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Probabilistic Foot Contact Estimation by Fusing Information from
Dynamics and Differential/Forward Kinematics

Jemin Hwangbo“, Carmine Dario Bellicosof, Péter Fankhauser* and Marco Hutter!

Abstract— Legged robots require a robust and fast respond-
ing feet contact detection strategy. Common force sensors are
often too heavy and can be easily damaged during impacts
with the terrain. Therefore, it is desirable to detect a contact
without a force sensor. This paper introduces a probabilistic
contact detection strategy which considers full dynamics and
differential/forward kinematics to maximize the use of available
information for contact estimation. This papers shows that
such strategy is much more accurate than the state-of-the-
art strategy that only take one measure into account, with a
quadrupedal robot.

I. INTRODUCTION

To control legged robots, feet contact state with the terrain
has to be reliably estimated since the dynamics of legged
robots highly depends on contact forces acting on the feet.
Typically, this has been done with force sensors which can
directly measure the contact forces. Thresholding the force
values gives a simple contact state classifier.

In case of dynamic robots like StarlETH [1] and its
decedent ANYmal [2], adding force sensors at the feet is
undesirable due to the following three reasons. First, due
to their high speed motions and impacts at the feet, the
sensors are likely to be damaged over a repeated use. A
contact detection strategy relying only on force sensors might
lead to a catastrophic damage to the robot when the sensors
are malfunctioning. Second, the sensors and their protection
shells contributes significant portion of the overall leg inertia.
Although it can be underestimated, a 100 g sensor at the foot
contributes about 50 % of the overall leg inertia for robots
like Star]lETH. High leg inertia leads to high impact losses at
touch-down events and low acceleration capability of the leg.
Third, robust and reliable 3D force sensors are expensive and
rare. These sensors contribute significant portion of the cost
of the robot and make the existing robots less affordable.

Sensorless ground contact estimation has been rarely in-
vestigated in the context of legged robots. Hyun et. al. briefly
explain their approach in [3]. They measure position tracking
error during swing phase and threshold this value to classify
the foot contact. This method does not consider the dynamics
of the swing leg and, therefore, is not accurate when the leg
is swinging fast. Focchi et. al. identify the contact using
estimated ground reaction forces acting on the foot [4].
This approach is in fact unfiltered version of Generalized
Momentum (GM) based approaches presented in [5], [6].
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A GM-based approach is equivalent to low pass filtering
the estimated force at the foot and threshold it to identify
a collision.

Note that there is a slight difference between the previous
collision detection strategies and a contact detection that is
presented in this paper. Collision detection strategies aim to
detect an impact whereas contact detection strategies aim to
detect accurate timing of the loss of the contact as well.

A. Overview of the Method

The proposed method considers all measurements related
to the dynamics and differential/forward kinematics of the
robot. The information in the dynamics is abnormalities in
acceleration. If the estimated acceleration of the foot is high,
it is likely that the foot is freely moving in the air. Informa-
tion from the differential kinematics is useful when the foot
is moving at high speed. High foot velocity means that the
foot is not likely to be in contact with the terrain. Fusing
this information improves the detection capability during
swing phase where the noise, which comes from modeling
errors, inaccurate calibration and torque noises, is significant
in dynamics. Estimation from forward kinematics further
improves the quality of the contact detection. Intuitively,
when a foot is high off the ground, it is not likely be in
contact with the ground. When the terrain model is known,
this kinematic information improves the detection capability
significantly. Even if the terrain model is not known, the
distribution of the terrain can be conservatively estimated
with an assumption on the roughness of the terrain. In
other words, a certain variance in the ground height can be
assumed if a foot is placed close to where it WAS placed
before. Another use of forward kinematics is in a transition
model. When high upward velocity is detected in the air, it
is very unlikely that the foot contacts the ground. When high
upward velocity is detected on the ground, the foot probably
has lost its contact.

