
DISS. ETH NO. 23531

EXTRACTION OF TRANSPORTATION
INFORMATION FROM COMBINED POSITION AND

ACCELEROMETER TRACKS

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

LARA MONTINI

MSc ETH

born on 16.08.1985

citizen of
Basel BS and Clos du Doubs JU

accepted on the recommendation of

Prof. Dr. Kay W. Axhausen, examiner
Prof. Dr. Hillel Bar-Gera, co-examiner

Dr. Nadine Rieser-Schüssler, co-examiner

2016





Contents

Abstract xi

Zusammenfassung xiii

Acknowledgments xv

1 Introduction 1

I Surveys and data 3

2 Introduction and related work 7

3 GPS survey Greater Zurich Area 9
3.1 Survey design . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Survey process . . . . . . . . . . . . . . . . . . . 10
3.1.2 Psychometric scales . . . . . . . . . . . . . . . . 12
3.1.3 Web-based prompted recall interface . . . . . . . . 16
3.1.4 Technical details and data flow . . . . . . . . . . . 19

3.2 Survey execution . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Psychometric scales . . . . . . . . . . . . . . . . 26
3.3.2 One-week travel diaries . . . . . . . . . . . . . . 27

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 PEACOX 35
4.1 Study context: the PEACOX project and applications . . . 35

4.1.1 Journey planning app . . . . . . . . . . . . . . . . 36
4.1.2 Prompted recall app . . . . . . . . . . . . . . . . 37

4.2 First field trial . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.1 Smartphone data collection . . . . . . . . . . . . . 40



Contents

4.2.2 Paper diaries . . . . . . . . . . . . . . . . . . . . 40
4.2.3 Automatically generated diaries . . . . . . . . . . 42
4.2.4 Analysis of travel diaries . . . . . . . . . . . . . . 44

4.3 Second field trial . . . . . . . . . . . . . . . . . . . . . . 45
4.3.1 Participants . . . . . . . . . . . . . . . . . . . . . 45
4.3.2 Procedure . . . . . . . . . . . . . . . . . . . . . . 46
4.3.3 Data collection . . . . . . . . . . . . . . . . . . . 47

4.4 Travel diary generation . . . . . . . . . . . . . . . . . . . 49
4.4.1 Uncorrected diaries from smartphones . . . . . . . 49
4.4.2 Corrected diaries from smartphones . . . . . . . . 50
4.4.3 Uncorrected diaries from dedicated devices . . . . 50

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5.1 Data quality of raw data . . . . . . . . . . . . . . 51
4.5.2 Comparison generated travel diaries from smart-

phone and dedicated device data . . . . . . . . . . 52
4.5.3 Evaluation of trip purpose and activity type detection 59
4.5.4 Trip diary app . . . . . . . . . . . . . . . . . . . . 61
4.5.5 Battery drain issues . . . . . . . . . . . . . . . . . 61

4.6 Conclusion and outlook . . . . . . . . . . . . . . . . . . . 62

5 External Data Sources 65
5.1 External Swiss GPS data . . . . . . . . . . . . . . . . . . 65
5.2 Network data . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.1 Open Street Map (OSM) . . . . . . . . . . . . . . 66
5.2.2 Public transport network and schedule . . . . . . . 72

5.3 Elevation model . . . . . . . . . . . . . . . . . . . . . . . 72

II Automatically generated travel diaries 73

6 Introduction and related work 77

7 Method for transport mode and trip purpose detection 81
7.1 Performance measures . . . . . . . . . . . . . . . . . . . 82
7.2 Activity location calculation . . . . . . . . . . . . . . . . 82
7.3 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.4 Feature computation . . . . . . . . . . . . . . . . . . . . 85

7.4.1 Feature selection . . . . . . . . . . . . . . . . . . 86
7.5 Random Forest . . . . . . . . . . . . . . . . . . . . . . . 87

ii



Contents

7.5.1 Tuning and Stability Analysis . . . . . . . . . . . 89
7.6 Evolutionary algorithm to optimise fuzzy rule system . . . 90

7.6.1 The individual . . . . . . . . . . . . . . . . . . . 91
7.6.2 Variation operators: crossover and mutation . . . . 92
7.6.3 Fitness and selection . . . . . . . . . . . . . . . . 94

8 Results for transport mode and trip purpose detection 95
8.1 Transport mode . . . . . . . . . . . . . . . . . . . . . . . 95

8.1.1 Performance using optimised fuzzy rules . . . . . 95
8.1.2 Personalisation using random forests . . . . . . . . 97
8.1.3 Analysis of accelerometer features and their im-

portance using random forests . . . . . . . . . . . 101
8.2 Trip purpose . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.2.1 Base Setup . . . . . . . . . . . . . . . . . . . . . 107
8.2.2 Performance with a Reduced Feature Set . . . . . 108
8.2.3 Performance of Location-Based Identification . . . 110
8.2.4 Classifier Performance for Different Persons . . . 110
8.2.5 Personalisation Using Person-Specific Input Features112
8.2.6 Personalisation Based On Corrected Data . . . . . 113

9 Conclusion 119

III Applications 123

10 Route and mode choice models 127
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 127
10.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

10.2.1 Map-matching and network-based variables . . . . 129
10.2.2 Route choice model . . . . . . . . . . . . . . . . . 131
10.2.3 Choice set generation . . . . . . . . . . . . . . . . 132

10.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
10.3.1 Car route choice model . . . . . . . . . . . . . . . 134
10.3.2 Public transport route choice model . . . . . . . . 139
10.3.3 Bicycle and pedestrian route choice . . . . . . . . 141
10.3.4 Combined mode and route choice model . . . . . . 147

10.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 150

11 Searching for parking in GPS data 151

iii



Contents

11.1 Introduction and related work . . . . . . . . . . . . . . . . 151
11.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

11.2.1 GPS data and processing . . . . . . . . . . . . . . 154
11.2.2 Parking search path and strategies . . . . . . . . . 156

11.3 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
11.3.1 Driving times and distances . . . . . . . . . . . . 161
11.3.2 Walking times and distances . . . . . . . . . . . . 163
11.3.3 Speed distribution . . . . . . . . . . . . . . . . . 164
11.3.4 Search path . . . . . . . . . . . . . . . . . . . . . 167
11.3.5 Dynamics . . . . . . . . . . . . . . . . . . . . . . 167

11.4 Conclusion and outlook . . . . . . . . . . . . . . . . . . . 171

12 Discussion 175

Bibliography 179

Curriculum Vitae 199

iv



List of Figures

3.1 Stage-based all-in-one GUI . . . . . . . . . . . . . . . . . 18
3.2 Two-step GUI: activities . . . . . . . . . . . . . . . . . . 20
3.3 Two-step GUI: stages . . . . . . . . . . . . . . . . . . . . 21
3.4 Data flow: Integration of dedicated GPS device, ftp server,

homepage and the central survey database. . . . . . . . . . 22
3.5 Administration tool: telephone list . . . . . . . . . . . . . 22
3.6 Response according to age category as given by address

data file . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.7 Number of participants starting the survey per month . . . 24
3.8 Comparison to the Microcensus 2010: Trip purpose, num-

ber of trips per day and person . . . . . . . . . . . . . . . 31
3.9 Comparison to the Microcensus 2010: Share of stages per

mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.10 Comparison to the Microcensus 2010: Travel time share

of modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Screenshots of the journey planning app . . . . . . . . . . 38
4.2 Screenshots of the prompted recall app . . . . . . . . . . . 39
4.3 Final design of the paper diary. Filled in example as given

to participants. . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4 Transport mode shares of the paper diaries compared to the

automatically generated stages with the dedicated devices. 43
4.5 Average GPS point frequency for detected stages (after

cleaning GPS data) for both devices carried simultaneously 52
4.6 Daily detected movement duration per person. . . . . . . . 54
4.7 Detected movement for 3 selected users. Sundays in grey. . 57
4.8 Mean coverage of overlapping stages and share of over-

lapping stages for each participant. Only days where both
devices were active as defined in Figure 4.6 are considered
here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



List of Figures

4.9 Detection accuracy per user (based on corrections of smartphone-
based diary) . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.10 Number of days passing before corrections are done . . . . 62

5.1 Area around Zurich included in analysis . . . . . . . . . . 70
5.2 Cycling network with safe cycling roads in green . . . . . 71

7.1 Comparison of centroid, median coordinate and densest
coordinate as representation for an activity location. . . . . 83

7.2 Pareto efficiency of the mean number of clusters that cover
home activities and the mean number of different locations
within the main home cluster for several cutoff distances. . 85

7.3 Mean feature importance for 17 (a) and 13 (b) features
respectively. Color coding for different feature types (ac-
tivity, person, cluster and overall cluster features). . . . . . 88

7.4 Out-of-bag error for different numbers of randomly se-
lected features (m). . . . . . . . . . . . . . . . . . . . . . 89

7.5 Example of individuals consisting of 4 linguistic variables.
Individuals 1 and 2 are the parents of individuals 3 and 4
generated by the crossover operation (arrows). . . . . . . . 92

7.6 Illustration of the elements of a fuzzy system and examples
of mutation operations. . . . . . . . . . . . . . . . . . . . 93

8.1 Evolution of accuracy of the training data for all runs. . . . 98
8.2 Best membership functions of first and last iteration of the

run with good initial population. . . . . . . . . . . . . . . 99
8.3 Accuracies for different feature sets, box plot for 100 runs

each. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.4 Per person mean accuracy of 10 runs. Same features as run 3.100
8.5 Mean accuracies of 10 runs per person including personal

training data. Varying number of training days of the per-
son to be classified as well as different weights. . . . . . . 103

8.6 Feature importance of accelerometer features. . . . . . . . 106
8.7 Accuracy of activity-based (a) and location-based (b) clas-

sification using different cutoff distances (hierarchical clus-
tering with average distance). . . . . . . . . . . . . . . . . 111

8.8 Distribution of mean accuracies per person for different
feature sets in trip purpose detection. . . . . . . . . . . . . 113

vi



List of Figures

8.9 Mean accuracy of 10 runs for each person plotted against
the share of easiest detected trip purposes . . . . . . . . . 114

8.10 Median accuracy of the per person mean accuracy for
different number of persons in the training set . . . . . . . 115

8.11 Distribution of mean accuracies per person for all strate-
gies. The vertical lines are the medians of the base runs
with 50 (left) and 130 (right) persons respectively. . . . . 116

10.1 Map-matching walk stages: GPS points on roundabout,
weighting ensures that side-walk and crossing are chosen . 129

10.2 Map-matched distance compared to GPS distance . . . . . 130
10.3 Class membership probabilites for the bike as well as

pedestrian latent class models . . . . . . . . . . . . . . . . 143

11.1 GPS data sets and centre definition for Zurich and Geneva 155
11.2 12 districts (Kreis) of Zurich with garages used for GPS

analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
11.3 Path segmentation . . . . . . . . . . . . . . . . . . . . . . 157
11.4 Chosen and shortest path . . . . . . . . . . . . . . . . . . 158
11.5 Time and distance driven within a radius of 800 meters

around parking space for Geneva and Zurich. . . . . . . . 160
11.6 Categorisation of detected car stages. . . . . . . . . . . . . 162
11.7 Time and distance driven after entering an 800 m radius

around parking space for all districts of Zurich. . . . . . . 163
11.8 Difference chosen and shortest path on the last 2 km to the

parking space. . . . . . . . . . . . . . . . . . . . . . . . . 164
11.9 Time and distance walked for all districts (Kreis) of Zurich. 165
11.10Speed distribution for path segments and parking spaces

Kreis 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
11.11Parking type - on-street vs. garage. . . . . . . . . . . . . . 168
11.12Walking distances for garage and on-street parking. . . . . 169
11.13Driving times within 800 m of parking for Zurich city. . . 170
11.14Circle around parking or activity location: parking search

right to activity location is missed in this case. . . . . . . . 173

vii





List of Tables

3.1 Survey process . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Scale items measuring the attitude towards risk . . . . . . 14
3.3 Scale items regarding environmentalism . . . . . . . . . . 15
3.4 Scale items evaluating the variety seeking tendency . . . . 17
3.5 Comparison of socio-economic attributes of the respon-

dents with the Microcensus 2010 . . . . . . . . . . . . . . 25
3.6 Results of the factor analysis for risk propensity . . . . . . 28
3.7 Results of the factor analysis for environmentalism . . . . 29
3.8 Results of the factor analysis for variety seeking . . . . . . 30

4.1 Characteristics of PEACOX participants (2nd field trial) . . 46
4.2 Smartphone types used in Field Trial . . . . . . . . . . . . 48

5.1 Socio-economic attributes of the respondents differentiated
between regions compared to the Microcensus 2005 . . . . 67

5.2 Properties of car network extracted from OSM, default
speeds are only used if tag maxspeed not specified . . . . 68

5.3 Properties of bike and walk network extracted from OSM . 69

7.1 Fuzzy rules for mode identification . . . . . . . . . . . . . 91

8.1 Run parameters for the optimisation algorithm . . . . . . . 96
8.2 Evolution of accuracy of the training data for all runs . . . 98
8.3 Confusion Matrix: Run 3 including person-based features. 101
8.4 Random forest out of bag feature importance measure

(run 3), orange-coloured features are person-based, mode-
specific features are dark red and light yellow features are
stage-specific. . . . . . . . . . . . . . . . . . . . . . . . . 102

8.5 Recall values for accelerometer-only mode detection . . . 104
8.6 Confusion Matrix: Best Run out of 100 for Two Different

Feature Sets (Random Forest with 500 Trees). . . . . . . . 109



List of Tables

10.1 Scaled parameter values of car route MNL model for dif-
ferent choice set sizes . . . . . . . . . . . . . . . . . . . . 136

10.2 Car routes (2067 observations) . . . . . . . . . . . . . . . 137
10.3 Car route choice models for different trip purposes based

on Model 3 . . . . . . . . . . . . . . . . . . . . . . . . . 138
10.4 Public transport route choice models for different choice

set methods . . . . . . . . . . . . . . . . . . . . . . . . . 140
10.5 Parameter values of bicycle route MNL model for different

choice set sizes . . . . . . . . . . . . . . . . . . . . . . . 142
10.6 Bicycle route choice model (choice set size 40) . . . . . . 144
10.7 Scaled parameter values of pedestrian route MNL model

for different choice set sizes . . . . . . . . . . . . . . . . 145
10.8 Pedestrian route choice model (choice set size 20) . . . . . 146
10.9 Mode and route choice model (6 alternatives per mode) . . 148
10.10Mode and route choice model (6 alternatives per mode)

(cont.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

11.1 Zurich city data by district (Stadt Zürich Präsidialdeparte-
ment, Statistik Stadt Zürich, 2011) . . . . . . . . . . . . . 161

x



Abstract
Travel surveys are increasingly taking advantage of global positioning sys-
tem (GPS) data offering precise and objective route and time observations
whilst potentially reducing response burden. However, there are still sev-
eral open issues concerning the automated post-processing of these large
datasets. Without a reliable post-processing, GPS-based studies require
either a considerable amount of manual analysis, leading to costly surveys
or extensive prompted-recall interviews with the respondents.

As part of this thesis a travel diary study was conducted in the Greater
Zurich Area. 150 participants carried dedicated GPS devices for up to
one week and corrected their diaries in a web-based prompted recall tool.
Using the resulting data set, the existing POSition DAta Processing frame-
work was extended by a trip purpose module. Random forests, a machine
learning technique, is used for classification. For trip purpose a share of
correct predictions between 80 and 85 % is achieved for different setups.
High variability in accuracy between persons is observed. Hence, personal-
isation strategies are tested. It is shown that the classifier is improved if it is
learned on data that includes some of the participant’s annotations (median
accuracy + 5.5 %). The updated processing tool, and also lessons learned
from the GPS survey in Zurich are tested in the PEACOX project, a joint
project with many partners where a smartphone cross modal trip planner
was developed that encourages ecological friendly behaviour. GPS and
accelerometer time series for 33 study participants in Vienna and Dublin
are available for analysis; these were tracked simultaneously with smart-
phones and dedicated devices for 8 weeks. Therefore, further insight into
the usefulness of smartphones and dedicated GPS devices for collecting
current travel survey data is gained. Meaningful diaries can be extracted
from both data sources. However, if high resolution data is needed, results
suggest that dedicated GPS devices are still relevant; they have no battery
issues, meaning that more data is recorded and that data quality is more
stable.

High resolution data is particularly interesting to observe taken routes.



Abstract

Two potential applications are shown here: route choice models are esti-
mated for all travel modes (public transport, car, bicycle and walking) and
parking search is shown to be hard to identify in our data.

xii



Zusammenfassung
Befragungen zu Verkehrstagebüchern werden immer häufiger durch GPS
(global positioning system) Daten ergänzt. Diese ermöglichen eine präzise
und objektive Beobachtung von Zeiten und Routen, optimalerweise bei
tieferem Aufwand für die Befragten. Dies bedingt eine vollständige, quali-
tativ hochstehende und verlässliche Verarbeitung der üblicherweise grossen
Datenmenge, ansonsten ist für GPS basierte Studien weiterhin erheblicher,
kostenintensiver Aufwand nötig, entweder bedingt durch manuelle Analyse
aller Tagebücher oder durch persönliche Interviews mit den Teilnehmern.

Als Teil dieser Arbeit wurde im Grossraum Zürich eine GPS Studie mit
150 Teilnehmern durchgeführt. Diese trugen für bis zu einer Woche ein
GPS Gerät bei sich und korrigierten die automatisch erstellten Tagebücher
auf der Umfragewebseite. Der resultierende Datensatz wurde genutzt um
für die bestehenden Auswertungsroutinen (POSDAP) ein Aktivitätenerken-
nungs Modul zu entwickeln. Die Klassifizierung erfolgt mit dem Random
Forest Algorithmus, wobei je nach Setup 80 bis 85 % der Aktivitäten richtig
erkannt werden. Die Genauigkeit variiert stark zwischen den Teilnehmern,
daher werden Personalisierungsstrategien getestet, es wird gezeigt, dass die
Erkennungsrate um 5.5 % steigt, wenn beim Lernen des Random Forests
Daten des Teilnehmers genutzt werden können. Diese erweiterten Routi-
nen wurden im PEACOX Projekt eingesetzt, ein Gemeinschaftsprojekt in
welchem ein multi-modaler, ökolgisches Verhalten fördender Routenplaner
für Smartphones entwickelt wurde. Ausserdem konnten Lehren, welche
aus der Zürcher Studie hervorgingen, umgesetzt werden. In Wien und Du-
blin sammelten 33 Teilnehmer 8 Wochen lang GPS sowie Accelerometer
Daten sowohl mit ihrem Smartphone als auch mit einem GPS Gerät. Dies
ermöglicht einen Vergleich der beiden Geräte und gibt Einblick in deren
Brauchbarkeit für Tagebuch Studien. Beide Geräte liefern brauchbare Ta-
gebücher, GPS Geräte sind weiterhin relevant falls hochaufgelöste Daten
benötig werden, da sie keine Probleme mit der Batterie haben und die
Datenqualität gleich bleibend ist.

Hochaufgelöste Daten sind insbesondere interessant, wenn Routen beob-
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achtet werden müssen. Zwei potentielle Anwendungen werden vorgestellt:
Routenwahlmodell für alle vorhandenen Verkehrsmittel wurden geschätzt
(Auto, öffentlicher Verkehr, Velo, zu Fuss) und es wird gezeigt, dass Park-
suchverkehr in unseren GPS Spuren schwer zu finden ist.

xiv
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Chapter 1

Introduction
In order to understand and analyse travel behaviour, information on trips
and activities have to be collected. Traditionally, this is done either by
requesting people to fill in a paper and pen diary or by interviewing partici-
pants e.g. by phone and asking them about recent travels. These surveys are
now often complemented by GPS data collections, as they allow to observe
movement outside of buildings on a very detailed level. In theory, the data
enables us to derive objective, precise and complete travel diaries as it
does not depend on participants’ memory. Further advantages are precise
trip start and end times, as well as capturing of short walking trips. The
goal of this thesis is to further develop the processing routines, to examine
accuracy of the generated travel diaries and gain insights on usability of
the collected data for applications in transportation research.

The dissertation is organised in three parts that cover different aspects
when working with GPS data in transportation. First, collection of GPS
and accelerometer data and its challenges are presented in Part I. Having
GPS points as such is usually not the main goal, but collecting travel
diaries is. Automatic extraction of those is beneficial or even necessary
due to the large amount of data. Evaluation and optimisation of those
routines is presented in Part II, main focus being on the implementation of
a trip purpose identification module and optimisation of the mode detection
module.

In Part III applications where observation of detailed routes is of interest
are introduced, namely parking search behaviour and route choice models
for all modes of transport.

The basis on which the thesis builds upon is the open source POSi-
tion DAta Processing project (POSDAP, 2012; Schüssler, 2010; Rieser-
Schüssler et al., 2011). The framework was developed using an already
existing Swiss GPS data set only consisting of raw GPS points (that is x, y,
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z and timestamp) described in Chapter 5, and consists amongst others of
modules to extract stages and stops, a module for mode detection, one for
map-matching as well as choice set generation functionalities.

In Chapter 11 this original data set is analysed with regards to parking
search behaviour in the Swiss cities Zurich and Geneva. The drawback of
this data set is mainly the missing annotations for modes and trip purposes,
therefore there was some uncertainty as to the performance of e.g. the
mode detection module.

Consequently, one major goal of this dissertation was to collect anno-
tated data with dedicated GPS devices. Chapter 3 presents the survey
which consists of three parts: the GPS travel diary, a socio demographic
questionnaire as well as psychometric scales capturing variety seeking, risk
propensity and attitude towards the environment. This was the first survey,
where the processing framework was used to preprocess the data before
presenting participants their travel diaries on a web-based prompted recall
tool.

The annotated data was then used to further develop the processing
framework. Performance of the mode detection module is analysed and
a trip purpose detection module is introduced in Part II. The data set
is also used to estimate route and mode choice models in Chapter 10,
considering all available data, that is socio-demographics, attitude scales
and trip purposes.

Within the last years GPS surveys became even more interesting as
smartphones enabled us to collect data without even providing devices
to participants. Chapter 4 presents a smartphone-based survey where
processing routines could be tested on data from Vienna and Dublin. As
participants were also equipped with dedicated devices the resulting travel
diaries using the two devices are compared.
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Part I is partially based on the following papers:

− Montini, L., N. Rieser-Schüssler and K. W. Axhausen (2013a) Field
Report: One-Week GPS-based Travel Survey in the Greater Zurich
Area, paper presented at the 13th Swiss Transport Research Conference,
Ascona, April 2013

− Montini, L., S. Prost, J. Schrammel, N. Rieser-Schüssler and K. W.
Axhausen (2015) Comparison of Travel Diaries Generated from Smart-
phone Data and Dedicated GPS Devices, Transportation Research Pro-
cedia, 11, 227–241
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Chapter 2

Introduction and related
work
In transportation research, GPS traces are used, along with other data
sources, to construct travel diaries (Murakami and Wagner, 1999; Wolf
et al., 2001b; Bricka et al., 2009) as they promise higher accuracy of
duration and distance and increased numbers of short trips and activities.
In addition, it is often argued, that GPS-based surveys allow for longer
survey periods with less fatigue effects as response burden is reduced by
automatically generated diaries. The responsibility for data annotation is
still given to participants and is mostly handled using self-guided web-
based prompted recall approaches (Auld et al., 2009; Bohte and Maat,
2009; Doherty et al., 2006; Frignani et al., 2010; Giaimo et al., 2010;
Oliveira et al., 2011a). Location data is primarily collected using dedicated
GPS devices that respondents must carry with them during the tracking
period. Smartphones are a promising alternative source for location data
(see e.g., Gould, 2013), as they have been equipped with good-quality
GPS, accelerometer and other potentially useful sensor functionality during
the last years and, as opposed to dedicated devices, are often carried by
participants anyway. In this thesis, both a more traditional as well as a
smartphone-based survey are presented in the following two chapters.

A recent review of GPS-based travel studies and the required processing
tools is given in Shen and Stopher (2014), who list representative studies
using dedicated devices from 14 different countries, as well as four smart-
phone studies. The first GPS studies were undertaken in the late 1990s
(Wagner, 1997). GPS devices were at first attached to cars. Later on, hand-
held devices were used to capture all modes of travel (Wolf, 2004). Initial
solutions for mobile phones were implemented in the mid-2000s (Asakura
and Hato, 2004; Ohmori et al., 2006). By now, the smartphone-based travel
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data collection is growing rapidly, as evidenced by several new applications
implemented over the last few years by the research community (Nitsche
et al. (2014), Quantified Traveler (Jariyasunant et al., 2012), UbiActive
(Fan et al., 2013), Future Mobility Survey (Cottrill et al., 2013), CONNECT
of the MOVE project (Vlassenroot et al., 2015), SmarTrAC (Fan et al.,
2015), SITTS (Safi et al., 2015)). Already, commercial tools designed to be
used in different mobility studies are implemented, e.g., rMOVE (Resource
Systems Group (RSG), 2015) and Studio Mobilita (2015) (used in Becker
et al. (2015)). An application with very similar goals as the PEACOX
app (Section 4.1) is the GoEco! app launched in March, 2016 (Cellina
et al., 2015) a tracking app where usage of sustainable travel modes is
encouraged.

A clear advantage of smartphones is the large number of potential partic-
ipants who do not have to be provided with devices. Further, smartphones
are less likely to be left at home than dedicated GPS devices and the possi-
blity to provide immediate feedback, e.g., on emissions, can increase the
willingness to participate for longer time periods (Jariyasunant et al., 2012).
But, using smartphones as a survey tool - in addition to normal usage - also
implies an important challenge: battery life. Another difficulty for survey
use of smartphones is a large variety of different operating systems, brands
and types, with antennas of differing quality that must be covered.

Part I is structured as follows. First, a survey in the Greater Zurich
Area where GPS data was collected with dedicated devices is presented in
Chapter 3. In Chapter 4 the PEACOX project is presented, where data was
colleced with smartphones and dedicated GPS devices, therefore, further
insight is provided into the current usability of the two device types for
collecting travel data. Data quality and usage are compared, as are travel
diaries generated from the two data sources. Chapter 5 briefly introduces
external data used in this thesis, that is another GPS data set as well as
network and elevation data.
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Chapter 3

GPS survey Greater Zurich
Area
Travel behaviour is commonly modelled using socio-demographic as well
as mobility specific attributes. But there are less easily surveyed latent
variables that influence behaviour. Examples of such variables are risk
propensity, attitude towards the environment as well as search for variety.
The goal of this study was to evaluate the influence of these attitudes on
route choice behaviour with a special focus on public transport. To better
observe the route choice behaviour, a person-based GPS travel survey was
combined with the attitude questionnaire.

Following, the field report of this GPS study is structured as follows.
First, the survey design is discussed including target group and tools used.
The second part describes who actually participated, followed by some
descriptive statistics of the travel diaries. Lessons learned conclude this
chapter.

