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THE GEOMETRY OF THE UNKNOWN: BOMBELLI’S
ALGEBRA LINEARIA

ROY WAGNER

Abstract. This paper studies the ways algebra and geometry are re-
lated in Bombelli’s L’algebra. I show that despite Bombelli’s careful ad-
herence to a from of homogeneity, he constructs several different forms
of relationship between algebra and geometry, building on Greek, Ara-
bic, abbacist and original approaches. I further show how Bombelli’s
technique of reading diagrams, especially when representing algebraic
unknowns, requires a multiple view that makes lines stand for much
more than the diagrams present to an untrained eye. This multiplicity
reflects an exploratory approach that seeks to integrate the algebraic
and geometric strata without reducing one to the other and without
suppressing the idiosyncrasies of either stratum.

1. Introduction

1.1. Scope, purpose and methodology. In the year 1572 Rafael Bombelli’s
L’algebra came out in print. This book, which is well known for its contri-
bution to solving cubic and quartic equations by means of roots of negative
numbers, contains significant work on the relation between algebra and ge-
ometry. The manuscript included two additional geometry books, of which
only a few fragments were incorporated into the print edition.

This paper will analyse what Bombelli called “algebra linearia”:1 the
inter-representation of geometry and algebra in Bombelli’s L’algebra. I will
map out the various ways that geometry and algebra justify, instantiate,
translate and accompany each other. The purpose of the analysis is to
point out the multiple relations between the two mathematical domains as
rigorously set out in Bombelli’s text, and the multiple vision that’s required
for understanding Bombelli’s geometric diagrams.

This paper runs as follows. After a historical introduction and a review of
Bombelli’s notation, the second section of this paper will conduct a survey
of Bombelli’s geometric representation of algebra and its original regimen-
tation of homogeneity considerations. I will then show how, despite the

Parts of the research for this paper have been conducted while visiting Boston Univer-
sity’s Center for the Philosophy of Science, the Max Planck Institute for the History of
Science and the Edelstein Center for the History and Philosophy of Science, Medicine and
Technology in the Hebrew University in Jerusalem.

1This term is best translated as ‘algebra in lines’, to avoid confusion with contemporary
linear algebra.
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2 ROY WAGNER

rigour of Bombelli’s geometric representation of algebra, this representation
does not dictate a one-to-one correspondence between algebraic and geo-
metric elements, but rather allows different translations and interpretations
to coexist.

The third section will then study the various functional relations between
algebra and geometry. I will show that, building on Greek, Arabic, abbacist2

and original practices, Bombelli’s geometric representations sometimes serve
to justify algebraic manoeuvres, sometimes to instantiate algebra in a dif-
ferent medium of representation, sometimes to connect different algebraic
expressions through a common geometric translation, and sometimes sim-
ply to provide an independent accompaniment for algebra (this classification
may serve as a framework to understand Renaissance juxtapositions of al-
gebra and geometry).

The fourth section will go on to show how Bombelli’s geometric repre-
sentations of algebra confront negative magnitudes, expressions involving
roots of negatives, and algebraic unknowns and their powers. This section
will demonstrate that Bombelli implicitly hypothesised a co-expressivity of
algebra and geometry, and that this hypothesis helped endorse questionable
algebraic entities, generated new hybrid geometrico-algebraic entities and
practices, and rendered geometric and algebraic signs polysemic and multi-
layered. The overall result of this study will be a complex picture of multiple
relations between algebra and geometry, which does not reduce or subject
the one to the other, but assumes that they are deeply related, and builds
on this relation to produce new mathematical practices.

My approach is semiotic and mostly intrinsic. I explore Bombelli’s work
as an inspiring example of practicing mathematics rigorously, but without
a confined, pre-charted ontology. Bombelli’s hybridisation of algebra and
geometry, expanding the boundaries of each without reducing one to the
role of a servant to the other, is an instructive example of the open horizons
of mathematical constructions of meaning.

1.2. Bombelli and L’algebra. Not much is known about Bombelli’s life.
According to Jayawardene (1965, 1963) he was born around 1526 and died
no later than 1573. He was an engineer and architect involved in reclaiming
marshland and building bridges. There is no record that he studied in a
university, but he was obviously a learned man, so much so that a scholar
from the university of Rome invited him to cooperate on a translation of
the works of Diophantus.

The writing of the manuscript draft of L’algebra, Bombelli’s only known
publication, took place during a long pause in the Val di Chiana marsh re-
claiming, which Bortolotti (1929) dates to the early 1550s and Jayawardene
(1965) to the late 1550s.

2As the abbacists — the arithmetic teachers for Italian traders youth, had very little
to do with the abacus as instrument — I follow other researchers in retaining the ‘bb’
spelling.
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The manuscript (Bombelli, 155?), which was uncovered by Ettore Bor-
tolotti, is divided into five books. The first three books of the manuscript
appeared with revisions in the 1572 print edition (Bombelli, 1572). Bor-
tolotti published a modern edition of the remaining two books with an in-
troduction and comments (Bombelli, 1929), which was later combined with
the 1572 edition (Bombelli, 1966).3

The first book of L’algebra is a treatise on arithmetic, including root ex-
traction and operating on sums of numbers and roots (mostly binomials,
but some longer sums as well). The second book introduces the unknown
(Tanto), presents an elementary algebra of polynomials up to and including
division, and goes on to systematically present techniques for solving qua-
dratic, cubic and quartic equations, following the discoveries of dal Ferro,
Tartaglia, Cardano and Ferrari. The third book is a collection of recreational
problems in the abbacist tradition together with problems borrowed directly
from Diophantus. The problems are solved using the algebraic techniques
taught in the second book.

The fourth book, which did not make it to print at the time, concerns what
Bombelli calls algebra linearia, the reconstruction of algebra in geometric
terms. It opens with some elementary Euclidean constructions, and then
builds on them to geometrically reproduce the main techniques of Book
II and some problems of Book III. Book V treats some more traditional
geometric problems in both geometric and algebraic manner, goes on to
teach some basic practical triangulation techniques, and concludes with a
treatise on regular and semi-regular polyhedra. Book IV is not entirely
complete. Many of the spaces left for diagrams remain empty. Book V is
even less complete, and its sections do not appear in the manuscript table
of contents.

There are some substantial differences between the manuscript and the
print edition. Several sections that appear as marginalia in the manuscript
were incorporated as text into the print version of books I and II. Some of
the geometric reconstructions of the unpublished Book IV were incorporated
into the first two books. The print edition also has a much more developed
discussion of roots of negative numbers, and introduces some new terminol-
ogy and notation that will be addressed below. Book III went through some
major changes. Problems stated in terms of commerce in the manuscript
were removed, and many Diophantine problems were incorporated (for a
full survey of these changes see Jayawardene (1973)). The introduction to
the print edition states an intention to produce a book that appears to be
based on the manuscript Book IV, but this intention was never actualised
(Bombelli died within a year of the print publication).

3In referring to Books III, IV and V, I use problem number and section number (the
1929 version is available online, so it makes more sense to use section numbers than the
page numbers of the out-of-print 1966 edition). In references to Books I and II the page
numbers of the 1966 edition are used, as there is no numerical sectioning. The translations
from the vernacular Italian are my own.
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According to Bortolotti’s introduction, L’algebra seems to have been well
received in early modern mathematical circles. Bortolotti quotes Leibniz as
stating that Bombelli was an “excellent master of the analytical art”, and
brings evidence of Huygens’ high esteem for Bombelli as well (Bombelli,
1929, 7–8). Jean Dieudonné, however, seems less impressed with Bombelli’s
achievements and renown (Dieudonné, 1972). Note, however, that the ge-
ometry books (IV and V) were not available in print, and are unlikely to
have enjoyed considerable circulation.

The vast majority of technical achievements included in Bombelli’s printed
work had already been expounded by Cardano. The exceptions include some
clever tinkering with root extraction and the fine tuning of techniques for
solving cubics and quartics. Bombelli’s achievements in reconciling algebra
and geometry, which are the subject of this paper, were not published in
print at the time. But Bombelli’s one undeniable major achievement is the
first documented use of roots of negative numbers in order to derive a real
solution of a polynomial equation with integer coefficients. He is not the first
to work with roots of negative numbers, but he is the first to manipulate
them extensively beyond a basic statement of their rules.

However, judging Bombelli’s book through the prism of technical novelty
does not do it justice. Indeed, Bombelli explicitly states in his introduc-
tion that he is presenting existing knowledge. He explains that “in order to
remove finally all obstacles for the speculative theoreticians and the practi-
tioners of this science” (algebra) ... “I was taken by a desire to bring it to
perfect order”.4 In fact, the main text that Bombelli sought to clarify was
Girolamo Cardano’s Ars Magna.

Despite this strictly pedagogical aim, Bombelli does occupy a special place
in the history of algebra. While Bombelli’s explicitly mentioned sources
(Leonardo Fibonacci, Oronce Finé, Heinrich Schreiber, Michael Stifel, Luca
Pacioli, Niccoló Tartaglia and Girolamo Cardano) fail to include two cen-
turies of vernacular Italian algebra developed in the context of abbacus
schools, Bombelli is, in a sense, the last proponent of the abbacist tradition.
He is the last important and innovative author to organise his work around
rules for solving first a comprehensive list of kinds of equations, and then
around a much looser collection of recreational problems borrowed from the
abbacist reservoir. Bombelli, like his sixteenth century predecessors, adds
much to the knowledge of past abbacists, but in terms of practices, termi-
nology and problems he is a direct descendent of their tradition.5

1.3. Notation. The name of the unknown in Italian abbacus algebra is
usually cosa (thing), and occasionally quantità (quantity). Bombelli writes

4“per levare finalmente ogni impedimento alli speculativi e vaghi di questa scientia e
togliere ogni scusa a’ vili et inetti, mi son posto nell’animo di volere a perfetto ordine
ridurla” (Bombelli, 1966, 8).

5The authoritative survey of abbacus algebra is still that of Franci & Rigatelli (1985).
A comprehensive catalogue of abbacist algebra was compiled by Van Egmond (1980).
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in his manuscript that he prefers the latter, but uses the former, because
that’s the received practice. In the print version, following Diophantine
inspiration, Bombelli changes the name of the unknown to Tanto (so much,
such; I retain these Italian terms in this paper in order to maintain a distance
from modern practice). The second power is called Censo in the manuscript
(Bombelli prefers quadrata, but again follows received practice) and potenza
in the print version. Cubo is the third power, and Censo di Censo or potenza
di potenza is the fourth. Higher powers are treated and named as well, but
are not relevant for this paper.

Bombelli’s manuscript notation for powers of the unknown is a semicircle
with the ordinal number of the power over the coefficient. The print edition
reproduces this notation in diagrams of calculations, but, due to the limi-
tations of print, places the semicircle next to the coefficient in the running

text. So a contemporary 5x2 would be rendered as 5 2
^ in print and as

2
^
5 in

the manuscript. The manuscript Book II accompanies plain numbers with
a 0
^ above them, but this is almost entirely discarded in the print edition

and in the other manuscript books.
Bombelli uses the shorthand m. for meno (minus) and p. for più (plus).

The modern edition replaces those signs with the contemporary − and +,
but otherwise respects the notations of the 1572 edition. I follow this practice
here as well.

