
diss. eth no. 23628

M U LT I S C A L E I N V E S T I G AT I O N A N D N U M E R I C A L
M O D E L I N G O F I M B I B I T I O N , D R A I N AG E A N D D RY I N G O F

A M AC RO P O RO U S M E D I U M

A thesis submitted to attain the degree of
doctor of sciences of eth zurich

(Dr. sc. ETH Zurich)

presented by
sreeyuth lal

M.Sc. in Nuclear Engineering,
ETH Zurich - EPF Lausanne

born on 21.11.1988
citizen of Republic of India

accepted on the recommendation of
Prof. Dr. Jan Carmeliet, examiner

Prof. Dr. Gilles Pijaudier-Cabot, co-examiner
Dr. Marc Prat, co-examiner

Dr. Lily Poulikakos, co-examiner
Dr. Dominique Derome, co-examiner

2016



Sreeyuth Lal: Multiscale investigation and numerical modeling of imbibition, drainage and
drying of a macroporous medium, Ph.D. thesis, © 2016



to my family, friends, friends and family





In me I trust.
All others should bring data.





ABSTRACT

This thesis proposes an integrated multiscale methodology to study wetting and drying
in macroporous media exposed to environmental loads. The motivation behind this
work arises from the fact that the durability of many porous materials exposed to the
environment is significantly influenced by the residence time of water in them under
typical environmental conditions. In this thesis, multiscale experimental investigations and
numerical modeling of fluid transport are performed for a highly complex, macroporous
material, namely porous asphalt (PA), with the aim to determine the most important
environmental conditions and material characteristics that determine the residence time
of water in PA.
At the smallest scale, neutron radiography experiments of imbibition, drainage and

drying in PA, using a custom-built mini wind tunnel, are coupled with three-dimensional
pore space characterization using X-ray microcomputed tomography to understand the
physics of air and water transport in PA. The interaction of airflow with PA is further
investigated using two techniques. At the smaller scale, computational fluid dynamics
(CFD) simulations of airflow in a real PA geometry are performed to identify the influence
of air entrainment on convective vapor removal from the internal pore space of PA. In
addition, full-scale wind tunnel experiments are coupled with particle imaging velocimetry
to characterize the air boundary layer above the air-PA interface and to identify the
organized, turbulent flow structures in the boundary layer.
Since gravity-driven drainage and drying are found to be the most important factors

determining the residence time of water in PA, pore network model (PNM) simulations of
drainage in PA and subsequent drying of the residual liquid are performed. Gravity-driven
drainage is simulated using a modified invasion percolation algorithm that includes the
effect of gravity while drying is simulated using a cluster-based approach. An insight
into the evolution of capillary pressure with saturation for macroporous media during
gravity-driven drainage is obtained. It is also observed that a higher hydrophobicity in
the pore network, simulated by increasing the number of pores that do not retain water
after drainage, leads to shorter constant drying rate periods (CDRP) at the beginning
of the drying simulations. To model the experimental observation of no CDRP at the
beginning of drying in PA, a further improvement in the pore network is required in order
to capture the high hydrophobicity and complex connectivity in PA as they are responsible
for the low hydraulic connectivity and high vapor diffusion resistance during drying in PA.
Finally, the PNM simulations are coupled to a heat-air-moisture continuum approach to
show that the macroscopic drying behavior of a complex macroporous medium can be
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modeled with such a coupling approach, subject to more realistic pore networks. Such a
continuum approach to drying is extremely computationally efficient and can be used to
easily understand the influence of dynamic environmental loads on the drying process of a
macroporous medium.



RESUMÉ

Cette thèse propose une méthodologie multi-échelle intégrée pour étudier le mouillage
et le séchage de matériaux macroporeux exposés à des charges environnementales. La
motivation derrière ce travail provient du fait que la durée de vie d’un grand nombre
de matériaux poreux exposés à l’environnement est fortement influencée par le temps
de séjour de l’eau sous conditions ambiantes typiques. Dans cette thèse, des recherches
expérimentales multi-échelles et des modélisations numériques du transport des fluides
sont effectuées pour un matériau macroporeux très complexe, à savoir le revêtement
bitumineux drainant (RBD), dans le but de déterminer les conditions environnementales
et les caractéristiques du matériau qui déterminent le temps de séjour de l’eau dans le
RBD.
À la plus petite échelle, des expériences utilisant la radiographie à neutrons pour

documenter l’imbibition, le drainage et le séchage d’éprouvettes de RBD placées dans une
mini-soufflerie faite sur mesure, sont couplées à une caractérisation tridimensionnelle du
système poreux obtenue par microtomographie à rayons X pour comprendre le transport
de l’air et de l’eau dans le matériau. L’intéraction du flux d’air avec le RBD est en outre
étudiée en utilisant deux techniques. À petite échelle, des simulations de flux d’air dans
une géométrie réelle de RBD sont effectuées par dynamique computationnelle des fluides
pour identifier l’influence de l’entraînement de l’air sur l’élimination par convection de la
vapeur d’eau des pores de RBD. En outre, des expériences en soufflerie à grande échelle
utilisent la vélocimétrie par imagerie de particules afin de caractériser la couche limite
d’air au-dessus de l’interface air-RBD et d’identifier les structures d’écoulement turbulent
organisé dans la couche limite.
Étant donné que le drainage par gravité et le séchage se trouvent être les facteurs les

plus importants déterminant le temps de séjour de l’eau dans le RBD, des simulations par
modèle de réseau de pores (MRP) du drainage dans le RBD et du séchage subséquent du
liquide résiduel sont effectués. Le drainage par gravité est simulé en utilisant un algorithme
modifié d’invasion par percolation qui inclut l’effet de la gravité. Quant au séchage, il est
simulé en utilisant une approche fondée sur la méthode des grappes. L’évolution de la
pression capillaire avec le degré de saturation du matériau macroporeux pendant le drainage
par gravité est bien obtenue. On observe également qu’un caractère hydrophobe plus élevé
dans le réseau de pores, simulé en augmentant le nombre de pores qui ne retiennent pas
l’eau après le drainage, mène à de plus courtes périodes constantes du taux de séchage
(PCTS) au début de la simulation de séchage. Pour modéliser l’absence de PCTS au
début du séchage, tel que observé expérimentalement, une amélioration du modèle part
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réseau de pores serait nécessaire afin de capturer la forte hydrophobie et la connectivité
complexe du RBD, responsables de la basse connectivité hydraulique et de la résistance à
la diffusion de vapeur élevée notées pendant le séchage du RBD. Enfin, la simulation par
MRP couplée à un modèle en milieux continus du transport de la chaleur, de l’air et de
l’eau modéliseraient adéquatement le comportement macroscopique du séchage d’un milieu
macroporeux complexe, sous réserve de l’obtention de réseaux de pores plus réalistes. Une
telle approche de modèle en milieux continus pour le séchage est extrêmement efficace
informatiquement et peut être facilement utilisée pour comprendre l’influence des charges
environnementales sur le processus de séchage d’un matériau macroporeux.
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NOMENCLATURE

This list of symbols is not exhaustive. Symbols that only appear locally in the text, or are
self-explanatory, are not included.

roman symbols

symbol definition unit

Bo Bond number -
c mass fraction -
cp specific heat J/(kgK)
Ca capillary number -
d diameter or distance m
D diameter m
DM molecular diffusion coefficient m2/s
e evaporation flux density kg/(m2/s)
F evaporation flux kg/s
g gravitational acceleration m2/s
gnw non-wetting phase diffusive conductance m3/(Pa.s)
gw wetting phase hydraulic conductance m3/(Pa.s)
G shape factor -
hm convective mass transfer coefficient m/s
H hyperbolic hole -
I beam intensity neutrons/(cm2s)
J scalar flux m/s
k turbulent kinetic energy m2/s2

kr relative permeability -
K permeability m2

K permeability tensor s
Ks saturated permeability m2

xv



xvi nomenclature

Kv water vapor permeability s
l length m
Lv vaporization heat of water J/(kg)
m mass kg
mloss normalized moisture loss -
ṁdry drying rate kg/s
M molar mass kg/mol
n Van Genuchten parameter -
Nc number of corners -
pc capillary pressure Pa
P pressure Pa
q fluid flux m/s
qf flux due to moving front m2

qh heat flux J/(sm2)
qv water vapor flux kg/(m2s)
r0 element radius m
rt tube radius m
R universal gas constant J/(mol K)
Re Reynolds number -
Reθ Reynolds number based on momentum thickness -
Reb Reynolds number based on channel length -
Rebc Reynolds number based on channel height -
Rv specific gas constant of water vapor J/(mol K)
s degree of saturation -
S saturation -
Sct turbulent Schmidt number -
SF shape factor -
Sh Sherwood number -
Su skewness of u -
Sv skewness of v -
Sw total water saturation -
t time s



nomenclature xvii

T temperature K
u fluid velocity in streamwise direction m/s
u′ fluctuating part of streamwise component of velocity

vector
m/s

u∗ friction velocity m/s
U mean wind speed m/s
U∞ free-stream wind speed m/s
U+ dimensionless mean wind speed -
v fluid velocity in wall-normal direction m/s
v′ fluctuating part of wall-normal component of velocity

vector
m/s

w moisture content kg/m3

wcap capillary moisture content kg/m3

wPM moisture content in porous medium kg/m3

ws solid matrix content kg/m3

y+ dimensionless wall-normal distance -

greek symbols

symbol definition unit

α shape parameter of Weibull distribution mm
αc corner half-angle ◦

αV G Van Genuchten parameter -
β scale parameter of Weibull distribution -
χ dimensionless arc menisci curvature -
δ boundary layer thickness mm
δ∗ displacement thickness mm
ε volume porosity -
ε turbulent dissipation (only chap.6) m2/s3

Σ neutron beam attenuation coefficient m−1

φ relative humidity -



xviii nomenclature

γ surface tension N/m
η film thickness cut-off factor -
λ thermal conductivity W/(m K)
µ dynamic viscosity kg/(m s)
µdry water vapor resistance -
ν kinematic viscosity m2/s
νt turbulent viscosity m2/s
θ contact angle ◦

θ momentum thickness (only chap. 5) mm
θc critical contact angle for film flow ◦

ρ density kg/m3

τ mass thickness kg/m2

τt tortuosity -
τw wall shear stress N/m2

subscripts

symbol definition

∞ external environment

b bulk

cl cluster

eff effective
e equilibrium

f film
g gas
i inlet

l liquid
nw non-wetting phase
r receding
s saturated
s solid (only ch. 7)



nomenclature xix

t time
v vapor
w wetting phase

superscripts

symbol definition
s snap-off
t threshold





L IST OF ACRONYMS

AM arc meniscus

CDRP constant drying rate period

CFD computational fluid dynamics

CHTC convective heat transfer coefficient

CMTC convective mass transfer coefficient

DDRP decreasing drying rate period

DOS degree of saturation

IP invasion percolation

MB Maximal Ball algorithm

MCD moisture content distribution

MS-P Mayer and Stowe-Princen

NR neutron radiography

PA porous asphalt

PIV particle imaging velocimetry

PNM pore network modeling

PSD pore size distribution

REV representative elementary volume

ROI region of interest

TP transition period

TSD throat size distribution

xxi
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1
INTRODUCTION

1.1 motivation

A comprehensive understanding of fluid transport in porous media is of great commercial,
environmental and scientific interest. A variety of commercial activities like, to name a few,
enhanced oil recovery from seabed reservoirs, drying of paper pulp, water management
in polymer electrolyte membrane fuel cells, cooling by porous heat exchangers etc. are
directly dependent on the accurate prediction of transport properties in porous media.
The durability of several porous materials used in the built environment such as concrete,
sandstone, limestone, brick, asphalt etc. is highly dependent on the residence time of
water within these materials as water is their main agent of degradation. An accurate
modeling of water transport in soil, the most widely occurring natural porous medium, is
important for groundwater management and agriculture. Other important porous media
flows from an ecological perspective are mobilization of methane in gas hydrates and the
storage of CO2, nuclear and other hazardous waste in the Earth’s subsurface. From a
scientific point of view, transport in porous media is a challenging area to understand due
to the co-occurrence of many physical, thermal, chemical and biological processes.

In this study, due to the lack of a standard definition in building physics, materials that
have pore sizes smaller than 0.1 mm are termed as microporous media while those with
pore sizes greater than 0.1 mm are termed as macroporous media. A large amount of
experimental, analytical and numerical research has gone into the investigation of transport
phenomena in microporous media. Liquid flow in microporous media is primarily driven
by capillary forces in the small pores, although other factors such as pressure and thermal
gradients, wettability, pore surface roughness etc. can also be driving factors. However,
in macroporous media, due to the presence of large pores in the range of millimeters,
gravity becomes the most important driving force for liquid transport. Additionally, in
large pores, gaseous transport can be enhanced e.g. by convection, and consequently,
continuum-scale transport properties such as permeability and capillary pressure curves
cannot be calculated in a straightforward manner without assessing the influence of the
enhanced vapor diffusion. At the same time, the large pores hinder liquid redistribution
within the material. Moreover, pore space characteristics such as pore size distribution,
tortuosity, connectivity etc. can influence both the rate of evaporation of the liquid within
the material and the subsequent vapor diffusion, although the degree of their influences
may be different in microporous and macroporous media.
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Most of the research to date has concentrated on microporous media as many porous
materials of commercial and natural importance are microporous structures. However,
many types of rocks, soils and building materials are macroporous structures and, hence,
transport behavior in macroporous media deserves more attention. For instance, in
macroporous media, the relative importance of the different liquid and gaseous transport
phenomena such as gravity-driven drainage, capillary flow, gaseous diffusion, evaporation
and forced convection is expected to be significantly different than what is seen in
microporous media. Understanding the individual role of each of these phenomena is key
to identifying the factors that influence the residence time of water in such materials.

This study focuses on the investigation of imbibition, drainage and drying in porous
asphalt (PA), a macroporous material with a wide range of pore sizes ranging from microns
to millimeters. In a strict sense, PA is partly microporous. However, the presence of large
pores is what makes PA unique as compared to other porous materials, and therefore, it is
classified as a macroporous material in this study. PA is used as the surface layer of roads
to allow the seepage of water and thereby prevent aquaplaning and splash-spray effects
during and after rain events. PA has a porosity of approximately 20% and is a composite
material made from fine and coarse mineral aggregates, a bituminous binder and air voids.
Due to its high permeability, a large area of the internal structure of PA is exposed to water
after a rain event. After drainage by gravity, a certain amount of water is retained within
the structure mainly due to the adhesion of water to bitumen or aggregate, especially at
the sharp edges, and the accumulation of water at dead-end pores. Due to the complex and
tortuous nature of the pore systems in PA, this retained water can take a very long time
to completely exit the specimen even in the presence of wind and solar radiation. This
retention of water for a long duration leads to an accelerated deterioration of the material
since water is an agent that leads to the loss of adhesion at the bitumen-aggregate interface,
a phenomenon called stripping. Therefore, in order to design longer lasting PA pavements,
it is imperative to obtain a comprehensive understanding of the residence time of water in
PA under typical environmental loadings. Towards this end, the following broad questions
have to be addressed: how does water enter and redistribute within PA, how environmental
factors influence the removal of moisture from PA and to what extent, what are the time
scales of the various liquid and gaseous transport phenomena in PA and how are they
influenced by the pore space characteristics of PA. From a modeling perspective, the most
important question addressed in this study is whether multiphase transport in PA can be
modeled using simplified domains such as pore networks or continuum models and what
are the material characteristics that influence the accuracy of such models. By attempting
to answer these questions, this study is the first integrated experimental and modeling
study on the environmental loading of a macroporous material towards identifying the
residence time of water, the main deterioration agent of most porous materials.
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By contributing new insights to the transport of air and water in porous media, this
work will be directly relevant for testing and designing durable porous building materials
that are continuously exposed to the environment. The larger motivation behind this
study is to demonstrate how various experimental and modeling techniques, at different
material scales, can be combined to obtain a holistic understanding of the various transport
phenomena in a highly complex porous media.

This study is within the framework of a Swiss National Science Foundation (SNF) project
“Wetting and drying of porous asphalt pavement: a multiscale approach”. The global goal
of this project is to develop an integrated multiscale methodology, based on numerical
models with experimental validation, to accurately capture the main physics of wetting
and drying of PA at the material scale. Such an integrated methodology is intended to be
applicable, through a multiscale approach, in road engineering at the pavement scale and in
the development and assessment of pavement solutions. Two doctoral students are funded
by the project. While this author’s research focuses on the multiscale characterization
of PA and on the experimental and numerical investigation of wetting and drying in PA,
another student, Soyoun Son, focuses on modeling diverse two-phase flow mechanisms at
the pore scale using Lattice Boltzmann Method (LBM).

1.2 objectives and methodology

With the overall aim of identifying the most important parameters influencing the residence
time of water in a macroporous medium exposed to the environment, the specific objectives
of this thesis are to firstly identify the specific imbibition, drainage and drying mechanisms
in PA using multiscale experiments and simulations, and thereafter to model the observed
drainage and drying behaviors of PA at different scales. The boundary conditions and
assumptions used in the modeling of drainage and drying in PA are obtained from the
results of the experiments and simulations carried out at the first stage.
A typical imbibition process of a porous material exposed to environmental loadings

consists of wetting by rain and/or absorption from a wet source in contact with the material.
A typical drainage and drying cycle consists of drainage and redistribution driven by
gravity and capillary forces, and drying driven mainly by wind and solar radiation. The
occurrence of each of these mechanisms in PA is experimentally investigated by subjecting
PA to various environmental loadings in laboratory conditions. Neutron radiography (NR)
imaging is used to visualize the spatial and temporal distributions of water in PA during
these experiments. The three-dimensional pore space of all the PA specimens used in these
experiments is characterized by high-resolution X-ray microcomputed tomography (X-ray
µ-CT). Various pore space characteristics such as pore diameter distribution, connectivity
and tortuosity are identified from the 3D images. By carefully combining the moisture
content distribution obtained from NR images with the 3D structure of the specimens
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obtained from X-ray µ-CT images, a deeper understanding of the physics of moisture
flow in PA is obtained. The expected outcomes from these experiments are firstly, a
macroscopic understanding of which pore space characteristic influences which aspect of
the various imbibition, drainage and drying mechanisms and secondly, identifying the key
assumptions to be used when multiphase flow in PA is modeled at a later stage.
Consequently, from the NR experiments, a macroscopic picture of the influence of

wind speed on drying in PA is obtained. However, further investigations are required to
conclusively establish the role of wind. It is known that wind flow above a wet macroporous
material can accelerate the drying of the material in two ways. Firstly, the air boundary
layer above the air-material interface carries away the evaporated water vapor and thereby
enhances the vapor-air diffusion rate at the interface. Secondly, air entrainment into the
material through the large pores at the interface may enhance the drying process within
the material. To investigate the first phenomenon i.e. boundary layer above the air-PA
interface, wind tunnel experiments are carried out on large slabs of PA. Particle imaging
velocimetry (PIV) is used to visualize the wind boundary layer as well as the turbulent
structures that are active just above the air-PA interface at different wind speeds. To
investigate the second phenomenon i.e. possible air entrainment into PA, single-phase
computational fluid dynamics (CFD) simulations of airflow above a real PA geometry are
performed. Through these simulations, the transport of water vapor within PA during
the drying process is investigated at different wind speeds and also without wind. Such
an investigation enables a clear identification of the role of wind on the drying process in
PA. From a modeling perspective, the CFD simulations will provide information about
boundary layer modeling at the air-material interface for a realistic simulation of forced
convective drying of PA, by throwing light on the sensitivity of the boundary layer to air
entrainment into the specimen.

Having obtained a clear picture of the transport mechanisms that are critical to predict
the residence time of water in PA, the next step is to model the drainage and drying
behaviors of a fully saturated PA using pore network models, in which the pore space of PA,
obtained from X-ray µ-CT scans, is converted to an idealized geometry in which the large
voids, the pores, are connected to each other by constrictions, the throats. Multiphase
flow is modeled in this synthetic geometry to determine macroscale transport properties
such as relative permeability curves and capillary pressure curves. The influence of various
factors such as gravity and solid matrix wettability on flow in macroporous media is
also investigated using pore network models. Finally, macroscale transport properties
determined from pore networks are used as inputs for modeling the drying of PA with
a continuum approach and the implications of representing a macroporous medium as a
continuum are discussed.

In summary, the following outputs are expected at the end of this comprehensive study
on PA: (i) a comprehensive understanding of the pore space of a macroporous material, (ii)
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identification of the major imbibition, drainage and drying mechanisms in a macroporous
material as well as the environmental factors and material properties influencing them,
and (iii) modeling of the drainage and drying of a macroporous material exposed to the
environment using simplified approaches.

1.3 outline of the dissertation

The dissertation is composed of eight chapters. The state of the art is presented in Chapter
2, which starts with a discussion of studies investigating the physics of air and water flow
in macroporous media. Thereafter, the state of the art of the various modeling approaches
used to model heat and mass transfer in macroporous media at different material scales
are discussed. An overview of the experimental studies performed specifically on PA is
also given. Chapter 2 concludes by identifying the knowledge gaps in understanding the
transport processes that are relevant to macroporous media exposed to the environment.
The next two chapters, Chapters 3 and 4, describe the experimental investigations

to study the imbibition and drying-cum-drainage processes in PA respectively, using
neutron radiography. Specifically, Chapter 3 focuses on imbibition in PA through capillary
uptake and droplet wetting while Chapter 4 focuses on gravity-driven drainage, forced
convective drying and thermal drying in PA. The preparation and characterization of the
PA specimens used in the experiments are explained in the description of the respective
experiments.

In Chapter 5, wind tunnel experiments on airflow above different types of full-scale PA
slabs are presented. The important boundary layer parameters near the air-PA interface
are calculated and the turbulent structures in the region are analyzed. Chapter 6 describes
the CFD simulations that are performed to analyze the influence of airflow in transporting
water vapor generated from evaporation within PA through comparison with cases of pure
diffusive transport. In particular, the extent and influence of air entrainment into the
material on the overall convection process is analyzed.

Finally, the insights gained from Chapters 3-6 are used to model multiphase flow in PA
using pore network modeling (PNM), which is described in Chapter 7. The extraction of
pore networks from X-ray µ-CT scans is described in detail. Experiments of drying of PA
specimens under controlled conditions, performed to assess the capabilities of the PNM
drying model and the accuracy of its results, are also presented in Chapter 7. Chapter 7
concludes by describing the results of a continuum approach of modeling drying in PA, the
inputs for which are taken from the PNM simulations and their validation experiments.
Finally, Chapter 8 summarizes the main conclusions of this dissertation and lists the
important contributions of this work and elaborate future perspectives for research in the
areas covered in this thesis.





2
STATE OF THE ART

2.1 introduction

The multiscale approach applied in this thesis, and introduced in Chapter 1, consists of
investigating transport mechanisms in porous media at the microscale and macroscale,
followed by upscaling to a continuum scale using transport properties calculated with
pore network modeling. In accordance with the scope of the investigation, this chapter
first presents, in Section 2.2, an overview of the most commonly used parameters for
quantifying transport in porous media. Thereafter, in Section 2.3, recent investigations
that analyze (i) imbibition, (ii) drainage and drying and (iii) airflow above porous media
are presented. Wherever applicable, studies specific to porous asphalt are also presented.
In Section 2.4, an overview of the various pore network modeling approaches to simulate
multiphase flow in porous media, specifically drainage and drying, are presented, followed
by a brief review of continuum approaches to model coupled heat and moisture transport
in porous materials. Additionally, as the macroporous medium used in this study is porous
asphalt, the composition of PA and its hydraulic and mechanical properties are presented
in Section 2.5. Finally, in Section 2.6, the existing gaps in understanding multiphase flow
in macroporous media in general, and in porous asphalt in particular, are highlighted from
both experimental and modeling perspectives.

2.2 transport properties in porous media

Transport of fluid through connected pores in porous materials is a complex phenomenon
influenced by a variety of physical factors and material properties. In principle, flow
properties should be accurately predicted by solving heat and mass transport equations
based on the actual geometry of the pore space. However, this approach is impractical
in most of the cases due to the complexity of a real pore space and the limitations of
computational resources. A common way to overcome this difficulty is to consider a
porous medium as a macroscopic continuum and determine, mostly via experiments, the
volume-averaged transport properties at this scale.

7
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Table 2.1.: Commonly used correlations of permeability K based on mean pore diameter
d and total volume porosity ε

Correlation Permeability Major assumptions

Carman-Kozeny K = d2

180

(
ε2

(1−ε)2

)
Laminar flow (Reynolds num-
ber ≈ 1)

Brinkman K = d2

72

(
3 + 3

1−ε − 3
√

8
1−ε − ε

)
Densely-packed porous
medium

Happel K = d2

18

(
3−4.5γ+4.5γ5−3γ6

γ3(3+2γ5)

)
Densely-packed porous
medium

Permeability, as a continuum scale transport property, is a measure of the ease with
which a fluid can pass through a porous medium. The flow inside a porous medium can
be described by the Navier-Stokes equation:

d

dt
(ρu) +∇ · (ρuu) = −∇P + µ∇2u, (2.1)

where ρ is the fluid density, u is the velocity, P is the liquid pressure and µ is the dynamic
viscosity of the fluid. For stationary, creeping and incompressible flow, the Navier-Stokes
equation simplifies to the Stokes equation, which is homogenized to Darcy’s law:

〈q〉 = −K · ∇ 〈P 〉
µ

, (2.2)

where 〈q〉 and 〈P 〉 are volumetric averages of fluid flux and pressure respectively and K is
the permeability tensor. For a one dimensional case with a pressure gradient only in the
z-direction, permeability, K, is simply defined as:

K = u
µ∆z
∆P

. (2.3)

Since the exact permeability of most porous media is difficult to determine experimen-
tally or numerically, many empirical correlations have been developed for calculating
permeability, the most common of which (Li and Logan 2001) are: the Carman-Kozeny
equation (Rogak and Flagan 1990), Brinkman equation (Brinkman 1949) and Happel
equation (Happel and Brenner 1983). These equations, along with their major assumptions,
are given in (Table 2.1), where d is the mean pore diameter and ε is the total volume
porosity of the porous material.
In porous media with two-phase flow, assuming the two phases are flowing macro-

scopically independent of each other, the relative permeability of each phase is given
by:
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qw = −
(
kr,wK

µw

)
dPw
dz

, (2.4)

qnw = −
(
kr,nwK

µnw

)
dPnw
dz

, (2.5)

where q is the fluid flux, kr is the relative permeability and the subscripts w and nw

indicate the wetting and non-wetting phase respectively. Relative permeability is the ratio
of the effective permeability of a phase at a particular two-phase configuration to the
absolute permeability of the phase when the system is fully saturated with that particular
phase. Despite the wide use of relative permeabilities for characterizing two-phase flow
in porous media, this approach has certain disadvantages. As stated before, there is the
implicit assumption that the two phases flow independently of each other. In other words,
there is no interaction between the two fluids. Although there have been some studies that
investigated this fluid-fluid interaction (Adler and Brenner 1988; Gunstensen and Rothman
1993; Olson and Rothman 1997), there is no widely-accepted relative permeability relation
that takes into account the same. However, since relative permeability macroscopically
represents the permeability of each phase in a wide range of porous media, it is used in
this study as well to characterize flow in porous asphalt.

There is an extensive amount of literature on experiments to determine relative perme-
abilities during two phase and three phase flows in porous media. However, the discussion
in this section is limited to the calculation of relative permeabilities during fast gravity-
driven drainage in porous media. The method suggested by Watson (1966) is often used
to calculate the relative permeability of a wetting phase in a fast gravity-driven drainage
experiment:

kr,w =
µw

K
(
ρwg− dPw

dz + dPn,w
dz

)uw. (2.6)

However, the actual determination of relative permeabilities during fast drainage exper-
iments presents several challenges due to the difficulty of accurately determining flow
velocities and, in case of using imaging experiments for this determination, the low time
resolution of images during the drainage stage (DiCarlo et al. 2000; Sahni et al. 1998).
For instance, Dehghanpour et al. (2010) measured the spatial and temporal evolution of
water saturation degree during gravity drainage along an 80 cm long sand pack of D50 =
0.25 mm and average porosity of 0.3. Two dimensional CT scans were obtained with a
time resolution of 6 seconds and used to determine water saturation. Their results are
shown in Fig. 2.1. It can be seen from Fig. 2.1(a) that even though the water front
traverses a distance of 40 cm from the top within 30 minutes, the next 20 cm is traversed
across a duration of 4 days. More recently, Kianinejad et al. (2014) carried out similar
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Figure 2.1.: (a) Spatial and temporal evolution of water saturation during air/water
primary drainage from a sand pack of D50 = 0.25 mm, average porosity =
0.3 and (b) relative permeability of water as a function of saturation during
the same experiment i.e. dry initial condition (primary drainage), as well as
during wet initial condition (secondary drainage) (Dehghanpour et al. 2010)

experiments on the same experimental setup used by Dehghanpour et al. (2010) with a
similar time resolution. Indeed, the foremost challenge to acquiring a 3D visualization
of a fast drainage process is the often inadequate time resolution of current 3D imaging
techniques. Moreover, although relative permeability curves may accurately represent the
ease of fluid flow during drainage in most porous media as shown in Fig. 2.1(b), an open
question is whether these curves are also applicable to macroporous media due to the
influence of gravity, especially for a fluid like water. For instance, DiCarlo et al. (2000)
noted that water saturation was almost constant in space far from the air front during
gravity drainage from a sand pack of 125 µm particles. However, in case of macroporous
media, there could be strong heterogeneity in liquid distribution during drainage, resulting
in disconnected clusters of wetting fluid which would yield a low relative permeability. An
additional complexity is to determine the size of a representative elementary volume (REV)
for macroporous media. For instance, even though a material like porous asphalt has many
pores with sizes larger than 5 mm, the thickness of a typical PA layer, in the direction of
gravity, is usually 30 mm. Due to this relatively high pore size to specimen thickness ratio,
flow behavior in a smaller region of PA may not be representative of the entire PA layer,
which would then make continuum modeling meaningless. Thus, determining relative
permeabilities during two-phase flow in macroporous media is an open research question.
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2.3 investigations of flow mechanisms in porous media

A variety of fluid flow mechanisms can be observed in porous media exposed to the
environment. These mechanisms are mainly influenced by the characteristics of the pore
systems, the material and liquid physical properties, and environmental loadings such as
air temperature and relative humidity, wind, solar radiation and rain. In this section, the
most relevant flow mechanisms in porous media exposed to the environment, namely, water
imbibition, water drainage, drying and air flow, are discussed, and the state-of-the-art
of investigations analyzing the influence of material characteristics and environmental
loadings on these mechanisms is presented.

2.3.1 Imbibition

Imbibition is the process in which a wetting phase partially or completely displaces a
non-wetting phase in a porous medium. In other words, during imbibition, the invading
phase is the wetting phase and the defending phase is the non-wetting phase. Due to the
dependence of imbibition on several material and fluid properties, the microscopic picture
of imbibition in porous media is much more complicated than that of drainage (Oren et al.
1998; Patzek 2001). The two main types of imbibition in porous media are capillary-driven
imbibition and gravity-driven imbibition.

2.3.1.1 Capillary-driven imbibition

Capillary-driven imbibition is a ubiquitous natural transport phenomenon observed in a
wide range of porous materials exposed to the environment. Bell and Cameron (1906)
carried out one of the first studies on capillary-driven imbibition and observed a square-
root dependency of time for absorption of water into tubes. Lucas (1918) and Washburn
(1921) formulated the now widely-used equation which relates the imbibition height or
the uptaken mass with the square root of elapsed time. However, the Lucas-Washburn
equation in its original form, developed for parallel cylindrical tubes, is applicable only
to homogeneous microporous media. For more complex porous media, the dynamics of
spontaneous capillary imbibition has been investigated as part of material characterization
by several studies lately (Cai and Yu 2011; Cai et al. 2014; Makhanov et al. 2014; Marmur
2003; Mirzaei-Paiaman et al. 2011; Schmid and Geiger 2012). However, in terms of the
complexity of the pore space and the range of pore sizes, the porous media used in these
studies are very different from PA.
The critical capillary pressure for capillary imbibition in a cylindrical tube is given by

the Young-Laplace equation:
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pc =
2γ cos θ
rt

, (2.7)

where pc is the capillary pressure, γ is the surface tension of the wetting fluid, θ is the
contact angle between the wetting fluid and tube surface and rt is the tube radius. However,
this equation is valid only for saturated flow i.e. either a wetting or a non-wetting fluid
occupies the tube cross-section at a given time. This type of imbibition has also been
called as piston-type imbibition. Another type of capillary imbibition that can occur in
non-circular capillaries, where the wetting phase fills edges or corners, is snap-off imbibition
(Mahmud and Nguyen 2006), where wetting fluid films advance far ahead of the main
displacement and ultimately snap off when the films become thick enough, thereby trapping
the non-wetting fluid between them. The threshold capillary pressure in case of corner
flow is much lower than that of piston-type imbibition (Hughes and Blunt 2000) and is
given by:

pc =
2γ
rt

(cos θ− sin θ tanαc) , (2.8)

where αc is the corner half-angle in case of a regular polygonal pore shape.
Capillary-driven imbibition of water in porous media is strongly influenced by material

properties such as porosity, pore size distribution, pore shape, pore space connectivity and
tortuosity, roughness of the solid matrix and wettability of the pore walls. From Eqs. (2.7)
and (2.8), it can be seen that a larger pore radius results in easier capillary imbibition due
to its lower entry pressures. Additionally, frictional forces become less influential as pore
sizes become larger. Similarly, a lower tortuosity and higher average porosity also favors
capillary imbibition. The relation between pore size, tortuosity, porosity and permeability
of the medium can be expressed in terms of the effective pore radius, rae (Leverett 1941):

rae=2

√
2τtK
ε

, (2.9)

where τt is the tortuosity. From the definition of effective pore radius, it can be clearly seen
that the permeability of a medium undergoing capillary imbibition is directly proportional
to pore size and average porosity and inversely proportional to tortuosity.
The influence of another material property, surface roughness, on capillary imbibition

in non-circular capillary tubes was first studied by Lenormand and Zarcone (1984). They
observed that, at low flow rates, liquid flow along the surface roughness and pore corners
in glass-etched square capillary tubes was significant enough to influence the formation of
liquid clusters in the network. In fact, at extremely low flow rates i.e. at Ca < 10−9 (where
Ca = µuc/γ is the capillary number of the network and is a characteristic velocity in the
network), flow due to roughness was the most important transport process. The surface
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Figure 2.2.: The behavior of water droplets placed on an untreated marble stone (left) and
a stone treated with 10 vol-% Capstone FS-63 for 24 h. The picture is taken
after a contact time of ≈ 5 min (Kronlund et al. 2015)

roughness of their capillary tubes was 10 µm and 100 µm. Geistlinger et al. (2015) studied
the trapping of non-wetting phase between the wetting phase during capillary imbibition
for 10−7 < Ca < 5× 10−5. They used porous media of different surface roughness. They
observed that surface roughness plays an important role in determining the pattern of
capillary trapping, especially at low flow rates. In the context of porous media such as
asphalt and soil, capillary trapping can be a relevant phenomenon, since wetting during a
rain event leads to discrete infiltration paths where air entrapment is likely to occur, and
thus can significantly influence the drying behavior of these media.

The wettability of the porous structure can also significantly influence its permeability.
Kronlund et al. (2015) investigated capillary absorption of water into hydrophobically
treated and untreated marble stones. The untreated marble stone absorbed a water droplet
in 2 minutes while the treated stone hardly absorbed any water even after 5 minutes, as
can be seen in Fig. 2.2. In a next set of experiments, Kronlund et al. (2015) changed just
the top surface of the marbles to hydrophilic through ultraviolet radiation treatment. This
was found to significantly improve the absorption rate of water into the samples, even
though the hydrophobicity of only a thin layer of the sample was changed. Furthermore,
they also observed that the diffusion rate of water vapor through hydrophobic pores is
higher than the diffusion rate through hydrophilic pores. Gostick et al. (2009) studied the
capillary uptake of water in Toray, a widely-used material in fuel cells. They observed that
the capillary pressure required for injecting the same amount of water into the material
was significantly higher in case of a sample treated with PTFE, a hydrophobic agent, than
in an untreated material. This observation, as shown in Fig. 2.3, is obviously due to the
higher resistance from the hydrophobic pores in the treated material.
For a material like porous asphalt, the discussion in this section is very relevant since

the material properties of a freshly-made PA, which is composed primarily of hydrophobic
bitumen and hydrophilic aggregates, can drastically change with aging, which in turn is
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Figure 2.3.: Primary injection and primary withdrawal curves for Toray materials of
different thickness with (white markers) and without (black markers) PTFE, a
hydrophobic agent. The addition of hydrophobic agent increases the capillary
pressure (Gostick et al. 2009)
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dependent on a variety of factors like vehicular load, environmental loads (mainly UV) etc.
Therefore, parameters such as wettability, pore size distribution, roughness and porosity,
and consequently the capillary imbibition behavior of PA, are expected to change with the
level of aging.

2.3.1.2 Gravity-driven imbibition

Gravity-driven imbibition is yet another ubiquitous phenomenon in geophysics. Early
studies of gravity-driven imbibition in porous media were undertaken due to their relevance
in oil recovery from fractured reservoirs (Du Prey 1978; Bech et al. 1991). Over time,
gravity-driven multiphase flow in porous media became a topic of wide interest due to
its importance in soil physics. Although surface roughness has shown some influence on
gravity imbibition at near-zero matric potentials (Tokunaga and Wan 1997), the main
factors influencing gravity imbibition are pore size, porosity and wettability. However,
since the influence of these parameters on gravity imbibition is similar to their influence
on capillary imbibition, a further discussion on this influence is avoided in this section.
Instead, the focus in this section is on the stability, i.e. the uniformity of the wetting front
during gravity imbibition since, in the case of macroporous media, the presence of large
pores often lead to instabilities in the gravity imbibition process. This is in contrast to
the capillary imbibition process in macroporous media, which is expected to be in the
stable region. The stability of the wetting front is an important criterion to analyze the
deviation of the imbibition behavior in PA from that in microporous structures.

A schematic of stable and unstable gravity imbibition is given in Fig. 2.4. The Saffman-
Taylor criterion (Saffman and Taylor 1958) says that, for gravity-driven displacements,
the front is unstable when the flux, qf , is less than the saturated permeability, gs, of the
porous medium:

qf < Ks, (2.10)

Here, Ks = Kρwg/µw is the saturated (absolute) permeability expressed as a flux. In case
of macroporous media, this criterion is easily satisfied due to the high conductivity of the
media as a consequence of the large pores. When a stable wetting front breaks up into many
discrete flow paths after becoming unstable, preferential flow paths are created. Gravity-
driven preferential flow paths are relevant in areas such as transport of radionuclides in soil
(Bundt et al. 2000) and oil recovery through water and gas flooding (Lake 1989). However,
observations from (Yoon et al. 2008), who used magnetic resonance imaging (MRI) to
investigate water flow through five layers of natural quartz sand fractions, the coarsest of
which (Accusand Grade 12/20) had minimum and maximum particle diameters of 0.85 and
1.7 mm respectively, indicate that pore size is not the only criterion to influence stability
as even at this large grain size, the effect of gravity on preferential flow was not significant
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Figure 2.4.: Schematic of a stable (left) and unstable (right) gravity-driven imbibition.
(DiCarlo 2013)

and the flow was more or less stable. Indeed, in case of a porous medium like soil, it has
been observed that when soil has a sufficient initial water content (Bauters et al. 2000), or
if it is sufficiently sandy (with a wide pore size distribution) (Diment and Watson 1985),
or if the liquid flux is sufficiently low (Hendrickx and Yao 1996), gravity imbibition is
completely stable even if qf < Ks. This shows that the Saffman-Taylor stability criterion
is a necessary but not the only criterion to predict gravity-driven instability (DiCarlo
2010). Therefore, it is imperative that the stability behavior of gravity-driven flow in a
medium is verified experimentally.