3.1 Survey design

This survey aimed at collecting one week of GPS data of participants living
in and around Zurich. The exact study area contains all municipalities
within 22 km of Zurich Bellevue, just including the cities Winthertur in
the north and Zug in the south. Addresses including telephone numbers
were bought from an address dealer. As age distribution of such address
databases are in our experience not representative for the population, in
particular older people are over represented, addresses were bought by age
category.
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The survey was implemented as online questionnaires with two major
parts:

1. Psychometric scales for the attitudes towards risk, environment and
change

2. A one week GPS-based travel diary
These parts are described in more detail in Section 3.1.2 and Section 3.1.3,
respectively. The third questionnaire concerning person and household
characteristics covered basics such as age, gender, income, education level,
was enriched by mobility tool ownership (e.g. cars, bikes, public transport
season ticket) and concluded with questions about typical locations (home,
work as well as two main shopping addresses).

3.1.1 Survey process

The survey was conducted between August 2011 and December 2012,
and the design of the survey was changed in early 2012. Following, both
process designs and the reasons for the changes are described in detail. The
six main steps of the survey process and the differences of the two designs
are outlined in Table 3.1. Technical details of the survey are addressed in
Section 3.1.4.

Table 3.1: Survey process

August 2011 -
January 2012

January 2012 -
December 2012

Introduction letter X X

Recruitment phone call X X

Equipment delivery in person by mail

Introduction to survey in person help page and
brochure

Assistance during survey phone / e-mail on
request

in person after col-
lection period

Returning equipment by mail fetched in person

The first two steps, constituting the recruitment of participants, remained
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the same in both designs. First, an introduction letter was sent out explain-
ing the aim of the survey and announcing the recruitment call. Typically,
participants were called 2 to 7 days after receiving the letter. All recipients
were called up to 5 times over several days. After 5 unsuccessful calls
the person was categorised as non-responsive. If the call was successful
it was first checked that the person answering the phone is the recipient
of the letter. Referencing the introduction letter, the goals and design of
the survey and particularly the contribution expected from participants
were explained in detail. No incentives were offered. If the person refused
participation the reasons for doing so was recorded whenever possible. If
the person agreed to participate the one week survey period was scheduled.

In the original design, a time and location chosen by the participant was
scheduled to deliver the survey equipment. In the alternative design, the
equipment was sent by mail. The survey equipment included the GPS log-
ger, a charging device, a self-addressed postpaid envelope (original design),
access information for the survey website and a brochure explaining the
motivation of the survey and the handling of the website elements.

The pre-survey meetings usually lasted 30 to 90 minutes depending on
the interest of the participant. During the meeting, the handling of the
GPS logger and the different parts of the website were introduced. The
focus was on the usage of the GPS-based prompted recall diary that was
demonstrated using an artificial example created for every participant. The
example contains common errors like missing signal during rail trips or
tunnels where stages have to be merged, wrong mode identification that
have to be corrected and randomly occurring wrong points that were not
filtered by the post-processing. At the end of the interview, the participants
were given a phone number and an email address where they could reach
the survey team in case of any problems or difficulties. From the side of
the survey team they were only contacted again if necessary.

Our experience showed that the artificial example, even though con-
structed from real data, only helped participants partly in understanding
their own tracks. Further, many participants had only little time and did not
want the assistants to introduce them to the web-survey in depth. This was
one of the reasons why the in person meeting was postponed to the end
of the survey in our second design. Without the preliminary instructions
participants fully relied on the information in the brochure. Further help
was available through the web-site which contained content-related but
also extensive technical information on how the survey had to be filled
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out. Still, the main advantage of meeting after the survey period was, that
assistants were able to provide instructions on actual data of participants or
they could even help filling out the complete diary. These meetings lasted
15 to 60 minutes, depending on time reserved by the respondent and on the
status of the questionnaires. Another advantage was that devices could be
fetched directly, as before, they were not always sent back immediately.
And third, concluding the survey with a meeting resulted in less postponing
of the survey period.

To support these changes in survey design, the survey material was
slightly adapted as well. On the one hand, a few simple diary pages were
added to the brochure and participants were encouraged to take notes. This
was a precaution as the transmission of GPS data did not always work as
desired. On the other hand, the design of the web-based prompted recall
interface was modified as explained in detail in Section 3.1.3.

3.1.2 Psychometric scales

The development and implementation of the psychometric scales has been
extensively described in Rieser-Schüssler and Axhausen (2011) in the
context of a prestudy, and is summarised in this section.

Corresponding to the three attitude domains that are investigated in this
study, three separate scales have been developed: one measuring the risk
propensity of the respondents, one addressing their attitude towards the
environment and environmental protection and one quantifying the level of
variety the persons seek in their life. Each scale is presented to the respon-
dents with a 5-point agree-disagree scale. To minimise effects resulting
from the order of the scale items, their order is determined randomly with
three different random orders for each scale.

Risk propensity
There is a growing understanding in risk propensity research that a per-
son’s degree of risk taking does not only depend on individual, group and
cultural factors but also on the domain in which the risk occurs. While
it is still an open research issue whether this is caused by variations in
the attitude towards risk over different domains or by varying perceptions
of risks, Weber et al. (2002) argue that for the modelling and prediction
of risk behaviour this distinction is irrelevant and that it is sufficient to
observe the person’s risk behaviour in the domain of interest. The risk
propensity scale used in this study is shown in Table 3.2. It combines a

12



3.1. Survey design

reduced version of the domain specific risk propensity scale by Weber et al.
(2002) with seven additional items for transport related risks. Overall, the
scale contains 42 items covering the domains social, ethical, recreational,
financial, health/safety and transport-related risks.

Environmentalism
Due to the increasing awareness of environmental issues, a lot of work re-
garding the measurement of environmentalism has been published in recent
years. One of the earliest and most well-known studies is the land-use and
transport behaviour study by Kitamura et al. (1997) who measured environ-
mentalism using a 10 item scale. Subsequently, Schultz (2001) argued that
environmental concern has to be differentiated between concern for oneself,
other people and the biosphere because different values and awarenesses
of harmful consequences are attached to them. Gatersleben et al. (2002)
investigated the relationship between environmental attitudes and believes,
socio-economics, social science indicators of pro-environmental behaviour
and measurements of direct and indirect energy consumption. Following
the theory of planned behaviour (Ajzen, 1991), Anable (2005) developed a
105 item scale to examine the influence of habits, moral norms, environ-
mental attitudes, felt efficacy and perception of other persons’ behaviour
on mode choice and showed that the mode choice behaviour of different
attitudinal population segments is indeed very different. After reviewing,
amongst others, the scales of these authors, the scales used by Gatersleben
et al. (2002) and Kitamura et al. (1997) were judged to be most appropriate
for the study at hand. To use the advantages of both scales, they were
combined into the 25 item scale presented in Table 3.3 that takes into
account general concern for the environment, awareness of consequences
for oneself, others and the biosphere and the evaluation of measures for
environmental protection.

Variety seeking
Compared to the variety of studies employing measures for environmental-
ism relatively little research has so far been directed towards the quantifica-
tion of variety seeking and its incorporation in models for daily transport
behaviour. The few studies aiming in this direction investigate the phe-
nomenon of travel for its own sake, i.e. undirected travel or travel with
unnecessary detours (e.g. Mokhtarian and Salomon, 2001). A wider recog-
nition of the influence of variety seeking on travel behaviour can be found
in the tourism literature (Bello and Etzel, 1985; Niininen et al., 2004). Since
none of the scales reported in the literature was completely satisfactory,
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Table 3.2: Scale items measuring the attitude towards risk

Code Question

R1 I admit if my taste differs from that of my friends *
R2 I argue with a friend if we have different opinions *
R3 I ask my boss for a raise when I think that I earned it *
R4 I would date a coworker *
R5 I would openly disagree with my boss in front of my coworkers *
R6 I speak my mind about unpopular issues at social occasions *
R7 I wear unconventional clothes *
R8 I would cheat a fair amount on my income tax *
R9 I still drive home after I had three drinks in the last two hours *
R10 I would forge somebody’s signature *
R11 I have used cable TV without paying for it *
R12 I use office materials provided by my employer for private purposes *
R13 I would shoplift a small item (e.g. a lipstick or a pen) *
R14 I have at least once used illegally copied software *
R15 I go camping in the wild *
R16 I ski down slopes that are too difficult for me *
R17 I would like to do a safari in Kenya *
R18 I would go whitewater rafting at high water in spring *
R19 I would go on a 2 week vacation in a foreign country without booking ahead *
R20 I engage in dangerous sports, e.g. paragliding *
R21 I tried out bungee jumping at least once *
R22 I eat food that is beyond its expiration date if is still looks good *
R23 I ignore pain as long as possible before consulting a doctor *
R24 I rarely use sunscreen before sunbathing *
R25 I rarely wear a seat-belt *
R26 I would engage in unprotected sex outside a relationship *
R27 I usually ride my bike without wearing a helmet *
R28 I smoke at least one packet of cigarettes per day *
R29 I would co-sign a loan for a new car for a friend *
R30 I would invest 10% of my annual income in a blue chip stock *
R31 I would invest 10% of my annual income in speculative stocks *
R32 I would invest 10% of my annual income in government bonds *
R33 I would lend my best friend an amount of money equivalent to one month’s income *
R34 I would bet a day’s income in a casino *
R35 I would accept a job that is paid solely based on commission *
R36 I always take the latest possible public transport connection to the train station
R37 I start earlier if I assume that there will be congestion on my route
R38 I prefer public transport connections with very short transfer times
R39 If I don’t know the way I just start into the general direction and search step by step
R40 I avoid streets that are occasionally congested
R41 I start earlier if I have to drive an unfamiliar route
R42 I try to be at the airport at the latest possible time

(*) Source: Weber et al. (2002)
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Table 3.3: Scale items regarding environmentalism

Code Question

E1 I worry about environmental problems *

E2 Too much attention is paid to environmental problems *

E3 Environmental problems are exaggerated *

E4 The attention for the greenhouse effect is exaggerated *

E5 I am optimistic regarding the state and future of our environment *

E6 Environmental pollution affects my health *

E7 Environmental problems have consequences for my life *

E8 I can see with my own eyes that the environment is deteriorating *

E9 Environmental problems are a risk for the future of our children *

E10 Saving threatened species is unnecessary luxury *

E11 We should be careful with our environment because we depend on it *

E12 Vehicle emissions increase the expenses for health care **

E13 Environmental protection starts with myself *

E14 People who do not care about environmental protection avoid their responsibilities *

E15 Behavioural change requires more environmental friendly products *

E16 Behavioural change requires a right example by the government *

E17 Pro-env. beh. is only useful if everybody cooperates and I don’t think this will happen *

E18 Environmental protection costs too much **

E19 Environmental protection is good for the economy **

E20 Jobs are more important than the environment **

E21 Stricter vehicle smog control should be enforced **

E22 The price of gas should be raised to reduce pollution **

E23 Using tax dollars to pay for public transport is a good investment **

E24 There should be incentives for using electric vehicles **

E25 Who causes environmental damage should pay to repair it **

(*) Source: Gatersleben et al. (2002)

(**) Source: Kitamura et al. (1997)
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we constructed our own scale including some of the questions reported
by Mokhtarian and Salomon (2001). The variety seeking scale reported
in Table 3.4 contains 28 questions measuring the desire for variety in the
daily routine in general and in shopping, eating, recreational activities and
transport behaviour in particular.

3.1.3 Web-based prompted recall interface

The main parts of the prompted recall interface are visualisation of the
collected data, presentation of the travel diary, and editing of activities and
stages.

In this section, first, the original prompted recall interface is presented,
which is an all-in-one stage-centred approach. Based on our experience
with this GUI we implemented some improvements, at the time we changed
the survey design. The result was an activity-centred approach that con-
sisted of two consecutive steps.

All-in-one survey - stage-centred
In the all-in-one user interface (Figure 3.1) participants first choose the
day they want to review from a drop-down menu. All GPS points - or for
performance reasons every n-th point - of the chosen day are presented
on an interactive map; the timestamp for each point can be accessed by
clicking on the respective point on the map. GPS points of the same stages
are depicted in the same colour, stop points are shown in green. In addition,
the diary information is presented in a table below the map. Each diary
entry consists of a stage and the subsequent stop point. The attributes for
each diary entry contain the start and end time of the stage, the chosen
mode, travel costs, the characterisation of the stop point - activity purpose
or mode change - and, finally, a personal location can be picked from a list
to describe the stop point. Respondents can add such personal locations,
defined by a description and its complete and geocoded adress, before or
while filling out the diary. If the address is not known it can be derived
using reverse geocoding.

Participants use the table to review and confirm or correct the diary
entries and their attributes. They can delete and add diary entries, i.e. pairs
of stage and stop points and change all the attributes provided.

Two-step survey - activity-centred
In the two-step survey, choosing the day as well as the handling of the map
is the same as in the all-in-one survey. The diary is still presented as table,
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Table 3.4: Scale items evaluating the variety seeking tendency

Code Question

V1 I like to experience novelty and change in my daily life *

V2 I sometimes look for ways to change my daily routine *

V3 I like to have lots of activity around me *

V4 I prefer a clearly structured, repetitive daily schedule

V5 Reoccurring rituals give me a feeling of control and security

V6 I love surprises

V7 A week in which all my evenings are similar bores me

V8 Shops with exotic herbs and fragrances fascinate me *

V9 When eating out I like to try unusual items *

V10 The content of my shopping cart looks pretty much the same all the time

V11 I buy only trendy clothes

V12 I prefer seasonal fruits and vegetables

V13 I actively search for bands whose music I do not yet know

V14 I always shop at the same supermarket

V15 I like to explore unknown towns or parts of my town

V16 I prefer to spend my holidays always at the same location

V17 I prefer having drinks always at my regular pub

V18 I like to try new types of sports

V19 Cultures completely different from my own fascinate me

V20 I prefer to organise my holidays spontaneously

V21 I always keep an open door for surprise visitors

V22 I like to meet new people

V23 I like to explore new places in my town or new towns **

V24 I like to try new routes to familiar destinations

V25 I sometimes take a longer route to see something new

V26 I like to drive around just for the fun of it

V27 When commuting I always take the same route

V28 I like to meet new people while travelling by train

(*) Source: Mehrabian and Russell (1973)

(**) Source: Weber et al. (2002)
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Figure 3.1: Stage-based all-in-one GUI

but activity and stage variables are not corrected in the same step, therefore,
more space is available to provide helpful input and interaction in the two
separate steps.

In the first step, participants only correct activities (Figure 3.2). To help
distinguish activities on the map, they are shown in different colours and
stages in between are shown in grey. The following improvements were
implemented: First, data is presented in a more intuitive way: starting with
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where the activity took place, followed by what was done from when to
when and additionally the duration of the activity is displayed. The duration
should help to understand the pre-processed diary e.g. if the duration is
3 minutes one might realise quicker that it is a mode transfer point, and
it should also help to detect erroneous time specifications by participants.
Second, adding locations was simplified by providing the possibility to
create a locations for a specific activity, the location pop-up uses the GPS
coordinates of the activity as a suggestion for the location coordinate.

In the second step, stages are corrected (Figure 3.3), therefore stages
are depicted in colours and activities in grey. As times and locations are
already specified in the first step the trip is presented as text containing
the information where the trip started and where it ended, when it started
and ended and again duration is included. Participants then only have to
specify the travel mode, number of passengers and cost.

3.1.4 Technical details and data flow

To collect GPS data a dedicated device was used (MobiTest GSL (MGE
DATA, 2012)). GPS points are sampled every second. Additional to the
three-dimensional position and timestamp, vertical and horizontal accuracy
and number of satellites in view were logged. Further, the three dimensional
acceleration is measured at 10 Hz by the internal accelerometers. The
devices were equipped with a SIM-card that enabled sending the data over
the GSM network.

Figure 3.4 depicts the data flow detailed below. Participants were in-
structed to carry the GPS device for one week and charge it every night.
When the device was charged transmission of the data to the ftp-server was
triggered. Unfortunately, this did not always work as desired. If no data
was sent, it was downloaded directly from the device and uploaded on the
server. Every four hours, raw data was filtered and smoothed, which is
the first step of typical GPS post processing routines, and then stored in
a central MySQL database. The automated post-processing routines that
were used are published open source (POSDAP, 2012) and are described in
detail in Rieser-Schüssler et al. (2011) and Schüssler and Axhausen (2008).
The three main steps executed are the filtering and smoothing, detection
of stop points and stages followed by mode identification. Generation of
the travel diary based on the GPS data was done once every night. As
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Figure 3.2: Two-step GUI: activities

soon as post-processing was concluded the diary could be corrected by the
participants on the survey homepage.

Apart from the survey homepage two administrative tools had to be de-
veloped: the telephone list to facilitate recruiting and a tool to observe the
survey status of participants. Both were implemented as OpenOffice™Base
user interface with direct connection to the central survey database. At
first we worked with a non-central spreadsheet, which got very confusing
even though only one person worked with it. It was therefore quickly
replaced by the entry mask depicted in Figure 3.5. The telephone list had
two main purposes, first, to provide all relevant information to make a
call, and second, to keep track of how often, when and by whom potential
participants had been called. The mask consists of the navigation-bar on
top, information on when the introduction letter was sent out, recipient
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Figure 3.3: Two-step GUI: stages

information (telephone obviously, age category as well as address, which
is important for the assistant when scheduling the meeting) as well as
recruitment information (number of calls, date of the last call, last callee,
comments about the call or meeting schedule). The mask to track progress
of participants simply consisted of some general information on the par-
ticipant and if they logged in, and information on the completion level for
each questionnaire.
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Figure 3.4: Data flow: Integration of dedicated GPS device, ftp server,
homepage and the central survey database.

Figure 3.5: Administration tool: telephone list
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3.2 Survey execution
Response burden as suggested in Axhausen and Weis (2010) sums up
points assigned to each question depending on its type. For example,
a yes/no question equates to 1 point, scales with 3 and more grades to
2 points and a half-open question with more than 8 possible answer to 4
points. For this survey, response burden was calculated to be approximately
1360 points split as follows on the three survey parts: 66 points for the
socio-demographic questionnaire, 190 points for the three psychometric
scales and the majority of the burden caused by the travel diary with around
1100 points. No incentives were offered and burden is comparatively high,
therefore response rate were expected to be moderate.

In total, 1134 persons were contacted by telephone between 6 and 8 in
the evening, of those 176 (16 %) agreed to participate, 133 persons (12 %)
were not reached. Figure 3.6 reports, that young people are both less likely
to be reached and less likely to participate. From the 176 persons agreeing
to participate 156 (14 %) collected data for at least three days, and were
therefore classified as valid. The timing when data was collected over the
survey period is shown in Figure 3.7.

The peaks in October 2011 are due to the highest number of student
assistants working for the survey at that point, and the peak in June 2012 is
the period where one assistant worked almost full-time.

A comparison of respondents of this survey and the Microcensus (Swiss
Federal Statistical Office (BFS), 2005) is given in Table 3.5. It was expected
that GPS devices are more accepted by younger people, but this does not
seem to be the case as people over 55 are well represented whereas younger
people below 25 are highly underrepresented with 1.3 % in this study
compared to 7.2 % in the Microcensus. The most interested group are
the 45 - 54 year olds, who are well reached by phone and over 20 %
accepted to participate. At first sight it looks like females were less willing
to participate (42 %), but having a look at the addresses revealed that the
share of addresses of females was also 42 %, therefore, willingness to
participate is very similar. Our respondents were wealthier, better educated
and lived in smaller households, than a representative sample of the Swiss
population. However, this is a common finding in the institutes transport
studies. Furthermore, the share of public transport ticket owners is higher
than in the Microcensus, this could be due to the study area but also because
of public transport goals of the study.
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Figure 3.6: Response according to age category as given by address data
file
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Table 3.5: Comparison of socio-economic attributes of the respondents
with the Microcensus 2010

Survey participants
Attribute All [%] Valid [%] MZ 2010 [%] (*)

Gender
Male 56.5 57.4 45.4
Female 43.5 42.6 54.6

Age

18 - 24 1.7 1.3 7.2
25 - 34 9.6 10.3 11.9
35 - 44 11.9 13.5 17.3
45 - 54 24.3 26.5 18.8
55 - 64 10.2 11.0 17.6
>= 65 14.7 16.1 27.2
No answer 27.7 21.3 –

Education

Compulsory school 1.1 1.3 13.4
Matur 4.0 3.9 4.7
Apprentice 19.2 20.6 44.1
Prof. diploma 24.3 27.1 9.1
Univ. of appl. sc. 9.6 11.0 11.3
University/ETH 19.8 21.3 11.6
Other 3.4 3.2 5.2
No answer 18.6 11.6 0.7

Employment
status

In training 4.0 3.9 3.1
Full time empl. 46.3 50.3 38.2
Part time empl. 13.6 15.5 22.7
Unemployed 1.1 1.3 1.9
Houseworker 3.4 3.2 4.7
Retired 12.4 13.5 27.0
Other 0.6 0.6 2.4
No answer 18.6 11.6 –

Household size

1 18.1 20.0 27.1
2 31.1 32.9 36.4
3 12.4 14.2 12.5
4 11.3 12.3 13.7
>= 5 4.5 5.2 5.8
No answer 22.6 15.2 4.5

Monthly
household income

< 4,000 4.0 4.5 17.3
4,000 - 8,000 19.8 21.9 31.7
8,000 - 12,000 20.9 23.2 15.5
12,000 - 16,000 12.9 13.5 4.9
> 16,000 7.9 8.4 3.1
No answer 34.5 28.4 27.4

Car availability
Always 63.8 71.0 65.0
Sometimes 10.7 12.3 11.9
Never 5.6 5.2 4.6
No answer 19.8 11.6 18.6

Public transport
subscriptions
(multiple selection
possible)

Nationwide sub. 10.7 11.0 9.5
Halbtax 51.4 56.1 41.5
Other PT sub. 37.3 41.3 18.8
None 33.3 27.7 42.0

(*) Microcensus 2010 based on 53025 people able to walk without help and age 18 or higher
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3.3 Results

3.3.1 Psychometric scales

In order to examine the suitability of the psychometric scale results for
subsequent choice modelling, a factor analysis was conducted for each
of the three scales. The results of these factor analyses are presented in
Tables 3.6, 3.7 and 3.8. To improve readability, only the factor scores
with an absolute value of at least 0.4 are shown. The factor analysis
was conducted with SPSS and the best results were achieved using a
principal component analysis and a Varimax rotation with three factors
for the risk propensity and variety seeking scales and four factors for the
environmentalism scale.

Since the risk propensity scale covers such a variety of domains, the
three main factors identified in the factor analysis explain only about 28%
of the variance. They do, to a certain extent, follow the domains specified
beforehand. The first factor mainly covers health related risk such as
engaging in unprotected sex outside of a relationship, rarely wearing a
seatbelt or habitual smoking. The second factor is a very mixed factor.
On the one hand it entails items that are concerned with recreation and
transport related risks – e.g. going on vacation without booking ahead or
prefering risky public transport connections – on the other hand it contains
the two items for taking a risk for a friend. The third factor summarises
several of the social risks addressed by the scale items.

The four main factors for environmentalism shown in Table 3.7 explain
about 52% of the variance in the data. The first factor describes the respon-
dents’ agreement with measures to reduce car emissions. The second factor
characterises an awareness of the negative consequences of environmental
pollution and our responsibility to restrict behaviour that is harmful to the
environment. The third factor summarises more of an overall concern
about the environment whereas the fourth factor shows a certain expecta-
tions that others, e.g. the government and companies, step in and provide
better circumstances for environmental protection.

For variety seeking, about 37% of the variance is explained by the three
main factors found in the factor analysis. The first factor describes the
interest in varying one’s daily routine through small changes such as trying
out new routes to familiar destinations or trying out new food when eating
out. The second factor is similar but puts a stronger emphasis on the
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spontaneity, liking for surprises and for meeting new people. The third
factor captures a desire for making new experiences with other cultures but
also at a smaller scale such as trying out new sports or music.

The factors identified in the three factor analyses all represent interesting
approaches for an attitude based classification of the respondents. They are
therefore suitable for the usage in latent variable and class models.

3.3.2 One-week travel diaries

For the analysis of the diaries, information reported by respondents is
used. Data was extensively checked and manually corrected if necessary
by the survey team. All information is available at the stage level. A
stage is a building block of a trip that is covered by exactly one means
of transport. For analysis, stages were consolidated into trips, that is
consecutive stages which are connected through a mode transfer stop point
are merged. Activities without annotated trip purposes are assumed to be
mode transfers if shorter than 3 minutes, otherwise they were flagged as
unknown. Trip purpose of trips leading home are assigned the purpose of
the activity carried out longest after leaving home. Home to home trips
without any activity in between are assigned to leisure.

The data set consists of 1039 person days. In total 7233 stages are
observed that are part of 5284 trips. Figure 3.8 compares the number
of trips per day and person for each trip purpose to the Microcensus
(Swiss Federal Statistical Office (BFS), 2010). It can be seen that leisure
trips are comparable. There are more work trips in the survey than in
the Microcensus, this can be explained by the higher share of fulltime
employees in our survey (50 % vs. 38 %, Table 3.5). Underrepresentation
of education trips are probably due to the much higher share of young
people in the Microcensus. A remaining issue is, that the purpose of
many trips is not known (Other and Unknown), one can assume, that
these are probably not work trips as such trips could be identified, even
for participants providing very little information on their diary. It has to
be kept in mind, that the sample size of our survey is small. From that
perspective results are reasonable.

