinit

k+1 =

Kinit
k \ {i→ j}.

In particular, by construction, Case 1 implies that i — j in all GP,Kl
for

l > k, whereas Case 2 fixes the orientation i→ j in all GP,Kl
for l > k.

Lemma 6. Let {Kk}k be constructed as described above. Then, the se-
quence of maximally oriented PDAGs {GP,Kk

}k converges to GD(P).



3.3 Score-based estimation 77

The result is proven in Appendix 3.A.6 and illustrated in Figure 3.7. As in
both cases, |Kinit

k+1| = |Kinit
k |−1, {GP,Kk

}k converges to GD(P) after at most

|Kinit
1 | iterations, where |Kinit

1 | is the number of undirected edges in P .
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(d) Kinit
2 =

{
2→3, 4→5,
6→5, 5→7

}
(e) Kinit

3 =
{
2→3, 6→5,

5→7

}
(f) Kinit

4 ={2→3, 5→7}

Figure 3.7: Illustration of Algorithm 3. (a) DAG D0 with linear edges (dashed) and
nonlinear edges (solid). (b) step 2: pattern P of D0. (c) step 3: directed edges in D0

that are undirected in P are added to Kinit
1 . By construction, Ĝn,p is equal to D0.

(c)-(f) steps 4-12: 4 ← 6 is covered and linear in (c), hence, orientation is removed in

Ĝn,p in (d). 4→ 5 is covered and nonlinear in a consistent DAG extension of (d), hence,

orientation is fixed in Ĝn,p in (e). 6 → 5 is covered and linear in a consistent DAG

extension of (e), hence, orientation is removed in Ĝn,p in (f). As both edges in Kinit
4

are implied by R1 in (f), they are not covered in any of the consistent DAG extensions

of Ĝn,p in (f). Concludingly, Ĝn,p = GD(P) in (f).

Remark 5. Let {i→ j} ∈ Kinit
k be the edge chosen in iteration k to k+1.

By Lemma 5 (b), S := paGP,Kk
(j) \ {i} is a cover of i → j in one of

the consistent DAG extensions of GP,Kk
. From that, we easily obtain a

score-based version: we simply regress Xi on XS and Xj on XS∪{i} to
obtain the estimates σ̂i, σ̂j of the standard deviations of the residuals at
nodes i and j for i → j. Similarly, we regress Xi on XS∪{j} and Xj

on XS to obtain the estimates σ̂′i, σ̂
′
j for i ← j. If the estimated score

difference | log(σ̂′i) + log(σ̂′j) − log(σ̂i) − log(σ̂j)| is smaller than α, we
conclude that i → j is linear, else, nonlinear. The pseudo-code of the
score-based procedure is provided in Algorithm 3. It outputs an estimate
Ĝn,p of GD(P) based on n samples X(1), ..., X(n) and D0 ∈ D(P).
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Algorithm 3 computeGDPX

1: Initialize Ĝn,p ← D0, k ← 1, Kinit
1 ← ∅ and Knonl

1 ← ∅.
2: Construct the pattern P of D0.
3: Add directed edges in D0 that are undirected in P to Kinit

1 .
4: while There is i→ j in Kinit

k , such that its orientation is not implied

by rules R1, R2, R3 or R4 applied to Ĝn,p with undirected edge i — j
do

5: Use paĜn,p
(j) \ {i} to cover i→ j and estimate the standard devia-

tions σ̂i, σ̂j , σ̂
′
i, σ̂
′
j of the residuals as described in Remark 5.

6: if | log(σ̂′i) + log(σ̂′j)− log(σ̂i)− log(σ̂j)| < α then

7: Set Kinit
k+1 ← Kinit

k \ {i→ j} and replace i→ j by i — j in Ĝn,p.
8: else
9: Set Kinit

k+1 ← Kinit
k \ {i→ j} and keep i→ j in Ĝn,p.

10: end if
11: k ← k + 1.
12: end while
13: return Estimated PDAG Ĝn,p representing D(P).

A major advantage of Algorithm 3 is that it can be implemented based on
one adjacency matrix only that is updated in every iteration.

Theorem 9. Under Assumption 1 and ξp ≥ ξ0 > 0, for any α ∈ (0, ξ0),

P

[
Ĝn,p = GD(P)

]
→ 1 (n→∞).

Proof. The correctness of Algorithm 3 is proved in Lemma 6. The con-
sistency of the score-based estimation follows from the proof of Theo-
rem 8.

3.4 Simulations

In this section we empirically analyze the performance of computeGDPX

(Algorithm 3) in various settings. Consider P that has been generated by
a faithful PLSEM with known DAG D0. The goal is to estimate the cor-
responding distribution equivalence class D(P) based on D0 and samples
of P. In Section 3.4.1, we describe the simulation setting. We then briefly
comment on a population version of Algorithm 3 in Section 3.4.2, which is
used to obtain the underlying true distribution equivalence class D(P). In
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the subsequent sections we examine the role of the tuning parameter α
(Section 3.4.3), the performance in low- and high-dimensional settings
(Section 3.4.4) and the computation time (Section 3.4.5).

3.4.1 Simulation setting and implementation details

Throughout the section, let p denote the number of variables, n the number
of samples, nrep the number of repetitions of an experiment, pc the proba-
bility to connect two nodes by an edge and plin the probability that an edge
is linear. For each experiment we generate nrep random true DAGsD0 with
the function randomDAG in the R-package pcalg (Kalisch et al., 2012) with
parameters n = p and prob = pc. For each of the random DAGs, we gen-
erate n samples of P from a PLSEM with edge functions chosen as follows:
with probability plin, fj,i(x) = αj,i · x is linear with αj,i randomly drawn
from [−1.5,−0.5]∪ [0.5, 1.5]. Otherwise, fj,i(x) is nonlinear and randomly
drawn from the set {c0·cos(c1·(x−c2)), c0·tanh(c1·(x−c2))} to have a mix of
monotone and non-monotone functions in the PLSEM. In order to be able
to empirically support our theoretical findings we choose the parameters
c0 ∼ Unif([−2,−1] ∪ [1, 2]), c1 ∼ Unif([1, 2]) and c2 ∼ Unif([−π/3, π/3])
such that the nonlinear functions are “sufficiently nonlinear” and not too
close to linear functions. Exemplary randomly generated nonlinear func-
tions are shown in Figure 3.8. The noise variables satisfy εj ∼ N (0, σ2

j )

with σ2
j ∼ Unif([1, 2]) for source nodes (nodes with empty parental set)

and σ2
j ∼ Unif([1/4, 1/2]) otherwise.

−2 −1 0 1 2

−2

−1

0

1

2

−2 −1 0 1 2

−2

−1

0

1

2

Figure 3.8: Exemplary nonlinear functions used in simulated PLSEMs

In order to estimate the residuals in step 5 of computeGDPX, we use additive
model fitting based on the R-package mgcv with default settings (Wood,
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2003, 2006). The basis dimension for each smooth term is set to 6.

There exists no state-of-the-art method that we can compare our algo-
rithm with. In principle, given D0, we can estimate the corresponding
PLSEMs for all DAGs in the Markov equivalence class of D0 and compute
their scores. This also gives us an estimate for D(P), but as explained in
Section 3.3.2, is less efficient than computeGDPX. We therefore only evalu-
ate how accurately computeGDPX estimates GD(P). For that, let GD(P)

and Ĝ denote the true and estimated graphical representations of D(P),
respectively. We count

(i) the number of edges that are undirected in GD(P) but directed in Ĝ
(“falsely kept orientations”)

(ii) the number of edges that are directed in GD(P) but undirected in Ĝ
(“falsely removed orientations”).

Note that as we assume faithfulness, all DAGs in D(P) have the same
CPDAG. By construction, computeGDPX does not falsely remove orienta-
tions on the directed part of the CPDAG as all these edges are not covered
in any of the consistent DAG extensions. To obtain the percentages shown
in Figures 3.9 to 3.11 we therefore only divide by the number of undirected
edges in the CPDAG. The percentages then reflect a measure for the frac-
tion of “correct score-based decisions”.

3.4.2 Reference method for the true distribution
equivalence class D(P)

To be able to characterize the true D(P) based on D0 and the correspond-
ing PLSEM we assume that for each i ∈ {1, ..., p}, the functions in the set
{∂2

i fj,i : j is a child of i in D0 and fj,i is nonlinear}i are linearly indepen-
dent for the PLSEM with DAG D0 that generates P. As all functions in
our simulations are randomly drawn (cf. Section 3.4.1), the assumption is
satisfied with probability one for D0 and the corresponding edge functions.

This additional assumption rules out cases where nonlinear effects in D0

exactly cancel out over different paths and hence excludes cases as in Fig-
ure 3.4 where nonlinear edges may be reversed. In particular, it allows us
to use Theorem 11 to obtain GD(P) only based on D0 and knowledge of the
functions in the corresponding PLSEM: first, we use Theorem 11 (c) to
construct the set V. For all nodes i in D0, corresponding sets of nonlinear
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children Ci (as defined in Appendix 3.A.5) and k 6= i, we add (i, k) to V
if k is a descendant of a node in Ci. In principle, we now apply Algo-
rithm 3, but instead of the score-based decision in steps 6-9, we use the
set V to decide about edge orientations. Let i → j be the edge chosen in
step 4 and D one of the consistent DAG extensions in which i→ j is cov-
ered. If (i, j) ∈ V, by Theorem 11 (d) and Remark 10, i→ j in all DAGs
of a PLSEM that generates P. Hence, in particular, i → j in all DAGs
in D(P) and by definition, i→ j in GD(P). If (i, j) 6∈ V , by Lemma 7, the
DAG D′ that differs from D only by reversing i → j is in D(P). Hence,
by definition, i — j in GD(P).

3.4.3 The role of α for varying sample size

In computeGDPX, the score-based decision if a selected covered edge is linear
or nonlinear is based on a comparison of the absolute difference of the
expected negative log-likelihood scores of two models with a parameter α.
In Figure 3.9, we empirically analyze the dependence of Ĝ on α for sparse
graphs and different sample sizes.
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Figure 3.9: Performance of computeGDPX for varying sample sizes and values of α (x-axis)
in sparse DAGs with plin = 0.2 (top) and plin = 0.8 (bottom). Parameters: p = 10,
nrep = 100 and pc = 2/9 (expected number of edges: 10).
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Optimally, one would choose α close to ξp, see equation (3.10), but ξp
depends on the setting (number of variables, sparsity of the DAG, degree of
nonlinearity of the nonlinear functions, etc.) and is unknown. In practice,
the parameter α reflects a measure of how conservative the estimate Ĝ of
GD(P) is (in the sense of how many causal statements can be made). For

example, choosing α large results in a conservative estimate Ĝ with many
undirected edges (a large set D(P) of equivalent DAGs). computeGDPX

exhibits a good performance for a wide range of values of α. In particular,
as the sample size increases, choosing α small results in very accurate
estimates Ĝ of GD(P). The sparsity of the DAG does not strongly influence
the results, see Figure 3.10.
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Figure 3.10: Performance of computeGDPX for varying sample sizes and values of α (x-
axis) in dense DAGs for plin = 0.2 (top) and plin = 0.8 (bottom). Parameters: p = 10,
nrep = 100 and pc = 6/9 (expected number of edges: 30).

3.4.4 The dependence on p: low- and high-
dimensional setting

From the fact that computeGDPX only relies on local score computations,
we expect that its performance does not strongly depend on the number
of variables p as long as the neighborhood sizes in the DAGs (the node de-
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grees) are similar for different values of p. We simulate nrep = 100 random
DAGs with p = 10, p = 100 and p = 1000 nodes, respectively. Moreover,
we set pc = 2/(p−1) which results in an expected number of p edges and an
expected node degree of 2 for all settings. As demonstrated in Figure 3.11,
the accuracy of computeGDPX with respect to varying values of α is barely
affected by the number of variables p. In particular, computeGDPX exhibits
a good performance even in high-dimensional settings with p = 1000 and
sample sizes in the hundreds. The same conclusions hold for pc = 6/(p−1)
with an expected node degree of 6 (not shown).
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Figure 3.11: Performance of computeGDPX for varying sample sizes and values of α (x-
axis) for p = 10 (top), p = 100 (middle) and p = 1000 (bottom). Parameters: plin = 0.5,
nrep = 100 and pc = 2/(p− 1) (expected number of edges: p).
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3.4.5 Computation time

Lastly, we analyze the computation time of computeGDPX depending on
the number of variables p and sparsity pc. We examine the following two
scenarios: (i) most of the functions in the PLSEM are nonlinear (plin = 0.2)
and (ii) the worst-case scenario (w.r.t. computation time) where all the
functions in the PLSEM are linear (plin = 1) and D(P) is equal to the
Markov equivalence class (GD(P) is equal to the CPDAG).

For all combinations of p ∈ {10, 20, 50, 100, 250, 500, 1000, 2000, 5000} and
pc ∈ {2/(p− 1), 8/(p− 1)} and scenarios (i) and (ii), we measure the time
consumption of computeGDPX for n = 400 and α = 0.05. In the scenario
where all the functions are linear, we additionally compare it to dag2cpdag
in the R-package pcalg, which constructs the CPDAG based on iterative
application of R1-R3 in Figure 3.6. The median CPU times are shown in
Table 3.1.

Table 3.1: Median CPU times [s] for computeGDPX and for dag2cpdag that iteratively
applies R1 to R3 in Figure 3.6. nrep = 100 repetitions for plin = 0.2 and nrep = 20
repetitions for plin = 1.

plin = 0.2 plin = 1
computeGDPX computeGDPX dag2cpdag

E[|edges|] p 4p p 4p p 4p
p = 10 0.092 0.785 0.157 1.101 0.007 0.005
p = 20 0.150 0.105 0.174 0.162 0.006 0.006
p = 50 0.300 0.164 0.332 0.223 0.008 0.009
p = 100 0.604 0.281 0.665 0.325 0.014 0.016
p = 250 1.446 0.630 1.740 0.717 0.072 0.087
p = 500 2.705 1.253 3.486 1.523 0.395 0.599
p = 1000 5.616 2.513 6.603 2.974 3.464 4.231
p = 2000 11.504 5.380 13.493 6.331 25.463 31.591
p = 5000 29.226 16.276 35.094 18.462 400.324 591.574

computeGDPX is able to estimate GD(P) in less than a minute even if the
number of variables is in the thousands. In general, the speed of our
implementation heavily depends on the sparsity of the DAGs. This can be
seen from the case with p = 10 and expected number of edges 40. In this
setting the DAGs are almost fully connected. This in turn implies that not
many of the edges are fixed due to v-structures and a lot of score-based
tests have to be performed. On the other hand, if the underlying DAGs are
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sparse, we observe that computeGDPX even outperforms dag2cpdag with
respect to computation time if the number of variables is large. Note that
this only holds for sparse DAGs. In general, dag2cpdag is much faster
than our implementation (not shown).

3.5 Conclusions

We comprehensively characterized the identifiability of partially linear
structural equation models with Gaussian noise (PLSEMs) from various
perspectives. First, we proved that under faithfulness we obtain graphical
and transformational characterizations of distribution equivalent DAGs
similar to well-known characterizations of Markov equivalence classes of
DAGs. More generally, we demonstrated that reinterpreting PLSEMs as
PLSEM-functions leads to an interesting geometric characterization of all
PLSEMs that generate the same distribution P, as they can all be ex-
pressed as constant rotations of each other. Therefrom we derived a pre-
cise condition how PLSEM-functions (and hence also how single nonlinear
additive components in PLSEMs) restrict the set of potential causal order-
ings of the variables and showed how it can be leveraged to conclude about
the causal relations of specific pairs of variables under mild additional as-
sumptions. The theoretical results were complemented with an efficient
algorithm that finds all equivalent DAGs to a given DAG or PLSEM. We
proved its high-dimensional consistency and evaluated its performance on
simulated data.

These characterizations of PLSEMs (and corresponding DAGs) that gen-
erate the same distribution P are crucial for further algorithmic develop-
ments in structure learning, for example in the spirit of Castelo and Kocka
(2003), or for Monte Carlo sampling in Bayesian settings, see a related
discussion in Andersson et al. (1997, Section 1).
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Appendix 3.A Technical results and proofs

This appendix contains detailed specifications and proofs of the theorems
in Chapter 3. The order of the presentation matches the one in the previous
sections. Figure 3.12 gives an overview of the dependency structure of the
different theorems.

Theorem 5

Theorem 11

Theorem 4

Corollary 1

Corollary 2Theorem 7

Lemma 7

Lemma 8

Theorem 10Lemma 10

Lemma 11

Lemma 12Proposition 1

Lemma 9

Theorem 6

Functional characterization
(Appendix 3.A.3)

Transformational characterization
(Appendix 3.A.2)

Causal ordering
characterization
(Appendix 3.A.4)

Graphical
representation

(Appendix 3.A.1)

Nonlinearity & faithfulness
(Appendix 3.A.5)

Figure 3.12: Proof structure for the characterization results in Section 3.2. The proofs
for Section 3.3 are given in Appendix 3.A.6 (not depicted).

3.A.1 Proof of the graphical characterization
(Theorem 4)

Proof. By definition, D(P) is a subset of the set of all consistent DAG
extensions of GD(P). It remains to show, that the set of all consistent DAG
extensions of GD(P) is a subset of D(P). Suppose there is a consistent DAG

extension D̃ of GD(P) such that D̃ 6∈ D(P). Let D ∈ D(P). As both, D

and D̃ are consistent DAG extensions ofGD(P), they have the same skeleton
and v-structures and are Markov equivalent. Hence, there exists a sequence
of distinct covered edge reversals transforming D into D̃ (Chickering, 1995,
Theorem 2). Let us denote the sequence of traversed DAGs by D =
D1, ..., Dm = D̃. If all covered edge reversals are linear, D̃ ∈ D(P) by
Theorem 5 (a), which contradicts the assumption. Therefore, there is at
least one covered nonlinear edge reversal in this sequence. Without loss
of generality, for 1 ≤ r ≤ m − 1, let the edge reversal of i → j to i ← j
between Dr and Dr+1 be the first covered nonlinear edge reversal in the
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above sequence. First note that as the sequence of covered edge reversals
is distinct, i → j in D and i ← j in D̃. Moreover, as Dr is obtained
from D by a sequence of covered linear edge reversals, Dr ∈ D(P) by
Theorem 5 (a). Again, by Theorem 5 (a), as Dr ∈ D(P) and i → j is
covered and nonlinear in Dr, i → j for all DAGs D′ ∈ D(P). Therefore,
by Definition 1, i → j in GD(P) which contradicts the assumption that D̃
is a consistent DAG extension of GD(P).

3.A.2 Proof of the transformational characterization
(Theorem 5)

Proof. (a): By Lemma 8 there exists a unique PLSEM with DAG D that
generates P. Let F denote the function that corresponds to this PLSEM as
defined in Section 3.2.2. Without loss of generality let us assume that DF
is lower triangular. Furthermore, as i→ j is covered in D, no other child
of i is an ancestor of j and we can assume that j = i+ 1. The differential
DF is of the form



Var(ε1)
−1/2 0 . . . . . . . . . 0

∂1F2
. . .

. . .
. . .

. . .
...

...
. . . Var(εi)

−1/2 0
. . .

...
...

. . . ∂iFi+1 Var(εi+1)
−1/2 . . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

∂1Fp . . . . . . . . . . . . Var(εp)
−1/2




.