2. Elements of Algebra Linearia

In this section I will discuss Bombelli’s inter-representation of algebra
and geometry. The first subsection will raise the issue of relations between
algebra and geometry in the abbacist tradition. The second subsection will
consider the problem of homogeneity6 in Cardano and Bombelli, and de-
scribe Bombelli’s method of preserving homogeneity without committing
himself to a fixed translation of algebraic powers to geometric dimensions.
The third subsection will present Bombelli’s algebraic-geometric translation
system, but will also show that Bombelli’s geometric representations of al-
gebra were not restricted to this system. Along the way we will encounter a
couple of preliminary examples of geometric signs that function on several
levels at once. The point of this section is that Bombelli’s practice is highly
rigorous, but still allows for different algebraic-geometric interpretations to
coexist.

2.1. Letting representation run wild. The second book of L’algebra,
which deals with the solution of polynomial equations up to the fourth de-
gree, concludes with Bombelli’s “reserving it for later, at my leisure and

6Homogeneity here means never adding or equating geometric entities of different di-
mensions. If a practice is homogeneous, the constructed geometrical object will be invari-
ant with respect to the choice of units of measurement.
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convenience, to give to the world all these Problems in geometric demon-
strations”.7 The third book, a collection of algebraic problems solved by
the techniques of Book II, concludes with a more elaborate statement: “I
had in mind to verify with geometrical demonstrations the working out of
all these Arithmetical problems, knowing that these two sciences (that is
Arithmetic and Geometry) have between them such accord that the former
is the verification of the latter and the latter is the demonstration of the
former. Never could the mathematician be perfect, who is not versed in
both, although in these our times many are those who let themselves believe
otherwise; how they deceive themselves they will clearly recognise when they
will have seen my former and latter work; but because it is not yet brought
to such perfection as the excellence of this discipline requires, I decided I
want to consider it better first, before I were to present it for the scrutiny
of men”.8 Unfortunately, Bombelli died soon after, and never got to perfect
this part of his work, which remained incomplete in manuscript.

Of course, the notion of relating algebra or arithmetic and geometry was
hardly new. The tradition of representing numbers by lines goes back to Eu-
clid’s diagrams in his arithmetic books, if not earlier. But while Euclid made
an effort to set apart the theories of ratios between general homogeneous
magnitudes, of ratios between numbers, and of relations between lengths,
areas and volumes (books V, VII and XI of the Elements respectively), a
renaissance author such as Cardano (1968, 28) could refer simultaneously
to V.19, VII.17 and XI.31 to explain why, if three cubes equal 24, then one
cube equals 8.

But this conflation emerged much earlier. Abbacus algebra imported
Arabic geometric diagrams that had already been interpreted as referring to
numbers.9 Among the abbacists, the most emblematic ‘algebraic geometer’
was the artist Piero della Francesca. Piero’s geometry dealt with diagrams
with some line lengths given numerically. It used cosa terms to model un-
known lengths of lines, translate information concerning these lengths into
polynomial equations, and derive their solutions using abbacist rules. His

7“riserbandomi poi con più mio agio e commodità di dare al mondo tutti questi Prob-
lemi in dimostrationi geometriche” (Bombelli, 1966, 314).

8“io fussi di animo di provare con dimostrationi Geometriche l’operatione di tutti questi
problemi Arimetici, sapendo che queste due scientie (cioè l’Arimetica e Geometria) hanno
intra di loro tanta convenientia che l’una è la prova dell’altra e l’altra è la dimostration
dell’una, nè già puote il Matematico esser perfetto il quale in ambedue non sia versato,
benchè a questi nostri tempi molti siano i quali si danno a credere altrimente; del che
quanto si ingannino all’hor chiaramente lo conosceranno quando che l’una e l’altra mia
opera havranno veduta; ma perchè non è per ancora ridutta a quella perfettione che la
eccellentia di questa disciplina ricerca, mi son risoluto di volerla prima meglio considerare,
avanti che la mandi nel conspetto de gli huomini” (Bombelli, 1966, 476).

9For the earlier roots of the arithmetisation of Greek geometry see Reviel Netz’ highly
remarkable The transformation of mathematics in the early Mediterranean world (Netz,
2004).
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work was so influential, that Luca Pacioli practically imported it as is into
his work.10

The algebraic entities — the cosa, censo and cubo (the unknown, its
square and its cube) — were sometimes (but by no means generally!) in-
terpreted as geometric in introductory presentations and some applications.
As 14th century abbacist Maestro Dardi wrote, “The cosa is a linear length
and is root of the censo, and one says cosa” (literally, thing) “because this
name can be attributed to all things of the world in general. The censo
would be a surface breadth and is the square of the cosa” ... “The cubo
would be a corporeal magnitude, the body of which includes in itself the
length of the cosa and the surface of the censo, and is called cubo according
to the arithmetic of Boethius” ... “meaning such aggregation of numbers”.11

The algebraic terms here come from geometry and arithmetic, but have to
do generally with “all things of the world”. Indeed, the one interpretation
of algebraic unknowns common to all abbacists is the economic one: they
are used to represent monetary units and quantities of merchandise.

Since the cosa can be anything, practitioners were not always bound to
respect the above allocation of algebraic terms to geometric dimensions. In
fact, the notion of dimension was probably not terribly rigid in a culture
that used such term as “quadro chubico” for volume (Paolo dell’Abbaco,
1964, 128), and sometimes measured volumes in terms of square braccia
(braccia is a unit of length). By the time we reach Cardano we see one and
two dimensional diagrams for algebraic cubic terms, and a square whose
one side represents the second power of an unknown and the other its fourth
power (Cardano, 1968, 21,52,238).

The correspondence between geometric and algebraic dimensions is not
fixed in the work of Bombelli as well. He is apt to say such things as “the
rectangle .i.l.g. will be a cube and the rectangle .i.l.f. will be 6 1

^”,12 deny-
ing any consistent relation between the algebraic and geometric hierarchies
of powers and dimensions. He follows this conduct in his Book IV as well,
where algebraic cubes can be drawn as squares with one side an algebraic
square and the other an algebraic cosa (e.g. §28). While Book II does not at-
tempt to geometrically instantiate quartic and biquadratic equations, Book

10See Gino Arrighi’s introduction to della Francesca (1970).
11“La cosa è una lunghessa lineale ed è radicie del censo, e diciensi cosa perchè questo

nome cosa si può atribuire a tutte le cose del mondo gieneralmente. Lo censo sie una
anpiessa superficiale ed è quadrato della cosa, e diciesi censo da cerno cernis che sta per
eleggiere, inperciò che el censo eleggie lo meçço proportionale in tra la cosa e’l cubo. Lo
cubo sie una grossessa chorporale lo cuj chorpo inchiude in sè la lunghessa della cosa e lla
superficie del censo, ed è ditta cubo sicondo l’arismetrica di Boetio da questo nome cubus
cubi che tanto vuol dire quanto agreghatione di numerj” (Dardi, 2001, 37–38).

12“il paralellogramo .i.l.g. sarà un cubo ed il paralellogramo .i.l.f. sarà 6
1
^” (Bombelli,

1966, 229).
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IV represents fourth powers as squares whose sides are algebraic squares
(§§43,46).13

2.2. Regimenting representation. But a geometric representation of al-
gebra, which has any regard for classical practice (as renaissance mathe-
matics obviously had) must confront the issue of homogeneity. Cardano, for
one, included a highbrow warning against the misunderstandings that fail-
ure to respect homogeneity may bring: “it is clear that they are mistaken”,
explains Cardano, “who say that if BH, for instance, is the value of” the
unknown14 “and GF is 3, the rectangle” formed by BH and GF “will be
3BH or triple BH. For it is impossible that a surface should be composed
of lines” (Cardano, 1968, 34). But Cardano’s way of actually dealing with
homogeneity in his geometric proofs of algebraic rules was simply to turn
a blind eye to its requirements. After making this very warning, Cardano
ignores the difference between multiplying a line by a number and by an-
other line, and very casually adds numbers, lines, areas and volumes as if
they were all homogeneous (Cardano, 1968, e.g. 76,65,124).

Bombelli’s practice, however, is much more carefully regimented. When
Bombelli illustrates geometrically the solution of the problems ‘Cose equal
number’ and ‘square(s) equal number’ (§§22–24), he carefully equates prod-
ucts of lines with rectangles, and homogeneously applies rectangles to lines15

or reduces them to squares.16 Nevertheless, when constructing a line repre-
senting one of Euclid’s special binomials (sums of number and square root),
Bombelli has no problem writing “Let the line .a. be 16 square number, and
the line .b. 12 non square number” ... “and let .c. be 144, the square of .b.,
and .d. 192, product of .a. and .b.” (§56).17 Does this mean that Bombelli,
too, violated the requirements of homogeneity?

The answer is negative. Bombelli explicitly developed the means that
would allow him to represent the product of lines as a line, while maintaining
homogeneity. For instance, in §98 Bombelli poses the following question,
a geometric version of a problem from his manuscript Book III: “Let the
line .a.b. be given, which has to be divided into three parts in continued
proportion in such a way that having found a line that would be equal to
the product of the first and the second, the line .o. being the common

13The diagrams are missing from the manuscript treatment of these sections, but the
text clearly shows that the diagrams inserted by Bortolotti are correct in this respect.
Recent work by Marie Hélène Labarthe indicate that Pedro Nuñez applies similar practices.

14The English translation has x for Cardano’s res, which I’d rather avoid.
15To apply a rectangle to a line is to construct another rectangle of the same area with

one side equal to the given line.
16This accords with the notion of “strict homogeneity” attributed by Freguglia (1999)

to Bombelli, but as we shall see below, this attribution has to be qualified and applied
very cautiously.

17“Sia la linea .a. 16, numero quadrato, et la linea .b. 12, numero non quadrato, et
minore de la .a., et sia la .c. 144, quadrato della .b., et la .d. 192, moltiplicatione dell’.a.
in .b.”.
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measure, and the said line multiplied by the third, it would make a line
equal to .g.l.”.18 The product of the first and second lines is a rectangle, and
as such can be applied to a line, namely to the common measure .o.. The
other side of this applied rectangle represents the product of the two original
lines. The common measure need not be carried explicitly with the product
line, but it is there implicitly as the other side of a rectangle, for otherwise
homogeneity is violated. This practice makes the product line a hybrid
between an independent line and a rectangle named by its non-common
side. The final requirement posed by the problem may be simultaneously
viewed as an equation confronting two lines (the product of the three parts
and .g.l.), or as an equation between two boxes, where the first has one side
equal to .o., and the second has two sides equal to .o. (and one equal to
.g.l.). A line no longer simply stands for a line.

In other problems the common measure might not be mentioned under
that name, but is still there. When in §111 Bombelli asks to find the line
representing the square of a given line, he uses one of the given lines of
the problem as a common measure. Indeed, when he verifies the solution
by assigning lengths to lines, he assigns this line the length 1, and says
that this is the value one should “always take”.19 But this “always” is
immediately qualified. Geometrically, we may choose our unit as we wish,
but arithmetically, our chosen common measure might already be given a
non unit numerical length. And so Bombelli explains that if the line used
as geometrical unit is not of length 1, then a common measure should be
derived by rescaling20 this given line according to its given length so as to
produce a line of length 1. If we now perform the construction with this
newly derived unit as the common measure, geometric practice will accord
with the arithmetic score of line lengths.

