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Entropic lattice Boltzmann methods were introduced to overcome the stability issues
of lattice Boltzmann models for high Reynolds number turbulent flows. However, to
date their validity has been investigated only for simple flows due to the lack of
appropriate boundary conditions. We present here an extension of these models to
complex flows involving curved and moving boundaries in three dimensions. Apart
from a thorough investigation of resolved and under-resolved simulations for periodic
flow and turbulent flow in a round pipe, we study in detail the set-up of a simplified
internal combustion engine with a valve/piston arrangement. This arrangement allows
us to probe the non-trivial interactions between various flow features such as jet
breakup, jet–wall interaction, and formation and breakup of large vortical structures,
among others. Besides an order of magnitude reduction in computational costs, when
compared to state-of-the-art direct numerical simulations (DNS), these methods come
with the additional advantage of using static Cartesian meshes also for moving
objects, which reduces the complexity of the scheme. Going beyond first-order
statistics, a detailed comparison of mean and root-mean-square velocity profiles with
high-order spectral element DNS simulations and experimental data shows excellent
agreement, highlighting the accuracy and reliability of the method for resolved
simulations. Moreover, we show that the implicit subgrid features of the entropic
lattice Boltzmann method can be utilized to further reduce the grid sizes and the
computational costs, providing an alternative to modern modelling approaches such
as large-eddy simulations for complex flows.

Key words: computational methods, turbulence simulation

1. Introduction

The intrinsic complexity of turbulence arising from the nonlinearity of the governing
Navier–Stokes equations eludes an analytical description and requires experimental or
advanced numerical tools to gain insight into the fundamental phenomena in such
complex flows. Challenges for state-of-the-art numerical and experimental methods
become even more apparent when various distinct flow features are combined and

† Email address for correspondence: karlin@lav.mavt.ethz.ch

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

44
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:karlin@lav.mavt.ethz.ch
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.448&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.448&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.448&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.448&domain=pdf
https://doi.org/10.1017/jfm.2016.448


624 B. Dorschner, F. Bösch, S. S. Chikatamarla, K. Boulouchos and I. V. Karlin

interact in a single flow field. Unfortunately, this is the case for almost all realistic
applications and as a representative of such we consider in this paper the turbulent
flow field in a valve/piston assembly during multiple cycles.

The main driving force of the flow field inside the chamber is given by the periodic
motion of the piston inducing an unsteady turbulent flow with cyclic variability.
During the intake stroke the piston draws fluid into the chamber, creating a hollow
jet as the fluid is pushed through the valve. This results in the formation of large
vortex structures, where the interaction with the cylinder walls causes a tumbling
and swirling motion at larger scales. The hollow jet has similar flow features to
a planar jet for which the turbulent flow field strongly depends on the distance to
the nozzle. In first instance, a planar jet exhibits Kelvin–Helmholtz instabilities on
both sides of the shear layers, eventually causing the jet breakup and the formation
of small-scale turbulent structures (see, e.g., Gutmark & Wygnanski 1976; Stanley,
Sarkar & Mellado 2002; Mahesh 2013). Note however, that the situation in the
valve/piston arrangement is more intertwined as the large vortical structures, formed
by the jet, are deflected by the cylinder walls and interact with the jet itself resulting
in a different breakup behaviour. Furthermore, as for the planar jet, the breakup
process, the spreading rate and the centre-line velocity are strongly influenced by the
external flow field corresponding to the residual turbulence in the chamber at the
beginning of a new cycle. This, in turn, alters the formation of the vortical structures
and their influence on the jet breakup, leading to a cyclic variability (Schmitt et al.
2014b). Cyclic variability is the consequence of the non-trivial interaction between
small- and large-scale structures, which differs from most of the classical flows of
fully developed turbulence for which the influence of the large-scale structures is
more significant than vice versa. For the understanding of such complex phenomena
numerical or experimental tools need to be applied.

Experimentally, an instantaneous, discrete velocity field may be obtained by
techniques such as laser doppler velocimetry (LDV) or, more commonly, two- and
three-dimensional particle image velocimetry (PIV). Despite substantial progress in
this field, limitations in terms of temporal and spatial resolution become apparent
considering the smallest scales. Nonetheless, valuable insight and validation data for
numerical studies may be obtained from experiment. For instance, the experimental
efforts of Morse, Whitelaw & Yianneskis (1979) using LDV in motored valve/piston
assemblies are commonly used for validation of direct numerical simulations and
turbulence models in this set-up. However, due to the limited access to the chamber,
accurate measurements in the near-wall region are particularly challenging. For an
overview of available experimental techniques we refer to the work of Towers &
Towers (2008) and Westerweel, Elsinga & Adrian (2013).

On the numerical side, direct numerical simulations (DNS), solving the Navier–
Stokes equations directly and accounting for all pertinent scales of the flow, provide an
accurate description of the flow field as no turbulence modelling, based on simplifying
assumptions, is employed. However, for realistic applications of high Reynolds number
flows involving complex geometries with moving boundaries such as the application
considered in this paper, the computational cost becomes prohibitively high and only
very few such simulations can be found in the literature. Most notable for this set-up
is the recent DNS of Schmitt et al. (2014a) employing a high-order spectral element
method and an arbitrary Lagrangian-Eulerian (ALE) formulation to account for the
piston movement. In their work, a detailed analysis of the flow in the chamber
with various velocity and stress profiles for different crank angles along with a
quantification of cycle-to-cycle variability was presented. This gives us an opportunity
to validate our simulations and study its behaviour in the case of under-resolution.
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Entropic MRT lattice Boltzmann model for complex flows 625

On the other hand, turbulence models reduce the computational requirements
by not resolving all scales of the flow but by trying to account for the physical
effects of the unresolved scales by projection onto the resolved ones. A prominent
class, the so-called eddy-viscosity models, provides a closure to the coarse-grained
Navier–Stokes equations by relating the Reynolds stress tensor to a turbulent
eddy-viscosity νt. The intrinsic assumption behind the eddy-viscosity models is
that the anisotropic part of the Reynolds stress tensor may be linearly related to the
local mean rate-of-strain tensor via νt, analogous to the relation of the viscous stress
in a Newtonian fluid. The analogy to the viscous stress is revealing as the comparison
to kinetic theory and a simple time-scale analysis show that there is no general basis
for either a local nor linear relationship between the rate-of-strain and the Reynolds
stresses through a scalar quantity, see, e.g., Pope (2000) for telling examples. However,
for simple cases, whenever the ratio of production to dissipation of turbulent kinetic
energy is close to unity, the eddy-viscosity assumption holds with sufficient accuracy
(Pope 2000). In that context, various models prescribing the turbulent eddy-viscosity
exist and range from algebraic relations to more sophisticated ones, solving a set of
transport equations such as the k− ε or k−ω models and their variants. Such models
may be applied to either the Reynolds-averaged Navier–Stokes (RANS) equation or
to the filtered Navier–Stokes equation yielding commonly used RANS and large-eddy
simulation (LES) formulations, respectively. Despite the known deficiencies of the
eddy-viscosity assumption as explained above, such models are often applied to
various flows including the flow in the valve/piston assembly with its complex
interaction of various base flow types, where the eddy-viscosity assumption is known
to fail. In particular, these deficiencies have been assessed for strongly swirling flows,
as often encountered in engine-type flows, in the work of Weber, Visser & Boysan
(1990). Still, due to their relatively low computational cost these models remain
an attractive option to study turbulence phenomena. For the valve/piston assembly,
LES has become increasingly popular as it overcomes the shortcomings of RANS,
where a time or ensemble average is computed and cycle-specific phenomena as
well as cyclic variability cannot be investigated. For an overview of RANS and LES
applied to engine flows the reader is referred to the works of El Tahry & Haworth
(1992), Haworth (1999), Celik, Yavuz & Smirnov (2001), Liu & Haworth (2010) and
Rutland (2011). In particular, in Liu & Haworth (2010), various LES models were
tested and a reasonable agreement with experimental data was achieved, although
it was pointed out that no model was capable of improving the comparison for all
relevant quantities. An intrinsic issue of using such modelling approaches is that to
date no universality exists and the model parameter specification is problem-dependent,
typically only reliably available for simple, homogeneous turbulence with periodic
boundaries. Furthermore, as most turbulence is generated in the near-wall region for
wall-bounded flows, this issue needs to be addressed for turbulence models. As was
stated in the recent review of Rutland (2011), the development of wall models has
made no significant progress in recent years. Hence, most LES need either to increase
the resolution in the near-wall region (Kannepalli & Piomelli 2000) or are forced to
overcome the stringent resolution requirement by employing wall functions based on
the law of the wall (see Piomelli & Elias (2002) for a review on this topic in the
LES context). Thus, the range of applicability of those models is limited and requires
fine tuning of the model parameters for a specific set-up.

