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Abstract

This thesis investigates various percolation problems for certain
systems with strong correlations. More precisely, it is mainly con-
cerned with two models: random interlacements, a model introduced
by A.-S. Sznitman in [56], which exhibits a non-trivial phase tran-
sition as the level parameter of the model varies; and the trace of
simple random walk on Z

d, when d ≥ 3.

In the first part, we derive a large deviation principle for the den-
sity profiles of occupation times of random interlacements at a fixed
level in a large box of Zd, d ≥ 3. As an application, we analyse the
asymptotic behaviour of the probability that atypically high values
of the density profile insulate a macroscopic body in a large box.

In the second part, we give a partial answer to a very interesting
question: what is the (asymptotic) probability that a macroscopic
body in Z

d, d ≥ 3, gets disconnected from infinity by the random in-
terlacements (when the level is low enough) or by the trace of a single
random walk? We derive asymptotic lower bounds on the probabil-
ity for both problems. The proofs involve changes of measures which
bring into play “tilted” random walks and “tilted” interlacements.
These results are complemented by upper bounds proved in [62] in
a similar set-up which are all conjectured to be tight, and are inti-
mately connected with results concerning the “insulation” events in
the first part.





Zusammenfassung

Diese Dissertation ist der Untersuchung und Klärung verschiedener
Fragen zur Perkolation in bestimmten Systemen mit starken Kor-
relationen gewidmet. Genauer gesagt, geht es hauptsächlich um fol-
gende zwei Modelle: Zufällige Verflechtungen, einem von A.-S. Sznit-
man in [56] eingeführten Modell, in dem sich bei Variierung des mo-
dellbestimmenden Niveauparameters ein nicht-trivialer Phasenüber-
gang zeigt; und der Spur der einfachen Irrfahrt auf Zd mit d ≥ 3.

Im ersten Teil folgt die Herleitung eines Prinzips der grossen Ab-
weichungen für das Dichteprofil der Besetzungszeiten zufälliger Ver-
flechtungen auf fixiertem Niveau in einem grossen Würfel von Z

d

mit d ≥ 3. Als Anwendung ergibt sich eine Aussage zum asymptoti-
schen Verhalten der Wahrscheinlichkeit, dass atypisch hohe Werte
des Dichteprofils einen makroskopischen Körper in einem grossen
Würfel abschirmen.

Im zweiten Teil wird eine partielle Antwort auf eine interessante
Frage gegeben: Was ist die asymptotische Wahrscheinlichkeit, dass
in Z

d mit d ≥ 3 ein makroskopischer Körper vom Unendlichen abge-
trennt wird, sei es durch zufällige Verflechtungen (auf genügend tiefem
Niveau) oder durch die Spur einer einfachen Irrfahrt? Als Teil-
antwort werden untere Schranken für die Wahrscheinlichkeiten in
beiden Fällen geliefert. Die Beweise beinhalten Masswechsel, die
«geneigte» Irrfahrten und «geneigte» Verflechtungen ins Spiel brin-
gen. Die hergeleiteten Resultate werden ergänzt durch die oberen
Schranken, die in [62] in einem ähnlichen Rahmen bewiesen wurden.
Diese Schranken, es wird vermutet, dass sie optimal sind, stehen
in einem engen Zusammenhang mit Resultaten betreffend «Abschir-
mungsereignissen», wie sie im ersten Teil betrachtet werden.





Résumé

Cette thèse étudie divers problèmes de percolation pour certains sys-
tèmes à fortes corrélations. Plus précisément, elle porte principale-
ment sur deux modèles : les entrelacs aléatoires, un modèle introduit
par A.-S. Sznitman dans [56], qui présente une transition de phase
non-triviale lorsque varie le paramètre de niveau du modèle; et la
trace de la marche aléatoire simple sur Z

d, lorsque d ≥ 3.

Dans la première partie, nous démontrons un principe de grandes
déviations pour les profils de densité des temps d’occupation des en-
trelacs aléatoires à un niveau fixe dans une grande boîte de Zd, d ≥ 3.
Comme application, nous analysons le comportement asymptotique
de la probabilité que des valeurs anormalement élevées du profil de
densité isolent un corps macroscopique dans une grande boîte.

Dans la deuxième partie, nous répondons partiellement à une
question très intéressante : quelle est la probabilité (asymptotique)
qu’un corps macroscopique dans Zd, d ≥ 3, soit déconnecté de l’infini
par les entrelacs aléatoires (quand le niveau est assez bas) ou par la
trace d’une marche aléatoire simple ? Nous obtenons des bornes in-
férieures asymptotiques sur la probabilité pour les deux problèmes.
Les démonstrations utilisent des changements de mesures, mettant
en jeu des marches aléatoires « inclinées » et des entrelacs « inclinés ».
Ces résultats sont complétés par des bornes supérieures démontrées
dans [62] sous une configuration similaire qui sont tout conjecturées
d’être optimales, et sont intimement liées avec des résultats concer-
nant les événements d’« isolation » dans la première partie.
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Chapter 0

Introduction

0.1 Basics

This chapter aims at giving a brief introduction to the mathematical
research I have conducted during my PhD studies. In its broadest
sense, most of my research in this period has been motivated by the
study of certain critical phenomena and phase transitions in
models which lie at the intersection between probability theory and
statistical physics.

More precisely, in my doctoral work I have been interested in ran-

dom walks on graphs and random interlacements. These two
models are instances of percolation models with long-range corre-
lations which are closely related to the behaviour of simple random
walks (SRW) on the Euclidean lattice or Brownian motion in Eu-
clidean space. In the subsequent subsections I will briefly introduce
these models respectively at the general mathematics level, describe
the problem that I have worked on and sketch the idea of proof with-
out touching too much of its details.

0.1.1 Percolation

In everyday context, percolation refers to the diffusion and filtering
of fluids through porous materials: for example, to make coffee from

1



2 0.1 Basics

a Moka pot, the water would need to “percolate” through grounded
coffee beans. When it comes to mathematics this notion refers to
the question whether a random set contains a connected component
of infinite size. It has been a central subject in statistical physics for
more than half a century. One primary reason is that many perco-
lation models exhibit rich behaviour despite their relatively simple
definition. Hence, statistical physicists and mathematicians hope to
gain more knowledge on critical phenomena in the study of percola-
tions.

The most basic example is Bernoulli (site) percolation on the Z
d-

lattice, in which each vertex is marked “open” (otherwise “closed”)
independently with probability p, for some fixed p ∈ [0, 1]. We de-
note by Pp the respective probability law on the configuration space

{open, closed}Zd

.
For a given configuration, open vertices form “islands”, which we

refer to as “clusters”. More precisely, two open sites belong to the
same cluster if and only if there exists a nearest-neighbour path,
purely consisting of open vertices, connecting them. A classical re-
sult states that for every d ≥ 2, there exists a critical pc ∈ (0, 1)
(depending on d) such that for p < pc, there is almost surely no infi-
nite cluster, and for p > pc,there is almost surely an infinite cluster.
Moreover, in the case p > pc, the infinite cluster is unique (however
this requires quite some extra effort to prove). This model hence
exhibits, in the language of physicists, a non-trivial phase transition
at pc.

However, to deepen the understanding of this phase transition,
one can, for instance, further ask the question “what is the probabil-
ity that the origin is connected in an open cluster to the boundary
of a box of size N ”. In fact, this probability decays as fast as an
exponential function as N tends to infinity:

(0.1) Pp[{0←→ ∂B∞(0, N)}] ∼ exp(−cN c′) for all p < pc,

where c, c′ are positive constants depending on d only. In constrast,
when p > pc, it is known that

(0.2) Pp[{0←→ ∂B∞(0, N)}] ≥ Pp[{0←→∞}] ≥ c(p).
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Hence we say that this model exhibits a sharp phase transition.
However, beyond these basic properties, even in this classical

model presented above, there are many crucial questions which are
sill open, let alone for more general percolation models. The mono-
graph [33] contains a very thorough discussion on the history and
progress on percolation.

0.1.2 Random Walk

Random walk on graphs is one of the first probability models studied
by mathematicians: as early as 1656 Blaise Pascal and Pierre Fermat
already made discussions about the Gambler’s Ruin problem (see
[26]), which can be rephrased as a problem in random walks.

In modern mathematical language, the model of random walk is
defined as follows: Let G = (V,E) be an undirected graph, where V
stands for the set of vertices and E for the set of edges. One should
think of V as the collection of possible states of a system, thus the
presence of an edge e = (v, u) in E, where u, v ∈ V , indicates that it
is permissible for the system to transit between states v and u. The
system starts at a fixed vertex x ∈ V , and in the next step it moves
to one of its neighbours uniformly chosen at random among all of
them. This procedure is repeated indefinitely many times. We hence
call this process a random walk and denote it by (Xn)n≥0, where Xn

stands for the state of the system at step n. We denote the law of
the random walk started at x by Px.

One very important example of this mode is the simple random
walk on Z

d, where (in the notation above) V = Z
d and E consists of

all pairs of vertices of Euclidean distance 1. In this model, at each
step, the random walk jumps to one of its neighbours with probability
(2d)−1. It is a classical result (see Theorem 4.1.1, p. 78 of [39]) that
with probability one the random walk will return to where it starts if
d = 1 or 2. In this case we call the random walk recurrent. However,
when d ≥ 3, there is a positive chance that the random walk will
never return to the starting point. Moreover, with probability one,
it will eventually “escape to infinity”. In this case, we call the random
walk transient.

A large class of random walk models falls into the frame of (re-
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versible) weighted random walk, whose setup is slightly more com-
plicated compared to the simple random walk. Simply put, one can
construct such a model by giving weights to the edges and assign-
ing the probabilities of jumping between the vertices accordingly.
More precisely, we assign for each edge (u, v) ∈ E a positive weight
µuv = µvu and denote by µu =

∑
v∼u µuv (i.e. the sum runs over all

neighbouring vertices of u) the corresponding weight of this vertex.
For all u ∈ V we let the probability for the random walk to jump
from u to v be µuv/µu, a quantity we refer to as the transition prob-
ability. A lot of information can be obtained from the setup with
relatively little effort, such as the stationary/reversibility measure,
which tell us how the equilibrium state of this random walk look like.

In the scope of my research, it is easier to consider the random
walk in continuous time. This can be defined for any weighted ran-
dom walk but for simplicity we restrict ourselves to the case of the
simple random walk on Z

d. For this purpose we imagine that at each
lattice point u there is an alarm clock, which, after being set to work,
rings at a random time with exponential distribution of parameter 1.
Each time our random walk moves into one vertex we set the alarm
clock to work, and when it rings, we let the random walk jump to
one of its neighbours with probability 1/2d uniformly. When no am-
biguity arises, we also denote by Px the law of this weighted random
walk started at x. From now on, whenever simple random walk ap-
pears, we actually mean simple random walk in continuous time. It
is worth mentioning that one can easily define random walks with
non homogeneous jumping time using this framework.

Another notion in random walks that plays an important role in
my research especially in the study of random interlacements, which
is to come up in the next subsection, is the capacity. Although it
can be defined for any reversible transient Markov chain, again for
simplicity we restrict ourselves to the discussion of simple random
walk on Z

d, d ≥ 3, where the random walk is indeed transient. For
K, a finite subset of Zd, we define the equilibrium measure for x ∈
∂iK through the escape probability, where ∂iK stands for the inner
boundary of K:

(0.3) eK(x) = Px[Xt leaves K at the first move and never returns]
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and consequently define the capacity of K as the total equilibrium
measure of K

(0.4) cap(K) =
∑

x∈∂iK

eK(x).

Let us end this subsection with this example illustrating the in-
timate relationship of the capacity with the study of random walks:
when d ≥ 3,

(0.5) Px[(Xt)t≥0 hits K in finite time] ∼ c · cap(K)

|x|d−2
as |x| → ∞.

0.1.3 Random interlacements

Random interlacements are an important model of percolation with
long-range dependence (cf. the Bernoulli percolation where the sta-
tus of each vertex is independent of those of other vertices). This
model was recently introduced by Sznitman in [56] and has been in-
tensively studied since then. Intuitively speaking, they consist of a
random collection of trajectories on Z

d, whose trace forms a random
set, which visually resembles an interlacing fabric. A fundamental
question is, under different densities, whether this “fabric” is “rain-
proof”, or in the language of percolation, whether the complement of
this set percolates.

Two major reasons make this model especially attractive to prob-
abilists: the long-range dependence in this model which is more real-
istic for percolation and its connections to basic probabilistic models,
such as Gaussian free field, fragmentation by random walk, etc. For
example, in [6] and [65] it is employed to describes the local struc-
ture of a random walk on a large torus after having run up to a time
proportional to the torus volume.

Now let us introduce this model in a slightly more formal man-
ner. We consider the collection of random doubly-infinite nearest-
neighbor trajectories on Z

d, for d ≥ 3, associated with a Poisson
point process (with a suitable intensity measure). We denote by
P the respective probability measure. A non-negative parameter u
enters as a multiplicative factor in the intensity measure. The inter-
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lacements at level u, denoted Iu, are then defined to be the union of
traces of all paths which appear in the Poisson point process.

More often we wish to look at the local behaviours of random
interlacements through a finite “window” K ⊂⊂ Z

d. More precisely
the law of I = Iu ∩ K can be described as follows: independently
from each vertex x in ∂iK we start Pois(u · eK(x)) independent ran-
dom walks. Then I has the same law as record the union of the
intersection with K of these traces (in fact by (0.4) and the prop-
erty of Poisson distribution there are Pois(u · cap(K)) trajectories in
total).

The primary difficulty in the investigation of percolation prob-
lems on this model lies in the strong long-distance correlation (in
contrast to the Bernoulli percolation introduced earlier this section
where the status of each vertex is independent), which renders many
classical methods used in the study of Bernoulli percolation invalid.
However many powerful methods have been developed to overcome
such difficulties, and fundamental results have been proved.

For any u > 0, Iu is known to be a translation invariant, ergodic
and almost surely connected subset of Zd. However, its complement
Vu = Z

d\Iu, known as the vacant set, undergoes a non-trivial per-
colative phase transition, in all dimensions d ≥ 3, see [53, 56]. More
precisely, there exists a parameter u∗ ∈ (0,∞) such that Vu con-
tains a unique (see [63]) infinite connected component almost surely
for u < u∗ but contains almost surely only clusters of finite size for
u > u∗.

In [53, 23] it was shown that an additional important critical
value u∗∗ ∈ (0,∞) exists. Informally, it is defined as the infimum
over u > 0 for which the probability of the vacant cluster at the
origin being large decays exponentially fast: when and only when
u > u∗∗,

(0.6) P[{0 Vu

←→ ∂iB∞(0, N)}] ∼ exp(−cN c′),

where c, c′ > 0 depend on d and u only. It follows from the defini-
tion of u∗∗ that u∗ ≤ u∗∗, however, it is an important open question
whether u∗∗ and u∗ coincide, or equivalently, whether the phase tran-
sition is sharp.
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For a detailed introduction to the model, see the monographs [13]
and [23].

0.1.4 A very brief synopsis of my work

My works on the models mentioned above can be summarized as
follows.

(i) Large deviations for occupation time profiles of ran-

dom interlacements. A problem of particular importance in
the study of random interlacements is large deviations of the
density profile for the occupation time. This density profile
turns out to be the right quantity linking random interlace-
ments and Brownian interlacements. In Chapter 1, we prove
a large deviation principle and analyzes the asymptotic behav-
ior of the probability that atypically high values of the density
profile insulate a macroscopic body in a large box.

(ii) Disconnection by random interlacements and trace of

SRW. In Chapters 2 and 3, inspired by study of the “insula-
tion” events in Chapter 1, we give lower bounds on the asymp-
totic probability that the trace of random interlacements (in
[42]) or the trace of simple random walk on Z

d (in [43]) dis-
connects a macroscopic body. The proofs involve an inter-
play between the change-of-measure method and the analysis
of “tilted” versions of random walks and random interlacements
(which is defined through tilted random walks).
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0.2 Large deviations for the density

profile of occupation-measure of

random interlacements

0.2.1 Introduction to the problem

Let us consider random interlacements on Z
d, for d ≥ 3.

Fix u > 0. The field of occupation times of random interlacements
at level u is defined by the family of random variables {Lx,u}x∈Zd,
where Lx,u is total duration spent at x by the trajectories of the
random interlacements (see [57]). The occupation time field is an
important object in the study of random interlacements. In particu-
lar, an isomorphism theorem relates it to the discrete Gaussian free
field (see [59]).

Given a closed box B ⊆ R
d, we are interested in the density

profile of the occupation times at level u in the rescaled discrete box
(NB) ∩ Z

d := {Nx : x ∈ B} ∩ Z
d, given for N ≥ 1 by

(0.7) ρN,u =
1

Nd

∑

x∈(NB)∩Zd

Lx,u δ x
N
.

We view ρN,u as a random element ofM+(B), the set of positive mea-
sures on B. As a consequence of the ergodic theorem, almost surely
ρN,u converges weakly to umB, where mB stands for the restriction
of the Lebesgue measure to B.

0.2.2 Results

In Chapter 1, we establish a large deviation principle (LDP) for
ρN,u, which shows that for every fixed u > 0,

(0.8)
ρN,u satisfies an LDP on M+(B) at speed Nd−2

with an explicit, convex, good rate function 1
dIu.

We also derive an LDP for the density profile of the occupation-
time measure of Brownian interlacements in all dimensions d ≥ 3
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as both an intermediate step in and an important byproduct of the
above LDP. This is done by exploiting the scaling property of the
occupation times of Brownian interlacements (we refer the readers
to [60] for an introduction of Brownian interlacements). Instead of
ρN,u we consider the random measure νL,α on B, such that for any
bounded measurable f on B, the integral 〈νL,α, f〉 equals

(0.9)
〈
νL,α, f

〉
=

1

Ld

∫

LB

f
(
y

L

)
Lα(dy), for L ≥ 1, α ≥ 0.

We show in Corollary 1.3.3 that for α > 0,

(0.10)
as L→∞, the laws of νL,α on M+(B) satisfy a large
deviation principle at speed Ld−2 with the convex good
rate function Iα (see (1.3)).

As an application of the above LDP (0.8), we analyse the asymptotic
behaviour of the probability that high values of the (smoothed-out)
density profile (i.e. “level sets”) insulate a large macroscopic body.
Given δ > 0 a sub-box B0 ⊂ B whose distance from Bc is at least
δ, a compact subset K ⊂ B0 and a positive number a, we study the
probability that a regularised version of the density profiles above
level a “disconnects K from ∂B0”. We denote by Da,δ the collection
of such profiles and show that for a > u,
(0.11)

i) lim sup
N→∞

1

Nd−2
logP[ρN,u ∈ Da,δ] ≤ −1

d

(√
a−
√
u
)2
cap

Rd(K),

ii) lim inf
N→∞

1

Nd−2
logP[ρN,u ∈ Da,δ] ≥ −1

d

(√
a−
√
u
)2
cap

Rd(Kδ),

where cap
Rd(·) stands for the Brownian capacity (a quantity from

the potential theory of Brownian motions) and Kδ for the closed δ-
neighbourhood ofK. Interestingly, this LDP has some similar flavour
to the results of the same type with respect to the Gaussian free field
(see [11]), although their proofs are quite different.
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0.3 Disconnection problem by random in-

terlacements and simple random walk

0.3.1 Introduction

In this project the question of asymptotic bounds on the probability
that a macroscopic body gets disconnected by a random subset of
Z
d, d ≥ 3 is studied. More precisely, we are interested in random

subsets which exhibit long-range dependence, such as the trace of
random interlacements in the percolative regime (of the vacant set)
0 < u ≤ u∗∗, or the trace of simple random walk.

Consider first the case of random interlacements. Let K ⊂ R
d

be a compact subset and define its discrete blow-up by KN = {x ∈
Z
d; ∃z ∈ K s.t. ‖x − zN‖∞ ≤ 1}. Then, we wish to study the

probability of the event

AN = {KN
Vu
=∞} ≡

{
KN is not connected to infinity by a

nearest-neighbor path in Vu

}
.

It is worth noting that this problem is not only interesting per se,
but also shares some intimate connection to the type of insulation
events studied in Chapter 1 (see (0.11) and above) and enables us to
understand the power of the large deviation principle of occupation-
time profile (see (0.8) obtained therein.

Similarly, in the case of simple random walk started at the origin,
let V denote the set of points in Z

d which are not in its trace. Then,

we define AN = {KN
V
=∞}, and wish to understand its probability.

0.3.2 Disconnection by random interlacements

In Chapter 2 we derive an asymptotic lower bound for the probability
of AN . More precisely, for u ∈ (0, u∗∗] we have

(0.12) lim inf
N→∞

1

Nd−2
log
(
P[AN ]

)
≥ −1

d

(√
u∗∗ −

√
u
)2
cap

Rd(K).

The main strategy in proving (0.12) is to combine a change of



0 Introduction 11

measure argument together with an entropic bound. For large N , we
construct a new probability measure P̃N , corresponding to “tilted
random interlacements”, which look like a collection of two-sided
paths of space-inhomogeneous Markov chain (instead of simple ran-
dom walk in the original version of random interlacements).

Intuitively speaking, the measure P̃N forces a “local level” of in-
terlacements corresponding to u∗∗ + ǫ to generate a strongly non-
percolative “fence” surrounding KN . This yields

(0.13) lim
N→∞

P̃N (AN ) = 1.

The rigorous proof of the last fact is obtained by a local comparison
at a mesoscopic scale between the occupied set of tilted interlace-
ments and standard interlacements at a level exceeding u∗∗. This is
achieved through an analysis on the capacity and equilibrium mea-
sure associated with the tilted interlacements.

In the meantime, we keep the change of measure at a “low entropic
cost”; that is, we show that the entropy of P̃N with respect to Pu,
denoted by H(P̃N |Pu) satisfies a relation of the type

(0.14) H(P̃N |Pu) /
u∗∗
d

cap
Rd(K)Nd−2.

The combination of both properties of P̃N then gives the result by
applying a classical inequality relating probability and entropy.

The recent article [62] studies the question of upper bounds for
the probability of an event similar to AN and shows that there exists
some u > 0 such that for any M > 1 and every 0 < u < u

lim sup
N→∞

1

Nd−2
log
(
P
[
BN

Vu

=
(
BMN

)c])

≤− 1

d

(√
u−
√
u
)2
cap

Rd([−1, 1]d),
(0.15)

where BN = [−n, n]d ∩ Z
d.

It was shown in [62] that 0 < u ≤ u∗(≤ u∗∗ <∞). It is plausible,
but unproven at the moment, that actually u = u∗ = u∗∗. If this is
indeed the case, the asymptotic lower bound (0.12) obtained in [42]



12 0.3 Disconnection problem of interlacements and random walk

matches the asymptotic upper bound (0.15) obtained in [62], i.e.,

(0.16) lim
N→∞

1

Nd−2
log(P[AN ]) = −1

d

(√
u∗ −

√
u
)2
cap

Rd(K),

which implies that the result is tight. Consequently, the comparison
between (0.11), (0.12) and (0.15) suggests that the large deviations of
the occupation-time profile do capture the main mechanism through
which Iu disconnects a macroscopic body from infinity.

Interestingly, the tilted interlacements, the protagonist of this
work, might indeed offer a microscopic model (in the discrete set-
up), for the type of “Swiss cheese” picture proposed in [9], which is a
study of the moderate deviations of the volume of the Wiener sausage
(although the relevant modulating functions in [3] and in this work
correspond to distinct variational problems and are different).

0.3.3 Disconnection by simple random walk

In Chapter 3, an asymptotic lower bound for the probability of AN

is derived. More precisely, it is shown that

(0.17) lim inf
N→∞

1

Nd−2
log
(
P0[AN ]

)
≥ −u∗∗

d
cap

Rd(K),

where P0 is the probability measure of a simple random walk started
from the origin.

Remarkably, this problem can be formally regarded as a limiting
case of disconnection by random interlacements, when u→ 0. More-
over, the proof of (0.17) brings into play random interlacements as
well as a suitable strategy to implement disconnection. As in the
proof of (0.12) the proof uses the change of measure technique com-

bined with an entropy bound. In this case, the new measure P̃N is
defined via a fine-tuning of Radon-Nikodym derivative, which yields
a “tilted walk”. In essence, this walk evolves in the first stage as
a finite-range Markov chain with a certain generator up to a deter-
ministic time, and then continues as a simple random walk in the
second stage. A specific choice for the deterministic time enables
to achieve entropy-efficiently the effect that the tilted walk ;eaves
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a trace close to KN which behaves locally like the trace of random
interlacements with a level slightly larger than u∗∗. This creates a
“fence”, separating KN from infinity.

The main obstruction in the proof is that unlike the model studied
in Chapter 2, we only have a single trajectory at our disposal. In
addition, the state space and the generator of the tilted walk in
the first stage are both highly space non-homogeneous. This makes
the extraction of the necessary independence much more delicate in
comparison with the case of random interlacements, requiring a fair
amount of accurate understanding on the behavior of the tilted walk.

Similar to the case of random interlacements, see the discussion
around (0.15), in [62] an asymptotic upper bound involving u for
events of this type was derived. In addition, if u = u∗ = u∗∗, then
the lower and upper bounds for simple random walk are tight. Fur-
thermore, in this case, the constant u∗ stemming from the study of
interlacement percolation becomes in fact a key characteristic quan-
tity for the description of the disconnection properties of the simple
random walk itself.

In the case of (above) (0.17), one can also wonder whether one
actually has the following asymptotics (possibly with some regularity
assumption on K)

(0.18) lim
N→∞

1

Nd−2
log(P0[AN ]) = −u∗

d
cap

Rd(K).

0.4 Outlook

0.4.1 Brownian interlacements

The model of Brownian interlacements is the continuous counterpart
of random interlacements. Recently introduced by Sznitman in [60],
it is defined as the Poissonian cloud of doubly-infinite continuous
Brownian trajectories in the d-dimensional Euclidean space, d ≥ 3.
Brownian interlacements bear similar properties, for instance long-
range dependence, to random interlacements. This model plays a
crucial role in both the study of the asymptotic behaviors of various
aspects of random interlacements, and the interconnection of random
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interlacements, loop soups and Gaussian free fields. For r > 0, we
observe the union of points whose distance from the trajectories are
at most r and study its geometry as well as that of its complement.
It is expected that these sets would exhibit similar percolative prop-
erties and plan to study them. In particular, one can hope that the
study of this model will shed some light on other models of continu-
ous percolation.

0.4.2 Random interlacements in Two dimensions

Although there is no direct analogue of random interlacements in
d = 2, one can consider models with similar features. In [18] a
possible way of constructing random in two dimensions was pro-
posed. It would be interesting to investigate the problem of perco-
lation phase transition in this case. One may also naturally wonder
whether such models and results concerning random interlacements
translate into some new (and possibly insightful) concepts related to
two-dimensional random geometry.

0.4.3 Branching interlacements

It is a very natural question whether it is possible to define a ran-
dom spatial process which combines branching random walks (or
branching Brownian motion) with random interlacements (respec-
tively Brownian interlacements). For such models one can ask many
question such as percolation properties of the model, existence of
shape theorems and large deviation results for disconnection. In ad-
dition, such a model can create a connection between fragmentation
process and branching random walk on torus, similar to [6, 7, 64].
Currently in this direction there is an ongoing work, see [4].



Chapter 1

Large deviations for

occupation time profiles

of random interlacements

We derive a large deviation principle for the density profile of
occupation times of random interlacements at a fixed level in
a large box of Zd, d ≥ 3. As an application, we analyze the
asymptotic behavior of the probability that atypically high
values of the density profile insulate a macroscopic body in
a large box. As a step in this program, we obtain a similar
large deviation principle for the occupation-time measure of
Brownian interlacements at a fixed level in a large box of Rd,
and we derive a new identity for the Laplace transform of the
occupation-time measure, which is based on the analysis of
certain Schrödinger semi-groups.

1.0 Introduction

Random interlacements have been instrumental in the analysis of
various questions concerning the disconnection or the fragmentation
created by random walk trajectories, see [14], [55], [64]. The exis-

15
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tence of a non-trivial phase transition for the percolative properties
of the vacant set of random interlacements, when one increases the
level u of the interlacement, plays an important role in their analy-
sis. As it turns out, the level u of random interlacements can also be
measured by means of the random field of occupation times, which,
in the case of Z

d, d ≥ 3, is stationary, ergodic, and has average
value u. In this work, we study the large deviations of the density
profile of this random field in a large box of Zd. As an application
of the general large deviation principle we obtain, we analyze the
asymptotic behavior of the probability that atypically high values
of the density profile insulate a macroscopic body in a large box.
One may naturally wonder whether such type of large deviations of
the occupation-time profile actually captures the main mechanism
for an atypical disconnection of a macroscopic body from infinity
by the random interlacements, when the vacant set is in a percola-
tive regime. In the course of our program, we derive a similar large
deviation principle for the occupation-time measure of Brownian in-
terlacements at a fixed level, in a large box of Rd, d ≥ 3. The scaling
invariance of Brownian interlacements permits to recast this prob-
lem in terms of general Cramér theory, and our results rely on a new
identity for the Laplace transform of the occupation-time measure,
which is based on the analysis of Schrödinger semi-groups.

We now discuss our results in more detail. We consider contin-
uous time random interlacements on Z

d, d ≥ 3. In essence, this is
a Poisson point process on a certain state space consisting of dou-
bly infinite Z

d-valued trajectories marked by their duration at each
step, modulo time-shift. A non-negative parameter u comes as a
multiplicative factor of the intensity measure of this Poisson point
process, which is defined on a certain canonical space, see [57], which
we denote here by (Ω,A,P). The field of occupation times of random
interlacements at level u is denoted by Lx,u(ω), for x ∈ Z

d, u ≥ 0,
ω ∈ Ω. It records the total duration spent at x by the trajectories
modulo time-shift with label at most u in the cloud ω, see [57].

Given a closed box B ⊆ R
d (by this we mean that B is the prod-

uct of d non-degenerate compact intervals in R), a central object of
interest in this work is the density profile of the occupation times at
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level u in the large discrete box (NB) ∩ Z
d:

(1.1) ρN,u =
1

Nd

∑
x∈(NB)∩Zd

Lx,u δ x
N
, for N ≥ 1, u ≥ 0.

We view ρN,u as a random element of M+(B), the set of positive
measures on B, which we endow with the weak topology generated
by C(B), the set of continuous functions on B, and with its corre-
sponding Borel σ-algebra. As a consequence of the ergodic theorem,
see (1.98), P-a.s., ρN,u converges weakly to umB, where mB stands
for the restriction of the Lebesgue measure to Borel subsets of B.
In Theorem 1.5.8, we establish a large deviation principle for ρN,u,
which shows that for u > 0,
(1.2)
as N →∞, the laws of ρN,u on M+(B) satisfy a large deviation
principle at speed Nd−2 with the convex, good rate function 1

d Iu,

where for v > 0 and µ ∈M+(B), we have defined
(1.3)

Iv(µ) =





+∞, if µ is not absolutely continuous w.r.t. mB,

inf
{
1

2

∫

Rd

|∇ϕ|2dy; ϕ ∈ H1(Rd),

ϕ =

√
dµ

dmB

−
√
v, a.e. on B

}
,

if µ is absolutely continuous w.r.t. mB

(and the infimum of the empty set equals +∞).

In other words, Iv is a non-negative, convex, lower semi-continuous
function, with compact level sets {Iv ≤ a}, for a ≥ 0, and for any
open subset O and closed subset C of M+(B), we have
(1.4)

i) lim sup
N

1

Nd−2
logP[ρN,u ∈ C] ≤ − inf

C

1

d
Iu, and

ii) lim inf
N

1

Nd−2
logP[ρN,u ∈ O] ≥ − inf

O

1

d
Iu .

In the course of proving Theorem 1.5.8, we derive a large devia-
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tion principle for the density profile of the occupation-time measure
of Brownian interlacements at level α > 0 in a large box LB of Rd,
d ≥ 3, which is of independent interest. Letting Lα stand for the
random Radon measure of occupation times in R

d of Brownian in-
terlacements at level α, see (1.43) (or Section 2 of [60]) we consider
in place of ρN,u the random measure νL,α on B, such that for any
bounded measurable f on B, the integral 〈νL,α, f〉 equals

(1.5)
〈
νL,α, f

〉
=

1

Ld

∫

LB

f
(
y

L

)
Lα(dy), for L ≥ 1, α ≥ 0.

We show in Corollary 1.3.3 that for α > 0,

(1.6)
as L→∞, the laws of νL,α on M+(B) satisfy
a large deviation principle, at speed Ld−2 with
the convex good rate function Iα (see (1.3).

As an application of the large deviation principle (1.2), we analyze
the asymptotic behavior of the probability that high values of the
(smoothed-out) density profile insulate a large macroscopic body.
We consider a regularization fN of ρN,u obtained by the convolution
of ρN,u with a continuous probability density ϕδ supported in the
closed Euclidean ball of radius δ centered at the origin of Rd. Given
a compact subset K of a sub-box B0 of B (at distance at least δ
from Bc), and a positive number a, we are interested in the event
{ρN,u ∈ Da,δ} (see (1.157) for the precise definition), where the level
set {fN ≥ a} “disconnects K from ∂B0”. We show in Theorems 1.6.2
and 1.6.4 that when a > u,

i) lim sup
N

1

Nd−2
logP[ρN,u ∈ Da,δ] ≤ −

1

d

(√
a−
√
u
)2
cap(K),

ii) lim inf
N

1

Nd−2
logP[ρN,u ∈ Da,δ] ≥ −

1

d

(√
a−
√
u
)2
cap(Kδ),

(1.7)

where cap(·) stands for the Brownian capacity (see below (1.41)) and
Kδ for the closed δ-neighborhood of K. As δ → 0, one knows that
cap(Kδ) ↓ cap(K), see Remark 1.6.5 1), so that upper and lower
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bounds in (1.7) become identical. Actually, one can let δ slowly tend
to 0 so that the corresponding upper and lower bounds match with
the right-hand side of (1.7) i), see Remark 1.157 2).

The asymptotics (1.7) has an interesting consequence. There is
an intuitive strategy to ensure that the level set {fN ≥ a} disconnects
K from ∂B0 (or in other words that {ρN,u ∈ Da,δ} occurs). Roughly
speaking, it consists in inducing a suitable increase of the rate of the
Poisson distribution of the number of bilateral trajectories with label
at most u, which enter (NKδ)∩Zd. The lower bound (1.7) ii) shows
that this intuitive strategy is sub-optimal, see Remark 1.6.5 4). In
essence, this strategy leads to a version of (1.7) ii) where (

√
a−√u)2

is replaced by the strictly bigger quantity a log a
u − a+ u.

Further, it is known that the vacant set Vu of random interlace-
ments at level u undergoes a phase transition between a percolative
phase when u < u∗, and a non-percolative phase when u > u∗, for
a certain critical level u∗ ∈ (0,∞) (see [56], [52], and also [24], [46]
for recent developments). When u < u∗, the vacant set of random
interlacements is in a percolative regime. In the context of Bernoulli
percolation, disconnecting a large macroscopic body in the percola-
tive phase would involve an exponential cost proportional to Nd−1

(and surface tension), in the spirit of the study of the presence of a
large finite cluster at the origin, see p. 216 of [33], and Theorem 2.5,
p. 16 of [12]. In the present context, one may wonder whether large
deviations of the density profile, as in (1.7), with an exponential cost
proportional to Nd−2, capture the main mechanism ensuring that a
macroscopic body gets disconnected from infinity by the interlace-
ment at level u, when u < u∗. We refer to Remark 1.6.5 5) and to
[43] for more on this topic.

It is also of interest to point out that the large deviation prin-
ciple (1.2) has some similar flavor to results of [11] concerning the
Gaussian free field (although the approaches in the two articles are
quite different). This feature is in line with the isomorphism the-
orem of [59], which relates the field of occupation times of random
interlacements to the square of Gaussian free fields.

Let us give some comments concerning proofs. The large devia-
tion principle (1.6) (concerning the profile of the Brownian occupation-
time measure) is used as a step in the proof of (1.2). Due to the
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scaling property of Lα, see (1.45), νL,α has the same distribution as
ν̃L,α, the restriction to B of 1

Ld−2 LαLd−2 . Since Lα has stationary
and independent increments, (1.6) can be proved by means of gen-
eral Cramér theory and sub-additivity, see for instance [20], p. 252.
In this process, one important ingredient is a new identity for the
Laplace functional of Lα, which is based on methods of Schrödinger
semi-groups, see [15], [16], [17]. Indeed, we show in Theorem 1.2.2
that for α ≥ 0, and any bounded measurable function V on R

d, with
compact support,

(1.8) E[e〈Lα,V 〉] = eαΓ(V ),

where

Γ(V ) =

∫

Rd

V dy + sup
ϕ∈L2(Rd)

{
2

∫

Rd

V ϕdy +

∫

Rd

V ϕ2dy − E(ϕ, ϕ)
}

∈ (−∞,+∞],

(1.9)

and for ϕ ∈ L2(Rd),

(1.10) E(ϕ, ϕ) =





1

2

∫

Rd

|∇ϕ|2dy, if ϕ ∈ H1(Rd),

+∞, otherwise,

stands for the Dirichlet form attached to the Brownian semi-group
(acting on L2(Rd)), see also below (1.51). Both members of (1.8)
may well be infinite. Remarkably, and unlike Proposition 2.6 of [60]
(see also Remark 1.2.1 below), (1.8) is an identity between extended
numbers in (0,+∞], which does not require any smallness assump-
tion on V . We also refer to Remark 1.2.3 for the discrete space
counterpart of this identity.

The proof of the main large deviation principle (1.2) on the den-
sity profile ρN,u appears in Theorem 1.5.8. It relies on sub-additivity
and naturally splits into a lower bound and an upper bound. On the
one hand, the lower bound (proved in Theorem 1.5.4) first relies on
a lower bound stemming from sub-additivity. It then exploits a com-
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bination of the fact that the Brownian occupation-time measure is a
scaling limit of occupation times of random interlacements on Z

d (as
proved in [60] and recalled in (1.99) below), and the key large devia-
tion result on 1

α Lα restricted to a box (proved in Section 3). On the
other hand, the upper bound (proved in Theorem 1.5.5) combines
an upper bound stemming from sub-additivity, involving a discrete
version of the functional in (1.3), and an estimate in the spirit of
Gamma-convergence (see Chapter 7 of [19]), which compares the
large N behavior of a sequence of variational problems on the scaled
lattices 1

N Z
d to a suitable continuous-space variational problem.

The asymptotic bounds (1.7) on the probability of insulation
of a large macroscopic body by high values of the (smoothed-out)
occupation-time profile (see Theorems 1.6.2 and 1.6.4) are direct
applications of the main large deviation principle (1.2) and of the
structure of the rate function, see Lemma 1.81.

Let us now describe the organization of this article. Section 1 in-
troduces further notation, collects material concerning Schrödinger
semi-groups, and recalls some properties of Brownian interlacements.
The main objective of Section 2 is to establish the identity (1.52) in
Theorem 1.2.2. Some of the key consequences of this identity ap-
pear in the Corollaries 1.2.4 and 1.2.5. The discrete space situation
is discussed in Remark 1.2.3. Section 3 derives in Theorem 1.3.2 a
large deviation principle for the Brownian interlacement case, which
plays a central role. Its application to the proof of (1.6) appears
in Corollary 1.3.3. The main properties of the rate function Iv are
collected in Lemma 1.3.1. The short Section 4 describes the (scaled)
discrete space set-up and some of the results following by the meth-
ods of Section 2 in this context, see Theorem 1.4.1 and Corollary
1.4.2. Section 5 is devoted to the proof of (1.2), see Theorem 1.5.8.
The lower bound appears in Theorem 1.5.4 and the upper bound in
Theorem 1.5.5. The main sub-additive estimates are contained in
Corollary 1.5.3, and the relevant form of the scaling limit of occupa-
tion times in Lemma 1.5.1. The last Section 6 contains the proof of
(1.7), see Theorems 1.6.2 and 1.6.4. Extensions are discussed at the
end, in Remark 1.6.5.

Finally, let us explain the convention we use concerning constants.
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We denote by c, c′, c positive constants changing from place to place,
which simply depend on d. Numbered constants c0, c1, . . . refer to the
value corresponding to their first appearance in the text. Dependence
of constants on additional parameters appears in the notation.

1.1 Some useful facts about Schrödinger

semi-groups and Brownian interlace-

ments

In this section, we first introduce some further notation. We col-
lect some rather classical properties of Schrödinger semi-groups and
gauge functions, which will be useful in the next section, see Propo-
sition 1.1.2 and Lemma 1.1.3. Moreover, we recall some properties
of Brownian interlacements on R

d. Further facts concerning con-
tinuous time random interlacements on Z

d will appear in Section 4.
Throughout, we tacitly assume that d ≥ 3.