Comparing the mode shares shows even better results, both for number of
stages (Figure 3.9) and for travel time (Figure 3.10). Travel time excludes
waiting and mode transfer times. During manual processing it is easier to
identify transport modes than trip purposes, therefore, the share of unknown
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Table 3.6: Results of the factor analysis for risk propensity

Factor
Question (full version see Table 3.2) 1 2 3
R1 Admit taste differs – – 0.618
R2 Argue different opinions – 0.474 –
R3 Ask for a raise – – 0.496
R5 Openly disagree with my boss – – 0.545
R6 Speak about unpopular issues – – 0.507
R9 Drive home after drinks 0.429 – –
R13 Shoplift a small item 0.583 – –
R15 Go camping in the wild – 0.535 –
R16 Ski down too difficult slopes 0.493 – –
R18 Whitewater rafting at high water 0.494 – –
R19 Go on vacation without booking – 0.532 –
R21 Tried out bungee jumping 0.412 – –
R23 Ignore pain as long as possible 0.483 – –
R24 Rarely use sunscreen 0.408 – –
R25 Rarely wear a seat-belt 0.695 – –
R26 Unprotected sex outside a relationship 0.714 – –
R28 Smoking a lot 0.537 – –
R29 Co-sign a loan for a friend – 0.553 –
R31 Speculate 10% of annual income 0.525 – –
R33 Lend best friend one month’s income – 0.543 –
R35 Job that is paid based on commission 0.533 – –
R36 Latest connection to the station – 0.589 –
R37 Start earlier if congestion expected – – 0.594
R38 Prefer short pt transfer times – 0.592 –
R39 Search gradually on unfamiliar routes 0.466 – –
R41 Start earlier if route unfamiliar – – 0.454
R42 Be at the airport as late as possible – 0.535 –
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Table 3.7: Results of the factor analysis for environmentalism

Factor
Question (full version see Table 3.3) 1 2 3 4
E1 I worry about env. problems – – 0.591 –
E6 Pollution affects my health – 0.683 – –
E7 Env. probl. affect my life – 0.502 – –

E8 I see the environment is dete-
riorating

– – 0.618 –

E9 Env. probl. are a risk for the
future of our children

– 0.630 – –

E11 We should care for our env.
because we depend on it

– 0.708 – –

E12 Vehicle emissions increase
the need for health care

0.664 – – –

E13 A better environment starts
with myself

– 0.775 – –

E14 Not caring about the env. is
avoiding responsibility

– 0.494 – –

E15 Behav. change requires more
env. friendly products

– – – 0.666

E16 Behav. change requires a right
example by the government

– – – 0.719

E19 Env. protection is good for the
economy

0.537 – – –

E21 Stricter veh. smog control
should be enforced

0.583 – – 0.444

E22 The price of gas should be
raised to reduce pollution

0.613 – – –

E23 Using taxes to pay for pt is
good

0.556 – – –

E24 Incentives for using electric
vehicles

– – 0.493 0.521

E25 Who causes env. damage
should pay to repair it

– 0.608 – –
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Table 3.8: Results of the factor analysis for variety seeking

Factor
Question 1 2 3

V1 I like to experience novelty and change
in my daily life

– 0.592 –

V2 I sometimes look for ways to change
my daily routine

0.605 – –

V3 I like to have lots of activity around me – – 0.435
V6 I love surprises – 0.664 –

V7 A week in which all my evenings are
similar bores me

– 0.507 –

V8 Shops with exotic herbs and fragrances
fascinate me

– – 0.591

V9 When eating out I like to try the most
unusual items

0.450 – –

V11 I buy only trendy clothes – – 0.500
V12 I prefer seasonal fruits and vegetables – 0.601 –
V13 I actively search for new bands – – 0.643

V15 I like to explore unknown towns or
parts of my town

– – 0.624

V18 I like to try new types of sports – – 0.510

V19 Cultures completely different from my
own fascinate me

0.440 – 0.452

V20 I prefer to organise my holidays spon-
taneously

0.402 – 0.470

V21 I always keep an open door for surprise
visitors

– 0.576 –

V22 I like to meet new people – 0.642 –
V23 I like to explore new places – 0.487 0.535

V24 I like to try new routes to familiar des-
tinations

0.586 – –

V28 I like to meet new people while travel-
ling by train

– 0.527 –
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Figure 3.8: Comparison to the Microcensus 2010: Trip purpose, number
of trips per day and person

Education
Giving people lifts

Business travel
Other

Shopping
Unknown

Leisure
Work

GPS survey MZ 2010

Number of trips per person and day

0.0 0.2 0.4 0.6 0.8 1.0 1.2

modes is much smaller than was the case for trip purposes. Most modes
have a slightly higher share in the GPS survey. Except for walk stages,
where the share in number and the share of travel time is much smaller
compared to the Microcensus.It has to be checked if many access stages
were lost due to the cold start problem. Further, the share of tram and bus
stages is slightly higher but interestingly their share of travel times is lower,
this might be influenced by wrong travel time estimates and by the higher
density of the public transport network in the survey area. Overall, mode
share results are reasonable.
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Figure 3.9: Comparison to the Microcensus 2010: Share of stages per mode
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Figure 3.10: Comparison to the Microcensus 2010: Travel time share of
modes
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3.4 Discussion

Conducting such an extensive survey needs a lot of effort and attention.
Realisation with part-time assistants and therefore spreading it over a long
time period is not ideal. Our main finding, that might be obvious to experts,
is that full-time workers are needed, and we consequently recommend
to concentrate survey periods to predefined weeks. In such a setting, we
assume it to be easier to maintain a hotline and actively attend participants,
which sometimes requires trying to contact people every day. Small things
like reminder calls are easily lost sight of, if not immediately successful
and if other projects are worked on in parallel.

One of the goals when using GPS data is reduction of response bur-
den, achieving this strongly depends on the display and handling of the
prompted-recall diary. Our prompted recall diary has room for improve-
ment both in design and in performance. For example, the reason for
showing individual GPS points was to render it possible for respondents to
correct start time and duration of activities. This was also the driving force
of having all points of one day on the same map, as points before and after
a detected activity or stage are needed for corrections. In retrospective, this
is too much information for novice users. It made the map confusing in
several situations, for example if activities outside consisted of many GPS
points, or routes that are travelled several times a day covering each other.
If the signal is bad, processing routines do not always produce reliable re-
sults, information in the diary does not correspond anymore to the diary in
respondents’ recollection; but unfortunately these are the situations where
most input is needed from them.

To simplify correction of diaries several options can be considered. First,
it has to be checked if letting people changing start and end times is nec-
essary. If not, it might be better to show map-matched trips than tons of
GPS points. Further, it might be reasonable to present only diaries that are
evaluated to be reasonable (e.g. not too many trips), otherwise respondents
are asked to reconstruct the diary from scratch, which might be less confus-
ing than a badly prefilled diary. For this, but also in general, extension of
our routines with an activity type detection module as presented in Part II
is crucial. Stages could then be merged to trips and main activities might
help people recognising their day quicker. Finally, the quality of the GPS
tracks and the quality of the stage and stop point detection are key to the
reduction of response burden. In the future probably more and more GPS
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data sets will be collected by smartphones, ensuring good quality will be a
major challenge, especially if different smartphones and therefore different
GPS sensors will be used (see Section 4.5.1).

It is perceived, that the quality was improved by changing the design
(as summarised in Table 3.1), but admittedly, more people just handed in
notes on their diary on paper and the student assistants had to complete the
online GPS diary afterwards.

As overall the quality of the corrections was very diverse, all diaries
were double checked by us. The majority of diaries needed some editions,
which is definitely not cost-effective for large survey samples. Efforts
and reminders during the survey period are therefore extremely important.
However, with only a few well reported days and maybe some comments
from participants a complete diary can be reconstructed manually with
high certainty. With no input at all on the other hand corrections are rather
uncertain. Especially with immobile days it is unclear if a device was just
forgotten at home, or if the respondent actually stayed home. This aspect
should definitely be incorporated in GPS-based surveys.

This data set is used to evaluate the processing routines in Part II as well
as for the route choice models estimated in Chapter 10.
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PEACOX
The goal of the PEACOX project (www.project-peacox.eu) was to develop
a personalised journey planner application for smartphones to encourage
ecological travel behaviour. In the app, position data is collected to generate
travel diaries; this is then used to personalise route suggestions. In this
chapter, the main focus is on description of the second field trial of the
app (Vienna and Dublin from August to October 2014) and analysis of the
collected data. GPS and accelerometer time series of 33 study participants
are available; these were tracked simultaneously with smartphones and
dedicated devices for 8 weeks.

The Chapter is structured as follows. First, the smartphone applications
used in the PEACOX project (journey planning app, as well as a prompted
recall app) are presented. In the next section, a quick overview of the
first field trial and its results is given. The main field trial is described in
Section 4.3. Section 4.4 outlines differences in travel diary construction for
the different device types. Next, results are reported, including quantitative
analysis, as well as users‘ subjective perceptions. An interpretation of
results and an outlook on continuing work concludes.

4.1 Study context: the PEACOX project and
applications

PEACOX focuses primarily on the potential influence of the journey plan-
ning application, including its persuasive elements and how they affect
users’ travel behaviour and attitudes towards mobility. As part of this effort,
GPS and accelerometer data was collected to inform users about past travel
behaviour and CO2 emissions. The application is a prototype and was
tested in field trials, enabling us to enhance the data with questionnaires,
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a prompted recall tool and by giving participants dedicated GPS loggers
(MobiTest GSL). In the following, the journey planning, as well as the
prompted recall applications are introduced.

4.1.1 Journey planning app

The PEACOX journey planning app, developed by the PEACOX consor-
tium, allows the user to perform a multi-modal search for a route tailored
to the user’s individual preferences and behavioural patterns. In general,
it works like a common journey planner; an origin and a destination are
specified and possible routes are then suggested. When routes are requested
in PEACOX, available alternatives are enhanced with emission information
(Alam and McNabola, 2012). The enriched results are then ranked and
personalised by the recommender engine (Bothos et al., 2012). Recom-
mendations are partially based on the trip history gathered from recorded
GPS and accelerometer data, the trip history is the author’s contribution to
the application. When clicking on a route all details are displayed, that is
walking-, driving- and waiting times, public transport line and schedule.
Routes can then be viewed on the map, as they are multi-modal different
transport modes are distinguished by colours (Figure 4.1(b)). Selected eco-
friendly route options are promoted by adding a persuasive message (Figure
4.1(a)). Other persuasive elements were implemented: challenges where
users competed against each other (Figure 4.1(c)), as well as comparing
themselves on emissions rankings and, finally, a user’s own improvement,
represented by a growing or shrinking tree (Figure 4.1(d)). These and other
potential persuasion strategies are discussed in Prost et al. (2013b).

The journey planner is implemented as a smartphone application for
the Android platform version 4.0. and higher. Concerning data storage,
all data is transmitted via mobile internet every few minutes to a central
database. GPS and accelerometer data pose a particular challenge because
of their huge numbers. Especially accelerometer data had to be backed
up and deleted every day so that only two days of data are saved in the
database at a time, otherwise querying the database (PostgreSQL) became
slow. During the field trial 1.5 to 4 GB of accelerometer data were saved
per day. More implementation details are given in Artukovic et al. (2013).
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4.1.2 Prompted recall app
One goal of the PEACOX study is to observe behavioural changes during
the 8 week field trial due to the journey planning app. The travel diaries
are one data source to analyse such changes, it is therefore important
that in particular the chosen transport modes are known. A prompted
recall tool allows participants to review collected trip history and provide
manual corrections. Often, these tools are web-based, as in our example
described in Chapter 3. In this context, however, like the journey planner,
the prompted recall tool is developed for smartphones.

For the field trial, a clearly laid out and user-friendly interface was
developed, consisting of a map with GPS tracks and a prefilled list of
transport modes and activity types representing the diaries (Figure 4.2(b)).
There, to finish corrections, the checkbox ’I have reviewed this day’ had
to be checked. Each day could be selected from the menu (Figure 4.2(a)),
the activity type and transport mode could be changed given predefined
lists (Figure 4.2(c)) without any other restrictions from the system. The
different transport modes were represented by different colours and all
activity types had distinct icons. This supports processing the information
displayed on the map, it particularly helps linking the map with the diary
at the bottom. To explore the diary, on the right of the top bar, the number
of activities was indicated, and one could quickly flip through them by
clicking on the arrows. The map was automatically zoomed to the selected
activity. Changing departure and arrival times was not allowed and instead
of deleting activities or stages participants could select ’no trip’ or ’no
activity’. If no data was available, users could check the box ’I stayed
home all day’. Unfortunately, it became clear only after the field trial
that, in the list of days not yet corrected, the only days included were
those where some data was available; most days without data were not
confirmed by users. For every day, users could also leave a comment,
e.g., if something was unclear or if trips or activities were missing (Figure
4.2(d)).

The app uses and shows very private data and is therefore login protected;
login is the same as for the PEACOX journey planner. Overall, users stated
that they were pleased with the handling of the trip diary app. They
described it as easy to use and user-friendly. At least one user also found
the app interesting for private use to check on the routes travelled during a
day.
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Figure 4.1: Screenshots of the journey planning app

(a) Suggestions incl. CO2 (b) Route visualisation

(c) Challenges and badges (d) Persuasion: growing tree
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Figure 4.2: Screenshots of the prompted recall app

(a) Menu (b) Map and diary list

(c) Editing transport mode (d) Comment screen
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4.2 First field trial

In 2013, the first version of the trip planning application was tested in
an initial field trial in Vienna (Prost et al., 2013a). Concerning the travel
diaries, the goal was that the 25 participants collect 8 weeks worth of GPS
data by smartphones and to get ground truth data using paper diaries for one
week. Additionally 11 participants volunteered to simultaneously collect
GPS and accelerometer data with dedicated devices.

4.2.1 Smartphone data collection

For the first 4 weeks of the field trial the logging of GPS data had a bug,
that is the latitude and longitude of all GPS points were 0. Unfortunately,
this issue was detected very late, consequently the data monitoring had to
be greatly improved for the second field trial. For the last two weeks of the
field trial, this issue was solved, but still very few valid GPS points were
logged: that is 0 to 150 GPS points per day for smartphones, in comparison
dedicated GPS devices logged 2400 to 19800 points per day. In both cases
the intended logging frequency was 1 Hz. Considering that a 5 minute
journey should produce 300 GPS points it is clear that the smartphone
data could not be used to generate complete travel diaries. Logging of
the accelerometer data on the other hand was much better. If data was
logged, 2400 to 16400 points were logged per day (three phones did not
have accelerometer at all), the dedicated devices logged approximately
three times more that is 9400 to 29300 points per day.

4.2.2 Paper diaries

In order to collect actual travel data which is necessary for validation of
the GPS imputation routines a paper diary was developed, as the later used
smartphone application was not ready yet. The design goal was twofold,
first, all travel data should be collected on a stage level, that is all transport
modes used during a trip should be reported including start and end times.
Second, participants should be able to fill it in shortly after the trips were
made that is they should carry it around, therefore it should be kept as
small as possible. The final design of the travel diary is compact enough
to fit on an A6 page, and is depicted in Figure 4.3. On each page 3 trips
can be reported, on the left the purpose of trip (Wegzweck) is asked, in
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the middle the times (Uhrzeiten) when a new transport means is used
should be specified. And, on the right, the sequence of transport modes
(Verkehrsmittel) should be indicated. Furthermore participants are asked if
they used the route planner for a trip and there is also space to write down
a comment.

Figure 4.3: Final design of the paper diary. Filled in example as given to
participants.

The paper diaries were filled in by 23 participants of which 21 reported
all 7 days that were expected, 2 participants reported 5 days and 2 dropped
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out of the complete field trial. Overall they seemed to understand the
concept well. The most challenging task was probably to insert the se-
quence of modes, which was done correctly by approximately 50 % of
participants. The other half either made a cross on the modes they used or
they indicated the number of times a mode was used during the trip. The
missing sequence can usually be restored if GPS data is available, together
with some knowledge of the network.

4.2.3 Automatically generated diaries

Diaries were automatically generated for the 11 participants that carried
along a dedicated GPS device during Field Trial I. Unfortunately, due to the
before mentioned problems with the smartphone data logging no diaries
could be generated for the other participants.

Trip purposes were imputed using two random forest classifiers. The
first one was learned on data from the GPS study conducted in Zurich
(Chapter 3), using this classifier on a test data set from Zurich showed
accuracies, that is the share of correctly classified purposes, of well over
80 %. But using this classifier on the paper diary data accuracy dropped to
around 60 %. This is partly due to the small number of participants, as we
showed that accuracies between participants vary a lot. On the other hand,
there seem to be relevant differences between study areas. Therefore, a
second random forest was learned on the paper diary data. When learning
a random forest an error measure can be computed internally (out-of-bag
error), which showed an accuracy over 90 % for this classifier. But as
this was based on a very small data set, it was decided to combine the
two classifiers. The scores for each trip purpose of both classifiers were
added up and the trip purpose with the highest score was the classification
result. Unfortunately, no test data set was available to get a final estimate
of this combined classification. Running this classifier on the paper diary
data showed an accuracy of 84 %. As this data is included in the learning
process, this accuracy is probably a little higher than what is achieved on
the 7 weeks of GPS extracted travel diaries, where no ground truth data
was collected.

Transport modes were imputed using a fuzzy rule system, that was
optimized ad hoc on data from Zurich. The most reliable data source for
validation are the travel diaries. In Figure 4.4 the mode shares as reported
in the paper diaries are compared to the mode shares of the automatically
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generated diaries from the dedicated GPS devices. It can be seen that the
walk and car shares in terms of number of stages are very similar, the public
transport shares on the other hand are underestimated by the automated
travel diaries and the bike shares are overestimated. Looking at shares in
terms of duration the bike share is similar, but car on the other hand is
overrepresented and public transport is still underestimated.

Figure 4.4: Transport mode shares of the paper diaries compared to the
automatically generated stages with the dedicated devices.

(a) Mode share according to number of stages

(b) Mode share according to duration
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4.2.4 Analysis of travel diaries
The number of participants is too small to expect a representative sample.
Anyhow, a comparison of the mode share as surveyed by Socialdata (So-
cialdata, 2009b) for Vienna in 2009 shows that results are reasonable: They
observe for both car and public transport a share of 32 %, compared to
30 % and 21.5 % respectively observed with the paper diaries. Our share
of bike is slightly higher (7.4 % compared to 6 %) and the share of walk
is higher as well (37 % compared to 27 %) which might also be due to
differences on the survey methodology.

Data collected by Socialdata (Socialdata, 2009a) regarding trip purposes
show that the main share (33 %) are recreational trips, followed by work and
educational trips (29 %) and shopping trips (26 %). A direct comparison
of the numbers of Field Trial I data is not possible as home trips are given
another purpose by Socialdata. Anyhow, trips as collected by the paper
diaries are reasonable, as the sequence is the same. That is, recreational
trips (29 %) are more common than work trips (16 %) as well as shopping
trips (11 %). The remaining trips are home (27 %), other (9 %), business
(5 %) and not specified (2 %). Even though direct comparison is not
possible, the difference between the purposes is bigger in our sample,
which suggests that work and shopping trips are underrepresented.
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4.3 Second field trial

The second field trial was conducted in 2014, from August 11th to October
4th in Vienna, Austria and in Dublin, Ireland, where the trial started one
week later.

A total of 37 test users (20 in Vienna, 17 in Dublin) participated in the
field trial and tested the application on their own smartphones for eight
consecutive weeks. The application accessed smartphone built-in sensors
and logged their GPS as well as accelerometer data. Additionally, partici-
pants were equipped with a dedicated high-precision GPS positioning and
logging device. As part of the trial, users were also asked to manually mon-
itor their logged data (based on the smartphone GPS), using the prompted
recall diary and to provide corrections to validate the automatically gener-
ated travel diaries. As an incentive, participants received 150 euros after
completion of the survey.

4.3.1 Participants

Participants were recruited from a database of people interested in taking
part in usability and user experience studies, by open calls for participa-
tion (promoted in university lectures) and through university mailing lists.
Prospective participants had to fill in a screening questionnaire and could
only be recruited when they fulfilled the following predefined criteria: age
18 or older, living and working, or studying, in the test area (Vienna, re-
spectively Dublin metropolitan area), a smartphone (running Android OS
4.0 or newer) for at least three months, including an associated data plan
with a minimum of 500 MB per month and, during the eight weeks of trial,
no planned absence for more than one week (e.g. holiday outside of the
study regions).

Overall, recruitment aimed at including a balanced representation of
relevant mobility types (car users, cyclists, pedestrians, users of public
transport), as well as demographic characteristics such as sex and education.
This recruiting strategy resulted in the following sample (Table 4.1):

GPS data is available for 33 of the 37 participants, where for one person
only smartphone and for another person only device data is usable.
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Table 4.1: Characteristics of PEACOX participants (2nd field trial)

Age Average age 33, oldest participant 69
and the youngest 19

Sex 14 female
23 male

Occupation 16 participants employed
12 students
4 unemployed or retired
3 self-employed
2 on parental leave

Main transportation means 6 users mainly use car or motorbike
6 use bicycles
11 public transport
5 are mostly walking
9 did not define

Usage of journey planning app 8 participants had never used a jour-
ney planning app prior to the study,
29 had

4.3.2 Procedure

After agreeing to take part in the trial, participants were invited to an intro-
ductory workshop instructing the users on the trial procedure, explaining
the functionality and handling of the devices and apps and how partici-
pants were expected to use them. Participants were instructed to: carry
the devices around at all times, turn on smartphone GPS sensor (to enable
logging) and regularly charge the devices.

During the field trial, after about three and six weeks of usage, qualitative
in-depth interviews about app usage - as well as experiences and their
influence on transport mode decisions - were conducted with most users.
Some participants were not reachable. At the end of the trial, participants
were invited to focus groups to concentrate on collecting and reflecting on
users’ experiences during the trials.

Beside these face-to-face interactions with the participants, online ques-
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tionnaires were also sent three times during the trial: at the beginning, in
the middle and at the end. The questionnaires focused on demographic data,
mobility behaviour and attitudes towards different transportation means
and environmental issues. The second and third questionnaire also included
questions on usage and experience with the apps.

4.3.3 Data collection
As described above two different approaches to data collection were used.
The dedicated GPS was a MobiTest GSL device (MGE DATA, 2012); GPS
data was collected with 1 Hz and accelerometer data with a frequency
of 10 Hz. Data was stored locally on the device; after the end of the
trials, when participants handed back the devices, the data was downloaded
and made accessible for analysis. For smartphone data, as participants
used their own devices, the sample consists of a variety of models, mainly
Samsung devices, as shown in Table 4.2. Position data was collected in the
background by the PEACOX app. GPS data was collected with a frequency
of 1 Hz and uploaded to the server every minute. Accelerometer data was
specified to use the sensor’s standard frequency which is usually set to
5 Hz; data was uploaded every 70 seconds. Dedicated programming of the
app ensured that the logging process was not stopped by the Android Task
management, and that all available location information sources (GPS and
WiFi network) were used for acquiring position information.
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Table 4.2: Smartphone types used in Field Trial

Smartphone type Nr devices

Samsung Galaxy S3 7

Samsung Galaxy S2 6

Motorola Moto G 3

Samsung Galaxy Nexus 2 2

Samsung Galaxy Nexus 4 2

Samsung Galaxy S3 mini 2

Sony Xperia Z1 2

Samsung Galaxy Note 2 1

Samsung Galaxy S4 1

Samsung Galaxy S4 mini 1

Alcatel One Touch 4030x 1

Huawei Ascend Y330 1

LG Nexus 5 1

LG P760 Optimus L9 1

UTime U100 1

Vodafone 875 Smart mini 1

Not reported 4
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4.4 Travel diary generation

To process GPS and accelerometer data the software package POSDAP
(2012) is used. The three most relevant steps when creating travel diaries
are:

1. Cleaning of raw data: GPS points are filtered when too few satellites
are accessible or accuracy measures are bad.

2. Identification of activities and trips: mainly based on point clouds,
signal gaps and changes in the accelerometer signal if mode is
changed to, or from, walk.

3. Identification of transport mode and activity type: done using either
a fuzzy rule or a random forest classifier (see Part II).

Routine configuration was calibrated on data collected with the same
dedicated GPS loggers used in this survey (MobiTest GSL). For classifier
training, data collected in and around Zurich presented in the previous
Chapter 3 was used.

In the following, differences in processing are described for the three
travel diary types: (1) uncorrected diaries from smartphone data, (2) cor-
rected diaries from smartphone data and (3) uncorrected diaries from
dedicated device data. For all types in the subsequent analysis, stages
were deleted if they were based on accelerometer only; that is, without any
GPS point being part of that stage, as it turned out that most of those were
unrealistic long.

4.4.1 Uncorrected diaries from smartphones

The uncorrected diaries evaluated in this chapter, created every night during
the field trial, are the ones actually presented to the participants.

A random forest classifier for activity type identification is learned new
every day, incorporating three data sources: (1) the data set collected in
Zurich (around 7000 observations), (2) data collected in the first field trial
(425 observations) and (3) all data collected and corrected during the second
field trial. Using the freshly corrected data necessitates daily updating of
the activity type classifier. As shown in Montini et al. (2014d), distance
to home and work locations are important, but the PEACOX system does
not know these locations, thus both locations must be learned as fast as
possible. If corrected data is available, the locations most often annotated
as home and as work are saved for that person. Otherwise, if GPS data was
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collected, but no corrections were available, a classifier not using distance
to home and work was used to classify all activities. Locations predicted
to be home and work are then used to extract an approximation of these
two locations. Using these approximations, distance to home and work can
be calculated and classification is run again, using a classifier that takes
advantage of these distances.

After two thirds of the field trial (day 39 after start in Vienna), configu-
ration of the processing routines was changed, because many stages were
detected within point clouds. Hence, detection of point clusters was relaxed
(radius for clouds increased from 10 to 35 meters) and the duration criteria
were increased (minimum stage duration 3 minutes instead of 1 minute).
Trip purpose detection stopped working due to an error when loading the
freshly corrected data into a new classifier. Trip detection was rerun for the
affected days (day 22 to 41).

At first, mode detection was implemented as fuzzy rule system. For
the last third of the field trial period it was replaced by a random forest
classifier. This classifier apart from considering the commonly used speed
and accelerometer variables also included knowledge of self-reported mode
shares.

4.4.2 Corrected diaries from smartphones
Corrected diaries are heavily based on the uncorrected ones, as users
were not allowed to change start and end times, or add new activities.
But users could add the flags ’no activity’ and ’no trip’; thus stages are
merged if ’no activity’ occurred between; activities are merged if ’no trip’
occurred between. Further, transport mode and trip purpose corrections by
participants are considered. For this chapter, no further corrections were
made by the researcher.

4.4.3 Uncorrected diaries from dedicated devices
Data collected by dedicated devices is processed all in one run, after the
field trial. Processing used the first few weeks of the field trial’s configura-
tion. For trip purpose and mode detection, random forest classifiers were
learned from the Zurich training data.

50



4.5. Results

4.5 Results

Results of the field trials are organized as follows. In the first two sub-
sections, data generated by and measures derived from both smartphones
and dedicated devices are analysed. The following two questions about
differences between the devices are tested:

1. Is the data quality of dedicated devices better and more stable than
that of smartphones?

2. Are more days covered by smartphones because they are not often
forgotten at home?

The first question is analysed looking at frequency of raw data. The second
question is initially analysed by looking at daily levels of factors, but then
more in depth, by investigating differences in the specific diaries.

Third, users’ usage and assessments of the trip diary app are presented.
Trip purpose evaluation and transport mode detection based on users’
changes are discussed. To conclude, user feedback on battery life is re-
ported.

It is important to remember that all users’ comments relate to data col-
lected with their smartphones, as they had no access to data from dedicated
devices during the field trial.

4.5.1 Data quality of raw data

To get a first proxy for data quality, GPS data sampling frequency is used.
Both device types are specified to use a sampling frequency of one GPS
point per second. The sampling frequency is computed for all detected
stages (movement segments). In Figure 4.5, the average sampling is shown
per user, ordered by smartphone sampling rate. For smartphones, the
sampling is generally lower than that of the GPS device and between smart-
phones, bigger differences in sampling rates are observed than between
GPS devices. This confirms our assumption and is not surprising, but
the different frequencies must be considered when configuring GPS track
segmentation routines. Types of smartphones used most in the study are
also highlighted in Figure 4.5, indicating that sampling frequencies also
differ within smartphone types. However, due to the small number of data
points, it is unclear whether the differences are similar to the dedicated
devices or greater.
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Figure 4.5: Average GPS point frequency for detected stages (after cleaning
GPS data) for both devices carried simultaneously
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4.5.2 Comparison generated travel diaries from
smartphone and dedicated device data

To compare usability of dedicated devices and smartphones for mobility
studies, detected movement duration is chosen over the number of trips.
The problem with number of trips as a comparison mode is that it relies
on both trip segmentation and activity type detection, as stages are merged
into trips if a mode transfer point is detected between them. Summing up
the duration, on the other hand, should result in similar total durations, even
if activities are not correctly classified or if the number of stages differs.