We see here that Bombelli takes care to maintain homogeneity on the
geometric level, and at the same time remains faithful to arithmetic consid-
erations, to which homogeneous geometry in itself is blind. This practice
distributes the length of a line between different co-extensive registers. Ge-
ometrically, the common measure should “always” be interpreted as 1. But
arithmetically it may be assigned any value. The common measure ties

18“Sia data la linea .a.b. la quale si habbia a dividere in tre parti continoe, et pro-
portionali in tal modo, che trovato una linea che sia pari alla potentia della prima nella
seconda, essendo la linea .o. la commune misura, et la detta linea moltiplicata via la terza
faccia una linea pari alla .g.l.”. Note that the common measure could also be understood
as unit measure. Indeed, Bombelli writes a few lines below that “the .o. is 1 always by
rule” (“et la .o. 1, sempre per regola”).

19“sempre pongasi la .a.b. essere 1”.
20I use the term rescaling to refer to reducing or extending a line or an entire geometric

structure by a given ratio.
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together two mathematical orders, and is allowed to function on both lev-
els, accepting and validating their difference. A single line — that of the
common measure — may represent two values in two contexts at once.21

2.3. The vicissitudes of regimentation. Bombelli’s geometric represen-
tation of algebra is provided with a more or less systematic setting. After
reviewing some elementary Euclidean constructions (e.g. bisecting a line,
reducing a rectilinear surface to a square, applying a rectangle to a line),
Bombelli sets out to instantiate arithmetic and algebraic operations in geo-
metric terms. Addition and subtraction are represented as concatenating
and cutting off lines (§§15,16); the product of lines is represented as the
rectangle that they contain (§17); dividing lines is done by introducing a
common measure and using similar triangles (Elements VI.12) to draw a
line whose ratio to the unit is as the ratio of the divided to the divisor (§18).
As Bortolotti observed, this practice of division would later be reinvented
by Descartes. Earlier in the text, in the context of applying a rectangle to
a line, Bombelli uses a construction based on Elements III.35 (chords in a
circle cut each other proportionally). This construction, too, is used further
on to implement division with a common measure.

Next Bombelli considers root extraction (§19). This is performed either
by Euclid’s semicircle construction of the geometrical mean between a given
line and a common measure (Elements VI.13, without explicit reference) or
the variation of the same construction, where the unit is taken on the given
line, rather than appended to it (a variation later used by Descartes in his
Regulae). Bombelli then relates this operation to reducing a rectangle or a
sum of squares to a square. Cubic roots (§20) are then extracted through
a trial-and-error method based on constructing similar right angle triangles
that Bombelli, following Barbaro’s commentary on Vitruvius, attributes to
Plato (or his disciples) (Bombelli, 1966, 47,228), and that is known from
Pappus’ Mathematicae Collectiones.22 Bombelli promises two methods for
the extraction of cubic roots, but provides only one. A second method
appears in Book I of the print edition, and is based on superposing right-
angled rulers (Bombelli, 1966, 48). Bombelli relates the extraction of a

21It is interesting to note that Bombelli’s virtuosity concerning homogeneity confused
even as deep and insightful an editor as Ettore Bortolotti (his rampant whiggishness
notwithstanding). In the notes to §110 Bortolotti says that Bombelli’s rectangle .e.b.f.
should be a box, because it equals what Bortolotti reconstructs as X3. But in fact Bor-
tolotti’s X3 is for Bombelli not a box whose sides are equal to an unknown X, but a
square whose one side is the cosa (Bortolotti’s X), and the other side the square of the

cosa reduced to a line, with .b.f. serving as unit measure (in Bortolotti’s terms: X2/bf).
In Bortolotti’s terms, then, the correct algebraic model for the term equated with .e.b.f.
would be X3/bf , and homogeneity is indeed maintained if .e.b.f. is a rectangle. This
shows how subtle Bombelli’s practice of regimenting homogeneity was, and how evolved
was Bombelli’s skill of tacitly retaining the two-dimensionality represented by a single line.

22See Giusti (1992, 305–306) for more details.
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cubic root to finding two mean proportionals between a given line a common
measure as well as to reducing a box to a cube.

These building blocks allow Bombelli to translate arithmetic operations
into geometric ones. However, we should note, as did Enrico Giusti (1992,
311–312), that the use of these building blocks is not terribly consistent.
We must acknowledge that the strategy of reducing rectangles to lines and
employing explicit common measures is in fact not central to Bombelli’s
work.23 Bombelli usually maintains homogeneity in the classical way, which
does not require such manoeuvres. We should also note that Bombelli’s
practice here is in fact in line with the choices of Descartes, who would
later develop the same technology to deal with homogeneity, but, again
like Bombelli, would rarely use it to work outside the classical practice of
homogeneity (Bos, 2001, 299). Van Ceulen, the other pre-Cartesian author
who used a unit measure to reduce a product of lines to a line, had his
contemporary editor insert a note insisting that the product of two lines is
an area (Bos, 2001, 156). We see that bypassing homogeneity by common
measures was hard to digest, even when it was explicitly introduced in a
rigorous manner. In fact, the haphazard approach represented by Cardano
enjoyed more popularity, as those who didn’t mind homogeneity followed its
path, while those who did mind homogeneity were uncomfortable even with
the Cartesian approach.24

But Bombelli’s deviations from his expository building blocks for instanti-
ating algebra in geometric terms are not restricted to issues of homogeneity
management. For example, Bombelli frequently uses the Pythagorean the-
orem, which is not mentioned in the expository part. In the context of
geometrically instantiating algebraic solutions to problems imported from
his manuscript Book III Bombelli’s approach is sometimes more creative
than a strict combination of his expository building blocks would suggest.
For instance in §94 (figure 1), when algebra instructs to divide the square
on .b.c. by twice .a.c., rather than actually double .a.c. and divide using
intersecting chords or proportional triangles as in the introduction, Bombelli
draws the line .c.e. whose square is half the square on .b.c., and then takes
advantage of the fact that .c.e. is a mean proportional between .a.c. and the
result of the division, drawing this result (.g.c.) using one of the diagrams
for producing a mean proportional.

The point of this example is not to nit-pick on Bombelli’s commitment to
the procedures presented in his exposition. I include these details to provide
an example of how Bombelli follows the respective idiosyncratic practicalities

23While I am puzzled by Giusti’s claims that modelling division via proportional tri-
angles “is somewhat hidden” and that division by intersecting chords “is abandoned”
(Giusti, 1992, 312), it is true that these diagrams rarely depend on an explicit assignment
of the role of a unit to any particular segment.

24Newton, for instance, wrote: “Multiplication, division and such sorts of computation
are newly received into geometry, and that unwarily and contrary to first design”. Quoted
in Roche (1998, 79).
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Figure 1. Bombelli (1929, §94): geometric idiosyncracies
with respect to algebra

of algebra and geometry, and ends up with different procedures even when
geometry is there supposedly to reproduce an algebraic practice.25

These reservations notwithstanding, Bombelli’s concern with regimenting
homogeneity and representing algebra by geometry demonstrates two majors
points of my overall argument. First, a rigorous representation of algebra by
geometry does not necessarily entail establishing univocal links between the
two. Indeed, we saw above how algebraic powers could correspond to various
geometric dimensions, how arithmetic operations received various geometric
interpretations (e.g. root extraction interpreted as reducing a rectangle to
a square and as finding a mean proportional with a common measure), and
how the algebraic and geometric strata of expression maintained their own
irreducible particularities (as in the description of §94 above, where a geo-
metric construction, meant to represent an algebraic procedure, depended
on the opportunities provided by the geometric diagram, rather than on the
introductory gemetrico-algebraic ‘dictionary’). Second, the interaction of
geometry and algebra forces each stratum to express more than it had be-
fore the encounter. We do not have a simple double expression, where each
geometric sign expresses a geometric entity and an algebraic one. What we

25At the same time, in some cases of reconstructing algebraic solutions geometrically
the diagrams follow algebraic orders very strictly. In §99, for example, the algebraic rule
requires doubling one of the given quantities, and then dividing it by 2 (when Bombelli
constructed the quadratic equation that solved the algebraic version of this problem,
twice the given quantity appeared as a coefficient in the equation, and the solution rule
then required this coefficient to be halved — hence the subsequent multiplication and
division by 2). The geometric reconstruction follows the algebraic rule so faithfully, that
it insists on reproducing the subsequent and mutually-cancelling doubling and halving. A
further interesting attempt to express arithmetic information geometrically occurs when
extracting the root of binomials. In §63, when subtracting two roots whose ratio is rational
(in Bombelli’s language, the numbers under the root are to each other as “a square number
to a square number” — “come da numero quadrato a numero quadrato”), the roots are
modelled as a a square removed from a square. But in the next section, where the ratio
between the subtracted roots is not rational, they are modelled as a rectangle removed
from a square.
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have is a relative sliding of multiple algebraic and geometric interpretations
under the same geometric sign. Indeed, as we saw in the previous subsec-
tion, a single geometric line could represent a line or a rectangle, a geometric
unit measure or an arbitrary arithmetic length. 26

We will return to this latter point in the fourth section of this paper. But
first let’s expand the former point, and explore the functional (rather than
semantic) relations that Bombelli constructs between geometry and algebra.

3. The functional relations between geometry to algebra

The first geometric representation of an algebraic operation in Bombelli’s
Book II is preceded by the following statement: “And while this science
is arithmetic (as it was called by Diophantus the Greek author and the
Indians), nevertheless it does not follow that one can’t provare it all by
geometric figures (as does Euclid in the second, sixth, tenth)” books of the
Elements.27 According to the convincing arguments of Sabetai Unguru and
David Rowe (1981–1982) Euclid saw things quite differently. But for the
Renaissance revisionists the provare-bility of arithmetic by geometry was
taken for granted. What must be carefully analysed here, however, is the
precise use that Bombelli makes of the verb provare.

Provare could potentially mean ‘prove’, ‘demonstrate’, ‘test’, ‘verify’ and
a myriad of shades in between. In this section we will follow the different
ways that Bombelli relates geometry and algebra. In some cases geometry

26It is interesting to recall here Lacan’s reaction in his Instance of the letter to de
Saussure’s representation of the signifier and the signified strata as two parallel horizontal
wave figures correlated by vertical lines. Rather than horizontal strata of ‘upper water’
(signifier) and ‘lower water’ (signified) anchored to each other by the vertical dashes,
Lacan suggests reading the diagram as one horizontal stream flowing under another, while
vertical drops of rain flow between them (Lacan, 2006).