We write | · | and | · |∞ for the Euclidean and the supremum
norms on R

d. We denote by B(y, r) the closed Euclidean ball with
center y ∈ R

d and radius r ≥ 0. We write B∞(y, r) in the case of
the supremum norm. Given A,B ⊆ R

d, we denote by d(A,B) =
inf{|y − y′|; y ∈ A, y′ ∈ B} the mutual Euclidean distance of A an
B. When A = {y}, we simply write d(y,B) in place of d({y}, B).
We define d∞(A,B) and d∞(y,B) analogously, with | · |∞ in place of
| · |. The shorthand notation K ⊂⊂ R

d, resp. K ⊂⊂ Z
d, means that

K is compact subset of Rd, resp. a finite subset of Zd. We denote by
f+ = max{f, 0}, f− = max{−f, 0}, the positive and negative part of
a function f . We routinely write 〈ν, f〉 to denote the integral with
respect to a measure ν of a measurable, non-negative, or ν-integrable,
function f . When f, h are measurable functions on R

d such that
|fh| is Lebesgue-integrable, we write 〈f, h〉 =

∫
Rd f(y)h(y)dy. We

denote by ‖f‖∞ the supremum norm of the function f , and by ‖f‖p
its Lp-norm (1 ≤ p < ∞). We specify the relevant Lp-space in the
notation when there might be some ambiguity, and write for instance
‖f‖Lp(Rd,dy) or ‖f‖Lp(B,ν).

We denote by W+ the subspace of C(R+,R
d) of continuous R

d-
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valued trajectories tending to infinity at infinite times. We write
(Xt)t≥0 for the canonical process, and denote by (θt)t≥0 the canon-
ical shift. We endow W+ with the σ-algebra W+ generated by the
canonical process. Given an open set U of Rd, w ∈ W+, we write
TU (w) = inf{s ≥ 0;Xs(w) /∈ U}, for the exit time of U . When F is a
closed subset of Rd, we write HF (w) = inf{s ≥ 0; Xs(w) ∈ F}, and

H̃F (w) = inf{s > 0;Xs(w) ∈ F}, for the respective entrance, and
hitting times of F . We assume d ≥ 3, so that Brownian motion on
R

d is transient, and we view Py , the Wiener measure starting from
y ∈ R

d, as defined on (W+,W+). We denote by Ey the correspond-
ing expectation. When ρ is a finite measure on R

d, we write Pρ for
the Wiener measure with “initial distribution” ρ and Eρ for the corre-

sponding expectation. We write p(t, y, y′) = (2πt)−
d
2 exp{− |y−y′|2

2t },
with t > 0, y, y′ ∈ R

d, for the Brownian transition density.

We now recall some properties of the Schrödinger semi-groups we
consider here. We denote by L∞

c (Rd) the space of bounded measur-
able functions V on R

d, which vanish outside a compact subset of
R

d. Given V ∈ L∞
c (Rd), we introduce the Schrödinger semi-group at-

tached to V , namely the strongly continuous self-adjoint semi-group
on L2(Rd, dy), see Proposition 3.3, p. 16 of [54],

RV
t f(y) = Ey

[
f(Xt) e

∫ t
0
V (Xs)ds

]
, for f ∈ L2(Rd), t ≥ 0, y ∈ R

d,

=
∫

Rd
rV (t, y, y

′) f(y′)dy′, when t > 0,

(1.11)

where

rV (t, y, y
′) = p(t, y, y′)Et

y,y′

[
exp

{∫ t

0
V (Xs)ds

}]
,

for t > 0, y, y′ ∈ R
d,

(1.12)

is a symmetric function of y, y′, see Proposition 3.1, p. 13-14 of [54],
which is jointly continuous, see Proposition 3.5, p. 18 of [54], and
Et

y,y′ stands for the expectation corresponding to P t
y,y′ , the Brownian

bridge measure in time t from y to y′, see p. 137-140 of [54]. As an
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immediate consequence of (1.12),

e−‖V ‖∞tp(t, y, y′) ≤ rV (t, y, y′)
≤ e‖V ‖∞t p(t, y, y′), for t > 0, y, y′ ∈ R

d.
(1.13)

We now turn to the discussion of the Green operators corresponding
to the Schrödinger semi-groups. We thus consider V ∈ L∞

c (Rd) as
above and define

GV f(y) = Ey

[ ∫ ∞

0

f(Xs) e
∫

s
0
V (Xu)duds

]

=

∫

Rd

∫ ∞

0

rV (s, y, y
′) f(y′)ds dy′,

(1.14)

for f a measurable non-negative function on R
d, and y ∈ R

d.

When V = 0 (so rV (t, y, y
′) = p(t, y, y′)) we simply write G, and

recover the usual Green operator attached to Brownian motion
(1.15)

Gf(y) = Ey

[ ∫ ∞

0

f(Xs)ds
]
=

Γ(d
2
− 1)

2π
d
2

∫

Rd

1

|y − y′|d−2
f(y′)dy.

We introduce in the (classical) lemma below a condition correspond-
ing to the so-called sub-criticality (of 1

2 ∆+ V ) see p. 145, as well as
pp. 129, 136, 150 of [45]. Our assumptions are slightly different and
we briefly sketch the proof for the reader’s convenience.

Lemma 1.1.1. (recall V ∈ L∞
c (Rd)) Assume that

(1.16)
GVW (y0) <∞, for some y0 ∈ R

d and some
[0, 1]-valued, measurable function W not a.e. equal to 0.

Then, for any bounded open set U ,

(1.17) GV 1U is a bounded function.
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Moreover, in the notation of (1.11), the Schrödinger semi-group

(1.18)
(RV

t )t≥0 is a strongly continuous semi-group
of self-adjoint contractions on L2(Rd).

Proof. We first sketch the proof of (1.17). We note that

(1.19) rV (1, y0, y) ≥ c(V, y0, y1) rV
(
1

2
, y1, y

)
, for y0, y1, y ∈ R

d,

with c(V, ·, ·) locally bounded away from zero. Indeed, this follows

from (1.13) and the inequality p(1, 0, z)/p(12 , z1, z) = 2−
d
2 exp{ 12 |z−

2z1|2 − |z1|2} ≥ 2−
d
2 exp{−|z1|2}, for z, z1 ∈ R

d, combined with
translation invariance (set z = y − y0, z1 = y1 − y0). Thus, for
y1 ∈ R

d, we find that the above inequality together with the semi-
group property yields that

(1.20)
∞ > GVW (y0)

(1.14)

≥
∫ ∞

0

∫
rV (s+ 1, y0, y)W (y)dy ds ≥

c(V, y0, y1)

∫ ∞

1
2

∫
rV (t, y1, y)W (y)dy dt,

which combined with (1.13) (for the values t ∈ (0, 12 ]) implies that
GVW is locally bounded. In addition, by the semi-group property,
we see that for y ∈ R

d,
(1.21)

GVW (y) ≥
∫ ∞

0

∫
rV (s+ 1, y, y′)W (y′)dy′ds ≥ GV 1U (y) inf

z∈U
RV

1 W.

By our assumption on W , the last term is positive, and hence, GV 1U
is locally bounded. ChoosingK ⊂⊂ R

d containing U and the support
of V , the strong Markov property yields,

(1.22) GV 1U (y) = Ey

[
(GV 1U )(XHK ), HK <∞

]
, for any y ∈ R

d,

so GV 1U is bounded and (1.17) follows.
We now turn to the proof of (1.18). For ϕ ∈ L∞

c (Rd) we denote
by dEϕ,ϕ(λ) the spectral measure of ϕ (and E is a spectral resolution
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of the identity of the generator of (RV
t )t≥0, see for instance Theorems

13.30 and 13.37, pp. 348, 360 of [49]).We find by (1.17) that

(1.23) ∞ >

∫ ∞

0

dt
〈
RV

t ϕ, ϕ
〉
=

∫ ∞

0

dt

∫

R

e−λtdEϕ,ϕ(λ),

Hence, dEϕ,ϕ gives no mass to (−∞, 0], and therefore for ϕ ∈ L∞
c (Rd),

(1.24)
〈
RV

t ϕ,R
V
t ϕ
〉
=

∫ ∞

0

e−2λtdEϕ,ϕ(λ) ≤
∫ ∞

0

dEϕ,ϕ(λ) = ‖ϕ‖2L2(Rd).

Since L∞
c (Rd) is dense in L2(Rd), the claim (1.18) follows.

We now recall some properties of the gauge function

(1.25) γV (y) = Ey

[
e
∫

∞

0
V (Xs)ds

]
, for y ∈ R

d

(note that V ∈ L∞
c (Rd) and the integral is finite due to transience,

or more precisely, to the fact that Py is a probability on W+, see
above (1.11)). As the next proposition shows, the gauge function is
closely related to the Schrödinger semi-group (attached to V ) via its
Green operator. We refer to [15], [16], and [17], for much more on
the subject.

Proposition 1.1.2. (recall V ∈ L∞
c (Rd)) The condition (1.16) is

equivalent to

(1.26) γV is not identically infinite (Gauge Condition).

If (1.16), or equivalently (1.26), holds, then
(1.27)
γV is a bounded continuous function on R

d tending to 1 at infinity,

and

(1.28) γV = 1 +GV γV = 1 +GV V.
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Proof. To show that (1.16) implies (1.26), we use the identity

(1.29) e
∫

t
0
V (Xs)ds = 1 +

∫ t

0

V (Xs) e
∫

s
0
V (Xu)duds, for t ≥ 0.

By Fatou’s lemma, (1.29) implies that γV (y) ≤ 1 + GV |V |(y),
which is a bounded function of y, by (1.17). The fact that γV coin-
cides with the last expression of (1.28) follows by dominated conver-
gence.

To prove that (1.26) implies (1.16), either V+ (= max(V, 0)) van-
ishes a.e., so that rV ≤ p and (1.16) holds, or else, by Theorem 2.8,
p. 4651 of [15], ‖GV V+‖∞ < ∞ and V+ is not a.e. equal to 0. This
implies (1.16) (choosing W = V+ ∧ 1). Thus (1.16) and (1.26) are
equivalent.

To prove (1.27), we already know from the discussion below (1.29)
that γV is a bounded function. It is continuous by the Corollary,
p. 150 of [17], or (ii) in Theorem 4.7, p. 115 of the same reference.
The fact that γV tends to 1 at infinity follows from the first equality
of (1.28), which we prove now. To derive the first equality of (1.28)
(and this will compete the proof of Proposition 1.1.2), we use the
identity

(1.30) e
∫

t
0
V (Xs)ds = 1 +

∫ t

0

V (Xs) e
∫

t
s
V (Xu)duds, for t ≥ 0.

Integrating with respect to Py and using the Markov property yields

(1.31) Ey

[
e
∫ t
0
V (Xs)ds

]
= 1+Ey

[ ∫ t

0

V (Xs)EXs

[
e
∫ t−s
0

V (Xu)du
]
ds
]
,

for all y ∈ R
d. By (1.17) and (1.29) we see that the inner expectation

is uniformly bounded, and converges to γV (Xs) as t→∞. The first
equality of (1.28) now follows by dominated convergence. The second
equality results from the discussion below (1.29), and the proof of
Proposition 1.1.2 is now complete.

The following approximation lemma will be helpful in Sections 2
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and 3. We say that r and r′ in (1,∞) are conjugate exponents when

(1.32)
1

r
+

1

r′
= 1.

Lemma 1.1.3. Consider r > d
2 , and V, Vn, n ≥ 1, in L∞

c (Rd), which
all vanish outside K ⊂⊂ R

d. Assume that (1.16) holds for V and
that

(1.33) lim
n
‖V − Vn‖Lr(Rd) = 0.

Then, for large n, (1.16) holds for Vn, and

(1.34) γVn converges uniformly to γV on R
d.

Proof. By Theorem 2.17, p. 4660 of [15] (Super Gauge Theorem), for
some p > 1, pV satisfies (1.26) and hence (1.16). Thus, denoting by
q the conjugate exponent of p,

|γVn(y)− γV (y)| ≤ Ey

[∣∣e
∫

∞
0

(Vn−V )(Xs)ds − 1
∣∣e

∫
∞0V (Xs)ds

]

Hölder

≤ Ey

[∣∣e
∫

∞
0

(Vn−V )(Xs)ds − 1
∣∣q] 1

q
∥∥γpV

∥∥ 1
p

∞
,

(1.35)

for all y ∈ R
d (and ‖γpV ‖∞ is finite by (1.27)).

Thus, choosing 2m ≥ q, with m ≥ 1 integer, and setting ∆n =
Vn − V , we find that the (2m)-th power of the first term in the last
line of (1.35) is smaller than
(1.36)

Ey

[(
e
∫

∞
0

∆n(Xs)ds − 1
)2m]

=
2m∑
ℓ=0

(
2m
ℓ

)
(−1)2m−ℓEy

[
e
∫

∞
0

ℓ∆n(Xs)ds
]
.

The claim (1.34) will thus follow once we show that for each fixed
ℓ ≥ 0,

(1.37) sup
y∈Rd

∣∣Ey

[
eℓ

∫
∞
0

∆n(Xs)ds
]
− 1
∣∣ −→

n
0 .

Expanding the exponential and using the Markov-property, we can
bound the absolute value in (1.37) by

∑
k≥1 ℓ

k‖G |∆n| ‖k∞.
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By assumption, r > d
2 , so, the conjugate exponent r′ belongs to

(1, d
d−2 ). Then, for z ∈ R

d,

G|∆n|(z)
(1.15)
= c

∫ |∆n(y)|
|y − z|d−2

dy

Hölder

≤ c
(∫

K

1

|y − z|(d−2)r′
dy
) 1

r′ ‖∆n‖r

≤ c(r,K) ‖∆n‖r

(1.38)

(for the last bound, where the dependence in z has disappeared, one
considers the smallest R ≥ 1 such that B(0, R) ⊇ K, and looks sep-
arately at z /∈ B(0, 2R), or z ∈ B(0, 2R) and hence K ⊆ B(z, 3R)).
So, we see that for ℓ ≤ 2m,

sup
y∈Rd

∣∣Ey

[
eℓ

∫
∞

0
∆n(Xs)ds

]
− 1
∣∣

≤
∑
k≥1

(2m)k‖G |∆n| ‖k∞

≤ c(r,K) 2m‖∆n‖r
(1− c(r,K) 2m‖∆n‖r)+

(1.15)−→
n

0.

(1.39)

This proves (1.37) and (1.34) follows.

We now recall some properties of Brownian interlacements, and
refer to Section 2 of [60] for more detail. Brownian interlacements
correspond to a certain Poisson point process on a state space, which
is the product W ∗×R+, whereW ∗ stands for the space of continuous
trajectories from R into R

d, tending to infinity at plus and minus infi-
nite times, modulo time-shift. The intensity measure of this Poisson
point process is the product of a certain σ-finite measure ν on W ∗

(see Theorem 2.2 of [60]), with the Lebesgue measure dα on R+. In-
formally, this point process corresponds to a cloud of doubly-infinite
trajectories modulo time-shift having each a non-negative label (the
R+-component of W ∗ × R+). The Poisson point process is defined
on a certain canonical space (Ω,A,P), see (2.23) of [60]. We collect
below some properties of Brownian interlacements, which we will use
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here.
Given K ⊂⊂ R

d, α ≥ 0, and ω ∈ Ω, one considers the point
measure on W+, denoted by µK,α(ω), which collects for all bilateral
trajectories with label at most α, which enter K at some point, their
forward trajectories after their first entrance time in K. Then, see
(2.25) of [60],

µK,α is a Poisson point process on

W+ with intensity measure αPeK ,
(1.40)

where

(1.41) eK(dy) stands for the equilibrium measure of K.

The equilibrium measure of K is a finite measure concentrated on
∂K, and its total mass is called the capacity of K, see pp. 58, 61 of
[54]. Moreover,

(1.42) 〈eK , Gf〉 = 〈1, f〉 if f ∈ L∞
c (Rd) vanishes outside K.

One also introduces the occupation-time measure Lα(ω) of Brownian
interlacements at level α ≥ 0 in the cloud ω. It is the Radon measure
on R

d, which to each A ∈ B(Rd) gives a mass equal to the total time
spent in A by all trajectories modulo time-shift with label at most
α in the cloud ω. In particular, when V ∈ L∞

c (Rd) vanishes outside
K ⊂⊂ R

d, one has for α ≥ 0, and ω ∈ Ω,

〈
Lα(ω), V

〉
=
〈
µK,α(ω), fV

〉
, where

fV (w) =

∫ ∞

0

V
(
Xs(w)

)
ds, for w ∈W+.

(1.43)

The intensity measure of Lα equals αdy, cf. (2.38) of [60], that is

(1.44) E
[〈
Lα, V

〉]
= α

∫

Rd

V dy, for all V ∈ L∞
c (Rd).
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Moreover, Lα has an important scaling property, see (2.43) of [60],

(1.45) Lλ2−dα
law
= λ2hλ ◦ Lα, for λ > 0,

where hλ ◦ Lα stands for the image of Lα under the homothety of
ratio λ on R

d.
One also has an expression for the Laplace transform of Lα in the

“neighborhood of the origin” (see Proposition 2.6 of [60]). Namely
for V ∈ L∞

c (Rd) such that ‖G |V | ‖∞ < 1, one has

(1.46) E[e〈Lα,V 〉] = exp{α〈V, (I −GV )−11〉}

(the assumption on V ensures that I−GV operating on L∞(Rd) has
a bounded inverse). In the next section we will derive identities that
bypass the smallness assumption on V in (1.46), and remain true
even when the left-hand side of (1.46) explodes.

We close this section with a lemma about Poisson point processes,
which will be helpful in the next section. We consider a measurable
space (E, E).

Lemma 1.1.4. Let µ be a Poisson point process on E with finite
intensity measure η (i.e. η(E) < ∞), and let Φ: E → R be a
measurable function. Then, one has

(1.47) E[e〈µ,Φ〉] = exp
{∫

E

(eΦ − 1)dη
}

(this is an identity between numbers in (0,+∞]).

Proof. Set Φn =
∑

Z∋k<n2n
k
2n 1{ k

2n ≤ Φ < k+1
2n }, for n ≥ 1, so that

Φn is measurable, (−∞, n]-valued, and Φn increases to Φ, as n→∞.
Then, for each n, classically, see for instance [48], p. 130-134,

E[e〈µ,Φn〉] = exp
{∫

E

(eΦn − 1)dη
}

(<∞, since Φn ≤ n and η(E) <∞), and (1.47) follows by monotone
convergence.
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1.2 Laplace functional of occupation-time

measures of Brownian interlacements

In this section, with the help of Schrödinger semi-groups techniques
(in particular Lemma 1.1.1 and Proposition 1.1.2 of the previous
section), we derive an identity for the Laplace functional of Lα, see
Theorem 1.2.2. This identity plays an important role for the identi-
fication of the rate function governing the large deviation principle
for the occupation-time profile of Brownian interlacements in a large
box, which we derive in the next section. We state two consequences
of the basic identity (1.52), see Corollaries 1.2.4 and 1.2.5. In Remark
1.2.3, we discuss the corresponding identity one obtains in the case
of continuous-time random interlacements on a transient weighted
graph.

We begin with the observation that the Laplace functional of Lα
naturally involves the gauge function. We consider V ∈ L∞

c (Rd) and
recall that γV stands for the gauge function, see (1.25). When V
vanishes on Kc, with K ⊂⊂ R

d, as in (1.43), we can express 〈Lα, V 〉
in terms of the Poisson point process µK,α introduced above (1.40),
and use Lemma 1.1.4 to compute the exponential moment of 〈Lα, V 〉.
We find

E[e〈Lα,V 〉]

(1.43)
= E[e〈µK,α,fV 〉]

(1.40),(1.47)
= eα〈eK ,Ex[e

∫∞
0 V (Xs)ds]−1〉

(1.25)
= eα〈eK ,γV −1〉, for α ≥ 0

(1.48)

(note that this is an identity between numbers in (0,∞], and there
is no smallness assumption on V ).

Remark 1.2.1. It is well-known that the gauge function γV (and
hence the left-hand side of (1.48)) may very well be infinite, see for
instance [45], p. 227, and pp. 166, 167. This feature complicates
the study of the Laplace transform of Lα. When (1.16) (or equiva-
lently (1.26)) holds, we know from (1.27), (1.28) that γV is bounded
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continuous and γV − 1 = GV γV . By (1.42) we thus find that

(1.49) E[e〈Lα,V 〉] = eα〈V,γV 〉, for α ≥ 0, when (1.16) holds.

In particular, when ‖G|V | ‖∞ < 1, then (1.26) holds (see for instance
(2.6) in [57]), and I − GV operating on L∞(Rd) has a bounded
inverse. So, by the first equality in (1.28), γV = (I − GV )−11, and
we find 〈V, γV 〉 = 〈V, (I−GV )−11〉. In this fashion we recover (1.46)
out of (1.49) when ‖G|V | ‖∞ < 1. �

We introduce a notation for the logarithm of the Laplace func-
tional of L1. For V ∈ L∞

c (Rd), we set

(1.50) Λ(V ) =
1

α
logE[e〈Lα,V 〉] ∈ (−∞,+∞]

(and α > 0 is arbitrary by (1.48)). We also recall from (1.9) the
notation

(1.51) Γ(V ) =

∫

Rd

V dy + sup
ϕ∈L2(Rd)

{2〈V, ϕ〉+ 〈V ϕ, ϕ〉 − E(ϕ, ϕ)},

where E(ϕ, ϕ) denotes as in (1.10) the Dirichlet form attached to
the Brownian semi-group acting on L2(Rd) (i.e. (RV=0

t )t≥0 in the
notation of (1.27)), see for instance [54], p. 26. Further, we will also
use the notation E(ϕ, ϕ), when ϕ belongs to the extended Dirichlet
space Fe (consisting of functions that are a.e. limits of sequences in
H1(Rd) that are Cauchy for E(·, ·)), see Chapter 1 §5 of [29].

We are now ready for the key identity of this section. The ar-
guments we use are general and easily adapted to the context of
continuous-time random interlacements on transient weighted graphs,
as explained in Remark 1.2.3 below.

Theorem 1.2.2.

(1.52) Λ(V ) = Γ(V ), for all V ∈ L∞
c (Rd).

Proof. We first assume Λ(V ) <∞ and show the identity (1.52). By
(1.48), we know that (1.26), and hence (1.16) hold. By (1.49) we
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have

(1.53) Λ(V ) = 〈V, γV 〉
(1.28)
= 〈V, 1〉+ 〈V,GV V 〉.

Similarly, we have

(1.54) Γ(V ) = 〈V, 1〉+Ψ(V ),

where

Ψ(V ) = sup
ϕ∈L2(Rd)

{2〈V, ϕ〉+ 〈V ϕ, ϕ〉 − E(ϕ, ϕ)}

= sup
ϕ∈L2(Rd)

sup
ε>0
{2〈V, ϕ〉+ 〈(V − ε)ϕ, ϕ〉 − E(ϕ, ϕ)}

= sup
ε>0

sup
ϕ∈L2(Rd)

{2〈V, ϕ〉+ 〈(V − ε)ϕ, ϕ〉 − E(ϕ, ϕ)}.

We know by (1.18) that the Schrödinger semi-group (RV
t )t≥0 is a

semi-group of self-adjoint contractions on L2(Rd). Its quadratic form
is E(ϕ, ϕ)− 〈V ϕ, ϕ〉, see for instance [15], p. 4654. Then, by Lemma
4.4, p. 22 of [54], and also below (4.10), p. 23 of the same reference,
we have

(1.55) sup
ϕ∈L2(Rd)

{2〈V, ϕ〉+ 〈(V − ε)ϕ, ϕ〉 − E(ϕ, ϕ)} = 〈V,GV −εV 〉,

where GV−ε is defined as in (1.14) with V replaced by V − ε. Note
that the left-hand side of (1.55) is a decreasing function of ε, so the
same holds for the right-hand side. As a result, we find that

(1.56) Ψ(V ) = sup
ε>0
〈V,GV −εV 〉 = lim

ε→0
〈V,GV −εV 〉 = 〈V,GV V 〉,

using dominated convergence and (1.17) in the last step. We have
thus shown that

Γ(V )
(1.54)
= 〈V, 1〉+Ψ(V )

(1.56)
= 〈V, 1〉+ 〈V,GV V 〉

(1.53)
= Λ(V ),

that is, (1.52) holds when Λ(V ) <∞.
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We now assume that Γ(V ) <∞, and show (1.52). Since Γ(V ) <
∞, we have

(1.57) sup
ϕ∈L2(Rd)

〈V ϕ, ϕ〉 − E(ϕ, ϕ) ≤ 0

(otherwise the supremum in (1.51) would be infinite). Since E(ϕ, ϕ)−
〈V ϕ, ϕ〉 is the quadratic form associated to the strongly continuous
self-adjoint Schrödinger semi-group (RV

t )t≥0 on L2(Rd), it follows
that RV

t , t ≥ 0, are contractions.
We first discuss the case where V− = 0 a.e.. If V = 0 a.e.,

then (1.52) is immediate. Otherwise, V+ is not a.e. equal to 0. We
then apply the same considerations as below (1.54) to find that for
ε > 0, supϕ∈L2(Rd){2〈V, ϕ〉+ 〈(V − ε)ϕ, ϕ〉−E(ϕ, ϕ)} = 〈V,GV −εV 〉,
and that this quantity increases to supϕ∈L2(Rd){2〈V, ϕ〉+ 〈V ϕ, ϕ〉 −
E(ϕ, ϕ)}, as ε tends to 0. Coming back to the definition of Γ(V ) in
(1.51), we find that

(1.58) ∞ > Γ(V ) = 〈V, 1〉+ lim
ε→0
〈V,GV −εV 〉 = 〈V, 1〉+ 〈V,GV V 〉,

where we used monotone convergence in the last step. Hence, (1.16)
holds and Λ(V ) < ∞, by (1.49) and (1.27). The identity (1.52)
follows from the first part of the proof.

If instead V− is not a.e. equal to 0, we define for λ ∈ [0, 1],

(1.59) Vλ = (1− λ)V − λV− = V − λV+
(
∈ L∞

c (Rd)
)
,

so that Vλ increases to V as λ decreases to 0. Note that

2〈V, ϕ〉+ 〈V ϕ, ϕ〉 − E(ϕ, ϕ) ≥ 2〈Vλ, ϕ〉+ 〈Vλϕ, ϕ〉 − E(ϕ, ϕ) +Aλ,

where

Aλ = inf
ϕ
λ{2〈V+, ϕ〉+ 〈V+ϕ, ϕ〉} ≥ λ inf

u≥0
{−2〈V+, 1〉

1
2 u+ u2} > −∞

(1.60)

(in the second line, we used the Cauchy-Schwarz Inequality in

L2(V+dy) to write that 〈V+, ϕ〉 ≥ −〈V+, 1〉
1
2 〈V+ϕ, ϕ〉

1
2 , and took a

lower bound over u = 〈V+ϕ, ϕ〉
1
2 ).
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Since Γ(V ) <∞ by assumption, we see that

(1.61) Γ(Vλ) <∞, for λ ∈ [0, 1].

Moreover, for 0 < λ ≤ 1, we have

2〈V, ϕ〉+ 〈V ϕ, ϕ〉 − E(ϕ, ϕ) ≥ −2〈V−, ϕ〉+ 〈Vλϕ, ϕ〉 − E(ϕ, ϕ) +Bλ,

where Bλ = inf
ϕ

2〈V+, ϕ〉+ λ〈V+ϕ, ϕ〉 > −∞,

(1.62)

by a similar argument as below (1.60). This shows that

(1.63) ∞ > sup
ϕ∈L2(Rd)

{−2〈V−, ϕ〉+ 〈Vλϕ, ϕ〉 − E(ϕ, ϕ)}.

In addition, by (1.61) and the argument below (1.57), the Schrödinger
semi-group (RVλ

t )t≥0 is a strongly continuous semi-group of self-
adjoint contractions on L2(Rd). From the argument below (1.54), we
see that the above supremum in (1.63) equals limε→0〈V−, GVλ−εV−〉
= 〈V−, GVλ

V−〉 (using monotone convergence for the last equality),
and this quantity is finite. Hence, Vλ satisfies (1.16) and (see below
(1.58)) Λ(Vλ) <∞. So, by the first part of the proof,

(1.64) Λ(Vλ) = Γ(Vλ)(<∞), for 0 < λ ≤ 1.

By monotone convergence in (1.50), we see that

(1.65) lim
λ↓0

Λ(Vλ) = Λ(V ).

On the other hand, by (1.51) and (1.59), Γ(Vλ) is a supremum of
affine functions of λ ∈ [0, 1], which is finite when λ = 1 (since
Vλ=1 ≤ 0) and when λ = 0 (by assumption). Hence, it is a convex,
lower semi-continuous, finite function on [0, 1], which is therefore
continuous, so that

(1.66) lim
λ→0

Γ(Vλ) = Γ(V ).
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This implies that (1.52) holds and completes the proof of Theorem
1.2.2.

Remark 1.2.3. The proof of Theorem 1.2.2 is easily adapted to
the case of continuous time random interlacements on a transient
weighted graph E. In this set-up, see for instance Section 1 of [59],
one has a countable, locally finite, connected graph, with vertex set
E, endowed with non-negative symmetric weights cx,y = cy,x, for
x, y ∈ E, which are positive exactly when x, y are distinct and {x, y}
is an edge of the graph. The induced continuous time random walk
is assumed to be transient. It has exponential holding times of pa-
rameter 1, and its discrete skeleton has transition probability

(1.67) px,y =
cx,y
λx

, where λx =
∑
z∈E

cx,z, for x, y ∈ E.

The continuous time random interlacements on the weighted graph
can now be defined as a Poisson point process on a space of doubly-
infinite E-valued trajectories, tending to infinity at plus and minus
infinite times, marked by their duration at each step, modulo time-
shift, see Section 1 of [59]. The field of occupation-times at level
u ≥ 0 in x ∈ E corresponds to

Lx,u(ω) =
1

λx

× the total duration spent at x by trajectories modulo

time-shift, with label at most u in the cloud ω

(1.68)

(durations of successive steps of a trajectory are described by inde-
pendent exponential variables of parameter 1, but occupation times
at x get rescaled by λ−1

x ).
In this set-up, one introduces for V : E → R, finitely supported

Λ(V ) =
1

u
E

[
exp

{ ∑
x∈E

Lx,uV (x)
}]

(this does not depend on u > 0

(1.69)

by the corresponding calculation to (1.48)),
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and

(1.70) Γ(V ) = 〈V, 1〉+ sup
ϕ∈Cc(E)

{
2〈V, ϕ〉+ 〈V ϕ, ϕ〉 − E(ϕ, ϕ)

}
,

where 〈f, g〉 stands for
∑

x∈E f(x) g(x) whenever the sum converges
absolutely, 1 denotes the constant function equal to 1 on E, Cc(E)
stands for the set of finitely supported functions on E, and E for the
Dirichlet form

(1.71) E(f, f) = 1

2

∑
x,y∈E

cx,y
(
f(y)− f(x)

)2
(∈ [0,∞])

for f : E → R. Let us mention that one can also replace Cc(E) in
(1.70) by the extended space of the Dirichlet form E (see Chapter
1 §5 of [29]). The proof of Theorem 1.2.2 adapted to the present
context yields

Theorem 1.2.2’.

(1.72) Λ(V ) = Γ(V ), for all finitely supported V : E → R.

We now derive some corollaries of Theorem 1.2.2, which will play
an important role in the next section. As above (1.1), B is a closed
box (i.e. a compact subset of Rd that is the product of d possibly
different non-degenerate compact intervals in R), and mB, as above
(1.2), the restriction of Lebesgue measure to B. We write Lp(B) as
a shorthand for Lp(B, dmB), when 1 ≤ p < ∞. Given ϕ̃ ∈ L2(B),
we introduce

(1.73) ẼB(ϕ̃, ϕ̃) = inf
ϕ∈L2(Rd)

{E(ϕ, ϕ); ϕ = ϕ̃ a.e. on B},

the so-called trace Dirichlet form on B, see [29], pp. 265, 266. We
will often drop the subscript B, when this causes no ambiguity. One
knows that ẼB(ϕ̃, ϕ̃) is finite precisely when ϕ̃ is a.e. equal to the
restriction to B of a quasi-continuous function ϕ in the extended
Dirichlet space Fe, and in this case ϕ(y) = Ey[ϕ(XHB ), HB < ∞]

belongs to Fe and ẼB(ϕ̃, ϕ̃) = E(ϕ, ϕ).
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Let us also note that L1
+(B)

def
= {f ∈ L1(B); f ≥ 0, mB-a.e.} is

a closed convex subset of L1(B) (endowed with the norm topology).

Corollary 1.2.4. For V ∈ L∞
c (Rd) vanishing outside B, one has

Λ(V ) = sup
h∈L1

+(B)

{∫

B

V h dmB − Ẽ(
√
h− 1,

√
h− 1)

}
, and(1.74)

h ∈ L1
+(B) −→ Ẽ(

√
h− 1,

√
h− 1) ∈ [0,+∞] is a convex(1.75)

lower semi-continuous function.

Proof. We consider V ∈ L∞
c (Rd) vanishing outside B. Then, by

(1.52) we have

Λ(V ) = sup
ϕ∈L2(Rd)

{∫
V dy + 2

∫
V ϕdy +

∫
V ϕ2dy − E(ϕ, ϕ)

}

= sup
ϕ∈L2(Rd)

{∫
V (1 + ϕ)2dy − E(ϕ, ϕ)

}

(1.73)
= sup

ϕ̃∈L2(B)

{∫

B

V (1 + ϕ̃)2dmB − Ẽ(ϕ̃, ϕ̃)
}

(1.76)

(since V = 0 outside B).
Now, the function ρ(u) = |1+u|−1 satisfies ρ(0) = 0 and |ρ(u)−

ρ(v)| ≤ |u − v|, for u, v ∈ R, and by [29], pp. 4, 5, we have for

ϕ̃ ∈ L2(B), ψ̃ = ρ(ϕ̃), Ẽ (ψ̃, ψ̃) ≤ Ẽ(ϕ̃, ϕ̃), and (1 + ψ̃)2 = (1 + ϕ̃)2.
As a result, we find that
(1.77)

Λ(V ) = sup
{∫

V (1+ψ̃)2dmB−Ẽ(ψ̃, ψ̃); ψ̃ ∈ L2(B), 1+ψ̃ ≥ 0 a.e.
}

(the above argument shows that Λ(V ) is smaller or equal to the right-
hand side of (1.77), but by the last line of (1.76), Λ(V ) is also bigger
or equal to the right-hand side of (1.77)).

Setting h = (1+ ψ̃)2, we obtain a bijection between {ψ̃ ∈ L2(B);

1 + ψ̃ ≥ 0, a.e.}, and L1
+(B), and the claim (1.74) follows. As for
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(1.75), it is proved by a similar argument as in ii), below (4.2.64),
p. 135 of [22] (see also Theorem 6.2.1 and (1.3.18), (1.4.8) in [29]).

The next corollary brings us a step closer to the identification of
what will be the rate function of the large deviation principle, which
we derive in the next section. We tacitly identify the set L∞(B)
of bounded measurable function on B with the set {V ∈ L∞

c (Rd);
V = 0 on Bc}, and recall that (see below (1.1)) C(B) stands for
the space of continuous functions on B (identified with the set of
functions vanishing outside B, with continuous restriction to B).

Corollary 1.2.5. For h ∈ L1
+(B), one has

ẼB(
√
h− 1,

√
h− 1) = sup

V ∈L∞(B)

{∫
V h dmB − Λ(V )

}

= sup
V ∈C(B)

{∫
V h dmB − Λ(V )

}
.

(1.78)

Proof. Since L∞(B, dmB) is the dual of L1(B, dmB), the first equal-
ity follows from (1.74), (1.75) and the duality formula in Theorem
2.2.15, p. 55 of [22], or Lemma 4.5.8, p. 152 of [20], together with the
fact we can replace L∞(B, dmB) by L∞(B), since the quantity under
the supremum in the right-hand side of the first equality coincides
for V and V ′, if V = V ′, mB-a.e. (recall (1.44)).

The quantity on the last line of (1.78) is obviously smaller or
equal to the right-hand side of the first equality. Fix h in L1

+(B).
Our claim will thus follow, once we show that for any V ∈ L∞(B)
with Λ(V ) <∞ and ε > 0, one can find W ∈ C(B) such that

(1.79)

∫
WhdmB − Λ(W ) ≥

∫
V h dmB − Λ(V )− ε.

We thus pick r > d
2 , as in Lemma 1.1.3, and choose Vn ∈ C(B)
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(extended to be equal to 0 on Bc) such that

(1.80)





i) ‖Vn − V ‖Lr(Rd) → 0,

ii) Vn → V a.e.,

iii) ‖Vn‖L∞(Rd) ≤ ‖V ‖L∞(Rd).

The construction of such a sequence can be performed as follows:
one first multiplies V by the indicator function of a slightly smaller
concentric box in B, and then uses convolution by a smoothing ker-
nel to construct a sequence Vn of continuous functions vanishing
on Bc, for which i) and iii) hold. One obtains ii) by extracting a
suitable subsequence. Then Lemma 1.1.3 and (1.49) ensure that
Λ(Vn) −→

n
Λ(V ), and moreover

∫
Vnh dmB −→

n

∫
V h dmB, by dom-

inated convergence. The claim (1.79) follows, and Corollary 1.2.5 is
proved.

1.3 Large deviations for occupation-time

profiles of Brownian interlacements

In this section, we derive a large deviation principle for the occupation-
time profile of Brownian interlacements at level α > 0 in a box LB,
as L → ∞, cf. Corollary 1.3.3. Due to the scaling property (1.45)
of Lα, this fixed level, large space problem (i.e. α > 0 fixed, and
L → ∞) is converted into a fixed space, large level problem (i.e. L
fixed, and α→∞), which can be handled via general Cramér theory,
see Chapter 6 §1 of [20], or Chapter 3 of [22], making use of subad-
ditivity, see Theorem 1.3.2. The identification of the rate function
relies heavily on the results of the previous section, in particular on
Corollary 1.2.5.

Given a closed box B in R
d (see above (1.1)), we endow the

space M(B) of finite signed measures on B with the weak topology
generated by C(B) (the space of continuous functions on B). The
set M+(B) (of positive measures on B) is a closed convex subset of
M(B). We introduce the function on M+(B) (see (1.50) for nota-
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tion):
(1.81)

IB(µ) = sup
V ∈C(B)

{∫
V dµ− Λ(V )

}
∈ [0,∞], for µ ∈M+(B),

and when there is no ambiguity, we simply write I(·) in place of
IB(·).

As we now see, IB(·) is closely related to Iv(·), v > 0, in (1.3).

Lemma 1.3.1. (B ⊆ B′ closed boxes in R
d)

IB(·) is a convex, good rate function

(i.e., it is convex, lower semi-continuous,(1.82)

and has compact level sets).

If µ is the restriction to B of µ′ ∈M+(B
′), one has

(1.83) IB(µ) ≤ IB′(µ′) .

Moreover,

IB(µ)

(1.84)

= +∞, if µ ∈M+(B) is not absolutely continuous w.r.t. mB

= inf
{
1

2

∫

Rd

|∇ϕ|2dy; ϕ ∈ H1(Rd), ϕ =
(

dµ

dmB

) 1
2 − 1 a.e. on B

}
,

if µ is absolutely continuous with respect to mB,

and

(1.85) Iv(·) = v IB

( ·
v

)
, for v > 0 (see (1.3) for notation).

Proof. We begin with (1.82). The convexity and lower semi-continuity
are direct consequences of (1.81). Moreover, when λ > 0 is small
enough so that λ‖G1B‖L∞(Rd) < 1, we know that Λ(λ1B) <∞, see
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(1.46), and hence,

(1.86) I(µ) ≥ λ〈µ, 1B〉 − Λ(λ1B), for µ ∈M+(B).

Therefore, for any M ≥ 0, 〈µ, 1B〉 remains bounded on {µ ∈M+(B);
I(µ) ≤ M}, which is therefore a compact subset of M+(B) (we
already know it is closed by lower semi-continuity of I). This proves
(1.82).

We now turn to (1.84). The second line of (1.84) is an immediate
consequence of Corollary 1.2.5 and (1.73). To complete the proof
of (1.84), it thus suffices to show that I(µ) = ∞ when µ is not
absolutely continuous with respect to mB.

