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Abstract

The recent ubiquity of wearable sensor technology enables oppor-
tunities to monitor daily activities of people. Applications include
ambient assisted living, heath monitoring. Activity recognition from
wearable sensors is often accomplished by applying supervised learn-
ing on sensor signals. An annotated training data set is required to
perform supervised learning. So far, most of the existing works on
activity recognition require a small number of experts for data annota-
tion regardless of high labeling effort (i.e., time-consuming, tedious).
Consequently, labeling by experts provides high quality annotations,
but is non-scalable for a large data set.

Crowdsourcing gains popularity recently to distribute data anno-
tation tasks to a crowd of ordinary people. In this work, we investigate
the use of crowdsourcing in activity recognition systems to reduce the
effort of collecting large-scale training data, but not to sacrifice a high
performance from experts’ annotations. This work comprises six sci-
entific publications that leverage the two aspects of crowdsourcing:
(1) the use of crowdsourcing to annotate a long continuous recording
of activities in which start and end boundaries and labels of activities
are explicitly specified (2) the use of online crowd-generated shar-
ing databases (e.g., a sound repository Freesound) where contributors
sporadically record each individual activity of interest and upload to
the shared repository. Those databases can be retrieved to extract the
demanding training set for activity recognition.

In the first aspect, we first conduct a case study to collect anno-
tations for the existing activity data sets by using the crowdsourcing
service Amazon Mechanical Turk. The crowdsourced annotations can
get as high as 80% sample-based accuracy if multiple crowdsourced la-
belers are applied. Otherwise, the annotations contain a large presence
of noises (52% of instances are labeled incorrectly). Crowdsourced an-
notations suffer from labeling noises such as mislabeling, or inaccurate
identification of start and end time of activity instances. We introduce
a taxonomy of annotation noises which possibly occur in a crowd-
sourcing setting and analyze annotation noises in the crowdsourced
annotated data set collected from the case study.

The results show that the noisy annotation can degrade the state-of-
the-art activity recognition methods significantly. We propose a novel
gesture recognition method - WarpingLCSS as a linear-time template
matching method that is robust to annotation noises. The method quan-
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tizes signals into strings of characters and then applies variations of the
longest common subsequence algorithm (LCSS) to spot gestures. The
WarpingLCSS is evaluated extensively on both real and synthetic noisy
crowdsourcing scenarios on the three existing data sets with various
activity classes (10-17 classes) recorded from accelerometers on arms.
The WarpingLCSS achieves better performance than the DTW-based
methods and SVM, especially with the large presence of noise. With
60% mislabeled instances, WarpingLCSS outperforms SVM by about
22% F1-score and outperforms DTW-based methods by 36% F1-score.
Moreover, WarpingLCSS can tolerate 30%-40% jitter level (i.e., a shift
in the annotation temporal boundaries). Additionally, we demonstrate
the efficiency of WarpingLCSS in both clean expert-annotated data sets
as well as in multimodality settings in which a large combination of dif-
ferent multimodal sensors at different on-body positions is deployed.
Given the robustness of WarpingLCSS against annotation noises, we
demonstrate that WarpingLCSS can be used as a filtering component
to discard noisy-annotated samples and select well-annotated ones for
other classifiers like SVM to improve their performance.

We further propose a new annotation technique in which label-
ers do not have to select the start and end time carefully, but mark a
one-time point within the time an activity is happening. This one-time
point annotation technique is a special case of annotation noise (the
boundary shrinks to a point) and it reduces significantly the labeling
burden. However, one-time point annotations cannot be used directly
for activity modeling. We propose a preprocessing step to correct tem-
poral boundaries for activities given their one-time point annotations.
Specifically, we propose the novel BoundarySearch algorithm to search
for temporal boundaries of an activity based on data patterns around
their one-time point annotations. We evaluate the method on the three
existing data sets with 10-17 classes and the performance on the cor-
rected annotations is just lower than the training on well-annotated
annotations by 3% F1-score.

In the second aspect of crowdsourcing, crowd-generated shared
repositories capture the diversity in user contexts due to contribu-
tion from different people. However, crowd based models fail to cap-
ture specific data patterns of targeted users. As a result, it is far to
reach user-dependent recognition performance. We focus on adapta-
tion techniques that combine crowd-generated data and user-specific
data to achieve high performance similar to a user-dependent recog-
nition system, but still minimize the labeling effort. We investigate
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two adapting approaches: 1) a semi-supervised learning to combine
crowd-sourced data and unlabeled user data, and 2) an active-learning
to query the user for labeling samples where the crowd-sourced based
model fails to recognize. We extract audio data from the online crowd-
generated audio repository Freesound to train a base model for user
daily activities. We test our proposed approaches on 7 users using au-
ditory modality on mobile phones with a total data of 14 days and up
to 9 daily context classes. Experimental results indicate that the semi-
supervised model can indeed improve the recognition accuracy up to
21% but is still significantly outperformed by a supervised model on
user data. In the active learning scheme, the crowd-sourced model can
reach the performance of the supervised model with only a few label
queries.

Our proposed algorithms enable the opportunities to use crowd-
sourcing to reduce the labeling effort for activity recognition systems,
but still achieve as good performance as experts’ annotation. This work
is an important step towards a large-scale activity recognition system
in which an effort to collect large number of activities on a large number
of users can be distributed to crowdsourcing. Therefore, this work pro-
vides the fundamentals for the next generation of wearable assistance
scenarios that support activity monitoring for everyone everywhere.
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Zusammenfassung

Die zunehmende Verbreitung tragbarer Sensoren ermöglicht das
Erkennen und Beobachten von Alltagsaktivitäten. Zu den Anwendun-
gen zählen das assistierte Wohnen sowie die Analyse von Gesundheits-
daten. Aktivitätserkennung wird dabei meist durch die Anpassung
von Lernalgorithmen auf bestimmte Sensordaten erreicht. In der Regel
benötigt man dafür annotierte Traningsdaten. In den meisten bisheri-
gen Arbeiten werden diese Trainingsdaten durch eine geringe Anzahl
von Experten zur Verfügung gestellt, was einen hohen Aufwand nach
sich zieht (Zeit, Anstrengung). Dieser Ansatz führt zwar zu hochqual-
itativen Annotationen, ist aber nicht skalierbar für grosse Datensätze.

Sogenanntes Crowdsourcing, wobei eine grössere Menge an Frei-
willigen zur Erhebung von Daten mitwirkt, hat in letzter Zeit an
Popularität gewonnen bezüglich Datenannotation. In dieser Arbeit
untersuchen wir die Anwendung von Crowdsourcing in der Ak-
tivitätserkennung. Dadurch soll sich der Annotationsaufwand für
grosse Datensätze begrenzen lassen, aber eine vergleichbare Qualität
wie bei Expertenannotation erreicht werden. Die vorliegende Dok-
torarbeit umfasst sechs wissenschaftliche Publikationen, die zwei As-
pekte dieser Zielsetzung genauer untersuchen: 1) die Anwendung von
Crowdsourcing bei der Annotation von langen, kontinuierlichen Date-
naufnahmen und 2) die Gewinnung von Trainingsdaten aus Online-
Datenbänken (z.B. die Tondatenbank „Freesound“), wo Benutzer frei-
willig und sporadisch annotierte Trainingsdaten zur Verfügung stellen.

In Hinblick auf das erste Ziel führen wir zuerst eine Fallstudie
durch: Wir sammeln Annotationen zu einem existierenden Daten-
satz mit dem Crowdsourcing-Dienst Amazon Mechanical Turk. Die
so gewonnen Aktivitätsdaten stimmen zu 80% mit den Annotationen
von Experten überein, sofern die Beiträge mehrerer einzelner Personen
kombiniert werden. Die einzelnen Annotationen der Freiwilligen sind
durch eine höhere Anzahl inkorrekter Annotationen verfälscht (52%
fehlerhafte Eingaben). Wie diese Studie zeigt, enstehen durch Crowd-
sourcing Fehlannotationen. Ebenfalls möglich sind falsche Identifika-
tion der Start- und Endzeitpunkte von Aktivitätsinstanzen. Wir führen
eine Taxonomie für solche Annotationsfehler ein und analysieren diese
weiter im vorgenannten Datensatz.

Die Resultate dieser ersten Untersuchung zeigen, dass Fehlannota-
tionen die Aktivitätserkennung für Standard-Algorithmen stark beein-
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flussen. Als Alternative schlagen wir mit WarpingLCSS einen neuen,
zeitlinearen Gestenerkennungsalgorithmus vor, der robuster ist bei
solchen Fehlern. Dieser Algorithms quantifiziert die Eingangsdaten
in Zeichenketten und wendet darauf eine Variation des sogenan-
nten Longest Common SubSequence (LCSS) Algorithmus‘ an. Wir
evaluieren WarpingLCSS in realen und synthetisch mit Annotations-
fehlern behafteten Datensätzen. Dabei fokussieren wir uns auf drei
Beispiele zur Erkennungung von Armaktivitäten (10-17 Klassen) aus
Beschleunigungssensordaten am Handgelenk. WarpingLCSS erreichte
bessere Resultate als andere Standardansätze wie Dynamic Time Warp-
ing (DTW) und Support Vector Machines (SVMs), insbesondere bei
vielen fehlerhaften Trainingsdaten. Im Fall von 60% falscher Anno-
tationen erreicht WarpingLCSS einen um 22% besseren F1-Wert als
SVM und 36% besser als DTW. Ausserdem kann WarpingLCSS Abwe-
ichungen von 30%-40% in der Definition von Start- und Endzeitpunkt
einer Geste tolerieren. Wir demonstrieren ausserdem die Effizienz von
WarpingLCSS in Experten-annotierten Datensätzen sowie in multi-
modaler Erkennung (Kombination von Sensoren an verschiedenen
Körperpositionen). Die hohe Robustheit der Methode gegen fehler-
hafte Trainingsdaten ermöglicht es ausserdem, WarpingLCSS als Fil-
tereinheit einzusetzen, wodurch falsche Daten vor dem Training an-
derer Klassifizierer wie zum Beispiel SVM ausgeschlossen werden.

Des weiteren schlagen wir eine neue Annotationstechnik vor,
bei der die Annotierer nur einen Zeitpunkt zur Aktivität zuordnen.
Diese einfache Zeitannotation entspricht einem Spezialfall von falscher
Zeitmarkierung (Start und Ende identisch) und sie ist wesentlich
weniger aufwändig, kann aber auch nicht direkt zur Aktivitätsmodel-
lierung verwendet werden. Wir entwickeln deshalb mit dem Bound-
arySearch Algorithmus einen Vorverarbeitungsschritt, der die korrek-
ten zeitlichen Grenzen einer Aktivität aus diesen einfachen Zeitpunk-
tannotationen ableitet. Wir evaluieren die Methode in drei Datensätzen
mit 10-17 Klassen und erreichen einen um nur 3% schlechteren F1-Wert
als in Experten-annotierten Datensätzen mit Start- und Endzeitpunk-
tangaben.

Bezüglich des zweiten Ziels dieser Arbeit, der Verwendung
öffentlicher Datenbänke als Trainingsdaten, zeigen unsere Analy-
sen, dass Crowdsourcingdaten die Diversität an Benutzersituatio-
nen gut beschreiben können. Gleichzeitig scheitern die Modelle aber
dabei, spezifische, benutzertypische Verhaltensmuster zu erkennen.
Als Resultat sind die Erkennungsgenauigkeiten bei Crowdsourcing-
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daten viel kleiner als bei nutzerspezifische Daten. Wir fokussieren
uns deshalb auf Adaptionstechniken, die Crowdsourcing-Daten au-
tomatisch mit Benutzerdaten kombinieren. Dadurch sollen ähnliche
Erkennungsraten erreicht werden, während sich der Annotation-
saufwand für den Nutzer in Grenzen hält. Wir untersuchen zwei
adaptive Ansätze: 1) halb-überwachtes Lernen zur Kombination von
Crowdsourcing-Daten mit nicht annotierten Benutzerdaten, und 2)
aktives Lernen, wobei der Benutzer um Annotationen gebeten wird,
wenn das Crowdsourcing-Modell unsicher ist.

Für eine Beispielstudie extrahieren wir dazu Audiodaten von der
Onlinedatenbank Freesound und trainieren eine Basismodell für All-
tagsaktivitäten. Wir testen diesen Ansatz mit 7 Benutzern und den
Mikrophonen ihrer Smartphones, wobei uns insgesamt Daten von 9
Kontextklassen und 14 Aufnahmetagen zur Verfügung stehen. Die Un-
tersuchung zeigt, dass der halb-überwachte Ansatz die Genauigkeit
um 21% erhöht, aber immer noch deutlich schlechter funktioniert als
wenn nur annotierte Benutzerdaten für das Training des Klassifizierers
verwendet werden. Der aktive Ansatz hingegen erreicht schon nach
wenigen Rückfragen ähnlich gute Genauigkeiten.

Die in dieser Arbeit vorgeschlagenen Algorithmen verringern den
Aufwand zur Annotation von Trainingsdaten in der Aktivitätserken-
nung. Dies geschieht durch Zuhilfenahme von Crowdsouring, adap-
tiven Lernalgorithmen und robusten Erkennungsmethoden, weshalb
die Genauigkeit gegenüber Expertenannotationen nicht sinkt. Die
entwickelten Methoden stellen einen wichtigen Schritt in Richtung
skalierbarer Aktivitätserkennung dar, bei welcher der Aufwand des
Sammelns von Trainingsdaten durch viele Nutzer geteilt ist. Somit
bildet diese Arbeit das Fundament für eine neue Generation von trag-
baren Assistenten, welche Aktivitätsverfolgung überall und für jeden
ermöglichen.





1
Introduction

Chapter 1 introduces activity recognition using body-worn sensors. Lim-
itations to collect a large-scale training data set for activity recognition
are identified and potentials of using crowdsourcing for activity annota-
tion are highlighted. The main objectives addressed in this thesis are then
presented together with a list of publications that resulted from this work.
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1.1 Activity Recognition from Wearable Sensors

With the increasing ubiquity of wearable sensor-equipped devices like
smart phones, smart watches, glasses, it enables opportunities to mon-
itor user’s activities in his daily life and then to provide feedback or
assistance if necessary. Instead of using external infrastructures (e.g.,
pre-deployed fixed-location cameras, RFID tags on objects), a wearable
system can be deployed easily on user’s body wherever a user goes.
Among wearable sensors, we find accelerometers, inertial measure-
ment units IMUs (i.e., a combination of accelerometers, gyroscopes),
microphones, global positioning systems (GPS), and physiological sen-
sors (e.g., electrocardiogram). A wide range of applications can benefit
from activity awareness. Consider for example a health monitoring
system that detects changes in user’s activity patterns to reveal possi-
bly the progress of diseases [1]. Another example is a system that tracks
activities of industry workers and delivers real-time information about
tasks to be performed [2].

Activity recognition from wearable sensors is often accomplished
by applying supervised learning techniques on sensor signals. Com-
monly applied supervised learning approaches for activity recogni-
tion include Hidden Markov Models (HMM) [3–6], template matching
methods (TMM) using mostly dynamic time warping [2,7,8] and sup-
port vector machines [9–11]. Supervised learning requires a labeled
training data set to model gestures. Annotations comprise the start
and end times (i.e., temporal boundaries) of activities of interest and
their corresponding labels. The labeling tasks are usually performed
carefully by experts to get annotations as precise as possible. This
process is extremely time-consuming and tedious: it may require 7-10
hours to annotate activities in a 30-min video [12]. Additionally, it is
costly to hire experts for annotation tasks. Consequently, labeling by
experts provides high accuracy, but is non-scalable for a large data set.

1.2 Activity Annotation Techniques

Many annotation techniques have been proposed to collect annotated
data for activity recognition systems. There are offline annotation tech-
niques which rely on video and audio recordings [12], subject self-
report of activities at the end of the day [13]. Online annotation (i.e.,
real-time) techniques perform the annotation during execution of the
activities, like experience sampling [14] which prompts periodically
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to a user to ask information about his current activities, or direct an-
notation in which users responsibly provide a label before an activity
begins and indicate when the activity ends [15]. There is a trade-off
between accuracy of an annotation technique and the amount of time
required for annotation [16]. For example, offline annotation on video
recordings by experts can provide accurate annotations, however it is
extremely time consuming [12]. In contrast, the self-report of the sub-
ject may require less time but the accuracy depends on the subject’s
ability to recall activities. Consequently, it may require extra human
effort for manually correcting and cleaning the annotation. Therefore,
most of the existing works require video annotation by experts to ob-
tain correct annotated data sets [12].

1.3 Crowdsourcing

Crowdsourcing was defined by Jeff Howe [17] as a distributed model in
which a large group of people is engaged to solve a large-scale problem
through an open call. A wide range of crowdsourcing applications has
been developed to make more efficient use of labor and resources and
reduce production costs. One example is the creative drawings Sheep
Market 1 – a web-based artwork that calls thousands of workers in the
creation of a massive database of sheep drawings. A worker creates
his drawing of a sheep and receives an incentive of two cents for his
work. Another crowdsourcing application is crowd-generated sharing
systems in which users contribute various types of information among
the crowd. For example, Wikipedia is an online encyclopedia written
by any Internet users.

Crowdsourcing gains popularity recently to distribute data an-
notation tasks which are traditionally performed by experts to a
crowd of ordinary people [18]. Crowdsourcing services, like Ama-
zon Mechanical Turk (AMT) 2, crowdflower 3, clickworkers4 provide
a cheap labor pool for performing annotation tasks. Crowdsourcing
has been used for labeling data sets in many fields (e.g., natural lan-
guage processing [19–21], speech recognition [22,23], multimedia tag-
ging [24–27]). Data acquired from crowdsourcing is usually generated
by low-commitment workers [28], thus it is commonly unreliable and

1www.thesheepmarket.com
2www.mturk.com
3http://crowdflower.com
4http://clickworkers.com
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noisy. Many strategies has been proposed to reject low-performing and
malicious workers to attain good annotations. A use of verifiable ques-
tions for which the requester knows the correct answers is a common
empirical strategy to screen workers from crowdsourcing. Another
way is to use multiple labelers for the same annotation task and ma-
jority voting is a popular decision making method used to identify the
correct answers [20, 28].

Most of the existing works on activity recognition still require ex-
pert annotation to obtain correct annotated data sets regardless of
high labeling effort. Crowdsourcing emerges as a promising way to
reduce the effort of collecting large-scale annotated training data for
activity recognition. The goal of this thesis is to investigate the use of
crowdsourcing in activity recognition systems. Crowdsourcing can be
utilized in two aspects. In one aspect, a long continuous recording of
activities is annotated by asking crowdsourced labelers specify explic-
itly temporal boundaries and labels of activities. Another aspect is the
use of online crowd-generated sharing databases (e.g., a crowd gen-
erated sound repository Freesound), where contributors sporadically
record an activity of interest and upload to the shared repository. Those
databases can be available in large quantities and can be retrieved to
extract the demanding training set, thus they minimize the cost of col-
lecting the training dataset. In the following subsections, we discuss
these two aspects of crowdsourcing for activity recognition and the
limitations of the previous works lead to the formulation of the main
objectives of this thesis.

1.3.1 Activity Annotation by Crowdsourcing

Labeling activities in a recording requires to specify the temporal
boundaries of activities to mark when the activities occur and their
corresponding labels. The task can be performed offline in crowdsourc-
ing platforms like Amazon Mechanical Turk by asking crowdsourced
workers to label a video footage synchronized with sensor data. A
more obtrusive crowdsourcing task would ask users to annotate their
own activities over a long time span of recording (e.g., weeks) to cap-
ture various contexts in their daily routines. This type of crowdsourced
data collection would be useful to gather data for long-term health care
monitoring systems and the annotation task can be done in real-time
while sensor data are recorded.

Activity annotation by crowdsourcing in which crowdsourced
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users provide the temporal boundaries and labels of activities have
not been investigated yet. In the work by Zhao et al. [25], individual
still images were extracted from a video recording and activities oc-
curring in the image were labeled by crowdsourcing. However, using
one video frame to ask for activity may cause ambiguity (e.g., it is hard
to distinguish Open Door and Close Door activities with just only one
frame of activity). Moreover, it does not work when a video footage of
the recording is not available.

Crowdsourcing opens a door for easily obtaining labeling for large-
scale training data sets for activity recognition. However, due to the
error-prone nature of crowdsourcing [28], the challenge is to obtain
both correct labels and correct temporal boundaries for activities. As a
video footage is available for labeling, the quality of annotation would
be controlled by using multiple labelers and then checking the agree-
ment in the annotations among labelers. However, there is no guar-
antee to have a perfect annotation, especially when using multiple
labelers cannot be applied. Hence, in order to use crowdsourcing for
activity labeling, the nature of labeling noises needs to be investigated
and the impact of those noisy annotations on the training of activity
recognition needs to be analyzed. Moreover, learning methods that can
cope with annotation errors are also needed. These topics in activity
annotation by crowdsourcing are addressed in details in the first part
of this thesis .

1.3.1.1 Robustness against Annotation Noise

The effect of annotation noises on the performance of classifiers has
been investigated in the literature [16, 29–32]. However, these studies
conducted experiments on synthetic noisy data. Additionally, annota-
tion noises included only the case of having wrong labels (i.e., labels are
substituted as other classes). In activity annotation, temporal bound-
aries may be marked incorrectly (e.g., an activity starts earlier and
ends later than the correct boundaries). These other kinds of noise in
crowdsourced activity annotation have not been investigated yet.

1.3.2 Activity Crowd-Generated Databases

Many available web repositories contain training data for activ-
ity recognition systems. For instance, open user-contributed sound
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databases (e.g. the Freesound 5 database) can bootstrap sound-based
activity recognition; Youtube 6 provides annotated videos from which
activity models based on movement sensors can be derived; geo-
graphical locations are mapped to possible activities (e.g. with Google
Places 7, Foursquare 8). The ideas of mining the web crowd-generated
databases for relevant training data have been used recently by
researchers to reduce the effort to collect and label training data.
Perkowitz et. al. [33] presented the first method for web-based ac-
tivity discovery using text. Rossi et. al [15] used the crowdsourced
Freesound database to train sound models which are exploited to rec-
ognize activities of daily living on mobile phones.

Consider characteristics of a crowd-generated database, for exam-
ple, in Freesound sounds are contributed by a very active online com-
munity with the rapid increase in the number of sounds available.
Each sound clip often belongs to one context and is annotated in free-
form style. Moreover, user-contributed sounds are recorded in a wide
variety of situations, conditions, motivations, and skills. Roma et. al.
[24] addressed the limitations of searching for environmental sounds
in the Freesound such as outlier, unbalanced tag distribution, tag syn-
onyms. Rossi et. al. [23] proposed filtering techniques to eliminate web
search audio results from Freesound which include sound samples
with unexpected acoustic content (i.e. outlier).

The growing crowdsourced repository captures the diversity in
user contexts due to contribution from different people. However,
crowd based models fail to capture specific data patterns of targeted
users. Consequently, it is far to reach user-dependent recognition per-
formance. To enhance the use of crowd-generated databases in activity
recognition, the second part of our thesis focuses on adaptation tech-
niques that combine crowd-generated data and user-specific data to
achieve high performance similar to a user-dependent recognition sys-
tem, but still lower the labeling effort to a minimum.

1.3.2.1 Adaptation Techniques in Machine Learning

Semi-supervised learning and active learning are two widely used
adaptation techniques in machine learning that minimize the need of

5www.freesound.org
6www.youtube.com
7https://developers.google.com/places/
8https://foursquare.com/
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labeled training data. Semi-supervised learning make use of both la-
beled and unlabeled data to train a recognition system. Meanwhile,
active learning selectively asks labels of the most informative training
instances that can generalize the classifier maximally, and thus re-
duces user’s burden of labeling, but still gets good performance. There
are many variations of semi-supervised learning and active learning
algorithms. A comprehensive survey can be found in [34] for semi-
supervised learning and in [35] for active learning, respectively.

According to the best of our knowledge, there is no previous work
that investigated the adaptation techniques to optimally leverage two
sources of data: labeled crowd-sourced data and user-centric data. The
existing works explored semi-supervised learning and active learning
on labeled and unlabeled data that were both from the same data
source [36,37]. In contrast to these works, we aim to adapt and improve
the recognition of a classifier learned from one free data source – crowd-
sourced repository – on another, the user personalized data to achieve
high performance but minimize the labeling effort.

1.4 Objectives of the Thesis

This thesis investigates crowdsourcing to reduce the effort of collecting
annotated training data for activity recognition, but not to sacrifice a
high performance from experts’ annotations. Specifically, based on
two aspects of crowdsourcing described above, we have identified the
following research contributions.

1.4.1 Activity Annotation by Crowdsourcing

This work will investigate the use of crowdsourcing in activity anno-
tation in which labelers provide the temporal boundaries and labels of
activities occurring in a long recording. We mainly focus on labeling
short actions on arm (i.e., gestures). The following steps constitute the
main contributions of this work.

1. A case study to collect annotations for the existing activity data
sets by using the crowdsourcing service Amazon Mechanical
Turk. Strategies to filter annotation noises as well as malicious
workers are investigated. The outcomes illustrate the quality of
crowdsourced annotation in both offline and online labeling.
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2. Introduction of a taxonomy of annotation noises which possibly
occur in a crowdsourcing setting. We give the statistical analysis
on annotation noise in the real crowdsourced annotated data set
collected from the case study.

3. WarpingLCSS is proposed as a fast, robust template matching
method for online gesture recognition. The WarpingLCSS is eval-
uated extensively on both real and synthetic noisy crowdsourcing
scenarios. Additionally, we demonstrate the efficiency of Warp-
ingLCSS in both clean expert-annotated data sets as well as in
multimodality settings in which a large combination of different
multimodal sensors at different on-body positions is deployed.

4. Given the robustness of WarpingLCSS against annotation noises,
we demonstrate that WarpingLCSS can be used as a filtering
component to discard noisy-annotated samples and select well-
annotated ones for other classifiers to improve their performance
significantly.

1.4.2 One-Time Point Annotations

This work is a follow-up of our previous work in activity annotation
by crowdsourcing presented in Section 1.4.1. An activity annotation
commonly includes the start and end times and the corresponding
label in the sensor recording. This work investigates a new annotation
technique in which labelers do not have to select the start and end time
carefully, but just mark a one-time point within the time an activity
is happening. One-time point annotation is likely to happen in real-
time labeling, for example, when labelers remember to annotate the
start of a gesture but forget to annotate the end. It is a special case of
crowdsourced annotation noises in which the boundary of a gesture
shrinks to a point. The one-time point annotation technique would
reduce the burden in activity annotation considerably. However, the
one-time point annotated data set cannot be used directly to model
gesture classes. We need an algorithm in the preprocessing step to
correct the annotations. Specifically, we need an algorithm that can
find the correct start and end time of each gesture around its one-time
point annotation. In this work, we make the following contributions.

1. We propose BoundarySearch algorithm to search for the start and
end time of a gesture around its given one-time point annotation.
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2. The corrected temporal annotations are compared to the ground
truth and their performance when used as a training data set for
modeling activities is evaluated.

1.4.3 Personalized Adaptation on Crowdsourced-based Models

This part of the thesis focuses on techniques to combine the advantages
of crowd-generated data contributed by anonymous (e.g., context di-
versity, free annotated data) and user-centric data (e.g., individual-
specific contexts) to not only obtain a high performance of user-
dependent recognition rate, but also minimize the labeling effort. We
achieve this goal by adapting a generic model based on crowdsourced
data to a personalized model with no to little labeling effort for user
data. We consider in particular the Freesound database as a crowd-
generated sound repository to extract training data to recognize user
daily activities on mobile phones. Two adaptation techniques are ap-
plied: semi-supervised learning and active learning.

1. We investigate a semi-supervised learning scheme to combine
labeled crowd-generated audio data with unlabeled user-centric
data

2. We investigate an active learning scheme to detect the most in-
formative user-specific data samples that the crowd models can
not represent well and queries a user to label them.

3. We evaluate the tradeoff between labeling effort and accuracy of
those personalized models.

1.5 Thesis Outline and Paper List

This thesis includes six publications to address the objectives as de-
scribed in Section 1.4. Figure 1.1 gives the link between objectives and
the chapters in the thesis by which they are covered.

Table 1.1 lists the publications presented in this thesis by chapter.
Chapter 2 provides a summary of this thesis’ contributions and lists the
main findings, discusses their relevance and limitations, and provides
an outlook to future work.

Chapter 3 presents a real crowdsourcing experiment to get activity
annotation for the existing recordings of activity data sets.



10 Chapter 1: Introduction

Chapter 4 introduces the WarpingLCSS algorithm for activity
recognition and the evaluation on clean annotated data sets.

Chapter 5 presents a noise taxonomy of crowdsourced annotation
and evaluates the robustness of the WarpingLCSS algorithm on both
real and synthesis noisy crowdsourced annotation.

Chapter 6 investigates the ability of WarpingLCSS on multimodal-
ity.

Chapter 7 presents the one-time point annotation technique and
the BoundarySearch algorithm to correct the temporal boundaries of
activities.

Chapter 8 investigates adaptation techniques that integrate user
data into a crowd-based model.
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Table 1.1: Publications and their corresponding sections in this thesis.

Chapter Publication

3 Tagging Human Activities in Video by Crowdsourcing
L.-V. Nguyen-Dinh, C. Waldburger, D. Roggen, and G. Tröster
Proceedings of the ACM International Conference on Multimedia Re-
trieval (ICMR), Dallas, USA, 2013, ACM.

4 Improving Online Gesture Recognition with Template Matching
Methods in Accelerometer Data
L.-V. Nguyen-Dinh, D. Roggen, A. Calatroni, and G. Tröster
Proceedings of the 12th International Conference on Intelligent Systems
Design and Applications (ISDA), Kochi, India, 2012, IEEE.

5 Robust Online Gesture Recognition with Crowdsourced Annotations
L.-V. Nguyen-Dinh, A. Calatroni, and G. Tröster
Journal of Machine Learning Research (JMLR), Volume 15, pp. 3187–
3220, 2014, JMLR.

6 Towards A Unified System for Multimodal Activity Spotting: Chal-
lenges and A Proposal
L.-V. Nguyen-Dinh, A. Calatroni, and G. Tröster
Proceedings of the International Conference on Ubiquitous Computing
(UbiComp Adjunct), Seattle, USA, 2014, ACM.

7 Supporting One-Time Point Annotations for Gesture Recognition
with Wearable Sensors
L.-V. Nguyen-Dinh, A. Calatroni, and G. Tröster
Transactions on Pattern Analysis and Machine Intelligence (PAMI),
pending (Under review at the time of writing), 2015, IEEE.

8 Towards Scalable Activity Recognition: Adapting Zero-Effort Crowd-
sourced Acoustic Models
L.-V. Nguyen-Dinh, U. Blanke, and G. Tröster
Proceedings of the 12th International Conference on Mobile and Ubiq-
uitous Multimedia (MUM), Luleå, Sweden, 2013, ACM.
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1.6 Additional Publications

The following publications have been authored and co-authored in
addition to those presented in this thesis:

• Combining Crowd-generated Media and Personal Data: Semi-supervised
Learning for Context Recognition. L.-V. Nguyen-Dinh, M. Rossi, U. Blanke, and
G. Tröster. In Proceedings of the 1st ACM International Workshop on Personal
Data Meets Distributed Multimedia (PDM), Barcelona, Spain, 2013, ACM.

• Enhancing Action Recognition through Simultaneous Semantic Mapping from
Body-Worn Motion Sensors. M. Hardegger, L.-V. Nguyen-Dinh, A. Calatroni, D.
Roggen and G. Tröster. In Proceedings of the International Symposium on Wearable
Computers (ISWC), Seattle, USA, 2014, ACM.

• Limited-Memory Warping LCSS for Real-Time Low-Power Pattern Recog-
nition in Wireless Nodes. D. Roggen, L. P. Cuspinera, G. Pombo, F. Ali and
L.-V. Nguyen-Dinh. In Proceedings of the 12th European Conference on Wireless
Sensor Networks (EWSN), Porto, Portugal, 2015, Springer [Best Paper Award].





2
Thesis Summary

Chapter 2 summarizes the main approaches and contributions of this the-
sis, discusses the limitations and presents an outlook with opportunities for
future research. Detailed descriptions and discussions of the contributions
can be found in the referenced publication chapters.
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2.1 Activity Annotation by Crowdsourcing

2.1.1 A Case Study to Acquire Activity Annotation from Amazon
Mechanical Turk

We conducted a real experiment at Amazon Mechanical Turk (AMT)
to get activity annotations for two existing data sets. The Opportunity
data set [12] contains 17 daily gestures (e.g., drink, open or close doors)
and the CMU kitchen data set [38] contains 32 gestures for making a
brownie (e.g., stir egg, pour water into bowl). The video duration
of one recording is about 25 minutes long in the Opportunity data
set and about 6 minutes long in the CMU kitchen dataset. For each
data set, we selected a video footage of one subject and segmented
the long video footage into short videos of about one minute. We
showed each short video to workers in AMT, described the task and
collected their annotations. The AMT labelers must annotate the start,
end boundaries and the label of all occurrences of gestures of interest in
the video footage. Furthermore, each annotation task was performed
by 10 different AMT workers. For more details about the interface
design that we used to show the video footages and the task description
to AMT labelers, refer to Section 3.3.1 in Chapter 3.

We proposed two strategies to detect and filter non-serious label-
ers and erroneous labeling. They were individual filtering and col-
laborative filtering. In individual filtering, we used verifiable ques-
tions [22, 23, 39, 40] whose answers are known in advance to screen
each individual AMT labeler. Specifically, we asked for the starting
time of two activities in the given video sequence and one boolean
question about whether an activity occurred in the video. These ques-
tions ensured that AMT labelers must watch the given video to answer
them correctly. Individual filtering checks the correctness in the an-
swers of each labeler on these verifiable questions and rejects labelers
whose answers are wrong. Besides using verifiable questions, in the
individual filtering we also used characteristics of the data sets to filter
non-serious labelers (e.g., activities are non-overlapping).

Collaborative filtering checks the labeling agreement among label-
ers to detect spammers. Specifically, a labeler X who has a disagreement
score d(X) =

Annotation times of X disagree with majority
Total annotation times of X > threshold is a spammer.

Score d is computed as follows.

• Extract the starting and ending times of all tagged activities from
all labelers and put into a sorted list.
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• Scan through each temporal segment S (i.e., two consequence
elements) in the sorted list, and the label of S is the majority
voting among all activities containing this segment.

• For each labeler having an annotation for S which disagrees with
the majority, the score d is accumulated by the length of S. At
the end, d is compared with the threshold and spammers are
detected and removed.

We chose a threshold = 0.3. It means the labeler is a spammer
and his annotations are removed if less than 70% of his annotations
agrees with the majority. The value of threshold was chosen similar
to the guidelines for Cohen’s kappa coefficient which measures inter-
rater agreement [41]. The collaborative filtering process to compute
the disagreement score d is illustrated in Figure 2.1. After filtering, the
majority voting among qualified annotations is performed to generate
a final crowdsourced annotation. A more detail on the crowdsourcing
experiment is given in Chapter 3.

Drink (D)

Drink

Drink

Eat (E)

Close Door (CD)

D D D E EMajority Voting

0%

Disagreement Score d

5%

1%

100%

90%

Eat

Eat

Drink

D E D DE

snoitatonnAsrelebaL

Time

Figure 2.1: An illustration of the collaborative filtering technique to
calculate the disagreement score of each labeler against the majority.
The last two labelers are spammers and then their annotations will be
removed.

In our experiments, we selected labelers in AMT who must have
at least 90% approval rate on their work history. However, the results
showed that the quality of annotations still needed to be controlled
carefully. Specifically, in case of using only one AMT labeler for an
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annotation task, the sample-based accuracy (i.e., fraction of correctly
labeled samples compared to the ground truth) can get as low as 41%.
The result from one labeler illustrates a quality of annotation in real-
time labeling where control is difficult. With multiple labelers, our
proposed filtering strategies increased the sample-based accuracy of
annotations by up to 40%. After filtering, the annotations from AMT
achieved high accuracy (76% - 92%) for each short video.

2.1.2 Taxonomy of Annotation Noises

The quality of annotations from crowdsourcing is commonly unreli-
able. We categorized annotation noises in two types.

• Boundary jitter: The annotation boundaries are strayed, but the
label is correct. This can happen due to the carelessness of crowd-
sourced labelers or a vague definition of gesture boundaries.

• Label noise: Gestures are associated to wrong labels or to no label
at all.

We sub-categorized boundary jitter into four error types, namely ex-
tend, shrink, shift left, shift right, according to how the gesture boundaries
are shifted compared to the ground truth. We also sub-categorized label
noise into three error types, namely delete (i.e., a gesture is not anno-
tated), substitute (i.e., mislabeled as another gesture class), and insert
(i.e., mislabeled when no gesture of interest occurs). Figure 2.2 illus-
trates subclasses of boundary jitter and label noise.

For boundary jitter, we define a jitter level to quantify the proportion
of data points in a gesture that are wrongly annotated. Let N denote
the time length of a gesture. We define ∆s be the absolute time differ-
ence between the crowdsourced start time and the correct start time.
Similarly, we define ∆e as the absolute time difference between the
crowdsourced end time and the correct end time. ∆s and ∆e are illus-
trated in Figure 2.2a for the different boundary jitter noises. For extend
and shrink jitters, the jitter level is calculated as ∆s+∆e

N . For shift-left and
shift-right jitters, the jitter level is ∆s+∆e

2∗N .

Annotation noise statistics from the real crowdsourcing We sum-
marize annotation noises in the real crowdsourcing case study in the
Opportunity data set [12] that we presented in the previous section.
The expert’s annotations are used as a ground truth to evaluate the
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N
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∆s ∆e
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Null

Open Door

Drink
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Delete
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Insert

Null

esioN lebaL )b

Figure 2.2: Illustrations of boundary jitter and label noise in crowd-
sourcing annotation. GT stands for ground truth. The blue dash-dotted
lines indicate the correct boundary of a gesture. (Figure 5.1, page 107)

crowdsourced annotations. Two crowdsourcing scenarios were ana-
lyzed: a one-labeler annotation where only one crowdsourced labeler
was selected randomly among the ten workers, and a multiple-labeler
annotation where the filtering and majority voting were applied for
the ten workers as presented in the previous section 2.1.1. Here we
merge the results from all short segmented videos to have a complete
annotation for one subject in the Opportunity data set.

The sample-based accuracy is as low as 55% for the one-labeler
annotation and it reaches 80% for the multiple-labeler annotation. Fig-
ure 2.3 gives a detailed analysis of all noise types. Label noises occur
often in the one-labeler, take 52% of the instances which are mostly
substitute and delete errors. In the multiple-labeler, label noises decrease
to 18%. For boundary jitter, jitter levels range from 27% to 60% on av-
erage. However, there exist good annotated instances with very low
jitter levels (only 2%).

This example shows that using multiple labelers for an annotation
task can reduce labeling errors. However, it cannot be always applied
(e.g., in real-time annotation). The amount and distribution of annota-
tion noises will change depending on the crowdsourcing scenario and
on the kind of activity data, but there is no reason to think that some
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Figure 2.3: Analysis of crowdsourcing annotation from AMT. Blue lines
in the figure a separate boundary jitter part and label noise part. Black
lines in the figure b show the minimum and maximum level of jitter in
each type of noise. (Figure 5.3, page 111)

scenarios will achieve much lower noise levels. It calls the attention of
robust activity recognition methods to deal with noisy crowdsourced
annotations.

2.1.3 WarpingLCSS - A Template Matching Method

We proposed template matching approaches based on longest com-
mon subsequence (LCSS) [42] for online pattern recognition to cope
with annotation errors in training data. We focused on short actions
performed by hand movements (i.e. gestures) like "open door", "draw-
ing a circle", "drink a cup". Chapters 4,5,6 discuss and evaluate the
proposed methods in detail, whereas this section presents a summary
and highlight results.

