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Abstract

Most solid-state samples have broad static NMR spectra that are sometimes unresolvable
due to anisotropic interactions like chemical-shift anisotropy and dipolar couplings. These
interactions can be averaged out by magic-angle spinning (MAS) and decoupling techniques
to obtain high-resolution spectra needed for structure determination. However, such inter-
actions also contain rich structural information and have to be reintroduced back during
selected time periods. This is achieved via strategic interference between rf irradiation and
MAS, which prevents the averaging of the anisotropic interaction. The theoretical analysis
of the spin dynamics can be complicated at times if the spin system is modulated by mul-
tiple frequencies. The time-dependent Hamiltonians can be analyzed using Floquet theory,
to determine the effective Hamiltonians. The design of efficient decoupling and recoupling
sequences in solid-state NMR are the main objectives of this thesis.

An introduction to the Hamiltonians involved in solid-state NMR, along with the effect
of MAS will be discussed in Chapter 1. Then, an introduction to time-dependent Hamilto-
nians followed by the determination of effective Hamiltonians using Floquet theory will be
addressed in Chapter 2. The design of efficient homonuclear polarization-transfer experi-
ments via scalar J coupling will be demonstrated in Chapter 3. This can be achieved by us-
ing rotor-synchronized symmetry-based sequences C sequences at either moderate (25−40
kHz) or fast (> 50 kHz) MAS frequencies. In the moderate MAS regime, heteronuclear de-
coupling is often needed for efficient polarization transfer. However, careful optimization is
required to avoid interference between the mixing and decoupling sequence. A systematic
study of the interference effect is established here and it will be shown that the implemen-
tation of XiX decoupling is preferred over CW irradiation due to lower rf requirement and
better hardware control in the timing of the pulses. The usage of decoupling is however not
needed anymore in the regime of fast MAS as the heteronuclear dipolar couplings are suffi-
ciently well averaged by the C sequence itself. Despite that, the existing TOBSY sequences
employ an rf field that is often several times higher than the MAS frequency, making them
less attractive for biological applications. Hence, several low-power TOBSY sequences
operating at fast MAS scheme are proposed and examined.

In principle, homonuclear polarization-transfer can also be mediated via dipolar cou-
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pling. Nevertheless, it was shown that the transfer efficiency is reduced by the higher-
ordered terms in the rotor-synchronized C71

2 sequence. This issue is shown to be cir-
cumvented by exploiting non-rotor synchronized conditions, which generate an effective
Hamiltonians that suppresses the undesired terms efficiently. The theoretical treatment
and analysis of the asynchronous conditions are discussed in Chapter 4. Apart from the
symmetry-based sequences, DREAM, a spin-locking sequence, is also a popular choice for
dipolar-recoupling experiment because it is an adiabatic sequence, i.e. it has a theoretical
transfer limit that is approaching 100%. Nonetheless, the sequence becomes selective if
the chemical-shift difference of the resonances is large relative to the MAS speed. Thus, a
more broad-banded version of the DREAM sequence (XiXCW DREAM) is demonstrated in
Chapter 5 to compensate offset more efficiently.

Besides designing efficient polarization-transfer sequences, the sensitivity of experi-
ments can also be improved by obtaining high-resolution spectra with robust decoupling
sequences. Nonetheless, the theoretical analysis of the decoupling sequences is often com-
plicated as it involves cumbersome calculations of higher-order effective Hamiltonians. A
unified framework for the theory of heteronuclear decoupling for any arbitrary decoupling
sequences is proposed in Chapter 6. It will be shown that the details of a decoupling se-
quence are encoded in the generalized effective Hamiltonians using Fourier coefficients,
which can be computed to compare the performance of decoupling sequences without the
details of a spin system. An outlook and conclusions will be discussed in Chapter 7.



Zusammenfassung

Anisotrope Wechselwirkungen, wie die dipolare Wechselwirkung oder die Anisotropie der
chemischen Verschiebung, führen dazu, dass die Signale in den NMR-Spektren von Fest-
stoffen typischerweise stark verbreitert sind. Um die für die Strukturaufklärung benötigten
hochaufgelösten Spektren zu erhalten, müssen diese orientierungsabhängigen Wechselwirkun-
gen durch Probenrotation um den magischen Winkel (MAS) und Entkopplungstechniken
ausgemittelt werden. Jedoch gehen dadurch auch wertvolle strukturelle Informationen ver-
loren. Durch Anwendung von Radiofrequenzpulsen, die während bestimmter Zeiten während
des Experiments eingestrahlt werden, werden Interferenzen mit den Modulationen durch
die Probenrotation ausgenutzt und eine Ausmittelung von bestimmten Wechselwirkungen
verhindert. Floquet Theorie eignet sich für die Beschreibung der Spindynamik unter kom-
plexen NMR Experimenten in denen der Hamiltonoperator durch mehrere Frequenzen mod-
uliert ist. In diesem Fall kann ein effektiver Hamiltonoperator berechnet werden. Ziel
dieser Arbeit ist die Entwicklung von effizienten Sequenzen zur Entkopplung ("Decou-
pling") und Wiedereinkopplung ("Recoupling") von Wechselwirkungen in der Festkörper-
NMR-Spektroskopie.

In Kapitel 1 wird eine Einführung in die theoretischen Grundlagen der Festkörper-
NMR-Spektroskopie gegeben. Die Struktur der relevanten Hamiltonoperatoren sowie die
Konsequenzen von MAS werden diskutiert. Im Folgenden wird die Behandlung von zeitab-
hängigen Hamiltonoperatoren mittels Floquet Theorie beschrieben. In Kapitel 3 wird die
Entwicklung von effizienten homonuklearen Polarisationstransferexperimenten auf Grund-
lage der J-Kopplung demonstriert. Hierbei kommen rotorsynchronisierte symmetriebasierte
C-Sequenzen beim moderaten (25−40 kHz) oder schnellen (> 50 kHz) MAS zum Einsatz.
Im Regime von moderater Probenrotation ist heteronukleare Entkopplung oft die Voraus-
setzung für effizienten Transfer. Um destruktive Interferenz zwischen der Radiofrequen-
zfeldern auf den unterschiedlichen Kanälen zu vermeiden, ist in der Regel eine genaue
Optimierung der Entkopplung notwendig. In einer systematischen Studie werden diese In-
terferenzen charakterisiert. Es wird gezeigt, dass die Verwendung einer XiX-Entkopplung
der konventionellen CW-Entkopplung vorzuziehen ist, da schwächere Radiofrequenzfelder
benötigt werden und die zeitliche Abfolge der Pulse besser durch die Hardware kontrol-
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liert werden kann. Im Fall von schneller Probenrotation werden die heteronuklearen dipo-
laren Wechselwirkungen wesentlich besser durch die C-Sequenz selbst ausgemittelt und
auf zusätzliche Protonenentkopplung kann daher verzichtet werden. Jedoch benötigen die
verwendeten TOBSY-Sequenzen ein Radiofrequenzfeld, das ein Vielfaches der MAS Fre-
quenz ist, weshalb sie wenig attraktiv für biologische Anwendungen sind. Daher werden
mehrere TOBSY-Experimente mit niedrigen Radiofrequenzfeldern für die Anwendung bei
schnellem MAS entwickelt und ihre Eigenschaften untersucht.

Homonukelarer Polarisationstransfer kann auch über die dipolare Wechselwirkung statt-
finden. Es konnte allerdings gezeigt werden, dass die Transfereffizienz durch Terme höherer
Ordnung im rotorsynchronisierten C71

2-Experiment deutlich reduziert werden kann. Diese
Problematik kann jedoch unter Ausnutzung von nicht rotorsynchronisierten Resoanzbeding-
ungen umgangen werden. In diesem Fall wird ein effektiver Hamiltonoperator erzeugt, in
dem die Fehlerterme effizient unterdrückt sind. Die theoretische Beschreibung und Ana-
lyse der asynchronen Bedingungen wird in Kapitel 4 diskutiert. Neben symmetriebasierten
Sequenzen finden auch Spin-Lock Experimente, wie DREAM, häufig Anwendung in der
Festkörper NMR Spektroskopie. Der grosse Vorteil dieses Experiments ist seine adia-
batische Natur, weshalb die theoretische Transfereffizienz bis zu 100% betragen kann. Ist
die chemische Verschiebungsdifferenz allerdings grösser als die MAS Frequenz, wird die
zunehmende Selektivität des Experiments zum Nachteil. Wie in Kapitel 5 gezeigt, kann in
diesem Fall mit einer breitbandigeren Variante dieses Experiments (XiXCW DREAM) eine
Verbesserung erzielt werden.

Ausser durch die Entwicklung von effizienten Polarisationstransferexperimenten kann
die Empfindlichkeit der Experimente auch durch eine Verbesserung der Auflösung der Spek-
tren mit robusteren Entkopplungssequenzen erreicht werden. Jedoch ist die theoretische
Beschreibung von Entkopplungsexperimenten komplex, da meist Terme höherer Ordnung
aufwändig berechnet werden müssen. In Kapitel 6 wird eine vereinheitlichte Theorie het-
eronuklearer Entkopplungsexperimente vorgestellt. Es wird gezeigt, dass die Eigenschaften
der Entkopplung in einem generalisierten Hamiltonoperator durch Fourier-Koeffizienten
gegeben sind. Diese können ohne die Kenntnis des exakten Spinsystems berechnet wer-
den und zum Vergleich der Effizienzen verschiedener Sequenzen herangezogen werden.

Eine Zusammenfassung der vorliegenden Arbeit sowie ein Ausblick befinden sich in
Kapitel 7.



Chapter 1

Introduction

1.1 Biomolecular Solid-State NMR

NMR is a useful tool to study polymers, inorganic materials and especially biological
molecules. NMR has been a successful method to determine the structures of proteins be-
cause it provides atomic-resolution structures compared to other spectroscopic methods. As
of July 2015, more than 11000 structures deposited in the Protein Data Bank (PDB) were
determined by NMR, most of which are solution-state NMR. There are, however, some
biological macromolecules like membrane proteins and amyloid fibrils that are insoluble
and do not form high-quality crystals, a prerequisite for structure determination using X-ray
crystallography. In this situation, solid-state NMR spectroscopy can be employed to study
the powdered micro crystals or fibrils. Structure determination of biological molecules with
solid-state NMR is a multi-step process. Firstly, sequential resonance assignment [1–3]
has to be performed to correlate each NMR frequency with the nuclear spin of each amino
acid in the primary sequence. Then, the secondary structures are determined by perform-
ing the secondary shift analysis [4, 5]. Alternatively, using the backbone torsion angles
predicted from the chemical shifts with software like TALOS+[6], the secondary structure
can be determined with the aid of Ramachandran plots. Then, one of the most important
steps is to obtain structural or distance restrains, both intra- and inter-molecular via dipolar-
based correlation experiments. Finally, the information is then used for the calculations
of protein structure with programmes that search for the minimal target functions. Some
examples of the programmes are Xplor-NIH [7], which is based on Monte Carlo methods
and conventional gradient-based minimization, and simulated-annealing based CYANA [8].
Some successful examples of biological molecules studied using solid-state NMR include
the HET-s, amyloid β -peptide (Aβ ) fibrils, human islet amyloid polypeptide (hIAPP), and
membrane protein CXCR1 [9–12].
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1.2 Basic NMR Theory

In principle, both classical and quantum mechanics are used to describe the spin dynamics
and certain phenomena in NMR. The approaches of both theories are not the same, and
there are some advantages and disadvantages for each of them. Quantum mechanics are
exact and precise, but the theory can be cumbersome and the discussion is usually limited
to small spin systems. The classical theory can be used to treat larger spin systems, but it
is usually phenomenological and not exact. For instance, quantum mechanics can be used
to explain the NMR spectra in the strong coupling limit but is limited for describing spin
diffusion [13] in a large spin system due to the size of the memory of a computer. While the
spin temperature approach in thermodynamics and rate (differential) equations are classical
theories that can be used to explain the spin-diffusion process but are unable to explain the
echo phenomenon [14]. Hence, different theoretical approaches are taken, depending on
the nature of the context. A brief introduction to the quantum mechanical approach will
be given here as it is an important tool in designing recoupling or decoupling sequences.
This includes density operator, time-dependent and time-independent Hamiltonian, spin-
interaction Hamiltonians etc.

Density Operator

In the quantum-mechanical description of NMR, the state of a spin system can be described
by using the density operator formalism. This is because a spin ensemble is usually con-
sidered in NMR rather than an individual spin. Therefore, the density operator formalism
provides a good statistical description to the weakly interacting identical spin packets. The
formal definition of a density operator is given by

ρ̂ = |ψ⟩⟨ψ|= ∑
i,j

cic∗j |φi⟩⟨φj| (1.1)

with the expectation value of a particular operation Â over the spin ensemble formulated as

⟨Â⟩= ∑
i,j

cic∗j ⟨φj|Â|φi⟩

= ∑
i,j

cic∗j ⟨φi|ρ̂|φj⟩⟨φj|Â|φi⟩

= ∑
i,j

cic∗j ⟨φi|ρ̂|Â|φi⟩

= tr{ρ̂Â} (1.2)
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Signal Intensity and Equilibrium Density Operator

The amount of signal intensity or sensitivity of an NMR experiment can be described by
the equilibrium density operator σ̂0 of a spin ensemble. When a sample is in thermal equi-
librium with the environment, the occupancy probability for the energy eigenstates in σ̂0 is
determined by the Boltzmann’s distribution:

σ̂0 =
exp(−h̄Ĥz/kBT )

Tr{exp(−h̄Ĥz/kBT )}
(1.3)

≈ 1̂
Tr{1̂}

− −h̄Ĥz

kBT Tr{1̂}
(1.4)

where Ĥz =−γ ÎzB0 (1.5)

where the high temperature approximation (h̄γB0 ≪ kBT ) is made to simplify Eq. (1.3).
Note that the denominator in Eq. (1.3) is just a normalization factor in statistical thermody-
namics. The amount of NMR signal can be calculated by taking the population difference
between the spin-up |α⟩ ((σ̂0)11) and the spin-down |β ⟩ ((σ̂0)22) states. It can be calculated
using Eq. (1.6) that only 6×10−5 of the spin ensemble contributes1 to the NMR signal for
proton at temperature T = 303 K in a 18.8 T magnet.

(σ̂0)11 − (σ̂0)22 = h̄γB0/kBT (1.6)

Time Evolution of the Density Operator

If the density operator commutes with the Hamiltonian Ĥ , the density operator remains
stationary and it does not evolve with time. Conversely, the density operator evolves into
other states if they do not commute. The master equation that dictates the dynamics of the
density operator is given by the Liouville-von Neumann equation2 (Eq. (1.7)):

d
dt

ρ̂ =−i[Ĥ , ρ̂(t)] (1.7)

which has a simple analytical solution if the Hamiltonian Ĥ is time-independent:

ρ̂(t) = e−iĤ t
ρ̂(0)eiĤ t (1.8)

1One can see that NMR is actually an insensitive technique.
2Note that h̄ is omitted because the Hamiltonian Ĥ is always expressed in angular frequency.
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The quest of solving the Liouville-von Neumann equation is actually the same as solving the
Schrödinger equation [15]. Moreover, note that the identity operator 1̂ in Eq. (1.5) is often
neglected as it is scalar (a rank-zero tensor) and does not evolve under any Hamiltonian,
leading to a traceless density operator. It is only important to consider the full density
operator in cases when the polarization is high or special circumstances in relaxation theory.

Single Particle and Spin Ensemble

One has to bear in mind that the physics of a single-particle system is different from that of a
spin ensemble. The confusion arises because of the adoption of simple matrix representation
like Pauli or equivalent representation for operator Ŝx, Ŝy, or Ŝz in describing the spin system
in both scenarios. In principle, for a many-body system, one would have to adopt a rank-n
spin tensor or a 2n-th dimensional matrix representation. This is however cumbersome and
unnecessary as the individual spin packets are identical and assumed to be non-interacting
with other spin packets, i.e. the off-diagonal elements in the giant matrix representation
are zero. Hence, it is possible to block diagonalize the giant matrix and sufficient to use
the simple Pauli matrices along with density operator to describe the entire spin ensemble.
Another confusion among students learning NMR theory is that it was known that the act of
measurement causes the spin state to collapse to the eigenstate of the measurement operator,
i.e. the FID can not be recorded continuously, and quadrature detection is not possible. The
flaw lies in the fact that the previous statement is only applicable to the case of single particle,
while we are dealing with a spin ensemble in NMR.

1.3 Hamiltonians in Solid-State NMR

It is common in solid-state NMR that the Hamiltonians Ĥ (Eq. (1.9)) that characterize the
interactions are described by using spherical tensor notation. The space part A(i)

ℓ contains
the information of interaction strength and its orientation dependence, whereas the spin part
Î comprises the quantum mechanical part of the Hamiltonian Ĥ . This notation has the
advantage that each tensor is manipulated independently, i.e. the spatial and spin parts are
modulated by the physical rotation (MAS) and rf irradiation respectively.
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Ĥ = ∑
i

2

∑
ℓ=0

A⃗(i)
ℓ · ˆ⃗

I
(i)
ℓ

= ∑
i

2

∑
ℓ=0

ℓ

∑
q=−ℓ

(−1)qA(i)
ℓ,q · Î

(i)
ℓ,−q (1.9)

where the sum iterates over all interactions with index i and rank ℓ with sub components q.
Note that the sum of the rank components (q and -q) is 0 since the Hamiltonian is a scalar
quantity, and thus invariant with respect to frame transformation. A list of spherical spin
tensors can be found in A.1.1. Only Hamiltonians that are relevant in solid-state NMR will
be discussed in this section, that includes the Zeeman Hamiltonian, chemical-shift interac-
tion, dipolar coupling, J coupling, and rf Hamiltonians. Other interactions that might be
important in other context of solid-state NMR include quadrupolar coupling for spin I ≥ 1,
hyperfine coupling or pseudo-contact shift if unpaired electrons are present.

1.3.1 Zeeman Hamiltonian

When an NMR-active nuclei is subjected to an external magnetic field B0, it precesses either
clockwise or anti-clockwise with respect to the field depending on the sign of the gyromag-
netic ratio, to attain the most stable configuration. The potential energy of such configura-
tion is given by the Zeeman Hamiltonian. The Zeeman Hamiltonian is the most important
interaction in NMR as it accounts for the sensitivity of the experiment and responsible for
the precession of the nuclear spins, i.e. the FID. The Zeeman Hamiltonian under a magnetic
field of B⃗0 = B0ẑ is defined as

Ĥ
(k)

z =−γkB⃗0 ·⃗̂Ik = ω
(k)
0 Îkz (1.10)

where γk is the gyromagnetic ratio of spin k, and ω0 is known as the Larmor frequency. A
classical analogy of the Zeeman Hamiltonian can be appreciated by considering a magnetic
moment µ subjected to an external magnetic field B0. The magnetic moment experiences
a torque, which then aligns itself so that the potential energy E = −µ ·B0 is minimum. In
quantum mechanics, the magnetic moment can be expressed as µ⃗ = γ

⃗̂I. Once the Zeeman
Hamiltonian is known for a spin system, one can determine the eigenstates and calculate
the energy difference between the eigenstates, which is proportional to the amount of signal
according to Boltzmann theorem if the high-field approximation is valid.
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1.3.2 Chemical-Shift Hamiltonian

In practical NMR experiments, a bare nucleus is never measured. The nucleus is surrounded
by electrons that circulate around the nucleus, giving rise to a local induced B⃗ind field at the
nucleus in addition to the external B⃗0 field. Classically, this can be inferred from the Am-
père’s or Biot-Savart law, which states that moving charges induce a magnetic field. The
orientation and magnitude of this local B⃗ind field depend on the electronic charge distribution
and this distribution can be non-uniform. The energy is given by E =−µ⃗ · B⃗ind with µ⃗ = γ

⃗̂I.
In addition, the induced field B⃗ind = χB⃗0 is approximately proportional to the B⃗0 field with
the magnetic susceptibility χ . The quantum mechanics counterpart of magnetic susceptibil-
ity is given by the chemical-shift tensor σ (k), which is used to construct the chemical-shift
Hamiltonian as follows:

Ĥ
(k)

cs =−γk
⃗̂B(k)

ind ·
⃗̂Ik

=−γk ·σ (k)B⃗0 ·⃗̂Ik

≈ σ
(k)
zz ω

(k)
0 Îkz (1.11)

where only the z component is considered in the last step due to the high-field approximation
in the Zeeman rotating frame. The matrix elements in σ (k) are typically in the order of
10−4 to 10−6 for non-ferromagnetic substances, and expressed in terms of ppm (parts per
million). The tensor σ (k)(α,β ,γ) can be in general anisotropic or orientation-dependent.
This results in a broad CSA spectrum with a heterogeneous line width that scales linearly
with the magnetic field B0 for a static powdered sample (Fig. 1.1). A narrow spectrum can
be recovered by performing MAS (Sec. 1.4), which averages out the anisotropic interaction.

The chemical-shift tensor σ can be expressed in the Cartesian coordinate system as σxx,
σyy, and σzz in the principal-axis frame, where all off-diagonal elements vanish. Alterna-
tively, they can also be rewritten in the form of isotropic σiso, anisotropic δ , and asymmetry
η components (Eq. (1.12)). This representation is chosen because the description is more
compact and convenient for the spherical coordinate system.

Isotropy σiso =
σxx +σyy +σzz

3
Anisotropy δ = σzz −σiso

Asymmetry η =
σyy −σxx

δ
(1.12)

Note that different conventions are adopted in literature, and we use the convention [16]
that |σzz−σiso| ≥ |σxx−σiso| ≥ |σyy−σiso|, so that η is always positive and smaller than 1
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while δ can be either positive or negative.

Figure 1.1 Simulated CSA powder spectrum of a 13C resonance under static condition. Figure taken
from Ernst et al. [17].

1.3.3 Dipolar-Coupling Hamiltonian

The dipole-dipole interaction is an interaction in which one spin experiences an additional
local field (apart from the external B0 field) of a nearby spin or a magnetic dipole. The
interaction between two spins is analogous to the situation in which two magnets are brought
close to each other and they could either attract or repel depending on the orientations. The
interaction is important in NMR spectroscopy because the interaction strength depends on
the distance, i.e. ∝ r−3

kn (Eq. (1.19)). Hence, it is often used to extract structural information.
This is manifested directly in the dipolar recoupling experiments like REDOR [18] in solid-
state NMR and nuclear Overhauser effect (NOE) [19] in solution-state NMR.

A brief derivation of the dipolar-coupling Hamiltonian will be shown here. In classical
physics, the magnetic dipole energy can be derived by considering the scalar potential φ 3

(Eq. (1.13)) of a magnetic dipole at a distance r that is sufficiently far away and seeing the
dipole as a point source:

φ =
µ⃗ · r⃗

4π |⃗r|3
(1.13)

3This expression is analogous to the electric potential of an electric dipole, i.e. φ (E) = p⃗·⃗r
ε04π |⃗r|3 where p⃗= qd⃗

is the electric dipole moment and ε0 is the permittivity of free space.
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where µ⃗ is the dipole moment, and the local B⃗1 field due to dipole 1 (Fig. 1.2a) is given by

B⃗1 =−µ0∇φ

=
µ0

4π

( 3⃗r(⃗µ1 · r⃗)
|r|5

− µ⃗1

|r|3
)

(1.14)

and the magnetic potential energy (Sec. 1.3.1) of a magnetic moment µk is given by E =

−µk ·B. So, the magnetic potential energy4 E21 of spin 2 due to presence of the local B⃗1

field by dipole 1 is given by

E21 = µ⃗2 · B⃗1

=
µ0

4π

(3(⃗µ2 · r⃗)(⃗µ1 · r⃗)
|r|5

− µ⃗2 · µ⃗1

|r|3
)
. (1.15)

Then, the dipolar-coupling Hamiltonian can be constructed by promoting the magnetic mo-
ment to the operator form µ⃗ = γ

⃗̂I and one obtains

Ĥ
(k,n)

D =− µ0

4π

γkγnh̄
r3

kn

(
3(⃗Îk · r⃗kn) · (⃗În · r⃗kn)

r2
kn

− (⃗Îk ·⃗̂In)

)
(1.16)

= ⃗̂IkD(k,n)⃗În (1.17)

where D is the symmetric and traceless dipolar tensor with a matrix form of

D(k,n) =−2
µ0

4π

γkγnh̄
r3

kn

−1/2 0 0
0 −1/2 0
0 0 −1

 (1.18)

in the principal-axis system. The general dipolar Hamiltonian defined in Eq. (1.17) can be
further simplified in the case of high-field approximation, i.e. retaining only secular terms
with the following forms depending on whether the coupled spin pair is homonuclear or
heteronuclear.

Ĥ
(k,n)

D =


− µ0

4π

γkγnh̄
r3

kn

3cos2 θ−1
2

(
3ÎkzÎnz −⃗̂Ik ·⃗̂In

)
for homonuclear

− µ0
4π

γkγnh̄
r3

kn

3cos2 θ−1
2 2ÎkzÎnz for heteronuclear,

(1.19)

where θ is the angle between the static B0 field and the internuclear vector r⃗kn (Fig. 1.2).

4Note that E12 = E21.
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There exists a particular alignment that when θ = 54.7◦, the local field is perpendicular or
has zero contribution along the B0 field. This special alignment (θ = 54.7◦) is called the
magic angle. This is an important feature for the MAS experiment (Sec. 1.4). Note that the
transverse term vanishes in the heteronuclear spin system (Eq. (1.19)) because the size of
the dipolar coupling is smaller than the difference in Larmor frequencies.

Figure 1.2 Schematic drawing of the dipolar interaction between two magnetic dipoles. Figure taken
from Ernst et al. [17].

1.3.4 Scalar J-Coupling Hamiltonian

The spins can interact through space directly via dipolar coupling, or indirectly via the
shared electrons in a chemical bond, known as J coupling. The strength of the coupling
depends on the probability of finding electrons at the position of the nucleus (r = 0), also
called Fermi-contact interaction5. Hence, experiments employing J coupling are also known
as through-bond experiments. The Hamiltonian for the scalar J-coupling is given by

Ĥ
(k,n)

J = ⃗̂IkJ(k,n)⃗În (1.20)

where the J tensor is comprised of an isotropic component and an anisotropic compo-
nent. Most literature considers only the isotropic component because the spin form of the
anisotropic part is identical to that of a dipolar-coupling tensor and they are indistinguish-
able. For light nuclei considered in this thesis, the coupling is isotropic in nature, and,
therefore, remains unaffected by the fast tumbling motions in solution-state NMR. Similar
to the dipolar interaction, only the secular terms from the general equation (Eq. (1.20)) are
retained under the high-field approximation.

Ĥ
(k,n)

J =

2πJ(k,n)iso
⃗̂Ik ·⃗̂In for homonuclear,

2πJ(k,n)iso Îkz · Ŝnz for heteronuclear.
(1.21)

5It also contributes to the hyperfine interaction in EPR.
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1.3.5 The RF Hamiltonian

In principle, the spin magnetization can be manipulated by using rf pulses with a frequency
that is matched to the Larmor frequency, regardless of the amplitude of the magnetic B1

component. This is an important aspect of NMR because it allows small-amplitude (in the
mT range) pulses to be employed under the presence of large static B0 (several T) field. Ob-
viously, it is easier to manipulate the spins by switching the small B1 rather than the large B0

field. In modern hardware design of spectrometers and NMR probes, a single-coil configu-
ration is used to generate a linearly polarized electromagnetic wave instead of a circularly
polarized EM wave (two orthogonal coils would be needed). Consequently, half of the am-
plitude in the counter-rotating component with respect to the Larmor precession is wasted.
So, the full laboratory Hamiltonian for linearly-polarized time-dependent electromagnetic
waves irradiating in the x̂ direction is given by

Ĥlab(t) = Ĥrf(t)+Ĥz

= 2ω1 cos(ωrft)Îx +ω0Îz (1.22)

and after the interaction-frame transformation with respect to the Zeeman Hamiltonian

Ĥrot(t) = e−iωrf ÎzĤlabeiωrf Îz −ωrfÎz

= (ω0 −ωrf)Îz +ω1Îx +ω1 cos[(ω0 +ωrf)t]Îx +ω1 sin[(ω0 +ωrf)t]Îy

≈ ω1Îx if ωrf = ω0 ≫ ω1. (1.23)

where the first term in Eq. (1.23) vanishes if the frequency is matched perfectly disregarding
offset, i.e. ωrf = ω0. Consequently, the large dominant Zeeman term is now removed in the
rf rotating frame. Moreover, the last two terms, which are time-dependent, are neglected
since they are oscillating with twice the Larmor frequency and the averaged value (0 for the
cos and sin functions) is taken in this frame. Nevertheless, the fast oscillating components
can give rise to the Bloch-Siegert shift [20] if the rf carrier frequency is closed to the ob-
served resonances, i.e. the magnitude scales inversely proportional to the resonance offset.
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Rabi Oscillation and Nutations

The spin states can change from one eigenstate to another as long as the frequency ν is
matched, i.e. the difference in energy eigenvalues given by E = hν is satisfied, regardless
of the intensity (amplitude) of the electromagnetic wave. This effect is exemplified in the
case of the excitation of NMR resonances, which can take place if the carrier frequency of
the rf pulse matches the Larmor frequency, regardless of the rf amplitude. Nevertheless, the
amplitude of the electromagnetic wave affects the rate of transition between the two eigen-
states, and hence the name Rabi or nutation frequency with a unit of Hz is used to describe
the amplitude. A precise mathematical treatment of this situation is known as Rabi oscilla-
tion. An alternate view of this scenario is that when the amplitude of the wave increases,
so does the number of photon absorbed per unit time. So, spin-up and spin-down states
are exchanging more rapidly and hence resulted in shorter Rabi cycle, or similarly shorter
excitation/inversion pulse in NMR.

1.4 Magic Angle Spinning

Although the anisotropic interactions provide rich information about the spin environment
of the nuclei, they also render broad line width of the resonances. Hence, magic-angle
spinning setups are routinely used in standard solid-state NMR experiments to obtain high-
resolution spectra [21, 22]. The basic principle of MAS can be understood by first con-
sidering how the spatial part of the Hamiltonians (Eq. (1.9)) becomes time-dependent in
the laboratory frame during physical rotations, which can be treated using Euler angles and
Wigner rotations.

1.4.1 Euler Angles and Wigner Rotations

The rotation matrices along the principal axes x,y, and z in a Cartesian coordinate system is
given by Rx,y,z (Eq. (1.24)). However, a general rotation R around an arbitrary axis can not
be represented by using these simple matrices directly. A tilted-frame transformation has to
be used here.

Rx =

1 0 0
0 cosθ −sinθ

0 sinθ cosθ

 Ry =

 cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ

 Rz =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1


(1.24)
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In the tilted-frame transformation, the effective axis of rotation is aligned along the principal
axes in the new frame. Then, the net rotation matrix R(α,β ,γ) can be constructed from
three successive rotations, i.e.