27“E benchè questa scientia sia Arimetica (come la chiamano Diofante Autore Greco e
li Indiani) però non resta che il tutto non si possi provare per figure Geometriche (come
fa Euclide nel secondo, sesto, decimo)” (Bombelli, 1966, 184–185). Bombelli rarely quotes
explicitly from Euclid — almost all explicit quotations are found in the first 18 sections of
Book IV, where Bombelli introduces his basic geometric constructions. From the reference
to Euclid’s VI.12 in Bombelli’s §18 we can infer that Bombelli used either a Greek version
or an edition of Zamberti’s Latin translation from the Greek (Campanus’ Latin translation
from an Arabic source has the Greek VI.10 as his VI.12). Nevertheless, Bombelli’s diagram
in §18 is not a reproduction of the Greek diagram, but an ad-hoc diagram adapted to
his specific needs. In fact, Bombelli’s list of algebraic sources (quoted above) suggests
a thorough bibliographic research, and if this research extended to geometry too, it is
likely that Bombelli consulted several versions of the Elements, and was not committed to
any one particular edition. Medieval translators and commentators had already conflated
arithmetic and algebra (e.g. Barlaam’s commentary on Book II), but Bombelli’s reduction
of Euclid’s binomials to sums of roots or of a number and a root is closest to what we
observe in Tartaglia’s Italian translation, which is based on an integration of Campanus’
and Zamberti’s translations, but which takes a further step toward an arithmetisation of
Euclidean geometry (Malet, 2006). Bombelli’s step, in turn, towards such arithmetisation
is bolder still, as he considers Euclid’s entire Book X as covered by the arithmetic of his
own Book I (Bombelli, 1966, 9).
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provides an independent justification of algebraic manoeuvres. In others
geometry serves as instantiation or reconstruction of algebraic operations in
lines rather than characters. In yet other cases a geometric diagram serves
as a common pivotal translation of distinct algebraic expressions, which ties
them together as equivalent. Finally, we must not neglect the cases where
geometric diagrams serve as accompaniment for algebraic problems, either
to manifest two approaches to a single problem without an attempt to relate
them, or to supply a visual accompaniment without any specific functional
purpose. I will review these themes in detail so as to demonstrate the
multiplicity inherent in Bombelli’s relating of algebra and geometry. I hope
that this multiplicity may serve as a guiding framework for understanding
geometry-algebra relations in wider contexts as well.

3.1. Geometric justification of algebra. One aspect of the relation be-
tween geometry and algebra in Bombelli’s text goes back to the Arabic
sources. This is the justification of algebraic rules for solving quadratic
equations by geometric diagrams. In §49, for example, Bombelli justifies a
rule for squaring the sum of roots by drawing a square, whose sides are the
sum of those roots (see figure 2). The square is divided into the square of
the first root (.g.e.), the square of the second (.c.e.) and the two rectangles,
each representing the product of the roots (.i.e. and .a.e.). The mood of
the explanation is so geometric that the congruence between the two rect-
angles is established not by arithmetic commutativity, but by Theorem II.4
of the Elements. Nevertheless, this geometric mood is complemented by as-
signing numerical values to the lines, without which the diagram could not
specifically represent a sum of roots.

Figure 2. Bombelli (1929, §49): Geometric justification of
an arithmetic rule

Similarly, many of the rules of Books I and II concerning operating on
binomials and solving equations receive (at least an attempted) geometric
justification in Book IV. These diagrams are not new, and go back to Car-
dano, the abbacists, Latin sources and Arabic sources. Quite a few of these
diagrams were included in the print edition of Books I and II. Geometry
appears to be a required footing for algebra to stand on.
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Bombelli extends this geometric footing to specific algebraic problems
imported from the manuscript Book III as well. §75, for example, translates
the division of 20 scudi in two parts, such that 2

3 of the first part equals 3
4

of the second (Bombelli, 155?, 17r), into the following geometric problem.
Given a line, divide it into two parts, such that if we take a portion of the first
part according to the ratio between the given lines .a. and .b., and a portion
of the second according to the ratio between the given lines .c. and .d., then
the resulting portions turn out equal. The geometric solution that Bombelli
provides does not imitate the procedure of the algebraic solution from the
manuscript Book III, and its justification depends not on arithmetic, but
on elementary proportion theory (Elements VI.12, which is not referenced
explicitly here, but is referred to earlier in Book IV). The geometric analysis
is followed by supplementing the diagram with numerical data identical to
those in the problem from the manuscript Book III. The end result is of
course the same as well, but the intermediary numbers involved in the Book
IV solution are different from those in Book III, as the geometric solution
is not a replication of the algebraic moves. Geometry thus provides an
independent verification for algebra.

3.2. Geometric instantiations of algebra. If we go on to §78, however,
we get another side of the story. The problem here is to divide a line .a. in
two parts, such that the rectangle made of one part and the given line .b.
equals the rectangle made of the other part and the given line .c..

First we are presented with a properly geometric solution. On the left
hand part of figure 3 the line .d.f. equals .a., .d.g. equals .c. and .g.h.
equals .b.. The lines .g.e. and .f.h. are parallel. Euclidean proportion
theory guarantees that .e. divides .d.f. in the required way. If we were to
plug in the numerical values from the original algebraic question into the
diagram, and derive the same result that we had obtained algebraically, we
would obtain, as above, a geometric verification of the algebraic result.

Figure 3. Bombelli (1929, §78): geometric justification and
geometric instantiation
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But Bombelli does not do that. Instead, Bombelli writes: “and since
the rule of algebra shows another solution for it, I didn’t want to hold
back from presenting it”.28 Bombelli’s next solution for the same problem
depends on the right hand part of Figure 3. Here .i.l. equals .a., .l.m.
equals .c., and .l.p. equals the sum of .b. (equal to .l.o.) and .c. (equal to
.o.p.). Euclidean circle theory (Elements III.35), interpreted by Bombelli
as a means of implementing division, yields that .l.n. equals .a. times .c.
divided by the sum of .b. and .c.. Setting .k.l. equal to .l.n., claims Bombelli,
obtains the desired partition of the given line.

What is the justification for this claim? Here Bombelli makes no geomet-
ric attempt to show that the rectangle contained by .i.k. and .l.o. equals
that contained by .k.l. and .o.p.. What Bombelli actually did here is take the
algebraic solution procedure from the corresponding problem in the man-
uscript Book III (Bombelli, 155?, 119r), and implement it geometrically.
Reformulating Bombelli’s solution anachronistically and replacing his num-
bers by the letters a, b and c (but remaining faithful to his step by step
reasoning), the algebraic solution says that the parts are x and a − x, and
since we require that bx = c(a− x), our equation reduces to (b+ c)x = ac,
which yields x = ac

b+c . The diagram simply applies Bombelli’s geometric
mechanism for dividing ac by b+ c to produce the result .l.n..

Instead of justifying the construction geometrically, Bombelli verifies that
the constructed line represents the correct result by providing numerical
values for the lines. In the example above .a. is given the value 11, .b. is 6
and .c. is 4. Therefore .l.p. is 10, .l.n. is 11·4

10 (note that this is an arithmetic
claim, and not a claim immediately expressible in Euclidean terms!), and
the resulting parts are 42

5 and 63
5 . This result is explicitly verified to satisfy

the terms of the problem, namely, that multiplying the former part by .b.
and the latter by .c. yields equal results. But, I emphasise, there is no
attempt here to argue geometrically why the rectangle contained by .k.l.
and .b. equals the rectangle contained by .k.i. and .c.. If there is any
justification for this procedure, it is to be found in the manuscript Book III
algebraic solution (compounded by the endorsement of intersecting chords
as modelling division).

In fact, for the most part, Bombelli’s geometric solutions of problems
imported from Book III reproduce his algebraic constructions, rather than
justify them by an independent geometric procedure. In some cases the
algebraic rule is quoted explicitly, while in others only a reference to the
relevant problem of the manuscript Book III is included. If there are ex-
planations added, these are usually clarifications as to how the geometric
manipulations mimic the algebraic procedure (e.g. end of §§94,95), and not
geometric arguments for the soundness of the solution.

28“Et perchè la regola de l’algebra ne mostra un’altra dimostratione non ho voluto
restare di metterla”.
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This double gesture — justification and instantiation — is not restricted
to problems imported from Book III, but occurs in the context of rules for
solving polynomial equations as well. In Bombelli (1966, 195) and in the
manuscript §25, the solution of the quadratic is justified by the standard
diagram borrowed from Arabic sources (figure 4 left). But next to this well
known diagram appears a new diagram, which, as far as I can tell, is new to
the abbacist and the Latin contexts. This diagram geometrically constructs
the solution of the quadratic equation, rather than justify it. Indeed, if
we write the equation anachronistically as x2 + bx = c, then the area .e.f.
represents the number c, and the side of the area .o. represents b

2 . By
the Pythagorean theorem the line .i.e. is the root of the sum of .e.f. and

.o. (
√(

b
2

)2
+ c). Taking .i.p. equal to .i.e., and subtracting the side of .o.

(which, recall, is b
2), we obtain .p.g., which we can anachronistically write as

the well known solution formula − b
2 +

√(
b
2

)2
+ c. I emphasise again: the left

hand diagram explains geometrically why the standard rule actually solves
the equation; the right hand diagram instantiates the rule by a construction
that follows its arithmetic steps, but makes no attempt to justify the claim
that it is in fact the sought line.

Figure 4. Bombelli (1966, 195–196): From geometric justi-
fication to geometric instantiation

3.3. Common geometric translation of distinct algebraic entities.
But to reduce Bombelli’s geometric representations to the distinct roles of
justification and instantiation of algebra would be inattentive to the details.
In the sections dealing with the solution of cubics and quartics (§§32–48)
the geometric representations typically do not quite do either.

In the case of cubics, for example (a treatment adapted from Cardano),
the algebraic cube is represented by a geometric cube, and the various other
algebraic elements (numbers, Cose, squares) are represented by slabs added
to the cube or removed from it. When areas or volumes are said to equal
or cancel each other — unlike in the case of summing roots quoted above,
and in contrast with Cardano’s preferred practice — Bombelli’s argument
does not depend on Euclidean theorems, but on an arithmetic calculation
of the sizes of the areas or volumes involved. Then, the transformations
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required to solve the cubic (change of variable or completion to cube) are
presented as different algebraic models for capturing the same geometric
diagram. What we have here is not a geometric construction instantiating
the bottom line of the algebraic solution, nor a justification of algebra by a
strictly geometric argument, but a geometric diagram that binds different
algebraic expressions by serving as their common translation — a geometric
pivot that enables superposing different algebraic expressions on each other.
For example, in §31, the diagram serves to show that the solution of the

equation ‘1 3
^ equals 6 1

^ +9’ equals the sum of the solution of ‘1
6
^+8

1
3
^

equals 9’ and of 2 divided by that solution; in §35 the diagram serves to
show that the solution of the equation ‘1 3

^ +6 2
^ equals 81’ is related to

the solution of the equation ‘1 3
^ equals 12 1

^ +65’ by a shift of 2 (the text
drags a silly scribal or calculation error and has 64 for 65).29

An even more explicit expression of the role of geometric diagrams as piv-
ots binding different algebraic expressions is provided in the sections deal-
ing with transforming quadratic equations. For example, in Bombelli (1966,
204) the equation ‘ 2

^ +6 1
^ equals 16’ is related to the equation ‘ 2

^ equals
6 1
^ +16’ not by algebraically substituting 6

1
1
^

for 1
^, but by showing that

both equations translate the same diagram of a rectangle of area 16 whose
one side is longer than the other by 6 — the difference lying in the side
modelled as 1

^. But this translation of algebraic language into geometry is
useful precisely because it is not one-to-one. Different algebraic texts (the
original and reduced equations) are translated by the same geometric figure
— only the parts of the figure are modelled differently by each algebraic
interpretation. The single reference or translation for the two different alge-
braic texts serves as a pivot that identifies the distinct algebraic equations
beyond their formal differences, and allows for seeing them as solving the
same problem.