Let us write v = (DF )−1∂2
i F , that is, ∂2

i F = DFv. As DF is lower
triangular with

(
Var(εi)

−1/2
)
i=1,...,p

on the diagonal we get v1, . . . , vi = 0

and vi+1 = Var(εi+1)
1/2∂2

i Fi+1. Hence,

eti+1(DF )−1∂2
i F = Var(εi+1)

1/2∂2
i Fi+1.

Now recall that by definition of F ,

∂2
i Fi+1 = − 1

Var(εi+1)1/2
∂2
i fi+1,i(xi).

By combining these two equations,

eti+1(DF )−1∂2
i F = −∂2

i fi+1,i(xi). (3.11)
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By Lemma 7, the edge can be reversed if and only if (i, i+ 1) 6∈ V, which
by definition of V is the case if and only if

eti+1(DF )−1∂2
i F ≡ 0.

By equation (3.11) this is the case if and only if ∂2
i fi+1,i(xi) ≡ 0. Hence,

the edge can be reversed if and only if the edge is linear. This concludes
the proof of the “if and only if” statement.

If the edge i → i + 1 is nonlinear, we can argue analogously as above
that (i, i + 1) ∈ V . By Theorem 7, all causal orderings of PLSEMs that
generate P satisfy σ(i) < σ(i + 1). As, by definition, P is faithful to all
DAGs in D(P), they all have the same skeleton. Hence, i → i + 1 in all
DAGs in D(P).

(b): As D,D′ ∈ D(P), D′ is Markov equivalent to D. Hence, there exists a
sequence of distinct covered edge reversals transforming D into D′ (Chick-
ering, 1995, Theorem 2). Let us denote the sequence of traversed DAGs by
D = D1, . . . , Dm = D′. By part (a), we are done if we can show that each
DAG Dr in this sequence lies in D(P). We prove this by induction. So let
us assume Dr ∈ D(P) with r < m. Then Dr+1 only differs from Dr by the
reversal of a covered edge, w.l.o.g. i→ j in Dr and j → i in Dr+1. By con-
struction, all covered edge reversals are distinct, hence, j → i in D′. Define
the set V as in Theorem 7. As D,D′ ∈ D(P), by Theorem 7, (i, j) 6∈ V .
Hence by Lemma 7 we immediately get that Dr+1 ∈ D(P). Moreover, by
Theorem 5 (a), i→ j is linear. This concludes the proof.

Lemma 7. Let D ∈ D(P). Let i → j be a covered edge in D. Let D′ be
a DAG that differs from D only by reversing i → j. Let F be a PLSEM-
function of P and define V as in equation (3.8). Then D′ ∈ D(P) if and
only if (i, j) 6∈ V.

Proof. ”⇒”: Let D′ ∈ D(P) and (i, j) ∈ V . Consider a causal ordering σ
of D′. As j → i in D′, σ(j) < σ(i). By Theorem 7 this leads to a
contradiction. Hence if D′ ∈ D(P), then (i, j) 6∈ V.
“⇐”: Let (i, j) 6∈ V. Let σ be a causal ordering of D. As i → j is
covered in D, no other child of i is an ancestor of j in D. Hence without
loss of generality we can assume that σ(j) = σ(i) + 1. Define σ′ as the
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permutation with i and j switched, that is,

σ′(k) =





σ(k) k 6∈ {i, j}
σ(j) k = i

σ(i) k = j.

Note that as σ(j) = σ(i)+1, the causal orderings of other pairs of variables
are unaffected. Hence,

σ(k) < σ(l) ⇐⇒ σ′(k) < σ′(l) for all k, l with {k, l} 6= {i, j}. (3.12)

As σ is a causal ordering of a PLSEM that generates P, by Theorem 7,

σ(k) < σ(l) for all (k, l) ∈ V. (3.13)

We want to show that the same holds for σ′. Let (k, l) ∈ V. As (i, j) 6∈ V,
(k, l) 6= (i, j). Hence, by equations (3.12) and (3.13), σ′(k) < σ′(l). This
proves that

σ′(k) < σ′(l) for all (k, l) ∈ V.

By Theorem 7, σ′ is a causal ordering of a PLSEM that generates P.
Consider the DAG D̃ of this PLSEM. Then P is Markov with respect to D̃
and by Proposition 17 of Peters et al. (2014), P satisfies causal minimality
with respect to D̃. By Lemma 1 in Chickering (1995), P is Markov and
faithful with respect to D′ and we know that σ′ is a causal ordering of both
D̃ and D′. Now we want to show that this implies D̃ = D′. Without loss of
generality assume σ′ = Id. First, we want to show that paD̃(l) ⊇ paD′(l)

for all l. Fix l. Consider the parental set paD̃(l) of l in D̃ and let k be a

parent of l in D′ but not in D̃. As σ′ = Id is a causal ordering of D′, k < l,
and as σ′ = Id is a causal ordering of D̃ as well, k is not a descendant of l
in D̃. As P is Markov with respect to D̃,

Xl ⊥⊥ Xk|XpaD̃(l).

Hence, as P is faithful to D′, l and k are d-separated by paD̃(l) in D′.
But k is a parent of l in D′, contradiction. Hence paD̃(l) ⊇ paD′(l) for

all l. P satisfies causal minimality with respect to D̃, hence paD̃(l) =

paD′(l) for all l. This proves D̃ = D′. Therefore, there exists a PLSEM
with DAG D′ that generates P and P is faithful with respect to D′. By
definition, D′ ∈ D(P).
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Lemma 8. Let P be generated by a PLSEM. Let D ∈ D(P). Then there
exists a unique PLSEM (unique set of intercepts, edge functions and Gaus-
sian error variances) with DAG D that generates P.

Proof. By definition of the distribution equivalence class D(P) there ex-
ists such a PLSEM with DAG D that generates P. Now we will show
that this PLSEM is unique. Consider another PLSEM with DAG D that
generates P. For a given node j we have

µj +
∑

i∈paD(j)

fj,i(Xi) = E[Xj |XpaD(j)] = µ̃j +
∑

i∈paD(j)

f̃j,i(Xi).

By definition of PLSEMs, the expectations of the fj,i(Xi) and f̃j,i(Xi)
are zero, hence we have µj = µ̃j . As σk > 0 for all k ∈ {1, . . . , p}, the
density of X is positive on R

p. Recall that by definition, fj,i and f̃j,i are
continuous. Hence, for all x ∈ R

p,

∑

i∈paD(j)

fj,i(xi) = lim
δ→0

E


 ∑

i∈paD(j)

fj,i(Xi)|X ∈ Bδ(x)




= lim
δ→0

E


 ∑

i∈paD(j)

f̃j,i(Xi)|X ∈ Bδ(x)


 =

∑

i∈paD(j)

f̃j,i(xi),

where Bδ(x) denotes the closed ball around x with radius δ. Take an
arbitrary i ∈ paD(j). By taking the derivative with respect to xi on both
sides of the equation we obtain

f ′j,i(xi) = f̃ ′j,i(xi).

Hence there exists a constant c such that

fj,i(xi) = c+ f̃j,i(xi).

By definition of PLSEMs, we have E[fj,i(Xi)] = 0 and E[f̃j,i(Xi)] = 0.

Hence, c = 0 and fj,i = f̃j,i for all i ∈ paD(j). We just showed that

µj = µ̃j and fj,i = f̃j,i. It remains to show that σj = σ̃j :

σ2
j = Var


Xj − µj −

∑

i∈paD(j)

fj,i(Xi)




= Var


Xj − µ̃j −

∑

i∈paD(j)

f̃j,i(Xi)


 = σ̃2

j .
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Hence, the intercepts, edge functions and Gaussian error variances of both
PLSEMs are equal, which concludes the proof.

3.A.3 Proof of the functional characterization
(Theorem 6)

In the following, let P be generated by a PLSEM.

Definition 2 (PLSEM-functions). We call F : R
p → R

p a PLSEM-
function of P if there exists a PLSEM that generates P such that F can be
written as in equation (3.3).

Remark 6. For a PLSEM-function F of P we can retrieve the unique
corresponding PLSEM (i.e. the unique DAG, unique set of intercepts,
edge functions and Gaussian error variances) through equations (3.4), (3.5)
and (3.6).

Proposition 1. A function F : Rp → R
p is a PLSEM-function of P if

and only if

1. F is twice continuously differentiable,

2. ∂k∂lF ≡ 0 for all k 6= l,

3. there exists a permutation σ such that (DFiσ−1(j))ij is lower trian-
gular with constant positive entries on the diagonal.

4. If X ∼ P, then F (X) ∼ N (0, Idp),

We call a permutation σ that satisfies (3) a causal ordering of the PLSEM-
function F . Define the directed graph D, the functions fj,i, σ

2
j = Var(εj)

and µj through equations (3.4) – (3.6). The first condition reflects that the
functions fj,i are twice continuously differentiable. The second condition
reflects that the functions fj,i depend on xi only. The third condition en-
sures that the directed graph D is acyclic and that the variances of all εj are
strictly positive. The last condition ensures that the distribution generated
by this PLSEM is P.

Proof. “⇒” By definition of a PLSEM and equation (3.3).
“⇐”: Without loss of generality let us assume that the indices are ordered
such that σ = Id. By (3), DF is lower triangular with constant positive
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entries on the diagonal. Let Z ∼ N (0, Idp) and define X := F−1(Z).
Using (4), we obtain X ∼ P. Use (1) and (2) and Lemma 9 for each
component of Fj , i.e. decompose Fj(x) = µ̃j +

∑
i f̃j,i(xi) with twice

continuously differentiable functions f̃j,i. Here we choose µ̃j and the f̃j,i
(i.e. the constants) such that E[f̃j,i(Xi)] ≡ 0 for all j 6= i and f̃j,j such

that f̃j,j(0) = 0. We define the parental sets pa(j) := {i 6= j : f̃j,i 6≡ 0}.
As DF is lower triangular, pa(j) ⊆ {1, . . . , j − 1}, hence the directed
graph D defined by these parental sets is acyclic. As DF has constant
positive entries on the diagonal, ∂jFj is constant, and we can define the

error variances σ2
j := 1/ (∂jFj)

2
> 0. Furthermore, we define the functions

fj,i(xi) := −σj f̃j,i(xi) that only depend on xi and constants µj := −σj µ̃j .
To sum it up, we have the following relations:

Fj(x) =
1

σj


xj − µj −

∑

i∈paD(j)

fj,i(xi)


 ,

with DAG D, fj,i 6≡ 0, E[fj,i(Xi)] = 0 for all i ∈ paD(j). Using that
F (X) = Z ∼ N (0, Idp),

Xj = µj +
∑

i∈paD(j)

fj,i(Xi) + σjZj .

By defining the Gaussian errors εj := σjZj , it is immediate to see that
σj , fj,i, D define a PLSEM that generates P.

Theorem 10 (Functional characterization). Let F be a PLSEM-function
of P. Let σ be a permutation. Define Πσ

i+1 as the linear projection on the
space 〈∂σ−1(i+1)F, . . . , ∂σ−1(p)F 〉 and Πσ

p+1 := 0 ∈ R
p×p. Let G : Rp → R

p.
Then G is a PLSEM-function of P with causal ordering σ if and only if

(
Id−Πσ

i+1

)
∂2
σ−1(i)F ≡ 0, i = 1, . . . , p,

and

Gi =

(
(Id−Πσ

i+1)∂σ−1(i)F

‖(Id−Πσ
i+1)∂σ−1(i)F‖2

)t

F. (3.14)

In that case, the matrices Πσ
i+1 and the vectors (Id − Πσ

i+1)∂σ−1(i)F are
constant.

Remark 7. This theorem tells us that every potential causal ordering sat-
isfies

(
Id−Πσ

i+1

)
∂2
σ−1(i)F ≡ 0, i = 1, . . . , p, and contains a concrete for-

mula to compute the unique PLSEM-function for this given causal order-
ing. Furthermore, every causal ordering that satisfies that condition gives
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rise to a corresponding PLSEM-function by equation (3.14). As F is a
PLSEM-function, its Jacobian DF is invertible. This then implies that
‖(Id−Πσ

i+1)∂σ−1(i)F‖2 > 0, hence, equation (3.14) is well-defined. Given
the PLSEM-function, we can retrieve the unique corresponding PLSEM
(i.e. the unique DAG, unique set of intercepts, edge functions and Gaus-
sian error variances) through equations (3.4) – (3.6).

Remark 8. If G is a PLSEM-function, from this theorem it follows that
the vectors

(
(Id−Πσ

i+1)∂σ−1(i)F

‖(Id−Πσ
i+1)∂σ−1(i)F‖2

)t

i = 1, . . . , p,

are constant in x, have unit norm and are orthogonal for i = 1, . . . , p.
Hence the row-wise concatenation of these vectors for i = 1, . . . , p forms
an orthogonal matrix O and by equation (3.14): G = OF .

Proof. “⇒”. Let G be a PLSEM-function of P with causal ordering σ.
Without loss of generality let σ = Id, i.e. without loss of generality we
assume that DG is lower triangular. We write Πi+1 instead of Πσ

i+1 for
brevity. Define J := G(F−1). By Proposition 1 (3), detDG and detDF
are constant. Hence, detDJ is constant, too. Furthermore, by Proposi-
tion 1 (4), J(ε) ∼ N (0, Idp) for ε ∼ N (0, Idp). By Lemma 11 we obtain

‖G(x)‖22 = ‖F (x)‖22 for all x ∈ R
p.

By differentiating on both sides,

GtDG = F tDF.

We assumed without loss of generality that σ = Id, hence by Proposition 1
the differential DG is lower triangular and the diagonal entries ci := ∂iGi

are positive. Hence we can recursively solve for i = 1, . . . , p and obtain

Gi =
1

ci


F t∂iF −

∑

j>i

Gj∂iGj


 (3.15)

Using induction, we will show that

ciGi = F t(Id−Πi+1)∂iF, (3.16)

that ci = ‖(Id−Πi+1)∂iF‖2, that the matrix Πi+1 is constant and that the
vectors (Id − Πi+1)∂

2
i F ≡ 0 for i = 1, . . . , p. By using equation (3.15) we
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immediately obtain equation (3.16) for i = p and by Lemma 10 we obtain
(Id−Πp+1)∂

2
pF = ∂2

pF ≡ 0. Hence,

c2p = cp∂pGp = (∂pF )t∂pF = ‖(Id−Πp+1)∂pF‖22.

Furthermore, (Id−Πp+1)∂pF is a constant vector and hence by definition
the matrix Πp is constant. Now let us assume cjGj = F t(Id− Πj+1)∂jF ,
cj = ‖(Id − Πj+1)∂jF‖2, that the matrix Πj is constant and that the
vectors (Id − Πj+1)∂

2
jF ≡ 0 for all p ≥ j > i ≥ 1. We want to prove

these statements for j = i. By using equation (3.15) and the induction
assumption we can rewrite ciGi,

ciGi = F t∂iF −
∑

j>i

Gj∂iGj

= F t∂iF −
∑

j>i

F t(Id−Πj+1)∂jF

cj

∂iF
t(Id−Πj+1)∂jF

cj

= F t


Id−

∑

j>i

(Id−Πj+1)∂jF

‖(Id−Πj+1)∂jF‖2
((Id−Πj+1)∂jF )

t

‖(Id−Πj+1)∂jF‖2


 ∂iF

= F t (Id−Πi+1) ∂iF.

By Lemma 10 we get (Id−Πi+1) ∂
2
i F ≡ 0 and hence

c2i = ci∂iGi

= ∂i
(
F t (Id−Πi+1) ∂iF

)

= ∂iF
t (Id−Πi+1) ∂iF + 0

= ‖(Id−Πi+1)∂iF‖22.

It remains to show that Πi is constant. We already proved that the vector
(Id−Πi+1) ∂

2
i F ≡ 0. Πi+1 is constant by induction assumption. Thus,

∂i ((Id−Πi+1) ∂iF ) ≡ 0. By Proposition 1 (2), ∂iF depends only on xi.
Hence the vector (Id−Πj+1) ∂jF is constant for j = i. By induction
assumption we also know that this is true for all j > i. By definition, we
know that

Πi =
∑

j≥i

(Id−Πj+1)∂jF

‖(Id−Πj+1)∂jF‖2
((Id−Πj+1)∂jF )

t

‖(Id−Πj+1)∂jF‖2
.

As shown, the quantities on the right-hand side are constant. This con-
cludes the proof by induction.
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“⇐” We will show 1)− 4) of Proposition 1 to prove that G is a PLSEM-
function of P. By Lemma 12, the vectors (Id−Πσ

i+1)∂σ−1(i)F are constant.
As F is twice continuously differentiable, G is twice differentiable as well.
This proves 1). By part 2) of Proposition 1, ∂k∂lF = 0 for all k 6= l.
Recall that the vector (Id − Πσ

i+1)∂σ−1(i)F is constant. Let k 6= l. Hence
∂k∂lGi = (∂k∂lF )t(Id − Πσ

i+1)∂σ−1(i)F/‖(Id − Πσ
i+1)∂σ−1(i)F‖2 = 0. This

proves that for all k 6= l, ∂k∂lG = 0, i.e., part 2) of Proposition 1. Now
we want to show that (DGiσ−1(j))ij is lower triangular. By construction,
DGiσ−1(j) = ∂σ−1(j)Gi = ∂σ−1(j)F

t(Id − Πσ
i+1)∂σ−1(i)F = 0 for all j > i

as by definition ∂σ−1(j)F
t(Id − Πσ

i+1) = 0. It remains to be shown that
(DGiσ−1(j))ij has positive constant entries on the diagonal. Recall that by
assumption (Id − Πσ

i+1)∂
2
σ−1(i)F ≡ 0 for i = 1, . . . , p and that the vector

(Id−Πσ
i+1)∂σ−1(i)F is constant. The vector is non-zero as DF is invertible.

Hence,

DGiσ−1(i) =
∂σ−1(i)F

t(Id−Πσ
i+1)∂σ−1(i)F

‖(Id−Πσ
i+1)∂σ−1(i)F‖2

=
‖(Id−Πσ

i+1)∂σ−1(i)F‖22
‖(Id−Πσ

i+1)∂σ−1(i)F‖2
.

Thus DGiσ−1(i) is constant. This proves 3). Let X ∼ P. Now it remains
to be shown that G(X) ∼ N (0, Id). To this end, note that by definition
of Πσ

j+1, the vectors

(Id−Πσ
j+1)∂σ−1(j)F, j = 1, . . . , p,

are orthogonal. As shown above, these vectors are constant and non-zero,
therefore (Id − Πσ

j+1)∂σ−1(j)F, j = 1, . . . , p, is an orthogonal basis of Rp.

Therefore, ‖F (x)‖22 = ‖G(x)‖22 for all x ∈ R
p. As detDG is constant,

we have by the change of variables formula that | detDG| = | detDF |
(probability densities integrate to one). Hence, again by the change of
variables formula, G(X) ∼ N (0, Id), which is 4). This concludes the proof
of the “if and only if” statement.

Lemma 12 proves that in that case, the matrices Πσ
i+1 and the vectors

(Id−Πσ
i+1)∂σ−1(i)F are constant. This concludes the proof.

Lemma 9. Let F : R
p 7→ R be twice continuously differentiable. If

∂k∂lF ≡ 0 for all l 6= k, then F can be written in the form

F (x) = c+ g1(x1) + . . .+ gp(xp). (3.17)

In this case, the functions gi(xi) are unique up to constants and twice
continuously differentiable.
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Proof. Fix an arbitrary y ∈ R
p. We use Taylor:

F (x)− F (y) =

∫ x1

y1

∂1F (z, x2, ..., xp)dz + ...

