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Abstract

The topic of this thesis is simulation of the Hubbard model on general lattices in
strongly correlated regime. We approached the task with the dynamical cluster ap-
proximation (DCA), a cluster extension of the dynamical mean-�eld theory. That
is a controlled approximation which approaches the exact solution asymptotically
in cluster size. The cluster size determines the resolution of the piece-wise con-
stant approximated lattice self energy in the reciprocal space. It exhibits reduced
�nite size e�ects and sign problem when compared to �nite lattice simulations.
We used it in a connection with the numerically exact continuous-time auxiliary
�eld quantum Monte Carlo impurity solver.

This thesis includes three main projects in which we exploited the strengths
of the DCA method. The �rst of them contains a quantitative comparison of
the numerical results with the experimental measurements in a realization of the
Hubbard model utilizing ultracold atoms in optical lattices. The system of interest
was de�ned on a cubic lattice with enhanced hopping along a single lattice axis. An
important outcome was an estimate of heating during the lattice ramp up process
in the experiment. We calculated the temperature and the entropy density at the
Néel transition and provided quantities currently inaccessible in the experiment.

The second project deals with stacked lattices with planes made of honey-
comb or square lattices. There we searched for parameter regions suitable for
adiabatic interaction driven cooling at and away from the half �lling. We found
the critical temperatures of the Néel transition for various anisotropy ratios and
interaction strengths in both lattices. To achieve that, we measured four point cor-
relators, and obtained the patch-wise constant approximation of the particle-hole
irreducible vertex, used to obtain the corresponding susceptibility. To the best of
our knowledge, this was the �rst DCA study with susceptibility measurement on
a non-Bravais lattice.

In the third study we inspect the sign problem plagued Haldane model with the
Hubbard interaction. The DCA method allows investigation with moderately sized
clusters at su�ciently low temperature to e�ectively investigate the ground state

vii



phase diagram. The frequency dependent treatment is beyond the simple static
mean-�eld approximation that has been applied to the model in the past. While the
mean-�eld methods predict a continuous transition from the non-magnetic Chern
insulator to the antiferromagnetic insulator via a topologically non-trivial long-
range ordered phase, a �rst order phase transition preempting the intermediate
phase is found in our simulations. Valuable insight comes from analysis of di�erent
clusters, bringing up hints that in this model it is essential to respect the spatial
symmetries at all levels of the employed approximation. Along with the need of
accurate representation of the high symmetry reciprocal points of the model.
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Zusammenfassung

Gegenstand dieser Arbeit ist Simulation des Hubbard-Modells auf verschiedenen
generellen Gittern im stark korrelierten Regime. Diese Aufgabe haben wir mittels
dynamical cluster approximation (DCA) gelöst. DCA ist eine Clustererweiterung
der dynamischen Molekularfeldtheorie (DMFT). Die Näherung ist kontrolliert, da
sich die DCA Lösung asymptotisch in der Clustergrösse der exakten Lösung nä-
hert. Die Clustergrösse bestimmt die Au�ösung der stückweise konstant appro-
ximierten Selbstenergie im reziproken Raum. Im Vegleich mit Simulationen auf
endlichen Gittern weist DCA reduzierten E�ekt der endlichen Gittergrösse, sowie
auch des sogenannten Vorzeichenproblems auf. Wir haben die Methode in Verbin-
dung mit dem numerisch exakten continuous-time auxiliary �eld Quantum Monte
Carlo Störstellenprogramm benutzt.

Diese Dissertation beinhaltet drei Hauptprojekte, in welchen wir die Stär-
ken von DCA zu Nutze machen. Das erste umfasst den quantitativen Vergleich
der numerischen Lösung mit experimentellen Messungen in einer Realisation des
Hubbard-Modells mittels ultrakalten Atomen in optischen Gittern. Das Gitter war
kubisch mit vergrösserten Hüpfamplituden entlang einer der Gitterachsen. Wich-
tiger Ausgang dieser Studie war eine Abschätzung der Erwärmung während des
Gitteraufschaltens im Experiment. Wir haben die Néel-Temperatur und die dazu-
gehörige Entropiedichte berechnet.

Das zweite Projekt befasst sich mit gestapelten Gittern, die in der Ebene
Quadrat- oder Wabengitter aufweisen. Im Rahmen dieses Projekts haben wir geeig-
nete Parameterregionen für adiabatische interaktionsgeförderte Kühlung gesucht,
bei beliebiger Füllung. Wir haben die kritische Temperatur des Néelschen Über-
gangs für verschiedene Anisotropiequotienten und Interaktionsgrössen in beiden
Gittern bestimmt. Dafür haben wir Vierpunktkorrelationen gemessen, aus denen
wir die stückweise konstante Annäherung des Teilchen-Loch-irreduziblen Vertex
bekommen haben, welche zur Berechnung der antiferromagnetischen Suszeptibili-
tät dient. Dies ist die erste uns bekannte DCA Studie mit Suszeptibilitätsmessung
für ein allgemeines Gitter.
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Die dritte Studie inspiziert das Modell von Haldane mit Hubbard-Interaktion,
dessen Untersuchung unter dem Vorzeichenproblem leidet. Die DCA Methode
ermöglicht Untersuchung mit moderat grossen Clustern bei genügend niedriger
Temperatur, um e�ektiv das Grundzustandphasendiagram zu bestimmen. Die fre-
quenzabhängige Behandlung ist der einfachen statischen Molekularfeldnäherung,
die früher auf das Modell angewandt wurde, überlegen. Die Molekularfeldnäherung
sagt die Existenz eines topologisch nichttrivialen und zudem geordneten Zustandes
vorher. Nach unserer Simulation nach ist dieser Zustand nicht präsent, und anstatt
eines kontinuierlichen Phasenübergangs von nichtmagnetischem Chern Isolator zu
antiferromagnetischem Isolator �nden wir einen Phasenübergang mit springendem
Ordnungsparameter. Einen wertvollen Hinweis erhalten wir aus der Analyse der
Simulation weiterer Cluster: für dieses Modell scheint es essenziell, dass die Nähe-
rung die Gittersymmetrien auf allen Ebenen respektiert. Ausserdem stellt sich her-
aus, dass eine akkurate Representation der hochsymmetrischen reziproken Punkte
wichtig ist.
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1 Model systems

1.1 Introduction

The complete understanding of the condensed matter physics seems to be within
reach as the governing principles are established, unlike in the high energy physics
where the goal is to unveil the foundations. Indeed, for most phenomena in con-
densed matter physics it is enough to take into account non-relativistic quantum
mechanics with particles interacting via the Coulomb interaction. By adding a
coupling to magnetic and gravitational �eld ([7]), and by taking into account the
relativistic corrections (spin-orbit coupling, Rashba term), we cover practically all
condensed matter phenomena. However, the presented simplicity is misleading and
we are still far from the full understanding of condensed matter systems. Direct
treatment of the equation of motion, the Schrödinger's equation,

i~
d

dt
|ψ〉 = Ĥ |ψ〉 , or i~

d

dt
ρ̂ =

[
Ĥ, ρ̂

]
, (1.1)

is for many-body problems unrealistic due to exponentially large Hilbert space for
state |ψ〉, upon which the density matrix operator ρ̂ =

∑
i |ψi〉 pi 〈ψi| acts; with∑

i pi = 1, pi ≥ 0, {|ψi〉} is a (many-body) basis. While problems with a large
con�gurational space also appear in classical physics dealing with large number of
degrees of freedom, there are important di�erences � among them most prominent
is the exponential instead of linear growth of the con�guration space dimension as
a function of system size due to the quantum superposition principle, which allows
for an entanglement of particles irrespective of distance. Indistinguishability of
the particles and the corresponding fermionic or bosonic statistics1 is other major
di�erence. The concepts of statistical physics can be applied both in classical and
quantum case, but the key task � macroscopic property prediction based on a
microscopic model � requires evaluation of the summands in the partition sum of

1Or even more exotic anyonic or non-abelian statistics [8, 9, 10].
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1.1 Introduction

the microscopic model. A common origin of the di�culty in both the classical and
quantum problems are non-linearities, e.g. the convective derivative term (v · ∇) v
in hydrodynamics and the interaction terms in the quantum case. E�ective solution
methods exist in both cases for linear problems.

These technical di�culties could be thought of as marginal, expecting only
quantitative changes rather than qualitatively new phenomena, as observed in the
Landau theory of Fermi liquids. However, in large (N → ∞) ensembles of de-
grees of freedom, entirely new phenomena may arise once the adiabatic connection
to the weakly-interacting phase is broken, typically via a symmetry breaking of
the underlying principles [11].The e�ective low energy theory for these large col-
lections may be often given in terms of emergent particles that have properties
unrelated to those of the underlying constituents � for example the massless Dirac
fermions [12, 13], Cooper pairs of electrons [14], or composite fermions with frac-
tional charge [15].

It is therefore essential in condensed matter physics to proceed both analyti-
cally and synthetically. The goal of the analytic investigations is to simplify the
existing complex systems of a real material while preserving its characteristic prop-
erties. Ideally, a solid understanding of the simpli�ed model can be obtained. The
�ndings are then to be synthesized for (at least partial) understanding of the ma-
terials. A highly intriguing example of this (on-going) process deals with a class of
high-Tc superconductors from the family of �cuprates�. These become increasingly
important both in scienti�c and commercial applications. The high-Tc �cuprates�
superconductors are layered compounds with CuO2 planes. Although there is still
some controversy regarding the actual mechanism responsible for the supercon-
ductivity, there is a strong indication of a completely di�erent mechanism based
on the repulsive electron-electron interactions, as opposed to the attrative phonon-
mediated interation between electrons in conventional superconductors [14]. The
complex structure of cuprates with a large unit cell can be reduced to an e�ective
two-dimensional model on a decorated square lattice (Lieb lattice) of Cu3+ and
O2− ions [16], which may be further simpli�ed by e�ectively integrating out the
oxygens [17]. Numerical studies of the resulting single band Hubbard model [18]
on a square lattice then provide approximative solution and validate the model,
as the model's phase diagram qualitatively reproduces the generic high-Tc phase
diagram [19, 20, 21, 22].

The vast majority of condensed matter simulations employs the Born�Oppen-
heimer approximation [23], treating the much heavier nuclei as classical particles.
The wavefunction of electrons is then parametric dependent on the nuclei positions
and the nuclei move in potential energy surface given by the electronic energies.
As the next step, an e�ective low-energy theory for the electrons is constructed,
integrating out the core electrons and the unoccupied electronic degrees of free-
dom high above the Fermi level. The detective-like work, as performed by Rice et
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Model systems

al. [16, 17] and others for cuprates, guided by intuition and few experimental sig-
natures, is nowadays typically replaced by a bandstructure calculation performed
with density functional theory (DFT) [24, 25]. DFT, even though it is an uncon-
trolled method, provides su�ciently good description for great variety of materials.
Its polynomial complexity [26] enables calculations with large structural units, tak-
ing into account thousands of orbitals. Its computational inexpensiveness together
with its predictive power makes the method widely used in material science.

The class of strongly correlated materials is not well captured by DFT. Still,
DFT may guide the complexity reduction of the full system to an e�ective low-
energy model. The e�ective quantum model of fermions is to be solved either
approximatively or numerically, but often a combination of both approximation
and numerics is chosen. In fact, there is a zoo of numerical approaches that
typically include some physically motivated simpli�cation. We may categorize
the approaches with respect to their amount of control over the approximation.
Uncontrolled approximation may often give us a relatively cheap solution with
questionable quality, whereas controlled approaches give us unbiased results but
often at a (prohibitively) high cost. For example, exact diagonalization can handle
complicated models with arbitrary interactions, but just for small system with not
more than 50 two-state orbitals. Perturbative approaches work well in the vicinity
of the point around which the expansion is performed. A partial control of the
perturbative methods is available if contributions of several orders are calculated
and if the series is convergent. The diagrammatic Monte Carlo [27, 28] performs
random walk over the order, the diagram topology, and the internal variables. Typ-
ically it is formulated directly in the thermodynamic limit. The method enables
routinely to evaluate diagram contributions up to the sixth order with reasonable
accuracy [29]. Nevertheless, the very interesting regime of Hubbard model with
moderate on-site interaction U of the order of non-interacting bandwidth cannot
be reliably accessed with this method. A very successful branch of methods solves
�nite quantum lattice systems by introducing �uctuating auxiliary �elds, which
serve for decomposition of the density-density interactions into non-interacting
terms coupling to the auxiliary �elds [30, 31]. For any �xed con�guration of the
�uctuating �elds, the system is non-interacting and thus permits the use of the
Wick's theorem [32]. Furthermore, the problem is mapped onto a classical prob-
lem in d + 1 dimensions. The mapping is based either on the Suzuki�Trotter
discretization [33, 34] or on the (formally in�nite) perturbation expansion. The
auxiliary �elds are sampled with Metropolis algorithm [35]. The methods in this
family [36, 37, 38, 39, 40] are jointly referred to as determinantal quantum Monte
Carlo (DQMC). They turn out to be extremely powerful if all con�gurations con-
tribute to the partition sum with a weight of the same sign, in which case the
stochastic sampling error decreases proportionally to the inverse square root of
the number of independent measurements. If the �weights� are not of de�nite

3



1.1 Introduction

sign, Metropolis sampling can be applied with a cheap trick of sampling accord-
ing to the magnitude of the �weights�. Unfortunately, the average of any physical
observable is then obtained as the ratio of two averages: that of the product of
con�guration weight sign and the observable's estimator value, and that of the
con�guration weight sign. The latter of the two averages can be arbitrarily close
to zero, rendering large uncertainties of all observables. This issue is termed as
the sign problem [41]. The noise to signal ratio grows in general exponentially
with the system size and the inverse temperature [42]. Certain classes of problems
allow for a sign-problem-free simulation [43] thanks to a special problem structure
enabling to prove non-negativity of the con�guration weights. Recently, it was
unveiled that the sign problem in DQMC has its origin in a non-trivial topological
invariant of the sampled con�gurations [44].

For 1D systems at zero temperature, the density-matrix renormalization group
(DMRG) method [45] is a highly e�ective numerical treatment with an excellent
control of the precision and the ability to perform real time evolution [46, 47].
The motivation for its wave function Ansatz in form of the matrix product states
(MPS) [48] comes from the area law for the entanglement entropy [49], ensuring
that for su�ciently large system the ground state lies in a low entanglement entropy
sector, which is e�ciently represented by MPS. Even though DMRG is primary a
method suitable for 1D systems, its 1D MPS Ansatz can also provide good varia-
tional ground state of 2D models [50]. The MPS Ansatz was extended to 2D [51],
where its usage is much more challenging. The high (polynomial) complexity of
the algorithm considerably restricts the matrix sizes for the Ansatz. Nevertheless,
the method is capable to �nd competitive ground state candidates [52].

Dynamical mean-�eld theory (DMFT) was introduced via the limit of an in�-
nite coordination number [53]. Georges and Kotliar noticed that for the Hubbard
interaction, the self energy becomes purely local in such a limit [54, 55]. DMFT is a
mean-�eld construction for fermionic quantum systems, treating all neighbors of a
site as a mean �eld with time dependence � thus it received the adjective dynamic.
Despite the lack of control within DMFT, it became widely used. In material stud-
ies, it is used in a combination with DFT for strongly correlated orbitals [56, 57].
Ambiguity with double counting of the exchange-correlation contributions from
DFT and DMFT remains a tricky issue [58]. Extensions of DMFT to clusters [59]
provide a systematic way for inclusion of larger length scales. These are identical
to DMFT for single site �clusters�, and approach an accurate description of the lat-
tice problem for larger cluster size. Apart from dynamical cluster approximation
(DCA) [60], presented in more detail in Chap. 2, the cellular DMFT (CDMFT) [61]
is widely used. They di�er in the way of mapping the lattice problem to the im-
purity problem � see Sec. 2.1 for more details. A computationally less expensive
method related to DMFT is the density matrix embedding theory [62], which lacks
the frequency dependence but still allows for computation of dynamical quantities
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Model systems

(on the real axis) [63].
The above paragraphs on various numerical approaches should not be regarded

as an exhaustive list of available numerical methods. An extensive comparison of
a multitude of numerical methods for condensed matter systems is given in [64].

Most of the theoretically studied models were inspired by existing materials.
Quantitative investigation of the models by experimental measurements performed
on materials would be an alternative way of �solving� the models. An attempt in
this direction was made for the Hubbard model [65]. Tuning the e�ective model
parameters in materials can be achieved in a limited range of parameters by e.g. ap-
plication of pressure, or change of the chemical composition. For two-dimensional
samples, the substrate signi�cantly in�uences the properties of the investigated
sample, which can be avoided by making suspended samples [66]. These aspects
show that a model study by experiments on materials is possible but not at all
straightforward.

A very di�erent route to an experimental realization of condensed matter lattice
models is their engineering in a totally arti�cial way, using neutral ultracold atoms
in optical lattices; for a review articles on the topic see [67, 68, 69]. In short, the
optical lattice is produced with counter-propagating laser beams creating a stand-
ing wave. The atoms experience an AC Stark shift forcing them to move to nodes
or antinodes, depending on the laser detuning with respect to the atomic reso-
nance frequency. The realization of optical lattice with several laser beams allows
to create various lattice geometries: simple cubic, square, triangular, honeycomb,
and Kagome lattice; for an review see [70]. The atoms are con�ned typically in
a quadratic potential trap, although a box potential can be realized as well [71].
The hopping amplitudes given by the overlap of Wannier orbitals can be tuned
too [72]. The onsite interaction strength can be tuned with an external magnetic
�eld using the Feshbach resonance with a bound state. One possibility to create
arti�cial gauge �elds is to periodically modulate the position of the optical lattice
sites [73]. The experimental observables measured in equilibrium are directly com-
parable with numerical data, enabling quantitative checks in both directions, from
numerics to the experiment and vice versa [74, 75]. Although an experimental
realization straightforwardly allows for non-equilibrium measurements, the behav-
ior may be in�uenced by realization-dependent higher energy degrees of freedom,
especially for fast quenches.

1.2 Non-interacting system

An essential building block in the many-body theory used for solving of the quan-
tum problems is a Green's function of a solvable problem. The many-body machin-
ery then employs perturbation theory around the known solution. As a solvable
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1.2 Non-interacting system

problem is typically taken a non-interacting system. We consider a non-interacting
time-independent Hamiltonian,

Ĥ0 =
∑
α,γ

ĉ†α hαγ ĉγ , (1.2)

where α, γ label orthogonal single-particle basis states. Operator ĉ†α (ĉα) acts in the
Fock space build upon the chosen single-particle basis by creation (annihilation)
of a fermion in state α. We denote the single-particle basis size by n. Since h is
a hermitian matrix, it can be diagonalized by a unitary U , h = UΞU+ with real-
valued Ξ = diag(ε1, . . . , εn), and columns of U being the (normalized) eigenvectors
of h ordered accordingly to the eigenvalues εi. In such a (rotated) basis,

Ĥ0 =
∑
i

εi d̂
†
i d̂i , d̂†i =

∑
α

Uαiĉ
†
α , d̂i =

∑
α

U∗αiĉα . (1.3)

1.2.1 Green's function

We will work with the imaginary-time Matsubara Green's functions, for an overview
see [76, 77], de�ned by2

Gαγ(τ) ≡ −
〈
ĉα(τ) ĉ†γ(0)

〉
for 0 < τ < β , (1.4)

Gαγ(τ − β) ≡ −Gαγ(τ) for 0 < τ < β , (1.5)

where Â(τ) ≡ eτĤ Â e−τĤ is the operator Â in Heisenberg picture, β = 1/T is the

inverse temperature,3
〈
X̂
〉

= 1
Z

Tr
{
e−βĤX̂

}
denotes the thermal average of the

operator X̂, and Z ≡ Tr
{
e−βĤ

}
is the partition function. The chemical potential

is assumed to be subtracted from Ĥ. We further de�ne the Fourier transformed
(τ → iωm) Matsubara Green's function,4

Gαγ(τ) =
1

β

∞∑
m=−∞

Gαγ(iωm)e−iωmτ , (1.6)

Gαγ(iωm) =

∫ β

0

dτeiωmτGαγ(τ) , (1.7)

2The de�nition is equivalent to the standard de�nition, Gαγ(τ) := −Tτ
〈
ĉα(τ) ĉ†γ(0)

〉
for

τ ∈ (−β, β), where the time-ordering operator Tτ moves operators at the later times to the
left from operators at the earlier times, while taking into account the fermionic statistics of the
creation (annihilation) operator.

3We use convention with the Boltzmann constant kB and the reduced Planck constant ~ equal
to unity, i.e. the units of temperature, energy, and (imaginary) time coincide.

4In fact, Gαγ(iωm) =
∫ τ+β

τ
dτ ′ eiωmτ

′
Gαγ(τ ′) for any τ ∈ (−β, 0].

6



Model systems

where the fermionic Matsubara frequencies ωm are odd Fourier frequencies,5

ωm =
π(2m+ 1)

β
, m ∈ Z . (1.8)

The Green's function of the non-interacting Ĥ0 may be obtained in a closed
form. In the diagonal representation d†i (Eq. 1.3) we �nd,

G0
ij(τ) ≡ −

〈
d̂i(τ) d̂†j(0)

〉
= −δij

e−τεi

1 + e−βεi
, for 0 < τ < β . (1.9)

Performing the Fourier transformation from τ to iωm we get

G0
ij(iωm) ≡

∫ β

0

dτ eiωmτG0
ij(τ) = − δij

εi − iωm
. (1.10)

It is now easy to get back to the original basis c†α,

G0
αγ(τ) = −

〈
ĉα(τ) ĉ†γ(0)

〉
=
∑
i,j

UαiG
0
ij(τ)U+

jγ =
∑
i

UαiG
0
ii(τ)U+

iγ ,(1.11)

G0
αγ(iωm) = −

∫ β

0

dτ eiωmτ
〈
ĉα(τ) ĉ†γ(0)

〉
=
∑
i

UαiG
0
ii(iωm)U+

iγ . (1.12)

The non-interacting Matsubara representation Green's function can be then ele-
gantly written in a matrix form6

G0(iωm) = −U

 (ε1 − iωm)−1 0 0

0
. . . 0

0 0 (εn − iωm)−1

U+ (1.13)

= (iωm1n − h)−1 . (1.14)

In the above formula, 1n is an n× n unit matrix.

1.2.2 Lattice model

We consider a non-interacting model on a general d-dimensional lattice with ` sites
per unit cell.

We decompose the real space position i of a site into its unit cell Bravais
vector r and the intracell site label α ∈ {1, 2, . . . , `}, where r is an integer linear

5The even frequency Fourier components of Gαγ(τ) in range (−β, β) vanish due to the prop-
erty 1.5.

6Row index corresponds to α and column index to γ.
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combination of the lattice basis vectors ai. We assume the model Hamiltonian to
have the form,

Ĥ0 = −
∑

r,r′,α,α′,σ,σ′

trασr′α′σ′ ĉ
†
rασ ĉr′α′σ′ +

∑
α,σ

Vασ
∑

r

ĉ†rασ ĉrασ , (1.15)

where σ ∈ {↑, ↓} stands for the spin projection onto some arbitrary quantization
axis. We constrain the Hamiltonian to be translationally symmetric hermitian,

trασr′α′σ′ = t(r−R)ασ(r′−R)α′σ′ , trασr′α′σ′ = (tr′α′σ′rασ)∗ , Vασ ∈ R , (1.16)

where the site- and spin-dependent potential allows Zeeman coupling to magnetic
�eld along the quantization axis, Vασ ≡ Vα − hασ. We restrict ourselves to the
case with absent spin-�ipping terms, i.e. with conserved total spin projection.
This constrains the hopping amplitudes to be diagonal in spin indices, trασr′α′σ′ ≡
δσσ′trαr′α′σ such that the Green's function is diagonal in the spin indices, G0

σσ′ =
δσσ′G

0
σ. The local Vασ term may be absorbed into the general hopping term by

rede�ning t̃rαr′α′σ ≡ trαr′α′σ − Vασδrr′δαα′ . Exploiting the translational invariance,
we may simplify the notation for the hoppings

t̃rαr′α′σ = t̃0α(r′−r)α′σ ≡ t̃(r′−r)αα′σ , (1.17)

and write the Hamiltonian in a more condensed form,

Ĥ0 = −
∑

r,∆,α,α′,σ

t̃∆αα′σ ĉ
†
rασ ĉ(r+∆)α′σ . (1.18)

We assume a �nite system of L cells with the periodic boundary conditions.
This enables the use of the Fourier transformation (FT), immensely simplifying
the lattice problem. Without loss of generality, we choose the FT to be of the
form,7

ĉ†rασ =
1√
L

∑
k

e−ik·(r+rα)ĉ†kασ , ĉrασ =
1√
L

∑
k

eik·(r+rα)ĉkασ . (1.19)

The Hamiltonian Ĥ0 in the reciprocal space representation takes the form

Ĥ0 = −
∑

k,α,α′,σ

ĉ†kασ t̃kαα′σ ĉkα′σ , (1.20)

7The widely used alternative form of FT lacks the phase factors e±ik·rα . The change to that
convention is done via a simple unitary transformation. The choice does not a�ect any physical
outcome if the problem is solved (numerically) exactly. See motivation for this form in the
context of DCA in Sec. 2.4.
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where t̃kαα′σ is the Fourier-transformed t̃∆αα′σ,

t̃kαα′σ ≡ tkαα′σ − δαα′Vασ , tkαα′σ ≡
∑
∆

t∆αα′σe
ik·∆eik·(rα′−rα) . (1.21)

The form of the Hamiltonian 1.20 for a given k and σ is equivalent to that of
Eq. 1.2. Therefore, the dispersion for each k, σ is given by the spectrum of the
`× ` matrix −T̃kσ with matrix elements(

T̃kσ

)
αα′

= t̃kαα′σ . (1.22)

1.2.3 Non-interacting lattice Green's functions

Using the block-diagonal form of the non-interacting lattice Hamiltonian given in
Eq. 1.20 and the general Green's function result, Eq. 1.14, we immediately get

G(kασ)(kα′σ)(iωm) =

[(
iωm + T̃kσ

)−1
]
αα′

. (1.23)

Combining this with the result of Eq. 1.10 and using the block-diagonal structure
of the Hamiltonian both in k and σ we arrive at

G(kασ)(k′α′σ′)(iωm) = δkk′δσσ′

[(
iωm + T̃kσ

)−1
]
αα′

. (1.24)

For a later convenience, we modify the notation and omit the labels k′ and σ′ from
now on, assuming that these are equal to k and σ, resp. Moreover, as done in

Eq. 1.14, we treat Gkσ(iωm) =
(
iωm + T̃kσ

)−1

as an ` × ` matrix, encoding all

possible (ordered) pairs of the intracell labels α and α′.
The real space Green's function is a function of the real space distance only.

We obtain it by FT,

Grαr′α′σ(iωm) =
1

L

∑
k

eik·(r+rα−r′−rα′ )Gkαα′σ(iωm) . (1.25)

The corresponding inverse transformation is given by

Gkαα′σ(iωm) =
1

L

∑
r,r′

e−ik·(r+rα−r′−rα′ )Grαr′α′σ(iωm) . (1.26)

Clearly, the same form holds for the imaginary-time representation.
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1.3 Symmetries

1.3 Symmetries

In this section we examine the impact of symmetries on the single particle imaginary-
time (i.e. temperature) Green's function,

Gab(τ, τ
′) = −

〈
ĉa(τ) ĉ†b(τ

′)
〉

= − 1

Z
Tr
{
e−(β−τ)Ĥ ĉa e

−(τ−τ ′)Ĥ ĉ†b e
−τ ′Ĥ

}
, (1.27)

valid for 0 < τ ′ < τ < β, where a and b label some orthonormal single particle
basis. In the previous section we already encounter some symmetries of the non-
interacting system. This section deals with them again in the context of a general
time-independent and hermitian Hamiltonian.

The practical value of the present section is three-fold. Firstly, for a numerical
treatment it is advantageous to treat real-valued observables without the unneces-
sary imaginary part of a complex �oating point number. Secondly, a symmetriza-
tion reduces noise in a stochastic simulation. Finally, symmetry compatibility with
an approximation used for solving of a particular model may be important.

1.3.1 Translational symmetry in (imaginary) time

For a time-independent Hamiltonian, the translational invariance of the causal
Green's function,8 Gcausal

ab (t, t′) = Gcausal
ab (t − t′, 0) implies translational invariance

of the corresponding temperature Green's function, Gab(τ, τ
′) = Gab(τ − τ ′, 0).9

That implies the possibility to work with single-frequency Fourier transformed
Green's function, so-called Matsubara Green's function,

Gab(iωn) =

∫ β

0

dτ eiωnτGab(τ) . (1.28)

It signi�cantly simpli�es the usage of the Dyson equation, Fig. 1.1, relating the
Green's function G with the bare Green's function G0 and self energy Σ,

Gab(τa, τb) = G0
ab(τa, τb)+

∑
c,d

∫
dτc

∫
dτd G

0
ac(τa, τc)Σcd(τc, τd)Gdb(τd, τb) , (1.29)

which can be Fourier transformed to Matsubara frequencies,

Gab(iωn) = G0
ab(iωn) +

∑
c,d

G0
ac(iωn) Σcd(iωn)Gdb(iωn) . (1.30)

8The causal Green's function is de�ned by Gcausal
ab (t, t′) = −iTτ

〈
ĉa(t) ĉ†b(t

′)
〉
.

9In Eq. 1.27, which implicitly uses the time-independency of Ĥ, the cyclic property of trace
allows for straightforward proof of Gab(τ, τ

′) = Gab(τ − τ ′, 0).

10



Model systems

= +a b a b a c

G G0 G0
§ d b

G

Figure 1.1: The Dyson equation displayed schematically. Depending on the repre-
sentation, a, b, c, and d include the space coordinate and the imaginary time, or
the space coordinate only.

1.3.2 General properties of single particle Green's functions

The Green's function in Eq. 1.27 is de�ned via a trace over the full many-body
Hilbert space of the operator Ô ≡ e−(β−τ)Ĥ ĉa e

−τĤ ĉ†b, setting τ
′ = 0 in conformity

with previous section. We use10

〈Ψ| Ô |Ψ〉 = 〈Ψ| Ô† |Ψ〉∗ (1.32)

for every summand of the trace to get

Gab(τ) = − 1

Z
Tr
{
Ô†
}∗

. (1.33)

The adjoint of Ô equals to

Ô† = ĉb e
−τĤ ĉ†a e

−(β−τ)Ĥ , (1.34)

where we used that eαĤ is self-adjoint (hermitian) operator for any real α, and
that the operator ĉa is adjoint (hermitian conjugate) of ĉ†a. Since Ô† appears in
Eq. 1.33 only under the trace, we are free to cyclically permute terms of Ô† in that
expression. So we �nd

Gab(τ) = − 1

Z
Tr
{
e−(β−τ)Ĥ ĉb e

−τĤ ĉ†a

}∗
= G∗ba(τ) , (1.35)

using Z ∈ R.11 For the Matsubara frequency temperature Green's function de�ned
in Eq. 1.28 we thus �nd,

Gab(iωn) = G∗ba(−iωn) . (1.36)

10The relation can be shown starting from the de�nition of the adjoint operator Ô†,

〈Ψ| Ô |Φ〉 ≡
〈

Ψ
∣∣∣ ÔΦ

〉
=
〈
Ô†Ψ

∣∣∣ Φ
〉

=
〈

Φ
∣∣∣ Ô†Ψ〉∗ = 〈Φ| Ô† |Ψ〉∗ , (1.31)

if we set |Ψ〉 = |Φ〉.
11Z ∈ R can be proved using Eq. 1.32 for Ô = e−βĤ .
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For the special case a = b, Eq. 1.35 guarantees purely real onsite Green's
function,12

Gab(τ) = G∗ba(τ), ⇒ Gaa(τ) ∈ R . (1.37)

Further, Gaa(τ) < 0 for 0 < τ < β, which may be veri�ed in the many-body
eigenbasis {|ψn〉} of Ĥ (Lehmann representation),

Gaa(τ) = −Z−1 Tr
{
e−(β−τ)Ĥ ĉa e

−τĤ ĉ†a

}
(1.38)

= − Z−1︸︷︷︸
>0

∑
n
e−(β−τ)εn︸ ︷︷ ︸

>0

∑
m
e−τεm︸ ︷︷ ︸
>0

|λamn|
2︸ ︷︷ ︸

≥0

, (1.39)

where we used decomposition Ĥ =
∑

n εn |ψn〉 〈ψn|, ĉ†a =
∑

m,n λ
a
mn |ψm〉 〈ψn|,

ĉa =
∑

m,n (λanm)∗ |ψm〉 〈ψn|, with
∑

m,n |λamn|
2 > 0.13

1.3.3 Conservation of total spin projection

If the Hamiltonian does not contain any spin-�ipping term, e.g. a spin-orbit cou-
pling, a magnetic �eld which is not aligned with the quantization axis, or a (spon-
taneous) pairing �eld, then the total spin projection is a good quantum number,
i.e. a conserved quantity, which implies that the Green's functions are diagonal in

the spin projection σ,
〈
ĉaσ(τ) ĉ†bσ′(0)

〉
∝ δσσ′ .

1.3.4 Translational symmetry

The symmetry implies
〈
ĉrασ(τ) ĉ†r′α′σ′(0)

〉
=
〈
ĉ(r−r′)ασ(τ) ĉ†0α′σ′(0)

〉
. The impor-

tant consequence is, as in the case of time-invariant Hamiltonian discussed above,

that
〈
ĉkασ(τ) ĉ†k′α′σ′(0)

〉
∝ δkk′ .14

The Fourier transformed Green's function is according to Eq. 1.19 of the form,

Gkαα′ =
1

L
e−ik·(rα−rα′ )

∑
r,r′

e−ik·(r−r′)Grαr′α′ . (1.40)

Exploiting Eq. 1.37, 1.36 we get

Gkαα′(τ) = G∗kα′α(τ) , Gkαα′(iωn) = G∗kα′α(−iωn) . (1.41)

12In complete analogy it is possible to show that the instantaneous (equal-time) density-density
correlations 〈n̂a n̂b〉 are purely real.