Figure 2.4 depicts the data flow in the proposed template match-
ing approaches. Sensor signals are quantized and converted into a
sequence of symbols (i.e., a string). This is done by first performing k-
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means clustering on all training data samples recorded from the body-
worn sensors in the training phase. The distance between two symbols
is the Euclidean distance between their corresponding cluster centers,
normalized to an interval [0,1]. Each data sample is then converted
to a symbol that indicate the cluster to which a sample belongs. The
number of cluster k is chosen empirically or through cross-validation
so that the distribution of cluster centroids captures the variation of
data samples (i.e., hand movements).

3D Acceleration Data

Quantization
- Template Construction (LCSS)

- Rejection Threshold

Training

Quantization

Drink template

Online Recognition

Warping 

LCSS

Segmented

LCSS

Recognition (TMM) Decision Making

(DM)

Output: Gesture

Figure 2.4: Data processing flow of the proposed LCSS-based template
matching methods for gesture recognition. (Figure 5.4, page 113)

2.1.3.1 Training phase

From the training data, one template is created for each gesture class
to represent the motion pattern for that class. The similarity score
between two gesture instances is measured as the length of longest
common subsequence (LCSS) between them. The template is chosen
as the instance that has the highest average similarity to all other
instances of the same class in the training data.

A rejection threshold is a value to decide whether signals belong
to a gesture class or not. Instances belonging to a class should have
the similarity score with the template of that class greater than the
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corresponding rejection threshold. Let µ(c) and and σ(c) be the mean
and the standard deviation, respectively, of LCSS values between the
template of a class c and any instances belonging to the same class. We
calculate the rejection threshold εc for gesture class c as a value below
µ(c) by some standard deviations.

εc = µ(c)
− h ∗ σ(c), (2.1)

with h = 0,1,2,...
It implies that any instances in the training data set with the similar-

ity that is lower than h standard deviation from the mean are outliers.
This rejection threshold selection is robust with the presence of wrongly
annotated instances in a class. The value of h can be selected by run-
ning the spotting on training data with a range value of h of between
0 and 5 and selecting the threshold which has the best F1-score (see
in Section 5.5.4 for the computation of F1-score metric). In most of our
experiments, h = 1 provided the best performance.

Note that for noise-free annotated training data, another strategy
to select rejection threshold is taking the minimum LCSS between the
chosen template and other gesture instances in the same class. The
rationale is that in the well-annotated training data all instances in
one gesture class are valid (see more in Chapter 4 where we used this
strategy to select rejection thresholds).

2.1.3.2 Recognition phase

In the recognition phase, the streaming data from sensor readings is
first quantized to symbols and then compared with the templates to
recognize gestures.

To detect gestures in the continuous stream, we first proposed Seg-
mentedLCSS approach which was based on a sliding window tech-
nique. The sensor signal is first segmented into a sliding window and
then the LCSS algorithm computes the similarity score between a string
in the window and templates of gesture classes. When a new symbol
arrives, the window shifts and the LCSS is repeatedly computed. The
SegmentedLCSS algorithm is straightforward, however a drawback is
its running time which is quadratic in template length to process a new
symbol in the stream. For online recognition, the computational cost
is an important factor. Hence, we proposed a linear-time algorithm
WarpingLCSS that can detect the occurrences of a template within a
stream without pre-segmenting data.
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Given a template T and a continuous stream S, the WarpingLCSS
algorithm computes the similarity score W(T,S)(i, j) between the first i
symbols of T and the first j symbols of S. The algorithm starts with
an empty stream. As a j-th symbol is appended to the stream, it is
compared with the i-th symbol in the template, and the similarity
scores W(T,S)(i, j) at row i and column j is updated instantaneously. If
two symbols match, a reward of +1 is added to the similarity score W.
Otherwise, W is decreased by a penalty. The penalization takes into
account three possibilities: 1) a mismatched alignment between two
current symbols in the two strings; 2) the warping between the current
symbol with its previous one in the template T; 3) the warping between
the current element with its previous one in the stream S. We consider
warping two consecutive symbols in the string in case of mismatch so
that the penalty is counted only once if the string contains contiguous
repetitions of a symbol which occur for example in a slower execution
of a gesture. The penalty is computed as −p ∗ d(αi, α j), where d(·, ·) is
the distance between two symbols and p is a scale parameter of the
dissimilarity. The similarity scores between the whole template and
the stream are stored in the last row of W.

Specifically, W(T,S)(i, j) is computed as follows.

W(T,S)(i, j) =



0 , if i = 0 or j = 0

W(T,S)(i − 1, j − 1) + 1 , if T(i) = S( j)

max


W(T,S)(i − 1, j − 1) − p ∗ d(T(i),S( j))
W(T,S)(i − 1, j) − p ∗ d(T(i),T(i − 1))
W(T,S)(i, j − 1) − p ∗ d(S( j),S( j − 1))

, otherwise,

(2.2)

Figure 2.5 illustrates how the WarpingLCSS algorithm works.
When a gesture of a class is performed, the similarity score W accu-
mulates rewards and grows until reaching a local maximum and even-
tually decreases again, as soon as the gesture is over. When gestures
differ from those encoded by the stored templates, W drops quickly
due to the penalty terms. In the last row of similarity scores, when a
local maximum exceeds the rejection threshold εc, it indicates a gesture
of class c has been spotted in the sensor signal. The algorithm needs to
store only the last column to compute the similarity score of the new
symbol. Thus, it requires only a constant amount of memory to update
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the similarity score W as well as do backtracking to get the starting
boundary of a spotted activity.

The spotting of different templates from all concerned activity
classes can be processed concurrently. If a gesture is assigned to multi-
ple classes (i.e., boundaries of spotted instances are overlapping), the
decision making module (DM) resolves the conflicts. The class having
a highest normalized similarity score (i.e., the similarity score is nor-
malized by template length and spotted gesture length) is chosen (refer
to Chapter 4.4.3 for more details about how to compute normalized
similarity score between two strings).

2.1.3.3 Evaluation

Data Sets We used three existing data sets including various ges-
tures for evaluation. The list of gestures of these data sets are shown
in Table 2.1. The Skoda data set [43] contains 10 manipulative gestures
performed in a car maintenance scenario by one subject. Each gesture
class has about 70 instances and the null class takes 23% of data sam-
ples.The HCI data set [44] contains 10 gestures of geometric shapes
executed by a single person with the arm in the vertical plane. The
HCI data set contains a large number of data samples belonging to null
class (57%) and each gesture class has about 50 instances. The Oppor-
tunity data set [12] contains 17 daily gestures recorded in a naturalistic
environment akin to an apartment. In the Opportunity, each gesture
class has 20 instances excepts "Drink Cup" and "Toggle Switch" each
having 40 instances. 37% of data samples belong to null class.

The Skoda and HCI data sets are characterized by a low variabil-
ity in the execution of gestures, meanwhile the Opportunity data set
presents a challenge to detect activities due to their large variability
in execution styles. Note that in Opportunity data set, there are three
drawers at different heights and two different doors which make the
recognition more challenging.

Baseline Methods We compared the WarpingLCSS and the Segment-
edLCSS with three other baseline approaches: two existing TMMs
based on Dynamic Time Warping (DTW) [2, 7, 8] and support vector
machine (SVM). The DTW-based TMMs are the Segmented DTW [7,8]
and the Nonsegmented DTW [2] that use DTW distance as a metric to
measure the similarity between two gestures. For all TMM methods,
we used the same strategy to select templates, i.e., the maximum sim-
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Table 2.1: Gestures in Opportunity, Skoda, and HCI data sets.

HCI Gestures
Circle Triangle Square Infinity Slider

Their Speculars Null

Opportunity Gestures
Null clean Table (CT) open Drawer 1-2-3 (ODr1-2-3)
close Drawer 1-2-3 (CDr1-2-3) open Door 1-2 (OD1-2) close Door 1-2 (CD1-2)
open Fridge (OF) close Fridge (CF) drink Cup (D)
open Dishwasher (ODi) close Dishwasher (CDi) Toggle Switch (TS)

Skoda Gestures
write on notepad check gaps on the front door check trunk gaps
open left front door close left front door close both left door
open hood close hood check steering wheel
open and close trunk Null

ilarity average for LCSS-based methods and the minimum distance
average for DTW-based ones. They all had the same quantization pre-
processing step over sensor data. For SegmentedLCSS and Segmented
DTW, the window length was chosen as the template length.

For SVM, the signals were segmented into a sliding window, with
50% overlap. For each window, two features - mean and variance of
the signals were extracted and then fed into a SVM classifier. We used
RBF kernels and the two RBF parameters were selected by using cross-
validation.

Among these methods, SegmentedDTW has the worst compu-
tational complexity which is cubic in template length to process a
new symbol when spotting. The complexity of SegmentedLCSS is
quadratic. Meanwhile, WarpingLCSS, Nonsegmented DTW and SVM
require only the linear-time complexity.

Experiments We evaluated the LCSS-based TMMs and the baselines
in three aspects. Their performances were first evaluated on clean-
annotated data sets in which annotations were given carefully by ex-
perts. Secondly, their performance on noisy crowdsourced data sets
were analyzed. Finally, we evaluated the proposed WarpingLCSS in
multimodality settings in which different multimodal sensors are de-
ployed. In the first two evaluations, the 3D accelerometer data on
the dominant lower-arm were used to evaluate. In the multimodality
experiments, different combinations of motion sensors from different
on-body positions were tested.
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Activity recognition systems often target user-independent recog-
nition in which a training data set is collected from a few number of
representative subjects and then activity models are built with a goal
to generalize for all users. As a result, user-independent activity recog-
nition rarely achieves the performance of user-dependent recognition
due to the fact that different people may have different styles of ac-
tivity executions. Due to a large labor pool of crowdsourced labelers,
crowdsourcing is potential to give annotations for data recording that
is targeted to one specific user. Therefore, with crowdsourcing, the
recognition system can be built individually for each user with user-
dependent activities of interest. Consequently, we focus on subject-
dependent evaluation.

For each subject, we performed 5-fold cross validation. In the Warp-
ingLCSS algorithm, the penalty parameter p was 0.3 for the Opportu-
nity, 0.5 for the HCI, and 0.8 for the Skoda. We evaluated the perfor-
mance with the sample-based accuracy and the F1-score metrics. The
F1 was computed in two ways, either with (F1_Null) or without the
Null class (F1_NoNull). The recognition system that has high values
of both F1_Null and F1_NoNull predicts well both gesture classes and
Null class.

2.1.3.4 Results on clean-annotated data sets

Table 2.2 shows the performances of WarpingLCSS and the four base-
line methods on the Opportunity, HCI and Skoda data sets with anno-
tations from experts. In the Opportunity data set, we here report the
result from one subject (see Chapter 4.6.2.2 for more results from other
subjects). Note that the result discussed in Chapter 4.6.2.2 was for a dif-
ferent strategy to calculate the rejection threshold (the minimum LCSS
between the chosen template and other gesture instances in the same
class). Here, the rejection threshold is selected by cross-validation with
the Equation 2.1 for the consistent comparison between WarpingLCSS
and the other methods in the all three aspects that we discussed above.

Our WarpingLCSS and SegmentedLCSS outperform two DTW-
based approaches in the Opportunity dataset (up to 21% higher in
accuracy and F1 measure). In the HCI data set, all approaches yield
comparable results and gain high accuracy. In the Skoda, the Segment-
edLCSS is superior to other methods (about 7% higher in accuracy and
F1 measure), but they all have good performance (> 80% F1-score).
Therefore, in the clean annotated data sets, the results show that our
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Table 2.2: The accuracy and F1 measure over sample unit in the three
data sets

Opportunity Dataset
Method Accuracy F1_Null F1_NoNull
WarpingLCSS 0.57 0.57 0.54
SegmentedLCSS 0.59 0.58 0.59
Segmented DTW 0.45 0.49 0.50
Nonsegmented DTW 0.36 0.36 0.31
SVM 0.56 0.55 0.48

HCI Dataset
Method Accuracy F1_Null F1_NoNull
WarpingLCSS 0.78 0.77 0.69
SegmentedLCSS 0.83 0.83 0.78
Segmented DTW 0.84 0.84 0.79
Nonsegmented DTW 0.79 0.79 0.73
SVM 0.81 0.80 0.63

Skoda Dataset
Method Accuracy F1_Null F1_NoNull
WarpingLCSS 0.82 0.87 0.83
SegmentedLCSS 0.90 0.90 0.93
Segmented DTW 0.83 0.84 0.82
Nonsegmented DTW 0.79 0.80 0.85
SVM 0.87 0.87 0.87

proposed LCSS-based approaches are competitive to the three state-of-
the-art methods in activity recognition, especially for data sets that suf-
fer from high variation in activity execution as in the Opportunity data
set. SegmentedLCSS achieves the best performance but WarpingLCSS
is more suitable for online recognition due to its small complexity and
high accuracy.

2.1.3.5 Results on noisy crowdsourced data sets

We evaluated WarpingLCSS, SegmentedLCSS and the baseline meth-
ods on both real and synthetic crowdsourced annotations. To generate
the synthetic crowdsourced annotations, we modified clean annota-
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tions from the three data sets described above by simulating label noise
and boundary jitter as discussed in the taxonomy in Section 2.1.2. We
ran simulations for each type of noise separately in order to under-
stand their effects on performance. The results showed that F1-Null
and F1-NoNull scores had a similar trend of performance as the noise
levels increase, hence we report F1-Null score only.

Results on Label Noise Simulations Let α be the label noise per-
centage in each class. In each gesture class, α percent of instances
are randomly selected and their labels are randomly flipped to other
classes (including null class).

Figure 2.6 shows the results of label noise simulations on the three
data sets over a parameter sweep for α. The performances of LCSS-
based methods are stable until a label noise percentage (α) in each
class exceeds 70% in Opportunity and HCI data sets and 50% in the
Skoda data set. SVM performs worse than our LCSS-based methods
when α increases. On average, WarpingLCSS outperforms SVM by
22% F1-Null and outperforms DTW-based methods by 36% F1-Null in
presence of 60% mislabeled instances. SegmentedLCSS yields similar
performance as WarpingLCSS.
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Figure 2.6: Performance of label noise simulation for the three data
sets. (Figure 5.4, page 113)

Our LCSS-based methods are robust to label noise due to their ca-
pability to pick a good template among noisy instances for a gesture
class as long as the ratio of good instances in a gesture class is still
predominant. Meanwhile, DTW-based methods fail to pick a good
template because mislabeled instances bias and dominate the DTW



30 Chapter 2: Thesis Summary

metrics. SVM performs worse when α increases because both good
and bad instances contributes equally to the model building.

Results on Boundary Jitter Simulation In the boundary jitter simu-
lations, we assume that all gesture instances have the same jitter level
β. Specifically, in the extend or shrink simulations, all gesture instances
are extended or shrunk at both ends equally by (β/2 per side) respec-
tively. In the shift left and shift right simulations, each gesture instance
is shifted to the left or to the right respectively by β compared to the
correct starting point.

Figure 2.7 shows the results of extend jitter simulations on the three
data sets. In extend jitter, data belonging to the null or other classes
(before and after the gesture) are labeled noisily as belonging to the
gesture class. All methods can tolerate up to about 40% extend level in
the Opportunity and HCI data sets and about 10% extend level in the
Skoda data set. As the extend level is high, the performance of SVM is
stable in HCI and Skoda data sets, but degrades quickly in Opportunity
data set. The performance of SVM depends on how much the noisy
feature vectors added into the model of each gesture class. In the extend
case, samples of the null class are partially labeled as a gesture class.
Hence, different levels of variability of the signals belonging to the null
class in the data sets decide the performance of SVM.
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Figure 2.7: Performance of extend jitter simulation. (Figure 5.9, page
127)

The performance of shrink simulations are given in Figure 2.8. Our
proposed LCSS-based methods (WarpingLCSS and SegmentedLCSS)
achieve the best performance in the three data sets. All methods can
tolerate about 30% shrink level before a degradation. The performance
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of SVM falls faster as a shrink level β increases. When having a shrink
jitter noise, the effect is that the methods lose information about the
gesture data, since only parts of the gestures are labeled. The SVM
model is more likely to be corrupted due to the lack of labeled data
when β is large. For TMMs, shrunk instances still form shorter subse-
quences that can still be matched to the test data. In our simulations, all
gesture instances have the same shrink level leads to a good alignment
between instances in the same class. As a result, the performances of
the DTW-based methods degrade slowly as β increases as shown in
Figure 2.8. In realistic experiments, when different shrink levels are
applied, their performance can fall quickly due to data misalignment.
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Figure 2.8: Performance of shrink jitter simulation. (Figure 5.10, page
127)

The shift-right and shift-left simulations have similar results and
here we show only the results of shift-right jitter simulations in Figure
2.9. All methods can tolerate about 20% shift level. When annotations
are shifted, a mixture of the effects on extend and shrink is present (i.e.,
some samples belonging to a gesture are lost and some noisy labeled
samples are added to the gesture). As can be seen, these effects reflect
on the performances of SVM and TMM methods in the three data sets.

Results on Real Crowdsourced Annotation We investigated further
the performances of our proposed WarpingLCSS and SegmentedLCSS
methods on the real crowdsourced annotations performed by AMT
workers for the Opportunity data set that we summarized in Section
2.1.1. Both the annotations obtained in the one-labeler and multiple-
labeler scenarios were used. Mixtures of all kinds of the annotation
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Figure 2.9: Performance of shift-right jitter simulation. (Figure 5.11,
page 128)

errors are present and jitter levels are varied from one instance to
another instance as shown in Figure 2.3.

The performances on these crowdsourced annotations are shown in
Figure 2.10. In the multiple-labeler annotation, 80% of the data samples
are annotated correctly. Only 18% of gesture instances are wrongly
labeled and the remainder are correctly labeled with a small jitter
level of at least 2%. Consequently, the performances of all recognition
methods are just slightly decreased by up to 4% for F1-Null and 6%
for F1-NoNull compared to the training with clean annotated training
sets. However, our LCSS-based TMMs yield the best performance.

In the one-labeler annotation, only 55% samples are annotated cor-
rectly. Additionally, about 50% of gesture instances are affected by label
noise, with many deletions and substitutions. With the high presence
of label noise, the performance of SVM decreases dramatically, down
to a F1-NoNull of 5% (i.e., equivalent to a random guess). Our LCSS-
based TMMs still achieve the best performance, outperform SVM by
about 27% F1-score and outperform DTW-based methods by up to 25%
F1-score.

A LCSS-based Filtering Component The results have shown that
SVM is very sensitive to the high label noise in the training data set
(see Figure 2.6 and Figure 2.10). Therefore, a preprocessing component
to clean the noisy annotation would be beneficial before using SVM.
Given the robustness of our LCSS approaches in selecting templates
among noisy instances, as well as in spotting, we further proposed
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Figure 2.10: Performance of the crowdsourcing annotation from AMT
on Opportunity data set. (Figure 5.12, page 130)

a LCSS-based filtering component to filter out noisy labeled data in
crowdsourced annotations before being fed into other learning tech-
niques like SVM or the DTW-based TMMs.

Before training a SVM, the LCSS-based filtering component com-
putes a LCSS similarity matrix among all pairs of instances in the
class, and keeps only the instances that have a high average similarity
to other instances of the same class. To clean noise inside the null in-
stances (e.g., delete noise), the WarpingLCSS runs the spotting on the
data annotated as null and discards any parts that are classified as any
gestures of interest. We call this approach Filtering SVM (FSVM).

For DTW-based TMMs, the filtering component picks a template
by using LCSS similarity. Then the template are used in the Segmented
and Nonsegmented DTW spotting methods. We call these approaches
LCSS-SegDTW and LCSS-NonSegDTW respectively.

The performances of SVM and DTW-based methods with the fil-
tering component are shown in Figure 2.11 for the real crowdsourced
annotation. The filtering increases the performance of SVM by 20%
F1-score and of DTW-based methods by 8% F1-score on average in the
one-labeler annotation.

Similarly, the filtering DTW spotting methods outperform the non-
filtering ones. The result clarifies that LCSS is better than DTW in
selecting a good template among noisy instances. Importantly, the
results show that with the same templates, our LCSS-based TMMs still



34 Chapter 2: Thesis Summary

outperform LCSS-NonSegDTW and LCSS-SegDTW in spotting.
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Figure 2.11: Performance of the AMT crowdsourcing annotation on
Opportunity for the methods with and without filtering. SegLCSS,
NonSegDTW, and SegDTW stand for Segmented LCSS, Nonseg-
mented DTW and Segmented DTW respectively. (Figure 5.12, page
130)

Figure 2.12 shows the performances of all the methods for the syn-
thetic label noise simulation. The filtering-based methods outperform
non-filtering ones and keep the performance stable much longer when
α increases. Our proposed LCSS-based TMMs have similar or better
performance than the other methods. With the same templates picked
by LCSS, the LCSS-SegDWT and LCSS-NonSegDTW have a similar
performance as our LCSS-based TMMs in the HCI and Skoda data
sets. However, in the Opportunity dataset, our LCSS-based methods
are still better. The rationale is that LCSS is more robust than DTW to
capture similarity between gestures of the same class that have high-
variance in execution (see more in Chapter 4).

2.1.3.6 Results on Multimodality

The results obtained so far show the robustness of our WarpingLCSS
and SegmentedLCSS on both clean and noisy annotated data set. How-
ever, WarpingLCSS is more appropriate than SegmentedLCSS for on-
line recognition due to its cheap computation cost, therefore we select
WarpingLCSS for further exploration. In previous experiments, Warp-
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Figure 2.12: Performance of label noise simulation for the methods
with and without filtering. (Figure 5.14, page 133)

ingLCSS is tested on single sensor modality (i.e., accelerometer on
arm). In this section, we summarize the ability of WarpingLCSS on
multimodal activity recognition (see Chapter 6 for more details).

We investigated two multimodal frameworks to fuse different data
sources either at the signal level (signal fusion) or at a decision level
(classifier fusion). In the signal fusion, signals from all sensor modalities
are combined into one data stream before being processed by the Warp-
ingLCSS. Figure 6.4 shows the signal fusion framework. Let di be the
dimension of signal data generated from sensor Si ∈ Φ. The combined

data stream from the Signal Fusion module has a dimension of
|Φ|∑

i=1,Si∈Φ

di.

The template matching (TM) module processes data and spots activi-
ties with WarpingLCSS. The TM module is already presented in Section
2.1.3 and illustrated in Figure 2.4. Finally, the decision making module
handles spotting conflicts and outputs recognized activities.

S1

S2…
.

Sn

Signal

Fusion

Template 

Matching

Spotted Activities Decision 

Making

Figure 2.13: Signal fusion framework for sensors S1, S1, · · · , Sn
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In contrast, in the classifier fusion framework, each sensor is treated
uniformly via the same process in the Template Matching module. The
WarpingLCSS scores from all sensors are combined linearly, weighted
by a prior weight to indicate how well a sensor can recognized the
specific class. A gesture class with a highest fused score is the best
match. Figure 2.14 shows the classifier fusion framework.

Let Φ and |Φ| be the set of sensors and the number of sensors in the
system, respectively. We represent the spotting output from a sensor
S ∈ Φ in a spotting matrixM(S) of size C ∗N , with C is the number of
activity classes of interest and N is the number of samples processed.
M(S)(c, i) represents the entry at the ith sample and the row of class
c in the matrixM(S). Each row c in the matrix, indicated asM(S)(c)
stores the information of spotted instances of an activity class c from
the sensor S. Specifically, if the sensor outputs an activity instance of
class c from start-time to end-time with a similarity score simScore (i.e.,
[start-time, end-time, c, simScore]), thenM(S)(c, i) = simScore for all i-th
samples in the interval from start-time to end-time at the row c. Figure
2.15 gives an example of the spotting matrix.

Classifier

Fusion

Spotted from S1

Weight (S1,class)
S1

…
.

Sn

…
.

Spotted from Sn

Decision 

Making

Template 

Matching

Template 

Matching
Weight (Sn,class)

Figure 2.14: Classifier fusion framework for sensors S1, S1, · · · , Sn

Let Weight(S,c) be a prior weight to indicate how well sensorS can
recognize the specific class c. We set Weight(S,c) as the best F1-score
performance when selecting the rejection threshold for activity class c
in the processing of sensor s (see Section 2.1.3 for more details). The
weighted summed spotting matrix is computed as follows.

M̄(c) =

|Φ|∑
i=1
Si∈Φ

Weight(Si, c) ∗M(Si)(c)∀c. (2.3)

The similarity score of an activity in the spotting matrix degrades if
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Figure 2.15: An example of the spotting matrix with three activity
classes (drink, open door and close door) and two spotted activities:
[2, 4, drink, 0.8] and [7, 9, open_door, 0.6].

the prior performance of the sensor to recognize the corresponding
activity class is low.

We tested the multimodal WarpingLCSS on four subjects in the Op-
portunity data set (see 2.1.3.3 for detailed description of the Opportu-
nity). Each subject wore 17 sensors of three modalities (3D accelerom-
eter (A), 3D gyroscope (G) and 3D magnetic field (M)) attached at
different on-body positions - right upper arm (RUA), right lower arm
(RLA), left upper arm (LUA), left lower arm (LLA), back (BACK),
right shoe (RSHO) and left shoe (LSHO)). The signals of all sensors
were recorded at a frequency of 30Hz.

In the classifier fusion, the number of symbols in quantization was
selected empirically k = 20 for each 3D sensor. In the signal fusion
framework, the number of symbols was selected much higher k = 200
to capture variants in the combined movements at different on-body
positions.

The presence of sensors on shoe may degrade the performance sig-
nificantly due to the fact that their signals are not distinguishable for
different gesture executions. To give a flavor of this hypothesis, we ran
the signal fusion with the baseline SVM on 17 sensors. For subject 1,
SVM achieves 39% F1-Null and 27% F1-NoNull, degrades the perfor-
mance of the one-best sensor significantly by 20%. The performances
for subject 3 and subject 4 are similar. For subject 3, SVM only obtains
8% F1-NoNull (the result is equivalent to a random guess). The results
on SVM demonstrate that adding activity non-distinguishable sensors
(e.g., sensors on shoes) into a system may degrade significantly the per-
formance. However, we included them in the multimodality setting to
investigate the robustness of WarpingLCSS.

Figure 2.16 shows the performances of WarpingLCSS on each sen-
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sor (i.e., number of sensors = 1). As can be seen, the performances of
different sensors vary significantly. The sensors on shoes give the worst
performance (about 10% F1-NoNull). The results of WarpingLCSS on
the use of all 17 sensors in the signal fusion and classifier fusion are
shown in Table 2.3. They both achieve good performances for the four
subjects (63% to 84% F1 scores). Compared with using only one sensor,
using 17 sensors lifts up the average performance by up to 23% F1-Null
and 21% F1-NoNull. It also increases the performance of the best one-
sensor by up to 11% F1-Null and 15% F1-NoNull. The signal fusion
can detect the null class better than the classifier fusion by about 7%
F1-Null. The rationale is that the signal fusion of WarpingLCSS has a
global view of data from all sensors at once and it spots an activity only
when the combined pattern of that activity from different sensors is
matched. Conversely, the classifier fusion has only a local view of data
from each sensor, and the presence of not-so-distinguishable sensors
(e.g., shoe sensors) in the classifier fusion may lead to the spotting of
the false detected activities instead of the null class.
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Figure 2.16: Performance of classifier fusion framework with all subset
combinations of 17 sensors for subject 1. The red middle lines in boxes
show the average performance. (Figure 6.6, page 148)

In Figure 2.16, we also show the performances of different subset
combinations in the classifier fusion for subject 1. Other subjects have
a similar trend of performance (see Chapter 6 for more details). On
average, both F1-Null and F1-NoNull scores grow significantly as the
number of sensors increases from 1 to 6 and then keep almost stable.
Generally, adding more sensors does not always lead to the better
performance (e.g., two accelerometers at lower arm and upper arm



39

may not improve the detection of open door 1 and open door 2). The
observation is similar to the reported findings in [45,46]. We show the
best subset of 17 sensors that gets the best result on Table 2.4

Table 2.3: Performance of two frameworks on 17 sensors in the Op-
portunity dataset. (Table 6.2, page 147)

Subject 1 Subject 2 Subject 3 Subject 4 Average
Method F1-

Null
F1-
NoNull

F1-
Null

F1-
NoNull

F1-
Null

F1-
NoNull

F1-
Null

F1-
NoNull

F1-
Null

F1-
NoNull

Classifier
Fusion

0.74 0.79 0.63 0.67 0.75 0.80 0.65 0.71 0.69 0.74

Signal
Fusion

0.77 0.77 0.67 0.68 0.84 0.81 0.74 0.73 0.76 0.75

The results indicate that our WarpingLCSS performs well in both
signal fusion and classifier fusion frameworks. Especially, Warp-
ingLCSS is robust with the presence of not-so-distinguishable sensors
in the system (compared with SVM that achieves only 39% F1-Null
and 27% F1-NoNull in signal fusion on 17 sensors on subject 1). For
SVM and other feature-based machine learning techniques, a care-
ful selection of features for different modalities may be important to
improve the performance. Meanwhile, WarpingLCSS treats different
modalities, and sensors with the same modalities at different on-body
placements in a homogeneous way. Due to its simplicity and effec-
tiveness, WarpingLCSS is useful for multimodal activity recognition
systems. For more discussion on trade-off between the sensor fusion
and signal fusion, refer to Chapter 6.

Table 2.4: The combination of sensors giving the best performance in
the classifier fusion framework. (Table 6.4, page 150)

Sensors (Number of sensors) F1-Null F1-NoNull
Subject 1 BACK_M, RUA_G, RLA_G, RLA_M,

LUA_A, LLA_A (6)
0.82 0.83

Subject 2 BACK_G, BACK_M, RUA_G, RUA_M,
RLA_G, LUA_A (6)

0.71 0.73

Subject 3 BACK_G, RUA_M, RLA_G, RLA_M (4) 0.87 0.85
Subject 4 BACK_M, RUA_G, RLA_A, RLA_M (4) 0.75 0.74
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2.2 One-Time Point Annotations

An activity annotation commonly includes the start and end times
and the corresponding label of the activity in the sensor recording.
We proposed a new annotation technique in which labelers do not
have to select the start and end time carefully, but mark a one-time
point within the time an activity is happening. This one-time point
annotation technique reduces significantly the labeling burden both in
real-time labeling and offline labeling. The work also focused on hand
gestures.

One-time point annotation is a special case of boundary jitter that
we presented previously in Section 2.1.2. It equivalents to a scenario
that all gestures are shrunk to minimum, just a one-time point. Our
experimental results in Section 2.1.3.5 showed that machine learning
methods can tolerate at most 40% jitter level. Consequently, one-time
point annotations (almost 100% jitter level) cannot be used directly to
model gesture classes. However, we proposed a novel boundary fixing
approach to search for the correct start and end time of an activity
around its given one-time point annotation.

Figure 2.17 shows the data flow and its illustration through dif-
ferent processing components in the boundary fixing approach. The
sensor signals are first quantized and converted into sequences of
symbols (strings). The initial start and end boundaries of each ges-
ture are then set loosely around its given one-time point annotation
to ensure the correct boundaries fall inside the segment. We consider
two ways of boundary initialization, depending on whether the max-
imum gesture length for each class is known or not, namely MaxLen
and NoLen respectively. In the MaxLen case, the initial boundaries
are extended around the annotated point by the maximum length. In
the NoLen case, we extend the boundaries to the previous and subse-
quent annotated points. The non-motion removal component shrinks
the initialized boundaries to the motion segment containing the an-
notated point. This non-motion removal step is optional and can be
applied only if the signal comes from an accelerometer attached on
arm that executes gestures. Finally, a novel boundary searching algo-
rithm (BoundarySearch) seeks for the good boundaries of a gesture
around its given one-time point annotation and within the initialized
boundaries. Chapter 7 gives a detail about all processing steps in the
approach. Here, we summarize the BoundarySearch algorithm and
present the highlight results.
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Figure 2.17: Data processing flow of the proposed boundary fixing
approach. An example is shown on the right. Three annotated gestures
"open door", "drink", and "toggle switch" with their one-time point
annotations indicated as black arrows are given in the training data.
In this example, the maximum length of "drink" gesture is given and it
is used to initialize the boundaries of the "drink" gesture. 3 represents
non-motion symbols.

2.2.1 BoundarySearch Algorithm

We assume that gestures are performed in a random order in the train-
ing data set. The BoundarySearch algorithm searches for the correct
boundaries of gestures based on seeking similar data patterns around
the annotated points of the same class. Given two gesture instances
w1 and w2 of the same class whose boundaries are initialized around
their one-time point annotations, the BoundarySearch algorithm first
detects all pairs of optimal matching substrings within w1 and w2. Then
a pair of matching substrings that cover the one-time point annotations
become new boundaries for w1 and w2.

Given two strings w1 and w2, we define a warping path to match
the two strings by either aligning an element of w1 to an element of
w2, or warping two consecutive elements of w1 or of w2. Figure 2.18
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illustrates the warping path to match two strings.
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Figure 2.18: Illustration of an alignment between two strings "BBCED"
and "ACFFFD" and the corresponding warping path starting from the
first indices at the top left to the last indices at the bottom right. In
this example, two symbols "B" of the first string are warped and so are
three symbols "F" of the second string.

Let ΨA(·, ·) be a similarity weight of an alignment between a symbol
in w1 and a symbol in w2 and ΨW(·, ·) be a similarity weight of a warping
between two consecutive elements in w1 or in w2. In case of a matched
alignment, a similarity weight is a reward R = 1. Otherwise, a similarity
weight is a negative penalty computed as −p ∗ d(αi, α j), where p is a
penalty parameter of the dissimilarity and d(·, ·) is the distance between
two symbols. Specifically, ΨA and ΨW are defined as follows.

ΨA(αi, α j) =


1 , if αi = α j

−p ∗ d(αi, α j) , otherwise
(2.4)

(2.5)
ΨW(αi, α j) = −p ∗ d(αi, α j) (2.6)

A warping path has a similarity score which accumulates all simi-
larity weights along the path.

To detect all pairs of optimal matching substrings within two ges-
tures of the same class, we define B(i, j) to be the maximum similarity
score attained over all possible warping paths between substrings of
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w1 ending at the i-th position and substrings of w2 ending at the j-
th position. The BoundarySearch algorithm obtains the score B(i, j) as
follows.

B(i, j) =



0 , if i = 0 or j = 0

max


0
B(i − 1, j − 1) + ΨA(w1(i),w2( j))
B(i − 1, j) + ΨW(w1(i),w1(i − 1))
B(i, j − 1) + ΨW(w2( j),w2( j − 1))

, otherwise,

(2.7)

The algorithm starts with an empty string and the corresponding B
score is 0. A value of B is updated by taking the maximum of the best
possible matching (alignment or warping at the current positions) and
0. A negative value of B would not be of interest because we can always
choose different starting indices for substrings to get a better value B.
B(i, j) = 0 also indicates there is no substring matching at position i
and j.

All optimal matching substrings between two strings can then be
found by tracing back the matching path starting from an element of
B greater than 0 and ending with an element of B equal to zero. Figure
2.19 illustrates an example of the similarity score B computed between
two "drink" gestures whose boundaries are initialized loosely and their
optimal matching substrings. To make the example more interesting,
we consider the initialized boundaries wrongly covering some parts of
"toggle switch" gestures. As can be seen, the BoundarySearch algorithm
can find both a matching between two "drink" gestures and a matching
between two "toggle switch" gestures.

Each matching forms a cluster of connected scores (i.e., from the
starting vertex of a cluster to the furthest indices the cluster can reach).
The BoundarySearch algorithm then selects only the cluster that covers
the one-time point annotations of the two gestures w1 and w2. In the
targeted cluster, we select the highest similarity score M indexed at
(v1, v2) such that the path from the starting vertex of the cluster indexed
at (u1,u2) to (v1, v2) still covers the marked annotated points. The new
boundaries are set from u1 to v1 for the first gesture and from u2 to v2
for the second one.

Given an instance k of gesture class c, we run the boundary fixing
for this instance paired with all other instances in the same class. Then



44 Chapter 2: Thesis Summary

O 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

G 0 0 0 0 0 0 0 0 0 0 0 2 2 0.5 0 0

G 0 0 0 0 0 0 0 0 0 0 0 2 3 1.5 0 0

L 0 0 0 0 0 0 0 0 0 0 0 0.5 1.5 4 1.9 0

E 0 0 0 0 0 0 0 0 0 0 0 0 0 1.9 5 0.8

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8 6

W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.8

D 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

R 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

I 0 0 0 0 3 1.5 0.6 0 0 0 0 0 0 0 0 0

N 0 0 0 0 1.5 4 3.1 0.1 0 0 0 0 0 0 0 0

K 0 0 0 0 0.6 3.1 5 2 0.5 0 0 0 0 0 0 0

A 0 0 0 0 0 0.1 2 0 0 0 0 0 0 0 0 0

T X D R I N K U P T O G G L E S
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A

Figure 2.19: Illustration of BoundarySearch algorithm to compute
the score B between two "drink" gestures with incorrectly initial-
ized boundaries w1 = "TXDRINKUPTOGGLES" and w2 = "OG-
GLESWDRINKA". In this example, the initialized boundaries wrongly
cover some parts of "toggle switch" gesture ("TOGGLES" in w1 and
"OGGLES" in w2). Here we assume the distance between two symbols
is their difference in encoded English alphabets (A-Z are converted to
0-25) and the penalty p is 0.3. Arrows indicate which of the preced-
ing positions are picked to generate score B. Two black arrows out-
side the table indicate the one-time point annotations of the gestures.
Two clusters of connected scores show the longest matching substrings
("DRINKUP" with "DRINKA", and "OGGLES" with "OGGLESW"). The
targeted cluster on the bottom left with the highest similarity score M
= 5 spans the marked annotation. Hence, the corrected boundaries of
two gestures are shown in green bars.

the final boundaries of the instance k are the average starting and
ending time from all possible fixing boundaries.
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2.2.2 Evaluation of Boundary Fixing Approach

We evaluated the boundary fixing approach on the Opportunity, HCI
and Skoda data sets. In the Skoda and HCI data sets, we used a 3D
accelerometer at the subject’s dominant lower arm. In the quantiza-
tion step, the number of symbols was selected k = 20. The non-motion
removal step as presented above and illustrated in Figure 2.17 was
applied. In the Opportunity data set, we used 6 different sensors worn
at different on-body positions on one subject to achieve the best dis-
crimination among gesture classes. Those sensors were given from the
previous evaluation of our WarpingLCSS on multimodality on the Op-
portunity data set (see Section 2.1.3.6). They were 3D magnetic field on
back, 3D gyroscope on right upper arm, 3D gyroscope and 3D mag-
netic field on right lower arm, 3D accelerometer on left upper arm and
3D accelerometer on left lower arm. The non-motion removal step was
not applied for the Opportunity data set since a 3D accelerometer on
dominant right arm was not used. The number of symbols was k =
120.

For each data set, we performed a 5-fold cross validation. From
the training data set, we generated a one-time point annotation for
each gesture by selecting randomly a point inside the ground truth.
The boundary fixing approach was then applied to find boundaries
for each gesture. The recognition system was trained on the fixed an-
notations and evaluated on the clean annotated test set. Two spotting
techniques WarpingLCSS and SVM were used to evaluate the recog-
nition system. We compared the performance of the spotting methods
trained with ground truth annotations against those trained with the
fixed annotations. We also evaluated their performances on the initial
annotations which were extended loosely around the one-time points
but were not corrected by our proposed BoundarySearch algorithm.

2.2.3 Results of Boundary Fixing Approach

2.2.3.1 Quality of Fixed Annotations

To evaluate the quality of fixed annotations compared to ground truth,
we used a taxonomy of annotation noises that we summarized in
Section 2.1.2. However, here we assume that the labels at one-time
point annotations are correctly given, hence substitute and insert noises
do not exist.
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Figure 2.20: Extend levels of gesture boundaries initialized around one-
time point annotations before BoundarySearch algorithm is applied.
The box in the box plot covers from the 25th percentile to the 75th
percentile (i.e., 50%) of the extend levels. Blue lines inside the boxes
show the median values. Black lines show the minimum as well as
the 98th percentile. Note that the scales are different for the sake of
visibility.