To get a general impression of the collected data amount, Figure 4.6
shows the number of days for which movement was detected with both de-
vices, with one device or with no device, for each user. First, on many days,
no movement was detected at all (yellow). Approximately half the Vienna
users did not move, for up to 10 days, which is above expectations for an
8-week-field-trial, but not too much. Most likely, there was movement by
participants that was not recorded by any of the devices. Interestingly, more

52



4.5. Results

movement is captured with dedicated devices; 312 days versus 227 days
that were captured only by smartphones - this contradicts the assumption
that smartphones cover more days. User feedback indicates that some days
were not logged, even though the app was turned on; at least three users
realised that full days of data were missing. In general, smartphones were
probably not forgotten at home, but the app was turned off to save battery.
Restarting the app when moving again can easily be forgotten. At least two
users remembered that they left the GPS device in the car at some point.

Figure 4.6 also shows that the quantity of collected data differs for the
two cities, possibly because: first, some of the Vienna users had already
participated in the first field trial and knew what to expect and may also
have had a special interest in the topic. Second, the main survey team
was located in Vienna, possibly inducing more commitment in users living
there. And third: users from Dublin were younger.

To get into more detail, Figure 4.7 shows summed up movement dura-
tions for all days on the left and an out-take of daily movement patterns on
the right for three sample users. On the left, movement detected by smart-
phones, corrected movement (considering ’no trip’, ’no activity’ flags), as
well as duration detected using dedicated devices data are shown. Further,
colour indicates whether a user corrected the diary or not and also if s/he
flagged ’stayed home’. It can be seen that no one flagged ’stayed home’,
probably because of an error in the trip diary due to which days with no
GPS data were not listed under ’days to be reviewed’. In addition, almost
no one made corrections during the last week and even though they were
advised to make corrections the next day, most corrections were made after
a week, with some only at the end of the field trial. On the right side of
Figure 4.7, daily movement patterns extracted from dedicated devices are
shown on top in violet and in blue, below, from smartphone data. Ideally,
the two colours would match perfectly.

Details of the user with most days covered - with both devices - are
depicted in Figure 4.7(a). On the left, it is clear, that the person collected
data almost every day and also confirmed it using the trip diary. But there
is also some evidence that not all corrections are correct; e.g. on day 32,
the participant claims undetected movement of about 9 hours; probably, an
activity was wrongfully marked as ’no activity’. The movement patterns on
the right show a trip in the early morning around 07:00 on most weekdays
and a trip home between 16:00 and 17:00. The patterns of smartphones
and dedicated devices are similar; but, for example, the morning trip in this
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Figure 4.6: Daily detected movement duration per person.

movement detected with both devices (duration > 20 min)
only phone (movement duration > 20 min)
only device (movement duration > 20 min)
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outtake is covered 12 times by the dedicated device and only seven times
by the smartphone. In addition, there are still several shorter movements,
perhaps erroneously detected, using smartphone data. This example is
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supported by above average data quality and quantity, as well as diary
matching.

Figure 4.7(b) shows a user with relatively sparse data on all aspects. Of
the 8 weeks, little more than 3 weeks are covered by data as shown on
the left. It is also clear that the trip diary was only used for corrections at
the beginning. The first three weeks depicted on the right show no work
pattern, or any other pattern.

In several cases, too much movement was detected by smartphones,
which was a reason for the configuration change mentioned in Section 4.4.
A good example of this is the participants data shown in Figure 4.7(c),
where the positive effect of changes is visible; movement detected for
smartphone drops clearly after day 39 and is then similar to the dedicated
device. The unrealistic movement durations are also clearly shown on
the right, days 33 to 38, which were not the most extreme, according to
the Figure on the left. But it must also be noted that, for some users, the
original configuration was satisfactory (e.g. Figure 4.7(a)) and, for other
users, the change in configuration had no clear effect.

To compare detected daily movement, coverage criteria is introduced.
Coverage c is defined here as the percentage of a stage detected with one
device that is also covered by the other device. That is: when suffix s1 is
a stage detected by device 1 and d2 is device 2 and move is movement
detected by the given device during the given stage and dur is the duration
of a stage, coverage is given as:

cs1,d2 =
moved2,s1

durs1
(4.1)

For example, if a stages of device 1 s1 is surrounded by a stage of device
2 s2 (which is twice as long), cs1,d2 = 100% and cs2,d1 = 50%. For every
participant, Figure 4.8 shows - for both devices - the share of stages that
overlaps with stages of the other device (cross symbols), as well as mean
coverage of the overlapping stages (filled symbols). To compare the quality
of the devices and not whether participants remembered using both (not
always the case, as shown previously), analysis is done only for days where
both devices registered movement as specified in Figure 4.6. The sample
users presented in Figure 4.7 are also highlighted in Figure 4.8 and the
order of participants is determined by the sum of all four shown criteria.

Stages detected from smartphone data tend to be longer; dedicated device
stages are thus often completely surrounded, resulting in 100 % coverage
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for the GPS device and less than that for the smartphone stages. This shows
in the higher values of mean coverage for the device stages. Smartphone
stages are still mostly covered over 80 % on average. These are rather
high and promising numbers; more problematic is, that many stages do
not overlap at all. The range of values is rather high, varying between
slightly less than 20 % and somewhat more than 80 %. Detecting too much
movement is better than detecting too little, as it can probably be improved
by personalised configurations.

56



4.5. Results

Figure 4.7: Detected movement for 3 selected users. Sundays in grey.
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(b) A user with relatively sparse data
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(c) A user where config change (day 39) slightly improved movement detection
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Figure 4.8: Mean coverage of overlapping stages and share of overlapping
stages for each participant. Only days where both devices were
active as defined in Figure 4.6 are considered here.
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4.5.3 Evaluation of trip purpose and activity type
detection

In total, 10415 stages were detected based on smartphone data presented
to participants. Users made corrections in 41 % of all cases. There is,
however, evidence that even more corrections would have been necessary.
First, only 51 % of the days were confirmed by users. Second, 24 % of
all stages were corrected to be no trips at all, and of those 67 % are stages
detected as bike. Even when removing all ’no trip’-stages, the remaining
bike share of 28.7 % seems too high, even though the study encourages
ecological behaviour. And third, for these corrected diaries the share of
stages marked with mode ’unknown’ is still 8.2 %. The remaining reported
mode shares are 39.7 % walking, 13.7 % car, 5.7 % bus or tram, 0.9 % rail
and 2.8 % metro.

As explained in Section 4.4, trip segmentation was reconfigured during
the trial due to problems with short stages detected within point clouds.
Users noticed these problems and reported that this generally happened
in situations where they were not moving at all; they complained that
the many short segments were cumbersome to fix manually. At least one
user reported that the system detected a lot of quick interchanges between
different modes within a few minutes, including public transport. The
configuration changes of both trip segmentation and mode detection had
a positive effect. Slightly fewer stages were classified as ’no trip’ (22 %
compared to 25 % before). Overall, the share of correctly identified modes
increased from a very low 55 % to 73 %.

Users’ assessments of trip mode and purpose detection quality varied.
Four users reported that they had no, or almost no, wrong trips, four others
estimated a share of around 50 % to 75 % correct modes and activity types.
Another four stated that the travel diary was inaccurate and they had much
to fix. Users’ assessments correspond well with corrections they made,
as shown in Figure 4.9, where detection accuracies are shown per user,
ordered by the share of correctly detected transport modes. Six users have
100 % accuracy, which indicates that no corrections were made. It is clear
that activity type detection performed better than mode detection, which
was either more influenced by the quality of the segmentation, or that
participants tend to correct modes, but not activities.

Even though numerical activity-type detection performed better than
mode detection, it was not perceived very well by users when asked about
it: probably highly influenced by the three-week interruption where the
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classifier did not run. Overall, less than 20 % of all activities were corrected
by users. Activity type detection accuracy was compared before and after
configuration changes; no major differences could be found and therefore
the following results cover the complete survey period. Of all corrections,
5 % are declared as ’no activity’. After removing those and merging
activities with ’no trip’ in between, the following shares are reported:
26.2 % at home, 27.7 % leisure activities, 15.6 % mode transfers, 12.0 %
work or education, 10.7 % shopping, 1.2 % business activities, 0.9 %
picking up someone and 5.7 % unspecified stops.

Travel diaries extracted from the dedicated devices have 7 % more
activities compared to the corrected smartphone diaries, which is sensible
as more days are covered by dedicated devices. The main difference is the
share of activity type detected: over 4 times as many mode transfer points
and approximately half as many home, work and leisure activities.

Figure 4.9: Detection accuracy per user (based on corrections of
smartphone-based diary)
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4.5.4 Trip diary app
Participants were advised to check the trip diary app every day as a fresh
memory helps recall and correct recorded trips. As mentioned previously
based on Figure 4.7 not all users corrected their data successfully or com-
pletely. Almost no one made corrections on the last week. In the first
interview, participants were asked about how often they use the trip diary.
Only three users stated that they used it every day, four used it once a
week and seven users admitted not to have used it in the first two weeks
of the trial. After the reminding interview this seems to have improved a
bit. Figure 4.10 shows that 30 % of corrections were done within one day,
and the majority within one week. But several entries were corrected more
than 3 weeks after collecting the data.

Overall, users were pleased with the handling of the trip diary app.
They described it as easy to use and user friendly. A few users reported
minor bugs and usability issues, some of them could be solved during the
field trials. Problems with data quality of course also affected the user
experience. Users were informed at the start of the study that detection
accuracy rates of 60-80 % can be expected. However, at least one user
expressed disappointment with the app, s/he would have expected more
accurate results. In some instances, the predefined activity categories were
not clear to users. There were a few grey areas. For example, it was not
clear for some users, if they should categorise ’going for lunch’ as ’leisure’,
’shopping’, or ’other’. Additional explanations or more activity types to
choose from would have been beneficial for them.

4.5.5 Battery drain issues
A common and known issue with constant GPS logging is a considerable
drain on the smartphone’s battery. Accelerometer logging, on the other
hand uses much less power (Ben Abdesslem et al., 2009) and is usually not
an issue. To reduce impact on battery life, a scheduling mechanism was
implemented that stopped any logging activity between 22:00 at night and
06:00 the next morning. However, several users reported that this did not
work and that they had to turn off the logging manually at night.

In the introductory workshop, participants were advised to keep GPS
antenna, the Google location services, WiFi and the PEACOX sensor
logging on, whenever possible. Concerns about battery life were already
being discussed, and leading to the consensus that turning off logging when
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Figure 4.10: Number of days passing before corrections are done
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not moving for some time, e.g., at home, is acceptable. Several users did so;
however, at times logging had to be turned off to avoid an empty battery.

In the beginning, participants were also advised to carry a charger at all
times and recharge whenever possible in the office (many users did that),
or in the car (which was not always sufficient, depending on the length of
trips). Two users even bought a second battery or a mobile charging device.

As expected, battery life was a problem (except for 4 users who specifi-
cally said otherwise), especially on the go, or outdoors without charging
options. Several described it as quick and noticeable, one claimed that
constant charging was needed; at least one user dropped out of the study
because of these problems.

4.6 Conclusion and outlook

As expected, sampling frequencies of smartphones are lower and more
diverse than for the same dedicated GPS device. Diversity between phones,
as well as usage by participants, is also shown with the share of overlapping

62



4.6. Conclusion and outlook

stages (Figure 4.8); this varies between 20 % and 80 %. In general, data
quality collected with smartphones is sufficient, for example, to detect
routes. Observation indicated that as much, or even more, movement is
detected; missing data is not the problem. But if different smartphones are
used, calibration of detection routines is a major challenge, particularly,
when collecting information about short routes is important (often one of
the reasons using GPS in travel surveys). In that case, from a researchers
perspective, it is better to detect more and let users delete the wrongly
detected trips and activities, which is much easier than adding trips. Fol-
lowing that reasoning, it might even be an option to detect ’no trip’ and ’no
activity’. This was actually done in this field trial; activity type classifier
was learned on the actual field trial data, which includes these options.

The unexpectedly large differences in generated stages and activities
made it almost impossible to compare the diaries on a fine-grained level
considering detected transport modes and activity types. On an aggregated
level, the type of activities detected for the dedicated device diaries are
very different: four times as many mode transfer points and approximately
half as many home, work and leisure activities.

For most users, more data is collected with dedicated devices, it is more
likely that they will be taken along. On the other hand, users may carry
their smartphones, but do not turn on the app. This is partly due to the
heavy use of battery during high frequency data logging, which also renders
such applications impractical beyond a dedicated study setup. For the sake
of the study (and the financial compensation) users were willing to accept
annoyances like carrying a charger with them and the occasional flat battery.
However, for large-scale, long-term data collection, it is very unlikely users
would be willing to compromise. Because of these issues - at the moment -
if high resolution data is needed, dedicated devices are still relevant, as they
last several days without charging, also thanks to a sleep mode of the used
devices. It is expected, that battery life issues will be solved in the near
future by better batteries, as well as optimisation of energy consumption
and intelligent logging schemes.

Observation also indicated, that when users correct diaries, uncertainties
remain about whether all incidents are corrected. On one hand, many
entries are not confirmed at all; on the other hand, trip entries are confirmed
as being corrected, where, obviously, too much movement was detected.
For mode and activity type detection, several users made no changes at all,
which is very suspicious. Thus, it is often obligatory that data is processed
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again, or cleaned manually after the end of the survey. The problem
indicators mentioned above can be used as starting points to indicate where
cleaning is necessary.

Despite issues with the quantity of corrections, implementation of this
task as smartphone application instead of a (paper) diary was successful;
users found the application easy to use. However, depending on data
quality, this can impose additional workload to fix many false detections of
trips or activities. While users expressed interest in reviewing their trips to
learn about their own mobility habits, they have high expectations about
quality of detection. So as not to discourage user activity in correcting
detections, it must be carefully considered how much workload burden is
put on users. In any case, an easy-to-use user interface is essential. Further,
users should be actively triggered, or reminded, to regularly correct trips
and changes.

The difference between cities in, for example, number of days with
movement data, showed that even with passive collection methods of high
resolution data, significant personal contact and effort by survey organisers
are needed to ensure high-quality and comprehensive generated travel
diaries.

Here, we described issues with GPS data processing when collected data
was assumed to be the same in terms of specification, but different due to
devices or people. Processing methods and data analysis, on the other hand,
were identical. Given these preconditions, the extracted travel diaries are
not the same. Future work should include configuration personalisation,
as well as analysis of whether the method used is too sensitive about
data specifications. Issues with mode and trip purpose detection, e.g.
overrepresented cycling stages, should be investigated as well; does the
problem stem from a previous erroneous detected stage, or does the mode
detection itself need to be improved? It would also be most interesting to
discover whether other processing methods yield the same results, or if they
are more stable. Sharing issues about GPS data privacy and commercially-
used processing routines, or the need for expert knowledge to apply the
routines efficiently should be tackled.
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External Data Sources
In this chapter, a short overview of the data provided by external parties
is given. First, a third GPS data set is introduced followed by a brief
description of the network data as well as the elevation model.

5.1 External Swiss GPS data
An older GPS only data set collected in Switzerland is available, and is used
to analyse parking search traffic in Chapter 11. The data was originally
collected by a private company in order to analyse the potential success
of places for advertisement. This is a nice example of GPS data being
interesting for a wide range of analysis and purposes. This data set was also
used to develop and test the original POSDAP framework and is described
in more detail in Schüssler and Axhausen (2009c).

GPS tracks were collected from 2004 to 2006 using person-based track-
ers, meaning that all modes of transport are recorded. More than 30’000
days of data were recorded by 4892 volunteers living in the region of
Zurich (including Winterthur) and Geneva. Only position data (x, y, z)
and timestamps are available (no accuracy measures). As data was not
collected as part of travel survey, also the diary information is missing, that
is no annotations, neither start and end times nor transport mode or trip
purpose are available for validation.

The socio demographics of the recruited respondents are given in Ta-
ble 5.1 per main study area. For comparison, the values of the Microcensus
2005 are reported. Compared to this representative sample the data was col-
lected by younger people; that is 25 - 34 year olds are over and people older
than 65 are under represented, consequently also less people are retired
compared to the Microcensus. As with many surveys the education level
is slightly higher. Further, respondents seem to be more public transport
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oriented considering car availability and the high share of half fare card
subscriptions. This is probably due to the urban study areas.

5.2 Network data

5.2.1 Open Street Map (OSM)
For map-matching of GPS tracks as well as for choice set generation
network data is needed. The route choice analysis presented in Chapter 10
is restricted to the area around Zurich as depicted in Figure 5.1, the area
was chosen such that most everyday travel of the survey participants was
included. For walking, cycling and driving all network data is extracted
from OpenStreetMap (2015). This includes geographical representation of
links, speed limits and road type.

For the car network, pedestrian and cycling only links were excluded,
almost all other links especially also tracks and residential roads are consid-
ered, resulting in a network consisting of 2.4 million links, that accurately
describe the network geographically. Therefore, a curved road without
intersections is described by several links.

Table 5.2 gives an overview of the road types, and details which highway
tags were extracted from OSM. Speeds were specified according to the
maxspeed tag of OSM whenever available, otherwise default speeds as
given in Table 5.2 are used. Taking into account the oneway tag, a directed
network in Matsim format (MATSim, 2015) is created. The conversion
code can be found as part of the POSition DAta Processing project on
sourceforge (POSDAP, 2012). Track and other roads cover 66 % (48000
km) of the total network length, different directions are counted separately,
number of lanes are not considered.

For cycling and walking separate networks also in Matsim format are
created, both consisting of approx. 3 million links (Table 5.3), not included
are of course motorway and trunk links. Figure 5.2 shows an extract of
the city of Zurich, where safe cycling paths are highlighted in green. It
can be seen that outside the city many roads are considered to be safe
cycling roads (as defined in Table 5.3), these are essentially smaller roads
or dirt tracks within woods. Within the city, cyclists, cars and often public
transport share the same road space.
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Table 5.1: Socio-economic attributes of the respondents differentiated be-
tween regions compared to the Microcensus 2005

Attribute Zurich and
Winterthur [%]

Geneva [%] MZ 2005 [%]

Number of participants 3527 1365

Gender
Male 49.5 45.5 49.8
Female 50.5 54.5 50.2

Age

< 25 15.3 18.8 20.3
25 - 34 20.9 24.7 15.5
35 - 44 25.2 23.3 18.3
45 - 54 15.5 14.9 15.1
55 - 64 11.8 11.1 13.5
>= 65 11.4 7.1 17.2

Education

Compulsory school 11.5 10.4 12.9
Matur 13.8 8.4 7.0
Apprentice 48.9 38.7 49.1
Prof. diploma – – 9.7
Univ. of appl. sc. 14.0 11.6 7.0
University/ETH 11.5 30.9 11.7

Employment status

In training 12.2 15.2 16.8
Full time empl. 42.6 41.8 37.6
Part time empl. 24.8 25.4 16.6
Unemployed 1.9 5.3 2.9
Houseworker 7.9 4.6 6.2
Retired 10.5 7.6 18.8
Other 0.1 – 1.2

Household size

1 15.7 22.3 32.9
2 31.5 27.4 37.1
3 18.7 18.5 12.1
4 23.3 23.2 13.2
>= 5 10.7 8.6 4.7

Monthly houshold
income [CHF]

< 4500 || < 4000 13.6 14.6 20.6
4500 - 9000 || 4000 - 8000 46.0 38.0 46.8
9000 - 15000 || 8000 - 16000 20.0 18.2 28.5
> 15000 || > 16000 3.7 4.5 4.1
No answer 16.8 24.6 –

Car availability

Always – – 72.7
Sometimes – – 20.8
Never – – 6.5
1 50.2 48.6 –
more than one 35.7 37.9 –
none 14.0 13.4 –

PT subscriptions

Nationwide sub. – – 8.6
Half fare card (Halbtax) 50.2 36.2 26.3
Other PT sub. – – 17.3
None – – 38.0
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Table 5.2: Properties of car network extracted from OSM, default speeds
are only used if tag maxspeed not specified

Road type OSM highway
tag values

Average
speed
[km/h]

Default
speed
[km/h]

Nr. links Length
[km]

Motorway motorway
motorway_link

105 120 17305 846

Trunk trunk
trunk_link

87 100 3316 150

Primary primary
primary_link

58 50 60554 2137

Secondary secondary
secondary_link

57 50 68432 2299

Tertiary tertiary
tertiary_link

54 50 143530 4627

Residential residential 31 30 505996 14597
Track track 30 30 1117400 35795

Other

living_street

37

20

446775 12256
unclassified 50
road 50
service 30

Total 2363307 72707
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Table 5.3: Properties of bike and walk network extracted from OSM

Road type OSM highway
tag values

Nr. links Length [km]

Bike lane highway as in bike
allowed with cycle-
way=(lane, opposite_lane,
share_busway)

18496 606

Bike safe footway with bicycle=yes,
pedestrian, cycleway,
path, track, highway as
in bike allowed with
cycleway=track

1462780 43833

Bike allowed service, primary, sec-
ondary, tertiary, un-
classified, residential,
bridleway, living_street,
road, path

1520214 41443

Total bike 3001490 85883

Pedestrian only footway where bicycle =

no, steps
274318 5440

Pedestrian / bike footway where bicycle =

yes, pedestrian, cycleway,
path, track

1482128 44002

Sidewalk see bike allowed 1271494 36788
Total pedestrian 3027940 86230

69



Chapter 5. External Data Sources

Figure 5.1: Area around Zurich included in analysis

Source: www.openstreetmap.org

70



5.2. Network data

Figure 5.2: Cycling network with safe cycling roads in green

Source: www.openstreetmap.org, Visualisation: Senozon Via
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5.2.2 Public transport network and schedule
The public transport map matching routines were developed and tested
on networks and schedules originating from the official transport model
for the Canton Zurich (Rieser-Schüssler and Axhausen, 2013; Amt für
Verkehr, Volkswirtschaftsdirektion Kanton Zürich, 2011). In this thesis,
this network and schedule are used for all public transport map-matching
tasks as well as for choice set generation (Chapter 8, Chapter 10).

The network and schedule covers all major train connections to and from
Zurich as well as all public transport lines within the Canton, including
ships and cable cars. The schedule represents the HAFAS-timetable of
2005. The network includes train and tram tracks as well as roads travelled
by buses, and they are geographically correct, which is indispensable for
map-matching.

5.3 Elevation model
Elevations for the canton of Zurich were released Open Source in 2015
under the GIS-ZH licence, the digital terrain model is available with a
resolution of 0.5 meters (Office for Spatial Development of the Canton
of Zurich, 2015). Outside the canton the digital elevation model with a
resolution of 25 meters by swisstopo is used (Federal Office of Topography
swisstopo, 2012). Each node of the network is assigned the elevation of
the nearest measurement point.

The elevation measures for the bicycle and pedestrian route choice
models, such as maximum and average rise as well as maximum and
average fall are then calculated per route. For every link longer than 20
meters of a route the slope is calculated directly, if a link is too short it is
joined with the next links until the sum of link lengths is greater than 20
meters, the slope is then calculated for the joined segment. The average
rise is then calculated as the average of all positive segment slopes, the
average fall is the absolute of the average of all negative segment slopes.
Accordingly, the maximum fall is the absolute value of the most negative
slope.
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Chapter 6

Introduction and related
work
In transportation research, GPS tracks often in combination with accelerom-
eter data are used amongst other data sources to reconstruct diaries automat-
ically, hence, complementing or replacing traditional travel diaries. These
data allow to observe routes and times with high precision. Furthermore,
respondent’s recollection is supported by automatically generated travel
diaries. If these generated diaries are accurate and complete, less input is
needed from respondents and their burden is reduced. Consequently, GPS
data is most interesting for longitudinal surveys to observe behavioural
changes as well as routines.

Complete position data processing frameworks to construct travel diaries
consist of the following parts:
• Preprocessing of raw data, e.g. cleaning and smoothing of GPS

points
• Segmentation into stop points and stages
• Transport mode identification for stages
• Trip purpose identification for stop points

For further analysis, map-matching and choice set generation procedures
are also key for transport research. All these mentioned modules are part
of the Open Source project POSDAP (2012) that originated from Schüssler
(2010) and is implemented in Java. The goal within this thesis is to add
the so far missing trip purpose identification module, improve the mode
detection and analyse personalisation strategies.

Two main groups for trip purpose imputation and mode detection rou-
tines can be found in the literature:
• rule-based systems, and
• machine learning approaches
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For mode detection, rule systems are considering speed measures, stage
criteria such as duration and also proximity to e.g. bus stops or roads (e.g.
de Jong and Mensonides, 2003; Stopher et al., 2005; Chung and Shalaby,
2005; Bohte and Maat, 2008; Marchal et al., 2011). Further, fuzzy logic
approaches were employed that also account for the fact that the boundaries
between modes are overlapping (Tsui and Shalaby, 2006; Rieser-Schüssler
et al., 2011). For trip purpose, rule systems rely mostly on the position
of the activity, its timing, and GIS data on land uses (e.g. Moiseeva et al.,
2010; Bohte and Maat, 2009; Stopher et al., 2008; Wolf et al., 2001a). One
of the first rule-based trip purpose systems (Wolf et al., 2001a) considers
land use data to narrow down possibilities to three purposes. In a second
step, duration and time of arrival are used to refine classification. Overall,
67 % of trips were correctly identified. Most other rule-based approaches
(Moiseeva et al., 2010; Bohte and Maat, 2009; Stopher et al., 2008) base the
imputation solely on the location. Trip purpose is assigned by comparing
the activity location to land use databases, points of interest and addresses
provided by participants before or during the travel survey. In Wolf et al.
(2004) trip purpose is imputed for clusters of activities. They included
socio-demographics in the decision process, which was deterministic, but a
probabilistic approach along the lines of a Bayesian network was proposed.

Several machine learning approaches were tested on mode detection e.g.
Stenneth et al. (2011) use random forests with good success, that is overall
more than 93 % of observations were correctly predicted and Zheng et al.
(2008) as well as Moiseeva et al. (2010) use Bayesian inference models.
For trip purpose detection the most common classifiers are decision trees
(e.g. Gong et al., 2016; Oliveira et al., 2014; Lu and Zhang, 2014; Lu et al.,
2012; Deng and Ji, 2010; Griffin and Huang, 2005). They are mostly based
on variables computed for single activities, therefore the focus is more
on the activity itself and less on position as was the case for rule-based
systems. Deng and Ji (2010) report accuracies between 70 and 96 % on a
rather homogeneous set of participants and Lu et al. (2012) achieve 60 to
73 % accuracies depending on the trip purpose. Liao et al. (2007) achieve
good results (80 to 85 % accuracy) using hierarchical conditional random
fields. But also other approaches are tested, Oliveira et al. (2014) compare
a decision tree and a nested multinomial logit model. Liao et al. (2007)
achieve good results using hierarchical conditional random fields. Lu and
Zhang (2014) compare three algorithms on two datasets: decision tree,
support vector machine and metalearner.
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When comparing accuracies of the reported classifications, it has to be
considered that the level of detail and therefore the number of classes differ
and that the data sets used for classification are also very different in size
as well as in the homogeneity of participants.