29Freguglia (1999) also studies Bombelli’s geometric representations of solutions of al-
gebraic equations. He states that for second and third degree equations Bombelli provides
geometric step-by-step justifications of the algebraic processes of solution as well as geo-
metric constructions of the solutions that do not justify the algebraic rule. For fourth
degree equations, Freguglia claims, Bombelli only provides a partial geometric justifica-
tion of the algebraic solution process. But as far as I can see, this analysis is imprecise.
For second degree equations Bombelli provides a geometric justification of the solution
and then a distinct geometric instantiation (see figure 4); for third degree equations he
provides a geometric translation of the original equation to a reduced one and a distinct
geometric accompaniment that constructs a solution independently of the algebraic pro-
cedure (see below); and for fourth degree equations Bombelli provides only a geometric
translation of the original equation to a reduced one. Freguglia links Bombelli’s different
representation strategies to the problem of homogeneity and of geometric representation
of high powers of the unknown. But my analysis of Bombelli’s treatment of homogene-
ity undermines this explanation. In fact, Bombelli had the means to provide all kinds
of geometric representations to all relevant equations. His choices had more to do with
complexity than with inherent limitation of representation techniques.
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But there’s another way in which geometry can tie together different
algebraic objects: it can serve as a common representation that bridges their
conceptual divisions. In §§38–42, for example, a single diagram accompanies
five different reductions of equations of the form ‘cube, squares and Cose
equal number’ to simpler cubic equations. Each reduced form is of a different
kind, in parallel to the treatment in Book II. The fact that a single diagram
manages to represent all cases weakens the organising principle structuring
Book II, which considers different forms of cubic equations as distinct cases
that require separate treatment.

A similar impact is had by §44 and §45, which share the same diagram,
and where the latter, claims Bombelli, “is no different from the former ex-
cept in that the square number .u. is added to the square .e.f., and in the
other subtracted”.30 That a common diagram can represent different prob-
lems that differ by a sign renders these problems less obviously distinct.
The point here is not simply that a single ‘general’ diagram can represent
several ‘specific’ algebraic cases; the point here is that a single diagram can
tie together algebraic elements that are considered essentially different (in
the former example different kinds of cubic equations, in the latter addition
and subtraction). Such common geometric representations may have helped
Bombelli (on top of the exhaustion expressed explicitly in the conclusion of
his Book II) to eventually let go of treating separately all different reduc-
tions of quartic equations and of distinguishing all subtractive and additive
changes of variable required for these reductions.

Another instance of geometry bridging algebraic differences occurs in the
context of the principle setting irrational and rational number apart as dif-
fering in ‘nature’ (Bombelli, 1966, 13). Indeed, when Bombelli explains how
to geometrically extract a square root, he notes that it “doesn’t suffer the
difficulties that it suffers in numbers; because one will always find the root
of any given line” (§19).31 Given that for Bombelli any quantity can be
represented by a line, the division between numbers that have discrete roots
and those that do not becomes much less substantial.32

3.4. Geometric accompaniment of algebra. So far we saw that geome-
try sometime served as a justification for algebra, sometimes as instantiation
of an algebraic solution procedure, and sometimes as a translation or pivot
tying together different algebraic terms. But these functions, which are not
always easy to set apart, do not exhaust Bombelli’s ways of relating algebra
and geometry.

30“non è differente da la prima se non in questo, che il quadrato numero .u. si ag-
giungeva con il quadrato .e.f., et in questo si cava.”.

31“il quale creatore non patisce le dificultà, che pate nel numero; perchè sempre si
troverà il creatore d’ogni preposta linea, essendo noto la comune misura”.

32See Wagner (2010) for an overview of Bombelli’s division of numbers according to
their natures and of the undermining of this very division in his algebraic practice.
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Problems §123–124, for example, both require to find the point .c. equidis-
tant from .e. and .a. (left hand side of figure 5). The solution of §123 models
the line .b.c. as an unknown, and uses the Pythagorean theorem to derive
a quadratic equation for it. The solution in §124 uses the right hand dia-
gram, and constructs the solution geometrically, having nothing to do with
the algebra (the trick is to construct .k.c., an orthogonal bisector of .e.g.,
and use the Pythagorean theorem). This independent geometric construc-
tion is not accompanied by numerical values for verifying that it, too, would
lead to the same solution as the algebraic argument. It is simply there as
a counterpoint, accompanying the algebra, without any attempt to project
it on the algebra or tie them together (another example for a geometric
accompaniment independent from the algebraic solution is the construction
of a solutions to cubic equations by means of lines, discussed in section 4.2
below).

Figure 5. Bombelli (1929, §§123–124): Independently ac-
companying algebraic and geometric solutions of a geometric
problem

In other cases the relation between geometry and algebra is weaker still.
I’m referring, for example, to the demonstration of rules for adding and
subtracting roots. While in figure 2 we saw one of these rules represented by
a partitioned square, the diagrams for the other rules (figure 6) are nothing
but disconnected lettered lines. Book III also has one of those odd diagrams,
where three lines of equal lengths marked .a., .b. and .c. accompany a
Diophantine problem (problem 140).

These examples perhaps appear more odd than they should. The Eu-
clidean tradition insisted on drawing diagrams for all problems and theo-
rems, even arithmetic problems and theorems, and even those where the di-
agrams were nothing but a bunch of independent lettered lines. Ian Mueller
suggested that in such cases “the diagram plays no real role” ... “except pos-
sibly as a mnemonic device for fixing the meaning of the letters” (Mueller,
1981, 67). Reviel Netz asserts that arithmetic diagrams “reflect a cultural
assumption, that mathematics ought to be accompanied by diagrams” (Netz,
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Figure 6. Bombelli (1929, §51): Non-functional geometric
diagram accompanying for algebraic rule

1999, 42). To appreciate the role of diagrams in Bombelli’s text, we must
not neglect this tradition of diagrams, which are there to illustrate, not to
argue. 33

One more accident allows us to better appreciate the role of diagrams
in Bombelli’s work. In §72 the triangle .d.e.g. is given the numerical side
lengths 1 for .d.e., 8 for .d.g. and 4 for .e.g.. These data contradict the
triangle inequality, as 1 + 4 < 8, and therefore cannot describe a genuine
Euclidean triangle. But since the geometric instantiation was not practiced
as a faithful illustration of the data (many other diagrams are dispropor-
tional compared to the numerical data), Bombelli could go on with the
example unhindered.

3.5. So what is the relation between algebra and geometry? If the
multiplicity of relations between geometry and algebra documented above
appears confusing, it is probably because we take too much critical distance.
We must remember: algebra had already had its diagrams when it came
to Italy. The Latin tradition, as well as some abbacus treatises, retained
the geometric diagrams that accompanied the Arabic solution of quadratic
equations and led up to a geometric understanding of the solution of the
cubic equation. On the other hand, many abbacists set algebra and geometry
apart, and developed the former independently. When this maturing algebra
came across geometry again, it brought about an arithmetic understanding
of some of Euclid’s geometric books and algebraic solutions of geometric
problems.

It is therefore not surprising that Bombelli, who inherited all these dif-
ferent traditions, came to piece geometry and algebra together in various
different way, and, according to his own quotation above, felt that algebra
and geometry belonged together. This togetherness of algebra and geometry
did not depend on a unique, one-directional relation of justification, instan-
tiation, translation or accompaniment. For people like Bombelli, it seems,
algebra was geometry’s younger — but not for all that entirely dependent
— sister, and these siblings were believed to play best when they were al-
lowed to play together. Bombelli was intent on exploring and diversifying

33For an elaboration of this point see my Deleuzian analysis of classical Greek diagrams
(Wagner, 2009).
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the playgrounds available for the common games of geometry and algebra.
For an author as mathematically proficient as Bombelli, this didn’t come at
the expense of rigour.34

4. The geometry of what’s not quite there

Bombelli’s algebra linearia becomes much more challenging when we con-
sider not only its various relations with algebra’s established entities, but
also its original manner of representing more challenging algebraic objects
whose existence or status was not yet properly settled. Here we can see
the genuine synergy inherent in the core of algebra linearia: its treatment
of negative entities, their roots, algebraic unknowns and their powers. A
proper understanding of Bombelli’s approach and achievements depends on
this hitherto neglected aspect of his work. A careful study of this aspect will
show us how Bombelli’s bringing together of geometry and algebra generated
new mathematical practices, hybrid geometrico-algebraic entities, grounds
for endorsing questionable mathematical entities, and multiple ways of read-
ing a given sign.

The first subsection will deal with the geometric representation and en-
dorsement of negative magnitudes. The second subsection will deal with
the endorsement of expressions involving roots of negative numbers and
with the underlying implicit hypothesis of co-expressivity between algebra
and geometry. The last two subsections will study the hybrid gemetrico-
algebraic practices built around representations of unknown magnitudes,
and the multiple vision of geometric signs that these practices depended on.

4.1. The geometry of missing things. I argue in Wagner (2010) that the
Renaissance meno cannot be properly reduced to subtraction. But in the
context of geometric representations of algebra the subtraction interpreta-
tion seems more defensible, although not entirely exhaustive. Cardano, for
one, uses the term ‘add negatively’ for turning from addition to something
between a subtraction and an addition of negative geometric elements.35

Bombelli’s practice is similarly ambiguous. When he says that some areas

34But that’s a very local interpretation. Seen from a wider epistemological-historic
perspective, the conjunction of geometry and algebra may have had to do with more wide
ranging trends. For one, the regulated projection of one domain of signs on another is,
drawing on Kristeva, a semiotic technique for producing an effect of truth (vraisemblance)
since the birth of the novel in the 15th century (see La productivité dite texte in Kristeva
(1969); for how this theory works in a mathematical context see my Wagner (2009)).
Moreover, the emphasis on geometrically observing algebra, rather than just symbolically
writing it, can be seen as related to the role of vision in the epistemology of early modern
science. I don’t pursue either direction here, because Bombelli does not provide enough
textual evidence to substantiate either interpretation. But Bombelli did not write in
scientific isolation, and the general trends of the period should not be ignored.

35“addito per m̃.”, where m̃ is short for minus (Cardano, 1968, e.g. 54,97). Note that
the latter expression was revised in the later editions of the book so as to use unambiguous
subtraction talk.
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are meno, they can be, in that context (e.g. §§26,27,46,47), interpreted as
subtracted geometric magnitudes rather than as added negative geometric
magnitudes.

One of the most interesting points of ambiguity occurs around the diagram
reproduced in figure 7. Bombelli explains that “from the square .g.h.o. one
removes the square .r.o.s.” (where the latter is bigger than the former).
“And because we’re missing the gnomon .h.r.p.g. and we have the surface
.f., it is necessary that the said gnomon be equal to that surface”.36 It
is clear that Bombelli allows for the subtraction of a larger area from a
smaller one, and that the result is a “missing” area. But this missing area
is positive, in as much as it can be compared to another positive area.
Here geometric representation turns what’s missing into something present.
By way of a similar geometric treatment, the absence or presence of the
gnomon becomes a relative position, rather than an ontological characteristic
of a geometric element. Again we witness the role of diagrams as pivots,
translating different arithmetic entities into a common referent.37

Figure 7. Bombelli (1966, 203): Subtracting a larger area
from a smaller one

4.2. The geometry of sophistic things. The first appearance of roots of
negative numbers in Book II occurs in the context of quadratics. A solution
involving a root of a negative number is presented on a par with another
“sophistic method”,38 that of simply replacing the impossible subtraction in
the solution rule by an addition.39 A few pages later, in the context of the

36“del quadro .g.h.o. si levi il quadro .r.o.s.” ... “E perchè ci manca il gnomone .h.r.p.g.
et habbiamo la superficie .f., di necessità bisogna che il detto gnomone sia pari ad essa
superficie” (Bombelli, 1966, 202–203).