Figure 2.20 shows the quality of the initialized boundaries of ges-
tures in case of MaxLen and NoLen extensions before the Boundary-
Search algorithm is applied, namely NoFix-MaxLen and NoFix-NoLen.
Of gesture instances, at least 50%-75% are extended by more than 100%.
There are only few gesture instances (about 4%) suffering less than 30%
extend level. The extend levels of the initial gesture boundaries in HCI
and Skoda data sets are much smaller than those in the Opportunity
data set due to the use of the non-motion removal component. The
prior knowledge of maximum length of each class reduces the extend
levels significantly. However, the presence of many gesture instances
with very large extend levels still makes NoFix-MaxLen unacceptable
to train gesture models.

Figure 2.21 shows noise distribution and jitter levels of the fixed an-
notations after the BoundarySearch algorithm is applied in the NoLen
case (namely Fixed-NoLen). Interestingly, there are some instances
perfectly matched with the ground truth (they are shown as Good in
Figure 2.21a) . The BoundarySearch algorithm reduces significantly
the jitter levels in the initial boundaries. In the Opportunity data set,
the maximum extend level before fixing is above 1000%, meanwhile
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it decreases to 200% after fixing. More importantly, after fixing, up to
70%, 83% and 92% of instances in the Opportunity, HCI and Skoda
respectively suffer less than 30% jitter levels.
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Figure 2.21: Analysis of fixed annotations in case the prior knowledge
of maximum gesture length is not available (Fixed-NoLen). Blue lines
in Fig. a) on the left split a boundary jitter part from good and delete
types. In Fig. b), the description of box plot is the same as that in Figure
2.20. The red star indicates the maximum level of jitter in each type of
boundary jitter.

The analysis of the fixed annotations in the case of MaxLen (namely
Fixed-MaxLen) is given in Figure 2.22. Similarly, the BoundarySearch
algorithm decreases the jitter levels significantly. The ranges of jitter
levels in Fixed-MaxLen are smaller than those in Fixed-NoLen. After
fixing, the percentages of instances having jitter levels less than 30%
in the Opportunity, HCI and Skoda data sets are 78%, 87% and 92%
respectively.

2.2.3.2 Recognition Performance on Fixed Annotations

Figure 2.23 shows the performances of WarpingLCSS and SVM on
the fixed annotations (Fixed-NoLen, Fixed-MaxLen), on the non-fixing
baselines (NoFix-NoLen, NoFix-MaxLen), and on the clean annotated
annotation of the three data sets. In the Opportunity data set, in case
the maximum gesture length is unknown, the performance of the fixed
annotations Fixed-NoLen outperforms the nonfixing NoFix-NoLen by
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Figure 2.22: Analysis of fixed annotations in case the prior knowledge
of maximum gesture length is given (Fixed-MaxLen). Interpretation of
notations in this figure is the same as in Figure 2.21.

up to 58% F1-score for SVM and up to 29% F1-score for WarpingLCSS.
We achieve the similar results in case of MaxLen. The performance of
fixed annotations are decreased by just up to 10% F1-score compared
to those of clean annotation for both recognition methods. In the HCI
and Skoda data set, the fixed annotations in both cases NoLen and
Maxlen can achieve the same performance as the clean annotations.
They also outperform the non-fixing baselines by up to 40% F1-Null.

The results indicate that our boundary fixing approach can effi-
ciently correct the boundaries of gestures around the one-time point
annotation in both cases, whether the prior knowledge of the maxi-
mum length is given or not.

2.3 Personalized Adaptation on Crowdsourced-based
Models

We proposed an adaptation on a generic model build on crowd-
contributed free-annotated data to a personalized model in Chapter 8
to improve the recognition performance with no to little input from the
user. We investigated two adapting approaches: 1) a semi-supervised
learning to combine crowdsourced data and unlabeled user data, and
2) an active-learning to detect the most informative user-specific data
samples that the crowd-based model fails to recognize and query the
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Figure 2.23: Performance of WarpingLCSS and SVM on fixed annota-
tions in both cases of NoLen and MaxLen and on baselines.
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user for labeling them. We illustrated the idea on an audio-based ac-
tivity recognition system with the focus on high-level activities such
as "working in the office", "having a conversation".

2.3.1 Personalized Adaptation System

Figure 2.24 shows an overview of a personalized adaptation system.
In data preprocessing phase, auditory training data from Freesound
1 and user’s mobile phone were collected. We then extracted acous-
tic features from the collected audio clips. In the learning phase, we
applied machine learning techniques to learn and adapt an activity
recognition model based on the two sources of data. In the recognition
phase, the activity recognition model is used to infer user activity from
data recorded on user’s mobile phone. We summarize each component
in our proposed system in the following.

User-centric Recordings: We recorded continuously two full work-
ing days of audio data from users’ smartphones with a sampling fre-
quency of 16 kHz and bit depth of 16 bits/sample in WAV format.
Activity classes are about working, feeding, transportation and social
interaction which are useful in health monitoring [47]. All participants
live in Zurich, Switzerland and thus, the transportation includes tram,
train, bus and car. Users can perform different set of activity classes, in-
dividual to their daily situations. Table 2.5 shows the list of classes pro-
vided by 7 participants and the corresponding distribution of classes.

Crowdsourced Repository: Freesound is an online sharing reposi-
tory of crowd contributed sound data. Sounds are annotated in free-
form styles and the tags come from very diverse vocabularies [48].
From the list of activity classes provided by the users, we down-
load free annotated training audio data for those activity classes from
Freesound (30 sound clips per activity class). We manually filtered
the downloaded audio clips that are irrelevant to the assigned context
class. The filtering task can be done quickly by listening the audio
clips. Data downloaded from Freesound were also converted to the
same format as user-centric data (a sampling frequency of 16 kHz and
bit depth of 16 bits/sample in WAV format).

1www.freesound.org
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Figure 2.24: The data processing flow of the sound-based activity
recognition that combines Freesound data and user-centric audio data
from mobile phone

Audio Features: We extracted 12 coefficients mel-frequency cepstral
coefficient (MFCC) and log-energy in a sliding window of 32 ms length
of audio data.

Learning Approaches: We used semi-supervised learning [34] and
active learning [35] schemes based on Gaussian Mixture Model (GMM)
[49–53] for the adaptation, namely Semi-supervised Adaptation and
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Table 2.5: User-dependent activity classes and the corresponding
distribution of classes in dataset

Context Classes and Class Distribution (%)
User 1 office (83), tram (1), train (10), conversation (6)
User 2 toilet (1), office (50), restaurant (5), street (1), conversation

(43)
User 3 office (37), restaurant(7), street(12), tram(2), conversa-

tion(42)
User 4 toilet (1), office (70), restaurant(2), street (4), tram (1), con-

versation (22)
User 5 toilet (1), office (63), restaurant (7), street (7), tram (1), train

(7), conversation (14)
User 6 toilet (0.4), office(70), restaurant (8), street (4), tram (6), train

(5), car (1), conversation (5.6)
User 7 toilet (0.2), office (21), restaurant (9), street (4), tram (5),

train (6), car (2), bus (0.2), conversation (52.6)

Active Learning Adaptation. Semi-supervised Adaptation combines both
Freesound labeled data and user unlabeled data to train activity mod-
els. The assumption is that nearby data points are more likely to share a
label. Hence, taking user unlabeled data in training can adapt the deci-
sion boundaries towards user data points. In the Active Learning Adap-
tation, we first trained a bootstrapped activity model using Freesound
labeled data. From that initial model, active learning proceeded and
iteratively selected the most informative user-centric samples to query
for labels. The activity model was then retrained and adapted with the
new user labeled data. Instead of asking a label for only a feature-based
point which is extracted from the 32 ms data segment, we ask a label
for a longer segment (≈ one minute) around the queried instance.

Recognition Approach: The trained GMM models were used to rec-
ognize user activities based on audio data recorded from the smart-
phone. We constructed a two-level classification. At the low level, audio
instances extracted from windows of 32 ms were classified by the GMM
models. At the high level, a decision was made on the longer segment
(2 seconds) by taking a class with the highest occurrence frequency in
the segment as a label.
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2.3.2 Evaluation and Results

Each user recorded two full working days of audio data in his ordinary
setting with android smartphones. For each recording day, at least 9
hours of audio data were obtained for each user. As can be seen in
Table 2.5, users spent most of the time in the office and discussed their
works with colleagues. In total, about 130 hours of audio data were
collected from mobile phones for the study. The number of activity
classes vary from 4 to 9 classes. The audio recording of each subject
was divided into two equal halves. The first half was used for training
and the second one was used for testing.

We compared our proposed approaches with three baseline non-
adapted learning approaches:

• Freesound fully supervised approach (FS-Supervised) that used
only Freesound data for training

• User fully supervised approach (User-supervised) that used only
user annotated data for training

• Active leaning (AL) from User that initially took one minute of
user labeled data for each activity class for training, and then
the active learning was applied to query labels for the uncertain
samples.

We evaluated them in terms of accuracy and labeling effort. Ta-
ble 2.6 gives the accuracy of five approaches. For the active learning
approaches, we only show here the best performance over the first
20 label queries (see Table 8.7 for the details of which activity classes
were queried and Figure 8.3 for the detailed performance of the active
learning on each label query).

The Semi-supervised Adaptation improves the recognition accuracy
of the FS-Supervised up to 21% for six users. However, when the as-
sumption fails (i.e., close data points may not share a label), unlabeled
user data in the semi-supervised learning makes the model more un-
certain and the performance degrades as shown in scenario of user 3.
The results also show that FS-Supervised and Semi-supervised Adapta-
tion underperform significantly the baseline User-Supervised approach.
Fully supervised training on user data clearly captures user-specific
contexts in the model, meanwhile the crowd-sourced data hardly cov-
ers every aspects of user-specific surroundings. For user data points
that the crowsourced data can not represent, both FS-Supervised and
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Table 2.6: Accuracy of learning approaches for 7 users. For active
learning (AL), the best performances over 20 label queries are given.
(Table 8.5, page 200)

FS-
Supervised

Semi-
supervised
Adaptation

AL Adap-
tation

AL from
User

User-
Supervised

User 1 0.8 0.86 0.97 0.93 0.94
User 2 0.5 0.65 0.94 0.82 0.9
User 3 0.58 0.43 0.81 0.73 0.72
User 4 0.22 0.25 0.93 0.86 0.72
User 5 0.35 0.5 0.80 0.83 0.82
User 6 0.54 0.61 0.86 0.87 0.85
User 7 0.26 0.47 0.86 0.76 0.83

Semi-supervised Adaptation fail to model them. However, their accuracy
is inverse to the labeling effort on user data. While FS-Supervised and
Semi-supervised Adaptation do not require any effort to label user data,
User-Supervised requires labels from all user training data.

Both AL Adaptation and AL from User approaches reach the perfor-
mance of the User-Supervised approach over 20 label queries. However,
the active learning technique require a significantly fewer amount of
labeled training data (20 queries ≈ 3% of the user training data). Inter-
estingly, the AL Adaptation outperforms both AL from User and User-
Supervised learning. The rationale is Freesound contains intra-class di-
versity, thus it may contain user’s unseen contexts in the recognition
phase and increase model generalization.

To compare the AL Adaptation and AL from User in terms of number
of label queries, we evaluated how many label queries needed for
these two approaches to reach the same performance as the User-
Supervised approach. For the AL from User approach, we also counted
the annotation effort of user to contribute the initial labeled training
set to build the initial classifier. The results show that the AL Adaptation
requires in average five label queries per user (≈ 0.7% of user training
data) to get the good performance. Meanwhile, the AL from User asks
for in average at least 24 label queries per user (≈ 3.6% of user training
data).

The result emphasizes that Freesound contains diverse and useful
acoustic data that represents partly user data and can be used to rec-
ognize user context. To enforce the analysis, we show the confusion
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matrix of the approaches for one user in Figure 2.25 . As can be seen,
the FS-Supervised can recognize well "restaurant" and "tram" classes,
and it confuses "office" with "toilet", and "street" with "tram". The AL
Adaptation needs to ask few labels for the confused classes to catch up
the performance difference.
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Figure 2.25: Confusion matrix tables of learning approaches from one
user. (Figure 8.5, page 206)

2.4 Conclusion

Activity recognition from body-worn sensors provides a valuable tool
to monitor user’s activities wherever he goes. The state of the art
approaches require a clean annotated training data provided by experts
to model activities. While it provides high accuracy, it is very time
consuming and limits the system to a small data set.
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This thesis introduced and demonstrated the use of crowdsourc-
ing to reduce the effort to collect annotation from training data set in
activity recognition systems, but still achieve as good performance as
experts’ annotation. In one aspect of crowdsourcing, a large recording
of activities is annotated explicitly by crowdsourced labelers in which
temporal boundaries and labels of activities are specified. Another
aspect of crowdsourcing is to use online available crowd-generated
sharing database to extract the relevant training set and then person-
alize the general crowdsourced-based models with a small number
of user input. From the summary of contributions from Section 2.1 to
Section 2.3, we draw the following conclusions:

• Crowdsourced gesture annotation from AMT gets high quality
(about 80% sample-based accuracy) if multiple crowdsourced
labelers are applied. Otherwise, the annotation contain a large
presence of noises (52% of instances are label noise) and the
noisy annotation degrades the state-of-the-art activity recogni-
tion methods significantly (e.g., the performance of SVM was
similar to a random guess).

• Our proposed WarpingLCSS is a linear time method which is
suitable for online gesture recognition. The WarpingLCSS is ro-
bust to crowdsourced annotation noises and achieves better per-
formance than the DTW-based methods and SVM, especially
with the large presence of noise. With 60% mislabeled instances,
WarpingLCSS outperforms SVM by about 22% F1-score and
outperforms DTW-based methods by 36% F1-score. Moreover,
WarpingLCSS can tolerate 30%-40% jitter level. Additionally,
WarpingLCSS can be used as a pre-processing filtering compo-
nent to clean noisy crowdsourced training data for other super-
vised techniques. Besides the robustness against labeling noises,
WarpingLCSS shows their efficiency on clean annotated data sets
as well as on multimodal sensor systems.

• We introduced the one-time point annotation technique as a spe-
cial case of annotation noise (the boundary shrinks to a point),
but to reduce the burden in activity annotation significantly. The
novel BoundarySearch algorithm searches for good boundaries
of an activity based on activity patterns around their one-time
point annotations. The performance on the corrected annotations
is just lower than the training on well-annotated annotations by
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3% F1-score, but it reduces significantly the amount of annotation
time.

• We investigated the use of online crowd-generated audio reposi-
tory Freesound to train a base model for user daily activities. An
adaptation with semi-supervised learning improves the accuracy
of the crowdsourced models up to 21% without asking labeling
on user data, but is still far to achieve the performance of the
supervised learning on user data. The active learning adaptation
achieves the performance of the user supervised model with only
a few label queries.

2.5 Limitations and Outlook

The thesis demonstrates the potential of crowdsourcing to collect a
large annotated data set efficiently and introduces robust learning
methods to achieve a good performance. However, the following lim-
itations are identified:

• Generalizability of algorithms: The WarpingLCSS and Boundary-
Search algorithm were investigated on activity recognition with
wearable sensors. However, they are both generic algorithm that
can be useful in other applications of pattern recognition. The
WarpingLCSS should be investigated for other general time se-
ries data. The BoundarySearch algorithm can be generalized to
applications that need to find similar patterns inside two strings.

• Noise in one-time point annotation: In the work of one-time point
annotation, we assumed that all activities were annotated and
each annotated point was associated with a correct label. How-
ever, in crowdsourced annotation scenarios, annotation noises
are likely to happen. In that case, the outcome of fixed boundaries
would be the noisy annotated training data set. Consequently, the
WarpingLCSS can be used to filter out those noisy instances be-
fore training a classifier. A further study on this direction should
be investigated.

• Number of Participants: In the study of personalized adapta-
tion on crowd-based models, while the proposed active learning
adaptation achieves good performance, the subject pool was with
about 7 subjects rather limited. Moreover, they lived in the same
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city, thus the sound-based contexts were constrained on that city
only (e.g. user living in Zurich would use public transportation
such as tram, train, bus). To draw a more general conclusion,
more subjects from different contexts should be considered.

• User Input: In the study of active learning adaptation on crowd-
sourced models, we assumed the label feedback from users was
correct. However, those labels can be verified easily by acquir-
ing labels explicitly for audio data with multiple labelers from a
crowdsourcing platform like AMT.

• User-dependent WarpingLCSS: WarpingLCSS was evaluated for
user-dependent activity recognition which requires a training
template for each activity of interest from each user. Even though
it can be considered as a limitation, we believe it is not. In crowd-
sourcing context, each user can record his own data with his
own activities of interest. The corresponding labels can be given
by himself or by crowdsourced labelers. The system does not
ask for a perfect annotation, but can support a user-dependent
recognition which often achieves high performance due to the
best match between the training data and testing data. A step
further to support the user-independent recognition can be a de-
ployment of a crowdsourced repository to collect many gesture
templates contributed from a large amount of users with a goal
to generalize the gesture patterns for all users.
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Abstract

Activity annotation in videos is necessary to create a training dataset for
most of activity recognition systems. This is a very time consuming and
repetitive task. Crowdsourcing gains popularity to distribute annotation
tasks to a large pool of taggers. We present for the first time an approach
to achieve good quality for activity annotation in videos through crowd-
sourcing on the Amazon Mechanical Turk platform (AMT). Taggers must
annotate the start, end boundaries and the label of all occurrences of activ-
ities in videos. Two strategies to detect non-serious taggers according to
temporal annotated results are presented. Individual filtering checks the
consistence in the answers of each tagger with the characteristic of dataset
to identify and remove non-serious taggers. Collaborative filtering checks
the agreement in annotations among taggers. The filtering techniques
detect and remove non-serious taggers and finally, the majority voting
applied to AMT temporal tags to generate one final AMT activity annota-
tion set. We conduct the experiments to get activity annotation from AMT
on a subset of two rich datasets frequently used in activity recognition.
The results show that our proposed filtering strategies can increase the
accuracy by up to 40%. The final annotation set is of comparable quality
of the annotation of experts with high accuracy (76% to 92%).

3.1 Introduction

Activity recognition is useful in many applications such as ambient
assisted living, human-computer interaction, video surveillance, or
activity life logging. Human activity can be extracted and recognized
from video footage, or data streams from on-body sensors, such as
inertial measurement units. Regardless of the modality used to rec-
ognize activities, a labeled training dataset is required for supervised
learning [54–56]. The training dataset must comprise the start and end
time of the activities of interest. This is usually obtained by manual in-
spection of a video footage of an experimental recording where users
demonstrate the activities of interest. Even when using on-body sen-
sors for recognition, a video footage is shot for the purpose of labeling.
Video labeling is extremely time-consuming and tedious: it may take
7-10 hours to annotate fine-grained activities in a 30-min video [12]. It
is also costly to hire experts to do labeling.

In order to reduce cost and time of data labeling, crowdsourcing
platforms (e.g., Amazon Mechanical Turk (AMT), Crowdflower) has
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become a new trend. Crowdsourcing platforms allow a large num-
ber of non-experts from all over the world and without any specific
background to solve large-scale tasks for a small financial incentive.
Therefore, crowdsourcing is generally employed for tasks that are easy
for humans, but hard for computers. Since human activity in a video
can be easily recognized by non-experts, we are interested in answer-
ing the following question: "Is crowdsourcing an alternative reliable
way to get activity labeling from video footage?".

In this work, we investigate the ability of AMT workers and their
behavior in annotating temporal boundaries and labels of activities
occurring in videos. An approach to achieve good quality for activity
annotation in videos through AMT and to handle temporal results from
AMT is presented for the first time. Two filtering strategies to detect and
remove non-serious taggers according to temporal annotated results
are proposed and evaluated. Individual filtering checks the consistence
in the answers of each tagger with the characteristic of dataset to
identify and remove non-serious taggers. Collaborative filtering checks
the agreement in annotations among taggers to detect non-serious
taggers. After filtering, the majority voting applied to AMT temporal
tags to generate one final AMT activity annotation set. We conduct
the experiments to get activity annotation from AMT on a subset of
two rich datasets frequently used in activity recognition (CMU and
Opportunity [12, 38]). The final AMT annotation set is then compared
with the ground truth annotated by experts to evaluate the quality of
annotation from crowdsourcing.

3.2 Related Work

Crowdsourcing services (e.g., Amazon Mechanical Turk (AMT),
crowdflower1, clickworkers2) has emerged recently as a new cheap
labor pool for simple large-scale tasks. Crowdsourcing tasks can typi-
cally be accomplished easily and quickly by large number of workers.
Crowdsourcing has been characterized in the annotation of datasets
in natural language processing [19–21], speech recognition [22, 23],
multimedia tagging [24–27]. It has also been proposed in query pro-
cessing [57] to answer queries that can not be answered by database
or search engines. Data acquired from crowdsourcing is generated by

1http://crowdflower.com
2http://clickworkers.com
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low-commitment workers, thus it is commonly unreliable and noisy.
Therefore, the same task is often redundantly performed by multiple
workers and majority voting is a popular decision making method
used to identify the correct answers [20,28]. Moreover, in crowdsourc-
ing, malicious workers often take advantage of the verification diffi-
culty (the ground truth is unknown) and submit low-quality answers.
Hence, it is necessary to include strategies to estimate the quality of
workers in order to reject low-performing and malicious workers. The
acceptance rate of a worker based on their work history is usually
specified as a threshold to allow that worker to participate in the task.
Verifiable questions or pilot tasks for which the requester knows the
correct answers is a common empirical strategy to screen workers
from crowdsourcing [22, 23, 39, 40]. Dawid and Skene [58] proposed a
method that used the redundancy in acquiring answers to measure the
labeling quality of the workers based on an expectation maximization
algorithm. Bayesian versions of worker quality inference were recently
proposed by Raykar et al. [59]. Ipeirotis et al. [60] improved the method
by separating spammers who provide low-quality answers intention-
ally and biased workers who are careful but biased. The biased answers
can then be recovered and yields much higher quality of results.

Amazon Mechanical Turk: Amazon Mechanical Turk is by far the
most popular crowdsourcing platform with almost half a million turk-
ers (i.e., workers) and about 50,000 - 100,000 HITs 3 available to the
turkers at any time [61]. Therefore, in our work, AMT is chosen to
evaluate activity annotations in videos from crowdsourcing. In AMT,
turkers can choose available HITs to complete and submit their results
to AMT. The requester of the HIT retrieves all results from AMT after
the HIT is accomplished. According to the quality of turkers’ answers,
the requester approves or rejects their work. A requester design a HIT
template to describe the task they would like to distribute. AMT sup-
ports a number of template HITs, command line tools and developer
APIs. The requester can define how many assignments (i.e., workers)
per HIT are needed, duration for each HIT and cost per HIT. A worker
is allowed to work only one assignment per HIT. To assure quality
of works from turkers, turker approval rate which is provided by AMT
according to turker’s work history can be used as a threshold for eli-
gibility to work. Specifically, turker approval rate is the percentage of
turker’s works accepted by requesters.

3HIT = Human Intelligence Task represents a small task assigned to turkers with an
allocated price and completion time
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According to the best of our knowledge, there is no previous work
that investigates the use of crowdsourcing in activity annotation in
videos in which workers provide the starting and ending time of oc-
currences of activities. In the work by Zhao et al. [25], they extracted
individual still images/video frames from the CMU video of activ-
ities [38] and then acquired labeling for the activity occurring in the
image from crowdsourcing. However, using one video frame to ask for
activity may have the limitations of ambiguation. It is more likely for
users to recognize the activities by watching the continuous sequence
of frames (e.g., it is hard to distinguish Open Door and Close Door
activities with just only one frame of activity). It is more natural to ask
Amazon Mechanical Turkers to watch a video and annotate activities
occurring on the video.

3.3 Crowdsourcing methodology

To get activity labeling from turkers, a HIT interface is needed. Video
footages for activity recognition are usually recorded at several per-
spectives in order to capture all activities. Therefore, the HIT interface
should show different video perspectives synchronously. Turkers can
navigate through videos and indicate the start, end times and labels
of all activity instances occurring in the videos. In this section, we de-
scribe our HIT interface, technical details to run our HIT in AMT, and
a data processing pipeline to evaluate answers from turkers and fuse
their answers to get a final activity annotation.

3.3.1 HIT Interface Design

Figure 3.1 shows our HIT interface to collect activity annotation from
different synchronized video perspectives. The interface consists of 4
different parts indicated with a color bar on the left which does not
appear in the real interface.
Task Description (blue): At the top, we describe the task that the turk-
ers have to solve in order to get their answers accepted. Turkers have to
answer correctly questions in the red section and specify start/end/tag
triples for all occurrences of activities performed in the video in the
yellow section. We estimate the minimum number of tags (N) labeled
from the videos according to the approximation of activity duration.
We let turkers know about this number N so that turkers can work
carefully on our tasks in order to get all activities. Since we do not
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In order to get your work approved, you have to fill in the correct times in the first section and provide all activities occuring in the video in the second section (at least 10). You 

can include the activities listed in section 1.

Below you see 5 synchronized videos, showing a subject performing different tasks in a kitchen environment. Your task is to find the start and end time and to 

assign labels from a given set of activity labels.

In section 1, in case an activity occurs more than once, please use the first occurence for your answer.

In section 2, please use the provided fields to submit your answer in the form of a start/end/label triple. You have to add your tags to the list on the right hand 

side before submitting your results.

In order to get your work approved, you have to fill in the correct answers in the first section and provide all activities 

occuring in the video in the second section (at least 8). 

Figure 3.1: The HIT interface to collect activity annotation from dif-
ferent synchronized video perspectives.

know the exact number of activities in each video, therefore, we use
this N to verify the quality of turkers. It will be explained in Section
3.3.3.
Video Player (green): This part allows to play all videos synchronously
and to pause or restart all of them (turkers can play videos again to
check their answers). It also shows the current time in seconds. More-
over, turkers are able to transverse through all videos synchronously.
To support turkers to find the exact starting and ending time of an ac-
tivity, we also support buttons to go forward and backward in videos
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frame by frame.
Section 1 - Qualification test (red): As there are low-commitment
turkers on AMT, we have to check whether an answer could be taken
seriously or if it is just a random submission or spam. We use verifiable
questions to screen workers as in [22, 23, 39, 40]. We ask for the start-
ing time of 2 activities in the given video sequence and one boolean
question about whether an activity occurs in the video. It does not
take much time for requesters to prepare answers for those verifica-
tion questions but it can ensure that turkers must watch the whole
short video to answer correctly this section 1. Different HITs have dif-
ferent verification questions since they contain different videos. The
questions also prepare for turkers what they will expect to do in the
next section.
Section 2 - Tag Section (yellow): This is where turkers are asked to
supply triples of start/end/label of all occurrences of activities in the
videos. Possible activities are given in a list. The right-hand side lists
all previously given triples for turkers to check and allows them to
submit all tags at the end of the task.

We do not receive any negative feedback about our interface during
the experiments which assures us that the interface works fine.

3.3.2 Running HIT in AMT

AMT supports a number of template HITs, but unfortunately does not
offer a template to show videos synchronously, which is needed in our
work to show different video perspectives at the same time. However,
AMT can load custom tasks from an external server. External tasks
can consist of HTML/Javascript to design a HIT Interface. To ensure
that every turker has the same experience when working on our video
tagging tasks, the interface should work correctly and look the same
in every major browser. To meet this requirement, we use HTML5
and webm and h264 mp4 formats for videos. We test our interface
with all major browsers including Chrome, Safari, Firefox, Opera and
Internet Explorer. HTML5-Video implementation instead of Flash is
also compatible with mobile browsers.
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Figure 3.2: A data processing chain taking raw AMT output from turk-
ers and producing a final activity annotation by majority voting. The
output from turkers is evaluated with different components enabled
or not.

3.3.3 AMT Annotation Post-processing

In this section, we introduce a data processing pipeline to evaluate the
quality of answers from turkers and fuse the answers to get a final
activity annotation. The quality of answers decides whether we reject
or approve an assignment of a HIT. Basically, assignments must fulfill
all requirements specified in the HIT in order to get approved. In our
work, we have two requirements: 1. Correctly answer three verifiable
questions in the section 1 in the interface, and 2. Specify all occur-
rences of activities in videos. However, since we do not know the exact
number of activity instances in each video, we check whether turkers
provide at least N activity tags performed by a subject in the video.
We propose two kinds of filtering techniques to improve the quality
of the final activity annotation: individual filtering and collaborative
filtering. Individual filtering examines answers in each assignment to
decide whether it should be accepted or not. Collaborative filtering
examines answers from all assignments to a HIT to detect and remove
spammers, thus reject or accept the work.

Figure 3.2 shows different components of the data processing
pipeline. The individual filtering can contains three components: Qual-
ification Check, Overlapping Boundaries Removal, and Activity Count
Check. The collaborative filtering contains a component: Spammer Re-
moval. We describe each components as follows.
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1. Qualification check: Assignments must answer correctly at least
M verifiable questions over three to get into other steps. M =
1,2, or 3. Otherwise, they get rejected. Different turkers may have
different decision when an activity starts (e.g., drink gesture can
start from the time user picks up a cup or when user starts drink-
ing). Therefore, we allow that the starting time answers can be
different from the true answers within 2 seconds.

2. Overlapping Boundaries Removal: Activities of interest are per-
formed and recorded in sequence, and thus non-overlapping.
However, we observe that spammers tend not watch the videos
and provide randomly overlapping starting and ending times
of activities. To increase the quality of the final activity annota-
tion, we remove activities tagged by a turker which are boundary
overlapping.

3. Activity Count Check: The number of activities provided in the
section 2 must be at least N. Otherwise, it is rejected.

4. Spammer Removal: We define spamming/outlier to be assign-
ments which disagree with the majority most of the time. Specif-
ically, the assignment which have a disagreement score d,
d =

Tagging times disagree with majority
Total tagging times > threshold is a spam. Score d is

computed as follows.

• Step 1: We extract starting and ending times of all tagged
activities from assignments of a HIT and put into a sorted
list.

• Step 2: We scan through each temporal segment S (i.e., two
consequence elements) in the sorted list, and the label of S
is the majority voting among all activities containing this
segment.

• Step 3: For each assignment having tags for S which disagree
with the majority, the score d is accumulated by the length
of S. At the end, d is compared with the threshold and
spammers are detected and removed.

5. Majority Voting: At the end, the majority voting among qualified
assignments is performed to generate a final list (FA) of good
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annotated activities. The list is then compared with the ground
truth annotated by the experts for evaluation. The algorithm to
get majority voting includes step 1 and 2 in the Spammer Re-
moval section above. Table 3.1 shows an example to get majority
among temporal segments of activity annotation.

Table 3.1: An Example of Majority Voting

start end tags (label:count) majority vote
t1 t2 open Drawer: 5, take Scissors:2 open Drawer
t2 t3 open Drawer: 5, take Scissor:1,

take Egg:1
open Drawer

3.4 Evaluation

3.4.1 Datasets

The experiments are conducted on video footages from two pub-
lic datasets for activity recognition: the Carnegie Mellon University
(CMU) Kitchen dataset [38] and the Opportunity Dataset [12].

CMU Kitchen Dataset [38]
The CMU Kitchen dataset consists of videos and signals from other
modalities (e.g. IMU, eWatch) recorded from different subjects per-
forming different recipes in a kitchen. There are 5 video streams at
different locations in the kitchen capturing all activities performed by
the subjects. The ground truth labels which are annotated by the au-
thors of the dataset are available for 10 subjects who baked the "brownie
recipe". To compare our experiments with the ground truth provided
by experts, we use one set of brownie-recipe videos of one subject
which is labeled by CMU people to ask for activity annotation from
turkers. Activities for a Brownie recipe in CMU datasets are listed in
Table 3.3. The video duration is 6 minutes long. We segment the video
into 3 short videos of about two minutes. We approximate about 8-14
activities instances occurred in each 2-min video. It is reasonable to
ask turkers working on the short videos that contains a small number
of activity instances. Five synchronized segments from 5 videos are
shown in a HIT for annotation. The HIT interface for the CMU dataset
is shown in 3.1.

Opportunity Dataset [12]
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The Opportunity Dataset is a rich multi-modal dataset collected in a
naturalistic environment akin to an apartment, where users execute
daily gestures. There are 3 video streams captured from 3 different
positions in the room synchronized with body-worn sensor signals. In
our work, we use the videos of one subject performing 20 repetitions
of 17 gesture classes as shown in Table 7.1. The video duration is 25
minutes long. We segment the videos into 30 short videos of 50 sec-
onds. We estimate about 8-14 activity instances occurred in each video
segment. We publish 30 HITs for the annotation for the Opportunity
dataset. Note that in this dataset, there are three drawers at different
heights and two different doors. The HIT interface for the Opportunity
dataset is similar to 3.1, however we place a map of the kitchen in the
task description part to show turkers where the door 1,2 or drawers
1,2,3 are.

Table 3.2: Gestures in Opportunity dataset

drink Cup (D) clean Table (CT) open Drawer1 (ODr1)
close Drawer1 (CDr1) open Drawer2 (ODr2) close Drawer2 (CDr2)
open Drawer3 (ODr3) close Drawer3 (CDr3) open Door1 (OD1)
close Door1 (CD1) open Door2 (OD2) close Door2 (CD2)
open Fridge (OF) close Fridge (CF) Toggle Switch (TS)
open Dishwasher (ODi) close Dishwasher (CDi)

Table 3.4 shows an overview of the experiments we conduct. We
publish 3 HITs from the CMU dataset and 30 HITS from the Op-
portunity dataset. Each HIT has 10 assignments. Each assignment is
annotated by a turker who must have at least 90% approval rate on
their work history and different assignments of a HIT are completed
by different turkers. We pay 30 cents for each assignment.

3.4.2 Evaluation on AMT Final Activity Annotation

To evaluate the quality of the AMT final activity annotation (FA) for a
HIT, we compare the FA with the ground truth (GT) using an accuracy
metric. The FA and GT are sets of <start,end,tag> triples. Each set
contains non-overlapping activities. In our HIT, we do not ask turkers
to annotate Null activities, we default the temporal segment without
any tag as Null. The accuracy is defined as follows.

Accuracy =
Total match length between FA and GT

Total annotation length
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Table 3.3: Brownie-recipe Activities in CMU dataset

walk to Fridge pour Water into Big Bowl
close Fridge open Fridge
open Brownie Bag open Brownie Box
crack Egg open Cupboard Top Left
open Drawer pour Big Bowl into Baking Pan
stir Big Bowl pour Brownie Bag into Big Bowl
stir Egg pour Oil into Small Measuring Cup
switch oven on pour Water into Big Measuring Cup
take Fork put Baking Pan into Oven
read Brownie Box put Scissors into Drawer
take Oil put Oil into Cupboard Bottom Right
take Big Bowl take Brownie Box
take Egg take Big Measuring Cup
take Baking Pan take Small Measuring Cup
take Scissors twist off Cap
twist on Cap walk to Counter

Table 3.4: AMT Experiment Summary

# HITs Assignments
per HIT

Length(s) Price per
HIT (USD
cent)

Turker Ap-
proval Rate

CMU 3 10 120 30 90
Opportunity 30 10 50 30 90

The total annotation length is the length of the HIT’s video se-
quence. The total match length (ML) between the FA and the GT is
the total length of temporal segments where both FA and GT agree on
the activity tag. The algorithm to compute ML is discussed briefly. We
extract start and end times of all triples in both FA and GT and put
into a sorted list. We scan through each temporal segment S (i.e.,two
consequence elements in the sorted list), if FA and GT agree on the
activity tag for this segment, ML is increased by the length of S.
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3.5 Results and Discussion

3.5.1 Duration of task completion

Table 3.5 shows the average time that the CMU and Opportunity HITs
need to be completed. HIT Time measures the time from the moment
when a turker starts a HIT until he submits his results. Completion
Time measures how long it takes to get all assignments on a HIT
completed.

Table 3.5: Time Requirement Overview

HIT length
(seconds)

Average HIT Time
(mins)

Average Comple-
tion Time (hours)

CMU 120 14 62
Opportunity 50 12 71

The Opportunity and CMU HITs takes in average about 2-3 days to
complete. Average HIT Time (12 mins for a 50-sec video) is comparable
to works done by experts (7-10 hours for a 30-min video), thus turkers
annotate data at a similar speed as the experts. The approximate price
we pay for 30-min length video is 30 (cents) * 30 (mins) * 5 (accepted
assignments for a HIT) ≈ 50$, which is significantly less than what we
spend for an expert per day to annotate videos.

3.5.2 Turkers Statistics

We recruit totally 136 turkers working on our 33 HITs (118 turkers for
the Opportunity HITs and 18 turkers for the CMU HITs). Figure 3.3
shows the histogram of accepted assignments for turkers working on
our HITs. There are 38 turkers working on only one HIT and doing
well. However, 26 turkers finish more than one HIT correctly. It is
interesting that there are 4 dedicated turkers working successfully on
more than 10 different HITs. It seems like they find our tasks pleasant.

Figure 3.4 shows the histogram of rejected assignments for turkers
working on our HITs. There are 70 turkers getting one assignment
rejected (70/136 ≈ 51%). Only four workers failed the HITs 4-6 times.
Figure 3.5 shows the histogram of turker accepted rate evaluated from
the work on our HITs. There are two peaks at 0% accepted rate and
100% accepted rate. Together with Figure 3.3 and 3.4, the results show
that there are many turkers work on our HIT once and fail. It could be
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Figure 3.3: The histogram of accepted assignments for turkers work-
ing on our HITs
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Figure 3.4: The histogram of rejected assignments for turkers work-
ing on our HITs

that either they are spammers or they find our HIT difficult. However,
many turkers succesfully work on our HITs multiple times.

3.5.3 Accuracy

To understand the quality of annotation from AMT for our HITs, we
define six types of post-processing from the raw AMT results to get
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Figure 3.5: The histogram of turker accepted rate evaluated from the
work on our HITs

the FA by combining different components in Figure 3.2.

• Type 1 (No Check): In this type, all the answers from all assign-
ments for a HIT are considered in majority voting step to get the
FA.

• Type 2 (Qualification Check): In this type, all assignments that
pass the qualification check will come to the majority voting step
to get the FA.

• Type 3 (Qualification Check + Activity Count Check): Parameter
N = 8 for the HITs

• Type 4 (Qualification Check + Overlapping Boundaries Removal
+ Activity Count Check): Even serious turkers may make a mis-
take, hence, we accept at most 2 overlapping tags and after over-
lapping boundaries removal, we decrease the required number
of activities by 2. Thus, in this type, parameter N = 6 for the HITs.

• Type 5 (Qualification Check + Activity Count Check + Spammer
Removal): Parameter N = 8 for our HITs.

• Type 6 (Check All): All checks are performed. Parameter N = 6
for our HITs.
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In both Opportunity and CMU videos, the number of activity instances
occurring in a segmented video is about 8-14. Thus, in our evaluation,
we choose parameter N = 8 for Activity Count Check.

We find out that even dedicated workers who provided good tags
for activities occurring in videos but still made mistakes in answering
verifiable questions. Hence we relax the qualification check to remove
out only the assignments with at most one question answered correctly
(i.e., parameter M = 2). In Spammer Removal, we choose a threshold
= 0.3, it means if the disagreement score d >= 0.3 (i.e., less than 70% of
annotation of the assignment agrees with the majority), the assignment
is a spam and removed. For each HIT, we also compute the accepted
rate(i.e., number of accepted assignments/total assignments per HIT)
for type 6 only. It shows the real rejected and accepted rate we respond
to turkers for each HIT.

Table 3.6 shows the accuracy, the average number of activities pro-
vided from accepted assignments for different types of evaluation of
CMU HITs and the accepted rates.