Unstable flow was first recorded in field experiments in soil (Parlange and Hill 1976).
They concluded that the most unstable wavelength of the water front is larger for fine-
textured soils than for coarse-textured soils and is also directly proportional to the initial
moisture content. Preferential flow paths of water in soil were clearly observed in later field
experiments (Glass et al. 1988; Starr et al. 1978). Incidentally, Glass et al. (1988) was the
first to use light transmission to non-destructively image preferential flow in porous media.
Similar to the discussion in the previous section, a few studies investigated the influence
of hydrophobicity on gravity-driven flows. Bauters et al. (1998) and Ritsema et al. (1996)
found that increased hydrophobicity in the soils increased the occurrence of instability.
In fact, many soil samples exhibited preferential flow only when they were made fully or
partially hydrophobic. Bauters et al. (1998) reported the drying and wetting behaviors of
partially hydrophobic soil subjected to gravity-driven imbibition, as shown in Fig. 2.5.
The maximum particle size was 0.15 mm. During drying, air entry pressure, which is the
maximum pressure potential at which soil begins to desaturate and is determined by the
largest pores in the soil, decreased from -7 cm for the hydrophilic sand to -20 cm for all
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Figure 2.5.: Averaged drying curves (left) and averaged wetting curves (right) of identical
sands of maximum particle size 0.15 mm but with different degrees of hy-
drophobicity. The higher air entry pressure and the lower water entry pressure
of hydrophilic sand is clearly evident. (Bauters et al. 1998)

the partially hydrophobic sands. During wetting, water entry pressures increased with
increasing hydrophobicity. It is to be noted that in Fig. 2.5, the air entry pressure is
defined in terms of the matric potential (capillary pressure).
The discussion so far in this section and the previous one has centered on capillary

imbibition and gravity imbibition in porous media through an advancing water front.
However, in many industrial and environmental conditions, imbibition also takes place
via discrete droplets of wetting fluid. Examples of such discrete capillary and gravity
imbibition are inkjet printing and wetting of asphalt and soil by rain respectively. While
there has been extensive research on capillary imbibition of discrete droplets in microporous
media (Clarke et al. 2002; Denesuk et al. 1993; D’Onofrio et al. 2010; Hapgood et al. 2002;
Hilpert and Miller 2001; Hyvaluoma et al. 2006; Jazia et al. 2011; Pack et al. 2015; Reis
et al. 2006; Reis Jr et al. 2004; Taghilou and Rahimian 2014; Yiotis et al. 2015), combined
capillary and gravity imbibition of discrete droplets in macroporous media has got far
less attention, despite the fact that macroporous media may have a wide range of pore
sizes that can bring both the forces into play. Specifically, the liquid uptake dynamics in
macroporous media is expected to be significantly different to what occurs in microporous
media. In fact, the preferential flow paths of droplets deposited on a macroporous substrate
are expected to be greatly influenced by gravity. Apart from (Prazak et al. 1992), who
investigated droplet penetration into a porous medium made up of 3 mm diameter glass
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beads and observed oscillations of macroscopic parameters such as permeability due to
strong inhomogeneity in the flow at the microscopic level due to gravity-driven instability,
to the best of our knowledge, there is no study of gravitational penetration of droplets in
macroporous media.

2.3.2 Drainage and drying in porous media

Drainage and drying are processes in which a non-wetting phase partially or completely
displaces a wetting phase in a porous medium. In other words, during drainage and drying,
the invading phase is the non-wetting phase and the defending phase is the wetting phase.
A distinct characteristic of drainage and drying processes when compared to imbibition
is their lower dependency on material properties but higher dependency on external
conditions. For a porous material exposed to environment, the three major drainage and
drying mechanisms are gravity-driven drainage, forced convective drying and thermal
drying.

2.3.2.1 Gravity-driven drainage

Gravity-driven drainage is an important source of moisture loss (or redistribution) in many
porous media. Gravity drainage is also the main oil extraction mechanism from fractured
reservoirs (Moghaddam and Rasaei 2015). Gravity drainage in porous media is dependent
largely on the pore size distribution of the material and to a lesser extent on the wettability
of the material and connectivity of the pore space, all of which ultimately determine the
contribution of gravity-driven drainage to the total moisture loss from the entire material.
Most of the early gravity-driven drainage experiments in porous media were driven by the
role of such drainage in oil extraction. Terwilliger et al. (1951) developed a method to
determine the performance of a linear homogenous gravity drainage system by separately
measuring fluid and rock characteristics in the laboratory. They calculated the time
evolution of saturation distribution by keeping the time step very small while (∂fg

/
∂Sg)

was changed rapidly, where fg is the gas flow rate fraction and Sg is the gas saturation.
Their model was validated with experiments on an unconsolidated sand column which was
filled with sand of maximum diameter 0.074 mm and was 13 feet long in the direction of
gravity. Column drainage experiments continued to be carried out with a variety of sand
particles such as Day and Luthin (1956) [OSO Flaco fine sand], Liakopoulos (1964) [Del
Monte fine sand], Watson (1967) [Botany sand] and Prill et al. (1965) [Fresno medium
sand]. In the experiments of Yang and K. Yanful (2002), it was observed that while the
coarse sand (D10 = 0.9 mm) lost water by both drainage and evaporation, the fine sand
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(D10 = 0.16 mm) did not exhibit any drainage. This competition between capillary forces
and gravity at the pore scale is represented by the dimensionless Bond number, Bo:

Bo =
∆ρgd2

γ
, (2.11)

where ∆ρ is the density difference between the two fluids and d is the pore diameter. If
Bo� 1, gravity dominates and acts as a stabilizing force for drainage by reducing height
differences induced by viscous instability or capillary fluctuations, hence flattening the
front (Chau and Or 2006). For an air-water system at room temperature, for the condition
to be satisfied, it follows that the pore diameters should be at least 2.7 mm. Although
there are some studies on cases in which capillary, viscous and gravity effects are all
prominent (Méheust et al. 2002; Or 2008; Grattoni et al. 2001), only a few experiments in
which gravity drainage is dominant are reported in literature.

One such study was carried out by Prazak et al. (1992). In their experiments, droplets
of water were deposited in a porous media of glass beads of 3 mm diameter, and the
time-dependent outflow rate of water from the medium was then monitored. The initial
moisture content of the medium was changed to see its effect on the outflow rate. The
type of inflow was also changed from one point to multiple points distributed over the
inflow surface. The outflow from an initially dry medium showed a pronounced time
evolution in contrast to the outflow from the initially wet medium. The pattern of outflow
when the inflow was distributed across the surface was completely different from those of
single-point inflow in that for the former case, a period of high initial discharge is followed
by a period of consistently low discharge. These observations were explained by predicting
the clustering behavior, due to capillary forces, of the wetting phase inside the medium
after visualizing the clustering behavior in a similar experiment with two-dimensional glass
micromodels.
Other researchers have also used micromodels to visualize gravity drainage in porous

media. Mashayekhizadeh et al. (2011) performed oil drainage experiments on a micromodel
with a fracture apertures of 1 mm, pore width of 1 mm and throat width of 350 µm. Two
identical blocks of the micromodel were stacked on top of each other with a small gap in
between them to simulate the effect of a fracture. They determined the drainage flow rate
versus time using the derivative of a fitted curve for recovery factor, R, where R = 1-S,
and S is the saturation. Additionally, they also tracked the gas-oil front during drainage
which lasted for 400 minutes. The front movement in the upper and lower parts of the
micromodel during the first 160 minutes, measured at 20 minute intervals, as well as the
final front position after 400 minutes, is given in the right column of Fig. 2.6 while the left
column shows the photograph of the oil distribution in the upper and lower parts after 400
minutes of drainage. The formation of a liquid bridge in the aperture at the bottom of
the upper block increased the drainage from the upper block due to capillary continuity,
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an observation which was analyzed in more detail in a later study Mashayekhizadeh et al.
(2012). Capillary continuity increases the height of a liquid cluster and therefore makes
the gravity drainage processes stronger due to a higher static pressure. The influence of
capillary continuity on free fall gravity drainage (FFGD) in unconsolidated macromodels
was studied by Zendehboudi and Chatzis (2011). They used three types of glass beads as
porous media, with mean diameters of 0.5, 0.7 and 1.1 mm. They proposed an empirical
correlation to predict the saturation level as a function of Bond number, Bo:

R = 1− S =

 (1 + 0.0111 ln (Bo)) ·
(
Leff
L

)1.11
+

εf
εe

, Leff > 0
εf
εe

, Leff ≤ 0

(2.12)

where L is the height of the network, Leff = L− hc where hc is the capillary threshold
height i.e. the height of the liquid column at which air can enter the pore, εf is the fracture
porosity and εe is the effective porosity of the medium. In case of gravity drainage in
macroporous media, the influence of capillary continuity is an open question, especially its
influence on the drainage of residual liquid in smaller pores after the first phase of fast
drainage from larger pores is completed.

There are only a few experiments reported on gravity drainage in porous asphalt. Tan
et al. (2004) studied the influence of PA road geometry and slope on drainage properties
of PA. Poulikakos et al. (2013a) performed gravity drainage experiments on aged and new
PA11 specimens, which were fully saturated at the beginning of the experiments. PA11
specimens have a maximum aggregate size of 11 mm. The spatial and time evolutions of
moisture content distribution in the specimens was visualized with neutron radiography, as
shown in Fig. 2.7. In this figure, moisture loss from a fully wet, aged PA specimen is clearly
visualized since those pores that went from above to below 30% degree of saturation in one
time interval are marked in black, while those pores which remain wet are in grey. The
white regions indicate the presence of impermeable aggregates. The importance of gravity
drainage in PA11 specimens was clearly evident from the experiments as the specimens
lost moisture in a top-down gradient. During the latter part of the experiment, most of the
moisture loss is from the bottom as the top part already lost most of its initial moisture
content due to the high static pressure head. However, the specimen size of 28×47×10
mm3 was too small to draw any general conclusions.

2.3.2.2 Forced convective drying

Although gravity-driven drainage is expected to be the most important water loss mecha-
nism in PA, the contribution of forced convective drying near the top surface to the overall
moisture loss will be non-negligible. Drying of water from porous media is a coupled heat
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Figure 2.6.: Photographs of oil saturation in the upper and lower blocks of a micromodel,
with a gap of 1 mm separating the two blocks, at the end of drainage (left)
and superimposed successive images of gas–oil fronts in micromodel at 20 min
time intervals (right). Due to capillary continuity effect in the upper block,
the drainage from the upper block is faster than that from the lower block.
(Mashayekhizadeh et al. 2011)

Figure 2.7.: Temporal and spatial distribution of segmented saturation degree of aged PA.
The grey background shows all the pores with an initial saturation degree
above 30%, while black represents pores that went from above to below 30%
saturation degree in one time interval. Moisture loss displays a top-down
gradient due to the influence of gravity. (Poulikakos et al. 2013a)
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Figure 2.8.: Typical drying rate gv,w, surface temperature Tw and relative humidity at the
surface RHw of a porous material during drying, as a function of dimensionless
time t/ttot. The different drying periods are indicated. For gv,w and Tw, scaling
is performed using the values during the CDRP (temperatures are in ◦C). The
time is scaled with the total simulation time ttot. (Defraeye et al. 2012)

and mass transfer process driven mainly by atmospheric conditions as well as the hydraulic
conductance and vapor diffusivity of the material. Early experimental investigations of
heat transfer (Amiri et al. 1995; Vafai et al. 1985) and mass transfer (Geller and Hunt
1993; Genuchten and Wierenga 1977) in microporous media gave many insights into the
transport phenomena present at both Darcy and larger scales. A typical drying process in
a porous material is depicted in Fig. 2.8, where after an initial transition period (TP),
the material experiences a constant drying rate period (CDRP) in which temperature,
relative humidity (RH) and mass flow rate at the air-material interface remain constant,
followed by a decreasing drying rate period (DDRP) in which the relative humidity and
mass flow rate goes down while the temperature goes up. During the CDRP, there is a
constant supply of liquid from the interior of a material to its drying surface, as can be
seen by the constant RH levels at the surface in Fig. 2.8. During this period, the outgoing
vapor flux is equal to the incoming liquid flux at the surface. However, this condition is
sustained only until there is hydraulic connectivity of the liquid within the porous medium,
where after the DDRP begins. Since hydraulic connectivity of liquid within a macroporous
material is expected to be very weak, it has to be investgiated if the typical drying rate
curve shown in Fig. 2.8 is applicable to macroporous media.
Forced convective heat and mass transfer has also been studied for different porosity

scales, ranging from microporous media (James et al. 2010) to highly porous macroporous
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Figure 2.9.: Time evolution of the concentration profiles of liquid and images of the shape
of the droplet inside a porous substrate of 120 µm glass beads subjected to
airflow at a rate of 10 ml/min (Reis et al. 2006)

media (Calmidi and Mahajan 2000) to variable-porosity media (Vafai 1984). In case of
a porous medium with pore sizes < 1 mm undergoing drying in typical natural air flow
conditions (mean wind speed < 4 m/s), Haghighi et al. (2013) concluded that considering
only diffusion from individual pores across a constant boundary layer accounts for most of
the evaporation predicted by the full advection-diffusion equation. However, the relative
contributions of diffusion and advection to the total moisture loss from a porous medium
that is dominated by pore sizes larger than 1 mm have not been explored yet.
More recently, efforts have been made to combine the investigations on wetting and

drying in porous media. Reis et al. (2003) was the first to investigate droplet penetration
into porous media and subsequent drying by forced convection. The porous media in
their study were sand particles of 180 µm and glass beads of 50, 120 and 400 µm. For
sand particles, they found that capillary diffusion of water to the top surface played an
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Figure 2.10.: Porous asphalt pores filled with air (transparent green) and with water at
time 11.41 h (red) and 15.27 h (blue). (a) Site of first sudden water loss,
(b) site of second sudden water loss. The arrows indicate the location of the
water islands. (Jerjen et al. 2015)

important role in the evaporation process. Shahidzadeh-Bonn et al. (2006) studied droplet
wetting and subsequent evaporation from a porous surface but their focus was restricted to
finding a correlation between the droplet radius on the surface and elapsed time. In other
words, their observations were restricted to the surface of the porous material. Reis et al.
(2006) investigated droplet penetration into porous media and subsequent drying by forced
convection at different airflow speeds. They embedded a single diethyl-malonate (DEM)
droplet of 2.3 mm diameter into a porous substrate consisting of 120 µm glass beads.
Time evolutions of one-dimensional moisture concentration profiles and moisture content
distribution within the porous substrate were then monitored for different airflow speeds.
In Fig. 2.9, the time evolution of moisture profiles at an airflow of 10 ml/min is given.
They concluded that although liquid expectedly evaporated faster at higher airflow speeds,
the vapor diffusion resistance of the porous medium was very high. However, it needs to
be investigated if the resistance to vapor diffusion is strong in the case of macroporous
media where significant momentum transfer from air penetration into the medium can be
expected.
Poulikakos et al. (2013b) was the first to carry out investigations of forced convective

drying in porous asphalt. They investigated the drying behaviors of new and aged PA11
specimens in a micro wind tunnel at a wind speed of 2.4 m/s. Drainage was completely
blocked. From two-dimensional neutron radiography images of the drying process, they
postulated that drying was relatively faster as long as water was distributed within the
specimen in a well-connected configuration. Even after 8 hours of convective drying, the
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specimens were still wet. Jerjen et al. (2015) investigated water evaporation rate from
a 30 mm diameter PA8 core of height 67 mm, using X-ray micro computed tomography
(X-ray µ-CT). 26 three-dimensional X-ray µ-CT scans were obtained over a duration of 57
hours. Their study was the first instance of three-dimensional visualization of moisture
distribution in PA. They observed sudden drops of the total water content in PA due to
accelerated moisture loss at two sites, as shown in Fig. 2.10. According to them, water
islands at these two sites prevented the evaporation of water in the pore below them and
once those islands dried, evaporation accelerated locally. The complex drying mechanism
of PA was effectively brought out by their experiments.

2.3.2.3 Thermal drying

Thermal drying of porous media is of considerable importance in materials exposed to
the environment as well as in the preserved food industry. In general, thermal drying
can be induced either by direct solar radiation or by blowing hot air on top of a porous
material. A good review of the various applications of both these types of drying and
the different modeling approaches to take them into account is given by Belessiotis and
Delyannis (2011). From the point of view of natural drying of porous materials exposed to
the environment, mainly the drying from direct solar radiation is important. On one hand,
solar radiation can accelerate drying by providing the latent heat required for evaporation
while on the other, thermal gradients induced by solar radiation can facilitate redistribution
of water from the pores to the surface. An interesting phenomenon is that a positive
thermal gradient enhances vapor transport and opposes liquid transport. Philip and De
Vries (1957) pioneered the study of moisture flow in porous media under the influence of
thermal gradients. Since then, various experimental and numerical studies (Grifoll et al.
2005; Huinink et al. 2002; Plourde and Prat 2003; Surasani et al. 2008; Wang et al. 2011)
have been carried out to better understand the coupling between heat and mass transfer
at the liquid-gas interface through temperature-dependent equilibrium vapor pressure,
surface tension and phase change enthalpy (Surasani et al. 2008).

In an experimental study conducted near Tokyo, Japan, Asaeda and Ca (2000) investi-
gated the evolution of temperature in different types of building materials and in the soil
beneath them, as shown in Fig. 2.11. They observed that when the air temperature was
35 ◦C at noon, the surface temperature of porous asphalt was close to 50 ◦C due to the
high solar radiation absorption of PA. They recorded a positive temperature gradient of
approximately 7 ◦C between the PA surface and a depth of 6 cm. At midnight, a negative
gradient of 5 ◦C was recorded since considerable heat was stored in the material. At the
two other observation times, 06:00 and 18:00, the gradients were not so pronounced. It is
worth mentioning that these measurements were observed on a typical hot summer day.
A similar investigation that explored the thermal behavior of PA on a hot summer was
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carried out by Stempihar et al. (2012). Both these studies, however, focused on the effect
of PA on the urban heat island effect and were as such not interested in the temperature
gradients in PA during or immediately after a large event.

It is to be noted that during and immediately after a large rain event, which is when
the drying of PA assumes significance, the temperature gradients in PA will be far less
pronounced due to absence of solar radiation and the temperature of the rain water.
However, solar radiation may play a role afterwards if the region receives significant solar
radiation. Moreover, in macroporous media with pore sizes large enough for gravity
to dominate over capillary force, it remains to be seen how a positive or a negative
temperature gradient influences the liquid redistribution and drying processes. Yet another
open question is whether thermal gradients develop due to evaporative cooling in a wet
PA layer undergoing drying, even in the absence of any external heat source, in which
case it needs to be investigated if such gradients would be large enough to influence the
drying process.

2.3.3 Turbulent airflow above porous media

Turbulent airflow over porous media can be observed in a variety of materials ranging from
those that are exposed to airflow in the atmosphere, such as bricks, concrete, soil, rocks,
asphalt etc., to those that are subjected to forced airflow in industrial drying processes,
such as fruits, paper pulp, wood etc. On comparing the convective drying behaviors of
microporous and macroporous media, it can be seen that while drying of microporous media
is accelerated by the enhanced air-water vapor mixing near the air-material interface due
to turbulence induced by the porosity at the air-material interface, drying in macroporous
media has the additional contribution from air penetration into the macro-pores connected
to the surface. The first phenomena, i.e. turbulence in the near-wall region of rough
surfaces, has been experimentally and numerically investigated by considering a combined
free flow-porous media domain (Agelinchaab et al. 2006; Arthur et al. 2009; Liu et al. 2013;
Narasimhan et al. 2014; Prinos et al. 2003). The second phenomenon, i.e. fluid penetration
into macro-porous media, has been studied using refractive-index matching techniques
(Northrup et al. 1991; Saleh et al. 1992). A different but related effect is flow-through
drying (Iida et al. 2014; Mahadevan et al. 2006) in which a gas phase injected into a wet
porous medium immiscibly displaces the liquid, followed by the evaporation of the liquid
into the gas phase. A macroporous material, due to the considerable air penetration into
its internal structure, is expected to display a complex drying process resulting from the
interaction of all the aforementioned mechanisms. Nevertheless, it can be asserted that
the air boundary layer near the air-porous asphalt interface will play an important role in
the overall drying process.
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Figure 2.11.: Vertical temperature distributions underneath the surface of different types
of building materials exposed to the environment, at various times of the
day: (a) 06:00 h; (b) 12:00 h; (c) 18:00 h; (d) 00:00 h. It is to be noted that
‘Porous bloc’ is the material closest to porous asphalt. (Asaeda and Ca 2000)
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Boundary layers over porous surfaces tend to be more turbulent than those above
impermeable rough surfaces (Zippe and Graf 1983). Therefore, analyzing the turbulent
boundary layer above PA is relevant in the context of studying convective drying of PA by
wind. Turbulent wind boundary layers over rough surfaces have been extensively studied in
the past (Raupach et al. 1991; Schlichting and Gersten 2000; Townsend 1976). From these
studies, it was found that the structure of the turbulent boundary layer primarily depends
on the air speed and surface roughness. However, turbulence structures in the near-wall
region and the effects of porous structures on turbulence are still not well understood
(Iida et al. 2014). Recent studies towards this end have been carried out by Iida et al.
(2014), Suga et al. (2013), and Suga and Kuwata (2014). Iida et al. (2014) carried out
water flow experiments using Particle Image Velocimetry (PIV) on two types of porous
media, type A and type B, with similar porosity (0.8) and absolute permeability (≈ 0.4
mm2) and different mean pore diameters (8 and 12 mm). The Reynolds number based
on the hydraulic diameter of the channel was 3600. From the PIV images, particularly
Fig. 2.12(c), it was observed that a larger streamwise permeability of the porous media
leads to larger streamwise mean velocities of water inside the porous media while a larger
mean pore diameter, and a higher absolute permeability value, leads to a higher level of
turbulence near the water-porous media interface.
Suga et al. (2013) conducted airflow experiments above different porous media after

mounting a square rib in the fully developed channel flow. They used both solid and
porous rib for the experiments. The porous media were three types of foamed ceramics of
similar porosities (0.8) but with different mean pore diameters of 1.7, 2.8 and 3.8 mm and
different permeabilities with values, normalized by the rib height, of 0.89×10−4, 1.47×10−4

and 3.87×10−4. At all tested wind speeds and with both types of ribs, they observed
significant air penetration into the porous media, as can be seen in Fig. 2.13, where airflow
patterns as deduced from experiments and visualized with PIV are shown for the different
cases. However, these studies considered either simplified porous media (using ribs or
tubes) or restricted the fluid flow region to narrow channels, for analyzing the effect of
those flows on the heat and/or momentum transfers in catalyst surfaces, heat exchangers
and fuel cells. Full-scale investigations of airflow above large porous media such as soil and
asphalt have not yet been published, to the best of our knowledge, despite the application
of wind tunnels to study phenomena such as soil erosion (Gabriels et al. 1997; Gillette
1978). It should be noted that although the general velocity field near large structures
can be captured by scaled-down wind tunnel experiment using Reynolds analogy, several
flow characteristics are not proportional to the size of the model and thus cannot be
extrapolated directly from such experiments (Liu et al. 2014). Although Poulikakos et al.
(2013b) carried out smoke tests on PA at a mean wind speed of 1.2 m/s and observed some
penetration of smoke into the internal structure of PA, their specimen size of 28×47×10
mm3 was again too small to draw general conclusions.
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Figure 2.12.: Streamwise velocity contour maps of water flow over two types of porous
media, (a) type A and (b) type B, having mean pore diameters of 8 and 12
mm respectively, and (c) streamwise mean velocities inside the two types of
porous media. (Iida et al. 2014)
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Figure 2.13.: Illustration of airflow patterns, as deduced from experiments, over a porous
layer after mounting a rib in the upstream section; (a) solid rib flow, (b)
solid rib flow at higher porous layer permeability or higher Reb, (c) porous
rib flow and (d) porous rib flow at porous layer permeability. (Suga et al.
2013)
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2.4 numerical modeling of multiphase flow in porous media

Multiphase flow at the pore scale has been modeled using various approaches such as
pore network models, Lattice-Boltzmann simulations, mesh-based computational fluid
dynamics simulations with fluid-fluid interface tracking and mesh-free, particle-based
Lagrangian methods. In this research (see Chapter 7), pore network models are used to
study multiphase flow in porous asphalt, mainly due to its computational efficiency when
dealing with a highly complex pore space like PA. Specifically, pore network modeling
is used to model drainage from a fully-saturated PA specimen, followed by evaporative
drying. Therefore, in this section, the state-of-the-art of pore network models used to
simulate two-phase drainage and drying in porous media is presented.

2.4.1 Modeling multiphase flow with pore network modeling

Pore network models (PNM) are based on the representation of the void space in a material
as a network of wide pores connected to each other by narrow throats, a schematic of which
is shown in Fig. 2.14. The main geometric characteristics of a pore network are the shapes
of its pores and throats, the diameters of the pores and throats and the connectivity of the
pores. The diameters and coordination number often follow a distribution law to take into
account the wide range of values of these parameters in a typical pore space. A sensitivity
study of various simulation parameters, among them the simplified pore shape assumed
for simulations, on the modeling of drying using pore networks is given by Prat (2007),
where it is found that pore shape has an influence on the drying rate when film flows are
considered. In Fig. 2.14, the irregular topology of the real pore space is converted to a
regular pore space, as is often done in many studies. This approach is justified as several
essential properties are independent of the exact topology or orientation of the pore space
(Stauffer and Aharaony 1992).

Figure 2.14.: Schematic of representation of the void space in a porous material as a
network of sites (pores) connected to each other by bonds (throats). (Prat
2002)
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Multiphase flow in porous media was first represented using pore networks by Fatt
(1956). Since then, several researchers have used PNM to study various flow mechanisms
such as drainage (Blunt et al. 1992; Lenormand 1988; Sahni et al. 1998), imbibition (Joekar
Niasar et al. 2009; Hughes and Blunt 2000; Patzek 2001), drying (Laurindo and Prat 1998;
Prat 2002; Yiotis et al. 2015), as well as for practical applications such as modeling of
solute transport in soil (Vogel 2000) and fluid transport in the gas diffusion layer of fuel
cells (Gostick et al. 2007). In PNM, essentially pore-scale equations are solved in the
given domain of pores and throats. Some researchers have used PNM at the REV scale to
calculate basic parameters such as relative permeability and capillary pressure as a function
of saturation (Daian and Saliba 1991; Nowicki et al. 1992). However, the discussion in this
section will be on the application of PNM to the next scale i.e. product scale or material
scale (Prat 1993). PNM at the product scale can be classified into two major streams:
quasi-static PNM and dynamic PNM. Quasi-static PNM simulates the equilibrium states
during flow processes; for instance, step changes in global pressure differences are applied
during drainage to go from one equilibrium state to another. Information on the flow
between the equilibrium states is not obtained. On the other hand, in dynamic PNM, the
transient behavior of liquid at the pore scale is studied by determining the local viscous,
capillary and gravitational forces. However, dynamic PNMs are extremely computationally
intensive, thereby negating to an extent the advantage of using PNM in the first place.
Besides, quasi-static PNM has been used to successfully predict capillary pressure and
relative permeability as a function of saturation during drainage and imbibition (Blunt
et al. 2002; Carmeliet et al. 1999; Oren et al. 1998; Vandersteen et al. 2003). Therefore,
quasi-static PNM is also used in this study to determine transport properties of PA during
drainage and drying.

To have a representative pore network model capable of accurately predicting transport
properties, it is essential to translate the information from the complex pore space
topology to a pore network accurately. For this purpose, imaging techniques such as X-ray
microtomography (Al-Raoush and Willson 2005; Knackstedt et al. 2013; Wildenschild et al.
2002), laser confocal microscopy (Fredrich et al. 1993; Montoto 1995), serial sectioning
imaging (Vogel 1997) etc. are often used. Pore network extraction algorithms such as
the maximal ball algorithm (Dong and Blunt 2009) or the medial axis-based algorithm
(Lindquist and Lee 1996) are often used to convert the 3D pore space to a pore network. The
conversion can be done in two ways: either by statistically capturing the size distributions
and connectivity of the pores and throats and thereafter applying it to a structured pore
network (Gostick et al. 2007), or by capturing the exact topology of the pores and throats,
including the orientation, position and connectivity (Joekar Niasar et al. 2009).
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2.4.1.1 Modeling drainage with pore network modeling

Drainage in PNM is often simulated as a percolation problem. Percolation phenomenon
in a porous medium refers to the properties that emerge at the onset of macroscopic
fluid connectivity within the medium. This application of percolation theory to simulate
drainage is known as invasion percolation (IP), with air as the invading phase and water
as the defending phase. During IP, the invading phase must be connected to the inlet to
continue the invasion while the defending fluid must be connected to the outlet to continue
to be displaced. In the IP algorithm, the key parameter that determines the ranking of the
throats to be invaded is the throat entry capillary pressure at quasi-equilibrium. The early
models of IP (Chandler and Koplik 1982; Lenormand 1988; Wilkinson and Willemsen
1983) were used to simulate slow drainage in porous media, usually capillary displacement
of water by air. Over the years, the original IP model (Wilkinson and Willemsen 1983)
has been modified to include several additional features. Meakin et al. (1992) included
the effect of gravity in the classical IP algorithm. In a system with large clusters of
liquid, which leads to a high hydrostatic pressure in some pores, capillary forces can be
dominant at the shorter length scales while gravity can be dominant at the longer length
scales (Meakin et al. 2000). Meakin et al. (1992) observed that for gravity-destabilized
drainage, the displacement pattern pointed to a fractal invasion percolation structure
at short length scales (� ξ), while at the longer length scales (� ξ), the pattern was a
directed percolation, where ξ ∼ |Bo|−η is the critical length scale, η = ν

/
(ν + 1) and ν is

the ordinary percolation correlation length exponent.
To make PNM in general and the invasion percolation algorithms better reflect the

flow patterns in real porous media, pore network geometries have evolved in terms of
complexity. An important characteristic of real porous media is their angular corners of
pores and throats, which allow the retention of wetting fluid at the corners, in the form of
arc menisci (AMs), and non-wetting fluid at the center, after the bulk drainage process is
completed. In such a scenario, the invasion of air into saturated throats takes place at a
lower threshold capillary pressure as compared to the threshold capillary pressure of a
simple circular pore, which is given by eq. (2.7). The most commonly used method for
calculating entry pressures of angular throats is the Mayor, Stowe and Princen (MS-P)
method (Mason and Morrow 1984), which relies on equating the curvature of the AMs to
the curvature of the invading interface. Oren et al. (1998) performed a generalization of
the MS-P method and expressed the threshold entry pressure, ptc, as:

ptc =
γ

r0
cos θr

(
1 + 2

√
πG
)
Fd (θr,G) , (2.13)

where θr is the receding contact angle, r0 is the inscribed circle radius of the pore and
Fd and G are parameters dependent on pore shape and the contact angle between the
wetting fluid and the solid. In the presence of AMs, drainage and imbibition in porous
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media proceeds through several mechanisms such as snap-off, piston-type displacement,
cooperative pore-body filling etc. (Patzek 2001). A detailed description of the formulae
and criteria for all relevant mechanisms in this study are given in Chapter 7.

2.4.1.2 Modeling drying with pore network modeling

Compared to the application of PNM in modeling imbibition and drainage in porous media,
the application of PNM for drying in porous media has only received attention lately.
PNM was used to simulate drying at the material scale for the first time by Prat (1993).
His model combined the principles of invasion percolation with a discrete computation of
diffusive vapor transport in the medium. Moreover, Prat (1993) was the first to use pore
networks to investigate liquid patterns during the drying process and assess its influence on
the drying rates. Prat (1993) applied invasion percolation to drying by drawing an analogy
between the drying and drainage processes as both are characterized by the movement of
menisci through the porous medium and the progressive invasion of the non-wetting fluid.
This analogy was first drawn by Shaw (1987) who experimentally observed the similarity
of drying invasion fronts to drainage invasion fronts. Subsequent studies reinforced this
analogy (Prat and Bouleux 1999; Tsimpanogiannis and Yortsos 1999), specifically by
observing that viscous effects stabilize invasion. The key difference, however, between
the IP algorithms of drainage and drying is the treatment of disconnected liquid clusters.
Owing to the incompressibility of the wetting fluid, throats in a disconnected cluster
cannot be invaded during drainage since no path exists anymore to the outside, although
the cluster itself can move. On the contrary, during drying, wet throats can be invaded
and this should be incorporated into the IP algorithm for a realistic simulation of slow
drying, as shown by the validation of this model with experiments on etched networks by
Laurindo and Prat (1998). However, when viscous effects in the gas and liquid phase are
considered, the drying behavior departs from IP (Prat and Bouleux 1999).

Since Prat (1993), increasingly sophisticated IP algorithms have been proposed to take
into account gravity effects (Prat 1995), thermal effects (Huinink et al. 2002), viscous
effects (Yiotis et al. 2001) and the presence of an external mass transfer boundary layer
(Yiotis et al. 2007). A common feature of most of the earlier studies, however, is the
absence of consideration of films during the drying process. The presence of films in pore
and throat corners can greatly increase the hydraulic connectivity and therefore increase
the mass transfer and evaporation rates. Yiotis et al. (2004) was the first to consider
the effect of films when modeling isothermal drying using pore networks. They divided
the pore space into three kinds of pores: gas-filled pores (in the dry region), liquid-filled
pores (in the liquid region) and film pores with gas at the center and liquid as films in the
corner (in the film region), a schematic of which was presented in a later paper (Yiotis
et al. 2015) and is reproduced in Fig. 2.15. They accounted for viscous effects in the
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Figure 2.15.: Liquid and gas patterns during drying in a capillary-dominated porous
medium. (Yiotis et al. 2015)

liquid and film pores and mass transfer in the gaseous phase was assumed to be purely
by diffusion. The most important effect of films is that in their presence, the gas phase
remained saturated, thereby blocking the evaporation in such pores. A further observation
was the capillary transport of water towards the open surface, where large concentration
gradients existed. As expected, the spread of films increased with a decrease in capillary
number. In the same study, an extension of their approach to non-isothermal conditions
showed that if film flow dominates, temperature effects are secondary. However, their
approach had several assumptions, most important of which were: transport effects near
the open surface were lumped into an effective diffusivity parameter, heterogeneity in
diffusive conductance among the pores as a result of their different radii was neglected
and the possibility of inter-cluster communication was also neglected by postulating that
all films at the clusters have the same initial film radius. The effect of gravity was also
not considered in their model.

In a later study, Yiotis et al. (2012a) developed analytical solutions for drying in porous
media, incorporating the effects of corner flow, mass transfer within and above the surface
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of the medium and gravity. For gravity-opposed drying (evaporation from top surface),
the drying rate, =̇, was calculated to be:

=̇ = −DMr02ce (1 + Caf )NyNz

Caf
dΘ
dξ

∣∣∣∣
S+

, (2.14a)

Θ =
σ3 − 3BoxI + Cafζ

1 + Caf
, (2.14b)

I =

ξ∫
0

σ4dξ, (2.14c)

where DM is the apparent molecular diffusion coefficient, N denotes the network size, r0 is
the capillary size, ce is the equilibrium mass concentration, ζ = c/ce is the dimensionless
concentration, is the dimensionless film thickness, σ is the dimensionless film length, Θ
is a scalar variable that captures mass transport through both the film and dry regions,
Caf is the dimensionless capillary number, and Box is the dimensionless Bond number.
The application of the Laplacian equation, ∇2Θ = 0, in the film and dry regions yields
a linear system of equations whose solution determines the fluid mass in these regions.
In a follow-up paper, Yiotis et al. (2012b) built upon the theoretical considerations of
their earlier paper, but additionally considered the dependence of β, the dimensionless
resistance to flow and C∗, the dimensionless film area, on film thickness σ, and introduced
a new parameter Ca∗f ≡ C∗Caf

/
β, to calculate the extent of the film region in the porous

media at a given time as:

1∫
σ=p

3σfdσf
Ca∗fβSh

C∗(1−Shξi) + 3Boσ4
= ξi − ξp, (2.15)

where Sh is the Sherwood number (ratio of external mass transfer to internal diffusion) and
the subscripts i and p indicate the evaporation and percolation front positions respectively.
Their equations provided a direct relationship between the drying rates and position of the
film tips. The drying curves obtained from their simulations, shown in Fig. 2.16, shows
that the constant drying rate period (CDRP) is shorter for larger values of Bo, i.e. when
the influence of gravity gets stronger.

As shown in Fig. 2.17(a), Yiotis et al. (2012b) determined the extent of the film region
in the porous domain as a function of the position of the percolation front during an
isothermal experiment and compared it with the solution of eq. (2.15). Packings of bead
sizes 100-160 µm, 150-200 µm, 200-250 µm, 300-315 µm and 400-500 µm were used in their
experiments. As bead sizes increased, the influence of gravity increased, and therefore the
growth of the film region as the percolation front moves away from the surface became less
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Figure 2.16.: Dimensionless drying rate as a function of the liquid saturation for different
values of the bond number; Box = −0.1 (red-dashed line); Box = −0.01
(blue-dotted line); Box = −0.001 (green-dot-dashed line); Box = −0.0001
(orange continuous line). The smaller the effect of gravity, the longer the
CDRP. (Yiotis et al. 2012a)



38 state of the art

Figure 2.17.: (a) Experimental results of the extent of film region xi − xp as a function of
the percolation front xp for packings of different bead sizes. The theoretical
curves obtained from the solution of eq. (2.15) are shown as continuous lines.
The film extent generally increases as the font recedes, but the trend becomes
less prominent as bead sizes increase. (b) Drying rate as a function of liquid
saturation for the same bead packings but at different inclination levels. As
inclination increases, the effect of gravity increases. (Yiotis et al. 2012b)
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Figure 2.18.: Effects of Sherwood number on the drying curves of a 150×30×30 pore
network. As Sherwood number increases, the constant drying rate period
becomes progressively shorter and consequently, the decreasing drying rate
period sets in earlier. (Yiotis et al. 2015)

pronounced due to earlier film detachment from the percolation inlet surface. Additionally,
the drying rate as a function of liquid saturation was calculated for a packing of 400-500
µm beads at different inclination angles, 31◦, 55◦ and 90◦, as shown in fig. 2.17(b). As
the inclination angle increased, which implied that the influence of gravity increased, the
constant drying rate period (CDRP) became shorter as a result of the smaller film regions
and the decreasing drying rate period (DDRP) set in earlier. In a recent study, Yiotis
et al. (2015) introduced a drying model that improved upon the 1D model of Yiotis et al.
(2012a) with a 3D model that also captured the gradual desaturation of the surface due to
disorder in the underlying percolation front. Their simulations showed that as the Bond
number increased, i.e. as the influence of gravity increased, the film thickness profiles and
therefore, the capillary pressure gradients in the system, became more complex, which lead
to shorter film regions and shorter CDRPs. They also investigated the effect of increasing
Sherwood number, namely thinner boundary layer near the evaporating surface, on the
drying rate of the porous medium. As shown in Fig. 2.18, as Sherwood number increases,
the higher evaporative flux at the evaporation front induces higher capillary pressure
gradients in the film region, which again leads to a shorter CDRP, analogous to the effect
of gravity on drying, as observed from Fig. 2.16.

For modeling convective drying in a macroporous medium using a continuum approach,
the above discussion has a very important implication. Since gravity plays an important
role in macroporous media, the drying phase could completely skip the CDRP and directly
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Figure 2.19.: Schematic representation of snap-off in a pore. (Rossen 2000)

enter the DDRP. In this case, the internal diffusion in the medium will determine the
overall drying rate and as such, accurately modeling the convective boundary conditions
will be less critical than an adequate material characterization in terms of liquid and
vapor transport (Defraeye et al. 2012). This implies that constant heat and mass transfer
coefficients can be applied to the evaporating surface to account for the exchange with
the environment, instead of treating the heat and mass transfer as a conjugate problem.
Another point to note is that in the drying models of Yiotis, the possibility of snap-off,
which is the collapse of arc menisci in very small pores (shown schematically in Fig.
2.19) and is an important pore-filling mechanism, is not accounted for. Snap-off results
in refilling of water in pores that are already invaded by air and can therefore affect
macroscopic vapor transport by rendering those pores impermeable to vapor flow.

2.5 composition and characterization of porous asphalt

Porous asphalt is a special road material that is used as the surface layer of road pavements
in many countries due to its excellent drainage properties. In combination with a well-
designed impervious asphalt concrete layer, which acts as a structural support for the
upper PA layer, PA has proven to be an efficient tool in water-management strategies
of many cities (Cahill et al. 2004). The acoustical absorption property of PA leads to a
significant absorption of both engine and tire noises (Meiarashi et al. 1996). The good
hygric and acoustic properties are used to promote PA as an environment-friendly road
material.

PA typically has a porosity of around 20% and is a composite material made from fine
and coarse mineral aggregates, a bituminous binder and air voids. Typically, aggregates
make up 94% by mass of the composition of PA while bitumen has a mass content of 6%.
Despite the low mass content of bitumen, it holds together the aggregates in PA. During
the production process, hot bitumen is mixed together with a mixture of heated fine and
coarse aggregates in a mixer where a thin mastic forms around the aggregates. In some
cases, fibers are also added to PA to allow thick binder films for the sake of improved
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Figure 2.20.: Microstructure of porous asphalt concrete consisting of coarse and fine
mineral aggregates, bitumen and air voids: (a) photograph of 47 mm×28 mm
specimen, (b) X-ray µ-CT slice of the same specimen, where voids are black,
aggregates light gray and bitumen darker gray, and (c) ESEM micrograph,
the voids are filled with epoxy resin (scale bar 50 µm). (Poulikakos et al.
2013b)

mechanical behavior and reduced binder drain-down effects. The microstructure analysis
of PA presented in Fig. 2.20 shows the components in a typical PA internal structure. A
more detailed investigation of the microstructure of PA is given in Poulikakos and Partl
(2010).

In a freshly prepared PA specimen, the bituminous binder covers most of the aggregates
and shields the aggregates from water as a result of its low permeability. However, due
to the high porosity of PA, a large area of the microstructure of PA is exposed to the
deteriorative effects of oxidation by air and degradation by water. This leads to rapid aging
of the bitumen binder, damage of the bitumen-aggregate bond and structural distress
of the compounds (Poulikakos and Partl 2012). Poulikakos and Partl (2012) conducted
coaxial shear tests of dry and water submerged cylindrical field cores of PA of diameter
150 mm and height 60 mm. They observed that the complex moduli of elasticity of the
cores, a measure of their fatigue behavior, were considerably lower when the cores were
submerged in water, as shown in Fig. 2.21. This clearly showed the reduced strength of
PA when exposed to moisture. Other studies have macroscopically investigated various
material properties of PA that are relevant to wetting and drying such as permeability,
density and porosity (Arambula et al. 2010; Bäckström and Bergström 2000; Perraton
and Carter 2005; Praticò and Moro 2007).