13From anticommutation relation
{
ĉ†a, ĉa

}
= 1̂ one may obtain constraint∑

m (λanmλ
a
n′m
∗ + λamn

∗λamn′) = δnn′ . By that ∃m, n : λamn 6= 0.
14In a usual setup with single site per cell, at an phase transition, the translational symmetry

may be lowered. For example, at the Néel transition on a square lattice, the unit cell doubles its
volume andG(k,k+Q) becomes non-zero for the antiferromagnetic reciprocal vectorQ =

(
π
a ,

π
a

)
.
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1.3.5 Real-valued Hamiltonian

If the Hamiltonian contains only real-valued terms with respect to Fock space
creation and annihilation operators, built upon some orthonormal single particle
basis,15 then e−τĤ is a real and symmetric matrix with respect to the Fock basis.
Let us label the orthonormal single particle basis by a, b. Then operators ĉ†a, ĉb
are represented by real matrices.16 Then the imaginary-time Green's function,

Gab(τ) = −
〈
ĉa(τ) ĉ†b(0)

〉
= − 1

Z
Tr
{
e−(β−τ)Ĥ ĉa e

−τĤ ĉ†b

}
, 0 < τ < β ,

(1.42)
is necessarilly purely real, implying Gab(iωn) = G∗ab(−iωn). Another consequence
is Gab(τ) = Gba(τ), arising from Eq. 1.37.

If the single particle basis was a real space basis build upon c†rασ, then in
combination with the translational symmetry we obtain

Gkαα′(τ) = G−kα′α(τ) = G∗−kαα′(τ) , (1.43)

and
Gkαα′(iωn) = G∗−kαα′(−iωn) = G−kα′α(iωn) . (1.44)

The real-valuedness of the real space Hamiltonian relates to the time-reversal sym-
metry, which is for a Hamiltonian conserving the total spin projection and without
any spin-dependent terms17 equivalent to the constraint on real-valuedness of Ĥ
in the real space representation.

1.3.6 Particle-hole symmetry

A particle-hole symmetric Hamiltonian has an invariant form under some kind
of particle-hole transformation. A particle-hole transformation replaces particles
with holes, which in operators means a correspondence of a creation operator to
some new annihilation operator and vice versa. A typical, physically motivated
particle-hole transformation is of the form,18

ĥ†rAσ = ĉrAσ̄ , ĥ†rBσ = −ĉrBσ̄ (1.47)

⇒ n̂′rασ = ĥ†rασĥrασ = ĉrασ̄ ĉ
†
rασ̄ = 1− n̂rασ̄ . (1.48)

15The Hamiltonian 1.15 is real-valued with respect to the real space basis i� trασr′α′σ′ ∈ R,
and Vασ ∈ R.

16With elements from {0,±1}.
17For Hamiltonian 1.15 it would mean trασr′α′σ′ = δσσ′trαr′α′ .
18The interchange of the spin σ to σ̄ re�ects that a destruction of an ↑ electron creates a hole

with spin ↓, as the hole carries opposite spin, since

Ŝzi =
1

2
(n̂i↑ − n̂i↓) = −1

2

(
n̂′i↑ − n̂′i↓

)
. (1.45)
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As an example we take a 2-sublattice real bipartite Hamiltonian with sublattices
A, B,19

Ĥ = −
∑
r,∆,σ

t∆

(
ĉ†r+∆Bσ ĉrAσ + ĉ†rAσ ĉr+∆Bσ

)
+
∑
α,σ

(Vασ − µ)
∑

r

n̂rασ

+U
∑
r,α

n̂rα↑n̂rα↓ −
U

2

∑
r,α,σ

n̂rασ , (1.49)

which after the transformation retains the same form,

Ĥ = −
∑
r,∆,σ

t∆

(
ĥ†r+∆BσĥrAσ + ĥ†rAσĥr+∆Bσ

)
−
∑
α,σ

(Vασ̄ − µ)
∑

r

n̂′rασ

+U
∑
r,α

n̂′rα↑n̂
′
rα↓ −

U

2

∑
r,α,σ

n̂′rασ + L
∑
α,σ

(Vασ − µ) + 2UL︸ ︷︷ ︸
irrelevant constant

, (1.50)

with L being the number of unit cells. Now we are able to read out that the
Hamiltonian is particle-hole symmetric for Vασ − µ = − (Vασ̄ − µ).

We use the fact that a particle-hole symmetric Hamiltonian possesses the same
form written in particle operators (ĉ, ĉ†) and in the hole operators (ĥ, ĥ†). Thus
we may write

Gσij(τ) = − 1

Z
Tr
{
e−(β−τ)Ĥ ĥiσ e

−τĤ ĥ†jσ

}
= − 1

Z
Tr
{
e−τĤ ĥ†jσ e

−(β−τ)Ĥ ĥiσ

}
= −sisj

Z
Tr
{
e−τĤ ĉjσ̄ e

−(β−τ)Ĥ ĉ†iσ̄

}
= sisjGσ̄ji(β − τ) , (1.51)

where si is a sublattice factor equal to 1 (−1) for i being a site in the sublattice A
(B), in accordance with Eq. 1.47. A direct consequence for i = j is that the �lling
per site is equal to one,

∑
σ niσ = 1. Another consequence for the paramagnetic

case, Gσ = Gσ̄, is mirror symmetry in τ around β/2 for the local Green's function,
Gii(τ) = Gii(β − τ)

However, in order to exploit a model system we may de�ne the particle-hole transformation
di�erently � with same spin,

ĥ†rAσ = ĉrAσ , ĥ†rBσ = −ĉrBσ . (1.46)

19To make connection with previously introduced notation, it is a special case with l = 2,
t∆AA = 0 = t∆BB and t∆AB , U ∈ R. The lattice is bipartite, as there are no hoppings between
sites of the same sublattice. However, purely imaginary hoppings on the same sublattice would
not destroy the particle-hole symmetry.
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A simple calculation reveals that the Green's function in Matsubara frequency
representation equals to

Gσij(iωn) =

∫ β

0

dτ eiωnτGσij(τ) = sisj

∫ β

0

dτ eiωnτGσ̄ji(β − τ) (1.52)

= sisj

∫ β

0

dτ ′ eiωn(β−τ ′)︸ ︷︷ ︸
−e−iωnτ ′

Gσ̄ji(τ
′)

︸ ︷︷ ︸
−G∗σ̄ji(iωn)

, (1.53)

which for i = j and paramagnetic case results in the consequence that Gσjj(iωn)
is purely imaginary. Eq. 1.53 implies

Gσαγ(k, τ) = sαsγGσ̄γα(−k, β − τ) , (1.54)

Gσαγ(k, iωn) = −sαsγGσ̄γα(−k,−iωn) . (1.55)

If we assume in addition that the real space Hamiltonian is purely real, the
Green's function in real space imaginary-time representation is purely real. That
implies for the reciprocal representation the following,

Gσαγ(k, τ) = sαsγG
∗
σ̄γα(k, β − τ) , (1.56)

Gσαγ(k, iωn) = −sαsγG∗σ̄γα(k, iωn) . (1.57)

Another use of the particle-hole symmetry is away from half �lling, for obtain-
ing the properties at chemical potential −µ (�lling 2− n) based on measurements
at chemical potential µ (�lling n).

1.3.7 Inversion symmetry

Note that a general lattice with multi-site unit cells does in general not exhibit
inversion symmetry. Next subsection on point group symmetries covers the inver-
sion symmetry in the case of Bravais lattices with single site per unit cell and the
case of inversion symmetry for general lattices when the inversion preserves the
sublattice index.

Here we examine in more detail the case of lattice with two sites per unit cell,
which is important for many applications, as it is a natural choice of unit cell for
description of classical antiferromagnetic state. We assume the inversion operation
to have the form

I : (r, α) 7→ (−r, ᾱ) , ᾱ =

{
A for α = B ,
B for α = A .

(1.58)
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That changes the orientation of all relative real space vectors to its opposite,

I : r + rα − r′ − rα′ 7→ − (r + rα − r′ − rα′) . (1.59)

For the Green's function of a model symmetric with respect to I that implies

Gαβ(r) = Gᾱβ̄(−r) , and Gαβ(k) = Gᾱβ̄(−k) . (1.60)

So far we did not specify the e�ect of the inversion on the spin. Physical spin,
as a pseudovector, does not change under space inversion. However, we may ex-
amine the combined symmetry of space inversion and spin �ip, which appears in
the context of Néel phase. Assuming symmetry of the Hamiltonian under the
transformation (r, α, σ) 7→ (−r, ᾱ, σ̄),20 which is compatible with classical antifer-
romagnetic order, and real-valuedness of the real space Hamiltonian we get

GσAA(k, iωn) = Gσ̄BB(k, iωn) , (1.61)

GσAB(k, iωn) = Gσ̄AB(k, iωn) , GσBA(k, iωn) = Gσ̄BA(k, iωn) . (1.62)

In combination with the particle-hole symmetry under transformation of the form
given in Eq. 1.47,21 one obtains Green's function with this structure,22

Gσ(k, iωn) =

(
a b
b∗ −a∗

)
, Gσ̄(k, iωn) =

(
−a∗ b
b∗ a

)
, (1.63)

Gσαβ(−k, iωn) = Gσβα(k, iωn) . (1.64)

In the paramagnetic phase, as Gσ = Gσ̄, a becomes purely imaginary.
For a special, so-called �time-reversal symmetric� k-point such that 2k is a

reciprocal lattice vector b (e.g. −k and k are the same quasimomenta),23 we get
b = b0e

−ib·(rA−rB)/2 with real b0. The Dyson equation delivers the same form for
the self energy.

1.3.8 Point group symmetries

Let us assume a point group G, elements of which leave the real space Hamiltonian
invariant. Further, we assume that the symmetry operations g ∈ G act trivially
on the intracell index α. In that case,

Gαβ(r− r′) = Gαβ(g(r + rα − r′ − rβ)− rα + rβ) , (1.65)

20It requires VAσ = VBσ̄, tkAA = t−kBB , and tkAB = t−kBA.
21Additionally requiring tkAA = −t−kAA (enabling purely imaginary hoppings between sites

on same sublattice)) and VAσ = −VAσ̄.
22The row corresponds to the site index α and column to the site index β.
23The �time-reversal symmetric� k-points are located at the surface of the Brillouin zone.

Additionally, the Γ = 0 is a �time-reversal symmetric� point.
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Model systems

where g(r) denotes the transformation of a vector r by the action of the operation
g. With the de�nition of the Fourier transformation given in Eq. 1.40 we get for
the Green's function in reciprocal space

Gαβ(k) =
∑

r

e−ik·(r+rα−rβ)Gαβ(r) (1.66)

=
∑

r

e−ig(k)·g(r+rα−rβ) Gαβ(g(r + rα − r′ − rβ)− rα + rβ) (1.67)

=
∑

r̃

e−ig(k)·(r̃+rα−rβ) Gαβ(r̃) = Gαβ(g(k)) , (1.68)

where we used invariance of the scalar product under the action of g. Notice
that this convenient result would not hold in this simple form for the conventional
choice of the FT (1.19) omitting the phase factors e−ik·(rα−rβ).
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2 Dynamical cluster

approximation

The dynamical cluster approximation (DCA) is a quantum cluster theory mapping
a lattice problem selfconsistently onto an impurity [60, 78, 79, 59]. As such, it may
be viewed as a cluster extension of the dynamical mean-�eld theory (DMFT) [55].
It preserves translational invariance, unlike the cluster extension of DMFT known
as cellular DMFT (CDMFT) [80, 61].

In DMFT, the self energy of the lattice is approximated by a dynamical but
completely local function. The motivation for that is given in models with pre-
dominantly local interaction as the self energy is in such models fairly localized
when compared to the Green's function. That can be veri�ed using diagrammatic
expansion, but it is visible also in the high-frequency behavior, see Eq. A.43 for
the case of the Hubbard interaction. Therefore, the self energy is relatively �at in
the reciprocal space. The lattice self energy is in the DMFT approximated by the
self energy of the impurity, onto which is mapped the original lattice model,

Σlat(k, iωn) ≈ Σimp(iωn) . (2.1)

The DMFT mapping of the lattice problem onto the impurity is a requirement
that the impurity Green's function equals to the local lattice Green's function,

Gimp(iωn) =
1

ΩBZ

∫
BZ

dkGlat(k, iωn) , (2.2)

where BZ stands for the Brillouin zone and ΩBZ denotes its volume. The DMFT
is exact in these limits:1

. vanishing interaction, because self energy vanishes in that case,

. in�nite interaction, as the model is local in that limit,

. in�nite coordinate number, as the spatial �uctuations are negligible in that
case.

1The �rst two limits are in case of particle-hole symmetric models at half �lling correctly
captured also by the second order weak coupling perturbation.
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DCA maps the original lattice problem onto impurities consisting of more sites
called cluster. This enables capturing non-local correlations on the simulated clus-
ter impurity. DCA approximates the self energy with dynamical function, which
is patch-wise constant in the reciprocal space,

Σlat(K + k̃, iωn) ≈ Σimp(K, iωn) , (2.3)

where K denotes a cluster reciprocal point and k̃ is a reciprocal vector within the
DCA patch � precise de�nitions of a cluster and DCA patch corresponding to the
cluster are provided in the Sec. 2.2. With larger cluster the DCA self energy gains
�ner resolution in the reciprocal space. The mapping of DCA is analogous to that
of DMFT, Eq. 2.2, when written in the cluster reciprocal representation,

∀K : Gimp(K, iωn) =
L

ΩBZ

∫
DCA patch

dk̃Glat(K + k̃, iωn) , (2.4)

where L denotes the number of unit cells in the cluster. The DCA approximation
Eq. 2.3 and the DCA mapping Eq. 2.4 ensure conservation of the cluster (grained)
quasi-momenta K. DCA can be derived using the locator approach, tiling the
lattice to isolated clusters and performing expansion in the intercluster hopping
while neglecting the intercluster self energy. Alternatively, it can be obtained
in a diagrammatic approach based on the quasi-momentum conservation at the
resolution of the cluster, i.e. at the grained K level, neglecting the �ner quasi-
momenta k̃. Both approaches are worked out in [59].

Similarly to DMFT, the DCA solution is obtained iteratively, as there is no
known way to solve the Eqs. 2.3, 2.4 directly. The iterative solution uses a DCA
selfconsistency loop consisting of the following steps:

1. Start with a guess of G0,imp, which is to be used as an input in an impurity
solver computing Gimp.2

2. The (impurity) self energy is obtained via the Dyson equation,

Σ(K, iωn) = G0,imp(K, iωn)−1 −Gimp(K, iωn)−1 . (2.5)

3. The patch averaged lattice Green's function is computed,

Ḡlat(K, iωn) =
L

ΩBZ

∫
DCA patch

dk̃
[
G0(K + k̃, iωn)−1 − Σ(K, iωn)

]−1

.

(2.6)

2A good initial guess of G0,imp is the DCA-patch averaged G0,lat (see Subsec. A.4.4) or a
G0,imp of a converged simulation at similar physical parameters.
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Dynamical cluster approximation

4. A new guess for the bare impurity Green's function to be used in step 1 is
obtained, again via the Dyson equation,

G0,imp(K, iωn) =
[
Ḡlat(K, iωn)−1 + Σ(K, iωn)

]−1
, (2.7)

where we used the mapping Eq. 2.4.

The selfconsistency loop is schematically depicted in Fig. 2.1. Maximum di�erence
of Gimp(K, iωn) in subsequent iterations can be used as a convergence criterion.

G     (K)=[G     (K)  +Σ(K)]−1 −1

impurity solver: G     (K)imp

Σ(K  )=[G     (K)  −G      (K)   ]−1 −1
0
imp imp

G (K)=∫      [G  (k)  −Σ(K)  ]

imp

−1
0

−1
K-patch

0

Figure 2.1: The DCA approximation Eq. 2.3 and the DCA mapping Eq. 2.4 are
solved iteratively, performing the selfconsistency loop.

We mentioned that the DCA lattice self energy is in the reciprocal space ap-
proximated by a patch-wise constant function, where the resolution is given by the
number of patches L in the Brillouin zone, i.e. by the cluster size. There were at-
tempts to apply some smoothing of the lattice self energy. However, it turned out
that smoothing may in general lead to a causality breaking [81]. A DCA extension
with self energy treated on the same level as the Green's function was developed
by P. Staar et al. [82]. Their DCA+ uses interpolated self energy and instead of
the approximation 2.3 he imposes condition that the patch averaged lattice self
energy needs to be equal to the impurity self energy. Although causality violation
was not rigorously excluded for DCA+, for the examined model problems it was
not observed [21].

Any reasonable cluster theory should recover the exact solution in the limit of
in�nite cluster size, L → ∞. In DCA, the patches shrink with growing cluster
and they become point-like for L → ∞, i.e. the patch-averaging becomes trivial
and so does the selfconsistency loop. The di�erence between the self energy ΣDCA

obtained in a DCA simulation with respect to the true lattice self energy Σ is
asymptotically given by ([59]),

Σ = ΣDCA +O
(
L−2/d

)
, (2.8)

see example in Fig. 2.7, 2.8.
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2.1 Comparison of DCA to competing methods

2.1 Comparison of DCA to competing methods

Although DCA is a cluster extension of DMFT, its features and especially the
solution techniques are closely related to simulations of quantum models on �nite
lattices with periodical boundary conditions. The �nite lattice simulations lack
the selfconsistency loop, so they can be viewed as a single iteration of the DCA
selfconsistency loop with G0,imp = G0,lat and without any patch averaging. The
number of iterations to �nd a converged DCA solution is typically of the order of
10. The need to perform several iterations is an extra complexity with respect to
the �nite lattice simulations. On the other hand, DCA has the approximation on
the level of the self energy, which is an irreducible quantity showing stronger local-
ization in the real space for models with local interaction. In a high-temperature
phase, DCA data allows reliable extrapolations to the thermodynamic limit using
moderately sized clusters. Possibility to obtain reliable data for extrapolations
with smaller clusters is of great importance, especially for problems with severe
sign problem [42, 41], as that increases noise to signal ratio exponentially with
βL. The sign problem itself is reduced in DCA with respect to the �nite lattice
simulation on the same cluster [79].

Both solution by DCA and the �nite lattice simulation with periodical bound-
ary conditions converge to the thermodynamic limit as L−2/d in the single particle
Green's function [83]. Ref. [83] shows also an example, in which the �nite lat-
tice simulation Green's function and DCA Green's function converge with larger
cluster to the thermodynamic limit from opposite directions, enabling bounding
of the results. From a point of view of the requirements on the impurity solver of
the quantum problem, DCA needs an impurity solver working with the e�ective
action, e.g. Hirsch�Fye solver [37, 79] or the numerically exact continuous time
auxiliary �eld (CT-AUX) [39] (see review [84]), or a Hamiltonian based QMC
with need of additional (discretized) bath to mimic the impurity action given by
G0,imp [85]. Finite lattice simulations may employ QMC approach working both
with an e�ective action or with Hamiltonian formulation [36, 40] (without any ex-
tra sites). Note that the scaling of CT-AUX is (βUN)3, whereas the Hamiltonian
based approaches scale like βUN3.

DCA, unlike the �nite lattice simulations, enables symmetry breaking as a
consequence of its mean-�eld character on distance scales beyond the cluster size.
That simpli�es measurements in an ordered phase. Clearly, the data close to the
phase transition needs then to be interpreted with care. Susceptibility measure-
ment is in the DCA much more involved than in the �nite lattice simulations
as it involves solving of the Bethe�Salpeter equation and requires thus measure-
ment of four-point correlators with at least two frequencies. Further details on the
susceptibility measurement are in Subsecs. 3.4.6 and 4.4.1.
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Dynamical cluster approximation

The competing quantum cluster theory of DCA is the CDMFT. In CDMFT,
one treats the intercluster hoppings di�erently from the intracluster hoppings � the
impurity is a cluster with open boundary conditions, which couples to the bath via
the surface sites. In DCA, all hoppings are treated in the same way � the impurity
has periodical boundary conditions and the coupling to the bath also respects the
translational symmetry. As a consequence, the DCA impurity couples to the mean
�eld with every site, whereas in CDMFT only the boundary sites couple to the
bath states. That results in a slower convergence of ΣCDMFT to the true lattice
self energy ([59]),

Σ = ΣCDMFT +O
(
L−1/d

)
, (2.9)

compare with 2.8. The translational invariance is in DCA respected on all levels.
This alone might be necessary for simulations of speci�c models [86]. Moreover, it
may in�uence the e�ciency of measurements in the impurity solver as the number
of observables in a DCA simulation is proportional to L rather than to L2 in
the case of CDMFT; discussed in Sec. B.2. The advantage of CDMFT lies in
fast convergence of local observables measured in the impurity center when the
examined state has exponentially falling correlations [59], i.e. when it is far from
a phase transition.

2.2 DCA cluster

A real space lattice A in d dimensions is de�ned by d independent basis vectors
ai, i ∈ {1, . . . , d}. A lattice point r ∈ A is an integer linear combination of the
basis vectors ai. A reciprocal lattice B exists to each real space lattice A . Its
basis vectors are denoted by bi, and they are de�ned by ai ·bj = 2πδij. The lattice
points r refer in the context of Subsec. 1.2.2 to the cell vectors, and not necessarily
to the individual sites.3

A cluster is for us a primitive cell of a superlattice Ã de�ned by basis vectors
ãi. These must be integer linear combinations of the lattice basis vectors,

ãi =
∑
j

nijaj , nij ∈ Z . (2.10)

The basis vectors ãi of the superlattice we refer to as the cluster basis vectors. The
requirement on being a primitive cell of a (super)lattice ensures that the cluster
can perfectly (without any empty spaces or overlaps) tile the d-dimensional space,

3In case of models de�ned on Bravais lattices there is a single site per unit cell and therefore we
may identify the cell vector r with the real space position of a site, but for a general (non-Bravais)
lattice this is not possible.
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2.2 DCA cluster

which is a legitimate constraint for any cluster method with periodical bound-
ary conditions. All choices of a primitive cell for a given superlattice Ã produce
equivalent results provided the model on the cluster has periodical boundary con-
ditions.4 In particular, any choice of a primitive cell of the given superlattice is
equivalent to the parallelotope5 de�ned by the cluster basis vectors, see illustration
in Fig. 2.2.

Various sets of cluster basis vectors may form the same superlattice. For ex-
ample, the superlattice build upon ã1 and ã2 is the same as the superlattice with
basis vectors ã1, ã2− ã1. Studies [87, 88] provide the form of nij which guarantees
unique description of the superlattice, which can be utilized e.g. for a systematic
generation of all di�erent superlattices.

a 1

a 22

a 22

a 1
~~

~ ~

Figure 2.2: Here we show two di�erently shaped primitive cells corresponding
to the same superlattice de�ned by the basis vectors ãi. On the left we display
the primitive cell in a form of a parallelogram, whereas on the right we show a
symmetric choice of the primitive cell. The underlying lattice is a triangular lattice
with sites shown as circles. Each white circle corresponds via periodical boundary
conditions to one of the gray sites on the boundary of the cluster.

The oriented volume of a cluster is given by the determinant of the matrix nij.
Its absolute value, i.e. the number of cells contained, is denoted by L. The L cells
of the original real space lattice A that belong to the cluster constitute its real
space representation ri, i ∈ {1, . . . , L}. While for a diagonal nij it is trivial to
obtain the set {ri} ≡ C of cluster real space vectors, it can be always be generated
by this procedure:

1. Start with C = {0}.
4The DCA cluster has periodical boundary conditions.
5A parallelotope is the generalization of the parallelogram in d = 2 and the parallelepiped in

d = 3 to any d.
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Dynamical cluster approximation

2. Loop over r = 1, . . . , d:

(a) Find the lowest non-zero integer k such that there exists r ∈ C for which
kar − r is a vector of the superlattice Ã, i.e. for which 1

2π
(kar − r) · b̃j

is an integer for all j = 1, . . . , d.6

(b) Set C ′ = {r + qar : r ∈ C , q = 0, 1, . . . , k − 1}.
(c) Replace C by C ′.

3. C contains L real space vectors ri, which can be used as real space represen-
tation of the cluster.

We denote the reciprocal lattice with respect to the superlattice Ã by B̃. Its basis
vectors are b̃i such that ãi · b̃j = 2πδij, see example in Fig. 2.3. The reciprocal
representation of the cluster consists of L reciprocal vectors Ki of the lattice B̃,
which belong to some primitive cell of B. The problem of �nding some valid
reciprocal representation of the cluster is analogous to the problem of �nding its
real space representation discussed above.

a1
2a

2a

1a
~

~

b1

2b

b2
~ 1b

~

Figure 2.3: On the left is the real space lattice A consisting of the white squares,
and the superlattice Ã consisting of the gray tilted squares. On the right is the
reciprocal lattice B (white squares) and the reciprocal superlattice B̃ (gray tilted
squares).

Non-zero o�-diagonal elements in nij complicate the usage of fast FT (FFT) for
the change from the real space to the reciprocal representation and vice versa. The
gain arising from allowing of general nij is in larger number of available clusters
with given L which would otherwise not be accessible. This is especially important

6This condition can be easily done in integer arithmetic, as b̃j =
∑d
l=1 b̃jlbl, with b̃jl =(

n−1
)
lj
, i.e. all b̃jl are integer multiples of

1
L .
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2.2 DCA cluster

if there are physical considerations due to which the clusters need to respect some
symmetries or if there are some constraints on the cluster due to the model, as those
often greatly reduce the number of cluster candidates with reasonably bounded L.
For clusters on the simple cubic lattice several useful criteria can be found in [89];
for the clusters on the square lattice see [90]. These rely heavily on counts of full
shells of neighbors of an arbitrary cluster site, which is a heuristic criterion for
models lacking longer-ranged hoppings or interactions.

As argued above, permitting clusters with general nij is a valuable bene�t. The
FFT in space is crucial for e�cient implementation of some measurements, e.g. for
the susceptibility measurement described in Subsec. 3.4.6. In order to perform the
FFT, which we accomplished with the library FFTW [91], suitable permutation
of the cluster sites ri and cluster reciprocal points Kj is to be found.7 The goal of
the permutations is to get the table of integers,8

Fij =

(
L

2π
ri ·Kj

)
mod L , (2.11)

to match the table of integers F ′ij for some diagonal d′ × d′ matrix n′ij,

F ′ij =

(
d′∑
a=1

xa(i) ka(j)
L

n′aa

)
mod L , (2.12)

where the positions and momenta are ordered in a standard form, an example for
d′ = 3 follows,

i = x1(i) + x2(i) n′11 + x3(i) n′11 n
′
22 , (2.13)

j = k1(j) + k2(j) n′11 + k3(j) n′11 n
′
22 . (2.14)

Such choice of order of cluster real space and reciprocal points enables straight-
forward use of the FFTW library.9 The lowest non-zero entry m in the table Fij
equals to the greatest common divisor of

{
L
n′11
, . . . , L

n′
d′d′

}
.10 Since reordering of

ri is a permutation of the rows of the table Fij, and any swap of the rows cannot
change the content of any column, the content of the columns of the table Fij is
an invariant.11 Same applies for the exchange of columns. These invariants enable
quick check if the row and column permutation of Fij may result in F ′ij and it
reduces the complexity of the reordering.

7The permutation may not be unique. An example showing non-uniqueness exists already for
d = 1, L = 3, where simultaneous swap of x2 = a with x3 = 2a and k2 = 2π

3a with k3 = 4π
3a leaves

the FT of the same form.
8The modulo operation mod is meant in mathematical convention, e.g. −1 mod 7 = 6.
9Clearly it must hold L = Πd′

i=1n
′
ii, n

′
ii ∈ Z, n′ii ≥ 1, 1 ≤ d′ ≤ d.

10The largest entry of n′ can be chosen to be L
m , which then completely determines n′ when

d = 2.
11The order of the columns may be changed by swap of two K vectors.
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Dynamical cluster approximation

2.3 DCA patch

The DCA patch is a primitive cell of B̃. Thus it perfectly tiles the reciprocal space.
Its volume is L-times smaller than the volume ΩBZ of the Brillouin zone of the
original lattice A .12 The shape of a DCA patch is ambiguous.13 However, as the
DCA patch enters the DCA approximation in Eq. 2.4, its choice may in�uence the
quality of the approximation. The averaging (mean-�eld) e�ects are caused by the
dispersion over the DCA patch. Since typically the dispersion is isotropic, a natural
patch choice is a patch minimizing the largest distance kmax of any of its points
from its center. This property has the primitive cell according to the Wigner�Seitz
construction. In addition, it inherits the symmetry of the superlattice Ã .14 In case
of anisotropic dispersion, the same consideration leads to the patch minimizing the
largest distance from its center, but with a distance function taking into account
the anisotropy, ‖k‖2 =

∑
i=x,y,z t

2
i k

2
i . For the construction of the Wigner�Seitz

primitive cell in 3D we used Qhull [92].
The integration over a patch is performed as a sum of (analytically carried out)

integrals of quadratic interpolants over small simplices. These are obtained �rst
by splitting the DCA patch to large simplices with a single corner in the patch
center and d corners at the patch boundary. In the second step we discretize each
of the large simplices to a large number of small simplices.15

2.4 Dynamical cluster approximation for non-Bra-

vais lattices

The DCA in its original setting was formulated for models de�ned on a Bravais
lattice, i.e. with single site per unit cell. The DCA solution was assumed to obey
the translational symmetry of the lattice. For the description of a spontaneous
or arti�cial symmetry breaking, an extension of the DCA was established. For

12The Brillouin zone of a lattice A is the Wigner�Seitz choice of the primitive cell of the
reciprocal lattice B.

13A simple choice is the primitive cell of B̃ in shape of a parallelotope centered at 0 with basis
vectors equal to the basis vectors of B̃.

14The Wigner�Seitz construction has to be done in the reciprocal space using the Cartesian
coordinates, as opposed to the reduced coordinates which are given with respect to the reciprocal
lattice basis vectors b.

15In 3D, we cut each large simplex (= tetrahedron) to cubes, tetrahedra, and cubes without a
single tetrahedron. Integration over the composite shapes takes into account all possible tilings
onto tetrahedra � e.g. we symmetrize over all 16 possible tilings of a cube to 6 tetrahedra with
equal volume.
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2.4 Dynamical cluster approximation for non-Bravais lattices
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Figure 2.4: Reciprocal space picture of the cluster shown in Fig. 2.2 (either of
those two variants). The dashed line hexagon is the Brillouin zone boundary
of the lattice A . Small red circles show the set of L reciprocal K points of the
cluster. The small hexagons are DCA patches shifted to have centers at the cluster
reciprocal K points, visualizing the areas of patch averaging in Eq. 2.4. The DCA
patch is the Brillouin zone of the superlattice Ã . The real space nearest neighbor
site distance is denoted by a.

example, in order to account for the translational symmetry breaking at the AF
reciprocal vector Q, the Eqs. 2.4, 2.6 remain in the same form, but all involved
objects become 2× 2 matrices of the form [59],

G̃σ(k, τ) = −
〈

Ψ̃kσ(τ)Ψ̃†kσ

〉
, (2.15)

with spinor

Ψ̃†kσ =
(
c†kσ, c

†
k+Qσ

)
, Ψ̃kσ =

(
Ψ̃†kσ

)†
, (2.16)

and the k vectors are restricted to the magnetic Brillouin zone, which has half the
volume of the original Brillouin zone.

The above physical situation can be equally well described with the formalism
using multisite cells introduced in Subsec. 1.2.3. Following this we divide the
lattice into two sublattices, A and B, by which we enlarge the unit cells to contain
one A and one B site. Similarly as in the approach using spinors Ψ̃kσ, we restrict
ourselves to the magnetic Brillouin zone. We also use the Green's function in
matrix form,

Gσ(k, τ) = −
〈

Ψkσ(τ)Ψ†kσ

〉
, (2.17)

just with di�erently de�ned spinor,

Ψ†kσ =
(
c†kAσ, c

†
kBσ

)
, Ψkσ =

(
Ψ†kσ

)†
. (2.18)
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Dynamical cluster approximation

Due to the form of FT 1.19 with the (non-standard) phase factors e±ik·rα , the
transformation from Ψkσ to Ψ̃kσ is given by a k-independent unitary transforma-
tion Uk,

Ψ̃†kσ = Ψ†kσUk , G̃σ(k) = U+
k Gσ(k)Uk , Uk =

1√
2

(
1 1
1 −1

)
.

(2.19)
The k-independence of Uk enables to perform basis change by Uk in the Eqs. 2.4
and 2.3 to change G̃, Σ̃ to G, Σ in both equations while keeping their form in-

tact.16 For a general k-dependent unitary transformation between Ψ̃†kσ and Ψ†kσ,
additional k̃-dependent factors would arise in the transformed Eq. 2.4, as that
sums Green's functions at di�erent k vectors (within a patch).

Clearly, we could have de�ned the FT 1.19 without the intracell phase factors
e±ik·rα , with creation operators ĉ′†kασ. Further we could have de�ned the spinor

Ψ′†kσ =
(
ĉ′†kAσ, ĉ

′†
kBσ

)
and still keep the form of the approximation, Eqs. 2.4, 2.3,

unchanged. Since the transformation between Ψ̃ and Ψ′ is k-dependent,17 we
would have de�ned a di�erent approximation.18 Within this section we refer to
that approximation as DCA0.19

That said, we de�ne the DCA for any non-Bravais lattice20 to be given by
Eqs. 2.4 and 2.3 meant for Green's function of form given in Eq. 2.17, with FT
prescribed by Eq. 1.19.

If we are to compare the above de�ned DCA for non-Bravais lattices with the
other candidate, DCA0, the only di�erence is in the FT. Apart from the important
equivalence of the DCA for non-Bravais lattice with the DCA for broken trans-
lational symmetry, valid for a Bravais lattice with arbitrarily enlarged unit cell,
the form of FT 1.19 reduces the averaging e�ect in Eq. 2.6 by reduction of vari-
ation of tkαα′ within a DCA patch (for α 6= α′), as illustrated on the example of
tight-binding model on the honeycomb lattice in Fig. 2.5. That is connected with
the fact that the o�-diagonal elements (α 6= α′) of the Green's functions and self

16For this it is su�cient if Uk may be written as a product of a k-dependent scalar and a
k-independent ` × ` matrix. By that it is clear, that for ` = 1 the presence or absence of the
intracell phase factors in FT does not play any role for DCA.

17The transformation from Ψ̃† to Ψ′†, Ψ̃†kσ = Ψ′†kσU
′
k, is given by the unitary transformation

U ′k = 1√
2

(
eik·rA 0

0 eik·rB

)(
1 1
1 −1

)
= 1√

2

(
eik·rA eik·rA

eik·rB −eik·rB

)
.

18In an exact treatment, any (k-dependent) unitary transformation is just a change of the
basis, and therefore cannot have any impact on the physical observables. However, the quality of
an approximative method may be basis dependent, as the approximation may be better suited
to some particular basis choice.