Tx’,y’,z’ = R(α,β ,γ)Tx,y,z (1.25)

where R(α,β ,γ) = Rz”(γ)Ry’(β )Rz(α). (1.26)

This is the basis of Euler rotations and note that the solution is not unique and we adapt the
convention that the first rotation is α around z axis, followed by β around the new y’ axis,
and finally γ around the new z” axis (Fig. 1.3).

Figure 1.3 Graphical representation of the Euler rotation matrix Rz”(γ)Ry’(β )Rz(α) (Eq. (1.26)).
Figure taken from Ernst et al. [17].

Alternatively, the rotations can also be treated according to the symmetries of the spherical-
tensor components:

T (new)
ℓm =

+ℓ

∑
m′=−ℓ

Dℓ
m′,m(α,β ,γ)T (old)

ℓm′ (1.27)

=
+ℓ

∑
m′=−ℓ

e−iαm′
dℓ

m′m(β )e
−iγmT (old)

ℓm′ (1.28)
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and for the inverse-frame transformation:

T (old)
ℓm′ =

+ℓ

∑
m=−ℓ

Dℓ
m,m′(−γ,−β ,−α)T (new)

ℓm (1.29)

where dℓ
m′m is known as the reduced Wigner matrix elements, and the expression is defined

explicitly in A.1.3.

1.4.2 Averaging of Anisotropic Interaction by MAS

In order to analyze the effect of MAS on the Hamiltonian, especially the anisotropic interac-
tions, one must first perform the frame transformation of the interaction into the lab frame,
using the Wigner rotations:

A(lab)
ℓm′′ =

+ℓ

∑
m′=−ℓ

Dℓ
m′,m′′(−ωrt,−θr,0)

+ℓ

∑
m=−ℓ

Dℓ
m,m′(α,β ,γ)ρ (PAS)

ℓm (1.30)

=
+ℓ

∑
m′=−ℓ

Dℓ
m′,m′′(−ωrt,−θr,0)A

(rot)
ℓm′ (1.31)

where ωr is the MAS frequency. In principle, one can assign m′′ = 0 if the high-field ap-
proximation (see Eq. (1.9)) is taken to obtain

A(lab)
ℓ0 =

+ℓ

∑
m′=−ℓ

e−im′ωrtdℓ
m′,0(−θr)A

(rot)
ℓm′ . (1.32)

It can be inferred from the exponential term in Eq. (1.32) that the m′ =±1,±2 terms vanish
if the FID is sampled at multiples of the rotor period6. Note that the time-independent
component (m′ = 0) is scaled by d2

00 =
3cos2 θm−1

2 , which will be 0 if the following condition
is satisfied:

θm = cos−1(1/
√

3)≈ 54.7◦. (1.33)

The angle θm is known as the magic angle. A more detailed analysis of the effect of MAS
in the solid-state NMR is presented in Sec. 2.3.

6Failure to perform rotor-synchronized sampling will lead to spinning sidebands for slow MAS frequency
if the MAS frequency is smaller than the size of the interaction.
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Figure 1.4 Static (red) and MAS at νr =1 kHz (blue) spectra of 13C-glycine ethylester measured in a
500 MHz magnet. The two spectra are normalized such that the maximum intensities are the same.

1.4.3 Static Powder Spectra and Spinning Sidebands

Powdered samples are often investigated in solid-state NMR as high-quality single crys-
tals are not always obtainable, especially for insoluble biological molecules like fibrils and
membrane proteins. Hence, in a powdered spectrum, the random orientations of microcrys-
tallites have resulted in a superposition of spectra with resonances at different frequencies.
Figure 1.4 shows the static powdered spectrum (red) of glycine ethylester where the reso-
nances are broadened by CSA and dipolar couplings. The carbonyl resonance is broader as
the anisotropy δCSA is larger than that of Cα . The same sample measured under MAS con-
dition is shown as an overlay (blue). A higher-resolution spectrum with spinning sidebands
separated by νr = 1 kHz is observed. The CSA sidebands occur because all crystallites
return to the original position after every rotor period, i.e. the evolution due to the CSA
component is refocussed. Thus, the net FID appears like a signal convolved with a Shah
function. According to the convolution theorem, the resulting spectrum appears like a static
spectrum multiplied by a frequency comb function separated by νr=1 kHz. In principle, a
higher MAS frequency would result in weaker spinning sidebands, thereby increasing the
signal to noise ratio of the central peak. Note that there is some loss in the signal intensity
during MAS condition because the sidebands of individual crystallites do not have the same
phase [23]. All sidebands are "in phase" only in the case of a powdered spectrum.
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1.5 Adiabatic Experiment

If an effective Hamiltonian contains an orientation-dependent spin interaction, spin pack-
ets from each crystallite will evolve at different rates, and the same final spin state can
not be reached by all crystallites simultaneously. This effect accounts for the fact that the
theoretical maximum amount of polarization transfer in recoupling experiment like CP is
only ∼ 73% [24, 25]. In principle, a theoretical maximum of approaching ∼ 100% can be
achieved using adiabatic experiments, where spin states are changing quasistatically along
the slowly changing effective Hamiltonian, and end up in an eigenstate of the final Hamilto-
nian. Hence, most crystallites will reach the same final state simultaneously and obtain near
∼ 100% transfer efficiency. This is in contrast to the diabatic/sudden experiment in which
the effective Hamiltonian remains time-independent, and the eigenstates are evolving within
the defined subspace. An example of an adiabatic experiment is the design of an inversion
pulse to rotate the spin state from Îz to −Îz (Fig. 1.5). Let us consider a time-dependent
Hamiltonian Ĥ (t) with an offset χ(t) and rf field |deff|:

Ĥ (t) = χ(t)Îz + |deff|Îx (1.34)

where the time-dependent Hamiltonian Ĥ (t) should be varied while fulfilling the following
conditions:

Ĥ (0) = χiÎz (1.35)

Ĥ (T/2) = |deff|Îx (1.36)

Ĥ (T ) = χfÎz (1.37)

to ensure that the density operator σ(T ) is along the same direction as defined by Ĥ (T ).
In general, Ĥ (t) can be varied using different mathematical expressions, but it is important
that the adiabaticity a(t) has to be at least 5 so that the experiment remains adiabatic (Eq.
(1.38)). In general, a truly adiabatic experiment would require infinitely long time, but this
is unrealistic as it is limited by relaxation effects. A detailed description of the theory an
applications of adiabatic experiments are discussed in literature [26, 27].

a(t) =

√
χ2(t)+ |deff|2
|dΘ(t)/dt|

≫ 1 (1.38)

where Θ(t) = arctan(|deff|/χ(t)) (1.39)
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Figure 1.5 Rotation of density operator σ from Îz to −Îz under a (a) diabatic or (b) adiabatic experi-
ment. Figure taken from Ernst et al. [17].

Classical Thermodynamics and Quantum Adiabatic Theorem

Adiabatic conditions in classical thermodynamics refer to situation in which there is no
heat Q gain or loss during the process, and it is usually demands an infinitely slow process.
Adiabatic experiment in quantum mechanics, however, has no direct relation with respect to
heat exchange. Perhaps a closer analogy would have been the quasistatic process.

Berry Phase

Berry phase is a geometrical phase acquired over the course of a cycle, when a system is
subjected to an adiabatic process. The relevance of the Berry phase has been discussed in the
literature [28, 29]. The implication is limited in the applications of NMR, as most adiabatic
pulse sequences involve only an adiabatic half passage, i.e. are not cyclic in nature.



Chapter 2

Theory of Time-Dependent Hamiltonians

2.1 Introduction

In the static case, where the Hamiltonian Ĥ is time independent (Eq. (2.1)), the dynamics
of the spin operator can be determined analytically. It is however non-trivial to treat the case
when the Hamiltonians becomes time-dependent Ĥ (t). This happens when the energy of a
system is being perturbed continuously, i.e. by rf irradiation (Sec. 2.2) or physical spinning
of the sample in the MAS experiment (Sec. 2.3).

Ĥ = ∑
i

2

∑
ℓ=0

ℓ

∑
q=−ℓ

(−1)qA(i)
ℓ,q · Î

(i)
ℓ,−q

Ĥ (t) = ∑
i

2

∑
ℓ=0

ℓ

∑
q=−ℓ

(−1)q A(i)
ℓ,q(t)︸ ︷︷ ︸
MAS

· Î(i)ℓ,−q(t)︸ ︷︷ ︸
rf irradiation

(2.1)

When the Hamiltonian changes with respect to time, the eigenvalues of the eigenfunctions
change too. Moreover, the analytical solution (Eq. 1.8) to the evolution of density oper-
ator ρ̂(t), derived from the Liouville-von Neumann equation (Eq. 1.7), is applicable only
if the Hamiltonian Ĥ does not have explicit time dependence. In this chapter the theo-
retical treatments to obtain the effective time-independent Hamiltonians during the energy
perturbations will be discussed, thereby enabling the evolutions of the density operator to
be determined. The quest of finding time-independent Hamiltonians is essentially similar
to solving the time-independent Schrödinger equation. It is the main topic in this thesis,
to determine the time-independent effective Hamiltonian that eventually governs the spin
dynamics of the density operator. This is essential in designing pulse sequences, so that de-
sired effective Hamiltonians that are robust to experimental uncertainties are obtained. Two
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theoretical treatments will be discussed in this chapter, namely average Hamiltonian Theory
(AHT) [30, 31] and Floquet theory [32–35].

Figure 2.1 Schematic diagram of the origin of time-dependent Hamiltonian Ĥ (t) due to physical
rotations (MAS) and/or spin rotations (rf irradiation). Part of the figure is taken from Ernst [36].

2.2 Modulation of the Spin Tensors by RF Irradiations

2.2.1 Fourier Series of Time-Dependent Hamiltonians

If the perturbation to the Hamiltonian is periodic in nature (Eq. (2.3)), the time-dependent
Hamiltonian can be expressed in a form of Fourier series (Eq. (2.2))

Ĥ (t) =
∞

∑
n=−∞

Ĥ (n) · einωct (2.2)

for Ĥ (t) = Ĥ (t + τc) (2.3)

where the cycle time τc is given by 2π/ωc, Ĥ (n) are the time-independent Fourier coeffi-
cients of the Hamiltonian and are not Hermitian, i.e. Ĥ (n) ̸= Ĥ (n)†, but satisfy

Ĥ (n) = Ĥ (−n)† (2.4)

so that the full Hamiltonian Ĥ (t) is Hermitian at all times t. In principle, the Hamiltonian
can gain multiple time dependencies that are not necessarily commensurate, for instance

Ĥ (t) =
∞

∑
n=−∞

∞

∑
k=−∞

∞

∑
ℓ=−∞

Ĥ (n,k,ℓ) · einωct · eikωbt · eiℓωat (2.5)
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where ωa, ωb, and ωc represent the characteristic frequencies with arbitrary values. In the
context of this thesis, these frequencies are typically MAS frequency, modulation frequency
of a multiple pulses sequence, and the effective nutation frequency (vide infra).

2.2.2 Interaction-Frame Representation

The dynamics of the spin density operator can be determined analytically if it is governed
by a Hamiltonian Ĥ that commutes with itself at all times, i.e. all terms share a common
set of eigenfunctions. It is a common situation in NMR that the terms in the Hamiltonian
do not commute, e.g. rf irradiation that results in Ŝx operator, which does not commute with
the dominant Zeeman Ŝz term. In this situation, one can either diagonalize the Hamiltoni-
ans by finding a new set of eigenstates, or perform an interaction-frame transformation to
reduce the number of terms. It is non-trivial to diagonalize the Hamiltonians analytically
and the corresponding solutions often have complicated expressions and hence yield less
physical insights. Whereas interaction-frame transformation is easier to be computed and
the solutions are often more intuitive, and hence this method is preferred. Firstly, the density
operators in the lab ρ̂(t) and rotating ρ̂ ′(t) frame are given in Eq. (2.6).

ρ̂
′(t) = Û−1

1 (t)ρ̂(t)Û1(t)

ρ̂(t) = Û1(t)ρ̂ ′(t)Û−1
1 (t) (2.6)

where Û1 symbolizes the propagator for the dominant Hamiltonian Ĥ1.

Û1(t) = T̂ exp
(
− i

t∫
0

dt1Ĥ1(t1)
)

(2.7)

where T̂ is the Dyson time-ordering operator [37], which acts on the Hamiltonians in the
following way

T̂{Ĥ (t1)Ĥ (t2)}=

Ĥ (t1)Ĥ (t2) if t1 > t2

Ĥ (t2)Ĥ (t1) if t1 < t2
(2.8)

to ensure that the earlier Hamiltonian acts on the density operator before the later Hamilto-
nian, analogical to the time discrete case (Eq. (2.16)). Then, by substituting Eq. (2.6) into
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Eq. (1.8), one obtains

d
dt
(
Û1ρ̂

′Û−1
1
)
=−i[Ĥ Û1ρ̂

′Û−1
1 −Û1ρ̂

′Û−1
1 Ĥ ]

−iĤ1Û1ρ̂
′Û−1

1 +Û1
d
dt

ρ̂
′Û−1

1 + iÛ1ρ̂
′Ĥ1Û−1

1 =−i[Ĥ Û1ρ̂
′Û−1

1 −Û1ρ̂
′Û−1

1 Ĥ ]

Û1
d
dt

ρ̂
′Û−1

1 =−i[Ĥ Û1ρ̂
′Û−1

1 −Û1ρ̂
′Û−1

1 Ĥ −
(
Ĥ1Û1ρ̂

′Û−1
1 −Û1ρ̂

′Ĥ1Û−1
1
)
]

d
dt

ρ̂
′ =−i[Û−1

1 Ĥ Û1ρ̂
′− ρ̂

′Û−1
1 Ĥ Û1 −

(
Ĥ1ρ̂

′− ρ̂
′Ĥ1

)
]

d
dt

ρ̂
′ =−i[Ĥ ′−Ĥ1, ρ̂

′]

d
dt

ρ̂
′ =−i[Ĥ ′

0 , ρ̂
′] (2.9)

where Ĥ ′ represents the full Hamiltonian in the interaction frame and Ĥ ′
0 = Ĥ ′− Ĥ1 is

the non-dominant part of the full Hamiltonian in the interaction frame, i.e. a new effective
Hamiltonian that governs the spin dynamics of the spin operator in the rotating frame. Note
the similarity between the Liouville-von Neumann equation in the lab frame (Eq. (1.7)) and
in the rotating frame (Eq. (2.9)).

Ĥ ′(t) = Û−1
1 (t)Ĥ (t)Û1(t) (2.10)

A Classical Interpretation of Interaction-Frame Transformation

A classical analogy of the interaction-frame transformation in quantum mechanics is the
earth rotating-frame [38], which we are familiar with. Imagine a scenario where an astronaut
in the space (lab-frame) is measuring the speed of a train that is travelling at a speed of 100
km/h on earth. The astronaut would have measured the speed to be ∼ 1774 km/h, as the
tangential speed of earth is ∼ 1674 km/h. It is actually much easier if the astronaut had
imagined himself rotating at the same velocity as the earth and taken the measurement, and
neglect the large tangential speed (dominant Hamiltonian Ĥ1) in his calculations, i.e. a
rotating-frame transformation.

Applicability of Interaction-Frame Transformation

The dominant Hamiltonian Ĥ1 usually has eigenvalues and eigenfunctions that can be
solved exactly, and they comprise the propagator Û1(t) in the operators Â′(t) and state func-
tions |ψ ′(t)⟩ or density operators ρ ′(t) (Eq. (2.11)). This has an advantage that the non-



2.2 Modulation of the Spin Tensors by RF Irradiations 21

dominant part Ĥ0 can be analyzed separately from the full Hamiltonian Ĥ = Ĥ0 +Ĥ1.

|ψ ′(t)⟩= Û−1
1 (t)|ψ(t)⟩

ρ
′(t) = Û−1

1 (t)ρ(t)Û1(t)

Â′(t) = Û−1
1 (t)Â(t)Û1(t) (2.11)

where Û1(t) = T̂ exp
(
− i

t∫
0

dt1Ĥ1(t1)
)

(2.12)

In order to simplify the calculations further, especially in the treatment of AHT, it is impor-
tant that the dominant Hamiltonian is cyclic, i.e. Ĥ1 = Ĥ1(t + τc), and hence Û1(t) = 1̂
(Eq. (2.12)). Hence, the operators and the density operators in both interaction and lab
frames are the same, i.e. Ĥ0

′
(t) = Ĥ0(t) and ρ ′(t) = ρ(t) (Eq. (2.11)). An important is-

sue when applying interaction-frame transformation is the choice of the dominant Ĥ1 and
non-dominant Ĥ0 Hamiltonian. Ĥ0 usually differs from Ĥ1 by orders of magnitude. If
the size of the Hamiltonians are comparable, care has to be taken when making approxima-
tions in the interaction frame. For instance, non-secular parts of hyperfine interaction are
not negligible in the nuclear Zeeman interaction frame if the sizes of both interactions are
comparable.

Schrödinger, Heisenberg, and Dirac Representation

In principle, the time-evolution operator can act either on the state functions |ψ⟩ or operator
|Ĥ ⟩. In the Schrödinger representation, the state functions evolves with respect to the time-
independent operator. In the Heisenberg representation, the operators are allowed to evolve
in time while the state vectors remain time-independent. Nevertheless, in most cases in
NMR, the calculations are performed in the Dirac or interaction picture, where both state
functions and operators are acted by the unitary propagator Û1(t), which is usually set so
that Û1(tc) = 1̂.
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2.3 Modulation of the Spatial Tensors by MAS

The effect of MAS on the Hamiltonian has already been discussed in Sec. 1.4.1, and if the
results (Eq. (1.31)) are substituted into Eq. (2.2):

Ĥ (t) =
ℓ

∑
n=−ℓ

Ĥ (n)e−inωrt

=
ℓ

∑
n=−ℓ

dℓ
n,0(−θr)A

(rot)
ℓn (α,β ,γ)e−inωrt · Îℓ,0

= ∑
n

∑
n′

dℓ
n,0(−θr)e−in′αdℓ

n′,n(β )e
−inγ

ρ
(PAS)
ℓn′ e−inωrt · Îℓ,0

= ∑
n

ω
(n)Îℓ,0e−inωrt (2.13)

where ω(n) is the spatial tensor component of a spin interaction under MAS.

ω
(n) = ∑

n′
dℓ

n,0(−θr)e−in′αdℓ
n′,n(β )e

−inγ
ρ

(PAS)
ℓn′ . (2.14)

The integer n is summed from -2 to 2 because it is rank ℓ= 2. In addition, α , β , and γ (Eq.
(1.31)) are the Euler rotation angles from the PAS frame to the rotor axis, and ρ

(PAS)
ℓm are the

spatial spherical tensors defined in the PAS frame (Eq. (2.15)).

ρ0,0 =−
√

3σiso

ρ2,0 =
√

3/2δ

ρ2,±2 =−1/2(δη) (2.15)

where σiso, δ , and η are the isotropic, anisotropic, and asymmetry components respectively
(Eq. (1.12)). Note that the asymmetry η is zero1 in the case of dipolar coupling. Further
discussions of the effect of MAS on solid-state NMR can be found in the literature [23].

2.4 Average Hamiltonian Theory

A time-independent HamiltonianĤ can be obtained by computing the average of different
time-dependent Hamiltonians Ĥ (t) over the course of a period τc. For instance, if different
rf schemes are applied at different time periods (Fig. 2.2), the effect on the chemical-shift

1 The asymmetry can be set to be non-zero if motions or dynamics are considered [39].
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Figure 2.2 Schematic representation of the replacement of a time-dependent Hamiltonian Ĥ (t) by
an average Hamiltonian Ĥ .

term Ŝz can be determined by performing an interaction-frame transformation (Eq. (2.10))

Ŝ′z(t1, t2) = eiĤ1t1eiĤ2t2 Ŝze−iĤ2t2e−iĤ1t1 (2.16)

= Ûeff(tc)ŜzÛ−1
eff (tc) (2.17)

= eiĤ tc Ŝze−iĤ tc (2.18)

where the Ĥ1 and Ĥ2 are time-independent over the period t1 and t2. Depending on the
details and number of terms in the Hamiltonians Ĥ1 and Ĥ2, the calculation (Eq. (2.16)) can
be cumbersome if more propagators are taken into account. Therefore, instead of analyzing
the effect of each propagator individually, the product of the propagators can be replaced
by a single effective propagator Ûeff(tc) (Eq. (2.17)) that is characterized by an average
Hamiltonian Ĥ (tc) over the total period tc = t1 + t2 [30, 31]. However, one has to be
aware that the Hamiltonian must be periodic with a cycle time tc, i.e. it is not applicable, for
instance, in adiabatic sequences. Moreover, the analytical treatment requires a stroboscopic
observation, i.e. the analytical result is only valid for detection every tc2.

In general, one has to invoke the Baker-Campbell-Hausdorff (BCH) relation (Eq. (2.19))
to calculate the product of the two propagators or determine Ĥ (tc).

exp(iĤ tc) = exp(iĤ1t1)exp(iĤ2t2) = exp
(

i(Ĥ1t1 +Ĥ2t2)−
1
2
[Ĥ1t1,Ĥ2t2]

− i
12

[Ĥ1t1, [Ĥ1t1,Ĥ2t2]]+ . . .

)
(2.19)

The average Hamiltonian Ĥ (tc) is given by the first term in Eq. (2.19) if both Ĥ1 and
Ĥ2 commute. Otherwise, one has to truncate the expansion series up to certain orders
depending on the details required by an experiment. The series expansion in the exponent

2If the evolution time for a specific interaction t ≫ tc, the error from non-stroboscopic observation may be
negligible.
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can be rearranged according to the number of commutator involved, and Ĥ is now given
by

Ĥ =Ĥ
(1)

+Ĥ
(2)

+Ĥ
(3)

+ . . . (2.20)

where the explicit definitions of the first two orders of average Hamiltonians Ĥ
(1)

and

Ĥ
(2)

are given in the following form to ensure that each order of the Hamiltonians is Her-
mitian and they are generalized for an arbitrary number of time periods.

Ĥ
(1)

=
1
tc

n

∑
k=1

Ĥktk

Ĥ
(2)

=
−i
2tc

n

∑
k>m

[Ĥktk,Ĥmtm] (2.21)

or in a generalized continuously time-dependent form called Magnus expansion

H (1) =
1
tc

tc∫
0

dt1Ĥ (t1)

H (2) =
−i
2tc

tc∫
0

dt2

t2∫
0

dt1[Ĥ (t2),Ĥ (t1)]. (2.22)

Note that the first-order average Hamiltonian Ĥ
(1)

does not have explicit dependence on

the time tc, but the second-order Ĥ
(1)

depends linearly on tc. This is one of the reasons
that the coherent averaging by MAS in solid-state NMR is more efficient at higher MAS
frequencies (short rotor period tr). In general, higher order of effective Hamiltonians are

smaller and the series converges due to the relation Ĥ
(n)
(t(n−1)

c ). A second implication
that can be inferred from the Eq. (2.22) is that all even orders of effective Hamiltonians
vanish if the Hamiltonian is symmetric with respect to a certain cycle time tc, i.e.

Ĥ (t) = Ĥ (tc − t) for 0 ≤ t ≤ tc. (2.23)

It was discussed earlier that the AHT treatment requires stroboscopic measurement, i.e.
setting the dwell time to a multiple of cycle time tc. This requirement can be difficult to be
fulfilled if the Hamiltonians involve several time dependencies with frequencies that are not
commensurate. Hence, Floquet theory can be a viable option in circumventing this issue.
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Piecewise Constant Hamiltonian

In principle, any time-dependent Hamiltonians Ĥ (t) can be expressed as a product of n
piecewise constant Hamiltonians over a period of t/n as long as n is sufficiently large, i.e.
the period ti is so short that the Hamiltonian can be assumed to remain unchanged (t1 ≪ Ĥ1).
This is known as the piecewise constant Hamiltonians, and it is manifested in Eq. (2.16).
This is analogous to performing integration by determining the area under an analytical func-
tion, i.e. the numerical integration is more accurate if smaller steps in the domain are taken.
This has important implications in the numerical simulations of the quantum-mechanical
problem.

2.5 Floquet Theory

Other than treating time-dependent Hamiltonians using AHT, a viable alternative is Floquet
theory [32–35, 40]. As discussed in the earlier section (Sec. 2.4), the shortcoming of AHT
is that the description is limited to a multiple of cycle time. This is sufficient if the Hamil-
tonian is only characterized by a single frequency. In solid-state NMR, the Hamiltonians
often involve several time dependencies that are not necessarily an integer multiple of each
other, i.e. multiple-pulse decoupling sequences are rarely rotor synchronized. This issue is
circumvented in the spirit of Floquet theory. The time-dependent Hamiltonians Ĥ (t) are
being treated in an infinite-dimensional Floquet space which is comprised of a spin Hilbert
space and one or more Fourier spaces, i.e. the bases Ψ (Floquet) that span a Floquet space is
given by

Ψ
(Floquet) =Ψ

(Hilbert)⊗Ψ
(Fourier) (2.24)

= {|ψ1⟩, |ψ2⟩, . . . , |ψN⟩}⊗{|−∞⟩, . . . , |−1⟩, |0⟩, |1⟩, |2⟩, . . . , |∞⟩} (2.25)

where Ψ (Hilbert) is the set of basis vectors that span a N-dimensional Hilbert spin space,
which is also used in AHT. The Fourier space is an infinite-dimensional space with basis
vectors Ψ (Fourier) that are characterized by integer quantum numbers (Eq. (2.25)) with some
useful operators like ladder operators F̂m which occupy the m-side diagonal in their matrix
representation form (Fig. 2.3)

F̂m|n⟩= |m+n⟩ (2.26)
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and F̂0 is the identity operator in the Fourier space. Another useful operator is the number
operator F̂z which contains non-zero diagonal elements in its matrix representation

F̂z|n⟩= n|n⟩. (2.27)

Furthermore, the operators obey the following relations

F̂mF̂n = F̂m+n

[F̂m, F̂n] = 0

[F̂z, F̂m] = mF̂m. (2.28)

These operators are useful in constructing Floquet Hamiltonians (vide infra).

Figure 2.3 Matrix representations of the ladder operator F̂1, F̂−2 and number operator F̂z. Figure
taken from Scholz et al. [33].
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2.5.1 Floquet Hamiltonian

A Floquet Hamiltonian ĤF can be constructed by promoting a time-dependent Hamiltonian
Ĥ (t) (Fig. 2.4)

Ĥ (t) =
∞

∑
n=−∞

Ĥ (n) · einωmt (2.29)

into the form of

ĤF = Ĥ
(1)

F +Ĥ
(0)

F (2.30)

=
∞

∑
n=−∞

F̂n ⊗Ĥ (n)+ωm · F̂z ⊗ 1̂(s) (2.31)

where 1̂(s) is the identity operator in the Hilbert spin space. Note that the additional term
ωm · F̂z is analogous to the fictitious Coriolis force experienced in an interaction-frame trans-
formation.

Figure 2.4 Schematic diagram of the construction of the operator-based Floquet theory. Figure taken
from Scholz et al. [33].
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2.5.2 Operator-Based Floquet Theory

Once the Floquet Hamiltonians are constructed, there are several methods to proceed with
the determination of the spin dynamics. The first method involves the evolution of the
density operator followed by observation using detection operators defined in the Floquet
space. This method has the advantage that the theory is exact and it can describe side bands
and degeneracies resulting from the close energy levels between the Fourier-space and spin-
space resonance conditions. Nevertheless, the calculations yield limited physical insight
and are often limited to simple spin systems due to large matrices.

The second approach is to use the van-Vleck transformation [41, 42] to obtain approxi-
mately block-diagonalized Floquet Hamiltonians ΛF without the need to know the detailed
knowledge of the Hilbert spin space. One of the shortcomings of this approach is that the
resonance condition arising from the frequency matching between the characteristic fre-
quencies and the spin interactions in the Hilbert space can not be seen directly, i.e. addi-
tional interaction-frame transformation with respect to spin interactions must be dealt with
externally. Nevertheless, this operator-based description is sufficient if the characteristic
frequencies are well separated. Finally, the Floquet Hamiltonians ΛF can be projected back
to the Hilbert space to obtain effective Hamiltonians that are similar to AHT. The derivation
of the effective Hamiltonian H̄eff can be found in the reference [33], and the final result will
be presented here and can be used as a ’shortcut’ directly from Ĥ (t) (Fig. 2.4).

2.5.3 Effective Hamiltonian

For a time-dependent Hamiltonian Ĥ (t) that is for example, modulated by two character-
istic frequencies ωr and ωm:

Ĥ (t) =
∞

∑
n=−∞

∞

∑
k=−∞

Ĥ (n,k) · einωrt · eikωmt . (2.32)

The effective Hamiltonian is given by

Ĥ =Ĥ
(1)

+Ĥ
(2)

+ . . . (2.33)

in which the first order effective Hamiltonian Ĥ (1) is comprised of the sum of all possible

resonant ˆ̃H (n0,k0) and non-resonant terms ˆ̃H (0,0) (Eq. (2.34)).

Ĥ
(1)

= ˆ̃H (0,0)+ ∑
(n0,k0)

ˆ̃H (n0,k0) (2.34)
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where n0 and k0 are integers that satisfy the resonance condition (Eq. (2.35)).

n0ωr + k0ωm = 0 (2.35)

Similarly, the second-order effective HamiltoniansĤ (2) are defined as follows

Ĥ
(2)

= ˆ̃H (0,0)
(2) + ∑

(n0,k0)

ˆ̃H (n0,k0)
(2) (2.36)

ˆ̃H (n0,k0)
(2) =−1

2 ∑
ν ,κ

[ ˆ̃H (n0−ν ,k0−κ), ˆ̃H (ν ,κ)]

νωr +κωm
(2.37)

where ν and κ can be any integer numbers as long as νωr + κωm ̸= 0 to ensure that the
denominator of Eq. (2.37) does not become ∞.

Trimodal Floquet Theory

In principle, the resonance conditions and effective Hamiltonians can be easily extended
to any arbitrary number of characteristic frequencies. For instance, for a time-dependent
Hamiltonian Ĥ (t) with three characteristic frequencies ωr, ωm, and ωeff

Ĥ (t) =
∞

∑
n=−∞

∞

∑
k=−∞

∞

∑
ℓ=−∞

Ĥ (n,k,ℓ) · einωrt · eikωmt · eiℓωefft (2.38)

The first order effective Hamiltonian is given byĤ (1)

Ĥ
(1)

= ˆ̃H (0,0,0)+ ∑
(n0,k0,ℓ0)

ˆ̃H (n0,k0,ℓ0) (2.39)

where n0, k0, and ℓ0 are integers that satisfy the resonance condition

n0ωr + k0ωm + ℓ0ωeff = 0 (2.40)

while for the second-order effective Hamiltonian Ĥ (2)

Ĥ
(2)

= ˆ̃H (0,0,0)
(2) + ∑

(n0,k0,ℓ0)

ˆ̃H (n0,k0,ℓ0)
(2) (2.41)

ˆ̃H (n0,k0,ℓ0)
(2) =−1

2 ∑
ν ,κ,λ

[ ˆ̃H (n0−ν ,k0−κ,ℓ0−λ ), ˆ̃H (ν ,κ,λ )]

νωr +κωm +λωeff
(2.42)
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with ν , κ , and λ being any integer numbers fulfilling

νωr +κωm +λωeff ̸= 0 (2.43)

to ensure that Eq. (2.42) does not become ∞.