+

∫ xp

yp

∂pF (y1, y2, ..., yp−1, z)dz

=

∫ x1

y1

∂1F (z, 0, ..., 0)dz + ...+

∫ xp

yp

∂pF (0, 0, ..., 0, z)dz

In the second line we used that ∂k∂lF ≡ 0 for all l 6= k. Now we can define

gi(xi) =

∫ xi

yi

∂iF (0, ..., 0, z, 0, ..., 0)dz,

which proves equation (3.17) with constant c = F (y). Furthermore, as

∂iF = ∂igi(xi),

the gi are unique up to constants. This completes the proof.

Lemma 10. Let F,G : Rp → R
p be PLSEM-functions of P. Let Π be a

constant projection matrix. If ciGi = F t(Id − Π)∂iF for a constant ci,
then

(Id−Π)∂2
i F ≡ 0.

Proof. Recall Proposition 1. We will use properties 1), 2) and 3) of F
and G in the proof. As G is a PLSEM-function, by Proposition 1

∂jF
t(Id−Π)∂2

i F = ci∂i∂jGi = 0 for all j 6= i.

As Π is a projection matrix, (Id−Π)t(Id−Π) = (Id−Π)(Id−Π) = (Id−Π),
which implies

((Id−Π)∂jF )
t
(Id−Π)∂2

i F = 0 for all j 6= i. (3.18)

As F is a PLSEM-function, by Proposition 1, there exists a permutation σ
such that (DFkσ−1(l))kl is lower triangular with constant positive entries on
the diagonal. Without loss of generality let us assume that σ = Id, i.e, that
the variables xi are ordered such that DF is lower triangular with constant
positive entries on the diagonal. Hence 〈∂pF, . . . , ∂i+1F 〉 = 〈ep, . . . , ei+1〉,
and ∂2

i F ∈ 〈ep, . . . , ei+1〉. Furthermore, ∂2
i F ∈ 〈∂pF, . . . , ∂i+1F 〉 which im-

plies (Id−Π)∂2
i F ∈ 〈(Id−Π)∂pF, . . . , (Id−Π)∂i+1F 〉. By equation (3.18),

(Id−Π)∂2
i F ≡ 0.
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Lemma 11. Let ε ∼ N (0, Idp) and J : Rp → R
p be a C1-diffeomorphism

such that detDJ is constant and J(ε) ∼ N (0, Idp). Then, | detDJ | = 1
and

‖J(e)‖2 = ‖e‖2 for all e ∈ R
p.

Proof. By assumption, for any Borel set A ⊂ R
p, P[ε ∈ A] = P[J−1(ε)∈A].

Hence, by the change of variables formula,

∫

A

1(√
2π
)p exp

(
−‖ε‖

2
2

2

)
dε =

∫

J(A)

1(√
2π
)p exp

(
−‖ε‖

2
2

2

)
dε

=

∫

A

| detDJ | 1(√
2π
)p exp

(
−‖J(ε)‖

2
2

2

)
dε.

By continuity of J , for all ε ∈ R
p, ‖ε‖22 = ‖J(ε)‖22 − 2 log(| detDJ |).

As J is a diffeomorphism there exists an ε0 such that J(ε0) = 0. This
immediately implies log(| detDJ |) ≤ 0. Analogously, for ε = 0 we obtain
log(| detDJ |) ≥ 0. Hence, log(| detDJ |) = 0 and for all ε ∈ R

p, it holds
that ‖ε‖22 = ‖J(ε)‖22. This concludes the proof.

Lemma 12. Let F be a PLSEM-function and σ be a permutation on
{1, . . . , p}. Let

(
Id−Πσ

i+1

)
∂2
σ−1(i)F ≡ 0, for i = 1, . . . , p, (3.19)

where Πσ
i+1 denotes the linear projection on 〈∂σ−1(i+1)F, . . . , ∂σ−1(p)F 〉 and

Πσ
p+1 = 0 ∈ R

p×p. Then the matrices Πσ
i+1 and vectors (Id−Πσ

i+1)∂σ−1(i)F
are constant for i = 1, . . . , p.

Proof. Let us first show that the projection matrices Πσ
i+1 are constant.

For i = p the claim is trivial as Πσ
p+1 ≡ 0 and hence by equation (3.19),

∂2
σ−1(p)F ≡ 0. For arbitrary i, equation (3.19) implies that

∂2
σ−1(i)F ∈ 〈∂σ−1(i+1)F, . . . , ∂σ−1(p)F 〉.

Furthermore, as F is a PLSEM-function, by Proposition 1, ∂σ−1(i)F only
depends on xσ−1(i). Using these two facts it now follows inductively
that the linear spaces 〈∂σ−1(i+1)F, . . . , ∂σ−1(p)F 〉, i = p − 1, . . . , 1 are
constant in x. Hence the linear projections on these spaces are con-
stant matrices. This proves that the matrices Πσ

i+1, i = 1, . . . , p are
constant. Now we want to show that the vectors (Id − Πσ

i+1)∂σ−1(i)F ,
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i = 1, . . . , p are constant. Recall that ∂σ−1(i)F only depends on xσ−1(i), so
(Id−Πσ

i+1)∂σ−1(i)F only depends on xσ−1(i). It therefore suffices to show
that ∂σ−1(i)(Id−Πσ

i+1)∂σ−1(i)F = 0. By equation (3.19) and as the matrix
Πσ

i+1 is constant, ∂σ−1(i)(Id − Πσ
i+1)∂σ−1(i)F = (Id − Πσ

i+1)∂
2
σ−1(i)F = 0.

This concludes the proof.

3.A.4 Proof of characterization via causal orderings
(Theorem 7)

Remark 9. Slight abuse of notation. A priori, V might depend on the
concrete choice of F . However by Theorem 7, the set of permutations
{σ : σ(i) < σ(k) for all (i, k) ∈ V} does only depend on P.

Proof. Let Πσ
i+1 be the linear projection on 〈∂σ−1(i+1)F, . . . , ∂σ−1(p)F 〉 and

Πσ
p+1 := 0 ∈ R

p×p. By some algebra,

(Id−Πσ
i+1)∂

2
σ−1(i)F ≡ 0 for all i

⇐⇒ ∂2
σ−1(i)F (x) ∈ 〈∂σ−1(i+1)F (x), . . . , ∂σ−1(p)F (x)〉 for all i, ∀x ∈ R

p

⇐⇒ etσ−1(j)(DF )−1∂2
σ−1(i)F ≡ 0 for all j ≤ i

⇐⇒ j > i for all etσ−1(j)(DF )−1∂2
σ−1(i)F 6≡ 0

⇐⇒ σ(j) > σ(i) for all etj(DF )−1∂2
i F 6≡ 0.

Here, ej , j = 1, . . . , p, denotes the standard basis of R
p. By invoking

Theorem 10 and Remark 7 the assertion follows.

3.A.5 Interplay of nonlinearity and faithfulness
(Corollaries 1 & 2)

Let Ci := {j child of i in D : ∂2
i fj,i 6≡ 0} be the set of nonlinear children

of i and consider the following condition for a fix i ∈ {1, . . . , p}:

(C1) The functions fj,i, j ∈ Ci are linearly independent.

Theorem 11 (Identifiability of nonlinear descendants under minor as-
sumptions). Consider a PLSEM with DAG D that generates P and the
corresponding PLSEM-function F . Define V as in equation (3.8) and Ci

as above. Fix i ∈ {1, . . . , p}. Then:
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(a) Assume (C1) and let j ∈ Ci. Then (i, j) ∈ V.

(b) Let (i, j) ∈ V. Then j is a descendant of i in every DAG D′ of a
PLSEM that generates P.

(c) Let P be faithful to D and assume (C1). Consider a descendant k of
i, k 6= i. Then (i, k) ∈ V if and only if k is descendant of one of the
nonlinear children in Ci.

(d) Define Ṽ as the transitive closure of V. Let k 6= i. Then (i, k) ∈ Ṽ
if and only if k is a descendant of i in every DAG D′ of a PLSEM
that generates P.

Remark 10. We follow the convention that i is a descendant of itself.
If (C1) holds for all i, then from (c) it follows that Ṽ = V. In particular,
by (d), k is descendant of one of the nonlinear children in Ci if and only
if k is a descendant of i in every DAG D′ of a PLSEM that generates P.

Proof. We will first show (a) and (c). Recall Proposition 1. Without loss
of generality let us assume that σ = Id, i.e. that DF is lower triangular
with constant positive entries on the diagonal. Furthermore, ∂2

i Fl = 0 for
all l ≤ i. Using this we obtain (DF )−1∂2

i F = (DF )−1•,(i+1):p∂
2
i F(i+1):p, and

etk(DF )−1∂2
i F ≡ 0 (3.20)

⇐⇒ etk(DF )−1•,(i+1):p∂
2
i F(i+1):p ≡ 0.

Here the subindex • denotes all rows 1 : p. In the next step, we want to
prove that

〈∂2
i F(i+1):p(xi)〉xi∈R = 〈(ej)(i+1):p〉j∈Ci

. (3.21)

Note that as the components 1, . . . , i of ∂2
i F and ej , j ∈ Ci are zero, this

is equivalent to showing that

〈∂2
i F (xi)〉xi∈R = 〈ej〉j∈Ci

.

As ∂2
i Fl ≡ 0 for all l 6∈ Ci, we have

〈∂2
i F (xi)〉xi∈R ⊆ 〈ej〉j∈Ci

.

Let γ ∈ 〈ej〉j∈Ci
, γ 6= 0.

(
∂2
i F (xi)

)t
γ =

∑

j∈Ci

∂2
i Fj(xi)γj
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As the nonlinear children in Ci are linearly independent, there exists an
xi ∈ R such that

∑
j ∂

2
i Fj(xi)γj 6= 0. Hence there exists no non-zero

vector γ in 〈ej〉j∈Ci
that is orthogonal to 〈∂2

i F (xi)〉xi∈R and hence

〈∂2
i F (xi)〉xi∈R = 〈ej〉j∈Ci

.

As discussed above, this proves equation (3.21). By Proposition 1, each col-
umn l of DF is a function of xl (i.e. constant in x1, . . . , xl−1, xl+1, . . . xp).
Hence, (DF )−1•,(i+1):p is a function of xi+1, . . . , xp. In particular, it is con-
stant in xi. Now we can continue:

etk(DF )−1•,(i+1):p∂
2
i Fi+1:p ≡ 0 (3.22)

⇐⇒ etk(DF )−1•,(i+1):p(xi+1, . . . , xp)∂
2
i Fi+1:p(xi) = 0 for all x ∈ R

p

⇐⇒ etk(DF )−1•,(i+1):p(xi+1, . . . , xp)(ej)(i+1):p = 0 for all j ∈ Ci, x ∈ R
p

⇐⇒ etk(DF )−1(x)ej = 0 for all j ∈ Ci, x ∈ R
p

As DF is lower triangular with positive entries on the diagonal, (DF )−1

is lower triangular, too, with non-zero entries on the diagonal. Hence,
etk(DF )−1(x)ek 6≡ 0. So if k ∈ Ci, by equation (3.22),

etk(DF )−1•,(i+1):p∂
2
i Fi+1:p 6≡ 0.

By equation (3.20), etk(DF )−1∂2
i F 6≡ 0 and hence by definition of V,

(i, k) ∈ V. This proves (a).
Let Z ∼ N (0, Idp). Let X = F−1(Z). By Proposition 1, X ∼ P. Note
that Xk = etkF

−1(Z). We denote the partial derivative with respect to
zj by ∂z

j . Note that xk is constant in zj if and only if ∂z
j e

t
kF
−1(z) =

etk(DF )−1(F−1(z))ej ≡ 0. Fix j. As there are bijective relationships
between x and z and between x1:(j−1) and z1:(j−1),

etk(DF )−1(x)ej = 0 for all x ∈ R
p (3.23)

⇐⇒ etk(DF )−1(F−1(z))ej = 0 for all z ∈ R
p

⇐⇒ xk = etkF
−1(z) is constant in zj

⇐⇒ xk = etkF
−1(z) is a function of z1, . . . , zj−1, zj+1, . . . , zk

⇒Xk ⊥⊥ Zj |Z1, . . . , Zj−1

⇒Xk ⊥⊥ Zj |X1, . . . , Xj−1

⇒Xk ⊥⊥ Xj |X1, . . . , Xj−1

⇒k is not a descendant of j in D.
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In the second to last line we used that Xj =
∑

j′∈paD(j) fj,j′(Xj′) + σjZj .
In the last line we used faithfulness. The other direction follows from the
definition of a PLSEM with DAG D: For all j ∈ Ci we have that

k is a non-descendant of j in D

⇒ xk = etkF
−1(z) is constant in zj .

(3.24)

By combining equation (3.23) and equation (3.24),

etk(DF )−1(x)ej = 0 ⇐⇒ k is a non-descendant of j in D.

Hence, by equation (3.20) and equation (3.22)

k is a non-descendant of j in D for all j ∈ Ci

⇐⇒ etk(DF )−1•,(i+1):p(ej)(i+1):p ≡ 0 for all j ∈ Ci

⇐⇒ etk(DF )−1∂2
i F ≡ 0.

This concludes the proof of (c).

Now let us turn to the proof of (d). Fix a DAG D′. Node k is a descendant
of i in D′ if and only if for all causal orderings σ of D′ we have σ(i) < σ(k).
Hence,

k is a descendant of i in all DAGs D′ of PLSEMs that generate P

⇐⇒ for all causal orderings σ of a DAG D′ of a PLSEM

that generates P: σ(i) < σ(k).

(3.25)

By Theorem 7, a permutation σ is a causal ordering of a DAG D′ of a
PLSEM that generates P if and only if σ(l) < σ(m) for all (l,m) ∈ V:

for all causal orderings σ of a DAG D′ of a PLSEM

that generates P: σ(i) < σ(k)

⇐⇒ for all permutations σ with σ(l) < σ(m) for all (l,m) ∈ V
we have σ(i) < σ(k)

⇐⇒ (i, k) ∈ Ṽ.

(3.26)

Combining equations (3.25) and (3.26) concludes the proof of (d). State-
ment (b) follows from (d), as (i, j) ∈ V implies that (i, j) ∈ Ṽ. This
concludes the proof of (b).
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3.A.6 Proofs of consistency and correctness of estima-
tion procedures

Proof of Theorem 8

Proof. We prove that for n sufficiently large and with high probability, for
any DAGD0 ∈ D(P) andD ∈ C (D0) such that (without loss of generality)
D0 and D only differ by reversal of a covered edge between nodes i and j,

log(σ̂D
i ) + log(σ̂D

j )− log(σ̂D0

i )− log(σ̂D0

j ) ≥ 3ξ0/4, (3.27)

where σ̂D
j denotes the unpenalized maximum likelihood estimator of the

standard deviation of the residuals at node j in DAG D. Similarly, for n
sufficiently large and with high probability, for D0, D̃0 ∈ D(P) that only
differ by a reversal of a covered linear edge between nodes i and j,

∣∣∣log(σ̂D0

i ) + log(σ̂D0

j )− log(σ̂D̃0

i )− log(σ̂D̃0

j )
∣∣∣ ≤ ξ0/4. (3.28)

The uniform bounds (3.27) and (3.28) imply that for α ∈ (ξ0/4, 3ξ0/4),
each score-based decision whether a covered edge i→ j is linear or not in
step 6 of Algorithm 2 is consistent. The consistency of the estimated distri-
bution equivalence class then follows from the correctness of Algorithm 1,
which is justified at the beginning of Section 3.3.1. Obviously, the con-
stants in (3.27) and (3.28) can be changed allowing for any α ∈ (0, ξ0).

Proof of (3.27). By Assumption 1 (i), all DAGs under consideration have
uniformly bounded node degrees. It now follows exactly along the lines of
Sections 2.1, 2.2, 2.3 and 5 in the supplement to Bühlmann et al. (2014)
that for D ∈ D(P) ∪ C (D(P)),

(σD
k )2 ≤ (σ̂D

k )2 +∆D
n,k, (3.29)

and for D0 ∈ D(P),

(σ̂D0

k )2 ≤ (σD0

k )2 + γD0

n,k +∆D0

n,k, (3.30)

with ∆D
n,k, γ

D0

n,k as defined in Assumptions 1 (iii) and (iv).

Without loss of generality, let D0 ∈ D(P) and D ∈ C (D0) such that D0

and D only differ by reversal of a covered nonlinear edge between nodes i
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and j. Substituting (3.29) and (3.30) and then using (3.9) and (3.10),
∑

k∈{i,j}

(
log(σ̂D

k )− log(σ̂D0

k )
)
≥

∑

k∈{i,j}

(
log(σD

k )− log(σD0

k )
)
+Rn,D,D0

≥ ξp +Rn,D,D0 ,

where

Rn,D,D0 =
1

2

∑

k∈{i,j}

(
log

(
1 +
−∆D

n,k

(σD
k )2

)
− log

(
1 +

γD0

n,k +∆D0

n,k

(σD0

k )2

))
.

By Assumption 1 (ii), the error variances are bounded away from zero.
Using Taylor expansion and Assumptions 1 (iii) and (iv), Rn,D,D0 = oP (1).
As ξp is uniformly bounded from below by ξ0, we have that

∑

k∈{i,j}

(
log(σ̂D

k )− log(σ̂D0

k )
)
≥ ξ0 + oP (1).

Therefore, for n sufficiently large and with high probability,
∑

k∈{i,j}

(
log(σ̂D

k )− log(σ̂D0

k )
)
≥ 3ξ0/4.

A completely analogous argument yields (3.28) for D0, D̃0 ∈ D(P).

Proof of Lemma 5

Proof. (a): For a DAG D with i → j in D, we denote by Di←j the
graph that differs from D only by the reversal of i → j. Let i → j in K.
Recall that GP,K is obtained by imposing all edge orientations in K on
the pattern P and closing orientations under R1-R4 in Figure 3.6. Hence,
by construction, i → j in GP,K. Throughout the proof we use that for
a background knowledge K′, by Theorems 2 and 4 in Meek (1995), the
set of all consistent DAG extensions of GP,K′ equals the set of all Markov
equivalent DAGs that have pattern P and edge orientations that comply
with the background knowledge K′. Then, it holds that

∃ consistent DAG extension D of GP,K in which i→ j is covered

⇐⇒ ∃ consistent DAG extension D of GP,K: Di←j is Markov

equivalent to D

⇐⇒ ∃ consistent DAG extension D of GP,K\{i→j}: Di←j is Markov

equivalent to D,
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where the first equivalence follows from Lemma 1 in Chickering (1995).
By assumption, i → j is not in P and not in the background knowledge.
Hence, the soundness of the four orientation rules R1-R4 (Meek, 1995,
Theorem 2) implies that i — j in GP,K\{i→j} which is the case if and only
if GP,K 6= GP,K\{i→j}.
To show the other implication, by the completeness of the orientation rules
(Meek, 1995, Theorem 4),

i — j in GP,K\{i→j}

=⇒ ∃ consistent DAG extensions D1, D2 of GP,K\{i→j}:

i→ j in D1 and i← j in D2

=⇒ ∃ consistent DAG extension D of GP,K\{i→j}:

Di←j is a consistent DAG extension of GP,K\{i→j},

where the last implication follows from Theorem 2 in Chickering (1995).
As both, D and Di←j are consistent DAG extension of the same pattern P ,
Di←j is Markov equivalent to D, which finishes the proof.

(b) As GP,K 6= GP,K\{i→j}, by Lemma 5 (a), there exists a consistent DAG
extension of GP,K in which i → j is covered. From that, it immediately
follows that all k ∈ paGP,K

(i) are adjacent to j in GP,K. As GP,K is
closed under R1-R4, k → j in GP,K due to R2 and paGP,K

(i) ⊆ paGP,K
(j).