In comparison to the extensive literature of standardized tests on PA, there are only a
few studies that investigate the prediction of transport properties of PA using analytical
and numerical methods. Gruber et al. (2012) investigated the effect of structural anisotropy
of PA on its hydraulic conductivity. They used a finite volume solver to simulate fluid
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Figure 2.21.: Evolution of complex moduli of two PA11 cores, VG4 and AG2, subjected to
coaxial shear tests during dry and wet test conditions. The reduced fatigue
strength of wet PA specimens is clearly evident from the figure. (Poulikakos
and Partl 2012)



2.5 composition and characterization of porous asphalt 43

Figure 2.22.: (a) Simplified representation of the porous layer structure used in pore
network simulations of drainage in a permeable pavement and (b) influence
of porosity and aggregate size on permeability values calculated using pore
network models. (Zhang et al. 2013)

flow in a real PA geometry as obtained from X-ray µ-CT scans and postulated that the
absolute permeability of PA varied by a factor of two depending on the flow direction.
Furthermore, they approximated PA as a Darcy model of porous medium and calculated
the Forchheimer coefficient of PA. While the original Darcy model is applicable when the
flow rate is low enough and pressure drop due to inertial losses is negligible, the addition
of the Forchheimer coefficient to the Darcy model accounts for inertial losses at high flow
rates, which is a possibility in PA due to its large pore sizes. The calculated permeabilities
of two PA11 specimens in their study was 6.083×10−11 m2 and 3.137×10−9 m2 while their
Forchheimer coefficients were 1.4569×106 m−1 and 5.5039×106 m−1. They postulated
that this approximation of PA as a Darcy model was valid only for specific flow rates
and will underestimate the pressure drop at greater flow rates. The anisotropic nature of
permeability of porous pavements in general was investigated in further detail by Masad
et al. (2007).
Zhang et al. (2013) published the first application of pore network models to the

investigation of drainage properties of porous pavements. Porous mixtures with three
porosity values (15%, 20% and 25%) and four aggregate sizes (8, 12, 16 and 20 mm) were
used in their study. They developed a cubic pore network model with two characteristic
length variables to define the network, namely the edge length of each drainage channel and
the distance between the centers of two successive parallel channels. However, the distance
between the channel centers was a constant that was equal to the nominal aggregate size of
the single-sized aggregates that they considered for their simulations. All the simulations
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were performed for 100 mm thick porous layers. They used k-ε turbulence model to
simulate water flow within the network for different aggregate sizes, and calculated the
permeability for each case. A schematic representation of their pore network and the
calculated permeabilities at different nominal aggregate size is given in Fig. 2.22. The
order of magnitude of permeabilities was similar to those calculated by Gruber et al. (2012).
However, similar to previous modeling efforts on permeable pavements, only single-phase,
saturated flow was taken into account for determining the transport properties. Finally,
it is also noted that a detailed investigation into the pore-scale physics of fluid flow in
permeable pavements, experimental or numerical, is missing in literature.

2.6 needs for further research

The current understanding of fluid flow in macroporous media in general, and in porous
asphalt in particular, is still very limited. Gravity is the defining feature that deter-
mines flow behavior in macroporous media, especially during imbibition and drainage.
Experimental studies so far have clearly established the instability and complexity of pore-
scale mechanisms such as capillary imbibition, gravity imbibition and gravity drainage in
macroporous media. However, even with the advent of advanced non-destructive imaging
techniques, pore-scale visualizations of fluid flow in macroporous media is still non-existent.
A remarkable research gap is the absence of studies investigating the effect of gravity on
unsaturated flow in complex macroporous media. Moreover, a large majority of flow exper-
iments are done on simplified porous media that does not capture the complexity of flow
mechanisms in real porous media. A similar scenario can be seen in studies on convective
drying of macroporous media, in which case the additional momentum exchange induced
by air penetration into the system should be taken into account. Recent advancements
on this front have been the visualization of air penetration into highly permeable porous
media and the analysis of its effect on the boundary layer above the surface. However,
full-scale airflow investigations on real, complex macroporous media is missing in literature.
Moreover, experimental observations of flow mechanisms in PA is also necessary to provide
realistic assumptions for modeling.
Pore network modeling has steadily advanced to become one of the most efficient

computational tools to simulate quasi-static multiphase flow in porous media. Invasion
percolation algorithms have become the de facto method for modeling drainage, as long
as viscous effects can be neglected. Recent studies have improved the efficiency of IP
algorithms by accounting for, among other things, more complicated pore shapes and
the effect of gravity. The use of pore networks for modeling drying has also reached an
advanced stage, with dry and film regions above the percolation front being explicitly taken
into account for calculating the evaporative flux at the material surface, and validated
with analytical solutions. However, the applicability of pore network modeling to predict
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the transport properties of a highly complex materials such as porous asphalt is still an
open question, especially since pore networks do not take into account the tortuosity of
the pore space, the heterogeneity in the wettability (solely due to the lack of sufficient
knowledge about the same) and the roughness of the solid matrix. Nevertheless, if pore
network modeling can indeed be used to determine macroscopic transport properties
of PA, the results can be used as inputs to an upscaled continuum model to efficiently
predict the performance of the material in typical atmospheric conditions. This can be a
powerful tool for road engineers engaged in designing more durable pavements. Therefore,
a multiscale approach from experimental investigations and pore network modeling to
continuum modeling is designed in this study to first understand and consequently predict
the wetting and drying processes in PA.





3
EXPERIMENTAL INVESTIGATION OF IMBIB IT ION IN POROUS
ASPHALT

3.1 introduction

This chapter presents the experimental investigations to study the spatial and temporal
distributions of moisture in porous asphalt specimens subjected to capillary imbibition and
gravity imbibition. The experiments are carried out at the thermal neutron radiography
station (NEUTRA) of the Swiss Spallation Neutron Source (SINQ) facility of the Paul
Scherrer Institute, in Villigen, Switzerland. Capillary imbibition is studied with a water
uptake experiment on PA while gravity imbibition is studied with droplet wetting of PA.
For each experiment, a description of the PA specimens used in the experiments is first
provided, followed by a description of the experimental setup and the procedure. The
most important observations from the experiment are then analyzed in detail. In case
of the capillary imbibition (water uptake) experiment, complementary simulations are
carried out to obtain a better understanding of the experimental observations, which is
also described in detail.

3.2 water uptake experiment

This section is based on the paper Lal et al. (2014)

The objective of this experiment is to understand the phenomenon of capillary imbibition
in porous asphalt by combining neutron radiography and microtomography imaging
techniques. To investigate this behavior, PA specimens are placed in contact with a free
pool of water and the water uptake in different specimens is documented. Since water
uptake is from the bottom surface of the specimens, capillary force is the only driving
force. By combining neutron radiography images with the pore structure information
obtained from X-ray µ-CT scans, an attempt is made to distinguish between saturated and
unsaturated flows within the PA structure. Additionally, using finite volume numerical
simulations, the influence of tortuosity and pore connectivity on the rate of capillary
imbibition is investigated.

47
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3.2.1 Material characterization

3.2.1.1 Preparation

A detailed description of the microstructure of PA was given in Section 2.5 in Chapter
2 and is not repeated here. In this experiment, the type of PA used is PA11, which
has a nominal maximum aggregate size of 11 mm. Two different types of PA11 speci-
mens with known in-situ performance (Poulikakos et al. 2006) are used for comparison
purposes. These mixtures were used in the Swiss cantons of Aargau (referred to as
AG1) and Vaud (referred to as VD4). VD4 is part of a large piece that was harvested
from a road after 7 years of service. AG1 was freshly made in the laboratory using
the mix design specifications of the road that had been monitored for 5 years. The
compositions of these two materials differ firstly in the aggregate gradation, with VD4
having a slightly higher proportion of aggregates in the 8-11.2 mm range than in the
5.6-8 mm range as compared to AG1, and secondly in the type and content of the bitumi-
nous binder (Tab. 3.1). VD4 contains polymer-modified bitumen (PmB), with styrene
butadiene styrene (SBS) co-polymer. AG1 has 55/70 penetration-graded straight run
bitumen with Trinidad natural asphalt with NAF 501 additive; a fine grained granular
product, consisting of 83.3 mass-% Trinidad Epuré and 16.7 mass-% cellulose fibers (http:
//www.trinidad-lake-asphalt.de/english/Produkte-NAF-501.php). Using the ses-
sile drop method, the static contact angle of a drop of water was found to be more than
99.2◦ for the PmB binder and 105.6◦ for the 55/70 binder (Poulikakos and Partl 2012)
i.e. both binders can be categorized as hydrophobic. The mineral aggregate of AG1
is siliceous lime aggregate from the Balmholz quarry with high pressure and abrasion
resistance as well as good water resistance. Mineralogical data indicates 30-45% quartz
by mass (www.balmholz.ch). The mineral aggregates used in VD4 are from the Famsa
quarry, a hard sand aggregate from the sedimentary rock category with 20-30% quartz
(www.famsa.ch). Three specimens are used in this study, one from the AG1 pavement
(named AG1) and two specimens from the VD4 pavement (named VD4-1 and VD4-2).
The specimens have been chosen to study the effect of both spatial inhomogeneity (two
specimens from the same material) as well as different chemical and physical properties
(specimens from laboratory-made and in-situ materials) on the water uptake process. All
three specimens selected have the dimensions of 45×25×10 mm3 (Fig. 3.1). In the neutron
experiment, as expected due to its hydrophobic solid matrix, AG1 did not exhibit any sig-
nificant water uptake. Therefore, only the results for VD4-1 and VD4-2 are presented here.

http://www.trinidad-lake-asphalt.de/english/Produkte-NAF-501.php
http://www.trinidad-lake-asphalt.de/english/Produkte-NAF-501.php
www.balmholz.ch
www.famsa.ch
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Table 3.1.: Material specifications of PA specimens used in the water uptake experiment.
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Figure 3.1.: Visible light photographs (a,f), 2D cumulative porosity distribution images
(b,g) in which the porosity ranges from 0 (white) to 1 (black) and X-ray µ-CT
slices at the front (c,h), middle (d,i) and rear (e,j) slices of VD4-1 and VD4-2.
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3.2.1.2 Cumulative porosity distribution from X-ray microcomputed tomography

The pore structures of the three specimens are imaged with the X-ray micro-computed
tomography (X-ray µ-CT) setup of Empa. The setup consists of an X-ray source (X-ray
tube ’XT9225-TEP’, Viscom), an XYZ linear stage (composed of three linear stages
’LS-270’, Micos) for positioning the specimen, a rotation table (’UPR-160 F air’, Micos)
and an X-ray detector (’XRD 1621 CN3ES’, Perkin-Elmer). The X-ray tube was operated
at 220 kV and 0.1 mA and the emitted X-ray spectrum was hardened with a 0.5 mm thick
Cu filter. The focal spot size was below the nominal spatial resolution of 55 µm, which
was calculated from the detector pixel size (0.4 mm, 2×2 binned), the distance between
the source and the object (158 mm), and the distance between the source and the detector
(1146 mm).The three-dimensional distribution image of the attenuation coefficient was
reconstructed by means of a Feldkamp algorithm from 720 projection images (1024×800
pixel, 3.6 s exposure) recorded from different viewing angles distributed evenly over 2π
(Feldkamp et al. 1984).

In Fig. 3.1, the visible light photographs (a,f), the two dimensional cumulative porosity
distributions (CPD) obtained from reconstructions of 3D X-ray µ-CT scans (b,g) and the
X-ray µ-CT slices at the front, middle and rear slices of VD4-1 (c,d,e) and VD4-2 (h,i,j)
are shown. The procedure to obtain the CPD from X-ray µ-CT images is as follows: All
the 2D X-ray µ-CT images are binarized using an automatic threshold as calculated by the
open-access image processing software Fiji (Schindelin et al. 2012). This process converts
each pixel in an image to either a pore (pixel value=1) or a solid i.e. binder/aggregate
(pixel value=0). The final CPD image is then obtained by adding all the images along the
direction perpendicular to the image plane and then dividing the resulting image by the
total number of images. The absence of porosity, i.e. an aggregate that crosses the entire
thickness of the specimen, results in pixels with a value of 0 (white). All the other pixels
have values ranging between 0 and 1, where 1 (black) represents pixels where pores cross
the entire thickness of the specimen.

The CPD was calculated from X-ray µ-CT images with two restrictions: voids smaller
than 150 µm were not detected due to resolution limitation, and the specimen is not a
representative elementary volume (REV) of the material as its thickness of ≈10 mm and
the largest aggregate size (11 mm) are of similar dimensions. An ideal REV should have
dimensions which are larger than at least 3 times the aggregate size, but the available
neutron beam does not have the energy to go through such a thick specimen. Hence, the
porosity distribution calculated from the specimen is not representative of the porosity of
PA in the pavement scale, but is useful for the analysis of neutron radiography images.
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3.2.2 Experimental setup and procedure

3.2.2.1 Neutron beamline specifications

The experiments are performed at the NEUTRA beam line and the neutron beam is
in the thermal spectrum i.e. neutrons with a most probable energy of 0.025 eV and a
speed of 2200 m/s. Neutrons in the thermal energy spectrum have a high interaction
with water, making the NEUTRA beamline suitable for tracking the flow of water inside
porous materials. The features of this facility include high collimation ratio, low gamma
background and large beam diameter. A detailed description of the entire setup is given
by Lehmann et al. (2001). The detector used is a scintillator-CCD camera-system, with a
field-of-view of 152×152 mm2. The camera used is Andor iKon-L with 2048×2048 pixels
with a region of interest setting of 1505×1505 pixels, providing a field of view of 152×152
mm2. The exposure time in the experiments is 12 s per radiograph with an attained
spatial resolution of 100 µm per pixel. The neutron chamber had a temperature of 22 ◦C
and 30% relative humidity during the experiments. Radiographs are acquired initially
every 12 s for the first 100 images and thereafter every 2 minutes for the duration of the
experiments which lasted a minimum of three hours.

3.2.2.2 Remote-controlled ascending platform

To image the PA specimens during the water uptake process, a custom-made setup is
fabricated. The setup consists of a specimen-holder resting on a precision balance of ±
0.1 mg accuracy, and a remote-controlled ascending platform to raise the water container
towards the specimen holder. The entire setup is placed in the neutron beamline during
the experiments. Figure 3.2 shows a schematic of the experimental setup and a neutron
radiograph of the same.

3.2.2.3 Determination of water content from neutron beam attenuation

Neutron radiography (NR) is based on the different attenuation levels undergone by a
neutron beam as it traverses different objects, the attenuation being particularly high by
hydrogen, the main component of water.
The Beer-Lambert law for the attenuation of radiation passing through matter can be

written as:

I = I0e
−
(

Σ/ρ

)
ρd

, (3.1)

where I is the final beam intensity after the beam traverses a distance of d in the specimen,
I0 is the incident beam intensity, ρ is the mass density of the specimen, Σ is the attenuation
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Figure 3.2.: Schematic representation of the experimental setup (left) and correspond-
ing neutron radiograph image (right) showing: (a) PA specimen, (b) water
container and (c) ascending platform.

coefficient for neutron, and the term (
∑

/ρ) is the mass attenuation coefficient. From eq.
(3.1), we can calculate the mass thickness, τ (x, z) (Hassanein et al. 2005), i.e. the product
of the specimen density and the specimen thickness at each pixel, as:

τ (x, z) = ρ(x, z)d(x, z) = −ρ(x, z)
Σ

ln I(x, z)
I0(x, z) , (3.2)

where (x, z) denotes the coordinates of a pixel.
In this study, the parameter of interest is the water content in each pixel at any time

step, in terms of mass per unit volume. As water moves through the material, any change
of gray value of a pixel is attributed to the change in the moisture content. Thus, the
moisture content distribution (MCD), wt(x, z), can be calculated as:

wt(x, z) = τ (x, z)t − τ (x, z)i
dy

, (3.3)

where dy is the constant specimen thickness in the direction of the beam (y-direction),
τ (x, z)i and τ (x, z)t are the initial mass thickness (of the dry specimen) and the mass
thickness after a time t respectively, for a given pixel. In terms of the beam intensities, eq.
(3.3) can be rewritten as:
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wt(x, z) = −ρ(x, z)
Σdy

ln I(x, z)t
I(x, z)i

= −ρ(x, z)
Σdy

[ln I(x, z)t − ln I(x, z)i] , (3.4)

where I(x, y)i and I(x, y)t are the initial beam intensity (of the dry specimen) and the
beam intensity after a time t respectively, for a given pixel, as recorded by the detector.
Since there is no deformation of PA during the experiments, no image registration is
required and the moisture content at each pixel can be calculated by simply subtracting
the logarithms of the dry image and wet images.

3.2.2.4 Neutron radiography image corrections

To ensure an accurate quantitative determination of water content from the radiographs,
the NR images have to be corrected for different types of artifacts. The corrections
performed on the NR images in this experiment, in the order of their application, are as
follows:

1. Dark current correction: corrects the false signal from thermally generated electrons
in the charge-coupled device of the CCD camera.

2. Black body correction: corrects the false signal from the neutrons which are scattered
from the experimental setup or the environment to the detector.

3. Spectral effect correction: accounts for the shift in the mean neutron beam energy
to higher energies after traversing a strongly attenuating specimen.

4. Intensity correction: scales the measured radiographs to remove the effects of the
inhomogeneity of the neutron source.

5. Flat field correction: accounts for the spatial inhomogeneity of the neutron beam
intensity or detector sensitivity.

When all the above corrections, except the spectral effect correction, are applied to the
radiographs, eq. (3.4) transforms to:

wt(x, z) = −ρ(x, z)
Σzs

ln { I(t)
/
IF}

/
I(x, z)FF

{ I(i)
/
IF}

/
I(x, z)FF

, (3.5a)

I(t) = I(x, z)t − I(x, z)DC − I(x, z)BB, (3.5b)
I(i) = I(x, z)i − I(x, z)DC − I(x, z)BB, (3.5c)

where the subscripts DC, BB and FF refers to the dark current, black body and flat-field
correction reference images respectively, while IF is the Intensity Factor which is purely a
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function of the beam quality. Equations (3.1) - (3.7) are derived based on the assumption
that the incident neutron beam is monochromatic. In reality, the energy distribution of
the NEUTRA beam is similar to a Maxwell spectrum at 23.8 meV (Hassanein et al. 2005).
The spectral effect correction takes this factor into account and eq. (3.1) can then be
rewritten as:

I

I0
=

∫ +∞
0 P (E) · ε(E) · e

−
(

Σ(E)/ρ
)
ρd
dE∫ +∞

0 P (E) · ε(E)dE
, (3.6)

where E is the energy of the incident neutrons, ε(E) is a parameter to account for the
energy sensitivity of the detector and P (E) is the Maxwell-Boltzmann probability density
function which represents particle speeds (energy) in gases. The corrections are performed
with the Quantitative Neutron Imaging (QNI) method (Hassanein et al. 2005).

3.2.2.5 Results and discussion

3.2.2.6 Analysis of moisture content distribution and degree of saturation

The uptake and distribution of water in the PA specimens is first tracked in terms of the
moisture content distribution (MCD), as defined by eq. (3.3), with units of kg/m3, where
the dry image at time t = 0 is subtracted from the wet image at a given time step. Figures
3.3 and 3.4 show the spatial and temporal evolution of MCD of the two VD4 specimens, at
five selected time steps. The time steps are chosen with the aim of documenting the main
event of water uptake. The selected time steps also make it possible to focus on the initial
stages of uptake, where the uptake rate is expected to be higher. In Figs. 3.3 and 3.4,
the top row of images (a-e) are contour plots of MCD. In order to focus more effectively
on the movement of water within the specimens, a second series of images (referred to
as binarized images) is shown in the bottom row (f-j), where the first wet image in the
upper row of images is subtracted from the wet images at the remaining time steps. In
these images, pixels have a binary representation, white or black, where a black pixel
represents a value that has crossed a threshold of 30 kg/m3 when subtracted by the first
wet image, while a white pixel represents a value that does not change (e.g. absence of
porosity) or which is below the threshold. This threshold has been selected through trial
and error to achieve a clear visualization of the water front, thereby indicating the areas
in the specimen which undergo significant water uptake.

It is also to be noted that the level of submergence of the bottom part of the specimens
in water varies during the experiment with VD4-1. Also, between the two specimens,
depending on their pore structure, different levels of ascension are necessary to initiate
uptake. The exact level of submergence can be visualized by the gray pixels at the base of
the specimens in the top row of images, and the white pixels at the base of the specimens
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Figure 3.3.: (a-e) Temporal and spatial variations of the moisture content distribution
(MCD) inside specimen VD4-1 at five time steps, (f-j) MCD segmented at 30
kg/m3 wet threshold, after subtraction from the wet image at t = 1min.

in the bottom row of images. No analysis in these parts is done since they are submerged
under water. Additionally, the white patches in between the wet areas indicate the areas
of 0% porosity i.e. the areas where a single aggregate crosses the entire width of the
specimen, as also visible in Figs. 3.1(b) and 3.1(g) and Figs. 3.4(e) and 3.4(j).

A few general observations can be made from Figs. 3.3 and 3.4. Firstly, it is seen that
water travels a significant distance inside both VD specimens, with the higher uptake
being in VD4-2. Furthermore, in both specimens, there is not much difference in MCD
between the penultimate and final time steps. This implies that much before the final
time step, all the paths which could potentially be followed by uptaken water have been
filled and additional uptake of water had stopped. The exact time at which water uptake
stops is influenced by a variety of factors like gravity, dead-end pores, the presence of
pores with sharply diverging diameters etc. In VD4-1, the uptake initially begins on the
right side of the specimen while in VD4-2, there is no clear preference. This aspect is
investigated further later in a later section. In VD4-2, at the last two time steps, the
emergence of a water island can be seen at the top part of the specimen. It can be further
observed that, in VD4-2, there are high moisture content regions (yellow, green and red)
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Figure 3.4.: (a-e) Temporal and spatial variations of the moisture content distribution
(MCD) inside specimen VD4-2 at five time steps, (f-j) MCD segmented at 30
kg/m3 wet threshold, after subtraction from the wet image at t = 3mins.
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Figure 3.5.: Temporal and spatial variations of the degree of saturation inside a selected
ROI of specimen VD4-2 at different times during the uptake experiment.

surrounded by low moisture content regions (dark and light blue), where the low moisture
content regions could be aggregate-dominated cross-sections which are surrounded by high
moisture content pore-dominated cross-sections.
A more detailed analysis of water propagation is now studied in terms of another

parameter, the degree of saturation (DoS), st(x, z), defined as:

st(x, z) = wt(x, z)
ρw · ε(x, z) , (3.7)

where ε(x, z) is the two dimensional porosity distribution as shown in Figs. 3.1, wt(x, z)
is the MCD calculated with eq.(3.3) and ρw is the density of water. Unlike the MCD
analysis, the DoS analysis makes it possible to clearly identify those pores that are water
saturated. The transformation of MCD to DoS analysis is done for a Region of Interest
(ROI) smaller than the specimen, as shown in Figs. 3.5 and 3.6 for specimens VD4-2
and VD4-1 respectively. The dimensions of the ROIs chosen for specimens VD4-2 and
VD4-1 are 35×25 mm2 and 9×25 mm2 respectively. The DoS analysis is performed over an
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Figure 3.6.: Temporal and spatial variations of the degree of saturation inside a selected
ROI of specimen VD4-1 at different times during the uptake experiment.

interval of time i.e. 80 minutes and 13 minutes after the dry image is taken, for specimens
VD4-2 and VD4-1 respectively. Like in the MCD images of figs. 3.3 and 3.4, the large
patches of white pixels in Figs. 3.5 and 3.6 indicate aggregates that run through the
specimen, i.e. indicating areas of zero porosity.

From Figs. 3.5 and 3.6, it can be observed that the patterns of water uptake are different
in the two specimens. In VD4-2, the number of pores where saturated flow occurs is not
large, as can be inferred from the low number of pink pixels at all time steps. However, as
confirmed from Figs. 3.3 and 3.4, water travels much further in VD4-2 than it does in
VD4-1, thereby indicating the occurrence of unsaturated flows in VD4-2 i.e. flow by not
completely filling the pores with water. Compared to VD4-2, VD4-1 has a larger number
of saturated pores, where saturated flow could be certainly active. In VD4-1, this number
increases rapidly in the initial stages of water uptake (1 min, 3 mins, 4 mins). Towards
the later stages (7 mins, 9 mins, 13 mins), there is hardly any growth of this number.

3.2.2.7 Distinguishing saturated and unsaturated flow

The focus now shifts to understanding the mechanisms by which water uptake takes place
in porous asphalt more thoroughly. It is reiterated that saturated flow implies water flow
through the pores while completely filling the pore cross-section while unsaturated flow
implies the movement of water along the pore corners i.e. in a pore with unsaturated flow,
the central region of the pore cross-section is air-filled while the edges of the cross-section
are water-filled. This next step of distinguishing between saturated and unsaturated flow
is pursued using the VD4-1 results. For this purpose, two datasets are considered together:
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the data from the three dimensional X-ray µ-CT scans and the two dimensional degree of
saturation images. Since 3D data is being compared with 2D data, the region of interest
has to be restricted to that part of the DoS images where the saturated and unsaturated
regions can be clearly distinguished. Moreover, the pore sizes as seen in the corresponding
CT scans should be large enough to be able to neglect errors arising from the unavoidable
imperfect overlapping of X-ray µ-CT and NR images. Hence, a smaller ROI is chosen
within the ROI selected for Fig. 3.6. This ROI, which is shown in Fig. 3.7(a), satisfies the
above two conditions i.e. a clear pattern of uptake and large pore sizes. The dimensions
of the ROI are also marked in Fig. 3.7(a). To visualize the pore structure within this ROI,
the evolution of the specimen cross-section along the z direction has to be studied using
X-ray µ-CT scans. This concept is illustrated in Fig. 3.7(b) where the x− y plane at a
certain z value is shown. These slices are of dimensions 25×10 mm2. Figure 3.8 depicts
the results of the approach described above. In Fig. 3.8(a), the evolution of the specimen
cross-section within the ROI along the z direction can be visualized with a series of X-ray
µ-CT images at different heights. In Fig. 3.8(b), the DoS distributions of the same ROI
are shown at different time steps. These time steps are the same as used in Fig. 3.6.
Positions along the x direction are marked on all the figures. Additionally, the z values of
the DoS distribution in Fig. 3.8(b), at which the corresponding X-ray µ-CT scans in the
x− y plane are shown in Fig. 3.8(a), can be matched by the color code given for each z
value in Fig. 3.8(a) and its location in Fig. 3.8(b).

In Fig. 3.8(a), it can be observed that there are five large pores at the bottom of the
specimen (z = 0.53mm), named pores A, B, C, D and E, through which water can enter.
Uptake of water initiates at the three positions marked P, Q and R in Figs. 3.8(a) and
3.8(b). The uptake at position P is due to pore B, the uptake at position Q is due to
pores C and D while the uptake at position R is mainly due to pore D and the connection
between pores D and E. The uptake at position P stops midway along the z-direction,
whereas the uptake at position R is the strongest and appears to be saturated flow. At
position Q, the uptake is mostly unsaturated and it also stops very early. With time,
uptake seems to be active only at position R. The water uptaken at R even flows laterally
and fills up the pores above the points at which the uptake from positions P and Q stopped.
This means that, as expected, the uptake in PA is essentially a 3D process.

From Figs. 3.8(a) and 3.8(b), a few conclusions can be drawn. Firstly, pore A does not
play a significant role in water uptake. This could be due to the fact that it is a pore
which is highly connected to the lateral boundaries or open to the surroundings, thereby
incapable of any capillary uptake in saturated conditions. This is probably also true for
pore E. Pore C, though similar in topology to pores A and E, does exhibit some uptake
at its left corner. Similarly, pore B also shows some uptake, but only at its right corner.
Therefore, in these pores, unsaturated film flow is expected to be the dominant mode
of uptake. Going up the specimen along the z direction, pore B gradually changes to a
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Figure 3.7.: For the analysis of the mechanism of water uptake, (a) a region of interest
(ROI) is chosen from VD4-1 in which there is a clear pattern of uptake and
(b) the three dimensional structure of the selected ROIs is visualized with
slices along the z direction.

region with many binders-aggregate interfaces. This region is expected to be porous with
very small holes, thereby allowing saturated flow through them. Due to this phenomenon,
in combination with the film flow in the left corner of pore C, a pink region can be seen
between x = 10mm and x = 15mm from t = 7mins onwards, around z = 1.96mm.
Meanwhile, water uptake in pore D starts with film flow on its right side. Going up the
specimen, pore D, which is initially not completely closed, reduces in size and splits into
two well-defined pores F and G, which are not connected to the surroundings. These two
pores most likely display saturated flow as can be seen in the large pink region between
x = 15mm and x = 20mm from time t = 4mins onwards. The large yellow region
around x = 15mm at this same time step is due to very little uptake in pore C, which is
open to the surroundings.
At z = 2.81mm, it can be seen that all the three pores (C, F, G) merge into a larger

pore, but only for a short distance. At z = 3.92mm, the merged pores breakup into
two new pores, pores H and I. This merging and breakup seems to hinder the further
saturated flow through the pores F and G. From the DoS distribution at t = 7mins,
it can be inferred that the new pores H and I now display film flow at their corners,
but definitely not saturated flow, because of the large yellow-colored region between
x = 15mm and x = 20mm. The presence of many small pores between x = 10mm
and x = 15mm and around x = 20mm lead afterwards to fully saturated flows in these
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Figure 3.8.: Analysis of mechanism of water uptake in a region of interest (ROI) of VD4-1.
(a) X-ray µ-CT slices along the z direction of the selected ROI and (b) degree
of saturation (DoS) distribution of the ROI at different time steps. Large
pores in the microstructure (A-I) and the positions at which water uptake is
initialized (X-Z) are marked. The microstructure of the specimen at a certain
z-value in (a) can be visualized by matching it with the section indicator of
the same color in (b).
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regions, as can be concluded from the large pink-colored regions at these areas at t = 9
and t = 13mins. These pores are either completely within the binder or in some cases
surrounded partially by aggregate. Thus, these pores are generally smaller than the pores
which are surrounded by large aggregates. As water further moves upwards with time,
the region around x = 20mm still has a significant amount of saturated flow due to
the presence of many pores in the solid matrix, whose presence only increases along the
specimen height. But saturated flow in the region around x = 15mm reduces drastically
since most of the pores in the binder which were present at z = 3.92mm are now replaced
with impervious aggregate.

From this analysis, it is clear that there is a combination of saturated flow and unsat-
urated film flow in the pores of porous asphalt despite the fact that the binder in the
material is hydrophobic. This observation points to a complex interaction of water with
the various components of porous asphalt, an aspect which needs to be further investigated
in the future. It is also important to note that, in an ideal pore surface, the binder covers
all aggregates, leading to a hydrophobic surface throughout the pore system. However,
in a real PA, not all surfaces are necessarily covered with binder as shown in previous
microstructural investigations (Poulikakos and Partl 2010). This is especially the case
for the VD4 specimens as they were in the field for seven years and thereby exposed to
water, climate and traffic. Therefore, some of the binder from the aggregate surfaces could
have been removed by stripping. This could very well be the reason why no uptake is
observed in the laboratory-prepared fresh AG1 specimen, where proper binder coating of
the aggregates and no binder degradation is ensured.

3.2.2.8 Simulation of preferential liquid flow path

From the previous figures presented in this study, it is seen that water uptake in porous
asphalt follows certain preferential paths. In other words, there is no occurrence of
uniform waterfront as seen in isotropic microporous materials. Factors like tortuosity,
pore accessibility, pore connectivity and pore size play important roles in determining this
preferential path. In case of VD4-1, which was in situ for 7 years, many physical and
chemical factors will also play a role as part of the solid matrix changes from hydrophobic to
hydrophilic due to stripping. In the following analysis, we limit our study to the influence
of tortuosity and pore connectivity in determining the direction of the preferential path in
VD4-1. For this purpose, the bottom part of the X-ray µ-CT scan of VD4-1 is divided into
two ROIs, the right ROI (henceforth called RROI) and the left ROI (henceforth called
LROI), as shown in Figs. 3.9 and 3.10. From Fig. 3.6, it is clear that during the initial
time steps, the RROI has a higher water uptake than LROI, i.e. water travels more easily
in the RROI. This characteristic makes the chosen ROIs ideal for the preferential flow
analysis.
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The software Avizo Fire 8.0 is used for the analysis presented in this section. First, a
three dimensional volume of the specimen is rendered from the X-ray µ-CT images. Then
this volume is segmented with an automatic threshold into pores and non-pores (binders
or aggregates). A fully saturated permeability simulation (i.e. absolute permeability)
is then performed on this segmented three-dimensional volume. Absolute permeability
is computed with a simplified Navier-Stokes equation system, with the following major
assumptions:

• the fluid is incompressible and Newtonian,

• the flow is steady-state and in the laminar regime.

A finite volume method with a staggered-grid arrangement is used to solve the Navier-
Stokes equations. The permeability experiment is simulated with a pressure difference of
30 kPa between the inlet and outlet, and the main direction of fluid flow is specified to be
the z-direction (along the height of the specimen). The results from the simulations are
presented in Figs. 3.9 (for LROI) and 3.10 (for RROI), along with an illustration of the
selected ROIs.
Figures 3.9(a) and 3.10(a) are the binary porosity maps of the respective regions of

interest. The black pixels represent regions with zero porosity while the grey pixels have
a non-zero porosity value. The segmented volume combined with the streamlines of the
simulated fluid flow can be seen in Figs. 3.9(b) and 3.10(b). These figures provide a more
graphical description of the simulated flow within the material structure. In Figs. 3.9(c)
and 3.10(c), for the sake of clarity, the predicted fluid paths are shown without displaying
the three-dimensional material structure. In Fig. 3.9(c), it can be clearly seen that there
is one major path taken by the fluid, but that this path is highly tortuous. Also, there
are many paths which lead to dead ends. These dead-end pores, where the velocity of
fluid falls to zero, are marked in Fig. 3.9(c). From Fig. 3.9(a), it can be seen that, in the
LROI, there are two clusters of non-porous pixels, one each on the left and right sides. It
is on the left cluster that most of the dead-end pore networks are present. Because of the
presence of these clusters, the water has to flow upwards between them, which results in
the highly tortuous path. Hence, water cannot travel upwards easily in the LROI. On the
contrary, it can be seen in Fig. 3.10(c) that there are multiple paths available for water to
travel in the RROI, most of which are relatively less tortuous. Also, in Fig. 3.10(a), no
big cluster of non-porous pixels is present. Hence, the presence of relatively less tortuous
paths with higher pore connectivity could be one of the most important reasons why water
travels upward more easily in the RROI, as compared to the LROI.
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Figure 3.9.: Liquid flow path analysis of left region of interest (LROI) (Specimen VD4-1).
(a) Binary porosity map, (b) 3D binary segmentation with a simulated fluid
flow in the z direction and (c) streamlines of the simulated fluid flow through
the pore network, where the color map indicates the velocity of water.
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Figure 3.10.: Liquid flow path analysis of right region of interest (RROI) (Specimen VD4-
1). (a) Binary porosity map, (b) 3D binary segmentation with a simulated
fluid flow in the z direction and (c) streamlines of the simulated fluid flow
through the pore network, where the color map indicates the velocity of
water.
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3.2.3 Conclusions

Water uptake in porous asphalt is studied using neutron radiography (NR) on three different
PA specimens. While the laboratory-prepared fresh PA specimens hardly showed any
uptake, considerable uptake is seen in the aged specimens taken from the road. Moisture
content distribution plots of the aged PA specimens are derived from the NR images,
from which the paths followed by water became clearly visible. By combining neutron
radiography and X-ray µ-CT techniques, saturation degree distributions are plotted, from
which the regions where saturated flow was certainly active could be identified. In order to
clearly distinguish between saturated flow and unsaturated flow in the other regions, the
three dimensional micro-structure of the specimen is combined with its two dimensional
saturation degree distributions. It is observed that uptake begins mainly as unsaturated
film flow in the large pores which have narrow cross-sections open to the surroundings. As
this uptaken water travels further into the material, a combination of saturated flow and
unsaturated film flow is observed. Saturated flow is active mostly in the small pores which
are completely or partially surrounded by binder. Thus, a succession of both unsaturated
and saturated flows in aged PA is observed despite the fact that the bitumen binder in PA
is hydrophobic. This is due to the presence of the hydrophilic aggregates now exposed to
water, thanks to the stripping of binder from aggregate surfaces due to years of mechanical
and environmental loads. Moreover, by simulating an absolute permeability experiment,
the roles played by tortuosity and connectivity of the pore system in determining the speed
and direction of water uptake is determined. It is found that the region with relatively
less tortuous and more connected paths showed faster uptake during the experiments.

3.3 droplet wetting experiment

The objective of this second NEUTRA experiment is to understand the phenomenon of
gravity imbibition in porous asphalt through droplet wetting of PA, a process that mimics
the wetting of PA by rainfall. Specifically, the aim is to study the wetting process, which
is studied with neutron radiography, with the pore space characteristics of different types
of PA, which are studied with X-ray µ-CT.

3.3.1 Material characterization

3.3.1.1 Preparation

Three types of porous asphalt specimens are used in this study: PA4, PA8 and PA11,
whose maximum aggregate sizes (as measured from sieve analysis) are 4, 8 and 11 mm
respectively. The mix for the PA8 and PA11 specimens are procured from a local mixing
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plant. They conform to Swiss standards and contain 6 mass-% polymer modified bitumen,
PmB-E 45/80-65, and 0.2 mass-% cellulose fibers. The PA4 specimens are from an artificial
mixture fabricated using only the 2/4 mm fraction minerals, 1 mass-% mineral filler and 7
mass-% straight run bitumen with penetration grade 70/100. As a first step, specimens
with dimensions 180×500×50 mm3 and an approximate mass of 18 kg are compacted at 155
◦C in the laboratory using a rolling compactor. From these large specimens, the bottom
20 mm is cut away and thereafter smaller specimens of dimensions 180×10 ×30 mm3 are
cut for the experiments. In this study, one PA4, two PA8 and two PA11 specimens are
used. They are named PA4(1), PA8(1), PA8(2), PA11(1) and PA11(2). The top surfaces
of these specimens are rough, replicating road pavement conditions. All surfaces except
the top one are covered with an aluminium tape. Therefore, gravity-driven drainage is
completely blocked and consequently, the only mechanism through which water can exit
the specimen is evaporation from the top surface. This is similar to the in situ state after
a large rain event, when a fully saturated base below PA makes gravity-driven drainage
ineffective and the only form of moisture loss is drying.

3.3.1.2 Pore size distribution

The pore structure of the specimens are investigated with an X-ray µ-CT setup. The
technical specifications of the X-ray µ-CT setup are already described in the discussion
of the water uptake experiment (Section 3.2.1.2) and are not repeated here. The spatial
resolution of the final 3D X-ray µ-CT dataset for this experiment is 103.7 µm. Figure 3.11
provides a macroscopic view of specimens PA4(1), PA8(1) and PA11(2). The X-ray µ-CT
slice (x− y plane) at the center of the width of the three specimens, i.e. at z = 6mm, is
given in Figs. 3.11(a-c). Figures 3.11(d-f) presents the three dimensional porosity of the
specimens as two-dimensional cumulative porosity distributions (CPD). The procedure to
calculate 2D CPD from 3D binary scans was previously described in Section 3.2.1.2. It is
noted again that, in the CPD figures, each pixel represents the volume porosity at that
location. The blackest regions represent the presence of an aggregate which runs along
the entire specimen thickness i.e. the porosity is 0, while the whitest regions represent
the presence of a void which runs along the entire specimen thickness, i.e. the porosity is
1 or 100%. Intermediate grey values represent porosities between 0 and 100% along the
specimen thickness. For separating the void and solid regions of the specimen, the default
thresholding algorithm (Huang and Wang 1995) of Fiji/ImageJ is used. Additionally,
from the 3D binary stack, the overall porosity volume fractions of the three specimens
are calculated using the plugin BoneJ (Doube et al. 2010) of Fiji/ImageJ. The porosity
volume fractions are 32.7%, 20.4% and 20.2% for PA4(1), PA8(1) and PA11(2) respectively.
The high porosity of PA4(1) is due to the fact that it is an artificial PA mix. Indeed, the
porosities of the other two PA specimens, whose mix conforms to Swiss standards, are
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Figure 3.11.: Schematic depiction of the specimens used in droplet wetting experiments
(top). X-ray µ-CT slices at z = 6mm of (a) PA4(1), (b) PA8(1) and (c)
PA11(2) specimens, and 2D cumulative porosity distribution images in which
the porosity ranges from 0 (black) to 1 (white), of (d) PA4(1), (e) PA8(1)
and (f) PA11(2) specimens.

around the expected value of 20%. The specimen thickness of 12 mm is not a representative
thickness of an actual PA pavement, but the available neutron beam does not have the
required energy to go through thicker specimens. However, the specimen dimensions in
the other two directions (x, y) are good representations of an actual pavement since a
representative dimension should be 2.5 to 3 times larger than the maximum aggregate size
(4, 8 and 11 mm in the current specimens). Nevertheless, using a specimen of another size
should not change the qualitative nature of the conclusions drawn from this study.
To obtain a comprehensive understanding of the pore space of the specimens under

investigation, a twin-pronged approach is adopted. On the one hand, the pore space
is represented as a simplified network of pores connected to each other by throats and
the histogram of the pore sizes are analyzed while, on the other, the width as well as
the connectivity of the real pore space is visualized using Avizo Fire 8.0. For the former
approach, the pore network is extracted from the X-ray µ-CT images using the modified
Maximal Ball algorithm of Dong and Blunt (2009), which is explained in detail in Chapter
7. In Fig. 3.12, the pore diameter distributions of PA4(1), PA8(1) and PA11(2) as
calculated with the MB algorithm is presented. The increase of pore diameters from
PA4(1) to PA8(1) to PA11(2) is clearly evident from Fig. 3.12, as the maximum pore
diameter increases from 0.8 mm to 7 mm to 10 mm across the three specimens.
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Figure 3.12.: Histograms of the pore diameter distribution of the three specimens in the
droplet wetting experiments as calculated with the Maximal Ball algorithm.