The paper introduces a probabilistic approach for foot
contact state estimation. It includes a full probabilistic model,
consisting of a transition model and a measurement model,
to fuse dynamics and forward/differential kinematics infor-
mation together. This paper specifically illustrates in detail
the modeling method for detecting a contact between a
foot and a terrain but it can be simplified/modified to be
used in a general contact detection scenario as well. An
implementation on a quadruped robot and comparison to the
state-of-the-art approaches are presented in this paper.
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Fig. 1: A probabilistic graphical model of the contact state.
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II. MODELING

The objective is to identify the binary foot contact state
X; € {N,F}, where N and F represent ‘on the terrain’
and ‘off the terrain’, respectively. Individual foot states are
modeled separately to reduce the complexity of the problem.
The graphical probabilistic model is shown in Fig. 1. It
is assumed that Markov assumption holds in the system
which means that the contact state probability distribution
is independent of the previous states given the state at the
current time step. The state of the robot is represented by
the generalized coordinate g and the generalized velocities
g which can be obtained from a state estimation system that
fuses information from an Inertial Measurement Unit (IMU)
and joint encoders [7]. The proposed method currently uses
loosely coupled contact and state estimation approaches
so that the contact estimation strategy can be stand-alone.
The additive noises wgq, wy and wy are assumed to be
uncorrelated since the estimates are filtered at very different
cutoff frequencies. This implies that the position updates
occur at a high frequency such that the joint acceleration can
be estimated at a reasonably high frequency. However, this
paper shows that the contact state can be accurately estimated
even with a noisy acceleration measurement with real robotic
examples.

The transition probability is dependent on the measure-
ments since the feet velocity is crucial in estimating the
transition. Since the objective of this work is to estimate
the probability of the current contact state only, the following
iterative algorithm, which is in fact equivalent to the forward
algorithm of Hidden Markov Model (HMM), is introduced:

a(X¢)

= P(Xta(AILtaEIl:ta.(h:taC) = P((}tvfltvat|Xt) !
—_——

measurement model
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transition model

where ¢ is a behavioral pattern of the robot that contains
information about the state transition probability. In the case
of legged robots, it is defined by a gait pattern. Note that
the estimates are independent of ¢ given the corresponding
state and that is why it is omitted in the measurement
model. The commonly accepted notations g, = q(t) and
41+ =141, 45, - .-, q,} are used throughout this paper. Since
the transition model is dependent on the measurement as
well, the system cannot be modeled as a HMM but it is
highly related. After obtaining «(X;), the probability of
the contact state can be obtained from the definition of

conditional probability as
Xy =S)
2x, a(Xe)’

where S is the value of the contact state which can be either
F or N.

P(X; = S|y, ropr @145 C) = 2

A. Measurement Model
The measurement model can be extended as
P(émfln?]tht) =
P(@,|Xs,a, @) P(@]Xe.a) P@lX.). 3
—_

dynamics differential kinematics kinematics

Each term represents dynamics, differential kinematics and
kinematics respectively. The following subsections illustrate
the method of calculating each term.

1) Dynamics: Only the dynamics of a leg is considered
at a time since external forces on the main body can ruin
the estimation. Using the state estimation system, dynamics
of the main body can be replaced by measurements and
estimation. The leg then can be modeled as a constrained
multi-body system in a non-inertial reference frame. The
equation of motion can be written as

M (q,())a,(t) + Mip(q,(t)d,(t)
+ hi(qu(t), @, (t)) + Jfl(qlb( )Fs(t) = ST (1),

where q;, q, and q;, represent generalized coordinate of
a leg, the base frame and the concatenation of the two,
M, and M, represent inertia matrix of the leg and the
coupling matrix between the two generalized coordinates, h;
is the non-linear terms including coriolis and gravity, T is
the actuation torques, S” is the torque selection matrix that
maps actuation torques to the equivalent generalized forces,
J s is the contact Jacobian, Js; is the block of J; that is
responsible for the leg coordinate and F'; is the contact force.
From here on, the arguments like ¢ and g will be dropped
whenever there is no confusion in interpretation. We can
rearrange the equation to

“4)
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If there is no contact, the contact force is zero. If there is
a contact, the estimated contact force can be written as a
function of the joint torque as
Fp=(JuM;'J5)"
i, - (©6)
J _ .. +Jrqpt.
{ f 1(STT _ Mlbqb _ hl) f lb}

There are many sources of errors due to model uncertainties
and disturbances. For practical reasons, only the error in
the acceleration measurement, the error due to external
forces/torques and the error due to the slippages at the contact
are considered. Then the measurement model can be written
as

?11 = Mfl(‘}l){STT - Mlb(f]z)ab - hl(@zm&w)