19This DCA version was used in [93].
20These might not only be a Bravais lattice with enlarged unit cell, but also a general lattice

which does not permit description as a lattice with single site per unit cell.
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2.5 Bipartite cluster for a Bravais lattice

energy obtain a phase factor when translated by a reciprocal lattice vector b ∈ B,
G(k + b) = U+

b G(k)Ub with diagonal unitary matrix (Ub)αα′ = δαα′e
ib·rα , see

in Fig. 2.9.21 The selfconsistency condition of DCA0 is equivalent to that of the
CDMFT [61] in the limiting case of a cluster consisting of a single (enlarged) cell.
Finally, we already worked out in Subsec. 1.3.8 the impact of the form of FT 1.19
on the Green's function with respect to point group symmetries. These are not
masked by any additional phase factors since the FT does not introduce any bias
by the choice of the unit cell and re�ects the original point group symmetry of the
real space problem.

For a non-Bravais lattice, the form of FT given in Eq. 1.19 was used in previous
study [86] on the Hubbard model on the honeycomb lattice.

As an example system we show the self energy of the Hubbard model on the
honeycomb lattice in Figs. 2.7, 2.8, and 2.9. The self energy is in these plots in-
terpolated after the convergence of the DCA selfconsistency loop. The asymptotic
behavior of the self energy is examined in Figs. 2.7, 2.8.

2.5 Bipartite cluster for a Bravais lattice

For a study of a model de�ned on a Bravais lattice with anticipated antiferromag-
netic (AF) ordering, the cluster has to be bipartite, i.e. it must contain the AF
reciprocal vector Q = 1

2

∑d
i=1 bi in its reciprocal representation. Otherwise, arti�-

cial frustration is introduced by the cluster geometry, see Fig. 2.6. The cluster is

21This makes it desirable to work with a �xed set of K vectors. In Subsec. 4.4.1 we encounter
a phase factor accounting for the need to shift a K vector by a reciprocal lattice vector b ∈ B.
Since the only place where the choice of the basis matters is the patch averaging step 2.6, one
could use the default FT convention omitting the phase factors and switch to the convention
with those only for the averaging step.
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Dynamical cluster approximation

Figure 2.5: We display the hopping amplitude tkAB for the tight-binding model
on the honeycomb lattice with hopping t = 1. The top row displays the real (left)
and imaginary (right) part of tkAB assuming the FT of form 1.19. The bottom row
shows the real (left) and imaginary (right) part of tkAB assuming the FT omitting
the intracell phase factors e±ik·rα present in 1.19.

bipartite if and only if22

∀i = 1, . . . , d :

(
d∑
j=1

nij

)
mod 2 = 0 . (2.23)

22The proof is straightforward. The basis vectors of the reciprocal superlattice B̃ are

di =

d∑
j=1

(
n−1

)
ji
bj , i = 1, . . . , d . (2.20)

The cluster is bipartite if there exist integers ai such that
∑d
i=1 aid1 = Q = 1

2

∑d
i=1 bi, which is

equivalent to the set of equations,

∀j = 1, . . . , d :
1

2
=

d∑
i=1

(
n−1

)
ji
ai . (2.21)
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2.5 Bipartite cluster for a Bravais lattice

Figure 2.6: The hatched region is an example of a non-bipartite cluster. The
bipartition of the square lattice and the cluster tiling are incommensurate, which
causes frustration on the periodical boundaries of the cluster. The red dashed lines
visualize frustrated bonds.

As described in Sec. 2.4, we could simulate the translational symmetry breaking
using formalism of G̃ based on spinors Ψ̃. Further, we proved that equivalently
we may use the formalism with doubled cells with G based on Ψ. Here we �nd
the requirements on the enlarged unit cell and the cluster. We assume a 2 or 3-
dimensional Bravais lattice, and as the enlarged unit cell we take two neighboring
sites. Let us denote the basis vectors of the Bravais lattice as a′1, a′2 (, a′3). The
AF reciprocal vector Q ful�lls eiQ·a

′
i = −1 for all basis vectors a′i.

In the description with two sites per unit cell we denote the two sublattices
by A and B. Further, we �x the position of site A (B) within a cell to be 0
(a′1). Some care needs to be taken for an appropriate choice of the lattice vectors
ai corresponding to this enlarged unit cell � in order to be compliant with the
anticipated AF order these need to be chosen such that eiQ·ai = 1. A particular
example is a1 = 2a′1, a2 = a′2 ± a′1 (, a3 = a′3 ± a′1).

23 Any cluster with doubled
unit cells satisfying the condition eiQ·ai is then automatically bipartite, i.e. in the
single site per cell description it contains the reciprocal Q in its cluster reciprocal
space.
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Dynamical cluster approximation

The criterion 2.23 is obvious from the solution of the above equation set,

1

2

d∑
j=1

nij = ai . (2.22)

23Be aware that choice a1 = 2a′1, a2 = a′2 would not be a good choice for description of the
AF phase with translational invariance assumed for the enlarged unit cell. For a 2D problem,
a symmetric choice for the basis vectors is a1 = a′1 + a′2, a2 = a′1 − a′2. In 3D one may use
a1 = a′2 + a′3, a2 = a′1 + a′3, and a3 = a′1 + a′2.
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2.5 Bipartite cluster for a Bravais lattice
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Figure 2.7: The top �gure shows the imaginary part of the self energy element AA
at Matsubara frequency iω0 = πT along the high-symmetry path Γ−M −K − Γ
of the Brillouin zone of the honeycomb lattice (d = 2), displayed in bottom left
�gure. The investigated model was the Hubbard model on the honeycomb lattice
with U = 4t and βt = 10 with enforced spin symmetrization, at half �lling. For
the top �gure we used natural neighbor interpolation of the DCA impurity data
known at the reciprocal superlattice B′. The interpolation was applied only in
the postprocessing. Notice the fact that the natural neighbor interpolation never
overshoots. The bottom right plot shows the convergence of the imaginary part
of ΣAA(K, iωn) with the cluster size L. All clusters used to obtain data for these
plots contain the K and K ′ points in their cluster reciprocal space and none of
them contains the M point. The 33-cell and the 51-cell clusters break the 3-fold
rotational symmetry, therefore we symmetrized the interpolated data.
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Figure 2.8: In the top row there are analogous plots as in Fig. 2.7(top), but for
di�erent components of the 2 × 2 self energy matrix. The other plots shows con-
vergence at the high symmetry points Γ andM . Since none of the clusters directly
contained the M point in its reciprocal representation, the natural neighbor inter-
polation was applied to obtain data for the convergence plots at M point (center
row). According to discussion in Subsec. 1.3.7, the real and imaginary part of ΣAB

at the �time-reversal symmetric� points (Γ, M) are dependent. That constrains
=ΣAB(Γ) = 0. GAB(K) = 0 = ΣAB(K) due to the 3-fold rotational symmetry, as
K rotated by 120◦ equals to K translated by a reciprocal lattice vector, giving rise
to constraint GAB(K) = GAB(K) e2πi/

√
3.
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2.5 Bipartite cluster for a Bravais lattice

Figure 2.9: Plot of independent components of the self energy at Matsubara fre-
quency iω0 = πT obtained on a 81-cell cluster. The investigated model was the
Hubbard model on the honeycomb lattice with U = 4t and βt = 10 with en-
forced spin symmetrization, at half �lling. According to Subsec. 1.3.7, only the
imaginary part of the AA component of Σ (top �gure) along with real (bottom
left) and imaginary (bottom right) part of ΣAB are independent. The small blue
circles are the points of the reciprocal superlattice B′, at which the impurity self
energy was computed. Natural neighbor interpolation was used to produce the
plots. The Brillouin zone boundary is displayed as white dashed hexagon. ΣAB is
translationally symmetric with respect to shift by a reciprocal lattice vector b ∈ B
with additional phase factor, ΣAB(k + b) = ΣAB(k) eib·(rB−rA), due to the form of
FT 1.19.
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3 Anisotropic Hubbard model

on a cubic lattice

We study the anisotropic 3D Hubbard model with increased nearest-neighbor tun-
neling amplitudes along one direction using the DCA and local density approxi-
mation (LDA), and compare the results to a quantum simulation experiment of
ultracold fermions in an optical lattice. Our results agree with the experimental
observations and show that the lowest achieved experimental temperature is be-
low the strong tunneling amplitude. The study provides estimate of heating in
the process of lattice loading. We characterize the system by examining the spin
correlations beyond neighboring sites and determine the distribution of density,
entropy and spin correlation in the trapped system. We furthermore investigate
the dependence of the critical entropy at the Néel transition on anisotropy and
show that anisotropy is not favorable for long-range magnetic order in terms of its
critical entropy.

This chapter is based on [1, 5] done in a collaboration with experimental physi-
cists working with ultracold atoms in optical lattice. Lei Wang performed the LDA
supplied with the equation of states (EOS) obtained with DCA using the CT-AUX
impurity solver. Mauro Iazzi contributed with �nite lattice QMC data obtained
with LCT-INT [40], which was not presented in the published version, but served
for consistency check. Emanuel Gull provided the CT-AUX implementation, which
was further developed by the author of the thesis. The EOS extrapolations and
the DCA simulations were also performed by the author of the thesis. The ex-
perimental data was obtained by Daniel Greif, Thomas Uehlinger, Gregor Jotzu,
Gregor and Leticia Tarruell in the group of Prof. Tilman Esslinger.

3.1 Introduction

The controlled setting of ultracold fermions in optical lattices o�ers the possibility
to directly realize the Hubbard model [69, 94] in an experiment and has allowed
for studying the metal to Mott-insulator crossover [95, 96]. At half-�lling, mag-
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3.2 Model

netic correlations are expected to arise at lower temperatures, as a consequence
of super-exchange, and ultimately create a Néel phase characterized by long-range
antiferromagnetic order. While this has so far not been accessed experimentally,
short-range quantum magnetism has been observed in a recent experiment [97].
In particular, anti-ferromagnetic spin correlations on neighboring sites were mea-
sured using an anisotropic simple cubic lattice con�guration, in which the tun-
neling along one direction was enhanced. In contrast to previous measurements,
where a perturbative high-temperature expansion was su�cient to describe the sys-
tem [75, 98, 99], understanding this new quantum simulation experiment requires
a more sophisticated theoretical approach. Open questions included the in�uence
of the anisotropy on the temperature of the system and the entropy distribution
in the trap.

Although the thermodynamics, spin correlations and Néel transition temper-
ature for the isotropic 3D Hubbard model have been calculated with di�erent
numerical methods [100, 101, 102, 103, 104], the anisotropic Hubbard model was
only studied in the Heisenberg limit [105], where the Néel temperature was found
to drop continuously to zero as the interchain coupling decreases. However, the
experiment [97] is carried out at weak to intermediate interaction strength, where
charge �uctuations cannot be ignored. In this study we investigate the dependence
of Néel temperature on anisotropy and the behavior of the strength, range and ori-
entation of spin correlations in the experimentally relevant parameter regimes.

3.2 Model

The Hamiltonian of the anisotropic Hubbard model on a cubic lattice is given by

Ĥ = −t
∑
r,σ

(
ĉ†r+exσ ĉrσ + h.c.

)
−t′
∑
r,σ

(
ĉ†r+eyσ ĉrσ + ĉ†r+ezσ ĉrσ + h.c.

)
+U

∑
r

n̂r↑n̂r↓ − µ
∑
r,σ

n̂rσ, (3.1)

where ĉ†rσ (ĉrσ) creates (annihilates) a fermion at lattice site r with spin σ ∈ {↑, ↓};
n̂rσ ≡ ĉ†rσ ĉrσ denotes the occupation number operator; ei denotes the unit vector
(setting the lattice spacing to 1) along the direction i ∈ {x, y, z}. The system has
the tunneling amplitude t along the x-axis and t′ in the directions y, z as shown
in Fig. 3.1. The repulsive on-site interaction energy is denoted by U > 0 and the
chemical potential by µ. The ratio t/t′ will be referred to as the anisotropy of the
system. We consider t/t′ ≥ 1, covering the range from an isotropic 3D system to
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Anisotropic Hubbard model on a cubic lattice

weakly coupled 1D chains. The half �lling (n = 1) corresponds to µ = U/2, which
is the particle-hole symmetric point, see Subsec. 1.3.6.

x
y

z

U t

t'

t'

Figure 3.1: Sketch of the investigated anisotropic Hubbard model de�ned on a
cubic lattice. For t′ � t it may be viewed as set of weakly coupled 1D chains.

3.3 Numerical simulation

The study focuses on two di�erent parameter ranges:

. For the direct comparison with the experiment we provide numerical data at
an experimentally accessible temperature. Since a fully ab initio simulation
of 105 fermionic particles in the optical lattice is beyond the capabilities of
current numerical simulations, a simpli�cation was needed to ful�ll the task.
We utilize DCA providing the EOS extrapolated to the thermodynamic limit.
To take into account the trapping potential in the experiment, we use LDA,
which has been proven to be accurate in the temperature region relevant for
comparison with the experiment [106, 107, 108].

. For the Néel temperature estimates at half �lling we perform simulations at
lower temperature than those accessible by the experiment.In order to �nd
the entropy at the Néel transition, the EOS at half �lling had to be obtained
as well.

We study the physical properties of Eq. 3.1 with DCA, using the numerically ex-
act continuous time auxiliary �eld quantum Monte Carlo impurity solver [39, 109].
All simulations were carried out within the paramagnetic (PM) phase, therefore
we could use the standard DCA version for Bravais lattices [59], i.e. with single
site per unit cell (` = 1).
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3.4 Observables

3.4 Observables

3.4.1 Measurement of equation of states

We have calculated the thermodynamic properties including energy (e) and density
(n) per site at a given chemical potential µ and the inverse temperature β = 1/T
(setting kB = 1).

Calculation of the entropy

The entropy per site s(β) is obtained by numerical integration

s(β) = s(β0) + f(β)β − f(β0)β0 −
∫ β

β0

f(β′) dβ′, (3.2)

at �xed µ, with f(β) = e(β) − µn(β).1 The integration was carried out with
quadratic interpolants on an irregular mesh on the inverse temperature axis. The
value of s(β0) at a su�ciently small β0 ∼ 1

50t
was obtained using the high temper-

ature series expansion (HTSE)

s(β0) = ln 4−β
2
0

2

[
U2

16
+

(µ− U/2)2

2
+ t2 + 2t′2

]
+
β3

0

8
U

(
µ− U

2

)2

+O(β4
0) , (3.5)

see details in Sec. D.2. The error of s(β) is given by the error propagation of the
uncertainty of the integrand f(β). The error of e and n comes from the extrapola-
tion to the thermodynamic limit discussed in Subsec. 3.4.2, for which n and e have
to be measured on a set of di�erently sized clusters. In parameter regions with
very low �lling we obtained the EOS employing the Hartree approximation.2 As
the model possesses the particle-hole symmetry, the EOS for n > 1 can be readily
determined from the data for 2− n < 1.

1In our system there is no work present, as the site potentials and the Zeeman term are absent.
Thus we may utilize the thermodynamic relation,

Tds = de− µdn = d(e− µn) + ndµ , (3.3)

which we write in a form suitable for simulation with �xed chemical potential. For �xed µ we
�nd

s(T )− s(T0) =

∫ T

T0

df̃(T ′)

T ′
=

∫ T

T0

f̃ ′(T ′) dT ′

T ′
=
f̃(T )

T
− f̃(T0)

T0
−
∫ T0

T

f̃(T ′) dT ′

T ′2
, (3.4)

where f̃(T ) = e(T )− µn(T ). Eq. 3.2 is obtained by substitution β′ = 1/T ′.
2In the Hartree approximation, the self energy is approximated by ΣHartree

kαα′σ (iωn) = Unασ̄δαα′ ,
where the density nασ has to ful�ll the selfconsistency condition, nασ = − 1

ΩBZ

∫
BZ

dkGkαασ(τ =

β−), and Gkσ(τ = β−) is the FT of Gkσ(iωn) =
[
G0

kσ(iωn)−1 − ΣHartree
kσ (iωn)

]−1
. The solution

is found iteratively. At �xed nασ, the self energy can be treated as a potential-like term and
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Anisotropic Hubbard model on a cubic lattice

Measurement of the density

The density n can be for a given cluster obtained easily, since it coincides with the
directly measurable impurity density, as

n = −
∑
σ

Glat
rrσ(τ = β−) =

1

ΩBZ

∑
σ

∫
BZ

dkGlat
kσ(τ = β−) =

1

L

∑
K,σ

Gimp
Kσ (τ = β−) ,

(3.6)
where the last equation holds for a converged DCA solution according to Eq. 2.4.3

Energy estimation

For the evaluation of the energy per site e = 1
L

〈
Ĥ + µN̂

〉
we split the Hamilto-

nian Ĥ in Eq. 3.1 into the interacting part ĤU = U
∑

r n̂r↑n̂r↓ and the rest, Ĥ0.
N̂ =

∑
r,σ n̂rσ is the total particle number operator. We separately evaluate the

interaction energy eint = 1
L

〈
ĤU

〉
and the �kinetic� energy ekin = 1

L

〈
Ĥ0 + µN̂

〉
separately.

The interaction energy eint possesses for the studied Hubbard model a simple

form, 1
L

〈
ĤU

〉
= U

L

∑
r 〈n̂r↑n̂r↓〉. The equal-time density-density correlation was

measured on the impurity, which is not a DCA consistent treatment. A DCA
compatible measurement would be conducted similarly as the susceptibility mea-
surement described in Subsec. 3.4.6, with the additional need of summation over
iνm and q, as n̂r↑n̂r↓ is an instantaneous and real space localized rather then static
and reciprocal space localized quantity. That would be a very expensive mea-
surement. Since the double occupation does not diverge and is expected to be
free of any discontinuities,4 the approximation of its lattice value by the double
occupation on the impurity is plausible. Within the CT-AUX impurity solver,
the double occupation measurement on the impurity is conducted with use of the
Wick's theorem, as presented in Eq. 3.15.

thus it can be absorbed into the non-interacting Hamiltonian. Therefore, the density can be

obtained directly via the Fermi�Dirac distribution, nkσ =
[
1 + eβ(εk−µ)

]−1
. Note that for the

Hubbard model the Hartree and Hartree�Fock approximation coincide, as the Fock exchange
potential vanishes due to missing direct interaction between particles of same spin. The Hartree
approximation can be thought of as a skeletal �rst order perturbation theory, i.e. with Σσ
considered to be a functional of Gσ.

3This relation does not hold exactly once we perform interpolation of the converged patch-
wise constant self energy in order to obtain a continuous approximation of the lattice self energy.
In the present study we exclusively used the approximation of the lattice self energy by the
converged patch-wise constant DCA self energy.

4Those could occur at a �rst order phase transition.
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3.4 Observables

The kinetic energy ekin = 1
L

〈
Ĥ0 + µN̂

〉
can be evaluated in a DCA compatible

way. To make the kinetic energy result applicable for general lattices, we stick to
the formalism with multisite cells, as introduced in Subsec. 1.2.2. We write the
amplitudes of Ĥ0 + µN̂ in a matrix form,

Ĥ0 + µN̂ =
∑

r,∆,α,α′,σ

h∆αα′ ĉ
†
rασ ĉr+∆α′σ . (3.7)

The kinetic energy of the lattice may thus be obtained as

ekin =
1

L`

∑
r,∆,α,α′,σ

h∆αα′
〈
ĉ†rασ ĉr+∆α′σ

〉︸ ︷︷ ︸
−Glat

∆α′ασ(τ=β−)=δ∆0δαα′+G
lat
∆α′ασ(τ=0+)

(3.8)

=
2

`

∑
α

h0αα +
1

`

∑
∆,α,α′,σ

h∆αα′G
lat
∆α′ασ(τ = 0+) (3.9)

=
2

`
Tr
α
{h0}+

1

ΩBZ`

∑
σ

∫
BZ

dk Tr
α

{
hkG

lat
kσ(τ = 0+)

}
, (3.10)

where L→∞ denotes the number of lattice cells, which are labeled by r and r+∆.
The lattice Green's function is obtained via the Dyson equation using the DCA
approximation of the self energy by the self energy Σ of the impurity according to
Eq. 2.3,

Glat
σ (k, iωn) =

{[
G0,lat
σ (k, iωn)

]−1 − Σσ [K(k), iωn]
}−1

(3.11)

=
{
iωn1` − hk − Σcluster

σ [K(k), iωn]
}−1

, (3.12)

where K(k) is function returning the grained K in the centre of the DCA patch
containing k. That enables to write the formula 3.10 with patch averaging as

ekin =
2

`
Tr
α
{h0}+

1

βΩBZ`

∑
σ,n,K

Tr
α

∫
patch

dk̃ hK+k̃

[
iωn1` − hK+k̃ − Σσ(K, iωn)

]−1
.

(3.13)
The in�nite sum over Matsubara frequencies n arising from the FT of Glat

σ (τ = 0+)
cannot be handled exactly. We handled the high frequency contribution perturba-
tively, see details in Sec. A.1.

We used the Jackknife analysis for the error estimates of e from subsequent
iterations of a DCA simulation, assuming the results from subsequent iterations
being independent.5

5This assumption breaks down in the vicinity of phase transitions, where the convergence of
iterative solution of the selfconsistency condition slows down and binning analysis is required on
the level of iterations for correct error estimates. In such a case, the autocorrelation time may
reach 10 or more iterations.
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3.4.2 Extrapolation to the thermodynamic limit

The DCA results were extrapolated in cluster size according to L−2/d, compare
with Eq. 2.8, to obtain results in the thermodynamic limit [102, 110].6 L denotes
the number of sites of the clusters and d = 3 is the physical dimension of the lattice.
Since the temperature range scanned in order to obtain the EOS was relatively
high compared to the critical temperature TNéel, this procedure supplies reliable
results without necessity to employ very large clusters.

The clusters were chosen elongated in the strong tunneling direction with aspect
ratio roughly proportional to the anisotropy.7 The motivation for this is, similar
to one of the arguments for the choice of the form of FT 1.19, a reduction of the
variation of the bare lattice Green's function within a patch. With the exception
of the smallest clusters in the anisotropic case, which were 1-dimensional chains of
even length, the clusters were chosen to be bipartite to avoid arti�cial frustration.
For the isotropic case, we used a set of bipartite clusters of 36, 56, 64 and 74
sites, with small imperfection [89]. The example extrapolations are in Fig. 3.2 on
the left. Notice that for the anisotropic case the number of clusters with given
proportions and of suitable size (L / 80) is much more limited than the amount of
clusters available for the isotropic case. In order to keep the calculations a�ordable
we have therefore used extrapolation taking only two clusters to obtain all the
anisotropic EOS. The extrapolation was done using weights proportional to the
σ−2, as equally weighted variant cannot provide an error estimate for only two �tted
values. Using only two clusters is justi�ed here, as the purpose of this particular
task is the comparison with the experiment, which has relative errors typically at
the 10% level. We have nevertheless performed checks of the extrapolations at the
lowest temperature of interest (showing most pronounced �nite size e�ects) for a
few selected chemical potentials in order to clarify that the extrapolations work
su�ciently well, see Fig. 3.2 on the right.

3.4.3 Measurement of the spin-spin correlations

In addition to the thermodynamic properties, we calculate the equal-time spin
correlation function

C(∆) = − 2

L

∑
r

〈
Ŝzr Ŝ

z
r+∆

〉
, (3.14)

6The extrapolation is reliable for clusters larger than the correlation length.
7A more elaborate approach using scaling of the cluster size proportional to the correlation

length in the respective direction was proposed for �nite lattice QMC in [111].
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Figure 3.2: Extrapolation of the density per site and �avor (nper �avor = n/2),

energy per site (Eper site = e), and spin correlation per site
〈
Ŝzr Ŝ

z
r+ax

〉
for a ho-

mogeneous system. The left plots show the data for the isotropic (e.g. t/t′ = 1)
system at µ = −0.53125t, U = 1.4375t and βt = 1.8, using clusters of 36, 56, 64
and 74 sites. The right plots correspond to an anisotropic system at t/t′ = 7.36,
µ = −1.28125t, U = 1.4375t and βt = 1.8, using clusters of 8, 48, and 128 sites.
The extrapolation was done both using weights proportional to σ−2 (suitable if the
dominant source of errors comes from measurement on a single cluster) and equal
weights (appropriate if the systematic error of di�erent clusters is much larger
than the statistical error for a single cluster); the error of the extrapolated value
is estimated conservatively as the union of both error estimates.
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Anisotropic Hubbard model on a cubic lattice

where Ŝzr = 1
2
(n̂r↑ − n̂r↓), ∆ is a non-zero lattice vector, and L is the number of

sites. Similarly as the double occupation 〈n̂i↑n̂i↓〉, see Subsec. 3.4.1, we measure
C(∆) directly on the impurity. Although we present the form of the measurement
for the case of a Bravais lattice with single site per cell (suitable for the studied
model), all estimators use the site basis and therefore may be straightforwardly
applied to a general lattice. TheWick's theorem is used for the actual measurement
within the CT-AUX impurity solver, where the interactions are decoupled by the
(�uctuating) �eld of auxiliary spins,

〈n̂iσn̂jσ′〉 =
〈
ĉ†iσ ĉiσ ĉ

†
jσ′ ĉjσ′

〉
= 〈giiσgjjσ′ + δσσ′gijσ(δij − gjiσ)〉 , (3.15)

with gijσ denoting the two-point estimator for −Gjiσ(τ = β−) =
〈
ĉ†iσ ĉjσ

〉
, further

discussed in Subsec. B.2.1.
Since the studied model is SU(2) symmetric, the quantity C(∆) can be obtained

as

C(∆) = − 2

3L

∑
r

〈
Ŝr · Ŝr+∆

〉
(3.16)

= − 2

3L

∑
r

〈
Ŝzr Ŝ

z
r+∆ +

1

2

(
Ŝ+

r Ŝ
−
r+∆ + Ŝ−r Ŝ

+
r+∆

)〉
(3.17)

= − 1

6L

∑
r

[∑
σ,σ′

(2δσσ′ − 1) 〈n̂rσn̂r+∆σ′〉+ 2
∑
σ

〈
ĉ†rσ ĉrσ̄ ĉ

†
r+∆σ̄ ĉr+∆σ

〉]
,

(3.18)

with Ŝr =
(
Ŝxr , Ŝ

y
r , Ŝ

z
r

)
. The advantage of measurement 1

3

〈
Ŝr · Ŝr+∆

〉
over 2

〈
Ŝzr Ŝ

z
r+∆

〉
is in a reduction of the measurement errors [112] with minimal computational
overhead. In the CT-AUX solver, the machinery of Wick's theorem yields simple
estimator, 〈

ĉ†rσ ĉrσ̄ ĉ
†
r+∆σ̄ ĉr+∆σ

〉
=
〈
gr(r+∆)σ(δ∆0 − g(r+∆)rσ̄)

〉
. (3.19)

By insertion of the above equation and the Eq. 3.15 into the Eq. 3.18 we �nd

C(∆) = − 1

6L

∑
r

〈
(grr↑ − grr↓)

(
g(r+∆)(r+∆)↑ − g(r+∆)(r+∆)↓

)
−
∑
σ

gr(r+∆)σ(g(r+∆)rσ + 2g(r+∆)rσ̄)

〉
, (3.20)

where we assumed ∆ 6= 0.
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3.4 Observables

In the isotropic limit (t = t′) we should �nd C(ex) = C(ey) = C(ez) within the
normal phase. This symmetry may be arti�cially broken by the cluster choice.8

With the methodology of Betts et al. [89, 90], who obtained data for a large number
of various clusters and tried to a posteriori select those which perform well in the
extrapolation, we analyzed a set of clusters at βt = 1.8, t = t′, µ = U/2, and
U = 1.4375t. Especially, we examined a special class of clusters possessing the
three-fold rotational axis ex + ey + ez and a small imperfection according to [89].
Those naturally deliver C(ex) = C(ey) = C(ez). However, even among this special
set of clusters there are many outriders in the extrapolation, see Fig. 3.3. It has
to be noted, that the problem with outriders weakens away from half �lling. The
data for the paper utilized (bipartite) clusters with small imperfection [89] and the
spin-spin correlation for nearest neighbors was obtained by symmetrization over
∆ = ex, ey, ez.
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1 3
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Figure 3.3: The spin-spin correlation C for nearest neighbors sites of the Hubbard
model on the isotropic cubic lattice simulated at βt = 1.8, t = t′, µ = U/2, and U =
1.4375t. All clusters were three-fold rotationally symmetric around ex + ey + ez.

3.4.4 Static antiferromagnetic susceptibility

The static antiferromagnetic (=staggered) spin susceptibility de�ned as an inten-
sive quantity reads

χAF =
∂m(h, T, . . .)

∂h

∣∣∣∣
h=0

, (3.21)

8Also the patch choice is important. For the patch chosen according to Sec. 2.3, i.e. with
patch being the BZ of the superlattice Ã , we choose the maximally symmetric patch.
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where h is the strength of the staggered magnetic �eld with corresponding bilinear
term in the Hamiltonian,

− h
∑
r,σ

eiQ·r σ n̂rσ , σ = ±1 , (3.22)

Q ·ai = π is the antiferromagnetic reciprocal vector, and m is the thermal average
of the magnetization operator m̂, which is the corresponding order parameter
operator to the above �eld, i.e.

m̂ =
1

N

∑
r,σ

eiQ·r σ n̂rσ . (3.23)

This allows us to write the Hamiltonian with coupling to the �eld in the form

Ĥ = Ĥh=0 − hNm̂ . (3.24)

The susceptibility might be expressed as,

χAF =
∂

∂h

(
1

Z
Tr
{
m̂e−βĤ

})
= N

∫ β

0

dτ 〈m̂(τ)m̂〉 −Nβ 〈m̂〉2 . (3.25)

In the following we assume that the simulation is performed in a paramagnetic
state, i.e. 〈m̂〉 = 0, which simpli�es χAF to

χAF = N

∫ β

0

dτ 〈m̂(τ)m̂〉 . (3.26)

Although we used m̂ of the form suitable for a Bravais lattices, the above expression
relies only on the form of the coupling in the Hamiltonian 3.24 and 〈m̂〉 = 0, thus
it is applicable for a general lattice with appropriately de�ned m̂.

3.4.5 Measurement of the static antiferromagnetic suscep-
tibility of the impurity

This measurement does not account for the implicit dependence of the hybridiza-
tion function on the staggered �eld, therefore it is biased in a DCA simulation
with selfconsistent condition. In particular, it does not show any divergence at
a continuous phase transition.9 Despite that, it is useful for testing and for pro-
viding reasonable frequency cut-o� estimate for the DCA compliant susceptibility
measurement described in the following subsection 3.4.6.

9This measurement would be unbiased within a �nite lattice QMC.
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3.4 Observables

According to Eq. 3.26 and 3.23, the static AF susceptibility is for a bipartite
cluster formulated with single site per cell given by,

χAF =
1

N

∑
r,r′,σ,σ′

σσ′eiQ·(r
′+r)

∫ β

0

dτ eiνmτ 〈n̂rσ(τ) n̂r′σ′(0)〉 . (3.27)

In the CT-AUX [39] or CT-INT [113, 114] solver, the four-point correlator may be
evaluated using the Wick's theorem, since the impurity is solved as a decoupled
system with �uctuating auxiliary spins or interaction vertices,

〈n̂rσ(τ)n̂r′σ′〉 =
〈
ĉ†rσ(τ)ĉrσ(τ)ĉ†r′σ′ ĉr′σ′

〉
(3.28)

= 〈nrσ(τ)nr′σ′ − δσσ′Gσ(rτ, r′0)Gσ(r′0, rτ)〉 . (3.29)

It is convenient to measure χAF of the impurity in the real space and imaginary-
time representation, sampling over imaginary-time di�erence τ .10 The �nal for-
mula for the AF static susceptibility estimator of the impurity reads11

χAF = N

∫ β

0

dτ 〈m(τ)m〉− 1

N

∑
r,r′,σ

eiQ·(r+r′)

∫ β

0

dτ Gσ(rτ, r′0)Gσ(r′0, rτ) . (3.32)

3.4.6 DCA static AF susceptibility

In this subsection we describe a DCA compliant measurement of the static AF
susceptibility, following the review Maier et al. [59].12 We use the terms cluster

10The term of χAF corresponding to the �rst term in Eq. 3.29,

N

∫ β

0

dτ 〈m(τ)m〉 =
N

β

∫ β

0

dτ

∫ β

0

dτ ′ 〈m(τ)m(τ ′)〉 = Nβ
〈
m̄2
〉
, (3.30)

may be obtained from the two-point correlation estimators, as m̄ =
2
Nβ

∑
r,σ,n≥0 σe

iQ·r<Gσ(r, r, iωn). In contrast is the second term in Eq. 3.29 which can-

not be evaluation solely from the single frequency estimator Gσ(r, r′, iωn). The reason for this is
that for an accumulation of 〈Gσ(r1τ1, r2τ2)Gσ(r3τ3, r4τ4)〉 it is possible to use the translational
symmetry in imaginary time only once, 〈Gσ(r1(α+ τ1), r2(α+ τ2))Gσ(r3(α+ τ3), r4(α+ τ4))〉.

11In a complete analogy it is possible to derive the compressibility estimator valid in a �nite
lattice QMC,

κ = N

(∫ β

0

dτ 〈n(τ)n〉 − β 〈n〉2
)
− 1

N

∑
r,r′,σ

∫ β

0

dτ Gσ(rτ, r′0)Gσ(r′0, rτ) . (3.31)

12Notice that some prefactors di�er in this thesis by β or L with respect to Ref. [59], as there the
unnumbered de�nition of χσσ′(q, k, k′) is dimensionally inconsistent with χ̄0

σσ′(q,K,K ′), Eq. 127,
which we tried to �x.
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and impurity interchangeably, as we aim to comply to [59] and both to the rest of
the thesis.

We checked the consistency of this susceptibility measurement in absence of
symmetry breaking �eld with the susceptibility obtained with small non-zero stag-
gered �eld h → 0 coupling to the staggered magnetization operator m̂ as in the
Eq. 3.24.