Table 3.6: Results for 3 HITs in CMU dataset
Accuracy

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6
CMU HIT 1 0.71 0.72 0.72 0.77 0.76 0.77
CMU HIT 2 0.78 0.82 0.82 0.82 0.82 0.82
CMU HIT 3 0.81 0.82 0.82 0.82 0.82 0.82

Average Number of Activities Accepted
Rate (%)

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6
CMU HIT 1 7.2 11 10.14 10.14 10.67 10.14 50
CMU HIT 2 6.9 10.2 10.2 10.2 10.2 10.2 50
CMU HIT 3 7.36 10.14 10.14 10.14 10.14 10.14 60

Figure 3.6 shows the detailed accuracy for 30 HITs in the Oppor-
tunity dataset. We summarize it in Figure 3.7. Figure 3.8 summarizes
the average number of activities provided by qualified assignments in
each type in the Opportunity HITs.

Without any checking in Type 1, many Opportunity HITs get very
low accuracy, thus even we recruit turkers with the approval rate at
least 90%, there are still many non-serious turkers in AMT working
in our tasks. It can be explained since every workers who just sign up
into AMT system get 100% approval rate, some of them certainly are
spammers. With Type 2, the accuracy is generally improved, there is
still some HITs get bad accuracy and low average number of activities,
it means some turkers may guess section 1 in the interface is qualifica-
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Figure 3.6: Detailed Accuracy of 30 AMT Opportunity HITs

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6
0.4

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

cy

Figure 3.7: Box Plot of Accuracy of AMT Opportunity HITs

tion test and they tried to get good answers for section 1, but not for
section 2. With Type 3, the accuracy is slightly better, however with
Type 4, after we remove bad tags with the overlapping boundaries, we
get very good and stable accuracies. The improvement from Type 3 to
Type 4 can be intepreted that some spammers just tried to get a good
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Figure 3.8: Box Plot of Average Number of Activities Tagged by Valid
Turkers in Opportunity HITs
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Figure 3.9: Accepted Rate in Opportunity HITs

result for section 1 that they think they can get their work approved
and for section 2, they give non-sense or repeated activities which
are overlapping many times. Type 4 and Type 5 have similar results.
Therefore, the individual check with overlapping boundaries removal
and the collaborative check to remove outliers are both good to detect
and remove spammers. Type 6 is just a combination of Type 4 and Type
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5. For Type 4, 5, 6, the accuracy is achieved from 76% to 92%. Most of
the HITs are greater than 80% accuracy. The accuracy is increased by
up to 40% compared to Type 1. For HITs that have the accuracy lower
than 80%, we check the videos and turkers’ answers and see that in
the Opportunity videos, the door 2 position can not be seen clearly,
so most of turkers can not tag open/close door 2 correctly. The toggle
switch activity is very short and there is a lot of disagreement between
turkers and experts the starting and ending time of the toggle switch
activities. This disagreement is also unavoidable since there is usually
no standard definition when the start and end of an activity should be
(e.g., drink gesture can start from the time user picks up a cup or when
user starts drinking).

The CMU HITs have similar results of accuracy. Type 4, 5, 6 improve
the accuracy compared to Type 1. In the CMU dataset, we see that the
disagreement between turkers and experts on the boundaries of "crack
Egg" activities usually occurs.

Figure 3.9 shows the accepted rate in the Opportunity HITs. Only
five Opportunity HITs have the accepted rate between 70%-80%. The
rest (25 Opportunity HITs) have high rejected rate between 40-60%. In
CMU HITs (see Table 3.6), the accepted rate is about 50-60% which is
similar to that shown in the Opportunity HITs. Thus, there are about
40% non-serious turkers with 90% approval rate working in our Op-
portunity and CMU HITs.

Notably, our first strategy was to publish tasks with qualification
test (section 1 in the interface) only. After getting the results from
those experiments, we selected the good turkers who answered the test
correctly and invited them to a second round where we asked them
to work on the actual video annotation (section 2 in the interface). We
tried with three HITs of the CMU dataset for this strategy, however,
we realized that turkers will not come back to the site soon enough or
that they do not want to work our round 2 tasks. Hence, we decided
to include the qualification tests into each experiment. However, the
results show that many turkers did section 1 very well but did not
provide any good tags for section 2 which we need the most. Thus, it
does not guarantee that turkers who do well the qualification test will
work well on real tasks. Requesters should always have strategies to
validate the answers from turkers.

It is interesting that in both Opportunity HITs and CMU HITs,
serious turkers usually provide all occurrences of activities in the video
even we just ask them to provide at least N tags to get accepted.



78 Chapter 3: A Case Study on Activity Annotation by Crowdsourcing

3.6 Conclusion and Future Work

In this paper, we conduct experiments to get activity annotation in
videos from AMT in which turkers specify the temporal boundary and
the label of all occurrences of activities in the videos. We introduce for
the first time a methodology to use AMT to annotate activities occur-
ring in video stream, with a data postprocessing stages to improve the
annotation quality. The results show that even the HITs are distributed
to high quality turkers in AMT (turkers’ approval rate is at least 90%),
quality of tagging still needs to be controlled carefully. The results
also show that using verifiable questions (qualification checking) is
not enough to detect good turkers since many non-serious turkers can
try to work well only for the qualification checking part. In our work,
we propose two filtering strategies to detect non-serious turkers. Both
strategies work efficiently in our experiments and increase the accu-
racy by up to 40%. It takes a similar amount of time for turkers and
experts to annotate activities in the videos. The results show that the
annotation from AMT has comparable quality to the annotation by
experts (76%-92%).

In conclusion, this work shows the feasibility to use crowdsourcing
to annotate human activity in videos. However, this work also shows
several future research directions:

• We would like to investigate the ability of AMT turkers to anno-
tate activities in the video without the prior knowledge of what
kind of activities can occur in the video. This allows for richer
description of the activities, but requires more sophisticated fil-
tering and combination strategies taking into account semantic
ambiguities.

• Future work must investigate whether the quality of annotation
obtained through crowdsourcing is sufficient for the purpose of
training activity recognition systems.

• We would like to investigate strategies to stop experiments when
we get enough answers from good turkers or extend it otherwise.
Thus, the amount of money to pay turkers can be reduced

• Finally we would like to characterize the joint influence on the
annotation quality of, e.g. the influence of the user interface, the
complexity of the activities in videos, the quality of the videos,
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the level of details in the requested annotations (primitive activ-
ities (e.g. take a cup) or high level activities (e.g. have breakfast)
with/without object labeling). This requires comparative evalua-
tions on more datasets of longer duration.
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Abstract

Template matching methods using Dynamic Time Warping (DTW) have
been used recently for online gesture recognition from body-worn mo-
tion sensors. However, DTW has been shown sensitive under the strong
presence of noise in time series. In sensor readings, labeling temporal
boundaries of daily gestures precisely is rarely achievable as they are often
intertwined. Moreover, the variation in daily gesture execution always ex-
ists. Therefore, here we propose two template matching methods utilizing
the Longest Common Subsequence (LCSS) to improve robustness against
such noise for online gesture recognition. Segmented LCSS utilizes a
sliding window to define the unknown boundaries of gestures in the con-
tinuous coming sensor readings and detects efficiently a possibly shorter
gesture within it. WarpingLCSS is our novel variant of LCSS to deter-
mine occurrences of gestures without segmenting data and performs one
order of magnitude faster than the Segmented LCSS. The WarpingLCSS
requires low-resource settings to process new arriving samples, thus it
is suitable for real-time gesture recognition implemented directly on the
small wearable devices. We compare our methods with the existing tem-
plate matching methods based on Dynamic Time Warping (DTW) on two
real-world gesture datasets from arm-worn accelerometer data. The results
demonstrate that the LCSS approaches outperform the existing template
matching approaches (about 12% in accuracy) in the dataset that suffers
from boundary noise and execution variation.

4.1 Introduction

Online gesture recognition (gesture spotting) is important in many ap-
plications: human computer interaction (HCI) such as gesture-aware
gaming, ambient assisted living, rehabilitation, sport, etc. In online
recognition, types of gestures and their temporal boundaries must be
recognized in the incoming streaming sensor data. Template matching
methods (TMM) were shown to be powerful to spot online complex
gestures [2]. In TMM, each gesture class is represented by one or only
a few number of templates which are gesture instances in training
set. Thus, TMM can maintain a certain constant amount of memory
to store the templates. The similarity between the templates and the
streaming sensor data is computed. High similarity with a template in-
dicates that the gesture class of that template has likely been executed.
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Dynamic time warping (DTW) has been used in the previous works of
TMM. [2, 7, 8].

However DTW is shown in time series analysis to be sensitive
to outlier noise [62]. Nonetheless, imprecision in marking temporal
boundaries of gestures is typical for daily activities, as these are often
intertwined. In addition, there is usually no standard definition when
the start and end of a gesture should be (e.g., drink gesture can start
from the time user picks up a cup or when user’s lip touches the cup).
Therefore, even experts who label the same dataset may disagree on the
exact boundaries. Moreover, the variation in daily gesture execution
always exists. Therefore, the existing TMM with DTW is weak to both
boundary noise and variability in daily gesture execution (see Fig. 4.9).

To improve online gesture recognition with template matching
methods in the face of such noise, we propose two approaches derived
Longest Common Subsequence (LCSS) [42]. Segmented LCSS relies on
a sliding observation window to segment the incoming streaming sen-
sor data and spots a possibly shorter gesture within it. WarpingLCSS
is our variant of LCSS introduced here for the first time to detect oc-
currences of gestures in streaming data without segmenting data and
performs one order of magnitude faster than the Segmented LCSS.
The WarpingLCSS requires a small constant time and space to pro-
cess new samples, hence it is suitable for real-time gesture recognition
implemented directly on the small devices such as mobile phones or
wearable sensors. In our system, sensor data is preprocessed and quan-
tized to symbols by using k-means.

Our approaches have been tested and compared with the exist-
ing TMM approaches using DTW on two real-world gesture datasets
comprising arm-worn accelerometer data. The results indicate that the
LCSS methods outperform the DTW methods in accuracy in the dataset
that suffers from boundary noise and high variability in execution.

4.2 Background and Related Work

Samples from body-worn sensors are categorized as time series data,
therefore time series analysis methods are widely used for gesture
recognition such as Hidden Markov Models [3–6] and TMMs using
DTW [2, 7, 8].

Segmented DTW [7, 8] performs online gesture recognition by first
buffering the streaming signals into an observation window. The win-
dow length is chosen based on the typical duration of the correspond-
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ing gesture class. A test segment is a sequence that is examined whether
it is an instance of one interesting gesture class. The start and end
boundaries of a test segment can vary inside the window. A DTW dis-
tance is computed between all templates and the test segment, and the
class of the closest template is eventually selected as label for the test
segment if the distance falls below a certain rejection threshold. As the
sensor delivers a new reading, the window is shifted by one sample
and the process is repeated. Segmented DTW is time consuming since
DTW is recomputed to find the best boundaries for the test segment
inside the window and it is also recomputed every time the window
shifts by 1 sample. A nonsegmented DTW variation [2] was proposed
to reuse the computation of previous readings, recognize gestures and
determine their boundaries without segmenting the stream.

Two most common similarity measures for matching two time se-
ries sequences are DTW and LCSS [63]. LCSS is shown in time series as
more powerful than DTW in finding the similarity between two time
series sequences in the existence of noise in dataset [62]. However,
to the best of our knowledge, there is no prior work that utilizes the
benefit of LCSS over noise in TMM for online gesture recognition on
3D accelerometer data. Our Segmented LCSS method can find the best
boundaries of gesture inside the window efficiently because the LCSS
knows which parts in the window contributes to the similarity. Thus, it
is superior to Segmented DTW. Our proposed WarpingLCSS that can
process one new sample in a small constant time and space is novel.

Longest Common Subsequence: We review LCSS, the classical problem
to find the longest common subsequence in two strings. Given two
strings A, B of length n, m respectively, LCSS(i,j) is a length of the
longest common subsequence between the first i symbols of A and the
first j symbols of B. The LCSS between A and B is LCSS(n,m).

LCSS(i, j) =



0 , if i = 0 or j = 0

LCSS(i − 1, j − 1) + 1 , if A(i) = B(j)

max
{

LCSS(i − 1, j)
LCSS(i, j − 1) , otherwise

LCSS and matching points between two sequences can be found effi-
ciently using dynamic programming [42].
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4.3 Training process

4.3.1 Data preprocessing

At training time, a training set is recorded continuously by 3D ac-
celerometer and manually labeled with a predefined set of gesture
classes. Gestures which are not in the predefined list are considered
as Null class. To speed up gesture recognition, we extract a vectorial
mean feature within sliding windows of size 6 samples and overlap
3, and quantize the resulting values with k-means. Thus, each 3D ac-
celeration vector is quantized to its closest cluster centroid, and the
motion sequence is represented as a string of symbols (i.e., the indices
of the centroids). The distribution of centroids captures the variation
of hand positions of the user. We define the distance d(l,m) between
two symbols l and m as the Euclidean distance between the two corre-
sponding centroids. We normalize these distances in a range [0,1]. We
selected empirically k = 20, since this gave the best results for the con-
sidered datasets. Figure 4.1 shows the distribution of cluster centroids
in 3D space for one user in the Opportunity dataset. When spotting,
the same process of feature extraction and quantization is applied to
the streaming sensor data, with the cluster centroids identified during
training.

Figure 4.1: The distribution of cluster centroids of one user in Op-
portunity dataset, k = 20
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4.3.2 Training phase: gesture template and rejection threshold

The higher LCSS two gestures have, the more likely they are similar
and belong to the same class. For each class, a template represents the
typical motion pattern for that class and a rejection threshold decides
the minimum allowed similarity between two gestures in the same
class. Templates and rejection thresholds are determined at training
time. Specifically, for each class of gesture we compute a LCSS simi-
larity matrix among all pairs of instances belonging to that class. The
template is chosen as an instance that has the highest average simi-
larity to all other instances of the same class. We choose the rejection
threshold as the minimum LCSS between the chosen template and
other gesture instances in the same class.

Thus, the training process is done offline in which the cluster cen-
troids, the template and the rejection threshold for each gesture class
(except Null) are identified.

4.4 LCSS-based online spotting methods

The data processing flow to recognize gestures online is shown in Fig-
ure 4.2. Streaming data from sensor (S) are preprocessed and quantized
to the k-means centroids (i.e., symbols) identified during training, then
come to template matching module (TM) which uses TMM such as
Segmented LCSS, WarpingLCSS to recognize gestures. If a sequence is
spotted as belonging to multiple classes, the decision making module
(DM) will decide which class is the best match and output the gesture.

Figure 4.2: The data processing flow at spotting time
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4.4.1 Segmented LCSS

In the Segmented LCSS approach, sensor readings go through a sliding
observation window (OW). For each gesture class, the OW length is
chosen as the length of the longest instance in that class in the training
set. LCSS is computed only once between the gesture template and the
whole string sequence in the OW. If the LCSS is greater than the cor-
responding rejection threshold, this indicates that an instance of that
class is spotted. Because the LCSS algorithm can indicate which part
in the OW contributes to the similarity (i.e., matched points between
two sequences), the boundaries of the detected gesture can be man-
aged from the first matched point to the last matched point with the
template in the string sequence in the OW. In Segmented DTW [7, 8],
the boundaries of the gesture must vary exhaustively in OW and DTW
must be recomputed for each choice to find the best match. Thus, the
Segmented LCSS is much faster than the Segmented DTW in find-
ing the boundaries of spotted gestures in OW. When a new sample
comes, the window can shift to the first matched point in the previous
recognition process instead of shifting forward by only one sample as
in the Segmented DTW. Figure 4.3 illustrates the spotting process of
Segmented LCSS.

Template

Motion 
Sequence

BCAABBD

...CADBCDDDABDDD...

LCSS = 4

BCAABBD

...CADBCDDDABDDD...

LCSS = 5

OWFirst
Match

New OW, starting at first match

(a) (b)

Figure 4.3: The Segmented LCSS spotting process. The shaded part
represents the OW. The LCSS is computed between the gesture tem-
plate and the OW to indicate whether an instance of the gesture class
is spotted. The next OW will shift to the first matched point of the
previous one.

Let W denote a window size and T denote length of a gesture
template (W ≈ T). The time complexity of Segmented LCSS to process
a new coming symbol in the worst case (i.e., the window is shifted by
1) is O(W ∗ T) ≈ O(T2). Memory usage in Segmented LCSS is at most
O(T2). If the starting boundary of gesture is not needed (i.e., tracing
back to find matched points is not needed), the memory complexity
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can be handled efficiently in O(T) [42]. Thus, the Segmented LCSS
requires a constant time and space to process new sample.

4.4.2 Nonsegmented WarpingLCSS

In the Segmented LCSS, the LCSS must be recomputed every time the
OW shifts. However, without using the OW, the LCSS algorithm can
not find the start and end boundaries of gestures within the incoming
streaming string. In this section, we introduce for the first time a novel
variant of LCSS, the Warping LCSS, that removes the need of a sliding
window and reduce the computation cost significantly. This algorithm
determines the start and end boundary of gestures automatically.

Let St be a gesture template and Sm be a streaming string. Sm contin-
uously adds new symbols when new samples arrive. WarpingLCSS(i,j)
represents the similarity between the first i symbols of St and a ges-
ture occurring at the position jth in the streaming string Sm. Warp-
ingLCSS(i,j) (shortly, W(i,j)) is defined as follows:

W(i, j) =



0 ,if i = 0 or j = 0

W(i − 1, j − 1) + 1 ,if St(i) = Sm( j)

max


W(i − 1, j) − p ∗ d(St(i),St(i − 1))
W(i, j − 1) − p ∗ d(Sm( j),Sm( j − 1))
W(i − 1, j − 1) − p ∗ d(St(i),Sm( j))

,otherwise

with p is a penalty parameter of the dissimilarity, and d(l,m) is the
distance between two symbols l and m as introduced in section 4.3.1.
If the WarpingLCSS algorithm encounters a similar symbol between
St and Sm, the similarity W is increased by a reward (i.e., reward =
1). Otherwise, if it encounters dissimilar symbols, the similarity W
is decreased by penalties. The WarpingLCSS algorithm tries to find
instances having high similarity (i.e., more rewards and less penal-
ties) with the template. Similar to the LCSS, the WarpingLCSS can be
computed efficiently using dynamic programming.

Figure 4.4 illustrates the changes of values of similarity W between
a template and a streaming string. As gestures different from those
encoded by the template are executed, the similarity W is penalized
consecutively and drops significantly. It can goes lower than 0. The
WarpingLCSS algorithm starts with the similarity W(i,j) for the first
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row (i.e. i = 0) and the first column (i.e. j = 0) all 0, thus, it control the
lower bound of the similarity W. When a matched gesture of many
similar symbols occurs, the similarity value can quickly goes up above
0 and continuously accumulates rewards. The WarpingLCSS is also
strong to handle a few number of noisy symbols occurring in the
matched instance with a small penalty.

The value of the penalty parameter p depends on applications
and can be chosen by cross-validation to maximize the recognition
accuracy. It controls how the system accepts the dissimilarity between
two instances of the same class.

The WarpingLCSS detects matched gestures and their temporal
boundaries based on the similarity W and the rejection threshold. For
each class, within the stream of values of the similarity W, the local
maximum (LM) are detected and compared with the rejection thresh-
old. If LM is greater than the threshold, a matched gesture is recog-
nized with the end point as the position at LM. The start point of the
matched activity can be found by tracing back the matching path. The
LCSS between the template and the matched gesture is accumulated
during the trace-back process if necessary (i.e., when a gesture is spot-
ted as belonging to multiple classes) to make a decision (discussed in
next section). Figure 4.5 show the close-up of the streaming similarity
W between a matched gesture and a template. It also show how the
WarpingLCSS detects the temporal boundaries of matched gestures.

When a new symbol comes at time t, WarpingLCSS only needs
to update the value of W for this new sample and a template. Thus,
the time complexity of Warping LCSS is O(T). It is faster than the Seg-
mented LCSS by one order of magnitude. The WarpingLCSS maintains
at mostO(T2) memory for the need to trace back the starting boundary
of detected gesture.

4.4.3 Resolving spotting conflicts

The incoming streaming string is concurrently "compared" with tem-
plates of all concerned gesture classes. If a gesture is spotted as belong-
ing to multiple classes (i.e., boundaries of spotted instances are over-
lapping), we have to decide which class is the best match. We define
the normalized similarity NormSim(A,B) = LCSS(A,B)/max(‖A‖, ‖B‖),
with ‖A‖ and ‖B‖ are the lengths of the strings A and B, respectively. The
NormSim between the template and the matched gesture is output to
the decision making module (DM). The class with highest NormSim is
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Figure 4.4: WarpingLCSS between an Open Door template and a
streaming string, p = 3. The values of similarity W is updated continu-
ously when new samples come. The line on the top shows the ground
truth. The small circles show gesture detection at spotting time.

Figure 4.5: The close-up of the first detected OpenDoor in the stream-
ing string

chosen as the best match. This process is the same for both Segmented
LCSS and WarpingLCSS.
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4.5 Dataset

We evaluate the methods on two datasets. The first is the Opportunity
dataset [12] which is publicly available for activity recognition. It is a
rich multi-modal dataset collected in a naturalistic environment akin
to an apartment, where users execute daily gestures. The dataset is
characterized by a predominance of Null class (80%) and a large vari-
ability in the execution of the activities. We evaluate the method on a
subset of 4 subjects comprising 20 repetitions of 17 gesture classes as
shown in Table 4.1. Note that in this dataset, there are three drawers
at different heights. We use a 3D accelerometer at subjects’ dominant
(right) arms for the evaluations (30Hz sampling rate). Fig. 4.6 shows a
visual inspection of some instances of all classes.

The second dataset is an HCI gesture dataset executed by a single
person. The gestures as shown in Table 4.1 are geometric shapes ex-
ecuted with the arm in the vertical plane. Fig. 4.7 show gestures and
their duration. This dataset is characterized by a low execution vari-
ability and well-defined labeling. The Null class takes 57%. We use a
3D accelerometer at the dominant right lower arm for the evaluations
(30Hz sampling rate).
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Figure 4.6: 3D Acceleration of the dominant upper arm of one user
while executing some of gestures in the Opportunity dataset. Sampling
rate is 30Hz. Units: samples on the abscissa and milli-g on the ordinate.
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Figure 4.7: 3D Acceleration of the dominant lower-arm of one user
while executing gestures in the HCI gesture dataset. Sampling rate is
30Hz. Units: samples on the abscissa and milli-g on the ordinate.

Table 4.1: Gestures in HCI and Opportunity datasets

HCI Gestures
Circle Triangle Square Infinity Slider

Their Speculars Null

Opportunity Gestures
Null clean Table (CT) open Drawer1 (ODr1)
close Drawer1 (CDr1) open Drawer2 (ODr2) close Drawer2 (CDr2)
open Drawer3 (ODr3) close Drawer3 (CDr3) open Door1 (OD1)
close Door1 (CD1) open Door2 (OD2) close Door2 (CD2)
open Fridge (OF) close Fridge (CF) drink Cup (D)
open Dishwasher (ODi) close Dishwasher (CDi) Toggle Switch (TS)

4.6 Experiments and Results

For each subject, we perform 5-fold cross validation. We compare our
proposed LCSS methods to the Segmented DTW [7] and the Nonseg-
mented DTW [2]. All methods use the same strategy to select templates
(the best similarity average) and the rejection threshold as discussed in
section 4.3.2. However, smaller DTW distance yields higher similarity.
Thus, for the DTW approaches, the class template is an instance with
the minimum average of DTW distances to all other instances in the
same class, and the rejection threshold is the maximum DTW distance
between the class template and all other instances in the same class.
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In the spotting making decision, the DTW between the template and
the matched activity is also normalized by the maximum length of
the template and the gesture. The instance with the lowest normalized
distance indicates which gesture class the system has spotted.

4.6.1 Evaluation metrics

We evaluate the performance with the accuracy (accuracy = correct
predicted/number of samples). However, the accuracy metric is highly
affected by the sample distribution of gesture classes which may be
highly unbalanced in real-life datasets. Therefore, we also adopt the
F1 measure to give a complementary assessment of performance.

F1 =
∑

i

2 ∗ wi
precisioni ∗ recalli
precisioni + recalli

where i is the class index and wi is the proportion of samples of class i.
precisioni is the proportion of samples of class i predicted correctly over
the total samples predicted as class i. recalli is the proportion of samples
of class i predicted correctly over the total samples of class i. We present
two ways of computing the F1, either including (F1_Null) or excluding
the Null class (F1_NoNull). F1_NoNull does not consider the null class,
but still takes into account false predictions of one gesture class to
Null. The recognition system that has high values of both F1_Null and
F1_NoNull predicts well both gesture classes and Null class.

4.6.2 Results

4.6.2.1 Gesture template similarity

Fig. 4.8 shows the DTW distance and the LCSS similarity matrices
between pairs of gestures in the training set of one user in Opportu-
nity dataset. The LCSS similarity matrix can discriminate gestures of
different classes better. It can be explained that DTW is sensitive to
boundary noise and variation in gesture execution. A representative
case is illustrated in Fig. 4.9 that shows the effect of the extension of
the boundaries of a gesture on DTW. In this example, the same change
to the same patterns on boundaries increases the DTW distance signifi-
cantly, while the LCSS changes slightly. The DTW is very sensitive due
to the dissimilarity accumulating on the noisy parts. The sensitivity of
DTW to the variation in gesture execution can be explained similarly.
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Figure 4.8: DTW distance matrix and LCSS similarity matrix of gestures
of one user in the Opportunity training dataset. The LCSS metric allows
to better distinguish the gestures of different classes.

Figure 4.9: The sensitivity of DTW and LCSS to boundary noise. Two
string instances of OpenDoor activity are shifted apart to show the
patterns and the warping path (DTW distance) or the matching points
(LCSS) between them. On the right, both instances are extended by 6
synthetic samples on each side. The arrows point to the positions from
which the boundaries are extended.
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4.6.2.2 Performance results

Table 4.2 shows the results of template matching approaches on the
two datasets 1. The results indicate that both LCSS approaches out-
perform two DTW approaches in the Opportunity dataset (about 12%
higher in accuracy and F1 measure). The Opportunity dataset contains
large variability in the executions of the daily activities and naturally
contains a large amount of boundary noise. In the HCI dataset, the
LCSS and DTW approaches yield similar results and gain high accu-
racy. The HCI dataset has less variability than the Opportunity dataset
as geometric-shape gesture execution contains low variability and the
start and end boundaries of gestures are well-defined .

Table 4.2: The average accuracy and F1 measure over sample unit in
two datasets

Opportunity Dataset, Avg ± Stdev of 4 subjects
Method Accuracy F1_Null F1_NoNull
Segmented DTW 0.37 ± 0.02 0.37 ± 0.03 0.33 ± 0.03
Nonsegmented DTW 0.38 ± 0.04 0.34 ± 0.06 0.27 ± 0.09
Segmented LCSS 0.48 ± 0.03 0.48 ± 0.04 0.44 ± 0.08
Warping LCSS 0.50 ± 0.06 0.48 ± 0.05 0.43 ± 0.07

HCI Dataset
Method Accuracy F1_Null F1_NoNull
Segmented DTW 0.76 0.75 0.66
Nonsegmented DTW 0.78 0.78 0.72
Segmented LCSS 0.78 0.77 0.68
Warping LCSS 0.74 0.72 0.63

4.7 Conclusion

In this paper, we have introduced two template matching methods de-
rived from LCSS to recognize gestures online. Both Segmented LCSS
and WarpingLCSS achieve better accuracy than the existing DTW ap-
proaches in the daily-gesture dataset that suffers from boundary noise

1We conducted a 2-sided hypothesis test at the 0.01 level of significance as in [64],
the tests showed that the accuracy differences among the four methods are statistically
significant.
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and execution variation. The WarpingLCSS is faster than the Seg-
mented LCSS by one order of magnitude, but requires to choose an
application-specific penalty parameter by cross-validation in training
process. The 3D accelerometer data is converted in 1D string thus our
spotting process working with symbols is simple and fast. Our novel
WarpingLCSS requires a small constant amount of space and time, thus
it is appropriate for real-time recognition. In future work, we plan to
extend the system by applying sensor fusion and multiple templates
for each activity class. We also plan to investigate the WarpingLCSS
and the penalty parameter in more general time series data.
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Abstract

Crowdsourcing is a promising way to reduce the effort of collecting an-
notations for training gesture recognition systems. Crowdsourced anno-
tations suffer from "noise" such as mislabeling, or inaccurate identifica-
tion of start and end time of gesture instances. In this paper we present
SegmentedLCSS and WarpingLCSS, two template-matching methods of-
fering robustness when trained with noisy crowdsourced annotations to
spot gestures from wearable motion sensors. The methods quantize sig-
nals into strings of characters and then apply variations of the longest
common subsequence algorithm (LCSS) to spot gestures. We compare
the noise robustness of our methods against baselines which use dynamic
time warping (DTW) and support vector machines (SVM). The exper-
iments are performed on data sets with various gesture classes (10-17
classes) recorded from accelerometers on arms, with both real and syn-
thetic crowdsourced annotations. WarpingLCSS has similar or better per-
formance than baselines in absence of noisy annotations. In presence of
60% mislabeled instances, WarpingLCSS outperformed SVM by 22% F1-
score and outperformed DTW-based methods by 36% F1-score on average.
SegmentedLCSS yields similar performance as WarpingLCSS, however it
performs one order of magnitude slower. Additionally, we show to use
our methods to filter out the noise in the crowdsourced annotation before
training a traditional classifier. The filtering increases the performance of
SVM by 20% F1-score and of DTW-based methods by 8% F1-score on
average in the noisy real crowdsourced annotations.

5.1 Introduction

Wearable computing is gaining momentum through the availability
of an increasing choice of devices, like smart watches, glasses and
sensor-equipped garments. A core component to allow these devices to
understand our context is online gesture recognition (spotting) in which
types of gestures and their temporal boundaries must be recognized in
the incoming streaming sensor data. This is carried out using machine
learning approaches on different sensing modalities, like acceleration
[54] and video [65, 66].

Training a gesture recognition system requires an annotated train-
ing data set that is used to perform supervised learning [9, 54–56].
Specifically, the annotations comprise the start and end times (i.e.,
temporal boundaries) of gestures of interest and their corresponding
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labels. Reference data sets are usually annotated by a small number
of experts to be as accurate as possible. However, the labeling process
is extremely time-consuming: it may take up to 7-10 hours to anno-
tate gestures in a 30-min video [12]. Moreover, it is also costly to hire
experts to annotate data corpora.

Crowdsourcing has been emerged recently to address these is-
sues [17,67]. Crowdsourcing is defined as a model that outsources tasks
which are traditionally performed by experts to a crowd of ordinary
people. Thus, crowdsourcing is promising to reduce the cost and time
of labeling. Recently, crowdsourcing has been exploited to get labeling
for training data sets for gesture recognition [68]. However, labels ob-
tained from crowdsourcing are provided by low-commitment anony-
mous workers, thus they are commonly unreliable and noisy [28]. In
gesture annotation from crowdsourcing, the challenge is to obtain la-
bels matching ground truth, attaining both correct labels and correct
temporal boundaries.

Using multiple annotators for the same annotation task by watch-
ing videos or audios is a popular strategy to get a good annotation from
crowdsourcing [18, 68]. However, multiple annotators may not be ap-
plicable in some cases, either due to the higher cost or because of some
privacy concerns. This latter case occurs when the annotation involves
some personal context information, including for example location or
other sensitive data. Hence, the annotation is often provided and re-
lied on the crowdsourced user for his recorded data. Moreover, it is
very difficult to ask the anonymous low-commitment user to clean his
annotation because it is time consuming and he may not remember ex-
actly what he has done. In these cases, the large presence of noise in the
training data annotation can degrade significantly the performance.

While other research is focusing on how to improve the quality of
crowdsourced annotations, we here point out the need for algorithms
that can cope with the kinds of annotation errors that will anyway
remain. In this work, we show that our proposed template matching
methods (TMMs) based on the longest common subsequence algo-
rithm (known as LCSS or LCS in the literature) are suitable for online
gesture recognition in a setting where training data are affected signifi-
cantly by labeling noise. Additionally, the work targets the recognition
of gestures based on acceleration data recorded from only one ac-
celerometer mounted on the user’s arm. The reason to just use one
sensor is that this setting will be the most common one with smart
watches in the close future. Recognizing gestures with just motion
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data from one sensor is challenging due to the ambiguities in the sen-
sor data, especially with high percentage of null class (no gesture of
interest).

5.1.1 Contributions

In this paper, we make the following contributions:

1. We discuss how gesture recognition systems can leverage crowd-
sourcing to collect annotated data. We address the challenges that
arise and then propose a taxonomy of annotation noise which
occur in a crowdsourcing setting. We also give analysis on anno-
tation noise in the real crowdsourced annotated data set.

2. We propose SegmentedLCSS and WarpingLCSS as TMMs for
online gesture recognition. These methods were first presented in
our previous work [69] and have been shown to perform well in
clean annotated gesture data sets both in terms of computational
complexity and accuracy. In this work, we show their robustness
to the labeling noise from crowdsourcing.

3. We compare the robustness of our gesture recognition methods
against three baselines using two variations of dynamic time
warping and support vector machines. The algorithms are tested
with annotations collected in real crowdsourcing scenarios as
well as the synthetic crowdsourced annotations in three data sets
recorded from accelerometers on arms. We also investigate the
impact of different kinds of noises in crowdsourced annotation
on the performance of the gesture recognition methods.

4. We investigate the property of LCSS of being able to select clean
templates, which makes it suitable also as a filtering component
to select good training examples despite noisy annotations. This
filter can be used in combination with other classifiers. We show
how inserting this filtering step improves the performance of
SVMs and TMMs based on dynamic time warping.

The rest of the paper is organized as follows. In Section 5.2, we first
review existing work in online gesture recognition and crowdsourc-
ing. In Section 5.3, we discuss crowdsourcing in gesture recognition
and propose a taxonomy of annotation noise in gesture labeling by
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crowdsourcing. Then, in Section 5.4, we present our proposed Seg-
mentedLCSS and WarpingLCSS methods. The experiments are de-
scribed in Section 5.5. We present quantitative results evaluating the
robustness of our proposed methods against the baselines in Section
5.6. Finally, Section 5.7 concludes our work and gives some potential
research directions.

5.2 Related Work

In this section we discuss related work in the fields of gesture recog-
nition and crowdsourcing, pointing out the lack of an analysis of how
noise present in typical crowdsourced annotations impacts gesture
recognition algorithms.

5.2.1 Annotation Techniques

Supervised learning techniques require a set of annotated training sam-
ples to build gesture models. Therefore, many annotation techniques
have been proposed to collect annotated data. There are offline annota-
tion techniques which rely on video and audio recordings [12], subject
self-report of activities at the end of the day [13]. Online annotation (i.e.,
real-time) techniques perform the annotation during execution of the
activities, like experience sampling [14] which prompts periodically
to a user to ask information about his current activities, or direct an-
notation in which users responsibly provide a label before an activity
begins and indicate when the activity ends [15]. There is a trade-off
between accuracy of an annotation technique and the amount of time
required for annotation [16]. For example, offline annotation on video
recordings by experts can provide accurate annotations, however it is
extremely time consuming [12], and non-scalable to large number of
users. In contrast, the self-report of the subject may require less time
but the accuracy depends on the subject’s ability to recall activities.
Therefore, most of the existing works require video annotation by ex-
perts to obtain clean and correct annotated data sets [12] or provide a
course to teach subjects carefully how they should record and annotate
their data correctly [54].
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5.2.2 Crowdsourcing

Crowdsourcing services, like Amazon Mechanical Turk (AMT)1 and
Crowdflower2, have emerged recently as a new cheap labor pool to
distribute annotation tasks to a large number of workers [18]. Crowd-
sourcing tasks are performed by low-commitment anonymous work-
ers, thus acquired data is commonly unreliable and noisy [28]. There-
fore, the same task is often redundantly performed by multiple workers
and majority voting is a popular decision making method used to iden-
tify the correct answers [18]. Moreover, in crowdsourcing, malicious
workers often take advantage of the verification difficulty (the ground
truth is unknown) and submit low-quality answers.

Due to the error-prone nature of crowdsourcing, several strategies
were proposed to estimate the quality of workers, in order to reject
low-performing and malicious workers. Verifiable questions or pilot
tasks for which the requester knows the correct answers is a common
empirical strategy to screen workers from crowdsourcing [18,39]. An-
other way to ensure quality is to check the agreement in annotations
among workers to detect non-serious workers [68]. [58] proposed a
theoretical model that used the redundancy in acquiring answers (i.e.,
the same task is completed by multiple workers) to measure the label-
ing quality of the workers. Recently, [59] proposed Bayesian versions
of worker quality inference. [60] improved the method by separating
spammers who provide low-quality answers intentionally from biased
workers who are careful but biased.

Recently, crowdsourcing has been exploited also in the field of ac-
tivity recognition to collect annotated training data sets [15,68,70–72].
These works showed that crowdsourced data is erroneous, therefore,
filtering strategies such as multiple labelers and outlier removal should
be used to reduce labeling noise.

Although many strategies are used to reduce noise in crowdsourced
data annotation, there is no guarantee to have a perfect annotation,
especially when using multiple labelers can not be applied. Until now,
the impact of the noisy annotations in crowdsourcing on the training
of gesture recognition methods was not investigated. Furthermore,
the nature of the noise that affects the annotations in a crowdsourcing
scenario for gesture recognition has not been analyzed yet. These two
latter topics are subject of the present paper.

1The home page for AMT is http://www.mturk.com.
2The home page for Crowdflower is http://crowdflower.com.

http://www.mturk.com
http://crowdflower.com
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5.2.3 Online Gesture Recognition Methods

Signals from body-worn sensors belong to the category of time series
data. Suitable machine learning and pattern recognition techniques for
online gesture recognition include Hidden Markov Models (HMM)
[3–6], template matching methods (TMM) using mostly dynamic time
warping—in short DTW [2, 7, 8] and support vector machines [9–11].

HMMs are not appealing since a large amount of training data is
required to get results comparable to other TMMs and SVM. In [73] for
example, about 1300 instances for 22 classes (i.e., about 60 instances
per class) are used to train the HMM, whereas TMMs can work with as
little as one training instance per class. The issue of the amount of train-
ing data is mentioned also in [74], where the authors state, referring
to HMMs: “While they have been employed for sign recognition, they
have issues due to the large training requirements”. In [75], a variation
of HMMs is selected but the parameters could not be learnt because
of the scarcity of training data: “We fix the transition probabilities to
simplify the learning task, because we do not have sufficient training
data to learn more parameters”. HMMs remain nevertheless an inter-
esting approach for cases where a large data corpus is available, which
is often the case in the field of video-based gesture or sign language
recognition, see for example [3, 76, 77].

Segmented DTW [7, 8] performs online gesture recognition by first
buffering the streaming signals into an observation window. A test
segment is a sequence that is examined to classify whether it is an in-
stance of a gesture class. The start and end boundaries of a test segment
can vary inside the window. A DTW distance is computed between all
templates which represents gesture classes and the test segment, and
the class of the closest template is eventually selected as label for the
test segment if the distance falls below a certain rejection threshold. As
the sensor delivers a new reading, the window is shifted by one sample
and the process is repeated. Segmented DTW is time consuming since
DTW is recomputed to find the best boundaries for the test segment
inside the window and it is also recomputed every time the window
shifts by one sample. A nonsegmented DTW variation was proposed
by [2] to reuse the computation of previous readings, recognize ges-
tures and determine their boundaries without segmenting the stream.

Along with DTW, the other commonly used similarity measure
for matching two time series is LCSS [63]. In previous work [69], we
introduced two variations of LCSS-based template matching for on-
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line gesture spotting and recognition. We applied the methods to ac-
celerometer data. These LCSS-based classifiers (SegmentedLCSS and
WarpingLCSS) proved to outperform DTW-based TMMs, both in terms
of computational complexity and accuracy (especially for data sets
containing high variability in gesture execution as shown in [69]). Fur-
thermore, our methods were designed with the goal of being robust in
case of noisy annotations. The validation of this aspect is the main topic
of the present article. The impact of the various kinds of noise occur-
ring in crowdsourced annotations on TMMs has not been investigated
in previous literature, to the best of our knowledge.