Extra Non-Resonant Terms in Higher-Order Averaging

Note that in evaluating second- and higher order terms, it has been discussed in literature
[34, 42–44] that there exists an extra term that is comprised of the commutator between
the resonant and non-resonant term. The origin of this term can be derived and seen by
inspecting the lower limit of the time integration (Eq. (2.22)), which is 0 (or perhaps the
initial condition, which can be substituted by any other variable). The effect of this extra
term is not clear and sometimes deemed an artefact and therefore disregarded in literature.

2.5.4 Characteristic Frequencies

The nuclear spins can be manipulated by the rf irradiations, and the pulse sequences are
tailored to reintroduce desired spin interactions to the system (recoupling), or to average
undesired spin interactions (decoupling). In order to analyze the effect of the pulse se-
quences using Floquet theory, it is important to determine the resonance conditions (Eq.
(2.35) and (2.40)) of the pulses sequences. Here, we make a hypothesis that all periodic
pulse sequences can have a maximum of two characteristic frequencies per channel, these
are the modulation frequencies ωm and the effective nutation frequency ωeff. The modu-
lation frequency ωm = 2π/τm is dictated by the time period spanned by a basic repeating
unit in a pulse sequence. The notion of a basic repeating unit also includes the supercycle
implementation, i.e. all four pulses are considered in the supercycle version of XiXcw [45].
The effective nutation frequency ωeff = β/τm is quantified by the net flip angle 0 ≤ β < π

acquired over a basic cycle τm. The net flip angle β can be determined easily in the case
of amplitude-modulated pulse sequences. However, it is non-trivial if the pulse sequence
is phase-modulated, for e.g. TPPM [46], in which β can be determined analytically with
quaternions or Euler rotations. The modulation frequencies ωm = 2π/τm and the effective
nutation frequencies ωeff = 2π/τm for various pulse sequences are tabulated in Table 2.1,
along with some instances of pulse sequence illustrated in Fig. 2.5.
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Sequence νm νeff

CW - ν1cw

Lee-Goldburg [47] -
√

ν2
1cw +ν2

offset
PMLG-n [48] 1/(nτp) -

Symmetry-based CNν
n , RNν

n [49] 1/(Nτp) -
XiX [50] 1/(2τp) -

XiXcw [45, 51] 1/(2τp) ν1cw
TPPM [46, 52] 1/(2τp) 2νm cos−1(cos2 φ cos2(ν1τp)+ sin2

φ)

Table 2.1 Characteristic frequencies of pulse sequences. The entry is marked with - if the character-
istic frequency is not relevant.

Figure 2.5 Schematic drawing of the XiXcw and the symmetry-based C71
2 sequences. The XiXcw

sequence has a modulation frequency of νm = 1/(2τp) and effective field of νeff = ν1cw, while the
C7 sequence has νm = 1/(7τp) and no effective field νeff.

2.6 Recoupling and Decoupling Sequences
In a recoupling experiment, the spin interactions are partially reintroduced during the mix-
ing period to correlate nuclei or transfer polarization. On the other hand, the decoupling se-
quences are employed for better averaging of the anisotropic interactions, leading to higher
resolution spectra. In principle, both AHT and Floquet theory can be used to design re-
coupling or decoupling sequences, and the results are equivalent. In general, it is easier to
use AHT on simple recoupling sequences as they are usually all rotor-synchronized, and
AHT provides more physical insight. While Floquet theory is able to treat complicated
scenarios like decoupling during mixing (Chapter 3), non-rotor synchronized recoupling se-
quences under MAS (Chapter 4), amplitude-modulated recoupling sequences (Chapter 5).
At last, a general theory that describes any arbitrary decoupling sequences (simultaneously
amplitude- and phase-modulated) will be presented in Chapter 6.





Chapter 3

Symmetry-Based Sequences for Scalar
J-Coupling Experiments

In solid-state NMR spectroscopy under magic-angle spinning (MAS), polarization-transfer
processes can be mediated by the scalar J coupling or by dipolar coupling. The latter is
averaged out by the MAS, while the J coupling is always present but the coupling strength
is relatively small. One way to use the isotropic J couplings for polarization transfer in
solids is the generation of an effective Hamiltonian that contains only the J-coupling inter-
action. This is exploited in the through-bond correlation spectroscopy or TOBSY experi-
ment [53–55] (Fig. 3.6) which is a viable alternative to dipolar-coupling based polarization
transfer schemes in particular when moderate to fast MAS (>25 kHz) is applied. Since the
transfer mechanism is based on an isotropic interaction, 100 % transfer efficiency is the-
oretically possible in a given spin pair. Additionally, a J-coupling based experiment does
not experience dipolar truncation [56], i.e. the polarization can be transferred to weakly
coupled nuclei in the presence of a strongly coupled third spin. In order to generate such
an effective Hamiltonian, the much larger anisotropic interactions (dipolar coupling and
chemical-shielding anisotropy) have to be suppressed to a high degree while simultaneously
the isotropic chemical shift has to be averaged out in full analogy to the liquid-state TOCSY
experiment [57, 58]. These objectives are often achieved by using a symmetry-based pulse
sequence [49].
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3.1 Introduction to CNν
n and RNν

n Sequences
Symmetry-based CNν

n or RNν
n pulse sequences are a family of pulse sequences that can

be used for decoupling or recoupling during selected time periods in magic-angle spinning
(MAS) solid-state NMR experiments [49, 59, 60] . Symmetry-based sequences have been
used in homonuclear recoupling [61, 62], homonuclear decoupling [63], scalar J-coupling
[54, 55, 64], heteronuclear dipolar recoupling [65, 66] and heteronuclear decoupling [67]
experiments. The sequences are comprised of a series of N phase-modulated basic pulse
elements with a net flip angle of either a π (R) or 2π (C) fitted into n rotor periods. The
experimental details of the C or R sequences are given as follows

• A basic cycle of the CNν
n sequence consists of N basic net 2π rotation elements (Fig.

3.2) with incrementing phase of ∆φ = 2πν

N in n rotor periods (Fig. 3.1).

• A basic cycle of the RNν
n sequence consists of N/2 pair of basic net π rotation elements

(Fig. 3.2) with phases of φ = ±πν

N in n rotor periods (Fig. 3.1). The R sequence is
essentially similar to a TPPM sequence that is repeated by N/2 times.

Figure 3.1 Schematic diagrams of CNν
n and RNν

n Sequences.

The choice of the numbers N, n, and ν allows the selection of terms in the time-dependent
Hamiltonian which become time independent under the combined rotations by MAS and
rf irradiation. Such sequences can be analyzed either using average Hamiltonian (AHT)
[16, 68] or Floquet theory [33, 35]. Using these theories, space-spin selection rules can be
derived to aid the selection of the variables N, n, and ν .

Basic C Elements (POST) and R Elements (Composite π)

The POST element
(
(π/2)x(2π)−x(3π/2)x

)
is an amplitude-modulated composite pulse

that generates a net 2π flip angle (Fig. 3.2a). The composite pulse fulfils the requirement
of being a C element, and it is shown to be robust with respect to offset [61]. Similarly, the
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composite π pulse
(
(π/2)x(3π/2)−x

)
(Fig. 3.2b) is used because it is more broad banded

compared to a simple π pulse [60].

Figure 3.2 Schematic drawings of (a) POST element and (b) a composite π pulse.

3.1.1 Space-Spin Selection Rules

The symmetry-based C and R sequences are essentially phase-modulated sequences, i.e.
the spin interactions are rotated around the z-axis. It could be shown from the effective
Hamiltonian derived from AHT or Floquet theory that a spin interaction of rank component
s = [−ℓ,−ℓ+1, . . . , ℓ] with m spatial component is recoupled if the following selection rules
are satisfied:

• For a CNν
n sequence with z being any integer number

mn− sν = zN, (3.1)

• and for a RNν
n sequence with zλ which has the same parity as the spin rank tensor ℓ,

i.e. homonuclear dipolar coupling has a rank of ℓ = 2 and hence zλ = 0,±2,±4, . . ..
Similarly, the possible zλ for CSA tensor is zλ=1 =±1,±3, . . ..

mn− sν =
zλ N

2
(3.2)

A space-spin selection diagram (Fig. 3.3) is presented to illustrate the selection rules (Eq.
(3.1)) for a homonuclear DQ recoupling C71

2, which recouples a tensor component of m = 1
and s = 2. Similarly, another DQ recoupling R2611

4 with tensor components m = 1 and
s = −2 fulling the selection rules (Eq. (3.2)) is shown in Fig. 3.3b. Note that, an opening
in the grey vertical bar on the right hand side exists only if the selection rules are fulfilled.
Otherwise, the first-order effective Hamiltonian will be devoid of these terms. Moreover,
only the first-order selection rules are presented here, and they can be extended to second or
higher order selection rules, which might play a crucial role in decoupling experiment [67].
In principle, isotropic chemical shift with m = s = 0 is always allowed in any C sequence
since it obeys the selection rule (Eq. (3.1)). Although it is allowed by the selection rules,
the scaling factor is usually 0 in the ideal case if the basic element is a net 2π pulse for
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C sequence, or net π pulse for the R sequence. Further discussion of the scaling factor is
presented in the next section.

Figure 3.3 Space-spin selection diagrams for (a) C71
2 and (b) R2611

4 .

Scaling Factors

The selection rules only provide a qualitative analysis of the allowed and forbidden spin
interactions. While a full analysis of the effective Hamiltonian including the size of the
scaling factors would require a detailed knowledge of the basic C or R element. In general,
the recoupling sequences are more efficient if the selected time-independent term has a high
scaling factor while the undesired terms have zero scaling factor. The calculation of the
scaling factors can be performed using AHT [65] or Floquet theory [48].

3.1.2 Resonance Conditions and Effective Hamiltonians

We consider a general heteronuclear spin system with a single I spin and two S spins that is,
in the usual Zeeman rotating frame and using spherical-tensor notation [68], characterized
by a full time-dependent Hamiltonian of the form

Ĥ (t) =
2

∑
p=1

2

∑
n=−2

ω
(n)
p einωrtT (p)

1,0 +
2

∑
n=−2

ω
(n)
I einωrtT (I)

1,0 +
2

∑
p=1

2

∑
n=−2
n̸=0

ω
(n)
I p einωrt 2√

6
T (p)

1,0 T (I)
1,0

+
2

∑
p=1

ω
(0)
Ip

−1√
3

T (p)
1,0 T (I)

1,0 +
2

∑
n=−2
n̸=0

ω
(n)
1,2 einωrtT (1,2)

2,0 +ω
(0)
1,2 T (1,2)

0,0

+ω1S

2

∑
p=1

(Spx cos(φ(t))+Spy sin(φ(t)))+ω1I(t)Ix (3.3)
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where the ω
(n)
p = 2√

6
d2

n,0 (−θm)e−inγ
2
∑

m=−2
d2

m,n (β )e−imαρ
(p)
2,m represents the Fourier com-

ponents of the chemical shift of the S spins and ω
(n)
I for the I spins, respectively. While

ω
(n)
1,2 = d2

n,0 (−θm)e−inγd2
0,n (β )ρ

(1,2)
2,0 symbolizes the Fourier components of the homonu-

clear dipolar couplings and ω
(n)
Ip = d2

n,0 (−θm)e−inγd2
0,n (β )ρ

(I p)
2,0 represents the heteronu-

clear dipolar coupling. These Fourier components can be derived from (Eq. (2.14)) with
ρ2,m being the spin tensor defined in the PAS. Lastly, the isotropic J coupling term is given
by ω

(0)
1,2 =−2

√
3πJ. The irradiation of the S spins by the C-sequence has a constant rf-field

amplitude ω1S but a time-dependent phase φ(t), while the simultaneous decoupling of the
I spins has a time-dependent amplitude ω1I(t) but constant phase if amplitude-modulated
decoupling sequences are used. For a Floquet treatment [33, 34], we have to perform an
interaction-frame transformation of the time-dependent Hamiltonian of Eq. (3.3) into an
interaction frame with the rf-field Hamiltonians of both I and S channels. The effective
Hamiltonian can be derived or adapted to the case without or with decoupling (see Sec.
3.2.1) on the I spins.

C Sequence without Decoupling

In the case of no I-spin irradiation, i.e., ω1I(t)= 0, this leads to a time-dependent interaction-
frame Hamiltonian with only two basic frequencies, ωr and ω

(S)
m . The interaction-frame

Hamiltonian can be expressed in the form of a Fourier series as

ˆ̃H (t) =
2

∑
n=−2

∞

∑
k=−∞

ˆ̃H
(n,k)

einωrteikω
(S)
m t (3.4)

with the Fourier components [35] given by

ˆ̃H
(0,k)

=
{

ω
(0)
1,2 T (1,2)

0,0 +ω
(0)
I T (I)

1,0

}
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Ip
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I T (I)
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1,s

+
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ω
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Ip

2√
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T (I)
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1
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a(k)1,sT (p)
1,s +ω
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1,2

2
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s=−2

a(k)2,sT (1,2)
2,s (3.5)
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Here the a(k)ℓ,s are the Fourier coefficients resulting from the interaction-frame transformation
of the Tℓ,0 spherical-tensor operators and are defined as

T̃ℓ,0(t) =
ℓ

∑
s=−ℓ

aℓ,s(t)Tℓ,s =
ℓ

∑
s=−ℓ

∞

∑
k=−∞

a(k)
ℓ,s

eikω
(S)
m tTℓ,s (3.6)

Figure 3.4 shows a plot of the a(k)ℓ,s Fourier coefficients for an example, C91
6 sequence using

POST as a basic C element [61] as a function of the index k for the three first-rank (ℓ= 1) and
the five second-rank (ℓ = 2) tensor components. They can either be calculated analytically
[35] or numerically by simulating the interaction-frame trajectory of the Tℓ,0 spherical-tensor
components under the C91

n sequence. If the resonance condition

n0ωr + k0ω
(S)
m = 0 (3.7)

is fulfilled, this leads to a recoupling with an effective first-order Hamiltonian of the form

ˆ̄H
(1)

= ˆ̃H
(0,0)

+ ˆ̃H
(n0,k0)

+ ˆ̃H
(−n0,−k0)

(3.8)

The resonance conditions (Eq. (3.7)) can be simplified to k0 = −nn0 by substituting ωr =

nω
(S)
m . This would then further simplify Eq. (3.8) into the form

ˆ̄H
(1)

= ˆ̃H
(0,0)

+ ˆ̃H
(n0,−nn0)

+ ˆ̃H
(−n0,nn0)

(3.9)

Moreover, following the treatment by Vinogradov et al. [35], the Fourier coefficients a(k)ℓ,s
for a CNν

n sequence are only non zero if the condition

k = zN − sν (3.10)

is fulfilled where z is an integer. Equation (3.10) is equivalent to the symmetry-based se-
lection rules derived from the average Hamiltonian description (Eq. (3.1)). The sparse but
regular non-zero values of the Fourier coefficients are the reason for the high recoupling
selectivity of the symmetry-based recoupling sequences. The selections rules together with
the first-order effective Hamiltonian (Eqs. 3.9 and 3.5) shown here, is in general applicable
to all types of CNν

n sequences. The recoupling or decoupling information of a particular
CNν

n sequence is encoded in the Fourier coefficients a(k)ℓ,s in Eq. (3.5).
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Figure 3.4 Plot of the spherical Fourier coefficients a(k)ℓ,s (real part blue ’x’, imaginary part red ’o’) as
a function of k for the C91

6 pulse sequence using POST as a basic C element. All values not shown
in the plots are zero due to the symmetry of the pulse sequence.
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3.2 Interference between TOBSY C9 and Decoupling

A number of TOBSY sequences have been published using such symmetry-based C- or R-
type sequences with either hard pulses [54, 69] or adiabatic inversion pulses [55, 70, 71].
In principle, the symmetry-based pulse sequences do not need additional decoupling if the
averaging of the heteronuclear dipolar couplings by the symmetry-based pulse sequence it-
self works sufficiently well [72, 73]. Such an approach works best at high spinning and
high nutation frequencies. However, in the regime of moderate spinning frequencies (25-50
kHz), proton decoupling during the mixing time is essential to achieve efficient polarization
transfer. Proton decoupling during symmetry-based sequences on the X channel is usually
achieved using cw irradiation on the protons. As a rule of thumb, it was postulated that the
rf field on the protons should be at least three times the rf field on the X nucleus to achieve
good decoupling performance [74, 75]. This demand on the proton rf-field amplitude has
led to the development of pulse sequences with lower rf-field requirements on the X nuclei
[76]. An added complication is the fact, that the polarization-transfer efficiency does not
increase steadily with increasing decoupling rf field but shows strong modulations which
make an experimental optimization of the decoupling field strength more demanding (see
Fig. 3.5).

Figure 3.5 The interference effect between decoupling and C sequence.

The strong dependence of the transfer efficiency on the decoupling is a result of het-
eronuclear recoupling through matching of the decoupling rf-field amplitude to multiples of
the modulation frequency of the symmetry-based pulse sequence and to the MAS frequency
[72]. Good decoupling can only be achieved by using either very high rf-field amplitudes or
at intermediate rf-field amplitudes where the recoupling conditions are avoided. There are
pulsed recoupling schemes where more complex decoupling schemes like TPPM [52] have
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been used during the recoupling sequence [77, 78], but such an approach has, to the best of
our knowledge, not yet been reported during windowless pulse sequences on the X channel.
Here, we analyze the heteronuclear recoupling interference between symmetry-based C se-
quences and CW decoupling (Fig. 3.6) in more detail using operator-based Floquet theory
[33, 34] and then generalize it to amplitude-modulated decoupling sequences like XiX (Fig.
3.6) [50, 79].

CP

CP

decoupling

nτr

τmt1 t2τcp

π/2

m

π/2 π/2

τr

m

ϕ ϕ+π ϕ

90o 360 o 270 o
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dec.

τzf

decoupling

CW XiXorx x -x
τp τp

Figure 3.6 Pulse sequence for a two-dimensional homonuclear TOBSY correlation experiment using
a C91

6 sequence for the polarization transfer and cw or XiX decoupling during the mixing time.

3.2.1 Floquet Theory and Effective Hamiltonian

The general first-order effective Hamiltonian and the selection rules were shown explicitly
in Sec. 3.1.2. If we inspect the selection rules (Eq. 3.10) of a C91

n TOBSY sequence, one
can see that the non-zero values of a(k)ℓ,s are found for k = 9z for s=0, k = 9z±1 for s∓ 1,
and k = 9z±2 for s = ∓2 (see Fig. 3.4). Following from Eq. (3.9) and the fact that n0

is restricted to the values of ±1 and ±2 in the first-order Hamiltonian, all C91
n sequences

with n = 9p± 3 where p is an integer can be used as TOBSY sequences since they do
not recouple any resonant terms in Eq. (3.5) except ˆ̃H (0,0), which is scalar or isotropic in
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nature. Therefore, the effective first-order TOBSY Hamiltonian is given by

ˆ̄H
(1)

= ω
(0)
1,2 T (1,2)

0,0 +
2

∑
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ω
(0)
p a(0)1,0T (p)
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Ip

−1√
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1,0 a(0)1,0T (p)

1,0 +ω
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I T (I)
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which can be simplified to

ˆ̄H
(1)

= ω
(0)
1,2 T (1,2)

0,0 +ω
(0)
I T (I)

1,0 (3.12)

since the a(0)1,0 Fourier coefficient is zero if the flip angle of the basic C element is an in-
teger multiple of 2π . In principle, the C91

n sequences can be used without any additional
decoupling on the I spins since the sequence itself decouples the S spins from the I spins.
In practice, however, additional proton irradiation is almost always required in order to in-
crease the transfer efficiency if the MAS frequency is not fast enough to suppress the higher
order terms. We will now inspect the situation when CW decoupling is applied during the
C9 mixing sequence.

C9 with CW or XiX Decoupling
The description of the C91

n sequences becomes more complex when there is simultaneous rf
irradiation on the protons. In this situation, the resulting interaction-frame Hamiltonian has
three basic frequencies ωr, ω

(S)
m , and the rf-field amplitude ω1I in the case of cw irradiation

or the modulation frequency ω
(I)
m in the case of an amplitude modulated sequences like the

XiX sequence [50, 79]. Again, the Hamiltonian can be expressed in the form of Fourier
series as
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in which the Fourier components of the Hamiltonian are given by
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In this representation, the differences between cw irradiation and amplitude-modulated de-
coupling schemes on the protons are encoded in the values of the Fourier coefficients a(ℓ)1,s

and a(ℓ)2,s. The values of these coefficients can be determined as described above. Analytical
expressions for the Fourier coefficients of the XiX sequences as well as graphical plots can
be found in the literature [50]. To achieve efficient heteronuclear decoupling, first-order
resonance conditions that reintroduce parts of the heteronuclear dipolar couplings have to
be avoided. Such resonance conditions are defined by

n0ωr + k0ω
(S)
m + ℓ0ω

(I)
m = 0 (3.15)

and the resulting effective Hamiltonian is given by
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and the second term in Eq. (3.16) sums over all sets of (n0, k0, and ℓ0) that fulfil the
resonance condition (Eq. (3.15)). Note that Eq. (3.17) contains undesirable heteronuclear
dipolar components that lead to a decay of magnetization during TOBSY and hence lower
transfer. The magnitude of this contribution can be expressed as a function of ω

(I)
m /ωr by

summing over all contributions of Eq. (3.17) and simplifying the expression to

IIS

(
ω
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m

ωr

)
≤
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∑
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∞

∑
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1
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∑
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∣∣∣∣a−(ℓ0ω
(I)
m /ω

(S)
m +nn0)

1,s

∣∣∣∣ ∣∣∣a(ℓ0)
1,χ

∣∣∣ (3.18)

where again in the case of cw decoupling the term ω
(I)
m /ωr has to be replaced by ω1I/ωr.

Figure 3.7 shows a plot of Eq. (3.18) which represents the upper limit of the magnitude
of the recoupled heteronuclear dipolar coupling for the case of cw irradiation on the protons
for the C91

6 (Fig. 3.7a) and the C91
12 (Fig. 3.7b) TOBSY sequences using POST as a basic

C element. One can clearly see that there are windows with minimal decoupling interfer-
ence around ω1I/ωr = 3z/2 for the C91

6 sequence and around ω1I/ωr = 3z/4 for the C91
12

sequence where z is an integer. Moreover, the plot shows that at higher decoupling field
strength as well as in the case of no decoupling, the magnitude of the interference terms
is reduced, which agrees with experimental observations. The strong modulation of the
transfer efficiency as a function of the decoupling rf-field strength observed experimentally
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can, indeed, be explained by the interference profile. Therefore, optimizing the decoupling
rf-field amplitude is very important for an efficient polarization transfer in the cw case, and
using the highest available rf-field amplitude does not necessarily give the best result.

For decoupling using the XiX sequence, we have two free parameters, namely the mod-
ulation frequency ω

(I)
m and the rf-field amplitude ω1I. Figures 3.7c and d show a plot of

the magnitude of the decoupling interference as a function of ω
(I)
m /ωr and ω1I/ω

(I)
m . The

plot shows that for certain XiX modulation frequencies there are no first-order interference
terms for all rf-field amplitudes. Decoupling at these XiX modulation frequencies has an
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Figure 3.7 Plot of the magnitude of the undesired first-order heteronuclear recoupling for cw irradi-
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connecting the data points are a guide to the eye. Plot of the magnitude of the analytical first-order
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(I)
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for c) the C91
6 sequence and d) the C91

12 TOBSY sequences. Good decoupling is achieved in areas
where the heteronuclear recoupling terms are small.
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advantage that the rf-field amplitude can be chosen freely without the danger of accidentally
fulfilling a heteronuclear dipolar recoupling condition.

3.2.2 Simulations and Experimental Results

To further characterize the expected decoupling behaviour predicted by the analytical cal-
culations, numerical simulations were carried out on a model four-spin CH2-C spin system
using the spin-simulation environment GAMMA [80] with the spin parameters of crystalline
glycine. Figure 3.8 shows a plot of the transfer efficiency from the CH2 group to the quater-
nary carbon atom as a function of the proton rf-field amplitude for 25 kHz MAS using the
C91

6 sequence (Fig. 3.8a) and 40 kHz MAS using the C91
12 sequence (Fig. 3.8b). Details

of the simulation parameters can be found in the caption of Fig. 3.8. The regions of high
polarization transfer can be correlated with the region of low magnitude of recoupled het-
eronuclear dipolar coupling in Fig. 3.7. For the C91

6 sequence, we see a local maximum of
the polarization transfer at the ratio of ω1I/ωr = 1.5 and 3 which correspond to areas where
the first-order recoupling Hamiltonian is minimum (Fig. 3.7a). The same type of patterns
can be observed for the C91

12 sequence where polarization transfer is increased in areas of
low first-order dipolar recoupling (Fig. 3.7b).

Figure 3.8 show the same type of transfer-efficiency simulations for XiX decoupling as
a function of the XiX modulation frequency and the rf-field amplitude again for 25 kHz
MAS using the C91

6 sequence (Fig. 3.8c) and 40 kHz MAS using the C91
12 sequence (Fig.

3.8d). There is again high polarization transfer for values of ω
(I)
m /ωr where we observe no

heteronuclear recoupling terms (Fig. 3.7c and d). Such areas can be found for ω
(I)
m /ωr= 1,

1.5, 2, and 3 at both 25 and 40 kHz MAS (Figs. 3.8c and d). Figures 3.8e and f show slices
through the 2D plots of Fig. 3.8c and d for ν1I = 180 kHz. Although the conditions for good
decoupling are quite narrow in the ω

(I)
m /ωr dimension, the pulse length of the decoupling

sequence can be adjusted accurately, hence preserving the experimental robustness of the
decoupling sequence. The dependence on the rf-field amplitude ν1I is, as expected, more
linear which is illustrated in slices through ν

(I)
m /νr = 3 (Fig. 3.8g) for 25 kHz MAS and

ν
(I)
m /νr = 1.5 and 3 (Fig. 3.8h) for 40 kHz MAS. In contrast to cw decoupling, the transfer

efficiency increases steadily with increasing rf-field amplitudes since the first-order reso-
nance conditions depend only on ν

(I)
m but not on ν1I. Nevertheless, the increasing transfer

efficiency can only be understood if one considers higher-order contributions to the effective
Hamiltonians, which have an implicit dependence on ν1I .

To verify the results of the theoretical calculations and spin-dynamics simulations, mea-
surements on 1,2-13C glycine ethylester were performed as one-dimensional experiments
where an initial state was prepared with polarization on the CH2 group only. The transfer
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Figure 3.9 Experimental polarization-transfer efficiencies in 1,2-13C-glycine ethylester as a function
of the mixing time and the rf-field amplitude of the cw decoupling on protons. a) νr = 25 kHz using
the C91

6 sequence b)νr = 40 kHz using the C91
12 sequence. c) A slice through a) at the mixing time

τm = 6.24 ms, d) a slice through b) at the mixing time τm = 7.2 ms.

of polarization to the carbonyl group was then measured as a function of various parame-
ters. All experiments were carried out on a Varian Infinity+ 500 MHz spectrometer using a
home-built 1.8 mm double-resonance MAS probe [81]. Figure 3.9 shows the experimental
polarization-transfer efficiency as a function of the mixing time and the decoupling rf-field
amplitude for spinning frequencies of 25 kHz (Fig. 3.9a) and 40 kHz (Fig. 3.9b). Slices
through the maximum of the polarization transfer at mixing times of τm = 6.24 and 7.2 ms,
respectively, are shown in Figs. 3.9c and 3.9d. The experimental polarization-transfer pro-
file as a function of the cw decoupling rf-field amplitude shows the same features as the
numerical simulations (Figs. 3.8a and 3.8b). The main difference is that the lines are broad-
ened significantly due to rf-field inhomogeneities present only in the experimental data and,
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therefore, the sharp features visible in Fig. 3.8 are smeared out. The overall line shapes,
however, are very similar and show maxima and minima at the same positions.

The experimental dependence of the polarization-transfer efficiency under XiX decou-
pling has also been measured as a function of the XiX modulation frequency and the proton
rf-field amplitude for selected areas where good decoupling was expected from the simula-
tions. Figure 3.10 shows experimental polarization-transfer efficiencies for MAS frequen-
cies of 25 kHz (Fig. 3.10a) and 40 kHz (Figs. 3.10b and c) for modulation frequencies
of ω

(I)
m = 1.5ωr (Fig. 3.10b) and ω

(I)
m = 3ωr (Figs. 3.10a and c). As expected, best polar-

ization transfer is obtained when the correct modulation frequency is used, as can be seen
from Figs. 3.10d-f, which show slices through Figs. 3.10a-c at an rf-field amplitude of 200
kHz. There is an almost steady increase of the polarization-transfer efficiency with increas-
ing rf-field strength as can be seen from Figs. 3.10g-i which show a slice through the ideal
modulation frequencies of Figs. 3.10a-c.

3.2.3 Conclusions

The simulations and measurement shown in the previous sections clearly show that XiX
decoupling is a viable alternative to cw decoupling during TOBSY transfer mediated by
C91

n sequences. The advantage of the XiX decoupling during the C91
n sequence is best illus-

trated in Fig. 3.11 where the polarization-transfer efficiency under cw and XiX decoupling
is compared as a function of the rf-field amplitude. At almost all rf-field amplitudes, XiX
decoupling leads to an improved polarization transfer. In addition, optimization of the XiX
sequences in terms of the rf-field amplitude is straightforward. Typically, the hypothesis
that the highest rf-field amplitude possible will give the best polarization transfer is clearly
invalid for the cw decoupling during the C91

n TOBSY sequence. To achieve the same level
of polarization transfer, much lower decoupling fields can be used. This is shown in Fig.
3.12 which shows TOBSY spectra of the tripeptide MLF at a MAS frequency of 40 kHz
using the C91

12 sequence and cw decoupling (Fig. 3.12a) with a decoupling rf-field ampli-
tude of ν1I = 195 kHz and for comparison one using XiX decoupling (Fig. 3.12b) with a
modulation frequency of ν

(I)
m = 1.5νr = 60 kHz and a decoupling field strength of ν1I = 130

kHz. Two slices through the resonances of Leu-Cα and Met-Cβ (Figs. 3.12c and d) show
that the polarization-transfer efficiency of the two spectra is very similar with slightly higher
efficiencies in the XiX decoupled spectrum while the decoupling power has been reduced
by roughly a factor of two.
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6 sequence around the condition ω1I/ωr = 3 at a mixing time of 6.24 ms.
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Figure 3.11 Comparison of the experimental polarization-transfer efficiencies in 1,2-13C glycine
ethyl ester as a function of the rf-field amplitude of XiX decoupling. a) νr = 25 kHz using the C91

6
sequence using cw decoupling (blue squares) and XiX decoupling with a modulation frequency of
75 kHz (red circles) at a mixing time of 6.24 ms. b) νr = 40 kHz using the C91

12 sequence using cw
decoupling (blue squares) at 7.2 ms and XiX decoupling with a modulation frequency of 60 kHz (red
circles) and 120 kHz (black triangles) at a mixing time of 6.6 ms.

