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Abstract In this paper, the modal series method is revis-
ited and an extension on the method to include higher order
terms is proposed. This proposal is based on the introduction
of the multidimensional Laplace transform and association
of variables theorems to deduce the analytical closed-form
solution when it is applied to the analysis of a nonlinear
power system model. The method is systematic and can
incorporate higher order terms to the modal analysis to deter-
mine nonlinear modal interaction. When the power system
is operating under stressed conditions, such as an increase
in load demand, it results very important to consider the
oscillations due to its nonlinear nature. Thus, the method
is carefully exemplified with the application to the synchro-
nous machine-infinite busbar power system operating under
stress conditions. The oscillations produced during changes
in its operation are analyzed as well as the nonlinear inter-
action through nonlinear indices and nonlinear participation
factors. The time domain responses are compared between
linear approximation, modal series, normal forms method
and the direct numerical full solution of the nonlinear power
system model.
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1 Introduction

The nonlinear phenomena associated to the operation of
power systems have been deeply analyzed [1–4]. In our days,
the nonlinear system behavior is an increasingly important
area of research, with applications in many areas of power
system analysis and control. Efforts on developing methods
which allow to incorporate the nonlinear effects of dynamic
systems have been developed [1–5].

Over the last decades, the method based on normal forms
(NF) of vector fields has been strongly used as an analyt-
ical tool to study the nonlinear effects in power systems.
Some contributions over this platform have been focused on
predicting interarea separations [1], power system control
design [2], interareamodes phenomenon [3,4], incorporation
of FACTS devices [5]. In [6], authors proposed the study of
power systems through computation of real NF under res-
onant conditions; here the analytical procedure followed is
derived from normal form nonlinear transformation which
converts the system into minimal normal form, but in addi-
tion, the converted system is not transformed into a diagonal
form. In [7], stability indexes of power system oscillation
taking into consideration nonlinearity using NF is proposed.
They obtain a solution under non-resonance and resonance
modal cases and proposed indices to evaluate the effects on
nonlinear system’s interaction. In [8], a control application
is proposed based on NF method, extending the formulation
to reduce the nonlinear characteristics of the power system
and analyzing the excitation system perturbations.

On the other side, the method of modal series (MS) has
been introduced as an alternative method to incorporate
nonlinear effects in stressed power systems [9,10]. The con-
tribution [10] recalls the research reported in [9], with some
additions of modal series applications to the power systems
previous considered.The characteristics of themethodallows
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the power systems analysis even in the presence ofmodal res-
onance conditions. However, an extension to include higher
order terms has not been considered so far.

Other recent developments based on modal series have
been focused on comparing responses and characteristics
with respect to normal forms method [11] and on identi-
fying nonlinear characteristics due to torsional interactions
nonlinear indices [12]. The modal expansion procedure is in
addition extended to the case of multidimensional nonlinear
systems described by forced nonlinear differential equations
[13], and also incorporating UPFC controller to take into
account the damping characteristics due to nonlinear contri-
butions to the power system [14].

In this paper, the modal series method and its fundamental
theory is revisited. First, a review of existing modal analy-
sis techniques is presented with emphasis on the derivation
of closed-form analytical expressions with explicit depen-
dence on modal parameters, system structure, and initial
conditions. Then, a general procedure based on the multidi-
mensional Laplace transform is proposed to analyze complex
system representations and to obtain a general form to incor-
porate higher order terms in themodal series. The application
of multidimensional Laplace transform and its interrela-
tionship with Volterra series allow the incorporation of a
systematic procedure to determine higher order terms in
the modal series. Also, the method of association of vari-
ables and its theorems are of great advantage to determine
such terms. These theorems are well documented in [15–18].
Introduction of nonlinear interaction indices and nonlinear
participation factors are incorporated to characterize the non-
linear modal interaction of the power system. Time domain
responses are compared against linear approximation, nor-
mal forms solution and the full numerical solution of the
dynamic model represented by a set of ordinary differential
equations.

The rest of the paper content is structured as follows: Sec-
tion 2 gives the core of the modal series method through the
linearization process based on Taylor series expansion and
Jordan canonical form transformation; Section 3 establishes
the basis to obtain higher order terms by incorporating the
multidimensional Laplace transform and association of vari-
ables; in Sect. 4, the method of higher order modal series
is applied to the SMIB test system describing in an analyti-
cal way each step followed by the modal series method. In
Sect. 5, the numerical results of the power system tests show-
ing a comparative analysis with respect to the full numerical
solution and the oscillations observed by the modal series
method solution are detailed. Nonlinear analysis interaction
is carried out in Sect. 6, followed by a brief discussion about
advantages and disadvantages of the method in Sect. 7, fin-
ishing with the conclusions in Sect. 8.

2 The modal series background

A nonlinear dynamical system can be defined by a set of
n-dimensional ordinary differential equations, which can be
either homogeneous or no homogeneous, depending on the
input variables response, i.e.,

ẋ = f(x,u) (1)

In (1), x is defined as an n-dimensional vector of dynamic
system states, defined over the field f : Rn → Rn . In addi-
tion, (1) can incorporate the input variables of the dynamic
system u ∈ �m , which is the control vector input.

The dynamic system (1) can be expanded around an ini-
tial equilibrium point XSEP (this constraint warranties the
existence of solution to the nonlinear system) following the
Taylor series definition, that is,

ẋi = Ai x + 1

2

n∑

k=1

n∑

l=1

Fi
2kl xk xl

+ 1

6

n∑

p=1

n∑

q=1

n∑

r=1

Fi
3pqr x pxq xr + · · · (2)

Some important definitions are obtained from this expansion:

• Ai is defined as the i th row of the Jacobian matrix (state
matrix) or Ai = (∂ fi/∂x)|XSEP

of f (x). This term corre-
sponds to the linear component of the original nonlinear
dynamic system.

• F coefficients are related to the nonlinear components of
the nonlinear dynamic system (1).

• Fi
2kl is the klth second order term associated with the i th

state or Fi
2kl = (∂2 fi/∂xk∂xl)|XSEP (Hessian of f (x)).

• Following the same reasoning, Fi
3pqr is the pqr th third

order term associated with the i th state or Fi
3pqr =

(∂3 fi/∂xp∂xq∂xr )|XSEP .

No inputs are considered in this research.However, it is possi-
ble to incorporate input functions effects on the modal series
method [19].

The state matrix or Jacobian matrix A has an eigenvalue
set {λ1 λ2 · · · λn}with right eigenvectorsU and recipro-
cal left eigenvectors V = U−1 [3]. The procedure followed
before the introduction ofmodal series analysis indicates that
a linear change of coordinates can be performed. Basically,
this change corresponds to the so called Jordan canonical
form,which is a kind of linear transformation of the expanded
dynamic system (2), characterized by the application of the
new definition x = Uy. Now the system is converted in the
“new states” given by,
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ẏ j = λ j y j +
n∑

k=1

n∑

l=1

C j
kl yk yl

+
n∑

p=1

n∑

q=1

n∑

r=1

D j
pqr yp yq yr + · · · j = 1, . . . , n (3)

where,

C j
kl = 1

2

n∑

p=1

V T
jp[UTHPU ]

coefficients of second order terms

D j
pqr = 1

6

N∑

P=1

N∑

Q=1

N∑

R=1

P j
PQRV

P
p V Q

q V R
r

coefficients of third order terms.