Lattice Boltzmann models
To overcome the high computational cost of DNS and to avoid the cumbersome
search for the best tuning parameters in turbulence models, much research was
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focused on the development of accurate alternatives. To that end, the lattice
Boltzmann (LB) method made significant progress, promising an efficient alternative
with applications ranging from high Reynolds number flows (Chen et al. 2003;
Thantanapally et al. 2013; Karlin, Bösch & Chikatamarla 2014), multiphase flows
(Mazloomi, Chikatamarla & Karlin 2015), thermal flows (Frapolli, Chikatamarla &
Karlin 2014) to relativistic hydrodynamics (Mendoza et al. 2010). By employing
kinetic theory, the lattice Boltzmann method (LBM) describes the flow field in terms
of discretized particle distribution functions (populations) fi(x, t) associated with
discrete velocities ci, i= 1, . . . ,Q, designed to recover the macroscopic Navier–Stokes
equations in the hydrodynamic limit (see, e.g., Succi 2001). By fitting the discrete
velocities into a regular lattice, a simple and highly efficient stream-and-collide
algorithm with exact propagation is realized, for which the nonlinearity is local
in space. Apart from the popular Bhatnagar–Gross–Krook lattice Boltzmann model
(LBGK), various LB models have been developed in recent years, which differ in the
realization of the collision operator. However, despite its efficiency and simplicity, the
success for the LBM was limited to resolved, moderate Reynolds number flows due
to the lack of numerical stability in under-resolved simulations. On one hand, this
promoted the development of turbulence models such as systematic renormalization
group-based k − ε eddy-viscosity models (see Chen et al. 2003), where an effective
relaxation time can be derived in Fourier and real spaces. This has been successfully
applied to high Reynolds number flows, analogous to conventional turbulence models
as described above. Further, in the field of internal combustion engines notable
modelling approaches on spray formation, breakup and cavitation in the LB realm are
given in the works of Falcucci et al. (2010, 2013). On the other hand, the stability
issue has been overcome by Karlin, Ferrante & Öttinger (1999) by introducing the
discrete entropy function as the determining factor of the relaxation, chosen to obey
the second law of thermodynamics and thus yielding the nonlinearly stable entropic
lattice Boltzmann method (ELBM). In contrast to LBGK, the ELBM chooses the
relaxation parameter of the collision adaptively at each point in space and time to
locally ensure the discrete-time H-theorem. The macroscopic effect of choosing the
relaxation parameter in this manner results in a locally varying, effective viscosity,
which can be larger or smaller than the nominal one, leading to local enhancement or
smoothing of the flow field (Karlin et al. 2003). This originates from the fact that, in
ELBM, the same relaxation is equivalently imposed on all moments of the populations
beyond the locally conserved quantities. It is important to stress that the relaxation
parameter is not arbitrarily chosen but rather dictated by the physics of the flow, in
accordance with the second law of thermodynamics. However, for resolved simulations
where the populations remain close to the equilibrium state, the ELBM recovers the
LBGK model with its nominal viscosity (Karlin, Succi & Chikatamarla 2011).

An extension of the entropy concept was recently proposed by Karlin et al. (2014),
where the viscosity may be kept at its nominal value by considering multiple
relaxation times (Karlin–Bösch–Chikatamarla (KBC) models). Recent studies of
Bösch, Chikatamarla & Karlin (2015) have shown outstanding numerical stability
for high Reynolds number flows while accuracy was not sacrificed. Furthermore, the
role of the entropic stabilizer was investigated and quantified for periodic turbulence
(Bösch et al. 2015). In this paper, we go beyond the periodic set-up and study
the subgrid features of KBC models in the valve/piston assembly. With the recent
development of stable and accurate boundary conditions (Dorschner et al. 2015),
the implementation of complex geometries with moving boundaries comes at little
additional cost. Our results indicate that the KBC model provides a simple and
efficient alternative to conventional CFD methods for research and engineering
applications.
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Entropic MRT lattice Boltzmann model for complex flows 627

The outline of the paper is as follows. In § 2, a brief review of KBC models
and boundary conditions is presented. Before considering the full complexity of the
valve/piston assembly, § 3 presents a validation of simple flows such as the Kida
vortex flow and the turbulent pipe flow using the KBC model with an emphasis on
coarse-resolution simulations. Finally, § 4 discusses the valve/piston assembly by a
comparison of our simulation results with state-of-the-art DNS and the experimental
data of Morse et al. (1979) and Schmitt et al. (2014a), respectively. As in § 3, the
KBC model’s subgrid behaviour is tested numerically for various resolutions.

2. Entropic multi-relaxation time lattice Boltzmann models
The evolution of the population fi is given by the discrete kinetic equation

fi(x+ ci, t+ 1)= f ′i = (1− β)fi(x, t)+ βf mirr
i (x, t), (2.1)

where the advection is accounted for by the left-hand side and the post-collision state
f ′i is represented on the right-hand side by a convex linear combination between the
population fi(x, t) and the maximally over-relaxed mirror state f mirr

i (x, t); the parameter
β is related to the kinematic viscosity. Note that all lattice Boltzmann models differ
only in the realization of the mirror state and the classical LBGK model defines it as

f mirr
i (x, t)= 2f eq

i − fi, (2.2)

where the equilibrium f eq
i is obtained by minimizing the discrete entropy function H

subject to the local conservation laws (density ρ and momentum density j as given
by the first two moments of the discrete distribution)

min

{
H( f )=

∑
i

fi ln
(

fi

Wi

)}
, s.t.

