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Abstract—The stringent power constraints of complex microcon-
troller based devices (e.g. smart sensors for the IoT) represent
an obstacle to the introduction of sophisticated functionality. Pro-
grammable accelerators would be extremely beneficial to provide
the flexibility and energy efficiency required by fast-evolving IoT
applications; however, the integration complexity and sub-10mW
power budgets have been considered insurmountable obstacles so
far. In this paper we demonstrate the feasibility of coupling a
low power microcontroller unit (MCU) with a heterogeneous pro-
grammable accelerator for speeding-up computation-intensive algo-
rithms at an ultra-low power (ULP) sub-10mW budget. Specifically,
we develop a heterogeneous architecture coupling a Cortex-M series
MCU with PULP, a programmable accelerator for ULP parallel
computing. Complex functionality is enabled by the support for
offloading parallel computational kernels from the MCU to the
accelerator using the OpenMP programming model. We prototype
this platform using a STM Nucleo board and a PULP FPGA
emulator. We show that our methodology can deliver up to 60x
gains in performance and energy efficiency on a diverse set of
applications, opening the way for a new class of ULP heterogeneous
architectures.

I. INTRODUCTION
The multi-core revolution is now an established reality in

almost every computing domain, from system-on-chip (SoC)
designs used in most modern smartphones to the extreme paral-
lelism typical of data-center computing. One of the few classes
of computers where single-core systems are still predominant
is that of low-power microcontrollers, typically employed for
energy-constrained and control-oriented systems that are poorly
amenable to be architected as parallel designs, as they are either
very constrained in terms of power or require a high degree of
predictability. This “traditional” view is now being challenged
by new classes of applications, typical of the Internet-of-Things
(IoT) domain, that couple the need for low power consumption
with a demand for higher performance [1][2]. Examples include
algorithms based on machine learning techniques (e.g. in embed-
ded machine vision or voice recognition), compressed sensing
(e.g. in biomedical applications) and many others.

A common approach to tackle the limited capability of the main
microcontroller unit (MCU) in successful extendable embedded
systems (e.g., Arduino [3]) is to allow for simple expansion of the
base board through daughter boards providing additional sensing
and actuation capabilities, such as microphones, cameras and
motors. Arduino’s shields are a representative example of this
approach. We propose to adopt a similar methodology to extend
the main MCU with a fully-programmable, ultra-low power (ULP)
parallel accelerator: in other words, a general-purpose computing
device that is designed to deliver high performance/watt for
parallel workloads. We can summarize in three points the key
characteristics that distinguish this model from the current state
of the art in the sub-10mW space [4][5]:

1) energy efficiency: to a much larger degree with respect
to what happens in larger scale heterogeneous computers,
an ULP accelerator needs to be significantly more energy-
efficient than its host to be effective;

2) dynamic offload: for the accelerator to be programmable

(as opposed to simply reconfigurable), it must be possible
to dynamically offload different applications from the host;
this marks a strong difference to typical fixed functionality
ASICs that are often used in a similar domain;

3) programmability: development of accelerator code must rely
on a programming model that allows efficient exploitation
of parallelism, while leveraging a lightweight runtime with
reduced execution overhead and memory footprint.

In this work, we present an embodiment of this general model
that is based on a STM32 microcontroller and on PULP, a 28nm
FD-SOI programmable ULP parallel platform [6]. The MCU and
PULP are loosely coupled via a low-power SPI connection that
is used both for controlling the accelerator and for data exchange.
We prototyped this system using a Nucleo board featuring a
STM32-L476 Cortex-M4 MCU and a Xilinx Zynq-ZC706 board
that hosts a functionally complete FPGA emulator of PULP.
On top of the SPI protocol that is used to connect the two
boards, we implemented a lightweight software abstraction for
host (MCU) to accelerator (PULP) communication. A streamlined
implementation of the OpenMP runtime library executes on top of
the parallel cores in PULP, providing a convenient programming
interface to end-users.