Indeed, for such a measure µ, we can find a compact subset K
of B such that µ(K) > 0, but m(K) = 0. Then, consider for n ≥ 1,
Wn(·) = (1−nd(·,K))+ ∈ C(B) (we set Wn equal to zero on Bc), so
that Wn is [0, 1]-valued, takes the values 1 on K and vanishes outside
the open 1

n -neighborhood of K in B. Thus, choosing r > d
2 , we see

that δn = ‖Wn‖Lr(Rd) −→
n

0, and setting Vn = δ
− 1

2
n Wn, it follows by

Lemma 1.1.3 and (1.49) that Λ(Vn) −→
n

0. As a consequence, we see

that

(1.87) I(µ)
(1.81)

≥
∫
Vndµ− Λ(Vn) ≥ δ−

1
2

n µ(K)− Λ(Vn) −→
n

+∞.

This shows that I(µ) =∞ and completes the proof of (1.84).
We now prove (1.83). Without loss of generality, we can assume

that IB′(µ′) <∞. By (1.84) this implies that µ′ is absolutely contin-
uous with respect to mB′ , and hence µ is absolutely continuous with
respect to mB. The inequality IB(µ) ≤ IB(µ

′) is now a direct con-
sequence of (1.84). This proves (1.83). Finally, (1.85) is immediate
by comparison of (1.84) and (1.3).

We denote by Lα,B the restriction of the (random) Radon mea-
sure Lα on R

d to the Borel subsets of B. The main step towards the
large deviation principle for νL,α, with α > 0 fixed and L→ ∞, see
(1.5), is a large deviation principle for 1

α Lα,B , as α→∞, which we
derive in Theorem 1.3.2 below. We use general Cramér theory, see
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Theorem 6.1.3, p. 252 of [20] (with χ = M(B) and E = M+(B), in
the notation of [20]).

Theorem 1.3.2. (B a closed box)

(1.88)
As α→∞, the laws under P of 1

α Lα,B on M+(B)
satisfy a large deviation principle at speed α, with
the convex good rate function IB from (1.81).

Moreover, for any open convex subset O of M(B),
(1.89)

lim
α→∞

1

α
logP

[
1

α
Lα,B ∈ O

]
= − inf{IB(µ); µ ∈ O ∩M+(B)}

(with inf φ =∞, by convention).

Proof. For any open convex subset O of M(B), the function

(1.90) fO(α) = − logP
[
1

α
Lα,B ∈ O

]
∈ [0,+∞], for α > 0,

is subadditive (since Lα,B is an M+(B)-valued Lévy-process). When
O ∩M+(B) = φ, then fO is identically infinite. Otherwise, when
O ∩M+(B) 6= φ, then, as we now explain, for ε ∈ (0, 1] small,

(1.91) sup
1≤α≤1+ε

fO(α) <∞.

Indeed, for small ε > 0, there is a positive P-probability that exactly
one trajectory of the interlacement at level 1 enters B (i.e. µB,α=1 =
1, in the notation of (1.40)) and that L1,B ∈ αO, for all 1 ≤ α ≤ 1+ε
(this can be arranged, using the fact that O is open, O∩M+(B) 6= φ,
with the help of the support theorem for the Wiener measure, and
the observation that once reaching distance 1 from B, a Brownian
trajectory has a non-degenerate probability of never returning to
B). Since L1+ε,B−L1,B is independent from L1,B, and vanishes with
positive probability, we see that on an event of positive P-probability
1
α Lα,B ∈ O, for 1 ≤ α ≤ 1 + ε. This is more than enough to prove
(1.91).

Hence, by Lemma 4.2.5, p. 112 of [22], we see that when O ∩
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M+(B) 6= φ,

lim
α→∞

1

α
fO(α) exists and is finite

(and equals inf
α≥α0

fO(α)

α
for large α0).

(1.92)

Moreover, choosing λ as above (1.86), the Chebyshev Inequality and
(1.46) imply that

P[Lα(B) ≥ αM ] ≤ exp
{
− α

(
λM − Λ(λ1B)

)}
, for M > 0, α > 0.

Since {µ ∈M+(B); µ(B) ≤M} is compact for each M > 0, and
λM−Λ(λ1B) −→

M
∞, the exponential tightness of the laws of 1

α Lα,B
follows. Thus, by Theorem 4.1.11, p. 120 of [20], and p. 8 of the
same reference, we see that, as α→∞, the laws of 1

α Lα,B satisfy a
large deviation principle at speed α. Restricting α to integer values,
it follows from Theorem 6.1.3, p. 252 of [20] (Assumption 6.1.2 is
straightforward to check in our set-up) that the rate function of the
above large deviation principle coincides with IB in (1.81) and that
the limit in (1.92) coincides with the right-hand side of (1.89) (when
O∩M+(B) = φ, both members of (1.92) equal +∞). This concludes
the proof of Theorem 1.3.2.

The large deviation principle for the profile νL,α of the occupation-
time measure of Brownian interlacements at level α in a large box
LB is now a direct consequence of Theorem 1.3.2 and the scaling
property (1.45). We refer to (1.3), (1.5), and above (1.1) for nota-
tion.

Corollary 1.3.3. (Large deviation principle for the profile, B a
closed box, α > 0)

(1.93)
As L→∞, the laws under P of νL,α on M+(B)
satisfy a large deviation principle with speed Ld−2

and rate function Iα.
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Moreover, for any open convex subset O of M(B),

(1.94) lim
L→∞

1

Ld−2
logP[νL,α ∈ O] = − inf{Iα(µ); µ ∈ O∩M+(B)}

(with inf φ = +∞ by convention).

Proof. By the scaling property (1.45), we see that νL,α has the same
law as ν̃L = 1

Ld−2 LαLd−2,B, for any L ≥ 1. Our claims are now
direct consequences of Theorem 1.3.2.

1.4 The discrete space set-up

In this section, we introduce some additional notation concerning
continuous time random interlacements on Z

d, d ≥ 3. We recall
the scaling limit relating the discrete space occupation-times to the
occupation-time measure of Brownian interlacements established in
Theorem 3.2 of [60], see (1.98) below. Further, as a preparation to
the large deviation principle for ρN,u (see (1.1)), which we derive
in the next section, we collect here the statements corresponding to
Theorem 1.2.2’ and Corollaries 1.2.4, 1.2.5 in the present set-up.

Given N ≥ 1, we introduce the scaled lattice

(1.95) LN =
1

N
Z
d(⊆ R

d),

and B being a closed box (see above (1.1)), we set

(1.96) BN = B ∩ LN .

For functions f, h on LN such that
∑

y∈LN

|f(y)h(y)| <∞, we write

(1.97) 〈f, h〉LN =
1

Nd

∑
y∈LN

f(y)h(y),

and we introduce the spaces Lp(LN ), 1 ≤ p < ∞, and their corre-
sponding norms in a similar manner.

We refer to [59] for the precise construction of continuous time
random interlacements on Z

d (with d ≥ 3). As mentioned in the
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introduction, we denote by (Ω,A,P) the canonical space on which
they are constructed, and by (Lx,u)x∈Zd the field of occupation-times
of random interlacements at level u ≥ 0. Fixing u ≥ 0, this is a
stationary field on Z

d, and by the same proof as for (2.7) of [56], it
is ergodic. One knows that E[Lx,u] = u, for x ∈ Z

d, u ≥ 0, so by the
ergodic theorem, see Theorem 2.8, p. 205 of [36], one sees that

for u ≥ 0, P-a.s.,
1

Nd

∑
y∈LN

LNy,u δy

converges vaguely to u dy, as N →∞
(1.98)

(and ρN,u converges weakly to umB, in the notation of (1.1)).
The occupation-time measure of Brownian interlacements can be

expressed as a scaling limit of the occupation times of random inter-
lacements on Z

d. Namely, one know by Theorem 3.2 of [60] that for
α ≥ 0, as N →∞,
(1.99)

LN,α
def
=

1

dN2

∑
y∈LN

LNy,dαN2−d δy converges in distribution to Lα

(we endow the set of Radon measures on R
d with the topology of

vague convergence).
For N ≥ 1 and V : LN → R with finite support, we introduce

(1.100) ΛN(V ) = logE[e〈LN,1,V 〉] ∈ (−∞,+∞],

and note that
(1.101)

ΛN (V ) =
d

Nd−2
logE[e

Nd−2

d 〈ρN,u=1,V 〉], when V vanishes outside BN

(where we used (1.1) and the fact that the right-hand side of (1.69)
does not depend on u).

To state the identity corresponding to Theorem 1.2.2’ in the
present set-up, we define, for N ≥ 1 and V : LN → R finitely sup-
ported,
(1.102)
ΓN (V ) = 〈V, 1〉LN + sup

ϕ∈L2(LN )

{2〈V, ϕ〉LN + 〈V ϕ, ϕ〉LN − EN (ϕ, ϕ)},
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where for ϕ ∈ L2(LN )

(1.103) EN (ϕ, ϕ) =
1

2Nd−2

∑
y∼y′ inLN

1

2

(
ϕ(y′)− ϕ(y)

)2 ∈ [0,∞]

(y ∼ y′ means that y and y′ are neighbors in LN , i.e. |y−y′| = 1
N ).

We also keep the notation EN (ϕ, ϕ) when ϕ belongs to the ex-
tended space of the Dirichlet form EN (corresponding to functions
on LN that are pointwise limits of an EN -Cauchy sequence of finitely
supported functions on LN ). After proper normalization (the V in
Theorem 1.2.2’ corresponds to 1

dN2 V ( ·
N )), Theorem 1.2.2’ now yields

Theorem 1.4.1. (N ≥ 1)

(1.104) ΛN(V ) = ΓN(V ), for all V : LN → R with finite support.

Before stating the corollary corresponding to Corollaries 1.2.4,
1.2.5 in the present set-up, we define for ψ: BN → R,

(1.105) ẼN (ψ, ψ) = inf{EN(ϕ, ϕ); ϕ ∈ L2(LN ), ϕ = ψ on BN}.

Denoting by PN
y , for N ≥ 1, y ∈ LN , the canonical law of the simple

random walk on LN with exponential holding times of parameter
N2, starting at y ∈ LN , and using similar notation for the canonical
process, the entrance times, and the exit times, as described at the
beginning of Section 1, one knows, as below (1.73), that

(1.106) ẼN (ψ, ψ) = EN (ϕ, ϕ) ∈ [0,∞),

where ϕ(y) = EN
y [ψ(XHBN

), HBN < ∞], for y ∈ LN , is harmonic
outside BN , tends to zero at infinity, and belongs to the extended
Dirichlet space of EN (with HBN the entrance time in BN ).

Similarly to Corollaries 1.2.4 and 1.2.5 (but in a much simpler
fashion), we have

Corollary 1.4.2. (N > 1)
When V : LN → R vanishes outside BN

(1.107) ΛN(V ) = sup
h≥0 onBN

{〈V, h〉LN−ẼN (
√
h−1,

√
h−1)} ∈ [0,∞],
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and for h: BN → R+ (extended to be equal to 0 outside BN )

(1.108) ẼN(
√
h− 1,

√
h− 1) = sup

V=0 onLN\BN

{〈V, h〉LN − ΛN(V )}.

1.5 Large deviations for occupation-time

profiles of random interlacements

The main object of this section is to prove a large deviation princi-
ple for the occupation-time profile ρN,u, see (1.1), of continuous time
random interlacements on Z

d at level u, when N → ∞, cf. Theo-
rem 1.116. Subadditivity is an important ingredient in our proof, see
Proposition 1.5.2 and Corollary 1.5.3. The lower bound in the large
deviation principle appears in Theorem 1.5.4. It relies on Corollary
1.5.3, and on the combination of the large deviation principle for the
occupation-time profile of Brownian interlacements proved in Section
3, and the scaling limit result (1.99) proved in [60], see also Lemma
1.5.1 below. The upper bound appears in Theorem 1.113. It relies on
Corollary 1.5.3 and on Proposition 1.5.6, which provides an asymp-
totic lower bound for a sequence of discrete variational problems, in
the spirit of Γ-convergence, see Proposition 7.2, p. 68 of [19].

We pick u > 0 and a closed box B (see above (1.1)). The space
M(B) is equipped with the weak topology generated by C(B), as
explained in Section 3. We consider ν ∈ M+(B), a finite collection
fℓ ∈ C(B), 1 ≤ ℓ ≤ K, with f1 = 1B, and a number δ > 0. We define
the convex open subset A of M+(B) consisting of positive measures
on B with integrals with respect to fℓ, 1 ≤ ℓ ≤ K, δ-close to the
corresponding integrals with respect to ν, and we denote by O the
homothetic image of A with ratio u:
(1.109)
A = {ρ ∈M+(B); |〈ρ, fℓ〉−〈ν, fℓ〉| < δ, for 1 ≤ ℓ ≤ K}, and O = uA.

We use the shorthand notation c(A) to denote a positive constant,
which depends on d,B, ν,K, (fℓ)1≤ℓ≤K , δ. The collection of sets A
(or O) above constitutes a base for the relative topology on M+(B)
(viewed as a subset of M(B)).
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We also define for N ≥ 1, t ≥ 0 (see (1.99) for notation)

(1.110) L̃N,t = the restriction of LN,t to Borel subsets of B

(a random element ofM+(B)). We now state a consequence of (1.99).

Lemma 1.5.1. (α ≥ 0)

As N →∞, L̃N,α converges in distribution to Lα,B
(see above (1.88) for notation).

(1.111)

Proof. By (1.99) and the continuous mapping theorem, see Theorem
5.1, p. 30 of [10], it suffices to show that (denoting the set of Radon
measures on R

d by M+(R
d)):

(1.112)

the set of continuity points of the map
ρ ∈ M+(R

d)→ ρ̃ ∈M+(B), where ρ̃ is
the restriction of ρ to Borel subsets of B,
has full measure under the law of Lα.

To see this point, note that by (1.44), for a.e. ρ under the law of
Lα, one has ρ(∂B) = 0. Hence, for any such ρ, for any V ∈ C(B)
(extended as 0 outside B), and any sequence ρn converging vaguely
to ρ, one has 〈ρn, V 〉 −→

n
〈ρ, V 〉. This proves that ρ̃n converges

weakly to ρ̃ in M+(B) and (1.112) follows.

We then introduce

(1.113) fN,A(t) = − logP
[
1

t
L̃N,t ∈ A

]
, for t > 0, N ≥ 1.

Since t → L̃N,t has independent, stationary, increments, and A is
convex,

(1.114) for each N ≥ 1, fN,A(·) is subadditive.

The next proposition collects some important bounds on P[ 1tLN,t ∈
A], which exploit subadditivity. It comes as a step towards Corollary
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1.5.3 below. We recall the convention on constants stated below
(1.109).

Proposition 1.5.2. When N ≥ c0(A), then for t1 ≥ c(A) and
t ≥ 2t1, one has

exp
{
− t fN,A(t1)

t1
− 2t1 c

′(A)
}

≤ P

[
1

t
L̃N,t ∈ A

]
≤ exp

{
− t lim

s→∞

fN,A(s)

s

}(1.115)

(and the limit in the rightmost term of (1.115) exists and is finite).

Proof. We first show that for some εA = 1/qA, where qA is some
positive integer depending on A (with a similar meaning as below
(1.109)) and for some N0(A)

(1.116) sup
N≥N0(A)

sup
t∈[1,1+εA]

fN,A(t) =M <∞.

To see this point, we introduce A′ defined as A in (1.109) with δ re-

placed by δ
2 . By (1.111) and (1.91), we know that lim infN P[L̃N,1 ∈

A′] ≥ P[L1,B ∈ A′] > 0. Hence, for N ≥ N0(A), P[L̃N,1 ∈ A′] ≥
c(A). Then, the probability that no trajectory of the interlace-
ment with label in (dN2−d, d(1 + ε)N2−d] enters NBN is equal to

e−dεN2−dcap
Zd

(NBN ) ≥ e−c(B)ε (with cap
Zd(·) the capacity on Z

d, see
for instance (1.57) of [56]). Such an event is independent under P of

{L̃N,1 ∈ A′}. When ε = εA = 1/qA with qA a large enough integer,
so that the set of multiples by a scalar in [(1+εA)

−1, 1] of a measure
in A′ is contained in A, on the intersection of these two events, one
has 1

t L̃N,t =
1
t L̃N,1 ∈ A, for all 1 ≤ t ≤ 1 + εA. The claim (1.116)

follows.
We can now apply Lemma 4.2.5, p. 112 of [22], and find that

when t1 ≥ qA, then for t ≥ 2t1 and N ≥ N0(A), one has (with [·]
denoting the integer part)

(1.117) fN,A(t) ≤
([

t

t1

]
−1
)
fN,A(t1)+2t1M ≤ t fN,A(t1)

t1
+2t1M.
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This proves the first inequality in (1.115).
As for the second inequality, we know by the same Lemma 4.2.5

of [22], that the limit in the rightmost term of (1.115) exists, is finite,
and that moreover, for t ≥ qA,

lim
s→∞

fN,A(s)

s
≤ fN,A(t)

t
.

This implies the second inequality in (1.115) (and one can choose
c(A) = qA in (1.115)).

For fixed N ≥ 1, the finite dimensional space of signed measures
spanned by the basis 1

Nd δy, y ∈ BN , is a closed subspace of M(B),
and the corresponding coordinates yield an homeomorphism with
R

BN . The intersection of this space with M+(B) consists of lin-
ear combinations of 1

Nd δy, y ∈ BN , with non-negative coefficients,
and defines a closed convex subset of M+(B). The finite convex
lower semi-continuous (it is actually continuous) function on R

BN
+ in

(1.108), extended to be equal to +∞ on the complement in M+(B) of
its domain of definition, yields a convex rate function (i.e. a convex,
lower semi-continuous, [0,+∞]-valued function) denoted by

IN (µ) = ẼN (
√
h− 1,

√
h− 1), if µ =

1

Nd

∑
y∈BN

h(y) δy,

with h: BN → R+,

= +∞, otherwise.

(1.118)

We can now state a consequence of Proposition 1.5.2. The difference
lies in the rightmost inequality, which now involves the functional
IN . The next Corollary 1.5.3 encapsulates the sub-additivity lower
and upper bounds, which we will respectively use in the proofs of
Theorem 1.112 and of Theorem 1.5.5.

Corollary 1.5.3. (with A as in (1.109))
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When N ≥ N0(A), for t1 ≥ c(A) and t ≥ 2t1, one has

exp
{
− t fN,A(t1)

t1
− 2t1 c

′(A)
}

≤ P

[
1

t
L̃N,t ∈ A

]
≤ exp

{
− t inf

ρ∈A
IN (ρ)

}
.

(1.119)

Proof. Recall that t→ L̃N,t has independent, stationary increments.
By Theorem 6.1.3, p. 252 of [20], and (1.100), (1.108), we know

that for each fixed N ≥ 1, the laws of 1
n L̃N,n (on M+(B)), as

n → ∞, satisfy a weak large deviation principle at speed n, with
convex rate function IN , see (1.118). Moreover, by the same refer-

ence, limn− fN,A(n)
n = − infA IN (∈ [−∞, 0]). The comparison with

(1.115) yields (1.119).

We can now derive the asymptotic lower bound.

Theorem 1.5.4. (Large deviation lower bound, u > 0, O as in
(1.109), see (1.3) for notation)

(1.120) lim
N

1

Nd−2
logP[ρN,u ∈ O] ≥ − inf

µ∈O

1

d
Iu(µ).

Proof. We first use sub-additivity. We set t = u
d Nd−2, so that

ρN,u = u
t L̃N,t (see (1.1) and (1.99), (1.110)), we see by the first

inequality of (1.119) that for any t = u
d Nd−2 ≥ 2t1 ≥ c(A) and

N ≥ N0(A) (recall O = uA),

P[ρN,u ∈ O]
(1.109)
= P

[
1

t
L̃N,t ∈ A

]
≥ exp

{
− t fN,A(t1)

t1
− 2t1 c

′(A)
}
.

Hence, for any t1 ≥ c(A),

(1.121) lim
N

1

Nd−2
log P[ρN,u ∈ O] ≥ −u

d
lim
N

fN,A(t1)

t1
.

We now use convergence in law, and note that by Lemma 1.5.1

lim
N

P[L̃N,t1 ∈ t1A] ≥ P[Lt1,B ∈ t1A].
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Taking logarithms (recall the notation from (1.113) and (1.90)), we
find that

−lim
N
fN,A(t1) ≥ −fA(t1).

We are now in position to use the key large deviation result from
Section 3. Specifically, coming back to (1.121) we see that for t1 ≥
c(A)

lim
N

1

Nd−2
logP[ρN,u ∈ O]

≥ − u

d

fA(t1)

t1

(1.89)−→
t1→∞

−u

d
inf
ρ∈A

IB(ρ)
(1.85)
= − inf

µ∈O

1

d
Iu(µ) .

(1.122)

This proves Theorem 1.5.4.

We now turn to the proof of the asymptotic upper bound. An
argument based on the convergence of ΛN (V ) to Λ(V ) (or on the
asymptotic domination of ΛN (V ) by Λ(V )), for all V in C(B) does
not seem straightforward. Instead, we use a strategy, which is in the
spirit of Γ-convergence for the functions IN , see Proposition 1.5.6
below, and Proposition 7.2, p. 68 of [19]. Another possible, although
somewhat indirect, route might be to use the isomorphism theorem
of [59] and the large deviation principles on the empirical distribution
functional of the Gaussian free field on Z

d, proved in [11].

Theorem 1.5.5. (Large deviation upper bound, u > 0, O as in
(1.109))

(1.123) lim
N

1

Nd−2
logP[ρN,u ∈ O] ≤ − inf

µ∈O

1

d
Iu(µ)

(with O the closure of O in M+(B)).

Proof. We first exploit sub-additivity. Setting t = u
d N

d−2, we know
by Corollary 1.5.3 that for t ≥ 2c(A), N ≥ N0(A) (recall O = uA),

P[ρN,u ∈ O]
(1.109)
= P

[
1

t
L̃N,t ∈ A

] (1.119)

≤ exp
{
− t inf

ρ∈A
IN (ρ)

}
.
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Hence, we find that

(1.124) lim
N

1

Nd−2
logP[ρN,u ∈ O] ≤ −u

d
lim
N

inf
ρ∈A

IN (µ) .

The proof of (1.123) relies on the crucial next proposition.

Proposition 1.5.6. (K compact subset of M+(B), see (1.81), (1.118)
for notation)

(1.125) lim
N

inf
ρ∈K

IN (ρ) ≥ inf
ρ∈K

I(ρ).

Let us admit Proposition 1.5.6 for the time being, and first com-
plete the proof of Theorem 1.5.5. By (1.124) and (1.125) (with
K = A), we see that

lim
N

1

Nd−2
logP[ρN,u ∈ O] ≤ −u

d
inf
A

I
(1.85)
=

(1.109)
− inf

O

1

d
Iu.

This proves Theorem 1.5.5 (conditionally on Proposition 1.5.6).

There remains to prove Proposition 1.5.6.
It may be useful at this point to provide an outline of its proof.

In essence, assuming that the left-hand side of (1.125) is finite (oth-
erwise (1.125) is obvious), we will consider a minimizing subsequence
µℓ in K(⊆ M+(B)) such that INℓ

(µℓ) tends to the left-hand side of
(1.125) and Nℓ tends to infinity. By the relationship between INℓ

and
ENℓ

from (1.118) and (1.106), we will recast INℓ
(µℓ) as ENℓ

(ϕℓ, ϕℓ),
where ϕℓ are functions on LNℓ

, harmonic outside BNℓ
, tending to

zero at infinity, with value at least −1 in BNℓ
, and such that µℓ has

density 1BNℓ
(1 + ϕℓ)

2N−d
ℓ with respect to the counting measure on

the scaled lattice LNℓ
. With the help of a cut-off lemma (see Lemma

1.5.7 below), we will replace the sequence (ϕℓ) by a sequence (ϕℓ). In
particular, ϕℓ will coincide with ϕℓ on BNℓ

, but will vanish outside
a fixed compact set, independent of ℓ, and ENℓ

(ϕℓ, ϕℓ) will not be
substantially bigger than ENℓ

(ϕℓ, ϕℓ). We will then introduce a step
function Φℓ on R

d, constant on cubes of side-length 1
Nℓ

, which coin-
cides with ϕℓ on LNℓ

. Making use of the controls on ϕℓ stemming
from the Dirichlet form and the compact support of the functions



56 1.5 Large deviations with respect to random interlacements

Φℓ, we will show that Φℓ, ℓ ≥ 1, is relatively compact in L2(Rd).
We will extract a convergent subsequence to a compactly supported
Φ in L2(Rd), having value at least −1 on B, such that the measure
µ = (1+Φ)2mB belongs to K (the compact subset of M+(B) in the
statement of Proposition 1.5.6), and I(µ) is not substantially bigger
than the left-hand side of (1.125). This will show that the infimum
of I over K is smaller or equal to limN infKIN and conclude the
proof of Proposition 1.5.6.

Proof of Proposition 1.5.6. We begin with a cut-off lemma for func-
tions on LN , which are harmonic off BN and tend to 0 at infinity.
This lemma, as mentioned above, will be an important ingredient
when proving the relative compactness of a suitable nearly minimiz-
ing sequence we later construct.

We introduce LB ≥ 1 the smallest positive integer such that (see
the beginning of Section 1 for notation)

(1.126) B ⊆ B∞(0, LB),

and for R ≥ 0 integer, the closed box

(1.127) CR = B∞

(
0, LB(R + 2)

)
⊇ B,

so that d∞
(
B∞(0, LB), ∂CR

)
≥ LB(R+ 1). For functions ϕ defined

on LN , we use, as a shorthand, the notation supB ϕ, infCR ϕ, . . . , in
place of supB∩LN

ϕ, infCR∩LN ϕ, . . . .
We are now ready to state and prove the cut-off lemma. The

reader may choose to first skip its proof.

Lemma 1.5.7. (Cut-off lemma, R ≥ 1 integer)
Let N ≥ 1, and ϕ on LN be harmonic outside BN and tend to 0

at infinity. There exists ϕ on LN such that

(1.128)





i) ϕ = ϕ, on CR,

ii) ϕ = 0 outside C100R,

iii) EN(ϕ, ϕ) ≤ EN (ϕ, ϕ)
(
1 +

c(B)

Rd−2

)
.
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Proof. To simplify notation, all constants in the proof implicitly de-
pend on d and B.

We let ψ and γ stand for the harmonic extensions of ϕ+ =
max{ϕ, 0} and ϕ− = max{−ϕ, 0} outside BN (on LN\BN ), which

tend to 0 at infinity. Since ẼN in (1.105) is a Dirichlet form, we know
that the restrictions ϕ̃, ϕ̃+, ϕ̃− of ϕ, ϕ+, ϕ− to BN satisfy

EN (ψ, ψ)
(1.106)
= ẼN (ϕ̃+, ϕ̃+) ≤ ẼN (ϕ̃, ϕ̃)

(1.106)
= EN (ϕ, ϕ) and

EN (γ, γ) ≤ EN (ϕ, ϕ) (in a similar fashion).

(1.129)

By the Harnack inequality and chaining (see Theorem 1.7.2, p. 42 of
[38]), we have

(1.130) max
∂C0

ψ ≤ c min
∂C0

ψ and max
∂C0

γ ≤ c min
∂C0

γ

(we recall that all constants in the proof of Lemma 1.5.7 implicitly
depend on d and B). Since ψ is harmonic outside C0 and tends to
zero at infinity, it follows, by a stopping argument, that for y in ∂CR,
ψ(y) is smaller than the product of max∂C0 ψ with the probability
for the walk on LN starting at y to reach ∂C0. A similar bound holds
for γ. By (1.130) and classical random walk estimates, we obtain
(1.131)

max
∂CR

ψ ≤ c

Rd−2
min
∂C0

ψ
def
= aR, max

∂CR

γ ≤ c

Rd−2
min
∂C0

γ
def
= bR, for R ≥ 1.

By estimates on the discrete gradient of harmonic functions in large
balls, see Theorem 1.7.1, p. 42 of [38], we have for R ≥ 1, y ∈ LN\CR

and y′ ∼ y in LN ,
(1.132)

|ψ(y′)− ψ(y)| ≤ c

Rd−2

1

RN
min
∂C0

ψ, |γ(y′)− γ(y)| ≤ c

Rd−2

1

RN
min
∂C0

γ.

With a similar notation as below (1.105), we define for R ≥ 1

qR(y) = PN
y [HCR∩LN > TC100R∩LN ], for y ∈ LN ,
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the probability for the walk on LN starting at y to exit C100R before
entering CR. We then define

ϕ(y) = ϕ(y) on CR ∩ LN ,

= ψ(y) ∧
(
aR qR(y)

)
− γ(y) ∧

(
bR qR(y)

)
, on LN\CR

(1.133)

(note that the expressions on both lines are equal for y ∈ ∂CR∩LN ).
For simple random walk on Z

d, the capacity of (NCR)∩Zd rela-
tive to (NC100R) ∩ Z

d is at most c(NR)d−2, see for instance (1.134)
of [55]. Moreover, it is equal to the Dirichlet form of the function
qR(

·
N ). One thus has the bound

(1.134) EN (qR, qR) ≤ cRd−2.

Further, note that when y′ ∼ y in LN (see below (1.103) for notation)
are not both in CR,

|ϕ(y′)− ϕ(y)|2 ≤ 2(|ψ(y′)− ψ(y)|2 + a2R|qR(y′)− qR(y)|2

+ |γ(y′)− γ(y)|2 + b2R|qR(y′)− qR(y)|2).

Thus, coming back to (1.133), we see that, denoting by
∑′

the sum-
mation over y′ ∼ y in LN , not both in CR, one has

EN (ϕ, ϕ) ≤ EN (ϕ, ϕ) +
c

Nd−2

∑
′
(
|ψ(y′)− ψ(y)|2 + |γ(y′)− γ(y)|2

)

+ 2(a2R + b2R) EN (qR, qR)

(1.132)

≤ EN (ϕ, ϕ) +
(

c

Nd−2

∑
ℓ≥NR

ℓd−1

( ℓ
N
)2(d−2)

1

ℓ2
+

c

Rd−2

)
×

(
min
∂C0

ψ2 +min
∂C0

γ2
)

≤ EN (ϕ, ϕ) +
c

Rd−2

(
min
∂C0

ψ2 +min
∂C0

γ2
)
.

(1.135)

Since the capacity of a finite subset of Zd is smaller than the Dirichlet
form of any function in the extended Dirichlet space equal to 1 on the
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set, and ψ, resp. γ, is bigger or equal to min∂C0 ψ, resp. min∂C0 γ,
on (∂C0) ∩ LN , we find that

EN (ψ, ψ) ≥ d

Nd−2
cap

Zd(N∂C0)(min
∂C0

ψ)2 ≥ c(min
∂C0

ψ)2

and likewise EN(γ, γ) ≥ c(min
∂C0

γ)2.

Inserting these bounds in the last line of (1.135) and using (1.129),
we find

EN (ϕ, ϕ) ≤ EN (ϕ, ϕ)
(
1 +

c

Rd−2

)
.

Moreover, by (1.133), ϕ = ϕ on CR and 0 on LN\C100R. We have
proved Lemma 1.5.7. �

We resume the proof of (1.125). We denote by α ∈ [0,∞] the
left-hand side of (1.125). Without loss of generality, we can assume
α < ∞, otherwise (1.125) is immediate. We consider a subsequence
Nℓ, ℓ ≥ 1, as well as sequences µℓ ∈M+(B), and ϕℓ ≥ −1 on BNℓ

, of
functions on LNℓ

harmonic outside BNℓ
and tending to 0 at infinity,

such that using (1.118) and (1.106)

(1.136) µℓ ∈ K, and INℓ
(µℓ)→ α (

def
= lim

N
inf
ρ∈K

IN (ρ)),

(1.137)





i) µℓ =
1

Nd
ℓ

∑
y∈BNℓ

(
1 + ϕℓ(y)

)2
δy,

ii) INℓ
(µℓ) = ENℓ

(ϕℓ, ϕℓ).

We choose R ≥ 1, and construct with the help of Lemma 1.5.7 a
sequence ϕℓ, ℓ ≥ 1, of functions on LNℓ

for which (1.128) holds (with
ϕ replaced by ϕℓ and N by Nℓ). The functions ϕℓ vanish outside
C100R ∩ LNℓ

. Since the principal Dirichlet eigenvalue of the discrete
Laplacian in a box of side-length L ≥ 1 in Z

d is at least c L−2, see
for instance [32], p. 185, we find that

‖ϕℓ‖L2(LNℓ
) ≤ c(B)R2 ENℓ

(ϕℓ, ϕℓ)

(and the limsup in ℓ is at most c′(B)R2α).
(1.138)
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The functions ϕℓ are defined on the different lattices LNℓ
, and it is

convenient to introduce the functions Φℓ, ℓ ≥ 1, on R
d, which take

the value ϕℓ(y) on y + 1
Nℓ [0, 1)d, i.e.

(1.139) Φℓ(z) =
∑

y∈LNℓ

ϕℓ(y) 1y+ 1
Nℓ

[0,1)d(z), z ∈ R
d, ℓ ≥ 1.

Note that, by construction, for all ℓ ≥ 1,

1 + Φℓ(z) ≥ 0, if z ∈ B and d∞(z, ∂B) ≥ 1

Nℓ

,(1.140)

Φℓ = 0, on R
d\C200R,(1.141)

‖Φℓ‖L2(Rd) = ‖ϕℓ‖L2(LNℓ
)(1.142)

(and sup
ℓ
‖Φℓ‖L2(Rd) <∞, by (1.138)).

We will now prove that the functions Φℓ, ℓ ≥ 1, are equicontinuous
in L2(Rd) with respect to translations:

(1.143) lim
h→0

sup
ℓ≥1
‖Φℓ(·+ h)− Φℓ(·)‖L2(Rd) = 0.

Using the triangle inequality and translation invariance, we can as-
sume, without loss of generality, that h is parallel to and pointing in
the direction of ei, the i-th vector of the canonical basis of Rd. For
notational simplicity, we treat the case i = 1 (the other cases are
handled similarly).

We write Nℓh = (k + r)e1, where k ≥ 0, is an integer and 0 ≤
r < 1 (both depend on ℓ). We see that

‖Φℓ(·+ h)− Φℓ(·)‖2L2(Rd) ≤ 2(a+ b),

where a =
∥∥∥Φℓ

(
·+ k

Nℓ

e1

)
− Φℓ(·)

∥∥∥
2

L2(Rd)

and b =
∥∥∥Φℓ

(
·+ r

Nℓ

e1

)
− Φℓ(·)

∥∥∥
2

L2(Rd)
.
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Expressing b in terms of ϕℓ, we find that

b = r
∥∥∥ϕℓ

(
·+ e1

Nℓ

)
− ϕℓ(·)

∥∥∥
2

L2(LNℓ
)

(1.103)

≤ c
r

N2
ℓ

ENℓ
(ϕℓ, ϕℓ)

≤ c

N2
ℓ

|h| ENℓ
(ϕℓ, ϕℓ).

On the other hand, by the triangle inequality and translation invari-
ance, we have

a ≤ k2
∥∥∥Φℓ

(
·+ e1

Nℓ

)
− Φℓ(·)

∥∥∥
2

L2(Rd)

= k2
∥∥∥ϕℓ

(
·+ e1

Nℓ

)
− ϕℓ(·)

∥∥∥
2

L2(LNℓ
)

(1.104)

≤ c
k2

N2
ℓ

ENℓ
(ϕℓ, ϕℓ) ≤ c |h|2 ENℓ

(ϕℓ, ϕℓ).

Combining the bounds on a and b, we see that for h = |h| e1,
(1.144)

‖Φℓ(·+ h)− Φℓ(·)‖2L2(Rd) ≤ c |h|
(
|h| ∨ 1

Nℓ

)
ENℓ

(ϕℓ, ϕℓ), for ℓ ≥ 1.

The claim (1.143) now follows since supℓ ENℓ
(ϕℓ, ϕℓ) <∞.

By (1.138), (1.141), (1.143), and Theorem 2.21, p. 31 of [1], we
find that Φℓ, ℓ ≥ 1, is a relatively compact subset of L2(Rd).

Hence, up to extraction of a subsequence (which we still denote
by Φℓ), we can assume that

(1.145) Φℓ −→
ℓ

Φ in L2(Rd),

and by (1.140), (1.141), we see that

(1.146) 1 + Φ ≥ 0 a.e. on B and Φ = 0 a.e. on R
d\C200R.

By (1.145), we see that

(1.147) (1 + Φℓ)
2 −→

ℓ
(1 + Φ)2 in L1

loc(R
d).
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By uniform integrability, it follows that the integral of (1+Φℓ)
2 over

{z ∈ R
d; d∞(z, ∂B) ≤ 1

Nℓ
} tends to 0 with ℓ. In addition, since

ϕℓ = ϕℓ on CR ⊇ {z ∈ R
d; d∞(z,B) ≤ 1}, cf. (1.127), we see by

(1.137) i) and (1.139) that µℓ(B∩{z ∈ R
d; d∞(z, ∂B) ≤ 1

Nℓ
}) −→

ℓ
0.

Thus, letting B′
N stand for the y ∈ LN such that y + 1

N [0, 1)d ⊆ B,
we find that for V ∈ C(B),

〈µℓ, V 〉 −
∫

B

(1 + Φℓ)
2V dz

=
∑

y∈B′
Nℓ

∫

y+ 1
Nℓ

[0,1)d

(
V (y)− V (z)

)(
1 + Φℓ(z)

)2
dz + o(1), as ℓ→∞.

Moreover, the sum in the right-hand side tends to 0 with ℓ, by uni-
form continuity of V and (1.147). Hence, by (1.147), we see that µℓ

(∈ K, by (1.136)) converges in M+(B) to (1 + Φ)2mB. This shows
that

(1.148) µ = (1 + Φ)2mB ∈ K.

Moreover, by (1.128) iii), (1.136), (1.137) ii), we find that

α
(
1 +

c(B)

Rd−2

)
≥ lim

ℓ
ENℓ

(ϕℓ, ϕℓ)

= lim
ℓ

1

2

d∑
j=1

N2
ℓ

∥∥∥ ϕℓ

(
·+ ej

Nℓ

)
− ϕℓ(·)

∥∥∥
2

L2(LNℓ
)

(1.149)

and expressing this last quantity in terms of Φℓ and using the Fourier
transform

= lim
ℓ

1

2

d∑
j=1

1

(2π)d

∫

Rd

N2
ℓ

∣∣∣ei
ξj
Nℓ − 1

∣∣∣
2

|Φ̂ℓ(ξ)|2dξ

Fatou
≥ 1

2(2π)d

∫

Rd

|ξ|2 |Φ̂(ξ)|2dξ = 1

2

∫

Rd

|∇Φ(z)|2dz

(extracting some subsequence along which Φ̂ℓ converges a.e. to Φ̂,
before the last inequality). We have thus shown that Φ ∈ H1(Rd)
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and

(1.150) E(Φ,Φ) ≤ α
(
1 +

c(B)

Rd−2

)
.

Combined with (1.146), (1.148), this implies, see (1.84), that

(1.151) inf
K

I ≤ α
(
1 +

c(B)

Rd−2

)
, for any R > 1.

Letting R→∞, we obtain Proposition 1.5.6.

We now come to the main theorem of this section, see (1.1), (1.3)
for notation.

Theorem 1.5.8. (The large deviation principle, u > 0)
(1.152)
As N →∞, the laws of ρN,u on M+(B) satisfy a large deviation
principle at speed Nd−2, with convex, good rate function 1

d Iu.

Proof. Combining Theorems 1.5.4 and 1.5.5, it follows from Theo-
rem 4.1.11, p. 120 of [20], that ρN,u satisfies a weak large deviation
principle at speed Nd−2, with rate function 1

d Iu (which is good and
convex by (1.82), (1.85)).

In addition, one has exponential tightness for the laws of the ρN,u,
due to the fact that (see (1.83) and (1.91) of [60]) for small λ > 0,

lim
N

1

Nd−2
logE

[
exp

{
Nd−2〈ρN,u, λ1B〉

}] (1.100)
=

(1.101)

lim
N

1

d
logE[e〈LN,u,dλ1B〉] = u c(B, λ) <∞,

and the Chebyshev Inequality. The claim (1.152) now follows (see p. 8
of [20]).

1.6 An application

In this section, we apply the large deviation principle proved in the
last section, see Theorem 1.5.8, and control the probability of exis-
tence of “high local density” regions insulating a given compact subset
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of Rd. Our main results appear in Theorems 1.6.2 and 1.6.4. Exten-
sions are discussed in Remark 1.6.5. We begin with some definitions
and preliminary remarks.