∑
i

{1, ci} fi = {ρ, j}. (2.3a,b)

Here Wi are the lattice specific weights. Using standard procedures, it can be shown
that the LBGK models in combination with a properly chosen lattice recover the
Navier–Stokes equations in the hydrodynamic limit with the kinematic viscosity

ν = c2
s

(
1

2β
− 1

2

)
, (2.4)

where cs denotes the speed of sound, defined by the lattice of choice. In this paper, the
standard D3Q27-lattice (dimensionality D= 3, number of discrete velocities Q= 27)
is used for all computations, where the speed of sound amounts to cs = 1/

√
3. The

exact entropic equilibrium on this lattice can be found in Ansumali, Karlin & Öttinger
(2003).

Going beyond the single-relaxation time LBGK model, which is limited to fully
resolved, moderate Reynolds number flow simulations, multi-relaxation time (MRT)
models are considered next. MRT models exploit the fact that the dimensionality of
the kinetic system is typically much larger than required to recover the Navier–Stokes
equation in the hydrodynamic limit. Thus, the non-hydrodynamic, higher-order
moments are relaxed independently aiming to increase stability. At which rate these
moments are relaxed is a priori not clear and requires flow-dependent fine tuning
(Lallemand & Luo 2000; Geier, Greiner & Korvink 2006). This issue was resolved
in the work of Karlin et al. (2014) by the introduction of KBC models.
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Let us recall that the set of natural moments of the D3Q27-lattice is given by

ρMpqr =
∑

i

fic
p
ixc

q
iyc

r
iz p, q, r ∈ {0, 1, 2}, (2.5)

yielding the conservation laws as the first 1+D moments and the pressure tensor Π as
the second-order moments. Higher-order moments lack a direct physical interpretation
in the athermal case.

This moment representation spans a basis in which a population can equivalently be
expressed (see appendix A for the explicit expressions). Note that the moment basis
is not unique and, for example, a central moment basis can be applied analogously
(Bösch et al. 2015). With the moment representation, the population fi may be
decomposed into three parts as

fi = ki + si + hi, (2.6)

where ki indicates the kinematic part and depends only on the conserved quantities.
The shear part is denoted by si and necessarily includes the deviatoric stress tensor
Π ′ = Π − D−1Tr(Π)I . Further non-conserved moments may however be included in
si, yielding a family of KBC models. The higher-order moments correspond to hi,
which contains all remaining moments that are not included in ki or si. Using this
decomposition, the mirror state can be expressed as

f mirr
i = ki + (2seq

i − si)+ ((1− γ )hi + γ heq
i ), (2.7)

where seq
i and heq

i indicate si and hi evaluated at equilibrium and the parameter γ is the
relaxation rate of the higher-order moments. Note that any specification of γ recovers
the Navier–Stokes equation with the shear viscosity as given by (2.4) and the special
case of γ = 2 results in the LBGK model.

In this paper, we choose the shear part si to include only the mandatory deviatoric
stress Π ′ and lump all other moments in hi (see, e.g., Bösch et al. (2015) for a
thorough study of various KBC realizations), yielding the macroscopic equations as
obtained through the standard Chapman–Enskog analysis as

∂tρ = −∇ · (ρu), (2.8)
∂tu = −u · ∇u− ρ−1

∇p
+ ρ−1

∇ · [νρ(∇u+∇u† − 2D−1I∇ · u)] + 2D−1ρ−1
∇[ξρ∇ · u], (2.9)

where the pressure is given by p= c2
sρ. It is important to notice that the bulk viscosity

for the present KBC model (only the deviatoric stress tensor is included in si) is
related to the parameter γ as

ξ = c2
s

(
1
γβ
− 1

2

)
. (2.10)

This is not the case if the shear part si additionally includes Tr (Π), leading to ξ = ν.
The main idea of KBC lies now in the specification of γ , which is not tuned as in
various other MRT models but rather computed locally in every time step and at every
grid point by minimizing the discrete entropy function (see (2.3)) in the post-collision
state f ′i . Carrying out the optimization leads to the following condition for γ ,∑

i

1hi ln
[

1+ (1− βγ )1hi − (2β − 1)1si

f eq
i

]
= 0, (2.11)
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where 1si = si − seq
i and 1hi = hi − heq

i denote the deviations from equilibrium. By
introducing the entropic scalar product as 〈X|Y〉 = ∑i(XiYi/f

eq
i ) and an expansion

of (2.11) to the first non-vanishing order of 1si/f
eq
i and 1hi/f

eq
i , an analytic

approximation for the relaxation parameter γ may be found as

γ = 1
β
−
(

2− 1
β

) 〈1s |1h〉
〈1h |1h〉 . (2.12)

This approximation has proven to be sufficient for all tested cases.

2.1. Wall-boundary conditions
As our study focuses on a geometry-driven flow, we shall briefly review the topic
of wall-boundary conditions. In order to complete the advection step of the LB
algorithm, the set of populations D̄ advected from the solid into the fluid region are
unknown and need to be specified. To that end, a variety of realizations can be found
in the literature ranging from simple bounce-back boundary conditions using a crude
staircase approximation to more sophisticated formulations trying to incorporate the
curvature of the object. It is clear that for under-resolved simulations, the staircase
approximation is not the best option as the geometry is not accurately represented.
For curved boundary conditions, a common approach is to employ interpolation
or extrapolation schemes onto the populations (see, e.g., Guo, Zheng & Shi 2002;
Lallemand & Luo 2003; Wang et al. 2015). However, their usage is limited to
low Reynolds number flows as spurious shocks are triggered at the boundary for
turbulence simulations (Lammers et al. 2006; Spasov, Rempfer & Mokhasi 2009).

An alternative, recently proposed by Dorschner et al. (2015), is to impose the
boundary conditions not on the highly fluctuating populations directly but rather
on the slow varying moments, namely density, momentum and pressure. Here, the
missing populations are approximated by an analogue of Grad’s distribution function,
which results in a parametrization of the distribution in terms of relevant moments,
including not only locally conserved quantities but also other pertinent moments. A
derivation using maximum entropy or quasi-equilibrium considerations may be found
in the work of Gorban & Karlin (2004). In the athermal case, it is sufficient to
include the pressure tensor Π besides the conserved quantities, yielding

f ∗i (ρ, u,Π)=Wi

[
ρ + ρ

c2
s

ci · u+ 1
2c4

s

(
Π − ρc2

s I
)
: (ci ⊗ ci − c2

s I)

]
, (2.13)

where the pressure tensor Π is approximated by

Π =Πeq +Πneq, (2.14)

with

Πeq = ρc2
s I + ρu⊗ u, (2.15)

Πneq =−ρc2
s

2β
(∇u+∇u†). (2.16)

The macroscopic variables to be used in f ∗i (2.13) are specified by introducing the
concept of target values. The target velocity is obtained using an interpolation scheme
including the wall velocity and the velocity at the neighbouring fluid nodes. The target
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density is evaluated based on the bounce-back density. An additional term needs to
be included into the target density in the case of a moving wall to account for the
mass swept by the obstacle moving with the velocity uw. This may be derived by
introducing a forcing term necessary for the displacement and amounts to

ρdyn =
∑
i∈D̄

6Wiρci · uw,i. (2.17)

Finally, the pressure tensor is determined using a finite difference scheme for ∇u
and the velocity values from the previous time step. Note that for a moving object
lattice sites are uncovered as the object passes by and require a reinitialization
of the corresponding populations. In this case, we use the equilibrium distribution
with the wall-velocity and a local density average. It needs to be mentioned that
the wall-velocity may not be too large compared to the speed of sound cs. As
shown in Dorschner et al. (2015), this yields a boundary condition compatible with
the entropic considerations and thus the KBC model, where the stability issues of
previously proposed schemes are resolved and second-order accuracy is retained. An
extended discussion on the boundary conditions including all technical details is given
in appendix B.

