
DISS. ETH NO. 23449

AN ANALYSIS OF THREE VARIANTS OF FORWARD
GUIDANCE CONTRACTS

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

YULIN LIU

M.Sc. in Physics, ETH Zurich

born on 06.07.1986

citizen of China

accepted on the recommendation of

Prof. Dr. Hans Gersbach (ETH Zurich), examiner
Prof. Dr. Jan-Egbert Sturm (ETH Zurich), co-examiner

2016





日往則月來

月往則日來

日月相推而明生焉

«易經»

献给故土的亲人

流落四方的友人

和我挚爱的祖国





Remerciements

J’ai eu l’opportunité de pouvoir travailler pendant presque trois ans en tant que doctorant
du groupe de Macroéconomie: Innovation et Politique, encadré par des gens différents
qui tous m’ont appris énormément. Je tiens à remercier vivement tout ces membres du
groupe pour leur convivialité et leur sympathie.

Tout d’abord, je tiens à remercier mon directeur de thèse, le Professeur Hans Gersbach,
qui m’a permis de travailler dans son équipe, de faire un tout petit pas dans le monde
économique et qui m’a fait confiance pendant tout le doctorat pour la démarche scien-
tifique utilisée lors de mes recherches et pour mes compétences. Merci d’avoir fait de moi
un professionnel. Vos grandes compétences en économie m’ont beaucoup aidé à résoudre
les questions rencontrée au cours de ma thèse. Merci de m’avoir soutenu financièrement
pour apprendre l’allemand.

Je tiens également à remercier le Professeur Volker Hahn, qui, avec le professeur Hans
Gersbach, est co-auteur du troisième chapitre de la thèse. Ses compétences techniques
ainsi que sa capacité à discuter ouvertement de questions scientifiques ont grandement
contribué à notre travail commun et aussi à ma motivation personnelle pour travailler
aussi bien sur des idées générales que sur des détails. Je tiens à remercier mes deux
co-auteurs pour cette coopération fructueuse.

En outre, je tiens à remercier mon co-conseiller, le Professeur Jan-Egbert Sturm, pour sa
volonté inconditionnelle de m’aider à mener à bien mon travail. J’ai beaucoup appris à
ses conférences et pendant de nombreuses discussions.

Ma gratitude va particulièrement à Margrit Buser. Merci Margrit pour ta gentillesse et
ton aide durant toutes les années de ma thèse. Tu m’a donné beaucoup de suggestions.
Merci pour ton soutien et ta disponibilité. Je te remercie également pour la correction de
manuscrit.

Mes remerciements s’adressent également à Martin Tischhauser pour son soutien à la fin
de ma thèse.

Aussi je suis tellement reconnaissant pour le temps passé avec vous, les gens, Afsoon,
Aurore, Elias, Evgenij, Johannes, Jürg, Kamali, Maik, Marie, Marina, Martin, Oriana,
Philippe, Quirin, Salomon, Samuel, Stelios, Ulrich, Vitalijs, et Volker Britz. Merci pour
les agréables moments passés ensemble.



vi

Enfin, je tiens à remercier en particulier ma famille et mes amis qui m’ont soutenu sans
réserve, et m’ont accompagné aussi bien pendant les moment difficiles que les jours où
tout allait comme sur des roulettes.



Abstract

We examine “Forward Guidance Contracts", i.e. contracts that make central bankers’
utility contingent on the precision of their interest-rate forecasts. We integrate these con-
tracts into the New Keynesian Framework and study how they can be used to overcome a
liquidity trap.

After an Introduction, in which we explain the motivation, approach, literature and orga-
nization of this research, Chapter 2 presents the micro-foundations of our model and in
particular a foundation of the central banker’s utility function when the government offers
him a wage contract composed of a fixed wage and a variable component that increases
with the accuracy of the interest-rate forecast.

Chapter 3 studies the properties of simple renewable Forward Guidance Contracts and
characterizes the contracts that the government wants to offer repeatedly. These contracts
create favorable tradeoffs between the efficacy of forward guidance at the zero bound and
the reduced flexibility in reacting to future events. In addition, we discuss which type
of Forward Guidance Contracts can be used when there is uncertainty about natural real
interest-rate shocks, a situation which typically calls for moderate incentive intensity.

Long-term contracts are explored in Chapter 4 in an alternative contractual environment.
We show that when the size of shock is severe, longer-term contracts could lower social
losses further compared to short-term contracts. Severe natural real interest-rate shocks
require large incentive intensities with long durations to mitigate the deflation and output
collapse in downturns. While such contracts can yield even lower social losses, they also
constrain the central bank for a long time and may thus be problematic, as unforeseen
events requiring greater flexibility may occur in the interim.

The last chapter of the thesis deals with contracts that are contingent on certain macroe-
conomic variables, e.g. natural real interest rate or inflation expectation, for instance. The
contract, signed in downturns, is in effect as long as certain criteria are fulfilled, e.g. the
contract expires one period after the natural real interest rate achieves 2%. With such con-
tracts, the government does not have to re-sign the simple, renewable Forward Guidance
Contracts repeatedly, while the same effect can be achieved.
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Zusammenfassung

Diese Dissertation befasst sich mit “Forward Guidance Contracts" (FGC), d. h. mit
Verträgen, welche die Nutzenfunktion eines Zentralbankers von der Präzision seiner Zin-
sprognosen abhängig machen. Wir integrieren solche Verträge in einen Neu-Keynesianische
Rahmen und analysieren, wie sie eingesetzt werden können, um eine Liquiditätsfalle zu
überwinden.

In der Einführung legen wir die Motivation für unsere Arbeit dar, entwerfen das Ver-
fahren, nach dem wir vorgehen wollen, und stellen den Bezug zur Literatur zu diesem
Thema her. Kapitel 2 präsentiert die mikroökonomischen Grundlagen des Modells, ins-
besondere wird die Nutzenfunktion des Zentralbankers erarbeitet, wenn ihm die Regierung
einen Vertrag anbietet, in dem sowohl ein festes Gehalt als auch eine variable Gehaltskom-
ponente enthalten sind. Die variable Komponente ist von der Präzision der Zinsprognose
abhängig, welche der Zentralbanker gemacht hat.

Kapitel 3 untersucht die Eigenschaften von einfachen, erneuerbaren FGCs und beschreibt
diejenigen Verträge, welche eine Regierung wiederholt anbieten wird, weil sie einen
vorteilhaften Kompromiss darstellen zwischen der Wirksamkeit von “forward guidance"
an der Nullzinsgrenze und der mit dem Vertrag einhergehenden Reduzierung der Flex-
ibilität, auf zukünftige Ereignisse zu reagieren. Wir analysieren auch, welche Art von
Verträgen genutzt werden kann, wenn eine Unsicherheit bezüglich der Ausprägung des
natürlichen Realzins-Schocks besteht—eine Situation, die in der Regel eine moderate
Anreiz-Intensität erfordert.

In Kapitel 4 werden langfristige Verträge untersucht, welche in alternativen Vertrag-
sumgebungen implementiert werden. Wir zeigen, dass langfristige Verträge dann bessere
Ergebnisse bringen, wenn der Realzins-Schock beträchtlich ist: Sie können Wohlfahrtsver-
luste effizienter mindern als kurzfristige Verträge. Grosse natürliche Realzins-Schocks
erfordern hohe Anreize und lange Laufzeiten, wenn sie Deflationen und Produktionsein-
brüche in Abschwüngen abmildern sollen. Solche Verträge können zwar die Wohlfahrtsver-
luste mindern, doch sie binden die Zentralbank auf lange Sicht, was insbesondere beim
Auftreten von unvorhergesehenen Ereignissen nachteilig ist—weil solche Ereignisse nach
höherer Flexibilität verlangen, als es die Vertäge zulassen könnten.

iii



iv

Das letzte Kapitel der Dissertation wendet sich einer besonderen Art von FGC zu, denjeni-
gen, welche an bestimmte makroökonomische Variablen gebunden sind, wie zum Beispiel
an das erwartete Ausmass der Inflation oder an den Realzinssatz. Ein Vertrag, welcher in
einem Abschwung unterzeichnet worden ist, gilt so lange wie bestimmte Kriterien er-
füllt sind. Der Vertrag endet zum Beispiel sobald der natürliche Realzins bei 2% liegt.
Die Regierung muss solche Verträge nicht immer wieder unterzeichnen und erreicht doch
dieselben Ziele wie mit den regelmässig erneuerten Forward Guidance Contracts.