The third embodiment of the PULP platform (PULP3) is
currently under fabrication in STM FD-SOI 28nm technology,
which allowed us to develop a simple yet accurate power model
based on post-layout power annotation for the taped-out chip.
Our experiments explore power and performance results for the
acceleration of a diverse set of computation kernels, including
real benchmarks from the computer vision, machine learning,
and linear algebra domains, showing that it is indeed possible to
use a programmable accelerator to achieve a speedup of more
than one order-of-magnitude in the sub-10mW space.

II. RELATED WORK
Most commercial microcontrollers target relatively high per-

formance levels at a 50-100 mW power budget such as the
STMicroelectronics STM32F40x family, based on the ARM
Cortex-M4 core [7][8] or the NXP LPC1800 series [9]. Only a
few state-of-art relatively high performance ULP microcontrollers
are able to work in a power budget of less than 50 mW: examples
include the SiliconLabs EFM32 [10], the Texas Instruments
MSP430 [11] series of MCUs, the Ambiq Apollo [4], and the
STMicroelectronics STM32-L476 [12]. Most of these commercial
ULP microcontrollers exploit the fact that CMOS technology is
inherently most efficient when driven at near-threshold voltage
[13]; the same applies to research microcontrollers. For example
Ickes et al. [14], SleepWalker [15] and Bellevue [16] show
examples of near-threshold ultra-low power microcontrollers,
with the latter also exploiting SIMD parallelism to improve
performance. Singhal et al. [17] propose to use non-volatile
memory to achieve a significant reduction of both active and
standby power.

None of the platforms mentioned above targets a performance
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Figure 1: Heterogeneous system composed by a sensor, a MCU
and an accelerator.

level higher than a few tens of MOPS in the ULP domain.
Those that do so have to rely on both near-threshold and parallel
computing. For example Centip3de [18] is a large-scale fabric
of clusters of Cortex M3 cores, integrated in a 3D matrix. With
64 cores running at 10 MHz, it can reach a peak performance
of 0.64 GOPS. Another similar platform is DietSODA [19] that
features 128 SIMD lanes working at lower frequency (50 MHz)
than the rest of the chip, reaching up to 6.4 GOPS. Dogan et
al. [20] explore multicore design in subthreshold for biomedical
usage, with a power budget as low as 10µW; however in this case
performance is several orders of magnitude below that sought
after in our work. On the commercial side, to the best of our
knowledge there are only two ULP multicore MCUs on the
market: the NXP LPC51400 [21] and the Freescale S12 Series
[22]. Both of them employ multiple cores with the objective
of distributing heterogeneous tasks to each core to save power,
not to reach a significant amount of speedup with respect to
single-core solutions.

Past work on integration of low-power microcontrollers
with accelerators has mainly concentrated on coupling with
special-purpose computing devices such as specialized DSPs
[23][24], ASICs [5][25], or reconfigurable computing fabrics
[26]. Contrarily to the model we propose, none of these platforms
can be considered fully programmable in a general-purpose sense,
and no one supports a full offload of code from a host.

III. ARCHITECTURE
A. Heterogeneous Accelerator Model

In its simplest form, an heterogeneous system can be consti-
tuted by an host and an accelerator that are coupled by means of
some kind of link. To satisfy the tight power constraints typical of
embedded systems such as IoT nodes, this coupling cannot rely
on fast and sophisticated sharing mechanisms between the host
and the accelerator. Instead, it must be very cheap in terms of
power and simple enough to allow integration in an inexpensive
system-on-board. In this work, we consider using a simple SPI or
Quad SPI (QSPI) link to implement the host-accelerator coupling
and allow the offload of code and the exchange of data between
the two. SPI is ubiquitous in off-the-shelf MCUs and satisfies
the cost and power constraints of an ULP system. Additionally,
we consider that the host and the accelerator can exchange a
small set of synchronization events (typically implemented with
simple GPIOs).

Figure 1 shows the heterogeneous accelerator model we
consider in this work. Since the typical purpose of an IoT node
is to elaborate data coming from a sensor, we consider a generic
sensor interface as the original source of input data. The sensor
is managed by the host MCU, which marshals data to/from the
accelerator through the low-power coupling link by means of a
DMA controller.