3. Model validation for simple flows
The valve/piston assembly reveals a number of hydrodynamic features typical

for complex flows. Interactions between large-scale coherent structures which are
perturbed by residual turbulence characterize the flow in the bulk of the chamber while
the complex valve/cylinder geometry adds effects of wall-bounded flows. Moreover,
the moving piston introduces yet another conceptual dimension to the problem. Not
surprisingly, this variety of physically distinct flow patterns and complex nonlinear
interactions among them introduce numerical challenges.

In order to show that the KBC model is capable of correctly predicting the physics
of the main active flow regimes we consider a number of precursor simulations
using the KBC model and boundary conditions as described in the previous section.
By reducing the complexity of the flow and concentrating on a single flow regime
we demonstrate that the method is able to accurately capture the main physics at
hand individually. Thus, we conceptually decompose the problem into its building
blocks while combining them in a last step. In particular, we put emphasis on the
performance of the model in situations where the simulation cannot resolve all
pertinent scales of the flow. Thereby, one can gain insight into the built-in subgrid
features that the model exposes.

3.1. Turbulence in a periodic box
As the main flow in the bulk of the engine-like assembly is driven by vortex–vortex
interaction and small-scale turbulence, we consider the Kida vortex flow as a
classical benchmark simulation (see figure 1a). This well-studied flow evolves from
a deterministic and symmetric initial condition to a state that resembles a fully
developed turbulent flow featuring a corresponding energy cascade and has been
analysed extensively using DNS (Kida 1985; Kida & Murakami 1987; Keating et al.
2007; Chikatamarla et al. 2010). The initial conditions are given by

ux(x, y, z)=U0 sin x(cos 3y cos z− cos y cos 3z),
uy(x, y, z)=U0 sin y(cos 3z cos x− cos z cos 3x),
uz(x, y, z)=U0 sin z(cos 3x cos y− cos x cos 3y),

(3.1)
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(a) (b)

FIGURE 1. (Colour online) (a) Vortex structures for the periodic Kida vortex flow at Re=
6000 (x, y, z ∈ [0, π]). (b) Turbulent pipe flow at R+ = 180 visualized by iso-surfaces of
vorticity magnitude coloured with velocity magnitude.

where x, y, z∈ [0, 2π] and periodic boundary conditions are imposed in all directions.
The Reynolds number is defined as Re=U0N/ν where N is the domain size. While
the kinetic energy is decaying, the evolution of enstrophy shows a steep increase in the
early stage of the simulation and reaches a maximum value before it starts to decay.
Just after the peak of enstrophy the flow reaches the most turbulent state producing
large gradients and small-scale structures. While large gradients on the one hand may
cause numerical instabilities, it is of paramount interest not to over-damp the dynamics
on the other hand, which will lead to a corrupted and non-physical result lacking the
small scales. Without employing explicit turbulence models one is usually restricted to
increasing the resolution such that the smallest eddies are resolved. This is typically
satisfied when the grid spacing is smaller than the Kolmogorov scale η = (ν3/ε)1/4

with kinematic viscosity ν and rate of energy dissipation ε.
In order to study the accuracy of the KBC model, a detailed investigation was

recently conducted by Bösch et al. (2015). The Reynolds number here is Re= 6000,
which is slightly higher than what can be expected for the valve/piston assembly
considering the cylinder diameter and the maximum piston velocity as characteristic
scales. A sufficiently resolved reference simulation (η ≈ 1.2 1x) is conducted with
a box length of N = 600 using the LBGK collision model. Further simulations with
N = {100, 200, 400} and the same Reynolds number using the KBC model are the
carried out and compared to both the reference solution and theoretical limits (see
Bösch et al. 2015).

An important global characteristic is the evolution of the turbulent kinetic energy k
as shown in figure 2(a). For all resolutions in this study the energy decay seems to
be captured well despite the rather severe under-resolution in the coarsest simulation
(η≈ 0.2 1x). However, a more meaningful insight is given by the energy distribution
across the scales of the flow as shown by means of the normalized energy spectrum
along with the theoretical Kolmogorov scaling with a slope of −5/3 in the inertial
subrange in figure 2(b). It is apparent that the energy scales with marginal difference
for all resolutions with a sharp cut-off at its smallest scale as expected for a well-
behaved subgrid model.
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FIGURE 2. (Colour online) Statistics for the Kida vortex flow at Re=6000 and resolutions
of N = {100, 200, 400} and N = 600 for the simulations with KBC and the reference
simulation with LBGK, respectively. The theoretical Kolmogorov scaling is indicated by
the dotted line.

A thorough convergence study of various statistical quantities sampled at time points
around the peak of enstrophy demonstrates second-order accuracy (see Bösch et al.
2015) as is expected for a lattice Boltzmann method.

While convergence towards the reference solution is established, it is of interest
to quantify the recovery of the Navier–Stokes equations at small scales. To that
end, let us remind the reader that the incompressible Navier–Stokes equation implies
the following balance equations for the averaged momentum, vorticity, energy and
enstrophy which yield for statistically homogeneous flows (Lamb 1932; Batchelor
2000),

∂t〈u〉 = 0, (3.2)
∂t〈ω〉 = 0, (3.3)
∂tk=−2νΩ, (3.4)

∂tΩ = 〈ω · s ·ω〉 − 2νP, (3.5)

where

s= 1
2(∇u+∇u†) (3.6)

is the rate-of-strain tensor and P is the palinstrophy,

P= 1
2 〈∇ω : ∇ω〉. (3.7)

While the global conservation of average momentum (3.2) and vorticity (3.3) are
satisfied up to machine precision for all times and all resolutions considered in
Bösch et al. (2015), the balance of various terms in the energy (3.4) and enstrophy
(3.5) equations is directly probing the recovery of the Navier–Stokes equation at
small scales by the KBC model. To that end, we recast the balance equations (3.4)
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N 100 200 400 600

νeff ,k/ν 1.5640 1.1356 1.0030 0.9976
νeff ,Ω/ν 2.0950 1.4042 1.0912 1.0337

TABLE 1. Effective viscosity ratios at non-dimensional time t/(N/U0)= 0.75 for
simulations with different resolutions N.

and (3.5) in terms of the effective viscosity,

νeff ,k =− ∂tk
2Ω

, (3.8)

νeff ,Ω = 〈ω · s ·ω〉 − ∂tΩ

2P
. (3.9)

In the simulation, the Navier–Stokes equation will be verified at small scales if the
ratio νeff /ν ≈ 1. Thus, the evaluation of effective viscosities as in (3.8) and (3.9)
is an important check of the accuracy and is listed in table 1. By increasing the
resolution, the values approach νeff ,k/ν ≈ 1. It is apparent that even for the coarsest
run the additional dissipation is rather small, which is consistent with the evolution of
turbulence kinetic energy k shown in figure 2(a). The second effective viscosity νeff ,Ω
is somewhat larger for simulations for the coarse grids, which is consistent with the
under-prediction of the peak in enstrophy. For larger resolutions, however, the values
are close to the nominal viscosity. Thus, we conclude that the KBC scheme recovers
the Navier–Stokes equations well (in the absence of boundaries) while introducing
only small additional dissipation on coarse grids. Further simulations of decaying
turbulence are presented in Bösch et al. (2015). Note that due to the temporally and
spatially varying parameter γ , a fluctuating bulk viscosity is obtained, which in turn
was found to reduce artificial compressibility effects in comparison to LBGK and
other KBC models (see Bösch et al. 2015).