In this thesis, mainly random forests (Breiman, 2001) are used for trip
purpose and transport mode classification. Random forests have been
successfully applied to mode detection as mentioned before, and to other
transport related classification problems (e.g. Ali et al., 2012; Greenhalgh
and Mirmehdi, 2012; Rodrigues et al., 2012; Moreira et al., 2005).Similarly
to the trip purpose detection problem, Wu et al. (2011) use random forests
to classify activities based on GPS data. They distinguish between indoor,
outdoor static, outdoor walking and in-vehicle travel.

The goal of this part is to analyse performance of transport mode and
trip purpose detection routines using the data described in Chapter 3. It
is investigated if and how personalisation during processing of multi-day
GPS and accelerometer data can improve the quality of the produced travel
diaries. For analysis, applications for GPS processing where some of the
available data is annotated are considered. This is for example the case for
travel surveys, where participants can be asked to at least correct some of
their schedule. Having annotated data is not granted, as position data is
more and more often collected as a side product, especially in smartphone
applications, such as journey planners (like PEACOX in Chapter 4).

The remainder of this part is structured as follows. First, all methods used
are introduced, including random forests, an optimisation algorithm for
fuzzy rules, as well as computation of input variables (features). Following,
results are presented first for mode detection and then for trip purpose
imputation. Conclusions and recommendations on future work complete
Part II.
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Chapter 7

Method for transport mode
and trip purpose detection

Transport mode as well as trip purpose identification are multi-class clas-
sification problems. For classification, three tasks have to be completed,
first, features, that is the input variables, have to be computed from raw
data. Then the best performing features have to be selected and finally, a
classifier has to be learned or implemented and its performance has to be
tested.

For trip purpose identification, it has to be noted that the method de-
scribed is based on multi-day GPS and accelerometer data for survey
respondents living in the same region. To exploit the multi-day nature of
the data, activities are clustered into locations. Clustering is done for single
persons but also for the complete set of activities as several respondents
might frequent the same public locations. Classification variables, called
features, can then be derived for location clusters. To impute trip purpose
the following steps are performed:

1. extraction of activities and their locations (Section 7.2),
2. clustering of locations (Section 7.3),
3. computation of features (Section 7.4), and
4. learning and applying the classifier (here we use random forests

Section 7.5).

This chapter is structured as follows. Before the above mentioned steps a
quick introduction about the performance measures employed is given. To
conclude, an optimization algorithm for the fuzzy rule system is introduced,
which is the original mode detection of our processing framework.
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7.1 Performance measures

The overall accuracy is defined as the percentage of correctly identified
observations. Performance of classification algorithms are also presented
for some cases as confusion matrices, which indicate for each truth /

classification pair the number of data points falling in that bin. In that
context, accuracy measures are also given per class (e.g. trip purpose,
transport mode), that is recall and precision are defined as follows:

recall (class) =
correct classifications of a class

all actual observations of the class
(7.1)

precision (class) =
correct classifications of a class

all activities predicted to be of that class
(7.2)

In the case of perfect classification, both recall and precision values are
100 % for all classes. Recall alone is not sufficient, as 100 % could also
be achieved for one class if the classifier always predicts this class. As
standalone value it is therefore not as meaningful as in combination with
precision values and with the according measures for all other classes.

7.2 Activity location calculation

Activities are specified at least by start and end times and the GPS and
accelerometer points recorded during this interval. Deriving these activities
is either done by survey respondents or by an automatic activity detection
module of a GPS processing framework. To assign each activity a location
in space a representative coordinate is calculated from all GPS coordinates
during the activity. Coordinates in our application are given in the metric
National Swiss Grid representation. Using a metric grid is important when
aggregating coordinates. To compare different aggregation approaches,
only home activities were used for testing. Home locations are most
suitable as they are known for all participants and they are visited several
times within the survey period, which is important for subsequent clustering.
Three approaches were tested:
• the unweighted point cloud centroid (which is the mean position of

all points),
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• median x and y coordinates (calculated separately) and,
• the coordinate with highest density (density was computed as number

of coordinates within a radius of 20 meters around the candidate
coordinate).

For comparison, distances between the calculated aggregated coordinates
and the geocoded home coordinates were computed. Representations were
categorized as wrong if the distance was higher than a given threshold.
Figure 7.1 shows the erroneous coordinates for different distance thresholds.
It can be seen that the centroid performs worst, the median coordinate is
already much better, possibly because the influence of outliers is reduced.
The best representation is achieved by the coordinate with the highest
density. In this case for a threshold of 50 meters more than 90 % and for
100 meters already 95 % of home locations are well represented. Therefore,
in the subsequent clustering, the coordinate with the highest density was
used.

Figure 7.1: Comparison of centroid, median coordinate and densest coordi-
nate as representation for an activity location.
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7.3 Clustering

The total number of locations visited by respondents is not known. There-
fore, clustering has to allow for as many clusters as needed. A well estab-
lished approach that fulfills this condition is hierarchical clustering (Hastie
et al., 2009). Agglomerative hierarchical clustering starts with each activity
as one cluster. In each step the pair of clusters that is closest is merged into
a new cluster. Clusters are merged as long as they are closer than a given
cutoff distance. If two clusters consist of several activity locations, the
distance between clusters is not straight forward. Thus, different linkage
criteria were tested:

• single linkage: the distance between the nearest possible points of
two clusters
• complete linkage: the maximum distance between two points of two

clusters
• average linkage: the average of all distances of all possible point

pairs of two clusters

To determine optimal clustering, a location should be represented by one
cluster and this cluster should only consist of activities of this location.
These two outcomes were computed for all home locations, in order to
compare the different linkage criteria. Home locations were again used,
because they are most reliably known and they occur more than once per
person. For each person in the data set the following procedure is executed:

1. cluster all available activities
2. count how many clusters contain home activities
3. the cluster with most home activities is assigned to be the main home

cluster
4. count how many different locations are part of this main home cluster

For different cutoff distances, the mean values for all persons are calculated
and plotted in Figure 7.2. The optimum would be at 1 for both, the
number of clusters per home locations and the number of locations per
main cluster. None of the clustering runs reaches the optimum value
for either measure and it is unclear which of the two measures is more
important. Overall, all linkage criteria perform similarly. Average linkage
creates more compact clusters than single linkage, but is not as restrictive
as complete linkage (Hastie et al., 2009). Therefore, average linkage was
chosen for all subsequent analysis.
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To decide on the best cutoff distance for the average clustering, the
complete classification system was run with different cutoff distances. For
each case 100 different forests were learned, the best accuracies were
achieved with a cutoff distance of 100 meters, that is 72.3 % compared to
72.0 % with 10 meters, 68.2 % for 200 meters going down to 56.3 % for
1000 meters (mean accuracy as well as the 5th and 95th percentile for more
cutoff distances are shown as part of the results in Chapter 8, Figure 8.7).
Therefore, the 100 meter cutoff distance threshold is used in subsequent
analyses.

Figure 7.2: Pareto efficiency of the mean number of clusters that cover
home activities and the mean number of different locations
within the main home cluster for several cutoff distances.
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7.4 Feature computation

Features we use for trip purpose imputation can be divided into three
groups: specific to persons, activities and clusters (per person as well as
per data set). Similarly, for mode detection features are specific to person,
stage and mode.
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Appropriate person-based data are usually collected in the socio demo-
graphic questionnaire of a travel survey. Some examples are age, education
level, income and mobility tool ownership. Moreover, the home address
of respondents is often known, and sometimes even more addresses such
as work place or favourite shopping centres are surveyed as well. For
applications other than travel surveys, such data are probably optional and
more sparse.

Simple activity-centred features are, for example, duration and start
time. Using GPS data and the derived location representation, distances to
important places such as home or work can be calculated. If a travel diary
is available or can be automatically generated, the modes used to get to
and leaving the activity can also be used. Further, during walking a very
distinct accelerometer pattern can be observed. Therefore, the percentage
that is spent walking during an activity can be computed. The underlying
idea is that during shopping one might walk more than at home.

Cluster-specific features are associated with the location and not with
single activities. For clusters that were computed for single persons, ex-
amples are statistical aggregates of the activity features such as mean and
standard deviation of the duration. Clusters can also be created for the
complete data set, which allows to extract the number of persons knowing
a location. However, this feature has to be treated carefully as it is data
set dependent, e.g. for a very homogeneous group working at the same
university, work is a place everybody knows, for a more diverse data set of
a region, train stations are more likely to be known to several people.

7.4.1 Feature selection

When building a random forest, the feature importance can be directly
computed from the out-of-bag observations, that is the observations that
were not used to construct a tree. The main idea is, that a feature is more
important if the change of its value in an observation causes a misclassi-
fication. Therefore, for each feature the increase of misclassification is
determined when the value of this feature is permuted in the out-of-bag
observations. Hastie et al. (2009) show that this importance measure shows
reasonable ranking but the distribution of the importance tends to be spread
more uniformly than with other importance measures. This out-of-bag
importance measure was used as basis for the selection of the features best
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suited for trip purpose and transport mode imputation. Furthermore, it was
ensured, that all feature-groups were represented.

For trip purpose detection, around 40 potential features were tested. The
feature sets selected to generate results are listed in Figure 7.3, where
features of the same group are depicted in the same colour. Of the 17
features (the set with 13 features is a subset) the following are categorical
features and treated as such in the classification process: day of week,
education level, marital status and the transport modes. All other variables
are continuous. Features that were not selected on the basis of the out-
of-bag feature importance are mainly person-based features. Namely, all
items related to mobility tools like possession of a driver’s license or
public transport season ticket were at the bottom of the importance ranking.
The most important features are the activity-based features. The flag for
weekday or weekend and the day of week, were not among the most
important, but they are always available and reliable. Therefore, one of
them, the slightly better evaluated day of week, was kept. Contrary to that,
trip duration before the activity is left out, because feature importance was
low and its computation is costly and the value is uncertain, especially in
the context of uncorrected travel diaries. The modes before and after the
activity, having the same drawbacks, are used anyway, as they are evaluated
to be much more important.

7.5 Random Forest

For trip purpose imputation, decision trees, that is a set of rules learned
by a machine and executed in a given order, were already used with good
success (e.g. Griffin and Huang, 2005; Deng and Ji, 2010; Lu et al., 2012).
Using a random forest, that is a set of decision trees also called ensemble of
trees, is therefore, a natural step. Random forests were introduced by, and
is a trademark of Breiman (2001).This classifier performs well in a variety
of problems. It is also very popular, as it is easy to train and tune (Hastie
et al., 2009). Breiman (2001) showed that random forest do not overfit
even if more trees are added. A further advantage is that good results can
be maintained even if data are missing, as they are estimated internally
(Breiman and Cutler, 2013).

Technically, random forests work as follows. Each decision tree in the
ensemble has one vote that counts for classification. The class with most
votes, is the classification result. In a regular decision tree a data set is
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Figure 7.3: Mean feature importance for 17 (a) and 13 (b) features respec-
tively. Color coding for different feature types (activity, person,
cluster and overall cluster features).
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split using the feature that results in the best split. Using the same data to
learn a tree, results in the same tree. But, in a random forest different votes
are needed, and correlation between trees should be reduced to obtain best
classification. To achieve that, on the one hand, each tree is learned from a
different subset of the training data. On the other hand, at each split in the
tree a random subset of features is considered. Each tree is fully learned,
that is splits will be created until all training data are correctly classified.

To generate the subsequent results, either the random forest implementa-
tion of Matlab MathWorks (2012), called TreeBagger, or in the case of Java
applications the FastRandomForest (Supek, 2012) based on the WEKA
data mining tool (Hall et al., 2009) was used. The Java implementation is
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included in our open source position data processing framework (POSDAP,
2012).

7.5.1 Tuning and Stability Analysis

The main parameter that can be used for tuning random forests is the
number of features (m) that should be randomly selected for each split
decision. Figure 7.4 shows the out-of-bag error for a run using 17 features
in total. It can be seen, that performance is similar for up to 7 randomly
selected features at each split and then starts to drop slightly, as correlation
between the trees starts to increase. For all runs with seventeen features
m = 7 is selected. The recommended default value is the ceiling value of
the square root of the number of features, which is m = 5 in the case of
17 features, as the default value performs well, all runs with less features
use their respective default, which is m = 4. Furthermore, for all runs 500
trees are learned per classifier, as it can be seen that the error stays stable
even if more trees are added.

Figure 7.4: Out-of-bag error for different numbers of randomly selected
features (m).
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7.6 Evolutionary algorithm to optimise fuzzy
rule system

The original mode detection in POSDAP (2012) uses a fuzzy rules approach
as described in Schüssler and Axhausen (2009c). The fuzzy rules systems
is illustrated in Figure 7.6 and consists of linguistic input variables (e.g.
median speed), each of which is split into a finite number of linguistic
terms (e.g. low) that are described by the according membership functions.
The shape of each membership is predefined in our case as trapezoidal and
the functions of linguistic terms overlap and thus account for the fact that
there is no sharp distinction between e.g., low and medium speeds.

Analysing the pretest data of the GPS study in Zurich, a set of rules,
linguistic variables and according membership functions were derived by
hand and are reported in Rieser-Schüssler et al. (2011). To further optimize
the system automatically an evolutionary algorithm (see e.g., Michalewicz
and Fogel, 2004), that is a biology inspired search heuristic, was imple-
mented in MATLAB™. The idea of the algorithm is to start with an initial
population of solutions (individuals) and evolve it generation by generation
in order to find an optimal individual. New solutions are generated from
old ones using variation operators that include some randomness (often
crossover and mutation). The new population of equal size as the orig-
inal (parameter population size) is then selected out of the old and new
individuals based on a fitness criteria.

The following components of the classification system are defined be-
forehand and therefore not optimised:

• The variables
• The number of membership functions per variable
• The form of the membership functions (trapezoidal)
• The set of rules (Table 7.1)

For optimising the trapezoidal membership functions, the following
building blocks of the algorithm are defined next:

• the individual, a representation of a solution (the fuzzy rule system)
• variation operators to create new individuals
• the fitness function, that is the measure that can be optimised, and
• a selection mechanism.
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Table 7.1: Fuzzy rules for mode identification

Median
speed

Median variation
accelerometer

95th-percentile
speed

Mode

Very low Very low - Urban PuT

Very low Low - Bike

Very low Medium - Bike

Very low High - Walk

Low Very Low - Urban PuT

Low Low - Car

Low Medium - Bike

Low High - Walk

Medium Very Low - Urban PuT

Medium Low - Car

Medium Medium - Bike

Medium High - Bike

Medium - High Car

High Very low - Rail

High Low - Car

High Medium - Car

High High - Car

Rules derived in Rieser-Schüssler et al. (2011)

7.6.1 The individual

For the problem at hand an individual has to represent the complete fuzzy
rule system. The system is represented by all membership functions of
each linguistic variable (Figure 7.5). The trapezoidal form is predefined
as well as the value range of a fuzzy variable. Further, the number of
membership functions of the fuzzy variable is also fixed. Therefore, an
individual consists of the corner values of the trapezoidal functions.
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Figure 7.5: Example of individuals consisting of 4 linguistic variables. Indi-
viduals 1 and 2 are the parents of individuals 3 and 4 generated
by the crossover operation (arrows).

7.6.2 Variation operators: crossover and mutation

Inspired by crossover operators, two new individuals are created by switch-
ing the linguistic variables of two parent individuals as illustrated in Fig-
ure 7.5. It is randomly selected how many and which variables are flipped
(at least one and less than all).

Two mutation operators are implemented: the slope and the crossing
mutation (illustrated in Figure 7.6). In both cases the trapezoidal form, and
the corners of the other membership functions is a constraint.

The slope mutation only changes one variable of one membership func-
tion. First, the variable to be mutated is randomly chosen, then one of
the membership function parameters is selected and moved by a random
amount, but such that the resulting membership function is still valid. This
mutation only affect the slope of one membership function of one variable,
therefore only small steps in direction of a potentially better solution are
made.

Crossing mutation on the other hand, takes bigger steps. For the mutation,
again a variable is selected randomly, followed by a random selection of
the crossing of two membership functions as well as the direction of the
move (left or right). The amount by which it is moved is defined as a
proportion of the value range of the selected variable (parameter range
proportion). E.g. if median speeds were constrained to be in the range of 0
to 200 km/h and the range proportion is set to 0.1 the crossing is shifted
maximum by 20 km/h or if this shift is not feasible, the crossing is shifted
by the maximum possible amount, that is constrained by the upper left or
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upper right corner of the left and right membership functions respectively
(resulting in a triangle of one of the membership functions). As newer
populations tend to be better, the influence of the crossing mutation is
slowed down with each iteration, by reducing the range proportion linearly
from range proportion max to range proportion min by range proportion
reduction.

How many individuals are varied by each variation operator is specified
by the run parameters crossover probability, slope mutation probability
and crossing mutation probability. An individual can be drawn by all these
operators at the same time.

Figure 7.6: Illustration of the elements of a fuzzy system and examples of
mutation operations.
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7.6.3 Fitness and selection
The fitness function is chosen to be the accuracy of the fuzzy rule system.
In the selection step, a fixed number of fittest solutions (parameter number
of elites) is kept and duplicated elite multiplier times, as it was found, that
duplicates of good solutions speed up the search for an even better solution
considerably. All other solutions are selected using weighted random draw
with the fitness as weights.
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Chapter 8

Results for transport mode
and trip purpose detection
8.1 Transport mode

To analyse transport mode detection, first, accuracies of the optimised
simple fuzzy rule system run on a subset of the Zurich GPS study (Chap-
ter 3) are shown. Next, performance on the full Zurich GPS dataset using
a random forest classifier is analysed. On the one hand, personalisation
strategies are evaluated (Section 8.1.2) and on the other hand, performance
using only accelerometer features is presented in Section 8.1.3.

8.1.1 Performance using optimised fuzzy rules

Before developing the optimisation algorithm, parameters were derived by
hand based on the Institute‘s pretest data. In order to show feasibility of the
method, the evolutionary algorithm was tested on a more diverse subset of
data collected in the Zurich GPS study using median speed, 95th percentile
of the speed as well as the median accelerometer measure as input features
and classifying walk, bike, urban public transport, car and rail.

The introduction of an optimisation algorithm also allows to tune the
fuzzy logic approach for different datasets.

Two different types of initial populations were used to test the algorithm.
Completely random populations, where all individuals are different and
generated as follows: the range of each linguistic variable is predefined,
then random numbers are generated in this range and finally sorted such that
the trapezoidal shape is kept. And a population consisting of 50 % randomly
generated solutions needed for variation and 50 % identical solutions
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Table 8.1: Run parameters for the optimisation algorithm

Parameter

Selection

Population size 50

number of elites 2

elite multiplier 4

Crossover

probability 0.25

Slope mutation

probability 0.25

Crossing mutation

probability 0.25

range proportion max 0.1

range proportion min 0.001

range proportion reduction 0.00001 per iteration

derived from the pretest data (see Table 7.1). As this solution is better
than a random solution this population is named good. All populations
were evolved for 2000 iterations, using the run parameters as specified in
Table 8.1 and described in Section 7.6.

Overall accuracy of the different runs for the training data as well as the
test data is shown in Table 8.2. The training data (998 cases) was used to
calculate the fitness of different solutions and to evolve the population, the
test data (250 cases) on the other hand is only used at the beginning and the
end to verify the results of the algorithm. In all cases the accuracy of the
training and the test data are similar, therefore over-fitting is not a problem.

The good initial population (73.2 %) evolves considerably to an accuracy
of 84.8 % and importantly this good result can also be reached by a random
initial population. The three runs with random initial population start with
the accuracy of the best individual between 40 and 51 % and all reach
accuracies over 84.8 % for the test data. As depicted in Figure 8.1 evolution
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is very steep within the first 200 iterations and then slows down. For all
runs the final result is stable, improvements after 500 iterations are small.
Run time for 2000 iterations is around 20 minutes on a lenovo T440s
Laptop running Windows 7 Enterprise.

The membership functions of the system derived by hand and the fi-
nal result of the run with good initial population is shown in Figure 8.2.
The median speeds are corrected towards lower values, or even 0 for very
low, which shows that the fuzzy rule system could even be simplified, by
removing this membership function and the 4 rules associated with it. In Ta-
ble 7.1 it can be seen, that very low median speeds were introduced hoping
to be able to distinguish between car and bike with similar accelerometer
characteristics.

Analysing the confusion matrices of the two solutions for the test data, it
is clear that no problem distinguishing car and bike existed in this dataset in
the first place, therefore these rules probably could be dropped easily. The
increase of accuracy is due to 10 of 13 bike stages originally misclassified
as walk could be corrected. Further, distinction between public transport
and car was shifted towards car, that is 6 car stages initially misclassified
as rail and 19 misclassified as urban public transport are correctly detected
as car with the best classifier, therefore, considerably increasing the recall
of car (from 67 to 92 of 97 cases), at the expense of misclassifying 7 public
transport trips and hence the decrease in recall of those. Depending on the
objective, one has to consider that the overall accuracy of a classifier is not
always the best fitness function, also because the number of trips per mode
influences the overall accuracy, parameters are optimised towards those
modes present most in the data set.

8.1.2 Personalisation using random forests

To show the influence of different features mode identification is performed
with different feature sets. Training and test sets for the mode detection
are built from random subsets of all stage observations. To be precise a
100-fold cross validation is performed, the results of which are shown in
Figure 8.3. The first subset (run 1) includes the mode- and stage-specific
features that are often used when performing mode detection. This run
serves as minimum base line. The goal of adding the public transport-
map-matching score (Rieser-Schüssler and Axhausen, 2013) is to improve
distinction between car and public transport stages (run2). In Figure 8.3 it
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Table 8.2: Evolution of accuracy of the training data for all runs

Initial population
Training Data Test Data

It. 1 It. 2000 It. 1 It. 2000

Good 68.9 % 84.9 % 73.2 % 84.8 %

Random 1 37.1 % 84.8 % 40.4 % 84.8 %

Random 2 42.6 % 85.0 % 41.6 % 86.0 %

Random 3 47.0 % 83.5 % 50.4 % 85.2 %

Figure 8.1: Evolution of accuracy of the training data for all runs.
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can be seen that overall accuracy improves only slightly, but the percentage
of bus stages correctly identified is increased from 20 % to 37 % (detailed
results not presented). Therefore, the general effect is as expected, but the
recall of bus stages is still very low.

Adding the personal mode shares (run 3) computed from the available
one week of data as well as the mean bike and walk speeds of a person
improves the classification with a median accuracy over 88 %. Importantly,
also bus stages are better detected with a recall of 55 % (see confusion
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Figure 8.2: Best membership functions of first and last iteration of the run
with good initial population.
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matrix in Table 8.3). Half of the misclassified bus stages are wrongly
identified as car. However, more unexpectedly most of the other errors
are bus stages misclassified as walk. Further adding socio-demographic
information (gender, age, income, education, employment) has a negative
effect on classification and is therefore not useful for mode identification
(run 4).

For the best performing feature set, that is run 3, the feature importance
measure for all used features is given in Table 8.4. The accelerometer
measure is by far the most important followed by the mode shares that are
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observed for a person. Personal bike and walk speeds on the other hand
are not that important and can therefore be neglected.

For the same feature set, a per person analysis is presented in Figure 8.4,
where it can be seen that for mode identification the variation between
participants is high, this is also true for trip purpose (Section 8.2.4). For
one person only 30 % of the predicted modes are correct and for other
persons 100 % are correct.

Figure 8.3: Accuracies for different feature sets, box plot for 100 runs each.
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Figure 8.4: Per person mean accuracy of 10 runs. Same features as run 3.
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Since including data collected by a participant has a positive effect on
trip purpose detection for other data of this participant (Section 8.2.4) it
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Table 8.3: Confusion Matrix: Run 3 including person-based features.
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Walk 1899 26 5 13 39 108 4 90.7

Bike 73 504 4 0 2 22 0 83.3

Bus 40 7 165 10 10 67 1 55.0

Tr
ut

h Tram 38 3 7 300 19 12 0 79.2

Rail 42 1 2 5 478 35 4 84.3

Car 95 8 18 7 18 2780 5 94.8

Other 14 0 0 5 1 37 57 50.0

Precision [%] 86.3 91.8 82.1 88.2 84.3 90.8 80.3

is also tested for transport mode classification. The number of days that
are included in the training data is varied between 1 and 3 and the weights
given to the person’s training data is also varied (1, 10, 100). Unfortunately,
compared to classification without including a person’s data, there is no
effect at all, as can be seen in Figure 8.5.

8.1.3 Analysis of accelerometer features and their
importance using random forests

Collecting accelerometer data is cheaper in terms of battery consumption
than GPS data, it is therefore often used to identify modes. Here it is shown
how well mode can be identified given only features calculated from 10 Hz
accelerometer data. Classification is done by random forests with 400 trees
and results are reported for 10-fold cross validated runs.

Different statistical values describing the accelerometer series are tested
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Table 8.4: Random forest out of bag feature importance measure (run 3),
orange-coloured features are person-based, mode-specific fea-
tures are dark red and light yellow features are stage-specific.

Median accelerometer measure 19.37

Bike share 4.22

Car share 3.92

Median speed 3.63

GPS quality (number of coords per second) 2.96

95th percentile speed 2.65

Public transport share 2.37

Duration 1.79

Public transport network-matching score 0.99

95th percentile accelerometer measure 0.96

Standard deviation of walk speeds 0.41

Start time 0.40

Mean of walk speeds 0.24

Mean of bike speeds 0.19

Standard deviation of speed 0.13

Standard deviation of bike speed 0.00

to find the best ones distinguishing different modes. The following values
are tested:
• Percentiles (5th, 25th, 50th (median), 75th and 95th),
• mean value,
• standard deviation,
• variance,
• second moment,
• kurtosis, hinting at how tailed the distribution is,
• skewness, measuring the asymmetry of the distribution and
• RMS (root mean square) describing the energy of the signal
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Figure 8.5: Mean accuracies of 10 runs per person including personal train-
ing data. Varying number of training days of the person to be
classified as well as different weights.

●●●●●

● ●● ●●

● ● ● ●●

● ●●●●

● ●● ●●

● ●● ●●

3 days, weight = 100

3 days, weight = 10

3 days, weight = 1

2 days, weight = 1

1 day, weight = 1

Mode detection without personal data

40 50 60 70 80 90 100

mean accuracy per person [%]

All features are calculated for the complete stage but also for different
window sizes, that is at every point in time a new value is calculated
considering measurements of half the window size before and after that
time. For classification then the mean, median or 95th percentile value of
all windowed values is used.

Results are given in Table 8.5. Taking the medians resulted in best recall
and overall accuracy (top part of Table 8.5). Further, the start and end of
stages are cut assuming that the middle of the data is more typical and
potential time rounding effects are reduced. This was not beneficial as all
recall values and overall accuracy decrease with higher cut values (middle
part of Table 8.5). Acceleration at the start and end are either important
or all additional data is beneficial with the given amount of data. Further,
as start and end times of the corrected data were extracted by algorithms
no time rounding effects of participants distort the results, making a cut
unnecessary. Window sizes between 10 seconds and 1 minute result in
similar accuracies (77.4 % - 77.9 %), for a 2 minute window size accuracy
slightly decreases (75.8 %), if no windowing is used an overall accuracy of
73.1 % is achieved (bottom part of Table 8.5).