Please observe that terms above third order are assumed
to be negligible, also input variables can be considered rather
leaving their effects to other contributions further explored by
the authors. Additionally, a forced response of the nonlinear
system can be also incorporated, thus allowing to represent
transfer functions [19].

Under this truncation, it is possible to approximate the sys-
tem behavior; low-dimensional representations can be used.
Similar developments in this field have been focused on
normal form analysis [20]. The system developed through
(3) represents the core of the modal series method which is
detailed in the next section.

3 Higher order modal series deduction

In this section, the modal series method is revisited, and
the multidimensional Laplace domain comprised to deduce
higher components of the modal series.

Considering the nonlinear system described by the non-
linear model (3) and from Volterra series theory, we assume
that the system response y j (t) can be expressed as an infinite
series [16], i.e.,

y j (t) =
∞∑

k=1

εk ykj (t) (4)

Substituting (4) and its derivative into (3), considering the
case without input functions effects (um = 0), and equating
the coefficients of equal powers of ε, yields the following set
of linear equations

ẏ j (t) = λ j y j (t)

ẏ2j (t) = λ j y
2
j (t) +

n∑

k=1

n∑

l=1

C j
kl yk (t) yl (t)

ẏ3j (t) = λ j y
3
j (t) +

n∑

k=1

n∑

l=1

C j
kl [y2k (t)yl(t) + yk(t)y

2
l (t)]

+
n∑

p=1

n∑

q=1

n∑

r=1

D j
pqr y

1
p (t)y1q (t) y1r (t)

... (5)

These equations can be conveniently analyzed using the
proposed framework. Straightforward application of the
Laplace transform means a systematic procedure, which
allows the analytical solution of the nonlinear system assum-
ing uncoupled each term (linear and nonlinear terms) yields,

s1Y
1
j (s) − Y 1

j (0) = λ j Y
1
j (s)

(s1 + s2) Y
2
j (s1, s2) = λ j Y

2
j (s1, s2)

+
n∑

k=1

n∑

l=1

C j
klY

1
k (s1) Y

1
l (s2)

(s1 + s2 + s3) Y
3
j (s1, s2, s3) = λ j Y

3
j (s1, s2, s3)

+
n∑

k=1

n∑

l=1

C j
kl

[
Y 2
k (s1, s2) Y

1
l (s3)

+Y 1
k (s1) Y

2
l (s2, s3)

]

×
n∑

p=1

n∑

q=1

n∑

r=1

D j
pqr

[
Y 1
p (s1) Y

1
q (s2) Y

1
r (s3)

]

... (6)

The system obtained in (6) may be efficiently solved by
applying an approach based on multidimensional Laplace
transform analysis.

3.1 Multidimensional Laplace transform

Let f (t1, t2, . . . , tn) be a real or complex-valued function
of n independent real variables, t1, t2, . . . , tn The Laplace
transform, F (s1, s2, . . . , sn) of f (t1, t2, . . . , tn), is defined
by the integral [16] as,

F (s1, s2, . . . , sn) =
∫ ∞

0
· · ·
∫ ∞

0
e

(
−

n∑
j=1

s j t j

)

× f (t1, t2, . . . , tn) dt1 dt2 · · · dtn (7)

where the transform is a function of n variables.
Following the same reasoning as the single variable

Laplace transform, an inverse Laplace can be obtained as
it appears indicated in the flow chart of Fig. 1. The scheme
shows the application of the multidimensional Laplace and
association of variables theorem.
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Fig. 1 Multidimensional
Laplace transform flow chart

According to the flow chart, the process of solution can
be followed in two different alternatives, i.e., from the mul-
tidimensional Laplace kernels, the association of variables
can be applied thus resulting in a single Laplace expression,
that is solved using inverse Laplace transform; a differ-
ent alternative indicates that it is possible to determine a
multidimensional time function using the inverse of the
multidimensional Laplace transform. The inverse of the n-
dimensional Laplace transform for a single variable is,

g (t) = f (t1, t2, . . . , tn)|t=t1=t2=···=tn=t (8)

Equation (8) indicates that a multi-time nonlinear system
can be simplified into a single time domain variable. Thus,
a transformed function in n-dimensions is first evaluated for
a single transformed variable and then a single dimensional
inverse Laplace transform is applied. The procedure to find
Y (s) from F (s1, s2, . . . , sn) is known as themethod of asso-
ciation of variables [15], as it was indicated above.

One of the main advantages of the multidimensional
Laplace concept is that it incorporates the cross-frequency-
relationship in the nonlinear system from an analytical
expression. Multidimensional Laplace kernels are expressed
in terms onmulti-Laplace variables, which represents the dif-
ferent frequency characteristics that are inherent in nature of
the dynamic system.A result in these termsmeans a combina-
tion between variables, which is traduced into a combination
between frequency characteristics of each order. This char-

acteristic is therefore yielded to the modal series solution, in
which the time domain solution, as it will be demonstrated
further, is a combination of several frequency contributions
included in the modal combination.

On the other side, some theorems have been developed to
solve different kind of nonlinear equation sets. It is possible
to determine the better option to deal with the necessary mul-
tidimensional Laplace expression to be solved. In [17], these
aspects are defined in detail.

3.2 Second and higher order approximations

From (6), it is possible to determine the first, second and
higher order terms. Here, the systematic procedure may be
defined following the flow chart of Fig. 2.

The process starts with the linear transformation based
on the right eigenvectors, thus converting the system in the
new set of variables y j . Please observe that linear terms are
uncoupled, and the higher order terms are coupled and in
their own are function of the previous order (second order
terms are function of first order, third order are function of
first and second order and so on).

Also important in this systematic procedure is the appli-
cation of multidimensional Laplace transform to the coupled
higher order terms, which are solved afterwards by the appli-
cation of inverse Laplace domain and association of variables
to determine a time domain solution.Details of this deduction
are extended in Appendix A.
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Fig. 2 Flow chart of the modal
series method deduction

Performing the inversionwith respect to s, the closed-form
solutions are obtained as,

y2j (t) =
n∑

k=1

n∑

l=1

C j
kl yk (0) yl (0)

1(
λk + λl − λ j

)

×
[
e(λk+λl )t − eλ j t

]
(9)

y3j (t) =
n∑

k=1

n∑

l=1

n∑

p=1

n∑

q=1

C j
klC

k
pqY

1
p (0) Y 1

q (0) Y 1
l (0)

×
{

1(
λ j − λp − λq − λl

)
[

1(
λ j − λl − λk

)eλ j t

− 1(
λp + λq − λk

)e(λp+λq+λl)t

]}

+
n∑

k=1

n∑

l=1

n∑

p=1

n∑

q=1

C j
klC

l
pqY

1
k (0) Y 1

p (0) Y 1
q (0)