3.2.4 Further Discussions

It was discussed in the literature [82, 83] that the symmetry-based pulse sequences can be
supercycled (SC) to compensate unwanted higher-order cross-terms and experimental er-
rors like misset of rf values. The transfer efficiency of supercycled TOBSY, along with the
interference analysis will be investigated. In addition, the heteronuclear scalar coupling JIS

was neglected in the interference analysis because the size of the coupling is much smaller
than the dipolar coupling. The justification of this assumption will also be discussed briefly
here. Apart from the interference analysis, it was observed that the transfer efficiency of
TOBSY is influenced by the spin diffusion. The impact of spin diffusion will be studied in
this section.
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Figure 3.12 Experimental TOBSY spectra recorded with the pulse sequence shown in Fig. 3.6 on
the tripeptide MLF at a MAS frequency of 40 kHz using the C91

12 sequence with a mixing time of 7.8
ms. The spectrum in a) was recorded using cw decoupling during the mixing time with an rf-field
amplitude of ν1I = 195 kHz while the spectrum in b) was recorded using XiX decoupling during the
mixing time with a modulation frequency of ν

(I)
m = 1.5νr = 60 kHz and a rf-field amplitude of ν1I =

130 kHz. The slices in c) and d) through two selected resonances show that the polarization-transfer
efficiency under XiX decoupling (red) is even slightly better than the polarization-transfer efficiency
under cw decoupling (blue) despite the much lower rf-field amplitude. The spectrum in black is the
reference spectrum for a vanishing mixing time.

Supercycle Symmetry-Based C Sequences
We explore one of the supercycled implementations called phase-inverted C9ν

n C9−ν
n [82,

84], in which the phases of all pulses in every second C9 cycle are inverted. It was observed
that the phase-inverted SC-C9 (Fig. 3.13b) has a similar profile than the non-supercycled
version (Fig. 3.13a) during CW decoupling, and a significant improvement was obtained
in the high power region (∼ 180 kHz). An interference analysis was performed for the
SC regime to correlate theoretical predictions with the experimental results. In general,
the interference profiles for both normal and supercycled TOBSY are indeed similar (Fig.
3.14a), i.e. little interference at ω1I/ωr = 1.5, 3, and 4. These theoretical results corroborate
well with the experimental results where good TOBSY transfers are observed at decoupling
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power of ν1I = 60, 120, and 160 kHz. However, some differences are seen around ω1I/ωr =

1.5 and 3, where three consecutive points with zero scaling factors are no longer observed
in the SC regime. This implies that the TOBSY transfer becomes more narrow-banded with
respect to the rf field, and this is reflected in the experimental data (Fig. 3.13a and b). As the
interference profiles at high decoupling power ν1I = 180 kHz (Fig. 3.13b) are similar for
both TOBSY sequences, there is limited information to support the superior performance
of supercycled C9 in the region of high power decoupling at ∼ 180 kHz (Fig. 3.13b).
We foresee that a determination of second-order Hamiltonians might be needed to provide
further insight. On the other hand, the performance of SC-C9 TOBSY with XiX decoupling
was also examined and the improvement was marginal (See Sec. A.3.2).
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Inclusion of Heteronuclear J Couplings into the Interference Analysis
In principle, the heteronuclear JIS coupling can be included easily by considering the n0 = 0
term in Eq. (3.18), and the remaining part of the interference analysis remains the same. One
can see that the inclusion of JIS in the interference analysis introduces large interferences at
ω1I/ωr ∼ 0.8, 1.5, and 2.3 (Fig. 3.14b). The region at ω1I/ωr = 1.5 was originally deemed
as a decoupling-free region (Fig. 3.14a) prior to the inclusion of heteronuclear JIS coupling.
As the size of the scaling factor is large, the effective interference strength is approximately
0.5 ·150= 75 Hz, which is large enough to quench the transfer mediated by the homonuclear
J coupling of 55 Hz. While the window at ω1I/ωr = 3 remain relatively free and therefore
expected to be a better decoupling condition than ω1I/ωr = 1.5. This is in good agreement
with experimental results (Fig. 3.9d) where the transfer efficiency is ∼ 30% at ω1I/ωr = 3
and ∼ 20% at ω1I/ωr = 1.5. Nevertheless, the higher transfer can also be attributed to better
second-order cross-term compensation at higher decoupling power.
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Contribution of Spin Diffusion During TOBSY
It was discovered that dipolar-based spin diffusion contributes significantly in the TOBSY
sequence. This effect is examined by simulating TOBSY (Fig. 3.15) with the homonuclear
J coupling included (red) or excluded (blue) for various decoupling regimes. The simulation
results show that the amount of spin diffusion depends crucially on the parameters chosen
for proton decoupling. For instance, the dipolar-based spin diffusion has contributed in
between 2−30% (blue) to the total transfer of 65−75% (red) at a mixing time τmix of 7−8
ms. The spin diffusion is more significant for XiX decoupling with modulation frequency of
ν
(I)
m = 75 kHz (blue cross) than ν

(I)
m = 10 kHz (blue square). This implies that the matched

resonance condition of ν
(I)
m = 3νr (75 kHz) might be a second-order resonant recoupling

condition which recouples three-spin flip-flop terms that give rise to spin-diffusion, i.e. like
RESORT [86]. While the TOBSY sequence with CW decoupling (blue circle) might be just
a non-resonant second-order transfer experiment, i.e. PAR [85] type of experiment.

The effect of spin diffusion can be either advantageous or disadvantageous depending on
the context of the experiment. A possible disadvantage is that the experiment is not a strictly
through-bond experiment, and this might cause complications or ambiguity in resonance
assignment. On the other hand, since both Hamiltonians are ZQ, the presence of dipolar-
based spin diffusion could speed up the rate of polarization-transfer, which is evident by
inspecting the initial build-up polarization of CW decoupling (red circle) and resonant XiX
decoupling (red cross) at τmix ≤ 7 ms (Fig. 3.15). This is certainly beneficial if the transfer
is hampered by short relaxation time. However, the amount of spin diffusion is inversely
related to the maximum attainable transfer efficiency, because the effective transfer is no
longer isotropic. This is shown in the case of non-resonant XiX decoupling, which has
highest transfer (red square) due to least spin diffusion (blue square).

3.3 Low-Power TOBSY Sequences at Fast MAS

In the advent of fast MAS, i.e. up to ∼ 100 kHz [87–90], low-power pulse sequences
[45, 91] are widely used in biological applications in solid-state NMR because they cause
less rf heating on the biological samples. It is our interest to design an efficient low-power
TOBSY sequence that employs an rf field that is smaller than the spinning frequency ωr.
In order to design an efficient TOBSY sequence, many factors have to be considered, for
e.g. the magnitude of the higher order cross terms, offset effect and rf inhomogeneity. In
the regime of fast MAS, higher-order cross terms are usually small and they can be ne-
glected, while rf errors and offset issues are more critical. A brute-force scan of symmetry-
based pulse sequences combined with cross-term analysis (Sec. 4.2.2) has suggested several
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Figure 3.15 The contribution of spin diffusion during TOBSY is examined by simulating TOBSY
C91

6 with J coupling included (red) and excluded (blue) at νr = 25 kHz for a glycine four-spin CCHH
system and proton Larmor frequency of 500 MHz. Proton decoupling power of ν1I = 180 kHz using
CW (cicle), XiX with ν

(I)
m = 10 kHz (square), or ν

(I)
m = 75 kHz (cross).

good candidates1 with a different range of rf requirements that can be chosen depending on
bandwidth of the resonances of interest. We will focus on the conventional C91

39 and C91
48

sequence, because the cross-term analysis has indicated that the C91
n family of sequence

does not generate any destructive Ŝ± term in the second-order Hamiltonian [145]. The rf
requirements are 0.375νr for C91

48 and ∼ 0.462νr for C91
39. The performances of these two

TOBSY sequences will be examined at two fast MAS regimes, namely at νr = 55.5 kHz and
νr = 111.1 kHz, which is suitable for a 1.3 and 0.7 mm probe respectively. The experiments
were performed on a simple molecule glycine ethyl ester as a proof of principle, and then
extended to ubiquitin to show that it is a practical sequence for biological applications.

1They are C91
39, C91

48, C151
50, C2510

167, C255
167, C2512

180, and C2311
240. Preliminary simulation shows that

C255
167 compensates offset and rf inhomogeneity rather well.



56 Symmetry-Based Sequences for Scalar J-Coupling Experiments

3.3.1 Experimental Results on Glycine

The transfer efficiency of TOBSY C91
39 was measured experimentally on fully protonated

glycine ethyl ester at νr = 55.5 kHz (Fig. 3.16). One can see that the rf power employed
is only a fraction of the spinning frequency ν13C ∼ 0.45νr. Moreover, one can see from
the build-up curve (Fig. 3.16b) that the oscillations are pronounced and follow a sinusoidal
relation (∼ sin(t/2J)) with the peak mixing time at ∼11 ms, close to the theoretical value
of 9.1 ms. A spectrum at the optimum TOBSY transfer (Fig. 3.17) is extracted and it shows
that a high transfer of 80% was obtained. One of the factors that contribute to the high
transfer is the small rf inhomogeneity due to rf filter after successive CP steps. This effect
[92] is discussed explicitly in Sec. A.3.3.
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Figure 3.16 Experimental TOBSY C91
39 on glycine at 400 MHz with νr =55.5 kHz. A 1D slice at

ν13C =24.8 kHz is shown here with Ca (red) ,Co (blue) and sum (black).
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Chemical Shift (13 C) / ppm

Figure 3.17 1D Spectra of low-power TOBSY C91
39 on glycine ethyl ester from Ca (red) to CO

(blue) at 400 MHz with νr = 55.5 kHz and ν1S ∼ 25 kHz. The transfer efficiency is ∼ 80%. Note
that the CO line width is narrower than Ca, thereby having higher peak intensity than the intensity
of the source (Ca).

3.3.2 Comparing DREAM and TOBSY on Ubiquitin

A comparison of performance between TOBSY and DREAM, an efficient dipolar-based re-
coupling sequence, will be studied on ubiquitin. We expect that TOBSY is able to spread the
polarization further down the side chain compared to the DREAM sequence, for a number
of reasons. Firstly, TOBSY is a ZQ sequence and the transferred polarizations have positive
sign. On the other hand, DREAM is a DQ sequence and the transferred polarization have
opposite sign, this might lead to an effectively lower transfer along the side chains due to the
competition between the relay transfer (positive intensity) and the direct transfer (negative
intensity). In addition, the TOBSY sequence is isotropic in nature and it does not expe-
rience dipolar truncation [56], which is inevitable for the DREAM sequence. Although it
can be argued that the circumstance in DREAM can be avoided by strategic optimization of
the rf sweeping parameters such that the matching conditions are fulfilled sequentially, the
experimental optimization can be laborious. The optimization becomes more difficult as the
MAS frequency increases, because the rf field requirement also increases proportionally,
thereby causing the offset-dependent effective field to be harder to be manipulated. This
is not an issue for the TOBSY sequence, which is essentially not a recoupling sequence.
Nevertheless, the TOBSY sequence might suffer from short relaxation time or be suscepti-
ble to higher-order cross terms like heteronuclear dipolar coupling. Both factors discussed
here, are expected to be less important as MAS frequency increases. Therefore, we ex-
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pect TOBSY to be better2 at higher MAS frequency. The advantage of TOBSY over the
DREAM sequence is that the rf field requirement or resonance selectivity can be tailored
by choosing different CNν

n sequence, while the DREAM sequence has a fixed νrf = νr/2
relation3. Lastly, in the case of biological macromolecules with flexible parts or motions
that greatly averaged dipolar coupling, scalar-based TOBSY remains the only viable option
for correlating nuclei. The performances of TOBSY C9 and DREAM were examined by
experiments on fully protonated ubiquitin at νr = 55.5 kHz, and deuterated ubiquitin with
100 % back-exchanged with H2O at νr = 111.1 kHz.

Experimental data of TOBSY C91
39 at MAS frequency of 55.5 kHz

Figure. 3.18 shows the 2D spectrum of protonated ubiquitin at 850 MHz. It was observed
that the cross-peak correlating Ca (Fig. 3.18d) in TOBSY is less intense than that of the
DREAM sequence. This is expected as the heteronuclear dipolar coupling is still significant
to affect the TOBSY transfer. Interestingly, the cross-peaks at around the 20-30 ppm regions
(Fig. 3.18d) are much more intense for TOBSY, perhaps due to motion-averaged or smaller
heteronuclear dipolar coupling in DREAM. This could also account for the less efficient
dipolar-based DREAM sequence due to smaller homonuclear dipolar coupling.

Experimental data of TOBSY C91
48 at MAS frequency of 111.1 kHz

Figure 3.19 shows the 2D spectra of deuterated ubiquitin at 850 MHz. It is evident that more
cross peaks are observed in TOBSY than DREAM, implying that TOBSY is more offset-
compensating. Furthermore, Fig. 3.19c shows that TOBSY is able to transfer polarization
across multiple resonances (for e.g. side chain of Isoleucine) more efficiently than DREAM.
Moreover, the total polarization survives longer in TOBSY than DREAM4, and therefore
relative longer mixing time could be used to spread the polarization further. Nevertheless,
DREAM is still feasible for one-bond transfer (Fig. 3.19d).

3.3.3 Conclusions

It was demonstrated that low-power TOBSY C9 sequences with νrf < νr/2 are efficient se-
quences for polarization transfer across multiple resonances at MAS frequencies faster than
νr =55.5 kHz, for both protonated or deuterated sample. We intend to apply the TOBSY
sequence for proton-detected side-chain assignment [3] at MAS frequencies of νr ≥ 100
kHz.

2 The only remaining problems are the offset effect and rf inhomogeneity.
3One can in principle design a low-power DQ recoupling sequence using symmetry-based C sequences
4The short T1ρ in DREAM is perhaps due to Deuterium-induced relaxation, which has to be verified

experimentally.
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Chapter 4

Asynchronous Symmetry-Based
Homonuclear Dipolar Recoupling
Sequence

Polarization-transfer experiments in solid-state NMR can be mediated via either J or dipo-
lar coupling, depending on the choice of the symmetry-based sequences. The pulses in
symmetry-based sequences were originally designed to be rotor-synchronized. It was dis-
covered recently [93] that the asynchronous regime can be employed and it outperforms the
synchronous regime when the destructive interactions are significant. A theoretical expla-
nation for the recoupling in the asynchronous regime will be presented in this chapter.

Declaration
Part of the chapter is based on the published manuscript:
K. O. Tan, M. Rajeswari, P. K. Madhu, M. Ernst. Asynchronous symmetry-based sequences
for homonuclear dipolar recoupling in solid-state nuclear magnetic resonance, J. Chem.
Phys. 142, 065101, 2015.

4.1 Introduction
As discussed in Sec. 3.1, symmetry-based CNν

n pulse sequences [59] can be used to gen-
erate effective Hamiltonians during selected time periods in solid-state NMR experiments.
The choice of the numbers N, n, and ν allows the selection or removal of terms in the time-
dependent Hamiltonian which become time independent under the combined rotations by
MAS and rf irradiation. Nevertheless, these sequences are only efficient if the following two
conditions are fulfilled: (i) the desired time-independent term has a sufficiently high scaling
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factor, and (ii) all undesired terms are suppressed efficiently. Although the two requirements
can be achieved easily in a first-order AHT picture, second-order cross terms often lead to
undesired contributions to the effective Hamiltonian that reduce the transfer efficiency sig-
nificantly. Second-order terms can be calculated based on AHT [67, 94, 95] but are often
easier to calculate using Floquet theory [33, 35].

Here, a novel solution for the suppression of undesired higher-order cross terms is pre-
sented. This is crucial for situations where the desired first-order time-independent term is
small compared to the undesired higher-order cross terms, which leads to a truncation of
the first-order dipolar Hamiltonian. An example for such a situation was shown recently
by Bechmann and coworkers [93], who showed that the widely used C71

2 sequence [96] is
not able to generate double-quantum coherences efficiently in 1,4-13C2-mono-ammonium
maleate. The spin system has a relatively weak dipolar coupling δD/2π = 432 Hz [97] com-
pared to the anisotropy of the CSA tensor δCSA = -67.7 ppm, corresponding to a value of
approximately 12 kHz on a 700 MHz spectrometer. In this situation, the rotor-synchronized
C7 sequence (using a standard C element of the form 2πφ 2πφ+π ) leads to very poor double-
quantum (DQ) efficiency. However, the efficiency could be improved significantly by break-
ing the rotor synchronization of the C7 sequence, for example by lengthening the duration of
the first 2π pulse in all C elements [93]. There are two surprising facts in this experimental
observation: (i) The asynchronous C71

2 sequence still generates an effective DQ Hamilto-
nian, and (ii) the compensation of the CSA tensors is better for the non-rotor-synchronized
sequence. To the best of our knowledge, there has not yet been any theoretical explanation
to account for these two unexpected effects.

Here, a theoretical framework based on multi-mode operator-based Floquet theory [33,
34] that can explain the recoupling conditions observed in such non-rotor synchronized se-
quences, is derived. The theoretical description is based on the idea that by lengthening one
of the 2π pulses in the C element, an effective field is introduced in the C7 sequence that
needs to be taken into account when discussing the resonance condition. We also propose
a variant of the experiment which is based on superimposing a cw rf-field on the basic C
element [45, 51] while sharing the additional pulse duration ∆τc proportionally throughout
the C element. The first scheme will be called pulse-width variation (PWV) (Fig. 4.1a) and
the later scheme pulse-amplitude variation (PAV) (Fig. 4.1b). In addition, we show that the
performance of the C7 sequence based on the POST [61] element can also be improved by
making the sequence asynchronous in an analogous way (Figs. 4.1c and d).
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Figure 4.1 Pulse sequence for double-quantum filtered C71
2 experiments using (a) PWV-2π (b) PAV-

2π (c) PWV-POST (d) PAV-POST as a choice of the basic C element. The shaded reconversion block
and the following pulse are phase-shifted in each scan to select only the double-quantum coherences
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amplitude as required by the original C7 sequence and the continuous-wave component respectively,
while the duration of the pulse is shown in the lower horizontal brace. The pulses within the C
element are separated by commas. In the ideal rotor-synchronized case, τ

(C7)
c is defined such that

ν
(C7)
1 τ

(C7)
c = 1 and the additional pulse duration ∆τc would be zero.
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4.2 Resonance Conditions and Effective Hamiltonians

We consider a spin system with two homonuclear-coupled S spins. The full time-dependent
Hamiltonian under MAS with a time-dependent rf irradiation can be adapted from Eq. (3.3):

Ĥ (t) =
2

∑
p=1

2

∑
n=−2

ω
(n)
p einωrtT (p)

1,0 +
2

∑
n=−2
n̸=0

ω
(n)
1,2 einωrtT (1,2)

2,0

+ω1S(t)
2

∑
p=1

(Spx cos(φ(t))+Spy sin(φ(t))) (4.1)

where the last term represents a general rf Hamiltonian with a time-dependent amplitude
ω1S(t) and phase φ(t). If the sequence is periodic in time, it will in general have a charac-
teristic cycle time τm = 2π/ωm and an effective field ωeff. If the pulse sequence has a total
propagator that is not an identity propagator, then the net flip angle βeff of the sequence is
not an interger multiple of 2π and this gives rise to an effective field ωeff = βeff/τm [46, 99].
Note that the rotor-synchronized versions of the CNν

n sequences have a vanishing effective
field ωeff since each C element is an integer multiple of a 2π rotation. In order to deter-
mine possible resonance conditions, an interaction-frame transformation is performed with
respect to the full rf Hamiltonian (Eq. (4.2)) with the propagator (Eq. (4.3)).

ˆ̃H (t) =Û−1
rf (t)Ĥ (t)Ûrf(t) (4.2)

Ûrf(t) =T̂ exp

−i
t∫

0

dt1Ĥrf(t1)

 (4.3)

The resulting time-dependent interaction-frame Hamiltonian can then be expressed as a
Fourier series with three basic frequencies, namely ωr, ωm and ωeff:

ˆ̃H (t) =
2

∑
n=−2

∞

∑
k=−∞

2

∑
ℓ=−2

ˆ̃H
(n,k,ℓ)

einωrteikωmteiℓωefft (4.4)

where the Fourier components are given by

ˆ̃H
(0,k,ℓ)

=
2

∑
p=1

ω
(0)
p

1

∑
s=−1

a(k,ℓ)1,s T (p)
1,s (4.5)

ˆ̃H
(n,k,ℓ)

=
2

∑
p=1

ω
(n)
p

1

∑
s=−1

a(k,ℓ)1,s T (p)
1,s +ω

(n)
1,2

2

∑
s=−2

a(k,ℓ)2,s T (1,2)
2,s (4.6)
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where the terms a(k,ℓ)r,s are the Fourier coefficients (Figs. 4.2 and 4.3) calculated from the
interaction-frame transformation of the spherical-tensor operators and are defined as

T̃r,0(t) =
r

∑
s=−r

ar,s(t)Tr,s =
r

∑
s=−r

∞

∑
k=−∞

∞

∑
ℓ=−∞

a(k,ℓ)
r,s

eikωmteiℓωefftTr,s (4.7)

Note that the values of n and ℓ (Eq. (4.4)) can only be an integer ranging from -2 to +2,
whereas k can be any integer value. Moreover, the resonance conditions are defined in
general by any set of values (n0, k0, ℓ0) that fulfill the condition

n0ωr + k0ωm + ℓ0ωeff = 0 (4.8)

with a first-order effective Hamiltonian of the form

ˆ̄H
(1)

= ˆ̃H
(0,0,0)

+ ∑
(n0,k0,ℓ0)

ˆ̃H
(n0,k0,ℓ0)

(4.9)

Equations (4.8) and (4.9) generalize the resonance conditions for the original symmetry-
based sequences to sequences with a non-vanishing effective field ωeff (Eq. (4.15)) [46].
The effective nutation frequency ωeff for the case of asynchronous C71

2 can be determined
via a quaternion description [100].
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Determination of the Effective Field ωeff

The quaternions for the C71
2 sequence with an effective nutation per C element βc can be

defined (see Eqs. A.9 and A.9 in Sec. A.2):

Qk

(
cos
[

2πν

N
(k−1)

]
,sin

[
2πν

N
(k−1)

]
,0,βc

)
(4.10)

The overall net rotation of the entire C7 cycle can be determined by calculating

Qeff
(
Ixx, Iyy, Izz,βc

)
=


I(eff)
xx sin

(
βeff
2

)
I(eff)
yy sin

(
βeff
2

)
I(eff)
zz sin

(
βeff
2

)
cos
(

βeff
2

)

= Q7Q6 · · ·Q2Q1 (4.11)

Following this, the effective flip angle βeff can then be derived using

cos
(

βeff

2

)
= cos7 (x)+

7
16

sin2 (x)
{

6cos
(

π

7

)
cos(x)+5cos

(
π

7

)
(cos(3x)+ cos(5x))

+8sin
(

π

14

)
cos3 (x)(3cos(2x)−1)−16cos5 (x)sin

(
3π

14

)}
(4.12)

where x = βc/2. Since only a small additional flip angle x is considered, one can perform a
Taylor series expansion up to the fourth order

cos
(

βeff

2

)
= 1− 7

24

(
−19+140cos

(
π

7

)
+116sin

(
π

14

)
−68sin

(
3π

14

))
x4 +O

(
x5
)

(4.13)
Hence, one obtains the approximated numerical result

βeff = 2arccos
[
1−1.65066β

4
c
]

(4.14)

ωeff =
βeff

τm
=

arccos
[
1−1.65066β 4

c
]

ωm

π
(4.15)

Eq. (4.14) is a good approximation for small flip angles βc up to π/5 with an error of less
than 10 %. Additionally, the effective axis of direction (I(eff)

xx , I(eff)
yy , and I(eff)

zz ) can also be
determined (Eq. (4.11)). While τm = N(2τ

(C7)
c +∆τc) (Fig. 4.1) is the length of the entire

asynchronous C7 cycle, and βc is the effective nutation angle of a single C element. The
case of rotor-synchronized sequences with a zero effective field ωeff = 0 is just a special
case of this general description which reduces to bimodal Floquet theory (see Sec. 3.2.1).
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Using the resonance conditions of the original C71
2 sequence, the DQ terms are found

in the Hamiltonian with the Fourier component (n0,k0) = (±1,∓2). For the non-rotor syn-
chronized cases, the timing of the sequences considered here is close to that of the original
rotor-synchronized sequences so that the high double-quantum scaling factor can still be
exploited. Therefore, it is still desirable to keep the Fourier number (n0,k0) = (±1,∓2) in
the non-rotor synchronized sequence. In addition, ℓ0 =±2 is required because the relevant
double-quantum term has also a coherence order of ±2 under the action of the effective field.
Hence, one expects the double-quantum recoupling condition of the non-rotor synchronized
sequence to be (n0,k0, ℓ0) =±(−1,2,2).

4.2.1 First-Order Effective Hamiltonian

The first-order effective Hamiltonian with a set of Fourier number (n0,k0, ℓ0) =±(−1,2,2),
is given by

ˆ̄H
(1)

= ˆ̃H
(0,0,0)

+ ˆ̃H
(1,−2,−2)

+ ˆ̃H
(−1,2,2)

=
2

∑
p=1

1

∑
s=−1

ω
(0)
p a(0,0)1,s T (p)

1,s +
2

∑
p=1

1

∑
s=−1

(
ω

(1)
p a(−2,−2)

1,s +ω
(−1)
p a(2,2)1,s

)
T (p)

1,s

+
2

∑
s=−2

(
ω

(1)
1,2 a(−2,−2)

2,s +ω
(−1)
1,2 a(2,2)2,s

)
T (1,2)

2,s (4.16)

=
2

∑
p=1

1

∑
s=−1

ω
(0)
p a(0,0)1,s T (p)

1,s +ω
(1)
1,2 a(−2,−2)

2,2 T (1,2)
2,2 +ω

(−1)
1,2 a(2,2)2,−2T (1,2)

2,−2 (4.17)

The Fourier coefficients for the rank-one tensors a(±2,±2)
1,s are zero because the Fourier co-

efficients of any rank-r tensor a(k0,ℓ0)
r,s are zero for any integer ℓ0 that fulfils the inequal-

ity |ℓ0| > r. The effective Hamiltonian of Eq. (4.17) consists of two types of terms: (i)
chemical-shift terms represented by the first-rank spherical tensor operators T1,s and the
dipolar-coupling terms represented by the second-rank spherical-tensor operators T2,±2 .

In order to compare the performance of the sequences, the effective magnitude of the
chemical-shift term a(0,0)1,eff (Eq. (4.18)) and the double-quantum scaling factor |a(2,2)2,−2| (see
Fig. 4.2) are calculated and shown in Fig. 4.4 as a function of the rf-field amplitude and the
additional length of the C element ∆τc.

a(0,0)1,eff =

√√√√ 1

∑
s=−1

|a(0,0)1,s |2 (4.18)
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The magnitude of a(0,0)1,eff depends on the choice of the basic C element and the rf amplitude

of the sequence ν
(C7)
1 . It is evident from Fig. 4.4 that there is hardly any compromise in the

offset compensation for the case of the basic C element 2πφ 2πφ+π (Fig. 4.4a) if the sequence
is made asynchronous (∆τc ̸= 0) compared to the synchronous sequence (∆τc = 0). For the
POST (Fig. 4.4c) element, there is a 1.1% increase in the scaling factor for the chemical-
shift term.

The double-quantum scaling factor |a(2,2)2,−2| which characterizes the recoupling efficiency
is also shown for the basic 2πφ 2πφ+π (Fig. 4.4b) and the POST (Fig. 4.4d) element. The
magnitude of the double-quantum scaling factor for both C elements at the asynchronous
condition (∆τc ̸= 0) is slightly smaller (less than 5%) than for the synchronous sequence
(∆τc = 0). This implies that the build-up rate of the double-quantum term will be slightly
slower under asynchronous recoupling conditions. From these results, it is not obvious why
the asynchronous sequence outperforms the synchronous one. For an explanation, a closer
inspection of the terms originating from the second-order effective Hamiltonian is required.

4.2.2 Second-Order Effective Hamiltonian

Synchronous Case
Since the CSA tensor is by far the largest term in the Hamiltonian, we will restrict our
calculations of the second-order effective Hamiltonians to CSA-CSA cross terms. Such
cross terms will result in three rank-one tensors, namely T1,0 and T1,±1. The bimodal second-
order effective Hamiltonian ˆ̄H (2) for the synchronous C7 sequence [60, 67] is given by the
sum of the non-resonant and the resonant parts

ˆ̄H
(2)

= ˆ̃H
(0,0)

(2) + ∑
n0,k0

ˆ̃H
(n0,k0)

(2) (4.19)

with

ˆ̃H
(n0,k0)

(2) = ∑
ν ,κ

−1
2
[ ˆ̃H

(n0−ν ,k0−κ)
, ˆ̃H

(ν ,κ)
]

νωr +κωm
= ∑

ν ,κ

−1
2

ω
(n0−ν)
S ω

(ν)
S

νωr +κωm
×Aκ (k0) (4.20)

where the spin parts Aκ(k0) are given by

Aκ (k0) =
(

a(k0−κ)
1,−1 a(κ)1,0 −a(k0−κ)

1,0 a(κ)1,−1

)
T1,-1 +

(
a(k0−κ)

1,−1 a(κ)1,1 −a(k0−κ)
1,1 a(κ)1,−1

)
T1,0

+
(

a(k0−κ)
1,0 a(κ)1,1 −a(k0−κ)

1,1 a(κ)1,0

)
T1,1 (4.21)
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Figure 4.4 Contour plots showing the magnitude of Fourier coefficients for the chemical-shift a(0,0)1,eff

(a,c) and double-quantum term |a(2,2)2,−2| (b,d) for C7 sequence using (a,b) 2πφ 2πφ+π (c,d) POST as
C element. The position of the synchronous ∆τc = 0 and asynchronous condition ∆τc = 0.35 µs is
marked with a blue cross and red dot respectively.