Real applications are generally composed by a sequence of
kernels (i.e. basic algorithmic elements). A general mechanism
of code offload can therefore consist in the offload of an entire
collections of kernels (a library) at the same time, or of the
strictly required kernel alone. Due to the limited amount of
memory available in typical ULP systems such as the accelerator
we consider, we chose to restrict our analysis to this second case.
The offload implementation itself can be built on top of low-
level primitives that handle host-to-accelerator communication
through the coupling link; in our case, this consists in primitives
to initialize the SPI and DMA peripherals of the MCU and
invoke inbound or outbound DMA transfers through the SPI
channel. Synchronization events can be managed by means of
wait-for-event primitives or interrupts on both the MCU and the
accelerator. However, computation offload is typically exposed to
programmers at a higher degree of abstraction than these simple
primitives. Following what has been done in Marongiu et al. [27],
in our platform we support the OpenMP v4.0 specification, where
the #pragma omp target directive allows to outline a block
of code which needs to be compiled for the target accelerator
and the map clause allows to specify data items from the host
program that need to be made visible to the accelerator. In this
way, we provide a distinction between program and data offloads
and hide the low-level details of the data exchange primitives
behind higher level abstractions.

B. PULP Architecture
The accelerator platform we consider in this work is based on

PULP (Parallel processing Ultra Low Power platform), a scalable,
clustered many-core computing platform designed to operate on
a large range of operating voltages, achieving in this way a
high level of energy efficiency over a wide range of application
workloads [6]. In particular, we focus on the third embodiment
of the platform, the PULP3 SoC (shown in Figure 2). PULP3
features a single quad-core cluster integrated with 64 kB of L2
SRAM memory and several IO peripherals accessible through
a system bus such as two QSPI interfaces (one master and one
slave), GPIOs, a bootup ROM and a JTAG interface suitable for
testing. The QSPI interfaces can be configured in single or quad
mode depending on the required bandwidth, and they are suitable
for interfacing the SoC with a large set of off-chip peripherals
(non volatile memories, voltage regulators, cameras, etc.) or with
a host microcontroller, such as in our case.

The PULP cluster has 4 OpenRISC-ISA [28] cores with
a power-optimized microarchitecture called OR10N [29] and
a shared instruction cache (I$ ). The OR10N core features
several enhancements with respect to the reference OpenRISC
implementation, including a register-register multiply-accumulate
instruction, vectorized instructions for short and char data
types, two hardware loops and support for unaligned load/store
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Figure 2: PULP System-on-Chip architecture.



operations. To avoid the energy overhead of memory coherency,
the cores do not have private data caches: they all share a L1
multi-banked tightly coupled data memory (TCDM) acting as
a shared data scratchpad. Intra-cluster communication is based
on a high bandwidth low-latency interconnect, implementing a
word-level interleaving scheme to reduce access contention to
the TCDM [30]. A lightweight multi-channel DMA enables fast
communication with the L2 memory and external peripherals
[31]. The DMA features a direct connection to the TCDM to
reduce power consumption by eliminating the need for an internal
buffer.

To enable fine grained frequency tuning, a Frequency-Locked
Loop [32] and two clock dividers (one for the cluster and one for
peripherals) are included in the SoC. Each core can separately
be clock-gated to reduce dynamic power or “boosted” by means
of a body bias multiplexer. This feature is integrated directly
in the thread creation/destruction routine in the runtime to be
fully transparent to the user. The cluster also contains a HW
synchronizer used to accelerate synchronization between the
cores, making sure that they can be put to sleep and woken up
in just a few cycles.

C. Prototype
As a prototype of our heterogeneous acceleration approach,

we coupled a STM32 Nucleo board with a L467 Cortex-M4
microcontroller and a Xilinx ZC-706 evaluation board featuring
a Zynq Z7045 SoC. The Zynq SoC on the Xilinx ZC-706 board
hosts the emulator of the PULP chip, which is fully implemented
on the Zynq Programmable Logic. The Cortex A9 dual core
Processing System available on the Zynq runs Linux and is used
exclusively to ease control, introspection and debugging of PULP.
The STM32 is connected to PULP via a SPI link; the STM32
acts as the master. All components in the prototyping platform
are controllable through a normal workstation, through GDB and
UART in the case of the STM32, and passing through the Zynq
Processing System in the case of PULP.