We consider a compact set K and a closed box B0 in R
d such

that

(1.153) φ 6= K ⊂ B0.

Given a ∈ R and a continuous function f on R
d, we say that

{f ≥ a} disconnects K from ∂B0, if

(1.154)
for any continuous function ψ: [0, 1]→ B0, such that
ψ(0) ∈ K and ψ(1) ∈ ∂B0, one has sup

0≤t≤1
f
(
ψ(t)

)
≥ a.

Note that the collection of bounded continuous functions f for which
{f ≥ a} disconnects K from ∂B0 is closed for the sup-norm topology.

Further, we consider δ ∈ (0, 1), and a closed box B, so that

(1.155) K ⊂ B0 ⊂ B, and d(∂B0, ∂B) > δ,

as well as a continuous probability density ϕδ (with respect to Lebesgue
measure), which is supported in B(0, δ). Denoting by C0(R

d) the set
of continuous functions on R

d that tend to 0 at infinity (endowed
with the sup-norm topology), we consider the regularization map rδ
from M+(B) into C0(R

d)

(1.156) µ ∈M+(B)→ rδ(µ)(·) =
∫

B

ϕδ(· − y)µ(dy) ∈ C0(R
d),

and introduce for a ≥ 0, δ ∈ (0, 1), the subset of M+(B)
(1.157)
Da,δ = {µ ∈M+(B); {rδ(µ) ≥ a} disconnects K from ∂B0}.

The next lemma collects some useful properties of the above objects.
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Lemma 1.6.1. (a ≥ 0, 0 < δ < 1, u > 0)

rδ is continuous.(1.158)

Da,δ is a closed subset of M+(B).(1.159)

The event {ρN,u ∈ Da,δ} does not depend on(1.160)

the choice of B (satisfying (1.155)).

Proof. We start with the proof of (1.158). The functions ϕδ(z − ·)
on B, as z varies in R

d, are equicontinuous at each point of B and
uniformly bounded. It now follows from Theorem 6.8, p. 51 of [44],
that when µn converges weakly to µ in M+(B), rδ(µn) converges
uniformly to rδ(µ). This proves (1.158). Then, (1.159) is an imme-
diate consequence of (1.158) and the observation below (1.154). As
for (1.160), it suffices to notice that the restriction of rδ(ρN,u) to B0

does not depend on the choice of B when (1.155) holds.

By the observation below (1.98) and (1.158), we know that for u >
0, P-a.s., rδ(ρN,u) converges uniformly to rδ(umB)(·) = u

∫
B
ϕδ(· −

y)dy, and this function equals u on B0 by (1.155). We will now
consider the case where a > u and study the large N behavior of the
probability of occurence of high values of rδ(ρN,u) insulating K from
∂B0.

Theorem 1.6.2. (Insulation upper bound, a > u > 0)

(1.161) lim
N

1

Nd−2
logP[ρN,u ∈ Da,δ] ≤ −1

d

(√
a−
√
u
)2
cap(K)

Proof. By (1.159) and Theorem 1.5.8 we have

(1.162) lim
N

1

Nd−2
logP[ρN,u ∈ Da,δ] ≤ − inf

Da,δ

1

d
Iu.

We will use the notation Iu,B0 or Iu,B to highlight the dependence on
the closed box at hand in the definition (1.3). We have the following
control.
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Lemma 1.6.3.

(1.163) Iu,B0

(
rδ(µ)mB0

)
≤ Iu,B(µ), for any µ ∈M+(B)

(we view rδ(µ)mB0 as an element of M+(B0)).

Proof. Without loss of generality, we can assume that Iu,B(µ) <∞,
so that µ = hmB with h ∈ L1

+(mB). Note that y ∈ R
d → 1B0(·)h(·−

y) ∈ L1(mB0) is a continuous map (we extend h outside B as being
equal to 0). Moreover, by (1.156)

(
1B0rδ(µ)

)
(·) =

∫
1B0(·)h(· − y)ϕδ(y)dy.

We also know that f ∈ L1
+(mB0) → Iu,B0(fmB0) is a convex,

lower semi-continuous map, see (1.78), (1.81), (1.85). Hence, we
have

Iu,B0(rδ(µ)mB0 ) ≤ sup
|y|≤δ

Iu,B0(1B0(·)h(· − y)mB0)

(1.81)
=

(1.85)
sup
|y|≤δ

Iu,B0−y(1B0−y hmB0−y)

(1.83)

≤
(1.155)

Iu,B(hmB) = Iu,B(µ).

(1.164)

This proves (1.163).

We will now bound the right-hand side of (1.162). Given µ ∈
Da,δ, we define

(1.165) ϕ(z) = Ez

[(√
rδ(µ)−

√
u
)
(XHB0

), HB0 <∞], z ∈ R
d,

so that ϕ ∈ C0(R
d). If Iu,B0(rδ(µ)mB0 ) <∞, then by (1.81), (1.78),
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and the explanation below (1.73), we have ϕ ∈ Fe and

E(ϕ, ϕ) = ẼB0

(√
rδ(µ)−

√
u,
√
rδ(µ)−

√
u
)

(1.81)
=

(1.85),(1.78)
Iu,B0(rδ(µ)mB0).

(1.166)

In addition, ϕ =
√
rδ(µ)−

√
u on B0, and since µ ∈ Da,δ, we see

that {ϕ ≥ √a−√u} disconnects K from ∂B0. Setting K̃ = {y ∈ B0,
ϕ(y) ≥ √a −√u}, it follows from Theorem 1.10, p. 58 of [47], that

cap(K̃) ≥ cap(K), and from p. 71 of [29], that E(ϕ, ϕ) ≥
(√
a −

√
u
)2
cap(K̃). Hence, for µ ∈ Da,δ, we have

Iu(µ)
(1.163)

≥
(1.166)

E(ϕ, ϕ) ≥
(√
a−
√
u
)2
cap(K̃)

≥
(√
a−
√
u
)2
cap(K).

(1.167)

Inserting this bound in the right-hand side of (1.162), we obtain
(1.161).

We now complement the asymptotic upper bound from Theorem
1.6.2 with an asymptotic lower bound. We denote by Kδ = {z ∈
R

d; d(z,K) ≤ δ} the closed δ-neighborhood of K for the Euclidean
distance. One knows that cap(Kδ) ↓ cap(K) as δ → 0, see Remark
1.6.5 1) below.

Theorem 1.6.4. (Insulation lower bound, a > u > 0)

(1.168) lim
N

1

Nd−2
logP[ρN,u ∈ Da,δ] ≥ −1

d

(√
a−
√
u
)2
cap(Kδ).

Proof. We consider ε > 0 and define

(1.169) µε =
(√
u+

(√
a+ ε−

√
u
)
h
)2
mB,

where h(y) = Py[H̃Kδ < ∞] = Py[HKδ < ∞], for y ∈ R
d, is the

equilibrium potential of Kδ (every point of Kδ is regular for Kδ so
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h ∈ C0(R
d) and h = 1 on Kδ). Observe that

rδ(µε)(y)

(1.156)
=

∫

B

(√
u+

(√
a+ ε−

√
u
)
h(z)

)2
ϕδ(y − z)dz

≥ a+ ε , when y ∈ K (since h = 1 on Kδ,

and this is actually an equality).

(1.170)

By (1.158), we can find an open neighborhood O of µε in M+(B)
so that for all µ ∈ O, rδ(µ) ≥ a+ ε

2 on K. It follows that {rδ(µ) ≥ a}
separates K from ∂B0, for all µ ∈ O, i.e. O ⊆ Da,δ. As a result of
Theorem 1.5.8 we find that

(1.171) lim
N

1

Nd−2
logP[ρN,u ∈ Da,δ] ≥ − inf

O

1

d
Iu ≥ −1

d
Iu(µε).

Now h belongs to Fe and E(h, h) = cap(Kδ), see [29], p. 71. There-
fore, by (1.84), (1.85) and below (1.73),
(1.172)

Iu(µε) =
(√
a+ ε−

√
u
)2 E(h, h) =

(√
a+ ε−

√
u
)2

cap(Kδ).

Inserting this identity in (1.171) and letting ε→ 0, we obtain (1.168).

Remark 1.6.5.

1) One knows from Proposition 1.13, p. 60 of [47], that cap(Kδ) ↓
cap(K), as δ → 0. So, when δ → 0, the constant in the right-hand
side of the lower bound (1.168) tends to the constant in the right-
hand side of the upper bound (1.161).

2) Actually, one can let δ slowly tend to 0 in (1.161) and (1.168).
More precisely, given a choice of ϕδ for each δ ∈ (0, 1), a > u > 0 and
K, B0, B satisfying (1.155) when δ = 1

2 , one can, using a diagonal
type procedure, the remark above, and Theorems 1.6.2, 1.6.4, to
construct a sequence δN slowly tending to zero so that

(1.173) lim
N

1

Nd−2
logP[ρN,u ∈ Da,δN ] = −1

d

(√
a−
√
u
)2

cap(K).
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3) We can, in place of Da,δ in (1.157), instead consider “discon-
nection by sub-level sets”, i.e.
(1.174)
D′

a,δ = {µ ∈M+(B); {rδ(µ) ≤ a} disconnects K from ∂B0}

(replacing sup0≤t≤1 f(ψ(t)) ≥ a by inf0≤t≤1 f(ψ(t)) ≤ a in (1.154)
to define the above event).

The same arguments of Theorems 1.6.2 and 1.6.4 apply (one re-
places a+ ε by a− ε, in (1.169), with 0 < ε < a) and we obtain that
for 0 < a < u, 0 < δ < 1, under (1.155)

lim
N

1

Nd−2
logP

[
ρN,u ∈ D′

a,δ

]
≤ −1

d

(√
a−
√
u
)2

cap(K),

lim
N

1

Nd−2
logP

[
ρN,u ∈ D′

a,δ

]
≥ −1

d

(√
a−
√
u
)2

cap(Kδ),

(1.175)

4) It is instructive to compare (1.168) in Theorem 1.6.4 with
the lower bound one obtains by the following intuitive “change of
measure” strategy. Namely, assume 0 < u < a and introduce the
new probability measure

P̃N = eλη−u cap
Zd

(Kδ,N )(eλ−1)
P,

where η stands for the total number of bilateral trajectories modulo
time-shift with label at most u, which enter Kδ,N = (NKδ) ∩ Z

d,
λ = log(a+ε

u ), and we recall that for A finite in Z
d, cap

Zd(A) stands
for the capacity of A (attached to the simple random walk on Z

d).

Under P̃N , the variable η has Poisson distribution with param-
eter (a + ε) cap

Zd(Kδ,N) (instead of u cap
Zd(Kδ,N) under P), and

(Lx,u)x∈Kδ,N has the same distribution as (Lx,a+ε)x∈Kδ,N under P.
As we now explain,

(1.176) lim
N

P̃N (ρN,u ∈ Da,δ) = 1.

Indeed, by (1.98), P-a.s., 1
Nd

∑
y∈LN

LNy,a+ε δy converges vaguely
to (a+ ε)dy, as N →∞, and the restriction to K of rδ(ρN,u) under

P̃N has the same distribution as the restriction to K of rδ(ρN,a+ε)
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under P, which P-a.s. converges uniformly on K to a+ ε. However,
as soon as the restriction to K of rδ(ρN,u) exceeds a everywhere, the
event {ρN,u ∈ Da,δ} occurs, and (1.176) follows.

By the classical relative entropy estimate, see for instance [22],
p. 76, and (1.176),
(1.177)

lim inf
N

1

Nd−2
logP[ρN,u ∈ Da,δ] ≥ − lim sup

N

1

Nd−2
H(P̃N |P),

where H(P̃N |P) = E
P̃N [log

dP̃N

dP
] stands for the relative entropy of

P̃N with respect to P. As we now explain,

(1.178) lim inf
N

1

Nd−2
H(P̃N |P) ≥

(
a log

a

u
− a+ u

)
1

d
cap(Kδ),

and since (as can be checked directly)

(1.179) v log
v

u
−v+u >

(√
v−
√
u
)2
, for any v, u > 0, with v 6= u,

the lower bound (1.177) is worse than (1.168).

To prove (1.178), one notes that by our choice of P̃N ,

H(P̃N |P)
= EP̃N [λη]− (a+ ε− u) cap

Zd(Kδ,N)

=
(
(a+ ε) log

(a+ ε

u

)
− (a+ ε) + u

)
cap

Zd(Kδ,N).

(1.180)

The same argument leading to (1.145), (1.150) shows that for each
R ≥ 1 and δ′ ∈ (0, δ) one can construct Φ ∈ H1(Rd) with compact
support, which is a.e. equal to 1 on Kδ′ , and such that E(Φ,Φ) ≤
d(1 + c(B)

Rd−2 )β with β = limN
1

Nd−2 cap
Zd(Kδ,N ). It thus follows

(see [29], p. 71) that

β ≥ 1

d

(
1 +

c(B)

Rd−2

)−1

cap(Kδ′).

Letting R → ∞, δ′ ↑ δ, and noting that when y ∈ Kδ, Py-a.s.
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Brownian motion immediately hits
⋃

δ′<δK
δ′ , so that by Theorem

1.10 and Proposition 1.13, p. 58 and 60 of [47], cap(Kδ′) ↑ cap(Kδ)
as δ′ ↑ δ, we obtain that

(1.181) lim inf
N

1

Nd−2
cap

Zd(Kδ,N) ≥ 1

d
cap(Kδ).

Since v → v log v
u−v+u is increasing for v ∈ (u,∞), the combination

of (1.180) and (1.181) readily yields (1.178).
So, the intuitive lower bound we just described does not capture

(1.168).

5) It is an important feature of random interlacements that the va-
cant set Vu of random interlacements at level u on Z

d, d ≥ 3, un-
dergoes a phase transition from a percolative regime, when u < u∗,
to a non-percolative regime, when u > u∗, with u∗ a certain non-
degenerate critical value, which is positive and finite (see [56], [52],
and also [24], [46] for recent developments). Given a smooth com-
pact subset K of Rd and its discrete blow-up KN = (NK)∩Zd, one

can consider the disconnection event {KN Vu

←→/ ∞}, for which the
connected components of KN ∩Vu in Vu are finite (possibly empty).
Looking at a small interior ball in K and its discrete blow-up, it is

straightforward to argue that for u < u∗, limN P[KN Vu

←→/ ∞] = 0.
One can wonder whether the main effect in realizing this atypical
disconnection event stems from a large deviation of the density pro-
file of occupation-times, for which, roughly speaking, values of the
profile exceeding u∗ would insulate K from infinity, and whether one
has the asymptotics

lim
N

1

Nd−2
logP[KN Vu

←→/ ∞] = −1

d

(√
u∗−
√
u)2 cap(K), for u < u∗.

We refer to [43], for a lower bound on the left-hand side of a
similar nature.

�
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Chapter 2

A lower bound for

disconnection by

random interlacements

We consider the vacant set of random interlacements on Z
d,

d ≥ 3, in the percolative regime. Motivated by the large
deviation principles recently obtained in [42], we investigate
the asymptotic behavior of the probability that a large body
gets disconnected from infinity by the random interlacements.
We derive an asymptotic lower bound, which brings into play
tilted interlacements, and relates the problem to some of the
large deviations of the occupation-time profile considered in
[42].

2.1 Introduction

Random interlacements constitute a percolation model with long-
range dependence, and the percolative properties of their vacant set
play an important role in the investigation of several questions of
disconnection or fragmentation created by random walks, see [14],
[55], [64]. Here, we consider random interlacements on Z

d, d ≥ 3.

73
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It is by now well-known that as one increases the level u of the in-
terlacements, the percolative properties of the vacant set undergo a
phase transition, and the model evolves from a percolative phase to
a non-percolative phase, see [56] and [52]. In the present work, we
are mainly interested in the percolative phase of the model, and we
derive an asymptotic lower bound on the probability that a macro-
scopic body has no connection to infinity in the vacant set. Strik-
ingly, this lower bound corresponds to certain large deviations of the
occupation-time profile of random interlacements investigated in our
previous work [42], where we analyzed the exponential decay of the
probability that a macroscopic body gets insulated by high values of
the (regularized) occupation-time profile.

We now describe the model and our results in a more precise
fashion. We refer to Section 1 for precise definitions. We consider
continuous-time random interlacements on Z

d, d ≥ 3. We denote by
Pu the canonical law of random interlacements at level u > 0, and by
Iu and Vu = Z

d\Iu the corresponding interlacement set and vacant
set. It is known that there is a critical value u∗∗ ∈ (0,∞), which
can be characterized as the infimum of the levels u > 0 for which the
probability that the vacant cluster at the origin reaches distance N
from the origin has a stretched exponential decay in N , see [53]. It
is an important open question whether u∗∗ actually coincides with
the critical level u∗ for the percolation of the vacant set (but it is a
simple fact that u∗ ≤ u∗∗).

In this work, we are primarily interested in the percolative regime
of the vacant set, but, specifically, we assume that 0 < u ≤ u∗∗ (be-
cause our lower bound on disconnection actually provides informa-
tion in this possibly wider range of levels).

We consider a compact subset K of Rd, and its discrete blow-up:

(2.1) KN = {x ∈ Z
d; d∞(x,NK) ≤ 1},

where NK denotes the homothetic of ratio N of the set K, and
d∞(z,NK) = infy∈NK |z − y|∞ stands for the sup-norm distance of
z to NK. Of central interest for us is the event stating that KN is
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not connected to infinity in Vu, which we denote by

(2.2) AN = {KN
Vu

=∞}.

The main result of this article is the following asymptotic lower
bound.

Theorem 2.1.1. For u ∈ (0, u∗∗] one has

(2.3) lim inf
N→∞

1

Nd−2
log(Pu[AN ]) ≥ −1

d
(
√
u∗∗ −

√
u)2cap

Rd(K),

where cap
Rd(K) stands for the Brownian capacity of K.

In essence, the lower bound (2.3) replicates the asymptotic be-
havior of the probability that the regularized occupation-time profile
of random interlacements insulates K by values exceeding u∗∗, see
Theorems 6.2 and 6.4, as well as Remarks 6.5 2) and 6.5 5) of [42]. It
is a remarkable feature that such large deviations of the occupation-
time profile induce a “thickening” of the interlacement surrounding
KN , rather than a mere change of the clocks governing the time
spent by the trajectories defining the interlacement. This thickening
is potent enough to typically disconnect KN from infinity. We refer
to Remark 2.3.5 for more on this topic. It is of course an important
question, whether there is a matching upper bound to (2.3), when
K is a smooth compact, and whether the large deviations of the
occupation-time profile capture the main mechanism through which
Iu disconnects a macroscopic body from infinity.

Incidentally, the tilted interlacements, which we heavily use in
this work, come up as a kind of slowly space-modulated random
interlacements. Possibly, they offer, in a discrete set-up, a micro-
scopic model for the type of “Swiss cheese” picture advocated in [9],
when studying the moderate deviations of the volume of the Wiener
sausage (however the relevant modulating functions in [9] and in
the present work correspond to distinct variational problems and are
different).

One may also compare Theorem 2.1.1 to corresponding results
for supercritical Bernoulli percolation. Unlike what happens in the
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present set-up, disconnecting a large macroscopic body in the per-
colative phase (when K is a smooth compact) would involve an ex-
ponential cost proportional to Nd−1, in the spirit of the study of the
existence of a large finite cluster at the origin, see p. 216 of [33], or
Theorem 2.5, p. 16 of [12].

Further, it is interesting to note that when u → 0, the right-
hand side of (2.3) has a finite limit. One may wonder about the
relation of this limit to what happens in our original problem when
one replaces Iu by a single random walk trajectory (starting for
instance at the origin), that is, when we consider the probability
that KN is disconnected from infinity by the trajectory of one single
random walk starting at the origin. We refer to Remark 2.6.1 2) for
more on this question.

We briefly comment on the proofs. The main strategy is to use a
change of probability and an entropy bound. We construct through
fine-tuned Radon-Nikodym derivatives new measures P̃N correspond-
ing to “tilted random interlacements”, which have the crucial property
that under P̃N the disconnection probability tends to 1 as N goes to
infinity:

(2.4) P̃N [AN ]→ 1.

Then, by a classical inequality (see (2.68)), one has a lower bound
for the disconnection probability in terms of the relative entropy:

(2.5) lim inf
N→∞

1

Nd−2
log(Pu[AN ]) ≥ − lim sup

N→∞

1

Nd−2
H(P̃N |Pu).

We relate the relative entropy of P̃N with respect to Pu, to the Brow-
nian capacity of K, and show in Propositions 2.3.3 and 2.3.4 that

(2.6) l̃im
1

Nd−2
H(P̃N |Pu) = −

1

d
(
√
u∗∗ −

√
u)2cap

Rd(K)

(where l̃im refers to certain successive limiting procedures involving
N first, and then various auxiliary parameters entering the construc-
tion of P̃N).

The measure P̃N governing the tilted interlacements is constructed



2 A lower bound for disconnection by random interlacements 77

in Section 2. Intuitively, it forces a “local level” of interlacements cor-
responding to u∗∗ + ǫ, in a “fence” surrounding KN . This creates a
strongly non-percolative region surrounding KN and leads to (2.4).
Of course, a substantial part of the work is to make sense of the
above heuristics. This goes through a local comparison at a meso-
scopic scale between the occupied set of tilted interlacements and
standard interlacements at a level exceeding u∗∗.

In particular, we show in Proposition 2.5.1 that for all meso-
scopic boxes B1, with size N r1 (with r1 small) and center in ΓN , a
“fence” around KN , one has a coupling Q between I1, distributed
as Iu∗∗+ǫ/8 ∩B1, and Ĩ, distributed as the intersection of the tilted
interlacement set with B1, so that

(2.7) Q[Ĩ ⊃ I1] ≥ 1− ce−c′Nc′′

.

The proof of this key stochastic domination bound relies on two
main ingredients. On the one hand, it involves a comparison of
equilibrium measures, see Proposition 2.4.5, which itself relies on a
comparison of capacities on a slightly larger mesoscopic scale, see
Proposition 2.4.1. On the other hand, it involves a domination of
Iu∗∗+ǫ/8 ∩B1 by the trace on B1 of a suitable Poisson point process
of excursions of the simple random walk starting on the boundary of
B1 up to their exit from a larger box B2. For this last step we can
rely on results of [7].

We will now explain how this article is organized. In Section 1
we introduce notation and make a brief review of results concern-
ing continuous-time random walk, Green function, continuous-time
random interlacements, as well as other useful facts and tools. Sec-
tion 2 is devoted to the construction of the probability measure gov-
erning the tilted random interlacements. We also compute and ob-
tain asymptotic estimates on the relative entropy, see Propositions
2.3.3 and 2.3.4. In Section 3 we derive a comparison of capacities
in Proposition 2.4.1, and, subsequently, of equilibrium measures in
Proposition 2.4.4. The latter proposition plays a crucial role in the
construction of the coupling in the next section. In Section 4 we
prove (2.7) in Proposition 2.5.1, and the crucial statement (2.4) in
Theorem 2.5.3. In the short Section 5 we assemble the various pieces
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and prove the main theorem.
Finally, we explain the convention we use concerning constants.

We denote by c, c′, c̄, c̃ . . . positive constants with values changing
from place to place, and by c0, c1, . . . positive constants which are
fixed and refer to the value as they first appear. Throughout the
article the constants depend on the dimension d. Dependence on
additional constants are stated explicitly in the notation.

2.2 Some useful facts

Throughout the article we assume d ≥ 3. In this section we introduce
further notation and useful facts, in particular concerning continuous
time random walk on Z

d and its potential theory. The Lemma 2.2.1
concerns the occupation-times of balls and will be used in Section 3.
Moreover, we introduce another continuous-time reversible Markov
chain on Z

d, which will play a crucial role in the upcoming sections,
and we state some useful results regarding its potential theory. We
also recall the definition and basic facts concerning continuous time
random interlacements. We end this section by stating some results
about relative entropy and Poisson point processes.

We start with some notation. We let N = {0, 1, . . .} stand for the
set of natural numbers. We write | · | and | · |∞ for the Euclidean
and l∞-norms on R

d. We denote by B(x, r) = {y ∈ Z
d; |x− y| ≤ r}

the closed Euclidean ball of radius r ≥ 0 intersected with Z
d, and

respectively by B∞(x, r) = {y ∈ Z
d, |x−y|∞ ≤ r} the closed l∞-ball

of radius r intersected with Z
d. When U is a subset of Zd, we write

|U | for the cardinality of U , and U ⊂⊂ Z
d means that U is a finite

subset of Z
d. We denote by ∂U (resp. ∂iU) the boundary (resp.

internal boundary) of U , and by U its “closure”:

∂U = {x ∈ U c; ∃y ∈ U, |x− y| = 1},
∂iU = {x ∈ U ; ∃y ∈ U c, |x− y| = 1}, and U = U ∪ ∂U .

(2.8)

When U ⊂ R
d , and δ > 0 , we write U δ = {z ∈ R

d; d(z, U) ≤ δ}
for the closed δ-neighborhood of U , where d(x,A) = infy∈A |x− y| is
the distance function. We define d∞(x,A) in a similar fashion, with
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| · |∞ in place of | · |. To distinguish balls in R
d from balls in Z

d, we
write BRd(x, r) = {z ∈ R

d; |x − z| ≤ r} for the (closed) Euclidean
ball of radius r in R

d. We also introduce the N -discrete blow-up of
U as

(2.9) UN = {x ∈ Z
d; d∞(x,NU) ≤ 1},

where NU = {Nz; z ∈ U} denotes the homothetic of U .
We will now collect some notation concerning connectivity prop-

erties. We call π : {1, . . . n} → Z
d, with n ≥ 1, a nearest-neighbor

path, when |π(i)−π(i−1)| = 1, for 1 < i ≤ n. Given K,L,U subsets

of Zd, we say that K and L are connected by U and write K
U↔ L,

if there exists a finite nearest-neighbor path π in Z
d such that π(1)

belongs to K and π(n) belongs to L, and for all k in {1, · · · , n}, π(k)
belongs to U . Otherwise, we say that K and L are not connected

by U , and write K
U
= L. Similarly, for K,U ⊂ Z

d, we say that K

is connected to infinity by U , if K
U↔ B(0, N)c for all N , and write

K
U↔ ∞. Otherwise, we say that K is not connected to infinity by

U , and denote it by K
U
=∞.

We now turn to the definition of some path spaces, and of the
continuous-time simple random walk. We consider Ŵ+ and Ŵ the
spaces of infinite (resp. doubly-infinite) (Zd) × (0,∞)-valued se-
quences such that the first coordinate of the sequence forms an in-
finite (resp. doubly-infinite) nearest-neighbor path in Z

d, spending
finite time in any finite subset of Zd, and the sequence of the second
coordinate has an infinite sum (resp. infinite “forward” and “back-
ward” sums). The second coordinate describes the duration at each

step corresponding to the first coordinate. We denote by Ŵ+ and

Ŵ the respective σ-algebras generated by the coordinate maps. We
denote by Px the law on Ŵ+ under which Zn, n ≥ 0, has the law
of the simple random walk on Z

d, starting from x, and ζn, n ≥ 0,
are i.i.d. exponential variables with parameter 1, independent from
Zn, n ≥ 0. We denote by Ex the corresponding expectation. More-
over, if α is a measure on Z

d, we denote by Pα and Eα the measure∑
x∈Zd α(x)Px (not necessarily a probability measure) and its corre-
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sponding “expectation” (i.e. the integral with respect to the measure
Pα).

We attach to ŵ ∈ Ŵ+ a continuous-time process (Xt)t≥0, and
call it the random walk on Z

d with constant jump rate 1 under Px,
through the following relations

(2.10) Xt(ŵ) = Zk(ŵ), for t ≥ 0, when

k−1∑

i=0

ζi ≤ t <
k∑

i=0

ζi

(if k = 0, the left sum term is understood as 0). We also introduce
the filtration

(2.11) Ft = σ(Xs, s ≤ t), t ≥ 0.

Given U ⊆ Z
d, and ŵ ∈ Ŵ+, we write HU (ŵ) = inf{t ≥

0; Xt(ŵ) ∈ U} and TU = inf{t ≥ 0; Xt(ŵ) /∈ U} for the entrance

time in U and exit time from U . Moreover, we write H̃U = inf{s ≥
ζ1;Xs ∈ U} for the hitting time of U .

For U ⊂ Z
d, we write Γ(U) for the space of all right-continuous,

piecewise constant functions from [0,∞) to U , with finitely many
jumps on any compact interval. We will also denote by (Xt)t≥0 the
canonical coordinate process on Γ(U), and whenever an ambiguity
arises, we will specify on which space we are working.

We denote by g(·, ·) and gU (·, ·) the Green function of the walk,
and the killed Green function of the walk upon leaving U ,
(2.12)

g(x, y) = Ex

[ ∫ ∞

0

1{Xs=y}ds
]
, gU (x, y) = Ex

[ ∫ TU

0

1{Xs=y}ds
]
.

It is known that g is translation invariant. Moreover, both g and gU
are symmetric and finite, that is,

(2.13) g(x, y) = g(y, x), gU (x, y) = gU (y, x) for all x, y ∈ Z
d.

When x tends to infinity, one knows that (see, e.g. p. 153, Propo-



2 A lower bound for disconnection by random interlacements 81

sition 6.3.1 of [39])

(2.14) g(0, x) = dG(x) +O(|x|1−d),

where for y ∈ R
d

(2.15) G(y) = c0|y|2−d

is the Green function with a pole at the origin, attached to Brow-
nian motion, and

(2.16) c0 =
c̄0
d

=
1

2πd/2
Γ
(d
2
− 1
)
.

We also have the following estimate on the killed Green function
(see p. 157, Proposition 6.3.5 of [39]): for x ∈ B(0, N),

gB(0,N)(0, x) = g(0, x)− Ex

[
g(0, XTB(0,N)

)
]

= c0(|x|2−d −N2−d) +O(|x|1−d).
(2.17)

We further recall the definitions of equilibrium measure and ca-
pacity, and refer to Section 2, Chapter 2 of [38] for more details.
Given M ⊂⊂ Z

d, and we write eM for the equilibrium measure of
M :

(2.18) eM (x) = Px[H̃M =∞]1M (x), x ∈ Z
d,

and cap(M) for the capacity of M , which is the total mass of eM :

(2.19) cap(M) =
∑

x∈K

eM (x).

There is also an equivalent definition of capacity through the
Dirichlet form:

(2.20) cap(M) = inf
f
EZd(f, f)
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where f : Zd → R is finitely supported, f ≥ 1 on M , and

(2.21) EZd(f, f) =
1

2

∑

|x−y|=1

1

2d

(
f(y)− f(x)

)2

is the discrete Dirichlet form for simple random walk.
Moreover, the probability of entering M can be expressed as

(2.22) Px[HM <∞] =
∑

y∈M

g(x, y)eM (y),

and in particular, when x ∈M , we have

(2.23)
∑

y∈M

g(x, y)eM (y) = 1.

We now introduce some notation for (killed) entrance measures.
Given A ⊆ B subsets of Z

d, with A finite, we define for x ∈ Z
d,

y ∈ A,

(2.24) hA,B(x, y) = Px(HA < TB, XHA = y) .

When B = Z
d, we simply write hA(x, z).

The equilibrium measure also satisfies the sweeping identity (for
instance, seen as a consequence of (1.46) in [56]), namely, for M ⊂
M ′ ⊂⊂ Z

d, y ∈M , using the notation from above (2.10),
(2.25)

PeM′ [HM <∞, XHM = y] =
∑

x∈∂iM ′

eM ′(x)hM (x, y) = eM (y).

The next lemma will be useful in Section 3, see Proposition 2.4.1.
It provides an asymptotic estimate on the expected time a random
walk starting at the boundary of a ball of large radius spends in this
ball. We recall the convention on constants stated at the end of the
Introduction.
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Lemma 2.2.1. As N tends to infinity,

(2.26) α(N)
def
= sup

x∈∂iB(0,N)

∣∣∣
Ex

[ ∫∞

0 1B(0,N)(Xs)ds
]

c1N2
− 1
∣∣∣

tends to 0.

Proof. For simplicity, we fix x in this proof and write B(0, N) = B.
We set

(2.27) ǫN = N−1/2, rN = ǫNN.

We split B into two parts: BI = B ∩ B̃ and BJ = B\B̃, where

B̃ = B(x, rN ).
In BI , we use a crude upper bound for g(x, ·), derived from (2.14),

(2.28) g(x, y) ≤ c

(max{|x− y|∞, 1})d−2
.

As a result, we find that

(2.29)
∑

y∈BI

g(x, y) ≤
⌈rN⌉∑

l=0

∑

y:|y−x|∞=l

c

(max{l, 1})d−2
≤ c′r2N .

Let x = N
|x|x denote the projection of x onto the Euclidean sphere of

radius N centered at 0. It is straightforward to see that

(2.30)

∫

B
Rd

(x,rN )

G(y − x)dy ≤ cr2N .

By the asymptotic approximation of discrete Green function (see

(2.14) and (2.15)), writing B̂ = BRd(0, N)\BRd(x, rN ), we obtain
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with a Riemann sum approximation argument that

∣∣∣
∑

y∈BJ

g(x, y)− d
∫

B̂

G(y − x)dy
∣∣∣

≤
∣∣∣
∑

y∈BJ

g(x, y)− d
∫

B̂

G(y − x)dy
∣∣∣

+ d
∣∣∣
∫

B̂

(G(y − x)−G(y − x))dy
∣∣∣

≤ cN.

(2.31)

Thanks to the scaling property and rotation invariance of Brownian
motion, writing
(2.32)

c1 = d

∫

B
Rd

(0,1)

G(y − z)dy, where z ∈ R
d with |z| = 1 is arbitrary

(c1/d is the expected time spent by Brownian motion in a ball of
radius 1 when starting from its boundary), and putting (2.29), (2.30)
and (2.31) together, we see that

(2.33)
∣∣∣Ex

[ ∫ ∞

0

1B(0,N)(Xs)ds
]
− c1N2

∣∣∣ ≤ cr2N + c′N.

By the definition of rN in (2.27), we obtain (2.26) as desired.

We now introduce a positive martingale, which plays an impor-
tant role in the definition of the tilted interlacements in the next
section. We will show in the lemma below that this martingale is
uniformly integrable, and we will use its limiting value as a proba-
bility density.

Given a real-valued function h on Z
d, we denote its discrete Lapla-

cian by

(2.34) ∆dish(x) =
1

2d

∑

|e|=1

h(x+ e)− h(x).
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We consider a positive function f on Z
d, which is equal to 1 outside

a finite set, and we write

(2.35) V = −∆disf

f
.

We also introduce the stochastic process

(2.36) Mt =
f(Xt)

f(X0)
exp

{∫ t

0

V (Xs)ds
}
, t ≥ 0,

and define for all x ∈ Z
d, T > 0 the positive measure P̃x,T (on Ŵ+

with density MT with respect to Px):

(2.37) P̃x,T =MTPx.

The next lemma plays an important role in the construction of the
tilted interlacements.

Lemma 2.2.2. For all x ∈ Z
d,

(2.38) (Mt)t≥0 is an (Ft)-martingale under Px,

and

(2.39) (Mt)t≥0 is uniformly integrable under Px.

Moreover,

(2.40) 1 = Ex[M∞] =
1

f(x)
Ex[e

∫
∞
0

V (Xs)ds].

Proof. The first claim (2.38) is classical. It follows for instance from
Lemma 3.2, p. 174 in Chapter 4 of [27]. Note that Ex[M0] = 1, so

P̃x,T is a probability measure for each T . Using the Markov property
of X under Px and (2.38), it readily follows that (Xt)0≤t≤T under

P̃x,T is a Markov chain. By Theorem 2.5, p. 61 of [21], its semi-group
(acting on the Banach space of functions on Z

d tending to zero at
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infinity) has a generator given by the bounded operator:

L̃h =
1

f
∆dis(fh)−

∆disf

f
h, so that

L̃h(x) =
1

2d

∑

|e|=1

f(x+ e)

f(x)

(
h(x+ e)− h(x)

)
.

(2.41)

We introduce the law Q̃x on Γ(Zd) of the jump process starting from

x, corresponding to the generator L̃ defined as in (2.41). Outside
some finite set f = 1, and by (2.41), outside the (discrete) closure
of this finite set, this process jumps as a simple random walk. As
a result, the canonical jump process attached to Q̃x is transient. In
addition, up to time T , it has the same law as (Xt)0≤t≤T under P̃x,T .
Therefore, the claim (2.39) will follow once we show that
(2.42)

sup
t≥0

Ex[Mt logMt] = sup
T≥t≥0

Ẽx,T [logMt] = sup
t≥0

EQ̃x [logMt] <∞.

Now, setting g = log f , we split EQ̃x [logMt] into two parts

EQ̃x [logMt] = EQ̃x

[
g(Xt)− g(X0) +

∫ t

0

V (Xs)ds
]

= EQ̃x

[
g(Xt)− g(X0)−

∫ t

0

L̃g(Xs)ds
]

(2.43)

+ EQ̃x

[ ∫ t

0

(L̃g + V )(Xs)ds
]
.

The first term after the second equality of (2.43) is zero since g(Xt)−
g(X0)−

∫ t

0
L̃g(Xs)ds is a martingale under Q̃x (see Proposition 1.7,

p. 162 of [27]). As for the second term, we write

(2.44) ψ = L̃g + V.
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By (2.41) we see that

(2.45) L̃g(x) =
1

2d

∑

|e|=1

f(x+ e)

f(x)
(g(x+ e)− g(x)).

Hence, with a straightforward calculation and the fact that

(2.46) (1 + u) log(1 + u)− u ≥ 0, for u > −1,

we see that
(2.47)

ψ(x) =
1

2d

∑

|e|=1

(f(x+ e)

f(x)
log

f(x+ e)

f(x)
− f(x+ e)− f(x)

f(x)

)
≥ 0,

and that ψ(x) is finitely supported.
Therefore, due to the transience of the canonical process under

Q̃x,

(2.48) sup
t≥0

EQ̃x

[ ∫ t

0

ψ(Xs)ds
] (2.47)

≤ EQ̃x

[ ∫ ∞

0

ψ(Xs)ds
]
<∞,

whence (2.42).
The last claim (2.40) follows by uniform integrability. Indeed,

the martingale converges Px-a.s. and in L1(Px) towards

(2.49) M∞ =
1

f(X0)
exp

{∫ ∞

0

V (Xs)ds
}
,

so we have,

(2.50) Ex[M∞] = Ex[M0] = 1.

This finishes the proof.

We thus define for all x in Z
d the positive measure on Ŵ+:

(2.51) P̃x
def
= M∞Px =

1

f(x)
exp

{∫ ∞

0

V (Xs)ds
}
Px.
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The following corollary is a consequence of Lemma 2.2.2 and its proof.

Corollary 2.2.3. For all x in Z
d,

(2.52) P̃x is a probability measure.

Moreover, (Xt)t≥0 under P̃x, x ∈ Z
d, is a reversible Markov chain

on Z
d with reversible measure

(2.53) λ̃(x) = f2(x), x ∈ Z
d,

and its semi-group in L2(λ̃) has the bounded generator
(2.54)

L̃h(x) = (
1

f
∆dis(fh)+V h)(x) =

1

2d

∑

|e|=1

f(x+ e)

f(x)
(h(x+ e)−h(x)),

for all h in L2(λ̃) and x in Z
d. (Note that X has variable jump rate

under P̃x, unless f is constant.)

Similar to the results in potential theory for the continuous-time
simple random walk earlier in this section, we can also define for
(Xt)t≥0 under {P̃x}x∈Zd the corresponding notions such as (killed)
Green function, equilibrium measure, and capacity. We also refer to
Section 2.1 and 2.2 of Chapter 2 and Section 4.2 of Chapter 4 of [30]
for more details. We denote the corresponding objects with a tilde,
and refer to them as tilted objects.

Specifically, we write g̃ and g̃U for the tilted Green function and
killed Green function (outside U ⊆ Z

d):

g̃(x, y) =
1

λ̃(y)
Ẽx

[ ∫ ∞

0

1{Xs=y}ds
]
,

g̃U (x, y) =
1

λ̃(y)
Ẽx

[ ∫ TU

0

1{Xs=y}ds
]
.