Asynchronous Case
For the case of asynchronous C7, the trimodal second-order effective Hamiltonian is given
by

ˆ̄H
(2)

= ˆ̃H
(0,0,0)

(2) + ∑
n0,k0,ℓ0

ˆ̃H
(n0,k0,ℓ0)

(2) (4.22)

with

ˆ̃H
(n0,k0,ℓ0)

(2) = ∑
ν ,κ,λ

−1
2
[ ˆ̃H

(n0−ν ,k0−κ,ℓ0−λ )
, ˆ̃H

(ν ,κ,λ )
]

νωr +κωm +λωeff

= ∑
ν ,κ,λ

−1
2

ω
(n0−ν)
S ω

(ν)
S

νωr +κωm +λωeff
×Aκ,λ (k0, ℓ0) (4.23)
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and the spin parts Aκ,λ (k0, ℓ0) are given by

Aκ,λ (k0, ℓ0) =
(

a(k0−κ,ℓ0−λ )
1,−1 a(κ,λ )1,0 −a(k0−κ,ℓ0−λ )

1,0 a(κ,λ )1,−1

)
T1,-1

+
(

a(k0−κ,ℓ0−λ )
1,0 a(κ,λ )1,1 −a(k0−κ,ℓ0−λ )

1,1 a(κ,λ )1,0

)
T1,1

+
(

a(k0−κ,ℓ0−λ )
1,−1 a(κ,λ )1,1 −a(k0−κ,ℓ0−λ )

1,1 a(κ,λ )1,−1

)
T1,0 (4.24)

Note that the full resonant contribution in Eqs. (4.19) and (4.22) has to sum over all values
of n0, k0, and ℓ0 that fulfil the resonance conditions n0ωr + k0ωm = 0 and n0ωr + k0ωm +

ℓ0ωeff = 0, respectively. Since this is a second-order resonance condition, the values n0 =

±3 and n0 =±4 are also allowed. The effective Hamiltonian describing the double-quantum
recoupling up to second order can be summarized as

ˆ̄H ≈ ˆ̄H (1)+ ˆ̄H (2) = ω
(+2)
DQ T2,+2 +ω

(−2)
DQ T2,−2 +ω

(0)
CSAT1,0 +ω

(+1)
CSA T1,+1 +ω

(−1)
CSA T1,−1

(4.25)
where the first two coefficients ω

(±2)
DQ describe the strength of the first-order double-quantum

terms, while the last three coefficients, ω
(0)
CSA and ω

(±1)
CSA , describe the strength of the second-

order CSA contributions. Following this, we define an effective magnitude of the undesired
rank-one terms ω

(eff)
CSA, which is defined as

ω
(eff)
CSA =

√√√√ 1

∑
s=−1

|ω(s)
CSA|2 (4.26)

for simpler analysis (similar to Eq. (4.18)). Based on Eqs. (4.22)-(4.24), the magnitude of
the second-order CSA-CSA cross term (ω(0)

CSA, ω
(±1)
CSA , and ω

(eff)
CSA) for the synchronous and

asynchronous case can be calculated analytically as a function of the Euler angle β as shown
in Fig. 4.5a and Fig. 4.5b, respectively.

For simplicity, the CSA tensor with δCSA/2π = 11847.5 Hz was assumed to be axially
symmetric (η = 0), and the Euler angles where chosen at α = γ = 0 for all β values. In
addition, the effective double-quantum coupling strength ω

(±2)
DQ for δD/2π = -432 Hz is also

plotted in Fig. 4.5 for comparison. Note that the magnitude of the ω
(±1)
CSA terms is the same

because they form a complex conjugate pair, and similarly for the T2,±2 terms. Moreover,
the CSA tensors for the two spins are assumed to be identical and the cross-terms for only
one of them are shown here.

One can clearly see that in the synchronous case (Fig. 4.5a), the magnitude of the un-
wanted CSA cross-terms, specifically the T1,±1 terms, are comparable or even larger than



72 Asynchronous Symmetry-Based Homonuclear Dipolar Recoupling Sequence

0 50 100 150
0

20

40

60

80

100

120

 

 

0 50 100 150
0

20

40

60

80

100

120

 

 

ω
/2
̟

 /
 H

z

ω
/2
̟

 /
 H

z

  / ˚β   / ˚β

Synchronous Asynchronousa) b)
( )

( )

( )

( )

1

CSA

0

CSA

eff

CSA

2

DQ

ω

ω

ω

ω

±

±

( )

( )

( )

( )

1

CSA

0

CSA

eff

CSA

2

DQ

ω

ω

ω

ω

±

±

Figure 4.5 The dependence of the interaction strength on the β Euler angle calculated for the syn-
chronous (a) and asynchronous (b) cases. The desired effective double-quantum term is ω

(±2)
DQ (black

diamond), while the unwanted second-order CSA-CSA cross terms are ω
(±1)
CSA (blue crosses), ω

(0)
CSA

(red circles), and ω
(eff)
CSA (green asterisks). The calculations were performed based on the 2πφ 2πφ+π

basic element, at a MAS frequency of 10.204 kHz.

the magnitude of the desired double-quantum term T2,±2. Since the second-order CSA cross
terms do not commute with the double-quantum term T2,±2 in the Hamiltonian, they will
have detrimental effect on the double-quantum efficiency by truncating the double-quantum
Hamiltonian. In the case of asynchronous C7 (Fig. 4.5b), the magnitude of the T1,±1 terms
is reduced by roughly a factor of 10. The main reason for this efficient CSA suppression

is due to a smaller number of possible second-order resonant terms ˆ̃H
(n0,k0,ℓ0)

(2) in the asyn-
chronous case, i.e. the n0 = ±3 and ±4 terms are absent because of the introduction of the
effective nutation frequency ωeff. However, the T1,0 terms originating from the non-resonant
ˆ̃H
(0,0,0)

(2) terms are unchanged and the amplitude is the same in both cases. For most crys-
tallite orientations, the magnitude of the T1,0 terms is smaller than the double-quantum term
T2,±2 . The analytical results are in good agreement with the numerical simulations (vide
infra) and experimental observations that the asynchronous condition has a much higher
double-quantum efficiency in 1,4-13C2-mono-ammonium maleate.

To support the results of the analytical calculations that the improvement in double-
quantum recoupling efficiency is mainly due to better CSA compensation in the second-
order effective Hamiltonian, numerical simulations [80] on a one-spin system were per-
formed. The anisotropy of the CSA tensor was set to δCSA/2π = 11847.5 Hz and the time
evolution of the one-spin system under the synchronous and asynchronous C7 sequence
was simulated. Figure 4.6a shows that the dephasing of the initial magnetization due to
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Figure 4.6 (a) shows the numerical simulation of a single spin with an anisotropy of the CSA
δCSA/2π = 11847.5 Hz under the synchronous (blue crosses) and asynchronous sequence (green
circles) with the basic element of (a,b) 2πφ 2πφ+π and (c) POST at a MAS frequency of 10.204 kHz.
(b,c) shows an overlay of the same single spin simulation under synchronous condition repeated at
a MAS frequency of 40.816 kHz (red crosses) with its respective x-axis (red). Evolution (black
diamond) using the analytical second-order Hamiltonian (Eqs. (4.22)-(4.24)) is also shown in (b,c).
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the second-order contributions of the CSA tensor is more severe for the synchronous se-
quence compared to the asynchronous sequence. This is due to the much larger magnitude
of the T1,±1 terms in the synchronous C7 sequence as discussed above. In order to verify
that indeed the second-order effective Hamiltonian is the main contribution to the observed
dephasing, the simulation was repeated with a four times larger MAS frequency. The MAS
frequency dependence is shown in Fig. 4.6b where the dephasing profiles at two different
frequencies have very similar shape except for the scaling of the time axis by a factor of
four, thus supporting the argument that the spin dephasing is due to the second-order CSA-
CSA cross term. This is valid because the second-order effective Hamiltonian of such a
symmetry-based CNν

n sequence scales inversely proportional to the ωr or ωm (Eq. (4.27)),
if the first order effective Hamiltonian ˆ̄H (1)is 0.

ˆ̄H = ˆ̄H
(1)

+ ˆ̄H
(2)

= ˆ̃H
(0,0)

(2) + ∑
n0,k0

ˆ̃H
(n0,k0)

(2)

= ∑
n0,k0

∑
ν ,κ

−1
2
[ ˆ̃H

(n0−ν ,k0−κ)
, ˆ̃H

(ν ,κ)
]

νωr +κωm

= ∑
n0,k0

∑
ν ,κ

−1
2
[ ˆ̃H

(n0−ν ,k0−κ)
, ˆ̃H

(ν ,κ)
]

(nν +κ)ωm
(4.27)

Hence, the dephasing profile should be similar, differing only by the time scale, if third
and higher-order contributions are negligible. The small discrepancies are due to higher-
order terms that have a non-linear dependency on the inverse MAS frequency, as verified
by the good agreement between the analytically calculated time evolution based on Eqs.
(4.22)-(4.24) and the numerical simulation at the higher MAS frequency.

4.2.3 Higher-Order Space-Spin Selection Rules

It was discussed in Sec. 3.1.1 that space-spin selection diagrams can be drawn to provide a
qualitative analysis of the allowed and forbidden spin interactions in the first-order Hamil-
tonian, during the mixing time of the symmetry-based CNν

n / RNν
n sequences. The selection

rules can be easily extended to higher orders to analyze the higher-order Hamiltonians. The
second-order selection rules [49, 67, 94, 95] for the allowed interactions are given by

(m1 +m2)n− (s1 + s2)ν = zN (4.28)
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where m and s are the sub-rank tensor component of the spatial and spin part of an interac-
tion, respectively, and the subscript (1 or 2) labels the type of interaction involved, and z is
any integer number. The formulation of the second-order selection rules is not surprising,
as one can infer a similar formalism from the second-order effective Hamiltonian Ĥ (2)

derived using Floquet theory (Eq. (4.29)).

ˆ̃H (n0,k0)
(2) =−1

2 ∑
ν ,κ

[ ˆ̃H (n0−ν ,k0−κ), ˆ̃H (ν ,κ)]

νωr +κωm
(4.29)

For instance, for the spatial component m (n0) that satisfies the resonance condition
n0ωr + k0ωm = 0, one can also deduce the Fourier components ˆ̃H (m1=n0−ν ,k1=k0−κ) and
ˆ̃H (m2=ν ,k2=κ) that appear in the second-order effective Hamiltonian (Eq. (4.29)), as the sum

of the Fourier numbers also constitutes the resonance conditions, i.e.

(m1 +m2)ωr +(k1 + k2)ωm = 0

(m1 +m2)ωr/ωm +(k1 + k2) = 0

(m1 +m2)n+(k1 + k2) = 0 (4.30)

In principle, there are infinite combinations of k1 and k2 that satisfy the condition k1+k2 = 0,
but we are interested only in the values of k1 such that the corresponding Fourier coefficients
a(k1)

r,s ̸= 0, which happens when
k1 = z1N − s1ν , (4.31)

which is analogous to Eq. (3.10). Hence, by substituting Eq. (4.31) into Eq. (4.30) :

(m1 +m2)n+(z1N − s1ν + z2N − s2ν) = 0

(m1 +m2)n− (s1 + s2)ν =−(z1 + z2)N

(m1 +m2)n− (s1 + s2)ν = zN (4.32)

where z = −(z1 + z2) is still an integer. One can clearly see that the higher-order selection
rules are indeed derivable from Floquet theory (see Eq. (4.32) and Eq. (4.28)). Following
the treatment of the second-order selection rules, one can deduce the number of allowed
CSA⊗CSA cross terms, and hence the size of second-order Hamiltonians qualitatively by
counting the number of allowed terms [69, 95], which are tabulated in Fig. 4.7. Apart
from knowing that there are in total 20 allowed CSA⊗CSA cross terms in the case of rotor-
synchronized C72

1, one can deduce that 8 of them originated from the non-resonant term
ˆ̃H (0,0)
(2) that is comprised of the Ŝz terms, 8 terms from the n0 = 3 resonant term ˆ̃H (±3,∓6)

(2)
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and the remaining 4 terms from the n0 = 4 resonant term ˆ̃H (±4,∓8)
(2) . Out of the 12 contribu-

tions from the resonant terms, half of them (6) is Ŝ+ and the other half is Ŝ−, which is not
surprising as the total Hamiltonian must be Hermitian. These results are obtained based on
the fact that the Fourier integers of the second-order effective Hamiltonian ˆ̃H (n0,k0)

(2) satisfy
the relation n0 = m1 +m2 (see third column in Fig. 4.7), and the commutator relations :

[T̂1,0, T̂1,±1] =±T̂1,±1 (4.33)

[T̂1,−1, T̂1,1] = T̂1,0 (4.34)

Following that, one can exploit the commutator relations and derive the following relation:

[T̂1,s1, T̂1,s2] = cT̂1,s1+s2 where c =

1 if s1 < s2

−1 if s1 > s2
(4.35)

Figure 4.7 All allowed CSA⊗CSA cross-terms based on second-order selection rules (Eq. (4.28)).
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and this is valid1 for rank-one tensors. Therefore, one can deduce the spin part of the
cross-term simply by computing s1 + s2 (see last column in Fig. 4.7). The final results are
summarized as follows:

ˆ̃H (0,0)
(2) = f (Ŝz)

ˆ̃H (±3,∓6)
(2) =g(Ŝ+, Ŝ−) (4.36)

ˆ̃H (±4,∓8)
(2) =h(Ŝ+, Ŝ−) (4.37)

where f , g, and h are just numerical functions that depends on the details of the spatial
part of the Hamiltonian, and the details of the C element, i.e. the Fourier coefficients a(k)r,s .
Another important results to note from here is that it is actually the resonant terms (Eqs.
4.36 and 4.37) that get compensated (Fig. 4.5) in the asynchronous C71

2 regime that renders
the higher transfer efficiency. While the non-resonant term ˆ̃H (0,0)

(2) still persists in the asyn-
chronous regime, and they can possibly be eliminated by sophisticated2 supercycle regime
[95]. This feature was exploited by Edén et al [94, 95, 102] to design efficient second-order
triple-quantum recoupling experiments.

4.3 Details of Numerical Simulations and Experiments

Numerical Simulations

The numerical simulations were performed in the spin-simulation environment GAMMA
[80], using a two-spin C-C system with parameters similar to that of 1,4-13C2-mono-ammonium
maleate. The anisotropy of the homonuclear dipolar coupling is δD/(2π) = -432 Hz and the
isotropic chemical-shift difference between the 13C resonances is zero. The CSA tensor
parameters are δCSA= -67.7 ppm, η = 1.0, and (αCSA,βCSA,γCSA) = (90◦,67◦,10◦) [97],
relative to the principal-axes system of the dipolar-coupling tensor. The CSA tensors of
the two 13C resonances are related by the mirror-plane symmetry σv. A total of 144 pow-
der orientations using the ZCW scheme [104] were used for the simulations, which were
performed using the same pulse sequence as the one implemented experimentally (see Fig.
4.1), i.e., with a four-step phase cycle to select only double-quantum coherences. The sim-
ulations were carried out at a MAS frequency of νr= 10.204 kHz, with on-resonance rf
irradiation on the two chemically-equivalent 13C spins.

1It becomes more complicated for commutator relation involving any rank-2 spin interactions, but can be
worked out from Eq. 22 of [101].

2It was shown that a nested and MQ phase cycling (SS′)3±1 [95] could remove the ZQ terms.
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Experiments

All experiments were carried out on a sample 1,4-13C2-mono-ammonium maleate diluted
1:7 in natural abundance material. A Bruker Avance III 700 MHz spectrometer was used
with a 2.5 mm TriGamma triple-resonance MAS probe at a MAS frequency of νr= 10.204
kHz. A total of 32 scans with the basic phase-cycling block of φ

(Excitation)
C7 = (x,x,x,x),

φ
(Reconversion)
C7 =(y,−x,−y,x), and φ (Detection)=(x,−x,x,−x) was used to perform the double-

quantum filtered experiment. A recycle delay of 20 s was used in all experiments, and the
double-quantum efficiency was normalized with respect to the cross-polarization intensity
under the same experimental conditions.

4.4 Results and Discussions

Figure 4.8 shows the results of numerical simulations and experiments for the double-
quantum filtered C71

2 sequence using 2πφ 2πφ+π (Figs. 4.8a, c, e, and g) and POST (Figs.
4.8b, d, f, and h) as the basic C element. The plots show the DQF efficiency as a function
of the additional pulse duration ∆τc and the C7 rf-field amplitude ν

(C7)
1 for the pulse-width

variation (PWV) (Figs. 4.8a, b, e, and f), or as a function of the cw rf amplitude ν
(CW)
1 for the

pulse-amplitude variation (PAV) (Figs. 4.8c, d, g, and h) (see also Fig. 4.1). The agreement
between simulations and experiments is very good for all the discussed cases. Both exper-
imental and numerical results confirm that the asynchronous sequence suppresses the CSA
tensor much more efficiently as expected from the calculated scaling factor of the CSA-
CSA cross terms (Fig. 4.5). In addition, the DQF efficiencies are in general higher using
the POST element (Figs. 4.8b, d, f, and h) than the 2πφ 2πφ+π element (Figs. 4.8a, c, e, and
g). Such a result is expected as the POST [61] element is known to be more robust against
chemical-shift offsets and rf inhomogeneity. In addition, numerical simulations show (see
Fig. 4.6) that the POST element suppresses third- and higher-order CSA cross-terms more
efficiently than the 2πφ 2πφ+π element. This is implied from the good agreement between
the analytical result and numerical simulations at νr = 10.204 kHz (Fig. 4.6).

The theoretical resonance conditions predicted using Floquet theory are also shown in
the plots of the simulated efficiencies (Figs. 4.8a-d) for the synchronous (∆τc =0) and the
asynchronous case (∆τc ̸=0) as black crosses and dashed black lines. There is a small devia-
tion between the experimentally observed and predicted resonance conditions (Fig. 4.8a-d)
. This is caused by the CSA-CSA cross terms which shifts the resonance condition, as
confirmed by the numerical simulation without a CSA tensor. The value of the optimum
incremented pulse duration ∆τc = 0.31 µs found in Fig. 4.8a and e matches the value used
in the literature [93], and it agrees well with the value of ∆τc = 0.31 µs predicted from the
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Figure 4.8 DQ efficiencies obtained by (a-d) simulations and (e-h) experiments, as a function of the
pulse duration ∆τc and rf field ν

(C7)
1 (a,b,e,f) or ν

(CW)
1 (c,d,g,h). The first-order resonance conditions

are plotted using dashed line (–) and the ideal synchronous version is marked with a cross (X) in Fig.
(a-d). The choice of the C elements are (a,e) PWV-2π , (b,f) PWV-POST, (c,g) PAV-2π , and (d,h)
PAV-POST. The contour plots were obtained for a fixed excitation blocks nexc= 13 for Fig. (a,c,e,
and g) and nexc= 22 for Fig. (b,d,f, and h). The time increments are 18.2 (20) ns, the step size in the
rf-field amplitudes is 1 (2) kHz for the PWV plots and 60 (250) Hz in the PAV plots in the simulations
(experiment).
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resonance condition using Eqs. (4.8) and (4.15).
An experimental build-up curve of the DQF efficiency is shown in Fig. 4.9 for the se-

quence using the basic C element PWV-2π and also PWV-POST. The plot shows that the
synchronized conditions (∆τc=0) have lower DQF efficiencies than the optimized condition
(∆τc = 0.31 µs). It shows that regardless of the choice of the basic C element, the asyn-
chronous sequence has higher DQF efficiencies than the synchronized sequence for spin
systems with large CSA tensors. Additionally, the POST element is indeed a more robust
element in both synchronous and asynchronous case. The maximum efficiency reached
(18%) in the asynchronuous POST C7 sequences is about 1/4 of the maximum theoretical
efficiency (73%). A factor of 6 is gained compared to the synchronized sequences which
reach a maximum double-quantum efficiency of about 3%. The obtained efficiency is quite
good under such unfavourable conditions of large CSA and small couplings.
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Figure 4.9 Experimental build-up curve for double-quantum coherences of 1,4 13C2-mono- ammo-
nium maleate as a function of the number of excitation block nexc, measured using the asynchronous
(∆τc = 0.35 µs) (blue) and synchronous (∆τc = 0 µs) (red) conditions. The experimental results
show that the PWV-POST (blue crosses) element gives higher DQF efficiency than the PWV-2π

(blue circles) element.
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4.5 Conclusions for Asynchronous C7
In this work, we have extended the Floquet description of rotor-synchronized symmetry-
based sequences to a more general framework that includes non-rotor synchronized se-
quences with an effective field. The possible resonance conditions are described using
operator-based multi-mode Floquet theory. An example of such sequences, asynchronous
C71

2, is discussed and shown to have a significantly higher double-quantum efficiency than
the rotor-synchronized sequence in the presence of large CSA tensors. The better perfor-
mance of the asynchronous sequence is due to the improved suppression of detrimental
second-order CSA cross terms. This effect is shown using analytical Floquet calculations
of second-order effective Hamiltonians and confirmed using numerical simulations as well
as experimental measurements. Our description rationalizes the phenomenological obser-
vations by Bechmann and coworkers [93] who showed that the non-rotor-synchronized C71

2

sequence, found using numerical optimization, outperforms the rotor-synchronized condi-
tion. The asynchronous C71

2 would be an ideal sequence for spin systems with weak dipolar
couplings and large CSA tensors, a typical situation encountered when using high-field
spectrometers. In addition, a generalization of the concept of asynchronous sequences to R
sequences is currently being investigated in our laboratory. We foresee possible applications
in improved suppression of heteronuclear dipolar couplings during recoupling sequences
without the need to irradiate the other spin. A second possible application is the use of such
sequences in the presence of quadrupolar interaction.





Chapter 5

Broad-Band DREAM Recoupling
Sequence

A homonuclear dipolar recoupling experiment was demonstrated in Sec. 4 using symmetry-
based sequences. In this chapter, it will be shown that the dipolar coupling can also be
recoupled via different spin-locking schemes, namely (i) only CW irradiation, i.e. HOR-
ROR/DREAM [105–107], (ii) only phase-alternating sequence, i.e. XiX pulses, and (iii)
combined CW and phase-alternating irradiation, i.e. XiXCW DREAM. Dipolar recoupling
in case (iii) (XiXCW DREAM) will be the main section in this chapter and case (ii) (XiX
DREAM) will be discussed in Sec. 5.5.

Declaration
Part of the chapter is based on the published manuscript:
K. O. Tan, A. B. Nielsen, B. H. Meier, M. Ernst, Broad-Band DREAM recoupling sequence,
J. Phys. Chem. Lett. 5, 3366, 2014.

5.1 Introduction
Homonuclear polarization-transfer schemes [108, 109] are an important building block in
multi-dimensional NMR experiments because they allow the identification of pairs of nu-
clei coupled by spin-spin interactions. In solid-state NMR, the polarization transfer is often
mediated via dipolar couplings which are distance dependent and hence allowing distance
measurements and structure determination [110, 111]. Dipolar interactions are averaged
out by magic-angle spinning (MAS) in a first-order average Hamiltonian (AHT) picture
[68], but can be reintroduced via recoupling sequences. A large number of recoupling se-
quences have been developed over the years based on different concepts. The homonuclear
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rotary-resonance (HORROR) [107] sequence is an example of such recoupling sequences
where the rf-field amplitude of continuous wave (CW) irradiation is matched to half the
MAS frequency in order to reintroduce the homonuclear dipolar coupling. The HORROR
sequence is a simple sequence but it has limited practical importance due to its sensitivity
to chemical-shift offsets and rf-field inhomogeneity. The sensitivity to the chemical-shift
offsets is a consequence of the low rf-field amplitude, in particular at slower MAS frequen-
cies. On the other hand, this feature makes it an attractive sequence for applications in
biological samples at faster MAS spinning rates exceeding the carbon chemical-shift range.
The adiabatic version of HORROR, called DREAM [105], mitigates the problems due to
offset and rf-inhomogeneity and increases the theoretical transfer efficiency to 100%. These
advantages have made the DREAM sequence a popular sequence in multi-dimensional cor-
relation spectroscopy, which is used for resonance assignments in proteins [2, 3, 112–114].
However, the bandwidth of the DREAM polarization transfer is still limited to roughly the
spinning frequency. In addition, the cross-peak intensities depend strongly on the position
of the rf-carrier frequency. A detailed discussion is provided by Westfeld et al. [115].

Here, we propose a modified DREAM sequence that reduces the sensitivity to the car-
rier position to a greater extent by superimposing a phase alternating rf-irradiation scheme
[39, 116, 117], i.e., XiX pulses [50] on top of the CW field. Figure 5.1a illustrates the ba-
sic idea of superimposing the two sequences where the individual rf-field amplitudes are
added if the two sequences have the same phase or subtracted if they have opposite phase.
The possible recoupling conditions of the new sequence are analyzed using a triple-mode
Floquet framework [32]. In principle, these schemes allow us to considerably increase the
rf amplitude while maintaining a HORROR-type recoupling. We will focus here on one
specific resonance condition where the average rf power is still low and yet high transfer
efficiency can be achieved.

5.2 Theory

We consider a system of two dipolar-coupled spins. The full time-dependent Hamiltonian
of the system under MAS and rf irradiation in spherical-tensor notation [68] is given by

Ĥ (t) =
2

∑
p=1

2

∑
n=−2

ω
(n)
p einωrtT (p)

1,0 +
2

∑
n=−2
n ̸=0

ω
(n)
1,2 einωrtT (1,2)

2,0 +ω
(0)
1,2 T (1,2)

0,0

+ω1S(t)
2

∑
p=1

Spx (5.1)
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Figure 5.1 Pulse sequence for a two-dimensional homonuclear 13C-13C correlation experiment using
a) XiXcw HORROR or the adiabatic version b) XiXcw DREAM with CW decoupling on proton
during the mixing time τmix. ω

(XiX)
1 and ω

(cw)
1 represent the rf field strength of the phase-alternating

and CW part respectively, and the cycle-time of the XiX pulses is given by τmix = 2π/ωm .

where the last term ω1S(t) = ω
(XiX)
1 (t)+ω

(cw)
1 represents the time-dependent amplitude-

modulate rf Hamiltonian, as depicted in Fig. 5.1. The pulse sequence is essentially an
amplitude-modulated rf irradiation along the x-axis of the Zeeman interaction-frame. Hence,
the interaction-frame transformation with the full rf Hamiltonian (Eq. (5.1)) can be done in
a straightforward way since this Hamiltonian commutes with itself at all times. Prior to the
interaction-frame transformation, we adopt a titled-frame representation for the Hamiltoni-
ans by first rotating the Hamiltonians by a 90° rotation about the negative y-axis (Ŝx → Ŝz,
Ŝz →−Ŝx). In the full rf interaction frame, we obtain a time-dependent Hamiltonian of the
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form
ˆ̃H (t) =

2

∑
n=−2

∞

∑
k=−∞

2

∑
ℓ=−2

ˆ̃H
(n,k,ℓ)

einωrteikωmteiℓω (cw)
1 t (5.2)

with three basic frequencies, the MAS frequency ωr , the modulation frequency of the phase-
alternating rf irradiation ωm, and the mean rf-field amplitude ω

(cw)
1 = ω1(t). The Fourier

components of the Hamiltonian are given by

ˆ̃H
(n,0,0)

=
{

ω
(0)
1,2 T (1,2)

0,0

}
δn,0 −

1
2

ω
(n)
1,2 T (1,2)

2,0 (5.3)

ˆ̃H
(n,k,±1)

=
2

∑
p=1

± 1√
2

ω
(n)
p T (p)

1,±1a(k)1,±1 (5.4)

ˆ̃H
(n,k,±2)

=

√
3

2
√

2
ω

(n)
1,2 T (1,2)

2,±2 a(k)2,±2 (5.5)

where a(k)r,s are the Fourier coefficients that characterize the interaction-frame transforma-
tion of the spherical-tensor operators in the tilted frame under the amplitude-modulated rf
irradiation:

T̃r,0(t) =
r

∑
s=−r

ar,s(t)Tr,s =
∞

∑
k=−∞

r

∑
s=−r

a(k)r,s eikωmtTr,s (5.6)

For a phase-alternating irradiation (XiX), the magnitude of the a(k)r,s coefficients depends
only on the ratio ω

(XiX)
1 /ωm. Note that the rf amplitude of the phase-alternating sequence

ω
(XiX)
1 has only an indirect effect on the effective Hamiltonian, i.e., it affects the magnitude

of the effective Hamiltonian but does not shift the resonance conditions. The analytical
expressions as well as graphical plots of the Fourier coefficients are provided by [50] Ernst
et al. If the three basic frequencies ωr, ωm and ω

(cw)
1 fulfil the resonance condition n0ωr +

k0ωm + ℓ0ω
(cw)
1 = 0, one obtains an effective Hamiltonian of the form

ˆ̄H
(1)

= ˆ̃H
(0,0,0)

+ ∑
n0,k0,ℓ0

ˆ̃H
(n0,k0,ℓ0)

(5.7)

where the values of n0 and ℓ0 are restricted to the range from -2 to +2 and k0 can be any inte-
ger number. As we are interested in a double-quantum recoupling condition, the important
terms are the double-quantum terms T2,±2. These terms are found in the Fourier compo-

nents ˆ̃H
(n,k,±2)

, which can be reintroduced via the double-quantum recoupling condition
n0ωr + k0ωm ±2ℓ0ω

(cw)
1 = 0. In principle, there are infinitely many possible combinations

of setting the frequencies ωr, ωm, and ω
(cw)
1 to match the double-quantum recoupling con-
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dition. In this paper, we focus on one specific resonance condition defined by

ωr = ωm = 2 ω
(cw)
1 (5.8)

Additionally, we impose the condition ω
(XiX)
1 = ωm in order to maximize the transfer (vide

infra). By fulfilling this condition, one obtains the first-order effective Hamiltonian

ˆ̄H
(1)

= ˆ̃H
(0,0,0)

+ ˆ̃H
(1,0,−2)

+ ˆ̃H
(−1,0,2)

+ ˆ̃H
(1,−2,2)

+ ˆ̃H
(−1,2,−2)

+ ˆ̃H
(2,−1,−2)

+ ˆ̃H
(−2,1,2)

+ ˆ̃H
(2,−3,2)

+ ˆ̃H
(−2,3,−2)

= ω
(0)
1,2 T (1,2)

0,0 +
(

ω
(eff)
1,2 T (1,2)

2,2 + ω
(eff)†
1,2 T (1,2)

2,−2

)
(5.9)

with the effective dipolar coupling strength ω
(eff)
1,2 given by

ω
(eff)
1,2 =

√
3

2
√

2

(
ω

(−1)
1,2 a(0)2,2 +ω

(+1)
1,2 a(−2)

2,2 +ω
(−2)
1,2 a(+1)

2,2 +ω
(+2)
1,2 a(−3)

2,2

)
(5.10)

Note that the first term in Eq. (5.9) represents the homonuclear J coupling while the other
terms are the desired double-quantum recoupling terms. In the following discussion, we
will neglect the J-coupling Hamiltonian since the magnitude of the dipolar couplings is
usually much larger than the scalar couplings. This sequence does not generate a γ-encoded
effective Hamiltonian [107] because the mixing of the n = 1 (ω(±1)

1,2 ) and n = 2 (ω(±2)
1,2 ) (Eq.

