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 

Abstract — The purpose of this study was to investigate 
whether pulse transit time (PTT) can be used for continuous 
monitoring of respiratory rate (RR). We derived PTT from the 
electrocardiogram and photoplethysmogram obtained from 42 
recordings of CapnoBase, a publicly available benchmark data 
set for validating respiratory related measurements. The 
number of breaths in a minute (RR#) was estimated from the 
heart rate interval (HRI), pulse rate interval (PRI), and from 
PTT. In addition, to improve the estimation reliability, we 
investigated a fusion of the three HRI, PRI and PTT derived 
estimations. The root mean squared error (RSME) and a 
Bland-Altman plot were calculated using RR from 
capnography as reference. Finally, the proposed method was 
compared against the CapnoBase Smart Fusion RR benchmark 
estimation which estimates RR with three parameters extracted 
from the PPG signal alone. Thirty-seven recordings showed 
sufficient signal quality to estimate RR from PTT. The fused 
RR (RMSE 1.76 breaths/min) was more accurate than the 
estimations from PTT (RMSE 2.63 breaths/min), HRI (RMSE 
1.96 breaths/min), and PRI (RMSE 2.73 breaths/min) alone. 
The proposed method also outperformed the CapnoBase 
benchmark (RMSE 3.08 breaths/min) algorithm. This study 
demonstrates that PTT is a valuable noninvasive parameter 
from which RR can be estimated. 

I. INTRODUCTION 

Respiratory rate (RR) is an important vital sign and 
abnormal RR has been shown to be an early and sensitive 
indicator of diverse illnesses such as pulmonary embolus, 
pneumonia, congestive cardiac failure and metabolic 
emergencies [1]. The most common and basic methods for 
RR assessment are observing chest wall movements and 
auscultation with a stethoscope. These methods give only a 
snapshot of current situation rather than continuous 
measurement and have been shown to be inconsistent in 
clinical settings [2]. Instrumented RR measurement methods, 
such as detection of respiratory gas variations (i.e. through 
flow, temperature, humidity, O2 or CO2) or mechanical effort 
measured with strain gauges or impedance, provide 
continuous and more reliable RR measurements. However, 
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these methods tend to be obtrusive and are cumbersome to 
apply, limiting their application [3]. Novel noninvasive, 
continuous and reliable RR estimation techniques are thus 
highly desirable.  

Estimation of RR from noninvasively obtained 
physiological signals, such as electrocardiogram (ECG), 
photoplethysmogram (PPG), or arterial blood pressure (ABP)  
has been extensively studied [4, 5]. However, it is difficult to 
achieve accurate and robust RR by using ECG, PPG or ABP 
alone. To improve the reliability of the RR estimation, the 
fusion of multiple parameters was suggested, either from a 
single source [6] or multiples [7]. Pulse transit time (PTT) 
refers to the propagation time of a pulse wave between two 
places in the cardiovascular system. PTT is a marker for ABP 
[8] and features respiratory components [9]. Often, PTT is 
derived from ECG and PPG and also known as pulse arrival 
time [10]. This measurement method includes the pre-
ejection time period and thus differs from the PTT that is 
calculated from two peripheral pulses. Several studies have 
previously addressed the potential of PTT calculated from 
ECG and PPG to evaluate respiratory effort associated with 
intrathoracic pressure changes [11, 12]. For example, 
Johansson et al.  found correlations between PTT and RR 
under different ABP levels [13], but only the relative 
variation of PTT with respiration was reported and RR 
accuracy was not quantitatively estimated. It remains unclear 
whether PTT can accurately estimate RR in clinical situations 
and provide a continuous and reliable RR.  

In this study, we compared estimations of RR from PTT 
with estimations obtained from heart rate interval (HRI) and 
pulse rate interval (PRI) extracted from ECG and PPG, 
respectively. Further, we investigated a known fusion method 
called Smart Fusion (SF) [6] to combine all three estimations 
with the aim to improve the estimation reliability. 

II. METHODS 

A. Pulse Transit Time Measurement and Preprocessing 

We calculated PTT as the time difference between the R 
wave peak of the ECG signal and the peak of the first 
derivative of the PPG signal (dPPG). HRI and PRI were 
measured from peak to peak of ECG and peak to peak of 
dPPG, respectively (Fig. 1). 