×
{

1(
λ j − λp − λq − λk

) 1(
λp + λq − λl

)

×
[
eλ j t − e(λp+λq+λk)t

]}

+
n∑

p=1

n∑

q=1

n∑

r=1

D j
pqrY

1
p (0) Y 1

q (0) Y 1
r (0)

× 1(
λ j − λp − λq − λr

)
[
e(λ j)t − e(λp+λq+λr)t

]

(10)

which after some manipulations yields,

y j (t) =
(
y j (0) −

n∑

k=1

n∑

l=1

h j
2kl yk (0) yl (0)

)
eλ j t

+
n∑

k=1

n∑

l=1

h j
2kl yk (0) yl (0)e

(λk+λl )t

+
n∑

p=1

n∑

q=1

n∑

r=1

h j
3pqr y

1
p (0) y1q (0) y1r (0)

×
[
e(λ j)t − e(λp+λq+λr)t

]

+
n∑

k=1

n∑

l=1

n∑

p=1

n∑

q=1

y1p (0) y1q (0) y1l (0)
(
λ j − λp − λq − λl

)

×
[
h j
2kle

λ j t − hl2pqe
(λp+λq+λl)t

]
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+
n∑

k=1

n∑

l=1

n∑

p=1

n∑

q=1

hl2pqC
j
kl

y1k (0) y1p (0) y1q (0)
(
λ j − λp − λq − λk

)

×
[
eλ j t − e(λp+λq+λk)t

]
(11)

and

xi (t) =
n∑

j=1

(
ui j y j (0) −

n∑

k=1

n∑

l=1

ui j h
j
2kl yk (0) yl (0)

)
eλ j t

+
n∑

j=1

n∑

k=1

n∑

l=1

ui j h
j
2kl yk (0) yl (0) e

(λk+λl )t

+
n∑

p=1

n∑

q=1

n∑

r=1

ui j h
j
3pqr y

1
p (0) y1q (0) y1r (0)

×
[
e(λ j)t − e(λp+λq+λr)t

]

+
n∑

k=1

n∑

l=1

n∑

p=1

n∑

q=1

ui j
y1p (0) y1q (0) y1l (0)
(
λ j − λp − λq − λl

)

×
[
h j
2kle

λ j t − hl2pqe
(λp+λq+λl)t

]

+
n∑

k=1

n∑

l=1

n∑

p=1

n∑

q=1

ui j h
l
2pqC

j
kl

y1k (0) y1p (0) y1q (0)
(
λ j − λp − λq − λk

)

×
[
eλ j t − e(λp+λq+λk)t

]
(12)

In the above equations, the second and third order nonlinear
coefficients are defined by

h j
2kl = C j

kl

λk + λl − λ j
(13)

h j
3pqr = D j

pqr(
λ j − λp − λq − λr

) (14)

The procedure can be indefinitely continued to determine
higher order nonlinear expressions in terms of the lower-
ordermodal expansions. The coefficients represent themodal
interaction betweenmodes and physical characteristics of the
nonlinear system since they are defined from the individual
parameters of the dynamic system and also by modal char-
acteristics.

In Sect. 6, these coefficients are taken into account when
the nonlinear participation factors are analyzed.

3.3 Modal series closed-form solution under resonance
condition

Recalling the nonlinear coefficients h2 defined by (13), the
resonance condition is established as,

λk + λl − λ j = 0 (15)

Thus, the Laplace transform kernels considering the reso-
nance assumption are obtained. According to the resonance
condition constraint, the kernel is defined as,

Y 2
j (s1, s2) =

n∑

k=1

n∑

l=1

C j
klY

1
k (0) Y 1

l (0)

× 1

(s1 + s2 − λk − λl) (s1 − λk) (s2 − λl)

(16)

which is associated in terms of Laplace domain as,

Y 1
j (s) = Y 1

j (0)

(s1 − λk − λl)

Obtaining a time domain solution through inverse Laplace
leads to,

y1j (t) = y1j (0) eλ j t (17)

The second order kernel, is associated following the rule of
association of variables detailed in Appendix A as,

H2 (s) = 1
(
s − λ j

)2 (18)

from which the time domain solution solving the inverse
Laplace is,

h2 (t) = teλ j t

Thus, the complete closed-form solution when a modal res-
onance condition is presented takes the form,

x j (t) = ui j y j (0) e
λ j t +

n∑

k=1

n∑

l=1

C j
kl yk (0) yl (0) te

λ j t

+
n∑

k=1

n∑

l=1

ui j h
j
2kl yk (0) yl (0) t

2e(λk+λl )t

+
n∑

p=1

n∑

q=1

n∑

r=1

ui j h
j
3pqr y

1
p (0) y1q (0) y1r (0)

×
[
te(λ j)t − t3e(λp+λq+λr )t

]

+
n∑

k=1

n∑

l=1

n∑

p=1

n∑

q=1

ui j
y1p (0) y1q (0) y1l (0)
(
λ j − λp − λq − λl

)

×
[
h j
2kl te

λ j t − t3hl2pqe
(λp+λq+λl)t

]

+
n∑

k=1

n∑

l=1

n∑

p=1

n∑

q=1

ui j h
l
2pqC

j
kl

y1k (0) y1p (0) y1q (0)
(
λ j − λp − λq − λk

)

×
[
teλ j t − t3e(λp+λq+λk)t

]
(19)
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Fig. 3 Synchronous machine-infinite busbar power system

4 Power system modeling by higher order modal
series

The application of the modal series method including higher
order terms is demonstrated with the synchronous machine-
infinite busbar test power system illustrated in Fig. 3.

A third order generator model is assumed, which incor-
porates the dynamic of the electromechanical system. The
differential equations are [21],

dE
′
q

dt
= −

(
1

T ′
d0

)[
E

′
q + (xd − x ′

d

)
Id − E f d

]
= f1

dδ

dt
= ω − ω0 = f2

dω

dt
=
( ω0

2H

)
[TM − {E ′

q Iq + (xq − x ′
d)Id Iq

− D(ω − ω0)}] = f3

(20)

where δ represents the rotor angular position in electric radi-
ans with reference to the infinite busbar, ω is the rotor speed
in rad/s, Pm is the input mechanical power in p.u., Dm is the
damping coefficient in torque p.u./speed p.u. and H is the
inertia constant in MWs/MVA. Data used in the experiment
are detailed in Appendix C.

Eliminating the stator resistances effects, the algebraic
equations are,

−(xq + xt + xl)Iq + Vb sin δ = 0 (21)

(x ′
d + xt + xl)Id − E

′
q + Vb cos δ = 0 (22)

The linearization of the system around a stable equilibrium
point has the form,

ẋ = f1 (x) + f2 (x) + f3 (x) + · · · (23)

with x = [x1 x2 x3]T = [E ′
q δ ω]T.