(2.55)

One knows that g̃ and g̃U are symmetric and finite. Given M ⊂⊂ Z
d,

the tilted equilibrium measure and tilted capacity of M are defined
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as:
(2.56)

ẽM (x) = P̃x[H̃M =∞]1M (x)f(x)
( 1

2d

∑

|e|=1

f(x+ e)
)
, for x ∈ Z

d

(the expression after the indicator function of M is a reversibility
measure of the discrete skeleton of the continuous-time chain, which
can be viewed as a random walk among the conductances 1

2df(x)f(y),
for x, y neighbors in Z

d, and g̃(·, ·) is also the corresponding Green
density of this discrete-time walk). Then (see (2.2.13), p. 79 of [30])

(2.57) c̃ap(M) =
∑

x∈M

ẽM (x).

Moreover, the following identities, analogues of (2.23) and (2.25), are
valid:

(2.58)
∑

y∈M

g̃(x, y)ẽM (y) = 1, for all x ∈M,

and for M ⊂M ′ ⊂⊂ Z
d,

(2.59) P̃ẽM′ [HM <∞, XHM = y] =
∑

x∈M ′

ẽM ′(x)h̃M (x, y) = ẽM (y)

for all y ∈M , where for A ⊆ B ⊆ Z
d, x ∈ Z

d, y ∈ A,

h̃A(x, y) = P̃x[HA <∞, XHA = y]

h̃A,B(x, y) = P̃x[HA < TB, XHA = y]
(2.60)

are the respective tilted entrance measure in A and tilted entrance
measure in A relative to B, when starting at x.

We now turn to continuous-time random interlacements. We refer
to [59] for more details. We define Ŵ ∗ = Ŵ/ ∼, where ŵ ∼ ŵ′ is

defined as ŵ(·) = ŵ′(· + k) for some k ∈ Z, for ŵ, ŵ′ ∈ Ŵ . We

also define the canonical map as π∗ : Ŵ → Ŵ ∗. We write Ŵ ∗
M

for the subset of Ŵ ∗ of trajectories modulo time-shift that intersect
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M ⊂⊂ Z
d. For ŵ∗ ∈ Ŵ ∗

M , we write ŵ∗
M,+ for the unique element of

Ŵ+, which follows ŵ∗ step by step from the first time it enters M .
The continuous-time random interlacement can be seen as a Pois-

son point process on the space Ŵ ∗, with intensity measure u ν̂, where
u > 0 and ν̂ is a σ-finite measure on Ŵ such that its restriction
to Ŵ ∗

M (denoted by ν̂M ), is equal to π∗ ◦ Q̂M , where Q̂M is a fi-

nite measure on Ŵ such that (see (1.7) in [59]) if (Xt)t∈R, is the

continuous-time process attached to ŵ ∈ Ŵ , then

(2.61) Q̂M [X0 = x] = eM (x),

and when eM (x) > 0,

(2.62)

under Q̂M conditioned on X0 = x, (Xt)t≥0 and the
right-continuous regularization of (X−t)t>0 are
independent and have same respective distribution
as (Xt)t≥0 under Px and X after its first jump

under Px[·|H̃M =∞]

We define the space Ω of point measures on Ŵ ∗ as

(2.63) Ω =





ω̂ =
∑

i≥0

δŵ∗
i
; ŵ∗

i ∈ Ŵ ∗ for all i ≥ 0,

ω̂(Ŵ ∗
M ) <∞ for all M ⊂⊂ Z

d




.

If F : Ŵ ∗ → R and ω̂ =
∑

i δŵ∗
i
, we write < ω̂, F >=

∑
i F (ŵ

∗
i )

for the integral of F with respect to ω̂. Given M ⊂⊂ Z
d and

ω̂ =
∑

i≥0 δŵ∗
i

in Ω, we let µM (ω̂) stand for the point measure on

Ŵ+, µM (ω̂) =
∑

i≥0 1ŵ∗
i ∈Ŵ∗

M
δ(ŵ∗

i )M,+
, which collects the cloud of

onward trajectories after the first entrance in M (see below (2.60)
for notation).

We write Pu for the probability measure governing random inter-
lacements at level u, that is the canonical law on Ω of the Poisson
point process on Ŵ ∗ with intensity measure u ν̂. We write Eu for its
expectation. Given ω̂ =

∑
i δŵ∗

i
, we define the interlacement set and
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vacant set at level u respectively as the random subsets of Zd:

(2.64) Iu(ω̂) = {∪iRange(ŵ∗
i )}

where for ŵ∗ in Ŵ ∗, Range(ŵ∗) stands for the set of points in Z
d

visited by any ŵ in Ŵ with π∗(ŵ) = ŵ∗, and

(2.65) Vu = Z
d\(Iu(ω̂)).

The above random sets have the same law as Iu or Vu in [56].
The connectivity function of the vacant set of random interlace-

ments is known to have a stretched-exponential decay when the level
exceeds a certain critical value (see Theorem 4.1 of [58], or Theo-
rem 0.1 of [53], and Theorem 3.1 of [46] for recent developments).
Namely, there exists a u∗∗ ∈ (0,∞), which, for our purpose in this
article, can be characterized as the smallest positive number such
that for all u > u∗∗,

(2.66) Pu[0
Vu

↔ ∂B∞(0, N)] ≤ c2(u)e−c3(u)N
c4(u)

, for all N ≥ 0.

(actually, by Theorem 3.1 of [46], one can choose c4 = 1, when
d ≥ 4, and c4 = 1

2 or any other value in (0, 1), when d = 3).
We also wish to recall a classical result on relative entropy which

will be helpful in Section 2. For P̃ absolutely continuous with respect
to P, the relative entropy of P̃ with respect to P is defined as

(2.67) H(P̃|P) = Ẽ

[
log

dP̃

dP

]
= E

[dP̃
dP

log
dP̃

dP

]
∈ [0,∞].

For an event A with positive P̃-probability, we have the following
inequality (see p. 76 of [22]):

(2.68) P[A] ≥ P̃[A]e
− 1

P̃[A]
(H(P̃|P)+ 1

e ).

We end this section by recalling one property of the Poisson point
process on general spaces. It rephrases Lemma 1.4 of [42]. Let µ
be a Poisson point process on E with finite intensity measure η (i.e.
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η(E) <∞), and let Φ : E → R be a measurable function. Then, one
has

(2.69) E[e<ω,Φ>] = e
∫
E

eΦ−1dµ

(this is an identity in (0,+∞]).

2.3 The tilted interlacements

In this section, we define a new probability measure P̃N on Ŵ ∗,
which is absolutely continuous with respect to Pu, see Proposition
2.3.1. It governs a Poisson point process on Ŵ ∗, which corresponds to
the “tilted random interlacements”. Intuitively, these tilted interlace-
ments describe a kind of slowly space-modulated random interlace-
ments. The motivation for the exponential tilt entering the definition
of P̃N actually stems from the analysis of certain large deviations of
the occupation-time profile of random interlacements considered in
[42], see Remark 2.3.5 below. In Proposition 2.3.1 we compute the

relative entropy of P̃N with respect to Pu, and we then relate this
result to the capacity of K after a suitable limiting procedure, see
Proposition 2.3.4.

We begin with the construction of the new measure P̃N , which
will correspond to an exponential tilt of Pu, see (2.76).

We recall that K is a compact subset of Rd as above (2.1). We

consider δ, ǫ in (0, 1), and let U and Ũ be the open Euclidean balls
centered at 0 with respective radii rU and rŨ , where rU > 0 and
rŨ = rU + 4. We assume that rU is sufficiently large such that

K2δ ⊂ U ⊂ Ũ ⊂ R
d (recall that K2δ stands for the closed 2δ-

neighborhood of K, see below (2.8)). By the end of this section we
will eventually let rU , rŨ tend to infinity and then let δ tend to 0. We
denote by Wz the Wiener measure starting from z and by HF , for F
a closed subset of Rd, the entrance time of the canonical Brownian
motion in F . We write

(2.70) h(z) =Wz [HK2δ < TU ], z ∈ R
d,
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for the equilibrium potential of K2δ relative to U . For η ∈ (0, δ)
and φη a non-negative smooth function supported in BRd(0, η) such
that

∫
φη(z)dz = 1, we write

(2.71) hη = h ∗ φη

for the convolution of h and φη.
We then define the restriction to Z

d of the blow-up of h as

(2.72) hN (x) = hη
( x
N

)
, for x ∈ Z

d.

We now specify our choice of f in (2.36) as

f(x) =
(√u∗∗ + ǫ

u
− 1
)
hN (x) + 1,(2.73)

and recall that

V = −∆disf

f
.

f and V tacitly depend upon ǫ, δ, η,N . We drop this dependence
from the notation for the sake of simplicity. We denote by ŨN the
discrete blow-up of Ũ (as in (2.1) or (2.9)). We also note that
(2.74)

f = 1 on (Zd\ŨN) ∪ ∂iŨN , and for large N , f =
√

u∗∗+ǫ
u on Kδ

N .

From now on, we will denote by P̃x the probability measure defined
in (2.51), with f as in (2.73).

We define a function F on Ŵ ∗ through
(2.75)

F (ŵ∗) =





∫ ∞

0

V (Xs)(ŵŨN
)ds, for ŵ∗ ∈ Ŵ ∗

ŨN
, with π∗(ŵ) = ŵ∗,

and ŵŨN
the time-shift of ŵ at its first entrance in ŨN ,

0, otherwise.
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We refer to (2.63) for the definition of Ω.

Proposition 2.3.1.

(2.76) P̃N = e<ω̂,F>
Pu defines a probability measure on Ω.

Moreover, under P̃N

(2.77)
the canonical point measure ω̂ is a Poisson point process

on Ŵ ∗ with intensity measure uν̃, where ν̃ = eF ν̂,

and for M ⊂⊂ Z
d (see below (2.63) for notation),

µM is a Poisson point process on Ŵ+

with intensity measure uP̃ẽM .
(2.78)

Proof. We begin with the proof of (2.76). By the first equality of

(2.74) and using (2.40) of Lemma 2.2.2, we see that for all x ∈ ∂iŨN ,

(2.79) Ex[e
∫

∞
0

V (Xs)ds] = 1.

Since F vanishes outside Ŵ ∗
ŨN

, it follows that

(2.80)∫

Ŵ∗

(eF−1)dν̂ =

∫

Ŵ∗

ŨN

(eF−1)dν̂ (2.62)
= EeŨN

[e
∫

∞
0

V (Xs)ds−1] (2.79)= 0,

and by (2.69),

(2.81) Eu[e
<ω̂,F>] = 1,

whence (2.76). We now turn to the proof of (2.77).

Writing ẼN as the expectation under P̃N , takingG a non-negative,
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measurable function on Ŵ ∗, we have

(2.82)

ẼN [e−<ω̂,G>]
(2.76)
= Eu[e

<ω̂,F−G>]

(2.80)
= Eu[e

<ω̂,F−G>]e−u
∫
(eF−1)dν̂

(2.69)
=

on ŴŨN

eu
∫
(eF−G−1)dν̂−u

∫
(eF−1)dν̂

= eu
∫
(e−G−1)eF dν̂ .

This identifies the Laplace transform of ω̂ under P̃N and (2.77) fol-
lows by Proposition 36, p. 130 of [48].

There remains to prove (2.78). By (2.77) and the definition of

µM (below (2.63)), we see that µM is a Poisson point process on Ŵ+

with intensity measure uγM , where γM is the image of 1
Ŵ∗

M
ν̃ under

the map ŵ∗ → ŵ∗
M,+ (see above (2.61) for notation). The claim

(2.78) will thus follow once we show that

(2.83) γM = P̃ẽM .

We introduce M̃ =M ∪ ŨN . We observe that

(2.84) ẽ
M̃

= e
M̃
.

Indeed, this follows by (2.18) and (2.56), together with the first equal-
ity in (2.74). We also note that in (2.75) the function F does not

change if we replace ŨN in the definition by M̃ , since ŨN ⊂ M̃ , and
V vanishes outside ŨN . Therefore, in order to prove (2.83), it suffices

to verify that for any bounded measurable function g : Ŵ+ → R, its
integral with respect to γM coincides with that with respect to P̃ẽM .
We begin with 〈γM , g〉. By the definition of γM :

(2.85)

< γM , g > =

∫

Ŵ∗

M̃

eF 1{ŵ∗∈Ŵ∗
M}g(ŵ

∗
M,+)dν̂(ŵ

∗)

(2.61)
=

(2.62)
Ee

M̃
[e

∫
∞
0

V (Xs)dsg(ŵM )1{HM<∞}],
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where for ŵ ∈ Ŵ+, we let ŵM ∈ Ŵ+ stand for the time-shift of ŵ
starting at its first entrance in M . We then apply the strong Markov
property at HM , and decompose according to where the walks enter
M ,

(2.86)

< γM , g >
Markov
= Ee

M̃
[e

∫HM
0 V (Xs)ds1{HM<∞}EXHM

[e
∫

∞

0
V (Xs)dsg]]

= Ee
M̃

[
f(XHM )e

∫ HM
0 V (Xs)ds1{HM<∞}×

EXHM

[
1

f(X0)
e
∫

∞
0

V (Xs)dsg
]]

=
∑

y∈∂iM

Ee
M̃

[
f(y)e

∫HM
0 V (Xs)ds1{HM<∞,XHM

=y}

]
×

Ey

[
1

f(y)e
∫

∞
0

V (Xs)dsg
]

(2.51)
=

Markov

∑

y∈∂iM

P̃e
M̃
[HM <∞, XHM = y]Ẽy[g].

On the other hand, we can express P̃ẽM in terms of the tilted entrance
measure by the sweeping identity (see (2.59)) and incorporate the

fact that the tilted equilibrium measure of M̃ coincides with the
standard equilibrium measure of M̃ :

(2.87)
ẼẽM [g]

(2.59)
=

∑
y∈∂iM

P̃ẽ
M̃
[HM <∞, XHM = y]Ẽy[g]

(2.84)
=

∑
y∈∂iM

P̃e
M̃
[HM <∞, XHM = y]Ẽy[g].

Comparing (2.86) and (2.87), we obtain (2.83).

We will call the canonical Poisson point process under P̃N the
tilted random interlacements.

Remark 2.3.2. The tilted interlacements do retain an interlacement-
like character because ν̃ = eF ν̂ is a measure on Ŵ ∗, which has the
following property. Its restriction to Ŵ ∗

M , for M ⊂⊂ Z
d, is equal to

π∗ ◦ Q̃M , where

(2.88) Q̃M [X0 = x] = ẽM (x),
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and when ẽM (x) > 0,

(2.89)

under Q̃M conditioned on X0 = x, (Xt)t≥0 and
the right-continuous regularization of (X−t)t>0

are independent and with same respective distri-

bution as (Xt)t≥0 under P̃x and X after its first

jump under P̃x[·|H̃M =∞].

We do not need the above fact, but mention it because it states
the property analogous to (2.61) and (2.62) satisfied by ν̃. �

We will now calculate the relative entropy of P̃N with regard to
Pu and relate it to the Dirichlet form of hN (see (2.21) for notation).

Proposition 2.3.3.

(2.90) H(P̃N |Pu) = (
√
u∗∗ + ǫ−

√
u)2EZd(hN , hN ).

Proof. By the definition of relative entropy (see (2.67)),

(2.91) H(P̃N |Pu) = ẼN [log
dP̃N

dPu
]
(2.76)
= ẼN [< ω̂, F >],

and

(2.92)

ẼN [< ω̂, F >]
= u < ν̃, F >

(2.75)
=

(2.78)
uẼẽŨN

[ ∫ ∞

0

V (Xs)ds
]

(2.55)
= u

∑
x∈ŨN , x′∈Zd ẽŨN

(x)g̃(x, x′)V (x′)λ̃(x′)

(2.58)
=

supp V⊆ŨN

u
∑

x′∈Zd V (x′)λ̃(x′)

(2.53)
=

(2.35)
−u
∑

x∈Zd f(x)∆disf(x).
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We also have, by the definition of f in (2.73), that
(2.93)

−u
∑

x∈Zd

f(x)∆disf(x) = u
∑

x∈Zd

(√u∗∗ + ǫ

u
− 1
)
f(x)∆dishN (x)

and since hN is finitely supported, by the Green-Gauss theorem, the
left-hand side of (2.93) equals

= u
(√u∗∗ + ǫ

u
− 1
)1
2

∑

|x−x′|=1

1

2d
(f(x′)− f(x))(hN (x′)− hN (x))

(2.73)
= u

∑

x′∈Zd

(√u∗∗ + ǫ

u
− 1
)2
EZd(hN , hN ),

(2.94)

and (2.90) follows.

We will now successively let N →∞, η → 0, rU →∞, and δ → 0.
The capacity of K will appear in the limit (in the above sense) of
the properly scaled Dirichlet form of hN .

Proposition 2.3.4.

(2.95) lim
δ→0

lim
rU→∞

lim
η→0

lim
N→∞

1

Nd−2
EZd(hN , hN ) =

1

d
cap

Rd(K).

Proof. First, by the definition of hN and (2.21) we have

1

Nd−2
EZd(hN , hN) =

1

Nd−2

∑

x∈Zd

∑

|e|=1

1

4d
(hN (x+ e)− hN (x))2

(2.74)
=

(2.72)

1

4dNd

∑

x∈ŨN

∑

|e|=1

N2
(
hη
(x+ e

N

)
− hη

( x
N

))2
.(2.96)

Then, we take the limit of both sides. By the smoothness of hη and
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a Riemann sum argument we have:
(2.97)

lim
N→∞

1

Nd−2
EZd(hN , hN ) =

1

2d

∫
|∇hη(y)|2dy =

1

d
ERd(hη, hη),

where ERd(·, ·) denotes the usual Dirichlet form on R
d.

Since h in (2.70) belongs to H1(Rd), see Theorem 4.3.3, p. 152
of [30] (due to the killing outside of U , the extended Dirichlet space
is contained in H1(Rd)), hη → h in H1(Rd), as η → 0. We thus find
that

(2.98) lim
η→0
ERd(hη, hη) = ERd(h, h) = cap

Rd,U (K
2δ),

where cap
Rd,U (K

2δ) is the relative capacity of K2δ with respect to
U , and the last equality follows from [30], pp. 152 and 71.

Letting rU → ∞ , the relative capacity converges to the usual
Brownian capacity (this follows for instance from the variational
characterization of the capacity in Theorem 2.1.5 on pp. 70 and 71
of [30]):

(2.99) cap
Rd,U (K

2δ)→ cap
Rd(K2δ), as rU →∞.

Then, letting δ → 0, by Proposition 1.13, p. 60 of [47], we find that

(2.100) cap
Rd(K2δ)→ cap

Rd(K), as δ → 0.

The claim (2.95) follows.

Remark 2.3.5. Our main objective in the next two sections is to
prove (2.4), i.e. P̃N [AN ]→ 1. Actually, we could also use the above

P̃N (with a > u in place of u∗∗ in the definition of f in (2.73)) and
the change of probability method to provide an alternative proof of
Theorem 6.4 of [42] (it derives the asymptotic lower bound for the
probability that the regularized occupation-time profile of random
interlacements insulates K by values exceeding a). It is a remarkable
feature that such a bulge of the occupation-time profile is constructed
in the tilted interlacements by mostly steering the tilted walk towards
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KN , and not by seriously tinkering the jump rates, see for instance
(2.54), as well as Propositions 2.4.1 and 2.4.4 in the next section. �

2.4 Domination of equilibrium measures

In this section, our main goal is Proposition 2.4.4, where we prove
that on a mesoscopic box inside Kδ

N , the tilted equilibrium measure
dominates (u∗∗ + ǫ/4)/u times the corresponding standard equilib-
rium measure. It is the key ingredient for constructing the coupling
in Proposition 2.5.1 in the next section. A major step is achieved
in Proposition 2.4.1, where we prove that the tilted capacity of a
mesoscopic ball (larger than the above mentioned box) inside Kδ

N is
at least (u∗∗ + ǫ/2)/u times its corresponding standard capacity.

We start with the precise definition of the objects of interest in

this and the next section. We denote by ΓN = ∂K
δ/2
N the boundary

in Z
d of the discrete blow-up of K

δ
2 (we recall (2.8) and (2.9) for

the definitions of the boundary and of the discrete blow-up). The
above ΓN will serve as a set “surrounding” KN . We fix numbers ri,
i = 1, . . . , 4 such that

(2.101) 0 < 2r1 < r2 < r3 < r4 < 1

We define for x in ΓN two boxes centered at x (when there is ambi-
guity we add a superscript for its center x, and B2 will only be used
in Section 4):

(2.102) B1 = B∞(x,N r1), B2 = B∞(x,N r2);

and three balls also centered at x:

(2.103) B3 = B(x,N r3), B4 = B(x,N r4), B5 = B(x, 2N r4),

so that (in the notation of (2.8)) one has

(2.104) B1 ⊂ B2 ⊂ B3 ⊂ B4 ⊂ B5 ⊂ B5 ⊆ Kδ
N ⊂⊂ Z

d.

(we now tacitly assume that N is sufficiently large so that for all
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x ∈ ΓN , Bx
5 ⊂ Kδ

N , and the second equality of (2.74) holds).
We start with the domination of capacities. To prove the next

Proposition 2.4.1, we calculate the time spent by the random walk in
the mesoscopic body B3 in two different ways (see Lemma 2.4.2), and
relate these expressions to the capacity and to the tilted capacity.

Proposition 2.4.1. When N is large, we have for all x ∈ ΓN

(2.105) uc̃ap(B3) ≥
(
u∗∗ +

ǫ

2

)
cap(B3).

The proof of this proposition relies on Lemmas 2.4.2 and 2.4.3.

Lemma 2.4.2.

(2.106) ẼẽB3

[ ∫ ∞

0

1B3(Xs)ds
]
=
u∗∗ + ǫ

u
EeB3

[ ∫ ∞

0

1B3(Xs)ds
]

Proof. By the definition of the tilted Green function (see (2.55)) and
by (2.58),
(2.107)

ẼẽB3

[ ∫∞

0 1B3(Xs)ds
]

=
∑

v∈∂iB3, y∈B3
ẽB3(v)g̃(v, y)λ̃(y)

(2.58)
=

∑
y∈B3

1B3(y)λ̃(y).

Moreover, λ̃(y) = f2(y) = u∗∗+ǫ
u for y ∈ B3 ⊂ Kδ

N (see (2.53), (2.74),
(2.104)). Hence,

(2.108) ẼẽB3

[ ∫ ∞

0

1B3(Xs)ds
]
=
u∗∗ + ǫ

u
|B3|.

By a similar calculation, we also find that

(2.109) EeB3

[ ∫ ∞

0

1B3(Xs)ds
]
= |B3|.

Comparing (2.108) and (2.109) , we obtain (2.106) as desired.

In the second lemma we prove that starting from the boundary
of B4, the tilted walk hits B3 with a probability tending to 0 with
N .
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Lemma 2.4.3.

(2.110) β(N)
def
= max

x∈ΓN ,v∈∂B4

P̃v(HB3 <∞) tends to 0 as N →∞.

Proof. For v in ∂B4, we have

(2.111) P̃v(HB3 <∞) = P̃v(HB3 < TB5) + P̃v(TB5 < HB3 <∞),

By the second equality of (2.74), and in view of (2.54), (2.104), when

starting in v ∈ B4, under P̃v, X·∧TB5
behaves as stopped simple

random walk. Thus, by classical simple random walk estimates, we
have an upper bound for the probability that the tilted walk hits B3

before exiting B5:

max
v∈∂B4

P̃v(HB3 < TB5) ≤ max
v∈∂B4

Pv(HB3 <∞)

def
= β0(N) = O(N (r3−r4)(d−2)),

(2.112)

(note that β0(N) does not depend on x ∈ ΓN ).
By the strong Markov property successively applied at times TB5

and HB4
, we have:

(2.113)

P̃v(TB5 < HB3 <∞) ≤ max
y∈∂B5

P̃y(HB4
<∞) max

v′∈∂B4

P̃v′ (HB3 <∞).

Taking the maximum over v in ∂B4 on the left-hand side of (2.113),
and inserting this bound in (2.111), we find with the help of (2.112):

(2.114) max
v∈∂B4

P̃v(HB3 <∞) ≤ β0(N)

1− max
y∈∂B5

P̃y(HB4
<∞)

.

To prove (2.110), it now suffices to show that

(2.115) lim inf
N

min
x∈ΓN ,y∈∂B5

P̃y(HB4
=∞) > 0.

As a result of (2.14) and the stopping theorem, for large N , and any
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x ∈ ΓN ,

(2.116) min
y∈∂B5

Py(HB4
=∞) > c.

By a similar argument as in Lemma 2.2.1,

(2.117) Ez

[ ∫ ∞

0

1ŨN
(Xs)ds

]
≤ c(Ũ)N2, for z ∈ Z

d and N ≥ 1.

By the Chebyshev Inequality, writing c̃(Ũ) = 2c(Ũ)/c, with c as in

(2.116), and IN = {
∫∞

0 1ŨN
(Xs)ds ≤ c̃(Ũ)N2}, we have

(2.118) Pz [IN ] ≥ 1− c

2
, for all z ∈ Z

d.

With (2.116) and (2.118) put together, we obtain that for all z in
∂B5,

(2.119) Pz({HB4
=∞} ∩ IN ) ≥ c

2
.

By definition of f (see (2.73)) and since hη ∈ C∞
0 , we see that

(2.120) |V | =
∣∣∣∆disf

f

∣∣∣ ≤ c(u)
∣∣∣∆dishN

∣∣∣ ≤ c(hη, u)

N2
.

By the first equality of (2.74), we have ∆disf = 0 outside ŨN . Hence,
we find that for large N , for all x ∈ ΓN and y ∈ ∂B5, on the event
IN ,

dP̃y

dPy
≥ c(u) exp

{∫ ∞

0

V (Xs)ds
}

(2.117)

≥
(2.120)

c(u) exp
{
− c̃N2 · c

N2

}
= c(u)e−c̃c.

(2.121)
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Therefore, by (2.119, (2.121) we find that

(2.122)

lim infN→∞ minx∈ΓN ,y∈∂B5
P̃y [{HB4

=∞}] ≥

lim infN→∞ minx∈ΓN ,y∈∂B5
Ey

[dP̃y

dPy
1{HB4

=∞}, IN

]
> 0.

This proves (2.115) and concludes the proof of Lemma 2.4.3.

With all ingredients prepared, we are ready to prove the domina-
tion of capacities stated in Proposition 2.4.1. In the proof we com-
bine the estimates obtained in Lemmas 2.2.1 and 2.4.2, perform an
argument similar to (2.111), (2.112) and (2.113), and employ Lemma
2.4.3 to control the tilted return probability.

Proof of Proposition 2.4.1. We will bound the left term of (2.106)
from above and the right term from below. We start with the upper
bound on the left-hand side of (2.106).

For all y in ∂iB3, by strong Markov property at time TB4 (and
then at time HB3) we have

Ẽy

[ ∫ ∞

0

1B3(Xs)ds
]

= Ẽy

[ ∫ TB4

0

1B3(Xs)ds
]
+ Ẽy

[
ẼXTB4

[ ∫ ∞

0

1B3(Xs)ds
]]

≤ max
y∈∂iB3

{
Ẽy

[ ∫ TB4

0

1B3(Xs)ds
]}

+ max
v∈∂B4

{
P̃v[HB3 <∞]

}
max

y∈∂iB3

{
Ẽy

[ ∫ ∞

0

1B3(Xs)ds
]}
.

(2.123)

Taking the maximum over y ∈ ∂iB3 on the left-hand side of
(2.123) and rearranging, we find in view of (2.110):
(2.124)

max
y∈∂iB3

Ẽy

[ ∫ ∞

0

1B3(Xs)ds
]
≤ maxy∈∂iB3 Ẽy

[ ∫ TB4

0 1B3(Xs)ds
]

1− β(N)
.
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Then we notice that, since f is constant on Kδ
N ⊇ B4, see (2.74)

and (2.104),

(2.125) Ẽy

[ ∫ TB4

0

1B3(Xs)ds
]
= Ey

[ ∫ TB4

0

1B3(Xs)ds
]
.

We now have the following upper bound on the left-hand side of
(2.106) under P̃ẽB3

:

(2.126)

ẼẽB3

[ ∫ ∞

0

1B3(Xs)ds
]

≤ c̃ap(B3) maxy∈∂iB3 Ẽy

[ ∫ ∞

0

1B3(Xs)ds
]

(2.124)

≤ c̃ap(B3)
maxy∈∂iB3

{
Ẽy

[ ∫ TB4

0 1B3(Xs)ds
]}

1− β(N)

(2.125)
= c̃ap(B3)

maxy∈∂iB3

{
Ey

[ ∫ TB4

0
1B3(Xs)ds

]}

1− β(N)

≤ c̃ap(B3)
maxy∈∂iB3

{
Ey

[ ∫∞

0 1B3(Xs)ds
]}

1− β(N)

(2.26)

≤ c̃ap(B3)c1N
2r3

1 + α(N)

1− β(N)
.

On the other hand, by (2.26) of Lemma 2.2.1, we have a lower
bound on the right-hand side of (2.106):
(2.127)
u∗∗ + ǫ

u
EeB3

[ ∫ ∞

0

1B3(Xs)ds
]
≥ u∗∗ + ǫ

u
cap(B3)c1N

2r3(1− α(N)).

Combining (2.126), (2.127) and Lemma 2.4.2, we find

(2.128) c̃ap(B3)
1 + α(N)

1− β(N)
≥ u∗∗ + ǫ

u
cap(B3)(1 − α(N)).



106 2.4 Domination of equilibrium measures

With the help of (2.26) and (2.110) we see that Proposition 2.4.1
readily follows.

We now turn to the domination of the equilibrium measures at a
smaller scale on B1. In the proof of Proposition 2.4.4, thanks to the
domination of capacities proved in Proposition 2.4.1, we are able to
reduce the domination of equilibrium measures to the domination of
(relative) entrance measures. This is performed in Lemma 2.4.5.

Proposition 2.4.4. When N is large, for all x ∈ ΓN and z ∈ ∂iB1,

(2.129) uẽB1(z) ≥
(
u∗∗ +

ǫ

4

)
eB1(z).

The proof of Proposition 2.4.4 relies on the following lemma,
where we prove that the killed entrance measure of B1 almost dom-
inates the corresponding standard entrance measure. From now on,
we fix ǫ′ = ǫ/(4u∗∗ + 2ǫ). We recall (2.24) for notation.

Lemma 2.4.5. For sufficiently large N , for all x ∈ ΓN and z ∈
∂iB1,

(2.130) min
y∈∂iB3

hB1,B4(y, z) ≥ (1− ǫ′) max
ỹ∈∂iB3

hB1(ỹ, z).

The proof of Lemma 2.4.5 has the same flavour as Section 3 of
[8] and indeed relies on Lemma 3.3 of the same reference.

Proof. We decompose hB1,B4(y, z) according to the time and place
of the last step before entering B1 at z, and obtain for y outside B1

and z in B1

(2.131) hB1,B4(y, z) =
1

2d

∑

z′∼z,z′∈∂B1

gB4\B1
(y, z′).

Similarly, we have for ỹ outside B1 and z in B1,

(2.132) hB1(ỹ, z) =
1

2d

∑

z′∼z,z′∈∂B1

gBc
1
(ỹ, z′).
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Therefore, to prove (2.130), it suffices to show that for large N and
for all y, ỹ ∈ ∂iB3 and z′ ∈ ∂B1

(2.133) gB4\B1
(y, z′) ≥ (1 − ǫ′)gBc

1
(ỹ, z′).

By an argument similar to Lemma 3.3 of [8] to B4 and B1, we have
that

(2.134)

gB4\B1
(y, z′)

symmetry
= gB4\B1

(z′, y)

Markov
= gB4(z

′, y)− Ez′ [gB4(XHB1
, y), HB1 < TB4 ]

symmetry
= Ez′ [gB4(y, z

′)− gB4(y,XHB1
), HB1 < TB4 ]

+ gB4(y, z
′)Pz′ [HB1 > TB4 ]

def
= A+B.

Then, by the gradient estimate and the Harnack inequality in The-
orems 1.7.1, and 1.7.2, p. 42 of [38],

(2.135) |A| ≤ c

N r3
N r1gB4(y, z

′),

and by a similar argument as below (3.30) of [8],

(2.136) B ≥ c

N r1
gB4(y, z

′).

Hence, collecting (2.134), (2.135), (2.136), we find that

(2.137) gB4\B1
(y, z′) ≥ gB4(y, z

′)Pz′ [HB1 > TB4 ](1− cN2r1−r3).

By analogous arguments we also obtain

(2.138) gBc
1
(ỹ, z′) ≤ g(ỹ, z′)Pz′ [HB1 =∞](1 + cN2r1−r3).

By the definition of r1 and r3 (see (2.101)), N2r1−r3 ≪ 1. Therefore,
combining (2.137), (2.138) together with the fact that

(2.139) Pz′ [HB1 > TB4 ] ≥ Pz′ [HB1 =∞],
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the claim (2.133) will follow once we show (see above Lemma 2.4.5
for our choice of ǫ′) that when N is sufficiently large, for all x ∈ ΓN ,
all y, ỹ ∈ ∂iB3 and all z′ ∈ ∂B1,

(2.140) gB4(y, z
′) ≥

(
1− ǫ′

2

)
g(ỹ, z′).

By (2.14) and (2.17), for large N , setting B̃ = B(y, N
r4

2 ) we have
the following bounds:
(2.141)
gB4(y, z

′) ≥ gB̃(y, z′) ≥ c0|y − z′|(2−d) − cN r4(2−d) − c′N r3(1−d)

and

(2.142) g(ỹ, z′) ≤ c0|y − z′|(2−d) + cN r3(1−d).

Hence, we obtain (2.140) and (2.133) follows. This proves Lemma
2.4.5.

We are now ready to prove Proposition 2.4.4. In the proof, we
make use of the sweeping identity, and, in effect, reduce the com-
parison of the standard and tilted equilibrium measures of B1 to the
comparison on the standard and tilted capacities of B3, and to the
comparison of the (killed) entrance measures.

Proof of Proposition 2.4.4. For large N and for all x ∈ ΓN and z ∈
∂iB1, we find that

(2.143)

uẽB1(z)
(2.59)
= u P̃ẽB3

(XHB1
= z, HB1 <∞)

≥ u c̃ap(B3)miny∈∂iB3 h̃B1(y, z)

(2.105)

≥
(
u∗∗ +

ǫ

2

)
cap(B3) min

y∈∂iB3

h̃B1(y, z)

≥
(
u∗∗ +

ǫ

2

)
cap(B3) min

y∈∂iB3

h̃B1,B4(y, z).

Since up to the exit time from B4 the tilted and standard walk
have the same law (see (2.74)), we see that for y ∈ ∂iB3 and z ∈ ∂B1,
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we have

(2.144) h̃B1,B4(y, z) = hB1,B4(y, z).

Taking Lemma 2.4.5 into account, we find that for large N and
for all x ∈ ΓN and z ∈ ∂B1,

(2.145) min
y∈∂iB3

hB1,B4(y, z)
(2.130)

≥ (1− ǫ′) max
ỹ∈∂iB3

hB1(ỹ, z).

Thus, coming back to (2.143), we find that with our choice of ǫ′

(above Lemma 2.4.5),

(2.146)

uẽB1(z) ≥
(
u∗∗ +

ǫ

4

)
cap(B3) max

ỹ∈∂iB3

hB1(ỹ, z)

(2.24)

≥
(
u∗∗ +

ǫ

4

)
PeB3

(XHB1
= z, HB1 <∞)

(2.25)
=

(
u∗∗ +

ǫ

4

)
eB1(z).

This completes the proof of Proposition 2.4.4.

2.5 Coupling and Disconnection

In this section, we prove in Theorem 2.5.3 that the tilted interlace-
ments disconnect KN from infinity with a probability, which tends
to 1 as N goes to infinity. To this end, we show that in mesoscopic
boxes with centers in ΓN (introduced above (2.101)), the tilted ran-
dom interlacements locally “dominate” random interlacements with
level higher than u∗∗, and thus typically disconnect in each such
box the center from its boundary with very high probability. There-
fore, there is a high probability as well for the tilted interlacement
to disconnect the macroscopic body from infinity. The main step
is Proposition 2.5.1 where we construct at each point of ΓN a cou-
pling so that the tilted random interlacements with high probability
locally dominate some standard random interlacements with level
higher than u∗∗.
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We recall the definitions of B1 and B2 from (2.102).

Proposition 2.5.1. When N is large, for all x ∈ ΓN , there exists a
probability space (Ω,A, Q) and random sets Ĩ and I1 defined on Ω,

with same respective laws as Iu ∩ B1 under P̃N and Iu∗∗+
ǫ
8 under

Pu∗∗+
ǫ
8
, so that

(2.147) Q[Ĩ ⊃ I1] ≥ 1− c5e−c6N
c7

(the constants depend on r1, r2, ǫ).

The idea of the proof is to stochastically dominate the trace in
B1 of random interlacements with level higher than u∗∗ by the “first
excursions” (from some inner boundary of B1 to ∂B2) of the trajecto-
ries from some random interlacements with slightly higher intensity,
and then, further dominate these excursions by the same kind of “first
excursions” of trajectories of the tilted interlacement. The following
proposition for the above mentioned first stochastic domination in
essence rephrases Proposition 4.4 of [7]. We begin with some nota-
tion.

For A ⊂ B ⊂⊂ Z
d, we write kA,B for the law on Γ(Zd) (see below

(2.11)) of the stopped process X·∧TB under PeA . We also denote the
trace of a point process η =

∑
i δwi on the space Γ(Zd) by

(2.148) I(η) = ∪iRange(wi).

Proposition 2.5.2. When N is large, for all x ∈ ΓN , there exists
a probability space (Σ,B, Q) endowed with a Poisson point process η,
with intensity measure (u∗∗ + ǫ/4)kB1,B2 , and a random set I1 ⊂ Z

d

with the law of Iu∗∗+
ǫ
8 ∩B1 under Pu∗∗+

ǫ
8
, and

(2.149) Q[I1 ⊂ I(η) ∩B1] ≥ 1− c5e−c6N
c7
.

We refer the readers to Proposition 5.4 of [7] and to Section 8 of
[7] for the proof of Proposition 2.5.2.

We now construct another coupling such that the trace on B1 of
the first excursions of the tilted random interlacements dominate the
trace of the corresponding excursions for random interlacements at
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level u∗∗ +
ǫ
4 . Combined with Proposition 2.5.2, this will complete

the proof of Proposition 2.5.1.

Proof of Proposition 2.5.1. We keep the notation of Proposition 2.5.2.
Let α be the measure on ∂iB1 such that for all z ∈ ∂iB1,

(2.150) α(z) = uẽB1(z)−
(
u∗∗ +

ǫ

4

)
eB1(z).

By Proposition 2.4.4 α is a positive measure. Hence, we can construct
an auxiliary probability space (Ω̃, Ã, Q̃), endowed with a Poisson
point process η̃ on Γ(Zd) with intensity measure kα(·) = Pα(X·∧TB2

).
Since for all z in ∂iB1, the tilted walk coincides with the simple
random walk up to the exit from B2, we obtain that under P̃N ,
(2.151)

Ĩ = (I(η̃) ∪ I(η)) ∩B1 is stochastically dominated by Iu ∩B1.

We can thus construct on some extension (Ω,A, Q) an Ĩ distributed

as Iu ∩B1 under P̃N , so that Ĩ ⊇ I(η), Q-a.s.. We then have

Q[Ĩ ⊃ I1] ≥ Q[I(η) ∩B1 ⊃ I1]

= Q[I(η) ∩B1 ⊃ I1]
(2.149)

≥ 1− c5e−c6N
c7
.

(2.152)

We are now ready to derive a key step for the proof of Theorem
2.1.1. Namely, we will now show that with P̃N -probability tending

to 1, the event AN (= {KN

Vu

=∞}, see (2.2)) does occur.

Theorem 2.5.3.

(2.153) lim
N→∞

P̃N [AN ] = 1.

Proof. Note that for large N , when KN is connected to infinity by
a nearest-neighbor path, this path must go through the set ΓN at
some point x (see above (2.101)). Hence, this path connects x to the
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inner boundary of Bx
1 , so that

(2.154) Ac
N ⊂ ∪x∈ΓN{x Vu

←→ ∂iB
x
1 }.

Thus, we find that for large N

(2.155) P̃N [Ac
N ] ≤

∑

x∈ΓN

P̃N [x
Vu

←→ ∂iB
x
1 ].

By Proposition 2.5.1, for largeN , uniformly in x ∈ ΓN , we can bound
the probability in the right-hand side of (2.155) as follows,
(2.156)

P̃N [x
Vu

↔ ∂iB
x
1 ]

(2.147)

≤ Pu∗∗+
ǫ
8
[x

Vu∗∗+ ǫ
8←→ ∂iB

x
1 ] + c5e

−c6N
c7
.