Contents

Contents v

List of Figures ix

1 Introduction 1
1.1 Forward Guidance in a Liquidity Trap 1
1.2 Approach and Results 3
1.3 Literature 4
1.4 Organization of the Thesis 6

2 Microfoundation 9
2.1 Set-up 9
2.2 The Representative Household’s Problem 10
2.3 Firms and Goods Market Clearing 13
2.4 Government 13
2.5 Transversality Conditions 14
2.6 Utility Functions 15
2.7 Log-linearization around the Steady State 15
2.8 Phillips Curve 16
2.9 IS Equation 20
2.10 LM Curve 21
2.11 Intertemporal Social Losses 21
2.12 Microfoundation of the Central Banker’s Objective Function 25
2.13 List of Variables and Notations 28

3 Simple Forward Guidance Contracts 31
3.1 A General Framework 31
3.2 Discretion without Forward Guidance Contracts 34
3.3 Forward Guidance Contracts 35

3.3.1 Optimal Contracts with Commitment to Contracting 40
3.3.2 Optimal Contracts without Commitment to Contracting 42

3.4 Forward Guidance Contracts under Uncertainty 44
3.5 Discussion and Conclusion 48
3.6 List of Variables and Notations 49

4 Longer-term Forward Guidance Contracts 51
4.1 Benchmark Solution 52
4.2 Two-period Forward Guidance Contract 53

4.2.1 The Sequence of Events 53
4.2.2 Evolution of the Economy 55

v



vi Contents

4.2.3 Optimal Contracts 57
4.2.4 Examples 59
4.2.5 Interest Rate Forecasts in Downturns 62

4.3 Ex Ante Forward Guidance Contracts 62
4.4 Longer-term Forward Guidance Contracts 74
4.5 Discussion and Conclusion 77

5 State-contingent Forward Guidance Contracts 79
5.1 Introduction 79
5.2 Evolution of Economics 80
5.3 Optimal Design 89
5.4 Equivalence of SFGC (b, 1) and Simple Renewable FGC 93
5.5 Discussion and Conclusion 95

6 Conclusions and Outlook 97

A Proofs for Chapter 3 101
A.1 Proof of Lemma 3.1 101
A.2 Proof of Lemma 3.2 101
A.3 Proof of Lemma 3.3 104

A.3.1 Preliminary steps 104
A.3.2 Deviation in state L when a contract was signed in the previous

period 105
A.3.3 Deviation in stateLwhen a contract was not signed in the previous

period 106
A.3.4 Evaluating condition (A.19) 106
A.3.5 Verifying that the zero lower bound binds for the deviations 107
A.3.6 Simplifying condition (A.19) 108

A.4 Proof of Proposition 3.2 108
A.5 Proof of Lemma 3.4 108
A.6 Proof of Proposition 3.3 109

B Proofs for Chapter 4 111
B.1 Benchmarks 111

B.1.1 Discretionary Policy 111
B.1.2 Commitment Policy 116
B.1.3 One-period Shock 119

B.2 Proof of Lemma 4.2 126
B.3 Proof of Proposition 4.1 128
B.4 Proof of Proposition 4.2 133
B.5 Proof of Lemma 4.3 135
B.6 Proof of Lemma 4.4 137

C Proofs for Chapter 5 141
C.1 Proof of Lemma 5.2 141
C.2 Proof of Proposition 5.1 142

Bibliography 145



Contents vii

Curriculum Vitae 149





List of Figures

3.1 The sequence of events. 33
3.2 Inflation, output gap, and interest rate as a function of the value of b in

state H with an active contract. 37
3.3 Inflation (dashed curves) and output gap (solid curves) as a function of the

value of b for different shock sizes. 38
3.4 The function f(b) and three horizontal curves representing the right-hand

side of (3.19) for different shock sizes. 39
3.5 The values of f ∗ and 2f̃ , scaled by |πDL |, for the range of δ satisfying

Assumption 3.1. 43
3.6 Discounted social losses with optimal FGC(b∗), in the discretionary case

(right axis), and the ratio of these two discounted social losses (left axis),
as functions of rL (dashed curve represents rL = rcL). 44

3.7 Discounted social losses under FGC, as a function of rL, for different
values of b. 45

3.8 r̃cL as a function of b̃. 47
3.9 Discounted social losses with an FGC with b = b̃ = 0.1, under discretion

and when b is tailored to the realization of the shock. 47
4.1 The sequence of events. 54
4.2 The threshold value r̂L with respect to δ. 59
4.3 Optimal b with respect to the size of the shock rL. 60
4.4 The critical value rcL with respect to δ. 60
4.5 The inflation rates in period 0 and in period 1 w.r.t. b when the economy

is in the downturn. 61
4.6 The output gaps in period 0 and in period 1 w.r.t. b when the economy is

in the downturn. 61
4.7 The inflation and output gap in period 1 w.r.t. b when the economy recov-

ers in period 1. 61
4.8 The intertemporal social losses of two-period FGC w.r.t. b. 61
4.9 The inflation rates in period 0 and in period 1 w.r.t. b when the economy

is in a downturn. 63
4.10 The output gaps in period 0 and in period 1 w.r.t. b when the economy is

in a downturn. 63
4.11 The inflation and output gap in period 1 w.r.t. b when the economy recov-

ers in period 1. 63
4.12 The intertemporal social losses of a two-period FGC w.r.t. b. 63
4.13 The evolution of the inflation and output gap with optimal value of b in

the downturn. 64
4.14 The evolution of the inflation rate and output gap with optimal value of b

in the normal time. 64

ix



x List of Figures

4.15 The evolution of the inflation rate and output gap with optimal value of b
in the normal time with rL = −0.003. 65

4.16 The distribution of the natural real interest rate after the shock. 66
4.17 The values of πd1

0 and xd1
0 in function of rL1 ∈ [−0.1, rcL] for different

values of b, where rcL = −0.009 in our calibration. 67
4.18 The optimal nominal interest rate in function of rL2 for different values of b. 71
4.19 The optimal nominal interest rate in function of rL3 for different values of b. 71
4.20 The evolution of the expected intertemporal social losses in periods 0 and

1 in function of ω1, for different values of b. 72
4.21 The optimal values of b in function of ω1. 73
4.22 The expected intertemporal social losses in periods 0 and 1 with the opti-

mal b, with b = 0.001 and without FGCs, in function of ω1. 73
4.23 The optimal value of b∗ for FGCs with different durations. 76
4.24 The expected social losses for FGCs with different durations, as functions

of rL (rL ∈ [−0.01, 0]). 77
4.25 The expected social losses for FGCs with different durations, as functions

of rL (rL ∈ [−0.05, 0]). 78
5.1 The nominal interest rate in period τ in function of the incentive intensity

b for different forecasts. 82
5.2 The nominal interest rate in period τ in function of the interest rate fore-

cast ifτ for different b. 84
5.3 Inflation and output gap in period τ in function of the incentive intensity

b for different forecasts. Solid and dashed lines represent inflation and
output gap, respectively. 84

5.4 Inflation and output gap in period τ in function of the interest rate forecast
ifτ for different b. Solid and dashed lines represent inflation and output
gap, respectively. 85

5.5 Inflation and output gap in downturns in function of the incentive intensity
b for different shock sizes, with ifτ = 0. Solid lines and dashed lines
represent the inflation and output gap, respectively. 87

5.6 Inflation and output gap in downturns in function of the incentive intensity
b for different forecast values, with rL = −0.01. Solid lines and dashed
lines represent the inflation and output gap, respectively. 87

5.7 The left column and right column represent the inflation and output gap
in downturns, respectively. The dashed lines are the contour lines. 88

5.8 The interest rate forecast in function of b for different shock sizes. 89
5.9 The critical value rcL. 90
5.10 Interest rate forecast ifτ in function of the shock size for different incentive

intensities b. 91
5.11 Interest rate inτ in function of the shock size for different incentive inten-

sities b. 92
5.12 Inflation and output gap in period τ in function of the shock size for dif-

ferent incentive intensities b. Solid lines and dashed lines represent the
inflation and output gap, respectively. 92



List of Figures xi

5.13 Inflation and output gap in period τ in function of the incentive intensity b
with the optimal forecast. Solid lines and dashed lines represent inflation
and output gap, respectively. 93

5.14 The expected intertemporal social loss in function of the incentive inten-
sity b with the optimal forecast. 94

5.15 The expected intertemporal social loss in function of the size of shock for
different values of b. 94

B.1 The evolution of inflation after a negative natural real interest rate shock
rL = −0.03 when the economy returns to the steady state at τ = 10. 114

B.2 The evolution of inflation after a negative natural real interest rate shock
of rL = −0.03 when the economy returns to the steady state at τ = 15. 115

B.3 The blue line represents the denominator h(δ). It crosses the x-axis at
δc = 0.69. The red and yellow lines represent the inflation and output gap
levels in the downturn, respectively. 116

B.4 The evolution of the inflation from period 0 to period 10. 123
B.5 The evolution of the output gap from period 0 to period 10. 123
B.6 The evolution of the interest rate from period 0 to period 10. 124
B.7 The evolution of inflation and of output gap from period 3 to period 10. 124
B.8 The evolution of the interest rate from period 3 to period 10. 125
B.9 The evolution of δo8 and σo5 with respect to δ. The vertical black line

represents the critical value δc. 130
B.10 The evolution of the optimal b and b̂ in function of rL. 132
B.11 The values of rcL and r̂L in function of δ. rcL and r̂L cross at r̂L = 0.55 and

rcL = 0.69. 134
B.12 The numerator of Equation (B.135) in function of δ. 136
B.13 The numerator of Equation (B.136) in function of δ. 137
B.14 The optimal nominal interest rate in function of rL1 for different values of b.139





1 Introduction

1.1 Forward Guidance in a Liquidity Trap

Since the financial crisis of 2007-08, the global economy has been suffering from deflation
and depressed output. Major central banks, e.g. the Federal Reserve (Fed), the Bank of
Japan (BoJ), and the European Central Bank (ECB), for instance, have taken various
actions to lower the real interest rate to stimulate the economy.