Figure 3.13 shows the results of the volume rendering of the pore space of the three
specimens with Avizo Fire 8.0. From the X-ray µ-CT image stack, the pore space is
first segmented with Avizo using interactive thresholding, which was possible due to the
distinct peaks in the image intensity map. From the resulting 3D binary image, only
the pore space connected to the top surface of the material is segmented since this pore
space contains the pores into which water can potentially enter. During segmentation,
pore space voxels are assumed to be connected if they shared at least one common face.
Thereafter, the pore space is converted to a surface consisting of triangles. Finally, the
’surface thickness’ module of Avizo is applied to the generated surface. This module
computes the surface-normal distance from each triangle to the opposite edge. Thus, the
surface thickness is analogous to the diameter of a perfect sphere and is therefore an ideal
parameter to characterize the width of a pore space. From Fig. 3.13, it can be seen that
PA4(1) and PA11(2) have a well-connected pore space though the same cannot be said
of PA8(1). However, we note that PA4(1) shows this high connectivity due to its high
porosity resulting from the uniform aggregate sizes. Overall, it can be said that the pore
space of PA11(2) is the most suitable for water entry since it is both well-connected and
large enough to counter the resistance by capillary forces.
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Figure 3.13.: Segmentation of the pore space connected to the top surface of (a) PA4(1),
(b) PA8(1) and (c) PA11(2), followed by the conversion of the pore space to
a surface consisting of triangles where, at each vertex, the distance along the
vertex normal to the normal’s intersection with the closest triangle of the
same surface is calculated and is indicated by color.
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3.3.2 Experimental setup and procedure

3.3.2.1 Neutron beamline specifications

The experiments in this study are also performed at the NEUtron Transmission RA-
diography beam line of the Paul Scherrer Institute (PSI) in Villigen, Switzerland. The
imaging detector consists of a 100 µm thick 6Li doped zinc sulfide scintillator screen and
a CCD camera. The camera is an Andor iKon-L camera with 2048×2048 pixels with
a region of interest setting of 1601×1031 pixels, providing a field of view of 262×169
mm2. The exposure time in the experiments was 23 s per radiograph with an attained
spatial resolution of 163.6 µm per pixel. The neutron chamber had a temperature of
approximately 26 ◦C and 40% relative humidity during the imbibition experiments. The
processing of neutron radiographs is the same as described above in section 3.2.2.4.

3.3.2.2 Mini wind tunnel with rain simulator

A custom-made mini wind tunnel fitted with a rain simulator is used for the droplet
wetting experiments, the schematic of which is shown in Fig. 3.14(a). The droplet wetting
experiments are one part of an experiment that aims to study wetting, forced convective
drying and thermal drying, and therefore a wind tunnel is used as the base setup to which
additional components are added. For a description of the entire experimental setup that
includes forced convective drying and thermal drying, the reader is referred to Section
4.4.2.1. The test section of the wind tunnel, where the PA specimen is placed during the
experiments, is 50 mm high and 105 mm wide. A part of the sidewalls of the test section
was made of pure aluminium to minimize neutron absorption and scattering in the region
of interest. The wind tunnel is fitted with temperature and relative humidity sensors to
gather information about the environmental conditions of the experiment.
Gravity imbibition is studied with a rainfall simulator that generates water droplets

with an approximate diameter of 2.1 mm. Although droplets in an actual rain event can
have a wide range of diameters ranging from 0.1 to 6 mm, a droplet diameter of 2.1 mm is
a common droplet size in moderate to large rain events at various locations (Best 1950;
Kubilay et al. 2014) and is easy to generate for experimental purposes. Outlets of twelve
10 mL syringes, mounted on a New Era programmable 12-channel syringe pump (http:
//www.syringepump.com/NE-16001800.php#cc), are connected to the top of the wind
tunnel test section via twelve Idex 1531-PEEK Tubing (http://tinyurl.com/jd9ebvz),
which have an inner diameter of 0.25 mm. The syringe inner diameter has been chosen
according to the calculations of De Gennes et al. (2013), who showed that given the tubing
inner radius, Ri, the radius of a droplet discharged from the tubing is calculated as:

http://www.syringepump.com/NE-16001800.php#cc
http://www.syringepump.com/NE-16001800.php#cc
http://tinyurl.com/jd9ebvz
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R =

( 3
2fd

Ca2Ri

)1/3
, (3.8)

where fd is the fraction of the original droplet weight which breaks off from the tube
(typically 0.6) and Ca is the capillary number, which is equal to 2 mm for water-air
interface. This setup facilitates the wetting of porous asphalt specimens placed in the wind
tunnel by generating twelve 2.1 mm diameter droplets at twelve equispaced locations (13
mm separation) that are spread across the length of the specimens, as shown schematically
in Fig. 3.14(b). The drop impact velocity at the point of contact is approximately 1 m/s.

3.3.2.3 Procedure

A dry specimen, that is covered with aluminium tape on all sides except at its the top
surface, is first placed in the test section of the mini wind tunnel. Thereafter, the neutron
beam is activated and then the multi-syringe pump is switched on to start the droplet
wetting process, which lasts for a total duration of 5 minutes. The average flow rate for
each syringe during the wetting is 0.0007 ml/sec. This procedure allows the entire droplet
wetting process to be captured by neutron radiography. Neutron radiographs are acquired
every 30 seconds.

3.3.3 Results and discussion

Imbibition in macroporous media is largely dependent on the pore size distribution and
connectivity of the pore space as well as the wettability of the solid matrix, and to a
lesser extent on the surface roughness of the solid matrix. The wettability of the different
specimens in this study is expected to be similar due to their similar chemical composition.
However, it should be noted that a fresh specimen with bitumen covering most of the
aggregate surfaces is expected to be hydrophobic as contact angles with water will be in
the range of 100-110◦ (Poulikakos and Partl 2012). The most important variation among
the specimens used in this study is the pore size distribution. Therefore, in this section,
the effect of pore size distribution on moisture penetration into the porous structure is
investigated. In Fig. 3.15, the temporal evolution of moisture content in the specimen
along the specimen depth is plotted for all the five specimens used in this study. Profiles
are shown for every 30 seconds during the first 25 minutes of each experiment. Each point
in Fig. 3.15 represents the average moisture content of all the pixels at that particular
height. It can be clearly observed, from Figs. 3.15(a-f), that moisture penetrates the PA4
and PA8 specimens only up to a depth of 5 mm from the top. However, in the two PA11
specimens, moisture penetrates down through the entire specimen, as can be seen in Figs.
3.15(g-h). Even though the pore sizes of PA8(1) are larger than those of PA4(1), as can
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Figure 3.14.: (a) Schematic representation of the experimental setup consisting of a mini
wind tunnel and a multi-syringe pump (not shown) which acts as a droplet
generator. The outlets of the droplet generator are positioned directly above
the test section of the wind tunnel where the specimens are placed during
the experiments. (b) Side-view of the test section with a PA specimen inside
and (c) top view of the test section.
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Figure 3.15.: Temporal evolution of moisture profiles during the droplet wetting experi-
ments. PA4 and PA8 specimens are subjected to droplet wetting twice, for
repeatability. Profiles are shown for every 30 seconds in the first 25 minutes
of the experiment.

be seen from Fig. 3.13, this difference is not large enough to change the wetting behavior
significantly. However, in case of PA11, the larger pore sizes result in a completely different
wetting pattern due to the strong influence of gravity. Specifically, the presence of pores of
diameters ranging from 6 to 11 mm in PA11, as read from Fig. 3.12(d), and the resulting
low capillary pressure in them, enables the static pressure head of water in these pores
to easily overcome the resistance from the capillary force and thereby leads to a high
water penetration. However, we note that these findings are applicable only for wetting by
discrete droplets and not when water is poured over the specimens, in which case water
shows significant penetration across all the specimens (see Section 4.4.3).
In Fig. 3.16, the temporal and spatial evolution of the degree of saturation (DoS) of

the specimens, as defined by eq. (3.7), is plotted for the entire wetting duration of 5
minutes and a few minutes thereafter. For better visualization, a smaller region of interest
(ROI) of 30×30 mm2 is chosen from the center of the specimens for the DoS analysis. The
penetration of water into the internal structure of PA11(1) can be clearly seen in Fig.
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Figure 3.16.: Temporal evolution of the degree of saturation during the droplet wetting
of (a) PA4(1), (b) PA8(1) and (c) PA11(1). For clear visualization, a
smaller region of interest (ROI) of 30×30 mm2 is chosen from the center
of the specimens. Since only PA11(2) shows significant water penetration,
additional time steps are added to the analysis of this specimen.

3.16(c). In PA4(1) and PA8(1), water droplets remain at the top surface of the specimens
and coalesce to form discrete wet patches while in PA11(1), droplets start penetrating into
the specimen from the first droplet fall and travel the entire specimen depth by t = 330 s.
The fact that it took more than 5 minutes for water to penetrate the entire depth of
PA11(1) despite its large pores gives a further indication of the tortuous nature of the
pore network of PA.
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Figure 3.17.: Temporal evolution of the degree of saturation in the entire PA11(1) specimen
during droplet wetting

As a result of the significant imbibition of water into the internal pore space of PA11(1),
the temporal evolution of the degree of saturation in the entire PA11(1) specimen is
analyzed in Fig. 3.17. As already observed from Fig. 3.16, water droplets initially
accumulate at the upper region of the specimen until t = 300 s, at which point water
is seen to penetrate the entire depth of the specimen (in the middle region). In the
next time steps thereafter, there is a co-occurrence of two phenomena: water in the
middle region spreads laterally and water starts to move from top to bottom at the right
region of the specimen. This co-occurrence ensures that water is spread across almost
the entire specimen by t = 570 s. Significantly, Fig. 3.17 shows the importance of lateral
redistribution of water during an imbibition process in PA, and therefore, this process is
analyzed in more detail.
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Figure 3.18.: Analysis of gravity imbibition in a 30×30 mm2 region of interest (ROI) (the
same ROI that is used in Fig. 3.16(c)) at the center of PA11(1). Three
well-defined pores, named A, B and C, as observed from neutron radiographs,
are also identified from reconstructed X-ray µ-CT images, as shown in (a),
and the predicted water path along these pores is shown in (b)-(g).

From Figs. 3.16(c) and 3.17, it appears that gravity imbibition in PA11(1) is mainly
due to unsaturated flow, as the degree of saturation is less than 50% at most regions.
However, to obtain a definitive picture, further analysis is required. Therefore, the PA11(1)
30×30 mm2 ROI of Fig. 3.16(c) is chosen for further analysis as it shows significant water
imbibition. As shown in Fig. 3.18(a), three well-defined pores are identified from the
neutron radiographs and these pores are named A, B and C. Figure 3.18(a) also shows
a 3D reconstruction of the same pore space with Avizo Fire 8.0, and the three pores of
interest are also marked in the 3D reconstruction. In Figs. 3.18(b-g), the path taken by
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water between t = 210 s and t = 310 s in PA11(1), as shown in Fig. 3.16(c), is visualized
in the actual 3D pore space. The regions in black show the intersection of the x− y plane
with the pore cross-section. The intersection of the plane with all other pores except A,
B and C are not shown for clarity. However, it is found that the black regions shown in
the figure does not overlap significantly with the corresponding x− y plane intersection of
other pores, in the x direction. In other words, the preliminary observation made from
two-dimensional neutron images that unsaturated flow occurs in pores A, B and C is valid,
as there are no other large pores in the direction of the neutron beam. Thus, it can be
concluded that fast imbibition in PA as a result of gravity is a mix of both saturated and
unsaturated flows, similar to what was observed for capillary uptake. Unsaturated flows
can be especially important in the fast lateral redistribution of water, as is seen in the
case of PA11(1).

3.3.4 Conclusions

Gravity imbibition in porous asphalt is studied using neutron radiography (NR) for three
different types of PA, PA4, PA8 and PA11, with increasing pore sizes. A custom-made
wind tunnel with a multi-syringe droplet generator is used for the experiments. The pore
size distributions of the three specimens are extracted from X-ray µ-CT scans using the
Maximal Ball algorithm. While PA11 exhibited strong gravity imbibition, the other types
of PA did not exhibit any. The presence of pores ranging from 6 to 11 mm diameter in
PA11 is responsible for the strong gravity imbibition. While saturated gravity-driven flow
is primarily responsible for gravity imbibition in PA11, fast lateral redistribution of water
is also observed due to unsaturated flow in the pore corners. Therefore, gravity imbibition
in PA, like capillary uptake, is also a mix of saturated and unsaturated flows.

3.4 synthesis

This chapter analyzed in detail the mechanisms of capillary imbibition and gravity imbibi-
tion in porous asphalt through a water uptake experiment and droplet wetting experiment
respectively. The distinct imbibition behavior of PA due to its highly complex and macro-
porous structure was clearly evident in these experiments. In the next chapter, the reverse
phenomena of imbibition i.e. drainage and drying in PA, are studied experimentally.





4
EXPERIMENTAL INVESTIGATION OF DRAINAGE AND
DRYING IN POROUS ASPHALT

4.1 introduction

This chapter presents the experimental investigations to study the spatial and temporal
distributions of moisture in porous asphalt specimens subjected to gravity-driven drainage,
forced convective drying and thermal drying. The experiments are performed at NEUTRA
in a custom-made mini wind tunnel. In the first set of experiments, the co-occurrence of
gravity-driven drainage and forced convective drying in PA is investigated. In the second
set of experiments, gravity-driven drainage is completely blocked and therefore, the only
mechanism by which moisture can leave the specimen is through forced convective drying
and thermal drying. The spatial and temporal distributions of moisture during both the
experiments are once again tracked using neutron radiography. Finally, by comparing the
two sets of experiments, the influence of gravity-driven drainage on the total moisture loss
from PA specimens is isolated.

4.2 design of mini wind tunnel

The experiments presented in this chapter, as well as the droplet imbibition experiment in
the previous chapter, are performed using a mini wind tunnel which reproduces environ-
mental loads such as solar radiation, wind and rain. The mini wind tunnel has undergone
different levels of customization for each experiment, which is described in the discussion
of the respective experiments. The purpose of this section is to describe the design of the
basic components of the wind tunnel.
The mini wind tunnel is an open-circuit type wind tunnel i.e. airflow is not confined

within a closed loop. The main components of the mini wind tunnel are (i) the axial fan,
(ii) inlet diffuser, (iii) settling chamber, (iv) contraction, (v) entry section, (vi) test section
and (vii) outlet. The axial fan produces a static pressure rise which generates turbulent,
swirling airflow. The airflow generated by the fan first passes through the inlet diffuser,
which is a gradually expanding passage in which the flow speed decreases and static
pressure increases. This reduction in speed is performed to reduce the pressure loss in the
settling chamber, where components are located that have a large resistance to airflow.
Thereby, the power required to drive the wind tunnel is reduced. The settling chamber
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Figure 4.1.: (a) Photograph and (b) schematic with major dimensions of the mini wind
tunnel designed and developed in this study. All dimensions are in mm.

has the largest cross-section in the wind tunnel and holds two components: a honeycomb
and a screen. These components reduce lateral and streamwise velocity fluctuations,
and therefore, reduce turbulence. Airflow then passes through the contraction, which
accelerates the flow from the settling chamber to the entry section, and also reduces velocity
fluctuations. The test section is the component where the material under investigation
is placed during the experiments. The overall aim of wind tunnel design is to produce
as low-turbulent, uniform airflow as possible in the test section to have well-defined flow
conditions in the test section.

A photograph of the mini wind tunnel is given in Fig. 4.1(a) while its basic dimensions
are given in Fig. 4.1(b). The key design constraint of the mini wind tunnel was making it
compact enough to fit in the sample stage of the NEUTRA beamline. The most important
design parameter is the width to height ratio of the test section, which is 2.1 for the mini
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wind tunnel, which is within acceptable limits (Bell and Mehta 1989). The dimensions of
all other components are based on the dimensions of the test section. The lateral edges of
the test section are made of pure aluminium to minimize neutron attenuation when the
mini wind tunnel is placed in a neutron beam. Other key parameters which determine the
quality of airflow in the test section is the contraction ratio (ratio of inlet cross-section
to outlet cross-section) and the length to inlet height ratio of the contraction. These
two parameters are 2 and 0.92 respectively for the mini wind tunnel. A two-dimensional
curvature is given for the contraction, as can be seen in Fig. 4.1(b). The honeycomb-screen
combination is designed according to the recommendations of Kulkarni et al. (2011), with
a honeycomb cell size of 0.005 m. The inlet diffuser has an expansion ratio of 1.5.

4.3 gravity-driven drainage and forced convective drying

The objectives of this study are twofold: to estimate the overall moisture loss from fully
saturated PA specimens due to the co-occurrence of gravity-driven drainage and forced
convective drying, and to understand the mechanisms by which water leaves the specimen
and is redistributed within the specimen due to capillary effect and gravity. As shown
in the previous chapter, by combining neutron radiography images with pore structure
information obtained from X-ray microcomputed tomography scans, a clear distinction is
made between saturated and unsaturated flows within the PA structure. In addition, by
reconstructing the real 3D PA geometry from X-ray µ-CT scans, the flow path of water
within the specimen during certain events is visualized.

4.3.1 Material characterization

4.3.1.1 Preparation

The two porous asphalt materials used in this study, PA8 and PA11, are obtained directly
from a local mixing plant. They satisfy Swiss standards and contain 6 mass-% polymer
modified bitumen, PmB-E 45/80-65, and 0.2 mass-% cellulose fibers. PA8 has a maximum
aggregate size of 8 mm whereas PA11 has a maximum aggregate size of 11 mm. Specimens
with dimensions 180×500×50 mm3 and an approximate mass of 18 kg are compacted at
155 ◦C in the laboratory using a rolling compactor. Thereafter, the bottom 20 mm is
cut away and the final specimens are cut to dimensions of 180×10×30 mm3. The top
surface of the specimen is rough, replicating field conditions. In this study, three PA8
and three PA11 specimens are investigated. The specimens are named PA8(A), PA8(B),
PA8(C), PA11(A), PA11(B) and PA11(C). During the experiments, specimens PA8(A)
and PA11(A) are taped at the bottom x− z plane (Fig. 4.2) with an aluminium tape to
constrain gravity-driven drainage. This configuration closely replicates in situ conditions



84 experimental investigation of drainage and drying in pa

as the interface to the next asphalt layer is sealed and as a result, the drainage occurs
sideways. All the other four specimens are open on all sides during the experiment.

4.3.1.2 Cumulative porosity distribution from X-ray microcomputed tomography

The X-ray µ-CT setup used to obtain the three dimensional pore space data is already
described in detail in the previous chapter (Section 3.2.1.2) and is not repeated here. The
specimens are mounted together at a distance of 503.2 mm from the X-ray source and
a distance of 467 mm from the detector. From a pixel size of 200 µm and a geometrical
magnification of ∼1.9, a spatial resolution of 103.7 µm is obtained in the final 3D dataset.
The chosen tube parameters are an acceleration voltage of 200 kV and a nominal current
of 100 µA. In order to reduce artefacts, the X-ray spectrum is hardened by means of a
1 mm Cu filter. For each scan, a region of interest of 1000×2000 pixels is chosen given
the elongated geometry of the objects. 720 radiographic images are recorded with a total
integration time of 10 s per image from different viewing angles distributed over 360◦ in
0.5◦ steps. The X-ray detector is calibrated before the start of the measurement and no
additional dark and flat field corrections are necessary. After ring and beam hardening
artefact corrections, the three-dimensional spatial distribution of the attenuation coefficient
is calculated by an in-house Feldkamp code (Feldkamp et al. 1984). For overlapping of the
X-ray µ-CT images with the neutron radiography images as described in Section 3.2, the
spatial resolution of the X-ray µ-CT images is reduced to 150 µm by bilinear interpolation.
In Fig. 4.2, visible light photographs (a,f), X-ray µ-CT slices at z = 1mm (b,g),

z = 5 mm (c,h), and z = 9 mm (d,i), and the two dimensional cumulative porosity
distributions (CPD) obtained from reconstructions of 3D X-ray µ-CT scans (e,j), are
shown for one specimen each from the PA8 and PA11 types of material. Similar to Figs.
3.1 and 3.11, in the CPD figures in Fig. 4.2, the blackest regions represent the presence of
an aggregate along the entire thickness (z-direction) of the specimen i.e. the porosity is 0,
and the whitest regions represent the presence of a pore space along the entire thickness of
the specimen i.e. the porosity is 1. Intermediate grey values represent porosities between
0 and 1 along the specimen thickness.

4.3.2 Experimental setup and procedure

4.3.2.1 Neutron beamline specifications

The technical specifications of the fixed components of the NEUTRA beamline have already
been described in the previous chapter and are not repeated here. For this experiment, an
Andor iKon-L camera is used with 2048×2048 pixels with a region of interest setting of
1370×1010 pixels, providing a field of view of 206×152 mm2. The exposure time in the
experiments is 23 s per radiograph with an attained spatial resolution of 150 µm per pixel.
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Figure 4.2.: Schematic depiction of the specimen (top). Visible light photographs (a,f),
X-ray µ-CT slices at z = 1mm (b,g), z = 5mm (c,h), and z = 9mm (d,i)
and 2D cumulative porosity distribution images (e,j), in which the porosity
ranges from 0 (black) to 1 (white), of PA8(A) and PA11(A) specimens.
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The moisture content resolution is expected to be around the range of 0.01 kg/m3. The
neutron chamber had a temperature of approximately 26 ◦C and 40% relative humidity
during the experiments.

4.3.2.2 Mini wind tunnel with remote drainage

The mini wind tunnel used for this experiment was described in detail in Section 4.2. The
schematic of the test section in this experiment is given in Fig. 4.3. The test section,
where the PA specimen is placed during the experiments, is 50 mm high and 105 mm wide.
For this experiment, the test section of the wind tunnel is designed to be drained remotely.
Once drainage is activated remotely, water flows out from the test section via a tube that
is connected to the base of the test section (not shown in figure). The wind tunnel is
fitted with temperature and relative humidity sensors to gather information about the
neutron chamber environment. During the experiments, the fan is operated at a voltage
of 8 V, which translates to a mean wind speed of approximately 1.5 m/s, as measured by
an anemometer. At this speed, the calculated Reynolds number at the test section, using
the height of the channel as the representative length, is Re=6500, indicating turbulent
flow in the channel.

4.3.2.3 Procedure

The drainage and drying behaviors of three PA8 and three PA11 specimens from a fully
saturated state are documented in this study. The specimens are first submerged in
deionized water for at least 8 hours. Previous laboratory tests showed that this is a
sufficient time for the specimen to be fully saturated with water. At the beginning of each
experimental run, a specimen is taken out of water, its sides are wiped with a cloth to
ensure that no water is dripping out any more and the mass of the specimen is recorded
on a microbalance. The specimen is then placed in the test section of the mini wind
tunnel and the test section is flooded with deionized water. This step ensures that all
pores that emptied during the transfer of the specimens from a submerged state to the
test section are refilled with water again, thereby ensuring that the specimen is fully
saturated when the experiment begins. Once the neutron beam is activated and the first
two images are acquired, the water in the test section is drained via a remote-controlled
valve. Due to the neutron imaging procedure of acquiring an image every 30 s, the first
wet image of the specimen in an experimental run is therefore the third image of that run
i.e. the image at t = 90 s. Initiating the draining procedure by remote control makes
it possible to record the gravity-driven drainage in the PA specimens that occurs in the
first few minutes. When the drainage process is completed, i.e. after 60 or 120 minutes,
the fan in the mini wind tunnel is switched on to initiate forced convective drying of the
specimen. This way, the impact of airflow on the total moisture loss from the specimen
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Figure 4.3.: Schematic representation of the test section of the wind tunnel with a provision
for remote-controlled drainage of water. (a) Side view and (b) top view.
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can be identified. The total duration of the experimental runs varied from 6 h to 11 h. At
the end of each experimental run, the specimen is taken out of the test section and its
mass is again recorded by weighing. The specimen is then dried inside a convection oven
at 55 ◦C and its mass is monitored. Once fully dry, a neutron image of the dry specimen
is acquired as a reference image, allowing the quantification of moisture content in wet
specimens by subtracting the dry image from the wet images. The mass measurements of
the specimen taken at the different stages of wetness are used as control values for the
corrections of the water mass detected by neutron radiographs.

4.3.3 Results and discussion

4.3.3.1 General observations

The post processing of neutron radiography images to account for various corrections and
the subsequent derivation of specimen moisture content has already been explained in
detail in the previous chapter (Sections 3.2.2.4 and 3.2.2.5) and is not repeated here. Due to
the wide range of pore sizes in PA ranging from sub-microns to millimeters, a combination
of different mechanisms such as gravity-driven drainage in the macropores, capillary-
driven flow in the finer pores and evaporation are expected to occur simultaneously. In
this discussion, moisture flow within the specimen is analyzed in detail to separate the
different mechanisms from each other, and the conditions under which they occur are also
investigated.

Figure Fig. 4.4 shows the temporal evolution of the average moisture content (in kg/m3)
in all the specimens analyzed in this study. The time at which the fan is switched on
for each of the specimens is indicated by an arrow on its corresponding curve. The most
apparent observation from Fig. 4.4 is the higher water retention by specimens PA8(A) and
PA11(A), both of which are taped at the bottom. As mentioned earlier, this condition is
the closest to the real in situ situation. This high water retention occurs despite the fact
that the lateral sides of the specimens are open and gravity-driven drainage can take place
through the sides as well. The other specimens show a high initial moisture loss, which
shows the significance of the contribution of gravity-driven drainage from the bottom side
towards the overall water loss from a specimen. It can also be observed that switching on
the fan does not increase the rate of moisture loss significantly in any of the specimens,
which indicates that at a mean wind speed of 1.5 m/s, the enhancement of drying by forced
convection is limited. As a result, the slope of the curves in Fig. 4.4 does not change after
the time at which the fan is switched on. There is no significant difference between the
drainage and drying behaviors of PA8 and PA11. This is due to the fact that the pore size
distribution is only one of the factors influencing drainage and drying. Other factors such
as pore connectivity and overall porosity are also important. However, as the available
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Figure 4.4.: Temporal evolution of average moisture content in the six specimens used in
this study. Arrows indicate the time at which the fan is switched on.

neutron beam does not have the energy to go through very thick specimens, the specimen
thickness in this study is restricted to 10 mm and, consequently, the behavior of these
specimens will not be totally representative of PA at the pavement scale. Since pore sizes
in PA11 are in the range of 5-10 mm, an ideal representative thickness is at least 30 mm.

Moisture content profiles along the height of the specimens are given as a function of
time in Fig. 4.5. In these images, at each selected time step, the moisture content is
averaged over the entire length of the specimen (180 mm) for every 0.3 mm (2 pixels)
along the specimen height i.e. along the direction of gravity. The profiles are plotted
for every 30 s for the first 15 mins, every 2.5 mins for the next 2 h and every 5 mins for
the remaining duration of the experiment. In Fig. 4.5(b), it can be seen that PA11(B)
loses a lot of moisture in the first few times steps, which explains the steep drop of the
average moisture content curve of PA11(B) in Fig. 4.5. In general, at the bottom part
of the specimens, there is a significantly higher moisture loss in the first few time steps,
except in specimens PA11(A) and PA8(A), since they are taped. Thus, Fig. 4.5 gives
a first indication of the importance of gravity-driven drainage, an aspect which will be
explored in detail below. Another observation from Fig. 4.5 is that in case of the untaped
specimens, the bottom part of the specimens shows a higher moisture content than the
upper part even towards the end of the experiments. This higher moisture content at the
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Figure 4.5.: Temporal evolution of moisture profiles during drying in the six specimens
used in this study. Profiles are shown for every 30 s for the first 15 mins, every
2.5 mins for the next 2 h and every 5 mins for the remaining duration of the
experiments.

bottom part is attributed to water moving from the top of the specimen to the bottom,
due to gravity, and then getting trapped in some pores at the bottom part.
To analyze gravity-driven drainage as well as convective drying in more detail, the

specimens are divided into different regions of interest (RoIs), as schematically depicted
at the top of Fig. 4.6. The specimens are first divided vertically (along the direction of
gravity) into three equal parts, namely RoIs 1, 2 and 3. RoI 1 is then divided horizontally
into three equal parts, namely RoIs 4, 5 and 6, to analyze the effect of drying in sections
along the direction of airflow. In Fig. 4.6(a)-(f), the moisture loss from the RoIs as a
fraction of the total moisture loss from the entire specimen is shown as a function of time.
These figures are derived as follows: first, the total moisture loss from the entire specimen
at a particular time step is calculated by subtracting the image at that time step from
the first wet image that is acquired immediately after the test section is allowed to start
draining i.e. at t = 90 s. Similarly, the moisture loss from all the other RoIs are calculated
by restricting the image subtraction to only the respective RoIs. By dividing the moisture
loss in each RoI at a particular time step with the total moisture loss in the entire specimen
at the same time step, the contribution of each RoI towards the total moisture loss in the
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specimen at that time step can be determined. This process is repeated for all the time
steps to obtain Fig. 4.6.

Figure 4.6.: Temporal evolution of the contribution of different regions of interest (ROIs)
towards the total moisture loss in the specimen with schematic of the selected
ROIs.

From Fig. 4.6, it can be seen that in all the specimens, RoI 3 is the region where most of
the moisture loss occurs, although the mechanisms for this loss are different at the initial
and final stages of the experiment. In the first few time steps, RoI 3 loses moisture due to
water leaving the specimen from the bottom edge due to gravity. With time, the fractions
of moisture loss from RoIs 1 and 2 increase due to a combination of gravity-driven drainage
and evaporation, although these losses are still lower than the one from RoI 3. Towards
the end of the experiments, while RoI 1 has lost most of its initial moisture content, RoIs
2 and 3 remain wet and continues to lose moisture. Time-evolution of moisture loss over
the entire length of the specimens in RoIs 4, 5 and 6 do not show any particular trend.
Studies of forced convective drying in microporous media have demonstrated the existence
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of a three dimensional drying front which develops from the windward edge to the leeward
edge and from the top surface (the surface exposed to air flow) to the bottom (Defraeye
et al. 2012). However, RoI 4, the windward RoI, does not exhibit a higher rate of moisture
loss when compared to RoIs 5 and 6.

4.3.3.2 Analysis of water flow during a sudden drop in moisture content

In Fig. 4.4, it can be observed that there is a sudden drop in moisture content inside the
specimen PA8(A) around t = 0.5 h. From Fig. 4.6(d), around the same time, a sudden rise
in the contribution of RoI 2 towards the total moisture loss can be seen. This indicates
that this sudden moisture loss occurs in the middle part of the specimen. To analyze this
process in more detail, the temporal evolution of moisture content distribution (MCD)
in the entire specimen is shown first, followed by focusing on a smaller region of interest
where the sudden drop in moisture content takes place. The MCD plot of PA8(A) is
given in Fig. 4.7(a). A second series of images are shown in Fig. 4.7(b) to highlight areas
undergoing considerable moisture loss. These images are derived using a procedure similar
to the one used in Fig. 4.6 i.e. the moisture loss at a particular time step is calculated by
subtracting the image at that time step from the first wet image at t = 90 s. In Fig. 4.7(b),
pixels have a binary representation, blue or white, where a white pixel is one whose value
has crossed a moisture loss threshold of 30 kg/m3, while a blue pixel is one whose value
does not change (e.g. absence of porosity) or whose moisture loss is below the threshold.
This threshold has been selected to achieve a clear visualization of the spatial distribution
of water by indicating only those areas in the specimen that undergo significant moisture
loss.

Since PA8(A) is covered at the bottom with a tape during the experiments, no significant
difference can be seen between the MCD plots at t = 0.07 h and t = 1.3 h. Some moisture
loss in the bottom corners, especially the left corner, can be visualized clearly in the
thresholded image at t = 1.3 h. From this, it can be concluded that the sudden moisture
loss observed in fig. 4.4 is a result of water exiting from the bottom left corner. This will
be analyzed in detail in the subsequent paragraphs. Complementary to the conclusion
drawn from fig. 4.6, no drying front can be seen in the windward to leeward direction
at the top of the specimen. However, a strong bottom-up front of emptying pores can
be clearly observed, which continues long after the fan is switched on at t = 1.2 h. At
t = 7.8 h, water-filled zones can be seen in a few regions of the specimen, demonstrating
that the specimen still contains a lot of water even after more than 6.5 hours of forced
convective drying.

The next objective is to understand the exact mechanism by which the sudden moisture
loss in the bottom left corner of PA8(A) took place. For this purpose, water redistribution
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Figure 4.7.: Temporal evolution of (a) moisture content distribution and (b) the corre-
sponding thresholded images in which white pixels represent a moisture loss
of more than 30 kg/m3 as compared to the wet image at t = 90 s. The
specimen is PA8(A), which is taped at the bottom, and the fan is switched on
at t = 1.2 h.

is studied in terms of the degree of saturation (DoS), st(x, y) , which was defined in
Chapter 3 as:

st(x, y) = wt(x, y)
ρw · ε(x, y) , (4.1)

where ε(x, y) is the two dimensional porosity distribution as shown in Fig. 4.2, wt(x, y) is
the MCD and ρw is the density of water. According to Eq. (4.1), neutron radiography
(NR) images should be divided by X-ray µ-CT images to get DoS images. However, the
image resolutions of the NR and microCT images are different. Therefore, as mentioned
earlier, using bilinear interpolation, the resolution of microCT images is lowered to match
that of NR images before division.
Figure 4.8 shows the degree of saturation images for a region of interest of 30 mm×15

mm in the lower left corner of specimen PA8(A). The spatial distribution of DoS is given
in Fig. 4.8(a) while the corresponding thresholded images, in which white pixels represent
a reduction of more than 10% DoS compared to the wet image at t = 90 s, are given in
Fig. 4.8(b). The total duration of the sudden moisture drop event analyzed here is less
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than 3 minutes and has been captured by six successive images of the RoI with a gap of
30 s between them. In Fig. 4.8(b), the movement of the water from left to right is clearly
visible. From Fig. 4.8(a), it can be seen that the color of most of the pixels in the middle
region of the RoI change from green (20-30%) to blue (5-20%) as we go from t = 33.5mins
to t = 36mins. In the upper right corner i.e. between y = 10 to y = 15mm and x = 18
to x = 25mm, the reduction in DoS is much higher since the color changes from red to
green. The highest reduction in DoS is at the bottom part of the RoI (which is also the
bottom part of the specimen) where there is a connected region of fully saturated (black)
pores at t = 33.5mins. This black region almost completely disappears by t = 36mins.
Furthermore, water movement stops at x = 30mm because it has reached a dead end
pore, as will be shown further. From these observations, there is a strong indication of
a connected pore network which starts at x = 30mm and ends at x = 0, where it is
connected to the environment. The next step is to visualize this pore network from the
X-ray µ-CT scans of the specimen.

In Fig. 4.9, the path followed by water, which is visualized in 2D in Fig. 4.8(b), is now
visualized in 3D within the actual three-dimensional geometry of the RoI. The predicted
water path is shown by highlighting the pore cross-section in black. The 3D image analysis
software Avizo Fire 8.0 is used for this analysis. First, the three dimensional volume of the
specimen is rendered from the X-ray-µCT images. Then this volume is segmented into
pores and non-pores (binders or aggregates). In the final step, all those pores which are
not connected to the network under investigation are removed from the domain for the
sake of clarity.

In Fig. 4.9, the movement of water occurring in the pore space starting from right to left
is shown in black. Water starts moving from the two dead end pores shown in Fig. 4.9(a).
From there, water continues to travel along the x-axis from x = 30mm towards x = 0,
where it finally exits from the specimen, as shown in Fig. 4.9(e). At the plane x = 0, a
large cross section of the pore network is exposed to the surrounding environment. The
phenomenon seen here is analogous to the air entry point in soil hydrology, which is the
water content at which air starts to penetrate the saturated porous medium (Braudeau
et al. 1999). Once this water content is reached, the capillary pressure inside the specimen
will be large enough to allow displacement of water by the invading air phase. This
point is characterized by a sudden decline in water content, which is precisely what is
seen in PA8(A) in Fig. 4.6(d). Alternatively, this moisture drop could also be a ’Haines
jump’ (Haines 1930). According to this theory, when a non-wetting phase (air) displaces
a wetting phase (water), a situation is reached when the water meniscus can no longer
increase its curvature at the narrowest pore of the air-water interface to cope up with the
increasing capillary pressure. At this stage, the meniscus simply jumps to the next narrow
capillary pore, thereby emptying the former pore instantaneously. Due to the favorable
conditions for air entry at x = 0, and the presence of coarse pores that are connected to
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Figure 4.8.: (a) Degree of saturation images (DoS) and (b) the corresponding thresholded
images (right) in which blue pixels represent a reduction of more than 10%
degree of saturation as compared to the wet image at t = 90 s. The figures
are for a region of interest (RoI) within the specimen PA8(A) where a sudden
drop in moisture content occurs. All dimensions are in mm.
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Figure 4.9.: The postulated path of water during the sudden drop in moisture content in
PA8(A), between the time steps t = 33.5mins and t = 36.0mins, is shown
in black. The pore geometry is obtained from 3D X-ray-µCT scans and only
the connected pores within the region of interest chosen in Fig. 4.8 are shown.
The movement of water starts from the two dead-end pores shown in (a)
and continues till the plane x = 0, where it exits to the surroundings. All
dimensions are in mm.

the internal structure of the specimen, a sudden drop in water content was seen in the
RoI. The displacement of water by air cannot go further than x = 30mm since at this
point, the pore network reaches a dead end. It is also observed that the direction of water
propagation is not always directly in the direction of gravity. Drainage in PA8(A) through
side pores, i.e. pores connected to the lateral edges of RoI 3, contributes to the high total
moisture loss even though the bottom was taped, as is observed in Fig. 4.6(d).

4.3.3.3 Analysis of water flow during redistribution of water between two pores

Redistribution of water within the internal structure of PA, through capillary action and
gravity, can have important consequences from the point of view of material durability.
Redistribution of water can lead to the formation of disconnected water islands within
the material, which can take a long time to drain or dry by evaporation. This leads
to long periods of binder exposure to moisture, potentially affecting the mechanical
properties of the binder in the long run. During the drainage/drying experiment of
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PA8(C), redistribution of water within the specimen is observed, and is analyzed in detail
in this section.

Figure 4.10(a) shows the spatial distribution of moisture content (in kg/m3) in PA8(C)
while Fig. 4.10(b) shows the corresponding thresholded images where a white pixel
represents a moisture loss of more than 30 kg/m3 as compared to the first wet image at
t = 90 s. In Fig. 4.10(c), an additional column presents thresholded images of a region
of interest of dimensions 90×67 mm2, marked in yellow in Fig. 4.10(b), but with the
important difference that the thresholding is performed for moisture gain, as opposed
to moisture loss, when compared to the image at t = 90 s. In Fig. 4.10(c), a red pixel
represents a moisture gain of more than 20 kg/m3 when compared to the wet image at
t = 90 s while a white pixel represents either no moisture gain or a moisture gain below
the threshold of 20 kg/m3. In a drying/drainage experiment, the only source of moisture
gain within the specimen is water that is redistributed from other regions. Indeed, at
t = 6 h, a small region where moisture gain occurs can be observed. This region will
be analyzed in detail in the subsequent paragraphs. When compared to the specimen
PA8(A) in Fig. 4.7(a), water retention is seen to be much lower in the specimen PA8(C)
in Fig. 4.10(a). This is expected since gravity-driven drainage is not constrained by a tape
at the bottom of PA8(C). This is also the reason why there is a much larger difference
in the moisture content distribution between the first two time steps in Fig. 4.10(a) as
compared to the ones in Fig. 4.7(a). Similar to PA8(A), a strong bottom-up water front
movement can be observed in PA8(C). However, the bottom-up water front in PA8(C)
is more distinctive since most of the water is exiting from the pores that are connected
to the bottom plane, unlike in PA8(A) where water was blocked from exiting from the
bottom side and consequently was exiting from the pores open to the lateral sides.
In a next step, the redistribution of water within PA8(C) observed in Fig. 4.10(c) is

analyzed in more detail by looking at the degree of saturation images for a RoI of 16×11
mm2, as shown in Fig. 4.11. In this figure, a fully saturated region (black) which moves
from the upper left corner to the lower right corner of the RoI can be clearly seen. This
redistribution of water takes place over 4 h, indicating a slow process. At t = 4.06 h, there
is a quasi-stable configuration of a connected water phase stretching from a fully saturated
pore in the upper left corner (x = 86 to x = 90mm and y = 10 to y = 14mm), named
pore M, to a fully saturated pore in the lower right corner (x = 92 to x = 96mm and
y = 6 to y = 10mm), named pore N, as marked in Fig. 4.11(b). These two pores are
connected by a throat, throat T, which is marked in Fig. 4.11(d). At t = 4.06 h, throat
T is not completely filled. Therefore, an unsaturated capillary flow like film or corner
flow could be present inside the throat. Pore N is connected to a reservoir, reservoir R,
marked in Fig. 4.11(c). The trigger for the redistribution of water from pores M to N is
the drainage of reservoir R, which begins at t = 4.06 h. As the drainage of R begins, the
water saturation level of N decreases, which triggers the redistribution of water from M to



98 experimental investigation of drainage and drying in pa

Figure 4.10.: Temporal evolution of (a) moisture content distribution, (b) the corresponding
thresholded images in which blue pixels represent a moisture loss of more than
30 kg/m3 as compared to the wet image at t = 90 s and (c) the thresholded
images of a region of interest of 90×67 mm2, as shown with a yellow box in
(b), in which red pixels represent a moisture gain of more than 20 kg/m3

when compared to the wet image at t = 90 s. The specimen is PA8(C), which
was untaped at the bottom, and the fan was switched on at t = 2 h.
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Figure 4.11.: Degree of saturation images of a region of interest within specimen PA8(C)
where redistribution of water is observed. Water distribution takes place
from pore A to pore B through throat T. Pore B is in turn connected to a
reservoir R. All dimensions are in mm.
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Figure 4.12.: The path of water redistribution within PA8(C), between the time steps
t = 4.06 h and t = 8 h, is shown in black. The pore geometry is obtained
from 3D X-ray µ-CT scans and only the connected pores within the region
of interest chosen in Fig. 4.11 are shown. Water travels from pore M to pore
N through throat T. All dimensions are in mm.