37This representation should be contrasted with Cardano’s diagram illustrating a situ-
ation where 40 were to be subtracted from 25, if one applied the usual solution rule to the
quadratic equation ‘square plus 40 equals 10 things’. There, all that the diagram shows
is a square of area 25 built on half a line of length 10 (Cardano, 1968, Ch. 37).

38“modo sofistico” (Bombelli, 1966, 201).
39This approach might be explained by the work of Marco Aurel, who taught and

published in Valencia. In his Despertador de ingenios, Libro Primero de Arithmetica Al-
gebratica (1552), he offers as solution to the irreducible case of x2 + c = bx the negative

counterpart of Bombelli’s “sophistic” suggestion, namely − b
2
−

√
b2

4
+ c (this is, of course,
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bi-quadratic without real solutions, solutions involving roots of negatives are
not mentioned at all, not even under the mark sophistry. It is simply claimed
that “such case could not be solved because it concerns the impossible”.40

But when we turn to cubic equations, Bomobelli’s approach is very dif-
ferent. The context here is equations of the kind ‘Cube equals Tanti and
number’. Applying Dal Ferro’s and Tartaglia’s solution rule for some in-
stances of such equations — Cardano’s so called irreducible case — yields an
expression involving roots of negative numbers. Bombelli’s most renowned
achievement is his endorsement and analysis of such solutions. In the manu-
script, Bombelli justifies his approach on pragmatic grounds: such solutions
arise from the same rule that worked in the reducible cases, and Bombelli
can often enough transform them into correct real solutions (Bombelli,
155?, 72v). Bombelli’s prime example (in anachronistic notation) is the
equation x3 = 15x + 4, whose solution, according to the received solu-
tion rule and Bombelli’s method for extracting cubic roots of binomials, is(
2 +

√
−121

)1/3 +
(
2−

√
−121

)1/3 =
(
2 +

√
−1

)
+

(
2−

√
−1

)
= 4. But

the derivation of correct real solutions cannot alone account for Bombelli’s
endorsement of solutions involving roots of negative numbers, because a few
pages further on such a solution is endorsed, even though Bombelli can’t
rewrite it as a real solution (Bombelli, 155?, 76v).41

By the time the print edition was ready, Bombelli could provide another
reason for endorsing solutions for cubic equations that involve roots of neg-
ative numbers. He explains: “and although to many this thing will seem
eccentric — for I too was of this opinion some time ago, having the im-
pression that it should be more sophistic than true — nevertheless I sought
until I found the demonstration, which will be written down below, that in-
deed this can be shown in lines, that moreover in these operations it works

anachronistic notation). If one postulates that the product of two isolated negative num-
bers is negative (a postulate that Bombelli took up in his manuscript; see my Wagner
(2010)), one indeed obtains a correct solution (this observation is derived from a talk
by Fàtima Romero Vallhonesta delivered at the PASR conference in Ghent on August
27, 2009). Bombelli’s reference to this way of solving quadratic equations, as well as
his manuscript reference to the negative result of the product of isolated negative num-
bers, might suggest that the “certain spaniard” (“certo spagnuolo”) mentioned among
Bombelli’s sources in his introduction was not the Portuguese Pedro Nuñez, as asserted
by Bortolotti, but in fact Marco Aurel.

40“Ma se non si potrà cavare il numero del quadrato della metà delle potenze, tal
capitolo non si potrà agguagliare per trattarsi dell’impossibile” (Bombelli, 1966, 207).

41In contemporary terms the solution is
(
3 +

√
−720

)1/3
+

(
3−

√
−720

)1/3 − 3.

Bombelli’s techniques do not allow him to simplify the cubic root in this expression.
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without any difficulty, and often enough one finds the value of the Tanto as
number”.42

But what exactly is this demonstration “in lines”? Bombelli’s argument
is as follows. First Bombelli shows that if one has a sum of cubic roots of the
anachronistic form

(
a+

√
−b

)1/3 +
(
a−

√
−b

)1/3, then a cubic equation can
be constructed, which, given the received solution rule, would produce that
sum as its solution (Bombelli, 1966, 226). Then Bombelli shows geometri-
cally that such cubic equations must have solutions (Bombelli, 1966, 227–
228). Since he can show that the questionable algebraic expression solves an
equation, and since, moreover, he can draw a solution for that same equa-
tion geometrically, Bombelli concludes that the geometrically found “length
of the Tanto will also be the length of” the sum of “the two cubic roots
above”.43 Bombelli concludes that the algebraic solution of the equation
must coincide with the geometric construction, and that the latter therefore
validates the former.

This argument, however, is not without its difficulties. The first difficulty
is one that is explicitly addressed by Bombelli. Indeed, Bombelli’s geomet-
ric solution is a planar construction, which, given a segment and an area
representing the coefficients of the equation, a unit measure, and two right
angled rulers, yields a segment representing the solution. Bombelli rejects
possible objections to the use of right angled rulers by noting that a planar
solution to a solid problem must use advanced tools44 and by relying on the
authority of no less than Plato and Archytas.

A second difficulty, which Bombelli fails to address, concerns the condi-
tions of viability of the geometric construction. The solid diagram for solving
cubic equations (Bombelli, 1966, 226), derived from the one introduced by
Cardano, fails to solve the irreducible case, as Bombelli and Cardano ex-
plicitly note. The novelty in Bombelli’s planar diagram is precisely that
it circumvents this difficulty. However, Bombelli makes no effort to show
that his diagram is indeed constructible for all possible coefficients of the
relevant kind of cubic equation. This is all the more unsettling, as the next
kind of cubic equation that Bombelli treats does not always have a positive
solution, but while Bombelli is well aware of this fact, and provides a precise
arithmetic solvability condition (Bombelli, 1966, 231), he makes no attempt
to point out the geometric obstruction restricting his construction. Bombelli
does not raise the question of whether his former geometric construction is

42“Et benchè a molti parerà questa cosa stravagante, perchè di questa opinione fui
ancho già un tempo, parendomi più tosto fosse sofistica che vera, nondimeno tanto cercai
che trovai la dimostratione, la quale sarà qui sotto notata, s̀ı che questa ancora si può
mostrare in linea, che pur nelle operationi serve senza difficultade alcuna, et assai volte si
trova la valuta del Tanto per numero” (Bombelli, 1966, 225).

43“e trovata che si haverà la longhezza del Tanto sarà ancora la longhezza delle due
R.c. legate proposte” (Bombelli, 1966, 226).

44See Bos (2001, Ch.3–4) for the context of such an argument.
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or is not restricted by obstructions, and leaves his claim of general solvability
without critical examination.

There’s a further difficulty that Bombelli fails to address, which concerns
the correspondence between the arithmetic and geometric representations of
the solution. Bombelli is well aware of negative solutions of cubic equations.
He uses such solutions to derive positive solutions of other equations, and
sometimes even considers them independently.45 But Bombelli never ex-
plicitly raises the possibility that his questionable sum of cubic roots might
capture a negative solution, rather than the positive solution that he con-
structed geometrically.

Bombelli is obviously eager to make his solution for the cubic acceptable.
To that end he is willing to use questionable construction methods, avoid
dealing with the viability conditions of his diagrams, and suppress negative
solutions. But most important here is that on top of all that Bombelli takes
another crucial step on this already shaky ledge. Bombelli uses his argu-
ment above to endorse an algebraic entity, which his geometric construction
does not actually draw. Nowhere does the diagram pick up roots of nega-
tive numbers, either directly or inside the cubic root of a binomial. In the
language we introduced above, the geometric construction accompanies the
algebraic solution, rather than justify, instantiate or even translate it. The
diagram does indeed construct a line satisfying the terms of the equation,
but its construction has nothing to do with the algebraic rule of solution and
its roots of negative numbers. The speculation that the algebraic solution
is identical to the line constructed in the diagram is snuck in through the
back door without an explicit account.

The relation between geometry and algebra here can be qualified in a
finer manner, if we observe Bombelli’s remark that a certain cubic equation
allowed him to trisect an angle, and that this fact led him to keep attempting
(in vain) to transform that equation into one that he could solve without
roots of negative numbers. His conclusion was that “it is impossible to find
such general rule” for solving cubics without roots of negatives.46 The point
here is the tension that Bombelli expresses between being able to draw a
solution and not being able to write it down in traditional arithmetic terms.
This tension is something that Bombelli finds so hard to sustain, that he
concludes by allowing an expression involving roots of negative numbers as

45See Wagner (2010) for details.
46“S̀ı che (quanto al mio giuditio) tengo impossibile ritrovarsi tal regola generale”

(Bombelli, 1966, 245). The discussion probably refers to §135 of Book V, where the
trisection of an angle for the construction of a regular nine-gon is reduced to a cubic
equation. This is not the same cubic equation as cited in Book II, and there’s no attempt
in Book V to solve this cubic equation with or without roots of negative numbers, but we
must recall that Book V is the least complete among the books of L’algebra. Note also that
this algebraic-geometric reflection, unlike the one concerning the general plane geometric
solution of ‘Cube equals Tanti and number’, was already present in Bombelli’s manuscript
(Bombelli, 155?, 88r), and may have therefore factored into his original endorsement of
solutions involving roots of negative numbers.
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an algebraic representation of the geometric solution. Recall, in contrast,
that in the case of quadratic equations, where solutions involving roots of
negative numbers could not be drawn geometrically or reduced to verifiable
real solutions, Bombelli rejected them as sophistry. Bombelli’s underlying
conviction thus reveals itself: if you can draw it, you should be able to
express it algebraically, even if the expression looks like gibberish. To put
it into a catch phrase: ‘What you see is what you say’.

If we are to understand Bombelli’s articulation of the algebra-geometry
nexus, we should acknowledge the intimacy granted here to algebra and
geometry. It’s not just about justification, instantiation, translation or ac-
companiment. It’s not just about two strata of expression interacting with
each other in order to bring the best out of both. It’s about a deeply under-
lying assumption of co-expressivity: what’s expressible in the one domain,
should be expressible in the other. Geometric visibility does not only guar-
antee reality, it should also guarantee algebraic expressibility. Without such
underlying assumption, Bombelli’s argument above would not have forced
him to integrate roots of negative numbers into his mathematics.

The logic that short-circuits visibility and expressibility is, of course, an
issue that deserves an independent tracking across the history of science.
But here we’ll restrict ourselves only to validating that it works in both di-
rections. The other direction of the principle that ‘what you see is what you
say’ is the principle that what you say should be visible as well. According to
this principle algebraic unknowns should be expressible geometrically. And
this is where we’re turning next.

4.3. The geometry of the unknown: the rule of three. Geometric
modelling of unknown magnitudes is not new. The very diagrams that
since Al-Khwarizmi accompanied the solution of the quadratic equation did
just that. The unknown line was represented by an arbitrary line, and so
were lines representing known magnitudes, without necessarily respecting
the proportions between the eventual value of the unknown and the given
known values. But Bombelli is interested in doing better than that.

Let’s go back to figure 4. The left hand side is the typical diagram trace-
able to Arabic sources, where .a.b. is the unknown line and .b.g. is a known
line. The right hand side of the diagram, as explained above, is not an-
other justification of the algebraic solution, but a geometric instantiation
of the solution rule. The unknown square .a.b.d. (standing for the square
of the unknown) and rectangle .d.b.c. (standing for the known coefficient
.b.c. times the unknown) are to be equated to the known .f.g.e. (a number).
The construction derives .p.g. as the value of the unknown. Since this is
obviously disproportional with respect to .a.b., the previous representation
of the unknown, Bombelli redraws the right hand side of the right hand
diagram as the rectangle .r.s.t.