DCA approximation on two-particle quantities, measurement

As shown in Subsec. 3.4.4, the static AF susceptibility of a paramagnet (PM) may
be measured as

χAF =
N

β

∫ β

0

dτ

∫ β

0

dτ ′ 〈Tτ m̂(τ) m̂(τ ′)〉 . (3.33)

A direct measurement of the above quantity on the impurity would provide us
with the impurity susceptibility (see previous subsection), which is not our goal.
In order to obtain a DCA consistent lattice susceptibility, we need to impose
additional assumption on some two-particle quantity. Analogously to the DCA
approximation on the self energy, we impose the approximation on an irreducible
quantity [78],13 in particular on the particle-hole irreducible vertex function Γ,14

Γlat
(knσ)(k′n′σ′)(Q, iνm) ≈ Γimp

(Knσ)(K′n′σ′)(Q, iνm) . (3.34)

To make use of the approximation, we employ the Bethe�Salpeter equation,

χkk′(Q, iνm) = χ0
kk′(Q, iνm) + χ0

kk′′(Q, iνm)Γk′′k′′′(Q, iνm)χk′′′k′(Q, iνm), (3.35)

where we use the Einstein's summation convention and multiindices k ≡ (knσ).
The so-called non-interacting susceptibility χ0

(knσ)(k′n′σ′)(Q, 0) is a (longitudinally)
particle-hole reducible bubble diagram de�ned by

χ0
(knσ)(k′n′σ′)(Q, 0) = −δσσ′δnn′δkk′βGσ(k, iωn)Gσ′(k

′ + Q, iωn′) . (3.36)

The two-particle Green's function χ(knσ)(k′n′σ′)(Q, iνm) is de�ned as follows,

χ(knσ)(k′n′σ′)(Q, iνm = 0) =

1

β

∫ β

0

∫ β

0

∫ β

0

∫ β

0

dτ1 dτ2 dτ3 dτ4 e
−i(ωnτ1−ωnτ2+ωn′τ3−ωn′τ4) ×〈

Tτc
†
k+Qσ(τ1)ckσ(τ2)c†k′σ′(τ3)ck′+Qσ′(τ4)

〉
. (3.37)

13For models with local (or strongly screened) interaction, the irreducible quantities have
suppressed k-dependence when compared with their reducible counterparts. Recall the bare
interaction vertex is k-independent for the Hubbard model.

14In the nomenclature of [115], Γ is the vertex irreducible in the longitudinal particle-hole
channel, i.e. diagrams contributing to it cannot be separated by a vertical cut of one particle-like
and one hole-like fermionic line.
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3.4 Observables

We �rst use the Bethe�Salpeter equation in the context of the impurity. There
we can directly measure both the two-particle Green's function χc and the Green's
function needed for the evaluation of the non-interacting susceptibility χ0

c , where
the index c stands for cluster. These two quantities allow to extract Γimp via
Eq. 3.35,

Γimp(Q, 0) = χ0
c(Q, 0)−1 − χc(Q, 0)−1 . (3.38)

We continue by taking the Bethe�Salpeter eq. 3.35 in the context of the lattice.
Utilizing the patch-wise constant approximation of the vertex Γlat (Eq. 3.34), we
perform patch-averaging of the Eq. 3.35,15

χ̄KK′(Q, iνm) = χ̄0
KK′(Q, iνm) + χ̄0

KK′′(Q, iνm)Γ̄K′′K′′′(Q, iνm)χ̄K′′′K′(Q, iνm) ,
(3.39)

where the top bar indicates the patch-averaged quantities,16

f̄(K,K′, . . .) =
1

Ωpatch

∫
patch

dk̃

∫
patch

dk̃′ f(K + k̃,K′ + k̃′, . . .) . (3.40)

χ̄0 can be evaluated using the DCA approximated lattice Green's functions. Eq. 3.39
then delivers the χ̄ on the lattice,

χ̄(Q, 0) =
[
χ̄0(Q, 0)−1 − Γlat(Q, 0)

]−1
. (3.41)

By inserting the approximation 3.34 and then Eq. 3.38 into the above equation we
�nd

χ̄(Q, iνm) =
[
χc(Q, iνm)−1 − χ0

c(Q, iνm)−1 + χ̄0(Q, iνm)−1
]−1

, (3.42)

where all of the quantities are matrices with multiindices (Knσ). The (coarse-
grained) two-particle lattice Green's function can be used for the actual evaluation
of the lattice susceptibility. Speci�cally, Eq. 3.33 might be rewritten using Fourier
transformation17 into the form

χAF =
1

ΩBZβ2

∑
σ,σ′,n,n′

σσ′
∫
BZ

dk

∫
BZ

dk′ χ(knσ)(k′n′σ′)(Q, iνm = 0) , (3.43)

=
1

Nβ2

∑
σ,σ′,n,n′,K,K′

σσ′χ̄(Knσ)(K′n′σ′)(Q, iνm = 0) . (3.44)

15Comment on the dimensionality: for a k-independent vertex we would obtain Γ̄KK′ ≈
ΩpatchΓKK′ .

16The prefactor Ω−1
patch in the averaging formula is consistent with the convention set by

Eq. 3.37, according to which the elements of χ have dimension of β3, and bare Γ̄0
↑↓ equals

to − U
Lβ2 , �xed by the absence of prefactors in Eq. 3.39. Notice that prefactor Ω−2

patch would be in

Eq. 3.40 consistent with Γ̄0
↑↓ ∝ L0. The natural unit choice from the diagrammatic expansion,

Γ̄0
↑↓ = − U

L2β , would in Eq. 3.40 require a prefactor Ω0
patch.

17By insertion of
∫ β

0
dτ̃ δ(τ − τ̃) = 1

β

∫ β
0

dτ̃ e±iωn(τ−τ̃).
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Estimators for the DCA susceptibility

For the actual implementation of the four-point measurement in Eq. 3.37 within
a CT-AUX impurity solver [39] we de�ne an auxiliary 2-quasimomenta and 2-
frequencies Green's function,

g̃σ(k,k′, iωn, iωn′) ≡
1

βL

∫ β

0

∫ β

0

dτ dτ ′ eiωnτe−iωn′τ
′∑

r,r′

e−ik·reik
′·r′ g̃σ(rτ, r′τ ′) ,

(3.45)
with

g̃σ(rτ, r′τ ′) = g0
σ(r, r′, τ − τ ′)−

∑
p,q

g0
σ(r, rp, τ − τp)Mpqσg

0
σ(rq, r

′, τq − τ ′) , (3.46)

according to [39]; compare with single-frequency Green's function discussed in
Sec. B.2. Then we may write

g̃σ(k,k′, iωn, iωn′) = δkk′δnn′g
0
σ(k, iωn)− 1

βL
g0
σ(k, iωn)Mknk′n′σg

0
σ(k′, iωn′) , (3.47)

with
Mknk′n′σ =

∑
p,q

eiωnτpe−ik·rpe−iωn′τqeik
′·rqMpqσ , (3.48)

which can be obtained in O (N2
s +NsLNω ln(Nω) + L2N2

ω ln(Nω + L)) operations,
with the frequency cut-o� Nω,18 if using two subsequent fast FT (FFT) in space
and a non-equidistant FFT from imaginary time to Matsubara frequencies (e.g. by
the nfft library [116]), similarly as it is described for the single-particle Green's
function measurement in Sec. B.2.2. Empirically we found that the Nω has to be
kept proportional to βU in order to make the extrapolation in frequency reliable,19

and since the CT-AUX expansion order Ns is proportional to NβU , the complex-
ity of obtaining Mknk′n′σ can be given by N2

s lnNs, which is slower only by the
logarithmic factor than obtaining Mknσ for the single-particle measurements; see
Subsec. B.2.3. The memory requirements, however, scale like N2

s , which poses real
limitation.

Using the Wick's theorem for the decoupled problem (with auxiliary spins or
within the weak coupling expansion) we get

χ(knσ)(k′n′σ′)(Q, 0) =

= β
〈
g̃σ(k,k + Q, iωn, iωn)g̃σ′(k

′ + Q,k′, iωn′ , iωn′)

− δσσ′ g̃σ(k,k′, iωn, iωn′)g̃σ(k′ + Q,k + Q, iωn′ , iωn)
〉
. (3.49)

18With the frequency cut-o� Nω we mean limitation on the Matsubara frequencies iωn and
iωn′ by n, n′ ∈ {−Nω, −Nω + 1, . . . , Nω − 1}.

19The frequency cut-o� for the 4-point measurements was in practice chosen an order smaller
than the frequency cut-o� for the single-particle measurements.
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The assumed PM symmetry implies

χ(knσ)(k′n′σ′)(Q, 0) = χ(knσ̄)(k′n′σ̄′)(Q, 0) , (3.50)

which enables separation of the magnetic and the charge channel via a unitary

transformation in the spin index σ, using U = 1√
2

(
1 1
1 −1

)
. In order to obtain

χAF it is thus su�cient to deal with the magnetic channel only and accumulate
χc,m = χc,↑↑ − χc,↑↓. Then,

χAF =
2

Nβ2

∑
K,K′,n,n′

χ̄0
↑↑
(
1− Γmχ̄

0
↑↑
)−1

, (3.51)

with
Γm(Q, 0) = χ0

c,↑↑(Q, 0)−1 − χc,m(Q, 0)−1 . (3.52)

We list further properties of χ which may be used to reduce the number of
observables in a simulation or for implementation checks,

χ(knσ)(k′n′σ′)(Q, 0) = χ∗(−k−(n+1)σ)(−k′−(n′+1)σ′)(Q, 0) , (3.53)

χ(knσ)(k′n′σ′)(Q, 0) = χ(k′+Qn′σ′)(k+Qnσ)(Q, 0) , (3.54)

χ(knσ)(k+qnσ)(Q, 0) = 0 , (3.55)

where the �rst property goes back to the FT of Mpqσ (Eq. 3.48), of which we
assume to be purely real.20

Estimate of the critical point

Search for a divergence of the susceptibility is best performed by looking at the
largest eigenvalue of the Owen�Scalapino �pairing-matrix� Γχ̄0 crossing the value
1,21 as the Eq. 3.42 can be written in form

χ̄(Q, 0) = χ̄0(Q, 0)
(
1− Γ(Q, 0)χ̄0(Q, 0)

)−1
. (3.57)

Naturally, one has to introduce a cut-o� on the frequencies in Γχ̄0 in order to per-
form the task numerically. The cut-o� was chosen symmetric in iωn with typically

20In CT-AUX it is given if exp(±γ) (Sec. B.1) and Gijσ(τ) (Subsec. 1.3.5) are purely real.
21Equivalently one may use χ̄(Q, 0) =

(
1− χ̄0(Q, 0)Γ(Q, 0)

)−1
χ̄0(Q, 0), or a symmetric ver-

sion

χ̄(Q, 0) =
(
χ̄0(Q, 0)

)1/2 (
1−

(
χ̄0(Q, 0)

)1/2
Γ(Q, 0)

(
χ̄0(Q, 0)

)1/2)−1 (
χ̄0(Q, 0)

)1/2
, (3.56)

which may, however, cause problems because of the branch cut of the square-root in presence of
purely real negative values; for particle-hole symmetric models the components of the diagonal
χ̄0 are purely real and positive.
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12 to 24 positive frequencies. The leading eigenvalue was in each iteration extrap-
olated in the cut-o� Nω using a quadratic �t in N−1

ω and the extrapolation was
averaged over several iterations. The cut-o� dependence was negligible for ma-
jority of the examined cases, with most pronounced e�ect in the most anisotropic
case with t/t′ = 8.0, see example extrapolations in Fig. 3.4.

For smaller clusters, for which the binning analysis of every component of
χc,m(Q, 0) was feasible, we performed a bias analysis for the matrix eigenvalues,
following the subsection 3.4.6 of [29]. There, the author examines the leading
eigenvalues as a function of number m of consecutive bins averaged before the
actual eigenvalue call. In our case was the dependence of the leading eigenvalue
on m−1 approximately linear and negligible in runs of typical duration.

The eigenvector corresponding to the eigenvalue of Γχ̄0 crossing unity has in
all examined cases dominantly the s-wave character and is even in frequency.

For (U/t, t/t′) = (4, 8), (8, 2), spurious eigenvalues larger than unity appeared.
These did not cross the unity upon cooling, but appeared via in�nity. Their
eigenvectors are both even and odd in frequency, and with weight concentrated
at few lowest frequencies, unlike the eigenvector corresponding to the eigenvalue
crossing unity. The �rst spurious eigenvalue appearing upon cooling corresponded
in all examined cases a charge-like odd-frequency eigenvector. The followers show
alternation in frequency parity and growing extent in frequency. We checked that
the high-temperature (disordered) phase is stable with respect to static �elds with
the space symmetry of the eigenvectors corresponding to the spurious eigenvalues.
The dependence of the spurious eigenvalues on the frequency cut-o� is weak. Some
of the spurious eigenvalues persist even with extreme truncation Nω = 1.

For the Hubbard model on the square lattice at half �lling with U = 6.0t we
found spurious eigenvalues in the charge channel appearing around βt ' 0.875.
That corresponds according to Ref. [117] to the crossover, when the temperature
becomes roughly equal to the charge gap. Upon further cooling the system starts
to appear gapped in the charge channel, so ideally we would expect the charge
channel eigenvalues of Γχ̄0 to approach −∞. That does not work well, probably
because Γ is computed as a di�erence of two inverse quantities, χ−1

c and (χ0
c)
−1

(Eq. 3.38).
The TNéel was obtained by extrapolation in cluster size using the critical expo-

nent ν, as suggested in [101],22 based on the assumption that the transition at a
given cluster happens when the ratio of correlation length and the linear size of
the cluster reaches an unknown but cluster-size independent constant; see Fig. 3.5.

22For t = t′ our model is part of the universality class of the 3D S = 1/2 Heisenberg model
and for t 6= t′ it belongs to the classical 3D Heisenberg universality class, both of which have a
critical exponent of ν ≈ 0.71 [118].
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Figure 3.5: Extrapolation of the TNéel in the cluster size for U = 4.0t, t/t′ = 2.0
(above) and for U = 8.0t, t/t′ = 1.0; both at half �lling.

For an a posteriori check of the quality of the approximation 3.34 we visualize
the vertex Γ in Figs. 3.6, 3.7 for an example problem of the Hubbard model on
the isotropic cubic lattice close to the Néel transition. The two-particle Green's
function was measured for 64 positive and 64 negative Matsubara frequencies, i.e.
Nω = 64. The structure of Γ in the Matsubara frequencies shown in the top row
of Fig. 3.7 is qualitatively the same as it was found with DMFT in [115].23 The

23The structure of the vertex function in the frequency space motivated Nan Lin in [119] to
use di�erent frequency cut-o� for the diagonal and the o�-diagonal entries.
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impurity susceptibility measured according to Eq. 3.32 was 1.135(9)t−1. The DCA
susceptibility obtained via Eq. 3.44 with cut-o� Nω = 64 was 11.4538 t−1 and the
largest eigenvalue of Γmχ̄

0
↑↑ was 0.9494 (extrapolation in Nω). The investigated

system was thus close to the Néel phase transition.

Figure 3.6: In these three color plots we display the magnetic channel of the
impurity irreducible particle-hole vertex function Γimp

m (Q, iν = 0) for n = 18 and
n = 18, 0, −19 in the left, center, and right plot, respectively. The K-dependence
is most pronounced for n = n′, where there is enhancement for K′ = K + Q and
small suppression at K = K′. The center plot is highly uniform, displaying merely
noise at the level of 2% and almost unrenormalized strength. The right plot for
iωn = −iωn′ reveals little structure in the rather homogeneously suppressed bare
interaction. The investigated system is the same as in Fig. 3.7.

3.5 Results

3.5.1 Spin-spin correlations

Fig. 3.8 left shows C(ex) for various �llings and temperatures at �xed t/t′ = 7.36
and U = 1.4375t, which are the parameters used in the experiment [97] realizing the
studied model. Antiferromagnetic correlations between nearest neighbors (n.n.)
correspond to positive values of C(ex). The signal is greatly enhanced for T / t
and close to half-�lling. At �xed temperature and interaction strength, the n.n.
spin correlation along the longitudinal direction C(ex) is enhanced with anisotropy
t/t′, while the correlation along the transverse direction C(ey) is suppressed, see
Fig. 3.8 right. T/t′ is higher in the anisotropic case and thus the development
of spin correlations in the transverse direction y is suppressed. At the same time
C(ex) is enhanced because singlet formation is facilitated by the e�ective lowering
of dimensionality [120]. This in turn is caused by the di�erence in the relevant
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Figure 3.7: Displayed is the magnetic channel of the impurity irreducible particle-
hole vertex function Γimp

m (Q, iν = 0). In the top left color plot we show its com-
ponents for K = K′ = 0. The value UL−1β−2 is its unrenormalized value. The
imaginary part of Γimp(Q, iν = 0) was vanishingly small for all components, in
agreement with [115]. The top right plot shows the same quantity for K = 0 and
K′ = Q. The bottom plot shows <Γimp

m (Q, iν = 0) as a color map with multi-
indices (Kn) and (K′n′) displaying 20 positive and 20 negative frequencies for each
K, K′. The multiindex is computed as (n+20)L+k, where k uniquely determines
the cluster reciprocal vectors K as 2πk

La
(−1ê1 + 3ê2 + 5ê3). The data was obtained

for the Hubbard model on the isotropic cubic lattice at U = 4t, βt = 4, t = t′, and
µ = U/2. As the cluster was chosen a 14-site large bipartite cluster with bipartite
imperfection equal to zero.
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energy scales: T and t are of the same order but an order of magnitude larger than
t′.

U/t
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Figure 3.8: Left: N. n. spin correlation C(ex) vs. �lling and temperature for
t/t′ = 7.36, U = 1.4375t in a homogeneous system. Right: N. n. spin correlation
along the strong tunneling C(ex) (upper surface) and in the transverse direction
C(ey) (lower surface) for a homogeneous system at half-�lling and T = 0.5t as a
function of anisotropy and interaction strength.

3.5.2 Comparison with experiment

Fig. 3.9(a) shows the calculated and experimental n.n. spin correlation versus
anisotropy t/t′; owing to the experimental realization, the interaction U/t de-
creases for larger anisotropies in this scan. We �nd good agreement between the
DCA+LDA calculation and the experimental data assuming an entropy per par-
ticle S/N in the range of 1.4 to 1.8. For anisotropies ' 5 the experiment enters
a regime where corrections to the single band Hubbard model Eq. 3.1 may start
to play a role in the shallow optical lattice [121]. Close to the isotropic limit,
the second order HTSE with S/N = 1.7 describes the data well. For increas-
ing anisotropies, the HTSE becomes unreliable as the expansion parameter βt
reaches one. The inset of Fig. 3.9(a) shows that the introduction of the anisotropy
leads to a situation where the temperature becomes comparable to or lower than
the strong tunnel coupling t. The average C(ex) increases monotonously with
anisotropy, which is a consequence of both the enhancement of correlations for a
given βt and additionally the increasing βt.
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(a)

(b)

Figure 3.9: Comparison of the calculated spin correlations from DCA+LDA with
the experiment. (a) N.n. spin correlation for di�erent anisotropies and interaction
strengths. The entropy per particle before loading into the lattice is below 1.0
in the experiment. For increasing anisotropy the interaction U/t decreases from
16.2 to 0.975. Detailed parameters are listed in the supplemental materials of [1].
Theoretical calculations with di�erent entropies per particle are shown as symbols
connected by dashed lines. The solid line shows HTSE results with S/N = 1.7. The
inset shows the inverse temperature βt versus anisotropy used in the DCA+LDA
calculations. (b) N.n. spin correlation as a function of entropy per particle for
t/t′ = 7.36 and U = 1.4375t. The experimental data is plotted as a function of the
initial S/N before loading into the lattice, and the blue curve is the theoretical
prediction. The upper axis denotes the corresponding temperature determined
from the DCA+LDA calculation. For the lowest initial entropies the measured
spin correlation deviates from the expected value. These experimental data points
agree with an approximate entropy increase of 0.6 possibly caused by heating
during lattice loading. The inset shows a comparison with the experiment at a
di�erent set of parameters (t/t′ = 4.21, U = 2.98t). There, additional heating may
have occurred below 1.8.
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For a �xed anisotropy t/t′ = 7.36, Fig. 3.9(b) shows the trap averaged C(ex)
versus entropy per particle (for the experimental data the horizontal axis denotes
the initial entropy per particle measured before loading into the lattice). Without
any free parameters and assuming no heating, we �nd very good agreement for
entropies of 1.4kB and above, showing that magnetic e�ects in the Hubbard model
can be accurately studied in this regime. For lower entropies, the experimentally
measured spin correlation does not increase further, deviating from the theoretical
prediction. This suggests that additional heating may have occurred during the
optical lattice loading process, or the system may not have fully equilibrated in the
lattice for the lowest initial entropies. This is an important outcome of this study
not deducible from the experimental data alone. A similar situation is found in
previous studies of dimerized and simple cubic optical lattices [97, 98]. The inset
of Fig. 3.9(b) shows a comparison at a di�erent anisotropy t/t′ = 4.21, where
similar agreement at high entropies and deviations at low entropies are found.
The observed heating, which varies depending on the system parameters, may be
caused by non-adiabaticity with respect to changes of the local Hamiltonian, or
due to the expected long timescale of density redistribution within the harmonic
trap [99].

The upper horizontal axis of Fig. 3.9(b) shows the temperature used in the
DCA+LDA calculations. For the lowest entropy S/N = 1.4, where the experi-
mentally measured spin correlator matches the theoretical value, the temperature
is found to be T ≈ 0.88t. An anisotropic 3D system prepared at temperatures
between the strong and weak exchange energy along and between the chains e�ec-
tively realizes an array of 1D systems in global thermodynamic equilibrium � in
contrast to an array of decoupled 1D chains, where the thermalization is hindered
by negligible tunneling between the 1D chains. It provides thus a viable system for
an experimental study with controllable parameters of the low-temperature regime
of the Hubbard model in e�ectively one dimension [122] at currently accessible ex-
perimental entropies.

3.5.3 DCA+LDA

Fig. 3.10(a) shows the calculated distribution of the density, entropy and n.n. spin
correlation in the trap for the isotropic (t/t′ = 1) and anisotropic (t/t′ = 7.36)
Hubbard model with the same U/t, particle number and entropy per particle. In
order to display the density and entropy redistribution, we tune in each case the
trapping potential to obtain the �lling n = 1 in the trap center and to obtain
the same total atom number. The pro�les for the experimental setting may be
found in Fig. 3.11. The corresponding temperatures are T = 0.95t and T =
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0.58t, respectively.24 Owing to qualitatively similar equations of state between
the isotropic and anisotropic case at �xed tunneling t, we �nd a very similar
behavior for both the density and entropy distribution in the trap. This is in
contrast with the dimerized lattice examined in [97], which has an energy gap. In
Fig. 3.10(a) the n.n. spin correlations are more pronounced for large anisotropy
when comparing to the isotropic case, similar to the results in Fig. 3.8 right. To
further characterize the state realized in the experiment, we compute the spin
correlation beyond n.n. along the x direction, shown in Fig. 3.10(b). It shows
an alternating sign with distance, con�rming the presence of antiferromagnetic
spin correlations.25 At large distances the spin correlations are expected to decay
exponentially, as the chosen temperatures are above the critical value of the Néel
transition. For the experimentally accessible temperatures, already the calculated
values of next-nearest neighbor correlations are below the experimental resolution.

Fig. 3.11 shows the density, entropy and the n.n. spin-correlation in the trap
using the same parameters as experiment with average entropy per particle S/N =
1.4.

3.5.4 Néel transition

Finally, we address the question of how the introduction of anisotropy a�ects the
Néel transition in a 3D half-�lled lattice. Fig. 3.12 shows the calculated critical
entropy at the Néel transition for di�erent anisotropies. The critical entropy at
U = 4t shows a nonmonotonic behavior as a function of anisotropy.26 We explain
this by the reduction of the total bandwidthW = 4(t+2t′) and thus by the e�ective
increase of the interaction strength (U/W ) towards the optimal value U/W ≈ 2/3
for the isotropic system [102]. Consistent with our simple argument, the curve for
U = 8t decays monotonically. We �nd that the introduction of anisotropy does
not enhance the critical entropy over the optimum value (S/N ≈ 0.487(23) in the
present study) reached at U = 8t for the isotropic case.

The estimate of the Néel temperature was obtained for a set of clusters within
the DCA simulation by looking for the divergence of the static antiferromagnetic
spin susceptibility [59]; see details in Subsec. 3.4.6. The TNéel was then obtained by

24T/t is lower in the anisotropic case because of reduction of the total bandwidth.
25In Fig. 3.10(b) we �nd |C(3ex)| > |C(2ex)| for T = 0.2t, which is a feature inherited from the

half-�lled non-interacting system on the cubic lattice, where spin correlations at even Manhattan
distances vanish; see Sec. C.2.

26 Our particular interest was the search for the optimal parameters U/t and t/t′ in terms
of largest SNéel/N . For that reason we did not study the low U/t regime, where TNéel in the
isotropic case is much smaller than the critical temperature at U/t = 8.
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(b)(a)

Figure 3.10: (a) The distribution of density, entropy and n.n. spin-correlation per
site in the harmonic trap vs. distance from the center. The simulation is done with
U = 1.4375t with the trap averaged entropy S/N = 1.6. The chemical potential
and trapping frequency are chosen such that the �lling is n = 1 at the trap center
and N = 50000 for both anisotropy ratios. (b) Extrapolated spin correlations as
a function of distance along the x axis in the paramagnetic phase for t/t′ = 7.36,
U = 1.44t and half-�lling for di�erent temperatures.

extrapolation in cluster size as suggested in [101].27 The data with the extrapolated
TNéel and the cluster estimates of TNéel can be found in the supplemental materials
of [1]. Fig. 3.12 shows s(TNéel) with curve s(T ) integrated within the paramagnetic
phase. Our results for the isotropic case, TNéel/t = 0.1955(25) for U = 4t and
TNéel/t = 0.3595(83) for U = 8t, are consistent with previous studies [100, 101].
Both estimates are slightly above the estimates TNéel/t < 0.17, TNéel/t = 0.3325(65)
obtained by diagrammatic determinantal QMC calculations on larger lattices for
U = 4t and U = 8t, respectively [104].

27For t = t′ our model is part of the universality class of the 3D S = 1/2 Heisenberg model
and for t 6= t′ it belongs to the classical 3D Heisenberg universality class, both of which have a
critical exponent of ν ≈ 0.71 [118].
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Figure 3.11: The distribution of density, entropy and n.n. spin-correlation per
site in the harmonic trap vs. distance from the center. The simulation is done
with N = 66000, the trap averaged entropy is S/N = 1.4. The trapping potential
(de�ned by frequency ω̄ and N) is same as the experimental parameters in the
Fig. 3.9(b) for U = 1.4375t, t/t′ = 7.36.
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anisotropy for two di�erent interactions at half-�lling. The data points shown with
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4 Stacked honeycomb

and square lattice

We present a numerical study of the Hubbard model on a simply stacked honey-
comb and square lattice, motivated by a recent experimental realization of such
models with ultracold atoms in optical lattices. We perform simulations with
di�erent interlayer coupling and interaction strengths and obtain Néel transition
temperatures and entropies. We provide data for the equation of state to en-
able comparison of experiment and theory, and for calibration of the experiment.
We �nd an enhancement of the short-range correlations in the anisotropic lat-
tices compared to the isotropic cubic lattice, in parameter regimes suitable for the
interaction driven adiabatic cooling.

This chapter follows the study [2].

4.1 Model

We study weakly to moderately coupled stacked honeycomb and square lattices,
as depicted in Fig. 4.1. The Hamiltonian of the Hubbard model on these lattices
is

Ĥ = −t
∑
〈i,j〉,σ

ĉ†iσ ĉjσ − t′
∑
〈i,j〉′,σ

ĉ†iσ ĉjσ

−µ
∑
i,σ

n̂iσ + U
∑
i

n̂i↑n̂i↓, (4.1)

where ĉ†iσ (ĉiσ) creates (annihilates) a fermion at site i with spin σ ∈ {↑, ↓};
n̂iσ ≡ ĉ†iσ ĉiσ denotes the occupation number operator, U ≥ 0 is the repulsive on-
site interaction, t the nearest-neighbor in-plane hopping, t′ the inter-layer hopping,
and µ the chemical potential. By 〈i, j〉 we denote nearest neighbors i, j within a
plane and by 〈i, j〉′ nearest neighbor pairs in adjacent planes.

We investigate the case t ≥ t′ ≥ 0. Both lattices are bipartite and the model
is thus particle-hole symmetric with half �lling corresponding to µ = U/2. The
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simply stacked square lattice in the regime of weakly coupled chains, t′ ≥ t ≥ 0, was
studied in Ref. [1] (previous chapter).1 Note that the simply stacked honeycomb
lattice does not correspond to the lattice of graphite, where adjacent layers are
shifted relative to each other.

The non-interacting bandwidth of the studied lattices is W = 2Ztt+ 4t′, where
Zt denotes the in-plane coordination number Zt = 3 for the stacked honeycomb
lattice, and Zt = 4 for the stacked square lattice.

 

UU

t'
t'

t
t

t
x

y
z

a1a2

a3 a1

a2

a3

rB

Figure 4.1: Left panel: simply stacked honeycomb lattice with interaction U , in-
plane hopping t, and inter-plane hopping t′. The dashed ellipse denotes the unit
cell, containing two sites, A and B. The intracell vector rB is displayed in green,
rA is 0. The lattice basis vectors ai are shown in blue. Right panel: stacked square
lattice. Here, the unit cell consists of a single site.

4.2 Introduction

The single-orbital Hubbard model, originally introduced to describe correlation
driven metal-insulator transitions [18], has been the subject of intensive study
in recent years, as it is widely believed that its realization on a two-dimensional
square lattice captures many of the salient features of high-temperature supercon-
ductivity [123, 124]. Apart from a Fermi liquid phase at weak interaction and large
doping strength and a correlation driven insulating phase at half �lling and large
interaction strength, superconducting phases of various types [125, 126, 127, 128],
pseudogap behavior in the absence of long-range order [129, 130, 131, 22], fer-
romagnetic [132, 133, 134], and antiferromagnetic (AF) phases [100], as well as
di�erent types of stripe phases [135, 136] have been proposed.

Theoretical and numerical studies of the low temperature properties of the
Hubbard model have proven to be di�cult, especially in the strongly correlated
regime where the interaction strength is comparable to the bandwidth and many

1Notice that the role of t and t′ is interchanged in [1].
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low-lying degrees of freedom compete. Experimental realizations using cold atomic
gas systems [94, 69], on various lattices in two and three dimensions, o�er an al-
ternative route to increase our understanding the physics of this model. While
the temperatures accessible by these experiment are still far above the supercon-
ducting phase transitions, a range of phenomena, including long range AF order
in three dimensions, may soon be accessible [103, 137, 97, 72][1].

One of the current challenges is the calibration of the precise parameters of
experiments using ultracold atomic gases, and in particular their temperature or
entropy. Numerical simulations of the model for a range of parameters have proven
to be useful in this context, and especially quantities that show a strong dependence
on temperature and are accessible both in simulation and experiment. An example
are nearest neighbor the spin-correlations [97]. Comparison to numerics was able
to identify unexpected heating e�ects and could pinpoint the temperature down
to which the experimental realization of the model was accurate [1].

Motivated by the physics of graphene and by the search for a spin liquid state
at low temperature [138, 139, 140], experimental realizations of the model on a
honeycomb geometry have appeared [99] and provided results in agreement with
numerical calculations of the 2d model [141, 142]. Complementary to studies on
isotropic lattices, anisotropic lattices of various types, e.g. with couplings in the
vertical axis chosen di�erently from in-plane couplings, can be realized [97, 99].
These models o�er the possibility of studying a dimensional crossover between
three, two and one dimensions and with this the possibility of tuning phase tran-
sitions to a more readily accessible regime.

From the experimental perspective, layered systems are a natural setup to
investigate quasi-2d physics. The reduced dimensionality may give rise to inter-
esting phenomena, but the presence of the third dimension will a�ect some of
the low temperature properties � e.g. allowing for long range order at non-zero
temperature which is absent in systems with continuous symmetries in two dimen-
sions [143, 144].

For the purpose of quantitative comparisons to cold atoms experiments, nu-
merical simulations need to provide results at comparatively high temperature.
For much of the parameter regime accessible to experiment, high temperature se-
ries expansion and numerical linked cluster expansions seem to be su�cient. As
the temperature is lowered outside of the convergence radius of these series, non-
perturbative techniques are required. Cluster dynamical mean �eld methods [59]
in particular are able to reach lower temperature in the thermodynamic limit both
at and away from half �lling and have been shown to be a reliable tool for this
task [102].
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4.3 Numerical simulation

4.3 Numerical simulation

The stacked square lattice has a single site per unit cell and may be simulated with
the standard DCA method. The basis vectors of the stacked square lattice are the
unit vectors in x, y, and z direction, a1 = (1, 0, 0), a2 = (0, 1, 0), a3 = (0, 0, 1).

The simply stacked honeycomb lattice is simulated with the generalization of
DCA formulated for an multi-site unit cell discussed in detail in Sec. 2.4. For
simulations of the paramagnetic phase we use the 2-site unit cell depicted in the
left panel of Fig. 4.1. The basis vectors of the simply stacked honeycomb lattice

are a1 =
(

3
2
,
√

3
2
, 0
)
, a2 = (0,

√
3, 0), a3 = (0, 0, 1), and the intracell vectors are

rA = 0, rB = (1, 0, 0).
We locate the temperature of the Néel phase transition by measurement of

the static antiferromagnetic susceptibility diverging at the transition. We �nd
this method to be superior to direct order parameter measurement in the ordered
phase, which requires allowing for translational symmetry breaking by doubling of
the unit cell. The reason is a critical slowing down of the DCA self-consistency
loop close to the phase transition. For the stacked square lattice we utilize the
susceptibility measurement presented in Subsec. 3.4.6. For the stacked honeycomb
we needed to generalize that measurement, enabling for multiple sites per unit cell.
Details on that are presented in Subsec. 4.4.1.

The impurity solver employed in the study is the CT-AUX QMC solver [39]
with sub-matrix updates [109]. The sign problem is absent at half �lling and
simulations away of the half-�lled case show for the examined parameters only
small reduction of the average sign.

Most of the clusters utilized in the study respect the three-fold (four-fold)
rotational symmetry around the vertical axis of the stacked honeycomb (square)
lattice. The aspect ratio of the clusters is chosen to be similar to the anisotropy
t/t′. Since usage of non-bipartite clusters may cause arti�cial frustration at low
temperature, we used them only for the calculations of equation of state (EOS)
above the Néel temperature. In particular, we used simply stacked single and triple
layered clusters, which are non-bipartite in the direction of the weak hopping t′.
Tables listing the clusters are given in Appendix B of [2]. As a part of the cluster
selection we performed DCA simulation with a large number of clusters for a small
set of parameters to select a small set of clusters for the actual EOS calculations.
In Figs. 4.2, 4.3, and 4.4 we see that:

1. Clusters containing rings of length 2 due to the periodical boundary condi-
tions are outriders and therefore are not suitable for use in extrapolations.