(5.10)) terms makes it impossible to express the γ-angle as an overall phase factor in the
effective Hamiltonian (Eq. (5.9)). This is not necessarily a drawback and it has been shown
recently that such a Hamiltonian can achieve a higher maximum transfer efficiency in the
first transient [118] than one finds for γ-encoded sequences (73%), if the combination of
the Fourier coefficients is chosen appropriately. In principle, for powdered solids, the rate
of the polarization transfer can be determined by the first moment for the absolute value of
effective dipolar coupling [119]

〈∣∣∣ω(eff)
1,2

∣∣∣〉=

∫
α,β ,γ

∣∣∣ω(eff)
1,2 (α,β ,γ)

∣∣∣sin(β )dαdβdγ∫
α,β ,γ

sin(β )dαdβdγ
(5.11)

which depends on the Fourier coefficients a(k)2,2 and, therefore, on the ratio ω
(XiX)
1 /ωm. Fig-

ure 5.2b (blue crosses) shows the first moment ⟨|ω(eff)
1,2 |⟩ as a function of the ratio ω

(XiX)
1 /ωm

normalized by the value ⟨|ω(eff)
1,2 (ω (XiX)

1 /ωm = 0)|⟩, i.e., the HORROR condition. One can
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clearly see that the value of ⟨|ω(eff)
1,2 |⟩ decreases with increasing ω

(XiX)
1 /ωm, in agreement

with the observed slowdown of the polarization transfer from the numerical simulations
shown in Fig. 5.2a. Besides that, the maxima of the polarization transfer extracted from
Fig. 5.2a are plotted in Fig. 5.2b (red circles) and it shows an oscillatory behaviour as a
function of the ratio ω

(XiX)
1 /ωm. This behaviour can be correlated to the second moment

[41] for the absolute value of effective dipolar coupling ⟨∆ |ω(eff)
1,2 |2⟩ (Eq. (5.13)).

〈
∆

∣∣∣ω(eff)
1,2

∣∣∣2〉=

∫
α,β ,γ

(∣∣∣ω(eff)
1,2 (α,β ,γ)

∣∣∣−〈∣∣∣ω(eff)
1,2

∣∣∣〉)2
sin(β )dαdβdγ∫

α,β ,γ

sin(β )dαdβdγ
(5.12)

Neff =

〈
∆ |ω(eff)

1,2 |
2
〉

⟨|ω(eff)
1,2 |⟩

(5.13)

Moreover, a dimensionless quantity Neff (Eq. (5.13)) is defined here to characterise the
maximum first transient efficiency (black diamond in Fig. 5.2b), and it is independent of
the details on the spin system. The maximum of the polarization transfer is high when the
quantity Neff is low, and vice-versa. A good compromise between low values for Neff (high
maximum transfer efficiency) and high values for ⟨|ω(eff)

1,2 |⟩ (fast transfer) is found when the

ratio ω
(XiX)
1 /ωm = 1, justifying the choice of the resonance condition selected in the theoret-

ical discussion above. The reason that it is possible to achieve a higher polarization-transfer
efficiency (or smaller Neff) in the non γ-encoded sequence compared to the γ-encoded HOR-
ROR sequence is that the effective Hamiltonian (Eq. (5.10)) recouples n = 1 (ω(±1)

1,2 ) and

n = 2 (ω(±2)
1,2 ) terms simultaneously, hence providing an additional degree of freedom for

the optimization of the orientation-dependent effective dipolar couplings. In the conven-
tional HORROR condition, only the n = 1 (ω(±1)

1,2 ) term is recoupled. The n = 2 HORROR
condition [120] is not often used, as it also reintroduces the undesirable CSA tensor, which
is avoided in the case of XiXcw. The same reasoning allows us to ignore the heteronuclear
dipolar couplings to first order in XiXcw. Nevertheless, the transfer efficiency could still be
affected by higher-order terms involving the heteronuclear dipolar coupling. However, these
terms can be assumed to be small if a suitable proton decoupling scheme is applied during
the mixing time. The sequence can be further improved to compensate for rf inhomogeneity
more efficiently and also to achieve a theoretical transfer efficiency approaching 100 % by
performing an adiabatic experiment [106]. This can be implemented by sweeping the ωcw

1

field through the on-resonance condition given in Eq. (5.8) (see also Fig. 5.1b).
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Figure 5.2 (a) Simulated transfer efficiency −⟨S2x(t)/S1x(0)⟩ of an ideal dipolar-coupled two-spin
system as a function of the mixing time τmix and the ratio of the rf field amplitude of the XiX
pulses to the modulation frequency ω

(XiX)
1 /ωm. (b) The magnitude of the normalized first moment

⟨|ω(eff)
SpSq

|⟩/⟨ω(eff)
SpSq

(ω (XiX)
1 /ωm = 0)|⟩ (blue cross) and the normalized second moment Neff (black di-

amond) are calculated analytically using the effective Hamiltonian in Eq. (5.9). Also shown in the
same plot is the maximum transfer −⟨S(max)

2x /S1x(t0)⟩ (red circle) extracted from (a). The red dashed
line indicates a value of 0.73 which is the maximum transfer efficiency obtained for a γ-encoded
sequence.

5.3 Computational and Experimental Methods

First, we compare the performance of XiXcw DREAM with DREAM by means of numeri-
cal simulations for a four-spin CH2-C model system using the spin-simulation environment
GAMMA [80]. The spin-system parameters were chosen such that they correspond to the
parameters for crystalline glycine ethylester, with the isotropic chemical-shift difference of
the two 13C resonances set to 16 kHz corresponding to the values for a 500 MHz spectrom-
eter. Figure 5.3a shows the simulated polarization-transfer efficiency from the carbonyl to
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the aliphatic carbon as a function of the offset frequency νoff. The parameters for both
simulations were first optimized at a MAS frequency of 20 kHz with the carrier frequency
placed in the middle of the two 13C resonances. Then, the simulations were repeated at
different carrier frequencies using the same parameters. The results show that the XiXcw

DREAM sequence yields a maximum transfer efficiency of about 42% whereas the conven-
tional DREAM experiment yields only a maximum of about 32%. Moreover, the transfer
profile of XiXcw DREAM is broader and higher than that of DREAM for almost all values
of the carrier frequency. Similar improvements are also observed in the experimental results
(Fig. 5.3b) measured on a sample of 1,2-13C-glycine ethylester on a Varian Infinity+ 500
MHz spectrometer, using the same conditions as the numerical simulations shown in Fig.
5.3a. More details on the spin-system and the acquisition parameters can be found in Sec.
A.3 and Table 5.1 respectively.

Gly (XiXcw ) Gly (DREAM) Ubi (XiXcw ) Ubi ( DREAM)
13C rf ν

(cw)
1 / kHz 9.35 6.2 12.5 10.5

13C rfν (XiX)
1 / kHz 23.5 - 23.5 -

1H rf ν
(cw)
1H / kHz 145 145 138 138

MAS frequency νr / kHz 20 20 25 25
XiX τm / µs 50 - 40 -

Mixing time τmix / ms 3.15 3.15 6 6
Carrier 13C 107 107 111 111

dest/2π / kHz 3.74 2.48 4.5 4.5
∆ /2π / kHz 1.48 1.23 -2.5 -2.5

Table 5.1 Experimental details of DREAM and XiXcw DREAM on glycine and ubiquitin.

5.4 Results and Discussions for XiXCW DREAM

It is well known that the intensities of the cross peaks in a 2D DREAM spectrum are affected
by the position of the carrier frequency [115], in particular if the chemical-shift range of the
involved resonances is large compared to the spinning frequency. This effect was investi-
gated for both DREAM and XiXcw DREAM sequences experimentally using the tripeptide
MLF as a test sample on a 600 MHz spectrometer at a MAS frequency of 13 kHz. Figure
5.4 shows the DREAM spectra (Figs. 5.4a-c) and the XiXcw DREAM spectra (Figs. 5.4d-f)
all obtained with a mixing time of 5.6 ms and CW decoupling of 100 kHz on protons. Both
mixing sequences were first optimized on 1D spectra with the carrier frequency at 40 ppm
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(Figs. 5.4b and e). Subsequently, two additional spectra were acquired with the same pa-
rameters but the carrier frequency placed at 0 ppm (Figs. 5.4a and d) and 80 ppm (Figs. 5.4c
and f), respectively. All spectra shown in Fig. 5.4 were processed using the same parame-
ters including the setting of the contour levels. It is clear from the DREAM spectra (Figs.
5.4a-c) that more than half of the cross peaks vanish when the carrier frequency is shifted
by ±40 ppm. The bandwidth of the recoupling condition becomes very limited under the
strong offset conditions and only the 13C resonances that are close to the anti-diagonal sat-
isfy the double-quantum recoupling condition. In the XiXcw DREAM spectra (Figs. 5.4d-f),
most of the cross peaks are still visible even when the carrier frequency is shifted and the
cross-peak intensities are attenuated compared to the spectrum with the carrier frequency
placed in the middle (Fig. 5.4e). It is evident from the spectra that XiXcw DREAM is less
susceptible than DREAM to the exact placement of the carrier frequency, therefore, sug-
gesting that it is a better offset-compensated sequence. Note that some of the cross peaks
in Figs. 5.4d and f have positive intensities because they are either due to relay transfer
or direct transfer mediated by a zero-quantum Hamiltonian if the rotational-resonance in a
tilted rotating frame (R2TR) [121, 122] is satisfied.

In order to demonstrate that the new sequence is a practical choice for application in
biomolecular solid-state NMR, full 2D 13C homonuclear correlation spectra (Fig. 5.5) of
U-13C-15N ubiquitin were acquired on a 600 MHz spectrometer at a spinning frequency of
25 kHz using both DREAM (Fig. 5.5a) and XiXcw DREAM (Fig. 5.5b). Both mixing se-
quences were optimized in 1D experiments with the carrier frequency positioned at 111 ppm
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for the highest CO-CA transfer efficiency. The two spectra were processed with the same
parameters and are plotted using identical contour levels. Both sequences show comparable
performance for the CO-CA cross peaks, but it is evident that XiXcw DREAM outperforms
DREAM in generating additional cross peaks in the aliphatic region. Two 1D slices through
the resonances of 46Ala (Fig. 5.5c) and 22Thr (Fig. 5.5d) are shown to allow a better com-
parison of the two mixing sequences. Although the CA-CO cross-peak intensities of 46Ala
(Fig. 5.5c) are comparable for both sequences, the relay transfer A46Cβ is much higher in
the case of XiXcw DREAM. In Fig. 5.5d, one can clearly see that the Cγ-Cβ cross peak
under XiXcw DREAM regime is much higher than the one acquired using DREAM. More
experimental details for the acquisition of the 2D spectra for ubiquitin are shown in Table
5.1.

We have proposed a new homonuclear dipolar recoupling sequence by superimposing a
phase-alternating sequence onto the HORROR sequence. The recoupling conditions of such
a sequence were generalized and studied analytically using Floquet theory. It can also be
shown that the basic frequencies involved in the resonance conditions are similar to that of
the RESPIRATIONCP [118]. A specific recoupling condition (Eq. (5.8)) in which the original
DREAM condition (ω(cw)

1 = ωr/2) is superimposed with XiX pulses, of which the cycle
time τm matches a rotor period τr, is analyzed. This condition has the advantage that the
theoretical maximum transfer efficiency can be higher than that of a γ-encoded sequence.
The required average rf field strength applied in XiXcw is of the order of the spinning fre-
quency νr, which is twice as high as the one used in the HORROR condition. This increase
is necessary to achieve the broader bandwidth and higher transfer efficiency as compared
to HORROR. Still, the relatively low rf field power requirement (compared to POST-C7
[61] or PAMORE [117]) of XiXcw DREAM is also practical for applications in biological
macromolecules, i.e. in obtaining a full 2D 13C homonuclear correlation spectra of ubiqui-
tin at intermediate spinning frequency. We believe that XiXcw DREAM, being a first-order
recoupling sequence with efficient offset compensation, would be an ideal candidate as a
dipolar recoupling sequence in such situation. Practical applications are mainly foreseen
for assignment experiments in biological samples [2, 123].
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Prospects and Future Work
The main advantage of XiXcw DREAM is that the mean rf field (ν1 = 0.75νr) is higher than
the normal DREAM sequence (ν1 = 0.5νr), for the specific chosen resonance condition (Eq.
(5.8)) that uses the least rf field. There is in general many more possible resonance con-
ditions to be exploited for DQ recoupling. Morever, the XiXcw DREAM sequence might
perform better at higher MAS where proton decoupling is not needed. At moderate MAS,
the interference can be alleviated (perhaps not fully avoided) by using high power 1H decou-
pling. In addition, a pulse sequence with large first moment (Eq. (5.11)) but smallest second
moment (Eq. (5.12)) is desired because it gives fastest and highest theoretical transfer effi-
ciency for the non-adiabatic regime. This can perhaps be optimized using optimal control,
a genetic algorithm or any other numerical optimization scheme. The possible future works
are summarized below:

1. Examine the XiXcw DREAM sequence at higher MAS without proton decoupling.

2. Explore other possible resonance conditions with higher rf fields at moderate MAS.

3. Numerically optimize the second moment to give highest transfer efficiency.

4. Incorporate the offset description into the resonance condition using the quaternions.
Moreover, compare this method with the pulse version (RESPIRATION-CP [118]).

5.5 DQ Recoupling without CW field: XiX DREAM

In principle, the DQ term can be recoupled by employing only a phase-alternating sequence,
i.e. XiX pulses. In this regime, the DQ terms are recoupled via a matching of the spinning
frequency νr with the modulation frequency νm (Eq. (5.14)). In addition, novel adiabatic
sequences will be demonstrated here in the absence of an effective CW field. A comparison
with other different DQ recoupling schemes (DREAM and XiXcw DREAM) will be shown
and discussed in the end.

5.5.1 Theory

The resonance conditions for such sequences can be described by bimodal Floquet theory:

n0νr + k0νm = 0 (5.14)
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where νm is the modulation frequency of the XiX pulses. Following this, the Fourier com-
ponents of the Hamiltonian have a general form of

ˆ̄H
(n,k)

=ω
(n)
1 (a(k)y S1y −a(k)x S1x)+ω

(n)
2 (a(k)y S2y −a(k)x S2x)

+
3ω

(n)
1,2

2

(
b(k)x (S1xS2x −S1yS2y)−b(k)y (S1xS2y +S1yS2x)

)
=ω

(n)
1 (a(k)y S1y −a(k)x S1x)+ω

(n)
2 (a(k)y S2y −a(k)x S2x)+

3ω
(n)
1,2

2

(
b(k)x SΣ

x −b(k)y SΣ
y

)
(5.15)

where the first two terms in Eq. (5.15) contain the CSA interaction and the last term contains
homonuclear dipolar coupling with the double-quantum terms SΣ

x and SΣ
y (see Eq. (A.6)).

The Fourier coefficients a(k)x,y and b(k)x,y are obtained after the interaction-frame transformation
along the rf Hamiltonian (z-axis), and the size of the Fourier coefficients depend on the ratio
of ω

(XiX)
1 /ωm (Fig. 5.6). Note that the Cartesian instead of the spherical basis is chosen

here, so that the description is consistent with the literature [50].
Following this, DQ recoupling experiments can be designed by setting correctly the

Fourier coefficients so that high scaling factors are attributed for DQ term, and zero for
other undesired interactions like CSA. There are two general methods to obtain pure DQ
recoupling, namely setting (i) νr = (2k + 1)νm/2 and ν

(XiX)
1 = (2k + 1)νm/2 = νr or (ii)

νr = kνm and ν
(XiX)
1 = k/2νm = νr/2. The effective Hamiltonian of condition (i) is less

interesting because it only recouples the n0 = 2 without the n0 = 1 term. While (ii) generates
an effective Hamiltonian of the form

ˆ̄H
(1)

= ˆ̃H
(0,0)

+ ˆ̃H
(1,−k)

+ ˆ̃H
(−1,k)

+ ˆ̃H
(2,−2k)

+ ˆ̃H
(−2,2k)

=
3
2

b(k=±4)
x

(
ω

(1)
1,2 +ω

(−1)
1,2

)
SΣ

x

=
3
4

(
ω

(1)
1,2 +ω

(−1)
1,2

)
SΣ

x (5.16)

where in the last line b(k=±4)
x = 1/2 is substituted, and note that the Fourier coefficient

is symmetric, i.e. b(k=4)
x = b(k=−4)

x (Fig. 5.6). This results in the equal contribution of the
spatial components n0 =±1 for the same spin term, thereby resulting in a cosine-modulated
(non γ-encoded) sequence. The simulation shows that the XiX DQ recoupling scheme has
the weakest transient at 52% (Fig. 5.7) due to the cosγ dependence (Eq. (5.16)), and longer
build-up curve compared to HORROR due to smaller DQ scaling factor. Nevertheless, one
should compare the adiabatic versions next to conclude the practicability of the sequence.



5.5 DQ Recoupling without CW field: XiX DREAM 97

−10 −8 −6 −4 −2 0 2 4 6 8 10
−1

0

1

 ν
1

 / ν
m

 = 2, ν
r
 / ν

m
 = 4

k

a
x

−10 −8 −6 −4 −2 0 2 4 6 8 10
−1

0

1

k

a
y

−10 −8 −6 −4 −2 0 2 4 6 8 10
−1

0

1

k

b
x

−10 −8 −6 −4 −2 0 2 4 6 8 10
−1

0

1

k

b
y

(XiX)

(k
)

(k
)

(k
)

(k
)

Figure 5.6 Fourier coefficients of XiX pulses for ν
(XiX)
1 /νm =2. Note that the coefficients are real,

and symmetric with respect to κ . The coefficients for the recoupled term in the case of νr/νm =4, are
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98 Broad-Band DREAM Recoupling Sequence

0 0.5 1 1.5 2 2.5 3 3.5
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

t
mix

 / ms

 

 

cw

XiX

XiXcw

P
o
la
ri
z
a
ti
o
n

Figure 5.7 Simulated two-spin ideal system with different DQ recoupling regimes. Only dipolar
coupling δD/(2π) =4.2 kHz is included in this simulation.

5.5.2 Adiabatic Sweep via νm and Pseudo CW Field

Adiabatic DQ experiments can be designed by introducing a large offset (SΣ
z ) in the be-

ginning and in the end of the sequence (see Sec. 1.5). A complication arises in the case
of XiX DQ recoupling as there is no effective field νeff = 0. Nevertheless, a fictitious or
pseudo CW field can be added to the XiX pulses in a way that the CW field at τmix/2, and
the accumulated flip angle throughout the entire mixing time τmix, are both zero (Fig. 5.8c).
The corresponding simulated intensity (Fig. 5.8d) shows a slowly increasing target polar-
ization (up to 80%), a typical feature of an adiabatic experiment where the density operator
is ’dragged’ from SΣ

z to −SΣ
z . Whereas in the sudden experiment, the polarization transfer

often exhibits strong oscillating transients.

Another possible way to perform an adiabatic experiment is to sweep through the mod-
ulation frequency νm (Fig. 5.8a). Modulation of pulse length τp is technically demanding
and the mixing time τmix has to be long to ensure that a sufficiently large number of steps
are employed. Moreover, if the amplitude is kept constant while changing τp, an offset SΣ

z

is not necessarily introduced. Nevertheless, adiabatic modulation of νm was examined by
simulations and the result is shown in Fig. 5.8b. Although the polarization transfer builds
up slowly, significant transients are still observed, implying that the experiment is not fully
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adiabatic. Nonetheless, an increased transfer efficiency (60 %) is still obtained relative to
the sudden experiment (52 %). It can be examined in a future experiment to sweep the
phase-alternating rf field ν

(XiX)
1 instead of νm, but care has to be taken in order to avoid

recoupling undesired terms like CSA.
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Figure 5.8 Simulated two-spin ideal system with different adiabatic DQ recoupling regimes sweep-
ing through νm (a,b) or pseudo CW field (c,d). A schematic diagram of the adiabatic sweep of νm is
shown on top of (a). Only dipolar coupling δD/(2π) =4.2 kHz is included in this simulation.
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5.5.3 Conclusions

Finally, all three different adiabatic DQ recoupling experiments, CW DREAM, XiX with
pseduo CW sweep, and XiXCW DREAM are compared experimentally. Fig. 5.9 shows that
XiXCW DREAM is the most efficient sequence and XiX with pseduo CW sweep is least
efficient with only 18% transfer and smallest recoupling bandwidth. Nevertheless, one can
exploit this feature of narrow bandwidth to design a frequency-selective DQ experiment.
This can be achieved by incorporating the offset effect into the effective field νeff and reso-
nance condition (see Sec. 6.3.4) using the quaternion description.
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Figure 5.9 Experimental 1D data of different adiabatic DQ recoupling sequences on glycine at 500
MHz and νr =40 kHz. Note that a pseudo CW rf field sweep is implemented for the XiX regime.



Chapter 6

A Generalized Theoretical Framework
for the Description of Spin Decoupling

A generalized theoretical framework that allows the analysis of arbitrary decoupling se-
quences in solid-state NMR under magic-angle spinning (MAS) conditions is presented in
this chapter. It is based on the trimodal Floquet analysis of TPPM decoupling [46] where
three characteristic frequencies are used to describe the pulse sequence. Such an approach
can be used to describe arbitrary periodic decoupling sequences that differ only in the mag-
nitude of the Fourier coefficients of the interaction-frame transformation. This generalized
approach allows a much faster calculation of second-order residual line broadening as a
function of pulse sequence parameters than numerical simulations, as the main calculations
involved are one-spin trajectories under the radio-frequency Hamiltonian. We exemplify the
usefulness of this framework by analyzing the performance of both low- and high- power
decoupling sequences such as amplitude-modulated XiX (AM-XiX) [45], TPPM64 [124],
SPINAL-64 [125], frequency-swept SW f -TPPM [126], and others. In addition, the effect
of chemical-shift offset, which can be significant in the regime of low-power decoupling
will also be discussed.

6.1 Introduction

Heteronuclear spin decoupling under magic-angle spinning (MAS) [127–129] is an impor-
tant aspect in obtaining high-resolution spectra in biological solids. Despite many contribu-
tions to improve heteronuclear spin decoupling during the past 25 years, there are still open
questions and further improvements are desirable. A topic that has limited attention is the
offset dependence of decoupling performance [128, 130–134]. While this seems to be of
limited interest in the case of high-power decoupling [50, 52, 125–127, 135] where the nuta-
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tion frequency is much larger than the MAS frequency (ν1 ≫ νr), this issue is important for
low-power decoupling [130, 136–139] where the nutation frequency of the decoupling field
is smaller than the MAS frequency (ν1 ≪ νr). With increasing maximum MAS frequencies
over the past 20 years to nowadays 120 kHz and beyond [87, 140–142], low-power decou-
pling has become a competitive alternative to high-power decoupling for MAS beyond 50
kHz with no or only a small compromise on the achievable line width [127, 136, 143]. In
biological samples, low-power decoupling sequences are often preferred since the corre-
sponding rf duty cycle on a probe is much lower and the rf heating of samples is minimal
compared to high-power decoupling schemes. However, the typical rf-field amplitude em-
ployed for the low-power decoupling sequence (ν1 < νr/4) is in the same order of mag-
nitude as the range of proton chemical shifts on a high-field magnet. This situation might
have detrimental effect on the performance of such decoupling sequences [127] because the
optimum decoupling conditions can never be achieved simultaneously for all protons with
different chemical shifts and, therefore, results in offset-dependent line broadening.

It is desired to understand how offset effects impact the performance of the decoupling
sequences. Nonetheless, a theoretical treatment of offset effects in decoupling sequences is
hindered by the complexity of the theory required to describe such sequences. Typically,
one has to calculate the interaction-frame Hamiltonian in a tilted frame of reference that
includes the time-dependent radio-frequency Hamiltonian as well as the offset term and
physical rotations of the sample. The theoretical treatment of Hamiltonians under several
time dependencies, which usually have non-commensurate frequencies in the case of decou-
pling is non-trivial in the framework of average Hamiltonian theory (AHT) [30]. Therefore,
we resort to Floquet theory [34, 144], which does not require that the characteristic frequen-
cies are commensurate. Floquet theory can be used to calculate effective Hamiltonians to
different orders as a function of the offset frequency. During decoupling under MAS, non-
resonant first- and second-order terms typically determine the size of the residual coupling.
In addition, resonance conditions can lead to a partial recoupling of heteronuclear terms
leading to deterioration of the decoupling performance.

The identification of characteristic frequencies for a pulse sequence is important because
it constitutes a set of possible resonance conditions, which have to be avoided if they are
destructive. The rf-irradiation part of all periodic pulse sequences can be characterized by
a maximum of two characteristic frequencies [46, 145, 146], namely the modulation fre-
quency (νm = 1/τm) and the effective nutation frequency of the sequence (νeff) (see Sec.
2.5.4). While the physical spinning of the sample contributes only one frequency (νr) in
the case of standard MAS condition, or two in the case of the double rotation technique
(DOR) [147]. Based on this universal feature, we have developed a general Floquet frame-
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work that allows the calculation of non-resonant second-order terms for arbitrary decoupling
sequences without detailed knowledge of the decoupling sequence and the spin system in-
volved (Fig. 6.1a). We obtain general effective Hamiltonians that characterize the residual
couplings that either arise from cross terms between heteronuclear dipolar couplings and
CSA tensors or from cross terms between heteronuclear and homonuclear dipolar couplings.
The differences in the decoupling sequences (or in the offset) are not reflected in the general
expressions but are encoded in the values of the Fourier coefficients indirectly. In order to
evaluate the performance of a given decoupling sequence, the general expression based on
Floquet theory have to be combined with the Fourier coefficients of the interaction-frame
transformation that can be obtained numerically by calculating the interaction-frame trajec-
tory (Fig. 6.1a).

Low-Power Decoupling Sequences

An application of this general framework will be demonstrated in Sec. 6.3 to compare the
performance of low-power amplitude-modulated XiX (AM-XiX) decoupling sequence and
its super-cycled variant SC-AM-XiX [116], via the Fourier coefficients that characterize the
size of the residual couplings. These theoretical analyses are then verified by comparison
with numerical simulations. Then, the comparison between the two decoupling sequences
is extended to the case where offset effect is included. Although resonance conditions are
usually avoided for better decoupling performance in most scenarios, not all resonance con-
ditions are destructive. It will be demonstrated in this work that recoupling of homonuclear
dipolar couplings on the protons can improve the line width of the carbon resonances via
the "self decoupling" [129, 148, 149] mechanism. This is particularly an important consid-
eration due to the presence of a dense proton network in biological molecules. Following
that, an optimization strategy for an efficient decoupling condition that exploits this self
decoupling feature using the AM-XiX scheme will be presented in Sec. 6.3.3.

High-Power Decoupling Sequences

In principle, the generalized framework can also be used to analyze high-power decoupling
sequences including simple two-pulse TPPM [52], its supercycled version TPPM-64 [124]
and adiabatic version SW f -TPPM [132, 134]. Three different aspects will be discussed in
this thesis. There are comparison between the basic and different variants of TPPM (Sec.
6.4.1), easier optimization strategy of SPINAL-64 (Sec. 6.4.2), and finite-pulse effect in
adiabatic SW f -TPPM (Sec. 6.4.3).
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Figure 6.1 Schematic diagram of a generalized theoretical framework for the description of het-
eronuclear spin decoupling. (a) shows the construction of general Hamiltonians for arbitrary decou-
pling sequences. The information of the decoupling sequences is encoded intrinsically in a set of
Fourier coefficients {ak}, which are calculated via interaction-frame trajectory, and then combined/-
substituted into the effective Hamiltonian in the later step. Two examples of low-power decoupling
sequences: (b) AM-XiX and (c) SC-AM-XiX are shown here. The AM-XiX sequence has a mod-
ulation frequency of νm = 1/

(
2τp
)

and effective nutation frequency ωeff = ωCW
1 mod ωm while

SC-AM-XIX has νm = 1/
(
4τp
)

and ωeff = 2νmcos−1
(
cos2

(
πωCW

1 /2ωm
))

/(2π). (d) shows the
effect of offset on the directions of the effective field for the first two pulses of AM-XiX and SC-
AM-XiX.

6.2 Theory

6.2.1 General Floquet Description of Decoupling Sequences

Let us consider a general spin system that is comprised of N I spins coupled to a single S
spin. The Hamiltonian of the system is expressed in the usual rotating frame

Ĥ (t) =
2

∑
n=−2

ω
(n)
S einωrtSz +

N

∑
k=1

2

∑
n=−2

ω
(n)
k einωrtIkz +

N

∑
k=1

2

∑
n=−2

ω
(n)
Sk einωrt2SzIkz

+ ∑
k<ℓ

2

∑
n=−2
n̸=0

ω
(n)
kℓ einωrt

(
3IkzIℓz −

−→
Ik ·−→Iℓ

)
+Ĥrf(t) (6.1)

where the symbols ω
(n)
S and ω

(n)
k represent the n-th spatial component of the chemical-shift

tensors for the S and I spins respectively. Similarly, ω
(n)
Sk and ω

(n)
kℓ symbolize heteronuclear

and homonuclear dipolar couplings accordingly. The rf Hamiltonian Ĥrf(t) in Eq. (6.1) has



6.2 Theory 105

a general form of

Ĥrf(t) = ω1 (t)
N

∑
k=1

(
cos(φ (t)) Ikx + sin(φ (t)) Iky

)
(6.2)

for an arbitrary decoupling sequence. We transform the Hamiltonian of Eq. (6.1) into an
interaction frame with the full rf-field Hamiltonian with the propagator:

ˆ̃H (t) =U−1
rf (t)Ĥ (t)Urf(t) (6.3)

Ûrf(t) = T̂ exp

−i
t∫

0

Ĥrf(t1)dt1

 (6.4)

Since only the I spins are involved in the rf Hamiltonian Ĥrf(t) (Eq. (6.2)), the I-spin terms

in ˆ̃H (t) (Eq. (6.3)) will transform according to the following general equation

Ĩz(t) = ∑
χ=x,y,z

aχ(t)Iχ =
∞

∑
k=−∞

∞

∑
ℓ=−∞

∑
χ=x,y,z

a(k,ℓ)χ eikωmteiℓωefftIχ (6.5)

where k and ℓ are integer numbers, a(k,ℓ)χ represents the Fourier coefficient calculated from
the interaction-frame transformation of the Iz operator, ωm = 2π/τm is the modulation fre-
quency that is present in all periodic pulse sequences and ωeff is the effective nutation fre-
quency. The effective nutation frequency ωeff is defined as

ωeff = βeff/τm (6.6)

i.e., the net flip angle [46, 145] βeff over the period of a basic cycle τm. The flip angle βeff

can be determined using Euler rotations or quaternions [100]. The modulation frequency
ωm, the effective nutation frequency ωeff , and the MAS frequency ωr constitute the three
basic frequencies that characterize the time-dependent Hamiltonian ˆ̃H (t) that is given by

ˆ̃H (t) =
∞

∑
n=−∞

∞

∑
k=−∞

∞

∑
ℓ=−∞

einωreikωmteiℓωefft ˆ̃H
(n,k,ℓ)

(6.7)

where the terms ˆ̃H
(n,k,ℓ)

are the Fourier coefficients of the time-dependent Hamiltonian in
the interaction frame. Possible resonance conditions are characterized by

n0ωr + k0ωm + ℓ0ωeff = 0 (6.8)
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where n0, k0, and ℓ0 are any set of integers that fulfill Eq. (6.8). The effective Hamiltonian
on a resonance condition is then given by

ˆ̄H = ∑
n0,k0,ℓ0

ˆ̃H
(n0,k0,ℓ0)

+ ∑
n0,k0,ℓ0

ˆ̃H
(n0,k0,ℓ0)

(2) + . . . (6.9)

where the first and second sum in Eq. (6.9) represents the first- and second-order effective
Hamiltonian respectively [32, 34]. The full expressions for the Fourier components of the

Hamiltonian ˆ̃H
(n0,k0,ℓ0)

and ˆ̃H
(n0,k0,ℓ0)

(2) from Eq. (6.9) have already been derived in litera-
ture [46]. Since we are interested in the residual coupling under decoupling, we will focus
now on the non-resonant terms

ˆ̄H = ˆ̃H
(0,0,0)

+ ˆ̃H
(0,0,0)

(2) + . . .