We briefly review and summarize the Fed’s responses1 to the financial crisis as follows.

In 2008, the Federal Open Market Committee (FOMC) lowered its policy rate—federal
funds rate—rapidly to the near-zero level. When the policy rate is in the vicinity of the
zero lower bound, the substitutability between money and bonds becomes very high. In
such circumstances, further monetary easing becomes ineffective since the opportunity
cost of holding money is zero and the economic agents start hoarding money—a situation
called liquidity trap.

In the presence of a liquidity trap, it is vital to create inflationary expectation to lower the
real interest rate. The Fed started to make public statements about its future actions. In
particular, it pledged to refrain from increasing the short-term interest rates until certain
criteria have been fulfilled.2

In December 2008, the Fed started to do forward guidance3:

“[...] the Committee anticipates that weak economic conditions are likely to

warrant exceptionally low levels of the federal funds rate for some time."

Three months later, the Fed made quite a similar statement except that the term “some
time" was replaced by “an extended period".

1 In major advanced economies, other central banks have adopted similar policies in the aftermath of the
financial crisis.

2 Apart from lowering the policy rate rapidly to the near-zero level and signaling its intention to keep it
lower for a longer period, the Fed has launched several Large Scale Asset Purchasing (LSAP) programs.
Besides, fiscal stimulus was carried out along with this aggressive unconventional monetary policy. Eg-
gertsson and Woodford (2003), Eggertsson and Woodford (2004), Eggertsson (2006), and Correia et al.
(2013) analyze the use of fiscal policy to reduce saving and to stimulate aggregate demand in the presence
of zero lower bound. However, in this thesis, we solely examine how to conduct forward guidance to
undo the liquidity trap.

3 See Federal Reserve Board (2008).
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2 Introduction

These two announcements can be categorized as “open-ended forward guidance", as no
date to exit from the “low levels of the federal funds rate" was mentioned explicitly. The
open-ended forward guidance gives central bank more flexibility to react to unforeseen
events. However, the efficacy of creating inflationary expectation is then substantially
reduced, since the public expects the central bank to raise the interest rate as soon as the
economy recovers.
In August 2011, the Fed started to do forward guidance with a more specific outlook4:

“The Committee currently anticipates that economic conditions—including

low rates of resource utilization and a subdued outlook for inflation over the

medium run—are likely to warrant exceptionally low levels for the federal

funds rate at least through mid-2013."

In January 2012, the expected end date was shifted to late 2014. In September 2012, it
was further shifted to mid-2015.
These types of forward guidance with explicit-time span are called “calendar-based for-
ward guidance". Later in 2012, the Fed started forward guidance that is contingent on
certain macroeconomic variables—known as “state-contingent forward guidance"5:

“[...] the Committee decided to keep the target range for the federal funds

rate at 0 to 1/4 percent and currently anticipates that this exceptionally low

range for the federal funds rate will be appropriate at least as long as the
unemployment rate remains above 6.5 percent, inflation between one and
two years ahead is projected to be no more than a half percentage point
above the Committee’s 2 percent longer-run goal, and longer-term inflation
expectations continue to be well anchored."

One year later, a similar announcement was made to reemphasize that the Fed’s effective
zero-rate policy would be kept up until certain criteria are fulfilled.
After the financial crisis, announcing the future stance of monetary policy has become
a common component in the toolbox of central banks. A broad academic and political
debate has emerged on the potential and limits of such forward guidance. A challenging
phenomenon has attracted particular attention: If an economy is hit by adverse shocks—
e.g. by a negative shock to financial intermediation—and the central bank’s reaction is
constrained by the zero bound on nominal interest rates, such a downturn will cause ex-
cessively high costs. Figuring out how the central bank can reduce the economic costs of
this downturn and can provide appropriate stimulus for the economy is a major challenge
for monetary policy—and the subject of ongoing debate.

4 See Federal Reserve Board (2011).
5 See Federal Reserve Board (2012).
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Several solutions to this problem have been proposed in the academic literature. Krugman
(1998), Eggertsson and Woodford (2003), and recently Werning (2011) have investigated
how the commitment to keeping the nominal interest rate at zero for several periods—
even beyond the duration in the discretionary solution—can generate favorable tradeoffs
between current downturns and a future boom, and can lower the intertemporal costs of
adverse shocks.

1.2 Approach and Results

As pointed out in Thornton (2012), central banks’ verbal guidance of “lower for longer"
tends to have little impact on the efficacy of forward guidance at the zero lower bound
due to a lack of credibility since central banks do not incur losses when they deviate from
their announcements6. Chehal and Trehan (2009) shows that central banks’ commitment
to keep future policy rates at low levels has a limited impact on the market’s expectation
and that there is no significant difference between the calendar-based and state-contingent
forward guidances. The reason behind this: In the period when the economy recovers,
the central banker would bring its accommodative monetary policy stance to an end re-
gardless of his past announcement since the announcement has no binding effect and the
loss of reputation does not enter his objective function. Then private parties realize this
time-inconsistency in downturns and thus do not expect inflation regardless of the central
bank’s announcements. In this thesis, we consider a general approach to make forward
guidance effective at the zero lower bound by introducing Forward Guidance Contracts
(henceforth FGCs) as an alternative and flexible commitment device. In particular, we
combine the standard New Keynesian Framework with FGCs to examine the zero-bound
problem7. These contracts work as follows: Central bankers announce their policy rate
for a particular time frame. The central bankers’ intertemporal utility is made dependent
on the accuracy of this forecast. For example, their pay, pension or the length of their
term could monotonically decrease with the size of the deviation of the actual interest-
rate choice from the forecast. Utility losses could also occur when scrupulous bankers
are appointed who are intrinsically reluctant to deviate from their own forecasts and thus
suffer utility losses when they do indeed deviate.

The gist of our model is that FGCs create partial commitment. Central bankers will try
to stick to the forecast but still deviate to some extent if future developments make such

6 One example is the Bank of Japan. After lowering its policy rate to 0.15%, the Bank of Japan announced
in April 1999 that the rate would be maintained at this level “until deflationary concerns are dispelled".
However, the rate was soon raised against the backdrop of a weak economy (inflation at around −0.5%
and the output gap still in the negative territory). See Shirai (2013).

7 See Eggertsson and Woodford (2003) and Eggertsson (2003).



4 Introduction

a commitment too costly. We show that repeated short-term FGCs can yield favorable
tradeoffs between the efficacy of forward guidance in helping to jump-start the economy
and a reduction of flexibility in responding to future developments.

At a more specific level, our results are as follows: First, we integrate simple renew-
able FGCs offered by the government into the New Keynesian Framework and provide a
microfoundation of these contracts. Second, we characterize and analyze optimal FGCs
when the government commits to using such contracts in downturns. Under these con-
tracts, the central banker sets interest rates in a downturn at zero and sets interest rates
immediately after the downturn at levels lower than the ones he would set under discre-
tion. The induced higher levels of inflation and output at the beginning of the future boom
feed back into higher current output and inflation. Third, we characterize the contracts
that the government chooses when it decides in each period whether to offer FGCs or not.
Two insights are central. On the one hand, short-term renewable FGCs can achieve a large
fraction of the possible welfare gains and long-term contracts are typically undesirable. If,
however, the natural real interest-rate shock is extremely severe, renewable longer-term
contracts can further improve welfare. On the other hand, the government may not be
able to commit to repeatedly using FGCs. However, in the numerical specification the
inability of governments to commit to using short-term contracts has no welfare costs.