This dynamic system has the equilibrium point,

x0 = [E ′
q0 δ0 ω0]T

x0 =
⎡

⎣
Vb cos(δ0 − θvs) + (xt + xl + x ′

d)Id
angle(Vbe jθvs + j (xq + xt + xl)IGe jγ )

ω0

⎤

⎦ (24)

The linear and nonlinear functions defined by (23) for which
it is necessary to determine their closed-form solutions are
obtained next. Information of first, second and third order
terms is given in Appendix B

4.1 Modal series solution

Based on (3) which links the relationship between the trans-
formed variableswith Jordan canonical form, the system (23)
is transformed, resulting in,

ẏ = �y + f2 (y) + f3 (y) (25)

where,

f2 (y) = 1

2
U−1

⎡

⎣
(Uy)T H1

2Uy
(Uy)T H2

2Uy
(Uy)T H3

2Uy

⎤

⎦

= 1

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

N∑
k=1

N∑
l=1

C1
kl yk yl

N∑
k=1

N∑
l=1

C2
kl yk yl

N∑
k=1

N∑
l=1

C3
kl yk yl

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(26)

and

f3 (x) = 1

6
U−1

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(Uy)T H1
3

⎡

⎣
Uy 0 0
0 Uy 0
0 0 Uy

⎤

⎦Uy

(Uy)T H2
3

⎡

⎣
Uy 0 0
0 Uy 0
0 0 Uy

⎤

⎦Uy

(Uy)T H3
3

⎡

⎣
Uy 0 0
0 Uy 0
0 0 Uy

⎤

⎦Uy

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

f3 (y) = 1

6

⎡

⎢⎢⎢⎢⎢⎢⎣

n∑
k=1

n∑
l=1

n∑
m=1

D1
3klm yk yl ym

n∑
k=1

n∑
l=1

n∑
m=1

D2
3klm yk yl ym

n∑
k=1

n∑
l=1

n∑
m=1

D3
3klm yk yl ym

⎤

⎥⎥⎥⎥⎥⎥⎦
(27)

where C j
kl and D j

3klm are defined in (4).
Once the nonlinear dynamic system has been transformed

to the Jordan canonical form, the Laplace transformation has
to be carried out. The systemexpressed in theLaplace domain
represents the contributions of linear and nonlinear higher
order terms, which have to be solved by association of vari-
ables theorems as described above. The full solution obtained
for the nonlinear system is given by,
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⎡

⎣
y1 (t)
y2 (t)
y3 (t)

⎤

⎦ =
⎡

⎣
f 11 (t)
f 12 (t)
f 13 (t)

⎤

⎦+
⎡

⎣
f 21 (t)
f 22 (t)
f 23 (t)

⎤

⎦+
⎡

⎣
f 31 (t)
f 32 (t)
f 33 (t)

⎤

⎦ (28)

where this time domain solution is presented as a function of
the Jordan variables. Equation (28) represents the complete
solution which includes the linear, second and third order
terms in the time domain as a function of Jordan variables
initial conditions.

Transforming to the original state variables, the time
domain final solution has the form,

⎡

⎣
y1 (t)
y2 (t)
y3 (t)

⎤

⎦ =
⎡

⎣
y01e

λ1t

y02e
λ2t

y03e
λ3t

⎤

⎦−

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

N∑
k=1

N∑
l=1

h12kl y
0
k y

0
l e

λ1t

N∑
k=1

N∑
l=1

h22kl y
0
k y

0
l e

λ2t

N∑
k=1

N∑
l=1

h32kl y
0
k y

0
l e

λ3t

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

N∑
k=1

N∑
l=1

h12kl y
0
k y

0
l e

(λk+λl )t

N∑
k=1

N∑
l=1

h22kl y
0
k y

0
l e

(λk+λl )t

N∑
k=1

N∑
l=1

h32kl y
0
k y

0
l e

(λk+λl )t

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(29)

⎡

⎣
x1 (t)
x2 (t)
x3 (t)

⎤

⎦ =
⎡

⎣
	E

′
q (t)

	δ (t)
	ω (t)

⎤

⎦ =
⎡

⎣
u11 u12 u13
u21 u22 u23
u31 u32 u33

⎤

⎦

⎡

⎣
y1 (t)
y2 (t)
y3 (t)

⎤

⎦

(30)

Finally, (30) provides the closed-form solutions to the origi-
nal state variables applying the inverse linear transformation
from Jordan variables, just by multiplying by right eigen-
vectors. Here, the dynamic information given by the modal

analysis is maintained at this part of the final solution. Sim-
ulation results based on this result are discussed next.

5 Simulation studies

The experiment is conducted assuming a perturbation in the
rotor angle. The solution obtained with the modal series
technique is compared against the linear approximation, nor-
mal forms and the numerical full solution obtained from the
nonlinear differential equations that represent the dynamic
system. The model of the system consists on stator dynam-
ics represented by the state variable of voltage along the q
axis, neglecting d axis effects (one axis flux decay model
(20)). The perturbation is initially applied assuming an incre-
ment in input torque (mechanical power in the generator);
afterwards, a larger increment in the same power joint with
another increase in the rotor angle perturbation is reflected
as a stress condition. Flow chart of Fig. 4 illustrates the pro-
cedure followed to execute the experiment of the case study.

In this case, the perturbation conditions are modified by
selecting increases in both rotor angle and mechanical power
input in the synchronous generator (stress condition).

The modal analysis is resumed in Table 1. Two oscillatory
modes are presented, due to the electromechanical oscil-
lations and a real mode, mainly due to the stator variable
E

′
q . The experiment is performed to compare the solution

obtained by modal series against the linear approximation
and the direct solution of the nonlinear set of differential
equations basically described by (20).

Figure 5 shows the oscillations of the state variables
E

′
q , δ and ω, respectively, when rotor angle and mechanical

power input perturbation conditions are applied, i.e., a per-
turbation in the rotor angle of 	δ = 10◦ and an increase in
the power demand of Pm = 1.12 p.u.

Fig. 4 Flow chart followed to
the nonlinear modal series
analysis in case studies
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Table 1 Modal analysis of
SMIB with one flux model

Eigenvalue Frequency (Hz) Damping ratio

λ1 = −0.032834364 – –

λ2,3 = −0.478749 ± 5.137238i 0.817616863444 0.092789977022

Fig. 5 Rotor angle and speed deviations comparison for a load condition of Pm = 1.12 p.u. and 	δ = 10◦. a Voltage E ′
q , b rotor angle δ, c speed

rotor ω
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Fig. 6 Rotor angle and speed
deviations comparison for a load
condition of Pm = 1.15 p.u. and
	δ = 10◦

The perturbation conditions move the system to a stress
operation, which is reflected in the oscillations shown in
Fig. 5. Please observe that the state variables are oscillat-
ing during approximately 5 s, and after that the oscillations
tend to die-out reaching a steady state condition. Since
the system is stable, even in the presence of the pertur-
bation conditions, it finally reaches this steady state point
after a transient period, being larger for the case of volt-
age E

′
q . The same Fig. 5 has been conveniently zoomed

to show the differences between the solutions with higher
detail.