Figure 8.6 shows the feature importance of all 12 features calculated
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Table 8.5: Recall values for accelerometer-only mode detection

cut = 60 seconds, window size = 20 seconds

aggregation median mean 95th percentile

Overall 6065 cases 77.9 % 75.6 % 69.5 %

Car 2602 cases 93.6 % 93.4 % 89.6 %

Walk 1794 cases 81.7 % 81.3 % 75.1 %

Bike 509 cases 67.0 % 63.9 % 48.1 %

Rail 463 cases 60.3 % 53.1 % 42.8 %

Tram 348 cases 58.3 % 35.1 % 26.7 %

Bus 257 cases 0.8 % 0.0 % 0.0 %

aggregation median, window size = 20 seconds

cut [s] 30 120 300

Overall 78.3 % 76.9 % 75.5 %

Car 93.9 % 92.7 % 91.7 %

Walk 81.8 % 81.3 % 80.3 %

Bike 70.1 % 66.2 % 64.8 %

Rail 58.3 % 57.5 % 52.1 %

Tram 60.6 % 54.9 % 52.3 %

Bus 0.8 % 0.0 % 0.4 %

aggregation median, cut = 60 seconds

window size [s] 10 60 120

Overall 77.4 % 77.4 % 75.8 %

Car 92.9 % 93.6 % 93.6 %

Walk 82.0 % 80.9 % 80.2 %

Bike 66.8 % 65.0 % 57.4 %

Rail 57.7 % 61.6 % 56.6 %

Tram 57.5 % 55.2 % 48.6 %

Bus 0.0 % 0.4 % 0.0 %
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for a 10 second window without cutting start and end of stages (overall
accuracy = 78.1 %). The mean, percentiles as well as the root mean square
seem not important for classification, variance and standard deviations are
most important. To exclude effects of similar measures stealing each others
importance, classification was done for all combinations of feature pairs as
well as triplets.

Using only two features resulted in lowest overall accuracies for mean
combined with skewness of 51.2 % up to 74.9 %. For 15 pairs accuracies
over 74.5 % are reached, achieved by combining any of the percentiles
(including the median) with one of the following three: variance, standard
deviation or second moment. All 27 combinations with those, except with
each other, result in accuracies above 72.5 %, no other combination results
in accuracies as high. Apart from those only the combinations of the RMS
combined with percentiles achieve accuracies over 70 %. When analysing
the confusion matrix of RMS and median compared to standard deviation
and median, almost 5 % accuracy is lost by misclassifying bike as walk
and vice versa, as well as misclassification between rail, tram and car.

When looking only at feature importance one would have expected
skewness and kurtosis to be more relevant. Interestingly this is again the
case when combinations of three features are used to learn the classifier.
The best combination of three (only 95th percentile is used as a percentile,
as pairing showed that they are interchangeable) is variance, skewness and
kurtosis achieving 77.1 % overall accuracy which is only 1 % less than if
all 12 features are used. On the other hand the worst combination is mean
with skewness and kurtosis achieving only 63.8 % accuracy. In any case
only 7 of the 84 tested combinations of three features result in an overall
accuracy below 70 %.

Only considering accelerometer measures, reasonable results can be
achieved.
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Figure 8.6: Feature importance of accelerometer features.
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8.2 Trip purpose

The tuning parameters of the classification procedure were discussed in the
previous chapter. In this section, the accuracy and performance of random
forests for trip purpose detection is analysed. To do so, different situations
are compared and analysed in the follwing section:

1. A base situation for comparison is learned on a random subset of
activities with 17 input features (base setup).

2. The features set is reduced, and changes in the classifier performance
are discussed (reduced features setup).

3. The activity-based classification of the base setup is compared to a
location-based approach (location-based setup).

4. The per person performance is analysed (per person setup).
5. The influence of person-specific input features is shown (personali-

sation by features setup)
6. Finally, four personalisation strategies are tested (select best, group-

ing, includ person data, overrule).

8.2.1 Base Setup

For the base setup, random forests are trained on randomly selected 75 %
of all activities per activity type. The remaining data are used to test the
performance. In total, 100 runs with 500 trees were employed. The mean
accuracy, that is the share of correctly classified observations of these
runs is 82.3 %. The highest accuracy reached is 84.4 %. The respective
confusion matrix is reported in Table 8.6 together with the recall and
precision values of each trip purpose.

It can be seen that mode transfers, being at home and work / education
are recalled best. Almost all mode transfers (99 %) are identified as such
and being home is recalled in 97 % of occurrences. Importantly, also the
precision of the classifier for these three classes is good with around 85 %
for working, 91 % for mode transfers and 93 % for being home, therefore
only few activities are misclassified as one of these classes. Shopping
and recreational activities are reasonably recalled with 74 % and 68 %
respectively. The remaining trip purposes (pick-up / drop-off, business
and other), that do not occur that often, are not well recalled (between 20
and 40 %) but there are also not too many misclassifications as pick-up /

drop-off or business, as shown by high precision values of 83 %.
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This base setup uses 17 features in total. In order to understand which
features are important to distinguish trip purposes, their out-of-bag im-
portance is shown in Figure 7.3(a). The 7 most important features are all
activity-based (light yellow colored bars). The cluster or location-specific
features (darker red colors) and the person-based features are slightly less
important.

8.2.2 Performance with a Reduced Feature Set

Among the most important activity-based features are the transport modes
used before and after the activity. In the context of travel surveys, when
data have been corrected by participants this data are probably of high
quality and it is beneficial to use it. Yet, they are not included in the
reduced set, because in order to get good classification results reliable and
accurate input data is needed, which is not always the case for transport
modes. Particularly problematic can be cases where the mode is imputed
and not double-checked by participants. In addition, distances to home and
work are left out of the reduced set, in order to analyse, if these locations
can also be imputed when their location is not known beforehand.

Mean accuracy of 100 runs for this reduced feature setup was 77.2 %
and therefore, lower than the accuracy of the base setup. This was expected,
as important features were left out. The confusion matrix of the best run
(79.8 % accuracy) is reported in Table 8.6. Values are generally lower than
compared to the base setup but the overall tendencies are similar. Note,
that home and work locations are recalled as good as in the base setup with
95 % and 86 % respectively. Therefore, it would be possible to extract
these location for each person in a first step, and to use the distance to
the home and work location in a second step to improve classification.
Recall of shopping and services on the other hand decreases substantially
to 44 %. Most misclassifications are predicted as mode transfers, which
consequently has a much lower precision than in the base setup.

The ranking of feature importance changes slightly compared to the base
setup (Figure 7.3(b)). Especially some cluster-based features (occurrences
per day, standard deviation of the duration, and the number of persons
knowing a location) gain importance.
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Table 8.6: Confusion Matrix: Best Run out of 100 for Two Different Fea-
ture Sets (Random Forest with 500 Trees).
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Base setup with 17 features. Overall accuracy 84.4 %.

Mode transfer 490 1 1 2 0 1 0 0 99.0

Home 5 374 4 1 2 1 0 0 96.6

Work / edu. 8 5 177 6 8 0 1 0 86.3

Tr
ut

h Shop. / service 13 3 3 124 19 2 1 2 74.3

Recreation 10 11 7 25 115 0 0 1 68.0

Pick-up / drop-off 6 3 1 14 4 19 0 1 39.6

Business 7 2 11 9 9 0 19 0 33.3

Other 4 1 0 19 13 1 0 7 20.0

Precision [%] 90.6 93.3 85.1 62.6 69.3 82.6 82.6 69.2

Reduced setup with 13 features, leaving out potentially hard to obtain features. Overall accuracy 79.8 %.

Mode transfer 479 3 0 9 4 0 0 0 96.8

Home 8 369 5 1 4 0 0 0 95.3

Work / edu. 10 8 177 1 7 1 1 0 86.3

Tr
ut

h Shop. / service 58 2 7 74 18 2 5 1 44.3

Recreation 17 6 5 19 121 0 0 1 71.6

Pick-up / drop-off 21 2 1 6 5 10 2 1 20.8

Business 14 1 9 3 8 0 22 0 38.0

Other 16 0 5 5 14 1 1 3 6.7

Precision [%] 76.9 94.4 84.7 62.7 66.9 71.4 71.0 50.0
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8.2.3 Performance of Location-Based Identification
So far, the classification has been done based on individual activities.
However, a lot of the approaches for trip purpose identification in the
literature rely only on the location of the activity, which corresponds more
to a location-based identification of trip purposes. To compare these two
approaches, the activity-based base setup is compared to a location-based
setup learning a random forest classifier on clustered data using the same
data source. This data source does not include land use data, which is
typically used in location-based approaches, but it could be added to both
classifiers if available. To learn the location-based classifier, the data have
to be aggregated, that is locations have to be defined, and for each location
the trip purpose has to be set, and features have to be computed. The
location is represented by the cluster of activities as described in Section
7.3. The trip purpose for this cluster is derived from its activities where trip
purpose is known. Most probably, not all activities are of the same purpose,
hence, the one that occurs most often is chosen. Naturally, all cluster-based
and person-based features are used, activity-based features on the other
hand cannot be computed for clusters. The exceptions are the distance to
work and home, as all activities in a cluster are per definition nearby and
therefore, distances to other locations are still valid.

The location-based classifier is trained on 75 % of all clusters and
classification is done for the remaining clusters. For the evaluation, all
activities in a cluster are assigned the purpose imputed for this cluster, in
order to compare accuracies of activity detection not location detection.
Figure 8.7 compares the results of the location-based setup to the activity-
based base setup for different cutoff distances. The influence of the cutoff

distance is much higher for location-based identification, which is sensible,
as almost all features are cluster dependent. Overall, the performance of the
location-based system is worse (mean accuracy at 100 m cutoff 72.3 %).

8.2.4 Classifier Performance for Different Persons
When generating an automatic travel diary for survey respondents, the
classifier is probably learned beforehand using a different data set or at
least data from previous respondents. To simulate this situation, a classifier
with all 17 features of the base setup is learned, but on a subset of persons
not on a subset of activities.

For this per person setup the mean accuracy achieved is 78.4 % (5th

110



8.2. Trip purpose

Figure 8.7: Accuracy of activity-based (a) and location-based (b) classifi-
cation using different cutoff distances (hierarchical clustering
with average distance).
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percentile: 74.3 % ; 95th percentile: 82.1 %). Thus, the mean is 4 %
lower than is the case for the activity-based base setup (mean: 82.3 %; 5th
percentile: 81.2 %; 95th percentile: 83.2 %), also the variation within the
100 runs is higher for person-based training sets. This can be explained,
if the variation of accuracies achieved for different persons is high. And
indeed, the mean accuracy computed per person was 78.1 %, the 5th and
95th percentile are 50 % and 100 % respectively and the standard deviation
is 16.6 %. One has to consider that, the quality of reporting for different
respondents is very different. For some respondents, only a few and for
others more than 100 valid activities were available, still the differences in
prediction accuracy are uncomfortably large. Therefore, personalisation
strategies are evaluated in the next two subsections.

8.2.5 Personalisation Using Person-Specific Input
Features

All personalisation results are presented as per person accuracies. For cross
validation, 10 different classifiers are learned for each person, that is all
other persons are randomly split into 10 groups, in each training set one of
these groups is omitted. To show the effect of person-specific input features
on the per person setup, a classifier is learned excluding all person-based
features as well as the distance to home and work location respectively
(full feature set see 17 features of base setup in Figure 7.3(a)). Results of
this run 1 are shown in Figure8.8. In run 2 the above mentioned distances
are included.

The mean of the accuracy of the 10 validation runs varies among partici-
pants between 25.3 % and 100 % with a median of the mean accuracies of
the classifier without person-based data of 71.1 %. Including the person-
specific features improves the results to 74.9 %. The per person standard
deviation of accuracy are very similar for all runs. For the per person setup
using all features the mean is around 2.3 % but goes up to 8.7 % for the
person with highest variation within the 10 runs.

It has to be considered that the number of reported days, the validity of
corrections and the trip purposes varies amongst participants. The split of
trip purposes has probably the biggest influence on the spread of accuracies.
As reconstruction of the diary is easier if a participant is e.g., only at home
and at work. This influence is also illustrated in Figure 8.9 which depicts
the mean accuracy per person versus the per person share of the three
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Figure 8.8: Distribution of mean accuracies per person for different feature
sets in trip purpose detection.
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best predicted purposes, that is: being home, working (or studying) and
changing the mode.

8.2.6 Personalisation Based On Corrected Data

For trip purpose detection 4 strategies to personalise classification based
on data corrected by participants are tested:
• Select best: selection of one classifier out of many based on perfor-

mance on a subset of a person’s data
• Group: group participants first and learn a different classifier for

each group
• Include person data: include some of the person’s data when learning

the classifier
• Overrule: overrule the classifier when the location is already known

All strategies are subsequently described in more detail, but it is shown in
Figure 8.11 that only inclusion of personal data improves predictions.

To ensure a fair comparison of the results of these strategies to the base
setup, the influence of the amount of the training data is shown in Figure
8.10. It is clearly shown that classification is better the more data is used.
The slope starts to flatten, therefore, the used data set is just about big
enough to get a realistic estimation of how well purposes are detectable.
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Figure 8.9: Mean accuracy of 10 runs for each person plotted against the
share of easiest detected trip purposes
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In the select best approach, for every person 10 random forests are
evaluated on a subset of the person’s data (selector data). The classifier
that performs best on the selector data is then used to produce the results
on the test data. The underlying hypothesis is, that some classifiers work
better for one person’s data than other classifiers and that this classifier is
consistently better on this person’s data. To create 10 different classifiers to
select from, each classifier is learned on different person-subsets consisting
of 100 persons. The selector data is fixed between the runs and consists of
two randomly picked days. The mean standard deviation of the 10 test runs
of the base setup with around 100 persons is 3.2 % therefore, there is some
potential to select a better classifier. But as shown in Figure 8.11 accuracies
are not increased. Furthermore, it was tested if only selecting weekdays
would yield better results, assuming they contain more information, but it
did not.

The idea behind grouping participants is that some of them have more
similar diaries than others, hence, a classifier built using similar persons
should be more successful. Three different criteria for grouping were tested.
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Figure 8.10: Median accuracy of the per person mean accuracy for different
number of persons in the training set
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First, participants are grouped based on all socio-demographic properties
using hierarchical clustering. Then, for this first approach, classifiers are
learned without the socio-demographic features. Second, participants are
split into three groups of the same size based on the mean duration of all
their activities. Finally, 86 participants were grouped as ’mostly using
car’, 35 as ’mostly using public transport or bike’ and 32 as ’using both’.
Neither of the groupings had any effect on the accuracies. In Figure 8.11,
the results of the groups based on activity duration are shown. At first it
looks like grouping even decreases accuracy, but it has to be considered
that only 50 persons are used per group to learn the classifier. Hence,
comparing it to the base classifier with 50 persons (left vertical line) shows
that the grouping just does not influence results.

Including personal data when learning the classifier is straight forward.
The person’s data is split into a test and a training set. The training set
consists of a given number of days that are randomly selected. As a part
of one persons’s data is not enough to learn a classifier, all other person’s
observations are added to the training set without special weighting. Results
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Figure 8.11: Distribution of mean accuracies per person for all strategies.
The vertical lines are the medians of the base runs with 50
(left) and 130 (right) persons respectively.
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are compared for 1 randomly selected day and 3 randomly selected days.
Whereas using 1 day does not improve classification, using 3 days increases
the median accuracy to 80.0 %. Besides the number of days to be selected
for training also the weights of the person’s data was varied but did not have
a relevant effect as shown previously for mode detection (Section 8.1.2).

To implement overruling each person’s data is also split into test and
training set. The classifier is learned on all training data (including the
person’s). But when classifying the test data, it is checked whether the
person’s training data includes an activity that was clustered into the same
location. If this is the case the random forest is overruled and trip purpose
is set to the one of the activity in the training set. If the training test set
contains several activities at the same location with different purposes the
purpose of the activity with the most similar duration is selected. Overall,
overruling performs worse than the random forest. In total, 36627 classifi-
cations were made, of those almost 50 % (17671) are overruled and 79 %
of those overruls were not necessary, 8 % were not helpful that is both the
overrule and the random forest predict different but wrong purposes and
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9 % of the overrules are counter-productive that is the random forest is
correct. Especially home and mode transfer points are falsely corrected.
Only 4 % (648) of the overrules are correct.
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Chapter 9

Conclusion
The original fuzzy rules approach for transport mode detection was devel-
oped further, by employing an optimisation algorithm, which considerably
improved the performance of the system. Compared to machine learning,
the advantage of rule-based systems is that they can easily be shared with
other research groups without having to share private GPS tracks. They
can be employed without having to collect any data in advance. But the
initial rules can be adapted using expert knowledge e.g. considering speed
limits, and importantly, as shown they can automatically be improved with
the evolutionary algorithm, as soon as data is available. The optimisation
algorithm could possibly be further developed as many parameters are
fixed, especially the rules themselves.

The fuzzy rule system performed well with 85 % overall accuracy. Ran-
dom forests performed slightly better with 88 % using more features but
also distinguishing between bus and tram. It is also shown, that good accu-
racies of almost 80 % can be reached if only accelerometer data is used. It
is recommended to at least use one of the three best performing features:
variance, standard deviation or second moment, these were calculated for
10 second windows, the median of those values over a stage was used for
classification.

Random forests perform well with an overall mean accuracy above 80 %
for trip purpose imputation on the data set at hand, which is relatively large
and very diverse with respect to respondents and purposes. It is shown
that quite a lot of data is necessary to achieve good results. For a classifier
learned on data of 20 persons, which corresponds to approximately 100
person days, the median accuracy is around 4 % lower than for a classifier
learned on 100 persons. Trip purposes that occurred more often in the
data set also had higher recall values. This might be because random
forests tend to favour the classes that appear more frequently in the training
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data if no good classifier can be built (Speed, 2003).But, the two most
frequent activities home as well as mode transfers were also expected to
give better recall values as they have more distinctive characteristics, e.g.,
mode transfers are typically very short and people tend to be home every
night, thus they are easier to classify.

It was shown in Figure 8.7 that the activity-based classifier performed bet-
ter than the location-based classifier. This, as well as the feature importance
measures given Figure 7.3 are an indication that the use of activity-based
features is important for good classification and therefore, these should not
be neglected. An important input feature, that we did not use in neither
of the two classifiers is land use data, which is usually associated with
location-based imputation. We argue that inclusion of this data would
improve both classifiers similarly. In the future, land use data should be
considered if available, but this can be challenging depending on the appli-
cation. For example if an application concerns different regions it is less
likely that common land use data is found, than for a survey with clearly
defined regional boundaries.

Considering applications where only GPS tracks and accelerometer
data and no personal information is available, one can assume to get
reasonable results with the approach presented in this part. On the one hand,
because person-specific features are not as important as those computed
for activities. On the other hand, concerning distance to the home and
work location, it is shown, that these activities can be derived with good
precision. Therefore, to impute a home or work coordinate, one could take
all GPS coordinates of a person that are part of a predicted activity and then
calculate the densest coordinate for those. A second classifier could then
be run, that uses the distance to home and work as input feature, which was
shown to be important (3.8 % increase of median accuracy).

For the most traditional application in travel surveys, it has to be con-
sidered that the variance of results for different persons is rather high for
both, trip purpose and mode detection. Therefore, when presenting survey
respondents with automatic diaries, some respondents will be much more
annoyed than others and the burden varies as well. In practice, when con-
ducting a GPS-based survey (Chapter 3) we also made the experience that
it was participant-dependent how well the daily schedule was recognised.
Hence, different personalisation strategies were tested.

The main conclusion concerning personalisation is, that it is worth
collecting annotated data from participant’s in a multi-day or even multi-
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week survey, as a median accuracy of 80.0 % is achieved if three days of
annotated personal data are included in the training set. This corresponds
to an increase in accuracy of 5.5 % compared to the base scenario. If the
processing of the collected data is done after the survey, this is straight
forward. For continuous processing during surveys, the classifier should
be updated whenever newly corrected data is available, which was done in
the PEACOX project (Chapter 4).

Interestingly, this strategy did not work for mode detection, but it was
shown that using the mode shares of participants as input feature the mean
classification accuracy is increased by 3 %. All other personalization
strategies tested did not have an effect on accuracies. Grouping partici-
pants seemed like a good idea, but in essence when thinking in rule-based
systems, this is just adding another rule at the beginning of the decision
process. This contradicts the idea of decision trees, where the best possible
split at any point is found automatically. Instead of grouping people ac-
cording to a new variable, probably the easiest and most successful way is
to add it to the feature set and make sure that it is not counter-productive.

The goal when selecting the best classifier out of many is that for each
person a random grouping is found that performs better than an average
classifier. However, first results were not promising. Maybe more classi-
fiers with higher diversity would be necessary, but to achieve that, more
training data is needed. A similar approach, that could be tested, is to use
subsets of activities instead of creating classifiers from a subset of persons.

To conclude, one week of position data is not enough to highly per-
sonalise trip purpose detection routines. Especially the variance between
participants is still very high and therefore, per person analysis of automat-
ically processed data is problematic.

For mode detection, another step in direction of learning would be to
impute the mode for a group of matched trips. Trip matching might be
especially interesting for more sparse data, where gaps could be filled with
knowledge from similar trips.
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Applications





Chapter 11 of Part III is based on the following paper:
− Montini, L., A. Horni, N. Rieser-Schüssler and K. W. Axhausen (2012)

Searching for parking in GPS data, paper presented at the 13th Inter-
national Conference on Travel Behaviour Research (IATBR), Toronto,
July 2012
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Chapter 10

Route and mode choice
models

10.1 Introduction

The goal of this chapter is to describe and model route choice for car, public
transport, cyclists and pedestrians observed in our multi-day multi-modal
GPS study of the Greater Zurich Area (see Chapter 3).

When working with revealed preference data and real networks one of
the problems is the huge number of possible path alternatives. Further,
these paths overlap and models have to deal with resulting similarities. Both
problems are analysed in Schüssler (2010). For choice set generation she
introduces the Breadth First Search on Link Elimination algorithm (BFS-
LE), which is used here, and compares it to the random walk (Frejinger
et al., 2009), a branch & bound algorithm (Prato and Bekhor, 2006) as well
as a stochastic choice set generation where link costs are randomised given
a probability distribution before each least cost path computation, similar
to (e.g., Ramming, 2002; Dugge, 2006; Prato and Bekhor, 2007; Bovy and
Fiorenzo-Catalano, 2007). To account for route overlaps she compared
different adjustment terms: two formulations of the C-logit model (Cascetta
et al., 1996), two path size models (Ben-Akiva and Bierlaire, 1999), which
is used here, as well as the path size correction term (Bovy et al., 2008)
and two trip part specific path size factors (Hoogendoorn-Lanser and Bovy,
2007). This last factor is used here for the public transport models, as
it performed best on the PEACOX trip planner data as shown in Fischer
(2015). Route choice models for car on Swiss data were estimated e.g. in
Bierlaire et al. (2006), and also the above mentioned comparisons were
based on car stages observed with the external GPS data set described in
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Section 5.1. This data set was also used to estimate bicycle route choice in
Menghini et al. (2010) using the Path Size Logit approach as was done by
Hood et al. (2011) and Broach et al. (2012). The same approach was also
successfully used recently for pedestrian route choice (Rodriguez et al.,
2015; Broach and Dill, 2015).

The remainder of this chapter is structured as follows. Section 10.2
briefly introduces the applied map-matching, modelling and choice set
generation methods. Following, results for car, public transport, bicycle
and pedestrian route choice models are presented. A combined mode and
route choice model completes the results section before concluding with
summary remarks.
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Figure 10.1: Map-matching walk stages: GPS points on roundabout,
weighting ensures that side-walk and crossing are chosen

10.2 Method

10.2.1 Map-matching and network-based variables

Matching the GPS points to a given network is done as described in
Schüssler and Axhausen (2009b), the implemented module is part of the
POSDAP (2012) framework. The map-matching routines were originally
developed for navigation networks. Networks used here on the other hand
are extracted from OSM and are spatially correct but therefore have many
small links to e.g. represent a curved street. Hence, some constraints
like number of points per link to get a valid match had to be loosened.
Further, for map-matching of walk stages links that are pedestrian only
were weighted slightly more, to ensure that people walked on side-walks
and not in the middle of the street or on the roundabout as illustrated in
Figure 10.1.

To ensure valid map-matching, the map-matched distance is compared
to the distance computed from the GPS points. Figure 10.2 shows the
comparison for car and pedestrian stages. Most distances are the same,
and if they do not correspond, the map-matched distance is lower than the
GPS distance, which is preferable, as invalid coordinates can cause high
deviations and it shows that no detours are generated due to missing links.

Routes are enriched with information on traffic signals and crossings
that were extracted from OSM. Turn information is calculated for each
route alternative as follows. A U-turn is easily identified if the link back to
the origin node is chosen. Otherwise a node is identified as crossroad if
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Figure 10.2: Map-matched distance compared to GPS distance

(a) Pedestrian

(b) Car
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more than one outgoing link exists not counting the link back. To define if
the chosen outlink is a left or right turn, first a straight link is defined. An
outgoing link that is on the same OSM way (which is usually a named road)
as the incoming link of the route is chosen as going straight. If there is no
link on the same OSM way the link closest to an 180° angle (minimum
135°, maximum 225°) is chosen to be the straight link. A right turn is
added to the route if the outgoing link is on the right of the incoming and
straight link, otherwise a left turn is counted.

10.2.2 Route choice model

For route choice modelling the path size logit formulated by Ben-Akiva
and Bierlaire (1999) is used, a multinomial logit (MNL) model (McFadden,
1974) with the path size (PS) as adjustment term to correct for overlapping
routes. The MNL model is a discrete choice model where utility U is the
sum of a deterministic part V and an identically and independently (i.i.d.)
Gumbel distributed error term ε , given this definition the probability of
alternative i being chosen out of the choice set C is:

P(i |C) =
eVi∑
j eVj

(10.1)

The path size is given in Equation (10.2), it is 1 if a path does not overlap
with any other in the choice set and it is very small if there is a lot of
overlap. The general form of the deterministic part of the utility function is
given in Equation (10.3), the path size is either transformed logarithmically
such that it is very negative for very overlapping routes and 0 for routes
without overlap or more generally a box cox transformation is applied.

PSroute,set =
∑

link∈route

( lengthlink

lengthroute

) 1
# routes in set via link

(10.2)

V =βTT ∗ travel time + βRT ∗ proportion road type+

βELEV ∗ elevation measure + βPS ∗ ln(path size)
(10.3)

Socio-demographic attributes as well as the available attitude scores
could be introduced into the model via interaction terms. As it is not straight
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forward with which attributes especially attitudes should be interacted,
alternatively a latent class approach is chosen. The idea is, that different
behaviour is captured in Q classes, and for each class different parameters
are estimated. Here, class membership is based on person attributes as
indicated in Equation (10.4).