Fourth, we characterize FGCs that yield welfare gains for an entire range of negative nat-
ural real interest-rate shocks when the contract parameters have to be chosen under a veil
of uncertainty about such shocks. Typically, the optimal intensity of central bankers’ in-
centives to stick to their forecasts is moderate in such circumstances. Fifth, we consider
an alternative contractual environment in which FGCs are signed at the beginning of a
given period t, become effective immediately, last two periods, and do not constrain the
interest-rate forecast in the contract. Such contracts can achieve welfare gains similar to
one-period contracts. In addition, they can easily be extended to longer-term contracts,
which can further improve welfare if the natural real interest-rate shock is extremely se-
vere. Last but not least, state-contingent FGCs can achieve welfare gains that are similar
to the simple renewable FGCs, while state-contingent FGCs exempt the government from
re-signing the contract repeatedly in downturns.

1.3 Literature

FGCs are a new type of contract for central bankers. They are related to earlier and
recent literature. Walsh (1995)8 proposes incentive contracts for central bankers and

8 The theory of incentive contracts was further developed in the influential papers by Persson and Tabellini
(1993), Beetsma and Jensen (1998), Beetsma and Jensen (1999), Jensen (1997), Lockwood (1997), and
Svensson (1997).
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shows that such contracts can eliminate the inflation bias and can induce socially desir-
able shock stabilization when central bankers face a classic time-inconsistency problem.
Gersbach and Hahn (2014) show that making deviations from inflation forecast costly
for central bankers can improve welfare in a standard New Keynesian Framework with a
time-inconsistency problem due to the so-called stabilization bias.

In this thesis we examine FGCs in which the central bankers’ utility is contingent on the
accuracy of their own forecast regarding their future policy choices. Our contribution to
the literature on contracts for central bankers is twofold. First, we examine FGCs in the
New Keynesian Framework with the zero lower bound. The credibility problem is unre-
lated to the inflation bias or the stabilization bias but a consequence of the possibility of
a liquidity trap (see Eggertsson (2006)). Second, we provide a microfoundation of such
contracts and analytical solutions for optimal renewable FGCs. We illustrate that such
type of contracts can harvest a large fraction of the possible welfare gains. For moderate
shocks optimal renewable, short-term FGCs are preferable over long-term contracts. Re-
peated short-term FGCs can create favorable tradeoffs between the commitment to zero
interest rates when the economy is hit by a negative natural real interest-rate shock and
the desired flexibility in increasing interest rates when the economy returns to normal lev-
els. However, when the negative natural real interest-rate shock is extreme, longer-term
contracts generate large welfare gains.

This study belongs to a recent strand of the literature on the benefits and costs of forward
guidance and the optimal way of implementing it. Woodford (2012), Campbell (2008)
and Gersbach and Hahn (2011) stress the social value of publishing central bank interest
rate projections, and Campbell et al. (2012) and Gurkaynak et al. (2005) find that policy
inclinations about the forward path of interest rates reveal information and can affect mar-
ket expectations.9 Bodenstein et al. (2012) show that, with imperfect credibility captured
by a probability of discarding promises, central banks could achieve considerable welfare
gains. However, the credibility of the U.S. Federal Reserve and the Swedish Riksbank has
been low in the aftermath of 2008 crisis. Lim and Goodhart (2011) are critical of forward
guidance, arguing that it may have little impact on expectations. We add to this literature
by proposing to implement forward guidance in the form of FGCs because these con-
tracts make forward guidance credible and therefore effective in influencing expectations.
In addition, we discuss which type of FGCs may help in jump-starting an economy.

While we focus on FGCs with a microfoundation on how variation of payments, pension
or the length of the term of central banks can be used to motivate central bankers to com-
mit partially, other proposals have been made that work through the central bank balance

9 Mirkov and Natvik (2013) find that central banks may be unwilling to deviate from previous interest-rate
projections.
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sheet. Krippner and Thornton (2012) suggest that large-scale purchases of interest-rate-
derivative contracts could significantly raise the credibility (and ultimately the efficacy)
of central bank’s guidance, as central bank would incur great capital loss from break-
ing its early promise. Levin et al. (2010) have suggested that large-scale asset purchase
programs may increase the commitment power of forward guidance. As long as those
measures affect the utility of central bankers, our framework could be applied for such
proposals.

1.4 Organization of the Thesis

This thesis is organized as follows: In the next chapter we present the micro-foundations
of the model used in this thesis. Simple renewable FGCs are presented in Chapter 3.
In Chapter 4 we investigate longer-term FGCs. State-contingent FGCs are studied in
Chapter 5.

Chapter 2: Microfoundation Chapter 2 presents the micro-foundations of the model
and in particular a foundation of the central banker’s utility function when the government
offers him a wage contract composed of a fixed wage and a variable component increasing
with the accuracy of the interest-rate forecast.

Chapter 3: Simple Forward Guidance Contracts10 Chapter 3 studies the prop-
erties of simple renewable Forward Guidance Contracts and characterizes the contracts
that the government wants to offer repeatedly. These contracts create favorable tradeoffs
between the efficacy of forward guidance at the zero bound and the reduced flexibility
in reacting to future events. In addition, we discuss which type of Forward Guidance
Contracts can be used when there is uncertainty about natural real interest-rate shocks, a
situation which typically calls for moderate incentive intensity.

Chapter 4: Longer-term Forward Guidance Contracts Long-term contracts are
explored in Chapter 4 in an alternative contractual environments. It shows that when
the size of the shock is severe, longer-term contracts could lower social losses further
compared to short-term contracts. Severe natural real interest-rate shocks require large
incentive intensities with long contract durations to mitigate deflation and output collapse
in downturns. While those contracts can yield even lower social losses in such circum-
stances, they also constrain the central bank for a long time and may thus be problematic,
as unforeseen events requiring greater flexibility may occur in the interim.
10 This chapter is based on joint research with Hans Gersbach and Volker Hahn and was published as a

CESifo working paper (see Gersbach et al. (2015)).
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Chapter 5: State-contingent Forward Guidance Contracts The last part of the
thesis deals with FGCs that are contingent on macroeconomic variables. In such contracts,
the central bankers’ remuneration loss, which occurs if they deviate from the forecasts,
would itself depend on macroeconomic variables such as the natural real interest rate and
inflation expectation, for instance. We show that stage-contingent FGCs can achieve the
same welfare gains as calendar-based FGCs while the government does not have to re-sign
the same contracts repeatedly in downturns.





2 Microfoundation

In this chapter, we provide the microfoundation of our model as the reference framework
for the remainder of the thesis and for the IS (Investment/Saving) Equation, Phillips Curve
and the intertemporal social losses in particular. This approach has been extensively stud-
ied in the past decades, e.g. in Woodford (2003) and Eggertsson (2005). Nevertheless,
we provide a detailed account of all necessary microfoundations. In particular, we derive
the objective function of the central bank in the presence of an incentive contract.

2.1 Set-up

There is a continuum of identical infinitely-lived households, which allows to focus on
a representative household. The representative household can buy one-period riskless
government bonds and it owns firms. There is a continuum of firms indexed by i ∈ [0, 1],
which produce differentiated goods. The index identifies each firm and the variety of
good it produces. In period t (t = 0, 1, 2, · · · ), firm i employs labor Nt(i), produces Yt(i)
of variety i, sets price Pt(i) and pays wage Wt(i). As labor is homogeneous, all firms pay
the same wage. The prevailing wage in the labor market in period t is denoted by Wt.
Total labor supply is denoted by Nt.

The utility function of the representative household in a particular period depends on
four arguments: aggregate consumption Ct, real money holdings Mt

Pt
, labor supply Nt and

government consumptionGt. The Dixit-Stiglitz index for aggregate consumption is given
by Ct ≡ (

∫ 1
0 Ct(i)

θ−1
θ di)

θ
θ−1 , with Ct(i) denoting the consumption of differentiated good i

in period t and θ > 1 denoting the elasticity of substitution between differentiated goods.
The aggregate price index is defined by Pt ≡ (

∫ 1
0 Pt(i)1−θdi)

1
1−θ .

In period t, the expected intertemporal utility is given by

Et
∞∑
j=0

βjUt+j = Et
∞∑
j=0

βj
(
u(Ct+j,

Mt+j

Pt+j
, ξt+j)−

∫ 1

0
v(Nt+j(i), ξt+j)di+ g(Gt+j, ξt+j)

)
.

(2.1)
u( · ) is increasing and concave in consumption Ct and is increasing and concave in real
money holding Mt

Pt
up to a satiation level. v( · ) is increasing and convex in labor supply

Nt. g( · ) is increasing and concave in government consumption Gt.