In Fig. 5a, the comparison between the solution obtained
with modal series and the full solution with respect to the lin-
ear approximation denotes that there is a larger error in the
solution calculated by linear approximation, with respect to
modal series solution for the state variable of voltage E

′
q . In

this case, the trajectory of modal series solution is very close
to the numerical full solution in turn to the linear approx-

imation. In this state variable, the nonlinear contribution is
mainly due to the relationship between current and its depen-
dence on rotor angle.

The oscillatory behavior in the generator speed after
the change in the initial angle conditions can be observed
in Fig. 5b, c. There is a deceleration in the synchronous
machine, observed from the decrement in the rotor speed
(Fig. 5c) which is accompanied by a decrement in the rotor
angle (Fig. 5b) and themagnitude on the voltage E

′
q (Fig. 5a).

The system keeps oscillating until it reaches the new equilib-
rium point, which is different in comparison with the initial
operating conditions.

The phase plane shown in Fig. 6 demonstrates that the
system is stable after the oscillations produced by the distur-
bance conditions. The rotor angle and rotor speed approach
to a stable equilibrium point, which is clearly observable.

Hence, it can be said that the solution obtained with
the method of modal series has a good agreement with the
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Fig. 7 Phase plane comparison
for a load condition of
Pm = 1.5 p.u. and 	δ = 30◦.
a Two dimensional phase plane
δ vs ω, b three dimensional
phase plane δ vs ω vs E ′

q

response obtained by the direct numerical solution of the
nonlinear power system represented by the set of differential
equations (20), in the presence of low perturbation or low
stress conditions, since the operation point is near from the
initial equilibrium point defined for the linearization of the
nonlinear system.

The experiment can be oriented to select different per-
turbation conditions. The system is now stressed by a step
change in the demanded power of the synchronous machine,
changing it to Pm = 1.15 p.u. together with a perturbation
increment of	δ = 30◦ is traduced as a high stress operation
condition.

In Fig. 7, a three dimensional trajectory followed by the
two compared methods, a different solution trajectory is
observed, but both solutions finding finally the same final
operating point.

Unstable operation increasing stress conditions The next
experiment consists on increasing the stress condition by
raising the rotor angle above the maximum operating limit
(	δ = 30◦) described along the case study. Please observe
the graphics depicted by Fig. 8, which is showing the rotor
angle and speed deviations with operating point based on
	δ = 31◦ as well as the tridimensional phase plane includ-
ing the three state variables. It is clear that the system could
not operate over the limits which maintains its stability.

This experiment demonstrates that the modal series
method approximation could fail when the stress conditions
are increased in such a way that the operating point is moved
away from the steady state condition. It can be concluded
that a stressed power system tends to change the apparent
linear behavior, moving the system to oscillate near the edge
of unstable conditions.
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Fig. 8 Comparison for an overstress condition of Pm = 1.5 p.u. and 	δ = 31◦

6 Nonlinear interaction analysis

6.1 Nonlinear indices

The nonlinear contribution of the modal series higher order
terms can be measured through nonlinear indices. These
indices are basically formed by the coefficients of the modal
series.

Index I1 This index determines the second and third
nonlinear effects defined by the second and third order coeffi-

cients of themodal series. The index indicates a strongmodal
interaction between modes; it is defined as,

I1=
∣∣∣∣∣∣

maxk,l
∣∣∣h j

2kl yk (0) yl (0) + h j
3pqr y

1
p (0) y1q (0) y1r (0)

∣∣∣
y j (0)

∣∣∣∣∣∣
(31)

Index I2 A fundamental mode nonlinearity index measures
the effect of modal interactions due to the fundamental mode
in the original coordinates due to second and third order coef-
ficients.

I2 ( j) =
[
y j (0) −∑n

k=1
∑n

l=1 h2
j
kl yk (0) yl (0) −∑n

p=1
∑n

q=1
∑n

r=1 h
j
3pqr yp (0) yq (0) yr (0)

]

y j (0)
(32)

Figure 9 shows the levels of both nonlinear indices for
the case study of Sect. 5, considering the two scenarios
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Fig. 9 Nonlinear indices for the case. a Pm = 1.12 p.u. and	δ = 10◦,
b Pm = 1.5 p.u. and 	δ = 30◦

under study. In both cases, the index with higher level is
I2, denoting the biggest magnitude in 5 units (Fig. 9a),
while for the second scenario the highest level reaches mag-
nitude in 14 units (Fig. 9b). This result agrees with the
behavior observed by Fig. 7 where the system due to the
more stressed operating condition, increases its distortion
and separation with respect to the linear and full numerical
solution.

6.2 Nonlinear participation factors

The participation factors are applied assuming the linear defi-
nition and introducing the nonlinear contribution. According
to the definition of participation factor, it represents a mea-
sure of the participation of the kth machine state trajectory
of the i th mode [22].

It is possible to determine the nonlinear participation fac-
tors derived from the closed-form solution of themodal series
method, that is,

xi (t) =
n∑

j=1

(
ui j y j (0) −

n∑

k=1

n∑

l=1

ui j h
j
2kl yk (0) yl (0)

)
eλ j t

+
n∑

j=1

n∑

k=1

n∑

l=1

ui j h
j
2kl yk (0) yl (0) e(λk+λl )t

+
n∑

p=1

n∑

q=1

n∑

r=1

ui j h
j
3pqr y

1
p (0) y1q (0) y1r (0)

×
[
e(λ j)t − e(λp+λq+λr)t

]
(33)

or, it can be written as,

xi (t) = u1i je
λ j t + u2ikle

(λk+λl )t + u3pqre(
λp+λq+λr)t

(34)

where,

u1i j =
⎡

⎣
n∑

j=1

ui j y j (0) −
n∑

k=1

n∑

l=1

u2ikl yk (0) yl (0)

⎤

⎦

u2ikl =
n∑

k=1

n∑

l=1

u2ikl yk (0) yl (0)

u3pqr =
n∑

p=1

n∑

q=1

n∑

r=1

ui j h
j
3pqr yp (0) yq (0) yr (0)

Equation (34) describes the linear and nonlinear combination
of the solution, however, it is necessary to redefine it to obtain
the nonlinear participation factors oriented to the closed-
form solution obtained through themodal seriesmethod. The
deduction can be made by considering that the initial condi-
tion vector is x0 = ek , which implies that the Jordan form
initial condition can be expressed as,

y j0 = v jk (35)

The participation factors are due to the excitation of onemode
at the time, bywhich it is possible to apply superposition pro-
cedure. Thus, the solution for the kth machine state variable
(with xi0 = 0 for all i �= k) is,

xi (t) =
n∑

j=1

[
Pi j − P2 j

kl

]
eλ j t +

n∑

j=1

P2 j
kle

(λk+λl )t

+
n∑

j=1

P3 j
pqre(

λp+λq+λr)t (36)

where,

Pi j = ui jv j i

P2 j
kl =

n∑

k=1

n∑

l=1

ui j h2
j
klvkivli
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Fig. 10 Nonlinear participation factors. a Pm = 1.12 p.u. and 	δ =
10◦, b Pm = 1.5 p.u. and 	δ = 30◦

P3 j
pqr =

n∑

p=1

n∑

q=1

n∑

r=1

ui j h3
j
pqrvpivqivri

P1 j
kl = Pi j − P2 j

kl

P j nl = P2 j
kl + P3 j

pqr

Figure 10 shows the nonlinear participation factors for the
two scenarios of case study, from which the high level of
nonlinear contribution P jnl for the mode 1 can be observed.
Even nonlinear participation factor in both scenarios are
higher than the linear one, having magnitude near to 14 in
the case shown in Fig. 9a, while the case depicted in Fig. 9b
shows a level near to 15.