— J5(@w)F (@, ¢ I (4 . 7
1@ Fr(Qup, qp) +wa + J 5 (q)ws} + wy,



Fig. 2: Probabilistic Graphical Model of contact state.

where wy is the noise from the contact force estimate, wy is
the estimation noise in acceleration and w, is the combined
noise from all other sources including the possible modeling
errors and external disturbances. All the errors are assumed
to be Gaussian distributed in this work. If a foot slippage
occurs regularly, then the variance in the foot force in
horizontal direction should be increased or the foot Jacobian
should be simplified to z-row only. It is practically impossible
to measure all the noises accurately. So the covariance of wy
has to be tuned wherever it is necessary.

Note that there is a fundamental difference between the
proposed contact detection and the existing works on colli-
sion detection. When there is zero contact force, there is no
collision but there might be a contact. This paper deals with
a contact estimation for control.

2) Differential Kinematics: The measurement model for
the generalized velocity when the foot is in the air is given
as

q=q+wg. (8)

The distribution of g has to be estimated from data in theory.
Alternatively, it can be approximated knowing that g lives in
the null space of the contact constraint Jacobian. Therefore,
the following measurement model is proposed:

q={I-JF@)Ts(@)}q+wg+wy, )

where w s is the artificial noise that is added to compensate
for the errors due to the Jacobian term and w is the noise
in the velocity measurement. The term ¢ in this equation
represents the prior distribution of the generalized velocity
which can be either measured or estimated using the velocity
limits. Note that all the distributions are assumed to be
Gaussian distributed for convenience.

3) Kinematics: The proposed method also requires the
terrain information to estimate the probability of a contact.
The proposed method assumes that some type of terrain
information is given with its uncertainty; it can be a height

map from a mapping algorithm, terrain estimation using
Gaussian Process (GP) regression from previous foot steps
or a simple flat terrain assumption with a high variance. In
this work, a flat terrain model is used with a high uncertainty
due to the lack of a mapping algorithm.

The contact probability depends on the kinematics at time
t. The kinematics regarding the contact can be described
with two vectors: position of the foot p; and the position
of the impact point p,. Assuming that the ground is rela-
tively smooth, 1D coordinate frame called impact frame is
introduced. Impact frame originates at the impact point and
its axis points to the opposite direction of the velocity of
the foot at the impact as shown in Fig. 2. If the impact
point is not planned in prior, it has to be assumed with
the current velocity. The unit vector along the axis of the
impact frame expressed in the world frame is denoted as
e;. The projections of p; and p, to the space spanned by
e; are denoted as py and p; respectively. These projected
variables have certain distributions along the impact axis.
The distribution of p; can be either obtained from mapping
algorithms or estimated conservatively. The distribution of
py is simple to obtain since the state estimation algorithm
estimates the states as a Gaussian distribution which can be
mapped to the cartesian coordinates of the foot using the foot
Jacobian.

For a concise expression, a gap function

o(t) =pr —pi (10)

is introduced. Negative gap means that the contact is closed.
The probability of such event can be obtained from the
cumulative distribution P(0) = [°_ P,(s)ds.

B. Transition Model

The transition probability can be obtained from the lin-
earized model q, = q,_; + Atq,_, where At is the time
step between ¢ — 1 and ¢. The distribution of vy, which is
the velocity of the foot vy projected to the impact axis, is
defined similarly to p; in section II-A.3.

It is convenient to separate the transition model into two
cases: X¢;—1 = F and X;_; = N. The following two sections
deal with the transition model at each case.

1) Transition from contact: The estimates are independent
of ¢ given their corresponding states. Using Bayes’ theorem,
the transition probability can be extended as

P(Xt‘Xt—laqt—lv&t—l?&t—hé) =
P(ét—la('It—lvqt—lIXfmXt—1>P(Xt|Xt—17C)
dox, Play_1: @1 @[ X, Xi1) P(X4]| X1, Q)

forward kinematics prior

(1)
The prior probability P(X;|X;_1,{) can be obtained from
gait pattern (. Given the average stance duration T,
P(X;=F|X;-1 =N,() = At/Ts and

P(X,=N|X,_1 =N,() =1- At/T,. (12)



Algorithm 1 Approximating the impact probability

initialize o = 0

for predefined number of samples 7

Sample py from N (ps,0p,)