N through T. During this redistribution process, T is fully saturated with water, as can
be seen in Figs. 4.11(d)-(f). The redistribution of water finally ends when most of the
water in R is drained by t = 8 h, as seen in Fig. 4.11(h).

In Fig. 4.12, using the methods used above for obtaining Fig. 4.9, the 3D reconstruction
of the RoI analyzed in Fig. 4.11 is presented, where water redistribution was observed.
The pores M and N as well as throat T, which are distinctly marked in Fig. 4.11, can be
clearly visualized in Fig. 4.12. Reservoir R was not clearly distinguishable from the X-ray
µ-CT scans and hence it is not presented here. The predicted water path is shown by
highlighting the pore cross-section in black. The redistribution of water from pore M to
pore N through throat T is visualized in Fig. 4.12. Moreover, Fig. 4.12 also illustrates
the wide range of connectivity numbers in a typical PA pore network. Connectivity (also
called coordination number) is defined as the number of pores connected to a given pore,
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and can be calculated from a binary image after pore segmentation. Even in such a small
segment, connectivity numbers ranging from 1 to 5 can be observed. For future pore
network simulations of water transport inside PA, information about connectivity numbers
from such 3D visualizations will be an important input parameter.
The in-depth analysis presented in this section illustrates the complex nature of water

movement in porous asphalt. On the one hand, gravity-driven drainage causes sudden
drops in moisture content in one specimen while on the other hand, a slow redistribution of
water within another specimen is observed. The simultaneous prevalence of gravity-driven
drainage in large pores and capillary-driven movement of water in smaller pores is unique to
a material like porous asphalt due to its wide range of pore sizes. Additionally, local surface
roughness, wettability of the solid (bitumen or aggregate) in contact with water, tortuosity
of the pore network etc. can also influence water flow inside PA. Experimental studies
like the ones reported in this study can provide an insight into the relative importance of
each of these parameters in determining the residence time of water inside the specimen.
Moreover, a clear pattern of water flow like the redistribution between pores as observed
in this study can serve as validation for multiphase flow simulations. From the results
reported in this study, it is clear that gravity-driven drainage is the most important factor
responsible for the overall moisture loss from a wet PA specimen.

4.3.4 Conclusions

Drainage and forced convective drying in porous asphalt are studied using neutron ra-
diography (NR) in a custom-made mini wind tunnel. Three specimens of two types of
porous asphalt are used in the experiments, of which one type has larger aggregate sizes
and consequently larger pore sizes. The specimens are fully saturated at the beginning
of the experiments. Gravity-driven drainage is constrained in the vertical direction in
two of the specimens to observe its effect on the overall moisture loss. By combining
neutron radiography and microcomputer tomography, saturation degree distributions are
obtained, from which the regions where saturated flow is active is identified. Based on the
experimental results, the following important observations and conclusions are made:

1. In all specimens, the maximum water loss was through the bottom region of the
specimen, thereby indicating the dominance of gravity-driven drainage over evapo-
ration from the top surface. Consequently, a bottom-up front of emptying pores is
visible in two specimens that are analyzed in more detail.

2. Even after many hours of forced convective drying, water retention occurs inside the
specimens.
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3. In one of the specimens in which gravity-driven drainage at the bottom was con-
strained, a sudden drop in moisture content is attributed to air invasion in a pore
that was connected to the lateral edge. The air invasion proceeded until it is stopped
by dead-end pores.

4. Water redistribution between two pores is clearly observed. The total duration of
this redistribution is close to four hours. Water moved from one pore to another by
saturated flow through the throat which connected the two pores.

5. Both the observed phenomena i.e. sudden drop in moisture content and water
redistribution, are visualized by reconstructing the actual three dimensional pore
geometry from X-ray µ-CT scans.

4.4 forced convective drying and thermal drying

The influence of partially blocking gravity drainage on the overall drying process of PA
was observed in the previous experiments. The next step is to study the drying process
of PA after completely blocking gravity drainage, thereby allowing moisture to exit the
specimen only though evaporation, a process that might be influenced by airflow and
solar radiation in case of in situ PA. In reality, this represents a worst-case scenario
in terms of the residence time of water in PA pavements, arising as a consequence of
gravity drainage rendered ineffective due to a saturated underneath layer or highly clogged
pores. Specifically, the objectives of this study are to analyze the effects of initial water
distribution in the specimen, turbulent airflow above the surface and a temperature
gradient opposite to the overall drying direction in PA and to correlate these effects with
the pore space characteristics of the specimens.

4.4.1 Material characterization

The experiments in this study are carried out together with the droplet wetting experiments
presented in Section 3.3. Therefore, the same specimens that are used for the droplet
wetting experiments are used in this experiment. However, for the sake of clarity, the
important characteristics of the specimens are briefly described again. For the preparation
process of the specimens, the reader is referred to Section 3.3.1.1. Three types of porous
asphalt specimens are used in this study: PA4, PA8 and PA11, whose maximum aggregate
sizes are 4, 8 and 11 mm respectively. Specifically, one PA4, two PA8 and two PA11
specimens are used. They are named PA4(1), PA8(1), PA8(2), PA11(1) and PA11(2). All
surfaces except the top one are covered with an aluminium tape during the experiments.
Therefore, gravity-driven drainage is completely blocked and consequently, the only
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mechanism through which water can exit the specimen is evaporation from the top surface.
The reader is referred to figs. 3.11, 3.12 and 3.13 for a detailed pore space characterization
of the specimens.

4.4.2 Experimental setup and procedure

The neutron radiography beamline specifications are exactly the same as described in
Section 3.3.2.1 and is not repeated here. However, the experimental setup is slightly
modified and the experimental procedures are different, and therefore they are described
in detail in the next sections.

4.4.2.1 Mind wind tunnel with rain, wind and solar radiation simulators

The custom-made mini wind tunnel that is described in Sections 3.3.2.2 and 4.3.2.2 is used
for the experiments in this study. The important addition to the setup is a 300 W Osram
Ultra Vitalux ultraviolet lamp that is placed above the test section during the experiments,
which acts as a solar radiation simulator. The lamp has a radiated power of 13.6 W in the
longwave (315-400 nm) range and 3 W in the shortwave (280-315) range. The top part
of the test section is made of Plexiglas®. Plexiglas® has a visible light transmission rate
of 92%, transmits most of the longer wavelengths (those near the visible region) in the
UV region and transmits most of the invisible near-infrared energy in the 700-2800 nm
wavelength range. During the experiments, thermocouples are mounted on the lateral
edges of the specimens to monitor the rise in their temperature due to heat from the
UV light. Airflow is generated during the experiments by operating the wind tunnel fan
at two voltages, 5.8 V and 17 V, which translates to mean wind speeds of 1 and 3 m/s
respectively, as measured by an anemometer. At these speeds, the calculated Reynolds
numbers at the test section, using the height of the channel as the representative length,
are Re=3060 (laminar to turbulent transition) and Re=9190 (fully turbulent flow).

4.4.2.2 Procedure

Table 4.1 lists all the experiments carried out in this study. Depending on the experiment
number, a dry specimen is wetted either by simply pouring water on top of it or by
droplets discharged from the top of the wind tunnel test section, after having placed the
dry specimen in the test section. The wetting of PA specimens in two different ways enables
the study of the effect of initial moisture distribution on the drying process. The droplet
wetting process lasts for 5 minutes. If the specimen is wetted by pouring, then neutron
imaging captures only the drying process of the wet specimen. When the specimen is
wetted by droplets, then neutron imaging captures both the wetting and drying processes
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Table 4.1.: List of experiments with different wetting and drying conditions

in the specimen. The details of the droplet wetting process are described in Section 3.2.2.2.
The effect of solar radiation is investigated for all the experiments.

The duration of each experiment is 3.5 hours. The first 30 minutes is used to investigate
either the drying process under natural convection (in case of specimens that are wetted
by pouring) or both the droplet wetting process and the drying process under natural
convection (in case of specimens that are wetted by droplets). After the first 30 minutes,
all the experiments are similar in terms of the physics investigated. If t0 is the time
at which the experiment begins, the fan is turned on at t0 + 0.5 h and remains on
throughout the experiment, while the lamp is switched on at t0 + 2.5 h. These times
are indicated by vertical lines in all applicable figures. Therefore, three types of drying
conditions are present in each experiment: natural convection (t0 : t0 + 2.5 h), forced
convection (t0 + 0.5 h : t0 + 2.5 h) and a combination of forced convection and thermal
drying (t0 + 2.5 h : t0 + 3.5 h). It is to be noted that in a particular experiment, only one
of the two wind speeds, i.e. 1 m/s (low) or 3 m/s (high), is used for forced convective
drying. At the beginning and end of each experiment, the mass of the specimen is measured
to be used as control values for the correction of the acquired neutron radiographs.

4.4.3 Results and discussion

Drying is a process that is significantly influenced by external conditions, in addition
to being influenced by material properties themselves. Therefore, in this section, first
an overview of the results from all the drying experiments carried out in this study is
presented, followed by a detailed verification of the influence of the most important factors
on drying.
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4.4.3.1 Overview

An overview of all the drying experiments performed in this study is given in Fig. 4.13,
in which the temporal evolutions of the average moisture loss from the entire specimens
during the drying process are plotted. Figures 4.13(a), 4.13(b) and 4.13(c) show the drying
curves of PA4, PA8 and PA11 specimens respectively. The type of wetting by which
the specimen is wetted (pouring or droplets) as well as the wind speed used for forced
convective drying (low or high) in each experiment is given. In Fig. 4.13, and throughout
the subsequent figures of this experiment, a uniform convention is followed in all applicable
figures: a solid line implies wetting by pouring while a dashed line implies wetting by
droplets, and a thin line implies drying in low wind speed while a thick line implies drying
in high wind speed. The times at which the fan and lamp are switched on, i.e. t = 0.5 h
and t = 2.5 h respectively, are indicated by magenta dotted lines.

Figure 4.13.: Overview of the temporal evolution of average moisture loss during the forced
convective and thermal drying experiments, where the fan is switched on at
t = 0.5 h and the lamp is switched on at t = 2.5 h, as indicated by the two
vertical lines.

The curves in Fig. 4.13 initially show a negative moisture loss due to moisture gain
from droplets. The PA4 specimens wetted by droplets dry faster, irrespective of the wind
speed, compared to a specimen wetted by pouring. The PA8 specimens that are wetted
by droplets also dry faster but only at high wind speed. In all droplet-wetted PA4 and
PA8 specimens, droplets coalesced to form discrete wet patches at the top surface, as seen
in Fig. 3.16, explaining the faster drying rate of droplet-wetted specimens where all the
moisture is accumulated at or close to the surface and a higher wind speed enhances the
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drying. On the contrary, when there is penetration of water into the specimen, a higher
wind speed has a smaller effect on the overall drying process. This aspect will be discussed
in detail in the subsequent sections. Finally, despite an average specimen temperature rise
of 6 ◦C due to heating up by the UV lamp, thermal drying is seen not to have a major
impact on the overall drying process as the slope of the drying curve does not change after
t = 2.5 h. A possible reason could be that by the time the lamp is switched on, airflow
has already dried most of the water near the top surface and the influence of the heat
from the lamp is limited to enhancing the drying of water in pores that are further into
the material. No further analysis is done on the effect of the heating by UV lamp. In the
subsequent sections, the effect of various other parameters on the drying process of PA is
investigated in detail.

4.4.3.2 Influence of initial moisture distribution on drying

From the wetting experiments presented in Section 3.3, it was clearly observed that the
type of wetting influences the moisture pattern within the specimens. To study if this
initial moisture pattern has an influence on the drying process, it is necessary to compare in
detail the drying process of a specimen that has been wetted in both manners i.e. droplets
and pouring. In Fig. 4.14, a comparison of the drying processes of PA4(1) and PA8(1) is
presented in detail after they are wetted in both manners. While Figs. 4.14(a-b) shows the
drying processes of PA4(1) subjected to low wind speed, Figs. 4.14(c-d) and 4.14(e-f) show
the drying process of PA8(1) subjected to low and high wind speeds respectively. In Fig.
4.14, the specimens are divided into various regions of interest (ROI), as schematically
shown at the top of the figure. First, the specimen is divided into two ROIs, ROI-1 and
ROI-2, in the vertical direction, to analyze the difference in the moisture loss between the
region exposed to the wind flow and the region which is not. ROI-1 is further divided
horizontally into three additional ROIs, ROI-3, ROI-4 and ROI-5, to check if the windward
ROI-3 dries faster than the other two horizontal ROIs.

As already observed in Fig. 4.13, at low wind speed, a PA8 specimen wetted by droplets
does not always dry faster as compared to the case when it is wetted by pouring, as can
be seen in Figs. 4.14(c-d). However, when the wind speed is high, then PA4 and PA8
specimens wetted by droplets are likely to dry significantly faster as can be seen in Figs.
4.14(a-b) and 4.14(e-f). Furthermore, it can be seen from Figs. 4.14(b), 4.14(d) and 4.14(f)
that the windward ROI-3 is not always the ROI with the fastest drying rate. This is in line
with the assertion that the drying behavior of PA is different from that of a conventional
porous medium in which usually a clear windward-to-leeward edge drying front can be
seen (Defraeye et al. 2012).
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Figure 4.14.: Influence of the initial moisture content (type of wetting) on the drying
process of specimens. The temporal evolution of average moisture loss from
different regions of interest (ROIs) in the specimens are plotted for (a,b)
PA4(1)–low wind speed case, (c,d) PA8(1)–low wind speed case and (e,f)
PA8(1)–high wind speed case. The schematic of the selected ROIs is given
at the top. The vertical lines represent the times at which the fan and the
lamp are switched on.
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Figure 4.15.: Degree of saturation (DOS) during drying of (a) PA8(1)-wetting by pouring
and (b) PA8(1)–wetting by droplet in the high wind-speed case (i.e. Figs.
4.14(e-f)). The first and last images of each column show the DOS distribution
at the beginning and end of the drying process while the plots in between
are thresholded images at different time steps including and in between the
first and last time steps, where the black pixels represent a reduction of more
than 20% moisture loss as compared to the reference wet image. The legend
is applicable only for the top and bottom images of both columns.

In Fig. 4.15, the temporal evolution of moisture distribution in PA8(1), which is
graphically shown in Figs. 4.14(e-f), is visualized in terms of the degree of saturation.
Figure 4.15(a) shows the drying process of PA8(1) after it was wetted by pouring while
Fig. 4.15(b) shows the same for wetting by droplets. The first and last images of each
column show the degree of saturation (DOS) distribution at the beginning and end of
the drying process while the other plots are thresholded images at different time steps
between the first and last time steps, where the black pixels represent a reduction of
more than 20% moisture loss compared to the reference wet image. The reference image
represents the initial condition with the highest average moisture content. The initial
moisture configuration in the poured and droplet-wetted specimens is significantly different
as evident from the DOS distributions at t = 5mins. In Fig. 4.15(a), water is spread
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throughout the specimen while in Fig. 4.15(b), water only accumulates close to the top
surface. In Fig. 4.15(a), most of the drying is confined to the top part of the specimen,
although at t = 143mins, there is a small patch in the center which loses considerable
moisture. In Fig. 4.15(b), moisture remains accumulated near the top surface even at
t = 143mins. This could be due to the cohesive droplet behavior where the rather smaller
sizes of the droplet, the surface tension of the droplet, the high hydrophobicity of the
surface and the high roughness of the materials work together in maintaining the droplet
at the top even after coalescence, in the absence of capillary action.

4.4.3.3 Influence of pore sizes on drying

The pore space characteristics of the types of specimens used in this study, PA4, PA8
and PA11, discussed in detail in Section 3.3.1.2, indicate that pore sizes increase with the
maximum aggregate size i.e. PA4 has the smallest pores, PA11 has the largest pores and
the pore sizes of PA8 are in between that of PA4 and PA11. The effect of increasing pore
sizes on the drying rate is investigated in this section. Figure 4.16 shows a comparison of
the drying processes of PA4(1), PA8(1) and PA11(2) after they are wetted by pouring. The
wind speed conditions are also given in the figure. In Fig. 4.17, the spatial distribution of
moisture content corresponding to the graphs shown in Fig. 4.16 is given, with a threshold
level equal to a reduction of 20 kg/m3 of moisture content. It is to be noted that different
threshold parameters are used in Figs. 4.15 and 4.17 in order to better interpret the drying
process while qualitatively conveying the same picture.
From Figs. 4.16 and 4.17, it can be seen that the three types of PA display a similar

drying behavior although their droplet wetting behavior was found to be quite different in
fig. 3.16. During drying, the top 10 mm of the specimen undergoes significant moisture
loss while the bottom 20 mm hardly displays any, except for a few small isolated patches
as seen in Figs. 4.17(a) and 4.17(b). Furthermore, as can be observed in Fig. 4.17(c),
patches of significant moisture loss are surrounded by large aggregates (white area). From
the observed drying patterns, the influence of airflow above the surface on the drying
process within PA seems to be the enhancement of vapor transfer at the air-material
interface by thinning of the vapor concentration boundary layer. If turbulent momentum
exchange resulting from air entrainment into the specimen played a major role in the
drying process at wind speeds of 3 m/s, then the drying of PA11(2) might have been
much faster than that of PA4(1) and PA8(1) since PA11(2) has large pores opening to
the surface. The limited air entrainment is explained by the tortuous nature of PA’s pore
space that hinders air entrainment into the specimen’s internal structure, at least for mean
wind speeds of up to 3 m/s. Air entrainment into PA at higher wind speeds is a possibility
that is investigated in detail in Chapter 6. For modeling purposes, this implies that up to
wind speeds of 3 m/s, it is more important to accurately model the water vapor diffusion
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Figure 4.16.: Influence of pore sizes (type of PA) on the drying process of specimens wetted
by pouring. The temporal evolution of average moisture loss from different
regions of interest (ROIs) in the specimens are plotted for (a,b) PA4(1)–low
wind speed case, (c,d) PA8(1)–high wind speed case and (e,f) PA11(2)–high
wind speed case. The schematic of the selected ROIs is given at the top. The
vertical lines represent the times at which the fan and the lamp are switched
on.
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Figure 4.17.: Thresholded images of moisture content distribution during the drying of
(a) PA4(1)–low wind speed case, (b) PA8(1)–high wind speed case and (c)
PA11(2)-high wind speed case. Black pixels represent a moisture loss of more
than 20 kg/m3 as compared to the reference wet image.

and, possibly, liquid transport within the material rather than focusing on air entrainment
in the material.

4.4.3.4 Influence of wind speed on drying

In the previous section, it was assumed that air entrainment in PA is less significant at
the tested wind speeds. This means that the influence of wind speed on drying in PA is
not expected to be a significant factor since the vapor diffusion resistance of the material
is expected to be the decisive factor influencing drying rather than air entrainment and
convective vapor transport within the pore system. Nevertheless, air speed can affect
the boundary layer resistance above the air-material interface. This aspect is further
investigated in this section through Fig. 4.18, where a comparison of the drying processes
under low and high wind speeds is shown. The specimens and type of wetting used for
the comparison are given in the figure. As expected, wind speed has mainly an influence
on the drying process when the specimen is wetted by droplets, as can be seen in Figs.
4.18(e) and 4.18(g), since moisture is concentrated at or near the upper surface of the
specimens in these cases and hence the vapor diffusion resistance of the material does not
come into play.
The most interesting case is the drying of PA8(1), shown in Figs. 4.18(c-d), as it is

wetted by pouring and therefore moisture is distributed throughout the specimen when
drying begins. Significantly, in this case, the effect of wind speed is found to be less



112 experimental investigation of drainage and drying in pa

Figure 4.18.: Influence of wind speed on the drying process of specimens. The temporal
evolution of average moisture loss from different regions of interest (ROIs)
in the specimens are plotted for (a,b) PA4(1)–wetting by droplets, (c,d)
PA8(1)–wetting by pouring, (e,f) PA8(1)–wetting by droplets and (g,h)
PA8(2)-wetting by droplets. The schematic of the selected ROIs is given at
the top. The magenta lines represent the times at which the fan and the
lamp are switched on.
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significant as both the low and high wind speed drying curves almost overlap. In essence,
our observations are similar to those of Reis et al. (2006) wherein it was seen that the
higher the wind speed, the slower a DEM droplet that was embedded in 120 µm glass
beads dried when compared to a saturated pool of DEM subjected to the same wind
speed, thereby indicating the role of vapor diffusion resistance of the material to drying.
Additionally, Babalis and Belessiotis (2004) observed that beyond a threshold wind speed
of 2 m/s, a higher wind speed did not have any effect on the drying rate of a microporous
material like figs, which pointed to the predominance of internal mass transfer resistance
over the external one. Considering that the pore structure of PA is larger, more complex
and more hydrophobic than that of the materials used in these studies, the vapor diffusion
resistance of PA presents a complex picture. On the one hand, the hydrophobic nature of
the solid matrix will prohibit capillary liquid transport while on the other, the larger pore
sizes may contribute to a lower vapor diffusion resistance. However, the high tortuosity of
the PA pore space is likely to result in a strong vapor diffusion resistance. Therefore, the
influence of the overall vapor diffusion resistance of PA on the drying process at high wind
speeds (≈10 m/s) is a topic that requires a more detailed investigation and is consequently
analyzed in Chapter 6.

4.4.4 Conclusions

Drying of porous asphalt (PA) is analyzed under various conditions such as low and
high wind speeds, different initial moisture distributions and heat from solar radiation.
Three types of porous asphalt, PA4, PA8 and PA11, are used in this study. The spec-
imens are sealed on all sides except the top surface so that gravity-driven drainage is
completely blocked. The following important observations and conclusions are made from
the experiments:

1. Even though the wetting patterns in the three types of PA are seen to be completely
different, i.e. only PA11 shows a significant penetration of water droplets into the
internal structure, their drying patterns are similar i.e. even after 3.5 hours of forced
convective thermal drying, water evaporates mainly near the top surface.

2. A temperature increase of 6 ◦C due to heat from the solar radiation simulator did
not influence the drying process significantly. This could be because by the time
the heat source was turned on and increases the temperature at the upper region
of the specimen, most of the pores near the surface already dried out, while the
temperature increase is not high enough to influence drying in the deeper pores.

3. The dominant drying mechanism in PA appears to be evaporation of water at the
surface of the material, followed by the diffusion of vapor from within the material to
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the top surface and its subsequent convective removal by airflow above the surface.
The contributions of air entrainment into the specimen and capillary transport of
water to the surface appeared to be less significant during the drying process, which
could be due to the roughness and tortuosity of the pore system of PA as well as
the hydrophobicity of the solid matrix. However, in this chapter, wind speed was
limited to 3 m/s, and therefore air entrainment into specimens at larger wind speeds
needs to be investigated further.

4. Because of the high vapor diffusion resistance and the limited liquid water transport
in hydrophobic PA, a higher wind speed leads to faster drying only if moisture
is concentrated near the top surface of the PA specimen, due to convective vapor
removal.

4.5 influence of gravity-driven drainage on total moisture loss

In terms of the boundary conditions of the specimens during the two set of experiments
presented in this chapter, the most important difference is that while the specimens are
uncovered on all sides in the first set of experiments, only the top surface is uncovered in
the second set. This feature makes it possible to clearly isolate the influence of gravity
drainage on the total moisture loss by comparing the two sets of experiments.

In Fig. 4.19, the temporal evolution of the average moisture loss from the entire specimen
is plotted for PA8 and PA11 specimens from the first set of experiments (Section 4.3) and
the second set of experiments (Section 4.4). They are denoted as ’uncovered’ and ’covered’
respectively. It is to be recalled that in the uncovered experiments, all the specimens are
wetted by immersing them in water till they are fully saturated. Additionally, there is
no thermal drying in the uncovered experiments and the duration of the experiments are
longer. Although the uncovered specimens are not the same as the ones in this study,
both set of specimens were prepared following the same standards and hence their pore
space characteristics are expected to be similar. The most remarkable feature in Fig.
4.19 is the high moisture loss in the uncovered specimens in the initial stages, which is
due to gravity-driven drainage. In the later stages, the covered specimens, due to their
significantly higher moisture retention, lose moisture at a faster rate as compared to the
uncovered specimens. However, despite the occurrence of gravity-driven drainage, the
uncovered specimens show a high moisture content even after 6 hours of forced convective
drying at low wind speed, thereby again indicating the strong influence of the high vapor
diffusion resistance of PA.



4.5 influence of gravity-driven drainage on total moisture loss 115

Figure 4.19.: Comparison of the temporal evolution of average moisture loss during the
two sets of experiments presented in this chapter for (a) PA8 and (b) PA11
specimens. While the specimens in Section 4.3 are open on all sides (and
hence called ’uncovered’), the specimens in Section 4.4 are covered at all
sides except the top (and hence called ’covered’).
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4.6 synthesis

The experiments presented in the current and previous chapter involved the application
of neutron radiography to analyze various liquid transport mechanisms in PA such as
gravity drainage, capillary uptake, capillary redistribution and evaporation. Although the
influence of airflow on the drying process in PA is studied in this chapter, the airflow itself
is neither visualized nor analyzed in detail. This aspect is investigated in the next chapter.



5
EXPERIMENTAL INVESTIGATION OF AIRFLOW ABOVE
POROUS ASPHALT

This chapter is based on the paper Lal et al. (2016).

5.1 introduction

In microporous materials like bricks, rocks and concrete, convective drying is enhanced by
the turbulence induced by the porosity and/or roughness near the air-material interface.
Turbulence increases the air-water vapor mixing at the interface, resulting in the reduction
of the vapor pressure at the interface. In a macroporous material such as porous asphalt,
drying can be further accelerated by air penetration into the large pores connected to the
surface. Therefore, in this chapter, airflow near the surface of porous asphalt is studied in
detail through wind tunnel experiments. The flow field is visualized by means of Particle
Image Velocimetry (PIV). The specific objectives of this study are to characterize the
turbulent air boundary layer in the near-wall region of PA pavements and to compare it
to the boundary layer on a quasi-smooth surface, as well as to use conditional sampling
techniques to assess the contribution of organized flow structures to the overall turbulence
in the near-wall region. The turbulence statistics employed in this study are based mainly
on previous studies on turbulent boundary layers over (impermeable) rough walls (Adrian
et al. 1989; Raupach et al. 1991; Adrian 1996). To the author’s best knowledge, this
study is the first application of these statistics to characterize the flow over a macroporous
surface.

5.2 material characterization

Three types of surfaces are used for the wind tunnel experiments in this study: PA8,
PA11 and extruded polystyrene (henceforth referred to as foam). In Table 5.1, the results
from a sieve analysis of the aggregates are shown for both types of asphalt. Each number
corresponds to the relative contribution of the mass of aggregates in the corresponding
size range to the total mass of all aggregates. It can be observed that, in PA8, most
aggregates are in the 4-8 mm size range, while in PA11 most aggregates are in the 8-11.2
mm size range. Due to the larger aggregate sizes of PA11, the pore sizes are larger in
PA11, as was shown in Section 3.3.1.2. Therefore, PA11 is characterized by larger pores
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Table 5.1.: Aggregate size distributions of the PA8 and PA11 specimens used in wind
tunnel experiments

at the air-material interface. This can be appreciated from the photographs of the top
and side surfaces of PA8 and PA11, shown in Fig. 5.1. Figure 5.1(e) depicts the evolution
of porosity (ratio of pore area to aggregate area) as a function of depth from the surface.
The porosity profiles are determined from X-ray microcomputer tomography (X-ray µ-CT)
scans with a spatial resolution of 200 µm for two PA8 and PA11 specimens of dimensions
80×80×30 mm3. These specimens were compacted in a similar way as those used for these
wind tunnel tests and hence their pore structures are expected to be similar. From Fig.
5.1(e), shows that, near the surface, larger pore sizes in PA11 do not lead to larger overall
porosity.

The large pores near the surface of a typical PA specimen are interconnected as shown
in a previous study (Poulikakos et al. 2013b). Unlike in the case of nonporous rough
surfaces, a roughness height, which is commonly defined as the distance between the
average peak height and the average valley depth of the surface roughness profile, cannot
be estimated since the peaks and valleys are not clearly defined at the PA surface due to
the interconnected nature of pores. The PA slabs used in this experiment are of dimensions
2400×400×30 mm3, the same depth as actual PA pavements. The slabs were freshly
prepared specifically for these experiments. The measurements over foam boards are used
as a baseline case since foam is airtight and has a much lower roughness than that of PA,
thereby making it a quasi-smooth surface. For the measurements over foam boards, the
PA slab is simply replaced by a slab of foam of similar dimensions.
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Figure 5.1.: Photographs of a section of the PA specimens: (a) top view and (b) side view
of a section of the PA8 specimen, (c) top view and (d) side view of a section
of the PA11 specimen and (e) porosity as a function of material height.
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5.3 experimental setup and procedure

The experiments are performed at the ETH-EMPA wind tunnel in a closed-loop configura-
tion. A photograph and schematic layout of the experimental setup is shown in Fig. 5.2.
A large slab of porous asphalt (2400×400×30 mm3) is placed in the wind tunnel. The
slab is flush-mounted by adding an extruded polystyrene board around it and a smooth
fairing upstream to avoid boundary layer separation. After the installation of the model,
the test section has a free cross-section of 1900×1050 mm2. Special care is taken during
the installation so that no damage is experienced by the samples.

The PIV system consists of two CMOS cameras (LaVision GmbH, 12-bit dynamic
range, 2016×2016 pixels), mounted side-by-side to obtain a total field of view (FOV)
of 280×140 mm2. The airflow is seeded by means of spherical Di-Ethyl-Hexyl-Sebacat
(DEHS) particles with a narrow size distribution around an average diameter of 1 µm.
The seeding is done with a 5-nozzle particle generator placed before the honeycombs and
screens. After the seeding process, a sufficient time is allowed for the particles to be
uniformly distributed in the entire wind tunnel and this is verified through preliminary
images. A Nd:YLF laser with a power of 30 mJ/pulse is used to illuminate the DEHS
particles within the field of view. The vertical plane of the laser sheet is parallel to the
airflow direction and is centered along the asphalt slab (Fig. 5.2(c)). For each experimental
run, 3155 statistically independent image pairs are acquired at a frequency of 10 Hz, which
is estimated from the integral time-scale (the characteristic time-scale for the turbulence
dynamics) of preliminary measurements. Best practice guidelines for PIV (Bolinder 1999;
Keane and Adrian 1990) are taken into account to minimize the errors of the measurements.
3155 image pairs corresponds to a full camera memory and allows the calculation of the
mean properties of the flow. The acquired images are first pre-processed by subtracting
the background light intensity. Both images of each pair are cross-correlated following
a three-level multi-pass approach, starting from a coarse interrogation window of 48×48
pixels up to a fine interrogation window of 24×24 pixels, with an overlap of 50% for all
the passes. Between the passes, a median filter is applied to remove or replace vectors
whose difference from the root mean square (rms) value of the neighbor signal is more
than 10 times the standard deviation of the neighboring rms values. The final vector
resolution achieved is 0.9 mm. Due to considerable reflection of the laser from the asphalt
surface, the lowest location at which velocity could be measured is 5 mm above the surface.
Measurements are conducted at three different free-stream air velocities i.e. 1, 2.85 and
4.75 m/s to allow verification of Reynolds independency of the observed quantities. The
measurement window is at a distance of 1540 mm from the leading edge of the specimen.
This distance is found to be sufficient to obtain fully developed velocity profiles in the
measurement window.
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Figure 5.2.: Description of the wind tunnel experimental setup; (a) Photograph of the
setup, and schematics of the (b) side view and (c) top view. All measurements
are in mm. FOV = field of view.
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5.4 results and discussion

5.4.1 Uncertainty in the estimation of statistical quantities

The relative error in the estimation of mean air speed from N statistically independent
images can be estimated as:

εµ =
Zc · TI√

N
, (5.1)

where Zc is the confidence coefficient, which is equal to 1.96 for a confidence level of 95%,
and TI is the turbulence intensity, defined as:

TI =

√
rms(u′)2 + rms(v′)2

〈U〉
, (5.2)

where u′ and v′ are velocity fluctuations in the streamwise and wall-normal directions
respectively and 〈U〉 is the mean air speed defined as:

〈U〉 =
1
N

N∑
i=1

Ui, (5.3)

where Ui is the instantaneous streamwise velocity magnitude. The relative error in the
standard deviation is estimated as:

εσ =
Zc√
N

. (5.4)

The maximum uncertainty of the mean and standard deviations within each experiment
in this study is given in Table 5.2. As expected, the maximum uncertainty in mean air
speed is at the near-wall location for all experiments i.e. at y = 5mm. However, due
to the high number of sampling images used in this study, it can be seen that even the
maximum uncertainties are below 2% and 2.5% for the mean and standard deviations
respectively.

5.4.2 Mean and turbulent statistics

In this section, the airflow measurements over the three different surfaces i.e. foam board
(smooth), PA8 and PA11, at three different speeds i.e. 1 m/s (low speed, Reθ = 700), 2.85
m/s (moderate speed, Reθ = 2900) and 4.75 m/s (high speed, Reθ = 4200) are studied. It
should be noted that air speeds are classified into low, moderate and high in this study
solely for better readability and this does not imply a strict classification for scaling.
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Figure 5.3.: Vertical profiles of mean streamwise velocity

Further details about the calculation of Reθ, the Reynolds number based on momentum
thickness, are found below. Figure 5.3 shows the mean air speed, 〈U〉, as a function of the
normal distance from the wall, y, for the different cases. As expected, at each tested air
speed, a boundary layer develops due to the interaction with the surface. The boundary
layer is more clearly distinguishable at high air speeds. At low speed, the effect of surface
pores on the velocity profiles is less pronounced. At moderate and high speeds, the effect
can be seen up to y = 60mm. At high speed, a small effect of the size difference of the
surface pores between the two types of PAs is visible in the airflow velocity profiles. This
aspect will be investigated in more detail in the subsequent sections.

Figure 5.4 shows the same profiles as Fig. 5.3 after normalization. In this figure, the
mean air speed is replaced by the non-dimensional mean air speed U+ = 〈U〉

/
u∗, and the

vertical coordinate by the non-dimensional height above the surface y+ = y · u∗/ν, where
u∗ is the friction velocity and ν is the kinematic viscosity of air. The normalized profiles
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Figure 5.4.: Vertical profiles of mean streamwise velocity, scaled by friction velocity for (a)
Foam, (b) PA8 and (c) PA11.

theoretically follow the so-called roughness-modified law-of-the-wall within the logarithmic
layer (i.e. y+ < 30), which is given by:

U+ =
1
κ

log y+ +B − ∆U+, (5.5)

where κ is the Von Karman constant, B = 5.2 and is the roughness function (Clauser 1954).
The friction velocity u∗ can then be estimated by minimizing the difference between the
law-of-the-wall and the measured mean velocity profiles in the logarithmic layer. Since the
velocity profiles of the same surface are collapsed over each other, u∗ becomes independent
of the roughness function. The calculated friction velocities for all the cases are listed in
Table 5.2 and are used later in this study to scale the turbulence parameters.

In Table 5.2, various other boundary layer parameters are listed. The first parameter of
interest is the boundary layer height, δ, which is the height at which 99% of the free-stream
velocity, U∞, is reached (see Fig. 5.5). Above the boundary layer height, the mean
air speed remains approximately constant and, below, a boundary layer profile is found.
Based on Fig. 5.3, the boundary layer height seems to exceed the field of view for the
moderate and high-speed measurements. However, as the velocity observed at the top of
the field of view (i.e. at y = 140mm) is close to the free-stream velocity, measured by a
pitot-tube positioned in the free stream, we make the assumption that U∞ = U |y=140mm
for these cases. The impact of this assumption on all derived parameters was evaluated by
a sensitivity study (see Appendix A). Although Schlichting and Gersten (2000) observed a
decrease in the boundary layer height with increasing air speed as δ ∝ U−1/5

∞ , the results
from this study indicate the existence of a critical Reynolds number below which this
inverse proportionality breaks down. This is similar to the results of Paterna (2015), who
found an unexpectedly low boundary layer height at low speed (Reθ = 1500) and attributed
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Table 5.2.: Boundary layer parameters calculated in the wind tunnel experiments

this to a high degree of organization in the flow. Prior to investigating this hypothesis,
we ensure that the obtained trend is not a product of the method used to determine the
boundary layer thickness. Therefore, in Table 5.2, two related yet more robust quantities
are calculated, namely the displacement thickness, δ∗, and the momentum thickness, θ
(Coles 1956; Schlichting and Gersten 2000). These parameters are defined as:

δ∗ =

∞∫
0

(
1− U

U∞

)
dy, (5.6)

θ =

∞∫
0

U

U∞

(
1− U

U∞

)
dy. (5.7)

The displacement thickness can be interpreted as the distance by which an inviscid flow
has to be displaced in wall-normal direction to account for the drop in velocity within the
boundary layer in a real fluid. Similarly, the momentum thickness can be thought of as
the distance by which an inviscid outer flow has to be displaced in a wall-normal direction
to give the same lower momentum that exists in the boundary layer in a real fluid. These
two parameters are illustrated in Fig. 5.5. The ratio of the displacement thickness to the
momentum thickness is called the shape factor, SF = δ∗/θ, which is also given in Table
5.2. The final parameter in the table is the Reynolds number based on the momentum
thickness, Reθ = U∞θ/ν, which is used to characterize the different air speed regimes.