= ˆ̃H
(0,0,0)

− 1
2 ∑

ν ,κ,λ

[
ˆ̃H
(−ν ,−κ,−λ )

, ˆ̃H
(ν ,κ,λ )

]
νωr +κωm +λωeff

+ . . . (6.10)

where the second-order term often dominates the performance of decoupling sequences. We
can decompose the non-resonant second-order terms into six contributions

ˆ̄H
(2)

=−1
2 ∑

ν ,κ,λ

[
ˆ̃H
(−ν ,−κ,−λ )

, ˆ̃H
(ν ,κ,λ )

]
νωr +κωm +λωeff

= ˆ̄H IS⊗I +
ˆ̄H IS⊗II +

ˆ̄H I⊗II +
ˆ̄H II⊗II +

ˆ̄H I⊗I +
ˆ̄H IS⊗IS (6.11)

The first two terms, namely the cross term between the heteronuclear dipolar coupling and
the I-spin CSA tensor ( ˆ̄H IS⊗I) and the cross terms between heteronuclear and homonuclear
dipolar couplings ( ˆ̄H IS⊗II) are the only1 terms that lead to direct line broadening on the S
spins. For simplicity, we will call the first term a CSA cross term and the second term a
dipolar cross term. The other four cross terms yield effective Hamiltonians with purely I
spin terms ( ˆ̄H I⊗II, ˆ̄H II⊗II, ˆ̄H I⊗I, and ˆ̄H IS⊗IS) do not impact the line width of the S spin
directly but the first two terms can influence spin diffusion on the I spins since they contain
two- and three-spin terms. The last two terms generate only fictitious fields. We will focus
on the effects of the first two cross terms as they are the only ones that have a direct impact
on the observed line widths of the S spins. Note that the expressions for these cross terms
are written down here in a generalized form that is valid for any heteronuclear decoupling

1If multi S spins are considered, there exists also a cross term between two heteronuclear dipolar couplings,
i.e. Ikχ S1zS2z scaled by the same Fourier coefficients q(ν)χ .
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sequence:

H̄IS⊗I = ∑
k

2

∑
ν=−2

∑
χ=x,y,z

iSzIkχq(ν)χ

(
ω

(−ν)
kS ω

(ν)
k +ω

(ν)
kS ω

(−ν)
k

)
(6.12)

H̄IS⊗II = ∑
k ̸=ℓ

2

∑
ν=−2

∑
µ,χ=x,y,z

−3iSzIkµ Iℓχ

(
q(ν)µχ ω

(−ν)
kS ω

(ν)
kℓ −

(
q(ν)µχ

)∗
ω

(ν)
kS ω

(−ν)
kℓ

)
(6.13)

In the complete description, there are four second-order I-spin terms that have indirect effect
on the line width of the S spin:

H̄I⊗II = ∑
k ̸=ℓ

2

∑
ν=−2

∑
µ,χ

−3i
2

Ikµ Iℓχ

(
q(ν)µχ ω

(−ν)
k ω

(ν)
kℓ −

(
q(ν)µχ

)∗
ω

(ν)
k ω

(−ν)
kℓ

)
(6.14)

H̄II⊗II = ∑
k ̸=ℓ

∑
χ

2

∑
ν=−2

9i
8

ω
(−ν)
kℓ ω

(ν)
kℓ p(ν)χ Ikχ

+ ∑
k ̸=ℓ̸=o

2

∑
ν=−2

∑
µ,χ,ξ

9i
2

Ikµ Iℓχ Ioξ

(
p(ν)

µχξ
ω

(−ν)
kℓ ω

(ν)
ℓo −

(
p(ν)

µχξ

)∗
ω

(ν)
kℓ ω

(−ν)
ℓo

)
(6.15)

H̄I⊗I =∑
k

∑
χ

2

∑
ν=−2

i
2

q(ν)χ Ikχω
(−ν)
k ω

(ν)
k = ∑

k
∑
χ

2

∑
ν=−2

i
2

q(ν)χ Ikχ

∣∣∣ω(ν)
k

∣∣∣2 (6.16)

H̄IS⊗IS =∑
k

∑
χ

2

∑
ν=−2

i
2

q(ν)χ Ikχω
(−ν)
kS ω

(ν)
kS = ∑

k
∑
χ

2

∑
ν=−2

i
2

q(ν)χ Ikχ

∣∣∣ω(ν)
kS

∣∣∣2 (6.17)

Here, q(ν)χ ,q(ν)µχ , p(ν)χ and p(ν)
µχξ

are the scaling factors for the corresponding cross terms and
they are defined as

q(ν)χ =∑
κ

1

∑
λ=−1

εχi ja
(−κ,−λ )
j a(κ,λ )i

νωr +κωm +λωeff
(6.18)

q(ν)µχ =∑
κ

1

∑
λ=−1

εµi ja
(−κ,−λ )
j a(κ,λ )

χi

νωr +κωm +λωeff
(6.19)

p(ν)χ =∑
µ

∑
κ

2

∑
λ=−2

εχi ja
(−κ,−λ )
µ j a(κ,λ )

µi

νωr +κωm +λωeff
(6.20)

p(ν)
µχξ

=∑
κ

2

∑
λ=−2

εχi ja
(−κ,−λ )
µ j a(κ,λ )iξ

νωr +κωm +λωeff
(6.21)
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where εχi j is the Levi-Civita symbol and a(κ,λ )µχ are the Fourier coefficients for the rank-two

spin tensors that can be defined as the convolution of the rank-one Fourier coefficients a(κ,λ )µ

(Eq. (6.5)):

a(κ,λ )µχ =
∞

∑
k=−∞

1

∑
ℓ=−1

a(k,ℓ)µ a(κ−k,λ−ℓ)
χ (6.22)

Note that the Fourier coefficients obey the relation a(k,ℓ)χ =(a(−k,−ℓ)
χ )

∗
and a(k,ℓ)µχ =(a(−k,−ℓ)

µχ )
∗
.

It is also important to emphasize that the scaling factors for the cross terms (q(ν)χ ,q(ν)µχ , p(ν)χ

and p(ν)
µχξ

) do not depend on the details of the spin system and the general expressions are
the same for any decoupling sequence with non-zero values of the modulation frequency
ωm and an effective nutation frequency ωeff. The details of the parameters of the decou-
pling sequences are encoded in the profile of the Fourier coefficients, a(k,ℓ)χ , which have to
be calculated numerically in most cases.

Probing Non-Refocussable Terms with Spin-Echo Sequence
In principle, the performance of a decoupling sequence can also be examined by measuring
the T2’ using a spin echo sequence. It can be shown using a toggling frame that all terms
with Sz including the CSA and dipolar cross terms (Eqs. (6.12)-(6.13)) will be refocussed
during the spin echo sequence. In addition, there exist also some terms (Eqs. (6.14)-(6.17))
that are not refocussed by the π pulse. It would be interesting to probe the impact of these
non-refocussable terms on the line width experimentallya, similar to Fig. 10 in [46].

aThere has been an attempt recently to probe similar effects via numerical simulations[150], but it was
realized that more proton spins have to be included to produce reliable results.

Off-Resonant Irradiation
So far we have assumed on-resonance irradiation during decoupling and neglected the in-
fluence of offset effects. Such an approximation is not valid, especially for low-power de-
coupling, and therefore the offset effects are considered here. The simplest way of doing
this is to include the offset of the radio frequency irradiation from the resonance frequency
into the interaction-frame transformation (Fig. 6.1d). The inclusion of an offset term into
the radio-frequency Hamiltonian modifies the propagator to

Û (Ωoff)
rf (t) = T̂ exp

−i
t∫

0

(
Ĥrf(t1)+Ωoff

N

∑
k=1

Ikz

)
dt1

 (6.23)

in the interaction-frame transformation. Fortunately such a change in the Hamiltonian does
not change the formal transformation of the Iz operator used to calculate the interaction-
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frame Hamiltonian:

Ĩz(t)=
(

Û (Ωoff)
rf (t)

)−1
IzÛ

(Ωoff)
rf (t)= ∑

χ=x,y,z
aχ(t)Iχ =

∞

∑
k=−∞

∞

∑
ℓ=−∞

∑
χ=x,y,z

a(k,ℓ)χ eikωmteiℓωeff(Ωoff)tIχ

(6.24)
The inclusion of the offset term into the interaction-frame transformation will only change
the effective nutation frequency ωeff (Ωoff) and the Fourier coefficients a(k,ℓ)χ as a function
of the offset. The general expressions obtained for the effective Hamiltonians (Eqs. (6.11)-
(6.17)) as well as the ones for the scaling factors (Eqs. (6.18)-(6.21)) are unchanged (see
Sec. 6.2.3 a proof of calculations of effective nutation frequency ωeff (Ωoff) and Fourier
coefficients a(k,ℓ)χ (Ωoff)).

The equations derived here are general and applicable to any decoupling sequence with
or without chemical-shift offsets. The details of the decoupling sequence are contained in
the interaction-frame transformation and are hidden in the Fourier coefficients a(k,ℓ)χ which
can be obtained from a numerical calculation of the Fourier transform of the interaction-
frame trajectory. For a given sequence and an offset frequency, the effective nutation fre-
quency has to be calculated first and then the Fourier coefficients. The numerical values can
then be used together with the general expressions for scaling factors (Eqs. (6.18)-(6.21))
to calculate the magnitude of the effective Hamiltonians as a function of parameters (Fig.
6.1a). In this way we can calculate the scaling factors of the various terms in the second-
order effective Hamiltonian without the need to specify a spin-system topology and geom-
etry since the scaling factors are independent of these values. The effects of offset on the
decoupling performance are two-fold: (i) it deteriorates the decoupling efficiency if the cho-
sen parameters move towards the offset-dependent resonance conditions due to ωeff (Ωoff)

or (ii) it can affect both the resonant and non-resonant parts of the effective Hamiltonians
through changes in the values of the Fourier coefficient a(k0,ℓ0).

6.2.2 Low-Power Amplitude-Modulated XiX Sequences

The amplitude and phases for low-power AM-XIX and SC-AM-XIX sequences [45] are
shown in Fig. 6.1, and their properties relevant for the Floquet calculations are summa-
rized in Table 6.1. Analytical calculations of the effective nutation frequencies of these
two decoupling sequences are straightforward in the case of on-resonance rf irradiation and
given in Table 6.1. This can be achieved by either calculating the total propagator and then
extracting the effective flip angle from it [46], or using Euler rotations or quaternions [100].

In the case of off-resonance irradiation, the calculation of the effective field becomes
more complex as the nutation axis is different for each of the two pulses in AM-XIX with
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the effective flip angles (β ) and polar angles (θ ) of the two pulses (see Fig. 6.1d) given by:

β1 = τp

√(
ωXiX

1 +ωCW
1
)2

+Ωoff
2

β2 = τp

√(
ωXiX

1 −ωCW
1
)2

+Ωoff
2

θ1 = tan−1
((

ω
XiX
1 +ω

CW
1

)
/Ωoff

)
θ2 = tan−1

((
ω

XiX
1 −ω

CW
1

)
/Ωoff

)
(6.25)

Using either Euler rotations or quaternions can be used to determine the effective nutation
frequency ωeff of AM-XiX resulting in

ωeff = 2ωmcos−1 (cos(β1/2 )cos(β2/2 )− cos(θ1 +θ2)sin(β1/2 )sin(β2/2 ))/(2π)

(6.26)
The same approach can be applied to SC-AM-XiX sequence. The flip angle (β ) and the
polar angle (θ ) of the third and fourth pulse are the same as the ones of the first and second
pulse θ3 = θ1, θ4 = θ2, β3 = β1, and β4 = β2 but the azimuthal angle of the last two pulses
changes from 0 to π/2. The effective nutation frequency ωeff for SC-AM-XiX is then given
by (see Sec. 6.2.3):

ωeff =2ωmcos−1 ({2cos2 (β1/2 )
(
cos2 (β2/2 )− cos2 (θ2)sin2 (β2/2 )

)
+ sin(β1)sin(β2) [sin(θ1)sin(θ2)−2cos(θ1)cos(θ2)]

−sin2 (β1/2 )
[
cos(β2)+ cos2 (β2/2 )cos(2θ1)− cos(2(θ1 +θ2))sin2 (β2/2 )

]}
/(4π)

)
(6.27)

The analytical expressions of Eqs. (6.26)-(6.27) for the effective nutation frequencies of the
two decoupling sequences allow an efficient calculation of the Fourier coefficients of the
interaction-frame trajectories.

AM-XiX SC-AM-XiX
t ω1(t) φ(t) ω1(t) φ(t)

0 ≤ t < τp ωXiX
1 +ωCW

1 0 ωXiX
1 +ωCW

1 0

τp ≤ t < 2τp ωXiX
1 −ωCW

1 π ωXiX
1 −ωCW

1 π

2τp ≤ t < 3τp ωXiX
1 +ωCW

1 0 ωXiX
1 +ωCW

1 π/2

3τp ≤ t < 4τp ωXiX
1 −ωCW

1 π ωXiX
1 −ωCW

1 3π/2

ωeff ωCW
1 mod ωm 2ωmcos−1 (cos2 (πωCW

1 /(2ωm)
))

/(2π)

Table 6.1 Definition of parameters used for AM-XiX and SC-AM-XiX decoupling.
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Similarity between XiX with Offset and TPPM
When the offset effect is incorporated into the theoretical description of
XiX decoupling, the analytical expression for the effective field is ωeff =

2νmcos−1
(

cos(θ1)
2 cos(β1)+ sin(θ1)

2
)

(Eq. (6.26)), which has a similar expression
as the effective field of the TPPM decoupling sequence without offset [46]. There is no
surprise that both sequences have similar form as it can be inferred that the effective field
directions of the XiX pulses with offset lie in the X-Z plane are similar to the effective fields
of TPPM without offset that lie in the X-Y plane.

6.2.3 Verification of Offset-Dependent Effective Nutation Frequency
and Fourier Coefficients

It was shown that the effective nutation frequency with the offset incorporated νeff (νoff)

is given by Eq. (6.26) for AM-XiX and Eq. (6.27) for SC-AM-XiX. In order to prove
that the approach and the analytical function is correct, the performance of the decoupling
sequences is examined under a wide range of offset and rf values, so that the destructive
resonance conditions are intentionally satisfied and traced. Figs. 6.2a–c show numerical
simulations performed on a two-spin CH system with a small heteronuclear dipolar cou-
pling of δD/2π= 4 kHz, at MAS frequency of 55.5 kHz, for the case of (a) CW (b) AM-
XiX or (c) SC-AM-XIX decoupling. The effective field for the CW irradiation is trivial

νeff =

√(
νCW

1
)2

+νoff
2. One can see that the peak intensity drops significantly when the

effective field matches the spinning frequency, i.e. νr − νeff (νoff) = 0, a heteronuclear re-
coupling condition plotted as black dotted line in Fig. 6.2a. Similar analyses are performed
for the AM-XiX decoupling (Fig. 6.2b) with resonance conditions νr −νm −νeff (νoff) = 0
(black) and 2νr − 3νm + νeff (νoff) = 0 (magenta); and for SC-AM-XiX (Fig. 6.2c) with
resonance conditions νr−2νm−νeff (νoff) = 0 (black), νr−3νm+νeff (νoff) = 0 (magenta),
2νr −5νm −νeff (νoff) = 0 (cyan), and 2νr −6νm +νeff (νoff) = 0 (white). One can see that
all destructive resonance conditions are predicted successfully analytically. It is proven that
the analytical expressions (Eqs. (6.26)-(6.27)) of the resonance conditions with offset incor-
porated are correct. Next, the effect of offset on Fourier coefficients will be demonstrated.

The dephasing of FID at the recoupling condition is dictated by the effective Hamilto-
nian characterized by the offset incorporated Fourier coefficients a(k,ℓ)χ (νoff). For instance,
the first-order effective Hamiltonian for the resonance condition νr − 3νm + νeff (νoff) = 0
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(magenta) of SC-AM-XiX (Fig. 6.2c) is determined as follows:

ˆ̄H
(1)

= ˆ̃H
(1,−3,1)

+ ˆ̃H
(−1,3,−1)

=2Sz[(ω
(1)
IS a(−3,1)

x +ω
(−1)
IS a(3,−1)

x )Ix +(ω
(1)
IS a(−3,1)

y +ω
(−1)
IS a(3,−1)

y )Iy

+(ω
(1)
IS a(−3,1)

z +ω
(−1)
IS a(3,−1)

z )Iz] (6.28)

Where ω
(1)
IS is the n=1 spatial component of heteronuclear dipolar coupling. The Fourier

coefficients a(k,ℓ)χ (νoff) at offset frequency of νoff= 21 kHz (marked black cross in Fig. 6.2c)
are determined by using Eqs. (6.26)-(6.27). Finally, the values of the Fourier coefficients2

a(k=±3,ℓ=∓1)
χ=x,y,z are substituted into the effective Hamiltonian (Eq. (6.28)), which is used then

to dephase the signal (Fig. 6.2d). The analytical result (blue) shows an excellent agreement
with the numerically simulated data (red), for at least 40 ms. This implies the effective
Hamiltonian or the Fourier coefficients are precisely determined. It is proven that our ap-
proach to the offset effect is valid and accurate for any arbitrary decoupling sequence by
verifying the analytical expressions of offset-dependent effective frequency νeff (νoff) and
Fourier coefficients a(k,ℓ)χ (νoff).

6.3 Understanding Low-Power Decoupling Sequences

6.3.1 Materials and Methods

All numerical simulations shown in Sec. 6.3 were performed in the spin-simulation envi-
ronment GAMMA [80] using 200 powder orientations chosen by the ZCW scheme [104].
The simulations were performed on either a CH2 (Figs. 6.3 and 6.5) or C2H4 (Fig. 6.4)
spin system with parameters similar to that of glycine ethylester. All simulation data are
normalized with respect to the ideal situation where everything is fully averaged. All exper-
imental measurements were carried out on a sample of uniformly labeled 13C, 15N-glycine
ethylester with a 1.3 mm triple-resonance MAS probe on a Bruker Avance-III 400 MHz
spectrometer. All experimental data are normalized with respect to the maximum peak in-
tensity obtained in the 2D AM-XiX plot in Fig. 6.4c except in Fig. 6.5 where the data are
normalized with respect to the on-resonance condition.

2The values used are a(−3,1)
x =

(
a(3,−1)

x

)∗
= −0.03055 − 0.142i, a(−3,1)

y =
(

a(3,−1)
y

)∗
= −0.1272 +

0.06974i, and a(−3,1)
z =

(
a(3,−1)

z

)∗
= 0.0999+0.04531i.
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Figure 6.2 Simulated peak intensity of a CH system under (a) CW (b) AM-XiX or (c) SC-AM-XiX
decoupling. Same pulse width of τp=12.5 µs and CW field of νCW

1 = 5 kHz are used in (b) and (c).
Plot (d) shows the dephasing of FID intensity using analytical Hamiltonian (Eq. (6.28)) (blue) and
numerical simulations (red) for SC-AM-XiX decoupling at νoff= 21 kHz and νXiX

1 = 66 kHz, a bad
decoupling condition marked with black cross in (c).

6.3.2 Decoupling Efficiency of AM-XiX and SC-AM-XiX

The general criteria for good decoupling are: (i) The magnitude of the second-order het-
eronuclear cross terms that lead to line broadening are as small as possible. (ii) The con-
dition is far away from any resonance conditions that lead to line broadening. (iii) Strong
homonuclear interactions can help obtaining narrower lines [146]. The resonance conditions
of the AM-XiX sequence (νr+k0νm±νeff = 0) were already discussed in the literature [45]
and are shown in Fig. 6.3i and j as white lines. One can see that the line intensity drops
significantly when the decoupling parameters match the resonance conditions. On the other
hand, the line intensity is highest when it is far away from the V-shaped region (white
lines in Fig. 6.3i) are chosen formed by two adjacent resonance conditions. The V-shaped
form of the two adjacent resonance conditions is caused by the effective nutation frequency
νeff = νCW

1 mod νm which increases linearly with the CW field for the AM-XiX sequence.
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However, the effective field of the SC-AM-XiX sequences does not increase linearly
with the CW field but it has an inverse cosine dependence with respect to the CW component
(Table 6.1). The two adjacent resonance conditions of the SC-AM-XiX sequences form an
oval shape as can be seen from the white lines in Fig. 6.3k and l. We would like to emphasize
again that quantifying the characteristic frequency νeff and the corresponding resonance
conditions are important because of the criterion (ii), i.e., good decoupling conditions are
typically far away from any destructive heteronuclear recoupling conditions.

To judge the residual line with of decoupling sequences as a function of the sequence
parameters, the scaling factors for CSA cross term q(ν)χ (Eq. (6.18)) and for the dipolar cross

term q(ν)µχ (Eq. (6.19)) can be used. We define the following expressions

q̄(ν)CSA =

√
∑
χ

∣∣∣q(ν)χ

∣∣∣2 (6.29)

q̄(ν)DD =

√
∑
µ,χ

∣∣∣q(ν)µχ

∣∣∣2 (6.30)

where q̄(ν)CSA and q̄(ν)DD symbolize the norm [51] for the CSA and dipolar cross terms respec-
tively. These norms are then used as simple measures for the strength of these contributions.
These quantities are plotted in Figs. 6.3a-h for AM-XiX and SC-AM-XiX. The norms for
the cross terms are calculated independently for the spatial rotating component ν = 1 (Figs.
6.3a-d) and ν = 2 (Figs. 6.3g-h) since they are weighted differently by the magnitude of
the spatial components of the interactions in Eqs. (6.12)-(6.17). In principle, the two con-
tributions could be combined if a detailed knowledge of the spin system is known, but the
generality of the description would be lost. Additionally, the differences between the two
components could perhaps grant more physical insights into the performance of decoupling
sequences.

In general, we expect high peak intensity if the magnitude of the heteronuclear cross
terms is small, and on the contrary, low peak intensity if the size of the cross terms is large.
These correlations can be verified by comparing the magnitude of the cross terms (Figs.
6.3a-h) and the line intensities in the numerical simulations shown in Figs. 6.3i-l. For in-
stance, the size of the CSA cross term for AM-XiX is zero at νCW

1 =0 (Figs. 6.3a and e), a
fact that is known from the XiX sequence [50]. As the magnitude of the cross term increases
with higher field (Fig. 6.3a), the peak intensities fall (Fig. 6.3i). On the other hand, the size
of the dipolar cross term is significant only at νCW

1 = 0 (Figs. 6.3b and f) and at the reso-
nance condition νCW

1 = νm, which is indicated by black contours in Fig. 6.3j. The fact that
the CSA cross term is smaller for lower νCW

1 fields while the dipolar cross term is smaller
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at higher νCW
1 fields, limits the area of good decoupling for the AM-XiX sequence. Hence,

a compromise on the magnitude of the νCW
1 field has to be chosen to minimize the total

residual line broadening originating from both cross terms. The dipolar cross term can be
neglected in all other regions because the symmetry of the Fourier coefficients originating
from the CW part of the interaction-frame transformation imposes a cancellation of these
terms except in areas close to the resonance conditions.

For the case of SC-AM-XiX, at νCW
1 = 0 (Figs. 6.3c, d, g, and h) the two cross terms be-

have in a similar way compared to AM-XiX. However, for non-vanishing νCW
1 amplitudes,

the CSA cross term does not increase uniformly and linearly with respect to the νCW
1 (Fig.

6.3i). It reaches a second minimum at νCW
1 ≈ 2−5 kHz (area marked with black contours

in Fig. 6.3k) with a strong dependence on the modulation frequency (pulse length). In the
same area, however, the dipolar cross terms are poorly averaged out (black contours at Figs.
6.3k and l) and, therefore, this area is not an overall good decoupling condition.

6.3.3 Using Homonuclear Recoupling Conditions for Better Decoupling

As discussed in the previous section, increasing homonuclear dipolar couplings can be ben-
eficial for decoupling due to "self-decoupling" effects [129, 148, 149]. This can happen
when the resonance conditions that recouple a homonuclear double-quantum (DQ) term are
satisfied, i.e., resonance conditions with ℓ0 = 2 [51]. For instance, it was observed that
the DQ recoupling condition νm = 2νeff (black contours in Figs. 6.4a and c) coincides
with regions of maximum peak intensity outside the destructive heteronuclear resonance
conditions. This is due to the DQ term that leads to faster spin diffusion and, therefore, pro-
motes a stronger "self decoupling" mechanism. The line-narrowing effect of homonuclear
recoupling can also be exemplified by looking at another class of homonuclear resonance
conditions νr + k0νm ±2νeff = 0, where k0 can be any integer. It was shown that this form
of resonance condition [51] is able to generate a DQ term, which has a scaling factor that
can be amplified by fulfilling multiple DQ recoupling conditions simultaneously. One can
obtain the equation νm = 4νeff (magenta) by solving the intersection of the two conditions
characterized by νr −10νm = 2νeff and νr −11νm =−2νeff (white lines). Similarly, it can
be seen that the magenta line coincides with another set of local maxima peak intensity.
This effect is however not obvious in the experimental data (Fig. 6.4a), perhaps because
the decoupling performance is smeared by the rf-inhomogeneity of the probe. For the case
of SC-AM-XIX (Figs. 6.4b and d), the peak intensities at the equivalent DQ recoupling
condition νm = 2νeff (black contours) are not better. This is because any benefits obtained
by exploiting the self-decoupling mechanism are counterbalanced by the presence of large
dipolar cross-term at the same region (see Figs. 6.3d and l) and the CSA terms are better
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compensated along curve (Fig. 6.3c). This analysis shows that it could be beneficial to uti-
lize the strong homonuclear coupling proton network for self-decoupling, especially for the
case of AM-XiX. Thus, we suggest an optimization strategy for AM-XiX that exploits this
self-decoupling effect into the good decoupling condition. Firstly, fix the pulse length τp by
fulfilling the condition where n is an integer τp = nτr/2 [45], then fix νXiX

1 such that νXiX
1 τp

is a multiple of 2π to average the CSA cross-term, and finally fix νCW
1 so that νCW

1 = 1/4τp

thereby fulfilling the DQ recoupling condition.
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6.3.4 Offset Effects on Decoupling Efficiency

To investigate the sensitivity of the two sequences to offset effects, a set of parameters was
selected that resulted in good decoupling performance, i.e., τp= 91.5 µs, νXiX

1 = 11.2 kHz,
νCW

1 = 0.9 kHz for AM-XiX and νCW
1 = 2.1 kHz for SC-AM-XiX. The robustness of the se-

lected decoupling condition with respect to the offset is shown in Fig. 6.5. The dependence
of the magnitude of the second-order cross terms on the offset are shown in Figs. 6.5a-d for
both AM-XiX (blue) and SC-AM-XiX (red). For on-resonance decoupling the CSA cross
terms dominate the residual line width while the dipolar cross terms are almost negligible
(Figs. 6.5a-d). However, the CSA cross-terms are relatively robust to ±2 kHz variations in
offset while the dipolar cross-terms scale significantly over the same range of offset. The
dipolar cross-term of AM-XiX grows almost twice as fast as the SC-AM-XiX term. Based
on this behaviour, one would expect that offset effects are mostly dependent on the dipolar
cross term and that SC-AM-XiX shows better offset compensation.

To verify the predictions based on the scaling factors of the Floquet Hamiltonian (Figs.
6.5a-d), full numerical simulations on three-spin system were performed. To selectively
investigate the influence of the CSA or dipolar cross terms, either the homonuclear dipolar
coupling or the CSA tensor were set to zero. The dependence of the peak intensity on the
CSA cross term is shown in Fig. 6.5e which shows a very good agreement with the scaling-
factor plots (Figs. 6.5a and c). When only the dipolar cross term is considered (Fig. 6.5f),
the maximum peak intensity dropped to 26% (SC-AM-XiX) and 10% (AM-XiX) of their
original values when an offset of 1 kHz is introduced. It can be concluded that the dipolar
cross-term is the dominant term that leads to line-broadening when an offset is introduced
at this decoupling condition. Experimental data in Fig. 6.5g has demonstrated that the de-
coupling performance of SC-AM-XiX is less sensitive to that of AM-XiX, a finding that
conforms to our theoretical predictions and simulations.

Note that the experimental data appears to be broader because it is normalized with re-
spect to the best-obtained result whereas the simulation intensity is normalized with respect
to perfect decoupling. Other reasons that account for the differences between experimental
data and simulations include the adoption of a simpler three-spin CH2 system in the simula-
tions to avoid complications arises from shifted resonance conditions due to fictitious-field
terms and spin diffusion effect that are manifested in the cross terms involving only I spins
(Eqs. (6.14)-(6.17)). Experimentally, we observe that SC-AM-XIX is more robust to proton
offsets than AM-XIX decoupling (Fig. 6.5g). The explicit introduction of the offset terms
in the Hamiltonian and variation in the magnitude of the residual cross-term as a function
of offset can be used to understand the experimental behavior of decoupling sequence.