6.3 Cross-frequency

The modal series closed-form solution possess the great
advantage to include in an explicit way the cross-frequency
content due to each frequency with respect to each mode. Of
course, lineal solution cannot represent this situation, since
it considers only the contribution of each mode to the time
domain response. The importance of these cross-frequencies

Table 2 Cross-frequency values for second order terms

k l λ j = λk + λl Frequency

1 1 −0.06567 0

1 2 −0.51156003 + 5.133886i 0.817083376

1 3 −0.51156003 − 5.133886i 0.817083376

2 1 −0.51156003 + 5.133886i 0.817083376

2 2 −0.95745135 + 10.2677725i 1.634166751

2 3 −0.95745

3 1 −0.51156003 − 5.133886i 0.817083376

3 2 −0.95745

3 3 −0.95745135 − 10.2677725i 1.634166751

arises on the contribution of nonlinear action to the behavior
of a dynamic system, especially under disturbance conditions
or abnormal situations of operation. Also important, appar-
ently, the dynamics of the system is due only to their original
parameters, which define the modal analysis. Nevertheless,
the excitation of eachmodemoves the dynamics according to
the cross-frequency presented in the modal series. Of course,
the weight of each contribution also depends on the value of
series coefficients, basically defined, as it was already men-
tioned in Sect. 6.2, by participation factors.

Tables 2 and 3 describes the total amount of frequencies
presented in the modal series, for the case study of Sect. 5. It
is easy to identify the frequency content as a sum of modes,
being secondorder (summationof twomodes) and third order
(summation of three eigenvalues).

7 Discussion

7.1 Computational burden

Computational times are of concern in applications of the
power systems solution, mostly when large scale systems are
analyzed. In this contribution, only the SMIB test was proved
to remark the main steps and differences of the methodology
here proposed with respect to other methods, such as NF,
being emphasized the inclusion of higher order terms. Some
computation times was measured comparing NF, MS and
lineal approximation, such as it is described in Table 4. The
experiment was performed in a Laptop Core i7, 8 GB RAM,
assuming that the case study is simulated 60 s under stable
conditions.

It can be observed that the difference between NF and
MS is not appreciable since there is less than a half second.
However, it is important to highlight that NF method needs
a nonlinear transformation and a Newton type algorithm, to
find the solution of its new frame reference (basically the
normal form new state variables). In contrast, MS is a kind
of analytical method indeed, avoiding to determine interme-
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Table 3 Cross-frequency values for second order terms

p q r λ j = λp + λq + λr Frequency

1 1 1 −0.098503092 0

1 1 2 −0.5443944 + 5.1338862i 0.81708

1 1 3 −0.5443944 − 5.1338862i 0.81708

1 2 1 −0.5443944 + 5.1338862i 0.81708

1 2 2 −0.99028571 + 10.267772i 1.634163

1 2 3 −0.990284 0

1 3 1 −0.5443944 − 5.1338862i 0.81708

1 3 2 −0.990285 0

1 3 3 −0.99028571 − 10.267772i 1.63417

2 1 1 −0.5443944 + 5.1338862i 0.81708

2 1 2 −0.99028571 + 10.2677725i 1.634167

2 1 3 −0.990285714 0

2 2 1 −0.99028571 + 10.2677725i 1.634167

2 2 2 −1.43617702 + 15.4016587i 2.45125

2 2 3 −1.43617702 + 5.1338862i 0.817083

2 3 1 −0.990285714 0

2 3 2 −1.43617702 + 5.1338862i 0.81708

2 3 3 −1.43617702 − 5.1338862i 0.81708

3 1 1 −0.5443944 − 5.1338862i 0.81708

3 1 2 −0.990285714 0

3 1 3 −0.99028571 − 10.2677725i 1.63417

3 2 1 −0.990285714 0

3 2 2 −1.43617702 + 5.1338862i 0.81708

3 2 3 −1.43617702 − 5.1338862i 0.81708

3 3 1 −0.99028571 − 10.2677725i 1.63417

3 3 2 −1.43617702 − 5.1338862i 0.81708

3 3 3 −1.43617702 − 15.4016587i 2.45125

Table 4 Computational times comparison between methods

Normal forms 9.091021 s

Modal series 8.549627 s

Linear solution 2.452622 s

diate numerical methods. Of course, due to the absence of
nonlinear contributions, linear approximation is the fastest
for several seconds.

7.2 Potential applications

The method of MS based on its properties given by mul-
tidimensional Laplace transform may be utilized to model
transfer functions and input functions effects on the system’s
nonlinearity. Some other developments could be possible to
incorporate, such as sensitivity parameters on nonlinearity
characteristics, modal resonance analysis (since it is possible
to characterize the system’s behavior even when resonance
conditions are presented), continuation methods (bifurca-
tions theory), incorporation of renewable energy sources, low
inertia conditions, among others.

7.3 Comparative analysis between methods

From the validation observed along the experiment, it can be
concluded that the modal series method is always closer to
the direct numerical approximation, denoting that the linear
approximation can reproduce different trajectories of solu-
tion or maintaining near of real solution but with a lower
accuracy with respect to the modal series.

The relationship between the rigorous mathematical fun-
damentals necessary to determine the closed-form solution
of a nonlinear power system by the development of the
modal series method, may be justified in cases where the
system requires the determination of nature of nonlinear
modal interaction. The main contribution of modal series
lies on the determination of the nonlinear contribution of
state variables inmodal analysis. The determination of higher
order terms in the modal series contributes to increase the
accuracy of the solution, and also, increases its capacity to
identify the nonlinear contributions above a second order
nonlinearity.

Furthermore, a comparison of the modal series method
with other methods including the previously proposed modal
series [9,10] is detailed in Table 5. The comparison is focused
on the modeling detail, analysis capacity and future devel-
opments so related with the other approaches.

Future contributions are based on this reasoning, incorpo-
rating other elements which contribute with higher nonlin-
earities, and therefore, modal interaction.

Table 5 Comparison between the modeling capacities of the proposed approach with other formulations

Modeling detail and analysis capability NF method Conventional modal series methods Proposed modal series technique

Higher order transfer function computation X Currently limited to second order Reported

Detailed system modeling/FACTS controllers Available Not reported Reported

Sparsity representation Available Not reported X

Higher order nonlinear solutions Available (third order)a Second order approximation Higher order approximationa

a Theoretically possible up to arbitrary order
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8 Conclusions

In this contribution, an analytical methodology based on the
modal series technique has been proposed. Based on the
modal series previously proposed in [9,10] an extension of
the method has been done, which consists on generalizing
the method using the theorems of multidimensional Laplace
transform and the theorems of association of variables, to
analyze the dynamic nonlinear system as an algebraic prob-
lem.