2. Uniform scaling of the clusters in all dimensions is a necessary requirement
for unbiased extrapolations of the energy (e) and the density (n) to the
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thermodynamic limit.

3. The in-plane (xy) nearest neighbor spin-spin correlations, 〈SzrASzrB〉 for the
stacked honeycomb lattice,2 and 1

2

〈
SzrS

z
r+ax + SzrS

z
r+ay

〉
in the case of stacked

square lattice, are in the examined parameter range practically independent
from the z extent of the cluster. That applies at the half-�lling and away
from it.

Respecting the �rst point becomes hard for the anisotropic models, as abandoning
the use of doubly layered clusters would render it impossible to �nd a set of reason-
ably small clusters with suitable aspect ratios. Therefore, we tried to circumvent
the problem by choice of ã3 6= 2a3, particularly ã3 = 2a3 + a1 + a2 ful�lls the
bipartite criterion.

A direct simulation in the AF phase is possible with accordingly enlarged unit
cell. For the stacked square lattice we need the unit cell to be a cluster containing
the reciprocal Q = π (e1 + e2 + e3) vector, see discussion in Sec. 2.5. For the
stacked honeycomb lattice it is possible to take two unit cells on top of each
other as the enlarged unit cell consisting of 4 sites: rA, rB, a3 + rA, and a3 +
rB. For the present study we could have utilized this formulation for the TNéel
estimate. However, slow convergence of the DCA selfconsistency loop close to
phase transition causes di�culty in getting the solutions converged. Therefore,
this approach leads to larger error bars, see in Fig. 4.8. The internal consistency
of both approaches was shown in [78], numeric check of the consistency is o�ered
in Figs. 4.8, 4.7.

For weak t′ compared to t it is reasonable to obtain a rough estimate of TNéel
by taking a single layered cluster with vertical couplings t′ taken into account
in a DMFT manner enabling AF order along that direction [55]. It has to be
emphasized that this data is not suitable for extrapolation of TNéel and data using
this approximation was not used in [2]. In particular, for this simpli�cation we
used doubled original cell, with sites rα in the bottom layer and sites rα+` ≡ a3+rα
in the upper layer (α ∈ {1, . . . , `}). The cluster was chosen of the form,

ã1 = n11a1 + n12a2 , ã2 = n21a1 + n22a2 , ã3 = 2a3 , (4.2)

i.e. the vertical extent ã3 of the cluster is that of the doubled unit cell. Thus any
cluster K vector can be expressed as an integer linear combination of b̃1 and b̃2.

2A symmetrization over all three in-plane nearest neighbors was needed in case of clusters
lacking the three-fold rotational symmetry around the z-axis.
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Figure 4.2: DCA density for the stacked honeycomb lattice at t/t′ = 1, U/t = 4,
βt = 1, µ = U/2 + t using clusters with up to N = 294 sites. All of them have the
basis vectors of the form ã1 = n11a1 + n12a2, ã2 = n21a1 + n22a2, and ã3 = n33a3.
The labels in the plot show the number of cells in a single layer. The legend
shows the number n33 of layers of the cluster. Clusters with 3, 9, 12, 21, 27, and
39 cells per layer respect the 3-fold rotational symmetry around the z axis. The
clusters with two layers (red open squares) show a bias, which we account to the
periodical boundary condition causing doubled connection of each site with its
vertical neighbor.
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Figure 4.3: DCA energy per site for the stacked honeycomb lattice at t/t′ = 1,
U/t = 4, βt = 1, µ = U/2 + t using clusters with up to N = 294 sites. All of them
have the basis vectors of the form ã1 = n11a1 + n12a2, ã2 = n21a1 + n22a2, and
ã3 = n33a3. The labels in the plot show the number of cells in a single layer. The
legend shows the number n33 of layers of the cluster. Clusters with 3, 9, 12, 21, 27,
and 39 cells per layer respect the 3-fold rotational symmetry around the z axis.
The clusters with two layers (red open squares) show a bias, which we account to
the periodical boundary condition causing doubled connection of each site with its
vertical neighbor.

69



4.3 Numerical simulation

0.00 0.05 0.10 0.15 0.20 0.25

L−2/2

0.025

0.020

0.015

0.010

1 2

〈 Sz r
S
z r
+

a x
+
S
z r
S
z r
+

a y

〉 5058

18

34

4

8

10

26

7498162242288

5058

18

34

4

8

10

26

50

18

34

4

8

10

26
18

34

4

8

10

26
18

4

8

10

26

18

4

8

10

1-layered
2-layered
3-layered
4-layered
6-layered
8-layered

Figure 4.4: DCA spin-spin correlation for the stacked square lattice at t/t′ = 2,
U/t = 4, βt = 1, µ = U/2 obtained with clusters of up to N = 288 sites. All of
them have a form of a (possibly rotated) square in the xy plane, ã1 = n11a1+n12a2,
ã2 = −n12a1 + n11a2, and ã3 = n33a3. The labels in the plot display the square
area n2

11+n2
12 and the legend shows n33. The cluster basis vectors ã1 and ã2 respect

the criterion for a bipartite cluster, Eq. 2.23. The clusters with square area equal
to 4, with ã1 = ã2 = 2a1 are clear outriders unsuitable for use in the extrapolation.
The reason is the doubled connection of each site with both its neighbors in the xy
plane due to the periodical boundary conditions. Further it is noticeable that for
the in-plane spin-spin correlation, the z extent of the clusters does not play any
role. That makes it possible to perform an extrapolation with clusters of �xed z

extent and perform the extrapolation of 1
2

〈
SzrS

z
r+ax + SzrS

z
r+ay

〉
with L−2/2, i.e. as

for an e�ectively 2-dimensional problem. Such extrapolations deliver −0.0166(1),
−0.0166(1), −0.0166(2), and −0.0168(3) when done for the single layered, doubly
layered, triple layered, and 4-layered clusters, respectively. These are consistent
with extrapolation according to L−2/3 performed with a set of approximatively
uniformly scaled clusters. 70



Stacked honeycomb and square lattice

In the DMFT treatment of the vertical coupling we approximate the self energy
with a blocked form (using symmetry relation 1.61),

Σσ(K, α + `, α′ + `) = Σσ̄(K, α, α′) , (4.3)

Σσ(K, α + `, α′) = 0 = Σσ(K, α, α′ + `) , for α, α′ ∈ {1, . . . , `} . (4.4)

The DCA patch averaging is done over patches corresponding to the cluster with
doubled cells and since in the impurity solver we solve only the bottom layer of
the cluster, ignoring the top layer, only the relevant `× ` block of Ḡlat(K) enters
the Eq. 2.7.

4.4 Observables

Similarly to the anisotropic Hubbard model study on the cubic lattice presented
in the Chap. 3, we measure the EOS, spin-spin correlations, and perform extrap-
olation to thermodynamic limit for those quantities. The real space observables,
i.e. the density, the double occupation 〈n̂i↑n̂i↓〉 entering the potential energy, and
the spin-spin correlation can be measured and extrapolated in the same way as
it was described in Subsec. 3.4.1-3.4.3. The necessary modi�cation concerns the
quantities in reciprocal spaces. The kinetic energy was already in Subsec. 3.4.1
treated for the case of a general lattice. More careful revision is needed for the
DCA compatible susceptibility measurement, which was for the Bravais lattice de-
scribed in Subsec. 3.4.6. In the following subsection we generalize that approach
for non-Bravais lattices.

4.4.1 DCA static AF susceptibility for non-Bravais lattices

This subsection contains the generalization of the DCA static AF susceptibility
measurement for Bravais lattices described in Subsec. 3.4.6 for the case of non-
Bravais lattices. To the best of our knowledge, this generalization was used for
the �rst time in [2]. We stick to the naming and denotations used in the section
of [59] on the susceptibility measurement.

DCA approximation on two-particle quantities, measurement

We assume a general case with ` sites per cell and L cells in the cluster, with
N = L` sites. The staggered magnetization operator is assumed to have the form,

m̂ =
1

L`

∑
r,α,σ

eiQ·r (−1)α σ n̂rασ , σ = ±1 . (4.5)
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4.4 Observables

For the stacked honeycomb lattice we may take the 2-site honeycomb cell shown
in Fig. 4.1(left) as the unit cell and Q = 1

2
b3. For the 2D honeycomb lattice we

would have Q = 0 and a 2-site unit cell able to accommodate the AF state.
The Bethe�Salpeter equation has same form as given in Eq. 3.35, but the

multiindices are composed of k, n, σ and two additional sublattice indices α, γ ∈
{1, 2, . . . , `}, i.e. k ≡ (kαγnσ).3 We approximate the (longitudinally) particle-
hole irreducible lattice vertex function Γlat schematically shown in Fig. 4.5 by the
corresponding vertex function Γimp on the cluster,

Γlat
(kαγnσ)(k′α′γ′n′σ′)(Q, iνm) ≈ Γimp

(Kαγnσ)(K′α′γ′n′σ′)(Q, iνm) . (4.6)

The two-particle Green's function χ̄ is de�ned by

χ(kαγnσ)(k′α′γ′n′σ′)(Q, iνm = 0) =

=
1

β

∫ β

0

∫ β

0

∫ β

0

∫ β

0

dτ1 dτ2 dτ3 dτ4 e
−i(ωnτ1−ωnτ2+ωn′τ3−ωn′τ4)

×
〈
Tτc

†
k+Qασ(τ1)ckγσ(τ2)c†k′α′σ′(τ3)ck′+Qγ′σ′(τ4)

〉
. (4.7)

Proceeding similarly as in Subsec. 3.4.6 we �nd the coarse-grained approximation
for the lattice two-particle Green's function χ̄KK′(Q, iνm),

χ̄(Q, iνm)−1 = χc(Q, iνm)−1 − χ0
c(Q, iνm)−1 + χ̄0(Q, iνm)−1 , (4.8)

analogous to the Eq. 3.42. All quantities in the above equation are matrices
with multiindices (Kαγnσ) and the bar indicates the patch-averaging according
to Eq. 3.40.

The actual static AF susceptibility de�ned by Eq. 3.33 with inserted explicit
form of the magnetization operator de�ned in Eq. 4.5 can be expressed using FT
in terms of χ(Q, iνm) as

χAF =
1

L`β2

∑
K,K′,α,α′

σ,σ′,n,n′

(−1)α+α′σσ′e−iQ
′·rαeiQ

′′·rα′ χ̄(Kααnσ)(K′α′α′n′σ′)(Q, iνm = 0) ,

(4.9)
with phase factors,4

e−iQ
′·rα = ei(Krepr(K)−Krepr(K+Q))·rα , (4.10)

eiQ
′′·rα′ = ei(Krepr(K′+Q)−Krepr(K′))·rα′ , (4.11)

where Krepr(K) is the function returning the representant of K.5

3We need two sublattice indices are these are not conserved.
4These factors have their origin in the form of the FT 1.19. The vector Q′ (Q′′) may di�er

from Q by a reciprocal lattice vector.
5Recall that the FT form 1.19 requires to work with a �xed set of K vectors as a translation

by a reciprocal lattice vector in�uences the phase in a sublattice-dependent way.
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Figure 4.5: The (longitudinally) particle-hole irreducible vertex Γlat of the original
lattice problem is in a DCA compliant susceptibility measurement approximated
by the corresponding vertex Γimp on the impurity.

Estimators for the DCA susceptibility

Let us de�ne an auxiliary two-momenta and two-frequencies Green's function

g̃σ(kα,k′α′, iωn, iωn′) =

≡ 1

βL

∫ β

0

∫ β

0

dτ dτ ′ eiωnτe−iωn′τ
′∑

r,r′

e−ik·(r+rα)eik
′·(r′+rα′ )g̃σ(rατ, r′α′τ ′) ,(4.12)

with ([39])

g̃σ(rατ, r′α′τ ′) =

≡ g0
σ(rα′, r′α′, τ − τ ′)−

∑
p,q

g0
σ(rα, rpαp, τ − τp)Mpqσg

0
σ(rqαq, r

′α′, τq − τ ′) .

(4.13)

Eq. 4.12 can be rewritten as

g̃σ(kα,k′α′, iωn, iωn′) =

= δkk′δnn′g
0
σ(kαα′, iωn)− 1

βL

∑
γ,γ′

g0
σ(kαγ, iωn)Mkγnk′γ′n′σg

0
σ(k′γ′α′, iωn′) ,

(4.14)

with

Mkγnk′γ′n′σ =
∑
r,r′

eiωnτpe−ik·(r+rγ)e−iωn′τqeik
′·(r′+rγ′ )Mrγr′γ′σ . (4.15)
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Using the Wick's theorem for the decoupled problem (with auxiliary spins or within
the weak coupling expansion) we �nd

χ(kαγnσ)(k′α′γ′n′σ′)(Q, 0) =

= β 〈g̃σ(kα,k + Qγ, iωn, iωn)g̃σ′(k
′ + Qα′,k′γ′, iωn′ , iωn′)

− δσσ′ g̃σ(kα,k′γ′, iωn, iωn′)g̃σ(k′ + Qα′,k + Qγ, iωn′ , iωn)〉 . (4.16)

The non-interacting two-particle susceptibility bubble equals to

χ0
(kαγnσ)(k′α′γ′n′σ′)(q, 0) = −βδσσ′δnn′δkk′Gσ(kαγ′, iωn)Gσ′(k

′ + Qα′γ, iωn′)

+ βδQ0Gσ(kαγ, iωn)Gσ′(k
′α′γ′, iωn′) . (4.17)

For the non-interacting cluster susceptibility theG-s are the dressed cluster Green's
functions, and for the non-interacting lattice susceptibility the G-s are the dressed
lattice Green's functions Glat(k, iωn) =

[
G0,lat(k, iωn)−1 − Σ(k, iωn)

]−1
.

As we mentioned in Subsec. 3.4.6, the restriction to the PM phase ensures the
symmetry in spin σ,

χ(kαγnσ)(k′α′γ′n′σ′)(Q, 0) = χ(kαγnσ̄)(k′α′γ′n′σ̄′)(Q, 0) , (4.18)

enabling decomposition into the charge and the spin channel.6 Further properties
of χ suitable for reduction of independent observables are

χ(kαγnσ)(k′α′γ′n′σ′)(Q, 0) = χ∗(−kαγ−(n+1)σ)(−k′α′γ′−(n′+1)σ′)(Q, 0) , (4.19)

χ(kαγnσ)(k′α′γ′n′σ′)(Q, 0) = χ(k′+Qα′γ′n′σ′)(k+Qαγnσ)(Q, 0) , (4.20)

where the �rst property requires Mpqσ ∈ R, which is given for the studied model
with purely real real space Hamiltonian, and correspondingly chosen CT-AUX
parameter K (Sec. B.1) such that e±γ ∈ R. Notice that the symmetry 4.20 implies
that χ is symmetric in case Q = 0.

Estimate of the critical point

For any practical use the frequencies ωn, ωn′ need to be cut-o� at some ωc. The
frequency cut-o� is cured by �tting the 1

ω2
n
tail and adding its contribution to the

result [145], see in Fig. 4.6. The cut-o� was validated by comparison of the tail-
�tted impurity susceptibility obtained by Eq. 4.9, where we replaced χ̄ by χc, with
the directly measured impurity susceptibility using estimator given in Eq. 3.26
with m̂ given in Eq. 4.5; see Subsec. 3.4.5. Typically we use ωc ≈ 5U .

6Note that the second (spin-independent) term in Eq. 4.17 is canceled in the spin channel.
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Figure 4.6: The left plot shows the unextrapolated impurity susceptibility ob-
tained via Eq. 4.9 with χc in role of χ̄ as a function of the frequency cut-o� Nω.
Next it displays its extrapolated values, which use �tting of the tail to C

ω2
n
. The

direct measurement of the impurity susceptibility via Eq. 3.26 with magnetization
operator 4.5 is displayed by the horizontal lines � the thick line is the mean and
the narrow lines show the standard deviation. The right plot shows the lattice
susceptibility. As in the left plot, we show the extrapolated and unextrapolated
χAF. The data was obtained for the Hubbard model on the honeycomb lattice at
U = 3t, βt = 20, at half �lling (µ = U/2) using a cluster with 18 sites respecting
the three-fold rotational symmetry of the model. Notice the di�erence of the scale
on the vertical axes.

Notice that not all entries of χ̄ are summed to get χAF when ` > 1. Therefore,
the leading eigenvalue of Γχ̄0 may in principle be associated with a mode which is
not relevant for χAF. Thus, instead of examination of the leading eigenvalue of Γχ̄0

we stick to the evaluation of χAF. DCA, as a mean-�eld based method, displays
close to the second order phase transition the mean-�eld critical exponents. We
utilize that for a precise location of the transition for each cluster � we search
for the intersection of χ−γmf

AF (L) with zero, with the mean-�eld critical exponent
γmf = 1; see Fig. 4.7.

In Fig. 4.8 we display the extrapolations of the Néel temperature based on
Néel temperatures obtained on several clusters both with the susceptibility mea-
surement and with the order parameter measurement. The susceptibility mea-
surement was conducted in the PM regime with enforced symmetrization. For the
order parameter measurement we used a formulation with doubled unit cell (here
with ` = 4 sites per cell) allowing for AF ordering. The extrapolation in cluster
size is done both with equally weighted TN(L`) and also with weights inversely
proportional to the square of the standard deviation of TN(L`).
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Figure 4.7: Plot of the static AF susceptibility obtained in a PM-restricted sim-
ulation along with the staggered magnetization (order parameter) obtained in a
DCA simulation allowing for AF ordering. This plot demonstrates the consis-
tency of both approaches. The investigated model was the Hubbard model on
the honeycomb lattice with nearest neighbor hopping t, at half �lling, βt = 20.
The frequency cut-o� for the susceptibility measurement was Nω = 48 and the
data for the susceptibility was extrapolated to Nω →∞ using high-frequency tail
�tting. The susceptibility and the order parameter are in the vicinity of the phase
transition �tted with the mean-�eld critical exponents γmf = 1 and βmf = 0.5,
resp. Remark: the ordering at �nite βt is a DCA artifact, showing up when the
correlation length becomes comparable with the linear cluster size.

4.4.2 Structure of the particle-hole irreducible vertex Γ

As a model system we investigate the Hubbard model on the honeycomb lattice
at U = 3t, βt = 20, at half-�lling. The lattice susceptibility is close to 9 t−1, a
value that is roughly 5-times larger than the corresponding impurity susceptibility
measured with Eq. 3.26. We measure χc(Q = 0, iν = 0) and compute the particle-
hole irreducible vertex Γ according to Eq. 3.35. The simulations are performed with
two clusters: a 9-cell and a larger 39-cell cluster. The larger cluster is displayed in
the Fig. 4.10(bottom right). It enables linear arrangement of the cluster reciprocal
K momenta.

The vertex Γ has real-valued entries for particle-hole symmetric models de�ned
on a Bravais lattice [115]. Since the model examined in the present subsection is
not on a Bravais lattice the components of Γ might be complex.

The top row plots in Fig. 4.9 display the real and imaginary part of the low
frequency entries of Γm(0, 0). The most obvious structure is that of the bare vertex,

Γ̄0,lat
(kαγnσ)(k′α′γ′n′σ′)(Q, iνm) = − U

Lβ2
δαγδα′γ′δαα′δσ̄σ′ . (4.21)
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Stacked honeycomb and square lattice

Figure 4.8: Extrapolation of the Néel temperature TN for the stacked honeycomb
lattice for t/t′ = 1, U/t = 6. The critical exponent ν = 0.71 was taken from the
3D Heisenberg model [118] in the same universality class. The error bars for the
AF data show lower and upper bounds of the transition based on measurement
of the staggered magnetization. The PM data points are susceptibility based
measurement with error bars smaller than the symbol size. The labels show number
of sites in a single plane times the number of layers of the used cluster.

The random phase approximation with the bare Γ0 and χ0 obtained as a product
of the dressed Green's functions G (Eq. 4.17) yields for the investigated model
Uc/t ≈ 2.65 with G obtained on the 9-cell cluster.7 That is to be compared with
Uc/t = 3.56(2) obtained in a fully DCA compliant procedure both with direct order
parameter measurement in the AF phase and the susceptibility measurement with
Γlat ≈ Γimp, see in Fig. 4.7.

Structure in the di�erent sublattice sectors

Apart from the model independent symmetry of Γ in the multiindices inherited
from χ(0, 0), see Eq. 4.20, the model has inversion symmetry (Subsec. 1.3.7),
leaving 6 independent out of the total 16 sublattice blocks, (α, γ, α′, γ′) = AAAA,
ABAA, BAAA, BBAA, ABAB, ABBA. The sector AAAA is without surprise
the dominant one, as the UL−1β−2 is its non-renormalized value for any frequency
and K vector. Out of the other sectors, ABBA and ABAB seem to be signi�cant,
while the other sectors, ABAA, BAAA, BBAA, have entries with magnitude at
most 0.1UL−1β−2.

7The non-interacting 2-particle susceptibility χ0 is in a typical random phase approximation
obtained as a product of the bare lattice Green's functions G0.
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Figure 4.9: The magnetic channel of the impurity particle-hole irreducible vertex
function Γimp

m (0, iν = 0) is displayed. In the top color plots we show its real
and imaginary part. UL−1β−2 is its bare value. The multiindices (Kαγn) and
(K′α′γ′n′) are computed as 2 (2 (L(n+ 10) + k) + α) + γ, with index k for the
cluster K points. The lower row shows the sector AAAA in the left, and ABBA
in the right. There the indices are computed as L(n + 10) + k. The data was
obtained on a 9-cell cluster with 3-fold rotational symmetry.

Structure in the frequency space

The sector AAAA of Γm(0, 0) has already in its bare limit non-vanishing elements
for any frequencies iωn, iωn′ (and reciprocal vectors K, K′). In the bottom left
plot of Fig. 4.10 there is evident an enhancement (suppression) around equal (op-
posite) frequencies. These most pronounced features were already observed within
a DMFT treatment in [115].

In the sector ABBA we �nd non-zero elements emerged along equal frequencies,
saturating for large n = n′, see in Fig. 4.10.
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The last sector with non-negligible entries in Γm is ABAB, whose contributions
are restricted to low frequencies, for |n| , |n′| / 24, with absolute values up to
0.4UL−1β−2.

Structure in the reciprocal space

The most signi�cant K-structure of the vertex Γm(Q, 0) is visualized in Fig. 4.10, 4.11.
The top row plots in Fig. 4.10 for sectors AAAA and ABBA at equal frequen-
cies show that these are dominantly dependent on K −K′, hinting to low order
diagram(s) being responsible for that structure. Two of the three second order
(longitudinally) particle-hole irreducible diagrams, see in Fig. 4.12, have the de-
sired structure, but they precisely cancel each other in the magnetic channel. All
third order diagrams have di�erent dependence on K, K′ (and n, n′) [115], so one
needs to go at least to the fourth order for the explanation.

The K-dependence of the sector AAAA at opposite frequencies, iωn′ = −iωn,
shows smaller variations than at equal frequencies, of approximatively 12.5% around
the mean value. The K-dependence there is, similarly as in the sector ABAB at
low frequencies (Fig. 4.11), dominantly on K + K′.

4.5 Results

We compute the EOS and further properties � the energy, entropy, density, nearest-
neighbor spin correlation, and the double occupancy � of the model of Eq. 4.1 using
DCA and extrapolating the results to the thermodynamic limit according to L−2/3

(see [102, 110] for details). We restrict the calculations to �llings n ≤ 1 per site, as
the results for 1 < n ≤ 2 are related to those for n ≤ 1 via particle-hole symmetry.

4.5.1 Spin correlations

We calculated the nearest-neighbor spin correlations, which capture the onset of
magnetic ordering and have proven to be a suitable observable for estimate of
the temperature of the system [102][1]. We speci�cally calculate the equal-time
in-plane nearest-neighbor spin correlations

Cnn = − 2

ZtL`

∑
〈i,j〉

〈
Ŝzi Ŝ

z
j

〉
, (4.22)

where the sum runs over in-plane nearest-neighbor pairs (coupled by the strong

hopping t), Ŝzi = 1
2
(n̂i↑ − n̂i↓), L is the number of cells and the average

〈
Ŝzi Ŝ

z
j

〉
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Figure 4.10: Plot of Γm(0, 0) at equal frequency, n = n′ = 16. The top left
plot is for sublattice sector AAAA, and the top right is for ABBA. Using white
noise addition we checked that the �pattern� on both main diagonals in the top
row plots is of noise origin. The bottom left plot shows the data of the top left
plot symmetrized along the diagonals, reducing to a single K-vector dependency,
interpolated in a Brillouin zone. For the simulation we used the 39-cell cluster
shown in the bottom right plot in the reciprocal space. Its reciprocal K points
are k (7b1 + 2b2) /39 shifted by suitable reciprocal lattice vector to the Brillouin

zone, with k running from 0 to 38; b1 = 2π
a

(
2
3
, 0
)
, b2 = 2π

a

(
−1

3
, 1√

3

)
; a denotes

the nearest neighbor distance of the sites on the honeycomb lattice.
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Stacked honeycomb and square lattice

Figure 4.11: Left: Γm(0, 0) for n = n′ = 0 and sector ABAB. Right: Here we show
the data from the left plot symmetrized along the antidiagonals and subsequently
interpolated in the reciprocal space. The simulation was the same as for Fig. 4.10.
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Figure 4.12: Second order contributions in U to the (longitudinally) particle-hole
irreducible Γ. The left diagram contributes to Γσσ, while the right diagrams con-
tribute to Γσσ̄. Contribution of the left diagram and the top right diagram naively
di�ers by a minus sign due to the extra fermionic loop in the left diagram, however
these diagrams have to be closed on both sides, according to Eq. 3.35, which re-
sults in an additional fermionic loop for the right diagram. Thus their contribution
equals and is canceled in the magnetic channel Γm = Γ↑↑− Γ↑↓. The right bottom
diagram contributes to sectors AAAA and ABAB. Its largest contribution is for
ωn ≈ −ωn′ , its k-dependence is only on k + q + k′.
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4.5 Results

is measured directly on the cluster. The measurement was in detail described in
Subsec. 3.4.3. Although there we described it for assuming a Bravais lattice, it
is formulated in real space, so the formulas can be without modi�cation used for
any graph. We show the spin correlations for the stacked honeycomb and stacked
square lattice in Fig. 4.13. The data shown was calculated for a homogeneous
system at half �lling and at a �xed entropy per particle. Cnn shows similar behavior
with interaction strength and anisotropy for both lattices, with an approximative
ampli�cation by a factor 4/3 in the stacked honeycomb lattice. The factor 4/3 is
the ratio of strong hopping coordination number Zt on the stacked square lattice
to that of the stacked honeycomb lattice. The maxima are at similar interaction
strengths if interactions are measured in units of the bandwidth W . Qualitatively,
the observed behavior is captured by the second order HTSE (Sec. D.3), which is
at half �lling given by

C(2)
nn (s) =

2(ln 4− s)t2

8(Ztt2 + 2t′2) + U2
. (4.23)

Quantitatively, the second order high-temperature estimate of Cnn(T ) is reliable
only for T/t ' 3, corresponding to an entropy per site s well above 1. Note
that Fig. 4.13 is calculated for s = 0.7, which is close the lowest experimentally
realizable value at half �lling [1]. Noticeably, the sum of C(2)

nn (s) over all bonds
〈i, j〉 is independent of the lattice properties if U is scaled according to the root of
the second moment of the non-interacting density of states D2 = Ztt

2 + 2t′2.
Cnn, as an experimentally measurable quantity [97], may serve as a sensitive

thermometer in the temperature range T/t ∼ 1 if compared with the EOS we
provide. The enhancement due to anisotropy raises the signal and renders the
measurement more precise.

4.5.2 Trap e�ects

In experiments, ultracold atoms are con�ned by a trapping potential, which may be
modeled by a LDA at currently experimentally accessible temperatures [106, 107].
As con�ning potential we take a quadratic function V (x) with minimum in the
trap center. The chemical potential µ we choose such that the system is half-�lled
in the trap center. Assuming a large lattice, we use a continuous approximation
instead of discrete summation over lattice sites and obtain a trap-averaged quantity
Q as

Q =

∫
d3x q (µ− V (x);T ) , (4.24)

where q is the density of the quantity of interest in a homogeneous system. With
this de�nition, the quantity Q per particle, Q/N , is independent on the speci�c
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Figure 4.13: The nearest neighbor in-plane spin correlation Cnn for the stacked
honeycomb lattice (top) and stacked square lattice (bottom) as a function of the
interaction strength U/t for various anisotropies t′/t at half �lling (n = 1, µ = U/2)
and at an entropy s = 0.7. Cnn shows an enhancement in the anisotropic case
t/t′ > 1. The curves for t/t′ = 4 and 8 are on top of each other.

parameters of the quadratic potential. For the LDA calculations we need the
EOS at low �lling, which we approximate by the EOS of the corresponding non-
interacting system (App. C). Fig. 4.14 shows the trap-averaged Cnn. Even in the
trap, with contribution from sites at all �llings, the Cnn is at �xed entropy per
site roughly proportional to Z−1

t . This observation may be confronted with the
experimental results presented in Fig.(2)a in [72], where Greif et al. present the
trap-averaged nearest-neighbor spin correlations obtained in weakly coupled square
stacks with varying ratio of in-plane hoppings. In particular, they �nd for Zt = 2
almost doubled spin correlations when compared to Zt = 4, which is consistent
with our outcome. Their measurement is conducted after a nearly adiabatic ramp
of the optical lattice, in a system with total entropy not signi�cantly dependent on
the chosen ratio of in-plane hoppings. In Fig. 4.15 we display pro�les of density,
entropy per site, and Cnn for the stacked honeycomb and square lattice and the
1D coupled chains. For Fig. 4.15 we assume isotropic V (x). The distance from
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Figure 4.14: Average spin correlation Cnn per particle plotted as a function of the
entropy per particle S/N in a quadratic trap with chemical potential adjusted to
obtain half �lling (n = 1) in the trap center. The data for the coupled 1D chains
and isotropic cubic lattice is taken from Refs. [1][102].

the trap center we denote by r. In the studied temperature regime, coupled 1D
chains [1] show the largest spin correlation.8 The density and entropy distributions
di�er only marginally. Therefore, a dynamic change of topology of the lattice, as
done in [72], is not accompanied by a substantial particle redistribution, which
may cause unwanted heating [146]. In the lower panel of Fig. 4.15 we observe that
Cnn at half �lling (r = 0) is roughly proportional to the inverse strong hopping
coordination number Z−1

t . This e�ect might be qualitatively explained by the
di�erent energy scales of the hoppings � the simulations are performed at a high
temperature relative to the weak hopping t′, but the temperature is comparable
with the strong hopping t. Thus the AF short-range correlations tend to build up
in the strong hopping directions (in-plane) and the singlet formation is facilitated
by lower Zt.

4.5.3 Double occupancy and adiabatic cooling

Of further experimental interest are ways to cool the particles, to provide access
to interesting low temperature phenomena. As discovered in Ref. [147], an ana-
logue of the Pomeranchuk e�ect can be used to cool fermions in an optical lattice.

8For the 1D chain the Cnn is the nearest-neighbor spin correlation in direction of the strong
hopping, see de�nition in Ref. [1].
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Figure 4.15: Density n, entropy s, and Cnn pro�le in a quadratic trap with the
particle number �xed to N = 105 and half �lling in its center. The radius r is
given in units of lattice sites. The entropy per particle S/N is set to 1.4, which is
an experimentally achievable value [1]. The data for the coupled 1D chains and
isotropic cubic lattice is taken from Ref. [1][102].

These lower their temperature T in an adiabatic process of (slow) increase of the
interaction strength if the double occupancy D = 1

L`
〈ni↑ni↓〉 shows an increase

upon cooling at �xed density n. The adiabatic cooling e�ect
(
∂T
∂U

)
s,n

is propor-

tional to the temperature, to the inverse of the speci�c heat, and to
(
∂D
∂T

)
U,n

.[147]
The interaction driven adiabatic cooling was experimentally utilized for a SU(6)
Hubbard model [148]. For the Hubbard model in the context of optical lattice
experiments, the presence of the e�ect was numerically observed both for square
and honeycomb lattices [149, 141].

We here investigate this e�ect for the stacked lattices in a homogeneous system.
Figure 4.16 shows the adiabatic cooling e�ect at half �lling and at entropy per
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Figure 4.16: Temperature T/t plotted as a function of U/t for the stacked honey-
comb (top) and stacked square lattice (bottom) at half �lling and at entropy per
site s = 0.7 for various anisotropies t/t′. An adiabatic increase of U/t from 0 up
to a parameter-speci�c U induces cooling in all cases.

site s = 0.7 at a range of anisotropies, with cooling persisting up to U/t ≈ 6.
Alternatively it is possible to start from large interactions and decrease U ; however,
in that case T/U may increase. The cooling is present only at su�ciently low
entropies, s / 0.8, and it is accompanied by an approximate maximization of Cnn
according to the Fig. 4.13(top). The stacked square lattice shows the largest e�ect
in its isotropic limit, which is the cubic lattice.

Fig. 4.17 shows
(
∂D
∂T

)
U,n

away from half �lling. Cooling here appears at even
higher temperature than in the half �lled case. This might be utilized to transfer
entropy from the region with half �lling to less densely occupied regions in the
trap. While realistic cooling design was discussed in Refs. [150, 151], we only
note that the low density regions show large entropy per particle and thus they
may store a large portion of the total entropy. Fig. 4.17 shows that there are
no qualitative but only subtle quantitative di�erences in between the examined
lattices with respect to the presence and strength of the cooling phenomenon. As
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Figure 4.17: Negative values of
(
∂D
∂T

)
U,n

indicate presence of the e�ect of adiabatic
cooling upon interaction increase. The corresponding quantity is plotted as a
function of T and n for the stacked honeycomb (top) and stacked square lattice
(middle) at U/t = 6 and t/t′ = 6. For comparison we show the same quantity for
isotropic cubic lattice at U/t = 6 in the bottom panel, using data from Ref. [102].
The regions of positive and negative ∂D

∂T
are separated by dotted line. For a fair

comparison we add upper axis with entropy per site of half �lled system, s(n = 1),
at temperature given by the temperature axis common to all plots.

the magnitude of
(
∂D
∂T

)
U,n

does not show great di�erences among the investigated
lattices, the cooling e�ect is of comparable strength with some enhancement in the
case of stacked honeycomb lattice at density near to the half �lling.
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stacked square stacked honeycomb
t/t′ U/t TN/t sN TN/t sN

1
4 0.1955(25) 0.223(18) 0.206(1)
6 0.324(2) 0.430(8) 0.292(4) 0.405(35)
8 0.3595(83) 0.487(23) 0.299(2) 0.33(10)

2
4 0.206(2) 0.313(49) 0.173(4)
6 0.293(4) 0.438(39) 0.239(11) 0.28(8)
8 0.294(8) 0.41(6) 0.205(21)

4
4 0.200(2) 0.30(7)
6 0.245(7) 0.28(11)
8 0.219(8)

8
4 0.185(2)
6 0.208(7)

Table 4.1: Néel temperatures and entropies for both examined stacked lattices.
For stacked square lattice we studied wide range of anisotropies as those may
be of interest with respect to undoped high-Tc superconductor parent materials.
Missing sN entries indicate that we did not integrate the entropy down to TN . The
isotropic cubic lattice data for U/t = 4, 8 is from Ref. [1].