The SPI physical link between the Nucleo board and the
ZC-706 board has been realized with simple wires connecting
the dedicated SPI pins of the Nucleo with a set of pins on the
programmable logic of the ZC-706. Although the STM32-L476
features a QSPI interface, the one on the Nucleo evaluation
board does not expose its pins, therefore our physical prototype
used one of the single-bit SPI interfaces. Two additional STM32
GPIOs are hooked to the PULP emulator: a fetch enable used to
trigger execution of the benchmark; and an end of computation
event triggered by PULP and used by the STM32 to resume
from sleep.

IV. RESULTS
A. Setup

In this Section we compare execution time, power and energy
between the STM32-L476 microcontroller device, the PULP
accelerator and the heterogeneous system composed by the
coupling of the two. We base our comparison on a set of
benchmarks taken from the fields of linear algebra, learning and
machine vision. To provide a fair comparison, all benchmarks
are coded in fully portable C, using the OpenMP programming
model to express parallelism for PULP, without relying on target
specific extensions. To compile the benchmarks, we used the
ARM Sourcery Linux GNU toolchain (version 4.8.2) for the
ARM Cortex-M target and the OR10N LLVM/Clang toolchain
(based on LLVM 3.7) for PULP.

To estimate how much power PULP consumes, we derived
our leakage and dynamic power with backannotated switching
activities from three power analysis input vectors: idle (cores
idle), matmul (cores running, low pressure on memories) and
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Figure 3: Energy efficiency on the matmul test in PULP and
several MCUs.

dma (DMA running, high pressure on memories). The FPGA
emulation platform is augmented with a performance monitoring
unit that is used to measure active and idle cycles for cores,
DMAs and interconnects. The average dynamic power consumed
over a benchmark is computed from the following model:

Pd = fclk

N∑
i=0

(χi,idle · ρi,idle + χi,run · ρi,run + χi,dma · ρi,dma)

where χi is the ratio of the active cycles of the i-th component
over the total benchmark cycles and ρi is the dynamic power
density. Leakage power, dynamic power density and maximum
clock frequency at each operating point are modeled after the post-
layout backannotated timing and power analysis results for the
PULP3 chip, which was performed at operating points between
VDD =0.5V up to 1V in 100mV steps. To estimate maximum
frequency at operating points not covered by timing analysis, we
used a simple polynomial interpolation model. For what concerns
the MCUs, the operating points are those listed in the relevant
datasheets [7][8][10][11][4][12][9], using power from the typical
range. Relying on the similarity between the Cortex-M3 and
M4 microarchitectures, we estimated the execution cycles on the
Cortex-M3 devices by running the code on the STM32-L476 with
all Cortex-M4 specific flags deactivated. Table I summarizes the
benchmarks used in our evaluation. The linear algebra kernels
are taken from the standard set of PULP tests; two of them
use integers (chars and shorts), while the third uses 16-bit
fixed-point numbers. The svm kernels are based on a C porting
of libsvm [33]; they work on 16-bit fixed-point data. The cnn
ones extend the CConvNet library [34] and are also working
on 16-bit fixed-point numbers. Finally, hog is taken from the
VLFeat library [35] and it uses 32-bit fixed-point data.

Figure 3 compares throughput in terms of GOPS (billions
of RISC operations per second) and power between PULP
and several commercial MCUs based on the ARM Cortex-M3
and Cortex-M4 microarchitectures on the matmul benchmark1.
The matmul benchmark provides a quasi-ideal case for both

parallelization and microarchitectural optimizations; there is a
gain of 1.5 orders of magnitude in energy efficiency between
PULP and the MCUs that provides an upper bound to the
efficiency “slack” available to the accelerator, i.e. to the amount
of acceleration that is possible to achieve without wasting power.
In absolute terms, the peak energy efficiency shown by PULP

1We define the number of RISC operations required by a benchmark by running
it on a single OR10N core deactivating all microarchitectural improvements
mentioned in Section III-B; in this configuration, essentially equal to that defined
in the OpenRISC 1000 ISA [28], OR10N has a very simple 5-stage pipeline and
a reduced instruction set, comparable to that of the original MIPS.