Forgissg: 1P <P
; if Py > Dpi

oa=a+ F((pf 7p7)/At, ﬂfa va)

end for

P(o(t+1) <0) = a/ns;

Sample p; from P(p;|ps) =

The term P(q; 1, Qs 1, ;1] X¢, Xi—1 = N) is trivial for
the case X; = N since vy = el J ;g = 0. The measurement
model is

P (13)
where w, is containing all the estimation errors projected
to the impact frame. Again this has to be conservatively
estimated to account for modeling errors. Given X; = F,
the measurement model can be written as

Vp = v + Wy. (14)

Note that assuming v;(t — 1) = 0 is not feasible since the
foot will never take-off. Here the assumption vy(t —2) =0
is made following the linearized model. Therefore, the foot
can have a finite velocity even on the terrain if it takes
off at the next time step. The distribution P(v¢|X; =
F,X; 1 = N) can be obtained from experiments. For con-
venience, it is assumed to be a uniform distribution defined
as U(0,el J¢(q)qrAt), where Gy is the max acceleration
commanded for a take-off. Assuming it to be a uniform
distribution leads to the following analytical solution:

P(Uf|Xt = F, thl :N) =

. (15)
Fop(t—1),0p(t = 1) — e] J (@)@, 0, 00,),

where F(x1,x2,u,0) is the probability integrated from z;
to xo in a normal distribution function with a mean of p
and a standard deviation of ¢. If the function has only three
arguments, it represents the common cumulative distribution
function.

2) Transition in the air: In this case, the probability
P(X;|X:_1,4,,4,,q,) can be directly evaluated. This term
is a probability of an impact given the foot position, velocity
and terrain measurements. Again, a gap function is employed
as

o(t) =pr + Dtvy — p;. (16)

¢(t +1) < 0 with X; 1 = F implies that the foot
strikes the ground. There are two noticeable properties of
the distributions of py, vy and p; given X;_; = I

e There is no collision if vy > 0 and
In other words, the foot cannot strike the ground if it is

moving away from the ground and the ground is always
below the foot. Therefore, ps, vy and p; cannot be assumed

Fig. 3: Probabilistic Graphical Model of contact state.

to be Gaussian distributed. The following distribution model
is proposed:

by~ N(prvapf)

vy~ N(/’[”Uf70-’l)f)
N(ﬁi,a ) .
P(pi‘pf) = { Flospiop;)’ pPr=p

‘ 0, if pr > p;.

This problem does not have an analytical solution so a
sampling-based method such as Monte-Carlo methods should
be used. A pseudo-code of an example method is given in

algorithm 1. The computation time of such sampling method
was less than 100 us in MATLAB with 500 samples.

a7)

III. SIMULATION EXAMPLE

In this section, a simple 2D example is introduced to
demonstrate the proposed method. The base is fixed to a 1D
rail and the two leg components, the thigh and the shank,
are attached to their previous link by a rotary joint as shown
in Fig. 3. The model parameters are listed in Tab. I.  The

TABLE I: Model Parameters

[ Parameter name | value |
m1 5.449Kkg
ma, Iz, T2 2.48kg, 3.18 x 10~ 2kgm?, 0.043 m
ma, I3, r3 0.31kg, 1.383 x 10~ 2kgm?, 0.039 m
max torque 30 Nm
max joint speed 25rad/s

characteristics of these noises are assumed to be available
for the estimation. The actual measurements used for the
estimation are shown in Fig. 4 Note that the noise in all
the measurements are extremely high. Figure 5 shows the
fused estimate, the measurement model probabilities and the
transition probabilities. The fused estimate of the contact is
clean except the small delay in estimating the first take off.

Each measurement is effective at different stages. The
dynamic measurement model is reliable! when the foot is

There the reliability means that the probability is close to either 0 or 1.