The accuracy of the proposed higher order modal series
method has been demonstrated through direct comparison
against the response obtainedwith the full set ofmotion equa-
tions, Normal forms method and the linear approximation
method.

A detailed description of the higher order modal series
terms have been exemplified with a synchronous machine-
infinite busbar power system. The nonlinear oscillations
produced due to a perturbation on the third ordermodel of the
synchronous machine have been analyzed. The main advan-
tages of the method with respect to the linear approximation
approach have been detailed.

The theoretical description of the modal series method
studied along this contribution, can be applied following the
same systematic procedure to the analysis of larger com-
plexity power systems whether higher modeling detail of
elements are incorporated or greater number of elements
(large scale power systems) are considered.

Appendix A

A.1 Second order terms

Defining the first order expressions in terms of s1 and s2
yields,

Y 1
k (s1) = Y 1

k (0)

(s1 − λk)
and Y 2

l (s2) = Y 2
l (0)

(s2 − λl)
(A.1)

Then,

Y 2
j (s1, s2) =

n∑

k=1

n∑

l=1

1(
s1 + s2 − λ j

)C j
kl

Y 1
k (0)

(s1 − λk)

Y 1
l (0)

(s2 − λl)

Applying theorem of association of variables to the function
Y 2
j (s1, s2) to Y 2

j (s), the second order term becomes

Y 2
j (s) =

n∑

k=1

n∑

l=1

{
C j
klY

1
k (0) Y 1

l (0)
1(

λk + λl − λ j
)

×
[

1

(s − λk − λl)
− 1(

s − λ j
)
]}

(A.2)

A.2 Third order terms

Recalling,

(s1 + s2 + s3) Y
3
j (s1, s2, s3) = λ j Y

3
j (s1, s2, s3)

+
n∑

k=1

n∑

l=1

C j
kl

[
Y 2
k (s1, s2) Y

1
l (s3) + Y 1

k (s1) Y
2
l (s2, s3)

]

+
n∑

p=1

n∑

q=1

n∑

r=1

D j
pqr

[
Y 1
p (s1) Y

1
q (s2) Y

1
r (s3)

]

and also, Y 1
j (s1) = Y 1

j (0)

(s1−λ j)
and

Y 2
j (s1, s2) =

n∑

k=1

n∑

l=1

1(
s1 + s2 − λ j

)C j
klY

1
k (s1) Y

1
l (s2)

New indexes are defined to conform third order terms. That is,

Y 1
l (s3) = Y 1

l (0)

(s3 − λl)
; Y 1

k (s1) = Y 1
k (0)

(s1 − λk)
;

Y 1
p (s1) = Y 1

p (0)
(
s1 − λp

) ; Y 1
q (s2) = Y 1

q (0)
(
s2 − λq

) ;

Y 1
r (s3) = Y 1

r (0)

(s3 − λr )

In the same way, second order terms are reindexed as,

Y 2
k (s1, s2) =

n∑

p=1

n∑

q=1

1

(s1 + s2 − λk)
Ck

pqY
1
p (s1) Y

2
q (s2)

(A.3)

Y 2
l (s2, s3) =

n∑

p=1

n∑

q=1

1

(s2 + s3 − λl)
Cl

pqY
1
p (s2) Y

1
q (s3)

(A.4)

Substituting,

(s1 + s2 + s3) Y
3
j (s1, s2, s3) = λ j Y

3
j (s1, s2, s3)

+
n∑

k=1

n∑

l=1

C j
kl

⎡

⎣
n∑

p=1

n∑

q=1

1

(s1 + s2 − λk)
Ck

pq

Y 1
p (0)

(
s1 − λp

)

× Y 1
q (0)

(
s2 − λq

)
Y 1
l (0)

(s3 − λl)
+ Y 1

k (0)

(s1 − λk)

×
n∑

p=1

n∑

q=1

1

(s2 + s3 − λl)
Cl

pq

Y 1
p (0)

(
s2 − λp

)
Y 1
q (0)

(
s3 − λq

)

⎤

⎦

+
n∑

p=1

n∑

q=1

n∑

r=1

D j
pqr

[
Y 1
p (0)

(
s1 − λp

)
Y 1
q (0)

(
s2 − λq

) Y 1
r (0)

(s3 − λr )

]

(A.5)
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Hence, the third order kernel can be redefined as,

Y 3
j (s1, s2, s3) = K1N1 (s1, s2, s3) + K2N2 (s1, s2, s3)

+ K3N3 (s1, s2, s3)

with

N1 (s1, s2, s3)

= 1(
s1 + s2 + s3 − λ j

)
(s1 + s2 − λk)

(
s1 − λp

) (
s2 − λq

)
(s3 − λl)

N2 (s1, s2, s3)

= 1(
s1 + s2 + s3 − λ j

)
(s2 + s3 − λl) (s1 − λk)

(
s2 − λp

) (
s3 − λq

)

N3 (s1, s2, s3)

= 1(
s1 + s2 + s3 − λ j

) (
s1 − λp

) (
s2 − λq

)
(s3 − λr )

A.3 Association of variables

To solve the kernels N1 (s1, s2, s3) and N2 (s1, s2, s3), it is
possible to use the corollary proposed by [17]. The corollary
fits to (i − 1)st reduction and expansion of a n-dimensional
kernels of the form,

Zn (s1, s2, . . . , sn)

= Gn (s1, s2, . . . , sn)∏K11
k1=1 (s1 + s2 + · · · + si + xk1)

· 1
∏K22

k2=K11+1

(
s1 + s2 + · · · + si + ∑

m>i
sm + xk2

)

· 1
∏J11

j1=1

(
s1 + α j1

)∏J22
j2=1

(
s2 + β j2

) · · ·∏J ii
j i=1

(
si + η j i

)

(A.6)

where Gn (s1, s2, . . . , sn) is the ratio of a polynomial in n
variables to a polynomial in the n − i variables i + 1, i +
2, . . . , n − 1 and n. The corollary is described by [18].