(2.66)

≤ ce−c′N c̃

,

where the constants depend on r1, r2, ǫ. Hence, we see that for large
N ,

(2.157) P̃N [Ac
N ] ≤ |ΓN |ce−c′N c̃ −→

N
0.

This concludes the proof of Theorem 2.5.3.

2.6 Denouement

In this section we combine the various ingredients, namely Theorem
2.5.3, Propositions 2.3.3 and 2.3.4, and prove Theorem 2.1.1.

Proof of Theorem 2.1.1. We recall the entropy inequality (see (2.68)),

and apply it to Pu and P̃N defined in Sections 1 and 2. By Theorem
2.5.3, we know that
limN→∞ P̃N [AN ] = 1, and (2.68) yields that

(2.158) lim inf
N→∞

1

Nd−2
log(Pu[AN ]) ≥ − lim sup

N→∞

1

Nd−2
H(P̃N |Pu).

By Proposition 2.3.3, we represent the right-hand side of (2.158)
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as

− lim sup
N→∞

1

Nd−2
H(P̃N |Pu)

=− (
√
u∗∗ + ǫ−

√
u)2 lim sup

N→∞

1

Nd−2
EZd(hN , hN).

(2.159)

Then, by Proposition 2.3.4, taking consecutively the limits η → 0,
rU →∞, and δ → 0, and we obtain
(2.160)

lim inf
N→∞

1

Nd−2
log(Pu[AN ]) ≥ −1

d
(
√
u∗∗ + ǫ−

√
u)2cap

Rd(K).

Finally, by taking ǫ→ 0 we obtain (2.3) as desired.

Remark 2.6.1.

1) It is an important question whether Theorem 2.1.1 can be
complemented by a matching asymptotic upper bound, say when K
is a smooth compact set. In view of Theorems 6.2 and 6.4 of [42]
(see also Remark 6.5 2) of [42]), this would indicate that the large
deviations of the occupation-time profile of random interlacements,
insulating K by values u′ of the local field (with u′ corresponding to
a non-percolative behaviour of Vu′

) capture the main mechanism un-
derlying the disconnection of a macroscopic body, in the percolative
regime of the vacant set.

2) As u→ 0, the right-hand side of (2.3) tends to the finite limit
−u∗∗

d cap(K). One may wonder whether this limiting procedure re-
tains any pertinence for the study of the disconnection of the macro-
scopic body KN by a simple random walk trajectory? For instance,
does one have
(2.161)

lim inf
N→∞

1

Nd−2
logP0

[{
KN

Range{(Xt)t≥0}
c

←→/ ∞
}]
≥ −u∗∗

d
cap

Rd(K) ?

�
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Chapter 3

A lower bound for

disconnection by

Simple Random Walk

We consider simple random walk on Z
d, d ≥ 3. Motivated by

Chapters 1 and 2, we investigate the asymptotic behaviour of
the probability that a large body gets disconnected from infin-
ity by the set of points visited by a simple random walk. We
derive asymptotic lower bounds that bring into play random
interlacements. Although open at the moment, some of the
lower bounds we obtain possibly match the asymptotic upper
bounds recently obtained in [62]. This potentially yields spe-
cial significance to the tilted walks that we use in this work,
and to the strategy that we employ to implement disconnec-
tion.

3.1 Introduction

How hard is it to disconnect a macroscopic body from infinity by
the trace of a simple random walk in Z

d, when d ≥ 3? In this
work, we partially answer this question, motivated by Chapters 1

115
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and 2, by deriving an asymptotic lower bound on the probability
of such a disconnection. Remarkably, our bounds bring into play
random interlacements as well as a suitable strategy to implement
disconnection. Although open at the moment, some of the lower
bounds we obtain in this work may be sharp, and match the recent
upper bounds from [62].

We now describe the model and our results in a more precise
fashion. We refer to Section 3.2 for precise definitions. We consider
the continuous-time simple random walk on Z

d, d ≥ 3, and we denote
by P0 the (canonical) law of the walk starting from the origin. We
denote by V = Z

d\X[0,∞) the complement of the set of points visited
by the walk.

We consider K, a non-empty compact subset of Rd and for N ≥ 1
its discrete blow-up:

(3.1) KN =
{
x ∈ Z

d; d∞(x,NK) ≤ 1
}
,

where NK, a non-empty compact subset of R
d, stands for the set

homothetic to K with ratio N , and

(3.2) d∞(z,NK) = inf
y∈NK

|z − y|∞

stands for the sup-norm distance of z to NK. Of central interest for
us is the event specifying that KN is not connected to infinity in V ,
which we denote by

(3.3) {KN
V
=∞}.

Our main result brings into play the model of random interlace-
ments. Informally, random interlacements in Z

d are a Poissonian
cloud of doubly-infinite nearest-neighbour paths, with a positive pa-
rameter u, which is a multiplicative factor of the intensity of the
cloud (we refer to [13] and [23] for further details and references).
We denote by Iu the trace of random interlacements of level u on
Z
d, and by Vu = Z

d \ Iu the corresponding vacant set. It is known
that there is a critical value u∗∗ ∈ (0,∞), which can be characterized
as the infimum of the levels u > 0 for which the probability that the
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vacant cluster at the origin reaches distance N from the origin has a
stretched exponential decay in N ; see [53] or [23].

The main result of this article is the following asymptotic lower
bound, which confirms the conjecture proposed in Remark 5.1(2) of
[43].

Theorem 3.1.1.

(3.4) lim inf
N→∞

1

Nd−2
log
(
P0[KN

V
=∞]

)
≥ −u∗∗

d
cap

Rd(K),

where cap
Rd(K) stands for the Brownian capacity of K.

Actually, the proof of Theorem 3.1.1 (after minor changes) also
shows that for any M > 1,

(3.5) lim inf
N→∞

1

Nd−2
log
(
P0[BN

V
= SN ]

)
≥ −u∗∗

d
cap

Rd

(
[−1, 1]d

)
,

where BN = {x ∈ Z
d; |x|∞ ≤ N} and SN = {x ∈ Z

d; |x|∞ = [MN ]}
with [MN ] the integer part of MN ; see Remark 3.7.1.

On the other hand, the recent article [62] improves on [61], and
shows that for any M > 1, the following asymptotic upper bound
holds:

(3.6) lim sup
N→∞

1

Nd−2
log
(
P0[BN

V
= SN ]

)
≤ −u

d
cap

Rd

(
[−1, 1]d

)
,

where u is a certain critical level introduced in [62], such that 0 < u <
u corresponds to the strongly percolative regime of Vu. Precisely, one
knows that 0 < u ≤ u∗ ≤ u∗∗ < ∞, where u∗ stands for the critical
level for the percolation of Vu (the positivity of u, for all d ≥ 3,
actually stems from [24] as explained in Section 2 of [62]). It is
plausible, but unproven at the moment, that actually u = u∗ = u∗∗.
If this is the case, the asymptotic lower bound (3.5) from the present
article matches the asymptotic upper bound (3.6) from [62].

In the case of (3.4), one can also wonder whether one actually has
the following asymptotics (possibly with some regularity assumption
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on K)

(3.7) lim
N→∞

1

Nd−2
log
(
P0[KN

V
=∞]

)
= −u∗

d
cap

Rd(K).

Our proof of Theorem 3.1.1 [and of (3.5)] relies on the change of
probability method. The feature that the asymptotic lower bounds,
which we derive in this article, are potentially sharp, yields special
significance to the strategy that we employ to implement disconnec-
tion.

Let us give some comments about the strategy and the proof.
We construct through fine-tuned Radon–Nikodym derivatives new
measures P̃N , corresponding to the “tilted walks”. In essence, these
walks evolve as recurrent walks with generator

L̃g(x) =
1

2d

∑

|x′−x|=1

hN (x′)

hN (x)
(g(x′)− g(x)),

up to a deterministic time TN , and then as the simple random walk
afterward, with hN (x) = h( x

N ), where h is the solution of (assuming
that K is regular)

(3.8)

{
∆h = 0, on R

d \K,
h = 1, on K, and h tends to 0 at ∞,

and TN is chosen so that the expected time spent by the tilted walk
up to TN at any x in KN is u∗∗h

2
N (x) = u∗∗ (by the choice of h).

Informally, P̃N achieves this at a “low entropic cost”. Quite remark-
ably, this constraint on the time spent at points and low entropic
cost induces a local behaviour of the trace of the tilted walk which
geometrically behaves as random interlacements with a slowly space-
modulated parameter u∗∗h

2
N(x), at least close to KN . This creates

a “fence” around KN , where the vacant set left by the tilted walk is
locally in a strongly non-percolative mode, so that

(3.9) lim
N→∞

P̃N [KN
V
=∞] = 1.
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On the other hand, we show that

(3.10) l̃im
1

Nd−2
H(P̃N |P0) ≤

u∗∗
d

cap
Rd(K),

where l̃im refers to a certain limiting procedure, in which N goes
first to infinity, and H(P̃N |P0) stands for the relative entropy of P̃N

with respect to P0 [see (2.67)]. The main claim (3.4), or (3.5) then
quickly follow by a classical inequality; see (2.68).

The above lines are of course mainly heuristic, and the actual
proof involves several mollifications of the above strategy: K is
slightly enlarged, h is replaced by a compactly supported function
smoothed near K, we work with u∗∗(1 + ε) in place of u∗∗, and the
tilted walk lives in a ball of radius RN up to time TN , . . . . These
various mollifications naturally enter the limiting procedure alluded
to above in (3.10).

Clearly, a substantial part of this work is to make sense of the
above heuristics. Observe that unlike what happened in [43], where
an asymptotic lower bound was derived for the disconnection of a
macroscopic body by random interlacements, in the present set-up,
we only have one single trajectory at our disposal. So the tilted walk
behaves as a recurrent walk up to time TN in order to implement
disconnection. This makes the extraction of the necessary indepen-
dence implicit to comparison with random interlacements more deli-
cate. This is achieved by several sorts of analysis on the mesoscopic
level. More precisely, on all mesoscopic boxes Ax

1 with the center
x varying in a “fence” around KN , we bound from above the tilted
probability that there is a path in V that connects x to the (inner)
boundary of Ax

1 by the probability that there is such a path in the
vacant set of random interlacements with level slightly higher than
u∗∗ (which is itself small due to the strong non-percolative character
of Vu when u > u∗∗) and a correction term:
(3.11)

P̃N

[
x

V←→ ∂iA
x
1

]
≤ P

[
x

Vu∗∗(1+ε/8)

←→ ∂iA
x
1

]
+ e−c log2 N ≤ e−c′ log2 N ,

where P stands for the law of random interlacements, and ∂iA
x
1 for

the inner boundary of the box Ax
1 . To prove the above claim, we
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conduct a local comparison at mesoscopic scale between the trace of
the tilted walk, and the occupied set of random interlacements, with
a level slightly exceeding u∗∗, via a chain of couplings.

There are two crucial steps in this “chain of couplings”, namely
Propositions 3.6.2 and 3.6.7. In Proposition 3.6.2, we call upon the
estimates on hitting times proved in Section 3.4 and on the results
concerning the quasi-stationary measure from Section 3.5. We con-
struct a coupling between the trace in A1 of excursions of the confined
walk up to time TN , and the trace in A1 of the excursions of many
independent confined walks from A1 to the boundary of a larger
mesoscopic box. This proposition enables us to cut the confined
walk into “almost” independent sections, and compare it to the trace
of a suitable Poisson point process of excursions. On the other hand,
Proposition 3.6.7 uses a result proved in [7], coupling the above men-
tioned Poisson point process of excursions and the trace of random
interlacements. Some of the arguments used in this work are similar
to those in [64]. However, in our set-up, special care is needed due to
the fact that the stationary measure of the tilted walk is massively
non-uniform.

We will now explain how this article is organized. In Section 3.2,
we introduce notation and make a brief review of results concern-
ing continuous-time random walk, continuous-time random inter-
lacements, Markov chains, as well as other useful facts and tools.
Section 3.3 is devoted to the construction of the tilted random walk
and the confined walk, as well as the proof of various properties con-
cerning them. Most important are a lower bound of the spectral gap
of the confined walk in Proposition 3.3.12, and an asymptotic upper
bound on the relative entropy between the tilted walk and the simple
random walk, in Proposition 3.3.14. In Section 3.4, we prove some
estimates on the hitting times of some mesoscopic objects, namely
Propositions 3.4.5 and 3.4.7 that will be useful in Section 3.6. In Sec-
tion 3.5, we prove some controls (namely Proposition 3.5.7) on the
quasi-stationary measure that will be crucial for the construction of
couplings in Section 3.6. In Section 3.6, we develop the chain of cou-
plings and prove that the tilted disconnection probability P̃N [AN ]
tends to 1, as N tends to infinity. In the short Section 3.7, we as-
semble the various pieces and prove the main Theorem 3.1.1.
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Finally, we explain the convention we use concerning constants.
We denote by c, c′, c′′, c, . . . positive constants with values changing
from place to place. Throughout the article, the constants depend
on the dimension d. Dependence on additional constants is stated at
the beginning of each section.

3.2 Some useful facts

Throughout the article, we assume d ≥ 3 unless otherwise stated.
In this section, we will introduce further notation and recall useful
facts concerning continuous-time random walk on Z

d and its poten-
tial theory. We also recall the definition of and some results about
continuous-time random interlacements. At the end of the section,
we state an inequality on relative entropy and review various results
about Markov chains.

We start with some notation. We let Z
+ = {0, 1, . . .} stand for

the set of positive integers. We write | · | and | · |∞ for the Euclidean
and l∞-norms on R

d. We denote by B(x, r) = {y ∈ Z
d; |x − y| ≤ r}

the closed Euclidean ball of center x and radius r ≥ 0 intersected
with Z

d and by B∞(x, r) = {y ∈ Z
d, |x−y|∞ ≤ r} the closed l∞-ball

of center x and radius r intersected with Z
d. When U is a subset

of Z
d, we write |U | for the cardinality of U , and U ⊂⊂ Z

d means
that U is a finite subset of Zd. We denote by ∂U (resp., ∂iU) the
boundary (resp., internal boundary) of U , and by U its “closure”

∂U =
{
x ∈ U c; ∃y ∈ U, |x− y| = 1

}
,

(3.12)
∂iU =

{
y ∈ U ; ∃U c, |x− y| = 1

}
and U = U ∪ ∂U.

When U ⊂ R
d, and δ > 0, we write U δ = {z ∈ R

d; d(z, U) ≤ δ} for
the closed δ-neighbourhood of U , where d(x,A) = infy∈A |x−y| is the
Euclidean distance of x to A. We define d∞(x,A) in a similar fashion,
with |·|∞ in place of |·|. To distinguish balls in R

d from balls in Z
d, we

write BRd(x, r) = {z ∈ R
d; |x− z| ≤ r} for the closed Euclidean ball

of center x and radius r in R
d and B◦

Rd(x, r) = {z ∈ R
d; |x− z| < r}

for the corresponding open Euclidean ball. We also write the N -
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discrete blow-up of U ⊆ R
d as

(3.13) UN =
{
x ∈ Z

d; d∞(x,NU) ≤ 1
}
,

where we denote by NU = {Nz; z ∈ U} ⊂ R
d the set homothetic to

U with ratio N .
We will now collect some notation concerning connectivity prop-

erties. We write x ∼ y if for x, y ∈ Z
d, |x − y| = 1. We call

π : {1, . . . , n} → Z
d, with n ≥ 1, a nearest-neighbour path, when

π(i) ∼ π(i − 1) for 1 < i ≤ n. Given K,L,U subsets of Zd, we say

that K and L are connected by U and write K
U←→ L, if there exists

a finite nearest-neighbour path π in Z
d such that π(1) belongs to K

and π(n) belongs to L, and for all k ∈ {1, . . . , n}, π(k) belongs to
U . Otherwise, we say that K and L are not connected by U , and

write K
U
= L. Similarly, we say that K is connected to infinity by

U , if for K,U subsets of Zd, K
U←→ B(0, N)c for all N , and write

K
U←→ ∞. Otherwise, we say K is not connected to infinity by U ,

and write K
U
=∞.

We now turn to the definition of some path spaces and of the
continuous-time simple random walk. We consider Ŵ+ the spaces
of infinite (Zd) × (0,∞)-valued sequences such that the first coor-
dinate of the sequence forms an infinite nearest neighbour path in
Z
d, spending finite time in any finite set of Zd, and the sequence of

the second coordinate has an infinite sum. The second coordinate
describes the duration at each step corresponding to the first coor-
dinate. We denote by Ŵ+ the respective σ-algebra generated by the
coordinate maps, Zn, ζn, n ≥ 0 [where Zn is Z

d-valued and ζn is

(0,∞)-valued]. We denote by Px the law on Ŵ+ under which Zn,
n ≥ 0, has the law of the simple random walk on Z

d, starting from
x, and ζn, n ≥ 0, are i.i.d. exponential variables with parameter
1, independent from Zn, n ≥ 0. We denote by Ex the correspond-
ing expectation. Moreover, if α is a measure on Z

d, we denote by
Pα and Eα the measure

∑
x∈Zd α(x)Px (not necessarily a probability

measure) and its corresponding “expectation” (i.e., the integral with
respect to the measure Pα).

We attach to ŵ ∈ Ŵ+ a continuous-time process (Xt)t≥0 and
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call it the random walk on Z
d with constant jump rate 1 under Px,

through the following relations:

(3.14) Xt(ŵ) = Zk(ŵ) for t ≥ 0, when τk ≤ t < τk+1,

where for l in Z
+, we set (if l = 0, the right sum term is understood

as 0),

(3.15) τl =

l−1∑

i=0

ζi.

We also introduce the filtration

(3.16) Ft = σ(Xs, s ≤ t).

For I a Borel subset of R
+, we record the set of points visited by

(Xt)t≥0 during the time set I as XI . Importantly, we denote by V
the vacant set, namely the complement of the entire trace X[0,∞) of
X .

Given a subset U of Zd, and ŵ ∈ Ŵ+, we write HU (ŵ) = inf{t ≥
0;Xt(ŵ) ∈ U} and TU = inf{t ≥ 0;Xt(ŵ) /∈ U} for the entrance

time in U and exit time from U . Moreover, we write H̃U = inf{s ≥
ζ1;Xs ∈ U} for the hitting time of U . If U = {x}, we then write Hx,

Tx and H̃x.
Given a subset U of Z

d, we write Γ(U) for the space of all
right-continuous, piecewise constant functions from [0,∞) to U , with
finitely many jumps on any compact interval. We will also denote
by (Xt)t≥0 the canonical coordinate process on Γ(U), and when an
ambiguity arises, we will specify on which space we are working. For
γ ∈ Γ(U), we denote by Range(γ) the trace of γ.

Now, we recall some facts concerning equilibrium measure and
capacity, and refer to Section 2, Chapter 2 of [38] for more details.
Given M ⊂⊂ Z

d, we write eM for the equilibrium measure of M :

(3.17) eM (x) = Px[H̃M =∞]1M (x), x ∈ Z
d,



124 3.2 Some useful facts

and cap(M) for the capacity of M , which is the total mass of eM :

(3.18) cap(M) =
∑

x∈M

eM (x).

We denote the normalized equilibrium measure of M by

(3.19) ẽM (x) =
eM (x)

cap(M)
.

There is also an equivalent definition of capacity through the Dirich-
let form:

(3.20) cap(M) = inf
f
EZd(f, f),

where f : Zd → R is finitely supported and f ≥ 1 on M , and

(3.21) EZd(f, f) =
1

2

∑

|x−y|=1

1

2d

(
f(y)− f(x)

)2

is the discrete Dirichlet form for simple random walk.
It is well known that (see, e.g., Section 2.2, pages 52–55 of [38])

(3.22) cNd−2 ≤ cap
(
B∞(0, N)

)
≤ c′Nd−2,

and that

(3.23) eB∞(0,N)(x) ≥ c1N−1

for x on the inner boundary of B∞(0, N).
Now, we turn to random interlacements. We refer to [13, 23, 56]

and [59] for more details. Random interlacements are random subsets
of Z

d, governed by a non-negative parameter u (referred to as the
“level”), and denoted by Iu. We write P for the law of Iu. Although
the construction of random interlacements is involved, the law of Iu
can be simply characterized by the following relation:

(3.24) P
[
Iu ∩K = ∅

]
= e−ucap(K) for all K ⊂⊂ Z

d.
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We denote by Vu = Z
d \ Iu the vacant set of random interlacements

at level u.
The connectivity function of the vacant set of random interlace-

ments is known to have a stretched-exponential decay when the level
exceeds a certain critical value (see Theorem 4.1 of [58], Theorem 0.1
of [53], or Theorem 3.1 of [46] for recent developments). Namely,
there exists a u∗∗ ∈ (0,∞) which, for our purpose in this article, can
be characterized as the smallest positive number such that for all
u > u∗∗,

(3.25) P
[
0

Vu

←→ ∂B∞(0, N)
]
≤ c(u)e−c′(u)Nc′(u)

for all N ≥ 0,

(actually, the exponent of N can be chosen as 1, when d ≥ 4, and as
an arbitrary number in (0, 1) when d = 3, see [46]).

We also wish to recall a classical result about relative entropy,
which is helpful in Section 3.3. For P̃ absolutely continuous with
respect to P , the relative entropy of P̃ with respect to P is defined
as

(3.26) H(P̃ |P ) = EP̃

[
log

dP̃

dP

]
= EP

[
dP̃

dP
log

dP̃

dP

]
∈ [0,∞].

For an event A with positive P̃ -probability, we have the following
inequality (see page 76 of [22]):

(3.27) P [A] ≥ P̃ [A]e−(H(P̃ |P )+1/e)/P̃ [A].

We end this section with some results regarding continuous-time
reversible finite Markov chains.

Let L be the generator for an irreducible, reversible continuous-
time Markov chain on a finite set V , with jump rates at each state
possibly non-constant. Let π be the stationary measure of this
Markov chain. Then −L is self-adjoint in l2(π) and has non-negative
eigenvalues 0 = λ1 < λ2 ≤ · · · ≤ λ|V |. We denote by λ = λ2 its
spectral gap. For any real function f on V , we define its variance
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with respect to π as Varπ(f). Then the semigroup Ht = etL satisfies

(3.28)
∥∥Htf − π(f)

∥∥
2
≤ e−λt

√
Varπ(f).

One can further show that, for all x and y in V ,

(3.29)
∣∣Px(Xt = y)− π(y)

∣∣ ≤
√
π(y)

π(x)
e−λt,

see pages 326–328 of [51] for more detail.
We also introduce the so-called “canonical path method” to give

a lower bound on the spectral gap λ. We denote by E the edge set

(3.30)
{
{x, y};x, y ∈ V, Lx,y > 0

}
,

where Lx,y is the matrix coefficient of L. We investigate the following
quantity A

(3.31) A = max
e∈E

{
1

W (e)

∑

x,y,γ(x,y)∋e

leng
(
γ(x, y)

)
π(x)π(y)

}
,

where γ is a map, which sends ordered pairs of vertices (x, y) ∈ V ×V
to a finite path γ(x, y) between x and y, leng(γ) denotes the length
of γ, and
(3.32)

W (e) = π(x)Lx,y = π(y)Ly,x = (1x, L1y)l2(π) = (L1x, 1y)l2(π)

is the edge-weight of e = {x, y} ∈ E. Then the proof of Theo-
rem 3.2.1, page 369 of [51] is also valid (note that actually e in [51]
is an oriented edge) in the present set-up of possibly non-constant
jump rates and shows that

(3.33) λ ≥ 1

A
.
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3.3 The tilted random walk

In this section, we construct the main protagonists of this work: a
time non-homogenous Markov chain on Z

d, which we will refer to
as the tilted walk, as well as a continuous-time homogenous Markov
chain on a (macroscopic) finite subset of Zd, which we will refer to as
the confined walk. The tilted walk coincides with the confined walk
up to a certain finite time, which is of order Nd, and then evolves as
a simple random walk. We derive a lower bound on the spectral gap
of the confined walk in Proposition 3.3.12. In Proposition 3.3.14, we
prove that with a suitable limiting procedure, the relative entropy
between the tilted random walk and the simple random walk has an
asymptotic upper bound given by a quantity involving the Brownian
capacity of K that appears in Theorem 3.1.1. In this section, the
constants tacitly depend on δ, η, ε and R [see (3.35) and (3.36)].

We recall that K is a compact subset of Rd as above (3.1). We
assume, without loss of generality, that

(3.34) 0 ∈ K.

Otherwise, as we now explain, we can replace K by K̃ = K ∪ {0}:
on the one hand, by the monotonicity and sub-additivity of Brow-
nian capacity (see, e.g., Proposition 1.12, page 60 of [47]), one has

cap
Rd(K) = cap

Rd(K̃); on the other hand, since K ⊆ K̃, it is more

difficult to disconnect K̃N than to disconnect KN , hence P0[KN
V
=

∞] ≥ P0[K̃N
V
= ∞]. This means that the lower bound (3.4) with

K replaced by K̃ implies (3.4), justifying our claim. From now on,
for the sake of simplicity, for any r > 0 we write B(r) for the open
ball B◦

Rd(0, r) and Br for the closed ball BRd(0, r). We introduce the
three parameters

(3.35) 0 < δ, η, ε < 1,

where δ will be used as a smoothing radius for K, see (3.37), η

will be used as a parameter in the construction of h̃, the smoothed
potential function [see (3.39)] and ε will be used as a parameter in
the definition of TN , the time length of “tilting”; see (3.48). We let
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R > 400 be a large integer (see Remark 3.3.4 for explanations on
why we take R to be an integer) such that

(3.36) K ⊂ BR/100.

By definition of R, we always have

(3.37) K2δ ⊂ BR/50.

In the next lemma, we show the existence of a function h̃ that
satisfies various properties (among which the most important is an
inequality relating its Dirichlet form to the relative Brownian capac-
ity of K2δ), which, as we will later show, make it the right candidate
for the main ingredient in the construction of the tilted walk.

We denote by ERd(f, f) = 1
2

∫
Rd |∇f(x)|2 dx for f ∈ H1(Rd) the

usual Dirichlet form on R
d (see Example 4.2.1, page 167 and (1.2.12),

page 11 of [30]). For F and G, respectively, closed and open subsets
of Rd such that F ⊂ G, we define the relative Brownian capacity of
F with respect to G by

(3.38) cap
Rd,G(F ) = inf

{
ERd(f, f)

}
,

where the infimum runs over all f ∈ H1(Rd) which are supported
in G and satisfy that f ≥ 1 on F . We write C∞(BR) for the set
of functions having all derivatives of every order continuous in B(R),
which all have continuous extensions to BR (see page 10 of [31] for
more details).

Lemma 3.3.1. There exists a continuous function h̃ : R
d → R,
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satisfying the following properties:





1. h̃ is a C∞(BR) function when restricted

to BR, and harmonic on B(R) \BR/2;

2. 0 ≤ h̃(z) ≤ 1 for all z ∈ R
d, h̃ = 1 on K2δ,

and h̃(z) = 0 outside B(R);

3. ERd(h̃, h̃) ≤ (1 + η)2cap
Rd,B(R)

(K2δ);

4. cw1 ≤ h̃ ≤ c′w2 where w1, w2 are defined

respectively in (3.43) and (3.44);

5. h̃(z1) ≥ ch̃(z2) for all z1, z2 ∈ R
d

such that |z1| ≤ |z2| ≤ R.

(3.39)

Proof. We now construct h̃. We define, with δ as in (3.35),

(3.40) h(z) =Wz [HK2δ < TB(R)
] ∀z ∈ R

d,

the Brownian relative equilibrium potential function, whereWz stands
for the Wiener measure starting from z ∈ R

d, and HK2δ and TB(R)
,

respectively, stand for the entrance time of the canonical Brownian
motion in K2δ and its exit time from B(R).

We let ψ : R → R be a smooth, non-decreasing and concave
function such that 0 ≤ (ψ)′(z) ≤ 1 for all z ∈ R, ψ(z) = z for
z ∈ (−∞, 12 ], and ψ(z) = 1 for z ∈ [1 + η

2 ,∞). We consider

(3.41) h̃ = ψ ◦
(
(1 + η)h

)
.

Now we prove the claims.
We first prove claim 1 in (3.39). It is classical that h is C∞ on

B(R) \K2δ. In addition, h is continuous, equal to 1 on K2δ and to

0 outside B(R) (note that every point in K2δ is regular for K2δ). In

particular, (1 + η)h ≥ 1 + η/2 on an open neighbourhood of K2δ,

which implies that h̃ is identically equal to 1 on this neighbourhood.
It follows that h̃ is C∞ on B(R). Now we show that h̃ is C∞ on
BR. To prove this, it suffices to prove that h is C∞ on BR \ BR−c
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for some c > 0, where h coincides with h̃. We then represent h as
GB(R)µ, where we denote by GB(R) and µ, respectively, the killed
Green function for B(R) and the (Brownian) equilibrium measure of

K2δ relative to B(R). Since µ is supported on K2δ and GB(R)(x, y)

is C∞ for all x ∈ BR \B(R−c) and y ∈ K2δ ⊂ BR/50 [by the explicit
formula of the killed Green function for a ball (see, e.g., (41) in
Section 2.2, page 40 of [28])], we know that h is C∞ on BR \BR−c,

which implies that h̃ is C∞ on BR. This completes the proof of claim
1.

Claim 2 follows directly from the definition of h̃: for all z ∈ R
d,

(1 + η)h(z) ∈ [0, 1 + η], hence by the definition of ψ, h̃(z) ∈ [0, 1];

h̃ = 1 on K2δ is already shown in claim 1 of (3.39); moreover, by

(3.40), outside B(R), h = 0, hence h̃ = 0.
We now prove claim 3. By (E .4)′′, page 5 of [30], an equivalent

characterization of Markovian Dirichlet form, one knows that since
ψ is a normal contraction,

ERd(h̃, h̃) ≤ ERd

(
(1 + η)h, (1 + η)h

)
= (1 + η)2ERd(h, h)

= (1 + η)2cap
Rd,B(R)

(
K2δ

)
,

where the last equality follows from [30], pages 152 and 71.
We now turn to claim 4. Because Bδ ⊂ K2δ ⊂ BR/50 by (3.34),

we know that

(3.42) w1 ≤ h ≤ w2 on BR,

where
(3.43)

w1(z) =Wz[HBδ
< TB(R)

] =





1, |z| ∈ [0, δ),

|z|2−d −R2−d

δ2−d −R2−d
, |z| ∈ [δ, R),

0, |z| ∈ [R,∞)
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and

w2(z) = Wz[HBR/50
< TB(R)

]
(3.44)

=





1, |z| ∈ [0, R/50),

|z|2−d −R2−d

(R/50)2−d −R2−d
, |z| ∈ [R/50, R),

0, |z| ∈ [R,∞)

are respectively the Brownian relative equilibrium potential functions
of Bδ and BR/50 (see (4) in Section 1.7, page 29 of [25] for the explicit
formula of w1 and w2). By the definition of ψ, we also know that,

cr ≤ ψ(r) ≤ c′r for 0 ≤ r ≤ 1 + η. Hence by the definition of h̃, we
find that

(3.45) c̃w1

(3.42)

≤ ch ≤ h̃ ≤ c′h
(3.42)

≤ c̃′w2.

Claim 4 hence follows.
Finally, claim 5 follows by claim 4 and the observation from the

explicit formula of w1 and w2 that w1 ≥ cw2 uniformly for some
positive c on BR and both w1 and w2 are radially symmetric and
radially non-increasing:

h̃(z1) ≥ cw1(z1) ≥ c′w2(z1) ≥ c′w2(z2) ≥ c′′h̃(z2)
for z1, z2 s.t. |z1| ≤ |z2| ≤ R.(3.46)

We then introduce the restriction to Z
d of the blow-up of h̃ and

its l2(Zd)-normalization as

(3.47) hN(x) = h̃

(
x

N

)
for x ∈ Z

d and f(x) =
hN (x)

‖hN‖2
,

and also set [see (3.35) for the definition of ε]

(3.48) TN = u∗∗(1 + ε)‖hN‖22,
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[recall that u∗∗ is the threshold of random interlacements defined
above (3.25)]. We define TN in a way such that the quantity TNf

2

is bigger than u∗∗ on Kδ
N , which, roughly speaking, makes the occu-

pational time profile of the tilted random walk (which we will later
define) at time TN on Kδ

N bigger than that of the random interlace-
ment with intensity u∗∗. We also set

(3.49) UN = B(NR) ∩ Z
d.

This will be the state space of the confined random walk that we will
later define.

In the following lemma, we record some basic properties of f .
Intuitively speaking, f is a volcano-shaped function, with maximal
value on Kδ

N that vanishes outside UN . Note that f tacitly depends
on δ, η and R.

Lemma 3.3.2. For large N , one has

(3.50)





1. f is supported on UN and f > 0 on UN ;

2. f2 is a probability measure on Z
d supported on UN ;

3. TNf
2(·) = u∗∗(1 + ε) on Kδ

N .

Proof. Claims 1 and 2 follow by the definition of f [see (3.47)] and
UN [see (3.49)], note that by (3.49) x ∈ UN implies x

N belongs to
the open ball B(R). Claim 3 follows from the definition of TN [see

(3.48)] and the fact that hN = 1 on Kδ
N for large N .

We introduce a subset of UN (which will be used in Lemma 3.3.11)

ON =
{
UN \

(
∂iU

N ∪BNR/2

)}
(3.51) ∪

{
x ∈ ∂iUN ; |y| = NR for all y ∼ x, y /∈ UN

}

(note that both N and R are integers). Intuitively speaking, ON

denotes the set of points in UN which have distance at least NR/2
from 0 such that all their neighbours outside UN (if there exists
any) are on the sphere ∂BNR. In the next lemma we collect some
properties of hN and TN for later use, in particular in the proofs of
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Lemmas 3.3.10, 3.3.11 and Propositions 3.3.13, 3.3.14.

Lemma 3.3.3. For large N , one has

(3.52)





1. cN−2 ≤ hN (x) ≤ 1 for all x ∈ UN ;

2. hN (x) ≤ cN−1 for all x ∈ ∂iUN ;

3. hN (x) ≥ c′N−1 for all x ∈ ON ;

4. c′Nd ≤ ‖hN‖22 ≤ c′′Nd;

5. cNd ≤ TN ≤ c′Nd.

Proof. We first prove claim 1. The right-hand side inequality follows
by the definition of hN [see (3.47)] and h̃ [see (3.41)]. We now turn
to the left-hand side inequality of claim 1. For all x ∈ UN , one has
|x|2 < (NR)2 by the definition of UN [see (3.49)]. Since x has integer
coordinates, this implies |x| ≤

√
(NR)2 − 1, hence for all x ∈ UN ,

(3.53) |x| ≤ NR− cN−1.

Thus, by claim 4 of (3.39) and (3.43) one has

(3.54) h̃(z) ≥ c′N−2 for all |z| ≤ R− c

N2
.

This implies that for large N , for all x ∈ UN ,

(3.55) hN (x) = h̃

(
x

N

)
≥ c′′N−2.

Similarly, to prove claims 2, and 3, again by claim 4 of (3.39) and
respectively (3.44) and (3.43), it suffices to prove that

(3.56) |x| ≥ NR− 1 ∀x ∈ ∂iUN

and that

(3.57) |x| ≤ NR− c′ ∀x ∈ ON .

To prove (3.56), we observe that, if x ∈ ∂iUN , there exists y /∈ UN ,
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such that x ∼ y. Since |y| ≥ NR and |x − y| = 1, the claim (3.56)
follows by triangle inequality. Now we prove (3.57). We consider
x = (a1, . . . , ad) ∈ ON . By definition of ON [see (3.51)], a21 + · · · +
a2d ≥ c(NR)2, hence without loss of generality, we assume that |a1| ≥
cNR. By the definition of ON , we also know that (|a1| + 1)2 +
a22 + · · · + a2d ≤ (NR)2, which implies that |x| =

√
a21 + · · ·+ a2d ≤

NR(1− c′/N)1/2 ≤ NR− c′′, and hence (3.57).
Claim 4 follows by the observation that by claim 2 of (3.39), on

the one hand hN ≤ 1 on Z
d and hN is supported on UN , and on the

other hand hN = 1 on (NKδ) ∩ Z
d.

Claim 5 follows as a consequence of claim 4 and the definition of
TN ; see (3.48).

Remark 3.3.4. With Lemma 3.3.3 we reveal the reason for choosing
R to be an integer: because we wish that the lattice points are not
too close to the boundary of BNR [see (3.53)]. This enables us to
show, for example, that hN is not too small on UN , as in claim 1 of
(3.52).

Now, we introduce a non-negative martingale that plays an im-
portant role in our construction of the tilted random walk. Given a
real-valued function g on Z

d, we denote its discrete Laplacian by

(3.58) ∆disg(x) =
1

2d

∑

|e|=1

g(x+ e)− g(x).

For the finitely supported non-negative f defined in (3.47), for all x
in UN , we introduce under the measure Px the stochastic process

(3.59) Mt =
f(Xt∧T

UN
)

f(x)
e
∫ t∧T

UN
0 v(Xs) ds, t ≥ 0, Px-a.s.,

where

(3.60) v = −∆disf

f
.

We define for all T ≥ 0, a non-negative measure P̂x,T (on Ŵ+) with
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density MT with respect to Px,

(3.61) P̂x,T =MTPx.

In the next lemma, we show that P̂x,T is the law of a Markov
chain and identify its infinitesimal generator.

Lemma 3.3.5. For all x ∈ UN , one has

P̂x,T is the probability measure for a

Markov chain up to time T on UN .
(3.62)

Its semi-group (acting on the finite dimensional space of functions
on UN ) admits a generator given by the bounded operator:

(3.63) L̃g(x) =
1

2d

∑

y∈UN ,y∼x

f(y)

f(x)

(
g(y)− g(x)

)
.

Proof. To prove the claims (3.62) and (3.63), we first prove that

(3.64) Mt is an (Ft)-martingale under Px.

For ζ ∈ (0, 1), we define f (ζ) = f + ζ and v(ζ) = −∆disf
(ζ)

f(ζ) = −∆disf
f(ζ) .

We denote by M
(ζ)
t , t ≥ 0, the stochastic process similarly defined

as Mt in (3.59) by

(3.65) M
(ζ)
t =

f (ζ)(Xt∧T
UN

)

f (ζ)(x)
e
∫ t∧T

UN
0 v(ζ)(Xs) ds t ≥ 0, Px-a.s.

By Lemma 3.2 in Chapter 4, page 174 of [27], M
(ζ)
t is an (Ft)-

martingale under Px. Since N is fixed, f (ζ) is uniformly for ζ ∈
(0, 1) bounded from above and below on UN , v(ζ) is uniformly in ζ

bounded on UN as well. Hence, for all t ≥ 0, M
(ζ)
t is bounded above

uniformly for all ζ ∈ (0, 1). Therefore, the claim (3.64) follows from
the dominated convergence theorem since for all x ∈ UN , Px-a.s.,
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limζ→0M
(ζ)
t =Mt. To prove the claim (3.62), we just note that

(3.66) Ex[MT ] =M0 = 1.

Moreover, for all x in UN by claim 1 of (3.50)

(3.67) f(XT
UN

) = 0,

thus P̂x,T vanishes on all paths which exit UN before T . Then the
claim (3.63) follows by Theorem 2.5, page 61 of [21].

Remark 3.3.6. When we apply the lemma from [27] mentioned in
the proof above, we need that inf

x∈UN f(x) > 0. However, by claim

1 of (3.50), we know that f(x) = 0 for all x ∈ ∂UN . To cope with
this problem, we introduce a perturbation term ζ, and apply the
lemma to the perturbated objects instead of the original ones.

We then denote the law of the “tilted random walk” by

(3.68) P̃N = P̂0,TN .

Remark 3.3.7. Intuitively speaking, P̃N is the law of a tilted ran-
dom walk, which restrains itself up to time TN from exiting UN

and then, after the deterministic time TN , continues as the simple
random walk. It is absolutely continuous with respect to P0.

It is convenient for us to define {Px}x∈UN , a family of finite-

space Markov chains on UN , with generator L̃ defined in (3.63). We
will call this Markov chain “the confined walk”, since it is supported
on Γ(UN ) [see below (3.16) for the definition]. We will also tacitly
regard it as a Markov chain on Z

d, when no ambiguity rises. We
denote by Ex the expectation with respect to P x, for all x ∈ UN .

Thus, the following corollary is immediate.

Corollary 3.3.8.

(3.69) Up to time TN , P̃N coincides with P 0.