Analogous to the boundary layer height, δ∗ and θ are expected to decrease with increasing
Reynolds number. However, from Table 5.2, it can be observed that this is not the case for
any of the surfaces. In other words, the low-speed measurements have an unusually low
boundary layer thickness. This anomaly is reflected in the shape factor SF as well and
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Figure 5.5.: Analogous representation of boundary layer parameters in a real flow to a
hypothetical inviscid flow to obtain robust parameters such as (a) displacement
thickness and (b) momentum thickness.

could be due to the occurrence of organized turbulent structures at low air speeds (Adrian
et al. 2000; Paterna 2015). This hypothesis is analyzed in more detail in the subsequent
paragraphs.
Figure 5.6 shows the skewness profiles, 〈Sq〉, of the streamwise velocity component, u,

and the wall-normal velocity component, v. Skewness is the time-averaged third-order
moment defined as:

〈Sq〉 =
1/N

N∑
n=1

[qn(r, t)− 〈q(r, t)〉]3{√
1/N

N∑
n=1

[qn(r, t)− 〈q(r, t)〉]2
}3 , (5.8)

where qn(r, t) is a spatially (r) and temporally (t) instantaneous quantity, 〈qn(r, t)〉 is
the time-averaged quantity and N is the total number of time steps. The skewness of a
Gaussian distribution is zero. A positive skewness points to a large number of excursions
with higher values than the mean while a negative skewness points to a large number of
excursions with lower values than the mean. Unlike the velocity profiles in Fig. 5.3, the
third order moments reveal small surface pores-induced differences for all considered air
speeds. An important observation from Fig. 5.6 is that in the near-wall region, only the
low-speed measurements show positive skewness of u and v. A positive skewness near the
wall reflects the presence of high shear events imposed on a background of lower turbulence
(Fernholz 1994; Johansson and Alfredsson 1982). This could explain the low values found
for the displacement and momentum thickness in the low speed (and low turbulence)
measurements (see Table 5.2). In the near-wall region, high positive values of the skewness
of streamwise velocity, 〈Su〉, are found only in the low-speed measurements, indicating
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Figure 5.6.: Skewness profiles of u (left) and v (right) at the three air speeds.
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the dominance of sweep events at this speed. This observation is further strengthened
from the results of the Q-H analysis (see Section 5.4.3). Due to the higher magnitude of u
compared to v, 〈Su〉 gives more insight into the dynamics of turbulent flows than 〈Sv〉.
For the moderate and high-speed measurements, the general trend is that 〈Su〉 changes
from negative to positive along the wall-normal direction. This points to the dominance of
events with velocities lower than the average velocity, near the surface. This is expected
due to the low airflow velocity in the inner layer of the boundary layer. However, this
is not the case with the low-speed measurements, where the dominance of events with
velocities higher than the average velocity can be observed, near the surface. This is yet
another indication of a small boundary layer thickness, which was already observed from
Table 5.2. It can also be observed that, with increasing velocity, the skewness profiles
of the different surfaces overlap more. Reading this together with Fig. 5.3, it can be
observed that, while the differences in the velocity profiles of the three surfaces increase
with increasing air speed, the skewness profiles increasingly converge with increasing air
speed. This could be due to the fact that the relative magnitude of the increase in velocity
fluctuations is small compared to the increase in mean air speed.
Figure 5.7 presents the three measured time-averaged Reynolds stress components i.e.

the shear stress < u′v′ >, streamwise turbulence < u′u′ > and wall-normal turbulence
< v′v′ >, as a function of the distance from the wall. No scaling is applied in this figure.
For the low speed flow, the Reynolds stresses are low and the profiles above all the surfaces
share a similar shape except very close to the wall. At the moderate speed, the profiles
above the two PA surfaces are similar, though they are slightly different from those above
foam. At the highest speed, a clear dependency of the profiles on the surface pore size can
be observed, especially close to the surface. Furthermore, at high air speed, the maximum
Reynolds stress is found at a different height for the three surfaces. The peaks in shear
stress and streamwise turbulence for the two PA surfaces are vertically separated at the
highest speed by at least 10 mm, as can be seen in Figs. 5.7(a) and 5.7(b). Finally,
high-speed flow generates significantly more turbulence over the surface of PA11 than
over PA8. In the low and moderate-speed measurements, though a difference in the
turbulence plots can be observed between the smooth surface and the PA surface, there is
no appreciable difference between the two PA surfaces.
Figures 5.8 and 5.9 present the Reynolds stress components in inner velocity scaling

(normalized with u∗) and outer velocity scaling (normalized with U∞), respectively. In inner
scaling, Reynolds independence of both shear and streamwise Reynolds stress components
(Figs. 5.8(a) and 5.8(b)) can be observed for the moderate and high speed cases for
y > 80mm and for the wall-normal component (Fig. 5.8(c)) at all heights. The same
observations hold in outer scaling, but from y > 50mm onwards (Fig. 5.9). However,
as already observed, the lowest speed is a rather abnormal case and does not follow the
Reynolds scaling.
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Figure 5.7.: Profiles of Reynolds stress components without scaling: (a) Shear stress, (b)
Streamwise turbulence and (c) Wall-normal turbulence.

Figure 5.8.: Profiles of Reynolds stress components in inner scaling: (a) Shear stress, (b)
Streamwise turbulence and (c) Wall-normal turbulence.
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Figure 5.9.: Profiles of Reynolds stress components in outer scaling: (a) Shear stress, (b)
Streamwise turbulence and (c) Wall-normal turbulence.

The fact that no generally valid scaling is found has important practical implications
for future experiments that would study forced convective drying of wet porous asphalt.
The presence of strong, organized turbulent structures near the wall during the low-speed
measurements could be the reason why the boundary layer velocity profiles at the low
speed do not show similarity with the moderate and high-speed profiles after scaling. This
aspect is examined in further detail in the next section. Scaling laws are found to be
valid for the moderate and high speed flows, but only above a certain height. This is
not surprising. The scaling of turbulence parameters has always been a challenge for
researchers and has led to a variety of inner-outer mixed scalings, especially in and around
the near-wall region. Energy balance of the boundary layer indicates that the total power
dissipated by the boundary layer scales with free-stream velocity and shear stress, while
shear stress in turn scales with friction velocity (De Graaff and Eaton 2000). Thus, the
total rate of energy dissipated by the turbulence depends on both free-stream velocity
(used for outer scaling) and friction velocity (used for inner scaling).

To sum up, for all the air speeds considered in this study, no generally valid scaling was
found close to the surface, where drying occurs. Hence, studies of drying would require
performing experiments at full-scale and for the entire range of velocities, similar to the
experiments reported in this paper. This is all the more important since low speed flows
(<2.85 m/s) are a common occurrence over land surfaces (Archer and Jacobson 2005) and
we observed distinctive turbulence profiles at the lowest speed. In this context, it should
be noted that a generally valid velocity scaling, even if it were observed, would not imply
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a scalable drying behavior in a macro-porous material like PA since air penetration into
the material should also be taken into account, especially at high wind speeds, as is shown
in Chapter 6.

5.4.3 Conditional sampling of turbulence parameters

It is now widely accepted that downdraft motion (sweeps) and updraft motion (ejections)
of air are the most important constitutive events occurring in turbulent airflow near a
rough surface. These events are the most important contributors to the Reynolds stresses
and momentum transfer near the air-material interface. Conditional statistics, such as
Quadrant-Hole (Q-H) analysis as developed by e.g. Raupach (1981) and Willmarth and
Lu (1972), are often used to study such turbulent structures in the flow near a fluid-solid
interface (Longo et al. 2015; Paterna 2015; Wang et al. 2010). In this section, Q-H analysis
is used to investigate the contribution of coherent motions such as sweeps and ejections in
the turbulent flow. The shear stresses are conditionally-averaged to distinguish between the
contributions of ’organized’ and ’unorganized’ events to the total turbulence. Based on the
signs of the instantaneous velocity fluctuations of the streamwise and wall-normal velocity
components, u′ and v′ respectively, the events can be classified as Q1 events (u′ > 0,
v′ > 0), Q2 events (u′ < 0, v′ > 0), Q3 events (u′ < 0, v′ < 0) and Q4 events (u′ > 0,
v′ < 0), according to the quadrants in which these points fall in a u′− v′ diagram, as shown
in Fig. 5.10(b). The Q2 events are ejections while the Q4 events are sweeps. The most
important events fall in quadrants 2 and 4 since these events give positive instantaneous
contributions (−u′v′) to the Reynolds stress (Guo et al. 2010). Ejections and sweeps (Fig.
5.10(a)) are assumed to be associated with organized structures, responsible for significant
transfer of momentum between the surface and the air (Willmarth and Lu 1972). Despite
the possible importance of such coherent motions for forced convective drying of soil or
porous asphalt surfaces, no study has been reported so far on this relationship, to the best
of our knowledge.

In order to introduce a notion of scale, the time-averaged contribution of each quadrant
i, 〈u′v′〉i,H , can be filtered to exclude fluctuations with a magnitude smaller than the size
of the hyperbolic hole H, which is indicated by the shaded region in Fig. 5.10(b):

〈
u′v′

〉
i,H = lim

T→∞

1
T

T∫
0

u′ (t)v′ (t) Ii,H [u′ (t) v′ (t)] dt, (5.9)

where Ii,H is a binary variable that is used to select the events to include, and which
implicitly accounts for the minimum shear stress that should be considered:
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Figure 5.10.: (a) Schematic representation and (b) graphical representation of sweeps and
ejections, where the shaded region indicates the hyperbolic hole region which
is used to filter out fluctuations of small magnitudes.

Ii,H [u′ (t) v′ (t)] =

 1 ∀ (u′, v′) ∈ Qi;|u′v′|i,H ≥ H
√〈

u′2
〉√〈

v′2
〉

0 otherwise
. (5.10)

By varying H, the contributions of eddies with different scales can be analyzed and their
impact on the relative importance of the individual quadrants can be recognized.
Figures 5.11, 5.12 and 5.13 present the results of the Q-H analysis on foam, PA8 and

PA11 respectively, scaled by friction velocity i.e. inner velocity scaling. Subplots ’a’,
’d’, ’g’ concern the low-speed measurements, subplots ’b’, ’e’, ’h’ the moderate-speed
measurements and subplots ’c’, ’f’, ’i’ the high-speed measurements. Three different
values of the hyperbolic hole are considered for the analysis i.e. H = 0, 2 and 4. It can
be observed that generally, ejections (Q2) and sweeps (Q4) dominate over the Q1 and
Q3 events. Among ejections and sweeps, sweeps are more dominant, especially at the
low-speed measurements. Above all surfaces, at H = 2, the contributions from Q1 and Q3
events fall to almost zero. The high intensity of Q2 and Q4 events close to the wall in
the low-speed measurements confirms the hypothesized presence of organized structures
based on the low displacement and momentum thicknesses in Table 5.2 and the positive
skewness near the surface in Fig. 5.6(a) and 5.6(b).
As the value of H increases, the overall dominance of sweeps over ejections increases.

Specifically, for the moderate and high-speed plots of both PAs, the location of the Q2
and Q4 peaks shifts further from the wall with increasing value of H, and also the peaks
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Figure 5.11.: Q-H analysis on foam board with inner velocity scaling, where Q2: ejections
and Q4: sweeps.

widen. This shows that the effect of sweep and ejection events is felt across a much
larger distance from the wall along the wall-normal direction compared to that of the
weak ones. In other words, the stronger the intensity of the sweeps and ejections, the
lesser the probability that the momentum transfer from these organized structures will
be restricted to the surface region. On the two PA surfaces, at the moderate and high
velocities, the intensities of sweeps and ejections are similar in the near-wall region. Along
the wall-normal direction, the gap between them widens in favor of sweeps. This clear
trend can also be seen in the measurements on foam, but to a lesser extent. Near a
perfectly smooth surface, ejections are the dominant events while sweeps are the dominant
events near a rough surface (Keirsbulck et al. 2002). This can be the reason why sweeps
are still dominant near the smoother foam surface, but not as dominant as they are near
the rougher PA surfaces.

Figure 5.14 presents the comparison between the three surfaces in terms of the sweeps
and ejection events for the three considered air speeds. Only the results for H = 4 are
compared. The wall similarity hypothesis states that, outside the roughness sublayer, the
turbulent motions are independent from the wall roughness, as confirmed by Perry et al.
(1969), Raupach (1981) and Raupach et al. (1991). The effect of surface roughness on the
sweep and ejection events can indeed be observed only up to a certain wall-normal distance.



134 experimental investigation of airflow above pa

Figure 5.12.: Q-H analysis on PA8 with inner velocity scaling, where Q2: ejections and
Q4: sweeps.

Figure 5.13.: Q-H analysis on PA11 with inner velocity scaling, where Q2: ejections and
Q4: sweeps.
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Figure 5.14.: Comparison of Q2 (ejection) and Q4 (sweep) events between foam, PA8 and
PA11 at H = 4.

From the moderate and high-speed measurements, it can be observed that this distance
is approximately y = 70mm and y = 100mm for the ejections and sweeps respectively.
Significantly, close to the surface, a large difference in the sweeps or ejection profiles of PA8
and PA11 can be seen only in Fig. 5.14(c). This is consistent with the inferences made
from Figs. 5.7-5.9, i.e. a difference in drying behavior of the two PAs, as a consequence of
their different surface pore sizes, is expected to be prominent only at air speeds equal to
or higher than 4.75 m/s. This has an important implication for future studies to model
convective drying of PAs with different surface pore sizes. If the air speed is equal to or
lower than 3 m/s, a uniform turbulent boundary layer can be assumed near all the PA
surfaces, as long as their surface pore sizes and the pore profiles on the surface are not
very different from those of PA8 and PA11. In this context, a detailed analysis of surface
pore sizes of the different types of PAs would be an ideal complement to the present study.
In Fig. 5.14(d)-(f), the surface with the largest pores i.e. PA11, is not always the one

displaying the strongest sweeps. This contradicts the observations of Keirsbulck et al.
(2002) who noted strong sweeps on rough surfaces. In fact, for the low-speed measurements,
the sweep events are even the strongest on the smooth surface (foam), as seen in Fig.
5.14(d). However, as the speed increases, the sweep events on the rougher surfaces gain
strength and at high speed (Fig. 5.14(f)), the roughest surface (PA11) has the strongest
sweep events. A high fluctuation in the v-component of velocity facilitates stronger sweep
events (Krogstad et al. 1992). Therefore, higher air speeds, producing higher turbulence,
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and rougher surfaces, which lead to a reduced damping of the v-component by the cavities,
should lead to more dominant sweep events. While the measurements in Keirsbulck
et al. (2002) were done at Reθ=8500, the high-speed measurements in this study are at
Reθ=4300 only. This could explain why the observations of Keirsbulck et al. (2002) are
not applicable to the low and moderate velocity measurements in this study, since the
wall-normal turbulence is too low at these speeds. Additionally, these results also point
to the existence of a critical Reynolds number above which the difference in the surface
pore sizes of PA pavements influences the presence of organized structures in the near-wall
region.

5.5 conclusions

The mean and turbulent flow characteristics of airflow above macroporous PA surfaces are
analyzed in this chapter. Airflow over two types of porous asphalt (PA) pavements, PA8
and PA11, is studied at three air speeds at constant temperature. Measurements over
foam boards (quasi-smooth surface) are used as a reference to which the measurements
over the rougher PA pavements are compared. The most important conclusions are:

1. At low air speed, the small values of the displacement and momentum boundary
layer thicknesses indicate the presence of organized turbulent structures, which is
confirmed by the positive skewness of the streamwise velocity component in the
near-wall region. Moreover, in the Q-H analysis, a high intensity of ejection (Q2)
and sweep (Q4) events is also observed in the near-wall region in the low-speed
measurements.

2. The effect of sweeps and ejections is observed across a significant distance along the
wall-normal direction above the macroporous PA-surfaces. As the distance from the
wall increases, the difference between the intensities of sweep and ejection events
also increases, with sweeps dominating ejections. This implies that, as the distance
from the wall increases, the occurrence of high-speed air from regions far from the
wall dominates the arrival of low-speed air from the wall.

3. For the moderate and high-speed measurements, a sensitivity of sweep and ejection
events to surface pore sizes is observed but only within the first 80 and 100 mm
respectively above the surface. Within these heights and at these velocities, the
sensitivity of sweeps to surface pore sizes is more pronounced than that of ejections.
However, no clear dominance of either sweeps or ejections on any particular surface
is observed, although sweep events over more porous surfaces gained strength with
increasing air speeds.
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4. The turbulence statistics plots exhibit significant Reynolds dependency under low
speed conditions. As no generally valid scaling law could be found, realistic drying
experiments on macroporous materials like porous asphalt need to be performed at
full-scale and for the entire range of velocities of interest.

5. Close to the PA surface, the air turbulence profiles are found to be sensitive to
surface pore sizes/roughness only at high air speed, mainly due to higher ejections on
the porous surface at this speed. This has an important practical implication. At low
air speeds (less than 3 m/s), the contribution of surface pores-induced turbulence to
convective drying will be similar for different PAs, provided their porosity profile is
similar to that of the specimens used in this study. In such cases, from a macro-scale
modelling perspective, this means that a simplified assumption of the roughness
induced by surface pores can be made for PA specimens while performing convective
drying simulations on them.

5.6 synthesis

This chapter presented an in-depth analysis of the turbulent air boundary layer in the
near-wall region of porous asphalt. However, another important factor that can influence
drying is the momentum transfer from air infiltration in PA. At the wind speeds considered
in this study, sweeps and ejections are found to occur near the surface. But it cannot
be concluded at this stage if these sweeps and ejections are as a result of air infiltration
into the pores or as a result of the surface roughness. This implies that the air velocity
fields in the pores, especially in the ones close to the air-material interface, should be
investigated in more detail and for higher mean wind speeds. This aspect is studied
through computational fluid dynamics simulations in the next chapter.





6
COMPUTATIONAL FLUID DYNAMICS MODELING OF AIRFLOW
AND WATER VAPOR TRANSPORT IN POROUS ASPHALT

6.1 introduction

The previous chapters provided experimental insights into air and water flow within
porous asphalt. While the combination of neutron radiography and X-ray µ-CT imaging
allowed the visualization of water flow within PA specimens, PIV imaging provided a
clear visualization of the air velocity field above PA specimens. However, for a complete
understanding of multiphase flow within PA, what is missing at this stage is the visualization
of airflow within PA and its influence on the transport of water vapor from the specimen.
Therefore, in this chapter, computational fluid dynamics (CFD) simulations are used to
study airflow and vapor transport within PA. The PA domain used in the simulations
is extracted from a three-dimensional X-ray µ-CT scan without applying any geometric
simplification. The influence of two parameters on vapor transport from PA are investigated
in this chapter: wind speed and the depth of the vapor source within the material.

6.2 materials and methods

6.2.1 Numerical model and computational domain

Two sets of CFD simulations are carried out in this study. The first set of simulations
(precursor simulations) are two-dimensional simulations performed to select the appropriate
near-wall air turbulence model and grid sizes for the second set of simulations. The second
set of simulations (PA simulations) are three-dimensional simulations performed to carry
out the objectives of this study i.e. analyze air and vapor (i.e. scalar) flow in an actual
PA geometry. The computational domains of both sets of simulations along with the
respective boundary conditions are presented in Fig. 6.1. The overall domains of both sets
of simulations consist of two domains merged together: the upper domain that consists
of the air inlet and outlets of both air and vapor, and the lower domain that consists of
the vapor source. The upper and lower domains of the 3D PA simulations are marked in
Fig. 6.1(b). For the 2D precursor simulations, the upper domain is a 2D channel with
height, Hc = 50mm and length, Lc = 380mm. For the 3D PA simulations, the upper
domain is a 3D channel with the same height and length as the 2D channel and width,

139
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Wc = 50mm. Thus, with an equal height and width of 50 mm, the aspect ratio of the
upper domain of the PA simulations is 1. For the precursor simulations, the lower domain
is a linear source (Ls = 180mm) that is placed flush at the bottom of the upper domain
while in the PA simulations, the linear source is replaced by the X-ray µ-CT scan of an
actual PA11 specimen (180×10×30 mm3), and is attached to the upper domain at its top
surface, as shown in Fig. 6.1(b). The PA11 specimen used in this study is the PA11(A)
specimen used and described in Section 4.3 and its material characteristics are detailed in
Section 4.3.1. During the merging process of the PA scan with the upper channel domain,
all pores in the scan that are not connected to the upper domain are removed since these
pores will not have any air entry. Thus, the domain of the PA simulations is designed
to reproduce real world conditions i.e. wind flow above PA pavements and possible air
entrainment into the pores. The domain dimensions and computational grid are based
on best practice guidelines (Casey and Wintergerste 2000). Upstream (50 mm long) and
downstream (150 mm long) channel sections are given in the domain to prevent any impact
of the imposed inlet and outlet boundary conditions on the air momentum and scalar
transport near the PA geometry. The grid of the precursor simulations is composed of
76×103 hexahedral cells while the grid of the PA simulations is a hybrid grid of more
than 9×106 cells composed of multiple types of polyhedral cells. From the grid sensitivity
analysis in the precursor simulations, the spatial discretization error is determined to be
below 10−4 using Richardson extrapolation (Roache 1994). The parameter used for the
Richardson extrapolation analysis is the shear stress at the flat plate, τw = ρν(du/dz)w,
where (du/dz)w is the wall-normal velocity gradient at the plate, ρ is the air density (1.2
kg/m3 in this study) and is the kinematic viscosity of air (1.5×10−5 m2/s in this study).
Wall shear stress is chosen for the grid sensitivity analysis since it is the parameter that
determines the convection in the vicinity of the flat plate, which is also where the scalar is
released (source).

The computational grid in the near-wall region of the PA simulations is presented in
Fig. 6.2 for the breadthwise centerplane i.e. z = 25mm. As can be seen in Fig. 6.2, the
grid resolution in the near-wall region is very high. Such a high resolution is necessary
since the air flow in the near-wall region is modeled with Low Reynolds Number Modeling
(LRNM) in this study, which explicitly solves the flow in the boundary layer, unlike wall
functions which represent the flow in the near-wall region with semi-empirical functions. In
the near-wall region, where sharp gradients in the flow-field are expected, LRNM requires
a high grid resolution i.e. yw+ ≈ 1, where yw+ is the y+ value at the wall-adjacent cell
center and is defined as yw+ = (τw/ρ)1/2yw/ν and yw is the wall-normal distance from
the cell center of the wall-adjacent cell to the wall. In the precursor simulations, the
yw

+ values for all the wind speeds in this study was determined to be around 1, thereby
justifying the selection of LRNM.
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Figure 6.1.: The computational domains (not to scale) and boundary conditions used for
(a) the two-dimensional precursor simulations and (b-d) the three-dimensional
PA simulations. The three-dimensional view of the PA simulations domain
is given in (b) while the top and side views of (b) are given in (c) and (d)
respectively. The PA scan in (b) is represented by the hatched region in (c)
and (d).
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Figure 6.2.: Computational grid of the near-wall region, shown at the plane z = 25mm
(breadthwise centerplane of PA).
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At x = 0 (see Fig. 6.1), a uniform inlet velocity is imposed. This leads to a flow with
strong boundary layer development at the region of interest i.e. the vapor source domain,
similar to real world conditions. Free stream air speeds (Uin) of 0.1, 1.5 and 10 m/s are
used in this study. These speeds correspond to bulk Reynolds numbers (Reb = UinLs/ν) of
1.2×103, 1.8×104 and 1.2×105 respectively. The corresponding channel Reynolds numbers
(Rec = UinHc/ν) are 3.3×102, 5×103 and 3.3×104. Zero static pressure is imposed at the
outlet. At the upper and lower boundaries, no-slip (for airflow) and no-flux (for scalar
transport) conditions are imposed, which implies that the air velocity is zero at these
boundaries and that these boundaries are impermeable to scalar transfer. In the 2D
precursor simulations, the flat plate is also imposed with a no-slip condition for airflow
whereas for the scalar transport, the plate is the scalar source. Similarly, in the 3D PA
simulations, a no-slip condition is imposed at the PA domain and it also acts as the scalar
source. Furthermore, in the 3D PA simulations, symmetric boundary conditions (slip
walls) are imposed at the lateral faces which implies that the normal velocity component
and normal scalar gradients at these boundaries are zero. It should be noted that the
walls are modeled with zero surface roughness in this study.

The difference between the precursor and PA simulations is that the level of the scalar
source in PA is a variable input parameter in the latter case, as shown schematically
in Fig. 6.1(d). The different levels of scalar source essentially represent the different
free water surfaces in a PA filled with water. In this study, the scalar source levels are
y = −0.13mm, y = −15mm and y = −29mm. In a physical sense, these levels represent
the states, respectively, that PA is almost fully saturated with water, PA is half-full with
water (in terms of the free water height) and PA is almost dry. In this study, water vapor
transport is modeled as a passive scalar transport, which implies that airflow influences
scalar transport but not vice versa. The scalar parameter that is used in this study is
the mass fraction of water vapor in dry air, c [kg/kg]. As the scalar source represents the
free water surface, all cells at the scalar source have a uniform value of cin = 0.015 kg/kg,
which is the saturated water vapor mass fraction at 20 ◦C and atmospheric pressure. At
the upper domain, the incoming air is assumed to be dry i.e. ce = 0 kg/kg at the inlet of
the upper domain.

6.2.2 Governing equations

The air flow field is solved with the single-phase, steady state, incompressible Reynolds-
averaged Navier-Stokes equation:

Uj
∂Ui
∂xj

= −1
ρ

∂P

∂xi
+

∂

∂xj

(
µ

ρ

∂Ui
∂xj

)
+
∂
(
−u′iu′j

)
∂xj

, (6.1)



144 cfd modeling of airflow and vapor transport in pa

with the mass continuity equation:

∂Ui
∂xj

= 0, (6.2)

where U [m/s] is the air velocity, P [Pa] is the static pressure and ρ [kg/m3] is the air
density. The last term in eq. (6.1) is the Reynolds stress term, which is often defined
in terms of known (averaged) quantities. One such approach is to define the Reynolds
stresses in terms of the Boussinesq hypothesis which yields a simple relationship between
Reynolds stresses and velocity gradients through the eddy viscosity. Although there are
many eddy viscosity models used in turbulence modeling, the most common approach,
and the one adopted in this study, is the two-equation k-ε model, in which turbulence is
described by means of two partial differential equations (PDEs). The first transported
variable determines the energy in the turbulence and is called turbulent kinetic energy,
k. The second transported variable is the turbulent dissipation, ε, which determines the
rate of dissipation of the turbulent kinetic energy. The equations for the two terms can be
written as:
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where the eddy viscosity µt and the term S are defined as:

µt = ρCµ
k2

ε
, (6.5)

S =
1√
2

(
∂Ui
∂xj

+
∂Uj
∂xi

)
. (6.6)

In this study, the Launder-Sharma constants (Launder and Sharma 1974) are used in the
above equations i.e. σk = 1.00, σε = 1.3, C1ε = 1.44, C2ε = 1.92 and Cµ = 0.09.
Once the air flow field is obtained, the turbulent water vapor transport is solved with

the convection-diffusion equation:

∇ · (Uc)−∇ · ((DM + νt/Sct)∇c) = 0, (6.7)

where c is the transported scalar, DM (2.5×10−5 m2/s in this study) is the molecular
diffusion coefficient of water vapor in dry air, νt [m2/s] is the turbulent air viscosity and
Sct (0.7 in this study) is the turbulent Schmidt number. From eq. (6.7), it can be seen
that the enhanced diffusion of vapor in air due to turbulence is taken into account using
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the parameter νt/Sct. Vapor absorption in PA is known to be negligible and is therefore
not taken into account.

6.2.3 Numerical simulation

The simulations are performed with the open source CFD package OpenFOAM (Weller
et al. 1998). The numerics are implemented in OpenFOAM with the Finite Volume Method
on an unstructured grid. The computational grid is generated with the unstructured grid
generator ’SnappyHexMesh’ which is pre-installed in OpenFOAM. The SnappyHexMesh
code is able to import the STL format of the three-dimensional X-ray µ-CT scan of PA.
The air flow field is solved with the solver ’simpleFoam’ while scalar transport is solved
with the solver “simpleScalarFoam”, which takes into account turbulent diffusion. As
already stated, steady Reynolds-averaged Navier-Stokes (RANS) k-ε model with LRNM
for the near-wall region is used for turbulence modeling. Specifically, the Launder-Sharma
LRNM model (Launder and Sharma 1974) is used in this study. The accuracy of the used
turbulence model is verified with precursor simulations (see Section 6.3.1). The SIMPLE
algorithm is used for pressure-velocity coupling. Second-order discretization schemes are
used at all stages.

6.3 results and discussion

6.3.1 CFD validation with convective scalar transfer from a flat plate

The accuracy of the turbulence model used in this study i.e. RANS k-ε with LRNM for
the boundary layer, is assessed by comparing the simulation results of convective scalar
transport from a linear scalar source placed flushed in a 2D channel (Fig. 6.1(a)) with
analytical functions. Since there is no analytical correlation for convective mass transfer
from a flat plate placed in a developing, rectangular channel (internal) flow, the nearest
case is considered i.e. a developing, external flow on a flat plate. For a flat plate subjected
to a developing external flow, the convective mass transfer coefficient (CMTC), hm[m/s],
can be expressed as a function of the distance from the leading edge (x = 50mm), xL, as
(Kothandaraman 2004):

hm (xL) =
ShxDM

xL
=


0.332RexL

1/2Sc1/3DM
xL

, Reb < 5× 105

0.0296RexL
4/5Sc1/3DM
xL

, 5× 105 < Reb < 108
(6.8)

where RexL = UinxL/ν and Shx is the Sherwood number. From the CFD simulations,
CMTC is calculated at a wall-normal distance of y = 0.5mm from the wall with the
following equation (Bergman et al. 2011):
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hm (xL) =
DM (cin − cxL)
(cin − ce)y

. (6.9)

The comparison of the analytical functions with the results from the CFD simulations
is shown in Fig. 6.3 for three wind speeds. The local CMTC is normalized with the
average CMTC at that wind speed while the distance from the leading edge of the flat
plate is normalized with the total length of the flat plate. It can be seen that the CMTC
calculated from simulations at the two lower wind speeds, 0.1 and 1.5 m/s, agree well with
the laminar CMTC correlation while the CMTC calculated from the simulation at the
highest wind speed, 10 m/s, agrees well with the turbulent CMTC correlation. For the 10
m/s wind speed case, the simulated CMTC shows some divergence from the correlation
near the leading edge. However, the divergence lasts only over a very short distance
and there is excellent agreement thereafter. While the two Reb at the two lower wind
speeds (1.2×103 and 1.8×104) clearly fall in the laminar region according to eq. (6.8),
Reb=1.2×105 at the highest wind speed is much closer to the transition region. Indeed,
previous studies (Ghalichi et al. 1998) have shown that LRNM is an efficient method to
model flows where both laminar and transitional/turbulent flows coexist. Furthermore,
the good agreements also attest to the quality of the grid near the wall since LRNM, as
mentioned earlier, is a grid-intensive method as compared to wall functions.

6.3.2 CFD simulation of convective scalar transport from PA

6.3.2.1 Integrated scalar flux at the air-material interface

Convective mass transport from PA at the air-material interface at different wind speeds
and scalar source levels is analyzed in this section. Simulations are performed for three wind
speeds and for three different levels of scalar source, as shown in Table 6.1. Additionally,
pure diffusion simulations are also performed in which there are no wind flows, and thereby
no forced convection. The pure diffusion simulations are discussed in detail in Section
6.3.2.5. In Table 6.1, the integrated total scalar flux, Jy [m/s], along the y (interface-
normal) direction, as measured close to the PA surface at y = −0.05mm, is also given
and is calculated as:

Jy = JD,y + JC,y = −∇cy
(
DM +

νt
Sct

)
+ Uyc, (6.10)

where the total scalar flux is the sum of the diffusive scalar flux, JD,y [m/s], and the
convective scalar flux, JC,y [m/s]. From the CFD simulations, the integrated total scalar
flux is calculated as the area-integrated flux at all the cells in the plane y = −0.05mm:
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Figure 6.3.: Comparison of CFD simulations of convective scalar transfer from a flat plate
in a rectangular channel (RANS k-ε and LRNM model) with the analytical
expression, computed for three wind speeds. The CMTC is normalized with
the average CMTC at that wind speed while the distance from the leading
edge of the flat plate is normalized with the total length of the flat plate.



148 cfd modeling of airflow and vapor transport in pa

Table 6.1.: Total interface-normal scalar flux measured at the air-PA interface during pure
diffusion (no wind), forced convection at different wind speeds and different
scalar source levels

Jy =

n∑
i=1

Jy,iAi

n∑
i=1

Ai

, (6.11)

where n is the total number of cells in the plane and A is the cell area.
It can be seen from Table 6.1 that the total flux for a given wind speed decreases with

increasing depth of the scalar source level. This decrease becomes sharper as the wind
speed increases. In other words, while convective transport at the upper part of the
specimen becomes stronger at higher wind speeds, convective transport within the lower
part is not affected significantly by an increase in the wind speed. This is confirmed by
the fact that the order of magnitude of the total flux remains the same for all three wind
speeds when the scalar source is at y = −29mm. These observations give a first indication
of an important trend that will be analyzed in detail below i.e. the low influence of wind
speed on scalar transport below a certain specimen depth. In Fig. 6.4, the integrated total
scalar flux is split into integrated convective and diffusive fluxes for all the simulations
listed in Table 6.1. The integrated convective and diffusive fluxes are also calculated based
on eq. (6.11). Isolating the diffusive and convective components of the total flux provides
an insight into the individual roles of the two major mechanisms of vapor transport i.e.
diffusion of vapor from the bottom of the specimen to the air-material interface purely
due to concentration gradients, and the transport of vapor due to momentum exchange
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Figure 6.4.: Integrated convective scalar flux (JC,y) and diffusive scalar flux (JD,y)at the
surface of the specimen, along the interface-normal direction, for different
wind speeds and scalar source levels.
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from the wind. In reality, these two components are not completely uncoupled, an aspect
that is investigated in more detail in Section 6.3.2.5.

A few key observations can be made from Fig. 6.4. While the convective flux increases
with wind speed at all scalar source levels, the diffusive flux does not show a clear trend.
At all wind speeds, the strongest flux at the specimen surface is the diffusive flux when the
scalar source is at y = −0.13mm. This is because of the proximity of the measurement
plane i.e. y = −0.05mm, to the scalar source plane and the resulting strong scalar
concentration gradients near the measurement plane. The most important observation,
however, is that for a given wind speed and scalar source level, the convective flux is
stronger than the diffusive flux only when the wind speed is 10 m/s, and the scalar source
levels are y = −15mm and y = −29mm. This implies that at normal environmental
wind speeds, which are considerably less than 10 m/s, vapor diffusion through the PA
layer will be the most important factor influencing the drying of a wet layer. In general,
due to the large pore sizes in PA, vapor transport to the surface is expected to be more
dominant than capillary transport of water to the surface, and the observations from Fig.
6.4 indicate that this vapor transport is driven by diffusion for wind speeds much lower
than 10 m/s.

6.3.2.2 Air flow-field and scalar distribution in PA

In this section, the main conclusions drawn from Table 6.1 and Fig. 6.4 are visualized
with scalar distribution plots at the scalar source levels y = −15mm and y = −29mm.
Figure 6.5 shows the scalar distribution at y = −15mm and Fig. 6.6 shows the scalar
distribution at y = −29mm for the three wind speeds. A comparison of Figs. 6.5 and 6.6
gives the reader an idea of how the scalar source levels are specified in the simulations.
Essentially, the lower (PA) domain is cut at the desired scalar source level and the cells in
the resulting intersection of the cut plane and the PA cross-section are specified as the
scalar source cells. Therefore, the depth of PA given in Fig. 6.5 is half of that given in
Fig. 6.6 i.e. when the scalar source level is y = −29mm, scalar distribution in the entire
specimen, whose total height is 30 mm, is solved, whereas when the scalar source level is
y = −14mm, scalar distribution in only half of the specimen (in the vertical direction) is
solved since bulk water is assumed to occupy the other half.

In Figs. 6.5 and 6.6, strong gradients in scalar distribution from the source plane to the
top surface of the specimen can be seen, which attests to the high material resistance to
vapor diffusion. Although it is seen from Table 6.1 that the overall effect of a higher wind
speed is to enhance vapor diffusion, from Figs. 6.5 and 6.6, it can also be observed that
a higher wind speed also enhances the spatial distribution of vapor within the specimen.
This can be seen for instance in pores A, C and D in Fig. 6.5 and pores B and C in
Fig. 6.6, where the scalar concentration increases with increasing wind speed. However,
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Figure 6.5.: Scalar distribution in PA at different wind speeds (Uin) when scalar source
level is y = −14mm.

in pores such as pore B in Fig. 6.5 and pore A in Fig. 6.6, the reverse phenomenon is
observed i.e. decreasing scalar concentration with increasing wind speed.

6.3.2.3 Convective and diffusive fluxes along the air-material interface

In this section, the convective and diffusive fluxes along the air-material interface are
investigated. The fluxes are plotted as a function of the (normalized) distance from the
leading edge of the specimen, as shown in Fig. 6.7. Similar to Fig. 6.4, the fluxes in Fig.
6.7 are also measured at y = −0.05mm, but with the important distinction that these
are not fluxes integrated over the entire plane. Instead, each point in Fig. 6.7 represents
the average convective or diffusive flux at all the cells at a particular xL/L value. This
makes it possible to analyze not only the magnitude but also the sign of the fluxes in the
interface-normal direction. In Fig. 6.7, graphs are presented in rows arranged per scalar
source levels and in columns per wind speeds. The decrease in fluxes with decreasing wind
speeds and increasing scalar source depth is also reflected in the y-axis range of the figures.
While the diffusive flux is always positive as −∂cy

/
∂y is always positive, the convective

flux is negative at quite a few positions along the interface, especially at the two higher
wind speeds. This indicates air penetration into the specimen even at a wind speed of 1.5
m/s. However, as already observed from Fig. 6.4, the convective fluxes become stronger
than the diffusive fluxes only when the wind speed is 10 m/s and the scalar source levels
are y = −15mm and y = −29mm. In all other cases, the clear dominance of diffusive
fluxes can be observed.
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Figure 6.6.: Scalar distribution in PA at different wind speeds (Uin) when scalar source
level is y = −29mm.
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Figure 6.7.: Convective and diffusive interface-normal fluxes at the air-material interface
as a function of the distance from the leading edge. Rows represent the three
scalar source levels while columns represent the three wind speeds. Note the
different scales of the y-axis.
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6.3.2.4 Visualization of air flow-field and scalar distribution in pores near the air-material
interface

Porous asphalt is a material that has large pores throughout its structure, including large,
connected pores near the surface. In the event of low air entrainment in the specimen, the
air flow-field in these surface pores can influence the convection and diffusion of vapor in
the entire specimen since the vapor pressure at pores across the specimen is influenced by
the rate at which vapor is convected from these pores. Therefore, in this section, the air
flow-field and scalar distribution in two types of pores at the air-material interface are
analyzed. The first type of pore, called here a ’cavity’ pore, resembles a cavity while the
second type of pore, called here a ’connected’ pore, is actually a pore system in which
two pores near the surface are connected to each other through a throat underneath the
surface, forming somewhat of a U-shape. The air flow-field and scalar distributions in one
chosen cavity pore and one connected pore are shown in Figs. 6.8 and 6.9 respectively, for
the three wind speeds tested in this study. While the left column of the figures show the
scalar distribution in the concerned pore, the right column of figures show the streamlines
of the air flow-field within the same pore. The scalar source is at y = −15mm in both
the plots since this configuration shows a direct dependency of scalar transport on the
wind speed, according to Table 6.1. The maximum legend value for the velocity field is
chosen to be an order of magnitude lesser than the respective bulk wind speed to optimally
visualize the full range of velocities inside the pore.

The complex roughness of the air-material interface is clearly evident from Figs. 6.8
and 6.9. Sharp gradients in scalar concentration within the same pore can be observed.
Air entrainment can be observed in both pore types at all three wind speeds. In Fig. 6.8,
vortices can be seen in the cavity pore at all the three wind speeds. However, a surprising
result from Fig. 6.8 is the comparatively lower scalar removal from the cavity pore at
Uin = 10m/s as compared to that at the two lower wind speeds. This is because at this
wind speed, the clockwise vortex occupies the entire pore space by which it actually closes
the entire pore, and not a part of it like in the two lower speeds, and thereby blocks the
scalar exchange at the air-material interface.

In contrast, in case of a connected pore, the removal of scalar steadily increases with
increasing wind speed, as shown in Fig. 6.9. The connecting pore under investigation, its
inlet and its outlet are marked in Fig. 6.9. Air entrainment at the inlet of the connected
pore as well as air exit from the outlet can be clearly seen in Fig. 6.9. Unlike in the cavity
pore, large vortices are not observed in the connected pore at any wind speed. At the
highest wind speed, momentum transfer from air entrainment into the pore appears to be
the driving force for removal of the scalar. This could be an important reason why the
integrated total flux increases with increasing wind speed when the scalar source is at
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y = −15mm, as shown in Table 6.1. The effect of air entrainment into the pore space on
scalar removal is quantitatively investigated in the next section.

6.3.2.5 Effect of air entrainment into the pore space on scalar convection

The important question of air entrainment into PA and its effect on scalar transport
was touched upon briefly in the previous sections. In this section, this phenomenon is
investigated in more detail with six additional simulations. These additional simulations
are similar to the simulations presented so far except for one condition: scalar transport
within the specimen is governed solely by diffusion. This is ensured by specifying zero
velocity field within the specimen, although there is still airflow above the specimen. This
implies that although diffusion within the specimen is enhanced by the airflow above,
there is no enhancement of scalar transport within the specimen from the additional
momentum transfer provided by air entrainment into the specimen, a phenomenon which
was clearly seen in Fig. 6.9. Figure 6.10 presents the interface-normal fluxes measured
at the air-material interface for three bulk wind speeds (0.1, 1.5 and 10 m/s) and two
scalar source levels (-15 and -29 mm), with and without air entrainment into the specimen.
Similar to Figs. 6.4 and 6.7, the fluxes are measured at y = −0.05mm.

From Fig. 6.10(a), it can be observed that when the scalar source level is y = −15mm,
air entrainment into the specimen does not have any significant influence on the total flux
at the lowest wind speed i.e. Uin = 0.1m/s, as the magnitude of fluxes in both cases
(with and without air entrainment) are similar, an observation which can also be made
from Table 6.1. For the same scalar source level, at Uin = 1.5m/s, the total scalar flux
is considerably higher when air entrainment is considered, as seen in Fig. 6.10(b), and
at Uin = 10m/s, air entrainment makes an even higher impact on the total flux, as seen
in Fig. 6.10(c) and Table 6.1. When the scalar source level is y = −29mm, the fluxes
at the two lower wind speeds and the no entrainment case are similar, as can be seen in
Fig. 6.10(d-f) and Table 6.1. At the highest wind speed, flux values are higher for both
scalar source levels when compared to the simulations with no air entrainment, as can be
seen from Table 6.1. Additionally, from Fig. 6.10(f), it can be seen that at xL/L = 0.6,
air entrainment has a large influence on scalar transport. However, as seen from Table
6.1 and Fig. 6.10(f), the influence of air entrainment on scalar transport at the highest
wind speed is clearly much lower when the scalar source level is y = −29mm, compared
to its influence when the scalar source level is y = −15mm. This is because the positive
influence of air entrainment on scalar transport is restricted to the upper region of the
specimen, and therefore, the larger the depth of the scalar source level within the specimen,
the smaller is the contribution of air entrainment to the total scalar transport from the
specimen. In other words, at larger depths of the scalar source level, the scalar has to
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Figure 6.8.: Scalar distribution (left) and streamlines of the air flow-field (right) in a cavity
pore at the air-material interface for bulk wind speeds 0.1 m/s, 1.5 m/s and
10 m/s. The scalar source (not shown) is at y = −15mm.
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Figure 6.9.: Scalar distribution (left) and streamlines of the air flow-field (right) in a
connected pore at the air-material interface for bulk wind speeds 0.1 m/s, 1.5
m/s and 10 m/s. The scalar source (not shown) is at y = −15mm.
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Figure 6.10.: Interface-normal fluxes at the air-material interface as a function of the
distance from the leading edge, with and without air entrainment into the
specimen. Rows represent the two scalar source levels while columns represent
the three wind speeds. Note the different scales of the y-axis.

travel a longer distance within the specimen and therefore, due to high material resistance,
the flux near the top surface becomes lower, as was already observed in Fig. 6.4.