4.5.4 Néel transition

The entropy per particle at the Néel temperature TN is expected to decrease
for large anisotropies, in accordance with the Mermin�Wagner�Hohenberg the-
orem [143, 144]. We investigate the Néel transition for half �lling only. In order
to identify the lattice with the largest entropy per site at the Néel transition, sN ,
we therefore focused on smaller anisotropies in this part. Since any mean-�eld
theory overestimates ordering, the TN and sN for a speci�c cluster provides an
upper bound of the corresponding quantities in the thermodynamic limit. For an
unbiased estimate we localize the transition temperature for several clusters and
extrapolate the transition temperature TN as suggested in Ref. [101], using the
critical exponent ν = 0.71 for the 3D Heisenberg model [118]. For the stacked
square lattice of anisotropy t/t′ = 4 we managed to obtain the TN estimate for a
cluster with 384 sites. We checked that disregarding data for this largest cluster
in the extrapolation, keeping data for clusters only up to 100 sites, changes TN by
about the error estimate. Example of the TN extrapolation is provided in Fig. 4.8.
The entropy sN is obtained as s(TN). To its error estimate contribute both uncer-
tainty of TN and error of the numerical integration of s. TN and sN calculated for
the di�erent systems studied in this paper are summarized in the Tab. 4.1.
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5 Haldane�Hubbard model

We study the interplay of topological band structure and conventional magnetic
long-range order in spinful Haldane model with onsite repulsive interaction. Using
the DCA with clusters of up to 24 sites we �nd evidence of a �rst order phase
transition from a Chern insulator at weak coupling to a topologically trivial an-
tiferromagnetic insulator at strong coupling. These results call into question a
previously found intermediate state with coexisting topological character and an-
tiferromagnetic long-range order. Experimentally measurable signatures of the
�rst order transition include hysteretic behavior of the double occupancy, single-
particle excitation gap and nearest neighbor spin-spin correlations. This �rst order
transition is contrasted with a continuous phase transition from the conventional
band insulator to the antiferromagnetic insulator in the ionic Hubbard model on
the honeycomb lattice.

The �ndings described in this chapter were published in [3]. The CT-AUX
impurity solver implementation was based on the solver provided by Emanuel Gull.
Lei Wang supplied script for computation of the Chern number for a provided
topological Hamiltonian Htopo.

5.1 Model

The Hamiltonian of the Haldane�Hubbard model reads

Ĥ = −t
∑
〈i,j〉,σ

ĉ†iσ ĉjσ − iλ
∑
〈〈i,j〉〉,σ

vij ĉ
†
iσ ĉjσ

+∆
∑
i,σ

sin̂iσ + U
∑
i

(
n̂i↑ −

1

2

)(
n̂i↓ −

1

2

)
, (5.1)

where ĉ†iσ (ĉiσ) creates (annihilates) a fermion at site i of the honeycomb lattice
with spin σ ∈ {↑, ↓}, n̂iσ ≡ ĉ†iσ ĉiσ denotes the occupation number operator, t
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+Δ -Δ
iλ
t

Figure 5.1: As unit cell of the model can be taken the displayed hexagon, with two
sites belonging to it. The sketch visualizes all terms of the non-interacting part
of the Hamiltonian Eq. 5.1: nearest neighbor hopping t, next nearest neighbor
hopping iλ, and staggered potential, which is +∆ (−∆) on the sublattice with
orange (gray) sites.

is the hopping amplitude between nearest neighbors 〈i, j〉, and iλ is the purely
imaginary hopping between next-nearest-neighbor sites 〈〈i, j〉〉. vij = −1 (+1)
for the hopping from site i to j in (anti-)clock-wise direction with respect to the
center of the hexagon, illustrated in Fig. 5.1. The sign si is +1 on one sublattice of
the honeycomb lattice and −1 on the other. The last term is the onsite repulsive
interaction with strength U > 0. Without loss of generality we assume λ ≥ 0.

The main focus of our study is the half-�lled Haldane�Hubbard model with
λ 6= 0 and ∆ = 0. Without interactions (U = 0), the ground state is a topologically
non-trivial Chern insulator (CI) with Chern number 1 for both spin species and a
band gap min(

√
27λ, t). For comparison, we also consider the ionic Hubbard model

on the honeycomb lattice with staggered chemical potential ∆ 6= 0 and λ = 0. In
this case the non-interacting system also has a �nite band gap, determined by
∆, but it is topologically trivial. The full model (5.1) can be experimentally
implemented with independent tunability of each term [73, 152].

The Hamiltonian 5.1 conserves the spin projection. Its form is left invari-
ant (up to irrelevant constants) under particle-hole transformation (Subsec. 1.3.6)
combined with space inversion (Subsec. 1.3.7),

ĥrAσ = ĉ†−rBσ , ĥrBσ = −ĉ†−rAσ . (5.2)

That ensures half �lling for any choice of the real-valued parameters U , ∆, λ, t.
Moreover, the coupling to staggered magnetization, h

∑
i,σ si(1 − 2δσ↑)n̂iσ, is also

left invariant under the transformation, ensuring half �lling even in case of emer-
gence of a spontaneous AF order. This property constrains the Green's function
as follows,

Gkαα′σ(iωn) = −sαsα′G∗kᾱᾱ′σ(iωn) , (5.3)
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where α, α′ refer to sublattice (as introduced in Subsec. 1.2.2), ᾱ means the other
sublattice as α, sα has same meaning as si (which depends on sublattice only).

The non-interacting dispersion of Ĥ is linear at the K and K ′ only for ∆ =
λ = 0; the position of those can be seen in Fig. 5.3(right). The K and K ′ points
remain the points of minimal non-interacting band gap for λ/t ≤ 1/

√
27 ≈ 0.192

irrespective of ∆. At the M points (Fig. 5.3) there is the van Hove singularity
for λ/t ≤ 1/

√
32 ≈ 0.177 also irrespective on ∆. For λ/t > 1/

√
32 the M points

become local gap minima and for λ/t ≤ 1/
√

27 they become points of globally
minimal non-interacting gap. K andK ′ points are local minima up to λ/t = 1/

√
18

and for larger λ they turn to points of local gap maxima.

5.2 Introduction

The Haldane model [153] describes non-interacting fermions hopping on a honey-
comb lattice in a staggered magnetic �eld. Over the past decade, this prototypical
model of a topologically non-trivial bandstructure has inspired numerous devel-
opments in the �eld of topological insulators [154, 155], and has recently been
experimentally realized using ultracold fermions in an optical lattice [73]. Because
of their high degree of controllability, ultracold atomic gases o�er a unique op-
portunity to investigate the interplay of topological bandstructure and the strong
interactions, where one expects a variety of fascinating phenomena [156].

To experimentally investigate the interaction e�ects on the Haldane model,
one loads two-species of ultracold fermionic atoms into an optical lattice and tunes
their onsite interaction. However, this Haldane�Hubbard model poses a theoretical
challenge. The lack of the time-reversal symmetry gives rise to severe fermion sign
problem [41] and limits the use of QMC methods [42]. This is in contrast with
the time-reversal symmetric Kane�Mele�Hubbard (KMH) model, in which the
two spin species experience opposite magnetic �ux. The KMH model thus allows
sign-problem free QMC simulations at half �lling that show a continuous phase
transition from the quantum spin Hall insulator into an antiferromagnetic insulator
(AFI) as the interaction strength increases [157, 158, 159].

Similarly, in the Haldane�Hubbard model the local onsite interaction favors
an AFI in the strong coupling regime [160, 161], which competes with the Chern
insulating state at weak coupling. To �nd out how the two limiting cases are
connected requires a non-perturbative treatment. Being hard to tackle, some of
the previous studies used static mean-�eld approximations [162, 163, 164, 165, 166].
All these studies reported an additional phase with coexisting antiferromagnetic
long-range order and non-trivial topological character at intermediate interaction
strengths. This topologically non-trivial AFI state has a clear mean-�eld picture:
in the vicinity of a putative second order quantum phase transition to the AFI,
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the antiferromagnetic order parameter increases continuously so that there is a
�nite region where the topological band gap persists despite of the counteracting
topologically trivial band gap due to the magnetic order. However, given the
approximate nature of the static mean-�eld treatment, it is hard to assess whether
this intermediate state really exists.

In this paper we study the ground state phase diagram of the Haldane�Hubbard
model using the DCA. By using clusters embedded in a self-consistently determined
bath, both short-range correlations within the cluster and long-range correlations
are captured. Solving embedded cluster with up to 24 sites at low temperature
we can go beyond static mean-�eld and exact diagonalization treatments. Our
main result is a �rst order phase transition from a topologically non-trivial band
insulating state to a magnetic long-range ordered state, preempting the interme-
diate �topological AFI� state. Observables such as the antiferromagnetic magne-
tization, double occupancy, all exhibit hysteretic behavior around the transition
point, which are clear signatures of the �rst order phase transition [167].

5.3 Numerical simulation

To map out the ground state phase diagram of Eq. 5.1 using the DCA method,
we solve a quantum impurity problem embedded selfconsistently into a bath using
continuous-time auxiliary-�eld QMC method with sub-matrix updates. [39, 109]
Details of the DCA method for multisite unit cells are described in Sec. 2.4. For
most of this study we use the cluster shown in Fig. 5.3(left), which respects the
three-fold rotational symmetry of the honeycomb lattice. Its reciprocal represen-
tation displayed in Fig. 5.3(right) contains all the high symmetry reciprocal lattice
points of our model. We used smaller clusters, Fig. 5.4, to address di�erences found
with respect to competing studies. These as well respect the three-fold rotational
symmetry, but one of them contains the points Γ, K,K ′, while the other cluster
contains Γ,M1,2,3.

For λ = 0 and ∆ = 0, the model reduces to the honeycomb lattice Hubbard
model where sign-problem free QMC simulations have shown a continuous phase
transition from a Dirac semi-metal to an AFI [139, 140]. However, the model
su�ers from a sign problem [41, 42] for λ 6= 0 or ∆ 6= 0. Even though the sign
problem is mitigated in the DCA approach compared to lattice QMC simulations,
it still limits the accessible cluster size, temperature, and parameter ranges of λ or
∆. We perform simulations at a temperature T/t = 1/16, which corresponds to the
bulk non-interacting gap of the Haldane model at λ/t ≈ 0.012. This temperature
is below all relevant energy scales and should thus exhibit ground state behavior of
the model. The sign problem limits the accessible range of λ for the chosen cluster
and temperature to λ/t ≤ 0.15, which nevertheless lies in the experimentally
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Figure 5.2: Staggered magnetization of the Hubbard model on the honeycomb
lattice at half �lling obtained by a DCA simulation performed with clusters with
N = 18, 42, and 78 sites at βt = 20. The dashed lines are �ts using mean-�eld
exponent βmf = 0.5. All clusters were three-fold rotationally symmetric and all of
them contained the K and K ′ point in their representation.

relevant region [73].
While the investigated two-dimensional model cannot spontaneously break the

continuous symmetry at non-zero temperature [143, 144], the DCA solution at a
low but non-zero temperature T may still develop magnetic long-range order as
DCA treats long-range correlations in a mean-�eld fashion. Such ordered solution
should be thought of as a DCA approximation of the ground state. By systemati-
cally increasing the cluster size the DCA result then becomes increasingly accurate.

For better understanding of this peculiar situation we provide data for the
Hubbard model on the honeycomb lattice in Fig. 5.2. One clear feature in the
plot is that all magnetization curves follow the mean-�eld critical behavior � thus
these cannot be fully trusted in the ordered region. Secondly, we see that the
magnetization value decreased for a �xed parameter set with growing cluster size
N , consistent with vanishing magnetization at any T > 0 for N →∞.1

For λ 6= 0 the sign s becomes complex number of unit magnitude. Its average is
purely real, as 〈s〉 = Z/Z̃, where Z is the partition function of the studied system
(real for hermitian Ĥ, see Subsec. 1.3.2), and Z̃ is a sum of magnitudes of the
sampled weights, i.e. it is positive. For an observable o which is purely real on a
physical ground,2 it is therefore su�cient to accumulate <(o s), and at the end of

1In the ordered phase, m only weakly grows with β for given cluster at �xed U . For N = 42
at U = 3.75t we �nd m(βt = 20.0) = 0.1328 ± 0.0004, m(βt = 30.55) = 0.1412 ± 0.0003,
m(βt = 46.67) = 0.1450± 0.0004.

2For example, density or instantaneous density-density correlations are guaranteed to be real;
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Figure 5.3: Left: The embedded cluster with 24 sites used to obtain the phase
diagram. White sites on the border correspond via periodic boundary conditions
to gray sites on the opposite border. Right: The DCA patches in the recipro-
cal space for the same 24-site cluster used throughout the study. The number of
DCA patches, 12, equals to the number of unit cells contained by the cluster. The
Brillouin zone of the lattice is the interior of the dashed hexagon. All high symme-
try points of the Brillouin zone, Γ, K,K ′, and the three �time-reversal symmetric�
points Mi, are located at a patch center. The nearest neighbor distance of sites in
real space is denoted by a.

the simulation evaluate (e.g. by use of Jackknife analysis of binned decorrelated
data) 〈<(o s)〉 / 〈< s〉. For complex observable o, e.g. M∆α3α4σ(iωn) (Eq. B.18)
that is used for evaluation of the Green's functions, we performed the Jackknife
analysis of 〈o s〉 / 〈s〉.

see Subsec. 1.3.2.
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Figure 5.4: Smaller clusters with 3 and 4 cells shown in the real space (left) and
reciprocal (right) representation.

5.4 Observables

5.4.1 Staggered magnetization

To characterize the magnetic property of the system we measure the staggered
magnetization in the cluster,

m =
1

N

〈∑
i

si(n̂i↑ − n̂i↓)

〉
, (5.4)

withN = L` being the number of sites of the cluster. As explained in Subsec. 3.4.1,
the density and thus as well the (staggered) magnetization can be measured di-
rectly on the impurity, while being the corresponding DCA lattice quantity. In
Subsec. 4.4.1 we explained that if we are interested in the value of critical U (or
β), we may utilize the susceptibility measurement. For this study we did not use
that, as we were interested in the phase entered after the magnetic transition.

5.4.2 Estimate of the physical single-particle gap

Metalicity estimate

For a qualitative estimate of the physical single-particle gap ∆sp, i.e. in order to
distinguish gapped system from a metalic one, the estimate of the local density of
states at the Fermi level, ρ(0), may be used,

− 1

π
lim
β→∞

β
1

2L`

∑
α,K,σ

Gαα,σ(K, τ = β/2)︸ ︷︷ ︸
Glocal(τ=β/2)

= A(ω = 0;T = 0) . (5.5)
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Figure 5.5: Behavior of the estimator for the density of states at the Fermi level,
Eq. 5.5, tested on various non-interacting systems at half �lling. Left: The gapped
ionic models with staggered potential ∆ = 0.1t (∆sp = ∆) show exponential
suppression of the estimator with growing β for β∆ � 1. Since the DOS of the
ionic cubic model diverges at the band gap edges as 1

ε±∆
, the exponential regime is

entered at larger β when compared to the ionic honeycomb model with �nite DOS
at the band gap edges. Center: the semimetalic system shows decay proportional to
β−1, consistent with analytical result obtained with Sommerfeld expansion. Right:
a metalic system with almost β-independent values of the estimator. Notice that
for precise results it is needed to scale both the Matsubara frequency cut-o� Nω

and the discretization of the Brillouin zone with β.

Tests on non-interacting models are shown in Fig. 5.5.
Another option is to perform simulation at �xed β and vary the chemical

potential µ. The slope of density taken as a function of µ serves then as estimator
of the spectral function A(ω = µ; β). Fig. 5.6 illustrates the di�culty to distinguish
a semimetalic system (center plot) from a system with small gap (left plot).

Gap value estimates

The single particle gap ∆sp is obtained from the imaginary time lattice Green's
function at chosen k, Glat(k, τ), by �tting to

f(τ ;A, τc,∆sp) = A cosh [∆sp(τ − τc)] (5.6)

near τ = β/2 with �t parameters A, τc, ∆sp. In particular, we optimized

χ2(A, τc,∆sp) =

∫ β

0

dτ
(
f(τ ;A, τc,∆sp)−Glat(k, τ)

)2
e−(τ−β/2)2/σ2

, (5.7)

typically with σ = β/10. The �t may also be applied to local Green's function.
In such a case the Green's function is symmetric in τ around β/2 for particle-hole
symmetric models, see Subsec. 1.3.6, and we may set τc = β/2.
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Figure 5.6: Behavior of the density as a function of chemical potential µ, tested
on non-interacting systems close to half �lling at various temperatures. Left: The
gapped ionic model on honeycomb lattice with staggered potential ∆ = 0.1t (∆sp =
∆) shows exponential suppression of increase of n with β inside of the gap, where
n(µ; β) ≈ n(µ = 0; β → ∞) + c

β2 e
−β∆ sinh(βµ) with a constant c. Center: the

semimetalic system shows n(µ; β) ≈ n(µ = 0; β → ∞) + c
(
π2

6β2 + µ2

2

)
sign(µ)

(Sommerfeld expansion). Right: a metalic system with almost β-independent
results and n linear in µ.

To motivate the �tting form given in Eq. 5.6, we �rst consider the case of
symmetric G(τ) = G(β − τ), in which case a good way to extract the gap is via
curvature of the Green's function at τ = β/2,

∆sp ≈
√
G−1(β/2)

d2G(τ)

dτ 2

∣∣∣∣
τ=β/2

. (5.8)

However, in general, the examined Green's function may be asymmetric in τ ,3 in
which case it is appropriate to �t G(τ) with an exponential decay Ae−∆spτ around
τ = β/2. The form of our �t comprises both needs in a single form.4 Tests on
non-interacting models are presented in Fig. 5.7.

A completely di�erent approach for the gap estimate is the extraction of the
spectral function A(k, ω; β) from the Green's function,

G(k, τ ; β) = −
∫

dωA(k, ω; β)
e−τω

1 + e−βω
, (5.9)

which is a numerically ill-posed task. A technique based on Bayesian statistics, in
the context of QMC simulations commonly referred to as the �maximum entropy

3That is for instance the case for the local Green's function of the ionic models with staggered
potential (∆ 6= 0).

4The form of the �t is precisely the form of the Green's function G11(τ) for Ĥ = −t(ĉ†1ĉ2+ĉ†2ĉ1)
with single-particle state eigenvalues equal to ±t. With µ = 0, the gap is ∆sp = t.
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Figure 5.7: Gap estimates ∆sp obtained via �tting of the local Green's function
to form in Eq. 5.6 for di�erent non-interacting models at half �lling plotted as a
function of β. Left: The gap of ionic models with staggered potential ∆ = 0.1t
approaches ∆ for β → ∞ roughly as β−1. The decay is more rapid for the ionic
cubic model due to diverging DOS at band gap edges. Center: the semimetal has
vanishing gap, the decay is proportional to β−1. Right: a (gapless) metal with
decay β−1.

method� [168], may be applied to the inversion of Eq. 5.9.5 Fig. 5.8 displays
ambiguity of the outcome depending on the choice of the initial model entering
the Bayesian approach. We did not feel con�dent about results postprocessed with
this technique, therefore we did not make use of this technique any further.

5.4.3 Chern number measurement

To reveal the topological nature of the phase we compute the Chern number, using
the topological Hamiltonian of Ref. [170],

Htopo(k) ≡ −G−1(iω = 0,k) = H0(k) + Σ(iω = 0,k) , (5.10)

where H0(k) is the non-interacting part of the Hamiltonian 5.1. Notice that
Htopo(k) is a hermitian matrix in the sublattice indices thanks to the property
of the Green's function, Eq. 1.41, ensuring hermiticity of G(iω = 0,k). We obtain
Σ(iω = 0,K) by a cubic spline interpolation over 40 lowest (positive and negative)
Matsubara frequency self energies Σ(iωn,K). In the DCA, the lattice self energy
Σ(k) is approximated by the impurity self energy Σ(K) at the closest cluster mo-
mentum K, i.e. it is a patch-wise constant function in reciprocal space. The Chern
number calculation utilizing Htopo is performed by discretization of the Brillouin
zone as in Ref. [171]. The results are robust with respect to di�erent Brillouin zone

5The method can be applied straightforwardly if G(k, τ) is purely real and negative, which is
the case provided the Hamiltonian is hermitian and time-independent and the lattice is a Bravais
lattice (Eq. 1.37).
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Figure 5.8: Spectral function A(ω) obtained with maximum entropy method using
the local Green's function obtained in a DCA simulation of Hubbard model on
the honeycomb lattice at U = 5t, βt = 20, at half �lling, simulated with a cluster
consisting of 42 sites. Each solution has in the legend speci�ed the initial model
of the spectral function. Right plot is a zoom in of the left plot at low ω. Only the
solution for �at initial model does not show the little peak at ω = 0. We plot A(ω)
only for positive energies ω as it is symmetric for the investigated particle-hole
symmetric model. The simulation was forced to be in the paramagnetic phase
by symmetrization of the Green's functionsn. We used the maximum entropy
implementation in ALPS [169].

discretization meshes. In addition we checked robustness of the results with re-
spect to interpolation of the self energy in reciprocal space using natural neighbor
interpolation.

The Chern number, being a topological invariant, may change only if the topo-
logical gap, i.e. the band gap of Htopo(k), closes. This topological gap can be
obtained by diagonalization of Htopo(k). We checked that consistent results can
be at the cluster K points obtained via (quadratic) extrapolation of the gap of

−1
2

[
Glat(iωn,K)−1 +

(
Glat(iωn,K)−1

)+
]
for n = 0, 1, 2 to iω = 0. We �nd that

for all examined values of λ, i.e. for λ/t ≤ 0.15, the topological gap closes at the
K and K ′ point,6 while the single particle gap ∆sp of the physical Hamiltonian
(5.1) remains �nite.

6In case of the discontinuities, the topological gap closes during the run of the selfconsistency,
for a non-converged iteration.
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5.5 Results

We �rst present the phase diagram of the Haldane�Hubbard model in Subsec. 5.5.1
with detailed analysis of the numerical data in di�erent parameter regions in its
subsubsections. Then we compare the phase diagram with the one of the ionic
Hubbard model on honeycomb lattice in Subsec. 5.5.2. Finally we compare our
results with recent quantum cluster studies employing smaller clusters [172, 173]
in Subsec. 5.5.3.

5.5.1 Phase diagram

Figure. 5.9 shows our phase diagram of the Haldane�Hubbard model. For λ/t ≥
0.075, we �nd clear evidence of a �rst order transition from the CI to the topo-
logically trivial AFI shown by the black solid line. This phase boundary is not
extrapolated in cluster size. To assess the systematic error, we consider the λ = 0
limit where the model reduces to the honeycomb lattice Hubbard model where
unbiased QMC methods predict a critical interaction to lie between 3.78t and
3.9t [139, 140]. The unextrapolated value UHH(λ = 0)/t = 3.575± 0.075 based on
our 24-site cluster underestimates this value by about 0.3t, as the DCA transition
occurs when the correlation length reaches the order of the cluster size. This dif-
ference provides an estimate of the systematic error. At the �rst order transition
the systematic error is expected to be smaller. For λ/t ≤ 0.05 DCA with 24-site
cluster is consitent with a continuous phase transition with intermediate topologi-
cal AFI. However we believe this to be due to insu�ciently large cluster and that
using larger clusters will again lead a �rst order transition.

First order transition for λ/t ≥ 0.075

Figure 5.10 shows the staggered magnetization as a function of U/t for various
values of λ. Noticeably, m shows a discontinuity for λ/t ≥ 0.075, accompanied
by hysteretic behavior. The simulation can converge to two di�erent solutions de-
pending on the initial bare cluster Green's function provided to the self-consistency
loop. This provides a clear signature of a �rst order phase transition at λ/t ≥ 0.075.
In order to distinguish between slow convergence of the self-consistency procedure
and (meta)stable solutions we perform about one to two hundred iterations.

Around the �rst order transition other observables also exhibit hysteretic be-
havior, as shown in Fig. 5.11. The two curves in each panel are obtained with
self-consistent iterations either started from the CI or from the AFI state. Hys-
teresis behavior in these physical observables can also be measured experimentally
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Figure 5.9: The phase diagram of the Haldane�Hubbard model on honeycomb
lattice based on simulation at T/t = 1/16 using the 24-site cluster. The solid
line is a �rst order phase transition in the Haldane�Hubbard model from the CI
to the AFI. On the dotted line we do not have con�dence about the character of
the transition even though we observe continuous phase transition (see text for
discussions). The error bars of the data points indicate the range of the hysteresis.
The right vertical axis shows the size of the non-interacting band gap,

√
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Figure 5.10: The staggered magnetization as a function of U/t for di�erent λ/t
obtained for a 24-site cluster at T/t = 1/16. The dashed lines indicate a discon-
tinuity of the staggered magnetization, and the region between the dashed lines
indicates the hysteretic region where it is possible to converge to either a para-
magnetic or an antiferromagnetically ordered solution. The hysteresis is visible
for λ/t = 0.075, 0.1, 0.15. For λ = 0.15t we do not provide the upper bound for
stability of the paramagnetic phase due to a too large sign problem.
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are shown as a function of U at λ/t = 0.1. The dashed line segments show the
discontinuity at the �rst order phase transition.

as a signature of a �rst order phase transition. Note that in this case the temper-
ature T/t = 1/16 is for all values of U at least four times smaller than the single
particle gap, and thus low enough to capture ground state behavior. The average
sign of the impurity solver is also notably di�erent in the two phases and exhibits
a jump at the transition point. The Chern number (not plotted) equals to 1 for
the non-magnetic solutions and to 0 for the magnetic solutions.

This clear evidence of a �rst order phase transition is di�erent than the con-
tinuous phase transition transition found in the static mean-�eld [162, 163, 164,
165, 166] and two-site cellular DMFT (CDMFT) studies [172]. Since our DCA
calculation on a 24-site cluster incorporates short-range correlation e�ects and we
can reproduce some of the continuous transition character by using small clusters
(see Sec. 5.5.3), we believe the �rst order transition found in the Haldane�Hubbard
model is real.

Phase transition for λ/t < 0.075

For λ/t ≤ 0.05, we �nd a continuous increase of the staggered magnetization,
as shown in Fig. 5.10. As a consequence of the smooth increase of the magnetic
order parameter, an intermediate topologically non-trivial AFI appears in between
the CI for low U and the AFI for large U . The simulation results at λ/t =
0.025 are depicted in terms of the topological gap at the K point, the staggered
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Figure 5.12: The staggered magnetization and the topological gap at the K point
as a function of U/t for λ/t = 0.025. The �t of the staggered magnetization in
range U/t ∈ [3.7, 4.1] uses the mean-�eld critical exponent βmf = 0.5. The Chern
numbers of the occupied bands drop in between 3.84 < U/t < 3.9, consistent with
closing of the gap of Htopo in the same range. The dotted line is a guide for eye.

magnetization m, and the Chern number as a function of U in Fig. 5.12. The
Chern number drops from 1 to 0 inside the magnetic ordered phase. The same
scenario is found at λ/t = 0.05.

Even though our DCA results are consistent with an intermediate topological
AFI state in a small portion of the parameter space, the data is also consistent with
the scenario of a �rst order phase transition for any non-zero λ, and a diverging
correlation length as λ → 0. In this scenario, the correlation length at the �rst
order transition remains �nite at any non-zero λ, but is larger than the 24-site
cluster employed here, thus resulting in an apparent continuous phase transition
for λ/t ≤ 0.05 region. Larger clusters would thus be required to resolve the phase
transition character in the small λ region, but are intractable because of the sign
problem.

Finally, for λ = 0, the model reduces to the Hubbard model on the honeycomb
lattice, where there is a �rm evidence that the model undergoes a direct second
order phase transition from the paramagnetic semimetal to the AFI [139, 140].
A DCA study of that model predicts in agreement with the latter studies the
direct second order phase transition [174].7 In the vicinity of a second order phase

7The DCA study [174] by Wu and Tremblay utilized as the impurity solver a determinantal
QMC, for which the bath needed to be discretized and �tted. Their bath consisted of about 200
sites. We tried to reproduce their results using CT-AUX impurity solver working with e�ective
action and thus without need of bath discretization. We found discrepancy in results for the 24-
site cluster (Fig. 5.3) shown in their Fig. 6a, where we see the change of low frequency behavior
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Figure 5.13: The phase diagram of the ionic Hubbard model on the honeycomb
lattice based on simulation at T/t = 1/16. The dashed line denotes the critical
interaction strength UIH of a second order phase transition from a band insulator
to an AFI. The error bars show the bounds for the onset of ordering for a 24-site
cluster. The inset shows the density of states of the non-interacting Haldane model
at λ/t = 0.1 as a solid black line, and that of the non-interacting ionic model for
∆ = 0.52t as a dashed green line. Both models have a band gap of 0.52t.

transition the correlation length extends the cluster size and then the mean-�eld
behavior appears in the DCA solution.

As the sign problem is reduced at small λ, at λ/t = 0.025, 0.05 we could perform
simulations with a larger cluster with 72 sites, at the same temperature T =
t/16. That possessed the three-fold rotational symmetry and contained all high
symmetry reciprocal points (Γ, K, K ′, Mi). We searched for traces of hysteresis
in m, but we did not �nd any.

5.5.2 Comparison with ionic Hubbard model on honeycomb
lattice

To further reveal role of the topological band gap, we compare the phase diagram of
the Haldane�Hubbard model with that of the ionic Hubbard model on honeycomb
lattice. The latter model is de�ned by λ = 0 and a staggered sublattice potential
±∆, which opens a topologically trivial band gap. The non-interacting dispersion
of the Haldane and the ionic models are similar if the non-interacting band gaps

of the self energy between U = 4.5t and U = 5t, whereas Wu and Tremblay �nd it in range
4.2 < U/t < 4.4. This di�erence may be due to insu�cient number of discrete bath states they
used.
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are adjusted to match each other. The density of states for both models with non-
interacting band gap 0.52t is shown in the inset of Fig. 5.13.8 Thus, in a crude
theoretical treatment which only cares about the band gap or density of states,
these two models should have similar phase diagrams. However, the phase diagram
of the ionic honeycomb model shown in Fig. 5.13 di�ers substantially from that of
the Haldane�Hubbard model in Fig. 5.9. The dependence of the critical interaction
strength on the non-interacting band gap in the ionic model is weaker than in the
Haldane�Hubbard model. More importantly, the character of the transition is
second order in the ionic Hubbard model for all simulated parameters.

While the ionic Hubbard model on the square lattice exhibits an intermediate
metallic phase between the ionic band insulator (BI) and AFI [175, 176, 177],
our simulations �nd no indication of such phase on the honeycomb lattice.9 A
reason for this di�erence may be di�erent position of the van Hove singularities,
which are at the band edges for the square lattice, but not for the honeycomb
lattice. A similar observation was made in Ref. [178]. A charge imbalance due to
the staggered sublattice potential ∆ is present both in the BI and in the AFI.

5.5.3 Comparison with recent small cluster calculations

Both static mean-�eld calculations [162, 163, 164, 165, 166] and CDMFT on 2-
site clusters [172] predict a continuous phase transition from CI to the AFI, with
an intermediate topologically non-trivial AFI phase for a wide range of λ. Our
Hartree approximation results are in Fig. 5.14. Also results of a variational cluster
approximation calculation on 6-site clusters [172, 173] indicate an indirect transi-
tion from CI to AFI, but via a topologically non-trivial non-magnetic insulating
phase with opposite Chern number as the CI. Another recent study using 6-site
DCA and CDMFT calculations [179] reports, similar to our �ndings, a signature
of a �rst order transition for λ/t = 0.2. Since all studies mentioned above employ
quantum cluster approaches of a similar nature, these discrepancies may either be
due to insu�ciently large clusters or due to subtleties in the cluster embeddings
which break the spatial symmetries [180, 181].

8The largest di�erence between the non-interacting dispersions of the two compared models
is at the M points,

√
t2 − 27λ2 − t, where this is the shift of the van Hove peaks in the non-

interacting density of states.
9For that we focused on ∆ = 0.52t. We performed simulations at βt = 8.0, 11.3, 16.0, 22.6,

32.0, which we used for the DOS estimate (Eq. 5.5) and gap �tting. In addition we simulated at
βt = 16.0 two larger clusters, of 42 and 72 sites, to get the dependence on cluster size. Using the
24-site cluster at βt = 16 we scanned the density away from half-�lling. For U/t = 3.4, 3.6, 3.75
(U∗(∆ = 0.52t)/t = 3.94± 0.06) we found vanishing DOS at the Fermi level. The gap estimate
after extrapolation in cluster size and β is 0.12t, 0.10t, and 0.09t for U/t = 3.4, 3.6, and 3.75,
resp. The cluster size dependence is stronger here than the temperature dependence.
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Figure 5.14: The staggered magnetization of the Haldane�Hubbard model obtained
using Hartree approximation at zero temperature. Left: m shown for various λ,
computed with a mesh of L2 points in the Brillouin zone, L = 192. For λ 6= 0, the
small arrows show U/t with vanishing gap ∆sp, which in the Hartree approximation
is the same as the topological gap. Thus the arrows show the location of the
topological transition from the topological AFI to the topologically trivial AFI.
Apparent is the steepening of the magnetization onset for small λ, but all curves
remain continuousa and no �rst order transition with a discontinuity is found
within the Hartree approximation. Right: Discretization mesh e�ect on m is
negligible for L ≥ 96 at λ = 0.1t.