In sign language recognition literature, we find two other works
proposing the use of LCSS as a classifier, applied to video data [78,79].
In both cases, the methods use a sliding window to set temporal bound-
aries of a gesture inside the window, similarly to our SegmentedLCSS.
With our WarpingLCSS, this need of using a window is removed, re-
ducing the computational complexity. It is interesting to note how [79]
states that “It can then be said that the MDSLCS algorithm can out-
perform the HMM classifier for both pre-cut and streaming gestures”,
which supports the idea of using TMMs instead of HMMs to make best
use of the available training data. TMMs are competitive with HMMs
also with respect to null-class rejection, meaning the ability to spot a
gesture within a continuous stream.

Some algorithms present in the literature rely on k-means or spatio-
temporal clustering to transform the raw signals into so-called “fen-
emes”, or subunits [80, 81], which allows to reduce the amount of
training data, due to the fact that more gestures can contain the same
feneme, so that a critical mass can be achieved in terms of amount of
training data. We use a similar approach based on k-means clustering
to find a quantization of the signals which gives good results.

A large body of literature focuses on a recognition performed on
video data, for example for the recognition of sign language (see for
example [75–77,82]). However, gesture recognition from wearable sen-
sors, e.g., one accelerometer at the wrist, would allow to scale up the
recognition system to many users immediately because the system
can be deployed easily wherever a user goes with the motion sen-
sor mounted on hand. It does not need any other infrastructure like
cameras, which do not follow us everywhere in practice. Of the video-
based approaches, the one of [83] captures the videos directly by a
moving camera, which could be easily wearable. However, from the
practical point of view, such an option has some limitations: first, such
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a device would be quite costly; second, processing signals from a cam-
era is more computationally intensive than processing those from a
motion sensor; third, capturing video data is much more intrusive due
to privacy concerns.

5.2.4 Robustness against Annotation Noise

The impact of noise in annotations on the performance of classifiers has
been investigated in the literature [16, 29–32]. The above cited studies
do not concern template matching methods. Moreover, they conducted
experiments on synthetic noisy data. Additionally, under “annotation
noise”, or “class noise”, only the case of having wrong labels (i.e., labels
are substituted as other classes) was considered. Noise in gestures
annotation can nevertheless also mean having labelings with temporal
boundaries differing from the ground truth, e.g., a gesture marked as
starting earlier and ending later than the ground truth. These other
kinds of noise were neglected until now, and they are investigated in
this paper in both synthetic and real crowdsourced annotated data.

5.3 Crowdsourcing in Gesture Recognition

In this section we discuss how gesture recognition systems can lever-
age crowdsourcing. We outline the challenges that arise and provide a
taxonomy of the annotation noises, i.e., the mistakes that affect crowd-
sourced annotations. We then measure these annotation noises in a real
crowdsourced data set.

Gesture recognition systems can take advantages of crowdsourcing
in three ways:

1. Crowdsourcing can be used to acquire annotations for an existing
gesture data set by asking crowdsourced workers to watch video
footage synchronized with the sensor data [68, 72].

2. [84] proposed a system that asks users to both record and anno-
tate activities. This system can be deployed in a crowdsourcing
manner. Users can sporadically select gestures they want to per-
form and record them with a device (e.g, smart watch, smart
phone, etc.). This way, multiple annotated gestures provided by
a large user base could contribute to a central repository which
grows in time. The data set would capture the variability in ges-
ture execution due to the different people contributing.
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3. A more obtrusive crowdsourcing task would ask users to record
and annotate as many activities and gestures as possible over
a long time span (e.g., weeks). This type of crowdsourced data
collection would be useful to gather data for long-term health
care monitoring systems.

In any of the previous scenarios, the outcome would be an an-
notated training data set, with which algorithms can be trained. The
benefit of the crowdsourcing setting is that a large data set can be
collected quickly, if the crowdsourced user base is large enough.

5.3.1 Taxonomy of Sources of Annotation Noises

The major challenge in any of the settings outlined above is the quality
of the labels obtained, which are unreliable for many reasons. We define
the following taxonomy of annotation noises along with examples:

• Some gestures or activities can be understood differently with
respect to when they actually start and end. The temporal bound-
aries of the gesture drink can be set from the time when the user
picks up a glass to when he or she puts it back to the table.
Another variation is that the gesture is annotated only when
the person is actually drinking. Both annotations are valid, but
this uncertainty of temporal boundaries has an impact on the
algorithms that will be trained with the collected annotated data.
However, even when we assume the definition of gesture bound-
ary is given, the errors in gesture boundary still happen due to
the carelessness of crowdsourced labelers. We call this form of
noise boundary jitter. We define boundary jitter as the presence of
a shift in the annotation boundaries, while the label matches the
actual gesture (ground truth).

• Some instances of gestures can be wrongly annotated or missed
altogether. This can occur for example if the video footage does
not have enough resolution to spot subtle manipulative gestures,
or more simply if the labeler does not annotate all gestures that
are occurring. We use the term label noise to denote instances
where gestures are associated to wrong labels or to no label at
all.

We further categorize boundary jitter into four error types, namely
extend, shrink, shift left and shift right according to how the temporal
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boundary of a gesture is shifted compared to the ground truth. Figure
5.1a illustrates the subclasses of boundary jitter.

Drink
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Drink

Drink

Drink

Correct start Correct end
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Figure 5.1: Illustrations of boundary jitter and label noise in crowd-
sourcing annotation. GT stands for ground truth. The blue dash-dotted
lines indicate the correct boundary of a gesture.

• Extend: The starting boundary is set earlier and the ending
boundary is set later. The information of the gesture instance
is preserved, but noise is attached to the gesture instance in the
form of samples which belong actually to another gesture class
or to no class of interest at all (i.e., null class).

• Shrink: The starting boundary is set later and the ending bound-
ary is set earlier. In this case, some information of the gesture
instance is missed.

• Shift left: Both starting and ending boundaries are set earlier. In
this case, some information of the gesture instance is missed and
noise is added at the end of the gesture.

• Shift right: Both starting and ending boundaries are set later. In
this case, some information of the gesture instance is missed and
noise is added at the beginning of the gesture.
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We also categorize label noise into three error types, namely delete,
substitute and insert.

• Delete: A gesture instance is not annotated. It is automatically
marked as null class.

• Substitute: A gesture instance is labeled as another gesture class.

• Insert: A gesture instance is labeled where no gesture of interest
actually occurs.

Figure 5.1b illustrates the subclasses of label noise. The subclasses of
label noise are similar to the definition of classification errors evaluated
in performance metrics proposed by [85]. However, in this work, we
consider those errors existing in annotations of training data set.

5.3.2 Annotation Noise Parameters

Along with the taxonomy provided in the previous section, we here
list the parameters that quantify the amount of noise in the annotation.
Given a gesture instance, let start and end be the start time and end
time of the crowdsourced annotation. Let GT_start and GT_end be
the corresponding ground truth boundaries. Let N denote the time
length of the gesture (N = |GT_end − GT_start|). We define ∆s as the
time difference between the crowdsourced start time and the correct
start time (∆s = |start − GT_start|). Similarly, we define ∆e as the time
difference between the crowdsourced end time and the correct end
time (∆e = |end − GT_end|). ∆s and ∆e are illustrated in Figure 5.1a for
the different boundary jitter noises.

For boundary jitter and for the corresponding subclasses, we define
a jitter level to quantify the proportion of time that is wrongly annotated
in a gesture due to the jitter. The jitter level also indicates how much the
boundaries stray from the correct annotation. These jitter parameters
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are calculated as follows:

extend level = proportion of time noisy samples added

= ∆s+∆e
N .

shrink level = proportion of time good samples missed

= ∆s+∆e
N .

shift-left level = proportion of time noisy samples added and good samples missed / 2

= ∆s+∆e
2∗N .

shift-right level = proportion of time noisy samples added and good samples missed / 2

= ∆s+∆e
2∗N .

5.3.3 Annotation Noise Statistics from A Real Crowdsourcing Exper-
iment

To give a flavor of typical values encountered for the annotation noise
levels, we report these levels measured in a real crowdsourcing ex-
periment that we conducted in a previous study [68]. In the crowd-
sourcing experiment we used video footage belonging to the Oppor-
tunity data set [12], which contains gestures of normal daily routines
(e.g., drink, open or close doors). We showed each short video to ten
workers in Amazon Mechanical Turk (AMT), described the task and
collected their annotations. The AMT labelers must annotate the start,
end boundaries and the label of all occurrences of gestures of interest in
the videos. We applied two strategies to detect and filter non-serious
labelers and erroneous labeling [68]. Individual filtering checks the
correctness in the answers of each labeler for qualification questions
whose answers are known in advance. Collaborative filtering checks
the agreement in annotations among workers to detect non-serious
labelers. Specifically, the labeler X who has a disagreement score d(X)
=

Annotation times of X disagree with majority
Total annotation times of X > threshold is a spammer. We chose

a threshold = 0.3, it means if the disagreement score d ≥ 0.3 (i.e.,
less than 70% of annotation of a labeler agrees with the majority), the
labeler is a spammer and his annotations are removed. The collabo-
rative filtering is illustrated in Figure 5.2. After filtering, the majority
voting among qualified annotations is performed to generate a final
crowdsourced gesture annotation. A more detail on the crowdsourcing
experiment is given in [68].
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Figure 5.2: An illustration of the collaborative filtering technique to
calculate the disagreement score of each labeler against the majority.
The last two labelers are spammers and then their annotations will be
removed.

Each video footage of the Opportunity data set was already ex-
amined and annotated carefully by one expert [12] and the expert’s
annotations are used as a ground truth to evaluate our crowdsourced
annotation. Here we report the sample-based accuracy (i.e., fraction
of correctly labeled samples compared to expert’s annotation) for a
one-labeler annotation scenario where only one crowdsourced labeler
is selected, and for a multiple-labeler scenario where the filterings and
majority voting are applied for the ten workers. For a one-labeler anno-
tation, the sample-based accuracy gets as low as 55%. In the multiple-
labeler annotation, the accuracy reaches 80%. A breakdown of the types
of annotation mistakes, according to the taxonomy introduced in Sec-
tion 5.3.1, is shown in Figure 5.3a. The values for label noise and for the
boundary jitter are shown for one and for multiple labelers. In the sce-
nario of only one labeler, about 52% of the instances are affected by label
noises, comprising mostly substitute and delete errors. In the multiple-
labeler scenario, label noise decreases to 18%. In Figure 5.3b, we give the
average, the min and the max values of jitter level of boundary jitters
for one and for multiple labelers. On average, jitter levels ranges from
27% to 60%. However, there are good annotated instances with very
low jitter levels (only 2%).

It can be seen that requesting multiple labelers for an annotation
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Figure 5.3: Analysis of crowdsourcing annotation from AMT. Blue lines
in the figure a separate boundary jitter part and label noise part. Black
lines in the figure b show the minimum and maximum level of jitter in
each type of noise.

task can reduce labeling errors. However, the result from a one-labeler
annotation represents for the scenarios where multiple labelers can-
not be applied. Our experiment belongs to the first crowdsourcing
category described at the beginning of the present section, i.e., crowd-
sourcing labeling of data which were previously recorded. The amount
and distribution of annotation noises will change depending on the
crowdsourcing scenario and on the kind of gesture data, but there is
no reason to think that some scenarios will achieve much lower noise
levels. On the contrary, in real-time annotation (i.e., providing labels
while recording data) , it is more likely that the level of noise increases:
more gestures could be forgotten and others would be labeled only
after they really occurred, leading to imprecise time boundaries. We
therefore argue that annotation noise is a fact that cannot be com-
pletely removed and that calls the attention of robust methods when
designing gesture recognition systems which use noisy crowdsourced
annotations.
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In the next sections we present our SegmentedLCSS and Warp-
ingLCSS TMMs which are designed with the aim of being robust to
annotation noise for gesture recognition.

5.4 SegmentedLCSS and WarpingLCSS Gesture Recog-
nition Methods

In this section, we describe in details our proposed methods, Seg-
mented LCSS and WarpingLCSS for online gesture recognition using
signals obtained from body-worn sensors.

The methods proposed to recognize gestures are based on tem-
plate matching (TM). The training phase uses a set of labeled signals
to train the gesture recognition algorithm. In the training phase, the
sensor signals are quantized and converted into sequences of sym-
bols (strings); furthermore, one template is created for each gesture of
interest. When deploying the recognition algorithm, the quantization
scheme is again applied to the streaming signals. The strings obtained
are then compared with the learned templates by either using the
longest common subsequence (LCSS) algorithm in segmented win-
dows (SegmentedLCSS) or using our faster variant of LCSS (namely
WarpingLCSS). Figure 5.4 shows the data flow through different pro-
cessing components in the training phase and the recognition phase of
our proposed system.

The rationale using LCSS is that it gives a measure of similarity
between templates and signals to be recognized. Moreover, LCSS is
robust to the high variability in gesture execution as shown in our
previous work [69] because LCSS can ignore the dissimilarity and
accumulate the similarity between two gesture instances.

In the following, we first briefly review LCSS, then we describe the
different processing components of the recognition system in Figure
5.4.

5.4.1 The Longest Common Subsequence Algorithm (LCSS)

Let sA and sB be two strings comprising lA and lB symbols respectively.
Let s(i) denote the i-th symbol within a string s. For each pair of posi-
tions 0 ≤ i ≤ lA and 0 ≤ j ≤ lB within the strings, we call LCSS(A,B)(i, j)
the length of the longest symbol subsequence in common between the
first i symbols of sA and the first j symbols of sB. The LCSS between the
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Figure 5.4: Data processing flow of the proposed LCSS-based template
matching methods for gesture recognition.

complete strings is then denoted as L(A,B) or, when the strings are clear
from the context, just with L.

L(A,B)(i, j) =



0 , if i = 0 or j = 0

L(A,B)(i − 1, j − 1) + 1 , if sA(i) = sB( j)

max
{

L(A,B)(i − 1, j)
L(A,B)(i, j − 1) , otherwise.

(5.1)

Let ΩA and ΩB be the sets of indices corresponding to the longest sub-
sequences of sA and sB that are matching. The sets ΩA = ω(0)

A . . . ω(L−1)
A

and ΩB = ω(0)
B . . . ω(L−1)

B contain then L(A,B) indices. L(A,B) and the corre-
sponding matching subsequences, hence the sets ΩA and ΩB, can be
found using dynamic programming (see [42]).

5.4.2 Training Phase: Quantization Step

Let n denote the number of signal channels provided by the body-
worn sensors (e.g., n = 3 for one triaxial accelerometer). Let N be the
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number of available samples. Let xi be the time series corresponding
to the i-th signal channel, with 1 ≤ i ≤ n and xi(t) be the value of the
time series xi at time t, with 1 ≤ t ≤ N. Let the n-dimensional vector
x(t) = [x1(t) . . . xn(t)] denote one sample from all channels at time t.

The quantization step converts the vectors x(t) into a sequence of
symbols (string) s(t). This is done by performing k-means clustering
on the set of n-dimensional vectors x(t), ∀t, 1 ≤ t ≤ N. The choice of
k is performed through cross-validation or empirically. For the ges-
ture data sets used in this paper, k = 20 provided a good tradeoff
between complexity (k-means’ complexity scales linearly with k) and
performance. The output of k-means is a set of k n-dimensional clus-
ter centers, ζ0 . . . ζk−1, to which k symbols α0 . . . αk−1 are assigned. The
quantization procedure then operates on each sample x(t) to obtain the
symbols s(t) as follows:

s(t) = αi|i = argmin
i
||x(t) − ζi||2 .

Let us denote with d(αl, αm) the distance between two symbols,
given by the correspondent distance between their assigned cluster
centers, normalized to fall in the interval [0, 1].

d(αi, α j) =
||ζi − ζj||2

maxi, j||ζi − ζj||2
. (5.2)

5.4.3 Training Phase: Template Construction

For each labeled gesture in the training data set, a corresponding string
is derived used the quantization described in Section 5.4.2. Denote with
s(c)

i the i-th string belonging to class c. The template s̄(c) that represents a
gesture class c is then chosen as the string that has the highest average
LCSS to all other strings of the same class.

s̄(c) = argmax
s(c)

i

∑
j,i

L(s(c)
i ,s

(c)
j ) .

5.4.4 Training Phase: Calculation of Rejection Thresholds

In order to be able to reject signals not belonging to a gesture class
upon deployment, a threshold needs to be calculated in the training
phase. We define one rejection threshold εc for each class c. Let µ(c) and



115

and σ(c) be the mean and the standard deviation, respectively, of LCSS
values between the template of a class c and any string belonging to
the same class. We calculate the rejection threshold to be below µ(c) by
some standard deviations.

εc = µ(c)
− h ∗ σ(c),

with h = 0,1,2,...
The rationale is that the good instances belonging to a class should

have the similarity with the template around the mean value. εc is also
chosen to be robust with the existence of noisy training instances in
gesture class. In our experiments, h = 1 provided a good performance.

5.4.5 Recognition Phase: Quantization Step

In the online recognition, streaming data from a body-worn sensor are
quantized to the k-means centroids (i.e., symbols) identified during
training, then come to template matching module (TM) which uses
either Segmented LCSS or WarpingLCSS to recognize gestures.

5.4.6 Recognition Phase: SegmentedLCSS

In the SegmentedLCSS approach, the sensor readings x(t) are first
quantized into a string s through the quantization step described in
Section 5.4.5. For each gesture class c, the string s is then segmented
into a sliding observation window OWc. The length of OWc is chosen
as the length of the template s̄(c). A substring of s in OWc is denoted as
sc

OW . Each substring is compared to the template s̄(c) for class c.
The LCSS algorithm is used to calculate L(sc

OW ,s̄
(c)) and the set Ωs

of reference indices of the symbols of sc
OW in the string s matching

with symbols in the template. Because the LCSS algorithm can find
matching points, the boundaries of the detected gesture can be decided
easily. Specifically, if L(sc

OW ,s̄
(c)) ≥ εc, the symbols ranging from s(ω(0)

s ) and

sc(ω(L−1)
s ) are marked as belonging to class c.

In order to reduce the computational complexity, the next observa-
tion window is started at the index ω(0)

s of the first matching symbol of
the previous observation window. In case the set Ωs is empty, the next
observation window is shifted quickly by the window length. Figure
5.5 illustrates the SegmentedLCSS.
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Template

Motion 
Sequence

BCAABBD

...CADBCDDDABDDD...

LCSS = 4

BCAABBD

...CADBCDDDABDDD...

LCSS = 5

OWFirst
Match

New OW, starting at first match

(a) (b)

Figure 5.5: The SegmentedLCSS recognition process. The shaded part
represents the observation window OWc. For each class c, the LCSS is
computed between the gesture template s̄(c) and the quantized signal
in the window. If the LCSS exceeds the rejection threshold, the samples
between the first and the last matching symbols are assigned to class
c. The next observation window will start at the first matched point of
the previous calculation as illustrated in Figure b.

5.4.6.1 Computational Complexity of SegmentedLCSS

Let Tc denote the length of a gesture template of class c (|OWc| = Tc). The
worst case computational complexity of SegmentedLCSS occurs when
new observation windows are shifted by just one sample compared to
the preceding ones. In this case, for each class c, the time complexity of

SegmentedLCSS isO(T2
c ). The overall time complexity is thenO(C∗T

2
),

where C is the number of classes and T stands for the average template
length across the classes. The memory usage in SegmentedLCSS is at
most O(T2), where T is the length of the longest template.

5.4.7 Recognition Phase: WarpingLCSS

In the SegmentedLCSS, the LCSS must be recomputed every time the
observation window shifts, in order to find the beginning and end
of each gesture. WarpingLCSS is our variant of LCSS that can find
the gesture boundaries without the need of sliding windows, thereby
reducing the computational complexity.

In WarpingLCSS, after each new sample of x(t) is available, the
string s is updated by appending the symbol obtained through the
quantization of the sample and the LCSS value is recomputed accord-
ingly, relying on the previous values.

Given the gesture template for class c, s̄(c), the WarpingLCSS score
W(s̄(c),s)(i, j) between the first i symbols of the template s̄(c) and the first
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j symbols of the string s is obtained through a modified version of
Equation 5.1 as follows.

W(s̄(c),s)(i, j) =



0 , if i = 0 or j = 0

W(s̄(c),s)(i − 1, j − 1) + 1 , if s̄(c)(i) = s( j)

max


W(s̄(c),s)(i − 1, j − 1) − p ∗ d(s̄(c)(i), s( j))
W(s̄(c),s)(i − 1, j) − p ∗ d(s̄(c)(i), s̄(c)(i − 1))
W(s̄(c),s)(i, j − 1) − p ∗ d(s( j), s( j − 1))

, otherwise,

(5.3)

where p is a penalty parameter of the dissimilarity and d(·, ·) is the
distance between two symbols as defined in Equation 5.2. The rationale
of the WarpingLCSS is the following: if the WarpingLCSS algorithm
encounters the same symbol in a template and in the current string, W
is increased by a reward of 1. Otherwise, W is decreased by a penalty
which depends on the parameter p and on the distance between the
symbols. Furthermore, if the string s is “warped”, that is, it contains
contiguous repetitions of a symbol due to a slower execution of a
gesture, the penalty is counted only once.

The algorithm starts with an empty string s and W(0, 0) = 0. As new
symbols are appended, W is updated according to Equation ??. If a
gesture of a class is performed, it symbols matching the corresponding
template are found and W grows, until reaching a local maximum
and eventually decreasing again, as soon as the gesture is over. A
gesture of class c is recognized for each local maximum of W that also
exceeds the rejection threshold εc. The end point of the gesture is set
to the local maximum itself. The start point is found by tracing back
the matching path. The LCSS between the template and the matched
gesture is accumulated during the trace-back process if necessary (i.e.,
when a gesture is spotted as belonging to multiple classes) to make a
decision (discussed in next section).

When gestures differ from those encoded by the stored templates,
W drops significantly due to the penalty terms. The value of the penalty
parameter p depends on the application and can be chosen by cross-
validation to maximize the recognition accuracy.

Figure 5.6 illustrates an example of behavior of W. Figure 5.7
shows a close-up of W where a gesture was matched to a template.
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It also shows how the WarpingLCSS detects the temporal boundaries
of matched gestures.

S
im

il
a

ri
ty

 (
W

)
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Figure 5.6: WarpingLCSS between a template of the gesture “open
door” (OD) and a streaming string s, p = 3. The value W is updated
for each new sample. The line on the top shows the ground truth. The
small circles show gesture detection at spotting time.

5.4.7.1 Computational Complexity of WarpingLCSS

WarpingLCSS only needs to update the value of W for each new sam-
ple. Thus, the time complexity of WarpingLCSS is O(T). WarpingLCSS
has a linear complexity in T compared to SegmentedLCSS, whose com-
plexity grows quadratically in T. The WarpingLCSS maintains at most
O(T2) memory for the need to trace back the starting boundary of
detected gestures.

5.4.8 Decision Making and Solving Conflicts

The incoming streaming string is concurrently "compared" with tem-
plates of all concerned gesture classes in TM module. If a gesture is
spotted as belonging to multiple classes (i.e., boundaries of spotted
instances are overlapping), the decision making module (DM) will re-
solve conflicts (as discussed below) by deciding which class is the best
match. If a gesture is classified into only one gesture class, the DM will
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Figure 5.7: Close-up of the first detected “open door” gesture (OD)
in the string s (see Figure 5.6). The local maximum (LM) marks the
end of the gesture, while the start is traced back through the matching
symbols.

output the class. Otherwise, if no gesture class is spotted, the DM will
output null.
Resolving spotting conflicts: We define the normalized similarity be-
tween two strings A and B as NormSim(A,B) = LCSS(A,B)/max(‖A‖, ‖B‖),
with ‖A‖ and ‖B‖ are the lengths of the strings A and B, respectively.
The NormSim between the template and the matched gesture is output
to the decision making module (DM). The class with highest Norm-
Sim is chosen as the best match. This process is the same for both
SegmentedLCSS and WarpingLCSS.

5.5 Experiments

To analyze the effect of annotation noise in terms of performance of
gesture recognition algorithms, we compare our SegmentedLCSS and
WarpingLCSS TMMs against state-of-the-art recognition methods to
assess their robustness. We first present three gesture data sets used
to evaluate the recognition systems. We then describe how synthetic
crowdsourced annotations are obtained. Finally, we discuss baseline
methods and evaluation metrics.
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5.5.1 Description of Data Sets

We used three data sets including various gestures which have been
labeled manually by experts. The experts’ annotation is the ground
truth of the data sets. The data sets used also include null class, data
which do not correspond to any of the gestures of interest. The list of
gestures of these data sets are shown in Table 5.1. In each data set, we
use a 3D accelerometer at a subject’ dominant (right) lower arm for the
evaluations (30Hz sampling rate). Following, we describe briefly each
data set3.

Table 5.1: Gestures in Opportunity, Skoda, and HCI data sets.

HCI Gestures
Circle Triangle Square Infinity Slider

Their Speculars Null

Opportunity Gestures
Null clean Table (CT) open Drawer 1-2-3 (ODr1-2-3)
close Drawer 1-2-3 (CDr1-2-3) open Door 1-2 (OD1-2) close Door 1-2 (CD1-2)
open Fridge (OF) close Fridge (CF) drink Cup (D)
open Dishwasher (ODi) close Dishwasher (CDi) Toggle Switch (TS)

Skoda Gestures
write on notepad check gaps on the front door check trunk gaps
open left front door close left front door close both left door
open hood close hood check steering wheel
open and close trunk Null

5.5.1.1 Skoda

The Skoda data set [43] contains 10 manipulative gestures performed
in a car maintenance scenario by one subject. The null class takes 23%.
Each gesture class has about 70 instances. This data set is characterized
as low variant in execution because the subject performed carefully
each manipulative gesture in the same manner.

5.5.1.2 HCI

The HCI data set [44] contains 10 gestures executed by a single person.
The gestures are geometric shapes executed with the arm in the vertical

3Skoda and Opportunity data sets can be downloaded from http://www.wearable.
ethz.ch/resources/Dataset.

http://www.wearable.ethz.ch/resources/Dataset
http://www.wearable.ethz.ch/resources/Dataset
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plane. This data set has a low variability in the execution of gestures
and well-defined labeling. The null class takes 57% and each gesture
class has about 50 instances.

5.5.1.3 Opportunity

The Opportunity data set [12] is a rich multi-modal data set collected in
a naturalistic environment akin to an apartment, where users execute
17 daily gestures. The data set is characterized by a predominance of
null class (37%) and a large variability in the execution of the daily
activities. Each gesture class has 20 instances excepts "Drink Cup" and
"Toggle Switch" each having 40 instances. Note that in Opportunity
data set, there are three drawers at different heights which make the
recognition more challenging.

5.5.2 Experiments on Synthesized Crowdsourced Annotation

To analyze how much noise in annotation the gesture recognition meth-
ods can tolerate, we conduct experiments with synthesized annota-
tions. We modify clean annotations from the three data sets described
above by emulating label noise and boundary jitter as discussed in the
taxonomy in Section 5.3.1. In order to evaluate the effect of the different
types of noise, we run simulations for each type of noise separately.

5.5.2.1 Label Noise Simulation

In the label noise simulation, we assume the label boundaries are perfect.
Let α be the label noise percentage in each class. This means that α per-
cent of the instances are selected and their labels are randomly flipped
to other classes (including null class). Consequently, each gesture class
will have (1 − α) percent of clean instances.

5.5.2.2 Boundary Jitter Simulation

We run different simulations for different error types in boundary jitter.
We assume that all gesture instances get affected from boundary jitter.
Let β be the jitter level defined in Section 5.3.2. In the extend simulation,
each gesture instance will have an extend level of β, with boundaries
extended at both ends equally (β/2 per side). Similarly, in the shrink
simulation, each gesture instance will be shrunk at both ends equally
by β/2. In the shift left and shift right simulations, each gesture instance
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is shifted to the left or to the right respectively by β compared to the
correct starting point.

We assume that all gesture instances have the same jitter level β.
This assumption is not realistic however it can show how much jitter
level in the training data set the spotting methods can tolerate given
the same style of annotation (for example, a labeler always extends
all his annotation 20% level). For a more realistic scenario where jitter
levels vary from one instance to another instance, the experiment on
the real crowdsourced annotation is presented in Section 5.6.2.

5.5.3 Evaluation with Baseline Methods

To investigate the effect of noisy crowdsourced data sets on ges-
ture recognition, we compare the performance of recognition meth-
ods trained with ground truth annotations against those trained with
crowdsourced annotations. With crowdsourcing-based experiments,
the recognition system is trained on crowdsourced annotations and
tested on clean data (i.e., annotated by experts). For each data set, we
perform a 5-fold cross-validation.

We compare our proposed LCSS-based TMMs with three baselines
approaches: the Segmented DTW [7, 8], Nonsegmented DTW [2] and
support vector machines (SVM). For all TMM methods, we use the
same strategy to select templates, i.e., the maximum similarity aver-
age for our LCSS-based methods and the minimum distance average
for DTW-based ones. They all have the same quantization prepro-
cessing step as presented in Section 5.4.2. The rejection thresholds are
selected as discussed in Section 5.4.4. For SegmentedLCSS and Seg-
mented DTW, the window length is chosen as the template length.

For SVM, the signals are passed through a sliding window, with
50% overlap. For each window, mean and variance of the signals are
calculated and the obtained feature vectors are fed into a SVM classifier.
We use RBF kernels and the two RBF parameters are selected by using
cross-validation. In this work, we use the LIBSVM library [86] for
training SVM.

5.5.3.1 Complexity of Baseline Methods

Segmented DTW belongs, like Segmented LCSS, to the category of slid-
ing window based template matching algorithms. Therefore, roughly,
they have the same computational cost. However, unlike Segment-
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edLCSS, in SegmentedDTW the boundaries of the gestures must be
swept exhaustively in the observation window and DTW must be re-
computed for each choice to find the best match [7,8]. Therefore, when
one new sample arrives, the complexity of the SegmentedDTW isO(T3)
in the worst case. Meanwhile, in SegmentedLCSS the boundary of ges-
ture inside the window can be found easily via matching points and
the observation window is shifted to the first matched point in the
previous recognition process instead of being shifted forward by only
one sample. Thus, SegmentedLCSS has one order of magnitude lower
than SegmentedDTW.

Nonsegmented DTW and WarpingLCSS determine gesture occur-
rences without segmenting the stream. Therefore, they achieve the
same computational cost and they are faster than SegmentedLCSS by
one order of magnitude.

In the recognition phase, the running time of SVM grows linearly
with the length of the window. Hence, SVM has roughly the same
computation cost as WarpingLCSS in the recognition phase.

5.5.4 Evaluation Metrics

The distribution of the gesture classes may be highly unbalanced in
real-life data sets. Especially, in our data sets, null class is predominant.
Therefore, we assess the performance of gesture recognition with the
weighted average F1 score. The weighted average F1 score is the sum of
the F1 scores of all classes, each weighted according to the proportion
of samples of that particular class. Specifically,

F1score =
∑

c

2 ∗ wc
precisionc ∗ recallc
precisionc + recallc

,

where c is the class index and wc is the proportion of samples of class
c; precisionc is the proportion of samples of class c predicted correctly
over the total samples predicted as class c; recallc is the proportion of
samples of class c predicted correctly over the total samples of class c.

We present two ways of computing the F1 score, either including
(F1-Null) or excluding the null class (F1-NoNull). F1-NoNull does not
consider the null class, but still takes into account false predictions of
gesture samples or instances misclassified as null class. The recognition
system that has high values of both F1-Null and F1-NoNull predicts
well both gesture classes and null class.
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5.6 Results and Discussion

In this section we present and discuss the results of the experiments
conducted with synthesized and real crowdsourced annotations.

5.6.1 Results on Synthesized Crowdsourced Annotations

We first present the results with synthesized crowdsourced annota-
tions, sweeping the noise levels as described in Section 5.5. The results
show that F1-Null and F1-NoNull have a similar trend of performance
as the noise levels increase, therefore we report F1-Null score only.

5.6.1.1 Label Noise Simulation

Figure 5.8 shows the results of label noise simulations on the three data
sets. WarpingLCSS and SegmentedLCSS are more robust against label
noise compared to SVM and DTW-based methods. The performance
of LCSS-based methods is stable until a label noise percentage (α) in
each class exceeding 70% in Opportunity and HCI data sets and 50%
in the Skoda data set. On average, WarpingLCSS outperforms SVM by
22% F1-Null and outperforms DTW-based methods by 36% F1-Null in
presence of 60% mislabeled instances. SegmentedLCSS yields similar
performance as WarpingLCSS.

SVM performs worse than our LCSS-based methods when α in-
creases. As more label substitutions are added to each class, SVM gets
more confused and its performance decreases quickly. The degrada-
tion of SVM in performance is expected, since each instance contributes
equally to the model building. Hence, wrongly labeled instances can
induce the model to choose incorrect support vectors, which severely
degrades the performance. Moreover, since the SVM method mod-
els null class explicitly, it is very sensitive to delete noise. Meanwhile,
TMMs examine patterns of gesture classes and ignore null class in the
training phase, thus, TMMs are not influenced with the delete noise at
all.

The reason why LCSS-based TMMs outperform the ones based on
DTW lies in the distance metrics used when selecting the template
for each class. Each template is chosen as the one with the highest
average similarity to the other instances belonging to the same class.
This translates into choosing respectively highest average LCSS and
lowest average DTW distance. While LCSS values between a template
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and an instance of the same class are bounded between 0 and the
length of the template, DTW can grow indefinitely. For this reason,
when calculating average DTW distances, mislabeled instances bias
the average towards high values, regardless whether correctly labeled
instances have a low DTW distance. Consequently, DTW-based TMMs
are more likely to pick wrong templates, leading to poor performance
when α increases.

The difference between LCSS and DTW in choosing templates can
be illustrated with a toy-example. Consider three instances A1, A2 and
B which are all labeled as belonging to class cA but let B be mislabeled,
that is, B actually belongs to class cB. To simplify matters, let us assume
LCSS(A1,A2) = 1, LCSS(A1,B) = 0 and LCSS(A2,B) = 0. Similarly, let
us assume DTW(A1,A2) = 0, DTW(A1,B) = ∞ and DTW(A2,B) = ∞.
With LCSS, A1 would have an average similarity of .5 to A2 and B; A2
would have an average similarity of .5 to A1 and B; B would have an
average similarity of 0 to A1 and A2. Thus, LCSS would pick either A1
or A2 as template for the class cA: both choices would be reasonable.
With DTW, A1 would have an average distance of ∞ to A2 and B; A2
would have an average distance of ∞ to A1 and B; B would have an
average distance of∞ to A1 and A2. In this case, the algorithm would
not prefer A1 or A2 over B, which can lead to choosing as template the
mislabeled instance B to represent class cA. Of course in practice the
values of the DTW distance are not infinity, in fact the degradation of
DTW-based approaches is not occurring already for a small amount of
label noise.

The illustration explains the capability of our LCSS-based methods
to pick a good template among noisy instances for a gesture class
as long as the number of good instances in a gesture class is still
predominant.

By analyzing the starting points of the curves of Figure 5.8, obtained
with α = 0 (no noise), we can conclude that our LCSS-based methods
have a similar or better performance compared to the baselines also
for the case of clean training data sets.

5.6.1.2 Extend Jitter Simulation

When temporal boundaries are extended, data belonging to the null
class (before and after the gesture) are labeled as belonging to the
gesture class. This impacts SVM and TMMs differently. In the case
of SVM, the null class is modeled explicitly. The noisy feature vectors



126 Chapter 5: Robustness of WarpingLCSS on Noisy Crowdsourced Annotations

0 1 5 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
1
_
N
u
ll

  (%)

Opportunity

0 1 5 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

F
1
_
N
u
ll

  

HCI

0 1 5 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

F
1
_
N
u
ll

Skoda

 

5 10 20 30 40 50 60 70 80 90100
Extend level(%)

0 1 5 10 20 30 40 50 60 70 80 90100
Extend level(%)

0 1 5

SVM Warping LCSS Segmented LCSS Nonsegmented DTW Segmented DTW

0 1 5 10 20 30 40 50 60 70 80 90
α (%)

0 1 5 10 20 30 40 50 60 70 80 90
α (%)

0 1 5 10 20 30 40 50 60 70 80 90
α (%)

Figure 5.8: Performance of label noise simulation for the three data
sets.

extracted from extended parts are added into the feature space of each
gesture class. Besides that, the data really belonging to the gesture are
preserved, thus the models of gesture classes maintain good feature
spaces correctly. Therefore, the performance of SVM depends on how
much the noisy feature vectors added into the model of each gesture
class. Accordingly, it relies on the levels of variability of the signals
belonging to the null class. If the variability of the signals belong to the
null class is low, even when the extend level is large, the noisy feature
vectors in each gesture class does not grow, leading to the stable of
SVM performance. In the converse case, the noisy feature vectors in
each gesture class will explode as the extend level increases, causing
the decrease in the performance of SVM.

For TMMs instead the null class is recognized in the test data by
means of the rejection threshold εc and no template is built for it. Thus,
if symbols belonging to the null class are present in a test sequence,
these will be matched to the symbols present in the extended gesture
instances, inducing the TMMs to recognize gestures instead of null
class.

This is confirmed by an analysis of the results, as shown in Figure
5.9. TMMs can tolerate up to about 40% extend level in the Opportunity
and HCI data sets and about 10% extend level in the Skoda data set.
As the extend level is high, the performance of SVM is stable in HCI
and Skoda data sets, but degrades quickly in Opportunity data set. As
explained above, the reason of the differences among data sets lie in
the different levels of variability of the signals belonging to the null
class in the different data sets.
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Figure 5.9: Performance of extend jitter simulation.

5.6.1.3 Shrink Jitter Simulation

When having a shrink jitter noise, the effect is that the methods lose
information about the gesture data, since only parts of the gestures are
labeled. This has a stronger effect in SVM, since the model is corrupted.
For TMMs, subsequences are matched, with the effect that shrunk
instances still contain information in form of shorter subsequences
that can still be matched to the test data. This is confirmed by the
results, shown in Figure 5.10.
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Figure 5.10: Performance of shrink jitter simulation.

Our proposed LCSS-based methods achieve the best performance
in the three data sets. All methods can tolerate about 30% shrink level
before a degradation compared to training with clean data occurs.
The Segmented DTW has a similar results as LCSS-based methods
in low-variability data sets (HCI and Skoda). However, Segmented
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DTW takes a higher computational cost. Moreover, in our experiments,
all gesture instances have the same shrink level, i.e., after shrinking,
instances of a gesture class are still aligned well and DTW can still
achieve a reasonable performance. In a real crowdsourcing annotation
setting, different instances may have different shrink levels (see Figure
5.3b). In that case, DTW will accumulate higher distances due to data
misalignment at the beginning and the end of instances (see [69] for a
more thorough discussion of the weakness of DTW with misalignment
in temporal boundaries).

5.6.1.4 Shift-Left and Shift-Right Jitter Simulation

When annotations are shifted, a mixture of the effects described in
Sections 5.6.1.2 and 5.6.1.3 are present. Some samples belonging to
gestures are lost and some null class samples are labeled as belonging
to a gesture. Figure 5.11 shows the results of shift-right jitter simulations
(the shift-left simulations yield similar results). All methods can sustain
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Figure 5.11: Performance of shift-right jitter simulation.

about 20% shift level before the performance degrades compared to a
clean training data set. LCSS-based methods perform often better, or
as good as DTW-based methods on the data sets that we examined.
TMMs outperform SVM with up to 30% shift level.

5.6.2 Results on Real Crowdsourced Annotation

To further validate the outcome of the previous experiments, we use
the real crowdsourced annotations discussed in Section 5.3.3. The an-
notations were performed by AMT workers on the Opportunity data
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set. We use both the annotations obtained in the one-labeler and in the
multiple-labeler scenarios. In these annotations, mixtures of all kinds
of the errors listed in the taxonomy (Section 5.3.1) are present and jitter
levels are varied from one instance to another instance (see Figure 5.3).