PTT, HRI and PRI obtained from each cardiac cycle were 
intermittent variables and therefore interpolated using a 
spline function to 300 Hz. Low frequency noise and other 
components lower than normal respiratory frequencies, were 
removed with a ‘db3’ wavelet transform at level 16. 
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Figure 1. Calculation of pulse transit time (PTT), heart rate interval (HRI) 
and pulse rate interval (PRI) from synchronized recordings of ECG and PPG. 

B. Respiratory Rate Measurement with Pulse Transit Time 
and Smart Fusion 

The interpolated PTT, HRI and PRI signals were 
segmented into 60 s windows with a sliding window of three 
seconds. For each window we derived the number of breaths 
in one minute (RR#), the instantaneous RR (RRinst) and RRPSD 
derived from the maximum peak of the power spectral 
density (PSD). RR# was calculated by counting the number of 
peaks in a window. RRinst was measured as the average 
instantaneous rate for each window, where the instantaneous 
rate was calculated as the time interval between two peaks 
divided by 60. The PSD was calculated using Welch’s 
method. The previously developed SF method in Karlen et al. 
[6] was adapted to use RR#, RRinst and RRPSD as inputs. For 
each window, the three components were fused by 
calculating their average and standard deviation. Windows 
with standard deviations larger than four breaths per minute 
(breaths/min) were considered untrustworthy, subsequently 
eliminated, and no estimation was provided for analysis.  

C. Validation 

The performance of the proposed RR estimation method 
was evaluated on the CapnoBase Respiratory Rate 
Benchmark data set [14]. In this set, continuous ECG, PPG 
and capnogram sampled at 300 Hz were collected during 
elective surgery and routine anesthesia from 42 subjects 
(aged 20.9 ± 19.5 years) under spontaneous or controlled 
ventilation for 8 minutes.  

The root mean square error (RMSE) was calculated for 
each estimation type against the validated CapnoBase 
reference RR obtained from capnography. The significance 
level was tested with the Kruskal-Wallis ANOVA test. P 
values less than 0.05 were considered as statistically 
significant. The agreements between the estimations and the 
reference RR were depicted with scatter and Bland-Altman 
plots and by calculating the Pearson correlation coefficient as 
well as the bias and confidence intervals. 

In addition to the reference comparison, we compared the 
fusion of RR estimations against a benchmark algorithm. We 
selected the original SF algorithm that operates with three 
respiratory estimations from the PPG signal (PPG SF 
method) and that was previously tested against the 
CapnoBase benchmark data set [6]. 

III. RESULTS 

Five of the 42 CapnoBase benchmark cases (0031, 0115, 
0128, 0147, and 0331) had too poor signal quality for 
calculating PTT, HRI and PRI and were excluded for further 
analysis.  

A.  Respiratory Rate Estimation with Pulse Transit Time 

PTT varied during each breath cycle and the dominant 
frequency spectrum corresponded to that of the reference 
respiratory signal (Fig. 2). Furthermore, the RR#, RRinst and 
RRPSD estimated from PTT followed well the dynamic 
changes of the reference RR, however with unequal delays 
(Fig. 3). 

 

Figure 2. Time series and PSD of PTT (a, b) and end tidal CO2 (EtCO2) (c, d) 
for one representative sample. 

 

Figure 3. The estimated respiratory rate (RR) (unfilled circle continuous 
line) compared with that of the reference (filled circle dashed line) for one 
representative example for (a) number of breaths (RR#), (b) instantaneous 
RR (RRinst) and (c) RR obtained from PSD (RRPSD). 

 



  

B. Respiratory Rate Estimation Using Smart Fusion Method 

The RMSE of the PTT-HRI-PRI SF estimation method 
was significantly lower than any of the estimates from PTT, 
HRI or PRI alone and the fusion of the estimate from both 
HRI and PRI, independent of the RR calculation method 
(Fig. 4). The biggest effect was seen for the RRPSD where the 
RMSE was reduced by more than 2.7 breaths/min compared 
to the individual estimations.  

The fusion of PTT, HRI, and PRI estimations correlated 
with the reference for RR# (r=0.97), RRinst (r=0.95) and 
RRPSD (r=0.96) (Fig. 5 a, c, e). The limits of agreements were 
-2.61 to 3.85 breaths/min (RR#), -2.51 to 5.77 breaths/min 
(RRinst) and -3.80 to 3.50 breaths/min (RRPSD) and the bias at 
0.62, 1.63 and -0.15 breaths/min, respectively (Fig. 5 b, d, f). 
The SF method eliminated untrustworthy estimations in 
22.4% of windows for the RRPSD estimation, while there were 
only 1.8% and 3.9% windows eliminated for RR# and RRinst, 
respectively.  