6.3 Understanding Low-Power Decoupling Sequences 119

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2
x 10

−7

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2
x 10

−7

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2
x 10

−7

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2
x 10

−7

0

0.2

0.4

0.6

0.8

1

(b)

(d)

(f)

(g)

N
or

m
al

iz
ed

 In
te

ns
ity

 In
te

ns
ity

Expt

Sim IS⊗II

Floquet IS⊗II ν=2

Floquet IS⊗II ν=1
(a)

(c)

(e)

AM-XiX

SC-AM-XiX

Sim IS⊗I

Floquet IS⊗I  ν=2

Floquet IS⊗I ν=1
 In

te
ns

ity

−5 −4 −3 −2 −1 0 1 2 3 4 5

(
)

ν C
S

A
q

(
)

ν C
S

A
q

(
)

ν D
D

q
(
)

ν D
D

q

Figure 6.5 The effect of offset on the optimized decoupling conditions of the respective sequences.
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component ν = 1 ((a) and (b)) and ν = 2 ((c) and (d)) are shown here. Simulated maximum line
intensity of a CH2 glycine spin system with (e) only CSA and no homonuclear dipolar coupling (f)
only homonuclear dipolar coupling and no CSA. The calculations and simulations in (a)-(f) were
performed using τp= 91.5 µs, νXiX

1 = 11.2 kHz , νCW
1 = 0.9 kHz for AM-XiX (blue crosses) and νCW

1 =
2.1 kHz for SC-AM-XiX (red circles). Experimental data from reference [45] is shown in (g) for
comparison. All data (a)-(g) were obtained at νr = 60.6 kHz and 400 MHz.
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6.3.5 Conclusions for AM-XiX and SC-AM-XiX

We have demonstrated that our generalized theoretical framework can be applied to un-
derstand low-power decoupling sequences like AM-XiX and SC-AM-XiX. The theoreti-
cal model reveals that the predicted region of good decoupling by calculating the size of
the residual couplings like CSA and dipolar cross term. Moreover, it was discovered that
the optimum-decoupling conditions are obtained by exploiting homonuclear dipolar recou-
pling conditions for AM-XiX. The research focus in the past has been devising methods to
compensate the cross-terms, but we highlight here that perhaps exploiting self-decoupling
mechanism by recoupling in the design of decoupling sequences could be valuable in future
research. In addition, we have exemplified that our model can be extended to consider the
off-resonance irradiations. It was shown that the degradation of decoupling efficiency due
to dipolar terms is more dramatic for AM-XiX than SC-AM-XiX for a given experimental
condition, i.e. rf field ν1 and pulse length τp. Hence, one can conclude that SC-AM-XiX
is more robust to offset compared to AM-XiX, a theoretical prediction that is supported by
experimental results and numerical simulations.

6.4 Understanding High-Power Decoupling Sequences

6.4.1 Comparing Basic, Supercycled and Adiabatic TPPM

It was known from the decoupling sequences used in liquid-state NMR that supercycling
helps to reduce experimental artifacts like rf inhomogeneity and imprecise settings of rf car-
rier frequency. The situation is more complicated in solid-state NMR because the coherent
effect of supercycling on the compensation of residual couplings is not well understood, i.e.
it is possible that the higher order cross-terms are compensated less efficiently in supercy-
cled sequences. Hence, we are interested in analyzing these effects theoretically using the
generalized theoretical framework. Additionally, adiabatic variants are also examined here
for comparison. We have chosen the two-pulse TPPM decoupling sequence (Fig. 6.6a) as
the basic starting sequence. Then, the analysis will be extended to its variants like supercy-
cled TPPM64 (Fig. 6.6e) and adiabatic SW f -TPPM (Fig. 6.6b).

Basic TPPM
The CSA cross term3 during basic TPPM is calculated theoretically, and the optimum de-
coupling performance (Fig. 6.7a and b) is observed near the expected β cosφ = π [46]
relation (magenta dotted line in Fig. 6.7c), where β is the flip angle per pulse. The theoreti-

3The dipolar cross term is neglected here as the profile is not as pronounced as for the CSA cross term.
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cal results also corroborate well with the numerical simulations (Fig. 6.7c). However, some
discontinuities that were not expected from the theoretical analyses appear in the numerical
simulations (Fig. 6.7c). These are first-order resonance conditions (black dotted lines) that
are considered separately.

Supercycled TPPM64 and Adiabatic SW f -TPPM
After analyzing the basic TPPM sequence, more sophisticated supercycled TPPM64 and
adiabatic SW f -TPPM are examined next. It can be seen that the optimum decoupling con-
dition is observed around the similar region in SW f -TPPM (Fig. 6.8c) but it is broadened,
a feature that is expected for an adiabatic sequence. However, the performance of supercy-
cled TPPM64 (Fig. 6.8e) is actually less similar to the basic TPPM sequence (Fig. 6.8a), but
more similar to the adiabatic version (Fig. 6.8c). In order to gain more insight, the dipolar
cross terms (Fig. 6.8b, d, and f) are also calculated and compared. The decoupling perfor-
mances of all three TPPM variants seem to be not strongly correlated with each other. This
could be just a visual effect as the good decoupling condition of basic TPPM is too broad to
exhibit any pronounced feature. Nevertheless, the same poor decoupling (broad horizontal
arc at high phase φ ∼ 25−30◦) is reproduced in supercycled TPPM64.

ϕ ϕ ϕ βϕ βR=

RRRRRRR

ϕ ϕ

TPPM

SWf - TPPM SWa - TPPM

ϕ -ϕ ϕ -ϕ ϕ -ϕ ϕ -ϕ
ϕ -ϕ ϕ -ϕ ϕ -ϕ ϕ -ϕ

 TPPM64 

SPINAL-64 (β=2 =0) 

SPINAL - 64

(a)

(b) (c)

(d) (e)

RRRRRRR

-R=
4

Figure 6.6 Schematic diagrams of various TPPM-based decoupling sequences are shown here.
(a) Original basic TPPM (b) adiabatic modulation-frequency-swept SW f -TPPM (c) adiabatic
amplitude-swept SWa-TPPM (d) SPINAL-64 and (e) supercycled TPPM64.
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From these analyses, it can be concluded that the relation between the three variants of
TPPM is not obvious, and each of them should be treated independently. Therefore, a basic
decoupling sequence may not necessarily be made more robust by simply supercycling or
swept adiabatically as the compensation of the residual couplings could either improve or
deteriorate. However, the supercycled or adiabatic sweep might still be beneficial for ex-
periments at higher MAS (above 100 kHz), as the rf-inhomogeneity and offset might have
more impact than the residual couplings, i.e. similar situation as in solution-state NMR.
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6.4.2 Easier Optimization of SPINAL-64

It was postulated [124] that the optimization of the SPINAL-64 sequence (Fig. 6.6d) can be
simplified by omitting the phase α , as long as the following equation is satisfied:

φ +α = K (6.31)

where K is a constant. It can be inferred from Fig. 6.9 [124] that the optimum decoupling
performance of SPINAL is obtained for a fixed flip angle of ∼ 185◦ when K = 9 (Eq. (6.31)).
Therefore, it was hypothesized that the parameter phase α is redundant and only φ has to
be optimized. Consequently, one can set4

β = 2α = 0. (6.32)

while φ remains the only free parameter that has to be optimized. One can see that if Eq.
(6.32) is satisfied, SPINAL-64 is essentially a supercycled TPPM (Fig. 6.6e).

Good Decoupling at  φ+α=K

(a) (b)

Figure 6.9 Experimental data of SPINAL-64 with fixed phase φ +α = K = 9, at νr = 22.2 kHz and
rf field of ν1H =130 kHz. The figure is extracted from Mithu et al. [124].

The hypothesis that the optimum SPINAL decoupling sequence depends only on the
value K (Eq. (6.31)) is examined again here by numerical simulations. The result (Fig.
6.10a) indicates that the decoupling performance has relatively small variations along φ +

α = K = 10 (Eq. (6.32)), at least for small K values. It is evident that the condition is no
longer applicable for large φ ,α angle (Fig. 6.10c). Nevertheless, we will limit the discus-
sion here to angles of φ ,α ≤ 15◦. In principle, both the dipolar and CSA cross terms have
to be calculated to judge the decoupling performance. Prior to this, the effective field νeff

has to be determined, and interestingly, the result (Fig. 6.10b) shows that the magnitude
4The condition β = 2α was already imposed in the original SPINAL sequence [125].
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of νeff is approximately constant5 along the constant K. Note that this is only a qualitative
result, and having the same νeff does not strictly mean the same decoupling performance,
otherwise optimum decoupling performance would also be expected at K=12 and 15 (Fig.
6.10b), which are not observed (Fig. 6.10a).

The size of the CSA and dipolar cross terms are then calculated and verified by numer-
ical simulations. The results show that the CSA cross term is small in most region except
at K ∼ 11 and 16 (Fig. 6.11). Unfortunately, the dipolar cross term is small only at these
same regions (K ∼ 11,16). The actual performance of the decoupling sequence now de-
pends heavily on the relative contribution between the two cross terms, i.e. the details of the
spin system play an important role here. For the case of protonated samples, perhaps the
dipolar cross term is more critical, and hence the full numerical simulation (Fig. 6.10a) is
more similar to the dipolar cross term (Fig. 6.11f). Based on the theoretical and numerical
cross term analysis, one can conclude that the optimization of parameter α can indeed be
omitted with φ ≤ 15◦, for the case of high-power decoupling regime.

0 2 4 6 8 10 12 14
0

5

10

15

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10 12 14
0

5

10

15

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35
0

10

20

30

40

0

0.05

0.1

0.15

0.2

0.25

Phase  φ / °

P
h
a
s
e
 α

 /
 °

Phase  φ / °

Phase  φ / °

P
h
a
s
e
 α

 /
 °

P
h
a
s
e
 α

 /
 °

(a)

(b)

(c)

Figure 6.10 (a,c) Simulated peak
intensity for SPINAL on three-
spin CH2 on 850 MHz, no off-
set, νr = 22.22 kHz, fix τp= 3.913
µs and ν1H =130 kHz, flip an-
gle β=183.12◦. (b) shows the
calculated logged effective field
log(νeff), to increase the contrast.
(c) Extension of (a) to a larger
range.

5An analytical expression was derived and it is close but not strictly constant, i.e. δνeff
δφ

̸= δνeff
δα

.



126 A Generalized Theoretical Framework for the Description of Spin Decoupling

0
2

4
6

8
1
0

1
2

1
4

0 5 1
0

0 0
.2

0
.4

0
.6

0
.8

0
2

4
6

8
1
0

1
2

1
4

0 5 1
0

0 0
.2

0
.4

0
.6

0
.8

0
2

4
6

8
1
0

1
2

1
4

0 5 1
0

0
2

4
6

8
1
0

1
2

1
4

0 5 1
0

0
2

4
6

8
1
0

1
2

1
4

0 5 1
0

0
2

4
6

8
1
0

1
2

1
4

0 5 1
0

0 2 4 6 8 1
0

x
 1

0
−

8

0 2 4 6 8 1
0

x
 1

0
−

8

0 2 4 6 8 1
0

x
 1

0
−

8

0 2 4 6 8 1
0

x
 1

0
−

8

P
h
a
s
e
  φ

 / °

Phase α / °

(a
)Phase α / °Phase α / °

P
h
a
s
e
  φ

 / °

F
lo

q
u
e
t  IS

⊗
II ν

=
1

F
lo

q
u
e
t  IS

⊗
I ν

=
1

F
lo

q
u
e
t  IS

⊗
I ν

=
2

S
im

u
la

tio
n
  IS

⊗
I 

S
im

u
la

tio
n
  IS

⊗
II 

F
lo

q
u
e
t  IS

⊗
II ν

=
2

(b
)

(c
)

(d
)

(e
)

(f)

Figure
6.11

C
om

paring
the

effectof(a,c,and
e)C

SA
and

(b,d,and
f)dipolarcross

term
s

using
SPIN

A
L

using
(a-d)Floquetcalculations

and
(e

and
f)num

ericalcalculations
at

ν
r
=

22.22
kH

z
and

flip
angle

β
=183.12

◦.



6.4 Understanding High-Power Decoupling Sequences 127

6.4.3 Elucidating Finite-Pulse Effect in Adiabatic SW-TPPM

The frequency-swept TPPM is comprised of 11 cycles of basic TPPM elements (Fig. 6.6b
and c) with the nominal flip angle (1.0) being swept in the range of values listed here:

Flip-angle β = [0.78,0.86,0.94,0.96,0.98,1.0,1.02,1.04,1.06,1.14,1.22]. (6.33)

The design of adiabatic swept-frequency TPPM [132, 134] was inspired originally by the
adiabatic DREAM sequence [105, 106] (Sec. 5). In principle, the adiabatic condition can
be implemented by either sweeping through the rf amplitude, SWa-TPPM (Fig. 6.6c) or
modulation frequency, SW f -TPPM (Fig. 6.6b) . Both methods are related in a way that the
effective flip angles per element remain invariant in either scheme. In principle, one would
expect both decoupling sequences to exhibit identical results, as the cycle time τm (or νm)
and effective field νeff are essentially identical for both sequences. Surprisingly, it was re-
ported [134] that there are some similarities and also significant differences, especially the
deterioration of decoupling performance in the SWa-TPPM case when homonuclear cou-
plings are included. We believe that the difference arises because of the finite-pulse effect
and we have studied it using the generalized theoretical framework.

Firstly, the Fourier coefficients of both sequences are determined prior to cross-term cal-
culations. Interestingly, although both SWa-TPPM and SW f -TPPM have identical modula-
tion frequency νm, and the same magnitude and direction of effective field ν⃗eff, the Fourier
coefficients cluster around similar values of k (Fig. 6.12) but not identical. This provides
the first hint that the cross-term compensation might not be the same for both sequences.

Next, the CSA cross term are calculated and compared for both SWa-TPPM and SW f -
TPPM. It is evident that the optimum decoupling conditions are obtained for φ ≥ 10◦ (Fig.
6.13a-d) for both sequences. Both profiles have similar shapes but broader for SW f -TPPM,
as supported by simulations (Fig. 6.13e and f). It can be inferred that the SW f -TPPM is
better in compensating CSA cross term. Similar analyses were performed for the dipolar
cross term, and the results indicate that both sequences in general favour decoupling at low
φ angle (φ ≤ 10◦) (Fig. 6.14), with SWa-TPPM performing significantly worse (Fig. 6.14a,
c, and e). This finding is in agreement with the previous finding [134] that the experimen-
tal results of SWa-TPPM degrades when the homonuclear dipolar couplings are added into
simulations, and also in experimental data, where proton density is higher realistically.

A possible reason that accounts for these differences could be that only a single fre-
quency νeff is swept in SWa-TPPM; whereas both νeff and νm are varied simultaneously in
SW f -TPPM. The details of the time-dependent characteristic frequencies νeff(t) and νm(t)
for individual TPPM element should be scrutinized to gain more physical insights.
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SW f -TPPM as an Efficient Decoupling Sequence
Previous cross-term analyses showed that the optimum decoupling conditions that compen-
sate the CSA (φ ≥ 10◦) or dipolar (φ ≤ 10◦) cross term almost never coincide, i.e. similar
to the case in SPINAL-64 (Sec. 6.4.2). This is to say that robust decoupling, where both
cross terms are compensated efficiently, is difficult to obtain. Full numerical simulations
(both homonuclear dipolar couplings and CSA are included) are performed to examine the
practicability of SW f -TPPM as an efficient decoupling sequence. The preliminary result
(Fig. 6.15c) indicates that the optimum decoupling condition is rather narrow, and therefore
sensitive to experimental variations such as rf inhomogeneity. The design of decoupling
sequences in the future should focus more on the extent of overlapped region (correlation
function) rather than just the magnitude of individual cross terms.
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6.5 Conclusions
In this study, we have introduced a generalized triple-mode Floquet framework which can be
used to describe the second-order effective Hamiltonians in arbitrary decoupling sequences
under MAS. The derived equations for the effective Hamiltonians are independent of the
details of the decoupling sequence which is manifest only through the values of the Fourier
coefficients of the interaction-frame trajectory. These can be calculated numerically by eval-
uating the interaction-frame trajectory and enter through scaling factors into the effective
Hamiltonians. Based on the scaling factors, a systematic comparison of different decou-
pling sequences can be performed without the need to perform full numerical simulations.
In principle, the generalized framework can be applied to study homonuclear decoupling
sequences too, with or without offset effect included. Moreover, it was shown 6 recently
that the offset effect under high-power decoupling is not completely negligible. In addition,
it was also demonstrated in Sec. 6.3.3 that self-decoupling driven by homonuclear recou-
pling can be significant to improve linewidth, even at high MAS frequency of 60.6 kHz.
Homonuclear recoupling on protons should be emphasized in the future design of heteronu-
clear decoupling sequences. All these effects will be investigated in the future. In addition,
such an analysis based on the Floquet treatment is computationally much more efficient
than an analysis based on numerical simulations, whose performance depends on the details
of the spin system and is therefore not generic to all molecules. Hence, this generalized
theoretical framework can be exploited to design better decoupling sequences in the future.

6Unpublished work by Paul Hodgkinson.



Chapter 7

Outlook and Conclusions

The applications of operator-based Floquet theory have been demonstrated to be useful in
analyzing pulse sequences in solid-state NMR. Particularly in situations where multiple in-
commensurate frequencies are involved, for instance, proton decoupling during TOBSY
(Chapter 3), non-rotor synchronized DQ recoupling (Chapter 4), superposition of phase-
alternating sequence in CW field (Chapter 5), and decoupling sequences which are usually
non-rotor synchronized for optimum performances (Chapter 6).

In Chapter 3, it was demonstrated that the interference profile of proton decoupling dur-
ing TOBSY can be predicted theoretically using trimodal Floquet theory. We realized that
such interference free windows in C91

n might not be present in all symmetry-based C/R se-
quences (for e.g. C71

2), and using decoupling during such sequences might even worsen the
results. We are interested in investigating under what conditions these windows will appear,
and try to generalize them to arbitrary symmetry-based C or R sequences.

In Chapter 4, a theoretical account for non-rotor synchronized symmetry-based C7 se-
quence was presented. It was shown that the asynchronous C7 regime is compensating
CSA cross terms more efficiently than the synchronous regime. We foresee possible appli-
cations of the asynchronous implementation in improved suppression of other higher-order
cross terms like heteronuclear dipolar couplings. This might have important implications
in biological applications if heteronuclear decoupling during recoupling sequences can be
neglected without a compromise on the performance. Similarly, the asynchronous regime
can also be exploited in experiments that involve quadrupolar nuclei.

In Chapter 5, we have designed an offset-compensating sequence XiXCW DREAM,
whose transfer efficiency is less sensitive to the precise setting of the rf carrier frequency.
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We have discussed only a specific recoupling condition that employs the least RF field. In
principle, many other recoupling conditions can be used for DQ recoupling. The features
and advantages of other DQ recoupling conditions will be explored in future work. A possi-
ble aspect is the performance in compensating higher-order cross terms in each recoupling
scheme.

In Chapter 6, we have presented a generalized theoretical framework that is able to an-
alyze arbitrary decoupling sequences. The performance of a decoupling sequence can be
quantified by determining the scaling factors that scale the higher-order cross terms. The
calculations of the scaling factors are at least a factor of 1000 times faster than numerical
simulations since computationally expensive calculations like computing matrix exponen-
tials for propagators are not required. Hence, we foresee an improved numerical optimiza-
tion strategy, in which the scaling factors are set to be the target functions instead of the
nominal intensity, will be a novel way of designing decoupling sequences. The output of
such an improved strategy would yield results that are universal, i.e. independent of the spin
system. There are a variety of numerical optimisation schemes like genetic algorithm [93]
and optimal control theory [152, 153] that can be applied to search for optimum decoupling
condition. Nevertheless, a grid-search approach, which is easy to be implemented, will be
used as a proof of principle. This can be demonstrated with a simple two-pulse sequence
with arbitrary rf field ν1, phase φ , and pulse length τp, that have to be optimized numerically
at a particular MAS frequency.

ν1

ϕ

0
τp  τp  

ν1

τp  

ν1 ϕ

Figure 7.1 3D numerical optimizations of Fourier coefficients as functions of rf field ν1, phase φ ,
and pulse length τp.



Appendix A

A.1 Important Formulae

A.1.1 Definition of Spin-Tensor Operators

Definition of rank-zero and rank-one tensors for a single spin using spherical tensor notation
[68] are given as:

T00 = E

T10 = Iz

T11 =
−1√

2
I+ =

−1√
2
(Ix + iIy)

T1−1 =
−1√

2
I− =

1√
2
(Ix − iIy) (A.1)

Definition of rank-zero, -one, and -two tensors for a two-spin system are

T00 =
−1√

3
(⃗I1 · I⃗2)

T10 =
−1

2
√

2
[I+1 I−2 − I−1 I+2 ]

T1±1 =
−1
2
[I±1 I2z − I1zI

±
2 ]

T20 =
1√
6
[3I1zI2z − (⃗I1 · I⃗2)]

T2±1 =∓1
2
[I±1 I2z + I1zI

±
2 ]

T2±2 =
1
2
[I±1 · I±2 ] (A.2)
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In the case of a fictitious two-spin system, i.e. heteronuclear two-spin system or interaction
between a spin and magnetic field, the non-secular parts of Eq. (A.2) vanish under high-field
approximation and becomes

T00 =
−1√

3
I1zI2z

T10 = 0

T20 =
2√
6

I1zI2z. (A.3)

A.1.2 Definition of Zero- and Double-Quantum Hamiltonian

In a two-spin 1/2 coupled spin system without chemical-shift tensors, it is often convenient
to describe the spin system using block diagonalized double- (SΣ ) and zero- (S∆ ) quantum
subspaces. It can be shown that the two subspaces do not interact with each other and they
obey commutator relations

[SΣ
i ,S

Σ
j ] = iεi jkSΣ

k (A.4)

[S∆
i ,S

∆
j ] = iεi jkS∆

k ,

where εi jk is the Levi-Civita symbol. The zero-quantum Hamiltonians I∆ for a two-spin
system are given by

I∆
x =

1
2
[I+S−+ I−S+] = IxSx + IySy

I∆
y =

−i
2
[I+S−− I−S+] = IySx − IxSy

I∆
z =

1
2
[Iz −Sz] (A.5)

whereas the double-quantum Hamiltonians IΣ are given by

IΣ
x =

1
2
[I+S++ I−S−] = IxSx − IySy

IΣ
y =

−i
2
[I+S+− I−S−] = IySx + IxSy

IΣ
z =

1
2
[Iz +Sz]. (A.6)
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A.1.3 Wigner Rotation Matrix Elements

Table A.1 shows the reduced rank-two Wigner rotation matrix elements dℓ
m′,m(β ). Note that

the length or magnitude of a tensor is preserved, i.e.
ℓ

∑
m′=−ℓ

dℓ
m′,m(β ) = 1.

m/m’ +2 +1 0 -1 -2

2 (1+cosβ

2 )2 −1+cosβ

2 sinβ

√
3
8 sin2

β −1−cosβ

2 sinβ (1−cosβ

2 )2

1 1+cosβ

2 sinβ cos2 β − 1−cosβ

2 −
√

3
8 sin(2β ) 1+cosβ

2 − cos2 β −1−cosβ

2 sinβ

0
√

3
8 sin2

β

√
3
8 sin(2β ) 3cos2 β−1

2 −
√

3
8 sin(2β )

√
3
8 sin2

β

-1 1−cosβ

2 sinβ
1+cosβ

2 − cos2 β

√
3
8 sin(2β ) cos2 β − 1−cosβ

2 −1+cosβ

2 sinβ

-2 (1−cosβ

2 )2 1−cosβ

2 sinβ

√
3
8 sin2

β
1+cosβ

2 sinβ (1+cosβ

2 )2

Table A.1 Rank ℓ= 2 reduced Wigner matrix elements.

A.2 Determination of Effective Field Direction and Flip
Angle using Quaternions

The magnitude and the axis of the effective nutation frequency ωeff can be determined an-
alytically using a quaternion description [100]. The quaternion matrix is comprised of 4
variables, which are the net flip angle and the three components of the unit axis of direction
for the pulse Ix, Iy and Iz. For any basic cyclic element composed of N pulses, one can char-
acterize the effective nutation angle βeff and the axis of rotation by performing the following
matrix multiplication

Qeff = QNQN-1 · · ·Q2Q1, (A.7)

where the lower index represents the chronological order of the pulse, i.e. Q1 represents the
first pulse. The matrix representation of the quaternions Qk is given as
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Q1
(
Ix, Iy, Iz,βc

)
=


A
B
C
D

 (A.8)

for the first quaternion, while the subsequent k ̸= 1 quaternions are defined as

Qk̸=1
(
Ix, Iy, Iz,βc

)
=


D −C B A
C D −A B
−B A D C
−A −B −C D

 (A.9)

where the alphabets A, B, C and D represent

A = Ix sin
(

β

2

)
, B = Iy sin

(
β

2

)
, C = Iz sin

(
β

2

)
, D = cos

(
β

2

)
(A.10)

where β symbolizes the net flip angle of the particular pulse. For instance, the TPPM [46]
sequence which is comprised of two pulses having a phase difference of 2φ would have the
quaternions given by

Qk

(
cosϕ,(−1)k+1 sinϕ,0,ω1τp

)
. (A.11)

Now, one can determine the overall net rotation of the entire TPPM cycle (N=2) by calcu-
lating

Qeff =


I(eff)
x sin

(
βeff
2

)
I(eff)
y sin

(
βeff
2

)
I(eff)
z sin

(
βeff
2

)
cos
(

βeff
2

)

= Q2Q1, (A.12)

which then yields the analytic expression of cos
(

βeff
2

)
as

cos
(

βeff

2

)
= cos2 (φ)cos(β )+ sin2 (φ) (A.13)
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and one obtains the analytical result

βeff = 2arccos
[
cos2 (φ)cos(β )+ sin2 (φ)

]
. (A.14)

Following that, the effective nutation frequency ωeff can then be calculated

ωeff =
βeff

τm
=

arccos
[
cos2 (φ)cos(β )+ sin2 (φ)

]
ωm

π
(A.15)

where τm = 2τp refers to the time period of a basic cycle. Additionally, the effective axis of
direction can also be determined by solving the matrix in Eq. (A.12).

A.3 Spin System Details of Glycine Ethylester

The details of the spin system1 use for the numerical simulation (Fig. 5.3) is given here.

CSA Tensor S1 (Cα) S2 (C’) I3 (Hα1) I4 (Hα2)

Shift (kHz) -7.96 7.96 -0.2 -0.2

anisotropy δCSA(ppm) 25.3 85.0 1.6 1.6

asymmetry ηCSA(ppm) 0.5 0.16 0 0

Euler angle αCSA (◦) 90 0 0 0

Euler angle βCSA (◦) 30 90 109 109

Euler angle γCSA (◦) 0 0 -29 -146

Dipolar / J Coupling S1S2 S1I3 S1I4 S2I3 S2I4 I3I4

Isotropic J (Hz) 60 150 150 7 7 11

δDipolar 2π (kHz) -4.3 -46.6 -46.6 -6.1 -6.1 -44.0

Euler angle αDipolar (◦) 0 0 0 0 0 0

Euler angle βDipolar (◦) 0 108 -29 -29 90 -146

Euler angle γDipolar (◦) 0 108 -146 -146 90 -177

Table A.2 Details of spin system in PAS of a four-spin glycine ethylester at 500 MHz.

1Note that the value of the CSA of Hα , 1.6 ppm is just a rough estimate and the literature is limited due to
difficulty in measurement. Nevertheless, the values of the CSA of amide HN are typically in the range of 3-15
ppm [154, 155].
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A.3.1 Additional Discussions for TOBSY

A.3.2 SC-C9 TOBSY with XiX

For the SC TOBSY during XIX decoupling, it was observed experimentally that both super-
cycled and Normal TOBSY have maximum transfers at rf field of ∼120 kHz (Fig. A.1b).
The SC-C9 has a slightly higher transfer (∼ 50%) than the normal sequence (∼ 45%), but
it is narrow-banded with respect to the decoupling power. A 1D slice through the rf power
at 130 kHz (Fig. A.1d) reveals that the transfer profile is more pronounced, i.e. more
sinusoidal (Fig. A.1c). This implies that SC-C9 is a closer resemblance of the actual
J experiment, which has a build-up curve following the sin(πJτmix) relation, rather than
dipolar-based experiment that leads to plateau after long mixing time. However, the total
magnetization in SC-C9 (black in Fig. A.1d) decays faster than the normal C9 (black in
Fig. A.1c) . It could be that SC-C9 removed cross-terms that promote dipolar-based spin
diffusion, while it reintroduces other destructive cross-terms that leads to faster dephasing
of total magnetization.
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Figure A.1 Experimental transfer efficiency of (a,c) TOBSY C91
12 (b,d) supercycle TOBSY

C91
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12 for 1,2-13C glycine ethylester at νr = 40 kHz. (c,d) show the 1D slice of (a,b) at pro-
ton XiX decoupling power of 130 kHz and νm=60 kHz.
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A.3.3 Impacts of Crystallites Selection and RF Inhomogeneity

It was discussed in Sec. 3.3.1 that one of the factors that impact the TOBSY transfer ef-
ficiency is the rf inhomogeneity. This effect is probed by measuring the rf inhomogeneity
using nutation experiments [92] after different CP steps. It is evident that the rf inhomo-
geneity is a factor of two worse (∼ 6%) in the single HC-CP (Fig. A.2) compare to two-step
HN-NC-CP (∼ 3%). This simple analysis indicates that it is important to consider the ef-
fect of the preparation steps on the efficiency of a mixing sequence, which can be crucial
particularly in multidimensional experiments.

30 20 10 0 10  20 30 

~3% HNCA
~6% HCA-Z-�lter

Rf-inhomogeneity pro�le at rf~26 kHz, MAS=60.2 kHz

13 C RF / kHz

Figure A.2 RF inhomogeneity of 1.3 mm probe after single HC CP (blue) or HNC two CP steps
(red) on glycine at 400 MHz.

Another factor that explains a high transfer in TOBSY is because the crystallite with
large CH dipolar coupling are filtered during the NC-CP step. The presence of large CH
dipolar coupling reduces the TOBSY transfer significantly, even at MAS frequency of νr =

55.5 kHz. In order to exemplify this effect, the TOBSY transfer (Fig. A.3a) was simulated as
a function of Euler angles of different crystallites. Since the dipolar coupling is orientation
dependent, each crystallite has different magnitude of CH dipolar coupling (Fig. A.3b), and,
therefore, different TOBSY transfer. It is evident that the TOBSY transfer (Fig. A.3c) is
efficient when the dipolar coupling is small. The converse is true, the TOBSY transfer is
small when the size of the CH dipolar coupling is large.
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