Analogously, for k′ ∈ paGP,K
(j) \ {i}, either k′ → i or k′ — i in GP,K as

i→ j can be covered.

Step 1: Orient k′ — i with k′ ∈ paGP,K
(j) into i. To be precise, define the

new background knowledge K̃ := K ∪ (
⋃

k′∈paGP,K
(j){k′ → i}). As there

is a consistent DAG extension D of GP,K in which i→ j is covered, k′ → i

in D for all k′ ∈ paGP,K
(j) \ {i}. Hence, by definition, K̃ is consistent.

Step 2: Close orientations under R1-R4 to obtain the maximally ori-
ented PDAG GP,K̃ with respect to the pattern P and background know-

ledge K̃ (Meek, 1995).

Claim 1: Let (x, y, z), z ∈ {i, j} be a triple such that x − y or y − z in
GP,K and x→ y → z in GP,K̃. Then y = i, z = j or x→ y — z in GP,K.
Suppose that y 6= i and x− y in GP,K. Then, x→ y in GP,K̃ was oriented
in Step 2 by applying R1-R4. We will lead this to a contradiction. By
Lemma 13, y is a descendant of i in GP,K̃. Moreover, recall that y → z in
GP,K̃. By construction, there exists a consistent DAG extension D of GP,K̃
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in which i→ j is covered. As y 6= i and z ∈ {i, j}, y → i and y → j in D.
But y is a descendant of i in D, so D contains a cycle. Contradiction.

Claim 2: In Step 2, no additional edges are oriented into i or j.
Suppose the contrary and consider the first edge that is oriented into i
or j by applying one of R1-R4 in Step 2. We will consider the rules
case-by-case.

R1: Let x be the upper, y the lower left and z the right node in R1 in
Figure 3.6. Suppose y → z, z ∈ {i, j} is implied by R1 in Step 2. Thus,
x → y → z in GP,K̃ and y − z in GP,K. As GP,K is closed under R1-R4,
x − y in GP,K. Then, by Claim 1, y = i and z = j. But i → j in GP,K,
contradiction.

R2: Let x be the left, y the middle and z the right node in R2 in Figure 3.6.
Thus, x→ y → z with x→ z in GP,K̃, and x — z in GP,K.

Case 1: y = i. As z ∈ {i, j}, z = j. As i → j and x − z = j in GP,K

and GP,K is closed under R1-R4, x− y = i in GP,K. Therefore, x→ y = i
in GP,K̃ was either oriented in Step 1 or Step 2. It was not oriented in

Step 1 as x− z = j (that is, x 6∈ paGP,K
(j)). Also, it was not oriented in

Step 2 as by assumption, x → z is the first edge oriented into i or j in
Step 2. Contradiction.
Case 2: y 6= i. By Claim 1, x → y − z in GP,K. By assumption, x − z is
the first edge that is oriented into z ∈ {i, j} in Step 2. Hence, y − z was
oriented into z in Step 1 (y ∈ paGP,K

(j)) and x− z not (x 6∈ paGP,K
(j)).

As x is oriented into z ∈ {i, j} in GP,K̃ and as there is a consistent DAG
extension of GP,K̃ in which i → j is covered, x − i and x − j in GP,K.

Recall that x → y in GP,K and y ∈ paGP,K
(j). As GP,K is closed under

R1-R4, x→ j in GP,K by R2, which contradicts x 6∈ paGP,K
(j).

R3: Does not apply. Step 1 and Step 2 do not create new v-structures.

R4: Let x be the upper left, y the upper right and z the lower right node
in R4 in Figure 3.6. We have x → y → z in GP,K̃ and x − y or y − z in
GP,K. Note that x and z are not adjacent in GP,K and GP,K̃. If y = i,
then z = j and x is a parent of i but not adjacent to j in GP,K̃. This
contradicts the fact that i→ j is covered in a consistent DAG extension of
GP,K̃. Hence, y 6= i. By Claim 1, x→ y− z in GP,K. As x is not adjacent
to z in GP,K, y → z in GP,K by R1, which contradicts the fact that GP,K

is closed under R1-R4. This concludes the proof of Claim 2.

By Claim 2, we do not orient edges into i or j in Step 2. Hence, by
construction, GP,K̃ satisfies paG

P,K̃
(i) = paG

P,K̃
(j) \ {i} = paGP,K

(j) \ {i}.
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By Lemma 14, there exists a consistent DAG extension D of GP,K̃ in
which all undirected edges incident to i and j are oriented out of i and j.
By construction, D is a consistent DAG extension of GP,K. Moreover,
paD(i) = paD(j) \ {i} = paGP,K

(j) \ {i}, which concludes the proof.

Lemma 13. Consider the maximally oriented PDAG GP,K′ (with orien-
tations closed under R1-R4) with respect to the pattern P and consistent
background knowledge K′. Let am — b in GP,K′ for all 1 ≤ m ≤ M and
assume there exists a consistent DAG extension of GP,K′ in which am → b
for all 1 ≤ m ≤ M . We orient am → b for all m ≤ M and close the
orientations under R1-R4. Let us denote the edges we orient a′m → b′m,
m = 1, 2, .... Then b′m,m ≥ 0 are descendants of b.

Proof. By induction. By definition, b is a descendant of b. At each step,
apply one of R1-R4 and orient a′m → b′m. This only occurs if one of the
directed edges in one of R1-R4 is actually an edge ak → b or a′k → b′k that
was oriented at an earlier stage 1 ≤ k ≤M (in the first case) or k < m (in
the second case). By the induction assumption, b′k is a descendant of b for
all k < m. By looking at Figure 3.6 (i.e. going through the cases R1-R4)
we can see that in each case, b′m is a descendant of b (in the first case)
or b′k (in the second case). Hence b′m is a descendant of b.

Lemma 14. Consider the maximally oriented PDAG GP,K (with orien-
tations closed under R1-R4) with respect to the pattern P and consistent
background knowledge K. Let x → y in GP,K. Then, there exists a con-
sistent DAG extension of GP,K in which all undirected edges incident to x
and y are oriented out of x and y.

Proof. Orient an undirected edge e incident to y out of y and close the
orientations under R1-R4. By Theorems 2 and 4 in Meek (1995) the
resulting PDAG is maximally oriented with respect to the pattern P and
consistent background knowledge K ∪ {e}. By Lemma 13, no edge that
is oriented in that process will point into x or y. Now repeat, until there
is no more undirected edge incident to y. Then, analogously orient all
undirected edges incident to x out of x.

Proof of Lemma 6

Proof. We first prove that for k ≥ 1, by construction, each GP,Kk
is a

consistent extension of GD(P). This means that GP,Kk
and GD(P) have
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the same skeleton and v-structures and i→ j in GD(P) ⇒ i→ j in GP,Kk
.

Then, we show that there exists a k0 ≤ |Kinit
1 |+1 such that either Kinit

k0
= ∅

or there is no edge in Kinit
k0

that is covered in any of the consistent DAG
extensions of GP,Kk0

. For k0 it holds that GP,Kk0
= GD(P).

By construction, GP,K1
= D0 is a consistent extension of GD(P). By The-

orem 5 (b), if Kinit
1 = ∅ or none of the edges in Kinit

1 are covered in D0,
GD(P) = D0 = GP,K1

. For a fixed k ≥ 1, suppose that GP,Kk
is a con-

sistent extension of GD(P) and that there exists {i → j} ∈ Kinit
k that is

covered in a consistent DAG extension of GP,Kk
, which we denote by D.

By assumption, as GP,Kk
is a consistent extension of GD(P), D is a consis-

tent DAG extension of GD(P). Hence, D ∈ D(P) by Theorem 4.
Case 1: As i → j is covered and linear in D ∈ D(P), by Theorem 5 (a),
there is a DAG D′ ∈ D(P) with i ← j. Therefore, by Definition 1, i — j
in GD(P).
By construction, Kk+1 = Kk \ {i → j}. Hence, by Lemma 5 (a), GP,Kk+1

equals GP,Kk
except for an undirected edge i — j (all other directed edges

in GP,Kk
are either directed in P or still contained in Kk+1, hence they

must be directed in GP,Kk+1
). Therefore, GP,Kk+1

is a consistent extension
of GD(P).
Case 2: As i→ j is covered and nonlinear in D ∈ D(P), by Theorem 5 (a),
i→ j in all DAGs in D(P). Hence, i→ j in GD(P) by Definition 1.
By construction, Kk+1 = Kk and GP,Kk+1

= GP,Kk
is a consistent exten-

sion of GD(P). Moreover, as {i → j} 6∈ Kinit
k+1 and {i → j} ∈ Knonl

k+1 , i → j
is fixed in all GP,Kl

for l > k.

In both cases, |Kinit
k+1| = |Kinit

k | − 1. Hence, there exists a k0 ≤ |Kinit
1 | + 1

such that either Kinit
k0

= ∅ or no edge in Kinit
k0

is covered in any of the
consistent DAG extensions of GP,Kk0

. We will now prove that GP,Kk0
=

GD(P). If Kinit
k0

= ∅, this immediately follows from Case 1 and Case 2. For

Kinit
k0
6= ∅, suppose GP,Kk0

6= GD(P). Then, there are M ≥ 1 undirected
edges im — jm,m = 1, ...,M , in GD(P) with im → jm in GP,Kk0

. By
construction, {im → jm}m=1,...,M ⊆ Kk0

. From Case 2 it must hold that
{im → jm}m=1,...,M ⊆ Kinit

k0
. By Theorem 5 (b), D(P) is connected with

respect to covered linear edge reversals. Hence, there is an 1 ≤ m0 ≤ M
for which im0

→ jm0
is covered in a consistent DAG extension of GP,Kk0

.

But {im0
→ jm0

} ∈ Kinit
k0

, contradiction. We just showed that GD(P) is a
consistent extension of GP,Kk0

. As by construction, GP,Kk0
is a consistent

extension of GD(P), we conclude that GP,Kk0
= GD(P), which finishes the

proof.





Chapter 4

Estimation of total causal
effects in nonparametric
models1

We consider the problem of inferring the total causal effect of a single
continuous variable intervention on a (response) variable of interest. We
propose a certain marginal integration regression technique for a very gen-
eral class of potentially nonlinear structural equation models (SEMs) with
known structure, or at least known superset of adjustment variables: we
call the procedure S-mint regression. We easily derive that it achieves
the convergence rate as for nonparametric regression: for example, single
variable intervention effects can be estimated with convergence rate n−2/5

assuming smoothness with twice differentiable functions. Our result can
also be seen as a major robustness property with respect to model misspeci-
fication which goes much beyond the notion of double robustness. When the
structure of the SEM is not known, we can estimate (the equivalence class
of) the directed acyclic graph corresponding to the SEM, and then proceed
by using S-mint based on these estimates. We empirically compare the S-
mint regression method with more classical approaches and argue that the
former is indeed more robust, more reliable and substantially simpler.

1This chapter is a slightly modified version of the published article Ernest, J. and
Bühlmann, P. (2015).

”
Marginal integration for nonparametric causal inference“. Elec-

tronic Journal of Statistics 9 (2), pp. 3155–3194. doi: 10.1214/15-EJS1075.

http://dx.doi.org/10.1214/15-EJS1075
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4.1 Introduction

Understanding cause-effect relationships between variables is of great in-
terest in many fields of science. An ambitious but highly desirable goal is
to infer causal effects from observational data obtained by observing a sys-
tem of interest without subjecting it to interventions.2 This would allow to
circumvent potentially severe experimental constraints or to substantially
lower experimental costs. The words “causal inference” (usually) refer to
the problem of inferring effects which are due to (or caused by) interven-
tions: if we make an outside intervention at a variable X, say, what is its
effect on another response variable of interest Y . We describe examples in
Section 4.1.3. Various fields and concepts have contributed to the under-
standing and quantification of causal inference: the framework of potential
outcomes and counterfactuals (cf. Rubin, 2005), see also Dawid (2000),
structural equation modeling (cf. Bollen, 1998), and graphical modeling
(cf. Greenland et al., 1999; Lauritzen and Spiegelhalter, 1988); the book
by Pearl (2000) provides a nice overview.

We consider aspects of the problem indicated above, namely inferring in-
tervention or causal effects from observational data without external in-
terventions. Thus, we deal (in part) with the question of how to infer
causal effects without relying on randomized experiments or randomized
studies. Besides fundamental conceptual aspects, as treated for example in
the books by Pearl (2000), Spirtes et al. (2000) and Koller and Friedman
(2009), important issues include statistical tasks such as estimation accu-
racy and robustness with respect to model misspecification. This work
focuses on the two latter topics, covering also high-dimensional sparse set-
tings with many variables (parameters) but relatively few observational
data points.

In general, the tools for inferring causal effects are different from regression
methods, but as we will argue, the regression methods, when properly ap-
plied, remain a useful tool for causal inference. In fact, for the estimation
of total causal effects, we make use of a marginal integration regression
method which has originally been proposed for additive regression model-
ing (Linton and Nielsen, 1995). Its use in causal inference is novel. Relying
on known theory for marginal integration in regression (Fan et al., 1998),
our main result (Theorem 12) establishes optimal convergence properties

2More generally, in the presence of both, interventional and observational data, the
goal is to infer intervention or causal effects among variables which are not directly
targeted by the interventions from interventional data.
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and justifies the method as a fully robust procedure against model mis-
specification, as explained further in Section 4.1.2.

4.1.1 Basic concepts and definitions for the estimation
of causal effects under interventions

We very briefly introduce some of the basic concepts for the estimation
of causal effects under interventions. We consider p random variables
X1, . . . , Xp, where one of them is a response variable Y of interest and
one of them an intervention variable X, that is, the variable where we
make an external intervention by setting X to a certain value x. Such
an intervention is denoted by Pearl’s do-operator do(X = x) (cf. Pearl,
2000). We denote the indices corresponding to Y and X by jY and jX ,
respectively: thus, Y = XjY and X = XjX . We assume a setting where
all relevant variables are observed, that is, there are no relevant hidden
variables.3

The system of variables is assumed to be generated from a structural equa-
tion model (SEM):

Xj ← fj(Xpa(j), εj), j = 1, . . . , p. (4.1)

Thereby, ε1, . . . , εp are independent noise (or innovation) variables, and
there is an underlying structure given in terms of a directed acyclic graph
(DAG) D, where each node j corresponds to the random variable Xj : We
denote by pa(j) = paD(j) the set of parents of node j in the underlying
DAG D,4 and fj(·) are assumed to be real-valued (measurable) functions.
For any index set U ⊆ {1, . . . , p} we write XU := (Xv)v∈U , for example,
Xpa(j) = (Xv)v∈pa(j).

The causal mechanism we are interested in is the total effect of an in-
tervention at a single variable X on a response variable Y of interest.5

The distribution of Y when doing an external intervention do(X = x) by
setting variable X to x is identified with its density (assumed to exist)
or discrete probability function and is denoted by p(y|do(X = x)). The
mathematical definition of p(y|do(X = x)) can be given in terms of a
so-called truncated Markov factorization or maybe more intuitively, by di-
rect plug-in of the intervention value x for variable X and propagating

3It suffices to assume that Y , X and Xpa(jX ) (the parents of X) are observed, see (4.3).
4The set of parents is paD(j) = {k; there exists a directed edge k → j in DAG D}.
5A total effect is the effect of an intervention at a variable X to another variable Y ,
taking into account the total of all (directed) paths from X to Y .
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this intervention value x to all other random variables including Y in the
structural equation model (4.1); precise definitions are, for example, given
in Pearl (2000) or Spirtes et al. (2000). The underlying important as-
sumption in the definition of p(y|do(X = x)) is that the functional forms
and error distributions of the structural equations for all the variables Xj

which are different from X do not change when making an intervention
at X.

A very powerful representation of the intervention distribution is given by
the well-known backdoor adjustment formula.6 We say that a path in a
DAG D is blocked by a set of nodes S if and only if it contains a chain
.. → m → .. or a fork .. ← m → .. with m ∈ S or a collider .. → m ← ..
such that m 6∈ S and no descendant of m is in S. Furthermore, a set of
variables S is said to satisfy the backdoor criterion relative to (X,Y ) if
no node in S is a descendant of X and if S blocks every path between
X and Y with an arrow pointing into X. For a set S that satisfies the
backdoor criterion relative to (X,Y ), the backdoor adjustment formula
reads:

p(y|do(X = x)) =

∫
p(y|X = x,XS)dP (XS), (4.2)

where p(·) and P (·) are generic notations for the density or distribution,
respectively (Pearl, 2000, Theorem 3.3.2). An important special case of the
backdoor adjustment formula is obtained when considering the adjustment
set S = pa(jX): if jY /∈ pa(jX), that is, if Y is not in the parental set of
the variable X, then:

p(y|do(X = x)) =

∫
p(y|X = x,Xpa(jX))dP (Xpa(jX)). (4.3)

Thus, if the parental set pa(jX) is known, the intervention distribution can
be calculated from the standard observational conditional and marginal
distributions. Our main focus is the expectation of Y when doing the
intervention do(X = x), the so-called total effect:

E[Y |do(X = x)] =

∫
y p(y|do(X = x))dy.

A general and often used route for inferring E[Y |do(X = x)] is as follows:
the directed acyclic graph (DAG) corresponding to the structural equation

6For a simple version of the formula, skip the text until the second line after for-
mula (4.2).
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model (SEM) is either known or (its Markov equivalence class) estimated
from data; building on this, one can estimate the functions in the SEM
(edge functions in the DAG), the error distributions in the SEM, and
finally extract an estimate of E[Y |do(X = x)] (or bounds of this quantity
if the DAG is not identifiable) from the observational distribution. See, for
example, Maathuis et al. (2009), Pearl (2000), Spirtes (2010), and Spirtes
et al. (2000).

4.1.2 Our contribution

The new results from this chapter should be explained for two different
scenarios and application areas: one where the structure of the DAG D
in the SEM is known, and the other where the structure and the DAG D
are unknown and estimated from data. Of course, the second setting is
linked to the first by treating the estimated as the true known structure.
However, due to estimation errors, a separate discussion is in place.

Structural equation models with known structure

We consider a general SEM as in (4.1) with known structure in form of a
DAG D but unknown functions fj and unknown error distributions for εj .
As already mentioned before, our focus is on inferring the total effect

E[Y |do(X = x)] =

∫
y p(y|do(X = x))dy, (4.4)

where p(y|do(X = x)) is the interventional density (or discrete probability
function) of Y as loosely described in Section 4.1.1.

The first approach to infer the total effect in (4.4) is to estimate the func-
tions fj and error distributions for εj in the SEM. It is then possible to
calculate E[Y |do(X = x)], typically using a path-based method based on
the DAG D (see also Section 4.3.1). This route is essentially impossible
without putting further assumptions on the functional form of fj in the
SEM (4.1). For example, one often makes the assumption of additive er-
rors, and if the cardinality of the parental set |pa(j)| is large, additional
constraints like additivity of a nonparametric function are in place to avoid
the curse of dimensionality. Thus, by keeping the general possibly non-
additive structure of the functions fj in the SEM, we have to reject this
approach.
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The second approach for inferring the total effect in (4.4) relies on the
powerful backdoor adjustment formula in (4.2). At first sight, the prob-
lem seems ill-posed because of the appearance of p(Y |X = x,XS) for a
set S with possibly large cardinality |S|. But since we integrate over the
variables XS in (4.2), we are not entering the curse of dimensionality. This
simple observation is a key idea of this work. We present an estimation
technique for E[Y |do(X = x)], or other functionals of p(y|do(X = x)),
using marginal integration which has been proposed and analyzed for ad-
ditive regression modeling (Linton and Nielsen, 1995). The idea of our
marginal integration approach is to first estimate a fully nonparametric
regression of Y versus X and the variables XS from a valid adjustment set
satisfying the backdoor criterion (for example the parents of X or a super-
set thereof) and then average the obtained estimate over the variables XS .
We call the procedure “S-mint” standing for marginal integration with
adjustment set S.