9
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The budget constraint amounts to1

∫ 1

0
Pt(i)Ct(i)di+Bt +Mt

≤ (1 + it−1)Bt−1 + (1 + iMt−1)Mt−1 +
∫ 1

0
Nt(i)Wtdi+

∫ 1

0
Zt(i)di− PtTt,

(2.2)

where β ∈ (0, 1) is the discount factor and ξt = (ξCt , ξMt , ξNt , ξGt , ξOt ) is a vector of shocks,
where ξCt , ξMt , ξNt , ξGt and ξOt are exogenous shocks on consumption, money demand,
labor supply, government consumption and other factors, respectively. Zt(i) denotes the
profit of firm i. Tt are real lump-sum taxes. it is the nominal interest rate on the one-
period riskless government bond whose stock is given by Bt. iMt is the nominal interest
rate on the monetary base Mt. We follow the literature in setting iMt to zero (see e.g.
Walsh (2003)).

2.2 The Representative Household’s Problem

We first derive the optimal consumption bundle of the representative household2. We
maximize aggregate consumption for a given expenditure level, denoted by Ωt.

max
{Ct(i)}1

i=0

Ct =
(∫ 1

0
Ct(i)

θ−1
θ di

) θ
θ−1

s.t. ∫ 1

0
Pt(i)Ct(i)di ≤ Ωt.

We write the corresponding Lagrangian as

L =
(∫ 1

0
Ct(i)

θ−1
θ di

) θ
θ−1
− ηt

(∫ 1

0
Pt(i)Ct(i)di− Ωt

)
, (2.3)

where ηt is the Lagrange multiplier.
The first-order condition with respect to Ct(i) is given by

Ct(i)−1/θC
1/θ
t = ηtPt(i).

Rearranging terms yields

Ct(i) = Ct(j)
(
Pt(i)
Pt(j)

)−θ
(2.4)

1 The budget constraint is the same as the one on page 66 in Woodford (2003) and the one on page 234 in
Walsh (2003). The induced intertemporal budget constraint is also equivalent to the one in Eggertsson
(2005).

2 The derivation is similar to the one in Galí (2008).
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for two differentiated goods i and j.

Note that the elasticity of substitution is constant and equal to

θ = −
d ln Ct(i)

Ct(j)

d ln Pt(i)
Pt(j)

.

With the help of Ωt =
∫ 1

0 Pt(i)Ct(i)di, we obtain

Ct(i) =
(
Pt(i)
Pt

)−θ Ωt

Pt
(2.5)

for each differentiated good i ∈ [0, 1].

Inserting Equation (2.5) into the definition of Dixit-Stiglitz aggregate consumption yields

Ct =

∫ 1

0

(Pt(i)
Pt

)−θ Ωt

Pt


θ−1
θ

di


θ
θ−1

= ΩtP
θ−1
t

(∫ 1

0
Pt(i)1−θdi

) θ
θ−1

= ΩtP
−1
t .

(2.6)

Substituting Equation (2.6) in Equation (2.5), finally yields

Ct(i) =
(
Pt(i)
Pt

)−θ
Ct. (2.7)

Equation (2.6) implies

PtCt =
∫ 1

0
Pt(i)Ct(i)di.

Thus, the budget constraint of the representative household can be rewritten as

PtCt +Bt +Mt ≤ (1 + it−1)Bt−1 +Mt−1 +
∫ 1

0
Nt(i)Wtdi+

∫ 1

0
Zt(i)di− PtTt. (2.8)

The Lagrangian of the representative household’s problem is

L =Et
∞∑
j=0

βj{[u(Ct+j,
Mt+j

Pt+j
, ξt+j)−

∫ 1

0
v(Nt+j(i), ξt+j)di+ g(Gt+j, ξt+j)]

− λt+j[Pt+jCt+j +Bt+j +Mt+j − (1 + it+j−1)Bt+j−1 −Mt+j−1

−
∫ 1

0
Nt+j(i)Wt+jdi−

∫ 1

0
Zt+j(i)di+ Pt+jTt+j]},

(2.9)

where λt+j is the Lagrange multiplier associated with the budget constraint in period t+j.
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Differentiating the Lagrangian with respect to Ct, Ct+1, Mt

Pt
, Nt(i) and Bt yields

uC(Ct,
Mt

Pt
, ξt) = λtPt, (2.10)

EtuC(Ct+1,
Mt+1

Pt+1
, ξt+1) = λt+1Pt+1, (2.11)

uM/P (Ct,
Mt

Pt
, ξt) = λtPt − λt+1βPt, (2.12)

vN(i)(Nt(i), ξt) = λtWt, (2.13)

and
λt = λt+1β(1 + it). (2.14)

As explained in the following, the first-order conditions can be combined into three rela-
tionships. Combining Equations (2.10), (2.11) and (2.14) leads to the IS Curve

1
1 + it

= Et[
βuC(Ct+1,

Mt+1
Pt+1

, ξt+1)
uC(Ct, Mt

Pt
, ξt)

Pt
Pt+1

]. (2.15)

Combining Equations (2.10), (2.12) and (2.14) yields the LM (Liquidity/Money) Equation

it
1 + it

=
uM/P (Ct, Mt

Pt
, ξt)

uC(Ct, Mt

Pt
, ξt)

. (2.16)

Combining Equations (2.10) and (2.13) results in an equation that implicitly describes the
labor supply,

Wt = PtvN(i)(Nt(i), ξt)
uC(Ct, Mt

Pt
, ξt)

. (2.17)

We further note that Equation (2.16) implies

it ≥ 0, (2.18)

where equality applies at the satiation point of the money holding utility, i.e. when
uM/P (Ct, Mt

Pt
, ξt) = 0.

We summarize the optimal behavior of the representative household as follows3. Its
choice of the consumption path evolution is described by the IS Equation in (2.15). For
a given amount of aggregate consumption Ct, the household chooses the consumption
bundle according to equation (2.7). The LM Equation in (2.16) describes real money

3 See pages 146-147 in Woodford (2003).
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holdings in each period. Finally, for a given wage Wt, the aggregate labor supply for
variety i, Nt(i), is given by Equation (2.17).

2.3 Firms and Goods Market Clearing

Firms production function is
Yt(i) = AtNt(i), (2.19)

where At is the technology level that evolves exogenously.
Here we neglect physical capital and consider labor Nt(i) as the only factor of production
for the differentiated good i.
Variety i produced by the monopolistic firm i according to the Dixit-Stiglitz demand
function4 (2.7) is given by

Yt(i) = (Pt(i)
Pt

)−θYt. (2.20)

As in Eggertsson (2005), firms have a price-changing cost denoted by γ( Pt
Pt−1

). We assume
a closed economy and thus the goods market clearing condition is Yt = Ct+Ft+γ( Pt

Pt−1
),

where Yt is the aggregate output and Ft denotes total government spending.

2.4 Government

We assume a tax-collecting cost s(Tt), where s′( · ) > 0 and s′′( · ) ≥ 0. Thus, the
government’s total consumption is Ft = Gt + s(Tt).
The government finances its total spending Ft by levying lump-sum taxes Tt and issuing
Bt one-period riskless government bonds.
The government’s total liabilities at the end of period t are

Dt = Bt +Mt.

By purchasing government bonds via open market operations, the central bank controls
the nominal interest rate on government bonds.
The government’s budget constraint is

Bt +Mt + PtTt = (1 + it−1)Bt−1 +Mt−1 + PtGt + Pts(Tt).

Rearranging yields

Dt = (1 + it−1)Dt−1 + PtFt − PtTt − it−1Mt−1,

4 See page 151 in Woodford (2003).
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where it−1Mt−1 stands for the seigniorage revenues.

2.5 Transversality Conditions

The stochastic discount factor is defined by

Qt,t+j = Et
j−1∏
k=0

1
1 + it+k

. (2.21)

Combining Equations (2.15) and (2.21) yields

Qt,t+j = Et[βj
uC(Ct+j, Mt+j

Pt+j
, ξt+j)

uC(Ct, Mt

Pt
, ξt)

Pt
Pt+j

]. (2.22)

Accordingly, the transversality condition for the government is5

lim
j→∞

Et[Qt,t+jDt+j] = 0. (2.23)

We assume that the government’s budget is balanced such that Bt does not grow at a rate
that would violate the transversality condition.