Vq = βCONST ∗ 1 + βSD ∗ socio demographic + βSC ∗ scale score (10.4)

The probability of an alternative being chosen depends on the degree
of class membership. If Q classes should be estimated, the sum of class
membership probabilities has to be 1, therefore, Q − 1 membership models
and for each class a behavioural model has to be specified. The class
membership models are also MNL models, the probability of being in a
given class is hence given in Equation (10.1), with i being a class and C the
set of all classes. Finally, the choice model is a discrete mixture of logit,
the probability of alternative i being chosen is:

P(i |C) =

Q∑
q=1

P(i |Class q) ∗ P(i |Model q) (10.5)

For model estimation the python implementation of BIOGEME version
2.3 was used (Bierlaire, 2003). To correct for panel effects, the loglike-
lihood in all models is defined as sum of the conditional probabilities of
a person, and only robust error measures computed with the sandwich
estimator are reported (Daly and Hess, 2011).

10.2.3 Choice set generation
For car, bike and walk stages the Breadth First Search on Link Elimination
algorithm (BFS-LE) as described in Rieser-Schüssler et al. (2012a) is used
to generate route alternatives. The general working of the algorithm is as
follows. Given a cost function the shortest path of the network is computed.
To generate the next alternative one link of this shortest path is eliminated
from the network, then the shortest path on the resulting subnetwork is
computed. The procedure is repeated until the desired number of paths
or all possible paths are generated, or until a timeout is reached. This
algorithm was shown to be computationally very efficient while as well
producing relevant routes, e.g. for bicycle routes in Halldórsdóttir et al.
(2014).
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Most important for the work with high resolution OSM networks is
the performance optimisation of the BFS-LE implementation, where a
topologically equivalent network is created before choice set generation.
That is, vertices that are not a junction, intersection or a dead-end are
removed and links are joined per direction. For the car network this means
instead of 2’363’307 links 499’928 segments are processed.

For public transport the network is much more sparse instead schedules
have to be considered when generating alternatives. Two of the approaches
described in Rieser-Schüssler et al. (2014) are used here: the basic and
the via point choice set generation. For the basic version connections
are generated for all combinations of start and end stops that are within
acceptable walking distance around origin and destination. The via point
choice set generation further acknowledges that some stops provide well
known transfer opportunities, also to other stops. A good example is
the main station. In the case of Zurich, there are several tram and bus
stops that all serve the station, all these are combined into a transfer set.
When generating alternatives, additionally to selecting start and end stops,
potential transfer sets are deterministically defined, and a subset is drawn
randomly. Routing is then also done via the selected transfer sets.

For the following models up to 200 alternatives were generated for
car routes and up to 100 for bike and walk stages. Additionally, the
chosen path was added if not generated by the algorithm. These choice
sets were reduced using similarity distribution-based reduction described
in Schüssler and Axhausen (2009a). That is, as a similarity measure
the path size is computed for the full choice set. Then path size bins are
defined, and alternatives added such that each bin contains the same amount
of alternatives if possible, otherwise they are spread uniformly over the
remaining bins. For public transport all alternatives are generated given the
run parameters as defined in Rieser-Schüssler et al. (2014).
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10.3 Results

For model estimation some observations are excluded: Car stages where
the map-matched distance is more than 2 kilometers longer or 1.5 times the
GPS recorded distance are excluded. Bike and walk trips are removed if
they are roundtrips or if the chosen route is more than 2.5 times the shortest
route, assuming that these are sports trips that can not be explained by
the available explanatory variables. Further, very short bike trips below
500 meters are removed as well as walk trips with an average speed above
5 m/s. For the mode choice experiment access and egress walk stages are
not considered either, as these are part of the public transport connections.

10.3.1 Car route choice model

For car routes, following models are estimated:
1. A simplified model to determine choice set size.
2. Model 1 with road type specific free-flow travel times and time

proportions.
3. Model 2 adding turns and traffic lights to Model 1.
4. Model 3 replacing travel times per road type of Model 2 by the

logarithm of free-flow travel time.
5. Finally, Model 3 split by trip purposes (work, leisure, remaining)

The influence of the choice set size on the parameter estimates is shown
in Table 10.1 given the most simple model considering all types of input
features available. That is the travel time, the sum of turns and traffic lights
as well as the average speed, which is a rough indicator for the road types,
as these are to a great extent distinguishable by their speed limits. To ease
comparison, results are presented as values scaled to the time parameter of
the choice set with 80 alternatives. Parameter estimates start to stabilise
with 60 alternatives in the choice set. The path size parameter is the least
stable, it even changes sign at a choice set size of 60 and is constantly
increasing with choice set size.

For the following car route models a choice set size of 80 is used.
Parameter estimates of three models are given in Table 10.2.

Travel times per road type, the time proportions on these road types as
well as path size correction factor are the explanatory variables of Model
1, similar variables are used in Bierlaire et al. (2006) and Schüssler and
Axhausen (2009a), two models estimated on Swiss data (different datasets).
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Travel time parameters have the expected sign, and time on residential
roads is least attractive. The two before mentioned models also value small
and local roads respectively least, for these models also the proportion of
those is most negative. Here small roads are represented by the road types
residential and track, where proportions of track is the most negative, but
the parameter for residential road is not as negative as e.g. motorways. In
Models 2 and 3, the residential road proportion parameter even becomes
positive, but values are not significant. Adding turn and traffic light counts
(Model 2), seems to explain the negative valuation of residential roads
between Model 1 and 2. Adding this information significantly improves
the model fit from 0.161 to 0.241. Left turns are perceived worse than right
turns, and both are more negative than traffic lights.

The best model fit of 0.324 is obtained with Model 3 where the free-flow
travel times per road type are replaced by the natural logarithm of total
travel time. The same difference in travel time for short trip leads to bigger
difference in utility as for a long trip, which is sensible.

Model 3 is split into three models for work, leisure and remaining trips.
Parameter estimates are given in Table 10.3. For work trips the time
parameter as well as the left turn and traffic light parameters are lower than
for the other two models, it is sensible that these often recurring trips are
more optimised than leisure trips. The proportion of motorways on the
other hand is more negative and the proportion of track less negative, which
is unexpected.
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Table 10.1: Scaled parameter values of car route MNL model for different
choice set sizes

Size Scale Time1

[min]

Turns
and
lights2

[/km]

Speed3

[km/h]
ln(PS4) ρ̄2

10 1.794 -1.15 -1.18 -0.080 -1.07 0.30

20 1.363 -1.15 -1.18 -0.055 -0.57 0.22

40 1.106 -1.15 -1.13 -0.039 -0.15 0.17

60 1.036 -1.15 -1.12 -0.034 * 0.04 0.15

80 1 -1.15 -1.12 -0.030 0.15 0.14

100 0.991 -1.15 -1.13 -0.029 0.23 0.13

120 0.975 -1.15 -1.13 -0.028 0.26 0.13

140 0.975 -1.15 -1.13 -0.028 0.30 0.13

all 0.958 -1.15 -1.13 -0.026 0.33 0.13

1 free flow travel time
2 sum of traffic lights, left and right turns
3 average speed (distance / free flow travel time)
4 path size of the unreduced choice set based on link travel times

* value not significant on a 95-% level
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Table 10.2: Car routes

Model 1 Model 2 Model 3

ln(free-flow travel time [min]) - - -7.51
Robust std err | Robust t-test - - - - 0.681 -11.02

FF time motorway / trunk [min] -1.07 -0.985 -
Robust std err | Robust t-test 0.173 -6.2 0.164 -5.99

FF time extra-urban [min] -0.869 -0.795 -
Robust std err | Robust t-test 0.163 -5.32 0.154 -5.16

FF time urban main [min] -1.01 -0.863 -
Robust std err | Robust t-test 0.122 -8.29 0.113 -7.66

FF time track / other [min] -1.01 -1.07 -
Robust std err | Robust t-test 0.211 -4.77 0.214 -4.97

FF time residential [min] -1.3 -1.16 -
Robust std err | Robust t-test 0.196 -6.65 0.166 -6.95

T(prop. motorway) -2.31 -2.34 -2.47
Robust std err | Robust t-test 0.797 -2.90 0.785 -2.99 0.418 -5.91

T(prop. extra urban) -3.10 -3.11 -2.54
Robust std err | Robust t-test 0.869 -3.57 0.774 -4.01 0.720 -3.53

T(prop. urban main) 0 (fixed) 0 (fixed) 0 (fixed)
T(prop. residential) -1.90 0.727 * 0.460 *
Robust std err | Robust t-test 0.562 -3.38 0.552 1.32 0.409 1.12

T(prop. track / other) -6.80 -3.9 -4.29
Robust std err | Robust t-test 0.760 -8.96 0.724 -5.39 0.735 -5.84
√

left turns / km - -2.53 -2.74
Robust std err | Robust t-test - - 0.135 -18.76 0.202 -13.53√

right turns / km - -2.32 -2.6
Robust std err | Robust t-test - - 0.139 -16.76 0.195 -13.3√

traffic lights / km - -1.23 -1.29
Robust std err | Robust t-test - - 0.238 -5.15 0.281 -4.58

ln(path size) 0.36 0.227 0.36
Robust std err | Robust t-test 0.0565 6.36 0.0552 4.1 0.0625 5.75

Init log-likelihood L(β0) -8950.6 -8950.6 -8950.6
Final log-likelihood L( β̂) -7498.172 -6781.998 -6041.941
ρ̄2 0.161 0.241 0.324

T(): arcus sinus transformation ỹ = arcsin(
√
y)

* value not significant on a 95-% level
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Table 10.3: Car route choice models for different trip purposes based on
Model 3

Work Leisure Remaining

ln(free-flow travel time [min]) -10.0 -7.39 -8.69
Robust std err | Robust t-test 1.29 -7.74 1.55 -4.78 0.615 -14.12

T(prop. motorway) -3.00 -2.44 -2.33
Robust std err | Robust t-test 0.844 -3.56 1.03 -2.37 0.425 -5.48

T(prop. extra urban) -3.76 -0.353 * -2.72
Robust std err | Robust t-test 1.56 -2.41 0.991 -0.360 0.726 -3.75

T(prop. urban main) 0 (fixed) 0 (fixed) 0 (fixed)
T(prop. residential) -0.203 * -0.023 * 0.0545 *
Robust std err | Robust t-test 0.796 -0.25 0.720 -0.030 0.504 0.11

T(prop. track / other) -2.55 -6.72 -5.18
Robust std err | Robust t-test 1.11 -2.29 1.07 -6.29 0.638 -8.11
√

left turns / km -1.82 -1.13 -1.44
Robust std err | Robust t-test 0.319 -5.71 0.290 -3.88 0.153 -9.44√

right turns / km -1.10 -1.1 -1.4
Robust std err | Robust t-test 0.340 -3.22 0.209 -5.30 0.149 -9.3√

traffic lights / km -1.16 -0.236 (*) -1.09
Robust std err | Robust t-test 0.442 -2.63 0.563 -0.420 0.201 -5.42

ln(path size) 0.639 0.274 0.404
Robust std err | Robust t-test 0.110 5.79 0.137 2 0.0668 6.05

Sample size 537 419 1111
Init log-likelihood L(β0) -2335.19 -1815.59 -4799.88
Final log-likelihood L( β̂) -1621.79 -1314.75 -3159.73
ρ̄2 0.302 0.271 0.340

T(): arcus sinus transformation ỹ = arcsin(
√
y)

* value not significant on a 95-% level
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10.3.2 Public transport route choice model
For public transport, model results are presented in Table 10.4 for the basic
as well as the via choice set generation. Tendencies of the two models
are the same. With the exception of the very small and not significant
but positive access travel time parameter, all parameters have appropriate
signs. Positive transfer time parameter makes sense if tight connections
are perceived negative, furthermore, the parameter is very small. The most
important parameters are number of transfers, in-vehicle travel time as
well as the share of tram stages. One transfer is as bad as 11 minutes of
in-vehicle travel time, respectively 10 minutes for the via model. In order
to have only tram stages instead of only bus stages, almost one transfer is
acceptable.
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Table 10.4: Public transport route choice models for different choice set
methods

Basic CSG VIA CSG

Access travel time [min] 0.00477 * 0.000975 *
Robust std err | Robust t-test 0.00925 0.52 0.00752 0.13

Egress travel time [min] -0.00487 -0.00410
Robust std err | Robust t-test 0.00224 -2.18 0.00204 -2.01

In-vehicle travel time [min] -0.238 -0.229
Robust std err | Robust t-test 0.0577 -4.13 0.0516 -4.45

Transfer time [min] 0.00456 * 0.00345 *
Robust std err | Robust t-test 0.00250 1.82 0.00198 1.74

Number of transfers -2.13 -2.30
Robust std err | Robust t-test 0.252 -8.47 0.226 -10.17

Prop. bus stages [-] 0 (fixed) 0 (fixed)
Prop. rail stages [-] -0.451 * -0.339 *
Robust std err | Robust t-test 0.556 -0.81 0.597 -0.57

Prop. tram stages [-] 1.84 2.02
Robust std err | Robust t-test 0.325 5.67 0.372 5.43

Path size (stage times) 1.73 1.37
Robust std err | Robust t-test 0.513 3.38 0.474 2.89

Sample size 268 273
Null log-likelihood L(β0) -667.780 -800.181
Final log-likelihood L( β̂) -299.889 -317.795
ρ̄2 0.539 0.593

* value not significant on a 95-% level
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10.3.3 Bicycle and pedestrian route choice
For bicycle the following models are estimated:

1. A basic bicycle model, considering bike path, maximum rise and
traffic lights to determine choice set size.

2. A latent class model, considering gender and attitudinal scores.
3. A MNL model with gender-specific parameter estimates.

Similarly, for pedestrians the models specified are:
1. A basic model, considering distance, maximum rise and maximum

fall.
2. A latent class model, considering gender and attitudinal scores.
3. A MNL model for access and egress stages and one for all other

walks.
In Menghini et al. (2010) the Swiss GPS data set described in Section 5.1

was used to estimate a bicycle route choice model for Zurich. The basic
Model 2 of that paper is estimated here using the new data (Chapter 3).
Results for several reduced choice set sizes are given in Table 10.5. For
the different choice set sizes, estimates are consistent except for the path
size parameter which decreases with growing choice set. For subsequent
analysis a choice set size of 40 is chosen. Comparison with the above
mentioned model, is more difficult as parameter estimates are very different.
On the one hand maximum rise, traffic lights as well as the interaction of
maximum rise and distance are not significant for choice set sizes bigger
than 40. And contrary to expectations the proportion of bike paths is highly
negative. Even though the very negatively perceived roads of type track
were excluded from bike paths for this analysis. In Figure 5.2 they are
included as safe roads.

A positive bike path parameter is only estimated for class 1 of the latent
class model presented in Table 10.6. On the other hand in all models the
proportion of residential roads is positive. Suggesting that participants
perceive those as safer than main roads with a painted bike lane.

As gender is one of the significant parameters of the class membership
model, for comparison an MNL model is estimated where parameters are
distinguished by gender (Table 10.6). The model fit is much higher for the
latent class model therefore capturing the data better.

First, it has to be noted that degree of membership for class 1 is lower
than that for class 2 in the bike model as depicted in Figure 10.3. The
Figure distinguishes participants for whom a bike stage was observed, and
therefore influenced the membership model. They do not differ from the
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rest of the participants. The significant variables for class membership
are gender, as well as variation score 1 mainly covering interest in daily
routine variation and variation score 2 that emphasises spontaneity the risk
score 1 covering health related risks was significant in the previous step
and therefore kept in the model. Other variables that were tested that were
not significant are: age, public transport subscription, number of bikes,
as well as the remaining attitude scores. Female participants that are not
that interested in varying their daily routine but are still spontaneous are
most influenced by the class 1 model. In the class 1 model the distance
parameter is extremely negative, the trade off with proportion of residential
road is -1.3 m/%, for class 2 it is -47.4 m/%, for male -36.4 m/% and for
women -7.1 m/%.

Table 10.5: Parameter values of bicycle route MNL model for different
choice set sizes

Size Dist.
[km]

Prop.
bike
path
[-]

Max
rise [-]

Dist.
* max
rise

Nr.
traffic
lights

βPS
1 λPS

1 ρ̄2

10 -1.70 -6.99 -8.87 -1 0.176 * 9.83 2.45 0.46

20 -1.56 -7.29 -15.1 0.328 * 0.202 * 12.2 1.92 0.46

40 -1.93 -7.86 -11.1 * -0.794 * 0.208 * 8.75 1.21 0.49

60 -1.92 -8.02 -11.4 * -0.769 * 0.200 * 7.13 0.95 0.50

80 -1.78 -8.03 -11.6 * -0.827 * 0.188 * 5.12 0.68 0.50

1 Path size box cox transformed: βPS
PSλPS −1
λPS

* value not significant on a 95-% level

For pedestrian route choice the influence of choice set size is analysed
in Table 10.7. Values are scaled by the distance parameter. Again it is path
size that changes sign as for the car model. Other than that, parameters are
similar.

As for cycling a latent class model as well as a MNL model are estimated.
The MNL model distinguishes between access/egress stages and all others.
Model fit of the latent class model is again substantially better even though
the degree of membership for class 1 is rather low, that is between 0 and
0.4 and is less spread than was the case for the bicycle model (Figure 10.3).
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10.3. Results

Figure 10.3: Class membership probabilites for the bike as well as pedes-
trian latent class models
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Membership of class 1 is highest for those who are in agreement with CO2
reduction measures (Env. score 1). Apparently they do prefer flat routes
even if more turns are necessary. Class 1 seems to capture going for a walk
while class 2 is just optimising distance.

In the model for access and egress stages distance is valued more neg-
ative then for other walks, this is as expected. The only other significant
parameter is number of turns / km, which has the wrong sign but it is
very small. For the remaining walks also maximum rise and fall as well
as proportion of residential roads are significant and have the appropriate
sign.
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Table 10.6: Bicycle route choice model (choice set size 40)

LC class 1 LC class 2 MNL (male) MNL (female)

Distance [km] -41.6 -1.41 -1.18 -5.74
Robust std err | Robust t-test 13.0 -3.19 0.473 -2.98 0.460 -2.56 0.744 -7.71

Average rise [-] -4.41 -0.924 * -1.74 -1.26
Robust std err | Robust t-test 1.74 -2.53 0.521 -1.78 0.647 -2.69 0.373 -3.38

Prop. flat [-] - - 0.232 * 2.35
Robust std err | Robust t-test 0.508 0.46 0.350 6.72

Prop. bike path [-] 8.64 -8.52 -7.84 -4.52
Robust std err | Robust t-test 3.42 2.53 2.10 -4.05 1.62 -4.83 1.98 -2.28

Prop. residential [-] 5.38 6.69 4.29 4.05
Robust std err | Robust t-test 2.33 2.31 1.31 5.12 0.880 4.88 0.909 4.46

Nr. crossings / km 0.581 * 0.500 -0.356 -0.256 *
Robust std err | Robust t-test 0.429 1.35 0.153 3.27 0.116 3.07 0.229 -1.12

Nr. left turns / km - - -0.188 * -0.253 *
Robust std err | Robust t-test 0.116 -1.61 0.135 -1.88

Nr. right turns / km - - -0.101 * -0.428
Robust std err | Robust t-test 0.0816 -1.24 0.176 -2.43

ln(path size) 1.42 * 4.24 1.33 1.25
Robust std err | Robust t-test 0.784 1.90 0.411 10.34 0.199 6.68 0.240 5.21

Membership model

Constant -1.00
Robust std err | Robust t-test 0.407 -2.46

Male -1.14
Robust std err | Robust t-test 0.410 -2.78

Variation score 1 -0.695
Robust std err | Robust t-test 0.244 -2.84

Variation score 2 0.417
Robust std err | Robust t-test 0.168 2.49

Risk score 1 0.0799 *
Robust std err | Robust t-test 0.0589 1.36

Sample size 411 411
L(β0) -1231.195 -1513.422
L( β̂) -329.187 -697.357
ρ̄2 0.719 0.527

* value not significant on a 95-% level
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Table 10.7: Scaled parameter values of pedestrian route MNL model for
different choice set sizes

Size Scale Dist.
[km]

Max
rise [-]

Max
fall [-] ln(PS) ρ̄2

10 1.266 -6.18 -2.86 -3.62 -2.115 0.27

20 1.077 -6.18 -3.68 -3.96 -0.978 * 0.20

40 1 -6.18 -3.80 -3.94 2.280 0.12

60 1.053 -6.18 -4.93 -3.90 4.106 0.10

80 1.140 -6.18 -5.35 -3.55 5.154 0.09

* value not significant on a 95-% level
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Table 10.8: Pedestrian route choice model (choice set size 20)

LC class 1 LC class 2
MNL
(Access/
Egress)

MNL
(Rest)

Distance [km] 0.151 * -13.7 -7.59 -3.67
Robust std err | Robust t-test 0.357 0.42 1.28 -10.75 1.13 -6.7 1.42 -2.59

Rise max [-] -11.7 -0.0924 * -0.0455 * -0.0449
Robust std err | Robust t-test 3.42 -3.42 0.967 -0.10 0.0263 -1.73 0.0228 -1.97

Fall max [-] -6.71 -0.749 * -0.0338 * -0.0445
Robust std err | Robust t-test 3.03 -2.21 1.92 -0.39 0.0216 -1.56 0.0191 -2.33

Prop. residential [-] 1.10 * 0.405 * 0.0815 * 1.25
Robust std err | Robust t-test 0.867 1.27 0.408 0.99 0.392 0.21 0.508 2.46

Nr. crossings / km 1.52 * 0.881 * 0.0264 * 0.0544 *
Robust std err | Robust t-test 1.49 1.02 0.570 1.55 0.0257 1.03 0.0363 1.5

Nr. turns / km 0.382 -0.196 0.0796 -0.0329 *
Robust std err | Robust t-test 0.0603 6.34 0.0479 -4.09 0.0357 2.23 0.0478 -0.69

ln(path size) 2.01 -0.778 -0.202 * -2.33
Robust std err | Robust t-test 0.359 5.59 0.192 -4.06 0.710 -0.28 0.978 -2.38

Membership model

Constant -1.3
Robust std err | Robust t-test 0.199 -6.55

Env. score 1 0.322
Robust std err | Robust t-test 0.125 2.58

Env. score 2 -0.156 *
Robust std err | Robust t-test 0.0924 -1.69

Env. score 4 -0.119 *
Robust std err | Robust t-test 0.131 -0.90

Male -0.178 *
Robust std err | Robust t-test 0.253 -0.70

Variation score 3 -0.00956 *
Robust std err | Robust t-test 0.0530 -0.18

Risk score 1 0.0332 *
Robust std err | Robust t-test 0.0318 1.04

Sample size 945 590 355
L(β0) -2823.925 -1763.116 -1060.809
L( β̂) -1753.080 -1368.156 -876.736
ρ̄2 0.372 0.220 0.167

* value not significant on a 95-% level
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10.3.4 Combined mode and route choice model
Parameter estimates for the combined mode and route choice model are
given in Table 10.9 and 10.10. The influence of person-based variables
is fixed for car. The alternative specific constants for the other modes are
highly significant and very negative. Having no car or only seldom access
to one has a positive effect on the other modes, as expected. Having a pt
subscription on the other hand has no significant effect. Having a bike has
a significant positive effect on choosing it. Of the attitude scores only being
in agreement with CO2 reduction measures (Env. score 1) has a significant
positive effect on choosing to cycle or walk. The other attitude scores,
gender, age, income, household size as well as trip purpose were tested but
not significant.

The route choice parameters for car, bike and walk are similar to the
separate model estimations. For public transport the estimates are a bit
problematic, as number of transfers is very negative and in-vehicle travel
time is not significant.
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Table 10.9: Mode and route choice model (6 alternatives per mode)

Car PT Bike Walk

ASC 0 (fixed) -8.39 -8.21 -3.86
0.832 -10.09 0.887 -9.26 0.84 -4.59

No car or rarely 0 (fixed) 3.67 3.01 3.11
0.628 5.84 0.694 4.34 0.702 4.43

PT subscription 0 (fixed) 0.931 * -0.202 * -0.235 *
0.691 1.35 0.774 -0.26 0.539 -0.44

Nr. bikes > 0 0 (fixed) -0.195 * 1.94 -0.507 *
0.448 -0.44 0.761 2.55 0.528 -0.96

Env. 1 score 0 (fixed) 0.0755 * 0.489 0.305
0.117 0.65 0.176 2.78 0.103 2.97

Risk 1 score 0 (fixed) -0.0852 * 0.102 * -0.017 *
0.0454 -1.88 0.0813 1.25 0.0477 -0.36

Var. 3 score 0 (fixed) -0.00865 * -0.189 * -0.0652 *
0.0843 -0.1 0.11 -1.71 0.0937 -0.7

Access travel time [min] -0.00634 *
0.00463 -1.37

Egress travel time [min] -0.119
0.0355 -3.36

In vehicle travel time [min] -0.0119 *
0.0194 -0.61

Transfer time [min] 0.0147
0.00363 4.06

Number of transfers -42.3
3.54 -11.97

Share rail stages [-] -0.579 *
0.355 -1.63

Share bus stages [-] 0 (fixed)
Share tram stages [-] 2.28

0.364 6.26
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Table 10.10: Mode and route choice model (6 alternatives per mode) (cont.)

Car PT Bike Walk

ln(f-f time [min]) -3.08
0.312 -9.89

Distance [km] -0.246 -2.63
0.0794 -3.1 0.437 -6.01

Prop. motorway [-] -1.99
0.41 -4.86

Prop. extra urban [-] -1.66
0.609 -2.73

Prop. residential [-] 0.868 * 3.01 1.71
0.509 1.7 0.613 4.9 0.509 3.35

Prop. track / other [-] -4.15
1.09 -3.82

Prop. safe bike paths [-] -3.05
0.684 -4.46

Maximum rise [-] -11.8 -2.58
2.42 -4.89 1.07 -2.4

Maximum fall [-] -1.1 *
1.26 -0.87

Nr. turns / km 0.00213 0.0276 *
0.000649 3.28 0.0259 1.07

Nr. left turns / km -0.949
0.122 -7.8

Nr. right turns / km -0.827
0.118 -7.03

Nr. traffic lights / km -0.793
0.105 -7.57

Sample size 2861
L(β0) -8245.42
L( β̂) -4995.834
ρ̄2 0.389
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10.4 Conclusion
The latent class models for cycling as well as walking outperform the MNL
models, with relatively high ρ̄2 values of 0.719 and 0.372 respectively.
Significant attitude scores were found for both class membership models.
Class membership probabilities for the participants show that they can
not be distinguished into 2 clear groups. Therefore, determining the class
first selecting the one with highest probability and then applying this class
model would not yield good results. In the case of the pedestrian models
all participants would belong to class 2.

Model fit of the public transport connection choice models are also good
and parameter estimates have the appropriate signs. The most important
variables are number of transfers, in-vehicle time as well as the proportion
of tram stages. Values estimated as part of the combined mode and route
choice model on the other hand seem to be extreme.

For the car route choice model, number of turns and traffic signals proved
to be a very important variables. Also logarithmic transformation of free-
flow travel time improved the model significantly, reducing the number of
variables at the same time.