Our main result in Theorem 12 establishes that E[Y |do(X = x)] can be
inferred via marginal integration with the same rate of convergence as for
one-dimensional nonparametric function estimation for a very large class of
structural equation models with potentially non-additive functional forms
in the equations. We thereby achieve a major robustness result against
model misspecification, as we only assume some standard smoothness as-
sumptions but no further conditions on the functional form or nonlinearity
of the functions fj in the SEM, not even additive errors. Our main result
(Theorem 12) also applies using a superset of the true underlying DAG D
(i.e., there might be additional directed edges in the superset), see Sec-
tion 4.2.3. For example, such a superset could arise from knowing the
order of the variables (e.g., in a time series context), or an approximate
superset might be available from estimation of the DAG where one would
not care too much about slight or moderate overfitting.

Inferring E[Y |do(X = x)] under model-misspecification is the theme of
double robustness in causal inference, typically with a binary treatment
variable X (cf. van der Laan and Robins, 2003). There, misspecification
of either the regression or the propensity score model7 is allowed but at
least one of them has to be correct to allow for consistent estimation: the
terminology “double robustness” is intended to reflect this kind of robust-
ness. In contrast to double robustness, we achieve here “full robustness”
where essentially any form of “misspecification” is allowed, in the sense
that S-mint does not require any specification of the functional form of the

7Definitions can be found in Section 4.2.1
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structural equations in the SEM. More details are given in Section 4.2.1.

The local nature of parental sets. Our S-mint procedure requires the spec-
ification of a valid adjustment set S: as described in (4.3), we can always
use the parental set pa(jX) if jY /∈ pa(jX). The parental variables are
often an interesting choice for an adjustment set which corresponds to
a local operation. Furthermore, as discussed below, the local nature of
the parental sets can be very beneficial in presence of only approximate
knowledge of the true underlying DAG D.

Structural equation models with unknown structure

Consider the SEM (4.1), but now we assume that the DAG D is unknown.
For this setting, we propose a two-stage scheme (“est S-mint”, see Sec-
tion 4.3.5). First, we estimate the structure of the DAG (or the Markov
equivalence class of DAGs) or the order of the variables from observational
data. To do this, all of the current approaches make further assumptions
for the SEM in (4.1), see, for example, Bühlmann et al. (2014), Chickering
(2002), Hoyer et al. (2009), Kalisch and Bühlmann (2007), Schmidt et al.
(2007), Shimizu et al. (2006), Shojaie and Michailidis (2010), and Teyssier
and Koller (2005).

We can then infer E[Y |do(X = x)] as before with S-mint model fitting,
but based on an estimated (instead of the true) adjustment set S. This
seems often more advisable than using the estimated functions in the SEM,
which are readily available from structure estimation, and pursuing a path-
based method with the estimated DAG. Since estimation of (the Markov
equivalence class of) the DAG or of the order of variables is often very
difficult and with limited accuracy for finite sample size, the second stage
with S-mint model fitting is fairly robust with respect to errors in order-
or structure-estimation and model misspecification, as suggested by our
empirical results in Section 4.5.3. Therefore, such a two-stage procedure
with structure- or order-search8 and subsequent marginal integration leads
to reasonably accurate and sometimes better results. For example, Sec-
tion 4.5 reports a comparable performance to the direct CAM method
from Section 2.5 with subsequent path-based estimation of causal effects,
which is based on, or assuming, a correctly specified additive SEM. Thus,
even if the est S-mint approach with fully nonparametric S-mint modeling

8We do not make use of, e.g., estimated edge functions, even if they were implicitly
estimated for structure-search, as, for example, in Chickering, 2002.
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in the second stage is not exploiting the additional structural assumption
of an additive SEM, it exhibits a competitive performance.

As mentioned in the previous subsection, the parental sets (or supersets
thereof) with their local nature are often a very good choice in presence of
estimation errors with respect to inferring the true DAG (or equivalence
class thereof): instead of assuming high accuracy for recovering the entire
(equivalence class of the) DAG, we only need to have a reasonably accurate
estimate of the much smaller and local parental set.

A combined structured (or parametric) and fully nonparametric approach.
The two-stage est S-mint procedure is typically a combination of a struc-
tured nonparametric or parametric approach for estimating the DAG (or
the equivalence class thereof) and the fully nonparametric S-mint method
in the subsequent second stage. As outlined above, it exhibits compar-
atively good performance. One could think of pursuing the first stage
in a fully nonparametric fashion as well, for example, by using the PC-
algorithm with nonparametric conditional independence tests (Spirtes et
al., 2000), see also Song et al. (2013). For finite amount of data and a
fairly large number of variables, this is a very ambitious if not ill-posed
task. In view of this, we almost have to make additional structural or
parametric assumptions for structure learning of the DAG (or its equiva-
lence class). However, since the fully nonparametric S-mint procedure in
the second stage is less sensitive to incorrect specification of the DAG (or
its equivalence class), the combined approach exhibits better robustness.
Vice-versa, if the structural or parametric model is correct which is used
for structural learning in the first stage, we do not lose much efficiency
when “throwing away” (or not exploiting) such structural information in
the second stage with S-mint. We only have empirical results to support
such accuracy statements.

4.1.3 The scope of possible applications

Genetic network inference is a prominent example where causal inference
methods are used; mainly for estimating an underlying network in terms of
a directed graph (cf. Friedman, 2004; Husmeier, 2003; Smith et al., 2002;
Yu et al., 2004). The goal is very ambitious, namely to recover relevant
edges in a complex network from observational or a few interventional
data.

This work does not address this issue: instead of recovering a network
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(structure), inferring total causal or intervention effects from observational
data is a different, maybe more realistic but still very challenging goal in
its full generality. Yet making progress can be very useful in many areas
of applications, notably for prioritizing and designing future randomized
experiments which have a large total effect on a response variable of inter-
est, ranging from molecular biology and bioinformatics (Editorial Nature
Methods, 2010) to many other fields including economy, medicine or so-
cial sciences. Such model-driven prioritization for gene intervention exper-
iments in molecular biology has been experimentally validated with some
success (Maathuis et al., 2010; Stekhoven et al., 2012).

We will discuss an application from molecular biology on a rather “toy-
like” level in Section 4.6. Despite all simplifying considerations, however,
we believe that it indicates a broader scope of possible applications. When
having approximate knowledge of the parental set of the variables in a
potentially large-scale system, one would not need to worry much about
the underlying form of the dependencies of (or structural equations linking)
the variables: for quantifying the effect of single variable interventions,
the proposed S-mint marginal integration estimator converges with the
univariate rate, as stated in (the main result) Theorem 12.

Quantifying single variable interventions from observational data is indeed
a useful first step. Further work is needed to address the following issues:

(i) inference in settings with additional hidden, unobserved variables
(cf. Colombo et al., 2012; Shpitser et al., 2011; Spirtes et al., 2000;
Zhang, 2008).

(ii) inference based on a combination of observational and interventional
data (cf. Hauser and Bühlmann, 2012, 2014, 2015; He and Geng.,
2008).

(iii) development of sound tools and methods towards more confirmatory
conclusions.

The appropriate modifications and further developments of our new results
(mainly Theorem 12) towards these points (i)-(iii) are not straightforward.
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4.2 Causal effects for general nonlinear
systems via backdoor adjustment:
Marginal integration suffices

We present here the, maybe surprising, result that marginal integration
allows us to infer the causal effect of a single variable intervention with a
convergence rate as for one-dimensional nonparametric function estimation
in essentially any nonlinear structural equation model.

We assume a structural equation model (as already introduced in Sec-
tion 4.1.1)

Xj ← f0
j (Xpa(j), εj), j = 1, . . . , p, (4.5)

where ε1, . . . , εp are independent noise (or innovation) variables, pa(j) de-
notes the set of parents of node j in the underlying DAG D0, and f0

j (·)
are real-valued (measurable) functions. We emphasize the true underly-
ing quantities with a superscript “0”. We assume in this section that the
DAG D0, or at least a (super-) DAG D0

super which contains D0 (see Sec-
tion 4.2.3), is known. As mentioned earlier, our goal is to give a representa-
tion of the expected value of the intervention distribution E[Y |do(X = x)]
for two variables Y,X ∈ {X1, . . . , Xp}. That is, we want to study the total
effect that an intervention at X has on a target variable Y . Let S be a set
of variables satisfying the backdoor criterion relative to (X,Y ), implying
that

p(y|do(X = x)) =

∫
p(y|X = x,XS)dP (XS),

where p(·) and P (·) are generic notations for the density or distribution (see
Section 4.1.1). Assuming that we can interchange the order of integration
(cf. part 6 of Assumption 2) we obtain

E[Y |do(X = x)] =

∫
E[Y |X = x,XS ]dP (XS). (4.6)

This is a function depending on the one-dimensional variable x only and
therefore, intuitively, its estimation should not be much exposed to the
curse of dimensionality. We will argue below that this is indeed the case.
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4.2.1 Marginal integration

Marginal integration is an estimation method which has been primarily de-
signed for additive and structured regression fitting (Linton and Nielsen,
1995). Without any modifications though, it is also suitable for the esti-
mation of E[Y |do(X = x)] in (4.6).

Let S be a set of variables satisfying the backdoor criterion relative to
(X,Y ) (see Section 4.1.1) and denote by s the cardinality of S. We use a
nonparametric partial local estimator of the multivariate regression func-
tion m(x, xS) = E[Y |X = x,XS = xS ] of the form

(α̂, β̂) = argmin
α,β

n∑

i=1

(Yi − α− β(X(i) − x))2Kh1
(X(i) − x)Lh2

(X
(i)
S − xS),

(4.7)

where α̂ = α̂(x, xS), β̂ = β̂(x, xS), K and L are two kernel functions and
h1, h2 the respective bandwidths, that is,

Kh1
(t) =

1

h1
K

(
t

h1

)
, Lh2

(t) =
1

hs
2

L

(
t

h2

)
.

We obtain the partial local linear estimator at (x, xS) as m̂(x, xS) =
α̂(x, xS). We then integrate over the variables XS with the empirical
mean and obtain:

Ê[Y |do(X = x)] = n−1
n∑

k=1

m̂(x,X
(k)
S ) (4.8)

This is a locally weighted average, with localization through the one-
dimensional variable x. For our main theoretical result to hold, we make
the following assumptions:

Assumption 2.

1. The variables XS have a bounded support supp(XS).

2. The regression function m(u, uS) = E[Y |X = u,XS = uS ] exists and
has bounded partial derivatives up to order 2 with respect to u and
up to order d with respect to uS for u in a neighborhood of x and
uS ∈ supp(XS).

3. The variables X,XS have a density p(., .) with respect to Lebesgue
measure and p(u, uS) has bounded partial derivatives up to order 2
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with respect to u and up to order d with respect to uS. In addition,
it holds that

inf
u∈x±δ

xS∈supp(XS)

p(u, xS) > 0 for some δ > 0.

4. The kernel functions K and L are symmetric with bounded supports
and L is an order-d kernel.

5. For ε = Y − E[Y |X,XS ], it holds that E[ε4] is finite and that
E[ε2|X = x,XS = xS ] is continuous. Furthermore, for a δ > 0,
E[|ε|2+δ | X = u] is bounded for u in a neighborhood of x.

6. There exists c <∞ such that E[|Y ||X = x,XS = xS ] ≤ c for all xS.

Note that part 6 of Assumption 2 is only needed for interchanging the order
of integration in (4.6). Due to the bounded support of the variables XS it
is not overly restrictive.

As a consequence, the following result from Fan et al. (1998) establishes a
convergence rate for the estimator as for one-dimensional nonparametric
function estimation.

Theorem 12. Suppose that Assumption 2 holds for a set S satisfying the
backdoor criterion relative to (X,Y ) in the DAG D0 from model (4.5).
Consider the estimator in (4.8). Assume that the bandwidths are chosen
such that h1, h2 → 0 with nh1h

2s
2 / log2(n) → ∞, hd

2/h
2
1 → 0, and in

addition satisfying nh1h
s
2/ log(n) → ∞ and h4

1 log(n)/h
s
2 → 0 (and all

these conditions hold when choosing the bandwidths in a properly chosen
optimal range, see below). Then,

Ê[Y |do(X = x)]− E[Y |do(X = x)] = O(h2
1) +OP (1/

√
nh1).

Proof. The statement directly follows from Theorem 1 and Remark 3 in
Fan et al. (1998).

When assuming the smoothness condition d > s for m(u, uS) with re-
spect to the variable uS , and when choosing h1 ≍ n−1/5 and h2 ≍ n−α

with 2/(5d) < α < 2/(5s) (which requires d > s), all the conditions for the
bandwidths are satisfied: Theorem 12 then establishes the convergence rate
O(n−2/5) which matches the optimal rate for estimation of one-dimensional
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smooth functions having second derivatives, and such a smoothness con-
dition is assumed for m(u, uS) with respect to the variable u in part 2
of Assumption 2. Thus, the implication is the important robustness fact
that for any potentially nonlinear structural equation model satisfying the
regularity conditions in Theorem 12, we can estimate the expected value
of the intervention distribution with the same accuracy as in nonparamet-
ric estimation of a smooth function with one-dimensional argument. We
note, as mentioned already in Section 4.1.2, that it would be essentially
impossible to estimate the functions fj in (4.1) in full generality: inter-
estingly, when focusing on inferring the total effect E[Y |do(X = x)], the
problem is much better posed as demonstrated with our concrete S-mint
procedure. Furthermore, with the (valid) choice S = pa(jX) or an (es-
timated) superset thereof, one obtains a procedure that is only based on
local information in the graph: this turns out to be advantageous, see also
Section 4.1.2, particularly when the underlying DAG structure is not cor-
rectly specified (see Section 4.5.3). We will report about the performance
of such an S-mint estimation method in Sections 4.4 and 4.5. Note that
the rate of Theorem 12 remains valid (for a slightly modified estimator) if
we allow for discrete variables in the parental set of X (Fan et al., 1998).

It is worthwhile to point out that S-mint becomes more challenging for in-
ferring multiple variable interventions such as E[Y |do(X1 = x1, X2 = x2)]:
the convergence rate is then of the order n−1/3 for a twice differentiable
regression function.

Remark 11. Theorem 12 generalizes to real-valued transformations t(·)
of Y. By using the argument as in (4.6) and replacing part 6 of Assump-
tion 2 by the corresponding statement for t(Y ), we obtain

E[t(Y )|do(X = x)] =

∫
t(y)p(y|do(X = x))dy

=

∫
E[t(Y )|X = x,XS ]dP (XS).

For example, for t(y) = y2 we obtain second moments and we can estimate
the variance Var(Y |do(X = x)) = E[Y 2|do(X = x)]− (E[Y |do(X = x)])2.
Or with the indicator function t(y) = I(y ≤ c) (c ∈ R) we obtain a pro-
cedure for estimating P[Y ≤ c|do(X = x)] with the same convergence rate
as for one-dimensional nonparametric function estimation using marginal
integration of t(Y ) versus X,XS.
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Binary treatment and connection to double robustness

For the special but important case with binary treatment X ∈ {0, 1} and
XS ∈ R

s continuous, we can use marginal integration as well. We can
estimate the regression function m(x, xS) for x ∈ {0, 1} by using a kernel
estimator based on data with the observed X(k) = 0 and X(k) = 1, respec-
tively, denoted by m̂(x, xS) (x ∈ {0, 1}). We then integrate over xS with

the empirical mean n−1
∑n

k=1 m̂(x,X
(k)
S ) (x ∈ {0, 1}). When choosing the

bandwidth h2 (for smoothing over the XS variables) smaller than for the
non-integrated quantity m(x, xS), and assuming smoothness conditions,
we anticipate the n−1/2 convergence rate for estimating E[Y |do(X = x)]
with x ∈ {0, 1}; see for example Hall and Marron (1987) in the context of
nonparametric squared density estimation. We note that this establishes
only the optimal parametric convergence rate but does not generally lead
to asymptotic efficiency. For the case of binary treatment, semiparametric
minimax rates have been established in Robins et al. (2009) and asymp-
totically efficient methods can be constructed using higher order influence
functions (Li et al., 2011) or targeted maximum likelihood estimation (van
der Laan and Rose, 2011) which both might be more suitable than marginal
integration.

Theorem 12 establishes that S-mint is “fully robust” against model mis-
specification for inferring E[Y |do(X = x)] or related quantities as men-
tioned in Remark 11. The existing framework of double robustness is
related to the issue of misspecification and we clarify here the connec-
tion. One specifies regression models for E[Y |X,XS ] = m(X,XS) for both
X = 0 and X = 1 and a propensity score (Rosenbaum and Rubin, 1983)
or inverse probability weighting model (IPW; Robins et al. (1994)): for
a binary intervention variable where X encodes “exposure” (X = 1) and
“control” (X = 0), the latter is a (often parametric logistic) model for
P[X = 1|XS ]. A double robust (DR) estimator for E[Y |do(X = x)] re-
quires that either the regression model or the propensity score model is
correctly specified. If both of them are misspecified, the DR estimator
is inconsistent. Double robustness of the augmented IPW approach has
been proved by Scharfstein et al. (1999) and double robustness in general
was further developed by many others, see, for example, Bang and Robins
(2005). The targeted maximum likelihood estimation (TMLE) framework
(van der Laan and Rose, 2011) is also double robust. It uses a second step
where the initial estimate is modified in order to make it less biased for the
target parameter (e.g., the average causal effect between “exposure” and
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“control”). If both, the initial estimator and the treatment mechanism, are
consistently estimated, TMLE can be shown to be asymptotically efficient.
TMLE with a super-learner or also the approach of higher order influence
functions (Li et al., 2011) can deal with a nonparametric model. Robins
et al. (2009) prove that s = dim(XS) ≤ 2(βregr + βpropens), where β‘name′

denotes the smoothness of the regression or propensity score function, is
a necessary condition for an estimator to achieve the 1/

√
n convergence

rate.

Our S-mint procedure is related to these nonparametric approaches: it
differs though in that it deals with a continuous treatment variable. Similar
to the smoothness requirement above we have discussed after Theorem 12
that we can achieve the n−2/5 nonparametric optimal rate (when assuming
bounded derivatives up to order 2 of the regression function with respect to
the treatment variable) if s = dim(XS) < d, where d plays the role of βregr.
The condition s < d is stronger than for the optimal 1/

√
n convergence

rate with binary treatment: however, this could be relaxed to the regime
s < 2d when invoking Remark 1 in Fan et al. (1998). Therefore, rate
optimal estimation with continuous treatment can be achieved under a
“comparable” smoothness assumption as in the binary treatment case.

4.2.2 Implementation of marginal integration

Theorem 12 justifies marginal integration as in (4.8) asymptotically. One
issue is the choice of the two bandwidths h1 and h2: we cannot rely on
cross-validation because E[Y |do(X = x)] is not a regression function and
is not linked to the prediction of a new observation Ynew, nor can we
use penalized likelihood techniques with, e.g., BIC since E[Y |do(X = x)]
does not appear in the likelihood. Besides the difficulty of choosing the
smoothing parameters, we think that addressing such a smoothing problem
will become easier, at least in practice, using an iterative boosting approach
(cf. Bühlmann and Yu, 2003; Friedman, 2001).