The transversality condition for the household amounts to6

lim
j→∞

Et[Qt,t+j((1 + it+j−1)Bt+j−1 +Mt+j−1)] = 0. (2.24)

In addition, we rule out Ponzi schemes:7

Et

 ∞∑
j=0

Qt,t+j(
∫ 1

0
Nt+j(i)Wt+j(i)di+

∫ 1

0
Zt+j(i)di)

 <∞. (2.25)

5 See page 72 in Woodford (2003).
6 See page 70 in Woodford (2003).
7 See pages 67-68 in Woodford (2003). The representative household’s wealth at the end of period t− 1 is

(1+ it−1)Bt−1 +Mt−1. In perfect financial markets, households can borrow against the present value of
all future incomes

∑∞
j=0Qt,t+j(

∫ 1
0 Nt+j(i)Wt+j(i)di+

∫ 1
0 Zt+j(i)di). The representative household’s

wealth satisfies the lower bound (1 + it−1)Bt−1 + Mt−1 ≥ −
∑∞
j=0Qt,t+j(

∫ 1
0 Nt+j(i)Wt+j(i)di +∫ 1

0 Zt+j(i)di). To prevent households from unbounded consumption, the present value of all future
incomes must converge to some positive value, which is described by Equation (2.25).
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2.6 Utility Functions

We specify the household’s utility function as follows:8

u(Ct,
Mt

Pt
, ξt) = C1−σ

t (ξCt )σ
1− σ + (Mt/Pt)1−ν(ξMt )ν

1− ν ,

where σ, ν are relative risk aversion coefficients. Note that we assume a household utility
with additive separability of Ct and Mt

Pt
.

The disutility from working is specified as follows:

v(Nt(i), ξt) = Nt(i)1+φ(ξNt )−φ
1 + φ

,

where φ > 0.

With these specifications, the three central relationships (2.15), (2.16) and (2.17) take the
following form:

1
1 + it

= Et[β(Ct+1

Ct
)−σ(ξ

C
t+1
ξCt

)σ Pt
Pt+1

], (2.26)

it
1 + it

= Cσ
t (Mt

Pt
)−ν(ξMt )ν(ξCt )−σ, (2.27)

and

Nt = Nt(i) =
(
Wt(ξCt )σ
PtCσ

t

) 1
φ

ξNt . (2.28)

Equation (2.22) can be written as

Qt,t+j = Et[βj(
Ct+j
Ct

)−σ(
ξCt+j
ξCt

)σ Pt
Pt+j

]. (2.29)

2.7 Log-linearization around the Steady State

In the absence of shocks, the system exhibits a unique steady state. For any variable Ot,
we can express the percentage deviation9 of Ot from its steady-state level Ō in terms of
ôt = ot − ō, where ot = lnOt and ō = ln Ō.

8 The utility function is essentially the same as in Eggertsson (2005). There are notational differences, as
we use σ instead of σ−1 and ξCt and ξNt instead of u and q. Eggertsson assumes that the money holding
term in the utility function is small and neglects it.

9 Note that ôt = ot − ō = ln Ot
Ō

= ln(1 + Ot−Ō
Ō

) ≈ Ot−Ō
Ō

represents the percentage deviation.



16 Microfoundation

Real marginal costs are given by

MCt = Wt

AtPt
= Cσ

t N
φ
t (ξCt )−σ(ξNt )−φ

At
. (2.30)

Taking logs leads to
mct = σct + φnt − at − φξnt − σξct , (2.31)

where ξnt = ln ξNt and ξct = ln ξCt and ξn and ξc are the respective steady-state levels.

Due to m̄c = σc̄+ φn̄− ā− φξn − σξc in the steady state, we can write Equation (2.31)
as

m̂ct = σĉt + φn̂t − ât − φξ̂nt − σξ̂ct . (2.32)

One caveat is in order. While linearizing the non-linear model helps solve analytically
and helps understand the economic models, the linear approximations can be inaccurate
and should be used with caution. For example, peculiar phenomena occur if the economic
system deviates too far from the steady state. One example is shown in Appendix B.1.1.

2.8 Phillips Curve

We follow Rotemberg (1982) and assume each firm i bears a cost γ( Pt(i)
Pt−1(i)) when it

changes prices from period t − 1 to period t, where γ′(0) = 0 and γ′′(0) > 0. The
property γ′(0) = 0 implies that the cost of price changes is only of second order in the
neighborhood of zero inflation.

Firm i’s profit in period t is

Zt(i) = (1 + χ)(Pt(i)
Pt

)−θYtPt(i)−Nt(i)Wt(i)− Ptγ( Pt(i)
Pt−1(i)),

where χ is a subsidy financed by the lump-sum taxes.

Each firm chooses the sequence of prices Pt+j(i) to maximize

∞∑
j=0

Qt,t+jZt+j(i). (2.33)
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The expected value of this expression can be rewritten as follows:

Et
∞∑
j=0

Qt,t+jZt+j(i)

= Et
∞∑
j=0

Qt,t+j[(1 + χ)(Pt+j(i)
Pt+j

)−θYt+jPt+j(i)−Nt+j(i)Wt+j(i)− Pt+jγ( Pt+j(i)
Pt+j−1(i))]

= Et
∞∑
j=0

Qt,t+j[(1 + χ)(Pt+j(i)
Pt+j

)−θYt+jPt+j(i)−
Yt+j(i)
At+j

Pt+jvN(i)(Nt+j(i), ξt+j)
uC(Ct+j, Mt+j

Pt+j
, ξt+j)

− Pt+jγ( Pt+j(i)
Pt+j−1(i))].

(2.34)

The first-order condition with respect to Pt(i), for given Pt and Yt, is given by

(1− θ)(1 + χ)Yt(
Pt
Pt(i)

)θ + θ
Yt
At

( Pt
Pt(i)

)θ PtvN(i)(Nt(i), ξt)
Pt(i)uC(Ct, Mt

Pt
, ξt)

− Pt
Pt−1(i)γ

′( Pt(i)
Pt−1(i)) + Et[

βuC(Ct+1,
Mt+1
Pt+1

, ξt+1)
uC(Ct, Mt

Pt
, ξt)

PtPt+1(i)
Pt(i)2 γ′(Pt+1(i)

Pt(i)
)] = 0

(2.35)

Every firm adjusts its price in each period. As all the firms face the same optimization
problem, we have Pt(i) = Pt(j) = Pt, Yt(i) = Yt(j) = Yt, Wt(i) = Wt(j) = Wt and
Nt(i) = Nt(j) = Nt ∀i, j.

Taking into account Pt(i) = Pt and multiplying both sides of Equation (2.35) by uC(Ct, Mt

Pt
, ξt),

yields

(1− θ)(1 + χ)YtuC(Ct,
Mt

Pt
, ξt) + θ

Yt
At
vN(i)(Nt(i), ξt)

− Pt
Pt−1

γ′( Pt
Pt−1

)uC(Ct,
Mt

Pt
, ξt) + Et[βuC(Ct+1,

Mt+1

Pt+1
, ξt+1)Pt+1

Pt
γ′(Pt+1

Pt
)] = 0,

(2.36)

which is the “New Keynesian" Phillips Curve as in Eggertsson (2005).

Further following Eggertsson (2005), the cost of price adjustment is assumed to take the
form of γ(πt) = γ1(Πt − 1)2 = γ1π

2
t , where Πt = Pt

Pt−1
and πt = Πt − 1.

Using Yt(i) = AtNt(i) and γ(πt) = γ1π
2
t , the Phillips Curve becomes

(1− θ)(1 + χ)YtC−σt (ξCt )σ + θ( Yt
At

)1+φ(ξNt )−φ

− 2γ1
Pt
Pt−1

( Pt
Pt−1

− 1)C−σt (ξCt )σ + Et[β2γ1C
−σ
t+1(ξCt+1)σPt+1

Pt
(Pt+1

Pt
− 1)] = 0.

(2.37)
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Equation (2.37) can be rewritten in exponential form10,

(1− θ)(1 + χ)eyt−σct+σξct + θe(1+φ)(yt−at)−φξnt − 2γ1e
2πt−σct+σξct

+ 2γ1e
πt−σct+σξct + β2γ1e

−σEtct+1+σEtξct+1+2Etπt+1 − β2γ1e
−σEtct+1+σEtξct+1+Etπt+1 = 0,

(2.38)

where ct = lnCt, yt = ln Yt, at = lnAt and ct+1 = lnCt+1.

The first-order Taylor expansion yields

(1− θ)(1 + χ)eȳ−σc̄+σξc(1 + ŷt − σĉt + σξ̂ct ) + θe(1+φ)(ȳ−ā)−φξn(1 + (1 + φ)(ŷt − ât)− φξ̂nt )

− 2γ1e
2π̄−σc̄+σξc(1 + 2πt − σĉt + σξ̂ct ) + 2γ1e

π̄−σc̄+σξc(1 + πt − σĉt + σξ̂ct )

+ β2γ1e
−σc̄+σξc+2π̄(1− σEtĉt+1 + σEtξ̂ct+1 + 2Etπt+1)

− β2γ1e
−σc̄+σξc+π̄(1− σEtĉt+1 + σEtξ̂ct+1 + Etπt+1) = 0.