TABLE II: Noise Characteristics

[ noise | standard deviation |

wy | 2m/s?, 100rad/s?, 100 rad/s?
wy 0.2m/s, 0.3rad/s, 0.3rad/s
wq 0.04m, 0.02rad, 0.02rad
wy 1IN, 2Nm, 2 Nm

wy FT‘f

Wy (e)TJTFsJet

Wy (eNTJqgJT e

Wpi 0.2m

— Joint! — Joint2 — Body |

15 ' Bod¥ Height (m) ' '

1+ ]
0.5 7

0 1 1 1 1 1 1

2 . . Measureq Joint Positjon (rad) .

or “ . * Sipaae |
2 ;._./w 1
4 L L L

Meausred Joint Speed (rad/s)

20 . .
0 3 ettt 1

-20 n L L L L L
Measured Joipt Acceleration (rad/s2
1000 b
0 B
-1000 1
0 0.2 0.4 0.6 0.8 1 1.2
Time (sec)

Fig. 4: Joint state/acceleration measurements.

in contact with the ground since high contact force is easily
noticeable. The differential kinematic measurement model is
reliable when the foot is moving fast in the swing phase and
the kinematic measurement model is reliable when the foot is
near its apex height. The differential kinematic measurement
model is unreliable when the foot velocity is zero at the apex.

Each transition probability has its own effective region as
well. The transition probability from contact to air is reliable
when the foot lifts off and when it is about to touch down.
The transition probability from air to contact only peaks up
near the touch down phase when the foot is approaching the
ground with high negative velocity. Consequently, when all
the information is fused, the estimate of the contact becomes
very reliable at every stage.

IV. VALIDATION ON A QUADRUPEDAL ROBOT

In this section, the contact estimation capability of the
proposed method is demonstrated on a quadrupedal robot
ANYmal [2]. ANYmal, shown in Fig. 6, is an electrically-
driven quadrupedal robot whose weight is about 25 kg (be-
fore adding the extra sensor set) and the total leg length
is about 50cm. It is equipped with 12 torque-controllable
Series Elastic Actuators (SEA) [8]. The spring in the SEA
unit protects its gear upon impacts and offers a high quality
joint torque measurement which is very useful for the contact
estimation.

The position and velocity measurements are updated at
400 Hz from the actuator modules but the joint acceleration
has to be calculated by differentiating the joint velocity
externally due to the current limitations in hardware. The

1 | Estimation: contact —fused estimate
T T

T T T T

0.5} ]

Measurement model: ['" contact —dynamics  —diff kin —kin
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Fig. 5: Fused estimation on the foot contact (top), measurement model
probabilities (2" from top)., and the transition probability (bottom two)
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Fig. 6: Fused estimation on the foot contact (top), measurement model
probabilities (2" from top), and the transition probability (bottom two)

dynamic/kinematic parameters were identified with a scale
and the CAD model. The feet are equipped with small force
sensors? (=~ 100 g without a protection shell) that serve as a
ground truth in the following experiments. The force sensors
contribute about one third of the total leg inertia when the
leg is fully stretched even without the protection shell. They
highly limit the acceleration capability of ANYmal during a
swing phase.

The proposed method is compared to the GM-based
method for the two tasks presented in this section. GM-
based contact classification is a simpler method which uses
the dynamic information only. However, it is still the most
related and well-recognized work so the result from this
approach is presented as well for a comparison.

In a real robotic experiment, the measurements and the
estimates are no longer normally distributed but rather cor-
related and biased. Therefore, the covariances of the noises
are assumed to be high to account for these modeling errors.
In addition, there is external disturbances that corrupt the
measurements even though the robot was not perturbed

2Optoforce, <http://optoforce.com/>
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Fig. 8: Raw measurement from the force sensor.

explicitly for this experiment. The major error source is from
the deviation from the rigid body assumption on the main
body since not all components are rigidly mounted. This
effect should be reflected in wg.

The performance of the proposed strategy was evaluated
by measuring the delay in the contact estimation for both
experiments. To this end, the raw force sensor value was used
to manually label the contact timing. Figure 8 shows the raw
force value and the threshold used to identify a contact. Only
the touch-down events are considered in the evaluation since
the take-off timing could not be estimated accurately due to
the hysteresis effect of the force sensor.

The first experiment was performed for about 20 sec with
trotting gait. In trotting gait, the diagonal pairs of legs
are contacting the ground at the same time. This gait is
characterized by relatively high impacts at the feet at touch-
down events compared to walking gaits.