This strategy is not typical of the tradition, nor is it typical of Bombelli.
It stands out more as an expression of a problem than as a way of dealing
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with it. When including known and unknown lines in the same diagram, and
then using the known lines to derive a representation of the unknown, the
unknown can no longer be drawn arbitrarily. Bombelli is concerned with this
problem and attempts to derive a more satisfactory form of representation.

Bombelli’s alternative representation is as ingenious as it is simple, and
the fact that it was not systematically replicated (as far as I know) was, I
feel, a genuine loss to techniques of mathematical representation. One of
the most interesting examples occurs in figure 8. This geometric problem is
presented by Bombelli as an analogue of Problem 41 from the manuscript
Book III, which reads: “Two people have money, and find a purse in which
there was as much money as the first person had, and this first person says
to the other: if I had the purse, and 1

3 of yours, and 2 more, I would have
twice as much as your remainder. The second says: if I had the purse, by
giving you 4 of mine, I would have two times and a half as much as you.
One asks how much money was in the purse and how much each of them
had”.47 In the geometric version of Book IV §86, the money of each person
is replaced by an unknown line, 1

3 is replaced by the ratio between the lines
.a. and .b., and 2 and 4 are replaced by the lines .c. and .e. respectively.

Figure 8. Bombelli (1929, §86): adding known and un-
known lines

The solution begins by selecting a line .f.g. “as one wishes, which would
play the role that the cosa plays for numbers”,48 and which stands for the
second person’s original money (note that Bombelli mentions the algebraic
version only after the geometric statement and solution are concluded; I

47“Due hanno denari, et trovano una borsa ne la quale era tanti denari quanti haveva
il primo, et dice esso primo à l’altro: se io havessi la borsa con 1

3
de tuoi, et 2 pùı,” [sic]

“io haveria duo tanti del tuo rimanente. Dice il secondo: se io havessi la borsa, con il dare
a te 4 de miei, io haverei due volte et mezzo quanto te. Si domanda quanti denari era ne
la borsa et haveva ciascuno da se” (Bombelli, 155?, 122r).

48“Pigliasi una linea a beneplacito la quale farà l’effetto che fa la cosa nel numero”.
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conflate the two problems to bring out the analogy and make things easier
to follow). But Bombelli warns that “the unknown lines can never be added
or subtracted from the known”.49 And so in figure 8, when .f.g. is rescaled
according to the given ratio .a. : .b. to form .f.k., and then the known .c. is
subtracted from the remainder .k.g. (this represents taking 1

3 of the second
person’s money and 2 more), .f.k. (the result of the rescaling) is drawn on
.f.g., but the subtracted .l. (which equals the known .c.) is drawn separately.
If one continues the geometric modelling of the protagonists’ manipulations
and wades through their geometric representations50, one eventually obtains
that the unknown .d. minus .y. is to equal the known .z. plus .ψ.

Only at this point does Bombelli bring known and unknown lines into
contact via the bottom part of the diagram. On the ‘unknown axis’ (this
is not Bombelli’s term) we draw .B.D. equal to the difference between the
unknown .d. and .y., and .B.E. equal to our original unknown .f.g.. On the
‘known axis’ we draw .B.C. equal to the sum of .z. and .ψ.. Now, as .B.C.
is supposed to equal .B.D., drawing the parallel lines .D.C. and .E.F. yields
.B.F., which, according to Euclidean proportion theory, is the sought value
of the unknown .f.g..

Bombelli does not justify his procedure here, because he has already done
so earlier, in §73, where this rescaling technique was explicitly related to the
rule “of three”.51 In the context of this example, the rule of three applies
as follows. After the geometric construction is concluded, Bombelli assigns
to the known lines the original numerical values from Book III, and to the
unknown line .B.E.=.f.g. he assigns the tentative numerical value 3. Then,
following the steps of the geometric construction, .B.D. ends up being 3

4 and
.B.C. ends up as 91

2 . Now, since 3
4 (.B.D.) is actually supposed to stand for

91
2 (.B.C.), then, according to the rule of three, .B.E. is actually supposed

to stand for 3·9 1
2

3
4

= 38, which is the length of .B.F..

49“Et notasi, che mai le linee incerte, non si possano aggiungere nè cavare con le certe”.
50This goes as follows. The difference between .k.g. and .l. corresponds to the second

person’s remainder in the first person’s narrative. To retrieve what the first person origi-
nally had according to his narrative, double the latter to produce the difference between
the unknown .m. an the known .n., subtract from the latter the unknown .f.k. and the
known .c. to get the difference between the unknown .o. and known .p., and then divide
in half to get the difference between the unknown .q. and known .r.. Now that we have a
representation of the first person’s original money, we follow the second person’s narrative.
We add to the latter the known .e. to get the sum of the unknown .u. and the known .x.,
which corresponds to the first person’s money at the end of the second person’s narrative.
Rescaling by the ratio of 5 : 2 we get the sum of the unknown .y. and the known .z., which
corresponds to the second person’s money at the end of his own narrative. According to
that narrative, this sum must also correspond to the result of adding .f.g. to .q. minus
.r. (represented as the unknown .t. minus the known .s.) and then removing the known
.e.. This final magnitude is represented by the unknown .d. minus the known .ψ.. The
bottom line is that the unknown .y. and known .z. equal the unknown .d. minus the
known .ψ..

51“la regola della proportione chiamata del tre”.
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Just as the arbitrary numerical choice 3 was a place holder for the correct
solution 38, so is the line .B.E.=.f.g. a place holder for to correct solution
.B.F.. The number 3 didn’t simply stand for itself, and neither did the line
.f.g.. This form of representation enables a line to stand for its possible
rescaling with respect to other given lines. As long as we keep the known
magnitudes and unknown magnitudes along different ‘axes’ or ‘dimensions’,
there’s no risk of error. The point is that just as the rule of three (as I argue
in Wagner (2010)) evolved into an abbacist practice of seeing numbers as
other numbers, here we learn to see lines as other lines.

The double vision required to understand the diagram extends to the side-
by-side setting of known and unknown lines in the upper part of the diagram.
The two scales are confronted, but not confused. And this separation occurs
in the numerical instantiation that follows the geometric construction as
well. Given the numerical values he assigns, Bombelli obtains that .t. minus
.s. is “41

2 meno 3”, but this is never interpreted as 11
2 , because 41

2 is our
place holder for an unknown magnitude, while 3 is a known magnitude.
Indeed, the equivalent term in the algebraic solution of Book III is 11

2
1
^− 3

(recall that .f.g., which stands for the unknown, was assigned the value 3 in
the arithmetical verification of the geometric version of this problem, and
so 11

2
1
^ = 41

2). Moreover, in §85, solved by a similar technique, a certain
difference is reconstructed as “2 meno 3”, but this difference is not marked
as negative, as the 2 is a place holder for an unknown magnitude. Indeed, in
the diagram, the lines representing this difference have a positive difference,
as is the case if we substitute the final result for these lines.

The bottom line of this geometric representation technique is that one is
trained in seeing lines as tentative place holders and as representing more
than their visible lengths, not only with respect to a rescaling of the entire
diagram (as is already the case in Euclidean diagrams), but also relative to
other lines in the same diagram. What you get is more than what you see.
Lines belong to various systems of relations with respect to other lines, and
these relations are invisible for an eye not trained in this hybrid practice of
algebra in lines.

The confrontation of known and unknown lines described above starts as
reproducing cossist algebra, but then ends up as a geometric representation
of the rule of three. Similarly, §§119–120 juxtapose in the context of the
same problem cossist algebra, geometric rescaling and a quadratic version
of the rule of three (where rescaling a given magnitude by a certain factor
rescales another magnitude by that factor squared; here this applies to the
relation between the side of a triangle and its area). While in terms of
arithmetic/algebraic practice the rule of three and linear cossist algebra are
distinguishable, Bombelli’s geometric representation makes it difficult to set
them apart. This technique of representation serves as a common reference
that helps bind the rule of three with algebra, and may have contributed to
the eventual absorption of the older practice into the newer one.
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4.4. The geometry of the unknown: cosa. But another step is re-
quired if one is to render cossist algebra geometrically visible. According
to one interpretation, geometric representations of powers of the cosa were
restricted to the line-square-cube scale. Beyond that, algebra was not ge-
ometrcially instantiated.52 However, as we saw above, not only is Bombelli
willing to represent higher algebraic powers by lower geometric dimensions,
he also has the technique to rigorously reduce higher geometric dimensions
to lines. This is combined explicitly in §21, where an elegant spiral-like di-
agram starts from a unit segment and reconstructs each power of the cosa
as the geometric mean between the previous power and the next.

The geometric representation of higher powers in Books IV and V of
L’algebra is treated in several ways. The first treatment occurs in the con-
text of geometric translations of algebraic solutions of polynomial equations,
following the Arabic sources and Cardano’s diagrams discussed above (see
Subsection 3.3). In this treatment higher powers of the cosa correspond to
higher geometric dimensions. The second treatment concerns ‘arithmetic
geometry’, where geometric problems are presented in terms of numerical
line lengths. There the unknown line is modelled as cosa, and the geometric
situation is expressed by an algebraic problem, which is then solved using
algebraic rules. This was an abbacist practice whose state of the art exposi-
tion belongs to Piero della Francesca (Bombelli’s innovation here is restricted
to the often included geometric instantiation of the algebraic solution, see
Subsection 3.2).

But Bombelli’s third geometric treatment of cosa powers, however rare,
is the most interesting. The four problems §§102,104,122 and 131 go beyond
the two forms of geometric treatment mentioned in the previous paragraph.
These geometric problems are analysed without recourse to specific numer-
ical values, they model higher powers of cosa as lines, and they manage to
provide not only a geometric instantiation of the algebraic solution, but also
a geometric representation of the equations themselves and of their algebraic
reduction to a canonical form. This modelling technique requires a delicate
and specialised way of seeing.

Let’s have a close look at §102.53 The problem asks for three lines, which
are represented in figure 9 as follows. The unknown .d. is the first line sought
by the problem. .e. is twice .d., and together with .f., which equals the given
.a., constitutes the second line sought by the problem. The third line sought

52See, for example, della Francesca (1970, 91), where Piero makes this comparison
explicit for the first three powers of the cosa, reconstructs the fourth power as “two
squares” (“doi quadrati”), but then neglects a further geometrisation of the higher powers
that he names and defines.

53§104 starts with the same approach, but then skips directly to a geometric instan-
tiation of the algebraic solution. §§122 and 131 have blank spaces for diagrams in the
manuscript, and the missing diagrams are difficult to reconstruct from the text.
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by the problem is such that Rect(third line, .b.)54 (where .b. is given) equals
the rectangle formed by the previous two lines, namely Rect(.d., .e. plus .f.).
Finally, the ratio between .d. and the sum of all three sought lines should
equal the ratio between the given .c. and .G.C..