Hence, applying the corollary to kernels N1 (s1, s2, s3)
and N2 (s1, s2, s3), manipulating some algebraic expressions
and defining them in terms of a single Laplace domain by
association of variables theorems as,

N1 (s) = 1(
λ j − λp − λq − λl

)
[

1(
λ j − λl − λk

) 1(
s − λ j

)

− 1(
λp + λq − λk

) 1(
s − λp − λq − λl

)
]

(A.7)

In the same way are obtained the rest of kernels N2 (s) and
N3 (s). Finally, the kernel N1 (s1, s2, s3) is reduced follow-
ing the approach proposed in [18]. Thus, the final solution
of third order terms expressed as a single Laplace transform
variable is,

Y 3
j (s) = K1N1 (s) + K2N2 (s) + K3N3 (s)

Y 3
j (s) = 1(

λ j − λp − λq − λl
)

×
⎧
⎨

⎩
K1

[
1

(λ j−λl−λk)
1

(s−λ j)
− 1

(λp+λq−λk)
1

(s−λp−λq−λl)

]

+K2
1

(λp+λq−λl)

[
1

(s−λ j)
− 1

(s1−λp−λq−λk)

]

⎫
⎬

⎭

+K3
1(

λ j − λp − λq − λr
)

×
[

1(
s − λ j

) − 1(
s − λp − λq − λr

)
]

(A.8)

Appendix B

B.1 First order terms

The first order or linear terms are defined as,

f1 (x) = Ax, with, A =

⎡

⎢⎢⎢⎣

∂ f1
∂E ′

q

∂ f1
∂δ

∂ f1
∂ω

∂ f2
∂E ′

q

∂ f2
∂δ

∂ f2
∂ω

∂ f3
∂E ′

q

∂ f1
∂δ

∂ f1
∂ω

⎤

⎥⎥⎥⎦

X=XSEP

(B.1)

A=

⎡

⎢⎢⎢⎢⎢⎢⎣

1
T ′
d0

[K1 − 1] 1
T ′
d0

[K1Vb sin δ] 0

0 0 1

ω0
2H

[
K2Vb sin δ+
K3Vb sin δ

]
ω0
2H

⎡

⎢⎣
K2E

′
qVb cos δ+

K3V 2
b sin2 δ+

K3

(
E

′
q−Vb cos δ

)
Vb cos δ

⎤

⎥⎦ − ω0
2H D

⎤

⎥⎥⎥⎥⎥⎥⎦

X=XSEP

(B.2)

where,

K1 = − xd − x ′
d

x ′
d + xep

, K2 = − 1

xq + xep

K3 = − xq − x ′
d(

x ′
d + xep

) (
xq + xep

) , xep = xt + xl

Applied to the case of the third order power system under
study, the state matrix has the form described by (B.2).

B.2 Second order terms

The second order terms result from the matrix product,

f2 (x) = 1

2

⎡

⎣
xTH1x
xTH2x
xTH3x

⎤

⎦ = 1

2

⎡

⎢⎢⎢⎢⎢⎢⎣

n∑
k=1

n∑
l=1

H1
kl xk xl

n∑
k=1

n∑
l=1

H2
kl xk xl

n∑
k=1

n∑
l=1

H3
kl xk xl

⎤

⎥⎥⎥⎥⎥⎥⎦
(B.3)
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With, H j =

⎡

⎢⎢⎢⎢⎣

∂2 f j
∂E ′

q∂E ′
q

∂2 f j
∂E ′

q∂δ

∂2 f j
∂E ′

q∂ω

∂2 f j
∂δq∂E ′

q

∂2 f j
∂δ∂δq

∂2 f j
∂δ∂ω

∂2 f j
∂ω∂E ′

q

∂2 f j
∂ω∂δ

∂2 f j
∂ω∂ω

⎤

⎥⎥⎥⎥⎦

X=XSEP
which has the form,

H =
⎡

⎣
0 0 0 0 0 0 0 H(1,8) 0
0 H(2,2) 0 0 0 0 H(2,7) H(2,8) 0
0 0 0 0 0 0 0 0 0

⎤

⎦

H(1,8) = ωr

2H
(−K2Vb cos δ + K3Vb cos δ)

H(2,2) = − 1

T ′
d0

K1Vb cos δ;

H(2,7) = ωr

2H
(K2Vb cos δ + K3Vb cos δ)

H(2,8) = ωr

2H

⎧
⎪⎨

⎪⎩

−K2E
′
qVb sin δ

+3K3V 2
b sin δ cos δ

+K4(E
′
q − Vb cos δ)Vb sin δ

⎫
⎪⎬

⎪⎭

K4 = xq − x ′
d

(x ′
d − xep)(xq + xep)

B.3 Third order terms

In the same way as the second order terms, the third order
derivative of Taylor series expansion results in the matrix
equation,

f3 (x) = 1

6

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xTH1
3

⎡

⎣
x 0 0
0 x 0
0 0 x

⎤

⎦ x

xTH2
3

⎡

⎣
x 0 0
0 x 0
0 0 x

⎤

⎦ x

xTH3
3

⎡

⎣
x 0 0
0 x 0
0 0 x

⎤

⎦ x

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1

6

⎡

⎢⎢⎢⎢⎢⎢⎣

n∑
k=1

n∑
l=1

n∑
m=1

H1
3klmxkxl xm

n∑
k=1

n∑
l=1

n∑
m=1

H2
3klmxkxl xm

n∑
k=1

n∑
l=1

n∑
m=1

H3
3klmxkxl xm

⎤

⎥⎥⎥⎥⎥⎥⎦
(B.4)

where the third order matrix is defined by

H j
3 =

⎡

⎢⎢⎢⎢⎢⎢⎣

∂3 f j
∂E ′3

q

∂3 f j
∂E ′2

q ∂δ

∂3 f j
∂E ′2

q ∂ω

∂3 f j
∂E ′

q∂δ∂E ′
q

∂3 f j
∂E ′

q∂δ2

∂3 f j
∂E ′

q∂δ∂ω

∂3 f j
∂E ′

q∂ω∂E ′
q

∂3 f j
∂E ′

q∂ω∂δ

∂3 f j
∂E ′

q∂ω2

∂3 f j
∂δ∂E ′2

q

∂3 f j
∂δ∂E ′

q∂δ

∂3 f j
∂δ∂E ′

q∂ω

∂3 f j
∂δ2∂E ′

q

∂3 f j
∂δ3

∂3 f j
∂δ2∂ω

∂3 f j
∂δ∂ω∂E ′

q

∂3 f j
∂δ∂ω∂δ

∂3 f j
∂δ∂ω2

∂3 f j
∂ω∂E ′2

q

∂3 f j
∂ω∂E ′

q∂δ

∂3 f j
∂ω∂E ′

q∂ω

∂3 f j
∂ω∂δ∂E ′

q

∂3 f j
∂ω∂δ2

∂3 f j
∂ω∂δ∂ω

∂3 f j
∂ω2∂E ′

q

∂3 f j
∂ω2∂δ

∂3 f j
∂ω3

⎤

⎥⎥⎥⎥⎥⎥⎦

X=XSEP

(B.5)

Fitting to this case study, H j
3 matrices have the form,

H1
3 =

⎡

⎣
0 0 0 0 0 0 0 0 0
0 0 0 0 H1

(2,5) 0 0 0 0
0 0 0 0 0 0 0 0 0

⎤

⎦

X=XSEP

H2
3 = zeros (3 × 9) (B.6)

H3
3 =

⎡

⎣
0 0 0 0 H3

(1,5) 0 0 0 0
0 H3

(2,2) 0 H3
(2,4) H3

(2,5) 0 0 0 0
0 0 0 0 0 0 0 0 0

⎤

⎦

X=XSEP

Appendix C

Test system data:

H = 3.5MW/MVA, D = 10 p.u., x ′
d = 0.3 p.u.

xt = 0.15 p.u., xl = 0.8 p.u.
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