We propose here a scheme, without complicated tuning of parameters,
which we found to be most stable and accurate in extensive simulations.
The idea is to elaborate on the estimation of the function m(x, xS) =
E[Y |X = x,XS = xS ], from a simple starting point to more complex
estimates, while the integration over the variables XS is done with the
empirical mean as in (4.8).

We start with the following simple but useful result.



124 Chapter 4: Estimation of causal effects in nonparametric SEMs

Proposition 2. If pa(jX) = ∅ or if there are no backdoor paths from jX
to jY in the true DAG D0 from model (4.5), then

E[Y |do(X = x)] = E[Y |X = x].

Proof. If there are no backdoor paths from jX to jY , the empty set S = ∅
satisfies the backdoor criterion relative to (X,Y ). The statement then
directly follows from the backdoor adjustment formula (4.2).

We learn from Proposition 2 that in simple situations, a standard one-
dimensional regression estimator for E[Y |X = x] would suffice. On the
other hand, we know from the backdoor adjustment formula in (4.6), that
we should adjust with the variables XS . Therefore, it seems natural to
use an additive regression approximation for m(x, xS) as a simple starting
point. If the assumptions of Proposition 2 hold, such an additive model fit
would yield a consistent estimate for the component of the variable x: in
fact, it is asymptotically as efficient as when using one-dimensional func-
tion estimation for E[Y |X = x] (Horowitz et al., 2006). If the assumptions
of Proposition 2 would not hold, we can still view an additive model fit
m̂add(x, xS) = µ̂ + m̂add,jX (x) +

∑
j∈S m̂add,j(xj) as one of the simplest

starting points to approximate the more complex functionm(x, xS). When
integrating out with the empirical mean as in (4.8), we obtain the estimate

Êadd[Y |do(X = x)] = µ̂+ m̂add,jX (x). As motivated above and backed up
by simulations, µ̂+m̂add,jX (x) is quite often already a reasonable estimator
for E[Y |do(X = x)].

In the presence of strong interactions between the variables, the additive
approximation may drastically fail though. Thus, we want to implement
marginal integration as follows: starting from the additive model fit m̂add,
we implement L2-Boosting with a nonparametric kernel estimator similar
to the one in (4.7). More precisely, we compute residuals

R
(i)
1 = Y (i) − m̂add(X

(i), X
(i)
S ), i = 1, . . . , n,

which, for simplicity, are fitted with a locally constant estimator of the
form

α̂(x, xS) = argmin
α

n∑

i=1

(R
(i)
1 − α)2Kh1

(X(i) − x)Lh2
(X

(i)
S − xS). (4.9)

The resulting fit is denoted by ĝR1
(x, xS) := α̂(x, xS). We add this new

function fit to the previous one and compute again residuals, and we then
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iterate the procedure bstop times. To summarize, for b = 1, . . . , bstop − 1,

m̂1(x, xS) = m̂add(x, xS),

m̂b+1(x, xS) = m̂b(x, xS) + ĝRb
(x, xS),

R
(i)
b+1 = Y (i) − m̂b+1(X

(i), X
(i)
S ), i = 1, ..., n.

The final estimate for the total causal effect is obtained by marginally
integrating over the variables XS with the empirical mean as in (4.8):

Ê[Y |do(X = x)] = n−1
n∑

k=1

m̂bstop(x,X
(k)
S ).

The concrete implementation of the additive model fitting is according to
the default from the R-package mgcv, using penalized thin plate splines and
choosing the regularization parameter in the penalty by generalized cross-
validation, see, for example, Wood (2003, 2006). The basis dimension for
each smooth is set to 10. For the product kernel in (4.9), we choose K
to be a Gaussian kernel and L to be a product of Gaussian kernels. The
bandwidths h1 and h2 in the kernel estimator should be chosen “large” to
yield an estimator with low variance but typically high bias. The itera-
tions then reduce the bias. Once we have fixed h1 and h2 (and this choice
is not very important as long as the bandwidths are “large”), the only
regularization parameter is bstop. It is chosen by the following considera-
tions: for each iteration we approximate the sum of the differences to the
previous approximation on the set of intervention values I (typically the
nine deciles, see Section 4.5), that is

∑

x∈I

|n−1
n∑

k=1

ĝRb
(x,X

(k)
S )|. (4.10)

When it becomes reasonably “small”, and this needs to be specified de-
pending on the context, we stop the boosting procedure. Such an iterative
boosting scheme has the advantage that it is more insensitive to the choice
of bstop than the original estimator in (4.8) to the specification of the tuning
parameters, and in addition, boosting adapts to some extent to different
smoothness in different directions (variables). All these ideas are presented
at various places in the boosting literature, particularly in Bühlmann and
Hothorn (2007), Bühlmann and Yu (2003), and Friedman (2001). In Sec-
tion 4.4.2 we provide an example of a DAG with backdoor paths, where
the additive approximation is incorrect and several boosting iterations are
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needed to account for interaction effects between the variables. The im-
plementation of our method is summarized in Algorithm 4: we call it also
S-mint, and we use it for all our empirical results in Sections 4.4–4.6.

Algorithm 4 S-mint

1: if S = ∅ is a valid adjustment set (for example, if pa(jX) = ∅) then
2: Fit an additive regression of Y versus X to obtain m̂add

3: return m̂add

4: else
5: Fit an additive regression of Y versus X and the adjustment set

variables XS to obtain m̂1 = m̂add

6: for b = 1, ..., bstop − 1 do
7: Apply L2-boosting to capture deviations from an additive regres-

sion model:
8: (i) Compute residuals Rb = Y − m̂b

9: (ii) Fit residuals with the kernel estimator (4.9) to obtain ĝRb

10: (iii) Set m̂b+1 = m̂b + ĝRb

11: end for
12: return Do marginal integration: output

1

n

n∑

k=1

m̂bstop(x,X
(k)
S )

13: end if

We note the following about L2-boosting: if the initial estimator is a

weighted mean m̂1(x, xS)=
∑n

i=1w
(1)
i (x, xS)Yi with

∑n
i=1w

(1)
i (x, xS) = 1

(e.g., many additive function estimators are of this form), then, since
the kernel estimator ĝRb

in the boosting step 9 is a weighted mean too,

m̂b(x, xS) =
∑n

i=1 w
(b)
i (x, xS)Yi is a weighted mean. Thus, L2-boosting

has the form of a weighted mean estimator. When using kernel estimation
for ĝRb

, the boosting estimator m̂bstop is related to an estimator with a
higher order kernel (Di Marzio and Taylor, 2008) which depends on the
bandwidth in ĝRb

and the number of boosting iterations in a rather non-
explicit way. Establishing the theoretical properties of the L2-boosting es-

timator Ê[Y |do(X = x)] = n−1
∑n

k=1 m̂bstop(x,X
(k)
S ) is beyond the scope

of this work.
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4.2.3 Knowledge of a superset of the DAG

It is known that a superset of the parental set pa(jX) suffices for the
backdoor adjustment in (4.3). To be precise, let

S(jX) ⊇ pa(jX) with S(jX) ∩ de(jX) = ∅, (4.11)

where de(jX) are the descendants of jX (in the true DAG D0). For exam-
ple, S(jX) could be the parents of X in a superset of the true underlying
DAG (a DAG with additional edges relative to the true DAG). We can
then choose the adjustment set S in (4.8) as S(jX) and Theorem 12 still
holds true, assuming that the cardinality |S(jX)| ≤ M < ∞ is bounded.
Thus, with the choice S = S(jX), we can use marginal integration by
marginalizing over the variables XS(jX).

A prime example where we are provided with a superset S(jX) ⊇ pa(jX)
with S(jX) ∩ de(jX) = ∅ is when we know the order of the variables and
can deduct an approximate superset of the parents from that. When the
variables are ordered with Xj ≺ Xk for j < k, we would use

S(jX) = {k; jX − pmax ≤ k < jX} ⊇ pa(jX), (4.12)

where “≺” and pmax denote the order relation among the variables and an
upper bound on the size of the superset to ensure that S(jX) ⊇ pa(jX).

Corollary 3. Consider the estimator in (4.8) and assume the conditions
of Theorem 12 for the variables Y,X and XS(jX) with S(jX) in (4.11) or
S(jX) as in (4.12) for ordered variables. Then,

Ê[Y |do(X = x)]− E[Y |do(X = x)] = O(h2
1) +OP (1/

√
nh1).

Proof. The statement is an immediate consequence of Theorem 12, as
S(jX) in (4.11) and (4.12) satisfy the backdoor criterion relative to (X,Y ).

4.3 Path-based methods

We assume in the following until Section 4.3.5 that we know the true DAG
and all true functions and error distributions in the general SEM (4.1).
Thus, in contrast to Section 4.2, we have here also knowledge of the en-
tire structure in form of the DAG D0 (and not only a valid adjustment
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set S assumed for Theorem 12). This allows us to infer E[Y |do(X = x)]
in different ways than the generic S-mint regression from Section 4.2. The
motivation to look at other methods is driven by potential gains in statis-
tical accuracy when including the additional information of the functional
form or of the entire DAG in the structural equation model. We will
empirically analyze this issue in Section 4.5.

4.3.1 Entire path-based method from root nodes

Based on the true DAG, the variables can always be ordered such that

Xj1 ≺ Xj2 ≺ . . . ≺ Xjp .

Denote by jX and jY the indices of the variables X and Y , respectively.

If X is not an ancestor of Y , we know that E[Y |do(X = x)] = E[Y ]. If X
is an ancestor of Y it must hold that jX < jY . We can then generate the
intervention distribution of the random variables

Xj1 ≺ Xj2 ≺ . . . ≺ Y | do(X = x)

in the model (4.1) as follows (Pearl, 2009, Definition 3.2.1):

Step 1 Generate εj1 , . . . , εjY .

Step 2 Based on Step 1, recursively generate:

Xj1 ← εj1 ,

Xj2 ← f0
j2(Xpa(j2), εj2),

. . . ,

XjX ← x,

. . . ,

XjY ← f0
jY (Xpa(jY ), εjY ).

Instead of an analytic expression for p(Y |do(X = x)) by integrating out
over the other variables {Xjk ; jk 6∈ {jX , jY }} we rather rely on simulation.

We draw B samples Y (1) = X
(1)
jY

, . . . , Y (B) = X
(B)
jY

by B independent
simulations of Steps 1-2 above and we then approximate, for B large,

E[Y |do(X = x)] ≈ B−1
B∑

b=1

Y (b).
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Furthermore, the simulation technique allows to obtain the distribution of
p(Y |do(X = x)) via, for example, density estimation or histogram approx-
imation based on Y (1), . . . , Y (B).

The method has an implementation in Algorithm 5 which uses propagation
of simulated random variables along directed paths in the DAG. It exploits
the entire paths in the DAG from the root nodes to node jY corresponding
to the random variable Y , see Figure 4.1 for an illustration.

Algorithm 5 Entire path-based algorithm for simulating the intervention
distribution
1: If there is no directed path from jX to jY , the interventional and

observational quantities coincide: p(Y |do(X = x)) ≡ p(Y ) and
E[Y |do(X = x)] ≡ E[Y ].

2: If there is a directed path from jX to jY , proceed with steps 3-9.
3: Set X = XjX = x and delete all in-going arcs into X.
4: Find all directed paths from root nodes (including jX) to jY , and

denote them by p1, . . . , pq.
5: for b = 1, . . . , B do
6: for every path, recursively simulate the corresponding random vari-

ables according to the order of the variables in the DAG:

(i) Simulate the random variables corresponding to the root nodes
of p1, . . . , pq;

(ii) Simulate in each path p1, . . . , pq the random variables following
the root nodes; proceed recursively, according to the order of
the variables in the DAG.

(iii) Continue with the recursive simulation of random variables
until Y is simulated.

7: Store the simulated variable Y (b).
8: end for
9: Use the simulated sample Y (1), . . . , Y (B) to approximate the interven-

tion distribution p(y|do(X = x)) or its expectation E[Y |do(X = x)].

When having estimates of the true DAG, all true functions and error dis-
tributions in the additive structural equation model (4.14), we would use
the procedure above based on these estimated quantities; for the error dis-
tributions, we either use the estimated variances in Gaussian distributions,
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or we rely on bootstrapping residuals from the structural equation model
(typically with residuals centered around zero).

4.3.2 Partially path-based method with short-cuts

Mainly motivated by computational considerations (see also Section 4.3.3),
a modification of the procedure in Algorithm 5 is valid. Instead of consid-
ering all paths from root nodes to jY (corresponding to variable Y ), we
only consider all paths from jX (corresponding to variable X) to jY and
simulate the random variables on these paths p′1, . . . , p

′
m. Obviously, in

comparison to Algorithm 5, m ≤ q and every p′k corresponds to a path pr
for an r ∈ {1, . . . , q}. Every path p′k is of the form

jX = jk,1 → jk,2 → . . .→ jk,ℓk−1 → jk,ℓk = jY ,

having length ℓk. For recursively simulating the random variables on the
paths p′1, . . . , p

′
m we start with setting

X = XjX ← x.

Then we recursively simulate the random variables corresponding to all
the paths p′1, . . . , p

′
m according to the order of the variables in the DAG.

For each of these random variables Xj with j ∈ {p′1, . . . , p′m} and j 6= jX ,
we need the corresponding parental variables and error terms in

Xj ← f0
j (Xpa(j), εj),

where for every k ∈ pa(j) we set

Xk =

{
the previously simulated value, if k ∈ {p′1, . . . , p′m},
bootstrap resampled X∗k , otherwise,

(4.13)

where the bootstrap resampling is with replacement from the entire data.
The errors are simulated according to the error distribution. We summa-
rize the procedure in Algorithm 6 and Figure 4.1 provides an illustration

Proposition 3. Consider the population case in which the bootstrap re-
sampling in (4.13) yields the correct distribution of the random variables
X1, . . . , Xp. Then, as B →∞, the partially path-based Algorithm 6 yields
the correct intervention distribution p(y|do(X = x)) and its expected value
E[Y |do(X = x)].
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Algorithm 6 Partially path-based algorithm for simulating the interven-
tion distribution
1: If there is no directed path from jX to jY , the interventional and

observational quantities coincide: p(Y |do(X = x)) ≡ p(Y ) and
E[Y |do(X = x)] ≡ E[Y ].

2: If there is a directed path from jX to jY , proceed with steps 3-9.
3: Set X = XjX = x and delete all in-going arcs into X.
4: Find all directed paths from jX to jY and denote them by p′1, ..., p

′
m.

5: for b = 1, . . . , B do
6: for every path, recursively simulate the corresponding random vari-

ables according to the order of the variables in the DAG:

(i) Simulate in each path p′1, . . . , p
′
m the random variables follow-

ing the node jX ; proceed recursively as described in (4.13)
according to the order of the variables in the DAG.

(ii) Continue with the recursive simulation of random variables
until Y is simulated.

7: Store the simulated variable Y (b).
8: end for
9: Use the simulated sample Y (1), . . . , Y (B) to approximate the interven-

tion distribution p(y|do(X = x)) or its expectation E[Y |do(X = x)].

Proof. The statement of Proposition 3 directly follows from the definition
of the intervention distribution in a structural equation model.

The same comment as in Section 4.3.1 applies here: when having esti-
mates of the quantities in the additive structural equation model (4.14),
we would use Algorithm 6 based on the plugged-in estimates. The compu-
tational benefit of using Algorithm 6 instead of Algorithm 5 is illustrated
in Figure 4.8.

4.3.3 Degree of localness

We can classify the different methods according to the degree of which the
entire or only a small (local) fraction of the DAG is used. Algorithm 5 is
a rather global procedure as it uses entire paths from root nodes to jY .
Only when jY is close to the relevant root nodes, the method does involve
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a smaller aspect of the DAG. Algorithm 6 is of semi-local nature as it
does not require to consider paths going from root nodes to jY : it only
considers paths from jX to jY and all parental variables along these paths.
The S-mint method based on marginal integration described in Section 4.2
and Theorem 12 is of very local character as it only requires the knowledge
of Y,X and the parental set pa(jX) (or a superset thereof) but no further
information about paths from jX to jY .

In the presence of estimation errors, a local method might be more “re-
liable” as only a smaller fraction of the DAG needs to be approximately
correct; global methods, in contrast, require that entire paths in the DAG
are approximately correct. The local versus global issue is illustrated qual-
itatively in Figure 4.1, and empirical results about statistical accuracy of
the various methods are given in Section 4.5.

X

Y

R2

R1
x

Y

p1
p2

p3 x

X∗l

X∗k

Y

p′1

Pa1 Pa2

X

Y

(a) (b) (c) (d)

Figure 4.1: (a) True DAG D0. (b) Illustration of Algorithm 1. X is set to x, the
roots R1, R2 and all paths from the root nodes to Y are enumerated (here: p1, p2, p3).
The interventional distribution at node Y is obtained by propagating samples along
the three paths. (c) Illustration of Algorithm 2. X is set to x and all directed paths
from X to Y are labeled (here: p′1). In order to obtain the interventional distribution at
node Y , samples are propagated along the path p′1 and bootstrap resampled X∗

k
and X∗

l
are used according to (4.13). (d) Illustration of the S-mint method with adjustment set
S = pa(jX): it only uses information about Y,X and the parents of X (here: Pa1,Pa2).
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4.3.4 Estimation of DAG, edge functions and error
distributions

With observational data, in general, it is impossible to infer the true un-
derlying DAG D0 in the structural equation model (4.5), or its parental
sets, even as sample size tends to infinity. One can only estimate the
Markov equivalence class of the true DAG, assuming faithfulness of the
data-generating distribution, see, for example, Spirtes et al. (2000), Pearl
(2000), Chickering (2002), Kalisch and Bühlmann (2007), van de Geer and
Bühlmann (2013), and Bühlmann (2013). The latter three references fo-
cus on the high-dimensional Gaussian scenario with the number of random
variables p ≫ n but assuming a sparsity condition in terms of the maxi-
mal degree of the skeleton of the DAG D0. The edge functions and error
variances can then be estimated for every DAG member in the Markov
equivalence class by pursuing regression of a variable versus its parents.

However, there are interesting exceptions regarding identifiability of the
DAG from the observational distribution. For nonlinear structural equa-
tion models with additive error terms, it is possible to infer the true un-
derlying DAG from infinitely many observational data (Hoyer et al., 2009;
Peters et al., 2014). Various methods have been proposed to infer the
true underlying DAG D0 and its corresponding functions f0

j (·) and error
distributions of the εj ’s: see, for example, Imoto et al. (2002), Hoyer et al.
(2009), Peters et al. (2014), Bühlmann et al. (2014), van de Geer (2014),
and Nowzohour and Bühlmann (2016) (the fourth and fifth references are
considering high-dimensional scenarios). Another interesting class of mod-
els where the DAG D0 can be identified from the observational data dis-
tribution are linear structural equation models with non-Gaussian noise
(Shimizu et al., 2006), or with Gaussian noise but equal or approximately
equal error variances (Loh and Bühlmann, 2014; Peters and Bühlmann,
2014; van de Geer and Bühlmann, 2013) (the first and third references are
considering the high-dimensional setting).

As an example of a model with identifiable structure (DAG D0) we can
specialize (4.5) to an additive structural equation model of the form

Xj ←
∑

k∈pa(j)

f0
jk(Xk) + εj , j = 1, . . . , p, (4.14)

where ε1, . . . , εp are independent with εj ∼ N (0, (σ0
j )

2), and the true un-

derlying DAG is denoted by D0. This model is used for all numerical
comparisons of the S-mint procedure and the path-based algorithms in



134 Chapter 4: Estimation of causal effects in nonparametric SEMs

Section 4.5. Estimation of the unknown quantities D0, f0
jk and error vari-

ances (σ0
j )

2 can be done with the CAM method (see Chapter 2 for details),
which will be used for the empirical results in Section 4.5.4 in connection
with the two-stage procedure est S-mint that will be introduced next.