Benchmark Description Field Input Output Binary Size RISC ops1

matmul Matrix multiplication on char data linear algebra 8 kB 4 kB 11 kB 2.4M
matmul (short) Matrix multiplication on short data linear algebra 16 kB 8 kB 11 kB 2.4M
matmul (fixed) Matrix multiplication on 16-bit fixed-point data linear algebra 16 kB 8 kB 13 kB 2.7M
strassen Strassen algorithm for fast matrix multiplication linear algebra 8 kB 4 kB 6.7 kB 2.3M
svm (linear) Support Vector Machine classifier (linear kernel) learning / vision 6.9 kB 1.6 kB 11.4 kB 650k
svm (poly) Support Vector Machine classifier (polynomial kernel) learning / vision 6.9 kB 1.6 kB 11.5 kB 684k
svm (RBF) Support Vector Machine classifier (radial basis function kernel) learning / vision 6.9 kB 1.6 kB 11.6 kB 781k
cnn Convolutional Neural Network learning / vision 2 kB 40B 48.1 kB 3.3M
cnn (approx) Convolutional Neural Network (approximated) learning / vision 2 kB 40B 48.1 kB 2.6M
hog Histogram of Oriented Gradients feature descriptor vision 16 kB 36 kB 31.2 kB 31M

Table I: Summary of the benchmark kernels.
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Figure 4: Architectural speedup.

is of 304 GOPS/W with a power consumption of 1.48 mW,
whereas that of the MCUs keeps always below 5 GOPS/W at
a comparable level of power consumption. The only exception
to this is the Apollo Ambiq MCU, which reaches 10 GOPS/W
working at a low performance 24 MOPS operating point.

B. Performance evaluation
To better understand the relative contributions to the speedup

of microarchitectural optimizations and of parallelization, the
left side of Figure 4 shows the architectural speedup (defined
as the speedup in terms of execution cycles) of our benchmarks
running on a single OR10N core in PULP versus the same code
on a Cortex M3 or M4. All microarchitectural optimizations
available (such as HW loops and pseudo-SIMD vectorization in
the case of OR10N ) where activated on all targets; moreover,
the code was compiled at the maximum compiler optimization
level (-O3).

We can divide our tests in three groups: the integer tests
(matmul on both chars and shorts and strassen) show a
speedup of 2-2.5x due to the usage of all OR10N optimizations,
in particular the register-register MAC instruction, infra-word
vectorization and unaligned load/store operations. The tests based
on fixed-point computations (all versions of svm and cnn and
the fixed-point version of matmul) cannot exploit the OR10N
microarchitectural enhancements to the same level, because
many of these enhancements are not compatible with fixed-
point computation (e.g. there is no multiply-shift-add operation).
Finally, the hog algorithm has the interesting property of needing
a very high dynamic range, and is thus ill-suited to fixed-point
implementation; to ensure accuracy is kept at an acceptable level,
we had to employ 32-bit fixed-point numbers and SW-emulated
64-bit variables for accumulation. This is the cause of the slight
architectural slowdown visible in the figure.

The right side of Figure 4 shows the acceleration gained with
code parallelization (on top of the architectural speedup already
discussed for the plot on the left); we also show the ideal 4x
speedup. This plot essentially shows that OpenMP parallelization

is working as it is meant to; the real speedup is reduced by the
Amdahl overhead in both the computation code and the runtime;
most of this reduction is due to Amdahl non-idealities and the
average overhead of the OpenMP runtime is 6%.

In the case of an embedded system, one is not typically
interested in the best absolute possible performance, but rather
in the best performance achievable in a given power envelope.
To demonstrate that heterogeneous acceleration is an effective
solution also at this level, we show what happens when we
impose a constraint of 10 mW to the total power consumption,
considering the MCU, PULP and the SPI link between the two.
The baseline is given by clocking the STM32-L476 MCU at
32 MHz. When the MCU is used at this frequency, there is
no additional room for acceleration. If the frequency of the
MCU is below 32 MHz, the available power can be used for the
heterogeneous accelerator. As the MCU frequency is lowered,
the power available for the accelerator is more, therefore it is
possible to operate it at a higher frequency.