All significant person-based variables in the combined mode choice
model have the appropriate sign. The route choice parameters have the
same tendencies and therefore also the same problems as the separate
models. Comparing bike and walk, distance is punished more for walks
and maximum rise more for bikes, which is sensible.
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Searching for parking in
GPS data

11.1 Introduction and related work

Parking search is regarded as a significant contributor to congestion in city
centres (see e.g., Shoup, 2005). Understanding, modelling and managing
it, e.g., with parking policies, are thus important tasks (see e.g., Marsden,
2006; Topp, 1991; Feeney, 1989; Baier et al., 2000; Glazer and Niskanen,
1992; Miller and Everett, 1982; van der Waerden et al., 2009). However,
parking search behaviour is complex as it depends on traffic circumstances,
trip purpose, individual strategies, the driver’s knowledge of the area and
more. Hence, search start is latent and even the driver may not know it
exactly. To survey and quantify search behaviour is thus difficult (Kipke,
1993; Arnott and Inci, 2005), especially time and distances reported in
interviews are biased as estimations are probably influenced by traffic
conditions, trip purpose but also the frustration level of drivers.

Survey approaches used so far were laboratory experiments (e.g., Bon-
sall et al., 1998), stated preference surveys (Axhausen and Polak, 1991;
Weis et al., 2011; Golias et al., 2002; van der Waerden et al., 2006, 1993;
Widmer and Vrtic, 2004) or field observations such as riding with a searcher
(Laurier, 2005) or following a car until it is parked (Wright and Orram,
1976). Modeling approaches range from discrete choice models, numerical
models, Possibility Theory to simulations (Gillen, 1977, 1978; Hensher
and King, 2001; Arnott et al., 1991; Arnott and Rowse, 1999; Anderson
and de Palma, 2004; Benenson et al., 2008; Gallo et al., 2011; Thompson
and Richardson, 1998; Dieussaert et al., 2009; Kaplan and Bekhor, 2011;
Axhausen, 1988; Young, 1986; Young and Thompson, 1987; Maley and
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Weinberger, 2011; van der Waerden et al., 1998; Young and Weng, 2005;
van der Waerden et al., 2002).

A very rich data source to complement these surveys are GPS data. It
is mainly collected to get more complete and accurate travel diaries (e.g.,
Yalamanchili et al., 1999; Draijer et al., 2000; Wolf et al., 2001a; de Jong
and Mensonides, 2003; Auld et al., 2009; Marchal et al., 2011; Oliveira
et al., 2011b; Rieser-Schüssler et al., 2011). Lately, GPS data are also used
to observe more specific travel behaviour; e.g. Moiseeva and Timmermans
(2010) focus on activity patterns in retail areas. The work most related
to this Chapter is Kaplan and Bekhor (2011) who investigate the joint
decision of parking type and parking-search route. To observe the actual
route taken they intend to use GPS data collected in Tel Aviv. Using GPS
data to observe parking search data has the advantage over interviews and
questionnaires that time and distance calculations are objective and not
estimated. Very recently, Karlin-Resnick et al. (2016) present results of a
controlled GPS sample where 70 tracks were recorded and the test drivers
stated explicitly when they started searching.

This chapter’s goals are to develop a parking search analysis module for
GPS travel data and to provide a descriptive analysis of the parking search
found in the Swiss GPS data for the cities Zurich and Geneva (see Section
11.2.1) by applying this module.

Parking search traffic is a widely discussed and very political issue also
in Zurich. Planungsbüro Jud (2010) shows that on Saturdays in the inner
city of Zurich parking occupancy is around 97 %. Kipke (1993) indicates
that searching for parking gets potentially a problem for occupancies higher
than 95 %. Therefore, it is reasonable to assume that parking search can be
problematic in Zurich.

The latent but very important search starting point is not known in GPS
data. The distinction between the search and the rest of the journey is
therefore not straight-forward, different from, e.g., stated preference exper-
iments. Thus, as detailed in Section 11.2.2 a spatial proxy is developed,
and indications for the start point are given.

The descriptive analysis provides numbers for driving times and dis-
tances in a certain area around the parking location. Furthermore, walking
times and distances from parking to activity location are given. Route
choice in relation to shortest path and loops are analyzed. An initial analy-
sis of the parking type, that is on-street or garage parking, is included.
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The results of this analysis could be used for calibration of parking
simulations as e.g. described in Horni et al. (2012).

The remainder of the chapter is structured as follows. Section 11.2
describes definitions and methods used. Section 11.3 discuss the findings
and in 11.4 conclusions and future work are described.

153



Chapter 11. Searching for parking in GPS data

11.2 Method

11.2.1 GPS data and processing

For this analysis, the GPS data set introduced in Chapter 5 is used. To
analyse parking search relevant characteristics, the two subsets of residents
of Zurich and of Geneva are used. The first is concentrated on Northeast-
Switzerland and the other one on West-Switzerland (Figures 11.1(a) and
11.1(c)). Centre areas for Zurich and Geneva are defined with a diameter
of 3 kilometers as shown in Figures 11.1(b) and 11.1(d). Further analysis
is focused on Zurich and its twelve districts, the location of those is de-
picted in Figure 11.2 and some descriptors are summarised in Table 11.1.
Additionally, GPS locations of public on-street parking spaces and garages
are available for the city of Zurich.

Using person-based as opposed to car-based GPS data complicates the
post-processing, but it has the advantage that not only the car stages but
also the subsequent walking stages or activities can be detected. For the
processing the open-source POSDAP (2012) routines developed at the
institute are used. In short, the GPS traces are first cleaned and smoothed to
ensure reasonable speed and acceleration calculations. Later, the traces are
split into stages and stop points, that is mode transfer points and activities.
Then, using a fuzzy logic approach, all stages are assigned a mode.

For the parking search analysis only car stages longer than 10 minutes
are considered. This decreases the probability of erratic signals being
interpreted as car stages. Car stages are further categorised in:

(i) car stages followed by an activity shorter than 15 minutes and then
by a stage faster than walk,

(ii) car stages followed by an activity shorter than 15 minutes and then
followed by walk,

(iii) car stages followed by an activity of at least 15 minutes.
The car stages of category (i) are not considered for further analysis as
signal gaps longer than 3 minutes are interpreted as stop points possibly
due to tunnel usage. Another possibility is that the short activities are mode
transfer points and the detected car stage might be a bus or a rail stage. For
category (ii) the stop point after the walk stage is assumed to be the activity
that induced car driving. This is a first approximation as trip purposes are
not known and the trip detection module was not available at the time of
analysis. For category (iii) the immediate stop point is assumed to be the
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Figure 11.1: GPS data sets and centre definition for Zurich and Geneva

(a) Parking spaces Northeast-
Switzerland data set (b) Zurich centre

(c) Parking spaces West-Switzerland
data set (d) Geneva centre

main activity. As a consequence, the walk stage to this activity is assumed
to be zero meters and minutes.

The last GPS point of a detected car stage is used as an approximation of
the parking space location. Using the available public parking location data,
parking types are assigned to each parking space. Spaces that are closer
to a public garage location than to an on-street parking space are assigned
garage, parking spaces that have a garage within 50 meters are classified as
uncertain and the rest is assigned on-street parking. It is important to note
that on-street parking also includes private parking. The activity location
is approximated by the median of its x and y coordinates, which is mostly
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Figure 11.2: 12 districts (Kreis) of Zurich with garages used for GPS anal-
ysis.

reasonable but does e.g. not work for long signal gaps that start and end at
different locations.

11.2.2 Parking search path and strategies

Several definitions for parking search start point, and consequently, the
parking search path exist. Kipke (1993) suggests that the search starts as
soon as the activity location is passed. This definition is problematic as
this location does not have to be passed during parking search, e.g., if an
activity location in a pedestrian only area or the driver finds a parking space
beforehand. The second uncertainty is how well this activity location is
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definable e.g. eating at a friends place is easier to capture than shopping in
the inner city. Birkner (1995) suggests that the search starts as soon as the
first parking space is passed that would have been accepted if free. Using
this definition, it is not possible to extract a start point from raw GPS data,
as not only the drivers thoughts are unknown but also traffic conditions or
parking occupancy, influencing the search start, are usually not available.

Figure 11.3: Path segmentation

Unfortunately neither of these definitions can be used to extract the
parking search start point and the actual search path. Therefore, we decided
to use the path after entering an 800 meter radius around the parking space
as a measure to analyse parking search (d800 in Figure 11.3). Analogous,
the time after entering an 800 meter radius t800 is used as a means to
analyse parking search time. It is very likely that this simple measure,
representing an upper bound of search effort, includes the search path.
The underlying assumptions are that walking distances acceptable for the
majority of car drivers in Zurich are below 600 meters (Planungsbüro Jud,
1990) and that searching for parking usually takes place between the actual
found and the aspired parking space. The radius criteria is also used to
split the path into segments that start when the driver enters a circle around
the parking space and end when she enters the next smaller circle (e.g.
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Figure 11.4: Chosen and shortest path

d600−400 as illustrated in Figure 11.3). These segments are used to analyse
the progress of the search path. As distances between two successive GPS
points are not negligible, the cutting point with a circle is interpolated
and the distances are corrected accordingly to ensure comparability of all
segments and paths.

The distance difference between the chosen and the shortest path to
the parking space is, as mentioned by Birkner (1995), another possible
indicator for parking search traffic but it is not the search effort itself. To
calculate this difference the GPS points of the car stage are first map-
matched (Schüssler and Axhausen, 2009b). The last node of the resulting
path is defined to be the parking node. The start node is defined to be the
first node within 2 kilometers around the parking node (see Figure 11.4).
This start and parking node are then used for shortest path calculations
using Dijkstra’s algorithm with distance as cost. Using the difference
between the paths of the complete journey would lead to differences due to
the chosen route into the city. But we are only interested in the last part of
the journey that could be influenced by parking choice.

Having extracted the chosen path it is used to get an indication for the
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underlying search strategy. (Polak and Axhausen, 1990) identified seven
strategies that are briefly described here:

(i) Drivers drive directly to an almost guaranteed ’inside tip’ parking
place that is not officially for them (e.g. customer parking spaces).

(ii) Drivers know a fixed number of opportunities which almost always
lead to no search time (e.g. garage, facilities around the core) and
drivers are willing to accept long walking distances.

(iii) Drivers drive in direction of a garage but use on-street facilities if
available.

(iv) Drivers have a fixed sequence of on-street and cheaper off-street
opportunities and accept long walks.

(v) Drivers adapt search according to trip purpose and duration, illegal
parking is an option. Search time might be long.

(vi) Drivers circle around their destination and long searches are accepted
to ensure short walks.

(vii) Drivers accept illegal parking for short stays.
Strategies (i) and (vii) are undetectable in GPS data as illegal or customer

parking spaces are most likely near legal public parking spaces and the
resulting short search times can not be assigned to these strategies, as short
searches also result from private parkers or parking during unproblematic
times where no search strategy is needed. Only strategies (ii) and (iii)
use garages, information that was extracted from GPS travel and parking
location data. Strategy (iii) can also lead to on-street parking and can
therefore easily be misinterpreted - GPS data of several weeks might
help identify such drivers if parking spaces are often near or in garages.
Strategies (iv), (v) and (vi) are all on-street parkers with possibly long
search times and are therefore hard to distinguish. Strategy (iv) might
be extracted if several weeks of data is available as the drive patterns
stay the same. Driving in circles (vi), is detected by inspecting the map-
matched chosen path for network nodes traveled several times. GPS data
can consequently hint at strategies (ii), (ii) and (vi) which is investigated in
the next section.
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11.3 Findings

Results are provided for Northeast- and West-Switzerland. As Geneva is
more densely populated than Zurich the hypothesis is that searches are
longer in Geneva. This was confirmed for search times (t800) but not for
search distances (d800) as can be seen in Figure 11.5. Search times were
also higher in the centres, interestingly this does not hold for distances.
This is influenced by lower speeds in the centres, but maybe also points to
different search strategies.

Figure 11.5: Time and distance driven within a radius of 800 meters around
parking space for Geneva and Zurich.
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For the remainder of this chapter analysis is focused on car stages
ending in the city of Zurich. Two districts with different characteristics
are highlighted. Kreis 1 is the historic inner city, that stretches from the
lake to the main station including shopping streets, commercial and very
expensive residential buildings. It has many more employees than residents
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and the share of parking spaces is lowest with 0.13 spaces per resident and
employee (Table 11.1). Kreis 9 on the other hand has the highest share of
parking spaces (0.45). It is much larger and it is a commercial but also
residential district.

In total, 4086 car stages longer than 10 minutes are detected. Approxi-
mately 20 % of those are filtered as they are not followed by a walk or a
long activity as shown in Figure 11.6. Still for each district at least 130
cases are left after filtering. The figure also shows that the share of car
stages followed by a long activity, that is where a parking spaces was found
very close to the activity location, is highest in Kreis 9 and lowest in Kreis 1
which corresponds to the ratio of parking space to residents and employees.

Table 11.1: Zurich city data by district (Stadt Zürich Präsidialdepartement,
Statistik Stadt Zürich, 2011)

District
(Kreis) Residents Area

[ha]
Parking
spaces

Parking
(res. + empl.) Car cases

1 5563 180 9087 0.13 294
2 29878 1106 24931 0.39 372
3 46699 865 25805 0.32 442
4 27429 280 18005 0.31 368
5 12764 209 16351 0.34 321
6 31464 511 16838 0.35 239
7 35447 1502 24833 0.42 269
8 15518 481 14899 0.39 176
9 48494 1207 39504 0.45 458
10 36879 907 20705 0.41 312
11 65796 1343 42666 0.40 665
12 29537 597 13374 0.39 170

City 385468 9189 266998 0.36 4086

11.3.1 Driving times and distances
For the applied analysis method, the minimum driving distance is of course
800 meters. The additional driving distance is influenced by the network,
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Figure 11.6: Categorisation of detected car stages.
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that is by the shortest possible path, considering one way streets, speed
limits but also by the drivers knowledge of the city. The driving times are
additionally influenced by traffic conditions. Driving times in the inner
city (Kreis 1) are highest but driving distances are shorter (Figure 11.7),
as this area is more congested and speeds are lower. In general driving
times are less than 4 minutes for 80 % of cases in the overall city; distances
driven range from 1100 to 1400 meters for 80 % of cases, which indicates
that parking search substantially varies for districts. Possible remaining
processing errors such as misinterpretation of bus or rail stages wrongly
identified as cars do not include search paths and thus lower the distance
and time estimates. Consequently the share of low estimates is too high
and has to be corrected if used as upper limits in parking models.

In the city, the distance difference of the chosen and shortest path is
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Figure 11.7: Time and distance driven after entering an 800 m radius
around parking space.
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below 500 meters for more than 80 % of cases (Figure 11.8). As expected,
for the complete data set the distance differences are lower. It is mostly
due to the fact that over 60 % of stages in the Northeast-Switzerland data
set were shortest paths. In the city, this share is considerably lower but still
around 50 %.

11.3.2 Walking times and distances
Times and distances walked after parking are depicted in Figure 11.9 for all
districts and the overall city. Walking stages are potentially underestimated
as they are ended by stop points of 3 minutes which might be a short stop
on the way to the actually planned main activity. In Kreis 9 over 65 %
of car stages end at the activity. For another 25 % of observations the
subsequent walk is less than 5 minutes or less than 400 meters respectively.
In Kreis 1, considerably less but still 40 % park at the activity location
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Figure 11.8: Difference chosen and shortest path on the last 2 km to the
parking space.
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and for another 40 % of observations walk is less than 400 meters. The
difference of the 90th percentile is around 2 minutes showing that parking
success substantially depends on location.

11.3.3 Speed distribution
The distribution of the average speeds in path segments (illustrated in
Figure 11.3) are depicted in Figure 11.10 for Kreis 1 and 9, which are
chosen as previously. Kreis 1 is interesting as it is the district in which
parking searches are longest and Kreis 9 has a similar speed distribution
as the city overall. As expected speeds in Kreis 1 are generally lower than
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Figure 11.9: Time and distance walked for all districts (Kreis) of Zurich.
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in the overall city and Kreis 9. In both districts, the average speed on
the last 200 meters are considerably lower than 1000 meters away from
parking space. For all districts it was found that aggregated speeds strongly
decrease when approaching the parking space. The differences between
the segment speeds are very small for Kreis 9 but for Kreis 1 they are more
pronounced.

This is probably due to two influences: first, traffic slows down when
approaching city centre. But as parking spaces are spread all over Kreis 1
(Figure 11.10(c)), speeds of the same path segment are not speeds of the
same area, the second possible influence is therefore drivers slowing down
because they start searching. Consequently speed distributions can point to
the start of parking search, e.g., parking search starts earlier in Kreis 1 than
in Kreis 9.
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Figure 11.10: Speed distribution for path segments and parking spaces
Kreis 1
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(c) Distribution of parking spaces in
Kreis 1.
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11.3.4 Search path
To identify drivers circling while searching as described in the strategy (vi)
of Section 11.2.2, loops of the extracted chosen path are counted. Less than
10 % of the paths contain one loop. And only very few paths, that is less
than 1 %, contain more than one loop. This indicates that circling is not
necessary or favoured by drivers. The highest share of potential circling
drivers are found in Kreis 5 a former industrial district, least in Kreis 9,
this maybe due to more private parkers there.

Search strategies considering public garage parking (ii and iii) are used in
5 - 15 % of cases (Figure 11.11). The public garages used for classification
are shown in Figure 11.2. All districts have garages still no surveyee
parked in a garage in Kreis 3, a residential district. This this might be
because garages there are public but mostly for very specific trip purposes,
potentially not performed by the respondents in the survey period. In the
entire city for 98 persons more than 3 parking activities are identified. Of
those 27 used garages and on-street parking and and only 1 person used
garages in all cases.

Interestingly, garage and on-street parking strategies lead to very similar
distributions of walking distances (Figure 11.12).

11.3.5 Dynamics
As trip load curves commonly show clear peaks, assuming peaks in parking
search effort is natural. However, Figures 11.13(a) and 11.13(b) show that
there are no pronounced peak days or hours for parking search traffic in
Zurich. Peaks might level out as the analysis is performed on the whole city,
which is necessary here due to small sample size. Furthermore, parking
assumedly has to be seen as a cumulative phenomenon smoothing the peaks
in demand. In other words, parking search is not necessarily easier for trip
off-peak times than for trip peak hours. Having no peaks can also mean,
that either parking demand is very low or that it is always in saturation
range.
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Figure 11.11: Parking type - on-street vs. garage.

City 10 5 11 1 6 8 12 9 7 2 4 3

on−street
garage nearer 50 m
garage

overall city and distinct districts (Kreis)

[%
]

0

20

40

60

80

100

168



11.3. Findings

Figure 11.12: Walking distances for garage and on-street parking.
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Figure 11.13: Driving times within 800 m of parking for Zurich city.
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11.4 Conclusion and outlook

Quantification of parking search effort is difficult and results found are
controversial as a large range of values is found for different studies and
locations (see e.g., Shoup, 2005). Clearly, situation strongly differs from
city to city. However, differences are also due to diverging definitions,
latency of parking search and bias in reporting parking search effort. Usu-
ally, parking search is regarded as important. However, parking search for
Zurich seems to be undramatic based on indicators computed in this study.
The time driven with an 800 meters radius around parking space is less
than 4 minutes for 80 % of cases in the overall city; distances driven range
from 1100 to 1400 meters for 80 % of cases, which indicates that parking
search substantially varies by districts. For a plausibility check, number of
parking spaces per resident and employee per district (overall city: 0.36)
and share of parking spaces on private ground (overall city: 81 %) have
been computed (see Table 11.1). Both numbers are relatively high inducing
low parking search being inline with the computed results.

However, this is a first explorative analysis with the main goal to de-
velop and improve parking search extraction methods. The data set used
here does only contain raw data, no accuracy and accelerometer data—
important for high-quality processing—are available. Results have to be
interpreted as indications. It has to be noted that driving times are not cor-
rected for congestion as no such information is available. Further, distance
and driving times are potentially underestimated due to wrongly detected
public transport stages. Walk times are also potentially underestimated by
misinterpretation of the following main activity.

The findings concerning parking choice can be compared to stated prefer-
ence studies conducted in Zurich. Results can be used to calibrate parking
search models e.g., in the agent-based transport simulation MATSim or in
the authors’ simulation (Horni et al., 2012).

Assuming that parking behaviour heavily depends on type of activity,
the trip detection module could be run for the data set used here and the
annotated data collected in Zurich (Chapter 3) could be analysed as well.
Processing routines might also reveal pseudo- or intermediate activities
(e.g., window shopping) while walking to the actually planned main activity.
It can be assumed that in questionnaires only this main activity is reported
while in GPS data intermediate activities are recognisable, leading to a
biased estimation of walk distances (underestimation).
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As private parking is usually associated with only little or no search,
an important future task is to distinguish the analysis between private and
public parking.

Loop analysis is in the first instance based on network node counting.
As this is highly dependent on network resolution, analysis should in the
future be refined to areas (instead of using single network nodes). In other
words, loops are counted if a certain area is crossed multiple times.

To reveal if higher travel times (and potentially detours with respect
to free-flow minimal path) are due to search or due to traffic conditions
a time-dependent analysis for persons without activity or parking in the
respective area should be performed, in particular for inner city areas, and
compared with the speed distributions given in Section 11.3.3.

There is a discrepancy between average search effort found in GPS data
and subjective parking effort estimation reported in personal communica-
tion, where higher search times are expected. Thus, an additional analysis
should focus on the high efforts including outliers.

Considering a circle around parking location, as done in this work, but
also around the activity, harbors the danger of missing part of the parking
search in situations where a long walk is followed (see Figure 11.14).
Combining analysis of a region around both the parking location and the
activity should be tested.

Indications for the latent but very important actual search starting point
are revealed. In Karlin-Resnick et al. (2016) none of the recorded searches
started more than 350 meters away from parking space, suggesting that our
800 meter buffer is well on the safe side and includes parking search. They
state, that determination of the actual starting point is on-going research,
but they suggest rules to identify if parking search takes place considering
the following variables: "Excess travel distance within 400 meters of the
final parking space, the ratio of actual to shortest-path travel distance within
400 meters of the parking space, repeated roadway segments toward the
end of a trace, and out-of-direction travel at the end of a trace." These rules
could be applied to the available GPS data sets.
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Figure 11.14: Circle around parking or activity location: parking search
right to activity location is missed in this case.
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Discussion
One of the main goal of GPS processing in transportation is to obtain
complete and precise travel diaries, especially in terms of trip times and
short trips that tend to be forgotten. When looking at the tracks of my own
movement, this goal seems to be easily achievable, as my cycling route to
work was usually well captured both with the dedicated device (MobiTest)
as well as with my smartphone (Samsung S3). But it also happens quite
often that the trip to the mensa, a very short trip between buildings on the
campus, was missing. This did not bother me enough, as I usually knew the
reason for it, such as forgetting the device, low battery or recording of too
few points. It shows that there is still a lot of uncertainty when dealing with
GPS tracks. Neither with paper and pen diaries nor with GPS-based diaries
you can be confident that all travel is captured. One major advantage with
GPS is that at least it is certain that the recorded route (fragments) did take
place, even if some participants deny it until you explain them their data
on the map.

Researchers are used to the data and its visualisation and are well aware
of potential errors, automatically filtering or adding to the data in their
minds. Therefore, it is easily forgotten that it is not for granted that study
participants can read a map and interpret traces, especially in the more
complicated cases where we actually need their corrections most. Response
burden therefore not only depends on the accuracy of the diaries but also
on the quality of the prompted recall tools.

Different ways to collect ground truth data are presented in the the-
sis. A paper and pen diary (Section 4.2) as well as two prompted recall
applications with pre filled diary information, one a web-based version
(Section 3.1.3) and the other one a smartphone application (Section 4.1).
The paper diaries were filled in well, a clear disadvantage is, that data has
to be digitalized, another potential source for errors (or corrections). In the
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case of the first PEACOX field trial, the final travel diaries were obtained
by manually comparing the automatically generated ones with the paper
and pen diary. This was possible for the low number of participants but
would not be practical for a larger scale survey. For both prompted recall
instruments, stages and activities were presented as a list as well as on a
map. Colour coding and/or icons were used in order to help participants
understand the diaries and connect the list of items with the map. The
web-based interface has the advantage (if only used on desktop computers)
of a large map that can be shown, compared to that the map on smartphones
is small but on the other hand it can be filled in anywhere. To use that
advantage fully, diaries would need to be prepared immediately which was
not the case, as processing was done over night. Further, it was shown
that many participants did not fill in the diaries immediately but mostly
when they were reminded or even just at the end of the eight week survey
period. Considering this reluctance and also evidenced by data it can be
assumed that at least some of the diaries were confirmed without actually
correcting them. A more in-depth analysis of how true the ground truth
data really is in the line of Stopher et al. (2015) would be interesting. They
even propose and tested a new way of collecting ground truth data by usage
of a life-logging camera, that takes a picture every 30 seconds. In that case
privacy is even more of an issue than with GPS as strangers might be on the
pictures. But it is also a new source for interesting future research, e.g. on
image processing to extract mode and trip purposes, but also new features
that can not be observed with GPS only, like crowding, traffic, scenery or
companions.

The amount of collected data is already an issue with GPS and accelerom-
eter measurements. E.g., for the PEACOX project study participants were
required to have mobile abos with data flat rates or at least 1 GB included.
Accelerometer data had to be backed up every day, otherwise the available
database would not perform any more. These are not necessarily research
issues, but practical problems concerning data storage and processing,
that have to be considered much more, when planning surveys with more
participants and longer survey periods, which is one of the main goals of
smartphone-based travel surveys.

In Section 4.5.2 travel diaries generated from the same routes captured
with two devices (Smartphone and dedicated GPS device) are shown to be
different in many cases, that is movement is captured with one device but
not with the other, which suggests that some movement was not captured

176



at all. Figure 4.7(b) also shows how sparse the useful data is, even though
a huge amount is collected.

The PEACOX project also enabled us to test the processing routines
developed on Swiss data in other European cities, namely Vienna and
Dublin. The achieved accuracies were not as high as expected, mode
detection was correct in around 70 % of cases compared to over 85 %
reported in Part II. Activity detection was good in approx. 80 % of cases
which is as expected, uncertainties remain as of how well participants
corrected their diaries. Considering discrepancy of performance between
data sets it would be interesting to compare classification performance or
better travel diary generation of different research groups on a common
data set. Most processing frameworks are not open source and data sets
often cannot be shared due to privacy reasons. Currently, also the random
forest classifiers of POSDAP cannot be shared, as data is stored within
them. In the future, in order to share these, the random forest should be
stored without data. Other than that, potential future work concerning the
processing framework are inclusion of indoor movement using additional
(smartphone) sensors like wifi positions, pressure (e.g. detecting lifts) and
temperature (e.g. detecting going inside). For smartphone surveys, on the
phone pre-processing has to be considered in order to reduce data traffic.
It should be investigated what data resolution is actually needed for the
problem under investigation, as reduced collection frequency saves data as
well as battery. Battery saving strategies are also a research issue, even if
better batteries can be expected, smartphones are used for more and more
things, therefore battery consumption of other apps possibly increases as
well. Up to now the framework was used to process whole days. Real
time processing would be beneficial, e.g., in order to prompt for immediate
corrections.
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