To shed light on this issue we examined the Haldane�Hubbard model using two
additional clusters of di�erent size, shown in Fig. 5.4. The 6-site cluster contains
the K and K ′ point in its reciprocal representation, while the 8-site cluster does
not. Both of them respect the three-fold rotational symmetry. The staggered
magnetization obtained using these clusters at λ/t = 0.1 are shown in Fig. 5.15.
The 6-site cluster displays similar hysteresis as observed above for the 24-site
cluster,10 with a di�erence in transition point U/t of at most 0.1. The value of
m in the ordered phase is larger than for the 24-site cluster, which is expected,
as DCA becomes exact for N → ∞ and m has to vanish in the thermodynamic
limit at T 6= 0. In contrast, using the 8-site cluster we observe a sharp but
continuous increase of m at a strongly shifted transition point UHH/t = 5.40±0.03
for λ/t = 0.1, without any trace of hysteresis. These �ndings are similar to those
obtained for Haldane model of spinless fermions [182, 183, 184], where Varney et al.
using exact diagonalization, observed �rst order or continuous transition depending
on the presence of the K and K ′ points in the cluster reciprocal representation.
Our �ndings in DCA support their conclusion that the choice of the cluster is

10We performed simulation utilizing the 6-site cluster as well for λ = 0.075t, where we found
tiny hysteresis, at same U as for the 24-site cluster.
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signi�cant and that reliable clusters need to contain the K and K ′ points. That
hints as well on the importance of preserving translational invariance at all levels
of the applied method.

Examining the model within the single-site DMFT yields further insight. For
this we simulate single site from in sublattice A. The form of the k-independent
DMFT self energy for a single unit cell (containing two sites) is obtained only from
the self energy of the simulated site. Its form has to respect the symmetry Eq. 5.2
of the studied Hamiltonian 5.1. The DMFT self energy is approximated by

Σσ(iωn) =

(
ΣAAσ(iωn) 0

0 −Σ∗AAσ(iωn)

)
, (5.11)

neglecting the o�-diagonal components, motivated by the dominantly local char-
acter of the self energy for a Hubbard interaction, see Subsec. A.4.3.11 The DMFT
mapping is conveniently formulated with 2× 2 matrices, comprising the sublattice
indices,

GAAσ(iωn) =
1

ΩBZ

∫
BZ

dk
[(
G0
σ(iωn,k)

)−1 − Σσ(iωn)
]−1

AA
. (5.12)

Surprisingly, the magnetization curve for the Haldane�Hubbard model at λ/t =
0.1 shows discontinuities and hysteresis, Fig. 5.15 and 5.16, even in the DMFT
simulation. This apparent contradiction to our conclusion about the necessity of
the K and K ′ point in the cluster reciprocal representation can be explained by the
prescribed form of the DMFT self energy in Eq. 5.11, which coincidentally obeys
the same constraints, of vanishing AB components, as those due to the symmetry
of the self energy at the K and K ′ point, arising from the three-fold rotational
symmetry of the model.12 For the ionic honeycomb model simulated by DMFT at
∆/t = 0.52, m is continuous. Note that the next-nearest neighbor hoppings on the
same sublattice (λ 6= 0) do not allow to rewrite the mapping Eq. 5.12 as an integral
over the DOS,13 which explains the possibility of �nding qualitatively di�erent
magnetization in the Haldane�Hubbard and ionic honeycomb model despite their
very similar non-interacting DOS.

Finally, the 6-site cluster enable simulations at lower temperature since the
sign problem is less severe than for the 24-site cluster. Results obtained at twice
lower temperature di�er only by an enlarged ordered phase (see Fig. 5.4), while
the �rst order characteristics remains unchanged.

11The other reason is that a single-site DMFT does not provide a suitable quantity which
we could relate to ΣABσ(iωn). Note that for ∆ = 0, the model becomes inversion symmetric,
resulting in ΣBBσ(iωn) = −Σ∗AAσ(iωn) = ΣAAσ̄(iωn), valid both in the paramagnetic and the
(spontaneously) antiferromagnetically ordered case. Since ΣABσ = 0 = ΣBAσ, the presence or
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Figure 5.15: The staggered magnetization of the Haldane�Hubbard model at λ/t =
0.1 obtained with various clusters shown in Fig. 5.4 simulated at temperature T .
The single-site DMFT data (N = 1) is presented as well. The magnetization curve
for the 8-site cluster is qualitatively di�erent from the other curves. The lower value
of m for N = 24 compared to N = 1, 6 is consistent with the observation on the
honeycomb lattice Hubbard model (Fig. 5.2).
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Figure 5.16: The staggered magnetization obtained with a single-site DMFT sim-
ulation for the model de�ned by Eq. 5.1 with di�erent choices of parameters ∆ and
λ: in particular for the Hubbard model on the honeycomb lattice (∆ = λ = 0), the
Haldane model (∆ = 0, λ 6= 0), and the ionic honeycomb model (∆ 6= 0, λ = 0).
The temperature was in all cases T/t = 1/48. The magnetization curve for the
Haldane model shows a �rst order discontinuity and hysteresis, while the other
curves are continuous.
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5.6 Summary and Outlook

Out predictions can be checked by the experiments on the Haldane�Hubbard model
in optical lattice simulators [152, 167]. The �rst order phase transition can be
detected as a hysteresis of spatially averaged local observables. By tuning the
interaction strength to the coexisting region one may also �nd coexisting domains
of CI and AFI phases. Each AFI domain is of the size of the magnetic correlation
length at the �rst order transition point. Interestingly, the topological nature of
the CI would imply presence of chiral edge states around the domain walls which
may be revealed by an in-situ measurement of the domains in the ultracold atomic
gas.

absence of the intracell phase factors in FT (Eq. 1.19) does not in�uence the solution.
12This property was discussed in caption of Fig. 2.8.
13As done in Eq. 97 of section V.B of [55].
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6 Conclusion and outlook

In this thesis we present several applications where the use of DCA is advantageous
over competing methods. DCA is well suited for obtaining thermal averages of
physical observables at moderate temperatures. Another �eld of application of the
method are models which cannot be studied directly with a �nite lattice simulation
due to the sign problem. As this is reduced in DCA, it permits simulations using
moderately sized clusters. Our Haldane�Hubbard model study in Chap. 5 is an
example of such a case. However, the sign problem is not absent in DCA and thus
we were not able to �rmly determine the character of the phase transition at small
values of λ. Solving the Haldane�Hubbard model with DCA+ [185], where the
sign problem was reported to be reduced even more than in DCA, may be subject
of future work.

We attempted at a global update for the CT-AUX solver with the aim to
reduce the autocorrelation times. As described in Sec. B.4, the proposed update
based on Langevin evolution of the imaginary time positions of the auxiliary spins
missed the goal. The obstacle is that reasonable acceptance rate was given only for
relatively short evolution time, which does not signi�cantly change the auxiliary
�eld con�guration. Longer evolution time has to be achieved, even if the evolution
is only approximate.1

The structure of the vertex function investigated in Subsec. 3.4.6 and 4.4.2 can
be used for further development of approximations utilizing the vertex function:
DMFT with vertex corrections [187], dynamical vertex approximation (DΓA) [188,
189], dual fermion approach [190], multi-scale extension to quantum cluster method
[191]. DΓA pushes the locality assumption in DMFT from the self energy to the
fully irreducible two-particle vertex,2 which can be justi�ed by the use of DCA.

1A related update is applied in the so-called hybrid QMC [186] with continuous Hubbard�
Stratonovich �elds, where the evolved degrees of freedom are the auxiliary �eld strengths.

2Notice that in Subsec. 3.4.6 and 4.4.2 we work with the longitudinally particle-hole irreducible
vertex Γ, as opposed to the fully irreducible two-particle vertex Γfir that plays the central role in
the DΓA. The former contains contribution of diagrams that may be reducible in the transverse
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This would require measurement of the susceptibility in all channels and for all
cluster reciprocal vectors Q and multiple bosonic frequencies ν with total memory
requirement proportional to (LNω)3. With similar computational resources as
those used for largest clusters simulated in [2], where it was su�cient to accumulate
the susceptibility measurements for a single Q vector and for ν = 0, one may
anyhow reach LNω ≈ 400.

The scaling (βU)3 of the action-based impurity solvers (CT-AUX [39], CT-
INT [113]) needed for the DCA is a clear disadvantage for reaching low temperature
or large interaction when compared to the linearly scaling Hamiltonian-based LCT-
INT [40]. In order to exploit the linear scaling of LCT-INT, one may �t the
DCA bath with nbath bath sites coupling to the physical sites as in [174]. The
scaling of nbath with respect to β and U in order to keep constant �t precision is a
priori unknown. Further investigation along this line is needed to �nd the overall
complexity of this approach.

While a truly ab initio numerical simulation of the experimental realization
of the Bose�Hubbard model in an optical lattice was done several years ago [74],
analogous studies for fermionic systems [75][1] rely on the LDA. For anisotropic
models like the stacked lattices examined in Chap. 4, it is reasonable to treat the
weak coupling t′ in vertical direction within DMFT, provided the temperature is
much larger than t′. This suggests simulation of independent layers with strong
in-plane hoppings t and DMFT-treated out-of-plane hoppings t′. Such simulation
with a realistic experimental extent of the simulated layer and realistic site po-
tentials is feasible.3 This proposal may be especially useful in presence of large
potential gradients, in which case the in-plane use of LDA may be unreliable.

particle-hole or in the particle-particle channel. Therefore, Γfir is assumed to show even weaker
variations in the reciprocal space than Γ.

3As a feasibility test we performed a �nite lattice simulation of a 20 × 20 site open boundary
cluster with a quadratic potential V (r) = U/2 − r2/40, where the radius r is given in units of
lattice sites. The temperature was T = 0.5t, interaction U = 4t, where t is the (strong) in-plane
hopping. We set the out-of-plane hopping t′ = 0. With an expansion order around 950 and an
average sign of 0.99 in the CT-AUX solver the simulation was not very demanding. Notice that
with DMFT along the weak coupling direction for the case t′ > 0 the sign is expected to be even
closer to 1.0.
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A Fourier transformation

in imaginary time

A.1 Fourier transformation Gij(iωn)→ Gij(τ )

We want to calculate the FT from Matsubara frequency to imaginary time repre-
sentation,

Gab(τ) =
1

β

∞∑
n=−∞

Gab(iωn) e−iωnτ , ωn =
(2n+ 1)π

β
, (A.1)

for 0 < τ < β valid for systems with hermitian Hamiltonian Ĥ independent on
time. Clearly, for any practical calculation we need to introduce some cut-o� in
the sum over n in Eq. (A.1). The Green's function de�nition in imaginary time,

Gab(τ) = −Tτ
〈
ĉa(τ) ĉ†b(0)

〉
, −β < τ < β , (A.2)

reveals the source of di�culty � Gab(τ) is in general discontinuous at τ = 0, causing
long tailed Gab(iωn). We will show that the contribution of the high frequency
terms therefore needs to be taken into account, at least perturbatively. This issue
is extremely important if using impurity solvers working with discretized imaginary
time axis, like the Hirsch�Fye impurity solver [37]. It can be cured by usage of high-
frequency expansions, which were for this purpose developed in [192, 193, 194]. In
what follows we present this standard approach adapted for the case of general
lattice Hamiltonians.

We start the derivation with a generic case, without assumption of any partic-
ular (real space, reciprocal, mixed, ...) representation, using a multiindex ι = (ab)
labeling the Green's function.1 We expand Gι(iωn) for large ωn by successive use

1The multiindex may correspond for example to two site labels and spin (rα, r′α′, σ), or to
two reciprocal quasimomenta, sublattice indices, and spin (kα, k′α′, σ).
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A.1 Fourier transformation Gij(iωn)→ Gij(τ)

of integration by parts,

Gι(iωn) =

=

∫ β

0

dτ eiωnτGι(τ) , (A.3)

=

[
eiωnτ

iωn
Gι(τ)

]β
0

− 1

iωn

∫ β

0

dτ eiωnτG′ι(τ) , (A.4)

=
−Gι(β

−)−Gι(0
+)

iωn
+
G′ι(β

−) +G′ι(0
+)

(iωn)2
+
−G′′ι (β−)−G′′ι (0+)

(iωn)3
+ . . . ,(A.5)

=
∞∑
m=1

cιm
(iωn)m

. (A.6)

If ι = (ab) and a, b label an orthonormal basis, i.e.
{
ĉa, ĉ

†
b

}
= δab, then with

cyclic permutation under the trace in Eq. A.2 we obtain2

Gab(τ = 0+) +Gab(τ = β−) = −δab ⇒ cι1 = δab . (A.7)

Further spectral moments cιm are Hamiltonian dependent. Speci�c examples are
worked out in Sec. A.4. In general, since Gab(iωn) = G∗ba(−iωn), see Eq. 1.36, we
get cabm =

(
cbam
)∗

for any m.
We proceed and use the high frequency asymptotics of Gι(iωn) for |n| ≥ Nω in

the formula for Gι(τ),

Gι(τ) =
1

β

∞∑
n=0

[
Gι(iωn)e−iωnτ +Gι(−iωn)eiωnτ

]
, (A.8)

=
1

β

Nω−1∑
n=0

[
Gι(iωn)e−iωnτ +Gι(−iωn)eiωnτ

]
− 2

β

∞∑
n=Nω

sin(ωnτ)
∞∑
q=0

(
cι4q+1

ω4q+1
n

−
cι4q+3

ω4q+3
n

)

− 2

β

∞∑
n=Nω

cos(ωnτ)
∞∑
q=0

(
cι4q+2

ω4q+2
n

−
cι4q+4

ω4q+4
n

)
. (A.9)

The in�nite sums can be evaluated using special functions. For practical purpose

2Notice that the FT in Eq. A.1 ensures Gab(τ = 0)+Gab(τ = β) = 0. In practice, Gab(τ = 0+)
can be obtained as Gab(τ = 0) = 1

β

∑
nGab(iωn) and Gab(τ = β−) is set according to the Eq. A.7.
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we truncate the sums over q, which allows us to come to this useful expression,3

Gι(τ) =
1

β

Nω−1∑
n=0

(
Gι(iωn) +Gι(−iωn) +

2cι2
ω2
n

)
cosωnτ

+
1

β

Nω−1∑
n=0

(
iGι(−iωn)− iGι(iωn) +

2cι1
ωn
− 2cι3
ω3
n

)
sinωnτ

− 2cι1 + βcι2
4

+
τ

4
(2cι2 + βcι3)− τ 2cι3

4
+O

(
β3

N3
ω

)
, (A.10)

where we used analytic results,

∞∑
n=0

sin [(2n+ 1)x]

2n+ 1
=

π

4
, (A.11)

∞∑
n=0

cos [(2n+ 1)x]

(2n+ 1)2
=

π2

8
− π

4
x , (A.12)

∞∑
n=0

sin [(2n+ 1)x]

(2n+ 1)3
=

π2

8
x− π

8
x2 , (A.13)

valid for 0 < x < π. To remove the explicit dependency on negative Matsubara
frequencies in Eq. A.10, we use the relation Gab(iωn) = G∗ba(−iωn) valid for any
system with hermitian time-independent Ĥ, see Eq. 1.36.

Further simpli�cation is possible in the case of purely real imaginary-time
Gι(τ).4 That ensures cιm ∈ R and Gι(−iωn) = Gι(iω−n−1) = G∗ι (iωn). In such
case,

Gι(τ) =
2

β

Nω−1∑
n=0

{[
<Gι(iωn) +

cι2
ω2
n

]
cosωnτ +

[
=Gι(iωn) +

cι1
ωn
− cι3
ω3
n

]
sinωnτ

}
− 2cι1 + βcι2

4
+
τ

4
(2cι2 + βcι3)− τ 2cι3

4
+O

(
β3

N3
ω

)
. (A.14)

3In this expression we omit usage of special functions, as it would provide real bene�t only
if using FFT. Since this FT is not performance critical part, we performed it with discrete FT.
The sums over n ∈ {0, . . . , Nω − 1} are for numerical reasons to be evaluated with decreasing n
starting from Nω − 1.

4For ι = (ab) and a = b, assuming orthonormal basis, it is always the case � notable examples
are local Green's function, Grr(τ), and the reciprocal space Green's function of a Bravais lattice,
Gk(τ). In general, for a 6= b, Gab(τ) is certainly purely real if the Hamiltonian is real with respect
to the basis labeled by a, b. That is often the case in the real space representation, in which case

we obtain Gkαα′(iωn) = G∗−kαα′(−iωn), implying ckαα
′

m =
(
c−kαα′

m

)∗
.
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A.2 Fourier transformation Gij(τ)→ Gij(iωn)

A.2 Fourier transformation Gij(τ )→ Gij(iωn)

We avoided need of this Fourier transformation via direct measurement of the
Green's function in frequency domain. Performation of this transformation needs
to be handled with care, as Gι(τ) is typically known only at some (regular) mesh.5

To get the high frequency tail of Gij(iωn) correctly, a spline of Gij(τ) with pre-
scribed spectral moments cιm (this technique is called oversampling) comes into
play. For more details see [195].

A.3 Density estimation solely from the Matsubara

measurements

The density at the single particle state j, which may be a site in real space or a
delocalized wave in the reciprocal space, is related to the imaginary-time Green's
function at the given state j. Eq. 1.37 ensures that Gjj(τ) is purely real. Direct
measurement of the density, which is an instantaneous 2-point correlation mea-
surement, is typically simple and for most of the calculations we perform it. In
case we measure only the Gjj(iωn), the density may be obtained as follows,

〈njσ〉 = −Gjjσ(β−) = 1 +Gjjσ(0+) (A.15)

=
1

2
+

2

β

Nω∑
n≥0

< [Gjjσ(iωn)]︸ ︷︷ ︸
sjσ

+cjj2

(
2

β

Nω∑
n≥0

1

ω2
n

− β

4

)
+O

(
N−3
ω

)
.(A.16)

Using the expression cjj2 = −t̃jjσ + Uj (〈njσ̄〉 − 1/2) for a model with onsite inter-
action Uj, see Eq. A.29 and Eq. A.30, and solving the coupled linear equations for
σ and σ̄ we �nd

〈njσ〉 =
1

2
+
sjσ − Ujβα(Nω)sjσ̄ + βα(Nω)

(
t̃jjσ − Ujβα(Nω)t̃jjσ̄

)
1− (Ujβα(Nω))2 +O

(
N−3
ω

)
,

(A.17)
with

α(N) =
1

4
− 2

β2

Nω∑
n≥0

1

ω2
n

=
1

4
− 2

π2

Nω∑
n≥0

1

(2n+ 1)2
=

2

π2

∞∑
n>Nω

1

(2n+ 1)2
> 0 . (A.18)

Asymptotically, α(Nω) = 1
2π2Nω

+ O (N−2
ω ). In order to keep constant precision,

one thus needs to scale the cut-o� Nω linearly with β and the energy scales (U , t,

5The dependence of Gι(τ) on τ may be strong for τ → 0+ and τ → β−, which suggests use
of irregular imaginary time meshes.

116



Fourier transformation in imaginary time

Vασ) in the Hamiltonian. For a typical frequency cut-o� Nω = 500 we get α ≈ 1
104 ,

which provides su�cient precision for simulations at βU / 100 and t / U . For j
being a real space site we have according to Eq. A.29 t̃jjσ = −(Vjσ − µ).

A.4 Spectral moments

In the previous sections we explained that for reliable FT of Gι(iωn) to Gι(τ)
we need to know the high-frequency asymptotics of Gι(iωn) given by the spectral
moments cιm. In this section we �nd explicit forms for these in some model systems.

A.4.1 Spectral moments of the non-interacting Green's func-
tion

For the non-interacting Green's function G0
ι the spectral moments cιm are obtained

e�ortless from the analytic form of the Green's function given in Eq. 1.14, 1.24,
1.25. For the non-interacting lattice Green's function in the reciprocal representa-
tion in matrix form with respect to the intracell sites we �nd

G0,lat
σ (k, iωn) = (iωn1` + T̃kσ)−1 =

1`

iωn
− T̃kσ

(iωn)2
+

(T̃kσ)2

(iωn)3
+ . . . , (A.19)

i.e. ckαα
′σ

m =

[(
−T̃kσ

)m−1
]
αα′

.

A.4.2 Spectral moments of the full lattice Green's function
for a model with onsite interaction

We work out the forms of the spectral moments for a model on a general non-
Bravais lattice with Hubbard interaction. Formulas for a Bravais lattice might be
obtained from these easily, or these can be found in the App. B of [195]. We aim
�nding the spectral moments cijm in a real space basis labeled by i, j for a model
with Hubbard interaction ĤU and total Hamiltonian Ĥ = Ĥ0 + ĤU , with

Ĥ0 = −
∑
i,j,σ

h̃ijσ ĉ
†
iσ ĉjσ , ĤU =

∑
i

Uin̂i↑n̂i↓ , (A.20)

h̃σij = t̃ijσ + Uiδij/2 = tijσ + (−Viσ + µ+ Ui/2)δij , (A.21)

assuming Ui, Viσ, µ ∈ R, tiiσ = 0, tijσ = t∗jiσ. We made the chemical potential shift

by Ui/2 a part of Ĥ0, as it is suitable to handle separately single particle terms
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and the density-density interaction terms.6

Recall that so far we identi�ed

cijσm = (−1)m
[
G

(m−1)
ijσ (β−) +G

(m−1)
ijσ (0+)

]
. (A.22)

To get the Green's function derivatives, we use

ĉι(τ) = eτĤ ĉι e
−τĤ ⇒ ∂τ ĉι(τ)|τ0 = eτ0Ĥ [Ĥ, ĉι]e

−τ0Ĥ . (A.23)

For the second order (m = 2) we thus get

∂τ Gijσ(β−) = − 1
Z

Tr
{
ĉ†jσ [Ĥ, ĉiσ] e−βĤ

}
∂τ Gijσ(0+) = − 1

Z
Tr
{

[Ĥ, ĉiσ] ĉ†jσ e
−βĤ

} ⇒ cijσ2 = −
〈{

[Ĥ, ĉiσ], ĉ†jσ

}〉
.

(A.24)
Here we list commutators useful to �nd the explicit form of cijσ2 , which are not
listed in the App. B of [195],

[n̂a↑n̂a↓, ĉiσ] = −δian̂iσ̄ ĉiσ , (A.25)

[n̂a↑n̂a↓, n̂iσ̄ ĉiσ] = −δian̂iσ̄ ĉiσ , (A.26)[
ĉ†aσ′ ĉbσ′ , n̂iσ̄ ĉiσ

]
= −δiaδσσ′n̂iσ̄ ĉbσ − δiaδσ̄σ′ ĉ†iσ̄ ĉbσ̄ ĉiσ + δibδσ̄σ′ ĉ

†
aσ̄ ĉiσ̄ ĉiσ . (A.27)

Utilizing them we �nd[
Ĥ0, ĉiσ

]
=
∑
k

h̃σikĉkσ ,
[
ĤU , ĉiσ

]
= −Uin̂iσ̄ ĉiσ . (A.28)

Then the second order spectral moments of the full Green's function can be ex-
pressed by

cijσ2 = −
〈{[

Ĥ, ĉiσ

]
, ĉ†jσ

}〉
= −h̃ijσ + Uiδij 〈n̂iσ̄〉 = −t̃ijσ + Uiδij (〈n̂iσ̄〉 − 1/2) ,

(A.29)
or in the reciprocal space representation

ckαα
′σ

2 = e−ik·(rα−rα′ )
∑
∆

eik·∆c∆αα′

2 = −t̃kαα′σ + Uαδαα′ (〈n̂ασ̄〉 − 1/2) . (A.30)

In complete analogy with Eq. A.24 we obtain the formula for the third order,

cijσ3 =
〈{[

Ĥ,
[
Ĥ, ĉiσ

]]
, ĉ†jσ

}〉
. (A.31)

6The shift of the chemical potential results in half-�lling at µ = 0 for any interaction U if the
problem to be solved is particle-hole symmetric, see Subsec. 1.3.6.
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Fourier transformation in imaginary time

We list the partial results,

{[
Ĥ0,

[
Ĥ0, ĉiσ

]]
, ĉ†jσ

}
=

∑
l

h̃ilσh̃ljσ , (A.32){[
ĤU ,

[
ĤU , ĉiσ

]]
, ĉ†jσ

}
= U2

i δijn̂iσ̄ , (A.33){[
ĤU ,

[
Ĥ0, ĉiσ

]]
, ĉ†jσ

}
= −Ujh̃ijσn̂jσ̄ , (A.34){[

Ĥ0,
[
ĤU , ĉiσ

]]
, ĉ†jσ

}
= −Uih̃ijσn̂iσ̄ + Uiδij

∑
a

(
h̃aiσ̄ ĉ

†
aσ̄ ĉiσ̄ − h.c.

)
. (A.35)

The third order spectral moments expression reads7

cijσ3 =
∑
l

h̃ilσh̃ljσ − h̃ijσ
(
Ui 〈n̂iσ̄〉+ Uj 〈n̂jσ̄〉

)
+ U2

i δij 〈n̂iσ̄〉 , (A.37)

=
∑
l

t̃ilσ t̃ljσ − t̃ijσ [Ui (〈n̂iσ̄〉 − 1/2) + Uj (〈n̂jσ̄〉 − 1/2)] + U2
i δij/4 , (A.38)

and in the reciprocal representation,

ckαα
′σ

3 =
∑
β

t̃kαβσ t̃kβα′σ− t̃kαα′σ
(
Uα(〈n̂ασ̄〉− 1/2) +Uα′(〈n̂α′σ̄〉− 1/2)

)
+U2

αδαα′/4 .

(A.39)

A.4.3 Spectral moments of the lattice self energy

At this stage we are ready to calculate the tail of the lattice self energy via Dyson
equation. In the following we use `× ` matrices

(
Ckσ
m

)
αα′

= ckαα
′σ

m for the spectral

7For i 6= j it is straightforward to obtain the expression. For i = j we need some additional
tricks to get there � we use the general property Gij(τ) = G∗ji(τ) (Eq. 1.35),

〈
h̃aiσ̄ ĉ

†
aσ̄ ĉiσ̄ − h̃iaσ̄ ĉ

†
iσ̄ ĉaσ̄

〉
= h̃aiσ̄Giaσ̄(β−)−h̃iaσ̄Gaiσ̄(β−) = 2i=

[∑
a

h̃aiσ̄Giaσ̄(β−)

]
. (A.36)

Being purely imaginary, it cannot contribute to the purely real cii3 . The other terms are for i = j
purely real, thus we get a necessary condition =

[∑
a t̃aiσ̄Giaσ̄(0+)

]
= 0, ∀i, σ.
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A.4 Spectral moments

moments of the interacting lattice Green's function,

Σlat
αα′σ(k, iωn;U, µ) =

=
[
G0,lat
σ (k, iωn; 0, µ)

]−1

αα′
−
[
Glat
σ (k, iωn;U, µ)

]−1

αα′
(A.40)

=
[
iωn1` + T̃kσ

]
αα′
− iωn

[
1` −

(
−Ckσ

2

iωn
+
−Ckσ

3

(iωn)2
+ . . .

)]−1

αα′
(A.41)

= t̃kαα′σ + ckαα
′σ

2 − 1

iωn

(∑
β

ckαβσ2 ckβα
′σ

2 − ckαα′σ3

)
+ . . . (A.42)

= Uαδαα′
(
〈n̂ασ̄〉 − 1/2

)
− δαα′

iωn
U2
α

(
〈n̂ασ̄〉2 − 〈n̂ασ̄〉

)
+ . . . . (A.43)

Recall that Glat
σ is according to Eq. A.21 at chemical potential shifted by U/2.

That cancels the zeroth order, i.e. the Hartree part of self energy, in the half �lled
case.

A.4.4 Asymptotics of the impurity Green's function

In the DCA selfconsistency in combination with the CT-AUX solver [39] we need
to perform FT of the bare impurity Green's function G0,imp(iωn) to G0,imp(τ),
which is needed as the input for the solver. In this subsection we show that the
3 lowest spectral moments of G0,imp(iωn) are the same as the spectral moments of
the patch-averaged G0,lat(iωn).

According to the DCA mapping (Eq. 2.4), the asymptotics of the full impurity
Green's function Gimp(K) is the same as of the patch-averaged full lattice Green's
function,

Gimp
σ (K, iωn) =

〈
Glat
σ (k, iωn)

〉
K

=

〈(
iωn1` + T̃kσ − Σlat

σ (K, iωn)
)−1
〉

K

, (A.44)

where we inserted the explicit form of G0,lat
σ (K, iωn) from Eq. A.19. The patch

averaging is denoted by 〈. . .〉K. Plugging in the expansion of self energy,

Σ(iωn) = Σ0 + Σ1/(iωn) + . . . (A.45)

from the previous subsection, and using the k-independence of Σ0 and Σ1, 〈Σ0,1〉K =
Σ0,1, we get

Gimp
σ (K, iωn) =

=
1`

iωn
+
−
〈
T̃kσ

〉
K

+ Σ0

(iωn)2

+
Σ2

0 + Σ1 − Σ0

〈
T̃kσ

〉
K
−
〈
T̃kσ

〉
K

Σ0 +
〈
T̃ 2

kσ

〉
K

(iωn)3
+O

(
(iωn)−4

)
. (A.46)
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Fourier transformation in imaginary time

The asymptotic behavior of the bare impurity Green's function Gimp,0(K) can
be obtained via the Dyson equation,

G0,imp
σ (K, iωn) =

(
Gimp
σ (K, iωn)−1 + Σlat

σ (K, iωn)
)−1

, (A.47)

where we utilized the DCA approximation of the self energy, Σlat
σ (K, iωn) =

Σimp
σ (K, iωn). Working that out we arrive at

G0,imp
σ (K, iωn) =

1`

iωn
−

〈
T̃kσ

〉
K

(iωn)2
+

〈
T̃ 2

kσ

〉
K

(iωn)3
+O

(
(iωn)−4

)
, (A.48)

which is up to the shown order equivalent to the patch-averaged lattice non-
interacting Green's function.
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B E�ective use of the

CT-AUX impurity solver

B.1 Choice of the parameter K

The parameter K in the CT-AUX impurity solver [39] controls the expansion order
Ns, which behaves like

〈Ns〉
N

= K + βU

〈
n↓ + n↑

2
+ n↑n↓

〉
, (B.1)

thus it is advantageous to keep K low. However, K appears as well in the accep-
tance probability of the Monte Carlo updates, so it in�uences as well the autocor-
relation times. Conventionally it is chosen positive to get real γ,

cosh γ = 1 +
βU

2K
. (B.2)

Another less obvious, but nevertheless useful option is the choice K ∈ (−βU/4, 0),
which results in =γ = π. As γ enters all formulas via exp(±γ), all of them remain
purely real. Negative K raises suspicion that it may cause severe sign problem,
as the con�guration weight w is proportional to KNs . However, w is as well
proportional to determinants of N−1

σ , which depend on exp(±γ). Empirically we
found that problems which are sign-problem free at K > 0 can be simulated with
K ∈ (−βU/4, 0) without introduction of arti�cial sign problem and with smaller
computational e�ort, see in Fig. B.1. For production runs of sign-problem free
problems we choose K = −0.95 βU

4
, unless the simulation is in weakly coupled

regime, i.e. for small βU , as that would make the expansion order Ns close to 0,
rendering the measurements ine�cient.
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Figure B.1: Analysis of the role of the parameter K on the performance of CT-
AUX impurity solver applied on a model problem. Each data point was obtained
with same amount of resources. The top left plot shows linear dependence of 〈Ns〉
on K, in agreement with Eq. B.1. The total number of measurements a�rms that
the time per single update scales quadratically with Ns, as the measurement was
performed once after 64 single update attempts. The top right plot shows the
non-trivial dependence of the auxiliary spin insertion acceptance rate on K. The
lower plot shows the error estimate and the autocorrelation time of the real part
ofMK=0(iω0), which is related to the GK=0(iω0), see Eq. B.16. The problem to be
solved was the half �lled Hubbard model on a cubic lattice with nearest neighbor
hopping t, at βt = 4, ant U/t = 4. The DCA method with a 14-site cluster was
used. Submatrix updates [109] with kmax = 32 were used. Paramagnetic solution
was enforced. The bare impurity Green's function on the input of CT-AUX was
taken from a converged DCA simulation. The time needed for thermalization was
in all runs lower than 12.5% of the total runtime.

124



E�ective use of the CT-AUX impurity solver

B.2 E�ective measurements of single particle

Green's function

This section contain formulas for e�cient measurement of the single particle Green's
function in various representations. For time-independent and translationally in-
variant problems, the measurement described in Subsec. B.2.3 is the optimal choice.
However it may be convenient to measure the instantaneous Green's function di-
rectly on the imaginary time axis, as discussed in Subsec. B.2.1. The usage of
non-equidistant FFT for the FT from τ to iωn described in Subsec. B.2.2 was
already mentioned in [119, 196, 185].