In general, the family of KBC models has shown outstanding stability allowing for
the operating range to be extended by orders of magnitude in terms of the Reynolds
number compared to standard MRT- or LBGK-type models. Further, it has been shown
to recover the well-established LBGK model for fully resolved simulations (Bösch
et al. 2015). In the next section, we aim to go beyond the periodic set-up in order to
test for the next conceptual building block identified above.

3.2. Turbulent flow in a pipe
The chamber of the engine-like geometry is rotationally symmetric and it may be
expected that the cylinder walls effect the dynamics of the flow to a large extent.
Therefore, the turbulent flow through a round pipe is chosen as a validation of the
second building block (see figure 1b). This problem has been studied extensively in
the literature experimentally, analytically and numerically. While for the flat channel
there is consensus about the scaling of the mean velocity profile, it is less clear for
the turbulent flow through a pipe and is being discussed in the literature (see, e.g.,
Barenblatt, Chorin & Prostokishin 1997; Zagarola, Perry & Smits 1997; Zagarola &
Smits 1998; Wosnik, Castillo & George 2000; Perry, Hafez & Chong 2001; McKeon
et al. 2004; Morrison et al. 2004; Wei et al. 2005; Wu & Moin 2008). Nevertheless,
there exist reliable DNS and experimental data. Here we choose a Reynolds number
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ReDp = 5300 based on the pipe diameter Dp and the mean bulk velocity ubulk, the same
as in the DNS of Wu & Moin (2008). This number is well within the range of what
is expected in the chamber or the valve/piston assembly considered below.

As the problem is axially symmetric, it is conveniently formulated in cylindrical
coordinates and one typically uses a corresponding computational mesh. The classical
LB method, however, is restricted to a rectilinear Cartesian mesh (which is also
employed for the engine-like geometry below). Thus, this benchmark problem is
probing the performance of the boundary condition for curved walls to its full extent
as the flow is wall bounded.

Three simulations are conducted at diameter Dp = {49, 99, 199} lattice units (runs
A, B and C). The domain length in the stream-wise direction is L = 16 R, where
R = Dp/2 is the pipe radius. The flow is initialized with a random velocity field
and evolved for 200 T , where the turnover time is given by T = R/ubulk. After this
initial transient, statistics are collected for another 200 T , yielding a total run-time of
400 T . The pressure gradient was adjusted during the simulation to reach the desired
Reynolds number, which was realized through a body force. The corresponding
Kàrmàn number is R+ = uτR/ν = 180 with the wall friction velocity uτ and the
kinematic viscosity ν.

The distance from the pipe wall is given by R − r with r = √x2 + y2, where z
denotes the spatial coordinate in the stream-wise direction. The non-dimensional
wall units employed hereafter are defined as x+ = xuτ/ν and u+ = u/uτ for
space and velocity, respectively. Thus, the non-dimensional distance to the wall
is (R− r)+=R+− r+. A natural measure for spatial resolution is the non-dimensional
and uniform grid spacing 1x+ here, while for the DNS of Wu & Moin (2008) radial
(1r+), azimuthal (1(rθ)+) and stream-wise (1z+) directions vary non-uniformly.
The finest resolution for the DNS is typically found at the wall in the wall-normal
direction. In Wu & Moin (2008) this amounts to 1r+|r=R = 0.167 (with a maximum
1r+|r=0.409R= 1.647), while in our simulations 1x+= 7.3 (run A), 1x+= 3.6 (run B)
and 1x+ = 1.8 (run C).

Figure 3 shows a comparison of the mean stream-wise velocity component of
runs A–C to the reference DNS results. Despite severe under-resolution, excellent
agreement can be observed for runs B and C. Run A obviously employs a mesh
which is too coarse to capture the scaling of the mean velocity correctly.

The next order statistical moments are shown in figure 4(a–d). The root-mean-
square (r.m.s.) fluctuations of the axial, radial and azimuthal velocity component
show the same trend as seen in figure 3; the coarsest simulation does not reproduce
the expected values while runs B and C are very close to the DNS results. Moreover,
the cross-correlations of the axial and radial fluctuations, figure 4(d), show excellent
agreement for simulations B and C as well.

3.3. Sedimenting sphere
The flow in the valve/piston assembly is induced through the moving piston and it is
expected that the treatment of the moving boundary has a significant influence on the
flow field inside the chamber. Stability and accuracy of the wall-boundary treatment as
outlined in § 2.1 were investigated for various flow set-ups including moving objects
in two dimensions in Dorschner et al. (2015). Here, we present a three-dimensional
validation, where a sedimenting rigid sphere is considered. The sphere with density ρs
is resolved with a diameter of Ds = 30 and the particle Reynolds number was taken
to be Re = 100. When released from rest in a quiescent fluid with density ρf , the
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FIGURE 3. (Colour online) Mean velocity component in flow direction for the turbulent
pipe flow.

sphere accelerates to its asymptotic settling velocity ut, where the gravitational force
Fg =πD3

sρsg/6 is balanced by the buoyancy force Fb =πD3
sρf g/6 and the drag force

Fd = (ρf u2πD2
s Cd)/8. The force balance immediately yields

ρs

ρf
= 1+ 3u2

t Cd

4Dsg
, (3.10)

where Cd denotes the drag coefficient. We set the nominal settling velocity to ut,n =
0.01 in lattice units and choose the particle density in accordance with (3.10). The
drag coefficient was measured in a separate simulation for a stationary sphere and a
mean flow velocity, which resulted in Cd = 1.1 in agreement with literature values
(see, e.g., Roos & Willmarth 1971; Johnson & Patel 1999; Kim, Kim & Choi 2001).
In the dynamic case, we solve Newton’s equations for the particle motion

dxs

dt
= us, (3.11)

dus

dt
= F

ms
+
(

1− ρf

ρs

)
g, (3.12)

where the force F acting on the particle was evaluated using the momentum exchange
method (see, e.g., Mei et al. 2002). We measure the terminal settling velocity to be
ut = 0.0100033, which amounts to less than 0.033 % error. Its equivalence to the
nominal settling velocity establishes Galilean invariance between the static and the
dynamic case and therefore validates the moving boundary condition.

4. Valve/piston assembly
With the results of the preliminary studies in the previous section, we now consider

the flow in a valve/piston assembly. To that end, we shall compare it to the recent
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FIGURE 4. (Colour online) Root mean square velocity profiles for the turbulent pipe flow.
The legend is identical to figure 3.

DNS simulations of Schmitt et al. (2014a) and the experimental data of Morse et al.
(1979) for different resolutions.

These simulations when viewed together with other existing benchmark simulations
performed for flow between parallel plates and flow past a circular cylinder
(Chikatamarla & Karlin 2013) establish the reliability of entropic LB models
for turbulent flows. Moreover, in the context of subgrid simulations, a simple
grid convergence study (similar to DNS simulations) is sufficient to establish the
viability and accuracy of the simulations. This feature, combined with a second-order
convergence to DNS solution in almost all simulations and the lack of any tuning
parameters in the model, gives us the confidence to explore further complex flow
set-ups such as valve/piston assembly.