6.4 conclusions

In this chapter, convective passive scalar transport in an actual porous asphalt (PA)
specimen, reconstructed from a three-dimensional X-ray µ-CT, is simulated using CFD.
The motivation behind this study is to analyze the influence of airflow on water vapor
removal from a wet PA material. Two-dimensional precursor simulations, in which the PA
specimen is substituted with a flat plate, are performed to select the appropriate turbulence
model. The precursor simulations yield a good agreement between the analytical and
simulated convective mass transfer coefficients for a flat plate subjected to channel flow,
by using the k-ε turbulence model with low Reynolds number modeling (LRNM) for
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the boundary layer. Three-dimensional simulations are used to study convective scalar
transport in PA at three wind speeds, 0.1, 1.5 and 10 m/s, and three depths of scalar
source, -0.13, -15 and -29 mm, within the specimen.

The most important results from the simulations are:

1. Only the highest wind speed has some influence on the total vapor flux measured at
the interface. This is because small increases in wind speed only enhances scalar
transport within the upper region of the specimen. At the highest wind speed, air
entrainment in pores near the air-material interface plays an important role in scalar
removal. At lower speeds, diffusion is the dominant transport mechanism and hence,
the contribution of air entrainment to the overall convection rate is not significant.

2. At a wind speed of 1.5 m/s, which is close to normal environmental wind speeds, the
diffusive vapor flux at the air-material interface is always higher than the convective
flux, irrespective of the vapor source level within the specimen.

3. At a wind speed of 10 m/s, the formation of strong vortices in a cavity-type pore at
the air-material interface may inhibit vapor removal from that pore by recirculating
the scalar within the pore. However, at the same wind speed, vapor transport in
a connected-pore (a pore system that has both inlet and outlet connected to the
interface) is found to be very strong due to strong air convection.

4. Although higher wind speeds and consequently stronger convection generally lead to
lower vapor concentration within PA, it is observed that higher wind speeds increase
vapor concentration in some pores. This is due to the stronger distribution of vapor
within the specimen at higher wind speeds.

5. The scalar source level within PA is assumed to be constant in this study. In reality,
liquid distribution within the specimen is will have a more complex configuration.
Nevertheless, this study shows the trends to be expected in real conditions.

6.5 synthesis

The chapters presented so far have provided elaborate insights into fluid flow in porous
asphalt. While Chapters 3 and 4 provided a comprehensive understand of liquid flow in
PA under different environmental loads, Chapters 5 and 6 focused on airflow and vapor
transport within and above a PA layer. In the next chapter, the observations made so far
on liquid and vapor transport in PA are used to model gravity-drainage and drying in PA
using pore network modeling and continuum modeling.





7
PORE NETWORK MODELING OF DRAINAGE AND DRYING OF
WATER IN POROUS ASPHALT

7.1 introduction

The experiments and simulations presented in the previous chapters have provided a
comprehensive understanding of the drainage and drying processes in porous asphalt.
While gravity-driven drainage is observed to be the most important contributor to liquid
water loss, significant moisture loss also takes place due to drying. Therefore, in this
chapter, the insights gained from previous chapters are used to develop pore network
models of drainage and drying in PA. In essence, the three-dimensional pore space of PA is
represented as a simplified, while equivalent, network of large pores connected by narrow
throats and two-phase flow simulations are performed on this three-dimensional network.
In this chapter, first, the fundamentals of modeling two-phase flow in pore networks are
presented, followed by a description of the governing equations of the drainage and drying
algorithms used in this study. Thereafter, the extraction of pore networks from X-ray
µ-CT scans of PA specimens is described. The results of the pore network simulations on
PA are then presented, followed by an upscaling to continuum modeling. The pore network
simulations in this study are performed with self-written modules developed within the
framework of the open source pore network modeling code OpenPNM (Gostick et al. 2016),
which is written in Python with Scipy.

7.2 fundamentals of pore network modeling with corner films

A pore network consists of representing the larger pores in the medium as a set of nodes,
and the smaller pores connecting these larger pores as a set of links or throats. Typically, a
pore network is extracted from three-dimensional scans of materials after the segmentation
of the pore space using techniques such as skeletonization (Al-Raoush and Willson 2005)
and watershed method (Beucher and Meyer 1992). Physical properties such as volume,
conductance etc. are then applied to these elements i.e. pores and throats. A pore network
model can either be a structured network, where the elements are arranged along a regular
grid e.g. a cubic lattice, or an unstructured network, where they are arranged in a highly
irregular manner. Various cross-section shapes such as circle, square, triangle and even
irregular polygons have been used for pores and throats. In Fig. 7.1, the representation of

161



162 pore network modeling of drainage and drying in pa

Figure 7.1.: Schematic representation of part of an irregular pore space (in red). First, the
pores and throat are represented with the largest circle that can be fitted inside
them. A circumscribed equilateral triangle is then fitted around the circle.
Pores are connected with a throat having triangular (not shown) cross-section.
The radius of the inscribed circle is considered as the pore/throat radius while
the distance between the two triangular pores is the throat length.

an irregular pore space with a triangular pore and throat cross-sections is shown, since
triangular pores and throats are used for the simulations in this study. The pores are
characterized by the inscribed radius r0, the radius of the largest incribed sphere within
the triangular cross-section, while the throats are characerized by the incribed radius and
its length, l.

Many studies have shown that the pore shapes of real porous media are highly irregular
and non-circular, and that during two-phase flow, the wetting phase occupies the pore
corners while the non-wetting phase occupies the pore center, as shown schematically
in Fig. 7.2 for a triangular pore. The films of wetting fluid formed at pore corners are
referred to as arc menisci (AMs). The radius of curvature of an arc meniscus, rnw, is also
shown in Fig. 7.2.
Once the pore space is defined and phase areas within each element are calculated at

a given stage of drainage/drying, fluid flow rates through the network are computed by
defining a conductance for each phase at all throats. The conductance of a phase within
a throat is dependent on the throat’s shape, dimensions and the phase area within it.
Conductances can be defined using various methods such as assuming Poiseuille’s flow
for specific geometric configurations, volume averaging (Darcy’s law), analytical solutions
(Mason and Morrow 1991) and computation with direct numerical simulations (Marcke
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Figure 7.2.: Schematic representation of arc menisci in an equilateral triangle during
two-phase flow. The radius of curvature of an arc meniscus rnw is also given.

et al. 2010). The conductance of a throat is often defined as the harmonic mean of the
local conductances of the throat itself and of the two pores connected to it. For instance,
for the configuration shown in Fig. 7.1, the total conductance of a phase p is defined as:

gthroat,p =
1

1
gi,p

+ 1
gj,p

+ 1
gij,p

, (7.1)

where gi,p, gj,p and gij,p are the local conductances of the phase p in the two pores and
the throat connecting them, and are defined in eqns. (7.10) and (7.11). Thereafter, the
local pressures of each phase at all pores in the network are calculated by solving a linear
system of equations resulting from the imposition of mass conservation condition at all
pores i.e. the fluxes entering a pore are equal to the fluxes leaving the pore. For a pore
system with a notation of the configuration as in Fig. 7.1, the flux of the phase p between
the two pores, qij,p, is calculated as:

qij,p = gthroat,p (Pi,p − Pj,p) , (7.2)

where Pi,p and Pj,p are the local pressures of the phase at the pores and µp is the dynamic
viscosity of the phase. When the local pressure of the phase at each pore is known, the
fluxes entering and leaving the entire network can be determined as:

qnetwork,p = −
∑

i∈inlet
gin−i,p (Pi,p − Pin,p) = −

∑
i∈outlet

gin−i,p (Pout,p − Pi,p). (7.3)

Macroscale properties such as fluid permeability, Kp[s], can now be calculated for a certain
direction as:
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Kp =
µpqnetwork,p L

A (Pout,p − Pin,p)
, (7.4)

where A is the normal cross-section area of the network and L is the network length.
Additionally, various parameters such as relative permeability, drainage rate, drying rate,
capillary pressure curves etc. can also be calculated from pore networks once the pressures
and fluxes are known. These parameters are often calculated as a function of the total
moisture content in the network. At a given liquid configuration, there is a mixture of
saturated and unsaturated pores and throats in the network. Since eqns. (7.1) - (7.5) are
defined for each phase, the aforementioned parameters can be calculated for each phase as
a function of the total moisture content.

7.3 drainage and drying algorithms with governing equations

7.3.1 Modeling gravity-driven drainage with invasion percolation

In this study, gravity-driven drainage is modeled as an invasion percolation (IP) process
in the pore network (Wilkinson and Willemsen 1983). While the standard percolation
theory (Broadbent and Hammersley 1957) is used to represent fluid flow as a result of the
randomness in both the fluid motion as well as the medium through which it is flowing,
invasion percolation theory describes the invasion of one fluid through the displacement
of another, along the path of least resistance. Although IP was originally introduced as
an algorithm for low capillary number, capillary-fingering dominated flow, IP has also
been used to simulate gravity-destabilized flows (Meakin et al. 1992) by accounting for
the decrease in air entry pressure due to gravity. IP is a quasi-static process in which
microscopic fluid distributions are frozen at each capillary pressure or saturation level.
Viscous and buoyancy effects are neglected. Initially, the network is fully saturated with
water. Air then displaces water from pores and throats along the path of least resistance.
In other words, during drainage, air is the invading phase and water is the defending
phase.

The classic IP algorithm is already implemented in the standard version of OpenPNM.
However, in the classic version, unsaturated flow and the effect of gravity are not consid-
ered. Therefore, in this study, the classic IP algorithm is modified to take into account
unsaturated flow and the effect of gravity, and proceeds as follows:

1. At each step, a list of pores and throats is made such that both types of element are
accessible to the invading phase and belong to a water cluster that is connected to
the outlet. Water clusters not connected to the outlet cannot drain and remain as
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water islands at the end of the drainage process and form part of the initial liquid
configuration at the beginning of drying.

2. The list is sorted in ascending order of the threshold or entry capillary pressure (Eq.
7.5), ptc, of the pores and throats.

3. The element or elements with the lowest ptc is then invaded with air.

4. The invaded elements have two-phase flow i.e. air at the pore or throat center and
water at the corners. The surface areas of air at the center and water at the corners
depends on the system capillary pressure, as explained next in Eqs. (7.6) and (7.7).
The conductances of air and water phases (below in Eqs. (7.10) and (7.11)) are then
computed.

5. The IP algorithm proceeds until all accessible throats are invaded by air with
increasing capillary pressure. At the end of drainage, the connected films have the
same film radius and the possibility of snap-off (below as per Eq. (7.13)) in the
pores and throats is examined. Subsequently, the pores and throats fulfilling the
criteria for snap-off are refilled with water.

The threshold or entry capillary pressures are calculated using the Mayer and Stowe
(Mayer and Stowe 1965) and Princen (Princen 1969) (MS-P) method, which relates the
radius of arc meniscus to the capillary pressure. At the threshold capillary pressure, air
invades the throat with a fixed curvature and displaces water from the center of the pore
or throat, leaving some water as arc menisci in the corners. The MS-P method equates
the radius of curvature of AMs to the curvature of the invading air-water interface. The
MS-P method is extended here to include the effect of gravity as a second term of pressure.
The values of all parameters in the equations below are given in Sections 7.4 and 7.5. The
threshold pressure, ptc, according to the MS-P method, with the addition of the effect of
the gravity, is:

ptc =

(
γ

r0
cos θr

(
1 + 2

√
πG
)
Fd (θr,G)

)
− ρg∆h, (7.5a)

Fd (θr,G) =
1 +

√
1 + 4GY

/
cos2θr

1 + 2
√
πG

, (7.5b)

Y = π

(
1− θr

60

)
+ 3 sin θr cos θr −

cos2θr
4G . (7.5c)

Here, γ is the air-water surface tension, θr is the receding contact angle, G is the shape
factor of the pore and ∆h is the position of the pore or throat with respect to the lowest
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point in the cluster to which it belongs. If AMs are assumed to be present at all corners,
the function Fd (θr,G) is universal for a given G and Y is only dependent on θr. The
equations given above are based on the principle that if AMs are displaced by a small
distance, the work for the displacement is balanced by the change in surface free energy.
A detailed derivation of the expressions in eq. (7.5) is given by Oren et al. (1998).

Fluid conductances are calculated by assuming Poiseuille flow in each element. For
this to be determined, first the cross-sectional area of the wetting phase (water) in each
element is given by:

Aw = Ncr
2
nw

[ cos θ
sinαc

cos (αc + θ)−
π

2 + αc + θ

]
, (7.6)

where Nc is the number of corners, rnw = γ
/
ptc is the radius of the AMs in the corner,

θ is the receding contact angle and αc is the corner half-angle. The cross-sectional area
occupied by the non-wetting phase (air) in this case is:

Anw = Atot −Aw = 3
√

3r2
0 −Aw, (7.7)

where Atot is the total cross-section area of the element. In the simulations in this study,
an upper limit for the AM radius, rtnw, is imposed according to Wong et al. (1992):

rtnw =
r0
χ

. (7.8)

According to Mason and Morrow (1984), the dimensionless curvature, χ, can be expressed
as a function of the static contact angle, θ, and the critical contact angle, θc = π/Nc, as:

χ = cos θ+ [(θc − θ+ sin θ cos θ)
/
tan θc]1/2. (7.9)

From the wetting and non-wetting phase areas, phase conductances are then calcu-
lated according to Hughes and Blunt (2000). For the non-wetting phase, the diffusive
conductance, gnw [m3/(Pa.s)], of an element is given by:

gnw =
πr4

eff

8µnwl
, (7.10)

where reff =
√
Anw/π+ r2

0

/
2, l is the element length and µnw is the non-wetting phase

viscosity. For the wetting phase, the hydraulic conductance, gw [m3/(Pa.s)], of an element
is given by:

gw =
Awr

2
nw

µwRcl
, (7.11)
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where µw is the wetting phase viscosity. The term is the crevice resistance factor (Hughes
and Blunt 2000; Ransohoff and Radke 1988), which accounts for the effect of corner
geometry and contact angle on the change in the cross-sectional area available for flow, and
therefore the effect of surface shear viscosity on the boundary condition at the gas-liquid
interface. Rc is defined as:

Rc =
12sin2αc(1−B)2 (ψ1 −Bψ2) [ψ3 + fBψ2]

2

(1− sinαc)2B2[ψ1 −Bψ2]
3 , (7.12a)

ψ1 = cos2 (αc + θ) + cos (αc + θ) sin (αc + θ) tanαc, , (7.12b)

ψ2 = 1− θ

π/2− αc
, (7.12c)

ψ3 =
cos (αc + θ)

cosαc
, (7.12d)

B =

(
π

2 − αc
)

tanαc. (7.12e)

The term f is a factor ranging between 0 and 1 depending on the boundary condition at
the fluid interface. In this study, f = 0 as a free boundary is assumed.

Snap-off is a phenomenon that occurs when the arc menisci at the corners of an element
become unstable at a certain threshold capillary pressure, and as a result, they fuse
together and collapse, resulting in the element cross-section becoming filled with the
wetting phase. For a system like PA in which the pore to throat size ratio at certain points
at the network are expected to be large, the phenomenon of snap-off should be considered.
The threshold pressure for snap-off, psc, is given as:

psc =
γ

r0

(
cos θ

/
tan

(
π
2 − 2αc

)
− sin θ

1/ tan
(
π
2 − 2αc

) )
. (7.13)

7.3.2 Modeling drying of residual liquid after drainage with a cluster-based algorithm

After the completion of gravity drainage, two types of liquid configurations can be seen in
the elements of the network. If an element is invaded by air, liquid is present at its corners
as arc menisci, and such an element is referred to as a ’film’ element. If snap-off occurred
in the element, water occupies the entire cross-section area, although the element may or
may not be liquid saturated depending on the height of the liquid region, and such an
element is referred to as ’bulk’ element. Note that the term ’bulk’ element applies only to
liquid-filled elements and not air-filled elements. Therefore, the volume of liquid in a wet
element can be defined as:
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Vlt =

 Vlb + Vlf , for bulk elements
Vlf , for film elements

(7.14)

where Vlb is the volume of liquid in the center (bulk) of the element and Vlf is the volume
of liquid in the corner films (AMs). Drying is assumed to take place only at the top
surface of the network, where a convective mass transfer boundary condition is applied by
specifying the evaporation flux density, e:

e = ρgDM
(ci − c∞)

δ
, (7.15)

where ρg is the gas phase density, ci and c∞ are the water vapor mass fractions at the
top surface and the environment respectively, and δ is the air boundary layer thickness
across which the transfer of vapor from the open surface of the porous medium to the
environment takes place.
In a highly complex pore space such as that of PA, the formation of clusters of liquid

and gas regions is expected during the drying process. Therefore, the next step is to model
the drying of this residual liquid content with a cluster-based drying algorithm, in which
the following assumptions are made:

1. The vapor mass fraction in a pore adjacent to a throat containing liquid is the
equilibrium vapor mass fraction, ce. This also implies that there is no vapor diffusion
within a wet throat.

2. Liquid transport due to capillary forces is neglected. This assumption is based on
the neutron radiography experiments presented in Chapter 4.

3. Since liquid regions are assumed to be hydraulically connected, capillary equilibrium
is assumed. This means that the corner film radius is the same in all the elements
that are part of the same cluster.

4. An element is assumed to be dry when the corner film radius becomes lower than a
threshold value, rnw,min = ηr0, where η is a number less than 1.

5. Viscous effects are neglected.

The drying algorithm developed in this study is in principle similar to the works of
Prat (1993) and Prat (2007). In these works, the liquid stored in films in not explicitly
tracked as the liquid mass in films is considered negligible compared to the overall initial
liquid mass. However, in the drying model developed in this study, the liquid mass in the
films is explicitly tracked. In essence, drying proceeds by first drying the central area of
bulk elements and then proceeds to dry the film elements by decreasing their liquid film
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thickness in a step-by-step manner. Since viscous effects in saturated pores and throats
are neglected, invasion percolation rules can be applied to determine the element that
should be invaded in each cluster (Prat 1993). Although liquid redistribution may occur,
as observed during the neutron radiography experiments described in Chapter 4, such
redistribution is not expected to significantly influence the drying process. Moreover,
fresh PA specimens are considered for the simulations in this chapter, in which liquid
redistribution is expected to be negligible due to a combination of large pores and a
hydrophobic solid matrix. The drying algorithm used in this study was fully implemented
by the author in OpenPNM, although several pre-installed modules are also used e.g. to
calculate macroscopic properties such as relative permeability.

The flowchart of the drying algorithm developed in this study is given in Fig. 7.3 while
the detailed algorithm is as follows:

1. Determine liquid clusters cl present in the network.

2. Determine the radius of the largest element in each cluster i, ri0 max,cl. If the cluster
contains bulk elements, ri0 max,cl is determined considering only the bulk elements.
In other words, the film elements are not considered for determining ri0 max,cl in this
case.

3. Compute the vapor mass fraction field in all the pores in the network.

4. Compute evaporation rate F icl [kg/s] at the boundary of each liquid cluster present
in network by computing the vapor flow through the elements adjacent to the cluster
boundary elements.

5. Determine the evaporation time to either fully dry or dry the center of the element
with the maximum size in each cluster as follows. If a cluster i contains one or more
bulk elements, then ticl = ρlVlb

/
F icl, where Vlb is the volume of the liquid at the center

of the element determined in step 2. Note that a bulk throat becomes a film throat
when the liquid goes from occupying the entire cross-section to becoming films with a
radius of rt/χ. If a cluster i contains only film elements, the procedure is as follows.
Suppose the corner film radius of curvature is rinw,cl (t) in the considered cluster
at time t. Then the volume of liquid V k

lf in each element k of this cluster can be
computed from rinw,cl (t). From this, the mass of liquid present in this cluster can be

computed as mi
cl = ρl

nk∑
k=1

V k
lf . The evaporation time to fully dry the largest element

in the cluster will therefore be ticl =
(
mi
cl

(
rinw,cl (t)

)
−mi

cl

(
ηri0 max,cl

))/
F icl, where

ηri0 max,cl is the radius at which the largest element in the cluster is assumed to be
fully dry.
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6. Set time step as δt = min
(
ticl
)
.

7. In the cluster that has the element which corresponds to min
(
ticl
)
, set to zero the

volume of liquid (Vlt = 0) in the element if it is a film element. Set the volume of
liquid in the element to film volume (Vlt = Vlf ) if it is a bulk element. Note that for
simplicity, the modification of the capillary equilibrium in the cluster due to this
status change is not taken into account in this study.

8. In all other clusters, update the liquid content as follows. If it is a cluster with only
film elements, decrease the film thickness of all elements in the cluster, according to
the mass conservation condition mi

cl

(
rinw,cl (t+ δt)

)
= mi

cl

(
rinw,cl (t)

)
− F icl (δt). If

it is a cluster whose largest element is a bulk element, decrease the liquid volume in
that element by decreasing the height of the liquid free surface while ensuring mass
conservation.

9. Determine the new total liquid mass in the network, m (t+ δt) =
∑
mi
cl.

10. Update time, t = t+ δt.

11. Go back to step 1 until m (t+ δt) = 0. The new iteration proceeds with possibly a
different cluster configuration and a new mass fraction distribution field.
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Figure 7.3.: Flowchart of the drying algorithm developed in this study.



172 pore network modeling of drainage and drying in pa

7.4 pore network extraction from porous asphalt specimens

Pore network simulations in this study are based on PA11 specimens of dimensions
100×100×100 mm3. The three specimens are named PA11(1), PA11(2) and PA11(3). The
PA specimens are imaged in 3D with an X-ray microcomputed tomography (X-ray µ-CT)
setup (µDETECT). In this instrument, the X-ray radiation is generated by a micro-focus
X-ray tube from Finetec (model FOMR 300.03Y RT) operating at an acceleration voltage
of 300 kV and a tube current of 100 µA. A 1 mm thick filtration plate made of copper is
placed in front of the source for hardening the beam. The projection images are acquired
by a flat panel detector from Perkin Elmer (model XRD 1611-CP3) used in its 2×2 binning
mode, corresponding to pixels of 200 µm. An acquisition time of 2.5 s is employed and
a total of 4 frames are averaged per orientation of the sample. The sample is rotated
in 1600 steps around a fixed axis in steps of 0.225◦. The radiographs are corrected for
ring artefacts with adequate image processing techniques. A median filter of radius 3 is
applied to the images, which are then reconstructed using an in house implementation of
the Feldkamp-Davis-Kress algorithm (Feldkamp et al. 1984). The resulting volumes with
a voxel size of approximately 72×72×72 µm3.

The X-ray µ-CT images of the specimens are then thresholded to extract the pore space
of PA. The pore networks are extracted from the thresholded X-ray µ-CT images using
the modified maximal ball algorithm of Dong and Blunt (2009), which is an extension of
the work of Silin and Patzek (2006). The maximal ball (MB) algorithm works by fitting
the largest possible spheres, centered on each air voxel, such that they just touch the
solid boundary. Spheres that are completely inscribed within other spheres are removed
and the remaining spheres are called maximal balls, where the largest maximal balls are
considered as pores and the smaller balls between them are considered as throats. In Fig.
7.4, the irregular pore network generated from a small region of interest of 30×30×30
mm3 from PA11(1) is visualized. In Fig. 7.5, the pore size distributions (PSD) and throat
size distributions (TSD) of the 100 mm cubes of PA11(1), PA11(2) and PA11(3) are given,
as estimated with the MB algorithm. The MB algorithm showed instabilities for datasets
larger than 85×85×85 mm3 and therefore, the actual pore networks are generated from a
volume of 85×85×85 mm3 from the center of the specimens. Additionally, extracting the
pore network from the center of the specimens prevents the presence of unrealistically large
pores in the generated pore network and also helps to avoid the edge effect issues that are
commonly encountered in pore network extraction. Although the MB algorithm generates
an unstructured pore network, structured pore networks (cubic lattices) generated using
the Weibull fit parameters estimated from Fig. 7.5 are used for the simulations in this
study.

Weibull probability distribution function is often used to model the pore space character-
istics of porous media (Kuttanikkad et al. 2011; Neithalath et al. 2010). The histograms in
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Figure 7.4.: Extraction of pore network, using the Maximal Ball algorithm (Dong and
Blunt 2009), from an X-ray µ-CT scan (a slice of the scan is shown on the
left) of a region of interest of 30×30×30 mm3 of the specimen PA11(1).

Figure 7.5.: Histograms of pore size distribution (PSD) and throat size distribution (TSD)
of specimens PA11(1), PA11(2) and PA11(3) fitted with a two-parameter
Wiebull distribution (red curve). The scale (α) and shape (β) parameters of
the fit are given in the respective figures.
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Fig. 7.5 are fitted with a two-parameter Weibull probability distribution function (PDF),
which is given by the red curve in the figure. The two-parameter Weibull PDF is defined
as:

f(d0;α,β) =

 β
(
d0
β−1

αβ

)
exp

(
−(d0/α)β

)
, d0 ≥ 0

0 , d0 < 0
(7.16)

In Eq. (7.16), d0 is the pore diameter while α and β are the scale and shape parameters,
respectively, of the Weibull distribution. The scale parameter defines the width of the
distribution while the shape parameter, as the name implies, defines the shape of the
distribution. The values of the shape and scale parameters of the Weibull curves in Fig.
7.5 are also given in the respective figures. The next step is to quantitatively assess
whether the data is adequately captured by the Weibull distribution. This is done by
means of a probability plot, in which the cumulative distribution function (CDF) of the
distribution, whose scale and shape parameters are determined from the histogram fits, is
plotted against the data points in a log-log plot. If the data points are predicted well by
the distribution, then these points should overlap with the straight line in the probability
plot, as shown in Fig. 7.6. The ordinate of the probability plots is a rearranged form of
the Weibull CDF, defined by the following equation:

log
[
ln
( 1

1− F (d0)

)]
= β log (d0)− β log (α) . (7.17)

If y = ln (1
/
1− F (d0)) , then log (y) is linear to log (d0) with slope β and intercept

β log (α). This linear relationship is indicated by the red line in Fig. 7.6, along with the
original data (points) from the histograms in Fig. 7.5.

The values of α and β give physical insights into the pore and throat sizes of PA. In a
two-parameter Weibull distribution, α can be interpreted as the value below which 63.2%
of all observations fall, irrespective of the value of β. From Fig. 7.5, it can be seen that
values of α for PSD (≈ 1.1 mm) and TSD (≈ 0.7 mm) are similar between the specimens.
However, a significant number of pores with 2-4 mm diameters and throats with 1-3 mm
diameters are also seen in the specimens. These large pores and throats are primarily
responsible for the excellent drainage properties of PA. From Fig. 7.6, it can be seen that
Weibull distributions accurately predict PSD and TSD of all the three specimens as most
of the data points fall on the straight line of the probability plots. It should be noted that
in a probability plot, data points at low probability values will never fall on a straight line
since the number of data points is finite.

Using the PSD and TSD distribution parameters estimated from Fig. 7.5, a 17×17×17
structured, cubic lattice pore network is generated for all the three specimens. A constant
connectivity of 6 is assumed for all pores. The throats are given a constant length of 5 mm



7.4 pore network extraction from porous asphalt specimens 175

Figure 7.6.: Cumulative probability plots of pore size distribution (PSD) and throat size
distribution (TSD) of specimens PA11(1), PA11(2) and PA11(3), which are
fitted with a two-parameter Wiebull distribution in Fig. 7.5. The red line
indicates the predicted distribution while the points represent the original
data. The scale (α) and shape (β) parameters of the fit are also shown in the
respective figures.



176 pore network modeling of drainage and drying in pa

while the pore length is assumed to be equal to its inscribed circle diameter. The constant
throat length of 5 mm is a realistic assumption since the throat length distribution of all
the three specimens as calculated by the MB algorithm peaks around 5 mm. The final
network has 6647 pores and 15,606 throats, which is roughly similar to the number of
pores and throats calculated by the MB algorithm. Considering that PA has a porosity
of approximately 20%, an 85×85×85 mm3 specimen will have a pore space volume of
123×10−6 m3. This means that the pore space of the generated pore network captures
only 40% of the pore space of a real specimen of similar dimensions. However, it is to be
noted that while the real specimen has many enclosed pores that can never be invaded by
water, all the elements in the pore network can be potentially invaded by water. In other
words, the porosity of PA that is relevant for fluid transport will be much lower than 20%
of the total specimen volume, and therefore the fraction of pore space captured by the
pore network that is actually relevant for fluid transport in much higher than 40%.

Triangular pores and throats are used in the pore network, which implies that αc = 30◦
and Nc = 3. A triangular cross-section is used since arc menisci can exist in an angular
geometry only if θ < π/Nc (Prat 2007). Considering that the solid matrix of a fresh PA
specimen is mainly a hydrophobic structure (θ > 90◦), it is impossible to simulate corner
flow with this contact angle as no angular geometry would satisfy the condition for corner
flow. Therefore, θ = 55◦ is assumed for the simulations as this is the approximate contact
angle between water and the aggregates used in PA (Poulikakos 2011). Given θ = 55◦,
only a triangular geometry satisfies the condition for corner flow. Moreover, the use of
pore shapes such as squares and hexagons will result in a drastic reduction of the pore
network volume as compared to the real specimen. For simplicity, equilateral triangles are
used which implies that the shape factor G = 0.048. The impact of assuming a hydrophilic
contact angle on the simulation results is studied in detail in Section 7.5.3. Furthermore, it
is also assumed that the pore networks do not have a preferential direction, which may not
be the case for real PA layers. A pore network is built for each of the three PA specimens
analyzed above.



7.5 results and discussion 177

7.5 results and discussion

In this section, the results from the simulations of gravity-driven drainage and snap-off,
followed by the results of drying simulations are presented for the three PA11 specimens
described above. An important parameter that acts as a control variable in the simulations
is the proportion of hydrophobic, hydrophilic and dead-end elements in the pore network.
As stated earlier, the contact angle cannot be given a value larger than 60◦, which implies
that all pores are hydrophilic by default. Water existing as films in these hydrophilic pores
are represented as film elements. Hydrophobic pores that are already dry and dead-end
elements that are liquid saturated at the beginning of drying are indirectly introduced
into the network by specifying a certain number of elements as dry and bulk elements
respectively. Ultimately, the proportions of dry, bulk and film elements in the network
determine the residual liquid content and its distribution in the network at the beginning
of drying. Since the real proportion of these element types in PA is not known, for the
drying simulations in this study, the proportions are chosen in such a way that the residual
liquid contents in the pore networks after drainage matches those measured during the
validation experiments which are described in Section 7.5.2.

7.5.1 Gravity-driven drainage and snap-off

Gravity-driven drainage from a fully saturated specimen is simulated using the algorithm
described in Section 7.3.1. Air invades from the top surface of the cubic lattice network
while water exits the network from the bottom surface. Dirichlet boundary conditions of
atmospheric pressure (101325 Pa) are applied at both these surfaces. The four lateral
surfaces are impermeable to both air and water. For simplicity of the invasion percolation
algorithm, the possibility of snap-off is checked only after the entire drainage process is
completed, and all elements satisfying the snap-off criteria (Eq. (7.13)) are refilled with
water. The choice to check for snap-off after drainage is further justified by the fact that
drainage in PA is an extremely fast process, in the order of seconds, while snap-off is a
comparatively slower phenomenon.
The fluid properties used for the simulations, and introduced in Section 7.3, are:

γ = 0.027 N/m, DM = 2.068× 10−5 m2/s, µw = 8.9× 10−4 Pa · s, µa = 1.84× 10−5 Pa · s,
ρw = 997 kg

/
m3 and ρa = 1.184 kg

/
m3, which are standard air and water properties at

23 ◦C. In the drainage results presented in this section, 40% of all throats are randomly
specified to be always saturated. As stated earlier, these elements represent the dead
end and hydrophobic pores in PA that do not drain. The main aim of the drainage
simulations is to study the evolution of capillary pressure as a function of saturation in
three macroporous specimens and to see if they show a similar trend. Therefore, at this
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stage, the exact residual liquid content in the specimens after drainage is not a parameter
of concern, unlike for the drying simulations.

The drainage pattern in the network is visualized in Section 7.6 in which the evolutions of
liquid distribution in the network during drainage with gravity (considered in this section)
and without gravity are compared. In Fig. 7.7, the air and water relative permeabilities of
the three specimens as function of water saturation, Sw, is given. The relative permeability
of a phase at a certain liquid saturation level is defined as the ratio of the effective
permeability of the phase at that saturation level to the absolute permeability of the
material, i.e.:

kr,p =
keff ,p
K

. (7.18)

While the absolute permeability K is an intrinsic material property that is independent of
the fluid type as long as the material is fully saturated with any fluid, relative permeability
depends on both the material structure, the type of fluid and configuration of the liquid
inside the porous medium. From the pore network simulations, the relative permeability
is estimated from the mean pore pressure at the network boundary as:

kr,p =
P̄ pi−1 − P̄

p
i

P̄i−1 − P̄i
, (7.19)

where the subscript i denotes the top or bottom network boundary while i− 1 denotes the
adjacent layer of pores.
The permeability behavior of all the three specimens is found to be similar from Fig.

7.7. While the liquid permeability expectedly decreases sharply with decreasing liquid
saturation, a noteworthy feature is that air permeability does not show an equally sharp
rise. This could be due to the phenomena described as ’compact cluster growth’ by Hughes
and Blunt (2000) and described in detail by Lenormand and Zarcone (1984). Essentially,
the low air permeability even at a low liquid content can be attributed to the phenomena
of trapping. Air entering the network is trapped between clusters of pores that are fully
liquid saturated due to snap-off. As a result, although the air content is high, the network
has a low air permeability as there are few low resistance, continuous air pathways from
inlet to outlet.
Water saturation, Sw, as a function of the capillary pressure, pc, during drainage in

the three specimens is presented in Fig. 7.8. Several models are used in literature to fit
pc − Sw curves, one of which is the van Genuchten (VG) model (Genuchten 1980), and a
modified version of the VG model is used in this study to fit the pc − Sw data:

Sw = (1 + (αV Gpc)
n)(

1−n
n ) + fV G, (7.20)
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Figure 7.7.: Relative permeability of air, kr,a, and water, kr,w, as a function of water
saturation, Sw, for specimens PA11(1), PA11(2) and PA11(3), during drainage
from Sw = 1 to Sw = 0.2.
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Figure 7.8.: Capillary pressure, pc, as a function of water saturation, Sw, for specimens
PA11(1), PA11(2) and PA11(3), during drainage from Sw = 1 to Sw = 0.2.

where αV G = 0.025, fV G = 0.22 and n = 4.6 are the fitting parameters used in this study.
The fit is valid only for pc > 0. The VG fitted curve is also given in Fig. 7.8. It can be
seen that the VG model is able to accurately capture the pc − Sw relation in PA during
drainage, especially the sharp rise in pc towards the end of the drainage process.

From Figs. 7.7 and 7.8, a residual moisture content of around 20% can be seen in all the
three specimens, which is the sum of water in the 40% of throats that are saturated and
the corner films in all other elements. The overall pc− Sw behavior of the three specimens
are largely similar, although PA11(2) exhibits a small divergence at the beginning and
at the end of the drainage process. The shape of the capillary pressure curve is along
expected lines i.e. there is a smooth rise in pc initially, followed by a sharp rise towards
the end of the drainage process as air progressively enters pores that are more difficult
to invade. The smooth rise in pc is usually ignored for simulations of large porous media
like rock beds, as this part is not representative of an infinite medium (Gostick et al.
2006). However, for a material like PA, whose layer thickness is in the order of centimeters,
this part is an intrinsic aspect of the material behavior, and therefore cannot be ignored.
Finally, compared to the magnitudes of pc towards the end of drainage in microporous
materials (e.g. ≈ 106 Pa for sandstone), the corresponding value for PA is seen to be much
lower, which is due to the large pores in PA and the strong influence of gravity.
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7.5.2 Drying of residual liquid and experimental validation

The residual water after gravity-driven drainage in PA is subjected to evaporation using
the drying algorithm described in Section 7.3.2. All the lateral surfaces as well as the
bottom surface of the network is assumed to be impervious. Vapor transfer occurs only at
the top surface of the network, where the effect of the air boundary layer is applied using
Eq. (7.15) i.e. the transfer of vapor from the top surface to the environment is assumed to
take place through a diffusive layer of uniform thickness δ. At temperatures close to 20 ◦C,
δ ≈ 10−4− 10−3m (Prat 2007). In the simulations in this study, δ ≈ 10−3m is assumed, the
implications of which are discussed in detail. Furthermore, the environmental vapor mass
fraction is taken as c∞ = 0.011, which is the vapor mass fraction at a temperature of 23 ◦C
and relative humidity of 65%, the equilibrium vapor mass fraction ce = 0.018, and the film
thickness cut-off factor η = 0.01. The value for η is chosen arbitrarily with the only criteria
that elements are considered dry only if film thickness are small enough to not influence
the drying process in the last stages. The fluid properties are the same as the ones used
for the gravity drainage simulations. Preliminary laboratory experiments performed at 23
◦C showed that temperature gradients within PA during the drying process is negligible
(< 0.2 oC). In this experiment, the evolution of temperature at the lateral edges and at
the center of a PA11 specimen was recorded with eleven thermocouples, two each at the
four lateral edges and three at the center. Therefore, the assumption of isothermal drying
is found to be valid, at least for the simulations and validation experiments performed
in this study. At the beginning of the PNM simulations of drying, all pores and throats
that are directly connected to the six boundary faces of the cubic lattice are assumed to
be completely dry. This assumption is justified as all sides of the PA11 cubic specimens
are open during drainage in both the experiments and the PNM simulations. Due to a
high static pressure head, the elements near the top surface are especially conducive to
air entry. Moreover, this step also introduces a certain degree of hydrophobicity into the
network by not retaining any water in certain pores.

The PNM simulations are validated with gravimetric experiments of drying of PA11(1),
PA11(2) and PA11(3). The same 100×100×100 mm3 from which the pore networks for
the simulations are extracted are also used for the experiments. It is noted that even
though real PA layers are not more than 30-50 mm long in the direction of gravity, larger
specimens are chosen for this study to get a representative pore network. The specimens
are first submerged in water for at least 24 hours. Thereafter, they are taken out of water
and water is allowed to drain from all sides for 2 hours. Then the specimens are placed in
a Styrofoam box (thermal insulator) which is closed on all sides except the top, thereby
reproducing the simulation conditions. The moisture loss from the specimens is then
monitored until they become completely dry. The drying experiments are carried out in a
controlled environment of 23 ◦C and 65% relative humidity. In Fig. 7.9, the moisture loss
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Figure 7.9.: Experimental results and pore network modeling (PNM) results of normalized
moisture loss as a function of time during drying for specimens PA11(1),
PA11(2) and PA11(3).

normalized by the initial moisture mass in the specimens, mloss = (m (t0)−m (t))
/
m (t0),

as a function of time, is presented for the experiments and PNM simulations performed
on the three specimens. As stated before, since PA is a mostly hydrophobic material,
most of the residual liquid content after drainage is expected to be in the dead-end pores
or trapped in hydrophilic pores, rather than exist as corner films in hydrophobic pores.
Therefore, a majority of the elements, i.e. around 60-70% of the total number of elements,
depending on the specimen, are specified to be fully saturated throughout the drainage
process. The remaining elements can retain water in their corners. This allowed the
residual liquid content in the pore networks after drainage to be approximately equal
to the observed liquid mass during the experiments. Laboratory measurements showed
that PA specimens retained a residual liquid content of 25-28 kg/m3 after drainage from
an average fully saturated mass of 125 kg/m3, which translates to a liquid saturation of
approximately 0.2 at the beginning of the drying process. However, as stated earlier, due
to the lower absolute volume of the pore network as compared to that of the actual PA
pore space volume, the same liquid mass translates to a saturation of at least 0.5 in the
pore networks. Therefore, the aim of the results presented in this section is to compare the
drying rate of the residual liquid as a function of time, and not as a function of saturation.
The drying experiment of PA11(3) is run for an extended duration since it is observed to
dry slower than the other two specimens.
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Figure 7.10.: First derivative of the moisture loss (drying rate) as a function of time of (a)
experimental observations, (b) pore network modeling simulations and (c)
both experiments and PNM simulations, with the drying rate curve of the
experiments starting from t = 1.5 d, plotted for specimens PA11(1), PA11(2)
and PA11(3). The transition period (TP) of the experiments is indicated in
(a), while the constant drying rate period (CDRP) of PA11(1) and PA11(2)
and the decreasing drying rate period (DDRP) of PA11(3) are indicated in
(b).