B.2.1 real space Green's function in imaginary time repre-
sentation

The estimator of the imaginary time real space Green's function in the CT-AUX
impurity solver [39], in a state with con�guration {si, ri, τi} of Ns auxiliary spins
(i ∈ {1, 2, . . . , Ns}) is given by

Gijσ(τ − τ ′) = G0
ijσ(τ − τ ′)−

∑
p,q

G0
irpσ(τ − τp)Mpqσ G

0
rqjσ(τq − τ ′) , (B.3)

where p and q run over the auxiliary spins (sp = ±1) at imaginary time τp and at
site positions rp. The matrix Mpgσ of size Ns × Ns depends on the con�guration
{si, ri, τi} and may be in easily obtained in N2

s operations if knowing Nσ, details
may be found in [39]. Notice that unlike in the original paper [39], here we use
the convention Giiσ(τ) < 0 for τ ∈ (0, β), consistent with rest of the thesis. The
second term in Eq. B.3 has the form of product of three matrices, G0 ·M · G0.
Thus Gijσ(τ − τ ′) may be evaluated at all pairs of sites ij in O (NNs(N +Ns))
operations, where N = L` denotes the number of sites of the impurity cluster.
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B.2 E�ective measurements of single particle Green's function

B.2.2 real space Green's function in frequency representa-
tion

Fourier transformation of Eq. B.3 yields the expression1

Gijσ(iωn) = G0
ijσ(iωn)− 1

β

∑
p,q

G0
irpσ(iωn)Mpqσ e

iωn(τp−τq) G0
rqjσ(iωn) , (B.6)

= G0
ijσ(iωn)− 1

β

∑
r,r′

G0
irσ(iωn)Mrr′σ(iωn)G0

r′jσ(iωn) , (B.7)

again having a form of matrix products G0 ·M ·G0, with

Mrr′σ(iωn) =
∑

p:rp=r,q:rq=r′

Mpqσ e
iωn(τp−τq) , (B.8)

of size N × N .2 As G0
σ(iωn) is a constant matrix, it su�ces to accumulate

Mrr′σ(iωn). Gijσ(iωn) is then obtained via Eq. B.7 at the end of the simula-
tion, performing the matrix operations only once. For translationally symmetric
problems we may reduce the number of independent indices in Mrr′σ(iωn) by sym-
metrizing over the same relative distance ∆,

M∆σ(iωn) =
∑

p,q:rp−rq=∆

Mpqσ e
iωn(τp−τq) . (B.9)

The key quantity, Mrr′σ(iωn) or M∆σ(iωn), may be e�ciently evaluated using
the nfft library performing non-equidistant fast Fourier transformation [116]. For

1Perform integration 1
β

∫ β
0

dτ eiωnτ
∫ β

0
dτ ′ e−iωnτ

′
on both sides of Eq. B.3 and use the de�ni-

tion

G(iωn) =

∫ β

0

dτ eiωnτG(τ) =

∫ x+β

x

dτ eiωnτG(τ) , for x ∈ (−β, 0) , (B.4)

to recover the left hand side and the �rst term on the right hand side of Eq. B.6. Further plug
in the de�nition

G(τ) =
1

β

∞∑
n=−∞

e−iωnτG(iωn) , ωn =
(2n+ 1)π

β
, (B.5)

for the two other G0-s on the the right hand side and utilizing
∫ β

0
ei(ωn−ωm)τ dτ = βδmn recover

the Eq. B.6.
2High-frequency tail of the interacting Green's function shows thatMrr′σ(iωn) may approach

a non-zero constant. In the case of Hubbard interaction that may happen only for r = r′, see
Eq. A.29. In that case, the Fourier transformed Mrr′σ(τ) may be ill-de�ned.
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E�ective use of the CT-AUX impurity solver

measurements of frequencies ωn = (2n+1)π
β

for n = 0, 1, . . . , Nω − 1 with even Nω,
we perform

Mrr′σ(iωn) =
∑
ι

eiπ(2n+1)χιMισ (B.10)

=
∑
ι

eiπ2(n−Nω/2)χι eiπ(Nω+1)χιMισ︸ ︷︷ ︸
M̃ισ

(B.11)

=
∑
ι

eiπ2n′χ̃ιM̃ισ , (B.12)

with χι = τp−τq
β

with a multiindex ι ≡ (p, q) for (p, q) satisfying the conditions
rp = r, rq = r′. χ̃ι denotes χι shifted by an integer to the range [−0.5, 0.5)
to match the requirements of the nfft library. The e�ective frequencies to be
computed are n′ ≡ n − Nω

2
∈
{
−Nω

2
, . . . , Nω

2
− 1
}
, as needed by nfft. In the

actual implementation it is worth to precompute eiπ(Nω+1)τp/β at the begin of the
measurement. The quantityMrr′σ(iωn) can be obtained in O (N2

s +N2Nω ln(Nω)).

B.2.3 Reciprocal Green's function in frequency representa-
tion

In the case of translationally symmetric problems (with multisite unit cells) we
use FT of form

fα1α2(r1, r2) =
1

L

∑
k

e−ik·(r2−r1) e−ik·(α2−α1) fα1α2(k) , (B.13)

fα1α2(k) =
1

L

∑
r1,r2

eik·(r2−r1) eik·(α2−α1) fα1α2(r1, r2) , (B.14)

where αi denotes the intracell site label and the intracell position vector in the
scalar product with k vector, e.g. in e−ik·(α2−α1).3 The real space site position rp of
an auxiliary spin p is then encoded by unit cell position vector rp and the intracell
site (vector) αp. Then, the Fourier transformed Green's function estimator in
Eq. B.6 reads

Gkα1α2σ(iωn) = G0
kα1α2σ

(iωn)− 1

βL

∑
p,q

G0
kα1αpσ

(iωn)G0
kαqα2σ

(iωn)

×Mpqσ e
iωn(τp−τq) e−ik·(rp−rq) e−ik·(αp−αq) , (B.15)

3In the rest of the thesis is the intracell site vector denoted by rα. Here we break the convention
to avoid notation rα1

or rαp .
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B.3 Fidelity susceptibility estimator for CT-AUX

where we used the Bravais sum over cell vectors r,
∑

r e
−i(k−k′)·r = Lδkk′ . Rewrit-

ing it to a form with matrix multiplication we get

Gkα1α2σ(iωn) = G0
kα1α2σ

(iωn)− 1

βL

∑
α3,α4

G0
kα1α3σ

(iωn)Mkα3α4σ(iωn)G0
kα4α2σ

(iωn) ,

(B.16)
with

Mkα3α4σ(iωn) =
∑
∆

M∆α3α4σ(iωn) e−ik·∆ e−ik·(α3−α4) , (B.17)

M∆α3α4σ(iωn) =
∑

p,q:αp=α3,αq=α4,rp−rq=∆

Mpqσ e
iωn(τp−τq) . (B.18)

An e�ective implementation accumulatesM∆α3α4σ(iωn) using the nfft library [116],
described in Subsec. B.2.2, and performs Eq. B.17 and B.16 at the end of the sim-
ulation. The accumulation of M∆α3α4σ(iωn) runs in O (N2

s + L`2Nω ln(Nω)). The
above expressions simplify considerably in the case of unit cell consisting of a single
site, as all intracell site labels αi are trivial in that case and may be ignored. If the
studied model possesses spatial symmetries, it may be advantageous to perform
Eq. B.17 with FFT immediately after the measurement, symmetrize Mkα3α4σ(iωn)
in the model symmetry subspace and by that reduce the number of observables to
be accumulated.

B.3 Fidelity susceptibility estimator for CT-AUX

As a part of the study [4] dealing with new �delity susceptibility estimator in-
vented by Lei Wang, the author of the thesis conducted several tests with the
CT-AUX impurity solver in the role of a �nite lattice QMC solver, i.e. without
any selfconsistency condition. The main �nding of [4] was the �delity susceptibility
estimator,

χT 6=0
F =

〈kLkR〉 − 〈kL〉 〈kR〉
2λ2

, (B.19)

valid for any Hamiltonian of form,

Ĥ = Ĥ0 + λĤ1 , (B.20)

simulated with a QMC perturbatively around Ĥ0, i.e. expanding in λ,

Z = Tr
{
e−βĤ

}
=
∞∑
k=0

λk
∫ β

0

dτ1 . . .

∫ β

τk−1

dτk
∑
Ck

w(Ck, {τ}) , (B.21)
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E�ective use of the CT-AUX impurity solver

where Ck are con�gurations of the order k to be sampled from, and w(Ck, {τ}) are
their corresponding weights. The kL in the estimator B.19 denotes the number
of τs in an arbitrarily chosen window of size β/2 in the periodic imaginary time
domain [0, β), and kR = k − kL.4 Clearly, 〈kL〉 = 〈kR〉 = 〈k〉 /2.

The CT-AUX solver, applied on a model with Hubbard interaction,

Ĥ = Ĥ0 + U
∑
i

(
n̂i↑ −

1

2

)(
n̂i↓ −

1

2

)
, (B.22)

expands the partition function to form

Z =
∞∑
k=0

(
K

2β

)k ∫ β

0

dτ1 . . .

∫ β

τk−1

dτk
∑
Ck

w (Ck, {τ} ; γ) , cosh γ = 1 +
βU

2K
,

(B.23)
where K is a non-physical simulation parameter (Sec. B.1), and Ck = ({r} , {s}) is
a set of k auxiliary spins, at space and time position (ri, τi) with strength si = ±1.5

Importantly, w depends onK only via γ (Eqs. 6a,6b of [39]). ChoosingK = αβU/2
with a non-zero constant α we get,

Z =
∞∑
k=0

Uk

∫ β

0

dτ1 . . .

∫ β

τk−1

dτk
∑
Ck

αk w
(
Ck, {τ} ; acosh(1 + α−1)

)︸ ︷︷ ︸
w̃(Ck,{τ})

, (B.24)

where the new weights w̃ are U -independent. By that we matched the form of Z
to Eq. B.21, justifying the use of the �delity susceptibility estimator found in [4]
within CT-AUX.6

In [4] the studied fermionic system was the Hubbard model on the honeycomb
lattice at half �lling, where sign-problem free QMC enable large �nite lattice stud-
ies [138, 139, 140]. In [4] the simulations were performed with LCT-INT [40], but
for the investigated model parameters the advantage of linear scaling in βU with
respect to cubically scaling CT-AUX did not make the CT-AUX solver with sub-
matrix updates [109] outperformed. We found out that for reasonable precision of
χF large number of measurements need to be conducted. That is not surprising,
as the estimator measures the correlation of kL and kR. In both solvers, LCT-INT

4For the accumulation of kLkR we need to �nd kL. That can obviously be done in linear time
with k for a �xed position of the window in imaginary time and given con�guration ({τ}). It is
however possible to �nd kLkR = kL(k − kL) averaged over all positions of the window with the
same complexity if {τ} is sorted.

5In Secs. B.1, B.2 the expansion order k was denoted by Ns.
6Notice that we did not add any contraint to K, this was just a trick to make the form of

Z to match the starting point of the derivation used in [4]. Direct derivation of the �delity
susceptibility estimator without assumptions on K leads naturally to the same estimator.
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B.4 Attempt for a global update

and CT-AUX, the updates are local, rendering autocorrelation times of observables
proportional to k local updates. In CT-AUX, the autocorrelation time of 〈kLkR〉
was practically identical with that of 〈k〉. For clusters of 2L2 sites simulated at
βt = L for L = 6, 9, 12 at U/t = 4.1 both autocorrelation times were roughly
15 〈k〉.7 That opened question, if a non-local update, even at cost O (k3),8 could
not reduce the autocorrelation times to α 〈k〉 with α ∼ 1.

B.4 Attempt for a global update

We experimented with a global update performing move of the auxiliary spin
along the imaginary axis. In CT-AUX, the auxiliary spin positions on the imag-
inary axis are the only auxiliary �eld parameters enabling continuous evolution.
The secondary reason for such a global move originates in the form of the �delity
susceptibility estimator described in the previous section, of which the part 〈kLkR〉
depends on the auxiliary spin imaginary time positions τi. Conceptually we fol-
lowed the work [197] utilizing Langevin dynamics with damped motion.9

For this update we propose normally distributed velocities vi (N(µ = 0, σ = 1))
of the k auxiliary spins along the (periodical) imaginary time axis. We further
evaluate the force fi = 1

w
∂w
∂τi

on each spin, and propose its move to10

τ̃i = τi + vit+ fit
2/2 . (B.25)

The evolution time t was set to �xed value proportional to βN/k, which is the
average imaginary time di�erence between neighboring auxiliary spins at the same
real space position.11 This is self-balanced. The proposal probability for the move
from {τ} is (2π)−k/2 exp

(
−1

2

∑
i v

2
i

)
, which can be expressed in terms of τi, τ̃i, and

fi via Eq. B.25. For the proposal probability of the backward move needed to
compute the Metropolis [35] acceptance rate R we need to evaluate the forces f̃i
at the �nal positions τ̃i as those enable determination of the velocities to get from

7The parameter K was chosen here close to −0.975 βU
4 ; recall Sec. B.1.

8The cost of local update in CT-AUX is O
(
k2
)
.

9In [198], the authors propose to evolve the continuous Hubbard�Stratonovich �elds with the
molecular dynamics move. In CT-AUX, the auxiliary spins have discrete values, so the only
continuous degree of freedom to move are the imaginary time positions of the auxiliary spins.

10Since we do Langevin dynamics, vi �uctuates in time and therefore our time evolution is
modeled as a sequence of steps with small t. This is di�erent from the molecular dynamics
approach, where with single vi one tries to evolve over τ ∼ β according to τ̇i = vi, v̇i = fi, which
is then to be solved by numeric integration using composite integration rule.

11This is motivated by the assumption of exponentially decreasing G0 with real space distance,
see the form of the force in Eq. B.28.
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E�ective use of the CT-AUX impurity solver

τ̃ to τ .12 The acceptance rate is given by

R = min

{
1,

w̃

w
exp

(
−1

2

∑
i

[
t2

4

(
f̃ 2
i − f 2

i

)
− (τi − τ̃i)

(
f̃i − fi

)])}
, (B.26)

where w̃ denotes w (Ck, {τ̃}).
For the evaluation of the force fi we need the explicit form of w (Ck, {τ}), for

the CT-AUX [39]

w (Ck, {τ}) = e−KN Tr
{
e−βĤ0

}∏
σ

detN−1
σ (Ck, {τ}) . (B.27)

Using the form of N−1
σ given in Eqs. 8,7 of [39] we �nd

fi =
∑
σ,j 6=i

[
(Nσ)ij

(
1− e−γ(−1)σsi

) ∂G0
rjriσ

(τj − τi)
∂τi

+ (Nσ)ji
(
1− e−γ(−1)σsj

) ∂G0
rirjσ

(τi − τj)
∂τi

]
. (B.28)

The G0 are the non-interacting impurity Green's function on the input of the
solver, in the DMFT or DCA context these would be G0,imp.

The complexity of this update isO (k3), as we need to compute the determinant
and the inverse of N−1

σ . That limits the reasonable frequency of this type of update
to once per O(k) local updates.13 For the Langevin dynamics the evolution time
t cannot be very long, as that would negatively in�uence the acceptance rate R.
A composition of these steps is desirable. For a practical use one would have to
overcome the need of the O (k3) operations at every single time step.

Unfortunately, the gain in reduction of the autocorrelation times of 〈k〉 and
〈kLkR〉 (entering the �delity susceptibility measurement) due to this type of global
update did not outweigh its high cost, reducing the rate of e�ectively independent
measurements.14

12This would not be needed if we would use reversible integrator within a molecular dynamics
approach (see footnote 10) as that would directly compute the �nal velocities ṽi at the end of
the time evolution.

13The proposed global update cannot be the only type of update, as that would break ergodicity
� neither it changes the real space position ri of the auxiliary spins, nor does it alter their count
k.

14For the test, we performed a single global update attempt per q local update attempts, with
q �xed to a value of expected 〈k〉. We ran the test for the �nite lattice simulation of the Hubbard
model on the honeycomb lattice, using a cluster of N = 72 sites, at βt = 6 and U = 4.3t.
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C Free fermions

This appendix contains results for free fermions on a (general) lattice. The energy
per site, density, and entropy per site can be computed for free fermions based on
the DOS ρ(ε),

n0 = 2

∫
dε ρ(ε) f(ε− µ; β) , (C.1)

e0 = 2

∫
dε ρ(ε) ε f(ε− µ; β) , (C.2)

s0 = −2

∫
dε ρ(ε) [f(ε− µ; β) ln f(ε− µ; β)

+ (1− f(ε− µ; β)) ln (1− f(ε− µ; β))] , (C.3)

where the prefactor 2 accounts for the spin degeneracy, and f(ε; β) =
(
1 + eεβ

)−1

is the Fermi�Dirac distribution.
The 2-particle properties, in general, cannot be obtained purely from the knowl-

edge of DOS. The double occupation is an exception, as for the case when σ is a
good quantum number, it reduces to the density product for the two spin �avors,

1

L

∑
r,α

〈n̂rα↑n̂rα↓〉0 =
1

L2

∑
r,r′,α

〈n̂rα↑〉0 〈n̂r′α↓〉0 , (C.4)

where 〈. . .〉0 is the thermal average with index 0 indicating absence of interactions.
In the above equation we used translational invariance of the lattice, 〈n̂0α〉0 =
1
L

∑
r 〈n̂rα〉0. For quanti�cation of the spin-spin correlations of free fermions we

need to know the dispersion, as it is shown in subsequent sections.
The free fermion results are clearly suitable for checks of this limit case of

interacting fermions obtained by numerical methods capable to deal with inter-
acting problems. Apart from that we used the EOS obtained for free fermions in
the LDA calculations for the dilute limit (subsec. 3.4.1), in which density-density
interactions can be neglected.1

1Another alternative for cheap calculation of the properties in the dilute case is the Hartree
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C.1 Spin-spin correlations of free fermions on a

Bravais lattice

In the present section we calculate the spin-spin correlation,〈
Ĉ∆

〉
0
≡ 2

L

∑
r

〈
Ŝzr Ŝ

z
r+∆

〉
0
, (C.5)

=
1

2L

∑
r

〈n̂r↑n̂r+∆↑ + n̂r↓n̂r+∆↓ − n̂r↑n̂r+∆↓ − n̂r↓n̂r+∆↑〉0 , (C.6)

of non-interacting (free) fermions at real space relative position ∆ for the case of a
Bravais lattice.2 The single particle eigenstates are labeled by k and spin projection
σ (which is assumed to be a conserved quantity and thus it is a good quantum
number). We denote the multiparticle eigenstates by |{nkσ}〉 =

∏
k,σ c

†
kσ

nkσ |0〉.
Let us transform the spin-spin correlation operator Ĉ∆ to the k-space,

1

2L

∑
r,σ,σ′=±1

σσ′n̂rσn̂r+∆σ′ =
1

2L2

∑
k,k′,q,σ,σ′

σσ′ei∆·qĉ†kσ ĉk−qσ ĉ
†
k′σ′ ĉk′+qσ′ .(C.7)

Thus 〈{nkσ}| Ĉ∆ |{nkσ}〉 equals to3

1

2L2

∑
k,k′,q,σ,σ′

σσ′ei∆·q [δq,0nkσnk′σ′ + δσσ′δk,k′+qnkσ(1− nk′σ)] . (C.8)

We compute the thermal average using the above expression4∑
|e〉

e−βε

Z
〈e| Ĉ∆ |e〉 = (C.9)

=
∏
q

 ∑
nq↑=0,1

e−βεq↑

1 + e−βεq↑

∑
nq↓=0,1

e−βεq↓

1 + e−βεq↓

 〈e| Ĉ∆ |e〉 , (C.10)

=
1

2L2

∑
k,k′,q,σ,σ′

σσ′ei∆·q [δq,0fkσfk′σ′ + δσσ′δk,k′+qfkσ(1− fk′σ)]

+O
(
L−1

)
, (C.11)

approximation, with additional cost due to the selfconsistent condition on densities.
2The onsite spin-spin correlation needs to be handled di�erently, since n̂rσn̂rσ = n̂rσ. We �nd〈

Ĉ∆=0

〉
= n

2

(
1− n

2

)
, where n is the density (per site).

3Note that the term with q = 0 and k = k′ is double counted. However, as it is proportional
to nkσ(1− nkσ), and nkσ ∈ {0, 1}, it vanishes.

4Note that in Eq. C.11, unlike in Eq. C.8, the term for the case q = 0 ∧ k = k′ does not
vanish, which is the reason for the presence of the subleading term of order L−1.
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Free fermions

where the last line was evaluated in the occupation basis nqσ; fkσ is the short no-
tation for the Fermi�Dirac distribution function

(
1 + eβ(εkσ−µ)

)−1
. The expression

above may be written as (assuming ∆ 6= 0),〈
Ĉ∆

〉
0

=
1

2
(n↑ − n↓)2 − 1

2L2

∑
k,q,σ

ei∆·qfkσfk−qσ . (C.12)

For spin-independent energies (∀q : εq↑ = εq↓) n↑ = n↓, so we get

2

L

∑
r

〈
Ŝzr Ŝ

z
r+∆

〉
0

= − 1

L2

∑
k,q

ei∆·qfkfk−q = −

∣∣∣∣∣ 1L∑
k

ei∆·kfk

∣∣∣∣∣
2

. (C.13)

C.2 Spin-spin correlations of free fermions on a

general lattice

Here we deal with spin-spin correlations on a general lattice with 2 or more sub-
lattices indexed with capital letters, A,B, . . .. Greek letters α, γ stand for some
sublattice index. The goal is to derive expression for〈

Ĉ∆αγ

〉
≡ 2

L

∑
r

〈
ŜzrαŜ

z
r+∆γ

〉
=

1

2L

∑
r,σ,σ′=±1

σσ′ 〈n̂rασn̂r+∆γσ′〉 , (C.14)

where r denotes the real space position of the unit cell and ∆ is the unit cell
relative position. Transformation to reciprocal space yields expression,

Ĉ∆αγ =
1

2L2

∑
k,k′,q,σ,σ′

σσ′ei∆·q ĉ†kασ ĉk−qασ ĉ
†
k′γσ′ ĉk′+qγσ′ . (C.15)

Now we need to specify the Hamiltonian, which we consider to be of the form,

Ĥ =
∑

k,α,γ,σ

ĉ†kασhkαγσ ĉkγσ , (C.16)

with α and γ running over the sublattices. We diagonalize hkαγσ with a unitary
transformation in the sublattice space at each k and σ,

Ĥ =
∑
k,n,σ

= d̂†knσεknσd̂knσ , (C.17)

with transformation given by

ĉ†kασ =
∑
n

U∗nα(k, σ) d̂†knσ , ĉkασ =
∑
n

Unα(k, σ) d̂knσ . (C.18)
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For the evaluation of
〈
Ĉ∆αγ

〉
for free fermions it is suitable to express the

operator Ĉ∆αγ in the free fermions eigenstate operators dknσ, d
†
knσ,

Ĉ∆αγ =

=
1

2L2

∑
σ,σ′

σσ′
∑

k,k′,q,,n,n′,m,m′

ei∆·qU∗nα(k, σ)Umα(k− q, σ)U∗n′γ(k
′, σ′)

Um′γ(k
′ + q, σ′) d̂†knσd̂k−qmσd̂

†
k′n′σ′ d̂k′+qm′σ′ . (C.19)

Thus 〈{nknσ}| Ĉ∆αγ |{nknσ}〉 equals to

1

2L2

∑
k,k′,n,n′,σ

U∗nα(k, σ)Un′α(k′, σ)U∗n′γ(k
′, σ)Unγ(k, σ) ei∆·(k−k′) nknσ(1− nk′n′σ)

+
1

2L2

∑
σ,σ′

σσ′
∑

k,k′,n,n′

|Unα(k, σ)|2 |Un′γ(k′, σ′)|2 nknσnk′n′σ′ . (C.20)

Under assumption of σ independence of hkαγσ the second term does not con-
tribute at zero (�nite) temperature, as the unitary matrices and occupation num-
bers (Fermi�Dirac distributions) will in that case be σ independent as well. In the
rest we assume the σ independence of Ĥ. Thus we have to deal only with the �rst
term. Using the property of the unitary matrices U(k, σ),∑

n

Unα(k, σ)U∗nγ(k, σ) = δαγ , (C.21)

and the Bravais sum over k′ we see that the part independent on nk′n′σ contributes
only in the case of onsite spin-spin correlations, for ∆ = 0 and α = γ.5 In the
other case we �nd for a thermal ensemble the expression,

〈
Ĉ∆αγ

〉
= −

∣∣∣∣∣ 1L∑
k,n

U∗nα(k)Unγ(k) ei∆·k fkn

∣∣∣∣∣
2

+O
(
L−1

)
. (C.22)

For a bipartite lattice with two sublattices A, B,6 i.e. with hoppings only
between sites on di�erent sublattices, hkαα = 0 at half �lling. Consequently εkn =

± |hkAB|, |Unα(k)|2 = 1/2, and
∑

n fkn = 1, implying that
〈
Ĉ∆αα

〉
vanishes for

∆ 6= 0.

5For onsite spin-spin correlation the formula in footnote 2 applies.
6Example lattices: honeycomb lattice nearest neighbor hoppings, (anisotropic) cubic or square

lattice with nearest neighbor hoppings.
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D High-temperature

series expansion

For various tasks, e.g. for entropy estimates, it is important to know the an-
alytic behavior of various observables, valid at least in some parameter range.
High-temperature series expansion (HTSE) provides such estimate for tempera-
ture larger than any other energy scales involved in the problem. We assume the
Hamiltonian Ĥ = Ĥ0 + ĤU be of this form,

ĤU =
∑
i

Uin̂i↑n̂i↓ , Ĥ0 = −
∑
i,j,σ

h̃ijσ ĉ
†
iσ ĉjσ , (D.1)

with

h̃ijσ = tijσ + (µ̃− Viσ)δij . (D.2)

Notice that we included the chemical potential µ̃ into the non-interacting Hamil-
tonian Ĥ0. As N̂ we denote the total particle number operator,

N̂ =
∑
i,σ

n̂iσ . (D.3)

Since it is particularly convenient to perform the HTSE in real space basis, we
do not explicitly adapt the site notation rα used in the rest of the thesis. We
nevertheless assume that Ui and h̃ijσ are translationally invariant.
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D.1 High-temperature expansion in general

D.1 High-temperature expansion in general

Let's assume an operator Ô and some Hamiltonian Ĥ. Its high-temperature, i.e.
low β, expansion is given by,

〈
Ô
〉

=

∑
i 〈i| Ôe−βĤ |i〉∑
i 〈i| e−βĤ |i〉

(D.4)

= β0

[
1

Θ
Tr
{
Ô
}]
− β1

[
1

Θ
Tr
{
ÔĤ

}
− 1

Θ2
Tr
{
Ô
}

Tr
{
Ĥ
}]

+ β2

[
1

2Θ
Tr
{
ÔĤ2

}
− 1

Θ2
Tr
{
ÔĤ

}
Tr
{
Ĥ
}

− 1

2Θ2
Tr
{
Ô
}

Tr
{
Ĥ2
}

+
1

Θ3
Tr
{
Ô
}

Tr
{
Ĥ
}2
]

+O(β3) , (D.5)

with traces over the multiparticle states |i〉; Θ ≡ Tr
{
1̂
}
is the dimension of the

problem. For our Ĥ = Ĥ0 + ĤU as de�ned in Eq. D.1 it is convenient to evaluate
the traces using the real space basis |{nrασ}〉 = Πr,α,σ

(
c†rασ

)nrασ |0〉. We assume
that the system contains L cells labeled by r, each with ` sites denoted by α, and
two �avors σ ∈ {↑, ↓}.

Here we list traces which appear in Eq. D.5 and are Ô-independent,

∑
i

〈i|1 |i〉 = 2
∑

r,α,σ 1 = 22`L ≡ Θ , (D.6)

∑
i

〈i| Ĥ |i〉 = LΘ

[
1

2

∑
α,σ

(Vασ − µ̃) +
1

4

∑
α

Uα

]
, (D.7)

∑
i

〈i| Ĥ2 |i〉 =
LΘ

4

L(∑
α,σ

(Vασ − µ̃+ Uα/2)

)2

+
∑
α,σ

(Vασ − µ̃)2 +
∑
α,σ

(Vασ − µ̃)Uα +
3

4

∑
α

U2
α

+
∑

α,α′,∆,σ:(α,0) 6=(α′,∆)

|tσ∆αα′ |
2

 . (D.8)
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High-temperature series expansion

These were obtained via traces, evaluated with simple combinatorics,

Tr
{
ĉ†i ĉj

}
=

Θ

2
δij , (D.9)

Tr
{
n̂aĉ

†
i ĉj

}
=

Θ

4
δij (1 + δai) , (D.10)

Tr
{
ĉ†aĉa′ ĉ

†
bĉb′
}

=
Θ

4
δab′δa′b , for a 6= a′, b 6= b′ , (D.11)

Tr
{
n̂an̂bĉ

†
i ĉj

}
=

Θ

8
δij (1 + δab + δbi + δai) , (D.12)

Tr {n̂aσn̂bσ′n̂c↑n̂c↓} =
Θ

16
[1 + δac + δbc + δabδσσ′ + δabδbcδac (1− δσσ′)] . (D.13)

It is noticeable that expression D.8 contains terms with di�erent behavior with
respect to the size L. That is the consequence of not excluding disconnected
graphs at evaluation of the traces D.9-D.13. Since we assume L → ∞, boundary
terms do not play a role and any intensive physical quantity has to be proportional
to L0.

D.2 Equation of states

Now we calculate the HTSE of the average density per site, called as well �lling,
1
`L

〈
N̂
〉
. For that we need further traces,

Tr
{
ĉ†aσ ĉbσn̂cσ′ ĉ

†
bσ ĉaσ

}
=

Θ

8
(1 + δbcδσσ′ − δacδσσ′) , for a 6= b , (D.14)

Tr {n̂aσn̂b↑n̂b↓n̂c↑n̂c↓} =
Θ

32
(1 + δab + δac + 3δbc + 2δabδbcδac) . (D.15)

The HTSE of density is given by

n(β) = 1− β

4`

∑
α,σ

(Vασ − µ) +
β2

16`

∑
α,σ

(Vασ − µ)U +O(β3) . (D.16)

In the above expression we set µ̃ = µ+ U/2, and Uα = U .
Analogously we would get for the magnetization m = 1

`L
〈
∑

i (n̂i↑ − n̂i↓)〉,

m = − β
4`

∑
α,σ

σVασ −
β2

16`

∑
α,σ

σVασU +O(β3) , (D.17)

with σ = ±1.
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For the energy per site, e = 1
`L

〈
Ĥ + µ̃N̂

〉
, we need further traces,

Tr
{
ĉ†aĉa′ ĉ

†
bĉb′ ĉ

†
cĉc′
}

=
Θ

8
(δa′bδb′cδc′a − δa′cδb′aδc′b) ,

for a 6= a′, b 6= b′, c 6= c′ , (D.18)

Tr
{
ĉ†aσ ĉbσn̂c↑n̂c↓ĉ

†
bσ ĉaσ

}
=

Θ

16
(1 + δbc − δac) , for a 6= b , (D.19)

Tr {n̂a↑n̂a↓n̂b↑n̂b↓n̂c↑n̂c↓} =
Θ

64
(1 + 3δab + 3δbc + 3δac + 6δabδbcδac) . (D.20)

The HTSE of e up to second order in β equals to

e(β) =
1

2`

∑
α,σ

Vασ +
U

4

− β

{
1

4`

∑
α,σ

(Vασ − µ)

(
Vασ +

U

2

)
+
U2

16
+

1

4`

∑
α,α′,∆,σ

|t∆αα′σ|2
}

+
β2U

32`

∑
α,σ

[
µ2 + UVασ + 3VασVασ̄ − µU − 4µVασ

]
+O(β3) . (D.21)

The HTSE for entropy per site may be estimated using Eq. 3.2,

s(β) = ln 4 +
f ′(β = 0)

2
β2 +

f ′′(β = 0)

3
β3 +O

(
β4
)
, (D.22)

with f(β) = e(β)− µ̃n(β = 0).
For a model with Vασ = (±1)αhσ, e.g. with homogeneous or staggered magnetic

�eld, and t∆αα′σ = t∆αα′ we get the following simpler expressions,

e(β) =
U

4
− β

(
U2

16
+
h2

2
− Uµ

4
+
W2

2

)
+
β2U

16

(
µ2 − Uµ− 3h2

)
+O(β3) ,

(D.23)

n(β) = 1 +
βµ

2
− β2Uµ

8
+O(β3) , (D.24)

s(β) = ln 4− β2

4

[
U2

8
+ µ2 + h2 +W2

]
+
β3U

8

(
µ2 − h2

)
+O(β4) , (D.25)

with W2 standing for the second moment of the non-interacting density of states,
under the present restrictions W2 = 1

`

∑
∆,α,α′ |t∆αα′ |2.1 The magnetization is in

this case

|m| = βh

2
+
β2Uh

8
+O

(
β3
)
, (D.26)

1For single site per cell, W2 reduces to
∑

∆ 6=0 |t0∆|2.
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High-temperature series expansion

thus the (staggered) susceptibility is asymptotically equal to (2T )−1.
As explained at the begin of Chap. D, HTSE is capable to capture the physics

for temperatures T = 1/β much larger than U, t, |µ| , h. Notice, that µ as well
enters the HTSE expressions for EOS and therefore in�uences useful range of β in
the above HTSEs.2

D.3 Spin-spin correlations

The (z component of) spin-spin correlation is de�ned as〈
Ŝzi Ŝ

z
j

〉
=

1

4

∑
σ,σ′=±1

σσ′ 〈n̂iσn̂jσ′〉 , for i 6= j . (D.27)

For the HTSE of the spin-spin correlation we need to evaluate Tr
{
n̂iσn̂jσ′Ĥ

n
}
for

n = 0, 1, 2, . . .. Thanks to the factor σσ′ in its de�nition, only those terms may con-

tribute to it, which depend simultaneously on σ and σ′. Therefore Tr
{
Ŝzi Ŝ

z
j

}
= 0

and Tr
{
Ŝzi Ŝ

z
j Ĥ
}

= 0 (using Eqs. D.12, D.13). Thus, for the quadratic high-T

behavior we need to evaluate only the term Tr
{
n̂iσn̂jσ′Ĥ

2
}
, out of which only the

part involving virtual hopping there and back survives the test on simultaneous
dependence on σ and σ′.

The Tr
{
n̂iσn̂jσ′Ĥ

2
U

}
generates terms of form

Tr {n̂aσn̂bσ′n̂i↑n̂i↓n̂j↑n̂j↓} =
Θ

64
[1 + δai + δbi + δaj + δbj + 3δij + 2δij (δia + δib)]

for a 6= b , (D.28)

Tr
{
n̂iσn̂jσ′ĤUĤ0

}
generates

Tr {n̂aσn̂bσ′n̂k↑n̂k↓n̂iσ′′} =
Θ

32
[1 + δaiδσσ′′ + δbiδσ′σ′′ + δik + δak + δbk

+ δikδka (1− δσσ′′) + δikδkb (1− δσ′σ′′)]
for a 6= b , (D.29)

Tr
{
n̂iσn̂jσ′Ĥ

2
0,local

}
generates

Tr {n̂an̂bn̂cn̂d} =
Θ

16
(1 + δab + δac + δad + δbc + δbd + δcd + δabδbcδcd) , (D.30)

2In a system with µ much lower than the bandwidth W , i.e. with −µ � W , the density,
energy per site, and entropy, all decreases rapidly with increasing β to zero.
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D.3 Spin-spin correlations

and Tr
{
n̂iσn̂jσ′Ĥ

2
0,non−local

}
generates

Tr
{
n̂aσn̂bσ′ ĉ

†
iσ′′ ĉjσ′′ ĉ

†
jσ′′ ĉiσ′′

}
=

Θ

16
[1 + δσσ′′ (δai − δaj) + δσ′σ′′ (δbi − δbj)

− δσσ′′δσ′σ′′ (δajδbi + δaiδbj)]

for a 6= b . (D.31)

Thus, up to second order in β, the spin-spin correlation is given by〈
Ŝzi Ŝ

z
j

〉
= −β

2

32
|tij|2 +O

(
β3
)
. (D.32)
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