4.1. Numerical set-up
The numerical set-up is identical to the experimental work of Morse et al. (1979)
and the DNS of Schmitt et al. (2014a) for which the schematic and all geometrical
specifications are shown in figure 5. The axis-symmetric assembly consists of a
cylinder with diameter Dc= 75 mm, a static centred valve and a flat piston for which
a sinusoidal motion corresponding to a speed of 200 rpm, a stroke of S=60 mm and a
clearance at top dead centre (TDC) of 30 mm is imposed. The maximum piston speed
and the viscosity were chosen to obtain a Reynolds number of Re= vp,maxDc/ν= 3070.
The valve has the radius rv=16.8 mm and an angle of 30◦, which results in a uniform
valve gap of approximately 4 mm. In the experiment, the system is open and was
mimicked in our simulation by a large reservoir on top of this assembly (not shown
in the schematic) with a volume roughly three times as large as displaced by the
cylinder. Due to the open system, compressibility effects are negligible and the flow
may be regarded as incompressible without any phase change. Initially, a quiescent
flow field is imposed where the piston is located at TDC. Further, the inlet condition
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FIGURE 5. (Colour online) Schematic of the valve/piston assembly (all measures are given
in mm).

at the top of the reservoir is evaluated instantaneously using the current piston velocity
and the ratio of the reservoir and piston area. For all other boundary conditions, the
no-slip boundary condition as outlined in § 2.1 is imposed.

In total, eight cycles were simulated (see the supplementary movie available at
http://dx.doi.org/10.1017/jfm.2016.448) and the first two were neglected in the
accumulation of statistics to avoid initialization effects. Statistical quantities were
computed using azimuthal and ensemble (across cycles) averaging. To study the
nature of the subgrid model, simulations were carried out for a cylinder resolution
of Dc,lb = {100, 150, 300} points, respectively. This yields a total of approximately
N = {8.5, 28, 228}Mio nodes for each simulation and a cubic domain, respectively.
The resolutions were chosen based on our preliminary studies in § 3 for which the
flow regimes in terms of Reynolds number are similar to the one exhibited here.

Using a CRAY XC40 system the computational resources for Dc,lb = 300 amount
to 8.6 × 103CPUh per cycle, which is roughly 20 times less than the corresponding
requirement for the DNS in Schmitt et al. (2014a). The computational cost scales as
pD+1 for a refinement ratio p and the dimensionality D. Note that since a cubic domain
and a regular grid without any local mesh refinement is used, significant optimization
options remain. This is focus of future work as the scope of the study herein is
to validate the implicit subgrid model of KBC for complex flows beyond classical
benchmarks.

4.2. Velocity field
Resolved simulation and the DNS limit

In this section, we report the radial velocity profiles obtained for the intake stroke
at crank angles (CA) of 36◦, 90◦ and 144◦ on different axial planes and make
a comparison with the DNS and the experimental data. In the first instance, the
profiles for the highest resolution are compared to establish the correct convergence
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(a)

(b)

(c)

FIGURE 6. (Colour online) Comparison of streamlines of the averaged velocity field. From
(a) to (c): present results, DNS and experimental data are shown for different crank angles,
respectively.

FIGURE 7. (Colour online) Instantaneous velocity magnitude snapshot at 77◦ CA.

of KBC models. Later in this section, the influence of under-resolution and its
convergence is investigated. The main features of the mean flow field may be
identified by the averaged streamlines shown in figure 6. In good agreement with
both experimental and DNS data, the first phase of the intake stroke consists of fluid
drawn into the chamber by the accelerated motion of the piston, forming a hollow
cone jet. As a consequence, small vortex rings on both sides of the jet are generated,
where the inner ring develops into the main feature as the piston moves further down
and deflects the jet inwards before it is reflected by the piston. At this stage, one
may observe jet breakup processes and the transition to turbulence caused by the
interaction with the flow field. For instance, the Kelvin–Helmholtz instabilities in
the shear layer are captured in the velocity snapshot of figure 7 for the first cycle.
Subsequently, the jet is deflected towards the cylinder wall and a third vortex becomes
apparent in the averaged flow field (see figure 6c).

Note that at 90◦ CA the flow undergoes a transition phase as the jet has reached
its highest momentum and a fully turbulent flow field, dominated by the large vortical
structure, is developed by interaction of the jet with the flow field.

Quantitatively we compare the corresponding mean and r.m.s. velocity profiles
of the axial velocity component vz in radial direction on different axial planes
with respect to the cylinder head in figures 8–10). Consistent with the previous
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FIGURE 8. (Colour online) Comparison of the ensemble and azimuthally averaged axial
mean (a) and r.m.s. (b) velocities at 36◦ CA for a resolution of Dc,lb = 300.

observation, the flow at 36◦ CA is mainly dominated by the incoming jet, which
results in a peak velocity at r/Rc ≈ 0.6. The r.m.s. velocity profiles indicate that the
turbulence generation may be localized to jet shear layer on both sides. It is clear
that the results predicted by the presented KBC model compare well to both DNS
and experiment in terms of mean jet velocities and location. The r.m.s. velocities near
the cylinder head at z= 10 mm are also on top of the DNS data. It is apparent that
more turbulence is generated compared to DNS and experiment close to the cylinder
axis for the z= 20 mm plane, resulting in a broadening of the r.m.s. velocity profile
towards the centre. However, this does not seem to affect the good agreement for
different crank angles as shown below.

At 90◦ CA, the deflection of the jet at the cylinder wall leads to an increase of the
jet radius, which is manifested by a shift of the average velocity profiles towards the
cylinder wall. It should be noted that, as observed in the LES study of Liu & Haworth
(2010), the flow transition at this stage of highest momentum is difficult to capture for
various turbulence modelling approaches. In their work, better agreement was achieved
by adapting the model parameters but led to more discrepancies for 36◦ CA and 144◦
CA. Despite that, figure 9 clearly shows excellent agreement with the KBC model for
both mean and r.m.s. velocity profiles compared with the reference data. A small shift
in radial direction compared to the DNS is visible for the upper axial planes and the
mean profiles but matches the experimental data. In planes beyond z = 20 mm, our
simulation is almost indistinguishable from the DNS result. Analogously, this holds
for the r.m.s. velocity profiles.

At later crank angles, the piston is decelerating and we compare the corresponding
profiles for 144◦ CA in figure 10. Similarly, the discrepancies are marginal for all
data.

Next, let us consider the turbulence statistics of the flow field by means of
the Reynolds stress components and the turbulent kinetic energy k as shown in
figures 11–12. As the comparison is very similar during all phases, we choose the
most interesting transition phase at 90◦ CA as representative. It can clearly be seen
that the turbulent kinetic energy follows the trend of the reference data. Its shift is
analogous to the mean and r.m.s. velocities as shown above and minor discrepancies
in terms of magnitude are visible. This, however, becomes more pronounced for
lower values of the kinetic energy, suggesting that the contribution of the smallest
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FIGURE 9. (Colour online) Comparison of the ensemble and azimuthally averaged axial
mean (a) and r.m.s. (b) velocities at 90◦ CA for a resolution of Dc,lb = 300.

scales is not fully accounted for. Similarly, the radial component v′rv′r shows a good
agreement for the region near the jet entry, but dissipates slightly more. Analogous
behaviour may be found for the Reynolds stress component v′ϕv′ϕ and v′zv′r.