Figure 9. Bombelli (1929, §102): multiplying known and
unknown lines

To make things easier to handle, Bombelli represents the unknown .d.
as equal in length to the known .b. This choice is possible because .d.
and .b. belong to different scales — unknown and known lines. That they
appear to be equal doesn’t commit us to assume that they actually are.
As long as they’re kept apart, any choice is as good as any other. Now
that .b. equals .d. “in length”,55 the third line required above (such that
Rect(third line, .b.) equals Rect(.e. plus .f., .d.)) is equal “in length” to
.e. plus .f., and is represented by .g. plus .h.. But Rect(.g. plus .h., .b.)
must equal Rect(.e. plus .f., .d.) not only in area but also in scale. Since
.e. and .d. are of the scale of the unknown (corresponding to the algebraic
cosa), and .f. and .b. are known (corresponding to numbers), .g. must
be scaled like the second power of the unknown (algebraic censo), and .h.
must be of the scale of the unknown (cosa). This way both rectangles are
sums of censi and cose. In the corresponding algebraic problem 92 of the
manuscript Book III (Bombelli, 155?, 134v), the line .d. is modelled as 1

^,

54By ‘Rect(line1, line2)’ I refer to the rectangle built from the two lines. This is not
Bombelli’s notation, and I use it here to make things easier to follow. The same goes for
the ‘Sum(line1, line2, ...)’ and ‘line1:line2’ notations.

55“in lunghezza”
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.e. plus .f. as 2 1
^ +4 and .g. plus .h. as 2 2

^ +4 1
^ (.b. has no explicit

algebraic equivalent, and serves as the geometric unit measure).
We can already see the multiple vision, a geometrico-algebraic hybrid,

required to understand the relations between lines in this diagram. Now
let’s see how things are put together. Recall that the problem requires
that the ratio .d.:Sum(.d., .e. plus .f., .g. plus .h.) equal the known ratio
.c.:.G.C.. In problem 92 of Book III The ratio .c.:.G.C. is modelled as
20 : 300, and the ratio .d.:Sum(.d., .e. plus .f., .g. plus .h.) as 1

^ : 2 2
^

+7 1
^ +4. This translates to an equality between Rect(.d., .C.G.) and

Rect(.c., Sum(.d., .e. plus .f., .g. plus .h.)). The former rectangle is the
bottom rectangle of the diagram, where .G.y. equals the unknown .d.. The
latter rectangle is the middle one in the diagram, where .o.i. equals the given
.c., .o.q. equals the censi .g., .q.s. equals the cose .d., .e. and .h., and .s.t.
equals the known .f.. In the algebraic version of Book III the equation of
the rectangles is mirrored by the cross multiplication yielding the equation
40 2
^ +140 1

^ +80 = 300 1
^.

Now the task is to compare the two rectangles, balancing at the same
time their areas and scales. Bombelli’s trick here is elementary as it is
ingeniously elegant. Both rectangles are rescaled according to the known
ratio between .b. and .c.. But the middle rectangle is rescaled along the
known vertical dimension, reducing its height from .o.i. to .o.n., whereas the
lower rectangle is rescaled along the known horizontal dimension, reducing
its length from .G.C. to .G.D.. Now both rectangles have the same height in
terms of length (but not in terms of scale). The middle rectangle is divided
into censi, cose and known areas, whereas the bottom is strictly cose. Note
that this normalisation move does not have an algebraic equivalent in the
solution of the algebraic version in Book III. As with the choice of .d. equal
in length to .b., it is a geometric artefact of the geometrico-algebraic hybrid.

Since the middle rectangle includes the cose rectangle .q.s.l., which is
of the same scale as the lower rectangle, this can be subtracted from both
rectangles, leaving the rectangles .o.q.n. and .s.t.x. in the middle and .E.G.y.
below. This manoeuvre reflects the subtraction of cose terms from both
sides of the algebraic equation to obtain an equation of the form censi and
numbers equal cose. The resulting equation in problem 92 of Book III is
40 2
^ +80 = 160 1

^.
The last normalisation step is to reduce the censi to a single square.

Algebraically this is the division of the quadratic equation by its leading
coefficient 40. Geometrically this is the rescaling of all rectangles so that
.o.q.n. becomes a square, that is, rescaling by the ratio .b.:.o.q., which, due
to the representation of .b. as equal to .d. and the equality between .o.q.
and twice .d., is exactly 1

2 . Note that the extra geometric rescaling and the
choice of .b. for the role of geometric unit measure led to a difference between
the geometric and algebraic rescaling: in the algebraic model we rescale once
by a factor of 1

40 , whereas in the geometric model we first rescaled along one
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dimension by the ratio of .b.:.c. ( 1
20) and then along the other dimension by

the ratio of .b.:.d. (1
2). The resulting equation is 1 2

^ +2 = 4 1
^

We are finally in a situation where the single censo .n.p.o. plus the known
.s.l.u. equal the cose .F.G.y.. This is a normalised equation, and can be
treated geometrically as in the left hand side of figure 4 above. But Bombelli
skips directly to the geometric instantiation of the solution rule as in the
right hand side of figure 4. He draws the known .ψ.y., half the coefficient
of the cose (2 in the algebraic equation), finds u.x., the root of the known
rectangle .s.l.u. (

√
2 in the algebraic equation), and then copies it as .ψ.z.

to form the right angle triangle .y.ψ.z.. Now .y.z. is the root of the difference
between the squares of .ψ.z. and .ψ.y. (

√
22 − 2), which is copied as .y.m..

Finally this root is added to the known .ψ.y.. The end result is .ψ.m. (2 +√
22 − 2), the sought value of the original unknown .d..
It is, however, crucial to note that despite the analogies with the alge-

braic model, the geometric treatment includes no assignment of arithmetic
values to line lengths. The solution is algebraico-geometric, but strictly
non-arithmetic.

The point of pursuing this last example in such detail is of course to bring
out the multiple vision of lines according to their lengths and scales that’s
required to pursue Bombelli’s diagrams correctly on the arithmetic, algebraic
and geometric levels. I made a point of highlighting the shifts that algebraic
practice undergoes when Bombelli translates it into a geometrico-algebraic
hybrid. It is this multiple, co-expressive, but not entirely congruent vision
of several mathematical strata, which renders Bombelli such an insightful
mathematician.

5. Conclusion

Together with a recognition of the hybridisation of algebraic and geomet-
ric points of view in the above diagrams, it is important to appreciate the
multiplicity and deferral inherent in each of the two perspectives of this dou-
ble vision. In subsection 4.3 we saw that a segment/number may not stand
for its length/value, but as a place holder for another; in subsection 4.4
we saw that a line may carry a scale or dimension that turns its apparent
relation to other lines problematic, but not for all that meaningless (recall
that scale-independent equality of lengths and areas did play an important
role in the last solution above); in subsection 2.2 we saw that a line can be
seen a an implicit rectangle whose other side is a unit measure, and that
the geometric unit role can be played by any line, but this is no longer the
case where arithmetic values are imposed on lines. All this is compounded
by the sine qua non of algebra: that the unknown stand by definition for a
deferred value.

Interesting as they are, Bombelli’s inventive geometric representations are
a minor and isolated strategy. I do not mean to say that they have never



THE GEOMETRY OF THE UNKNOWN: BOMBELLI’S ALGEBRA LINEARIA 35

been repeated by later mathematicians; I mean that they have been used lo-
cally, sketchily, heuristically and without a rigorous articulation. The canon-
ical co-representation of algebra and geometry is the one emanating from
Descartes: instead of Bombelli’s single unknown line that can take the place
of various different values and be interpreted as belonging to various differ-
ent scales, Descartes’ successors draw all possible lines together, so to speak
side by side. To put this last claim more clearly, note that in Bombelli’s
representation each side of the equation 40 2

^ +140 1
^ +80 = 300 1

^ is
represented by two rectangles, whose scales are yet to be determined, and
therefore stand for a range of possible values. In the post-Cartesian repre-
sentation, however, each of the vertical lines that cover the space between
the curve y = 40x2 + 140x + 80 and the x-axis captures one possible value
of the term 40x2 + 140x+ 80, each of the vertical lines that cover the space
between the curve y = 300x and the x-axis captures one possible value of
the term 300x, and the intersection of the curves captures the one value of
x for which the former is equal to the latter. Instead of representing arbi-
trarily the desired length and deferring the determination of its scale, we
post-Cartesians put the infinity of possible representations side by side, and
extract the one that’s required. With the post-Cartesian representation,
multiple vision is disambiguated. Instead of seeing one thing as many, we
review all possibilities at a glance.

The transition from Bombelli’s representation technique to the post-Cartesian
one, which dominated early modern mathematics, can perhaps be situated
in a more general context: the production of modern techniques for exhaus-
tive representation and observation rather than a representation through
a token instance.56 But the view of many underdetermined things under
one sign is not for all that abandoned. When one extends one’s scope, one
can recognise that the pair of post-Cartesian curves above may contract the
representation of many different empirical phenomena; that it may serve as
a token for a general technique rather than a specific example; that it may
be read as hiding several compressed dimensions (the x can always be rein-
terpreted, for example, as a projection of two independent variables onto
their sum). The story of mathematical representation is a story played with
hybrids, contractions and disambiguations. The range of hybridisations and
contractions is never confined or charted in advance, and the disambiguation
is never entirely exhaustive.

The transition from Bombelli’s algebra linearia to post-Cartesian analytic
geometry is also a process of normalising the relations between geometry and
algebra. Whereas Bombelli simultaneously built on several traditions of
representations (Greek, Arabic, Latin and abbacist), and observed relations
of justification, instantiation, translation and accompaniment (which were

56I’m referring here to recent work by Lorraine Daston presented in her talk at the
History of Science Society meetings in Pittsburgh in 2008, but the connection I’m making
is yet to be historically validated.
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mixed far more casually than this crude division suggests), the following
centuries tended toward a more foundational approach. Rigorous practices
were developed that tried to impose a single, well regimented set of rela-
tions between algebra and geometry. Not that foundational attempts ever
suppressed the practice of plural relations between algebras and geometries,
but they often suppressed an explicit account of these multiple relations,
as well as the idiosyncratic residues that the isomorphisms constructed to
reduce one to the other kept leaving behind.

Why is this important for historians of mathematics? When 19th and
most 20th century historians considered Greek mathematics, all they could
see was geometric algebra — geometry was conceived of as a technique for
representing (perhaps even concealing) algebraic knowledge. This view was
so thoroughly entrenched that historians, who reacted against it, had to dis-
lodge not only the claim that classical Greek geometry was a coded algebra,
but also the weaker claim that Greek geometry contained traces of algebraic
thinking. Some of the arguments used to establish such claims show that if
one allows some traces of algebra into our interpretation of Greek geometry,
one will end up algebraising one’s interpretation to an extent that effectively
recreates geometric algebra.57 But historians should be careful of extending
such arguments beyond their intended scope. Outside the classical Greek
framework (and occasionally at its boundaries) geometry can be algebraic
to various different extents without necessarily recreating geometric algebra.
One does not simply have two possibilities: pure geometry and geometric
algebra. As Bombelli shows, there’s very much between these options and
beyond.

Bombelli’s case is a fine demonstration of the fact that one can rigorously
handle various different ways of relating algebra and geometry without giv-
ing up on the specificities of either. Geometry and algebra are conceived as
co-expressive; what the one can show the other should be able to say and
vice-versa. But this co-expressivity does not turn into a hierarchy, a reduc-
tion or a complete isomorphism. Each algebraic sign and each geometric
line stands for more than a single well regimented value chosen from among
a confined space of interchangeable choices. The techniques of translation
are many, and leave idiosyncracies behind. They require specialised multiple
vision and lead to hybrid and expanded algebraic and geometric practices.
But, most importantly, these multiplicities are not a problem — they are,
precisely, (what enables finding) solutions.
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