From Fig. 7.9, a good overall agreement can be seen between the simulations and the
experiments for PA11(1) and PA11(2). For PA11(3), the agreement is not good because
the material resistance to drying is very high. This aspect is discussed in detail later. From
Fig. 7.9, the drying curves of the PNM simulations are seen to have two distinct slopes
while the curves of the experiments are not. This observation requires further analysis of
the drying rates. Therefore, in Fig. 7.10, the drying rate, ṁdry = d (m (t0)−m (t))

/
dt,

which is the first derivative of the curves in Fig. 7.9, is plotted as a function of time. In
Fig. 7.10(b), two drying rate periods can be clearly distinguished in the PNM simulations
and they are marked in the figure for the respective specimens. For specimens PA11(1)
and PA11(2), until t = 7 d, the drying rate is constant, and this period is known as the
constant drying rate period (CDRP). For PA11(3), CDRP is seen until t = 10 d. After
that period, the drying rate constantly decreases until the material is almost dry, and this
period is known as the decreasing drying rate period (DDRP). However, the drying phase
during all the experiments is always DDRP, as seen in Fig. 7.10(a).
At the beginning of the experiments, there is a transition period (TP) during which

there is a sharp drop in the drying rate, as can be seen in Fig. 7.10(a). This period is
mainly characterized by the drying of water at the top of the solid surface, which dries at
a very fast rate. Additionally, water at the top pores also dries very quickly, first in the
large pores and then in the smaller pores. At the end of TP, there are only a few liquid
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paths in the material that are connected to the environment. During the evaporation
of most porous materials, TP is followed by the constant drying rate period (CDRP),
during which liquid continuity is ensured through corner films, even if the percolation
front i.e. the bulk air infiltration front, does not have a macroscopic connectivity to the
surface. These liquid films ensure a constant supply of liquid to the surface during CDRP,
and therefore the drying rate remains constant during this period as, at the surface, the
moisture content lost by evaporation is replaced by liquid flow arriving from the material.
During CDRP, the drying rate is therefore determined by δ, the external mass transfer
coefficient. Once the surface starts to become dry, the hydraulic connectivity from corner
films starts to break down as the tips of the films recede deeper into the material. The
drying rate at this stage starts to progressively decrease and is therefore called DDRP.
During DDRP, the drying rate is determined by the effective diffusivity of water vapor
within the material. As seen in Fig. 7.10(a), in reality, the drying process in PA completely
skips the CDRP and goes from TP to DDRP. This is because there is negligible capillary
transport of water within the material, which implies that there is no continuous transport
of water to the evaporating surface to balance the rate of evaporation from the surface.
This is yet another indication that fluid transport in PA cannot be modelled akin to that
in conventional porous media, where the presence of CDRP during the initial stages is
quite common even in materials where gravity effects are significant (Yiotis et al. 2015).
Also absent during drying in PA is a second CDRP, which is observed when liquid flow in
film regions is primarily driven by gravity instead of capillary pressure gradients, and the
evaporation front remains stationary leading to a constant evaporation rate (Yiotis et al.
2015).

In Fig. 7.10(c), the drying rates of the experiments and simulations are compared after
excluding the TP seen in the experiments. While the drying rates of the experiments and
simulations are largely similar after t = 7 d for PA11(1) and PA11(2), those of PA11(3) are
always different, as expected. The large difference in the drying rates of the experiments
and simulations in the first 24 h of drying can be attributed to the difference in the initial
liquid configuration at the beginning of drying. While the hydraulic connectivity within
the specimens seem to be very low at the beginning of the experiments, leading to the
onset of DDRP, the initial drying in the simulations is concentrated at the top region of
the specimen, thereby making the strong material resistance to vapor diffusion, which was
already observed in the CFD simulations in Chapter 6, completely irrelevant to the drying
process. This leads to CDRP in the simulations as observed in Fig. 7.10(b). However,
as pointed out earlier, the latter half of the drying process in the PNM simulations from
t = 7 d onwards shows good agreement with the experiments as by this time the influence
of vapor diffusion resistance of the material is reflected on the drying process.
The drying algorithm developed in this study is not expected to result in a top-down

drying gradient in the network as the algorithm is based on a cluster-based invasion process.
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In other words, the proximity of a wet element to the open surface is not the only factor
influencing its drying rate. To check if drying gradients develop during the simulations,
additional simulations are performed on a smaller domain, which is divided into a 12×12
checkerboard grid, and the liquid saturation Sw in each of them is monitored throughout
the drying process, as shown in Fig. 7.11. The specifications of this smaller grid are given
in the next section. To enable a comparison between this smaller grid and the larger
grid of the real PA simulations, time is normalized with the total drying time, ttot. In
the figure, no significant drying gradient can be seen in the network at any stage of the
drying process. The absence of a drying front is also observed in the neutron radiography
experiments presented in Chapter 4. At the beginning of drying, there is just one large
liquid cluster spanning the entire volume of the network. According to the algorithm,
the elements near the open surface have to dry first since there is only one cluster and
these are the elements that happen to be at the edge of the cluster. However, as drying
progresses, the number of liquid clusters in the network also starts to increase. In such a
scenario, the proximity of an element to the open surface starts to matter less, the drying
ceases to be top-down, and as a result there is no definite pattern of drying, as seen in
Fig. 7.11. Therefore, the drying behavior seen in the simulations i.e. CDRP until t = 7 d
(for PA11(1) and PA11(2)) and t = 10 d (for PA11(3)), and DDRP thereafter, cannot be
attributed to a receding drying front that goes from top to bottom of the network.

Rather, the observed drying behavior can be attributed to the assumption of film flow in
the drying model. An underlying principle of the drying algorithm is the two-step drying
process i.e. in a cluster with both bulk and film elements, bulk elements lose moisture first
and in the process become film elements. Therefore, during CDRP, most of the moisture
loss occurs as a result of bulk elements becoming film elements. An important assumption
in the drying algorithm is that the mass fraction in a pore adjacent to a throat containing
liquid is the equilibrium vapor mass fraction, ce. Due to this assumption, during CDRP,
most of the drying occurs from the transformation of bulk elements to film elements. As a
result, most of the pores until this time are adjacent to wet throats and therefore c = ce
at all these pores. Consequently, the drying process is confined to the top region of the
network as only the pores and throats near the surface are capable of transporting vapor to
the environment. At this stage, vapor diffusion within the network is totally controlled by
the diffusion happening across the external transfer length, δ. As a result, the drying rate
remains constant as δ is assumed to be constant throughout the simulations. After CDRP,
the film elements begin to dry, resulting in vapor transport within the network, which
implies that the vapor diffusion resistance of the material begins to influence the drying
process, which is why the drying rate starts to decrease as more pores and throats start to
become dry and thereby increase the material resistance to vapor diffusion continuously.
This explanation is analyzed in more detail in the next section. As the drying resistance of
PA11(3) is much higher compared to those of the other two specimens, the simulation of
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Figure 7.11.: Checkerboard pattern of drying as simulated by the pore network model
with time steps indicated above each figure. The domain is divided into 144
equi-sized grids and the grid color indicates the water saturation Sw,i at the
grid along the entire thickness (out of plane direction) of the network.
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drying in PA11(3) does not show a good agreement with the experiments since the drying
model does not account for material resistance at the beginning of the drying process. The
observed drying rate in the simulations also implies that the drying at the beginning is
sensitive to the value of δ. An exact quantification of δ for a very rough and permeable
surface like that of PA is a challenging task. However, it is noted that the determination
of δ for PA is a promising avenue for future studies. Moreover, an important aim of the
pore network simulations is also to understand its coupling with continuum modeling for
a macroscopic material and the sensitivity of the inputs to pore network modeling on the
results from continuum modeling.

7.6 sensitivity analysis of randomness in the pore network, grav-
ity and corner films

In this section, the results from additional simulations to check the sensitivity of various
parameters on the simulation results are presented. On the one hand, this analysis
helps to identify the strengths and weaknesses of the developed pore network in terms
of the flow physics modeled in the network, while on the other, it helps to analyze the
influence of various parameters on flow in macroporous media. Due to significantly higher
computational speed, all the simulations in this section are presented for a 12×12×12
network with the same pore diameters, throat diameters and throat lengths of the PA11(1)
network. Although the magnitudes of the outputs extracted from this smaller network is
different from those of the 17×17×17 specimens, the influence of the parameters considered
in this section are similar in both the network sizes.

The randomness in pore network generation can often influence the properties extracted
from simulations. In a medium such as PA with a wide range of pore sizes, an important
factor to be considered is the neighborhood of large pores. For instance, a large flow
path in the real specimen may be represented as a series of large and small pores in the
pore network, leading to drastically different flow behaviors in these two configurations.
Additionally, with the same set of pore and throat size distributions, the flow behavior in
two large pores connected to each other will be very different compared to that in one
large and one small pore connected to each other. Therefore, the influence of randomness
in the pore network is investigated in Fig. 7.12, where the capillary pressure curve during
drainage and the drying curve are presented for four realizations with the same input
parameters. It can be seen that the realizations display similar flow behavior during both
drainage and drying and therefore the randomness in pore network generation has little
influence on the macroscopic properties extracted from the simulations. The negligible
influence of randomness is mainly due to the structured grid and equal throat lengths
used in this study. If an unstructured grid was used instead of a simple structured grid,
the number of parameters influencing the generated pore network would have increased,
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Figure 7.12.: Influence of randomness in the pore network on (a) capillary pressure curve
and (b) drying curve, investigated for four realizations.

thereby increasing also the influence of randomness in the network. In an unstructured grid,
a particularly significant factor would be the pore connectivity, especially the connectivity
of the large pores.

In Fig. 7.13, the checkerboard pattern of drainage in the network is analyzed for two
cases: without and with gravity respectively. Similar to Fig. 7.11, the degree of saturation
in each of the grids is analyzed for the initial stages of the drainage process. The degree
of saturation in the entire network is also given for each considered step. In Fig. 7.13, in
both cases, initially the elements at the top start to drain since the invasion percolation
algorithm begins with the invasion of elements connected to the top surface. However, in
the absence of gravity, air invasion depends only on the liquid capillary pressure. Therefore,
for the case without gravity, at Sw = 0.79, air percolation from the top to bottom surface
can be seen with a clear preferential path. The width of the percolation front is very
narrow in the bottom half of the network. On the contrary, when the effect of gravity
is considered, the air percolation front is much wider, as can be seen from Sw = 0.94 to
Sw = 0.72, since gravity assists air invasion, especially in the upper region of the network.
Thus, the impact of gravity as modeled in the invasion percolation algorithm is reflected
in the results.
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Figure 7.13.: Checkerboard pattern of drainage in the pore network with and without the
effect of gravity, with the total saturation level indicated above each figure.
The domain is divided into 144 equi-sized grids and the grid color indicates
the water saturation Sw,i at the grid along the entire thickness (out of plane
direction) of the network.
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Figure 7.14.: Effect of corner films on the simulated drying process using pore network
modeling; (a) temporal evolution of saturation and (b) drying rate as a
function of saturation

The influence of considering corner films on the drying rate in the developed model is
investigated in Fig. 7.14. In Fig. 7.14(a), the temporal evolution of the network saturation
during drying is given for two cases: with and without corner films in the network. The
simulation with corner films has 40% saturated elements and 60% film elements at the
beginning of drying while the simulation without corner films has 40% saturated elements
and 60% dry elements at the beginning of drying. The initial moisture content at the
beginning of drying is only slightly higher for the latter case. In the absence of films in the
network, the drying algorithm is slightly modified. The initial steps of the algorithm are
essentially the same i.e. identifying clusters, determining the vapor flux from each cluster,
identifying the largest element in each cluster and then choosing the element among them
that will dry the fastest. The difference is in the fact that now this chosen element is
completely dried in the given time step (instead of becoming a film element), and the
largest elements in all other clusters dry partially such that mass conservation is ensured.
The influence of such an approach on the drying rate is strikingly visible in Fig. 7.14.
While the network with film flow completely dries out in 13 days, the network without
film flows starts to dry at a lower rate. At Sw = 0.17, the drying rate in the absence of
films becomes negligible and the material practically stops drying. Nevertheless, in Fig.
7.14(b), it can be seen that drying without films begins with DDRP, similar to what is
observed in the experiments but at a much lower rate. This proves that the CDRP at the
beginning of the simulations with film flow is due to the over prediction of film elements in
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Figure 7.15.: Influence of increasing the number of dry elements on the drying rate. The
initial ratio of saturated (S) to dry (D) to film (F) elements in each simulation
is given.

the PA pore network. However, simulating drying without considering any film elements
will lead to a large under prediction of the drying rate, as seen in Fig. 7.14.

To assess if increasing number of the dry pores in the network at the beginning of
drying influences the drying rate in the simulations with film flow, in Fig. 7.15, the
drying rates of three simulations with different ratios of saturated (S) to dry (D) to film
(F) elements are presented. As the number of dry elements at the beginning of drying
increases, the magnitude of the constant drying rate decreases, which is due to lower initial
liquid saturation in the network. More importantly, it can be seen that the duration of the
CDRP decreases sharply with increasing proportion of dry elements. A further increase in
the proportion of dry elements did not change the drying behavior. However, with such
a high proportion of dry elements in the pore network, the pore network extracted in
this study from the PA specimens will not be able to reproduce the quantity of residual
liquid observed in PA after drainage. Therefore, the best approach to simulate drying in
PA would be to combine the strengths and weaknesses of the two approaches discussed
above i.e. with and without film flow, since clearly, there will be a number of elements
in PA that are fully liquid saturated or dry and at the same time have also pores which
enhances the hydraulic connectivity in the medium. As a result, it is essential to know
the exact wettability distribution of the solid matrix in PA as well as the initial liquid
configuration at the beginning of drying. Nevertheless, the drying algorithm developed in
this study captures part of the drying behavior of PA and is a promising first step towards
developing robust pore network models of drying in highly complex, macroporous media.
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The model also stands to gain with a more realistic pore network which, in particular,
captures accurately the connectivity of the large pores in PA, since large pores that are
highly connected will have a significant impact on the drainage and drying processes in
PA.

7.7 upscaling to continuum modeling

7.7.1 Introduction

In the continuum approach of transport in porous materials, the porous material is
considered as a continuum where transport properties are defined at the macroscale. Heat
and mass conservation laws are combined with adequate transport laws, resulting in partial
differential equations (PDEs), which are solved by appropriate computational models. As
an example, Janssen et al. (2007) implemented a three-dimensional heat and moisture
transport model into finite elements to simulate the coupled heat and moisture transport
in porous media. Their approach coupled atmospheric boundary conditions to mass and
energy transfer within the porous medium in a conservative manner. In this section, the
results of such a coupled heat-air-moisture (HAM) model to simulate drying in PA are
presented. Since the pore structure of PA is macroporous and hydrophobic, and very
different from that of conventional porous materials, the application of continuum modeling
for drying of PA is not straightforward, and questions remain on the applicability of such
an approach for drying of macroporous media.

For the continuum modeling of drying, two moisture transport properties are required,
which can be obtained from the pore network simulations: the drying capillary pressure
curve and vapor permeability as a function of saturation. To understand the applicability
of the proposed PNM drying model for an upscaling to continuum model, two sets of
continuum simulations are performed. In both sets, the capillary pressure (moisture
capacity) curve as a function of saturation as determined from the PNM simulations is
used. The difference between the two sets of simulations is in the vapor permeability curve.
In the first set of simulations, the vapor permeability curve of PA as determined from
the PNM simulations is used. In the second set of simulations, a common description of
the vapor permeability curve for porous materials is used. The exact permeability curve
is indirectly determined from the measurements by minimizing the difference between
experimental and simulated moisture loss versus time.
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7.7.2 Governing equations

The wet porous medium consists of three phases: a solid phase (solid matrix), a liquid
phase (liquid water) and gas phase (mixture of dry air and water vapor). The following
are the most important assumptions in the model:

• The residual liquid phase at the beginning of the drying process is mainly entrapped
and discontinuous. It is assumed that these liquid islands do not move and dry out
mainly by vapor diffusion. This allows to assume that liquid transport is negligible
with respect to vapor transport.

• No heat and mass source terms are present apart from the evaporation of water.

• Thermal equilibrium exists between all phases.

• Pressure variations are small enough to not affect thermodynamic properties.

• The pressure of the gaseous phase is constant and equal to atmospheric pressure and
the gaseous phase does not contribute to heat or mass storage.

Under these assumptions, the equation for conservation of mass can be expressed as:

∂wPM
∂t

=
∂wPM
∂pc

· ∂pc
∂t

= −∇ · (qv) , (7.21)

where wPM [kg/m3] is the moisture content in the porous material and pc is the capillary
pressure. The definition of all variables and their values in the simulations are given in
Table 7.1. It is noted that capillary pressure is used as driving potential, although vapor
transport by diffusion is governed by concentration (or vapor pressure) gradients. The
reason for the use of capillary pressure is that capillary pressure is determined from PNM
simulations as a function of moisture content.

The water vapor flux qv [kg/(m2s)] in Eq. (7.21) is defined as:

qv = −Kv (wPM )∇pc −
Kv (wPM )

T
(ρlLv + pc (Tψ− 1))∇T , (7.22)

where Kv(w) [s] is the water vapor permeability as a function of moisture content and
is calculated from the pore network simulations. In Eq. (7.22), vapor diffusion through
the material is driven by capillary pressure as well as temperature gradients. The vapor
transport due to a temperature gradient accounts for effects of latent heat Lv and depen-
dence of surface tension on temperature through ψ. The relation wPM (pc) during drying,
which determines the moisture capacity in the LHS of Eq. (7.21) is obtained from the
pore network simulations. The equation for conservation of energy can be expressed as:
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(
cp,l (T − Tref ) ∂wPM∂pc

)
∂pc
∂t +

(
cp,sws + cp,lwPM

)
∂T
∂t

+∇ ·
((
cp,v (T − Tref ) + Lrefv

)
qv

)
= −∇ · qh,

(7.23)

qh = −λ∇T , (7.24)

where qh [J/(sm2)] is the heat flux. The first two terms in the LHS accounts for heat
storage due to changes in moisture (capillary pressure) and heat, respectively. The third
term accounts for the change in enthalpy due to vapor transport and phase changes.
At the boundary of the material where convective exchange takes place with the

environment, the following boundary conditions apply for heat and mass transfer:

qv,w = CMTC (pv,∞ − pv,w) , (7.25)

qh,w = CHTC (Tw − T∞) , (7.26)

where the subscript w indicates the wall conditions at the surface exposed to the envi-
ronment, pv is the vapor pressure, CMTC is the convective mass transfer coefficient and
CHTC is the convective heat transfer coefficient. The external environment conditions are
represented by the subscript/superscript ∞.

7.7.3 Numerical model and input parameters

The heat and mass conservation equations are solved in COMSOL Multiphysics, a commer-
cial finite-element software. The conservation equations, expressed in terms of dependent
variables pc and T , are implemented as user-defined PDEs in COMSOL. The experimental
conditions of drying of PA11(1) (Fig. 7.9) is reproduced in the HAM simulations. The
computational domain is given in Fig. 7.16. The values for thermal conductivity and
specific heat capacity of PA are taken from Hassn et al. (2016). The convective mass
transfer coefficient (CMTC) is the same as the one used in the PNM simulations of PA11(1).
The convective heat transfer coefficient (CHTC) is also accordingly determined from the
Lewis analogy. All other values are standard thermodynamic parameters.

In Fig. 7.17(a), the moisture capacity curve that is used for both continuum simulations
are given. Note that the saturation is defined as Sw = wPM

/
wcap where wcap is assumed

to be the moisture content such that S −w at the beginning of drying of PA11(1) is the
same in both PNM and continuum models. The discrete pc−Sw points as calculated from
the PNM simulation of drying of PA11(1) is first averaged and the average values are
then modeled with a Van Genuchten fit (Eq. (7.20)), with parameters αV G = 0.00283 and
n = 8.6. In Fig. 7.17(b), the vapor permeability from the PNM simulations of PA11(1) is
fitted with a 6th order polynomial fit i.e.:
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Figure 7.16.: Computational domain of the continuum simulations. Only the top surface
has heat and moisture exchange with the environment. The other surfaces
are impermeable to both heat and moisture transport.

Figure 7.17.: Input parameters to the continuum model; (a) moisture capacity curve
calculated from pore network model (PNM) simulations of PA11(1) and fitted
with van Genuchten parameters, (b) vapor permeability Kv as a function
of saturation Sw determined by fitting the data from PNM simulations of
PA11(1) and (c) an alternate Kv − Sw relationship for a porous building
material (PBM). Note the different y axes scales in (b) and (c).
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Table 7.1.: Material and thermodynamic properties used in the continuum modeling
simulations.
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Kv = p1Sw
6 + p2Sw

5 + p3Sw
4 + p4Sw

3 + p5Sw
2 + p6Sw + p7, (7.27)

where p1 = −1.958e− 10, p2 = 3.849e− 10, p3 = −2.712e− 10, p4 = 7.9e− 11, p5 =

−7.729e− 12, p6 = 6.639e− 13 and p7 = 1.282e− 10. The vapor permeability curve of a
porous building material (PBM) is given in Fig. 7.17(c) and is defined as:

Kv =
DM

µdryRvT
· 1− Sw

0.89(1− Sw)2 + 0.11
. (7.28)

Equation (7.28) is similar to the vapor permeability curves of several porous building
materials such as brick, concrete etc. and is therefore used for a realistic vapor permeability
input. The factor µdry is the vapor resistance factor of the dry material, and is determined
by adjusting its value to simulate properly the experimental drying curve.

Two-dimensional continuum simulations are performed for a 100×100 mm2 domain and
the results are extrapolated to the third dimension. The grid sizes are chosen after a mesh
sensitivity analysis. As stated earlier, the simulations are carried out for two cases with
one case using the Kv − Sw curve from the pore network simulations of PA11(1), as given
in Fig. 7.17(b), and the other using the Kv − Sw curve given in Fig. 7.17(c).

7.7.4 Results and discussion

In hygroscopic materials, vapor permeability increases with saturation, taking into account
the enhancement of moisture transport by the presence of microscopic liquid zones in the
pore space due to capillary condensation. Indeed, the vapor permeability of the porous
building material shows a steady decrease with decreasing saturation and that of PA11(1)
as determined from the PNM simulations shows a very small decrease (note the different y
axes scales of Figs. 7.17(b) and 7.17(c)). The near constant values of vapor permeability
throughout the PNM simulation of drying of PA11(1) can be attributed to the simplified
pore network geometry and high pore connectivity. Additionally, two assumptions in the
drying PNM algorithm i.e. pv = pv,sat at pores near a liquid element and that a bulk
element becomes a film element at the first step of drying, lead to a network with many
pores having the condition pv = pv,sat, especially in the absence of any dry pores in the
network at the beginning of drying. This results in many throats in which vapor transport
is blocked and therefore the additional resistance to vapor diffusion contributed by these
throats when they dry out with time is not reflected in the evolution of vapor permeability.
These observations show that there is a need to improve the current pore network geometry
to reflect better the pore scale processes to capture the high vapor diffusion resistance of
PA.
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Figure 7.18.: Moisture loss as a function of time calculated with continuum modeling for
two different inputs of vapor permeability Kv curves, from pore network
model (PNM) simulations of PA11(1) and from a porous building material
(PBM), and its comparison with the experimental drying curve of PA11(1).
The drying curve of the PNM simulation of drying of PA11(1) is also given.
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In Fig. 7.18, the drying curves of the two continuum simulations are presented along
with the experimental drying curve of PA11(1). Additionally, the drying curve of PA11(1)
as calculated by the PNM simulations is also given in Fig. 7.18. The drying is represented
in terms of moisture loss as the liquid mass at the beginning of the drying is similar
across the three presented results. It is recalled that the moisture capacity curve for
both the continuum simulations is taken from the PNM simulations of PA11(1). From
Fig. 7.18, it is seen that the continuum simulation with the vapor permeability of the
porous building material compares more favorably to the experimental drying behavior
of PA11(1) than that with the vapor permeability determined from PNM simulations of
PA11(1). This is because the vapor permeability of the porous building material captures
the higher resistance in the material to vapor diffusion as the material dries, whereas the
vapor permeability determined from PNM simulations of PA11(1) does not capture this
phenomenon. Nevertheless, the continuum simulation of drying in PA11(1) shows a good
agreement with the experimental observation, especially with respect to the curvature
of the drying curve, thereby indicating that the coupling between PNM and continuum
approaches for modeling drying in macroporous media, as attempted in this thesis, is a
promising step.

7.8 conclusions

Pore network model (PNM) simulations of gravity-driven drainage from a fully saturated
porous asphalt specimen and subsequent drying of the residual liquid are presented in
this chapter, along with the application of the results determined from pore networks to
continuum modeling. The pore networks for the simulations are extracted from X-ray
µ-CT scans of PA. Pore and throat size distributions of PA specimens are accurately
modeled with two-parameter Weibull distributions. Gravity-driven drainage is simulated
using a modified invasion percolation algorithm that includes the effect of gravity. Drying
of residual liquid after drainage is simulated using a cluster-based approach with a two-step
drying process i.e. elements transform from being fully saturated to having liquid only in
pore and throat corners to becoming completely dry. Gravimetric experiments on PA are
performed to validate the drying simulations.

The most important results from this chapter are:

1. At the end of drainage simulations, air permeability is very low as a result of trapping
of air between liquid clusters. This results in only a small number of low resistance,
continuous air pathways from inlet to outlet.

2. Capillary pressure as a function of saturation during drainage is approximated by
a modified van Genuchten approximation. In general, air entry pressures in pores
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and throats of PA are very low due to the presence of large pores and the effect of
gravity.

3. From experiments, it is seen that drying in PA completely skips the first drying
phase, the constant drying rate period (CDRP), and instead begins with the second
drying phase, the decreasing drying rate period (DDRP). This can be explained as a
consequence of the large pores drying out fast and a low hydraulic connectivity of
the other pores in PA. The drying rate in the experiments show a steep drop within
the first 24 h of drying.

4. The drying experiments and PNM simulations show a good overall agreement for two
of the three specimens investigated. The third specimen has a very high resistance to
drying and this is not captured by the PNM model. The PNM simulations exhibits
CDRP initially and transitions to DDRP thereafter. In the second half of the drying
period, the drying rates of experiments and simulations show good agreement for
the two specimens with lower drying resistance. A detailed analysis showed that
the CDRP at the beginning of the PNM simulations is due to the simplified liquid
configuration assumed in the network, and its duration can be minimized to an
extent by increasing the number of dry elements in the network after drainage.

5. The need to represent the pore space of PA more accurately using pore networks is
identified in the results. Specifically, the knowledge of wettability distribution of the
solid matrix of PA, the pore connectivity especially of the large pores and an exact
understanding of the liquid distribution at the beginning of the drying in PA will
help to make the drying model developed in this study more representative of the
drying behavior in real specimens.

6. Continuum modeling of drying in PA using vapor permeability and capillary pressure
curves determined from PNM simulations showed that although the use of capillary
pressure data determined by the model for continuum modeling looks promising, the
increasing resistance to vapor diffusion in the pore network with decreasing water
saturation is not captured adequately. This again underscores the need to improve
the pore network geometry to reflect the high vapor diffusion resistance of PA.



8
CONCLUS IONS AND PERSPECTIVES

The goal of this research was to develop an integrated multiscale methodology to accu-
rately capture the wetting and drying processes of a macroporous material exposed to
environmental loadings. Towards this end, the research presented in this dissertation
involved multiscale experimental investigations and numerical modeling of fluid transport
in a highly complex, macroporous material, namely, porous asphalt (PA), with the aim to
determine the most important environmental conditions and material characteristics that
determine the residence time of water in PA. This chapter presents the main conclusions
of this research: pore space characterization of PA with computed tomography, neutron
radiography investigations of water transport in PA, wind tunnel study of airflow near the
air-PA interface, computational fluid dynamics (CFD) simulations of air entrainment in
PA and its effect on vapor diffusion, pore network model (PNM) simulations of gravity-
driven drainage and drying of PA and the implications of modeling drying in PA with a
continuum approach. The scientific contributions of this study to the porous media and
road engineering communities are also highlighted. This chapter, and the dissertation,
concludes by exploring future work that could be done in order to better understand and
model the wetting and drying of a macroporous material in general and PA in particular.

8.1 main conclusions

The three-dimensional pore space of PA is visualized by high-resolution X-ray microcom-
puted tomography (X-ray µ-CT). The wide range of pore sizes and pore connectivity as
well as the tortuous nature of the pore space in PA became evident from a detailed investi-
gation of these X-ray µ-CT scans. The pore and throat size distributions of representative
elementary volumes of PA are fitted with two-parameter Weibull distributions. Moreover,
the difference in pore space characteristics across different types of PA is also examined.
A large, well-connected pore space is observed even in very thin specimens of PA11, a
type of PA in which the largest aggregate size is 11 mm. Furthermore, the segmented
pore space from X-ray µ-CT scans of PA is used as the computational domain in CFD
and PNM simulations.
The mechanisms of water flow in PA are identified with neutron radiography (NR)

imaging. The experiments are carried out in a custom-built mini wind tunnel that
reproduces the effects of wind, solar radiation and rain. Gravity drainage, capillary uptake,
moisture redistribution, and droplet imbibition phenomena are investigated. The effect of

201
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combined wind and solar radiation on drying and droplet accumulation and drainage is
also studied. By combining NR images, X-ray µ-CT scans and three-dimensional pore
space reconstruction in a novel way, saturated and unsaturated flows in specific areas of
the specimens are distinctly identified.

Gravity-driven drainage is found to be the most important contributor to moisture loss
in PA. Within seconds, gravity drainage of water significantly reduces the water saturation
level in PA. The co-occurrence of gravity drainage and forced convective drying in PA
is also studied. Airflow and heat from a solar radiation simulator did not significantly
increase the drying rate of PA. Even after 8-10 hours of forced convective drying, water
islands are observed in PA specimens. The liquid configuration within PA seemed to be
affected little by the external conditions, even for PA11 specimens with the largest pores.
These observations give a first indication of the high resistance of PA to drying, resulting
from the complex, tortuous pore space of PA. Furthermore, a slow liquid redistribution
through saturated flow between adjacent pores is observed. However, due to large pore
sizes and the hydrophobicity of the solid matrix, capillary transport of water all the way to
the open surface, which could have accelerated the drying process, is found to be negligible.
In addition, wetting by capillary take and droplet deposition is also investigated. It

is found that capillary uptake of water, which begins as saturated flow but changes
into a combination of saturated flow and unsaturated flow along the pore corners, is
occurring only in aged PA specimens due to the exposure of hydrophilic aggregates to
water. Saturated-flow finite volume simulations show that regions where faster uptake are
seen during the experiments are the ones with relatively less tortuous and more connected
flow paths. In case of droplet wetting, water droplets rest and coalesce on the top surface
of PAs with finer pore sizes and strong moisture penetration is observed only in PA11
specimens in which, as in capillary uptake, a combination of saturated and unsaturated
flows along a well-connected pore space enabled faster penetration of water.
The interaction of airflow with PA is studied using two techniques. To investigate the

first phenomenon i.e. the development of air boundary layer above the air-PA interface,
wind tunnel experiments are carried out on large slabs of PA. Particle imaging velocimetry
(PIV) is used to visualize the air boundary layer as well as the turbulent structures that
are active just above the air-PA interface at different wind speeds. Above a certain
interface-normal distance, turbulence profiles can be scaled to make them independent
of the flow speed. However, at low wind speed (1 m/s), the scaling breaks down due to
a combination of organized turbulent structures of high-intensity and a low turbulence
background. To investigate another phenomenon i.e. air entrainment into PA and its effect
on convective vapor removal, single-phase CFD simulations with an actual PA geometry
are performed. The k-ε turbulence model with low Reynolds number modeling is used
for modeling the boundary layer. By varying the wind speed and the depth of the vapor
source plane within the specimen, the influence of air entrainment and vapor diffusion
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resistance of PA on the drying process is studied in detail. Air entrainment in pores near
the air-material interface played an important role in scalar transport only at high wind
speeds (≈ 10 m/s) and when the vapor source is not far from the open surface. At lower
wind speeds and deeper scalar source depths, diffusion is the dominant vapor transport
mechanism in PA and hence, the drying rate at these speeds is not likely to be influenced
significantly by airflow. This reinforces the observations from the neutron radiography
experiments.

Since gravity-driven drainage and drying are found to be the two most important factors
determining the residence time of water in PA, pore network model (PNM) simulations of
drainage in PA and subsequent drying of the residual liquid are performed. As intermediate
wind speeds and heat did not accelerate the drying rate in any of the previous experiments,
natural convective drying is simulated. Gravity-driven drainage is simulated using a
modified invasion percolation algorithm that includes the effect of gravity while drying is
simulated using a cluster-based approach. Capillary pressure as a function of saturation
during drainage is modeled with the Van Genuchten fit. In general, air entry pressures in
pores and throats of PA are very low due to the presence of large pores and the effect of
gravity. From experiments, it is seen that drying in PA completely skips the first drying
phase, the constant drying rate period (CDRP), and instead begins with the second drying
phase, the decreasing drying rate period (DDRP), due to the poor hydraulic connectivity
in PA because of its large and hydrophobic pores. The PNM simulations exhibit CDRP
initially and transitions to DDRP after a third of the total drying time. The CDRP at the
beginning of the PNM simulations is due to the assumption of film flow in the network,
and its duration can be minimized by increasing the number of hydrophobic pores in the
network that does not retain any liquid after drainage. The temporal evolution of capillary
pressure and vapor permeability during drying, as determined from PNM simulations,
is used to model drying of PA with a continuum approach. A continuum approach to
drying in PA could be valid provided the pore networks, and therefore the macroscopic
parameters determined from them, capture more accurately the connectivity, tortuosity
and hydrophobicity of the real PA structure.

Finally, as a result of this spatially multiscale investigation, the residence time of water
in PA is found to have different time scales. Drainage by gravity is in the order of seconds
in specimens that are 30 mm and 100 mm high. Drainage is followed by a long, decreasing
drying rate period, which can last more than 8 hours for a 180×30×10 mm3 specimen
subjected to airflow up to 3 m/s and solar radiation, and as long as 25 days for a 100 mm
cubic specimen subjected to natural convection. Wind and solar radiation can influence the
drying process only under extreme weather conditions i.e. wind speeds much above 3 m/s
and temperatures much higher than 35 ◦C. Under normal conditions, the hydrophobic solid
matrix and the large pores of PA hinder liquid water redistribution within the specimen,
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and therefore, drying is determined largely by the vapor diffusion resistance of PA, which
is confirmed by both experiments and simulations.

8.2 contributions to research fields

The research presented in this dissertation involved novel applications of existing experi-
mental, modeling and analytical techniques, on both stand-alone and synergic bases. The
contributions from this research extend to the fields of porous media (experimental and
theoretical), image analysis, boundary layer characterization over rough surfaces and road
engineering. The scientific contributions can be summarized as:

• Development of a multiscale, integrated methodology for identifying the factors
influencing the residence time of water in porous media exposed to environment,
by starting with laboratory-scale experimental and numerical investigations of fluid
transport, followed by determination of the most influential environmental loadings
and finally, the modeling of drainage and drying using simplified models with assump-
tions validated by the aforementioned steps. The methodology also incorporates an
upscaling of the detailed information towards a continuum characterization of the
macroporous material transport behavior.

• Development of an image analysis technique to predict the exact type of flow (satu-
rated or unsaturated) at well-defined pore spaces, even with two-dimensional neutron
radiography. This is achieved by first computing the degree of liquid saturation in
pores by combining neutron radiography and X-ray µ-CT images, and thereafter
reading together the saturation degree images with three-dimensional visualization of
pore spaces. The images are obtained using a self-designed multifunctional neutron
radiography setup incorporating a self-designed mini wind tunnel, a multi-droplet
injector and radiation lamps.

• Application of turbulence statistics that are originally developed for impermeable
and rough surfaces to characterize flow over macroporous, permeable surfaces. This
methodology can be applied to other research areas such as wind-induced erosion of
coarse soil.

• Development of a pore network model of drying that accounts for gravity-driven
drainage and evaporation of complex configurations of water in porous materials,
especially in materials in which a large number of pores with corner films are
expected. With some additional work, the proposed model, which is computationally
less expensive than its peers, can also be applied to model evaporation in hydrophobic
media where liquid redistribution is negligible e.g. gas diffusion layer in fuel cells.
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The contributions towards material design of porous asphalt can be summarized as:

• No generally valid scaling law of wind speed to air turbulence behavior near the
air-material interface is found. Hence, the need for performing drying experiments
on PA at full-scale and for the entire range of velocities of interest is identified,
especially if average wind speeds at the planned road location are below 3 m/s.

• At wind speeds below 10 m/s, air entrainment in PA is found to be insignificant.
Consequently, in terms of modeling forced convective drying, PA can be considered
as a conventional porous material in which vapor-air mixing occurs above the
air-material interface.

• Liquid redistribution in fresh PA can be neglected. However, as the material ages,
there can be some liquid redistribution within the material due to capillary pressure
gradients induced by an increasingly heterogeneous distribution of surface roughness
and wettability.

• After a large rain event, at temperatures close to the dew point, thermal gradients
within PA is likely to be negligible, even in the presence of solar radiation, and
consequently isothermal drying can be assumed.

• The strong positive influence of percolation paths, created by large pores, on the
overall drainage and drying process of PA specimens is observed in the experiments
and simulations in this study. In this context, techniques such as gap grading
can be used to control the final pore structure in PA pavements to increase liquid
permeability.

8.3 future perspectives

The conducted research has answered many important questions related to fluid transport
in macroporous media. However, it has also opened up a few interesting research questions
that should be addressed in the future:

• There is a need to better understand the air boundary layer in the near-wall region of
a macroporous material, especially momentum transfer at high wind speeds. Rapidly
developing techniques such as refractive index matching methods can be utilized for
the same.

• The PA microstructure needs to be better characterized better for providing more
accurate input and boundary conditions for drainage and drying simulations. For
instance, the heterogeneity in the wettability of the solid matrix of aged PA specimens
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can be analyzed with techniques such as low-field Nuclear Magnetic Resonance (NMR)
spectroscopy.

• The proposed pore network model of drying has scope for further improvements.
Foremost among them is to consider the effect of viscous forces on the liquid distri-
bution pattern, since liquid configuration is found to have an important influence
on the drying process in PA. However, although PNM algorithms of drying that
includes viscous effects are present in literature, they remain computationally expen-
sive. So there is a need to find a balance. Additionally, an unstructured network,
more complicated pore shapes and fractal-type models of pore wall roughness will
make the pore network more reflective of the real PA microstructure. Although the
proposed drying model underestimated the resistance of the pore network to drying,
the sensitivity of the model to increasing complexity of the pore space will throw
more light to the efficiency of the model.

• Complementarily, the three-dimensional visualization and quantification of water
inside PA is an area that requires more attention. A promising technique is to
visualize iodine-doped water with conventional X-ray µ-CT scanning after drainage
is completed. However, the segmentation of thin liquid films and the sensitivity of
wettability of water to iodine content are areas of concern.

• The presented research did not investigate the contribution of the pumping effect of
vehicular loads towards air and water flow in PA. This calls for more complex airflow
conditions at the surface and the load of the car itself for a poromechanical approach
that couples stress distribution in the solid matrix to local pressure build-up of air
and water.

• Finally, in the general scope of understanding the time of residence of water in porous
media, metrics should be developed to better convey such results, not only in terms
of the time of drying but also of the distribution of water within the macrostructure
and the contact time with different materials making up a composite structure.
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APPENDIX A

In Chapter 5, the boundary layer height for the moderate and high-speed measurements
was located outside the field of view. For the analyses presented in that chapter, it was
assumed that the velocity observed at the top of the field of view equals the free-stream
air speed. This assumption was supported by the fact that the differences between the
velocities observed at this point and those recorded by the Pitot tube located inside the
wind tunnel in the free stream were small. The sensitivity analysis presented in this
appendix aims to verify the impact of that assumption on the values of the boundary
layer parameters calculated in Table 5.2. We define the boundary layer thickness, δ, as
the height at which a velocity reaches a fraction h of the free stream air speed U∞:

δ = y|U=hU∞
, (A.1)

where h = 0.7, 0.75, 0.8, 0.85, 0.88, 0.9, 0.92, 0.94, 0.96, 0.98. It is to be noted that h = 0.99
in the generally accepted definition of boundary layer thickness. Using this criterion, the
more robust parameters calculated earlier in Chapter 5 are re-evaluated i.e. displacement
thickness (Eq. 5.6), the momentum thickness (Eq. 5.7) and the shape factor, for each
value of h. The results are presented in Figs. A.1 - A.3. The sensitivity study focuses on
PA8 and PA11.
In Figs. A.1 - A.3, the step-wise increase in the boundary layer parameters at the

low speed measurements is due to the spatial resolution of the PIV images. It can be
observed that irrespective of the definition of the boundary layer thickness (Eq. A1), the
three considered boundary layer parameters are abnormally low at the low air speed, as
compared those at the moderate and high air speeds. This is true for both types of PA.
The conclusions of our study therefore do not depend on the assumption for the boundary
layer height. On the contrary, the sensitivity study further reinforces the conclusion that
there exists a critical air speed, Ucrit, where 1 < Ucrit < 2.85m/s, below which the flow
over PA becomes Reynolds number dependent and scaling laws therefore lose validity.
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Figure A.1.: Sensitivity study of displacement thickness for (a) PA8 and (b) PA11.

Figure A.2.: Sensitivity study of momentum thickness for (a) PA8 and (b) PA11.
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Figure A.3.: Sensitivity study of shape factor for (a) PA8 and (b) PA11.
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