The fused estimate, likelihood, and the transition proba-
bilities are shown in Fig. 7 and the delays in the estimate
are shown in Tab. III. Note that there were outliers in
the velocity measurement so that the probabilities in the
differential measurement model was limited to 90 %. The
general trend is the same as in the simulation. The contact
estimate was visually flawless for all steps. The probabilistic
estimate detects both touch-down and take-off little bit earlier
than the force sensor. We believe that this is due to the
delayed response in estimation using the force sensor. The
late touch-down is due to the the compliance at the feet and

the force threshold that is used for contact identification. The
late take-off detection is due to the hysteresis effect of the
force sensor which was visible on the raw force reading. This
contact detection delay for both take-off and touch-down was
around 15 ms for trotting and around 25 ms for walking.

It is clear that the dynamic measurement only will cause
noisy estimation near take-off. However, the contact-to-air
transition probability was close to 1 which suppresses the
noisy estimate from dynamic model. This confirms that the
dynamic model only cannot have the same performance as
the fully fused estimate.

The second experiment was carried out with slow walking
gait on the terrain shown in Fig 9. To investigate the robust-
ness of the proposed method, two modifications were made
on the robot. First, an additional weight was placed on the
mainbody to change the weight of the robot by about 3.0 kg.
Second, a 200 g weight was mounted on a shank. The weight
added to the shank translates to about 60 % change in the
shank inertia. The model for the contact estimation was not
updated to reflect these changes. The contact estimator was
tested with the left foreleg, which has the added mass, and
the right foreleg, which does not have an added mass. The
fused estimate, likelihood, and the transition probabilities for
the left foreleg is shown in Fig. 10 and the delays in the
estimate are shown in Tab. III.

Trotting Walking Walking with
added mass
Prob. based 6.03 £4.51 | 19.69 £3.39 | 43.214 +9.21
GM-based, 4.134 £3.24| 35.62 £9.23 | 46.07 £5.74
tuned for walking (6 fail) (1 fail)
GM-based, 8.33 £5.06 | 59 £16 .34 | 82.86 +4.88
tuned for trotting (1 fail)

TABLE III: Average delay (in ms) in contact detection from
the proposed strategy and the GM-based strategy.

The failure here is defined as a false contact detection
in the air phase. This is generally caused by the inertial
noise during the swing phase and the inaccurate model. Both
strategies did not fail to detect contact during contact phase.
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Fig. 10: Fused estimation on the foot contact (top), measurement model
probabilities (2"¢ from top), and the transition probability (bottom two) from
rough terrain walking experiment with ANYmal. The estimation heavily
relies on the information form dynamics for slow gait.

However, due to the added mass at the shank, the contact
detection was delayed for both strategies for walking gait as
shown in Tab. III.

The GM-based strategy has two parameters to tune. To
fairly compare the two strategies, the decaying factor Kj
and the threshold were tuned such that the signal appears to
be most reliable for each task. Note that in a real application,
the threshold should be set for the most dynamic gait in order
to avoid a false detection.

The result indicates that the proposed strategy is more
reliable than the GM-based strategy. The GM-based strategy
is in fact similar to the dynamic measurement model. It can
also be interpreted that it has constant transition probabilities
without considering the kinematics. This results in slow

response in detection. The proposed strategy also uses the
velocity of the foot to calculate the touch-down probability
which makes the proposed strategy more fast responding.
The proposed method seems to be robust against a model
error as well. A significant change in the inertia only caused
40ms of additional delay. Since the controller is running at
400 Hz, it only delays the contact flag switch by 2 loops.

The proposed strategy was more reliable even with the
noisy torque measurement. GM-based strategy failed 6 times
if the threshold is lowered for fast contact detection. In the
proposed strategy, the noisy dynamic prediction during swing
phase was compensated by the differential dynamic estimate.
Thanks to this information fusion, the proposed method did
not show any false detection in the air.

V. CONCLUSION

This paper introduced a novel approach to identify a
contact for a multibody robotic system. Unlike traditional
approaches which use a state observer or heuristic meth-
ods, the proposed method uses a probabilistic approach.
Consequently, it can fuse multiple sensor measurements in
estimation. The measurement models shows that not any
single measure can detect a contact accurately and robustly.
Only the combined information provides a reliable contact
state estimate. The proposed method was verified both in
simulation and with a real hardware. The proposed contact
detection strategy was reliable in both cases. Even though
this paper describes the basic version of the approach, the
proposed strategy can also include additional sensors (e.g.
IMU on leg links) thanks to its probabilistic formulation.
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