(2.39)

Due to our assumption of a zero-inflation steady state (π̄ = 0), Equation (2.39) simplifies
to

(1− θ)(1 + χ)eȳ−σc̄+σξc(1 + ŷt − σĉt + σξ̂ct ) + θe(1+φ)(ȳ−ā)−φξn(1 + (1 + φ)(ŷt − ât)− φξ̂nt )

− 2γ1e
−σc̄+σξcπt + β2γ1e

−σc̄+σξcEtπt+1 = 0.
(2.40)

To ensure an efficient level of steady state output, as in Woodford (2003), we assume
1 + χ = θ

θ−1 .

Rearranging terms yields

1 + ŷt − σĉt + σξ̂ct − eσc̄+φȳ−(1+φ)ā−φξn−σξc(1 + (1 + φ)(ŷt − ât)− φξ̂nt )

+ 2γ1e
−ȳ

θ
πt −

2γ1βe
−ȳ

θ
Etπt+1 = 0.

(2.41)

Without price-changing costs, the first-order condition of firms’ maximization problem is

1 = Ct
σNφ

t (ξCt )−σ(ξNt )−φ
At

= Ct
σY φ

t (ξCt )−σ(ξNt )−φ

A1+φ
t

.

In the steady state, we have

1 = C̄σȲ φ(ξC)−σ(ξN)−φ

Ā1+φ
.

10 Πt = 1 + πt implies πt ≈ ln Πt, due to Πt = eln Πt ≈ 1 + ln Πt.
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Therefore,
σc̄+ φȳ − (1 + φ)ā− φξn − σξc = 0.

Subtracting11

Ȳ = C̄ + F

from
Yt = Ct + F + γ(πt)

yields
Yt − Ȳ = Ct − C̄ + γ(πt),

where we have used that γ(πt) is zero in the steady state.

Using the definitions of ŷt and ĉt results in

Ȳ (eŷt − 1) = C̄(eĉt − 1) + γ(πt).

Neglecting terms of order 2 and higher gives

Ȳ ŷt = C̄ĉt,

as price changing costs γ(πt) have only second-order effects around the steady state. By
normalizing Ȳ = 1, we obtain

ŷt = C̄ĉt.

By using ŷt = C̄ĉt, we simplify Equation (2.41) as follows:

(σ̃ + φ)(ŷt − ŷpt ) = 2γ1

θ
πt −

2γ1β

θ
Etπt+1, (2.42)

where ypt = 1
σ̃+φ [(1 + φ)at + φξnt + σξct ] is the (log) potential output in the absence of

price stickness and σ̃ = σ
C̄

.

Finally, we obtain the Phillips Curve

πt = βEtπt+1 + κxt, (2.43)

where κ = (σ̃+φ)θ
2γ1

and xt = ŷt − ŷpt is the (log) output gap.

11 As we concentrate on monetary policy, we assume constant fiscal policy, i.e. Gt = G and Tt = T . Thus,
the government’s total spending is constant, i.e. Ft = F .
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2.9 IS Equation

Taking the logs of the IS Equation (2.26)12 leads to

− ln(1 + it) = ln β − σEt lnCt+1 + σ lnCt − Etπt+1 + σ(Etξct+1 − ξct ). (2.44)

We can rewrite the above equation as

ct = Etct+1 −
1
σ

(it − Etπt+1) + ρt, (2.45)

where ρt = − lnβ
σ
− (Etξct+1 − ξct ) is the demand shock.

We can rewrite Equation (2.45) as

ĉt = Etĉt+1 −
1
σ

[it − Etπt+1 − (σξ̂ct − σEtξ̂ct+1 − ln β)]

and by using ŷt = C̄ĉt as

ŷt = Etŷt+1 −
1
σ̃

[it − Etπt+1 − (σξ̂ct − σEtξ̂ct+1 − ln β)].

We define the natural real interest rate by

rt = σ̃(Etŷpt+1 − ŷ
p
t ) + σξ̂ct − σEtξ̂ct+1 − ln β

= σ̃

σ̃ + φ
Et[(1 + φ)ât+1 + φξ̂nt+1 − φC̄ξ̂ct+1]− σ̃

σ̃ + φ
Et[(1 + φ)ât + φξ̂nt − φC̄ξ̂ct ]− ln β.

(2.46)

We note that rt only depends on technology and preference parameters shocks and that it
is thus exogenous.

Notice that Equation (2.44) implies that the steady-state level of nominal interest rate is
ī = 1

β
− 1.

We can rewrite Equation (2.45) in terms of the output gap,

xt = Etxt+1 −
1
σ̃

(it − Etπt+1 − rt), (2.47)

which is the usual expression for the IS Equation.

12 See e.g. page 244 in Walsh (2003) and page 23 in Woodford (2003).
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2.10 LM Curve

We consider the log-linearized money demand equation when the nominal interest it is
around its steady-state level ī with it > 013.

Using Equation (2.27) and taking logs, we obtain

ln it
1 + it

= σct − νmt + νpt + νξmt − σξct . (2.48)

As we focus on circumstances with comparatively low nominal interest rate, we can write

ln it
1 + it

= ln it − ln(1 + it) ≈ ln it.

Using this expression and rearranging Equation (2.48) yields

mt = pt + σ

ν
ct −

1
ν

ln it + ξmt −
σ

ν
ξct . (2.49)

In the steady state, the equation reads

m̄ = p̄+ σ

ν
c̄− 1

ν
ln ī+ ξm − σ

ν
ξc. (2.50)

Subtracting Equation (2.50) from Equation (2.49) yields

m̂t = p̂t + σ̃

ν
ŷt −

1
νī
ît + ξ̂mt −

σ

ν
ξ̂ct , (2.51)

where ît = it − ī is the deviation of the nominal interest rate from its steady-state level.

We note that money holding is positively associated with the price level, the output level
and money demand shocks, and that it negatively depends on the nominal interest rate and
consumption shocks.

When the nominal interest rate is non-zero and satisfies Equation (2.51), it can be used
as an instrument for monetary policy. The zero lower bound on nominal interest rates is
binding if

m̂t ≥ p̂t + σ̃

ν
ŷt + ξ̂mt −

σ

ν
ξ̂ct . (2.52)

2.11 Intertemporal Social Losses

We now derive intertemporal social losses.

13 Money demand is indeterminate when it = 0, as shown in Equation (2.52).
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The government maximizes the household’s intertemporal utility function. The house-
hold’s utility in period t is

Ut = u(Ct,
Mt

Pt
, ξt)− v(Nt, ξt).

The utility from consumption and money holding is given by

u(Ct,M r
t , ξt) = C1−σ

t (ξCt )σ
1− σ + (M r

t )1−ν(ξMt )ν
1− ν , (2.53)

where M r
t = Mt/Pt is the real money holding.

The utility from real money holding is assumed to be negligible — cashless limit, see
Woodford (1997) — and can thus be neglected.

Due to market clearing Yt = Ct + F + γ(πt), Equation (2.53) can be rewritten as

u(Ct,M r
t , ξt) = (Yt − F − γ(πt))1−σ(ξCt )σ

1− σ ,

where ξC = C̄, π̄ = 0 and Ȳ = C̄ + F in the steady state.

The disutility from labor supply is

v(Nt, ξt) = N1+φ
t (ξNt )−φ

1 + φ
= Y 1+φ

t (ξNt )−φ

A1+φ
t (1 + φ)

,

where ξN = N̄ = Ȳ /Ā in the steady state.

The Taylor expansions of the representative household’s utility from consumption and
money holding up to the second order yield

u =ū+ uC(Ŷt − γ′(π̄)πt) + uξC ξ̂
C
t

+ 1
2uCC Ŷ

2
t − uCCγ′(π̄)Ŷtπt + 1

2uCCγ
′(π̄)2π2

t −
1
2uCγ

′′(π̄)π2
t

+ 1
2uξCξC (ξ̂Ct )2 + uξCC ξ̂

C
t Ŷt − uξCC ξ̂Ct γ′(π̄)πt.

(2.54)

Similarly, the second-order approximation of the representative household’s disutility
from labor supply is

v =v̄ + vY Ŷt + vAÂt + vξN ξ̂
N
t

+ 1
2vY Y Ŷ

2
t + 1

2vAAÂ
2
t + vY ξN Ŷtξ̂

N
t + vAξN Âtξ̂

N
t + vY AŶtÂt

+ 1
2vξN ξN (ξ̂Nt )2.

(2.55)
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In the steady state, we have
uC = 1,

uξC = σ

1− σ ,

uCC = − σ
C̄
,

uCξC = uξCC = σ

C̄
,

uξCξC = − σ
C̄
,

vY = 1
Ā
,

vA = − Ȳ

Ā2
,

vξN = − φ

1 + φ
,

vY Y = φ

ĀȲ
,

vAA = (φ+ 2)Ȳ
Ā3

,

vY A = vAY = −(φ+ 1)
Ā2

,

vY ξN = vξNY = − φ
Ȳ
,

vξNA = vAξN = φ

Ā
,

and

vξN ξN = φĀ

Ȳ
.