The plot in Figure 5a shows the pure PULP vs STM32 speedup
over the baseline (STM32 at 32 MHz) in all combinations,
allowing the accelerator to run at the maximum speed allowed
by the available power envelope. Note that in this plot we do not
yet consider the cost of the offload procedure itself. For better
clarity, the plot also shows the performance gain that could be
triggered by spending more than the allotted 10 mW raising
the MCU frequency. The two sets of PULP and MCU bars are
also annotated to show the number of RISC ops/cycle in each
benchmark. Within this 10 mW budget, usage of the accelerator
ideally allows significant speedups - as much as 60x in the case
of the fastest benchmark (strassen), more than 25x for all the
fixed point benchmarks and 20x for the worst-case benchmark
(hog).

However, offloading computation from the MCU to PULP is
not for free, in terms of both performance (latency) and energy.
We have two limiting factors to take into consideration: the impact
of the accelerator binary offload, and that of the input/output data
transfer between the host MCU and the accelerator. Figure 5b
takes into account this scenario, showing the efficiency loss due to
this effect when we consider a single iteration of the benchmark
(e.g. one frame/offload for the vision benchmarks), and how
this efficiency can be recovered by increasing the number of
benchmark iterations performed per each offload. To calculate
throughput and power consumption of the coupling link we
considered using the QSPI interface featured by the STM32-L476
MCU. We can distinguish two scenarios: if the SPI link between
the MCU and the accelerator is fast enough, the computation
time dominates and full efficiency can be reached after as few
as 32 iterations; this is the case of the two configurations in
which the STM32 is fastest (16MHz and 26 MHz, respectively).
Conversely, if the bandwidth of the SPI link is too low, the
efficiency reaches a plateau. The maximum speedup can thus
be reached by clocking the MCU at the minimum frequency at
which the SPI does not become a bottleneck.



matm
ul

matm
ul (s

hort)

matm
ul (f

ixed)

stra
ssen

svm (li
near)

svm (p
oly)

svm (rb
f) cnn

cnn (a
pprox)

hog
100

101

102
sp

e
e

d
u

p
 (

m
s/

m
s)

8.19

1.00

6.69

0.90

5.42

0.91

8.00

0.95

3.16

0.82

3.20

0.83

3.38

0.87

3.62

0.96

3.87

1.10

3.64

1.20

Speedup (without offload)

PULP@222MHz + STM32@4MHz

PULP@193MHz + STM32@8MHz

PULP@154MHz + STM32@16MHz

PULP@87MHz + STM32@26MHz

STM32@48MHz

STM32@64MHz

STM32@72MHz

(a) Speedup without offload achievable vs STM32@32MHz within a 10mW power envelope (annotated with RISC ops/cycle).

ma
tm
ul

ma
tm
ul 
(sh

ort
)

ma
tm
ul 
(fix

ed
)

str
ass

en

svm
 (li
ne
ar)

svm
 (p
oly

)

svm
 (rb

f) cn
n

cn
n (
ap
pro

x) ho
g

0

20

40

60

80

100

e
ff
ic
ie
n
cy
 (
%
)

Efficiency (1 iteration/offload)

1 2 4 8 16 32 64 128 256 512 1024

number of iterations/offload

0

20

40

60

80

100

e
ff
ic
ie
n
cy
 (
%
)

Efficiency (geometric mean on all benchmarks)

PULP@222MHz + STM32@4MHz PULP@193MHz + STM32@8MHz PULP@154MHz + STM32@16MHz PULP@87MHz + STM32@26MHz

(b) Efficiency w.r.t. ideal speedup when scaling the number of benchmark iterations per offload.

Figure 5: Speedup achievable within a total 10mW power envelope.