Under-resolved simulations
The above comparison demonstrated an overall excellent agreement between DNS,
experimental data and our simulation using the entropic multi-relaxation time lattice
Boltzmann model and the highest resolution of Dc,lb= 300. This provides evidence for
the convergence of our simulations to DNS. Having established the correct limit, we
can now study the effect of under-resolution.

The discussion is similar for all crank angles and we again choose the most critical
phase at 90◦ CA as representative. In figure 13, the mean and r.m.s. velocity profiles
are shown for cylinder resolutions of Dc,lb={100,150,300} points. It may be observed
that the differences in terms of the average axial velocity profiles between Dc,lb= 150
and Dc,lb= 300 are marginal. The r.m.s. velocity profiles are very similar as well and
only a small over-prediction at the lower resolution may be observed. At first sight,
this is not intuitive as one would expect the turbulence production to be smoothed
out, which would lead to lower values of the r.m.s. velocities. However, in this case,
it may be traced back to very subtle inaccuracies of jet breakup processes, which
affect the formation of the large-scale structures of the flow in a nonlinear manner
and in turn affect the turbulence production leading to slightly higher r.m.s. values.
On the other hand, for the case of Dc,lb= 100, the effect of under-resolution becomes
noticeable. The incoming jet is hardly broken up by the surrounding flow field but
rather by the confining cylinder walls, which leads to a higher penetration depth and
jet radius on average. This may also be seen when considering the corresponding
r.m.s. profiles, where the consistent under-prediction for z= 10–30 mm leads to less
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FIGURE 10. (Colour online) Comparison of the ensemble and azimuthally averaged axial
mean (a) and r.m.s. (b) velocities at 144◦ CA for a resolution of Dc,lb = 300.

turbulence production and therefore a delayed jet breakup with an increased diameter.
Note that this is well within expectations as the valve gap is resolved by only three
fluid points for this case. A comparison to our previous simulations of the pipe would
suggest that the resolution is sufficient even at Dc,lb = 100. However, it needs to be
kept in mind that due to the impinging jet the Kàrmàn number varies in the range
of R+ = uτR/ν ≈ 90–780 (measured for Dc,lb = 300) and that for the local maximum
of R+ ≈ 780 the effect of the small-scale structures cannot be captured accurately at
this resolution. On the other hand, the Kida vortex simulation reveals that the small
structures in the bulk of the chamber are not correctly represented for a resolution as
coarse as Dc,lb= 100, which further suggests that their contribution to the jet breakup
is not fully accounted for. Hence, as expected, the complex flow in the cylinder as a
combination of distinct flow features requires a higher resolution than the individual
building blocks. A slight increase in resolution to Dc,lb = 150 is necessary. Note that
as indicated by the precursor simulations in §§ 3.1 and 3.2, this is still an under-
resolved simulation in which the built-in subgrid model of KBC captures almost all
flow features accurately.

4.3. Cyclic variability
Capturing cyclic variability in internal combustion engine simulations is of crucial
importance for its design as it may significantly influence its efficiency and pollutant
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FIGURE 11. (Colour online) Comparison of the ensemble and azimuthally averaged
turbulent kinetic energy k and the Reynolds stress component v′rv′r at 90◦ CA for a
resolution of Dc,lb = 300.

formation among various other effects. Such variability has also been observed both
numerically and experimentally in the valve/piston assembly (Haworth 1999; Rutland
2011; Schmitt et al. 2014a). Its origin was discussed in the DNS work of Schmitt
et al. (2014b), where it was mainly attributed to the remaining radial velocity at TDC
from the previous cycle, the consequential jet location as well as the vortex ring
orientation at bottom dead centre (BDC).

The aim of this section is to investigate the predictive capabilities of KBC models
concerning the cyclic variability. An indicator of cyclic variability is given by the large
vortex ring formed at BDC, which is visualized for all simulated cycles in figure 14 by
means of the pressure iso-surfaces. Variation in shape, size and orientation is observed.
Particularly pronounced is the distortion of the vortex ring for cycles five and six.

Quantitatively, we compare the correlation plot of the normalized, average radial
velocity vr,T/vp,mean at TDC versus the normalized, average jet radius rjet/rc at 45◦
CA in figure 15. Both quantities are evaluated as in Schmitt et al. (2014b), where the
radial velocity is averaged at TDC azimuthally and radially in an axial window of
11.5 mm starting from the cylinder head. The mean jet radius is defined as the average
of the jet radii contained in the iso-surface of uz = −2.5 m s−1. Our results show
that the phenomenon of a cyclic varying jet radius is observed for all resolutions
and confirm the result of Schmitt et al. (2014b) that it may be correlated to the
residual turbulence at TDC from the previous cycle, where an increased averaged
radial velocity at TDC results in an increased average jet radius and vice versa. It is
notable that even the lowest resolution, for which the average axial velocity profiles
have shown effects of under-resolution, exhibits pronounced cycle-to-cycle variation
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FIGURE 12. (Colour online) Comparison of the ensemble and azimuthally averaged
Reynolds stress components v′ϕv′ϕ and v′zv′r at 90◦ CA for a resolution of Dc,lb = 300.

with the qualitatively correct cause and effect relation. This is indicated in figure 15,
where the linear curve fit has an almost identical slope for all resolutions and therefore
establishes the correlation of the normalized, average radial velocity vr,T/vp,mean at
TDC versus the normalized, average jet radius rjet/rc. In addition, figure 15 reflects
the dominant contributions to the subsequent jet breakup and is consistent with our
previous observations in figure 13. For the lowest resolution, one can observe the
most severe increase of the mean jet radius, which again may be attributed to the fact
that the incoming jet is less influenced by the unresolved small-scale flow structures
but rather is broken up by the interaction with the chamber walls leading to a broader
jet with higher penetration depth. This was also observed for mean velocity profiles
in figure 13. As the resolution is increased, the contributions of the small-scale
structures become more pronounced and their interaction with the jet do not allow
for such large jet radii as in the under-resolved case. On average this yields a lower
penetration depth and smaller jet radii, consistent with both DNS and experimental
data. As expected, the highest resolution yields the best match in terms of the average
jet radius. More simulated cycles will presumably increase the spread on both the jet
radius variability as well as the mean radial velocity.