Figure 5.12 reports the performance of the different recognition
methods on our real crowdsourced annotation. In the clean annotated
Opportunity data set, the performance of SVM is slightly lower than
that of LCSS-based TMMs (only lower by 3% for F1-Null and by 7%
for F1-NoNull). Two DTW approaches underperform the others. The
reason is that DTW is very sensitive to high variation in gesture exe-
cution [69] and the Opportunity data set contains large variability in
the executions of the daily activities.

In the multiple-labeler annotation, labels of 80% of the data sam-
ples match the ground truth. Moreover, only 18% of gesture instances
are labeled incorrectly and the remainder are correctly labeled with
a jitter level of at least 2% (see Figure 5.3). The results show that the
performances of all recognition methods are slightly decreased by up
to 4% for F1-Null and 6% for F1-NoNull compared to the training
with clean training sets. Our LCSS-based TMMs yield the best perfor-
mance. As stated also in Section 5.6.1.1, the reason for the robustness
of LCSS-based methods lies in their ability to select clean templates
also in presence of annotation noise.

In the AMT one-labeler annotation, only 55% samples are annotated
correctly. Additionally, about 50% of gesture instances are affected by
label noise, with many deletions and substitutions. In each gesture class,
instances which are labeled correctly are still the majority. The result
shows that our LCSS-based TMMs still achieve the best performance.
The F1-Null measure decreases by 10% and the F1-NoNull by 16%
compared to training with clean annotations.

In the one-labeler annotation, there is a significant difference in
performance between TMMs and SVM. The performance of SVM de-
creases dramatically, down to a F1-NoNull of 5%, which is less than
random guessing (which would be around 6% in a 16-class data set
like Opportunity). This result confirms what was already measured
with the synthetic annotations and discussed in Section 5.6.1.1.

Additionally, we conduct a 2-sided hypothesis test at the 0.01 level
of significance as in [64] among the performance of the methods in
the three scenarios. The tests showed that the performance differences
among the methods are statistically significant except the comparison
of the F1-Null between SVM and WarpingLCSS and the comparison
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of the F1-NoNull between WarpingLCSS and SegmentedLCSS in the
multiple-labeler annotation.

The results on the real crowdsourcing annotation confirm that our
proposed WarpingLCSS and SegmentedLCSS are robust to noise and
yield better performance on crowdsourcing data set. WarpingLCSS is
preferable in online recognition, since it has a lower computational
cost.
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Figure 5.12: Performance of real crowdsourcing annotation on Op-
portunity data set.

5.6.3 A LCSS-based Filtering Component

The results have shown that SVM is very sensitive to the high label
noise in the training data set. Therefore, a preprocessing component
to clean the noisy annotation would be beneficial before using SVM.
Given the robustness of our LCSS approaches in selecting templates
among noisy instances, as well as in spotting, we further propose a
LCSS-based filtering component to filter out noise in crowdsourced
annotations before training a SVM. We call this approach FSVM. For
each gesture class, the LCSS-based filtering component first computes
a LCSS similarity matrix among all pairs of instances in the class. It
then keeps only the instances that have an average similarity to other
instances of the same class exceeding the average of all the average
similarities of all instances in the class. To clean noise inside the null
instances (e.g., delete noise), the filtering component runs the Warp-
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ingLCSS on the data annotated as null and discards any parts which
get classified as any gestures of interest.

For DTW-based TMMs, the performance degrades quickly when
the label noise percentage in the training data set increases (see Fig-
ure 5.8) because DTW cannot pick a good template among noisy
instances. It is interesting to know how templates selected by LCSS
perform in the DTW spotting methods. Therefore, we conduct experi-
ments for Segmented DTW and Nonsegmented DTW with templates
trained by LCSS. We call these approaches LCSS-SegDTW and LCSS-
NonSegDTW respectively. Note that the algorithm running time when
the system is deployed remains unchanged: only the training phase is
affected.

The performances of FSVM, LCSS-SegDTW and LCSS-NonSegDTW
are shown in Figure 5.13 for the real crowdsourced annotation and in
Figure 5.14 for the synthetic label noise simulation. We present again
the performances of the other methods that we discuss above for the
sake of comparison.

In the real crowdsourced annotation, the filtering increases the per-
formance of SVM by 20% F1-score and of DTW-based methods by
8% F1-score on average in the one-labeler annotation scenario where
high label noise exists (see Figure 5.3). In the clean annotation and
multiple-labeler annotation, FSVM performs just slightly worse than
SVM (only 2%). This slight decrease can be explained with the fact that
the FSVM method decreases the amount training data compared to
pure SVM, because the LCSS-based filtering component in the FSVM
removes some part of training data, considered noisy. Our proposed
LCSS-based methods still outperform FSVM.

The LCSS-NonSegDTW outperforms Nonsegmented DTW in all
three scenarios (expert’s annotation, AMT multiple-labeler annotation
and AMT one-labeler annotation). Similarly, LCSS-SegDTW outper-
forms SegmentedDTW. The result clarifies that LCSS is capable of
picking a better template among noisy instances, compared to DTW.
However, LCSS-NonSegDTW and LCSS-SegDTW still underperform
compared to our LCSS-based TMMs. The rationale is the same as dis-
cussed before. LCSS is more robust to high variation in daily gesture
execution, therefore LCSS-based spotting approaches have a better
performance than DTW-based ones even with the same templates.

In the synthetic label noise simulation, the FSVM, LCSS-NonSegDTW
and LCSS-SegDTW methods outperform SVM, Nonsegmented DTW
and Segmented DTW respectively and keep the performance stable
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Figure 5.13: Performance of real crowdsourcing annotation on Oppor-
tunity data set for the methods with and without filtering. SegLCSS,
NonSegDTW, and SegDTW stand for Segmented LCSS, Nonseg-
mented DTW and Segmented DTW respectively.

much longer when α increases. Our proposed LCSS-based TMMs have
similar or better performance than the other methods. Interestingly,
with the same templates picked by LCSS, LCSS-SegDTW and LCSS-
NonSegDTW have a performance which is similar to our LCSS-based
methods in the HCI and Skoda data sets. In the Opportunity data set,
the LCSS-NonSegDTW still performs worse than our SegmentedLCSS
and WarpingLCSS methods because LCSS is more robust than DTW
to high variability in daily gestures [69].

The results show that our LCSS approaches can be used in a pre-
processing step for cleaning noisy annotation in the training data for
SVM or for selecting templates for DTW-based TMMs.

5.6.4 Wrapping up

Our LCSS-based TMMs are robust to labeling noise in crowdsourced
gesture data sets. Moreover, the LCSS-based TMMs also offer other
advantages. (1) They are easy to deploy in online gesture recogni-
tion system due to low time complexity. (2) In our systems, signals
are converted into symbols, thus SegmentedLCSS lends itself even to
embedded implementations. Specifically, string matching in the de-
ployment phase does not involve floating-point operations, thus it can
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Figure 5.14: Performance of label noise simulation for the methods
with and without filtering.

be deployed easily in cheap entry-level microcontroller units. (3) The
deployed TMM-based systems are scalable to new gesture classes of
interest. After collecting a training data set for a new class, the training
phase only works with this class to find a template and the rejection
threshold for the class. The template is then integrated directly into the
deployed system. Thus, the whole process works smoothly with the
new class without interfering with other existing gesture classes.

Our LCSS-based TMMs have been investigated in online gesture
recognition with accelerometer data only. Their ability to work with
other sensor modalities (e.g., gyroscopes, sound) has been investigated
and it has shown promising preliminary results in [87].

5.7 Conclusion and Future Work

In this paper, we investigated the robustness of our proposed LCSS-
based TMMs for online gesture recognition on crowdsourced anno-
tated data sets. The results show that SegmentedLCSS and Warp-
ingLCSS are robust to crowdsourced annotation noise and yield better
performance than DTW-based methods and SVM. We also introduced
a taxonomy of annotation noise in crowdsourcing settings and ana-
lyzed the distribution of that noise in real crowdsourced scenarios.
Our LCSS-based methods are very robust to label noise because they
are capable of selecting a good template among noisy instances for a
class. In presence of 60% mislabeled instances, LCSS-based methods
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outperform SVM by 22% F1-score and outperform DTW-based meth-
ods by 36% F1-score on average.

With boundary jitter, the performance of the proposed approaches
is comparable to that on clean data sets if annotations can keep most
of the information indicating gestures (at most 30%-40% jitter level). In
extreme cases when jitter levels go beyond that limit, our LCSS-based
TMMS and the other machine learning techniques fail to recognize
the complete segment of gestures. This can be the case for example
in real-time labeling, where labelers tend to indicate quickly when a
gesture occurs with only one time point, without providing the start
and end time of the gesture (e.g., the boundary shrinks to a point).
Other techniques (e.g., active learning) are necessary to acquire more
labels and improve label quality in such cases.

We showed that our LCSS-based methods can be also used as a pre-
processing filtering component to clean crowdsourced training data set
with severe label noise before feeding the training sets into other learn-
ing techniques such as SVM or select templates for DTW. The filtering
increases the performance of SVM by 20% F1-score and DTW-based
methods by 8% F1-score on average in the noisy real crowdsourced
annotations.

In future work, we plan to deploy the system that crowdsources
annotated data to a large number of users who record and contribute
gestures. Our methods will then be tested on such real large crowd-
sourced data sets, with the ultimate goal of having a collaborative
database of gestures and associated models with direct applications
with wearable sensors.
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Abstract

In the existing multimodal systems for activity recognition, there is no
single method to process different sensor modalities at different on-body
positions. Moreover, sensor types are often selected and optimized so as to
accord with the goal of application. The complexity makes those systems
infeasible to be deployed for new settings. This paper proposes a unified
system which works with any available wearable sensors placed on user’s
body to spot activities. Each data stream is treated uniformly through
our proposed template matching WarpingLCSS to spot activities. With
the uniformity in extracting activity-specific patterns from raw sensor
signals, our proposed system is compatible with respect to modalities and
body-worn positions.

We evaluate our system on the Opportunity dataset of four subjects
consisting of 17 hard-to-classify classes (e.g., open/close drawers at differ-
ent heights) with 17 sensors belonging to three modalities (accelerometer,
gyroscope and magnetic field) attached at different on-body positions. The
system achieves good performances (63% to 84% in F1 score). Moreover,
the robustness and efficiency to addition and removal of sensors as well as
activity classes are also investigated.

6.1 Introduction

Continuous activity recognition (activity spotting) is a core component
in context-aware systems. It enables a variety of applications such
as ambient assisted living, human computer interaction. In activity
spotting, actions of interest and their temporal boundaries are detected
in a continuous data stream in which they are randomly mixed with
arbitrary non-interest actions (null class).

In the past few years, promising results from body-worn sensors for
activity spotting have been presented [2,54]. Many modalities, such as
motion-related ones (acceleration, rate of turn, magnetic field) [54,88],
temperature [89] or sound [70] have been explored as inputs to activity
recognition systems. Nevertheless, with the increasing availability of
commercial wearable sensor devices (such as smartphones, watches,
glasses and, in a near future, sensor-equipped garments), the multi-
modal aspect is ready for being fully exploited.

Why are there no multimodal activity spotting systems readily
deployed in commercial applications? One challenge is that recog-
nition chains for different sensor modalities need still quite some
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hand-crafting for being deployed. Features and classifiers used for
accelerometer data differ substantially from the ones needed for gy-
roscope or compass data, or audio. Even for the same modality, the
needed features can differ for sensors mounted on different parts of
the body. Furthermore, since each modality allows to recognize some
restricted sets of activities, system designers still tend to solve specific
activity recognition problems with specific sensors.

Other challenges of a unified multimodal framework that make it
easily deployed in any settings are the following:

• If new sensors are worn by the user (e.g., the user wears a new
smart watch), these should be integrated into the system smoothly,
without asking the user where on the body the devices have been
mounted or which classifier should be used for new data from those
sensors.

• The system should handle missing sensors in run-time (e.g., the user
gets off his sensor-equipped shoes) without interfering with other
sensors.

• The system should also adapt new activity classes of interest
smoothly without retraining the whole system.

In this paper we make one step towards a unified framework for
multimodal activity recognition which attempts to overcome the chal-
lenges addressed above. Our system treats different modalities, and
sensors with the same modalities at different on-body placements in a
homogeneous way. Specifically, each data stream is first quantized into
strings of symbols by using k-means (here serving as a vector quan-
tization step) and then substring matching is performed by the fast
and efficient template matching method WarpingLCSS [69] to spot ac-
tivities. Our system recognizes activities by extracting activity-specific
patterns from raw sensor signals, hence it is agnostic with respect to
modalities and on-body positions. Thus, it can combine any available
wearable sensors placed on user’s body to spot activities. Besides that,
our system takes the benefit of template matching methods in which
different classes can be trained and spotted separately so that it can
handle new activity classes easily.

We investigate two multimodal frameworks to fuse different data
sources either at the signal level (signal fusion) or at a decision level
(classifier fusion). In the classifier fusion framework, a novel fusion
technique for template matching is proposed to combine all spotting
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results from different sensors. The two frameworks will be compared
throughout the paper in terms of recognition performance, speed, ease
to add or remove sensors, and ease to add or remove activity classes.

In this work, we test the proposed frameworks with the recogni-
tion of hand actions (i.e., gestures), but the frameworks apply with no
loss of generality to other activities. The proposed system is evaluated
with the complex Opportunity dataset [12], which includes 17 hand
actions using 17sensors belonging to three modalities (accelerometer,
gyroscope and magnetic field) at different on-body positions. The per-
formances of all subsets of sensors in the classifier fusion framework are
also given to demonstrate its flexibility to sensor addition and removal.

6.2 Related Work

Various techniques for online gesture recognition can be found in litera-
ture; they include Hidden Markov Models (HMM) [90], support vector
machines (SVMs) [91], template matching methods (TMM) using dy-
namic time warping (DTW) [2] or using longest common subsequence
(LCSS) [69].

With recent advances in the development of inexpensive wearable
sensors, researchers have investigated activity recognition systems us-
ing multimodal sensors or multiple single-modal sensors to improve
the performance. In [54], five accelerometers were attached at different
on-body positions to recognize physical activities. [92] used motion
sensors and force sensing resistors to recognize hand actions for qual-
ity inspection in car production. The fusion of multiple data sources
can be performed either early at signal level, feature level [89], or late
at decision level (i.e., classifier fusion) [54, 92].

For each modality, a wide range of features and supervised learn-
ing techniques for activity recognition has been explored [93]. As one
example, accelerometer data can be classified with Naive Bayes [54],
SVMs [91], C4.5 decision trees [54], HMM [90], TMM [69] and a variety
of features in both time and frequency domains can be extracted [93].
Due to the diversity of methods and features, the existing multimodal
systems selected different methods and features for different modali-
ties or sensors mounted at different on-body positions [2, 92]. For ex-
ample, in the application of car quality inspection [92], inertial sensors
must be attached at arms and torso in order to acquire the trajecto-
ries of wrists and elbows, force sensing resistors attached at lower
arms to monitor muscle. Four different methods including K-Nearest-
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Neighbor (KNN), TMM, k-means classifier, and Bayes classification
were used in that work. They also trained different classifiers linked to
the different modalities with different set of labels for the best possible
performance purpose.

WarpingLCSS was first presented in our previous work [69] as a
fast and efficient method to spot gestures using one 3D accelerometer
on arm. The method showed robustness against noisy annotations and
high variances in activity execution. In the work by Chen et al. [94],
they investigated WarpingLCSS with multi-sensor fusion combining 6
different accelerometers at wrists and arms. However, the performance
was not improved. According to the best of our knowledge, there is
no previous work that investigates the use of WarpingLCSS towards
a unified multimodal system, especially with other modalities such as
gyroscopes, magnetic sensors.

6.3 Multi-modality System

In our system, we use the recently proposed template matching Warp-
ingLCSS [69] as a core module for data processing, training and activity
spotting. Data is recorded continuously and synchronously from mul-
tiple sensors. The training data is manually labeled with a list of activity
classes of interest. Activities which are not in the list are considered as
null class.

We propose two frameworks for fusing multimodal sensors at two
different processing levels: classifier fusion and signal fusion. In the clas-
sifier fusion framework, signal data from each sensor are processed
separately by a template matching (TM) module and then the spot-
ting outputs from all sensors will be fused to have a final recognition
output. Different TM sessions can be run in parallel. In contrast, in
the signal fusion framework, signals from all sensor modalities are
combined into one data stream before being fed into the TM module.
Figures 6.2 and 6.4 gives an overview of the two frameworks.

6.3.1 Template Matching

The TM module processes input data, generates templates for activity
classes in the training phase and recognizes activities in the spotting
phase. An overview of the TM module is shown in Figure 6.1.

First, the TM module applies k-means to all training data points
and quantizes the signal input to their closest cluster centroids. Thus,



140 Chapter 6: WarpingLCSS on Multimodality

Quantize to 

centroids
WarpingLCSS

Spotted Activities

Symbol string [ts,te,label,score]

T
e
m

p
la

te
s

Training

S
y
m

b
o
l 
s
tr

in
g

- Select Templates

- Rejection Threshold (RT)

- Weight (X, class) 

Weight (X, class)

Kmeans
c
e
n
tr

o
id

s

Spotting

R
T

X

Figure 6.1: Template Matching Module. X is data input from one or
multiple combined sensors.

signal data are then represented as a string of symbols (i.e., the indices
of the centroids). The number of symbols k depends on the variation
of the input signal. Accordingly, the cluster centroids are represen-
tative points which can capture body movements at sensor-attached
positions regarding to specific activities.

In the training process, one or more templates are created for each
activity of interest to represent the typical patterns for that class. The
templates are chosen as instances that have the highest average longest
common subsequence (LCSS) scores [42] to all other instances of the
same class. Additionally, a rejection threshold needs to be calculated
for each activity class in the training phase to be able to reject signals
not belonging to that class upon recognition. Let µ(c) and and σ(c) be
the mean and the standard deviation, respectively, of LCSS values
between the template of a class c and any string belonging to the same
class. We calculate the rejection threshold to be below µ(c) by some
standard deviations: µ(c)

− h(c)
∗ σ(c), with h(c) = 0,1,2,.... The value of h(c)

is determined by testing the recognition of class c on the training data
and selected as the one which yields the best F1 score performance.
Specifically,

F1c = 2 ∗
precisionc ∗ recallc

precisionc + recallc
, (6.1)

where precisionc is the proportion of samples of class c predicted cor-
rectly over the total samples predicted as class c; recallc is the proportion
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of samples of class c predicted correctly over the total samples of class
c. Note that the value of F1c can also be used to indicate how well
sensor data fed into the TM module can recognize the specific class c.

When spotting, the same process of quantization is applied to the
streaming sensor data, with the cluster centroids identified during
training. Then, for each activity class, the WarpingLCSS method [69]
is used to match the template within the online string to spot activities
belonging to that class. Given the activity template for class c, s̄(c),
the WarpingLCSS score W(s̄(c),s)(i, j) between the first i symbols of the
template s̄(c) and the first j symbols of the string s is obtained as follows:

W(s̄(c),s)(i, j) =



0 , if i = 0 or j = 0

W(s̄(c),s)(i − 1, j − 1) + 1 , if s̄(c)(i) = s( j)

max


W(s̄(c),s)(i − 1, j − 1) − p ∗ d(s̄(c)(i − 1), s( j − 1))
W(s̄(c),s)(i − 1, j) − p ∗ d(s̄(c)(i), s̄(c)(i − 1))
W(s̄(c),s)(i, j − 1) − p ∗ d(s( j), s( j − 1))

, otherwise,
(6.2)

where p is a penalty parameter of the dissimilarity and d(·, ·) is the
normalized Euclidean distance between two symbols (i.e., two corre-
sponding centroids) in a range [0,1] . When a new symbol arrives, the
WarpingLCSS processes and updates the score immediately. Hence
the computational cost of WarpingLCSS is low for online recognition.
The WarpingLCSS score grows (i.e., symbols are matched) when an
instance of the examined class is performed and drops significantly if
other classes are performed due to the penalty terms. Additionally, the
penalty is accumulated in a time-warping manner as in dynamic time
warping (DTW) [95], hence WarpingLCSS penalizes the same consec-
utive symbols which are mismatched only once. An activity of class c
is recognized for each local maximum of W that exceeds the rejection
threshold.

Outputs of the TM module are spotted activities with a format
[start-time, end-time, label, simScore] to indicate when the activity occurs
and the similarity score (simScore) between the activity and the tem-
plate of that class. In the TM module, the spotting of different activity
classes can be processed concurrently in parallel. A more detailed ex-
planation, complexity analysis and illustration of WarpingLCSS can be
found in [69].
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6.3.2 Classifier Fusion Framework

In the classifier fusion framework, each sensor is treated uniformly via
the same process in the Template Matching module. The spotting outputs
from all sensors are combined in the Classifier Fusion module as shown
in Figure 6.2. Then the Decision Making (DM) module resolves conflicts
for spotted instances belonging to multiple classes and output the
results.

Let Φ and |Φ| be the set of sensors and the number of sensors in the
system, respectively. We represent the spotting output from a sensor
S ∈ Φ in a spotting matrixM(S) of size C ∗N , with C is the number of
activity classes of interest and N is the number of samples processed.
M(S)(c, i) represents the entry at the ith sample and the row of class
c in the matrixM(S). Each row c in the matrix, indicated asM(S)(c)
stores the information of spotted instances of an activity class c from
the sensor S. Specifically, if the sensor outputs an activity instance of
class c from start-time to end-time with a similarity score simScore (i.e.,
[start-time, end-time, c, simScore]), thenM(S)(c, i) = simScore for all i-th
samples in the interval from start-time to end-time at the row c. Figure
6.3 gives an example of the spotting matrix.

Classifier Fusion We propose Weighted Fusion method to fuse the
spotting results from all sensors. Let Weight(S,c) be a prior weight
to indicate how well sensor S can recognize the specific class c. We
set Weight(S,c) as the best F1c performance (see Equation 6.1) when
selecting the rejection threshold for activity class c in the processing
of sensor s. The weighted summed spotting matrix is computed as
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Figure 6.3: An example of the spotting matrix with three activity classes
(drink, open door and close door) and two spotted activities: [2, 4,
drink, 0.8] and [7, 9, open_door, 0.6].

follows.

M̄(c) =

|Φ|∑
i=1
Si∈Φ

Weight(Si, c) ∗M(Si)(c)∀c. (6.3)

The similarity score of an activity in the spotting matrix degrades if
the prior performance of the sensor to recognize the corresponding
activity class is low.

Given the fused spotting matrix M̄, for each spotted activity [t1,
t2, c, simScore], the similarity score simScore is updated as the average
score in the interval from the time t1 to the time t2 at the row c in M̄.
Specifically, the updated simScore is computed as follows.

¯simScore =

t2∑
i=t1
M̄(c, i)

(t2 − t1) [samples]
. (6.4)

Consequently, the similarity score of an activity is boosted if more
sensors predict that activity performed.

Decision Making If an activity is spotted as belonging to multiple
classes (i.e., boundaries of spotted instances are overlapping), the DM
module will resolve conflicts by deciding the class with highest simi-
larity score as the best match. If an activity is classified into only one
class, the DM will output the class. Otherwise, if no activity class is
spotted, the DM will output null.

6.3.3 Signal Fusion Framework

In the signal fusion framework, the Signal Fusion module combines
signals from all sensors into one data stream as shown in Figure 6.4.
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Figure 6.4: Signal fusion framework

Let di be the dimension of signal data generated from sensorSi ∈ Φ.
The combined data stream from the Signal Fusion module has a dimen-

sion of
|Φ|∑

i=1,Si∈Φ

di. The TM module then processes data and outputs

spotted activities. Finally, the DM module handles spotting conflicts
and outputs recognized activities as discussed above.

6.4 Experiments

We present the activity dataset, evaluation metrics and the conducted
experiments to evaluate the proposed system in this section.

6.4.1 Dataset

We evaluate the system on the Opportunity dataset 1 [12] which is a
rich multimodal multi-sensor dataset collected in a naturalistic envi-
ronment akin to an apartment, where users execute 17 daily gestures.
The dataset contains a large variability in the execution of the activities
and null class is predominant (37%). We use the subset of recording
corresponding to four subjects in which each subject wears 17 sensors
belonging to three modalities (3D accelerometer, 3D gyroscope and 3D
magnetic field) attached at different on-body positions. Each subject
performs 20-40 repetitions of each gesture class. Totally, the dataset
contains 1485 activity instances. Table 6.1 shows the list of activity
classes in the Opportunity dataset. Note that there are three draw-
ers located at different heights and two different doors in the dataset.
Figure 6.5 shows locations of sensors on body (i.e., right upper arm

1http://www.opportunity-project.eu/challengeDownload
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= accelerometer, gyro, 
magnetic

= accelerometer
RUA_A, RUA_G, RUA_M

RLA_A, RLA_G, RLA_M

BACK_A, BACK_G, BACK_M

LLA_A, LLA_G, LLA_M

LUA_A, LUA_G, LUA_M

LSHO_A

RSHO_A

Figure 6.5: Sensors attached at different places on body and their
modalities in Opportunity dataset.

Table 6.1: Activities in Opportunity dataset.

Null clean Table (CT) open Drawer 1-2-3 (ODr1-2-3)
close Drawer 1-2-3 (CDr1-2-3) open Door 1-2 (OD1-2) close Door 1-2 (CD1-2)
open Fridge (OF) close Fridge (CF) drink Cup (D)
open Dishwasher (ODi) close Dishwasher (CDi) Toggle Switch (TS)

(RUA), right lower arm (RLA), left upper arm (LUA), left lower arm
(LLA), back (BACK), right shoe (RSHO) and left shoe (LSHO)) and
their modalities. The signals of all sensors are recorded at a frequency
of 30Hz.

6.4.2 Evaluation Metrics

Generally, activity classes may occur non-uniformly in real-life
datasets. In the Opportunity dataset, null class is predominant (37%).
Therefore, we use the weighted average sample-based F1 score to as-
sess the performance of activity recognition. It is computed as the sum
of the F1 scores of all classes, each weighted according to the proportion
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of samples in that particular class. Specifically,

F1 =
∑

c

wc ∗ F1c,

where c is the class index, wc is the proportion of samples of class c,
and F1c is computed as in Equation 6.1.

We present two ways of computing the F1 score, either including
(F1-Null) or excluding the null class (F1-NoNull). F1-NoNull does not
consider the null class, but still takes into account false predictions of
gesture samples or instances misclassified as null class or vice versa.
F1-NoNull value represents how well the recognition system detects
activity classes of interest. The recognition system that has high values
of both F1-Null and F1-NoNull predicts well both activities and null
class.

6.4.3 Experiments on Multimodal System

For each subject, we perform experiments in 5-fold cross validation.
All raw signals (30Hz sampling rate) are down-sampled for a faster
computation. Specifically, an average value of each sliding window of
size 6 samples and overlap 3 is extracted to represent the corresponding
set of data points in the window. In our experiments, the TM module
generates only one template for each activity class.

In the classifier fusion framework, the number of symbols (i.e., num-
ber of clusters in k-means) is selected empirically k = 20 for each 3D
sensor. Note that k can be selected by using cross-validation on the
training data.

In the signal fusion framework, the Signal Fusion module combines
all 17 sensors into a data stream with a high dimension of 51. Con-
sequently, the number of symbols is selected much higher to capture
variants in the combined movements at seven on-body positions (see
Figure 6.5). We select empirically k = 200.

6.5 Results and Discussion

6.5.1 Performance of One Sensor

The performance of a sensor reflects how well that sensor recognizes
the activities. Figure 6.6 shows the performance of each sensor (i.e.,
number of sensors = 1) and their combinations in the classifier fusion
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Table 6.2: Performance of two frameworks on 17 sensors in the Op-
portunity dataset.

Subject 1 Subject 2 Subject 3 Subject 4 Average
Method F1-

Null
F1-
NoNull

F1-
Null

F1-
NoNull

F1-
Null

F1-
NoNull

F1-
Null

F1-
NoNull

F1-
Null

F1-
NoNull

Classifier
Fusion

0.74 0.79 0.63 0.67 0.75 0.80 0.65 0.71 0.69 0.74

Signal
Fusion

0.77 0.77 0.67 0.68 0.84 0.81 0.74 0.73 0.76 0.75

framework. As seen in Figure 6.6, the performances of different sen-
sors vary significantly. The sensors on shoes (LSHO_A and RSHO_A)
give the worst performance since their signals are not distinguishable
for different gesture executions (e.g., open doors and open drawers
have the similar patterns of foot movements). The accelerometer at
lower dominant arm (RLA_A) gives the best performance for subject
1. Meanwhile, the magnetic sensors at lower dominant arm give the
best results for subjects 2-4.

6.5.2 Comparison between Two Frameworks

Table 6.2 shows the results on the use of all 17 sensors in the two
proposed fusion frameworks. They both achieve a good performance
for the four subjects (63% to 84% F1-Null). In average, the performance
of the classifier fusion framework on 17 sensors increases by 16% F1-Null
and 21% F1-NoNull compared with the average performance of one
sensor. It also increases by 4% F1-Null and 15% F1-NoNull compared
against the average performance of the best one-sensor.

The signal fusion outperforms the classifier fusion about 7% F1-Null
and only 1% F1-NoNull in average. It means the signal fusion can detect
the null class better than the classifier fusion. The rationale is that the
signal fusion has a global view of data from all sensors at once before
processing; meanwhile the classifier fusion framework has only a local
view of data from each sensor. The hand actions of concern and the null
class may have the similar foot movements (e.g., walking, standing).
Hence, data from the shoe sensor may detect the activities when the
null class actually occurs. Even the other sensors can detect the null
instance, the classifier fusion still outputs the false detected activities.
By contrast, the signal fusion framework outputs an activity only when
the combined pattern of that activity from different sensors is matched.
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Figure 6.6: Performance of classifier fusion framework with all subset
combinations of 17 sensors for subject 1. The red middle line shows
the average performance.
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Table 6.3: Comparison between classifier fusion framework and sig-
nal fusion framework.

Classifier fusion Signal fusion
Parallelism at sensor * Yes * Do not care
Parallelism at activity class * Yes * Yes
Sensor Addition or Removal * Easy * Hard
Class Addition or Removal * Easy * Easy

Besides the recognition accuracy, we compare the advantages and
limitations of the two frameworks with regards to speed, ease to re-
move or add sensors to the system, and ease to add or remove activity
classes. They are summarized Table 6.3.

The running time of our proposed system depends on how many
sessions of the TM module run to spot activities. In the signal fusion
framework, the number of TM session is only one. In the classifier
fusion framework, it equivalents to the number of sensors deployed
in the system. However, those TM sessions for different sensors can
be executed in parallel. Therefore, if the parallelism is maximized, the
running time of the two frameworks to spot activities is equivalent
(i.e., time to run the TM module once).

Each sensor is processed separately in a uniform way in the classifier
fusion framework. Therefore, it enables easy addition and removal
of sensors without interfering with the use of other sensors to spot
activities. Meanwhile, in the signal fusion framework, the combination
of all sensor signals into one data stream before being processed will
require the same sensor settings in the training and spotting phases
so that the quantization step can proceed properly. Hence, adding or
removing sensors in the signal fusion framework requires retraining the
whole system.

The TM module spots each activity class separately. Therefore, the
spotting for different activity classes can be executed independently in
parallel. Hence, our proposed recognition system with the core Tem-
plate Matching is very flexible in adding or removing activity classes.

6.5.3 Sensor Combinations in Classifier Fusion Framework

We show the performances of the classifier fusion framework on all
subset combinations of 17 sensors in Figure 6.6. The results show that
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Table 6.4: The combination of sensors giving the best performance in
the classifier fusion framework.

Sensors (Number of sensors) F1-Null F1-NoNull
Subject 1 BACK_M, RUA_G, RLA_G, RLA_M,

LUA_A, LLA_A (6)
0.82 0.83

Subject 2 BACK_G, BACK_M, RUA_G, RUA_M,
RLA_G, LUA_A (6)

0.71 0.73

Subject 3 BACK_G, RUA_M, RLA_G, RLA_M (4) 0.87 0.85
Subject 4 BACK_M, RUA_G, RLA_A, RLA_M (4) 0.75 0.74

the performances among groups of sensors differ less when the number
of sensors increase. This indicates that adding a better performance
sensor into a group increases the average performance. The average
performance increases significantly in both F1-Null and F1-NoNull as
the number of sensors increases from 1 to 6 and then keeps stable.
Generally, the combination of more sensors does not always yield
the better performance (e.g., two accelerometers at lower arm and
upper arm may not improve the detection of OD1 and OD2). The
best-combination performance increases dramatically as the group size
increases from 1 to 4. F1-NoNull is almost unchanged after reaching
the best performance. Meanwhile, the F1-Null of 17 sensors is less
than the best performance by 10% in average. As discussed above, the
presence of not-so-distinguishable sensors (e.g., shoe sensors) in the
classifier fusion makes the recognition more confused in detecting the
null class.

Table 6.4 gives the subset combination of 17 sensors that gets the
best result. The orientation sensors on the back and arm (gyroscope
and magnetic sensors) distinguish well the hard-to-classify activities
in the Opportunity dataset.

6.6 Conclusion and Future Work

We have introduced the unified multimodal system for activity spot-
ting by processing different sensors in a homogeneous way based on
the template matching WarpingLCSS. Two fusion frameworks are in-
vestigated: the classifier fusion and the signal fusion. The results of the
experiments show the flexibility and efficiency of our system in han-
dling multimodal sensors. The more sensors are added into the system,
the equal or better performance is achieved in average. Moreover, the
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system is flexible in adding or removing activity classes. The classifier
fusion framework provides the ease to add or remove sensors. Mean-
while, the signal fusion framework yields the better performance in
classifying null classes due to a global view of data. In future, we plan
to apply sensor selection algorithms in the classifier fusion framework
to achieve the best performance. We also plan to investigate other
modalities in our system.
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Abstract

This paper investigates a new annotation technique that reduces signif-
icantly the amount of time to annotate training data for gesture recog-
nition. Traditionally, the annotations comprise the start and end times
(i.e., temporal boundaries) and the corresponding labels of gestures in the
sensor recording. In this work, we propose a one-time point annotation
in which labelers do not have to select the start and end time carefully,
but just mark a one-time point within the time a gesture is happening.
The technique gives more freedom and reduces significantly the burden
for labelers. To make the one-time point annotations applicable, we pro-
pose a novel BoundarySearch algorithm to find automatically the correct
starting and ending boundaries of gestures by discovering data patterns
around their given one-time point annotations. The corrected annotations
are then used to train the gesture recognition system. We evaluate the
quality of the corrected annotations and their recognition performance on
three public data sets with various gesture classes (10-17 classes) recorded
with different sensor modalities. The results show that training on the
corrected annotations can achieve the performance close to a fully super-
vised training on clean annotations (lower by just up to 3% F1-score on
average). The BoundarySearch algorithm is also well suited as a generic
method to detect similar parts inside two sequences.

7.1 Introduction

Wearable computing has emerged rapidly with the increasing avail-
ability of devices, like smart watches, glasses and sensor-equipped
garments. A core component to allow these devices to be aware of our
context is the recognition of human activities and gestures. By identi-
fying gestures, wearable computing may for instance enable human-
computer interaction [96] or enhance social interaction [97]; wearable
technologies may support workers in industrial environments [2] or
provide health-care monitoring [98].

Online gesture recognition (spotting) requires types of gestures
and their temporal boundaries recognized in the incoming stream-
ing sensor data. This is accomplished by using supervised learning
approaches [9, 54–56, 69] on different sensing modalities, like acceler-
ation, angular velocity or video. To perform supervised learning, an
annotated training data set is required to model gestures. Specifically,
the annotations comprise the start and end times (i.e., temporal bound-
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aries) of gestures of interest and their corresponding labels. Reference
data sets are usually annotated carefully by a small number of experts
to be as accurate as possible. However, in the labeling process, it is
costly to hire experts and extremely time-consuming: it may require
7-10 hours to annotate gestures in a 30-min video [12]. Hence, for large
data sets, the labeling cannot be done or requires a huge human effort.

To overcome these issues, we proposed recently a new way to
get gesture annotations for training data sets by using crowdsourc-
ing [68,99]. Crowdsourcing is defined as a model that outsources tasks
which are traditionally performed by experts to a crowd of ordinary
people [17] to reduce the cost and time. Crowdsourcing can be used to
acquire annotations offline for an existing gesture data set by asking
crowdsourced labelers to watch and label video footages of gesture
recording [68]. Another way to exploit crowdsourcing is for instance
asking crowdsourced users to record and annotate their own activities
and gestures in real-time [99]. However, labels obtained from crowd-
sourcing are provided by low-commitment anonymous workers, thus
they are commonly unreliable and noisy [28, 99]. Some instances of
gestures can be associated to wrong labels or not be labeled at all.
Other annotation noises can be inaccurate identifications of start and
end time of gesture instances. Our previous work [99] showed that
machine learning methods can tolerate at most 40% jitter level—the
percentage of samples in one instance that are wrongly annotated—in
all training instances. In extreme cases when jitter levels go beyond that
limit, the performance degrades significantly. Severely noisy annota-
tions are more likely to happen in real-time labeling because it is hard
to control the annotation quality. Hence, to improve the performance,
it may require costly extra human effort for correcting and cleaning the
annotation. However, it is almost impossible to ask anonymous crowd-
sourced labelers to correct and clean their annotation because it is very
time consuming and they may not remember what they have done.
Consequently, when jitter levels go beyond the limit, we need novel
ways to utilize those noisy annotations and maintain the performance.

In this work, we are especially interested in an extreme case, one-
time point annotation (i.e., the start and end time of a gesture are equal).
In the one-time point annotation, the boundary of a gesture shrinks to
minimum, just a one-time point. One-time point annotation is likely to
happen in real-time labeling, for example, when labelers remember to
annotate the start of a gesture but forget to annotate the end. In general,
if we allow the one-time point annotation, labelers do not have to select
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the start and end time, just indicate quickly a one-time point within the
time a gesture is happening. Hence, we give more freedom for labelers
and reduce significantly the burden in annotation, both in real-time
labeling or offline labeling by either experts or crowdsourced labelers.
Consequently, the labeling process is considerably faster. However,
the one-time point annotated data set cannot be used directly to model
gesture classes. We need an algorithm in the preprocessing step to
find the correct start and end time of each gesture around its one-
time point annotation so that the segment can represent the pattern
of gestures. Ideally, the recognition performance obtained from using
these corrected/fixed annotations for training should be no worse than
that obtained from using the clean annotations.

7.1.1 Contributions

In this paper, we make the following contributions:

1. We propose a new annotation technique for gesture data sets
in which a labeler indicates a one-time point within the time a
gesture is happening and its corresponding label.

2. We propose a novel algorithm to search for the correct start and
end time of a gesture around its given one-time point annotation.

3. We evaluate how good the fixed annotations are compared to
the ground truth as well as how well those fixed annotations can
be used as a training data set for modeling and then classifying
gestures.

The rest of the paper is organized as follows. In the next section,
we first review existing work in annotation techniques for gesture
recognition and online gesture recognition methods. Then, we present
our proposed method to search for the boundaries of a gesture given its
one-time point annotation. The experiments are described in Section
6.4. We present quantitative results evaluating the correctness of the
fixed boundaries and their performances on training gesture models
against the baselines in Section 7.5. Finally, the work is concluded
by summarizing the main results and by showing potential research
directions.
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7.2 Related Work

In this section we discuss related work in the fields of gesture recogni-
tion.

7.2.1 Annotation Techniques

Annotated training data are required for supervised learning tech-
niques to build gesture models. Therefore, many annotation techniques
have been proposed to collect annotated samples. There are offline an-
notation techniques which rely on video and audio recordings [12], or
subject self-report of activities at the end of the day [13]. Online anno-
tation (i.e., real-time) techniques perform the annotation during exe-
cution of the activities, like experience sampling [14] which prompts
periodically to a user to ask information about his current activities,
or direct annotation in which users responsibly provide a label when
an activity begins and also indicate when the activity ends [15]. There
is a trade-off between the accuracy of an annotation technique and
the amount of time required for annotation [16]. For example, offline
annotation on video recordings by experts can provide accurate anno-
tations, however it is extremely time consuming [12], and non-scalable
to large number of users. In contrast, the self-report of the subject may
require less time but the accuracy depends on the subject’s ability to
recall activities. Therefore, most of the existing works require video an-
notation by experts to obtain clean and correct annotated data sets [12]
or provide a course to teach subjects carefully how they should record
and annotate their data correctly [54].