The PTT-HRI-PRI SF was comparable to the benchmark 
PPG SF algorithm (Fig. 6a) with a narrower limit of 
agreement (PPG SF -5.17 to 6.59 breaths/min, Fig. 6b).  

IV. DISCUSSION 

We have shown that RR can be estimated from the PTT 
using existing and simple signal processing methods with 
RMSE as low as 2.6 breaths/min. The fusion of HRI, PRI, 
and PTT estimations and the eliminations of unreliable 
estimations lead to a significant reduction of RMSE to as low 
as 1.8 breaths/min.  

Prior work has shown that respiratory events and 
respiratory variation are present in the PTT. Research by Foo 
et al. involved the detection of central respiratory events in 
infants using PTT and indicated that PTT changes with in 
respiratory efforts [15]. Drinnan et al. investigated the 
relationship between changes in heart rate and PTT during 
paced respiration [9]. Both findings demonstrated that PTT 
varied with respiration. We have confirmed these 
observations and quantitatively assessed the accuracy of RR 
estimation using PTT. The low error of the proposed method 
suggested that PTT has potential for noninvasive and 
continuous estimation of RR that has also clinical relevance.  

The RR estimation accuracy was dependent on the 
calculation method. The estimations of RR# and RRinst were 
more reliable than RRPSD. This was observed on the one hand 
by the higher RMSE in individual estimations of RRPSD of 
more than 4.40 breaths/min compared to less than 3.85 
breaths/min in the other calculations. On the other hand, the 
introduction of the SF eliminated the highest number of 
estimation windows (22.4%) and also reduced the RMSE by 
more than 2.5 breaths/min, a much higher difference than in 
the other calculations. One possible explanation for this could 
be the limited frequency resolution when calculating PSD. 
This implies that the time-domain RR calculations RR# and 
RRinst might be better parameters for RR monitoring.  

Fusion multiple data sources for estimating RR is not 
new. In the study by Karlen et al., we have fused the 
frequency, intensity and amplitude of PPG signal [6]. In the 
present work we directly compared the results for RRPSD. The 
obtained RMSE of 3.0 breaths/min for the PPG approach was  

 
Figure 4. RMSE for PTT (yellow), HRI (cyan), PRI (magenta), the PTT-
HRI-PRI smart fusion (PTT SF) method (blue), and the benchmark PPG SF 
method (red) for number of breaths (RR#), instantaneous RR (RRinst) and RR 
from PSD (RRPSD). *** indicates significance level < 0.001. 
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Figure 5. Scatterplot and Bland-Altman plot of the RR estimation of the 
PTT-HRI-PRI smart fusion method against the reference RR for number of 
breath (RR#) (a, b), instantaneous RR (RRinst) (c, d) and RR detected by PSD 
(RRPSD) (e, f).  



  

 

Figure 6. Scatter plot (a) and Bland-Altman plot (b) of RRPSD from PTT-
HRI-PRI smart fusion (PTT SF) method (blue circle) and PPG smart fusion 
(PPG SF) benchmark method (red filled circle). 

 

significantly higher than the 1.86 breaths/min of the fusion of 
HRI, PRI and PTT, suggesting a benefit of using multiple 
physiological signals in the fusion. Orphanidou et al. fused 
the ECG derived respiratory sinus arrhythmia and R-peak 
amplitude with an autoregressive method [16], resulting in a 
mean absolute error of 0.80 breaths/min for 40 healthy 
subjects.  

The PTT calculation was inherently limited to be more 
sensitive to noise compared to ECG and PPG signals, since it 
was derived from both signals for each cardiac cycle. In this 
study five cases needed to be excluded from the benchmark 
data set because of too high noise levels. An alternative 
estimation method is needed for such situations. Furthermore, 
the data set used in this study was limited to a small number 
of ventilated subjects. To derive a more generalized finding 
about robustness and accuracy of the proposed methods, 
experiments should be repeated with more diverse recordings 
that include spontaneously breathing subjects over longer 
periods of time. 

V. CONCLUSION 

We have adopted PTT for continuously estimating RR 
and proposed to integrate RR estimations from PTT, HRI and 
PRI with the SF method to enhance the estimation reliability. 
The obtained accuracy is clinically relevant and compares 
favorably to performance of other previously published 
methods. This study demonstrated that PTT is an additional 
noninvasive parameter from which RR can be extracted.  
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