5. Concluding remarks

In this work, we have presented a detailed study of a novel entropic multi-relaxation
time lattice Boltzmann model for simple and complex flows for both resolved and
under-resolved simulations. It was shown that the KBC model converges towards DNS
simulations and experimental results in terms of average velocities, Reynolds stress
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FIGURE 13. (Colour online) Comparison of the ensemble and azimuthally averaged axial
mean (a) and r.m.s. (b) velocities at 90◦ CA for different resolutions.
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FIGURE 14. (Colour online) Cyclic variation of the vortex ring at BDC visualized by
pressure iso-surfaces for Dc,lb = 300.

components and the turbulent kinetic energy for both simple and complex flow set-ups.
For under-resolved cases, the entropy-based, implicit subgrid model shows predictive
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FIGURE 15. (Colour online) Cyclic variation for all resolutions of Dc,lb= {100, 150, 300}
and the DNS results, quantified by mean jet radius rjet/rc at 45◦ CA and correlated to
the mean radial velocity vr,T/vp,mean at TDC. Lines represent a linear fit through the
corresponding data points.

capabilities already at grids eight times smaller than the resolved case. With further
coarsening, the effect of under-resolution becomes noticeable but is expected as only
three fluid nodes are used in the valve opening. This can be improved with appropriate
grid-refinement in the region of interest and is left for future work. More importantly,
this study shows that kinetic methods with built-in subgrid capabilities become reliable
without the need for identifying and refining the grid in regions of high spacial
gradients (such as near wall regions and jet breakup regions). Also, excellent results
were obtained on a static grid as compared to a moving grid which are commonly
used for such valve/piston set-ups, thus significantly reducing the complexity of the
algorithm and realization. The problem of using appropriate grids for each particular
flow set-up is commonplace for simulation of fluid flows and requires knowledge and
expertise on the flow set-up at hand. This process is heavily simplified due to the
built-in subgrid nature of the entropic lattice Boltzmann models which allow the use
of simple Cartesian meshes for such complex flow set-ups and still retain predictive
capabilities. Thus, the KBC model may be considered as a robust, parameter-free,
efficient and accurate alternative to state-of-the-art modelling techniques such as LES.
Apart from simplicity in the choice of grid and implementation, these kinetic methods
can significantly reduce the computational costs, especially for complex flow set-ups
with moving walls.
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Appendix A. Moment representation of the populations
For ease of notation, let us introduce the trace of the stress tensor

T =M200 +M020 +M002, (A 1)

the normal stress differences

Nxz =M200 −M002,

Nyz =M020 −M002,

}
(A 2)

and the off-diagonal components of the stress tensor at unit density

Πxy =M110,
Πxz =M101,

Πyz =M011,

 (A 3)

which yields the natural moment representation of the population as

f(0,0,0) = ρ(1− T +M022 +M202 +M220 −M222), (A 4a)
f(σ ,0,0) = 1

6ρ (3σux + 2Nxz −Nyz + T − 3σM120 − 3σM102 + 3σM122

− 3M202 − 3M220 + 3M222), (A 4b)
f(0,λ,0) = 1

6ρ (3λuy −Nxz + 2Nyz + T − 3λM210 − 3λM012 + 3λM212

− 3M022 − 3M220 + 3M222), (A 4c)
f(0,0,δ) = 1

6ρ (3δuz −Nxz −Nyz + T − 3δM201 − 3δM021 + 3δM221

− 3M022 − 3M202 + 3M222), (A 4d)
f(σ ,λ,0) = 1

4ρ(σλΠxy + λM210 + σM120 +M220 − σM122 − λM212 − σλM112 −M222),

(A 4e)
f(σ ,0,δ) = 1

4ρ(σδΠxz + δM201 + σM102 +M202 − σM122 − δM221 − σδM121 −M222),

(A 4f )
f(0,λ,δ) = 1

4ρ(λδΠyz + δM021 + λM012 +M022 − λM212 − δM221 − λδM211 −M222),

(A 4g)
f(σ ,λ,δ) = 1

8ρ (σλδM111 + σM122 + λM212 + δM221 + σλM112 + σδM121

+ λδM211 +M222), (A 4h)

where the subscript triple, defined by the indices σ , λ, γ ∈ {−1, 1}, denotes the
associated discrete velocity vector of the population. The model in the main text
utilizes this representation and partitions it into three parts according to (2.6),
where the shear part only includes the deviatoric stress tensor. The contribution
of the locally conserved field (ρ, u) and the deviatoric stress tensor Π ′ to the
populations at unit density is summarized in table 2. Using this partition allows for the
kinematic, the shear and the remaining higher-order moments to be relaxed according
to (2.7).

Appendix B. Boundary conditions
For the treatment of moving boundaries, let us consider figure 16. For the boundary

node xb in the fluid domain, the set of unknown populations D̄ consists of the
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FIGURE 16. The unknown populations at the boundary node xb are represented by the
dashed arrows.u: solid nodes;E: fluid nodes;p: solid boundary nodes;@: fluid boundary
nodes.

(ρ, u) Π ′

(0, 0, 0) 1 0
(σ , 0, 0) σux/2 (2Nxz −Nyz)/6
(0, λ, 0) λuy/2 (−Nxz + 2Nyz)/6
(0, 0, δ) δuz/2 (−Nxz −Nyz)/6
(σ , λ, 0) 0 σλΠxy/4
(σ , 0, δ) 0 σδΠxz/4
(0, λ, δ) 0 λδΠyz/4
(σ , λ, δ) 0 0

TABLE 2. Contribution of the locally conserved fields and the deviatoric stress tensor to
the populations at unit density.

populations advected from the solid into the fluid region and are indicated by the
dashed arrows in figure 16. Those missing populations are evaluated using Grad’s
approximation as given by (2.13) using the target values utgt and ρtgt and the pressure
tensor is evaluated using a second-order finite difference scheme and the previous
time-step values.

The momentum exerted from the object is accounted for by specifying an
appropriate target velocity utgt at xb, which may be obtained by an interpolation
scheme involving the wall velocity uw,i = u(xw,i, t) at the intersection point xw,i and
the velocities uf ,i = u(xf ,i, t) at the adjacent fluid nodes xf ,i = xb + ciδt for i ∈ D̄ as
shown in figure 16. Using an averaged linear interpolation for the target velocity
yields

utgt = 1
nD̄

∑
i∈D̄

qiuf ,i + uw,i

1+ qi
, (B 1)

where nD̄ is the number of unknown populations and qi=‖xb− xw,i‖/‖ci‖. The target
density is composed out of a static and dynamic part yielding

ρtgt = ρstat + ρdyn (B 2)
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FIGURE 17. (Colour online) Instantaneous pressure p∗ = p/(ρvp,max) field slice and its
contours at 90◦ CA during the third cycle.

with

ρstat =
∑
i∈D̄

f bb
i +

∑
i/∈D̄

fi, (B 3)

ρdyn =
∑
i∈D̄

6Wiρ0ci · uw,i, (B 4)

where the static part ρstat is the bounce-back density using the reflected populations
f bb
i = f̃i, where f̃i is associated with the velocity vector c̃i = −ci. The dynamic part
ρdyn accounts for the density alteration by the mass displacement of the moving body,
which may be derived by introducing a forcing term Fi, which is necessary for the
displacement. The mass and momentum conservation∑

i∈D̄

Fi = 0 (B 5)∑
i∈D̄

ciFi = ρuw, (B 6)

directly lead to

Fi = 6Wiρci · uw (B 7)

for the D3Q27-lattice, where the summation over all unknown populations in D̄ yields
the desired change in density.

As mentioned in the main text, the lattice sites uncovered by the moving object
are reinitialized using the equilibrium distribution with the wall velocity and the local
density average. To assert that no pressure waves are triggered at the boundary by the
moving piston and such refill algorithm, figure 17 shows a slice of the pressure field
with overlying pressure contours during the third cycle at its highest momentum at
90◦ CA. It may be seen that the pressure field near the piston boundary appears to
be smooth without spurious shocks.
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In summary, this allows for a treatment of arbitrarily complex objects with second-
order accuracy as shown in our previous work (Dorschner et al. 2015).
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