Proof. It suffices to identify the finite time marginals of the two
measures with the help of the Markov property and (3.63).
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Remark 3.3.9. Since the confined walk is time-homogenous, in Sec-
tions 3.4, 3.5 and 3.6 we will actually perform the analysis on the
confined walk instead of the tilted walk, and transfer the result con-
cerning the time period [0, TN) back to the tilted walk thanks to the
above corollary. See, for instance, (3.251).

We now state and prove some basic estimates about the confined
walk.

Lemma 3.3.10. One has
(3.70)



1. The measure π(x) = f2(x), x ∈ UN , is a reversible

measure for the (irreducible) confined walk {Px}x∈UN ;

2. The Dirichlet form associated with {Px}x∈UN and π is

E(g, g) = (−L̃g, g)l2(π) = 1
2

∑
x,y∈UN ,x∼y

f(x)f(y)
2d (g(x)− g(y))2

with g : UN → R
+;

3. If x, y ∈ UN , |x| ≤ |y|, then one has hN (x) ≥ chN(y)

and π(x) ≥ c′π(y);
4. For all x ∈ UN , cN−d−4 ≤ π(x) = f2(x) ≤ c′N−d.

Proof. Claim 1 follows from claims 1 and 2 of (3.50) and the obser-

vation that by (3.63) L̃ is self-adjoint in l2(π). Claim 2 follows from
claim 1 and (3.63). Claim 3 follows from (3.47) and claim 5 of (3.39).
Claim 4 follows from claims 1 and 4 of (3.52) and the definition of f
[see (3.47)].

In the next lemma, we control the fluctuation of v with a rough
lower bound and a more refined upper bound.

Lemma 3.3.11. One has [recall v is defined in (3.60)], for all x in
UN ,

(3.71) −cN2 ≤ v(x) ≤ c′N−2.
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Proof. We first record an identity for later use:

(3.72) v(x)
(3.60)
= −∆disf(x)

f(x)

(3.47)
= −∆dishN(x)

hN (x)
.

The inequality on the left-hand side of (3.71) is very rough and fol-
lows from

(3.73) v
(3.72)

≥
hN≥0

−maxx∈UN hN (x)

minx∈UN hN (x)

(3.52)1.

≥ −cN2.

Next, we prove the inequality on the right-hand side of (3.71). We
split UN into three parts and call them by IN , ON and SN , respec-
tively. Before we go into detail, we describe roughly the division, and
what it entails. The region IN = BNR/2 ∩ Z

d is the “inner part” of
UN ; the region ON that already appears in (3.51) is the “outer part”
of UN that does not feel the push of the “hard” boundary, that is, all
neighbours of its points belong to BNR; the region SN = ∂iU

N \ON

is a subset of the inner boundary of UN , where all points have a
least one neighbour outside BNR ∩Zd, and thus “feel the hard push”
from outside UN . As we will later see, in the microscopic region that
corresponds to IN , h̃ is a smooth function; in the region ON , hN is
at least of order N−1 and |∆dishN | is at most of order N−3; in the
region SN , one has ∆dishN > 0.

We first record an estimate. Using a Taylor formula at second
order with Lagrange remainder (see Theorem 5.16, pages 110–111 of
[50]), since for all x ∈ UN \ SN , all y adjacent to x belongs to BNR,
we know from (3.47) that
(3.74)

∆dishN(x) ≥ 1

N2

(
1

2d
∆h̃

(
x

N

)
− cN−1

)
for all x ∈ UN \ SN .

We first treat points in IN = BNR/2 ∩ Z
d. On BR/2, we know

that h̃ ≥ c and h̃ is C∞ by claim 1 of (3.39). We thus obtain that
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for all x in IN ,

(3.75) −∆dishN(x)

hN (x)

(3.47)

≤
(3.74)

−∆h̃( x
N )− cN−1

h̃( x
N )N2

≤ cN−2.

We then recall that ON = {UN \ (∂iUN ∪ BNR/2)} ∪ {x ∈
∂iU

N ; |y| = NR for all y ∼ x, y /∈ UN}, as defined in (3.51). By

claim 1 of (3.39), we know that for all x ∈ ON , ∆h̃( x
N ) = 0. Hence,

we find that

v(x)
(3.74)

≤ −∆h̃(x/N)− cN−1

hN (x)N2

(3.52)3.

≤ cN−1

c′N−1 ·N2
= c′′N−2

(3.76)
for all x ∈ ON .

We finally treat points in SN = ∂iU
N \ ON . By Lemma 6.37,

page 136 of [31], h̃ can be extended to a C3 function w on B(R+1)

such that w = h̃ in BR and all the derivatives of w up to order three
are uniformly bounded in B(R+1). Hence, we have for all x ∈ SN ,

−∆dishN (x) =

(
w

(
x

N

)
− 1

2d

∑

y∼x

w

(
y

N

))

(3.77)

+
1

2d

∑

y∼x,y/∈UN

(
w

(
y

N

)
− h̃
(
y

N

))
= I + II.

On the one hand, by a second-order Taylor expansion with Lagrange
remainder, and since ∆w = 0 in BR \BR/2, we have

(3.78) I ≤ 1

N2

(
1

2d
∆w

(
x

N

)
+

c

N

)
=

c′

N3
for x ∈ SN .

On the other hand, we know that by claim 2 of (3.39)

(3.79) h̃

(
y

N

)
= 0 for all y /∈ UN .

Moreover, by definition of SN , there exists a point y in Z
d, adjacent



140 3.3 The tilted random walk

to x, such that NR < |y| ≤ NR+ 1. This implies that

(NR + 1)2 ≥ |y|2 ≥ (NR)2 + 1 and hence
(3.80)

R+
1

N
≥ |y|

N
≥ R+ c′N−2.

By claim 4 of (3.39), since h̃ is bounded from above and below by
two functions having (constant) negative outer normal derivatives on
∂BR, we find that

(3.81)
∂h̃

∂n
(z) < −c uniformly for all z ∈ ∂BR,

where ∂h̃
∂n denotes the outer normal derivative of h̃. Thus, we find

that for large N ,

(3.82) w

(
y

N

)
≤ −cN−2.

This implies that

(3.83) II
(3.79)
=

1

2d

∑

y∼x,y/∈UN

w

(
y

N

)
≤ −c′′N−2.

Combining (3.78) and (3.83), it follows that for large N and all x ∈
SN ,

(3.84) v(x)
(3.72)
= −∆dishN (x)

hN(x)

(3.77),(3.78)

≤
(3.83)

cN−3 − c′′N−2

hN (x)
< 0.

Since IN , ON and SN form a partition of UN , the inequality in
the right-hand side of (3.71) follows by collecting (3.75), (3.76) and
(3.84).

We will now derive a lower bound for the spectral gap of the
confined walk, which we denote by λ. We use the method introduced
at the end of Section 3.2 and derive an upper bound for the quantity
A [recall that A is defined in (3.31)]. However, we first need to specify
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our choice of paths γ. For x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ UN ,
we assume, without loss of generality, that for some l ∈ {0, . . . , d}
we have

(3.85)

{
|xi| ≥ |yi|, for i=1,. . . ,l

|xi| < |yi|, for i=l+1, . . . ,d,

(l = 0 means that |xi| < |yi| for all i = 1, . . . , d, and l = d means
that |xi| ≥ |yi| for all i = 1, . . . , d). For p, q ∈ Z

d, which differ only
in one coordinate, we denote by β(p, q) the straight (and shortest)
path between them. Then γ(x, y) is defined as follows:

γ(x, y) = the concatenation of the paths

β
(
(y1, . . . , yi−1, xi, . . . , xd), (y1, . . . , yi, xi+1, . . . , xd)

)
(3.86)

as i goes from 1 to d.

Loosely speaking, γ(x, y) successively “adjusts” each coordinate of
x with the corresponding coordinate of y by first “decreasing” the
coordinates where |xi| is bigger or equal to |yi| and then “increasing”
the coordinates where |yi| is bigger than |xi|. It is easy to check that
this path lies entirely in UN , since by (3.85), for all {p, q} ∈ γ(x, y),
one has

(3.87) max
(
|p|, |q|

)
≤ max

(
|x|, |y|

)
.

Proposition 3.3.12. One has

(3.88) λ ≥ cN−2.

Proof. Recall that the quantity

A = max
e∈E

{
1

W (e)

∑

x,y,γ(x,y)∋e

leng
(
γ(x, y)

)
π(x)π(y)

}

is defined in (3.31). By (3.33), to prove (3.88), it suffices to prove
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that

(3.89) A ≤ c′N2.

On the one hand, by (3.87) and claim 3 of (3.70) one obtains that
for all {p, q} ∈ γ(x, y),

(3.90) min
(
π(p), π(q)

)
≥ cmin

(
π(x), π(y)

)
.

This implies that for all {p, q} ∈ γ(x, y)

W
(
{p, q}

) (3.63)
=

(3.32)
π(p)

f(q)

2df(p)

(3.70)1.
=

1

2d
f(p)f(q)

(3.91)
(3.90)
=

1

2d

√
π(p)π(q) ≥ c′ min

(
π(x), π(y)

)
.

On the other hand, for any x, y ∈ UN , one has

(3.92) leng
(
γ(x, y)

)
≤ cN.

Now we estimate the maximal possible number of paths that could
pass through a certain edge. We claim that, for any edge e ∈ EN ,
where we denote by EN the edge set of UN consisting of unordered
pairs of neighbouring vertices in UN :

(3.93) EN =
{
{x, y};x, y ∈ UN , |x− y| = 1

}
,

there are at most cNd+1 paths passing through e. We now prove
the claim. To fix a pair of {x, y} such that e = {(a1, . . . , ak, . . . , ad),
(a1, . . . , ak + 1, . . . , ad)} belongs to γ(x, y), where k ∈ {1, . . . , d},
there are 2d coordinates to be chosen. Actually, for i = 1, . . . , k −
1, k + 1, . . . , d the ith coordinate of either x or y must be ai. This
leaves us at most 2d−1 ways of choosing (d − 1) coordinates of x
and y to be fixed by a1, . . . , ak−1, ak+1, . . . , ad. For the other (d+1)
coordinates, we have no more than cN choices for each of them, since
both x and y must lie in UN . This implies that there are no more
that c′Nd+1 pairs of {x, y} ⊂ UN , such that e ∈ γ(x, y) is possible.

Combining the argument in the paragraph above with (3.91) and
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(3.92), one has

A
(3.31)
= max

e∈EN

1

W (e)

∑

x,y,γ(x,y)∋e

leng
(
γ(x, y)

)
π(x)π(y)

(3.91)

≤
(3.92)

max
e∈EN

∑

x,y,γ(x,y)∋e

c′N ·max
(
π(x), π(y)

)
(3.94)

(3.70)4.

≤ c′′Nd+1 ·N ·N−d = c′′N2.

This proves (3.89), and hence (3.88).

We then define for {Px}x∈UN the regeneration time

(3.95) t∗ = N2 log2N.

In view of above proposition, t∗ is much larger than the relaxation
time 1/λ, which is of orderO(N2). Hence, for all x in UN , Px[Xt = ·]
becomes very close to the stationary distribution π, when t ≥ t∗.
More precisely, by (3.29) and (3.88)

sup
x,y∈UN

∣∣Px[Xt = y]− π(y)
∣∣ ≤ sup

x,y∈UN

√
π(y)

π(x)
e−λt

(3.96)
(3.70)4.

≤
(3.88),(3.95)

e−c log2 N ∀t ≥ t∗.

We now relate the relative entropy between P̃N (which tacitly
depends on R, η, δ and ε) and P0 to the Dirichlet form of hN and
derive an asymptotic upper bound for it by successively letting N →
∞, η → 0, R → ∞, δ → 0 and ε → 0 in the following Propositions
3.3.13 and 3.3.14. The Brownian capacity of K will appear as the
limit in the above sense of the properly scaled Dirichlet form of hN .

Proposition 3.3.13. One has

(3.97) H(P̃N |P0) ≤ u∗∗(1 + ε)EZd(hN , hN ) + o
(
Nd−2

)
.
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Proof. By definition of the relative entropy [see (3.26)], we have

H(P̃N |P0)
(3.26)
= EP̃N

[
log

dP̃N

dP0

]
(3.61)
=

(3.68)
EP̃N [logMTN ]

(3.69)
= E0[logMTN ]

(3.59)
= E0

[∫ TN

0

v(Xs) ds+ log f(XTN )− log f(X0)

]

= E0

[∫ t∗

0

v(Xs) ds

]
+ E0

[∫ TN

t∗

v(Xs) ds

]

+ E0

[
log f(XTN )− log f(X0)

]

= I + II + III.

For an upper bound of I, by (3.71) and the definition of t∗ [see
(3.95)], we have

(3.98) I ≤ t∗ max
x∈UN

v(x) ≤ c log2N.

For an upper bound of II, we notice that applying (3.96) for
t ∈ (t∗, TN ),

∣∣∣∣E0

[∫ TN

t∗

v(Xt) dt

]
− (TN − t∗)

∫
v dπ

∣∣∣∣

≤ (TN − t∗) sup
t∈[t∗,TN ]

sup
y∈UN

∣∣∣∣P 0[Xt = y]−
∫
v dπ

∣∣∣∣ · max
y∈UN

∣∣v(y)
∣∣

(3.96)

≤ e−c log2 N (TN − t∗) max
y∈UN

∣∣v(y)
∣∣ (3.71)

≤
(3.52)5.

e−c′ log2 N .

(3.99)

Since f is supported on UN by claim 1 of (3.50), we may enlarge the
range for summation in the second equality in the following calcula-
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tion without changing the sum and see that

∫
v dπ

(3.60)
=

(3.70)1.

∑

x∈UN

−∆disf(x)

f(x)
f2(x)

(3.48)
=

u∗∗(1 + ε)

TN

∑

x∈Zd

−f(x)∆disf(x)‖hN‖22(3.100)

(3.47)
=

u∗∗(1 + ε)

TN

∑

x∈Zd

−hN(x)∆dishN (x).

By the discrete Green–Gauss theorem and the definition of Dirichlet
form, we have

∑

x∈Zd

−hN(x)∆dishN (x) =
1

2

∑

x,x′∈Zd

x∼x′

1

2d

(
hN
(
x′
)
− hN (x)

)2

(3.101)
= EZd(hN , hN ).

Hence by (3.100) and (3.101), we know that

(3.102) (TN − t∗)
∫
v dπ ≤ u∗∗(1 + ε)EZd(hN , hN).

Thus, we obtain from (3.102) and (3.99) that

(3.103) II ≤ u∗∗(1 + ε)EZd(hN , hN ) + e−c′ log2 N .

For the calculation of III, we know that

E0

[
log f(XTN )− log f(X0)

]
≤ log max

x∈UN
f(x)− log min

x∈UN
f(x)

(3.104)
(3.70)4.

≤ c logN.

Combining (3.98), (3.103) and (3.104), we obtain that

(3.105) H(P̃N |P0) ≤ u∗∗(1 + ε)EZd(hN , hN) + o
(
Nd−2

)
,

which is (3.97).
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Proposition 3.3.14. One has

lim sup
ε→0

lim sup
δ→0

lim sup
R→∞

lim sup
η→0

lim sup
N→∞

1

Nd−2
H(P̃N |P0)

(3.106)
≤ u∗∗

d
cap

Rd(K).

Proof. By (3.97), we have
(3.107)

lim sup
N→∞

1

Nd−2
H(P̃N |P0) ≤ u∗∗(1 + ε) lim sup

N→∞

1

Nd−2
EZd(hN , hN ).

By the definition of hN , we have

1

Nd−2
EZd(hN , hN )

=
1

4dNd−2

∑

x∼y∈Zd

(
hN (y)− hN (x)

)2
(3.108)

(3.47)
=

1

4dNd−2

∑

x∼y∈Zd

(
h̃

(
y

N

)
− h̃
(
x

N

))2

.

By claim 2 of (3.39), the summation in the right member of the
second equality in (3.108) can be reduced to x, y ∈ UN ∪∂UN . Then
we split the sum into two parts:

(3.109)
∑

x∼y∈Zd

(
h̃

(
y

N

)
− h̃
(
x

N

))2

= Σ1 +Σ2,

where

(3.110) Σ1 =
∑

x,y∈UN ,x∼y

(
h̃

(
y

N

)
− h̃
(
x

N

))2

contains all summands with x, y ∈ UN , and

(3.111) Σ2 = 2
∑

x∈UN ,y /∈UN ,x∼y

(
hN (y)− hN(x)

)2
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contains all summands with x in UN and y in ∂UN . By claim 2 of
(3.39), we find that

(3.112) lim
N→∞

1

4dNd−2
Σ1 =

1

2d

∫

Rd

s
∣∣∇h̃(y)

∣∣2 dy

by a Riemann sum argument. While by claim 2 of (3.52), we obtain
that

(3.113) Σ2 ≤ c
∑

x∈∂iUN

hN (x)2 ≤ c′Nd−1

(
c

N

)2

= c′′Nd−3.

This implies that

(3.114) lim
N→∞

1

Nd−2
Σ2 = 0.

Therefore, we have

lim sup
N→∞

1

Nd−2
EZd(hN , hN )

≤ lim
N→∞

1

4dNd−2
(Σ1 +Σ2)

(3.115)
=

1

2d

∫

Rd

∣∣∇h̃(y)
∣∣2 dy =

1

d
ERd(h̃, h̃).

Therefore, by claim 3 of (3.39) we see that

lim sup
η→0

lim sup
N→∞

1

Nd−2
H(P̃N |P0)

≤ lim sup
η→0

u∗∗(1 + ε)

d
ERd(h̃, h̃)(3.116)

≤ u∗∗(1 + ε)

d
cap

Rd,B(R)

(
K2δ

)
.

As R→∞, the relative capacity converges to the usual Brownian ca-
pacity (this follows for instance from the variational characterization
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of the capacity in Theorem 2.1.5 on pages 71 and 72 of [30]):

(3.117) cap
Rd,B(R)

(
K2δ

)
→ cap

Rd

(
K2δ

)
as R→∞.

Then, letting δ → 0, by Proposition 1.13, page 60 of [47], we have

(3.118) cap
Rd

(
K2δ

)
→ cap

Rd(K) as δ → 0.

Finally, by letting ε→ 0 the claim then follows.

Remark 3.3.15. In this section, guided by the heuristic strategy
described below (3.7), we have constructed the tilted random walk.
In essence, this continuous-time walk spends up to TN , chosen in
(3.48), at each point x ∈ Kδ

N an expected time equal to u∗∗(1 +
ε)h2N (x) = u∗∗(1 + ε), when started with the stationary measure
π of the confined walk. The low entropic cost of the tilted walk
with respect to the simple random walk is quantified by the above
Proposition 3.3.14. We will now see in the subsequent sections that
in the vicinity of points of Kδ

N , the geometric trace left by the tilted
walk by time TN stochastically dominates random interlacements at
a level “close to u∗∗(1 + ε)”.

3.4 Hitting time estimates

In this section, we relate the entrance time (of the confined walk) into
mesoscopic boxes inside Kδ

N to the capacity of these boxes and TN
[see (3.48)] and establish a pair of asymptotically matching bounds
in the Propositions 3.4.5 and 3.4.7. It is a key ingredient for the
construction of couplings in Section 3.6. The arguments in this sec-
tion are similar to those in Section 3.4 and the Appendix of [64].
However, in our set-up, special care is needed due to the fact that
the stationary measure is massively non-uniform. In this section, the
constants tacitly depend on δ, η, ε and R [see (3.35) and (3.36)], r1,
r2, r3, r4 and r5 [see (3.119)].

We start with the precise definition of objects of interest for the

current and the subsequent sections. We denote by ΓN = ∂K
δ/2
N the

boundary in Z
d of the discrete blow-up of Kδ/2 (we recall (3.13) and
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(3.13) for the definition of the boundary and of the discrete blow-up).
The above ΓN will serve as a set “surrounding” KN . We choose real
numbers

(3.119) 0 < r1 < r2 < r3 < r4 < r5 < 1.

We define for x0 in ΓN six boxes centered at x0 (when there is
ambiguity we add a superscript for their center x0):
(3.120)

Ai = B∞

(
x0,
⌊
N ri

⌋)
, 1 ≤ i ≤ 5 and A6 = B∞

(
x0,

⌊
δ

100
N

⌋)
,

and we tacitly assume that N is sufficiently large so that for all
x0 ∈ ΓN , the following inclusions hold:

(3.121) A1 ⊂ A2 ⊂ A3 ⊂ A4 ⊂ A5 ⊂ A6 ⊂ Bδ
N ⊂⊂ Z

d.

In view of (3.121) and claim 3 of (3.50) we find that, by (3.63), for
large N and all x in UN

(3.122)
the stopped processes X·∧TA6

under Px and P x have the same law.

Remark 3.4.1. Recall that the regeneration time t∗ is defined in
(3.95) as t∗ = N2 log2N , and for all k = 1, . . . , 5, Ak are mesoscopic
objects of size O(N r) where r ∈ (0, 1). Informally, Propositions 3.4.5
and 3.4.7 will imply that for all x “far away” from Ak, with a high
P x-probability,

(3.123) TN ≫ HAk
≫ t∗.

Given any x0 in ΓN , we write

(3.124) D = UN \A2,

and let

(3.125) g(x) = P x[HA1 ≤ TA2 ]
(3.122)
= Px[HA1 ≤ TA2 ], x ∈ UN ,
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be the (tilted) potential function of A1 relative to A2. We also let

(3.126) fA1(x) = 1− Ex[HA1 ]

Eπ[HA1 ]

be the centered fluctuation of the scaled expected entrance time of
A1 (relative to the stationary measure).

The following lemma shows that the inverse of Eπ[HA1 ] is closely
related to E(g, g). (Actually we are going to prove that they are
approximately equal later in this section; see Propositions 3.4.7 and
3.4.5, as well as Remark 3.4.8.)

Lemma 3.4.2. One has,

(3.127) E(g, g)
(
1− 2 sup

x∈D

∣∣fA1(x)
∣∣
)
≤ 1

Eπ[HA1 ]
≤ E(g, g) 1

π(D)2
.

The proof is omitted due to its similarity to the proof of Lemma 3.2
in [14] (which further calls Proposition 3.41 in [3], which is originally
intended for Markov chains with constant jump rate).

In the next lemma, we collect some properties of entrance proba-
bilities for later use, namely Propositions 3.4.5, 3.4.7, 3.5.7 and 3.6.1.

Lemma 3.4.3. For large N , one has

(3.128) P x[HA1 < t∗] ≤ N−c for all x ∈ D,

and similarly

(3.129) Px[HA2 < t∗] ≤ N−c′ for all x ∈ UN \A3.

Uniformly for all x ∈ ∂iA1, one has

eA1(x) ≤ Px[TA6 < H̃A1 ] ≤ Px[TA3 < H̃A1 ](3.130)
≤ Px[TA2 < H̃A1 ] ≤ eA1(x)

(
1 +N−c′′

)
.

Proof. We start with (3.128). First, we explain that to prove (3.128),
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it suffices to show that

sup
x∈∂A2

P x[HA1 < t̃] ≤ sup
x∈∂A2

P x[HA1 < t̃− t#] +N−c′

(3.131)
for all 0 ≤ t̃ ≤ t∗,

where we write t# for N2/ logN . Indeed, with (3.131), the claim
(3.128) follows by an induction argument:

sup
x∈D

P x[HA1 < t∗]

≤ sup
x∈∂A2

P x[HA1 < t∗] ≤ sup
x∈∂A2

P x[HA1 < t∗ − t#] +N−c′

(3.132)

≤ · · · ≤ sup
x∈∂A2

P x

[
HA1 < t∗ −

⌈
t∗
t#

⌉
t#

]
+

⌈
t∗
t#

⌉
N−c′

(3.95)

≤ 0 + c log3N ·N−c′ ≤ N−c′′ .

Now we prove (3.131). We pick t̃ in [0, t∗]. One has

sup
x∈∂A2

P x[HA1 < t̃]

(3.133) ≤ sup
x∈∂A2

Px[HA1 < TA6 ] + sup
x∈∂A2

Px[TA6 < HA1 < t̃].

On the one hand, by Proposition 1.5.10, page 36 of [38], one has

(3.134) sup
x∈∂A2

P x[HA1 < TA6 ]
(3.122)
= sup

x∈∂A2

Px[HA1 < TA6 ] ≤ N−c.

Now we seek an upper bound for the second term in the right member
of (3.133). We write

sup
x∈∂A2

P x[TA6 < HA1 < t̃]

≤ sup
x∈∂A2

P x[t# < TA6 < HA1 < t̃] + sup
x∈∂A2

P x[TA6 ≤ t#]

= I + II.

To bound I, we can assume that t# < t̃ (otherwise I = 0). Applying
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Markov property successively (first at time t#, then at time TA6, and
finally at time HA2), we find

I ≤ sup
y∈UN

P y[TA6 < HA1 < t̃− t#]

≤ sup
x∈∂A6

P x[HA1 < t̃− t#](3.135)

≤ sup
x∈∂A2

P x[HA1 < t̃− t#].

Hence to prove (3.131), it suffices to prove that

(3.136) II ≤ N−c.

Recalling that d∞(∂A2, ∂A6) ≥ cN , we find that

(3.137) II
(3.122)
= sup

x∈∂A2

Px[TA6 < t#] ≤ dP [T[−mN,mN ] ≤ t0],

where P is the probability law of a one-dimensional random walk
started from 0 (and we denote by E the corresponding expectation),
t0 = t#/d, and m = δ/200. We know that

(3.138) P [T[−mN,mN ] ≤ t0] = P
[
max

0≤t≤t0
|Xt| ≥ mN

]
.

By Doob’s inequality, we have for λ > 0, using symmetry

P
[
max

0≤t≤t0
|Xt| ≥ mN

]

= 2P
[
max

0≤t≤t0
exp(λXt) ≥ exp(λmN)

]
(3.139)

≤ 2E[exp(λXt0)]

exp(λmN)
.

Note that exp{λXt − t(coshλ− 1)}, t ≥ 0, is a martingale under P ,
so

(3.140) E
[
exp(λXt0)

]
= exp

{
t0(coshλ− 1)

}
.
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Hence by taking λ = mN
2t0

= cN−1 log−1N , we obtain that the right-
hand term of (3.139) is bounded from above by
(3.141)

2 exp

{
t0(coshλ− 1)− m2N2

2t0

}
≤ 2 exp

(
−cm

2N2

2t0

)
≤ N−c′ .

This implies that

(3.142) P [T[−mN,mN ] ≤ t0] ≤ N−c.

Thus, one obtains (3.136) by collecting (3.137) and (3.142). This
completes the proof of (3.131), and hence of (3.128).

The claim (3.129) follows by a similar argument.
Now we turn to (3.130). All, except the rightmost inequality of

(3.130), are immediate. For the rightmost inequality, we first notice
that by an estimate similar to the discussion below (3.25) of [64] we
have,

(3.143) Px[TA2 < H̃A1 <∞] ≤ N−ceA1(x) for all x ∈ ∂iA1.

And hence we get that for all x ∈ ∂iA1,

Px[TA2 < H̃A1 ]

= Px[H̃A1 =∞] + Py [TA2 < H̃A1 <∞](3.144)

≤
(
1 +N−c

)
eA1(x).

This completes the proof of (3.130), and hence of Lemma 3.4.3.

Now we make a further calculation of the tilted Dirichlet form of
g defined in (3.125).

Proposition 3.4.4. For large N , one has

(3.145)
cap(A1)

TN
u∗∗(1+ε) ≤ E(g, g) ≤

(
1+N−c

)cap(A1)

TN
u∗∗(1+ε).

Proof. Combining the fact that π = f2 [from claim 1 of (3.70)], and
the observation that g is discrete harmonic in A2 \ A1, g = 1 on A1
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and g = 0 outside A2, one has [recall that Z1 is the first step of the
discrete chain attached to Xt, t ≥ 0, see (3.14)]

E(g, g) = (g,−L̃g)l2(π)

=
u∗∗(1 + ε)

TN

∑

y∈∂iA1

g(y)

(
g(y)−

∑

x∼y

1

2d
g(x)

)

(3.146)
(3.125)
=

u∗∗(1 + ε)

TN

∑

y∈∂iA1

(
1−

∑

x∼y

Py[Z1 = x]Px[HA1 < TA2 ]

)

Markov
=

u∗∗(1 + ε)

TN

∑

y∈∂iA1

Py[TA2 < H̃A1 ].

On the one hand, by the rightmost inequality in (3.130), one has

∑

y∈∂iA1

Py[TA2 < H̃A1 ]

≤
(
1 +N−c

) ∑

y∈∂iA1

eA1(y) =
(
1 +N−c

)
cap(A1).

(3.147)

On the other hand, one also knows that

(3.148) cap(A1) =
∑

y∈∂iA1

eA1(y)
(3.130)

≤
∑

y∈∂iA1

Py[TA2 < H̃A1 ].

Thus, the claim (3.145) follows by collecting (3.146), (3.147) and
(3.148).

Next, we prove the first half of the main estimate of this section,
namely the upper bound on 1/Eπ[HA1 ]. Let us mention that this
upper bound will actually be needed in the proof of Lemma 3.4.6.

Proposition 3.4.5. For large N , one has

(3.149)
1

Eπ [HA1 ]
≤
(
1 +N−c

)cap(A1)

TN
u∗∗(1 + ε).
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As a consequence, one has

(3.150) Eπ[HA1 ] ≥ cN2+c′ .

Proof. We first prove (3.149). We apply the right-hand inequality in
(3.145) to the right-hand estimate in (3.127). Note that

(3.151) π(D) = 1− π(A2) ≥ 1− cN (r2−1)d for large N,

for large N , with the help of (3.145) we thus find that

1

Eπ[HA1 ]

(3.127)

≤ E(g, g)
π(D)2

(3.151)

≤
(
1− cN (r2−1)d

)−2E(g, g)
(3.152)

(3.145)

≤
(
1 +N−c

)cap(A1)

TN
u∗∗(1 + ε).

This yields (3.149). Then the claim (3.150) follows by observing
(3.22) and claim 5 of (3.52).

In the following Lemma 3.4.6 and Proposition 3.4.7, we build a
corresponding lower bound by controlling the fluctuation function
fA1 defined in (3.126).

Lemma 3.4.6. For large N , one has

(3.153) fA1(x) ≥ −N−c for all x ∈ UN .

and in the notation of (3.124)

Ex[HA1 ] ≥ Eπ[HA1 ]− e−c′ log2 N

(3.154) − P x[HA1 ≤ t∗]
(
t∗ + Eπ[HA1 ]

)
∀x ∈ D.

Proof. As we now explain, to prove (3.153), it suffices to show that
(3.155)∣∣Ex

[
EXt∗

[HA1 ]
]
− Eπ[HA1 ]

∣∣ ≤ e−c′ log2 N for all x ∈ UN .

Indeed, since HA1 ≤ t∗ + HA1 ◦ θt∗ , the simple Markov property
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applied at time t∗ and (3.155) imply that

(3.156) sup
x∈UN

Ex[HA1 ] ≤ t∗ + e−c log2 N + Eπ[HA1 ].

It then follows that

supx∈UN Ex[HA1 ]

Eπ[HA1 ]
− 1

(3.156)

≤
(3.149)

(
t∗ + e−c log2 N

)
c′
cap(A1)

TN
(3.157)

(3.22)

≤
(3.48)

(
t∗ + e−c log2 N

)
c′′N (d−2)r1−d

(3.95)

≤
(3.119)

N−c̃.

This proves (3.153). We now prove (3.155). Let us consider the
expectation of HA1 when started from Xt∗

. We first note that for all
x ∈ UN ,

∣∣Ex

[
EXt∗

[HA1 ]
]
− Eπ[HA1 ]

∣∣
(3.158)

≤
∑

y∈UN

∣∣P x[Xt∗ = y]− π(y)
∣∣ sup
y∈UN

Ey[HA1 ].

By the relaxation to equilibrium estimate (3.96), one has

(3.159)
∑

y∈UN

∣∣P x[Xt∗
= y]− π(y)

∣∣ ≤ e−c log2 N for all x ∈ UN .

Thus, to prove (3.155) it suffices to obtain a very crude upper bound
for the supremum of the expected entrance time in A1 as the starting
point varies in UN :

(3.160) Ey[HA1 ] ≤ cN5+d for all y ∈ UN .

This follows, for example, by a corollary of the commute time identity
(see Corollary 4.28, page 59 of [5]):

(3.161) Ey[HA1 ] ≤ reff(y,A1)π
(
UN
)

for all y ∈ UN ,
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where reff(y,A1) stands for the effective resistance between y and
A1. On the one hand, by the third equality of (3.91) and claim 4 of
(3.70), for all x, y ∈ UN such that x ∼ y, we know that

(3.162) W (x, y) =
1

2d

√
π(x)π(y) ∈

(
cN−(4+d), 1

]
,

hence the resistance on {p, q} does not exceed cN4+d. We know that
for any y in UN , for some x ∈ ∂iA1, the effective resistance between
y and x [which we denote by reff(y, x)] is less or equal to the effective
resistance between y and x on the path γ(y, x) [which we denote
by rγeff(y, x)] defined above Proposition 3.3.12 [note that γ(y, x) is a
subgraph of UN ]. Since by (3.92) γ(y, x) is of length no more than
cN , rγeff(y, x) does not exceed c′N5+d by (3.162). Hence, we obtain
that

(3.163) reff(y,A1) ≤ reff(y, x) ≤ rγeff(y, x) ≤ cN5+d.

On the other hand, one has π(UN ) = 1 [by claim 1 of (3.70)]. Thus,
(3.161) and (3.163) yield that

(3.164) sup
y∈UN

Ey[HA1 ] ≤ cN5+d.

This completes the proof of (3.160), and hence of (3.153).
We now turn to (3.154). We consider any x ∈ D. By the simple

Markov property applied at time t∗, we find that

Ex[HA1 ]

≥ Ex

[
1{HA1>t∗}EXt∗

[HA1 ]
]

= Ex

[
EXt∗

[HA1 ]
]
− Ex

[
1{HA1≤t∗}EXt∗

[HA1 ]
]

(3.155)

≥ Eπ[HA1 ]− e−c log2 N(3.165)

−Px[HA1 ≤ t∗] sup
y∈UN

Ey[HA1 ]

(3.156)

≥ Eπ[HA1 ]− e−c′ log2 N

−Px[HA1 ≤ t∗]
(
t∗ + Eπ[HA1 ]

)
.
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This proves (3.154) and finishes Lemma 3.4.6.

We now prove the second main estimate.

Proposition 3.4.7. For large N , one has that

(3.166)
1

Eπ [HA1 ]
≥
(
1−N−c

)cap(A1)

TN
u∗∗(1 + ε).

Proof. By applying (3.145) and the left-hand inequality of (3.127),
for large N , one has,

(3.167)
1

Eπ[HA1 ]
≥
(
1− 2 sup

x∈D

∣∣fA1(x)
∣∣
)cap(A1)

TN
u∗∗(1 + ε).

Thus, with (3.153) in mind, to prove (3.166), it suffices to show that
for large N ,

(3.168) sup
x∈D

fA1(x) ≤ N−c.

Dividing by Eπ[HA1 ] on both sides of (3.154) and taking the infimum
over all x ∈ D, one obtains

inf
x∈D

Ex[HA1 ]

Eπ[HA1 ]

(3.95)

≥ 1− e−c′ log2 N

Eπ[HA1 ]
− sup

x∈D
P x[HA1 ≤ t∗]

(
N2 log2N

Eπ[HA1 ]
+ 1

)

(3.150)

≥
(3.128)

1− e−c′ log2 N −N−c̃′
(
c′′(logN)2N−c̃ + 1

)

≥ 1−N−c.

(3.169)

Together with (3.167), this proves (3.168) as well as (3.166).

Remark 3.4.8. The combination of Propositions 3.4.5 and 3.4.7
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forms a pair of asymptotically tight bounds on Eπ[HA1 ], namely

(
1−N−c

)cap(A1)

TN
u∗∗(1 + ε)

≤ 1
/
Eπ[HA1 ](3.170)

≤
(
1 +N−c

)cap(A1)

TN
u∗∗(1 + ε).

3.5 Quasi-stationary measure

In this section, we introduce the quasi-stationary distribution (ab-
breviated below as q.s.d.) induced on D [recall that D is defined in
(3.124)] and collect some of its properties. This will help us show
in the next section that carefully chopped sections of the confined
random walk are approximately independent, allowing us to bring
into play excursions of random walk and furthermore random inter-
lacements. In Proposition 3.5.5, we prove that the q.s.d. on D is
an appropriate approximation of the stationary distribution of the
random walk conditioned to stay in D. In Proposition 3.5.7, we show
that the hitting distribution of A1 of the confined walk starting from
the q.s.d. on D is very close to the normalized equilibrium measure
of A1. In this section, the constants tacitly depend on δ, η, ε and R
[see (3.35) and (3.36)], r1, r2, r3, r4 and r5 [see (3.119)].

We fix the choice of A1 and A2 as in the last section [see (3.120)].
The arguments in Lemma 3.5.2, Propositions 3.5.3, 3.5.5 and 3.5.7
below are similar to those of Section 3.2 and the Appendix of [64].
However, in our set-up, special care is needed due to the fact that the
stationary measure is massively non-uniform in the present context.

We now define the q.s.d. on D(= UN \ A2). We denote by
{HD

t }t≥0 the semi-group of {Px}x∈UN killed outside D, so that for
all f ∈ UN → R

(3.171) HD
t f(x) = Ex

[
f(Xt), HA2 > t

]
.

We denote by LD the generator of {HD
t }t≥0. It is classical fact that
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for f : D → R,

(3.172) LDf(x) = L̃f̃(x) ∀x ∈ D,

where f̃ is the extension of f to UN vanishing outside D and L̃
[defined in (3.63)] is the generator for the tilted walk. We denote by
πD the restriction of the measure π onto D. So, {HD

t }t≥0 and LD

are self-adjoint in l2(πD) and

(3.173) HD
t = etL

D

.

We then denote by λDi , i = 1, . . . , |D|, with

(3.174) 0 ≤ λDi ≤ λDi+1, i = 1, . . . , |D| − 1,

the eigenvalues of−LD and by fi, i = 1, . . . , |D|, an l2(πD)-orthonormal
basis of eigenfunctions associated to λi. Because D is connected, by
the Perron–Frobenius theorem, all entries of f1 are positive. The
quasi-stationary distribution on D is the probability measure on D
with density with respect to πd proportional to f1, that is,

(3.175) σ(y) =
(f1, δy)l2(πD)

(f1,1)l2(πD)

, x ∈ D,

where, for y ∈ D, δy : D → R is the point mass function at y. It
is known that the q.s.d. on D is the limit distribution of the walk
conditioned on never entering A2, that is, for all x, y ∈ D, one has
(see (6.6.3), page 91 of [37]),

(3.176) σ(y) = lim
t→∞

P x[Xt = y|HA2 > t].

We now prove a lemma which is useful in the proof of Proposi-
tion 3.5.3 below.

Lemma 3.5.1. For all x, y ∈ D, one has that

(3.177) σ(y) ≥ N−cP y[Hx < HA2 ]σ(x).

Proof. By the l2(πD)-self-adjointness of the killed semi-group (HD
t )t≥0,
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we have that for all x, y ∈ D, t > 0,
(3.178)

Px[Xt = y|HA2 > t] = P y[Xt = x|HA2 > t]
π(y)

π(x)

P y[HA2 > t]

P x[HA2 > t]
.

On the one hand, by the strong Markov property applied at time
Hx, we know that for all x, y ∈ D,

(3.179) P y[HA2 > t] ≥ P y[Hx < HA2 ]P x[HA2 > t],

On the other hand, by claim 4 of (3.70), we know that for all x, y ∈ D,
t > 0,

(3.180)
π(y)

π(x)
≥ cN−4.

Thus, the claim (3.177) follows by taking limits in t on both sides of
(3.178) and incorporating (3.180) and (3.179).

The next lemma is also a preparation for Proposition 3.5.3.

Lemma 3.5.2. For all x ∈ D \A4, one has

(3.181) max
y∈∂A3

P y[Hx < HA2 ] ≥ N−c.

Proof. We fix an x ∈ D \ A4 in the proof. Applying the Markov
property at time TA3 under P y′ for y′ ∈ ∂A2, we see that

max
y′∈∂A2

P y′ [Hx < HA2 ] = max
y′∈∂A2

P y′ [TA3 < Hx < HA2 ]

(3.182) ≤ max
y∈∂A3

P y[Hx < HA2 ].