Crowdsourcing services, like Amazon Mechanical Turk (AMT)1

and Crowdflower2, have emerged recently as a new cheap labor pool to
distribute annotation tasks to a large number of workers [18]. Recently,
crowdsourcing has been exploited also in the field of activity recogni-
tion to collect annotated training data sets for both offline annotation
and online annotation scenarios [15, 68, 70–72]. These works showed
that crowdsourced data are erroneous, therefore, filtering strategies
such as recruiting multiple labelers for the same annotation tasks and
applying outlier removal techniques should be used to reject low-
performing and malicious workers as well as reduce labeling noise.
However, multiple labelers can be applied only in offline annotation

1The home page for AMT is http://www.mturk.com.
2The home page for Crowdflower is http://crowdflower.com.

http://www.mturk.com
http://crowdflower.com
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when video footage or audio recordings are available. In the online
annotation, it is more likely that the level of noise increases and it
is also more difficult to clean the annotation. In previous work [99],
we analyzed annotation noises from crowdsourcing and investigated
the impact of the crowdsourced noisy annotations on the training of
activity recognition methods.

These existing annotation techniques for gesture recognition re-
quire labelers to indicate the temporal boundaries (start and end time)
of gestures as accurate as possible. According to our best knowledge,
there is no previous work that supports one-time point annotation in
collecting activity data sets.

7.2.2 Online Gesture Recognition Methods

Signals from body-worn sensors belong to the category of time series
data. Suitable machine learning and pattern recognition techniques for
online gesture recognition include Hidden Markov Models (HMM)
[3–6], template matching methods (TMM) using mostly dynamic time
warping—in short DTW [2, 7, 8] and support vector machines [9–11].

HMMs are not appealing since a large amount of training data is
required to get results comparable to other TMMs and SVM. The issue
of the amount of training data is mentioned for example in [74], where
the authors state, referring to HMMs: “While they have been employed
for sign recognition, they have issues due to the large training require-
ments”. In [75], a variation of HMMs is selected but the parameters
could not be learnt because of the scarcity of training data: “We fix the
transition probabilities to simplify the learning task, because we do
not have sufficient training data to learn more parameters”. HMMs re-
main nevertheless an interesting approach for cases where a large data
corpus is available, which is often the case in the field of video-based
gesture or sign language recognition, see for example [3, 76, 77].

Along with DTW, the other commonly used similarity measure for
matching two time series is longest common subsequence LCSS [63]. In
our previous work [69], we introduced two variations of LCSS-based
template matching (SegmentedLCSS and WarpingLCSS) for online
gesture spotting. These LCSS-based classifiers proved to outperform
DTW-based TMMs, both in terms of computational complexity and
accuracy (especially for data sets containing high variability in gesture
execution as shown in [69]). We applied these methods to accelerom-
eter data [69] and also other sensor modalities (e.g., gyroscope, mag-
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netic field) in a unified multimodal framework [87]. Furthermore, our
methods were shown to be much more robust to noisy crowdsourced
annotations in training data sets than DTW-based TMM methods and
SVM [99]. Our methods can be also used as a preprocessing filtering
component to clean training data sets with severe label noise before
feeding the training sets into other learning techniques.

A large body of literature focuses on a recognition performed
on video data, for example the recognition of sign language (see
[75–77,82]). However, gesture recognition from wearable sensors, e.g.,
one accelerometer at the wrist, would allow to scale up the recognition
system to many users immediately because the system can be deployed
easily wherever a user goes with the motion sensor mounted on the
hand. It does not need any other infrastructure like cameras, which do
not follow us everywhere in practice. Of the video-based approaches,
the one of [83] captures the videos directly by a moving camera, which
could be easily wearable. However, from the practical point of view,
such an option has some limitations: first, such a device would be
quite costly; second, processing signals from a camera is more compu-
tationally intensive than processing those from motion sensors; third,
capturing video data is much more intrusive due to privacy concerns.

7.3 Methodology

In this section, we describe our boundary fixing approach to find the
start and end boundaries of gestures given their one-time point anno-
tations in signals obtained from body-worn sensors.

The sensor signals are first quantized and converted into sequences
of symbols (strings). The initial start and end boundaries of each ges-
ture are then set loosely around its given one-time point annotation
to ensure the correct boundaries fall inside the segment. We assume
that the executions of gestures of interest are continuous (i.e., no pause
within the gesture). Hence, within the initialized boundaries of a ges-
ture, the motion and non-motion parts are detected and the boundaries
will be shrunk to the motion segment containing the annotated point.
However, our work does not require users to have a pause before and
after gesture execution — users can perform all gestures in the natural
way and non-motion parts may not occur in the initialized boundaries.
Finally, we propose a novel boundary searching algorithm (Boundary-
Search) to seek for the good boundaries of a gesture around its given
one-time point annotation and within the initialized boundaries such
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Labeled sensor data

Quantization

Boundary 

Initialization

z k l ϶ ϶ ϶ t x d r i n k u p t o g g l e s

max-length max-length
“drink”

Non-motion 

Removal

t x d r i n k u p t o g g l e s

“drink”

… o p e n d o o r z k l ϶ ϶ ϶ t x d r i n k u p t o g g l e s w i…  

“drink” “toggle switch”“open door”

Boundary Searching 

Algorithm d r i n k

“drink”

“drink” “toggle switch”“open door”

Figure 7.1: Data processing flow of the proposed boundary fixing ap-
proach. An example is shown on the right. Three annotated gestures
"open door", "drink", and "toggle switch" with their one-time point
annotations indicated as black arrows are given in the training data.
In this example, the maximum length of "drink" gesture is given and it
is used to initialize the boundaries of the "drink" gesture. 3 represents
non-motion symbols.

that the similar patterns of instances from the same gesture class are
found. Figure 7.1 shows the data flow and its illustration through dif-
ferent processing components in the boundary fixing approach. We
describe these components in details in the following.

7.3.1 Quantization

The quantization step transforms the raw signals into a one-
dimensional (1D) string of symbols. This step reduces data dimen-
sionality and thus it improves computational efficiency.

Let n denote the number of signal channels from the body-worn
sensors (e.g., n = 3 for one triaxial accelerometer). Let N be the number
of available samples. Let xi be the time series corresponding to the
i-th signal channel, with 1 ≤ i ≤ n and xi(t) be the value of the time
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series xi at time t, with 1 ≤ t ≤ N. Let the n-dimensional vector x(t) =
[x1(t) . . . xn(t)] denote one sample from all channels at time t.

The quantization step converts the vectors x(t) into a sequence of
symbols (string) w(t). This is performed by using k-means clustering
on the set of n-dimensional vectors x(t), ∀t, 1 ≤ t ≤ N. The choice of
the number of clusters k (i.e., number of symbols) is done through
cross-validation or empirically. The output of k-means is a set of k n-
dimensional cluster centers, ζ0 . . . ζk−1, to which k symbols α0 . . . αk−1
are assigned. The quantization procedure then operates on each sample
x(t) to obtain the symbols w(t) as follows:

w(t) = αi|i = argmin
i
||x(t) − ζi||2 . (7.1)

Let d(αi, α j) denote the distance between two symbols αi and α j,
given by the correspondent distance between their assigned cluster
centers, normalized to fall in the interval [0, 1].

d(αi, α j) =
||ζi − ζj||2

maxi, j||ζi − ζj||2
. (7.2)

7.3.2 Boundary Initialization

In this step, we initialize the start and end boundaries of each gesture
instance around the one-time point annotation so that the ground truth
of the boundaries stays inside the initialized boundaries.

We consider two cases depending on whether there is a prior knowl-
edge of the maximum gesture length for each class of interest or not,
namely MaxLen and NoLen respectively. In the MaxLen case, we ex-
tend around the annotated point for each gesture instance the maxi-
mum length toward the two ends to get the initial start and end time
of the gesture. In this case, the boundary of the gesture is extended
by at least 100%. However, if the extension with the maximum length
around the annotated point goes beyond its previous or subsequent
one-time point annotation, we take the previous or subsequent time
point as the initial start or end time of the gesture, respectively. In
the NoLen case (i.e., the maximum length information is not known),
we extend the boundary of each gesture instance to the previous and
subsequent time points of the annotation.
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7.3.3 Non-Motion Removal

The non-motion removal step is optional and applied only when an
accelerometer attached on the arm is used in the system. We detect
motion and non-motion parts by using a simple method introduced
by Benbasat and Paradiso [100] for accelerometer signals on arm. When
the variance of one or more axis in the window exceeds a start motion
threshold, we indicate that the motion part begins. The motion part
stops when the variances of all of the axes are below a stop motion
threshold. We use a 16-sample window with a start motion threshold
of 100 milli-g2 and a stop motion threshold of 50 milli-g2 as suggested in
[101]. After this step, the boundaries are shrunk to the motion segment
containing the annotated point.

As we shall show, the BoundarySearch algorithm corrects the
boundaries of each gesture by discovering the similar patterns around
the one-time point annotations. Therefore, the non-motion part, if ex-
isting, should be discarded from the initial boundaries before being
fed into the BoundarySearch algorithm to ensure that non-motion sig-
nals that are likely to be similar intrinsically will not contribute to the
pattern of the gesture class.

7.3.4 Boundary Searching Algorithm

We assume that gestures are performed in a random order in the train-
ing data set. If two gestures must always occur together in the same
order, they should be grouped into one atomic gesture. Our proposed
boundary searching algorithm BoundarySearch searches for the cor-
rect boundaries of gestures around their given one-time point annota-
tions based on seeking similar patterns around the annotated points.
Therefore, if two gestures always occur together, the BoundarySearch
algorithm as described below tends to group them into one atomic
gesture.

Up to this point, each gesture instance is a string of symbols with the
determined initial boundaries. Let w(i) denote the i-th symbol within
a string w of length L. We can write w = w(1),w(2), ...,w(L), or shortly
w = w(1..L). A substring w(i.. j) of w is a contiguous subsequence of w
starting from the i-th position to the j-th position (1 ≤ i ≤ j ≤ L).

Let w1 and w2 be two strings of gesture instances G1 and G2 of the
same class comprising L1 and L2 symbols respectively. Gesture G1 has
a one-time point annotation at the K1-th symbol in w1 (1 ≤ K1 ≤ L1) and
gesture G2 is annotated at the K2-th symbol in w2 (1 ≤ K2 ≤ L2). Given
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w1 and w2, the BoundarySearch algorithm first detects all pairs of a
substring w1(s1..e1) of w1 (1 ≤ s1 ≤ e1 ≤ L1) and a substring w2(s2..e2) of
w2 (1 ≤ s2 ≤ e2 ≤ L2) such that they are optimized matching substrings
(i.e., the similarity score between them as defined below is maximized
and positive). It then takes only a pair of matching substrings that cover
the one-time point annotations (i.e., s1 ≤ K1 ≤ e1 and s2 ≤ K2 ≤ e2).
Subsequently, s1 and e1 can become the new start and end boundary of
gesture G1; and s2 and e2 can become the new start and end boundary
of gesture G2.

7.3.4.1 Detecting Optimized Matching Substrings

First, we describe the algorithm to detect all optimized matching sub-
strings inside two strings w1 and w2. Given two strings w1 and w2, we
define a warping path to align the two strings by either

• aligning an element w1(i) of w1 to an element w2( j) of w2,

• or warping two consecutive elements w1(i − 1) and w1(i) of w1,

• or warping two consecutive elements w2( j − 1) and w2( j) of w2.

The warping path starts with the alignment between the first element
of w1 and the first element of w2. The path advances one step at a time,
both indices i and j can only increase by at most 1 on each step along
the path. Figure7.2 illustrates the warping path to align two strings.

We define a similarity weight for each alignment. If two symbols
match, a similarity weight is a positive reward R = 1. In case of a
mismatched alignment or a warping between two elements αi and α j,
a similarity weight is a negative penalty computed as −p ∗ d(αi, α j),
where p is a penalty parameter of the dissimilarity and d(·, ·) is the
distance between two symbols as defined in Equation 7.2. Let denote
ΨA(αi, α j) and ΨW(αi, α j) be a similarity weight of an alignment and a
warping respectively between two elements αi and α j.

ΨA(αi, α j) =


1 , if αi = α j

−p ∗ d(αi, α j) , otherwise
(7.3)

(7.4)
ΨW(αi, α j) = −p ∗ d(αi, α j) (7.5)
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B B C E D
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D

1
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3

4

5

6

1 2 3 4 5

B B C E D

A C F F F D

Figure 7.2: Illustration of an alignment between two strings "BBCED"
and "ACFFFD" and the corresponding warping path starting from the
first indices at the top left to the last indices at the bottom right. In
this example, two symbols "B" of the first string are warped and so are
three symbols "F" of the second string.

A warping path has a similarity score which accumulates all sim-
ilarity weights along the path. The rationale behind introducing the
warping between two consecutive elements in one string in case of
mismatch is that if the string contains contiguous repetitions of a mis-
matched symbol (e.g., the repetitions are due to a slower execution of a
gesture), the optimal warping path with the maximum similarity score
should warp those repetitive symbols and the penalty is counted only
once. In the example shown in Figure7.2, the mismatch in the align-
ment between A and B and the mismatch in the alignment between E
and F are penalized only once due to the warpings on B symbols and
F symbols.

Let Sim(w1,w2) be a maximum similarity score between two strings
w1 and w2 attained over all possible warping paths between w1 and w2.
We define B(i, j) to be the maximum similarity score between substrings
of w1 ending at the i-th position and substrings of w2 ending at the j-th
position. Formally,

B(i, j) = max
1≤i′≤i
1≤ j′≤ j

Sim(w1(i′..i),w2( j′.. j)) (7.6)
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The BoundarySearch algorithm obtains the score B(i, j) as follows.

B(i, j) =



0 , if i = 0 or j = 0

max


0
B(i − 1, j − 1) + ΨA(w1(i),w2( j))
B(i − 1, j) + ΨW(w1(i),w1(i − 1))
B(i, j − 1) + ΨW(w2( j),w2( j − 1))

, otherwise,

(7.7)

The algorithm starts with an empty string and the corresponding
B score is 0. A value of B is updated by taking the maximum similarity
from four possibilities: accepting an alignment between two current
symbols in the two substrings; warping the current element with its
previous one in the substring of w1; warping the current element with
its previous one in the substring of w2; and a zero.

The similarity score B is nonnegative. The preceding vaues B(i−1, j),
B(i, j − 1), B(i − 1, j − 1) in the formula above would not be of interest
if they were negative because we can always get a better value for the
similarity score B(i, j). It can be done by treating the negative values
as if they were zero and choosing a starting index for the substring i’
= i or j’ = j in Equation 7.6. Thus storing only nonnegative values in B
ensures that the BoundarySearch algorithm can find optimal matching
substrings. B(i, j) = 0 also indicates there is no substring matching up
to position i and j.

Our algorithm to compute B(i, j) is similar to the local alignment
algorithm proposed by Smith and Waterman [102] to seek matching
substrings within two strings. However, we define different similarity
weights between symbols and a different type of warping (i.e., we
warp similar consecutive symbols in the same string to avoid multiple
penalties, while Smith and Waterman used edit operations including
insertion and deletion to align two strings).

All optimal matching substrings between two strings can then be
found easily by tracing back the matching path starting from an ele-
ment of B greater than 0 and ending with an element of B equal to zero.
Specifically, we define a dependency graph G, a directed graph whose
vertices are labeled with the positions (i, j) and each vertex (i, j) has an
edge from one of the preceding positions (i − 1, j),(i, j − 1),(i − 1, j − 1)
whose values contribute to the value B(i, j) and B(i, j) > 0. The de-
pendency graph G provides the information of how the B scores are
generated and thus all optimized matching substrings can be found.
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O 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

G 0 0 0 0 0 0 0 0 0 0 0 2 2 0.5 0 0

G 0 0 0 0 0 0 0 0 0 0 0 2 3 1.5 0 0

L 0 0 0 0 0 0 0 0 0 0 0 0.5 1.5 4 1.9 0

E 0 0 0 0 0 0 0 0 0 0 0 0 0 1.9 5 0.8

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8 6

W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.8

D 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

R 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

I 0 0 0 0 3 1.5 0.6 0 0 0 0 0 0 0 0 0

N 0 0 0 0 1.5 4 3.1 0.1 0 0 0 0 0 0 0 0

K 0 0 0 0 0.6 3.1 5 2 0.5 0 0 0 0 0 0 0

A 0 0 0 0 0 0.1 2 0 0 0 0 0 0 0 0 0
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R
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Figure 7.3: Illustration of BoundarySearch algorithm between two
"drink" gestures with incorrectly initialized boundaries "TXDRINKUP-
TOGGLES" and "OGGLESWDRINKA", and the corresponding depen-
dency graph. The initialized boundaries wrongly cover some parts of
"toggle switch" gesture. Here we assume the distance between two
symbols is their difference in encoded English alphabets (A-Z are con-
verted to 0-25) and the penalty p is 0.3. In the dependency graph,
the horizontal or vertical brown arrows show warpings in one string,
meanwhile the diagonal arrows show the alignments between ele-
ments of two strings. Two black arrows indicate the one-time point
annotations of the gestures. Two clusters of connected scores show
the longest matching substrings ("DRINKUP" with "DRINKA", and
"OGGLES" with "OGGLESW"). The targeted cluster on the bottom left
with the highest similarity score M = 5 spans the marked annotation.
Hence, the fixed boundaries of two gestures are shown in green bars.

Figure7.3 illustrates an example of the similarity score B computed be-
tween two "drink" gestures and the corresponding dependency graph.
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7.3.4.2 Boundary Correction

The dependency graph shows clusters of connected scores which in-
dicate longest matching substrings (i.e., from the starting vertex of a
cluster to the furthest indices the cluster can reach). An illustration of
these clusters is also shown in Figure7.3. As can be seen, the value of
the penalty parameter p decides how much mismatching is acceptable
in the longest matching substrings or it can decide the size of the clus-
ter of connected scores (i.e., the cluster can be extended until the value
of B is set to 0).

We then select only the cluster that covers the one-time point an-
notations of the two gestures w1 and w2 indexed at the K1-th and K2-th
symbols respectively. In the targeted cluster, we select the highest sim-
ilarity score M indexed at (v1, v2) such that the path from the starting
vertex of the cluster indexed at (u1,u2) to (v1, v2) still covers the marked
annotated points. Formally, [u1, v1,u2, v2] and M are defined as follows.

[u1, v1,u2, v2] = argmax
i′,i, j′, j:

1≤i′≤K1≤i≤L1
1≤ j′≤K2≤ j≤L2

Sim(w1(i′..i),w2( j′.. j))

(7.8)
M = max

1≤i′≤K1≤i≤L1
1≤ j′≤K2≤ j≤L2

Sim(w1(i′..i),w2( j′.. j))

= B(v1, v2) (7.9)

Finally, the new boundary for gesture G1 is set from u1 to v1 and the
new boundary for gesture G2 is set from u2 to v2. The normalized simi-
larity between the two gestures is Mnorm(G1,G2) = M/max(‖G1‖, ‖G2‖),
where ‖G1‖ and ‖G2‖ are the new lengths of the gestures G1 and G2,
respectively. In case the target cluster can not be found, u1, v1, u2, v2
are set to 0; M and Mnorm are also 0.

Given an instance k of gesture class c, we run the boundary fixing
for this instance paired with all other instances in the same class. Let
[sk,i, ek,i] be the boundary of the instance k after running the boundary
fixing with instance i of class c, and Mnorm

k,i be the corresponding nor-
malized similarity. Then the final boundaries of the instance k are the
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average starting and ending time from all possible fixing boundaries.

sk =
n∑

i=1,i,k
sk,i ∗Mnorm

k,i /
n∑

i=1,i,k
Mnorm

k,i

ek =
n∑

i=1,i,k
ek,i ∗Mnorm

k,i /
n∑

i=1,i,k
Mnorm

k,i ,
(7.10)

where n is the number of instances in the class c.
If the final fixed boundaries of the instance k are 0 (sk = 0 and ek = 0),

it means the BoundarySearch algorithm cannot find any similar sub-
strings/patterns between the gesture instance with all other instances
in the same gesture class. In this case, the instance k is discarded by
setting its label to null.

7.4 Experiments

In this section, we first present three gesture data sets used to evalu-
ate the boundary fixing approach. We then define metrics to quantify
the quality of the fixed annotation compared with the ground truth
annotation. Next, we present two state-of-the-art gesture recognition
methods used to train gesture models with the fixed annotation. Fi-
nally, recognition evaluation metrics are discussed.

7.4.1 Description of Data Sets

We used three data sets including various gestures of different length
which have been labeled manually by experts. The experts’ annotation
is the ground truth of the data sets. Data which do not correspond to
any of the gestures of interest in the data sets are labeled as null class.
The signals of all sensors at these data sets are recorded at a frequency of
30Hz. The average durations of gestures of different classes range from
about 2 seconds to 32 seconds. Table 7.1 shows the list of gestures of
these data sets and their average lengths in sample unit (i.e., lengths of
the corresponding sample-based time series). Following, we describe
briefly each data set3.

3Skoda and Opportunity data sets can be downloaded from http://www.ife.ee.
ethz.ch/research/groups/Dataset.

http://www.ife.ee.ethz.ch/research/groups/Dataset
http://www.ife.ee.ethz.ch/research/groups/Dataset
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7.4.1.1 Skoda

The Skoda data set [43] contains 10 manipulative gestures performed
in a car maintenance scenario by one subject. The null class takes 23%.
Each gesture class has about 70 instances. This data set is character-
ized by a low variability in execution because the subject performed
carefully each manipulative gesture in the same manner. We use a
3D accelerometer at the subject’s dominant (right) lower arm for the
evaluations. The non-motion removal step in the boundary fixing ap-
proach is applied. In the quantization step, the number of symbols (i.e.,
number of clusters in k-means) is selected empirically k = 20.

7.4.1.2 HCI

The HCI data set [44] contains 10 gestures executed by a single person.
The gestures are geometric shapes executed with the arm in the vertical
plane. This data set has a low variability in the execution of gestures
and well-defined labeling. The null class takes 57% and each gesture
class has about 50 instances. In this data set, we also use data from
one 3D accelerometer at the subject’s dominant (right) lower arm. The
non-motion removal step in the boundary fixing approach is applied.
The number of symbols in the quantization step is selected empirically
k = 20.

7.4.1.3 Opportunity

The Opportunity data set [12] consists of 17 daily activities recorded
in a naturalistic environment akin to an apartment with various sen-
sor modalities attached at different on-body positions. The data set is
characterized by a predominance of null class (37%) and a large vari-
ability in the execution of the daily activities. Each gesture class has
20 instances excepts "Drink Cup" and "Toggle Switch" each having 40
instances. Note that in Opportunity data set, there are two different
doors and three drawers at different heights which make the recog-
nition more challenging. Hence, in the Opportunity data set we use
6 different sensors worn at different on-body positions to achieve the
best discrimination among gesture classes as shown in our previous
work [87]. Those sensors are 3D magnetic field on back, 3D gyroscope
on right upper arm, 3D gyroscope and 3D magnetic field on right lower
arm, 3D accelerometer on left upper arm and 3D accelerometer on left
lower arm. Here we do not use a 3D accelerometer on the dominant
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right arm for the experiments, thus the non-motion removal step in our
fixing boundary approach as discussed in Section 7.3.3 is not applied
for this data set. The number of symbols is selected empirically k = 120
in the quantization step.

7.4.2 Fixed Annotation Evaluation Metrics

To evaluate the quality of fixed annotations compared to ground truth,
we use a taxonomy of annotation noises similar to the one we proposed
in our previous work to evaluate the quality of crowdsourcing anno-
tations [99]. Specifically, we define boundary jitter as the presence of a
time-shift in the annotation boundaries, while the label matches the
actual gesture (ground truth). We categorize boundary jitter into four
error types, namely extend, shrink, shift left and shift right according to
how the temporal boundary of a gesture is shifted compared to the
ground truth. Figure7.4 illustrates the subclasses of boundary jitter.

• Extend: The starting boundary is set earlier and the ending
boundary is set later. All information belonging to the gesture
instance is preserved, but noisy samples are attached at the two
ends of the gesture instance. Noisy samples can belong to another
gesture class or to null class.

• Shrink: The starting boundary is set later and the ending bound-
ary is set earlier. In this case, some part of the gesture instance is
missed.

• Shift left: Both starting and ending boundaries are set earlier. In
this case, some information of the gesture instance is missed and
noisy samples are added at the end of the gesture.

• Shift right: Both starting and ending boundaries are set later. In
this case, some information of the gesture instance is missed and
noise is added at the beginning of the gesture.

Beside boundary jitter, fixed annotations can also fall into two other
types, namely good and delete.

• Good: Fixed boundaries of a gesture are perfectly matching its
ground truth.
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• Delete: The BoundarySearch algorithm cannot find any similar
patterns in a gesture instance as compared with all other in-
stances in the same class. In this case, the fixed boundary is
empty and the gesture is then categorized as delete and marked
as null.

For boundary jitter and for the corresponding subclasses, we define
a jitter level to quantify the proportion of time that is wrongly annotated
in a fixed boundary. The jitter level also indicates how much the bound-
aries stray from the correct annotation. Given a gesture instance, let
start and end be the starting and ending time of the fixed annotation. Let
GT_start and GT_end be the corresponding ground truth boundaries.
Let N denote the time length of the gesture (N = |GT_end − GT_start|).
We define ∆s as the time difference between the fixed starting time and
the correct starting time (∆s = |start − GT_start|). Similarly, we define
∆e as the time difference between the fixed ending time and the correct
ending time (∆e = |end − GT_end|). ∆s and ∆e are illustrated in Fig-
ure7.4 for the different boundary jitter types. The jitter level parameters
are calculated as follows:

extend level = proportion of time noisy samples added

= ∆s+∆e
N .

shrink level = proportion of time good samples missed

= ∆s+∆e
N .

shift-left level = proportion of time noisy samples added

and good samples missed / 2

= ∆s+∆e
2∗N .

shift-right level = proportion of time noisy samples added

and good samples missed / 2

= ∆s+∆e
2∗N .

In our work, we evaluate the quality of fixed annotations by ana-
lyzing the distribution of different kinds of annotation noises and the
magnitude of jitter levels in the fixed annotations.



173

Drink

Drink

Drink

Drink

Drink

Correct start Correct end

GT

Extend

Shrink

Shift left

Shift right

N

∆s ∆e

Figure 7.4: Illustrations of boundary jitter in fixed annotations. GT
stands for ground truth. The blue dash-dotted lines indicate the correct
boundary of a gesture.

7.4.3 Description of Experiments

For each data set, we perform a 5-fold cross-validation (80% of samples
for training and the remaining 20% samples for testing). From a train-
ing data set, we generate a one-time point annotation for each gesture
by selecting randomly a point inside the ground truth. The boundary
fixing approach proposed in Section 4.3 is then applied to find the good
boundaries for each gesture given its one-time point annotation. The
recognition system is trained on the fixed annotations and evaluated
on the clean test set (i.e., annotated by experts).

Two spotting techniques used in the recognition system are our
template matching method WarpingLCSS [69, 87, 99] and SVM. Warp-
ingLCSS was proposed recently and has been shown to be robust for
online gesture recognition, especially in noisy annotated data sets [99].
We describe the WarpingLCSS method briefly below. For SVM, the sig-
nals are passed through a sliding window, with 50% overlap. For each
window, mean and variance of the signals are calculated and the ob-
tained feature vectors are fed into a SVM classifier. We use RBF kernels
and the two RBF parameters are selected by using cross-validation. In
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this work, we use the LIBSVM library [86] for training SVM.
To investigate the quality of our fixed annotations on gesture recog-

nition, we compare the performance of the spotting methods trained
with ground truth annotations against those trained with the fixed
annotations. We also evaluate their performances on the annotations
which are extended loosely around the one-time points but are not
corrected by our proposed BoundarySearch algorithm.

7.4.3.1 WarpingLCSS

For self containment we will give a brief review of the WarpingLCSS
algorithm that we proposed in previous works [69, 87, 99] to spot
gestures in a sensor streaming data which are similar to a gesture
template. A template is created for each gesture class in the training
phase to represent the gesture pattern of that class. In the recognition
phase, WarpingLCSS algorithm can automatically detect the gesture
boundaries as well as their labels in the online streaming data s with-
out pre-segmenting the data. In our algorithm, sensor signals are also
quantized into a sequence of symbols as presented in Section 5.4.2.

If the WarpingLCSS algorithm encounters the same symbol in a
template and in the current string, the similarity score W is increased
by a reward of 1. Otherwise, W is decreased by a penalty proportional
to the distance between the symbols scaled by the constant parameter
p. Furthermore, if the string s is “warped” (i.e., contiguous repetitions
of a symbol due to a slower execution of a gesture), the penalty is
counted only once.

A gesture of class c is recognized for each local maximum of W
that also exceeds a rejection threshold εc which is selected for class c
in the training phase [69]. The end point of the gesture is set to the
local maximum itself and the start point is found by tracing back the
matching path. The WarpingLCSS algorithm can be implemented ef-
ficiently by using dynamic programming to constrain the time and
memory complexity. The value of the penalty parameter p depends on
the application and can be chosen by cross-validation to maximize the
recognition performance. See [69, 99] for full details of WarpingLCSS
on a single sensor modality and see [87] for WarpingLCSS on multi-
modality.

Our BoundarySearch algorithm to find the maximum similarity
score B between substrings of two strings as shown in Equation 7.7 is a
modified version of the WarpingLCSS algorithm. The only difference



175

is that negative similarity scores are accepted in WarpingLCSS. The
reason is in WarpingLCSS the whole template will be compared with
the data stream and anything different to some part of the template
will contribute the penalties to the score. Meanwhile, in Boundary-
Search we find boundaries of two similar gestures (i.e., only matching
substrings) inside two strings, hence the negative score should not be
considered and it can help to detect all optimized substring matchings.

7.4.4 Recognition Evaluation Metrics

We assess the performance of gesture recognition with the weighted
average F1 score. The weighted average F1 score is the sum of the
F1 scores of all classes, each weighted according to the proportion of
samples of that particular class. Specifically,

F1score =
∑

c

2 ∗ wc
precisionc ∗ recallc
precisionc + recallc

,

where c is the class index and wc is the proportion of samples of class
c; precisionc is the proportion of samples of class c predicted correctly
over the total samples predicted as class c; recallc is the proportion of
samples of class c predicted correctly over the total samples of class c.

In our data sets, null class is predominant. Therefore, we present
two ways of computing the F1 score, either including (F1-Null) or ex-
cluding the null class (F1-NoNull). F1-NoNull does not consider the
null class, but still takes into account false predictions of gesture sam-
ples or instances misclassified as null class. F1-NoNull score represents
how well the recognition system detects activity classes of interest. A
recognition system that has high values of both F1-Null and F1-NoNull
predicts well both gesture classes and null class.

7.5 Results and Discussion

In this section we present and discuss the results of the conducted
experiments to evaluate our proposed boundary fixing approach. We
first present the quality of fixed annotations and then compare the
performance of using the fixed annotations on training gesture models
with those of baselines.
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7.5.1 Quality of Fixed Annotations

To show the efficiency of our BoundarySearch algorithm in searching
for good boundaries for gestures, we first analyze the quality of the
initialized boundaries of gestures extended around one-time point an-
notation before fixing — before BoundarySearch algorithm is applied
(see the data flow in Section 4.3). We have two cases for boundary ini-
tialization as discussed in Section 7.3.2: MaxLen or NoLen, depending
on whether there is a prior knowledge of maximum length of each
gesture class or not. Accordingly, we name the initialized annotations
before fixing as NoFix-NoLen and NoFix-MaxLen. The jitter levels of
these annotations are shown in Figure7.5. The initial boundaries are
extended to cover the ground truth, hence, only extend jitter occurs.
As can be seen, at least 50%-75% of gesture instances are extended by
more than 100% for the three data sets in both cases NoFix-NoLen and
NoFix-MaxLen. There are less than 2-4% of gesture instances suffering
small values of extend level which are less than 30%. Note that the non-
motion removal step is applied in HCI and Skoda data sets and thus
the initial boundaries of gestures are shrunk significantly and they get
closer to the ground truth. Hence, the extend levels of NoFix-NoLen in
the HCI and Skoda data sets have a smaller range of values than those
in the Opportunity data set. The prior knowledge of maximum length
of each class (MaxLen) can help to reduce the extend levels signifi-
cantly in the three data sets. However, the existence of many gesture
instances with large extreme values of the extend levels shows the need
of the BoundarySearch algorithm to fix the initialized boundaries in
order to get gesture patterns and improve the performance.

After applying the BoundarySearch algorithm to fix the boundaries
in the NoLen case (namely Fixed-NoLen), we show noise distribution
and jitter levels of the fixed annotations, according to the taxonomy
introduced in Section 7.4.2, in Figure7.6. Only few gesture instances
are deleted because the BoundarySearch algorithm cannot find the
similar pattern around the given one-time point annotation between
those instances with all other instances in the same class. There are
some instances that are perfectly matched with the ground truth. In
each data set, there are about 96% of instances whose fixed boundaries
fall into one type of boundary jitters. The values of jitter levels in the
fixed annotations compared to the ground truth are shown by means
of box-plot graphs in Figure7.6b. Particularly, we show the median,
the 25th and 75th percentile, the min, the 98th percentile and the max
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Figure 7.5: Extend levels of gesture boundaries initialized around one-
time point annotations before BoundarySearch algorithm is applied.
The box in the box plot covers from the 25th percentile to the 75th
percentile (i.e., 50%) of the extend levels. Blue lines show the median
values and black lines show the minimum as well as the 98th percentile.
Note that the scales are different for the sake of visibility.

values of jitter levels of boundary jitters for those three data sets. It
can be seen that our BoundarySearch algorithm reduces extremely the
jitter levels in the initial boundaries as already shown in Figure7.5 in
case of NoFix-NoLen. Extreme values drop dramatically (e.g., in the
Opportunity data set, the maximum extend level before fixing is above
1000%, meanwhile it decreases to 200% after fixing). Moreover, up to
70% of instances in the Opportunity data set after fixing suffer only
small values of jitter levels which are less than 30%. The corresponding
percentage of instances in the HCI and Skoda data sets are 83% and
92% respectively. Hence, the BoundarySearch algorithm can efficiently
search around the one-time point annotation and inside the large initial
boundaries to discover the pattern of gestures.

Similarly, the analysis of the fixed annotations in the case of MaxLen
(namely Fixed-MaxLen) is given in Figure7.7. The results have sim-
ilar trend as those in Fixed-NoLen. The jitter levels decrease sig-
nificantly compared to those of the initial boundaries before fixing
(NoFix-MaxLen) shown in Figure7.5. The ranges of jitter levels in
Fixed-MaxLen are smaller than those in the case of Fixed-NoLen. For
example, in the Opportunity data set, the maximum extend level in
Fixed-NoLen is 200%, meanwhile in the Fixed-MaxLen it reduces to
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Figure 7.6: Analysis of fixed annotations in case the prior knowledge
of maximum gesture length is not available (Fixed-NoLen). Blue lines
in Fig. a) on the left split a boundary jitter part from good and delete
types. In Fig. b), the description of box plot is the same as that in
Figure7.5. The red star indicates the maximum level of jitter in each
type of boundary jitter.

90%. The percentages of instances which have jitter levels less than
30% after fixing in the Opportunity, HCI and Skoda data sets are 78%,
87% and 92% respectively.

The quality of the fixed annotations compared with that of the non-
fixed annotations show that our boundary fixing approach works well
in finding the boundaries of gestures around the one-time point an-
notation in both cases, whether the prior knowledge of the maximum
length is given or not.

7.5.2 Recognition Performance on Fixed Annotations

We compare the performance of using the fixed annotations on train-
ing gesture recognition with that of clean annotations (i.e., ground
truth). Besides that, to show the robustness of our BoundarySearch
algorithm, we also compare the performances of the fixed annotations
(Fixed-NoLen and Fixed-MaxLen) with those of baselines which use
the NoFix-NoLen and NoFix-MaxLen annotations for training.

Figure7.8 shows the performances of WarpingLCSS and SVM on
the fixed annotations and the baselines of the three data sets. In the Op-
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Figure 7.7: Analysis of fixed annotations in case the prior knowledge
of maximum gesture length is given (Fixed-MaxLen). Interpretation of
notations in this figure is the same as in Figure7.6.

portunity data set, the performances of Fixed-MaxLen are decreased by
just up to 10% for F1-Null and F1-NoNull compared to those of clean
annotation for both recognition methods. Without the prior knowl-
edge of the maximum length, the performances of Fixed-NoLen are
just slightly lower than those of Fixed-MaxLen (only lower by 2-3%
F1-scores). However, when comparing between fixing and non-fixing,
we can see that there is a huge difference in performance between the
Fixed-NoLen annotations and the NoFix-NoLen annotations. Specif-
ically, the performance of the Fixed-NoLen is higher than that of the
NoFix-NoLen by up to 58% F1-score with SVM and up to 29% F1-score
with WarpingLCSS. Similarly, the Fixed-MaxLen annotation achieves
better performance than the NoFix-MaxLen (by up to 25% F1-score
in WarpingLCSS and SVM). The performance of SVM for the NoFix-
NoLen decreases dramatically, down to a F1-score of 2%, which is less
than random guessing (which would be around 5% in a 18-class data set
like Opportunity). This can be explained with the fact that the extend
levels in NoFix-NoLen in the Opportunity data set are extremely high
as shown in Figure7.5. Each gesture instance spans between the previ-
ous and subsequent annotated time points of the annotation, therefore,
all classes contain a large number of wrongly labeled samples from
other classes. Hence, it leads the SVM model to choose incorrect sup-
port vectors, which severely degrades the performance. Meanwhile,
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181

after fixing, the Fixed-NoLen annotation of the Opportunity data set
contains 70% of instances which have the jitter levels less than 30%.
Hence, it reduces significantly the sample noises and improves the
performance dramatically. When the maximum length of each gesture
class is known, the extend levels of NoFix-MaxLen are reduced signif-
icantly as shown in Figure7.5, thus, the performance of SVM in NoFix-
MaxLen is much better than that in NoFix-NoLen. WarpingLCSS per-
forms stable in both cases of NoFix-NoLen and NoFix-MaxLen. The
rationale is that WarpingLCSS finds the best template to represent each
gesture class and then uses that template to spot gestures. It does not
take all instances which severely contain wrongly labeled parts from
other classes into the gesture models.

In the HCI and Skoda data sets, the performances of our fixed
annotations, Fixed-NoLen and Fixed-MaxLen are the same as those
of clean annotations and much better than those of the non-fixing
baselines. For the non-fixed annotations, SVM performs better in these
two data sets than in the Opportunity data set. The extend levels of
the non-fixed annotations in the HCI and Skoda data sets are lower
than those in the Opportunity data set, especially in the NoLen case, as
shown in Figure7.5. In the HCI and Skoda, we apply the non-motion
removal step in the non-fixed annotations and it reduces significantly
the noisy labeled instances in each class. Moreover, HCI and Skoda
data sets contain low levels of variability of the signals belonging to
the null class. Thus, the noisy feature vectors in each gesture class are
low-variant, leading to the better performance of SVM.

The results comply with our analysis on the quality of the fixed an-
notations as well as the baseline annotations discussed in Section 7.5.1.
It is also consistent with our experiments on crowdsourced annotations
shown in [99] where the jitter levels are simulated in a wide range of
values. On average, the fixed annotations achieve a similar perfor-
mance as the clean annotations, lower by just up to 3% F1-scores. The
results show the efficiency of our boundary fixing approach in finding
good patterns of gesture around the one-time point annotation, with
or without knowing the maximum length of each gesture class.