Clearly this could be considered a worst-case situation, where
the entire cost for the offload is paid for a tiny accelerated piece
of computation. In practical cases, more often than not the same
computation is iterated over a large set of data chunks. As a
consequence, the cost for code offloading is quickly amortized.
Data still has to be brought in and out of the accelerator memory,
but traditional double buffering schemes can be implemented
to overlap data transfers with useful computation, which is the
case we show in the rightmost plot. We observe that the limited
efficiency that can be observed for some operating points in
Figure 5b is strictly dependent from the very low frequency
at which the MCU is clocked in those points, which on turn
severely limits the SPI frequency and throughput. In a practical
situation, even when performing most of the computation in those
operating points the MCU frequency might be raised for enough
time to efficiently perform the data exchange, easily overcoming
this limitation. We refer to Section V for an extended discussion
on this topic.

V. DISCUSSION
Heterogeneous acceleration in the IoT design space answers

to a different set of requirements with respect to other domains.
Although energy efficiency is extremely important, absolute
power consumption is also a first-class citizen; IoT nodes are
severely constrained in terms of cost and power delivery, which
is usually implemented with small batteries and/or harvesters [1].
For this reason, we chose to present our results in terms of total
speedup subject to an overall power budget, rather than maximum

achievable speedup or generic energy efficiency improvement.
In our model, we chose to avoid the integration of the MCU

and of the accelerator in the same chip; instead, we propose to
use an accelerator built in 28nm FD-SOI technology and an off-
the-shelf MCU fabricated in a more “conservative” technology
node as the host. This choice answers to cost considerations
specific of the ULP domain. The accelerator absolutely needs a
high level of integration to achieve the high energy-efficiency that
can be “spent” to provide a high level of speedup. Conversely,
MCUs are typically fabricated with a different set of goals, such
as very low mask cost and fast turn-around time due to the
need to produce a great number of models differing by interfaces,
memory size, etc. To amortize the non-recurrent engineering costs
of the higher density technology, it is necessary to produce the
accelerators in high volume; therefore, the most sensible approach
is to make them able to couple with the highest possible number
of microcontrollers on the market. In the model we propose, this
is achieved using an SPI interface, which is available on the
overwhelming majority of MCU platforms and allows relatively
easy and cheap integration of the host and accelerator in a
system-on-board. It also has the significant advantage of being
fully retrocompatible with the programming legacy, as it builds
on existing MCU programming models without disrupting them.

The model presented in Section III-A, and whose perfor-
mance/efficiency results in a practical embodiment are discussed
in Section IV, provides a starting point for the development
of sub-10mW accelerators. As we observed in Section IV-B



regarding the results shown in Figure 5b, the bottleneck of the
SPI coupling link between the host and the accelerator can be
lifted by temporarily raising the MCU frequency when performing
a data transfer. It would be more desirable to have a low-power,
high-throughput SPI link that is not tied to the MCU core
frequency and that completely removes the bottleneck. Bringing
this further, a possible variation on the model we propose in
Figure 1 is to bring data from the sensor directly to the internal
memory of the accelerator. This requires a dedicated (and more
expensive) interface between the sensor and the accelerator, but
it also reduces the pressure on the coupling link in terms of
throughput, while it can still be used for pipeline cooperation
between accelerator and host.

Finally, an interesting point to raise is that of the heterogeneity
of tasks in the ULP domain. While in this work we mainly
concentrate on a single task that is performed either on the host
or on the accelerator, we modeled our power budget to allow for
an additional, separate task to be performed on the host at the
same time. This would allow for even more complex functionality
to be performed in the sub-10mW space, taking advantage of
the relative strengths of the host and the accelerator.

VI. CONCLUSIONS
In this work we propose the heterogeneous accelerator model

as a methodology to enhance performance and energy efficiency
of computation-intensive kernels in embedded scenarios with
strong requirements on low power consumption; we also show a
particular embodiment of this paradigm by coupling a STM32
microcontroller with PULP, a programmable ULP parallel
accelerator. We present a simple offload programming model,
designed as a subset of the widespread OpenMP specifications,
that abstracts the low-level details of communicating code
and data from the STM32 to PULP via a SPI interface, thus
significantly improving the programmability of the system. Our
results show that a speedup of more than an order-of-magnitude is
achievable in a ULP setting, without compromising the platform’s
programmability.
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