We now develop a lower bound on the left-hand side of (3.182) via
effective resistance estimates. We denote by U col the graph obtained
by collapsing A2 into a single vertex a in UN . With some abuse of
notation, we use the same symbol for the vertices in U col as in UN

except for a. We denote by W col : U col × U col → R
+ the induced
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edge-weight. Let

(3.183) wa =
∑

y∈∂A2

W col(a, y) =
∑

z∈A2,y∈∂A2,z∼y

W (z, y)

be the sum of the weights of edges that touch a in U col. We denote
by {P col

z }z∈Ucol the discrete-time reversible Markov chain with edge-
weight W col. The reversible measure of this Markov chain πcol is
given through

(3.184) πcol(z) =





wa, z = a,∑

y∼z

W (z, y), otherwise.

Then we have
(3.185)

max
y′∈∂A2

P y′ [Hx < HA2 ] = max
y′∈∂A2

P col
y′ [Hx < Ha] ≥ P col

a [Hx < H̃a].

By a classical result on electrical networks (see Proposition 3.10, page
69 of [3]), the escape probability in the right-hand side of (3.185)
equals

(3.186) P col
a [Hx < H̃a] =

(
war

col(a, x)
)−1

,

where rcol(a, x) is the effective resistance between a and x on U col.
We know that rcol(a, x) is smaller or equal to the effective resistance
between a and x along a path between a and x of length no more
than cN and along this path the edge-weight is no less than N−c by
(3.162). Hence, we obtain that

(3.187) rcol(a, x) ≤ N c.

Moreover, we know that

(3.188) wa =
∑

z∈A2,y∈∂A2,z∼y

W (z, y) ≤ N c max
z∈D

W (z, y)
(3.162)

≤ N c.



3 A lower bound for disconnection by simple random walk 163

Therefore, we conclude from (3.186), (3.187) and (3.188) that

(3.189) P col
a [Hx < H̃a] ≥ N−c′ .

The claim (3.181) follows by collecting (3.182), (3.185) and (3.189).

The next proposition is a crucial estimate for us, showing that
σ is not too small at any point in D. This fact will be used in
Proposition 3.5.5. In the proof, we mainly rely on the reversibility
of the confined walk, hitting probability estimates of simple random
walk, and the Harnack principle.

Proposition 3.5.3. For large N , one has the following lower bound:

(3.190) inf
x∈D

σ(x) ≥ N−c,

and for all x ∈ D,

(3.191) N c′ ≥ f1(x) ≥ N−c′′ .

Proof. We first prove (3.190). The claim (3.191) will then follow.
Because σ is a probability measure, and

(3.192) |D| ≤ cNd,

there must exist some x′ in D such that

(3.193) σ
(
x′
)
≥ cN−d.

By (3.177), to prove (3.190) it suffices to prove that for all x ∈ D,

(3.194) P x[Hx′ < HA2 ] ≥ N−c′ .

We now prove (3.194) by treating two cases according to the location
of x′.

Case 1: x′ ∈ A4 \ A2 [recall the definition of A4 in (3.120)]. By
(3.122) and a standard hitting estimate (see Proposition 1.5.10, page
36 of [38]) for simple random walk, for all x in D, we have that [recall
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the definition of A5 in (3.120)],

(3.195) P x[H∂A5 < HA2 ] ≥ N−c,

(note that the left-hand side equals 1 if x /∈ A5). We write

(3.196) l(x) = P x[Hx′ < HA2 ].

By the strong Markov property applied at H∂A5 ,
(3.197)

l(x)
Markov
≥ P x[H∂A5 < HA2 ] min

y∈∂A5

l(y)
(3.195)

≥ N−c min
y∈∂A5

l(y).

We now develop a lower bound on the right-hand side of (3.197).
Let S1 = B∞(x0, 3N

r5) \ B∞(x0,
1
3N

r5) and S2 = B∞(x0, 2N
r5) \

B∞(x0,
1
2N

r5), (we tacitly assume that N is sufficiently large that

S1 ⊂ A6, and S2 ⊂ D). It is straight-forward to see that l(x) is L̃-

harmonic inD\{x′} and that L̃ coincides with ∆dis in S1 [see (3.122)].
By the Harnack inequality (see Theorem 6.3.9, page 131 of [39]), we
know that (note that ∂A5 ⊂ S2)

(3.198) min
y∈∂A5

l(y) ≥ c′ max
y∈∂A5

l(y).

This implies by (3.197) that

(3.199) min
x∈D

l(x) ≥ c′N−c max
y∈∂A5

l(y).

We now take any point y′ ∈ ∂A5 of least distance (in the sense of
l∞-norm) to x′ on ∂A5 and sharing (d−1) common coordinates with
x′ and fix y′. We set B = B∞(y′, |y′−x′|∞−1). Our way of choosing
y′ ensures that x′ ∈ ∂B. Then by (3.122), we have
(3.200)

l
(
y′
)
= P y′ [Hx′ < HA2 ] ≥ P y′

[
XTB = x′

] (3.122)
= Py′

[
XTB = x′

]
.

By a classical estimate (see Lemma 6.3.7, pages 158–159 of [39]), we
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have

(3.201) Py′

[
XTB = x′

]
≥ cN (1−d)r5.

Thus, the claim (3.194) follows by collecting (3.199), (3.200) and
(3.201).

Case 2: x′ ∈ D \A4. Since ∂A3 ⊂ A4 \ A2, if we can prove that
for some y ∈ ∂A3,

(3.202) σ(y) ≥ N−c,

then we are brought back to case 1 by taking the y in (3.202) as
the x′ in (3.193). Now we show that we can indeed find such y that
(3.202) holds. By (3.177) and our assumption that σ(x′) ≥ N−c, we
have
(3.203)

σ(y)
(3.177)

≥ N−cP y[Hx′ < HA2 ]σ
(
x′
) (3.193)

≥ N−c′P y[Hx′ < HA2 ].

Hence, we know that by (3.181), if we pick the y that maximizes
the probability in the left-hand side of (3.181), the claim (3.202) is
indeed true.

With these two cases, we complete the proof of (3.190).
Now we prove (3.191). By the fact that f1 is a unit vector in

l2(πD) we know that

(3.204) (f1, f1)l2(πD) = 1.

To prove the first inequality of (3.191), we observe that, thanks to
(3.204):
(3.205)

1 = (f1, f1)l2(πD) ≥ max
x∈D

f2
1 (x)min

x∈D
πD(x)

(3.70)4.

≥ N−cmax
x∈D

f2
1 (x).

To prove the second inequality of (3.191), we observe that by (3.204)

(3.206) max
x∈D

πD(x)f2
1 (x) ≥

1

|D| ,
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which implies that

(3.207) max
x∈D

f1(x) ≥
√

1

|D|maxx∈D πD(x)

(3.70)4.

≥
(3.192)

N−c.

This implies that for all x ∈ D,

f1(x)
(3.175)
=

1

πD(x)
σ(x)(f1,1)l2(πD)

(3.208) (3.70)4.

≥
(3.190)

N−cmax
x∈D

f1(x)min
x∈D

πD(x)
(3.70)4.

≥
(3.207)

N−c′.

This completes the proof of (3.191), and concludes the proof of
Proposition 3.5.3.

In the following proposition, we show that the spectral gap of LD

is at least of order N−2.

Lemma 3.5.4. One has that for large N

(3.209) λD2 − λD1 ≥ cN−2.

Proof. Recall that λ2 stand for the second smallest eigenvalue of −L̃.
By the eigenvalue interlacing inequality (see Theorem 2.1 of [34]), we
have

(3.210) λD2 ≥ λ2.

While by the paragraph below equation (12) of [2], we have

(3.211) λD1 =
1

Eσ[HA2 ]
.

By Lemma 10(a) of [2], we have

(3.212) Eσ[HA2 ] ≥ Eπ [HA2 ] or equivalently
1

Eσ[HA2 ]
≤ 1

Eπ[HA2 ]
.

By an argument similar to the proof of Proposition 3.4.5 (by replac-
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ing A1, A2 by A2, A3), we find that

(3.213)
1

Eπ[HA2 ]
≤ cN−d+(d−2)r2.

This implies by (3.211) and (3.212) that

(3.214) λD1 ≤ cN−d+(d−2)r2.

Hence, we obtain that for large N

(3.215) λD2 − λD1
(3.214)

≥
(3.210)

λ2 − cN−d+(d−2)r2
(3.88)

≥ c′N−2.

This finishes the proof of (3.209).

The next proposition shows, with the help of the spectral gap
estimate obtained in Lemma 3.5.4, that the q.s.d. on D is very close
to the distribution of the confined walk at time t∗ conditioned on not
hitting A2 [see (3.95) for the definition of t∗].

Proposition 3.5.5. One has that for large N ,

(3.216) sup
x,y∈D

∣∣P x[Xt∗ = y
∣∣HA2 > t∗]− σ(y)| ≤ e−c log2 N .

Proof. The conditional probability in (3.216) is expressed through
HD

t∗
as

(3.217) Px[Xt∗ = y|HA2 > t∗] = HD
t∗
δy(x)

/
(HD

t∗
1)(x).

Now we calculate the numerator in the right-hand side of (3.217).
We decompose δy in the l2(πD) base {fi}i=1,...,|D|:

δy =

|D|∑

i=1

aifi, where

(3.218)
ai = (δy, fi)l2(πD) = fi(y)π

D(y), for 1 ≤ i ≤ |D|.
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Hence, one can decompose HD
t∗
δy(x) into a linear combination of

aifi(x):

(3.219) HD
t∗
δy(x) = e−λD

1 t∗

(
a1f1(x) +

|D|∑

i=2

e(λ
D
1 −λD

i )t∗aifi(x)

)
.

Now we show that the first term inside the brackets on the right-
hand side of (3.219) is significantly larger than the other terms. By
Proposition 3.5.3, one has

(3.220) a1f1(x)
(3.218)
= πD(y)f1(y)f1(x)

(3.191)

≥
(3.70)4.

N−c.

For large N , thanks to Lemma 3.5.4, the reminder term inside the
brackets of (3.219) is bounded by

∣∣∣∣∣

|D|∑

i=2

e(λ
D
1 −λD

i )t∗aifi(x)

∣∣∣∣∣
(3.174)

≤
(3.218)

|D|∑

i=2

e(λ
D
1 −λD

2 )t∗
∣∣πD(y)fi(y)fi(x)

∣∣

(3.209)

≤
(3.95)

|D|e−c log2 N
∣∣πD(y)fi(y)fi(x)

∣∣(3.221)

(3.192)

≤
(3.70)4.

e−c′′ log2 N .

This implies that

(3.222)

∣∣∣∣
HD

t∗
δy(x)

e−λD
1 t∗a1f1(x)

− 1

∣∣∣∣
(3.219)–(3.221)

≤ e−c log2 N .

We now turn to the denominator of the right-hand side of (3.217).
By an argument which is very similar to that leading to (3.222), one
can show that

(3.223)

∣∣∣∣
(HD

t∗
1)(x)

e−λD
1 t∗f1(x)(f1,1)l2(πD)

− 1

∣∣∣∣ ≤ e−c log2 N .
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Combining (3.222) and (3.223), one has that for large N and uni-
formly for all x, y ∈ D [remind the definition of σ(·) in (3.175)]

∣∣Px[Xt∗ = y|HA2 > t∗]− σ(y)
∣∣ (3.217)

=

∣∣∣∣
HD

t∗
δy(x)

(HD
t∗
1)(x)

− σ(y)
∣∣∣∣

(3.224)
(3.222)

≤
(3.223)

e−c log2 Nσ(y) ≤ e−c log2 N ,

which is exactly the claim (3.216).

We define the stopping time V as the first time when the confined
random walk has stayed outside A2 for a consecutive duration of t∗:

(3.225) V = inf{t ≥ t∗ : X[t−t∗,t] ∩ A2 = ∅}.

The next lemma is a preparatory result for Proposition 3.5.7 be-
low. This lemma shows that the probability P x[V < H̃A1 ], when
normalized by the sum of such probabilities as x varies in the inner
boundary of A1, is approximately equal to ẽA1(x), the normalized
equilibrium measure of A1.

Lemma 3.5.6. For large N , one has that for all x ∈ D,

(3.226)

∣∣∣∣
P x[V < H̃A1 ]∑

y∈∂iA1
P y[V < H̃A1 ]ẽA1(x)

− 1

∣∣∣∣ ≤ N−c.

Proof. For any y ∈ ∂iA1, by (3.129) and the strong Markov property
applied at time TA3 , we obtain that

P y[V < H̃A1 ]

Markov
≥

(3.225)
P y[TA3 < H̃A1 ] inf

x∈UN\A3

P x[HA2 > t∗](3.227)

(3.129)

≥
(3.122)

Py[TA3 < H̃A1 ]
(
1−N−c

) (3.130)

≥ eA1(y)
(
1−N−c

)
.

On the other hand, P y[V < H̃A1 ] is bounded from above by [recall
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that V > TA2 by definition of V , see (3.225)]

P y[V < H̃A1 ] ≤ P y[TA2 < H̃A1 ](3.228)
(3.122)
= Py[TA2 < H̃A1 ]

(3.130)

≤ eA1(y)
(
1 +N−c

)
.

Together with (3.227), we find that for any y ∈ ∂iA

(3.229)
(
1−N−c

)
eA1(y) ≤ P y[V < H̃A1 ] ≤

(
1 +N−c′

)
eA1(y).

Summing over y ∈ ∂iA1 we obtain that

(
1−N−c

) ∑

y∈∂iA1

P y[V < H̃A1 ]

(3.230)
≤ cap(A1) ≤

(
1 +N−c′

) ∑

y∈∂iA1

P y[V < H̃A1 ].

The claim (3.226) follows by combining (3.229) and (3.230), recalling
that by the definition of normalized equilibrium measure, ẽA1(x) =
eA1(x)/cap(A1).

The following proposition shows that the hitting distribution of
the confined walk on A1 started from the q.s.d. on D is very close
to the normalized equilibrium measure of A1. The proof of the next
proposition is close to the proof of Lemma 3.10 of [64]. and can be
found in the Appendix at the end of this Chapter.

Proposition 3.5.7. For large N and any x0 ∈ ΓN (recall that A1

tacitly depends on x0), one has

(3.231) sup
x∈∂iA1

∣∣∣∣l
Pσ[XHA1

= x]

ẽA1(x)
− 1

∣∣∣∣ ≤ N−c.

3.6 Chain coupling of excursions

In this section, we prove in Theorem 3.6.9 that the tilted random
walk disconnects KN from infinity with a probability, which tends to
1 as N tends to infinity. For this purpose, we show that the confined
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random walk visits the mesoscopic boxes A1 centered at ΓN [defined
in (3.120)] sufficiently often so that at time TN the trace of the walk
“locally” dominates (via a chain of couplings) random interlacements
with intensity higher than u∗∗. Hence, it disconnects in each such
box the center from its boundary with very high probability. Some
arguments in this section are based on Section 4 of [64], with neces-
sary adaptations. In this section, the constants tacitly depend on δ,
η, ε and R [see (3.35) and (3.36)], r1, r2, r3, r4 and r5 [see (3.119)].

Throughout this section, we fix x0 ∈ ΓN , the center of the boxes
A1 through A6, except in Proposition 3.6.8 and Theorem 3.6.9.

We recall the definition of V in (3.225). For a path in Γ(UN ), we
denote by Rk and Vk the successive entrance times HA1 and stopping
times V :

R1 = HA1 ; V1 = R1 + V ◦ θR1 ; and for i ≥ 2,

Ri = Vi−1 +HA1 ◦ θVi−1 ; Vi = Ri + V ◦ θRi .

Colloquially, we call such sections X[Ri,Vi) “long excursions” in con-
trast to the “short excursions” we will later define [see above (3.247)].
We set

(3.232) J =
⌊
(1 + ε/2)u∗∗cap(A1)

⌋
.

The next proposition shows that, with high probability, the confined
random walk has already made at least J “long excursions” before
time TN .

Proposition 3.6.1. For large N , one has

(3.233) P 0[RJ ≥ TN ] ≤ e−Nc

.

The proof is deferred to the Appendix at the end of this Chapter
because it is rather technical and similar to the proof of Lemma 4.3
of [64].

Next, we construct a chain of couplings. Simply speaking, it is a
sequence of couplings involving multiple random sets, in which the
preceding set stochastically dominate the following set with proba-
bility close (or sometimes equal) to 1.
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We start with the first coupling. The following proposition shows
that one can construct a probability space where (J − 1) “long ex-
cursions” (counted from the second excursion) coincide with high
probability with (J − 1) independent “long excursions” started from

the q.s.d. We write P J
2 =

⊗J
i=2 P

i

σ for the product of (J − 1) inde-
pendent copies of P σ. We denote by Ai the random set X[Ri,Vi)∩A1

and set A =
⋃J

i=2Ai.

Proposition 3.6.2. For large N , there exists a probability space
(Ω0,B0, Q0), endowed with a random set A with the same law as A
under P 0 and random sets Ǎi, i = 2, . . . , J , distributed as X̌ i

[0,V1)
∩A1

where for i ≥ 2, X̌ i’s are i.i.d. distributed as X under P σ, such that

(3.234) Q0[A 6= Ǎ] ≤ e−c′′ log2 N ,

where Ǎ =
⋃J

i=2 Ǎi.

Proof. For each x ∈ D, we use Proposition 4.7, page 50 in [40] and
Proposition 3.5.5 to construct a coupling qx of random variables Ξ
with the law of Xt∗ under P x[·|HA2 > t∗] and Σ with the law of σ
such that

(3.235) max
x∈D

qx[Ξ 6= Σ] ≤ |D|e−c log2 N ≤ e−c′ log2 N .

We introduce L, the index of last “step” of the path in A2 before
time V [see (3.15) and the paragraph above (3.14) for the definition
of τl and Zl, resp.]:

(3.236) L = sup{l ≥ 0 : τl ≤ V, Zl ∈ A2}.

We then introduce Li = L ◦ θRi + li, where li satisfies τli = Ri for
i ≥ 1 as the last step at which the i-th excursion is in A2.

We now construct Q0 with the help of (3.235) in a similar fashion
to the proof of Lemma 4.2 in [64]. The procedure goes inductively.
We start by choosing x+1 ∈ ∂A2 according to P 0[ZL1+1 = ·]. For
i ≥ 1, if x+i is chosen, we choose xi+1 and x̌i+1 points in D = UN \A2

according to qx+
i
[Ξ = ·,Σ = ·]. If xi+1 and x̌i+1 coincide (which is
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the typical case, that is, if the coupling is successful at step i + 1),
we choose Ai+1 = Ǎi+1 subsets of A1 and x+i+1 = x̌+i+1 points in

∂A2 according to Pxi+1 [A1 = ·, ZL1+1 = ·]. Otherwise, if xi+1 differs
from x̌i+1 (which means that the coupling fails at step i+1), then we
choose independently Ai+1, x

+
i+1 according to Pxi+1 [A1 = ·, ZL1+1 =

·] and Ǎi+1, x̌
+
i+1 according to P x̌i+1 [A1 = ·, ZL1+1 = ·]. In both

cases, we repeat the above procedure until step J . Then we write
A =

⋃J
i=2Ai and Ǎ =

⋃J
i=2 Ǎi.

By a procedure as in the proof of Lemma 4.2 in [64], (we replace
A by A1, B by A2, t∗ by t∗, T by UN , Xi by Zi, Yt by Xt, k by J , U1

by V1, xi and x+i by x̌i and x̌+i ), we can check that Q0 is a coupling
of A and Ǎ, and the probability that the coupling fails has an upper
bound

Q0[A 6= Ǎ] ≤ (J − 1)max
x∈D

qx[Ξ 6= Σ]
(3.237)

(3.232)

≤
(3.235)

c′Nd−2e−c log2 N ≤ e−c′′ log2 N ,

which is exactly what we want.

Now, on an auxiliary probability space (O1,F1,PI1), we denote
by η1 the Poisson point process on Γ(UN ) with intensity (1 + ε/3) ·
u∗∗cap(A1)κ1, where κ1 is defined as the law of the stopped process
X(HA1+·)∧V1

under P σ. In other words, κ1 is the law of “long excur-
sions” started from σ and recorded from the first time it enters A1.
We denote by

(3.238) I1 =
⋃

γ∈supp(η1)

Range(γ) ∩ A1

the trace of η1 on A1. In the next proposition, we construct a second
coupling such that Ǎ dominates I1 with high probability.

Proposition 3.6.3. There exists a probability space (Ω1,B1, Q1),
endowed with random sets I1 with the same law as I1 under PI1

and Ǎ with the same law as Ǎ under P J
2 , such that

(3.239) Q1[Ǎ ⊇ I1] ≥ 1− e−Nc

.
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Proof. We pick a Poisson random variable ξ with parameter (1 +
ε/3)u∗∗ ×
cap(A1). Then we generate (independently from ξ) an infinite se-
quence {X̌ i}i≥1 of i.i.d. confined walks under Pσ. We then let

I1 ∼
⋃ξ+1

i=2 X̌
i
[0,V1)

∩ A1 and Ǎ =
⋃J

i=2 X̌
i
[0,V1)

∩ A1, both having

the respective required laws. Moreover {Ǎ ⊇ I1} = {J ≥ ξ + 1},
by the definition of J [see (3.232)] and a standard estimate on the
deviation of Poisson random variables, we have

(3.240) Q1[Ǎ ⊇ I1] = Q1[J ≥ ξ + 1] ≥ 1− e−Nc

,

which is exactly (3.239).

Now on another auxiliary probability space (O2,F2,PI2), we
denote by η2 the Poisson point process on Γ(UN ) with intensity
(1+ε/4)u∗∗cap(A1)κ2, where κ2 is defined as the law of the stopped
process X·∧V1 under P ẽA1

. In other words, it is the law of “long
excursions” started from the normalized equilibrium measure of A1

(note that, since in this case the excursions start from inside A1, we
start recording directly from time 0). We denote by

(3.241) I2 =
⋃

γ∈supp(η2)

Range(γ) ∩ A1

the trace of η2 on A1. The next proposition and corollary construct
the third coupling so that I1 dominates I2 almost surely. This is
shown by proving that the intensity measure of I1 is bigger than
that of I2 with the help of Proposition 3.5.7.

Proposition 3.6.4. For large N , one has

(3.242)

(
1 +

ε

3

)
κ1 ≥

(
1 +

ε

4

)
κ2.

Proof. By the definition of κ1 and κ2, and the strong Markov prop-
erty applied at time HA1 , we can represent the Radon–Nikodym
derivative of κ1 and κ2 through a function of the starting point of
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the trajectory

(3.243)
dκ1
dκ2

= φ(X0)

where φ(x) = P σ[XHA1
= x]

/
ẽA1(x) for all x ∈ ∂iA1 and 0 other-

wise. Hence we obtain, via (3.231), that for large N ,

(3.244)
d(κ1 − κ2)

dκ2
= φ(X0)− 1 ≥ −N−c ≥ −ε/12

(1 + ε/3)
, κ2-a.s.

This implies (3.242) after rearrangement.

As a consequence, we have the following corollary.

Corollary 3.6.5. For large N , there exists a probability space (Σ2,
B2, Q2) endowed with random sets I1 with the same law as I1 under
P I1 and I2 with the same law as I2 under P I2 , such that

(3.245) I1 ⊇ I2, Q2-a.s.

Proof. This follows immediately from the domination of measures.
Indeed, we first construct I2 on some probability space. Then we
consider the positive measure on Γ(UN )

(3.246) α = (1 + ε/3)κ1 − (1 + ε/4)κ2,

and construct (independently from I2) a Poisson point process η̂ on
Γ(UN ) with intensity measure α. Then I1 = (

⋃
γ∈supp(η̂) Range(γ)∩

A1) ∪ I2 has the required law.

On another auxiliary probability space (O′
2,F ′

2,PI′
2), we denote

by η′2 the law of the Poisson point process on Γ(UN ) with intensity
(1 + ε/4)u∗∗cap(A1)
κ′2, where κ′2 is defined as the stopped process X·∧TA2

under PẽA1
, or

equivalently P ẽA1
. Contrary to the definition of a “long excursion”,

we would like to call X[HA1 ,TA2 )
a “short excursion”, since we stop the

excursion earlier than a “long excursion” (this is because TA2 < V1).
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In other words, κ′2 is the measure of “short excursions” started from
the normalized equilibrium measure of A1. We denote by

(3.247) I ′2 =
⋃

γ∈supp(η′
2)

Range(γ) ∩ A1

the trace of η′2 in A1. Hence, we can naturally construct the fourth
coupling such that I2 dominates I ′2 almost surely, which is stated in
the corollary below.

Corollary 3.6.6. When N is large, there exists a probability space
(Σ′

2,B′
2, Q

′
2), endowed with random sets I ′2 with the same law as I ′2

under PI′
2 , and I2 with the same law as I2 under PI2 such that

(3.248) I2 ⊇ I ′2, Q′
2-a.s.

The fifth coupling establishes the stochastic domination of I ′2 on
the trace of I(1+ε/8)u∗∗ in A1. It is reproduced from [7].

Proposition 3.6.7. When N is large, there exists a probability
space (Σ3,B3, Q3) endowed with random sets I with the same law
as Iu∗∗(1+ε/8) ∩ A1 under P and I ′2 with the same law as I ′2 under
P I′

2 , such that

(3.249) Q3

[
I ′2 ⊇ I

]
≥ 1− e−Nc

.

We refer the readers to Proposition 5.4 of [7] and to Section 9 of
[7] for its proof.

The next proposition links together the above couplings from
Propositions 3.6.2, 3.6.3, Corollaries 3.6.5, 3.6.6, and Proposition 3.6.7.
We prove that for any x0 in the “strip” ΓN , the probability that it
is connected in V [i.e., the vacant set of the random walk, see below
(3.16)] to the (inner) boundary of Ax0

1 is small.

Proposition 3.6.8. For large N and all x0 ∈ ΓN , one has

(3.250) P̃N

[
x0

V←→ ∂iA
x0
1

]
≤ e−c log2 N .

Proof. First, by Corollary 3.3.8, Proposition 3.6.1 and the first two
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couplings [namely Proposition 3.6.2 (see ibid. for notation) and Corol-
lary 3.6.3], one knows that for large N ,

P̃N

[
x0

V←→ ∂iA
x0
1

] (3.69)

≤ P 0

[
x0

(X[R2,TN ))
c

←→ ∂iA
x0
1

]

(3.233)

≤
(3.234)

P J
2

[
x0

Ǎc

←→ ∂iA
x0
1

]
+ e−c log2 N(3.251)

(3.239)

≤ P I1
[
x0

Ic
1←→ ∂iA

x0
1

]
+ e−c′ log2 N .

Then, by the third, fourth and fifth couplings, namely Corollaries
3.6.5, 3.6.6 and Proposition 3.6.7, and the strong super-criticality
of random interlacements [see (3.25)], for large N , one obtains the
following inequalities:

PI1
[
x0

Ic
1←→ ∂iA

x0

1

] (3.245)

≤ PI2
[
x0

Ic
2←→ ∂iA

x0

1

]

(3.248)

≤ PI′
2
[
x0

I′c
2←→ ∂iA

x0
1

]
(3.252)

(3.249)

≤ Q3

[
x0

Ic

←→ ∂iA
x0
1

]
+ e−Nc (3.25)

≤ e−Nc′

,

which show that the first term to the right of the last inequality in
(3.251) has a stretched exponential decay in N . The claim (3.250)
hence follows by inserting (3.252) into (3.251).

We are ready now to state and prove the main result of this
section, namely that the tilted disconnection probability tends to 1
as N tends to infinity.

Theorem 3.6.9.

(3.253) lim
N→∞

P̃N [KN
V
=∞] = 1.

Proof. Note that for large N , if a nearest-neighbour path connects
KN and infinity, it must go through the set ΓN at some point x0 [see
above (3.119) for the definition of ΓN ]. Hence, it connects x0 to the
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inner boundary of Ax0
1 , so that

(3.254) {KN
V
=∞}c ⊂

⋃

x0∈ΓN

{
x0

V←→ ∂iA
x0
1

}
.

Thus, we see that for large N ,

(3.255) P̃N

[
{KN

V
=∞}c

]
≤

∑

x0∈ΓN

P̃N

[
x0

V←→ ∂iA
x0
1

]
.

By Proposition 3.6.8, we find that for large N , uniformly for each
x0 ∈ ΓN , we can bound each term on right-hand side of (3.255), and
find

(3.256) P̃N

[
{KN

V
=∞}c

]
≤
∣∣ΓN

∣∣e−c log2 N −→
N→∞

0.

This completes the proof of Theorem 3.6.9.

3.7 Denouement and epilogue

In this section, we combine the main ingredients, namely Theo-
rem 3.6.9 and Proposition 3.3.14 and prove Theorem 3.1.1.

Proof. Proof of Theorem 3.1.1 We recall the entropy inequality [see

(3.27)], and apply it to P0 and P̃N (which is defined in Section 3.3).
By Theorem 3.6.9, one has

(3.257) lim
N→∞

P̃N [KN
V
=∞] = 1,

thus the relative entropy inequality (3.27) yields that
(3.258)

lim inf
N→∞

1

Nd−2
log
(
P0[KN

V
=∞]

)
≥ − lim sup

N→∞

1

Nd−2
H(P̃N |P0).
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Then, as in the proof of Proposition 3.3.14, taking consecutively the
lim sup as η → 0, R→∞, δ → 0 and ε→ 0, one has

lim sup
ε→0

lim sup
δ→0

lim sup
R→∞

lim sup
η→0

lim sup
N→∞

1

Nd−2
H(P̃N |P0)

≤ u∗∗
d

cap
Rd(K),

(3.259)

proving Theorem 3.1.1.

Remark 3.7.1. Assume for simplicity that the compact K is regu-
lar. Notice that unlike what happens for d ≥ 5, when d = 3, 4, the
function h defined in (3.8) is not in L2(Rd), and hN (x) = h( x

N ) is
not in l2(Zd). This fact affects TN defined in (3.48) (TN/N

d diverges
if R→∞ when d = 3, 4, but not when d ≥ 5).

One can wonder whether this feature reflects different qualitative
behaviours of the random walk path under the conditional measure

P0[·|KN
V
=∞] when N becomes large.

Appendix

In the appendix, we include the proof of Propositions 3.5.7 and 3.6.1.

Proof of Proposition 3.5.7. We first prove that for x ∈ ∂iA1

(3.260)∣∣∣∣P x[V < H̃A1 ]− Pσ[XHA1
= x]

∑

y∈∂iA1

P y[V < H̃A1 ]

∣∣∣∣ ≤ e−c log2 N ,

and, as we will see, the claim (3.231) will then follow. We consider
in the left-hand side of (3.261) the probability that the random walk
started from x ∈ ∂iA1 stays in D for a time interval of length t∗
before returning to A1, and then returns to A1 through some vertex
other than x. By reversibility of the confined walk, and the fact
that by claim 3 of (3.50) and claim 1 of (3.70), π(y) = π(x) for all
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y ∈ ∂iA1, this probability can be written as

∑

y∈∂iA1\{x}

P x[V < H̃A1 , XHA1
= y]

=
∑

y∈∂iA1\{x}

P y[V < H̃A1 , XHA1
= x].

(3.261)

As in (3.236), we consider L defined by

(3.262) L = sup{l : τl ≤ V, Zl ∈ A2}.

We consider the summands from (3.261): for all x, y ∈ ∂iA1, we sum
over all possible values of L and XτL = ZL [recall the definition of τl
in (3.15) and the relation between Xτl and Zl in (3.14)], and apply
Markov property at the times τl+1 and τl+1 + t∗:

P x[V < H̃A1 , XH̃A1
= y]

=
∑

l≥0,x′∈∂iA2

P x

[
L = l, Zl = x′, V < H̃A1 , XH̃A1

= y
]

=
∑

l≥0,x′∈∂iA2

P x

[
Zl = x′, τl < H̃A1 ∧ V,HA2 ◦ θτl+1

> t∗, XH̃A1
= y

]

=
∑

l≥0,x′′∈D

x′∈∂iA2

Px′′ [XHA1
= y]Ex

[
Zl = x′, τl < H̃A1 ∧ V,

PZl+1
[HA2 > t∗]PZl+1

[
Xt∗ = x′′|HA2 > t∗

]]
,

(3.263)

[we will soon use the fact that the conditioned probability in the last
expression is close to σ(x′′) by Proposition 3.5.5]. Similarly, we have

P x[V < H̃A1 ](3.264)
=

∑

l≥0,x′∈∂iA2

Ex

[
Zl = x′, τl < H̃A1 ∧ V, PZl+1

[HA2 > t∗]
]
.
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This implies that

Px[V < H̃A1 ]P σ[XHA1
= y]

=
∑

l≥0,x′′∈D

x′∈∂iA2

Ex

[
Zl = x′, τl < H̃A1 ∧ V, PZl+1

[HA2 > t∗]
]

(3.265)

× σ
(
x′′
)
P x′′ [XHA1

= y].

Hence, by combining (3.263) and (3.265) we have

∣∣P x[V < H̃A1 , XH̃A1
= y]− Px[V < H̃A1 ]P σ[XHA1

= y]
∣∣

(3.266)
(3.216)

≤ e−c log2 N .

Applying this estimate in both sides in (3.261), we obtain that

∣∣∣∣P x[V < H̃A1 ]P σ[XHA1
6= x]−

∑

y∈∂iA1\{x}

Py[V < H̃A1 ]P σ[XHA1
= x]

∣∣∣∣

≤ e−c log2 N .

(3.267)

Finally, by adding and subtracting P x[V < H̃A1 ]P σ[XHA1
= x], we

obtain (3.260) as desired.
Now we prove (3.231). By (3.23) and (3.230) one has that

(3.268)
∑

y∈∂iA1

P y[V < H̃A1 ]ẽA1(x) ≥ N−c′ .

Hence dividing (3.260) by the left-hand term of (3.268), one obtains
(3.269)∣∣∣∣

P x[V < H̃A1 ]∑
y∈∂iA1

P y[V < H̃A1 ]ẽA1(x)
−
P σ[XHA1

= x]

ẽA1(x)

∣∣∣∣ ≤ e−c′ log2 N ,

and together with (3.226) the proof of (3.231) is complete.

Proof of Proposition 3.6.1. In this proof, we always assume that N
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is sufficiently large. We recall the definition of TN in (3.48) and the
choice of ε in (3.35). In order to prove (3.233), we observe that,
P 0-a.s.,

{RJ ≥ TN}

⊂
{
HA1 +HA1 ◦ θV1 + · · ·+HA1 ◦ θVJ−1 ≥

(
1− ε

100

)
TN

}

∪
{
V ◦ θR1 + · · ·+ V ◦ θRJ−1 ≥

ε

100
TN

}
,

(3.270)

that is, the (unlikely) event {RJ ≥ TN} happens only when either
the sum of HA1 ’s exceeds a quantity close to TN or the sum of shifted
V ’s exceeds a small quantity (but still of order TN ). Now we give an
upper bound to their respective probabilities. We define

(3.271) tN = sup
y∈UN

Ey[HA1 ],

which is the maximum of the expected entrance time in A1 start-
ing from an arbitrary point in UN (it is not much bigger than
Eπ[HA1 ] by (3.157)). By the exponential Chebychev inequality and
the strong Markov property applied inductively at V1, . . . , VJ−1 and
R1, . . . , RJ−1, we deduce from (3.270) that, for any θ > 0,

P 0[RJ ≥ TN ]

≤ exp

(
−θ
(
1− ε

100

)
TN
tN

)(
sup

x∈UN

Ex

[
exp

(
θ
HA1

tN

)])J

(3.272)

+ exp

(
− ε

100

TN
tN

)(
sup
x∈A1

Ex

[
eV/tN

])J
.

We now treat the first term on the right-hand side of (3.272). Khaśmin-
skii’s lemma (see (4) and (6) in [35]) states that for all B subset of
UN and n ≥ 1,

(3.273) sup
x∈UN

Ex

[
Hn

B

]
≤ n! sup

y∈UN

Ey[HB]
n.
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Hence, we have, for θ ∈
(
0,

1

2

)
,

sup
x∈UN

Ex

[
exp

(
θ
HA1

tN

)]
≤

∞∑

j=0

θj

j!tjN
sup

x∈UN

Ex

[
Hj

A1

]

(3.273)

≤
(3.271)

∞∑

j=0

θj =
1

1− θ .
(3.274)

Now, we derive an upper bound for supx∈A2
Ex[exp(

V
tN

)] and treat
the second term on the right-hand side of (3.272). We first note that,
P x-a.s. for any x ∈ A2,

V ≤ (TA3 + t∗)1{HA2◦θTA3
>t∗}

+ (TA3 + t∗ + V ◦ θHA2
◦ θTA3

)1{HA2◦θTA3
≤t∗}(3.275)

= TA3 + t∗ + V ◦ θHA2
◦ θTA3

1{HA2◦θTA3
≤t∗}.

By the strong Markov property applied at HA2 ◦θTA3
+TA3 and TA3 ,

we have

sup
x∈A2

Ex

[
eV/tN

]

(3.275)

≤ sup
x∈A2

Ex

[
e(TA3+t∗)/tN

](
1+

sup
y∈UN\A3

P y[HA2 ≤ t∗] sup
x∈A2

Ex

[
eV/tN

])

(3.129)

≤ sup
x∈A2

Ex

[
e(TA3+t∗)/tN

](
1 +N−c sup

x∈A2

Ex

[
eV/tN

])
.

(3.276)

By Proposition 3.4.5, we have

1

tN

(3.271)

≤ 1

Eπ[HA1 ]

(3.149)

≤
(
1 +N−c

)cap(A1)

TN
u∗∗(1 + ε)

(3.277) (3.52)5.

≤
(3.22)

cN−d+r1(d−2).
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By an elementary estimate on simple random walk and the observa-
tion that the diameter of A3 is smaller than cN r3 , we have

(3.278) Ex[TA3 ]
(3.122)
= Ex[TA3 ] ≤ cN2r3 for all x ∈ A3,

therefore we obtain that

(3.279)
supx∈A3

Ex[TA3 ]

tN
≤ cN−d+2r3+(d−2)r1 ≤ N−c′ .

By an argument like (3.274), again with the help of Khaśminskii’s
lemma [see (3.273)], we obtain that

(3.280) sup
x∈A2

Ex

[
exp

(
TA3

tN

)]
≤ 1

1−N−c
≤ eN−c′

for large N.

Moreover, we obtain from (3.277) that

(3.281)
t∗
tN

(3.95)

≤ cN−c′ .

We apply (3.280) and (3.281) to the right-hand side of (3.276), and
conclude after rearrangement [and with an implicit truncation argu-
ment where V in (3.275) and (3.276) is replaced by V ∧M ] that

(3.282) sup
x∈A2

Ex

[
eV/tN

]
≤ eN−c

.

We now return to (3.272). Substituting (3.274) and (3.282) into
(3.272) and using the fact that for 0 ≤ θ ≤ 1

2 ,

(3.283) (1 − θ)−1 ≤ 1 + θ + 2θ2 ≤ eθ+2θ2

,
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we deduce that

P 0[RJ ≥ TN ]

≤ exp

(
−θ
(
1− ε

100

)
TN
tN

+
(
θ + 2θ2

)
J

)

+ exp

(
− ε

100

TN
tN

+N−cJ

)

(3.232)

≤
(3.283)

exp

(
−θ
(
1− ε

100

)
TN
tN

+
(
θ + 2θ2

)⌊
(1 + ε/2)u∗∗cap(A1)

⌋)

+ exp

(
− ε

100

TN
tN

+N−c
⌊
(1 + ε/2)u∗∗cap(A1)

⌋)
.

(3.284)

Recall the definition of fA1 in (3.126). Using Lemma 3.4.6, we know
that for all x ∈ UN

(3.285)
Ex[HA1 ]

Eπ[HA1 ]
= 1− fA1(x)

(3.153)

≤ 1 +N−c ≤
(
1− ε

100

)−1

.

Hence, by Proposition 3.4.7 we obtain that
(3.286)
TN
tN
≥
(
1− ε

100

)
TN

Eπ[HA1 ]

(3.166)

≥
(
1− ε

50

)
(1 + ε)u∗∗cap(A1).

By choosing an appropriately small θ and applying (3.286) we know
that for large N ,

(3.287) −θ
(
1− ε

100

)
TN
tN

+
(
θ+2θ2

)⌊
(1+ε/2)u∗∗cap(A1)

⌋
≤ −N c,

moreover, we also know that for large N

(3.288) − ε

100

TN
tN

+N−c
⌊
(1 + ε/2)u∗∗cap(A1)

⌋
≤ −N c′ .

Inserting (3.287) and (3.288) into (3.284), we obtain (3.233) as de-
sired.
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