4.3.5 Two-stage procedure: est S-mint

If the order of the variables or (a superset of) the parental set is unknown,
we have to estimate it from observational data; this leads to the following
two-stage procedure described here for the case where the parental set
pa(jX) is identifiable:

Stage 1 Estimate a superset of the parental set S(jX) (defined in (4.11))
from observational data.

Stage 2 Based on the estimate Ŝ(jX), run S-mint regression with adjust-
ment set S = Ŝ(jX).

Even if in Stage 1 one would also obtain estimates of functions in a spec-
ified SEM besides an estimate of S(jX), we would not use the estimated
functions in Stage 2. We present empirical results for the est S-mint pro-
cedure in connection with the CAM method for Stage 1 for estimating a
valid adjustment set S(jX) in Section 4.5.4.

If the parental set pa(jX) is not identifiable (see Section 4.3.4), one could
apply Stage 1 to obtain a set {Ŝ(jX)(1), . . . , Ŝ(jX)(cj)} such that the
parental sets from each of the equivalent DAGs would be contained in at
least one of the Ŝ(jX)(k) for some k. Stage 2 would then be performed for
all estimates {Ŝ(jX)(1), . . . , Ŝ(jX)(cj)} and one could then derive bounds
of the quantity E[Y |do(X = x)] in the spirit of the approach of Maathuis
et al. (2009).

In Section 4.5.5 we will give some intuition why the two stage est S-mint
is often leading to better and more reliable results than (at least some)
other methods which rely on path-based estimation.
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4.4 Empirical results: non-additive
structural equation models

In this section we provide simple proof-of-concept examples for the gener-
ality of the proposed S-mint estimation method (Algorithm 4). In particu-
lar, the robustness of S-mint is experimentally validated for models where
the structural equation model is not additive as in (4.14) but given in its
general form (4.5). We make a naive comparison to path-based methods
which are inconsistent due to incorrect specification of the model in Sec-
tion 4.4.1. However, taking the view of classical robustness (cf. Hampel
et al., 2011), we consider a complementary and interesting issue in Sec-
tion 4.5: namely the “efficiency” of a robust procedure in comparison to
other methods relying on the correct model specification.

In Section 4.4.1 we empirically show that the path-based methods based on
the wrong additive model assumption in (4.14) may fail even in the absence
of backdoor paths where the S-mint method boils down to estimation of an
additive model. In Section 4.4.2 we add backdoor paths to the graph and
a strong interaction term to the corresponding structural equation model.
We then empirically show that S-mint manages to approximate the true
causal effect, whereas fitting only an additive regression fails. Section 4.4.3
contains an example that demonstrates a good performance of S-mint even
in the presence of non-additive noise in the structural equation model.
Finally, Section 4.4.4 empirically illustrates issues with the fixed choice of
the bandwidths in the product kernel in (4.9) in some cases. Unless stated
differently, we set both bandwidths to 0.4.

4.4.1 Causal effects in the absence of backdoor paths

First let us illustrate the sensitivity of the path-based methods with respect
to model specification, using a simple example of a 4-node graph with no
backdoor paths between X1 = X and Y (see Figure 4.2).

1

3

2

jY

Figure 4.2: Example of a DAG without backdoor paths.
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We consider a corresponding (non-additive) structural equation model of
the form

X1 ← ε1

X2 ← ε2

X3 ← cos(4 · (X1 +X2)) · exp(X1/2 +X2/4) + ε3

Y ← cos(X3) · exp(X3/4) + ε4,

(4.15)

where εj ∼ N (0, σ2
j ) with σ1 = σ2 = 0.7 and σ3 = σ4 = 0.2. We gen-

erate n samples from this model. From Proposition 2 we know that for
j ∈ {1, 2, 3}, fitting an additive regression of Y versus Xj and Xpa(j) suf-
fices to obtain the causal effect E[Y |do(Xj = x)], that is, all causal effects
can be readily estimated with an additive model. Our goal is to infer
E[Y |do(X1 = x)], based on n = 500 and n = 10′000 samples of the joint
distribution of the 4 nodes. The results are displayed in Figure 4.3. We
consider the entire path-based Algorithm 5 (and Algorithm 6 as well, not
shown) assuming an additive structural equation model as in (4.14). We
impressively see that this approach is exposed to model misspecification
while S-mint (in this case simply fitting of an additive model, that is,
bstop = 1 with the number of additional boosting iterations equaling zero)
is not and leads to reliable and correct results. We included two settings;
n = 500 to be consistent with the settings in the numerical study from Sec-
tion 4.5 and n = 10000 to demonstrate that the failure of the path-based
methods is not a small sample size but an inconsistency phenomenon.
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Figure 4.3: S-mint regression estimates of E[Y |do(X1 = x)] for the model in (4.15),
with S = S(jX = 1) = ∅, based on one representative sample each for sample sizes
n = 500 (left) and n = 10′000 (right). S-mint regression is consistent while the entire
path-based method with a misspecified additive SEM (Algorithm 5) is not. The relative
squared errors (over the 51 points x) are 0.013 for S-mint regression and 6.239 for the
entire path-based method, both for n = 10000.
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4.4.2 Causal effects in the presence of backdoor paths

We consider a slight (but crucial) modification of the above DAG that has
been proposed by Linbo Wang and Mathias Drton through private com-
munication. We consider the 4-node graph from Figure 4.2 with additional
edges X1 → Y and X2 → Y and corresponding structural equation model

X1 ← ε1

X2 ← ε2

X3 ← X1 +X2 + ε3

Y ← X1 ·X2 ·X3 + ε4

(4.16)

where εj ∼ N (0, σ2
j ) with σ1 = σ2 = 0.7 and σ3 = σ4 = 0.2. Note that this

modification introduces two backdoor paths from X3 to Y . The goal is to
estimate the causal effect E[Y |do(X3 = x)] using the S-mint estimation
procedure introduced in Algorithm 4 with different numbers of boosting
iterations. In Figure 4.4 one clearly sees that the additive approxima-
tion (with no additional boosting iterations) fails to approximate the total
causal effect. It is not able to capture the full interaction term X1 ·X2 ·X3.
Adding boosting iterations significantly improves the approximation also
for the small sample size n = 500 (Ernest and Bühlmann, 2015, Figure 3).
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Figure 4.4: Approximation of the causal effect E[Y |do(X3 = x)] in model (4.16) with
S-mint regression for additive model fit (starting value) and various boosting iterations
(left), absolute differences between consecutive boosting iterations as in (4.10) (up-
per right) and integrated squared error for approximating the true effect as a function
of boosting iterations (lower right). The boosting iterations in the S-mint procedure
account for interactions between the variables. The adjustment set is chosen as the
parental set of X3, that is S(jX = 3) = {1, 2}. The results are based on one represen-
tative sample of size n = 10000.
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4.4.3 Causal effects in the presence of non-additive
noise

Theorem 12 does not put any explicit restrictions on the noise structure
in the structural equation model. In particular, S-mint also works well
in the case of non-additive noise. As an example, we consider the causal
graph and SEM from Section 4.4.2 but replace the structural equation
corresponding to Y in (4.16) with

Y ← exp(X1) · cos(X2 ·X3 + ε4). (4.17)

The goal is again to estimate the causal effect E[Y |do(X3 = x)] based on
n = 500 observed samples of the joint distribution. Figure 4.5 shows that
S-mint yields a close approximation to the true causal effect.
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Figure 4.5: Approximation of the causal effect E[Y |do(X3 = x)] in model (4.17) ex-
hibiting non-additive noise in the structural equation model, with S-mint regression
for additive model fit (starting value) and various boosting iterations (left). Abso-
lute differences between consecutive boosting iterations as in (4.10) (upper right) and
integrated squared error for approximating the true effect as a function of boosting
iterations (lower right). The adjustment set is chosen as the parental set of X3, that is
S(jX = 3) = {1, 2}. The results are based on one representative sample of size n = 500.

4.4.4 Choice of the bandwidth

Theorem 12 provides an asymptotic result but does not specify the band-
widths h1 and h2 in the finite sample case. In particular, the same fixed
choice of h2 for all variables in the adjustment set S can be suboptimal in
some situations. As an example let us consider the graph and structural
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equations from Section 4.4.2 where we replace one equation in (4.16) by

Y ← X1 + sin(X2 ·X3) + ε4. (4.18)

The goal is to estimate the causal effect E[Y |do(X3 = x)] based on n = 500
samples of the joint distribution. Inspecting the scatterplots of Y versus

X1, X2 and X3 (Figure 4.6) suggests that the bandwidth h
(1)
2 correspond-

ing to X1 should be larger than the bandwidth h
(2)
2 corresponding to X2.
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Figure 4.6: Scatterplots of the data from model (4.18) of Y versus X1, X2 and X3.
They reveal a difference in wigglyness.

Figure 4.7 depicts the corresponding approximated causal effects using the

S-mint method for a fixed bandwidth h2 = (h
(1)
2 , h

(2)
2 ) = (0.4, 0.4) and for

a variable bandwidth h2 = (h
(1)
2 , h

(2)
2 ) = (0.8, 0.4), respectively.
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Figure 4.7: Approximation of the causal effect E[Y |do(X3 = x)] in model (4.18). The
adjustment set is chosen as the parental set of X3, that is S(jX = 3) = {1, 2} and

with corresponding fixed bandwidths h
(1)
2 = h

(2)
2 = 0.4 (left) and varying bandwidths

h
(1)
2 = 0.8 and h

(2)
2 = 0.4 (right). The results are based on one representative sample

of size n = 500.
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The approximation with the variable bandwidth outperforms the approx-
imation with the fixed bandwidth. Adaptive bandwidths choice methods
as proposed by Polzehl and Spokoiny (2000) might be suitable, at the price
of a more complicated and hence more variable estimation scheme.

4.5 Empirical results: Additive structural
equation models

The goal of the numerical experiments in this section is to quantify the
estimation accuracy of the total causal effect E[Y |do(X = x)] for two
variables X,Y ∈ {X1, ..., Xp} such that Y is a descendant of X (if Y is
an ancestor of X, then the interventional expectation corresponds to the
observational expectation E[Y ]). We consider in this section only additive
structural equation models as in (4.14). This allows for a comparison of
the S-mint method and the path-based methods.

For the S-mint regression, we use the implementation described in Sec-
tion 4.2.2. The kernel functions K and L in the S-mint procedure are
chosen to be a Gaussian kernel with bandwidth h1 and a product of Gaus-
sian kernels with bandwidth h2, respectively. For simplicity, in the style of
Fan et al. (1998), we choose h1 and h2 as 0.5 times the empirical standard
deviation of the respective covariables in all of our simulations in this sec-
tion. We use the following two criteria for bstop, that is, as an automated
stopping criterion for the boosting iterations:

1. Stop if an iteration changes the approximation by less than 1%. That
is, the integrated difference (4.10) is less than 1% of the integrated
previous approximation.

2. Stop if the absolute difference between two consecutive integrated
differences is less than 5% of the initial integrated difference.

When using the path-based methods from Section 4.3, we estimate the
functions f0

j by additive functions using the R-package mgcv with default
values (and thus use the knowledge of the form of the nonlinear functions
in the SEM).

We test the performance of four different methods: S-mint with parental
sets (Algorithm 4) with the stopping of boosting iterations as described
above, additive regression with parental sets (first step of S-mint, without
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additional boosting iterations), entire path-based method from root nodes
(Algorithm 5) and partially path-based method with short-cuts (Algo-
rithm 6). The reference effect E[Y |do(X = x)] is computed using Algo-
rithm 5 with known (true) functions f0

j,k and error variances (σ0
j )

2 based
on 5n samples.

Since in a nonlinear structural equation model (in contrast to a linear
structural equation model) E[Y |do(X = x)] is a nonlinear function of the
intervention value x, we compute the interventional expectation for several
values x: typically, for the nine deciles d1(X), ..., d9(X) of X. To compare
the estimation accuracy of the three methods on DAG D, we compute a
relative squared error e(D) over all considered pairs (X,Y ) (for details see
below), denoted by L, and over all intervention values d1(X), ..., d9(X) as

e(D) =

∑
(X,Y )∈L

9∑
i=1

(
Ê[Y |do(X = di(X))]− E

0[Y |do(X = di(X))]
)2

∑
(X,Y )∈L

9∑
i=1

(E0[Y |do(X = di(X))])
2

.

(4.19)

Typically, we repeat every experiment on N = 50 or N = 100 random
DAGs (described in Section 4.5.1) and record the relative error e(D) of all
methods for each repetition.

4.5.1 Data simulation

To simulate data we first fix a causal order π0 of the variables, that is
Xπ0(1) ≺ Xπ0(2) ≺ · · · ≺ Xπ0(p) and include each of the

(
p
2

)
possible

directed edges, independently of each other, with probability pc. In the
sparse setting we typically choose pc = 2/(p− 1) which yields an expected
number of p edges in the resulting DAG. Based on the causal structure of
the graph we then build the structural equation model. We simulate from
the additive structural equation model (4.14), where every edge k → j
in the DAG is associated with a nonlinear function f0

j,k in the structural
equation model. We use two function types:

1. edge functions f0
j,k drawn from a Gaussian process with a Gaussian

kernel with bandwidth one

2. sigmoid-type edge functions of the form f0
j,k(x) = a · b·(x+c)

1+|b·(x+c)| with

a ∼ Exp(4) + 1, b ∼ Unif([−2,−0.5] ∪ [0.5, 2]) and c ∼ Unif([−2, 2]).
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All variables with empty parental set (root nodes in the DAG) follow
a Gaussian distribution with mean zero and standard deviation which
is uniformly distributed in the interval [1,

√
2]. To all remaining vari-

ables we add Gaussian noise with standard deviation uniformly distributed
in [1/5,

√
2/5]. Note that both simulation settings correspond to the ones

used in Bühlmann et al. (2014), see Section 2.6.

4.5.2 Estimation of causal effects for known graphs

In this section we compare the different methods in terms of estimation
accuracy and CPU time consumption for known underlying DAGs D0. To
that end we generate random DAGs with p = 10 variables and simulate
n = 500 samples of the joint distribution applying the simulation procedure
introduced in Section 4.5.1. We then select all index pairs (k, j) such that
there exists a directed path from Xk to Xj and estimate the causal effect
E[Xj |do(Xk)] for all k, j on the nine deciles of Xk.

The experiment is done for two different levels of sparsity, a sparse graph
with an expected number of p edges and a non-sparse graph with an ex-
pected number of 4p edges. We record the relative squared error (4.19)
and the CPU time consumption, both averaged over all index pairs, for
N = 100 (N = 20 in the dense setting, respectively) different DAGs D0.
The results are displayed in Figure 4.8 for the sigmoid-type edge functions
and in Figure 4.9 for the Gaussian process-type edge functions.
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Figure 4.8: Comparison of the performance of the methods in terms of relative squared
error as in (4.19) (left) and CPU time consumption (right) for the case where the true
DAGs D0 are known and the edge functions belong to the sigmoid-type setting. The
adjustment set is S = pa(Xk) for additive regression and S-mint. Number of variables
p = 10 and sample size n = 500.

The method based on the entire paths (Algorithm 5) yields the smallest
errors followed by the path-based methods with short-cuts (Algorithm 6).
The S-mint and additive regression exhibit a slightly worse performance.
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Figure 4.9: Comparison of the performance of the methods in terms of relative squared
error as in (4.19) (left) and CPU time consumption (right) for the case where the true
DAGs D0 are known and the edge functions are drawn from a Gaussian process with
bandwidth one. The adjustment set is S = pa(Xk) for additive regression and S-mint.
Number of variables p = 10 and sample size n = 500.

This finding can be explained by the fact that the path-based methods ben-
efit from the full (and correct) structural information of the DAG whereas
the S-mint and additive regression methods only use local information (cf.
Section 4.3.3). For the monotone sigmoid-type function class, additive re-
gression provides a very good approximation to the true causal effect even
in dense settings. For both settings we observe that the boosting iterations
in S-mint do not improve the additive approximation substantially.

In terms of CPU time consumption, S-mint and additive regression out-
perform the path-based methods. Additive regression is particularly fast
as it only requires the fit of one nonparametric additive regression of Xj

versus Xk and Xpa(k) whereas the path-based methods each require one
nonparametric additive model fit for every node on all the traversed paths.
As the set of paths in the partially path-based method is a subset of the
one in the entire path-based method (cf. Section 4.3.2 and Figure 4.1),
the partially path-based method needs less model fits which explains the
reduction of time consumption. In particular, both S-mint and additive
regression are computationally feasible for computing E[Xj |do(Xk)] for all
pairs (k, j), even when p is large and in the thousands assuming that the
cardinality of the corresponding adjustment sets is reasonably small.

4.5.3 Estimation of causal effects for perturbed graphs

In the previous section we demonstrated that the two path-based meth-
ods exhibit a better performance than S-mint and the additive regression
approximation if causal effects are estimated based on the underlying true
DAG D0.
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We will now focus on the more realistic situation in which we are only
provided with a partially correct DAG D̃. We model this by constructing
a set of modified DAGs {D̃hr

}r∈K with pre-specified (fixed) structural
Hamming distances {hr}r∈K to the true DAG D0, where K = {1, 2, . . . , 6}
and the corresponding {hr}r∈K are described in Figures 4.10 and 4.11. To
do so, we use the following rule: starting from D0 with p = 50 nodes, for
each r ∈ K, we randomly remove and add hr

2 edges each to obtain D̃hr
. The

structural Hamming distance between D0 and the perturbed graph D̃hr
is

then equal to hr, and an percentage of 1− hr

2|E| edges in D̃hr
are still correct,

where |E| denotes the expected number of edges in the DAG D0. Note
that this modification may change the order of the variables (especially for
large values of hr). We randomly choose 20 = |L| index pairs (k, j) such
that there exists a directed path from Xk to Xj in D0, but now consider
the problem of estimating the total causal effect E[Xj |do(Xk)] based on

the perturbed graph D̃hr
for the adjustment sets or the paths, respectively

(and based on sample size n = 500 as in Section 4.5.2). For every r ∈ K,
this is repeated N = 100 times and in each repetition, we record the
relative squared error e(D) in (4.19). As before, we distinguish between a
sparse graph with an expected number of 50 edges and a non-sparse graph
with an expected number of 200 edges and we use both simulation settings
described in Section 4.5.1 for generating the edge functions f0. The results
are shown in Figures 4.10 and 4.11.

For both, the sparse and non-sparse settings, one observes that the larger
the structural Hamming distance (or equivalently, the smaller the percent-
age of correctly specified edges in D0), the better is the performance of
S-mint and additive regression in comparison with the path-based meth-
ods. That is, both methods are substantially more robust with respect to
possible misspecifications of edges in the graph. This may be explained
by the different degrees of localness (cf. Section 4.3.3) of the respective
methods. For the two local methods we can hope to have approximately
correct information in the parental set of Xk even if the modified DAG
is far away from the true DAG D0 in terms of the structural Hamming
distance. For the path-based methods however, randomly removing edges
may break one or several of the traversed paths which results in causal
information being partially or fully lost. This effect is most evident in the
two sparse settings. A similar behavior is also observed in Figure 4.12.