7.5.3 Discussion

In our experiments, each gesture instance is annotated with its correct
label and a one-time point within the time the gesture is happening.
This new proposed annotation technique reduces significantly labelers’
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burden on annotation. The results show the efficiency of our fixing
boundary method in finding good boundaries for gestures around
their one-time point annotations, and the fixed annotations can be used
to train gesture models that achieve performances similar to the ones
obtained from clean annotations. In this work noisy annotations are
not considered. In the offline annotation by experts, we can assume
that there is no label noise in the one-time point annotations (i.e., all
gestures are annotated and each annotated point is associated with a
correct label). However, in the real-time annotation or crowdsourced
annotation scenarios, label noise is more likely to happen [99]. Label noise
can contain instances of gestures which are associated to wrong labels
or are not labeled. Label noise can also appear in the form of gesture
instances which are labeled where no gesture of interest (i.e., null)
actually occurs. If there are wrongly labeled instances in the one-time
point annotations, our boundary fixing method can either delete them
if there is no similar pattern between them and other instances in the
same annotated class, or also correct their boundaries if there are also
other wrongly labeled instances which actually belong to the same
ground-truth class as them. After fixing the boundaries, if the fixed
annotations are still affected by label noise, we can use WarpingLCSS to
filter out those noisy instances before training a traditional classifier as
already shown in our previous work [99]. Particularly, if the majority
of instances of one class is correct, WarpingLCSS is able to pick a
good template among noisy instances to represent the gesture class.
Noisy instances in a gesture class are filtered out by removing instances
which have an average similarity to other instances of the same class
below a threshold. To clean noise inside the null instance, we can
run WarpingLCSS with the selected templates on the training data
annotated as null and discard any parts spotted as any gestures of
interest. We also conducted experiments to investigate the impact of
label noise in training annotation on the performance of the gesture
recognition methods. For more information, see our previous work
in [99].

In this work, we evaluated our proposed boundary fixing method
on applications from wearable sensing and activity recognition. How-
ever, the BoundarySearch algorithm is a generic algorithm that can be
useful in other pattern recognition applications, for example support-
ing one-time point annotation in systems where temporal boundaries
must be segmented and annotated in the training data set, or finding
similar substrings inside strings. One application could be for exam-
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ple finding matching areas inside two images in the field of image
processing.

In our work, raw signals are simplified and transformed into a 1D
string of symbols with the use of k-means clustering which gives good
results. Other quantization techniques such as SAX [103] or temporal
clustering [81] can also be applied. Our BoundarySearch algorithm is
then applied to these strings of symbols. However, the algorithm can
be easily modified to work with higher dimensional time-series data
or raw signals. Particularly, in Equation 7.7 to compute B, instead of
comparing two symbols for a matching, a distance between two data
samples can be computed and compared with a tolerance threshold to
define an approximate match.

In our BoundarySearch algorithm, the penalty parameter p must
be specified. In this work, we simply used the same penalty values
chosen by cross-validation for the WarpingLCSS algorithm on the three
data sets in our previous works [99]. In other data sets with only
one-time point annotations and without any ground truth, the cross-
validation can not be done to pick the best p value which yields the best
quality (i.e., jitter levels) of fixed annotation. However, we can run the
BoundarySearch algorithm with a range of values of p and the fixed
boundaries can be shown and examined quickly by experts to decide
which value of p should be chosen.

7.6 Conclusion and Future Work

In this work, we investigated a one-time point annotation technique
for gesture recognition systems in which labelers do not have to se-
lect the start and end time of each gesture carefully, but just mark a
one-time point randomly within its temporal boundaries. The novel
BoundarySearch algorithm was proposed to search for good bound-
aries of gestures based on gesture patterns around their one-time point
annotations. The results show that the BoundarySearch algorithm can
efficiently fix the boundaries for gestures and the gesture recognition
system can use the fixed annotations to train gesture models. Their
performance is just lower than the training on clean annotations by
3% F1-scores on average, but it reduces significantly the amount of
annotation time. It can allow for example to annotate a video nearly
in real time, instead of needing 10 hours for 30 minutes of data. Al-
though our proposed method was investigated on gesture recognition
with wearable sensors, the BoundarySearch algorithm is a generic al-
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gorithm that can be useful in other applications of pattern recognition
in which finding similar patterns inside two strings is necessary. In
future work, we plan to test and deploy the one-time point annotation
technique and apply the BoundarySearch algorithm within real-time
annotation systems.
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Abstract

Human activity recognition systems traditionally require a manual anno-
tation of massive training data, which is laborious and non-scalable. An
alternative approach is mining existing online crowd-sourced repositories
for open-ended, free annotated training data. However, differences across
data sources or in observed contexts prevent a crowd-sourced based model
reaching user-dependent recognition rates.

To enhance the use of crowd-sourced data in activity recognition, we
take an essential step forward by adapting a generic model based on crowd-
sourced data to a personalized model. In this work, we investigate two
adapting approaches: 1) a semi-supervised learning to combine crowd-
sourced data and unlabeled user data, and 2) an active-learning to query
the user for labeling samples where the crowd-sourced based model fails
to recognize. We test our proposed approaches on 7 users using auditory
modality on mobile phones with a total data of 14 days and up to 9 daily
context classes. Experimental results indicate that the semi-supervised
model can indeed improve the recognition accuracy up to 21% but is still
significantly outperformed by a supervised model on user data. In the ac-
tive learning scheme, the crowd-sourced model can reach the performance
of the supervised model by requesting labels of 0.7% of user data only.
Our work illustrates a promising first step towards an unobtrusive, effi-
cient and open-ended context recognition system by adapting free online
crowd-sourced data into a personalized model.

8.1 Introduction

Human activity recognition is important in developing context-aware
systems. Being able to sense a user’s routines (e.g. working in the
office, staying at home) [104], his physical activities (e.g. standing,
walking, cycling) [54], or his social context (e.g. having a conversa-
tion) [15], relevant information about the user can be captured. Based
on the acquired information, actions can be executed. With the ubiq-
uity of mobile phones, and their growing computational power and
sensing capability, they enable new opportunities for developing per-
sonal context-aware systems in a large scale to perceive and act on
what users are doing or experiencing. One example is the commercial
application Google Now 1, which provides location-based reminders

1http://www.google.com/landing/now/



187

or arrival time estimates to reach a destination according to users’ daily
routines. Many more applications have been investigated in activity
recognition research that span across a wide range of domains such as
healthcare, sports, or entertainment that can profit from understanding
the users’ context [105]. Prominent examples include capturing daily
life activities for health monitoring motivated by activities of daily liv-
ing index (ADL) by Katz [106] and Bucks [107] or for the social rhythm
measurement (SRM) [47]. Using context recognition systems activities
can be detected automatically without burdening the user of keeping
track of his activities.

Traditionally, most context recognition systems require a time-
consuming preparation in which training data (e.g., sensor readings) is
collected and manually annotated to build recognition models. More-
over, the daily life of a user often contains highly individual situations,
activities, or environments. Also daily life situations can be expressed
in a highly diverse way. For example, the – seemingly simple – activity
of working at the office can consist of typing at the computer, read-
ing, giving a talk, or attending a meeting. As a result, the recognition
system has to be trained individually for a specific user and a large
amount of training data has to be collected to cover the variability
of the user-specific daily life. Clearly, this laborious and non-scalable
requirement impede a real-world deployment in which a user can di-
rectly use the system, and prohibit the use in many applications such
as in the healthcare-related scenarios mentioned above.

In this work we aim at facilitating the deployment of a context
recognition system based on audio on mobile phones. To reduce the
effort to collect training data, an alternative approach is to use crowd-
sourced sound repositories (e.g., Freesound 2) from the web [15]. The
advantages of using web collected data are their free availability and
a rich representation of possibly open-ended categories of sounds.
However, crowd-sourced audio data can differ from data obtained
on personal mobile phones. Differing characteristics of the user’s sur-
roundings or microphone responses can prevent the recognition when
using a crowd-sourced model on user-specific data. In contrast, col-
lecting labels of user data is a burden to every user. Table 8.1 shows
the trade-off between crowd-sourced audio data and user-centric data
recorded from user’s mobile phone.

In this work, we take an essential step forward to combine the best
properties from crowd-sourced data and user-centric data to obtain a

2www.freesound.org
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Table 8.1: Comparison between crowd-sourced data and user-centric
data

Crowd-sourced Audio
data

User-Centric data (Mobile
phone)

Annotation
Cost

Free Huge effort (by users or ex-
perts)

Length Short-clips (sec-
onds/minutes)

Long continuous recording
(days-months-years)

Location Unknown, heterogeneous User’s environment sur-
roundings/activities

Device Unknown, heterogeneous User’s device

high performing and yet scalable recognition system in terms of user
labeling effort. We achieve our goal by adapting a generic model based
on crowd-sourced data to a personalized model. To this end, we first
collect crowd-sourced training data to bootstrap a context recognition
system (as in [15]). Then, we refine model parameters with no to little
interaction of the user to improve the recognition performance. We
contribute an analysis of different methods for the adaptation. In the
first approach, a semi-supervised learning scheme is used to combine
labeled crowd-sourced audio data with unlabeled user-centric data. In
the second approach, we use an active-learning scheme to detect the
most informative user-specific data samples that the crowd-sourced
model can not represent well and queries a user to label them. We
analyze the tradeoff between labeling effort and accuracy of the recog-
nition system. We provide a thorough evaluation on 7 users with a
total data amount of 14 days. The results show that combining crowd-
sourced data with user-specific data can achieve accuracies similar to
a supervised approach built on user data, but lowering the labeling
effort to a minimum. Thus, leveraging both crowd-sourced data and
user-centric data can open a chance to build a scalable and efficient
context recognition system.

The rest of the paper is organized as follows. Section 8.2 offers the
literature review on auditory context recognition. Section 8.3 proposes
our recognition system to combine the two sources of audio data. In
Section 8.4, we discuss the probabilistic learning framework for con-
text recognition used in our paper. The collected datasets are presented
in Section 8.5. The proposed research is examined by extensive evalu-
ations in Sections 8.6 and Section 8.7. Section 8.8 concludes our work
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and gives some potential research directions.

8.2 Related Work

Environmental sound has been used as a rich source of information to
infer person’s activities and locations [15,51,53,108–110]. For example,
Stäger et al. [109] proposed a dedicated hardware to recognize a set of
daily activities based on sound. Lu et al. [110] modeled and recognized
sound events on mobile phones. While training data is essential for all
these recognition systems, it is time-consuming and non-scalable to
obtain sufficient amounts of data with annotations that represent daily
life situations. Consequently, most of the previous work are limited to
small datasets of sound daily life contexts that are manually collected
and labeled under controlled conditions [51, 52, 108, 109].

Although a relatively new idea, mining online multimedia reposi-
tories for relevant training data for activity recognition has been pro-
posed by researchers to reduce the effort to collect and label train-
ing data as well as increase the number of available context classes.
Perkowitz et al. [33] presented the web-based activity discovery us-
ing text. Rossi et al. [15] proposed to use the online crowd-sourced
Freesound database to obtain a heterogeneous and diverse training
data to train sound models to recognize activities of daily living.

Semi-supervised learning and active learning are two different
types of techniques in machine learning that minimize the need of
labeled training data. Those techniques are highly-motivated where
unlabeled data can be easily obtained but annotation is costly or time-
consuming to obtain, thus, labels sparse. Semi-supervised learning
make use of both labeled and unlabeled data to train a recognition
system. Meanwhile, active learning selectively asks labels of the most
informative training instances that can generalize the classifier maxi-
mally, and thus reduces user’s burden of labeling, but still gets good
performance. There are many variations of semi-supervised learning
and active learning algorithms. A comprehensive survey can be found
in [34] for semi-supervised learning and in [35] for active learning,
respectively.

According to the best of our knowledge, there is no previous work
that investigated adaptation techniques to optimally leverage labeled
crowd-sourced audio data and user-centric data recorded from mobile
phones to improve the recognition performance but reduce the effort
to label user’s data. In the work by Rossi et al. [15], Freesound has



190 Chapter 8: Personalized Adaptation of Crowdsourced Models

been used for context recognition with supervised learning. However,
they do not consider user adaptation to improve the performance.
Zhang et al. [36] used semi-supervised learning to improve sound
event classification. In their work, however, labeled and unlabeled data
are of the same data source and they did not work with personalized
user context. Stikic et al [37] explored both semi-supervised learning
and active learning in physical activity recognition, with focus only on
user-centric data record in a highly instrumented home environment.
In contrast to these works, we aim to improve the recognition of a
classifier learned from one free data source – crowd-sourced repository
– on another, the user personalized data on mobile phone.

8.3 Context Recognition System

While the web offers an abundance of labeled data, obtaining labels
from a single user is often a tedious and time consuming task. However,
with the option of obtaining an abundance of unlabeled data from the
user, we employ techniques to optimally use available data. Figure 8.1
shows an overview of our sound-based context recognition system.
In data preprocessing phase, we collect auditory training data from
Freesound and user’s mobile phone. We then extract acoustic features
from the collected audio clips. In the learning phase, we apply machine
learning techniques to learn and adapt a context recognition model
based on the two sources of data. In the recognition phase, the context
recognition model will be used to infer user context from data recorded
on user’s mobile phone. We describe each component in our proposed
system in the following.

8.3.1 Data Preprocessing

Freesound Repository. Freesound [111] is an online sharing reposi-
tory of crowd contributed sound data. Sounds in Freesound are con-
tributed by a very active online community and thus, the number of
available sounds has increased rapidly. Currently, the database stores
about 170000 samples uploaded by 6000 contributors. Sounds are of-
ten annotated in free-form styles and the tags come from very diverse
vocabularies. Moreover, crowd-contributed sounds are recorded in a
wide variety of situations, conditions, motivations, and skills.

Crawling labeled audio from Freesound. In our system, we focus
on everyday situations such as dining in a restaurant or transporting For
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Figure 8.1: The data processing flow of our sound-based context recog-
nition that combines Freesound data and user-centric audio data

each context class, we use its name as a keyword (e.g., "restaurant") to
search for the sound clips in Freesound that are tagged with the key-
word. The list of context classes can be provided by a user who uses the
context recognition system. In health monitoring systems, the list of
context classes is usually defined by a specialist beforehand [47]. How-
ever, with the diversity of context classes in the crowd-sourced reposi-
tory, it is easy to extend the recognition system by specifying new con-
text classes and then extracting training data samples for those classes
from the crowd-sourced repository. We retrieve only sound clips with



192 Chapter 8: Personalized Adaptation of Crowdsourced Models

the highest average rating (i.e., high quality) given to the sounds pro-
vided by the Freesound community. Multiple sound samples are then
labeled with the corresponding context class. All the retrieved audio
samples were converted to WAV format with a sampling frequency of
16 kHz and bit depth of 16 bits/sample. We manually filter the down-
loaded audio clips that are irrelevant to the assigned context class. For
automatic filtering techniques see [15]. We do not apply an automatic
filtering to remove irrelevant clips because the manual filtering showed
the best results [15] and we assume that the small set of short audio
clips that we retrieved from Freesound (30 sound clips per context) can
be quickly and cheaply filtered by listening.

User Recordings. We record continuously audio data from users’
smartphones with a sampling frequency of 16 kHz and bit depth of 16
bits/sample. As with the data from freesound, we store in WAV format.

Extracting audio features. We extract 12 coefficients mel-frequency
cepstral coefficient (MFCC) and log-energy on a sliding window of 32
ms length of audio data. The same method are used to extract acoustic
features for both audio data from Freesound and the smart phones.

8.3.2 Learning Phase

We propose to use semi-supervised learning and active learning
schemes based on Gaussian Mixture Model (GMM) to combine two
data sources: Freesound and user-centric data on mobile phones. We
name two approaches as Semi-supervised Adaptation and Active Learning
Adaptation respectively.

Semi-supervised Adaptation. Semi-supervised learning is used to
combine Freesound labeled data and user unlabeled data.

Active Learning (AL) Adaptation. We train a bootstrapped con-
text classifier using Freesound labeled data. From that initial classifier,
active learning proceeds and iteratively selects the most informative
user-centric samples to query for labels. The classifier is then retrained
and adapted with the new user-centric labeled data.

Semi-supervised Adaptation and AL Adaptation are illustrated in Fig-
ure 8.2. Details of the semi-supervised learning and active learning
algorithms are discussed in Section 8.4.
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Figure 8.2: Learning approaches using either Freesound (FS) or user-
centric data, or both of them to train the context recognition
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8.3.3 Recognition Phase

The GMM models which are obtained from the learning phase are used
to recognize user daily contexts based on audio data recorded from the
smartphone. We construct a two-level classification. At the low level,
audio instances extracted from windows of 32 ms are classified by
the GMM models. The context class with the highest probability to
generate an instance is assigned to that instance. At the high level, a
decision is made on the longer segment (2 seconds) by taking a class
with the highest frequency in the segment as a label.

8.4 Probabilistic Framework for Context Recognition

As we mentioned before, immediate usage of crowd-sourced data to
build a context recognition model is suboptimal due to lack of user-
specific training data, therefore we propose two adaptation techniques
based on GMM to tailor a context model build from crowd-sourced
data to a personalized context model. In this section, we first briefly
present the GMM probabilistic framework for context recognition used
in this paper. Then the semi-supervised and active learning algorithms
built on this framework are presented.

GMM is an effective generative classifier that has been used exten-
sively in acoustic domains (e.g., speaker recognition [49, 50], environ-
mental sound [51–53]). LetD be a set of N observed instances xi ∈ Rd

and Ω be a Gaussian mixture model with K components, c1, ..., cK. Each
component ck (k = 1,...,K) is a Gaussian density conditional model, i.e.,
p(xi|ck) = N(xi;µk,Σk), where µk and Σk are the mean vector and co-
variance matrix of the component, respectively. Let us also denote Θ
be the set of parameters of the model Ω, Θ = {µk,Σk, πk}

K
k=1, where πk

is the prior probability of the component ck.
Given the data D, the maximum log likelihood estimation (MLE)

is used as a criteria to define the best model Θ̂ to fitD, i.e., Θ̂ = argmax
Θ

log p(D|Θ), with

L= log p(D|Θ) = log
N∏

i=1
p(xi|Θ) =

N∑
i=1

K∑
k=1
πkN(xi;µk,Σk)

In our work, each context class can contain multiple Gaussian com-
ponents. The probability that an instance xi belonging to a context
class yi is computed as the sum of the probabilities of the mixture
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components belonging to the context class to generate the instance.

P(yi|xi; Θ) =

K∑
j=1
1{c j, yi}P(c j|xi; Θ)

K∑
k=1

P(ck|xi; Θ)
,

with 1{c j, yi} = 1 if class yi contains component c j.

8.4.1 Semi-supervised Learning using EM

The goal is to find semi-supervised parameters Θ that maximizeL to fit
the labeled (i.e., Freesound data) and unlabeled (i.e., user-centric data)
observations. The Expectation-Maximization (EM) approach [112] is a
standard procedure to find the locally optimal parameter set Θ̂. In our
work, we consider that each context class can have multiple Gaussian
components.

Inputs: Collections Xl of labeled data of l instances and Xu of unla-
beled data of u instances. The training set X = Xl

∪ Xu.
1. Initialization. For each class i, build a GMM model Θ̂i from the

labeled data Xl
i of that class. Merge all components of classes to have

initial Θ.
2. Loop until converge. (i.e., the change in log likelihood of the

training data X is less than 10−4):
E-step: Use the current model to estimate the probability that each

mixture component generated each instance (i.e., component member-
ship).

γi j = P(c j|xi; Θ̂) =
π jN(xi;µ j,Σ j)

K∑
k=1

πkN(xi;µk,Σk)

Restrict the membership probability estimates of labeled instances to
be zero for components associated with other classes, and renormalize.

M-step: Re-estimate the GMM model, Θ̂, given the estimated com-
ponent membership of all labeled and unlabeled instances.

l j =

l+u∑
i=1

γi j, π j =
l j

l + u
, µ j =

1
l j

l+u∑
i=1

γi jxi
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Σ j =
1
l j

l+u∑
i=1

γi j(xi − µ j)(xi − µ j)
T

for all j = 1,...,K

8.4.2 Active Learning

Active learning starts with an initial learner trained on a small number
of labeled instances in the training set with supervised GMM. The
learner then iteratively queries labels for one or more selected instances
in the unlabeled training set, learns from the new labeled set, and then
updates the learner. In the Active Learning Adaptation approach, the
initial learner is built on the Freesound labeled data and the unlabeled
training set is user-centric data.

In the context recognition on mobile phones, one can imagine an
interactive online strategy that asks the user to annotate his current
context when the learner confuses how to label the current situation.
It is called stream-based active learning [35]. On the other hand, in
pool-based active learning [35], the query decisions are made offline
after collecting the entire unlabeled training set. The learner evaluates
and ranks the entire unlabeled set to select to the best queries. In the
auditory context recognition, one can imagine that the audio segments
corresponding to the query instances are extracted and given to the
user to annotate them.

We use a pool-based algorithm to query labels on the user-centric
unlabeled dataset. Specifically, we use entropy [113] as an uncertainty
measure to find the most informative unlabeled instance to query a
label.

x∗ENT = argmax
xi

−
∑
i

P(yi|xi; Θ) log P(yi|xi; Θ), where yi ranges over

all possible class labels.
In our work, we use a classification window of 32 ms (see Section

8.3.1). However, everyday context classes defined in this paper often
last for at least a few minutes. Therefore, instead of asking the label
for the 32 ms data segment only, we extend the labeled segment with
a window of one minute around the queried instance.

8.5 Datasets

For our evaluation we collect two datasets: 1) To obtain a user-centric
dataset, we collect data recorded from users’ smartphones; 2) For the
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crowd-sourced dataset we make use of the Freesound repository as
in [15, 71].

User-centric data. We use android-based smartphones (Samsung
Galaxy S2) with headset microphones for continuous sound record-
ing. Participants were asked to record two full working days in their
ordinary setting. All participants live in Zurich, Switzerland and thus,
the transportation includes tram, train, bus and car. The recording ap-
plication also provides an annotation tool in which user can annotate
his current contexts as a ground truth. Specifically, users can indicate
when a context class starts/stops happening. We do not ask the user to
label fine-grained sound events, but longer lasting everyday contex-
tual situations. In our work, we also want to support the recognition
of individual and user-dependent context classes. Therefore, users can
annotate different set of context classes, individual to their daily sit-
uations. Table 8.2 shows the list of classes provided by 7 participants
and the corresponding distribution of classes in the dataset recorded
by users on mobile phones. Context classes are about working, feed-
ing, transportation and social interaction which are useful in health
monitoring [47]. For each recording day, at least 9 hours of audio data
were obtained for each user. As can be seen in Table 8.2, users spend
most of the time in the office and discuss their works with colleagues.
In total, about 130 hours of audio data has been collected from mobile
phones for the study.

Freesound. From the list of context classes provided by the users,
we retrieve audio data for those context classes from Freesound. As a
result, we download sound clips for 9 context classes from Freesound
as shown in Table 8.3. For each class, we retrieve 30 sound clips, tagged
with the label of the class, with the highest average rating given to the
sounds. Besides the class label, a sound clip also has other tags that
usually describe different sound events occurring in the sound clip.
Table 8.3 shows the subset of tags in Freesound clips that we download
for each context class. As can be seen, each context class contains the
heterogeneity of sound events and recording conditions. For example,
being in the office consists of multiple sound events such as typing,
stapling, printing, etc. After manually filtering for quality, we have 163
audio clips (143 minutes) for 9 context class to train sound models.
This data from Freesound is denoted as FS.
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Table 8.2: User-dependent context classes and the corresponding dis-
tribution of classes in dataset

Context Classes and Class Distribution (%)
User 1 office (83), tram (1), train (10), conversation (6)
User 2 toilet (1), office (50), restaurant (5), street (1), conversation

(43)
User 3 office (37), restaurant(7), street(12), tram(2), conversa-

tion(42)
User 4 toilet (1), office (70), restaurant(2), street (4), tram (1), con-

versation (22)
User 5 toilet (1), office (63), restaurant (7), street (7), tram (1), train

(7), conversation (14)
User 6 toilet (0.4), office(70), restaurant (8), street (4), tram (6), train

(5), car (1), conversation (5.6)
User 7 toilet (0.2), office (21), restaurant (9), street (4), tram (5),

train (6), car (2), bus (0.2), conversation (52.6)

Table 8.3: The heterogeneity of sounds from freesound for each con-
text class

Context Class Tags of Freesound Clips
Office office, door-open, typing, locking, coffee-machine, stapler, paper-

shuffling, print

Bus bus, door-open, horn, footstep, air-brake, stop, speeding, air-
pressure-release

Car car, highway, forest, car-door, overtake, start, stop, footstep, brake,
snow, rain

Train train, rail, leaving, accelerating, wheels, door, railway, under-
ground, passing, voice

Tram tram, door, trolley, passing, beep, creaking, tunnel, bell, an-
nouncement, brake

Street street, pedaling, chatter, people, music, bike, announcement, foot,
bell, car, horse

Restaurant restaurant, chat, drink, eat, pour, liquid, food, ice, dish, nibble,
grill, clinking, music

Toilet toilet, splash, water, scrub, lavatory, sink, shower, brush, urinal,
flush, hand-dryer

Conversation chat, talk, noise, bustle, phone, scream, yell, panic, male, female,
English, Spanish
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8.6 Evaluation

To evaluate the best use of crowd-sourced data in personalized context
recognition, we address the following research questions:

1. Does the Semi-supervised Adaptation of a crowd-sourced model
improve the recognition of user’s contexts on mobile phones?

2. Can the Active Learning Adaptation find user data instances that
the crowd-sourced data can not represent well to ask for labels
and quickly achieve good performance with minimal number of
label queries?

3. Does the Active Learning Adaptation of a crowd-sourced model
perform better than active learning model based on user data
only in terms of accuracy and number of label queries?

To answer these question, we compare our proposed approaches with
three baseline non-adapted learning approaches. Specifically,

- FS-Supervised: A supervised GMM trained on Freesound data
only without adaptation with user-collected data.

- User-Supervised: A supervised GMM trained on the user-centric
annotated training data only.

- Active Learning (AL) from User: An active learning scheme on
user-centric data only. In this baseline approach, we assume that
initially each user can contribute and label randomly one minute
of data (≈ 1875 instances) for each context class. Totally, this
labeled data takes about 1% of training data. An initial GMM
classifier is trained from that labeled data, then the active learning
is applied to query labels for the uncertain samples.

Figure 8.2 illustrates the three baseline approaches also with our
proposed approaches. They are ordered increasingly in the effort of
user data annotation (i.e., (1) FS-Supervised, (2) Semi-supervised Adap-
tation, (3) AL Adaptation, (4) AL from User, and (5) User-Supervised).
Among them, FS-Supervised and Semi-supervised do not require any ef-
fort to label user data. It is not clear now whether AL Adaptation is better
than AL from User in terms of number of label queries. We will discuss
it in detail in the next section. Our goal is to find the best approach in
terms of accuracy and labeling effort.
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The experiments are performed based on the partitioning of the
two-day recording audio data from user’s mobile phone into two
halves. The first fold (F1, 50% of user data for each class) is used
with no labels (F1U) or all labels (F1L) or a small part of these labels
(F11%L and F199%U) in training phase. The second fold (F2, another 50%
of user data for each class) is used for testing in recognition phase for
all five approaches. Table 8.4 shows the usage of two sources of data
in learning phase of five approaches.

Table 8.4: The usage of two sources of data in learning phase of five
approaches

Data usage
FS-Supervised FS
Semi-supervised Adaptation FS + F1U
Active Learning Adaptation FS + F1U
Active Learning from User F11%L + F199%U
User-Supervised F1L

8.7 Results

Table 8.5 gives the accuracy of five approaches (we only show the best
for the active learning). Figure 8.3 plots the detailed performance of
the active learning approaches over the first 20 label queries.

Table 8.5: Accuracy of learning approaches for 7 users. For active
learning (AL), the best performances over 20 label queries are given.

FS-
Supervised

Semi-
supervised
Adaptation

AL Adap-
tation

AL from
User

User-
Supervised

User 1 0.8 0.86 0.97 0.93 0.94
User 2 0.5 0.65 0.94 0.82 0.9
User 3 0.58 0.43 0.81 0.73 0.72
User 4 0.22 0.25 0.93 0.86 0.72
User 5 0.35 0.5 0.80 0.83 0.82
User 6 0.54 0.61 0.86 0.87 0.85
User 7 0.26 0.47 0.86 0.76 0.83
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As expected, the User-Supervised approach gives much better re-
sults than the FS-Supervised approach. Supervised training on user
data clearly captures user-specific environments in the model (i.e., test
and training data tend to be similar for each single user) and thus,
recognizes well user context in daily routines. The performance of the
FS-Supervised model drops significantly since the crowd-sourced data
hardly covers all user-specific surroundings. However, FS-Supervised
model does not require any effort to label user data, meanwhile User-
Supervised requires huge effort to label them. Note that the accuracy
of the supervised Freesound model FS-Supervised is at similar range
to that reported in the work by Rossi [15] which also used Freesound
data to recognize users’ contexts.

Semi-supervised Adaptation The results show that the Semi-
supervised Adaptation approach significantly improves the performance
of context recognition compared to the non-adapted FS-Supervised (up
to 21%) for six users. Unlabeled training data from user can help adapt
the crowd-sourced model to the personalized model without asking
any labels for user data. Only for user 3, the Semi-supervised Adaptation
actually decreases the performance. In this case, the contribution of
unlabeled user data in the semi-supervised learning makes the model
more uncertain. The result in Table 8.5 also shows that Semi-supervised
Adaptation underperforms significantly the baseline User-Supervised
approach as can be seen in Table 8.5. Especially from user 4, even the
Semi-supervised Adaptation can increase the accuracy of FS-Supervised
by 3%, the accuracies of these two approaches are much lower than
that of the User-Supervised. Here the Freesound data does not general-
ize sufficiently to the data recording from that user-specific environ-
ments. The visualization of the collected data from the crowd-sourced
data and user-centric data in Figure 8.4 supports our explanation (data
dimension reduced to 2 using t-SNE stochastic neighborhood embed-
ding method [114]). As you can see, the crowd-sourced data represents
some parts of the user data only.

Active Learning Adaptation As can be seen in Figure 8.3, the AL
Adaptation quickly reaches the performance of the User-Supervised ap-
proach and even improves further the accuracy over 20 label queries.
Freesound contains rich information about the contexts and after ask-
ing a few label queries for user data instances that Freesound can not
represent well, the AL Adaptation approach may generalize better user’s
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user−train

crowd−train

Figure 8.4: A visualization of the collected data from crowd-sourced
Freesound and one user’s mobile phone data of train context class

context. After 20 iterative queries of labels, the AL from User approach
also gets similar or closely results as of the User-Supervised learning.
Thus, the active learning technique generally can achieve high accu-
racy using significantly fewer labeled training data (20 queries ≈ 3%
of the user training data). In Figure 8.3, we see that the AL from User
gets better performance than the AL Adaptation in initial number of
label queries. However, with more queries eventually, the AL Adap-
tation achieves better accuracies. We can explain this with the same
reason: Freesound contains intra-class diversity, thus it may contain
user’s unseen contexts in the recognition phase and increase model
generalization.

To compare the AL Adaptation and AL from User in terms of number
of label queries, we evaluate how many label queries needed for these
two approaches to reach the same performance as the User-Supervised
approach. For the AL from User approach, we also count the annotation
effort of user to contribute the initial labeled training set to build the
initial classifier (This effort is equivalent to the total number of context
class that the user has). As can be seen, the AL Adaptation requires
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much less number of queries than the AL from User to achieve the same
accuracy as the User-Supervised approach. It only requires in average
5 label queries per user (≈ 0.7% of user training data) to get the good
performance. Meanwhile, the AL from User asks for in average at least
24 label queries per user (≈ 3.6% of user training data). Moreover, the
number of queries needed in AL Adaptation is even much less than
the total number of context classes that the user has for most of the
user. The Freesound data contains training instances of several classes
that describe well user contexts and thus, the AL Adaptation does not
require to ask labeled instances for those classes.

Table 8.6: Number of label queries needed in two active learning (AL)
approaches to reach the performance of User-Supervised approach

AL Adaptation AL from User
User 1 2 23
User 2 3 > 50
User 3 3 8
User 4 7 11
User 5 1 14
User 6 10 24
User 7 6 39

Note that each query requests labels of one minute of data (≈ 1875 data instances)

To analyze in detail which classes for the Freesound-sourced model
performs poorly, we investigate the queries of the AL Adaptation. We
want to reveal which classes are queried for and how much the ob-
tained label improves the classification. For each user, over 20 label
queries, we report how many queries performed for each context class
y as well as the accumulated improvement of the context class A(y)
that these queries contribute to the performance. Specifically,

A(y) =
20∑

t=1
1{t, y}(accuracy(t) − accuracy(t − 1)), with 1{t, y} = 1 if an

instance of class y is enquired for a label in the query at time t and ac-
curacy(t) is the accuracy of AL Adaptation approach after the t-th query
is asked.

Table 8.7 shows the accuracy improvement by AL Adaptation over 20
queries. All 7 users need to ask a few queries for office class. Except for
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Table 8.7: The accuracy improvement by Active Learning from FS
over 20 label queries

User 1 User 2 User 3 User 4 User 5 User 6 User 7
office (10, 20%) (8, 48%) (5, 27%) (2, 56%) (5, 47%) (2, 1%) (1, 38%)
restaurant – (0, 0) (0, 0) (0, 0) (1, -3%) (1, 2%) (0, 0)
street – (2, -1%) (5, -12%) (4, 30%) (9, 3%) (3, 16%) (7, 0.5%)
tram (0, 0) – (0, 0) (0, 0) (0, 0) (4, 7%) (2, 1%)
train (6, 8%) – – – (0, 0) (6, -0.3%) (5, 2%)
car – – – – – (0, 0) (0, 0)
bus – – – – – – (1, 15%)
toilet – (0, 0) – (2, 3%) (0, 0) (3, 3%) (0, 0)
conversation (4, -11%) (10, -5%) (10, -0.9%) (12, -21%) (5, -2%) (1, 0.3%) (4, 3%)

The first number in parenthesis is the total number of queries requested for the cor-
responding context class and the second number denotes the accumulated accuracy
improvement A. The (0,0) denotes that AL from FS does not acquire a label for any
instances from the corresponding context class. A dash – denotes that the user does
not have the context class in his ADL.

user 1 for which only little improvement is achieved, the queries signif-
icantly improve the recognition performance. Meanwhile, for user 1,
queries for street class are executed, which increases the performance
significantly. It seems like office context contains a heterogeneous mix-
ture of sound events and some of them are highly user-dependent.
Remember that for user 4, the FS-Supervised yields a very bad perfor-
mance (only 22% accuracy) as can be seen in Table 8.5 and Figure 8.3.
However, after 2 queries of office class and 4 queries of street class,
the performance is dramatically increased. There are several context
classes that the Freesound-based model characterizes well in user-
specific data. Thus the AL Adaptation does not need to query any labels
from those classes. For example, for user 4, restaurant context and tram
context are not enquired for labels (i.e., (0,0) in Table 8.7). To enforce
this analysis, we show the confusion matrix of FS-Supervised and AL
Adaptation for user 4 in Figure 8.5 . As can be seen, the FS-Supervised
can recognize well restaurant and tram classes, and it confuses office
with toilet, and street with tram. That is why the AL Adaptation needs
to ask labels for office and street classes, but not for restaurant and
tram. Therefore, it can be emphasized again that Freesound contains
diverse, useful acoustic data that can be used to recognize user context.
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Figure 8.5: Confusion matrix tables of learning approaches for user 4

Discussion Our proposed Semi-supervised Adaptation can improve
the performance up to 21% from the FS- Supervised. However, Semi-
supervised Adaptation can be very greedy in leveraging the unlabeled
data, thus it can mislead and decrease the performance. One solution
for this is to lower the emphasis of the unlabeled data by adding a pos-
itive weight λ ≤ 1 to the semi-supervised log likelihood [115]. More
importantly, it is still far from reaching the performance of the User-
Supervised baseline approach. While crowd-sourced data indeed helps
context recognition, it may not cover exact user-specific context char-
acteristics and all user-specific situations. Thus, both data sources are
probably too dissimilar to profit from the unlabeled data from the user
data source. AL Adaptation can enquire labels for training instances
of only user-specific context scenes that the Freesound data can not
represent well, and the method can quickly reach the performance of
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User-Supervised approach after only a few queries. Interestingly, the AL
Adaptation can outperform the baseline User-Supervised because the AL
Adaptation can take the advantages of Freesound diversity and vari-
ability. Furthermore, AL Adaptation is much better than AL from User
in terms of the number of queries needed to reach the performance of
User-Supervised, thus the AL Adaptation can leverage well both sources
of data: Freesound and user- centric data to get a very good accuracy,
but reduce significantly user effort to annotate data.

From our evaluations, we state the lessons learned from this work.
Context recognition systems which use traditional supervised learn-
ing on user training data perform the best, but it requires a huge
effort to label a sufficient amount of user training data. The crowd-
sourced repositories provide free labeled training data, however the
performance is till far from reaching the performance of supervised
learning on user-specific data. The semi-supervised learning to com-
bine labeled crowd-sourced data and unlabeled user data is one of the
cheapest ways to adapt the system without asking any effort to label
user data. It can improve the performance but can not reach the best
result. With a few label queries only from user training data, the active
learning based on crowd-sourced data can perform a significant im-
provement and reach the supervised performance with only 0.7% of
user data. Hereby the recognition system built on crowd-sourced data
can flexibly learn a new class by first extracting training samples for
that class from crowd-sourced repositories, and successively improve
its performance with another few user queries by using active learning.
Therefore, our best recommendation for personal context recognition
is to use active learning with crowd sourced data for optimal and ef-
ficient learning. Our proposed adaptation techniques which leverages
crowd-sourced data can also open a new chance to develop a scalable
and open-ended context recognition system.

8.8 Conclusion and Future Work

In this paper, we conducted experiments that combine and leverage
complementary properties of two sources of data: the crowd-sourced
labeled audio dataset and the user-centric audio recorded from mo-
bile phones, to recognize user daily context. We investigated semi-
supervised learning and active learning to adapt a generic model built
from crowd-sourced data to a personalize context model. The semi-
supervised learning can improve the recognition accuracy up to 21%,
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thus, the semi-supervised learning can be used to adapt user-centric
data from the crowd-sourced data to build a better context recognition
without asking labeling on user data. However, it still underperforms
significantly the user supervised model build on user-centric data.
The active learning approach that is based on the crowd-sourced la-
beled data can reach the performance of the supervised model quickly
with surprisingly only a few label queries for the user data (in aver-
age 5 queries corresponding to 0.7% of the user training data). Fur-
thermore, the active learning approach can even outperform the user
supervised model as it leverages diversity and variability of existing
crowd-sourced data. Our recommendation for personal context recog-
nition is to use active learning with crowd sourced data for optimal
and efficient learning in terms of accuracy and labeling effort. The
rich availability of crowd-sourced data in terms of number of classes
also open new opportunities to develop open-ended, scalable activity
recognition system. In future work, we plan to analyze the influence
of unlabeled data in the semi-supervised learning approach by vary-
ing their emphasis. We also plan to try stream-based active learning
schemes to support interactive online strategy to get annotation from
user on mobile phones. Furthermore, we also need to test the algo-
rithms with more number of users and more context classes.
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Glossary

Notation Description

1D one-dimensional

3D three-dimensional

ADL Activities of Daily Living

AMT Amazon Mechanical Turk

Avg Average

DTW Dynamic Time Warping

HCI Human Computer Interaction

HIT Human Intelligence Task

HMM Hidden Markov Model

IMU Inertial Measurement Unit

LCSS Longest Common Subsequence

LM Local Maximum

GMM Gaussian Mixture Model

GPS Global Positioning System

GT Ground Truth

kNN k-Nearest-Neighbor

MFCC Mel-Frequency Cepstral Coefficient

RBF Radial Basis Function Kernel
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RFID Radio-Frequency Identification

SAX Symbolic Aggregate approXimation

SRM Social Rhythm Measurement

Stdev Standard deviation

SVM Support Vector Machine

TM Template Matching

TMM Template Matching Method

WAV WAVeform audio format
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