Note that except for the true DAG D0, the performance of the partially
path-based method is at least as good as for the entire path-based method.
The shortcut introduced in Algorithm 6 does not only yield computational
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Figure 4.10: The plots compare the relative squared error performance of the three
methods on a set of modified DAGs {D̃hr

}r∈K with given structural Hamming distances
{hr}r∈K to the true DAG D0 (or equivalently, with a given percentage of correct
edges) for the sigmoid-type additive structural equation model. The top and bottom
panels show the relative squared error error e(D) (4.19) in a sparse and dense setting,
respectively. The larger the structural Hamming distance hr between the modified
DAG D̃hr

and the true DAG D0, the better is the performance of S-mint with parental
sets in comparison with the two path-based methods. Number of variables p = 50 and
sample size n = 500.

savings but also improves (relative to the entire path-based Algorithm 5)
statistical estimation accuracy of causal effects in incorrect DAGs. Again,
a possible explanation for this observation is that the partially path-based
method acts more locally and thus is less affected by edge perturbations.

4.5.4 Estimation of causal effects for estimated graphs

We now turn our attention to the case where the goal is to compute causal
effects on a DAG D̂ that has been estimated by a structure learning algo-
rithm (while still relying on a correct model specification). In conjunction
with S-mint regression, this is then the est S-mint method described in
Section 4.3.5.

We generate N = 50 random DAGs with p = 20 nodes for different num-
bers n of observational data, which are simulated according to the proce-
dure in Section 4.5.1.



146 Chapter 4: Estimation of causal effects in nonparametric SEMs

1e−03

1e−01

1e+01

0 (100%) 4 (96%) 8 (92%) 16 (84%) 32 (68%) 64 (34%)
SHD to true DAG (percentage of correct edges)

e
(D

)

Entire Path
Partial Path
Additive Regression
S−mint

1e−03

1e−02

1e−01

1e+00

1e+01

0 (100%) 16 (96%) 32 (92%) 64 (84%) 128 (68%) 256 (34%)
SHD to true DAG (percentage of correct edges)

e
(D

)

Entire Path
Partial Path
Additive Regression
S−mint

Figure 4.11: The plots compare the relative squared error performance of the three
methods on a set of modified DAGs {D̃hr

}r∈K with given structural Hamming distances
{hr}r∈K to the true DAG D0 (or equivalently, with a given percentage of correct
edges) for the Gaussian process-type additive structural equation models. The top and
bottom panels show the relative squared error e(D) (4.19) in a sparse and dense setting,
respectively. The larger the structural Hamming distance hr between the modified DAG
D̃hr

and the true DAG D0, the better is the performance of S-mint with parental sets
in comparison with the two path-based methods. Number of variables p = 50 and
sample size n = 500.

Using the knowledge that the structural equation model is additive as
in (4.14), we apply the recently proposed CAM method (Bühlmann et al.,
2014) for estimation of the true underlying DAG D0 (which is identifiable
from the observational distribution). For details, see Chapter 2. The im-
plementation is according to the R-package CAM. Regarding the algorithmic
details, we use the following in the three steps:

1. Preliminary neighborhood selection to restrict the number of poten-
tial parents per node: set to a maximum of 10 by default;

2. Estimation of the correct order by greedy search: we use 6 basis
functions per parent to fit the additive model;

3. Optional: Pruning of the DAG by feature selection to keep only the
significant edges, where we use the default level α = 0.001.

After having estimated a DAG D̂ with the above procedure, we randomly
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select 10 = |L| index pairs (k, j) such that there exists a directed path
from Xk to Xj in the true DAG D0 and approximate the total causal

effect E[Xj |do(Xk)] based on the estimated graph D̂. Figure 4.12 displays
the relative squared errors as defined in (4.19).
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Figure 4.12: Sigmoid-type additive structural equation models. Relative squared er-
ror performance as in (4.19), for different numbers of observations (n), computed on
graphs that have been estimated using the CAM method described in Section 2.5. The
algorithm has been applied without the pruning step (left) and with the pruning step
(right). We use the estimated parental sets as adjustment sets and the number of
variables is p = 20. The S-mint regression corresponds to est S-mint as described in
Section 4.3.5.

All four methods show a similar performance with respect to relative
squared error on the DAGs that are obtained applying the CAM method
without feature selection. These DAGs mainly represent the causal or-
der of the variables but otherwise are densely connected. An incorrectly
specified order of the variables (e.g., for small sample sizes n) seems to
comparably affect the S-mint and additive regression with parental sets
and the path-based methods. If the sample size increases, the estimated
graph D̂ is closer to the true graph D0 which improves the estimation
accuracy of causal effects for all the four methods.

The two path-based methods approximate the causal effects more accu-
rately on the DAGs that are obtained without feature selection, that is,
pruning the DAG is not advantageous for the estimation accuracy of causal
effects, at least for a small number of observations. However, the pruning
step yields vast computational savings for the two path-based methods as
demonstrated in Figure 4.13. The S-mint regression is very fast in both
settings and pruning the DAG before estimating the causal effects only
has a minor effect on the time consumption and estimation accuracy.
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Figure 4.13: Sigmoid-type additive structural equation models. CPU time performance
for n = 500 for N = 50 graphs of p = 20 variables that have been estimated using
the CAM method described in Section 2.5 with and without pruning step. Pruning the
DAG yields vast computational savings for the two path-based methods. S-mint and
additive regression are barely affected by the pruning step and are considerably faster
than the two path-based methods in both scenarios.

4.5.5 Summary of the empirical results, and the ad-
vantage of the two-stage est S-mint method

With respect to statistical accuracy, measured with the relative squared
error as in (4.19), we find that S-mint and additive regression are sub-
stantially more robust against incorrectness of the true underlying DAG
(or against a wrong order of the variables) and against model misspecifi-
cation, in comparison to the alternative path-based methods. The latter
robustness of S-mint is rigorously backed-up by our theory in Theorem 12
and Corollary 3 whereas the former seems to be due to the higher degree
of localness as described in Section 4.3.3. As a consequence, the proposed
two-stage est S-mint (Section 4.3.5) where we first estimate the order of
the variables or the structure of the DAG (or the Markov equivalence class
of DAGs) and subsequently perform S-mint is expected in general to lead
to reasonably accurate results (which are empirically quantified above for
some settings). Only when the DAG is perfectly known and the model cor-
rectly specified (here by an additive structural equation model), which is
a rather unrealistic assumption for practical applications, the path-based
methods were found to have a slight advantage. Thus, we recover here
a typical robustness phenomenon against model misspecification of our
nonparametric and more “model-free” S-mint regression procedure.

Our empirical findings support the use of est S-mint, namely the combina-
tion of a structured nonparametric (or parametric) approach for estimating
the DAG (or its equivalence class) in the first stage and using the robust
and fully nonparametric S-mint procedure in the second stage. The second
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stage leads to a clear gain in robustness whereas the efficiency loss in case
of correctly specified models is marginal or even minimal.

Regarding computational efficiency, S-mint and in particular also the ad-
ditive regression approximation are massively faster than the path-based
procedures making them feasible for larger scales where the number of
variables is in the thousands.

4.6 Real data application

In this section we want to provide two examples for the application of our
methodology to real data. We use gene expression data from the isoprenoid
biosynthesis in Arabidopsis thaliana (Wille et al., 2004). The data consists
of n = 118 gene expression measurements from p = 39 genes. In the
original work the authors try to infer connections between the individual
genes in the network using Gaussian graphical modeling. Our goal is to
find the strongest causal connections between the individual genes. We do
not standardize the original data but adjust the bandwidths in S-mint by
scaling with the standard deviations of the corresponding variables.

4.6.1 Estimation and error control for causal connec-
tions between and within the pathways

We first turn our attention to the whole isoprenoid biosynthesis dataset and
want to find the causal effects within and between the different pathways,
with an error control for false positive selections. To be able to compute
the causal effects we have to estimate a causal network. In order to do
that we use the CAM method described in Section 2.5.

We estimate a DAG using CAM with the default settings. We then apply
the S-mint procedure with parental sets obtained from the estimated DAG
(which corresponds to the est S-mint procedure from Section 4.3.5) to
rank the total causal effects according to their strength. We define the
relative causal strength CSrelk→j of an intervention Xj |do(Xk) as a sum
of relative distances of observational and interventional expectation for
different intervention values divided by the range of the intervention values,
that is,

CSrelk→j =
1

Rk(d)

9∑

i=1

|E[Xj ]− E[Xj |do(Xk = di)]|
|E[Xj ]|

,
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where we choose d1(Xk), ..., d9(Xk) to be the nine deciles of Xk and we
denote their range by Rk(d) = d9(Xk)− d1(Xk).

To control the number of false positives (i.e., falsely selected strong causal
effects) we use stability selection (Meinshausen and Bühlmann, 2010),
which provides (conservative) error control under a so-called (and uncheck-
able) exchangeability condition. We randomly select 100 subsamples of
size n/2 = 59 and repeat the procedure above 100 times. For each run, we
record the indices of the top 30 ranked causal strengths. At the end we
keep all index pairs that have been selected at least 66 times in the 100
runs as this leads to an expected number of falsely selected edges (false
positives) which is less or equal to 2 (Meinshausen and Bühlmann, 2010).
The graphical representation of the network in Figure 4.14 is based on
Wille et al. (2004). The dotted arcs represent the underlying metabolic
network (known from biology), the six red solid arcs correspond to the
stable index pairs found by est S-mint with stability selection.
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Figure 4.14: Stable edges (with stability selection) for the Arabidopsis thaliana dataset.
The dotted arcs represent the metabolic network, the red solid arcs the stable total
causal effects found by the est S-mint method.
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None of the stable edges are opposite to the direction of the metabolic
network. In particular, we found strong total causal effects between the
GGPPS variables in the MEP pathway, MVA pathway and mitochondrion.
Note that in this section we heavily rely on model assumption (4.14) as
the CAM method for estimating a DAG assumes additivity of the parents.
Therefore we cannot fully exploit the advantage of the S-mint method that
it works for arbitrary non-additive models (4.5) (but we would hope to be
somewhat less sensitive to model misspecification than with path-based
methods, see for example Figures 4.10 and 4.11).

4.6.2 Estimation and error control of strong causal
connections within the MEP pathway

We now want to present a possible way of exploiting the very general
model assumptions of S-mint. If the underlying order and an approximate
graph structure are known a priori, we can use this information to pro-
ceed with S-mint using the order information as described in Corollary 3.
This relieves us from any model assumptions on the functional connections
between two variables (e.g., linearity, additivity, etc.).

To give an example, let us focus on the genes in the MEP pathway (black
box in Figure 4.14). The goal is to find the strongest total causal effects
within this pathway. The metabolic network (dotted arcs) is providing
us with an order of the variables which we use for S-mint regression as
follows: we choose the adjustment set S(jX) in (4.12) by going three levels
back (pmax = 3) in the causal order (to achieve a reasonably sized set), for
example, the adjustment set for CMK is DXPS1, DXPS2, DXPS3, DXR,
MCT, whereas the adjustment set for GPPS is HDS, HDR, IPPI1. We can-
not use the full set of all ancestors as there are only n/2 = 59 data points
to fit the nonparametric additive regression and marginal integration, as
we again use stability selection based on subsampling for controlling false
positive selections as described in the previous section. For each among
the 100 subsampling runs we record the top 10 ranked index pairs and keep
the ones that are selected at least 65 times out of 100 repetitions. This
results in an expected number of false positives being less than 1 (Mein-
shausen and Bühlmann, 2010). The stable edges are shown in Figure 4.15.
One of the four edges corresponds to an edge in the metabolic pathway.
We find that the upper part of the pathway contains the strongest total
causal effects and therefore may be an interesting target for intervention
experiments.
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Figure 4.15: Stable edges (with stability selection) for the MEP pathway in the Ara-

bidopsis thaliana dataset. The dotted arcs represent the metabolic network whereas the
red solid arcs denote the top ranked causal effects found by S-mint with adjustment sets
chosen from the order of the metabolic network structure by considering all ancestors
up to three levels back.

4.7 Conclusions

We considered the problem of estimating expected values of intervention
distributions, also known as total causal effects, from observational data.
A first main result (Theorem 12 and Corollary 3) says that if we know
the local parental variables or a superset thereof (e.g., from the order of
the variables), there is no need to base estimation and computations on a
causal graph. In fact, we can directly infer the expected values of single-
intervention distributions via marginal integration: we call the procedure
S-mint. This result holds for any nonlinear and non-additive structural
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equation model apart from mild smoothness and regularity conditions.
Hence, from another point of view, S-mint estimation of expected values
of single intervention distributions is a fully nonparametric technique and
thus robust against model misspecification of the functional form of the
structural equations. We propose an L2-boosting approach for S-mint
which is easy to use without complicated tuning of parameters and yields
good empirical results.

We complement the robustness view-point by empirical results indicating
that S-mint also works reasonably well when the DAG- or order-structure
is misspecified to a certain extent, as it will be the case when we estimate
these quantities from data; in fact, S-mint regression is substantially more
robust than methods which follow all directed paths in the DAG to infer
causal effects. This suggests that the two-stage est S-mint procedure is
most reliable for causal inference from observational data: first estimate
the DAG- or order-structure (or equivalence classes thereof) and second,
subsequently pursue S-mint regression. In addition, such a procedure is
computationally much faster than methods which exploit directed paths
in (estimated) DAGs.





Chapter 5

Conclusion and Outlook

In the previous chapters, we have addressed the problems of identifiabil-
ity, structure learning and estimation of causal effects under interventions
for selected classes of semiparametric and nonparametric structural equa-
tion models. In this concluding chapter we briefly recapitulate the most
important contributions and suggest routes for further research.

Structure learning for causal additive models

In Chapter 2, we developed a structure learning methodology for the class
of causal additive models (CAMs) based on (restricted) maximum likeli-
hood estimation. The methodology was shown to be consistent in low- and
high-dimensional settings and allows for misspecification of the error dis-
tributions. In addition, we have proposed the first algorithm to learn low-
and high-dimensional CAMs from observational data and have provided
an efficient implementation in the R-package CAM that can deal with up
to thousands of variables. With that, we have made an important contri-
bution to structure learning for an interesting class of structural equation
models.

In comparison with methods that assume an underlying linear model, our
proposed methodology demonstrated a superior performance on data that
was generated from a CAM (cf. Section 2.6.3), and a quite comparable
performance on data generated from a linear Gaussian SEM (cf. Sec-
tion 2.6.5). Yet, further work is needed to validate the CAM methodology
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on real data with known ground truth, and to compare its performance to
state-of-the-art structure learning methods such as the PC-algorithm or
GES.

Practically, interesting algorithmic extensions of the CAM methodology
could be to incorporate background knowledge on specific causal relations
(e.g., from intervention experiments or expert knowledge), or to assess the
significance of individual estimated edges. The former extension is rela-
tively straightforward. One could simply add the edge orientations im-
posed by the background knowledge before the IncEdge step of CAM. The
latter would be particularly relevant in cases where the model is misspec-
ified (e.g., in the case of linear functions in the model) and the associated
DAG is only identifiable up to an equivalence class.

Identifiability and estimation of partially linear models

A major limitation of both, linear SEMs and CAMs is that they rely on
the assumption of exclusivity of the functions. In Chapter 3, we addressed
this limitation by considering the more general class of partially linear ad-
ditive SEMs with Gaussian noise (PLSEMs). We presented a graphical,
a transformational, a functional and a causal ordering characterization of
the identifiability of PLSEMs. The former two are generalizations of well-
known graphical and transformational characterization results for Markov
equivalence classes. The latter two precisely specify how single nonlinear
additive functions impose restrictions on the set of potential underlying
causal structures. Based on our theoretical results, we developed an effi-
cient score-based methodology that, for a given PLSEM, lists all equivalent
PLSEMs. The presented results are the first that systematically address
the identifiability and estimation of (partially linear) additive models with
Gaussian noise and non-exclusive functional type.

Our characterizations of PLSEMs and the proposed estimation methodol-
ogy constitute an interesting first step towards the development of a struc-
ture learning methodology for the class of PLSEMs. Naively, one could use
the CAM algorithm to obtain an initial DAG estimate and then search for
equivalent PLSEMs with the methodology proposed in Section 3.3. This
may be a reasonable approach if most of the functions in the PLSEM are
nonlinear, but is generally not expected to yield accurate results, especially
in the presence of many linear functions. As an alternative for the general
setting, one could implement a heuristic greedy search strategy that visits
a number of randomly chosen distributionally equivalent DAGs in each
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step of the greedy search (cf. Castelo and Kocka, 2003).

Future research in the area of identifiability of PLSEMs could pursue a
further reduction of the number of assumptions. For example, by con-
sidering partially linear additive SEMs with arbitrary error distributions
or partially linear SEMs with a potentially non-additive nonparametric
part. For the former, it would be crucial to understand the interplay of
non-exclusive functional types and arbitrary noise distributions. This may
allow us to explicitly characterize cases with special identifiability prop-
erties as done in Zhang and Hyvärinen (2009) for the bivariate case. For
the latter, it would be interesting to study whether a non-additive non-
parametric part imposes similar restrictions on the underlying DAG of
a PLSEM as an additive nonparametric part. Similar characterizations
of identifiability might be derived for these more general partially linear
SEMs. The modification of our proofs towards the proposed generaliza-
tions, however, is non-trivial as we strongly rely on both, the Gaussianity
of the noise and the additivity of the functions.

Estimation of total causal effects in nonparametric models

In Chapter 4, we examined what is possible in general nonparametric struc-
tural equation models where one is not willing to make any kind of struc-
tural assumptions on the functions or distributional assumptions on the
noise. While structure learning for this general class of SEMs suffers from
the curse of dimensionality, we showed that under suitable assumptions
and (approximate) knowledge of the causal structure, total causal effects
under single variable interventions can be predicted without entering the
curse of dimensionality. In fact, a specific marginal integration estima-
tor achieves the optimal univariate rate of convergence for nonparametric
function estimation. We proposed a reasonably robust implementation
of our methodology based on an additive approximation and L2-boosting
without complicated tuning of parameters.

Our contribution has an important conceptual implication: instead of try-
ing to learn a causal graph under relatively strict model assumptions, it
sometimes could be more promising (and substantially easier) to rely on
knowledge of an approximate causal structure (e.g., based on expert knowl-
edge) to estimate total causal effects. An interesting area where such an
approximate knowledge of the causal structure can naturally be assumed
is in a time series context. The extension of Theorem 12 and Algorithm 4
to the setting of time series is addressed in Li et al. (2016).
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Future work could focus on the (experimental) validation of the proposed
methodology on real datasets. Thereby, it would be relevant to assess the
performance of the methodology in the prediction of strong (top-ranked)
causal effects, for example, in the spirit of Maathuis et al. (2010). Also,
it would be interesting to examine the gain of using a nonparametric esti-
mation technique over one that relies on parametric assumptions such as
linearity of the structural equations.
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Hauser, A. and Bühlmann, P. (2012).
”
Characterization and greedy lear-

ning of interventional Markov equivalence classes of directed acyclic
graphs“. The Journal of Machine Learning Research 13 (1), pp. 2409–
2464.

– (2014).
”
Two optimal strategies for active learning of causal models from

interventional data“. International Journal of Approximate Reasoning
55, pp. 926–939.

– (2015).
”
Jointly interventional and observational data: estimation of

interventional Markov equivalence classes of directed acyclic graphs“.
Journal of the Royal Statistical Society, Series B 77, pp. 291–318.

He, Y.-B. and Geng., Z. (2008).
”
Active learning of causal networks with in-

tervention experiments and optimal designs“. Journal of Machine Learn-
ing Research 9, pp. 2523–2547.
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