Thus we can rewrite Equations (2.54) and (2.55) as

u = ū+ σ

1− σ ξ̂
C
t −

1
2
σ

C̄
(ξ̂Ct )2 − 1

2
σ

C̄
Ŷ 2
t + (1 + σ

C̄
ξ̂Ct )Ŷt − γ1π

2
t , (2.56)

and

v =v̄ − φ

1 + φ
ξ̂Nt + 1

Ā
Ŷt −

Ȳ

Ā2
Ât + 1

2
φĀ

Ȳ
(ξ̂Nt )2 + 1

2
φ

ĀȲ
Ŷ 2
t + 1

2
(φ+ 2)Ȳ

Ā3
Â2
t

− (1 + φ) 1
Ā2
ŶtÂt −

φ

Ȳ
Ŷtξ̂

N
t + φ

Ā
Âtξ̂

N
t .

(2.57)
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We normalize the steady state of technology level14 Ā = 1. Recall that the steady-state
level of output has been normalized to one, i.e. that Ȳ = 1.
We use the second-order Taylor expansions of the following expressions:15

Ŷt = Yt − Ȳ = Yt − 1 = eŷt − 1 ≈ ŷt + 1
2 ŷ

2
t ,

Ŷ 2
t ≈ Ȳ 2(ŷt + 1

2 ŷ
2
t )2 ≈ ŷ2

t ,

Ât ≈ ât + 1
2 â

2
t ,

Â2
t ≈ â2

t ,

ξ̂Ct ≈ ξC(ξ̂ct + 1
2(ξ̂ct )2),

(ξ̂Ct )2 ≈ (ξC)2(ξ̂ct )2,

ξ̂Nt ≈ ξN(ξ̂nt + 1
2(ξ̂nt )2),

and
(ξ̂Nt )2 ≈ (ξN)2(ξ̂nt )2.

With these expressions and the normalizations, Equations (2.56) and (2.57) can be rewrit-
ten as

u = ū+ σ

1− σC̄ξ̂
c
t + 1

2
σ2C̄

1− σ (ξ̂ct )2 + 1
2
C̄ − σ
C̄

ŷ2
t + (1 + σξ̂ct )ŷt − γ1π

2
t

and

v = v̄− φ

1 + φ
ξ̂nt +1

2
φ2

1 + φ
(ξ̂nt )2+ŷt+

1 + φ

2 ŷ2
t−ât+

1 + φ

2 â2
t−(1+φ)ŷtât−φŷtξ̂nt +φâtξ̂nt ,

with ū = C̄
1−σ and v̄ = 1

1+φ .
Taking the difference and keeping only the first two orders yields

u−v = −γ1π
2
t−

1
2(φ+σ̃)(ŷt−ŷpt )2−1

2
(σ̃ − 1)(1 + φ)

φ+ σ̃
(ât−ânt )2−1

2
1− C̄

(σ − 1)(σ̃ − 1)(σξ̂ct+1)2,

(2.58)
where ant = σ̃+φ

(1+φ)(σ̃−1) + σ
σ̃−1ξ

c
t − φ

1+φξ
n
t and the (log) potential output ŷpt = 1

σ̃+φ [(1 +
φ)ât + φξ̂nt + σξ̂ct ].
A remark about technology is in order. ant implies that in the case of a negative labor

14 In the steady state, 1 = C̄σȲ φ(ξC)−σ(ξN )−φ

Ā1+φ implies Ā = 1.
15 Note that for any positive variable Ot with steady-state level Ō, we have Ôt = Ot − Ō and ot =

lnOt − ln Ō = ot − ō.
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supply shock or of a positive consumption shock, an increase of the production efficiency
by firms would compensate this shock. Increase in productivity could be modeled as the
outcome of private applied research investment or public investment in the form of R&D
subsidies or basic research16.
In this theis, At evolves exogenously and thus, the losses from technology movements
(ât − ânt )2 are exogenous. That’s why they will be neglected in our analysis.
Using xt = ŷt − ŷpt , the intertemporal social losses become

− 1
2

∞∑
t=0

βt[(σ̃ + φ)x2
t + 2γ1π

2
t ]

= −γ1

∞∑
t=0

βt[π2
t + λx2

t ]

= −γ1

∞∑
t=0

βtlt,

(2.59)

where λ = σ̃+φ
2γ1

= κ
θ

and lt = π2
t + λx2

t .

2.12 Microfoundation of the Central Banker’s

Objective Function17

In this section we consider the objective function of the central bank. We assume, as
is standard, that the economy is populated by a continuum of identical infinitely-lived
households. In addition, there is an individual central banker. Hence, the central banker’s
individual consumption choices have no consequences for aggregate output and consump-
tion.
We derive the central banker’s intertemporal social losses under incentive contracts. The
central banker aims at achieving a high individual utility. Moreover, he is altruistic and is
also interested in furthering the well-being of the other agents. More precisely, the central
banker faces one of two wage schemes. If no incentive contract is in effect, he receives
a fixed wage w ≥ 0. By contrast, if an incentive contract was signed, the central banker
is paid according to the deviation of his actual choice of nominal interest rate from the
forecast wCBt = ζ (̃it) ≥ 0, where wCBt is the real wage paid to the central banker and
ĩt = it − ift is the deviation of the interest-rate choice from the forecast made at the time
when the contract is signed. We focus on functions ζ( · ) with a global maximum, w̄CB,
at ĩt = 0, which satisfy ζ ′(0) = 0, ζ ′(̃it > 0) < 0 and ζ ′′(0) < 0. Hence, the central
16 In the latter case, for instance, the government could subsidize firms to do applied research. The govern-

ment’s budget constraint would amount to Ft = Gt + s(Tt) + It, where It is the amount of money given
to firms to invest in applied research.

17 This microfoundation has been used in Gersbach et al. (2015)).
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banker faces wage reductions that increase with the size of the deviation from his earlier
announcements. The central banker’s wage is financed through a lump-sum tax. We note
that payment to the central banker is negligible at the aggregate level, so the lump-sum
tax necessary to finance his wage does not affect the household’s budget constraint.

We make the assumption that the central banker is excluded from trading in financial
markets. The main motivation for this assumption is that the central banker should be
prevented from hedging against the variations of his income.18

For simplicity, we assume that the central banker is infinitely-lived and has the same
individual utility from consumption and the same discount factor β as the households.
The central banker’s utility from consumption is

u(CCB
t ) = (CCB

t )1−σ − 1
1− σ = ζ(ĩt)1−σ − 1

1− σ .

We evaluate this expression in the steady state with ĩ equal to 0. Thus the second-order
Taylor approximation delivers

u(CCB
t ) ≈ ζ(0)1−σ − 1

1− σ + ζ(0)−σζ ′(0)̃it + 1
2
∂

∂ĩt

(
ζ (̃it)−σζ ′(̃it)

)
|̃it=0ĩ

2
t .

Since ζ ′(0) = 0, we can rewrite the approximation as

u(CCB
t ) ≈ ζ(0)1−σ − 1

1− σ + 1
2ζ(0)−σζ ′′(0)̃i2t .

The first term is constant. The constant utility term can be neglected when we compute
the behavior of central bankers. However, the constant utility term and thus the fixed
wage w̄CB are important to satisfy the central bankers’ participation constraints. Wage
w̄CB has to be set at levels at which central bankers are at least as well off as with other
occupations—e.g. being a household. We assume that w̄CB is set at levels at which the
participation constraint is fulfilled.

As mentioned earlier, the central banker is also altruistic towards the households. Specif-
ically, the overall loss of the central banker in period t is

αlt − u(CCB
t ) = α

2 (π2
t + λx2

t − 2ζ(0)1−σ − 1
α(1− σ) −

ζ(0)−σζ ′′(0)
α

ĩ2t ), (2.60)

with α being the weight of altruism. We scale the central banker’s overall loss by 1
α

and

18 This is in line with actual practices, as central bankers have to adhere to procedures for the management
of their personal assets that avoid any conflict of interest (see Swiss National Bank, Bankrat (2012) and
European Central Bank, Banking Supervision (2014)). Under incentive contracts, prohibiting the use of
hedging instruments would be particularly important.
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deduct the constant term. The resulting loss function is denoted by lCBt and given by

lCBt = 1
2(π2

t + λx2
t −

ζ(0)−σζ ′′(0)
α

ĩ2t ). (2.61)

We set19 b = − ζ(0)−σζ′′(0)
α

and obtain

lCBt = 1
2(π2

t + λx2
t + b̃i2t ). (2.62)

We note that the sensitivity of the wage scheme with regard to the precision of forecasts,
ζ ′′(0), enters weight b of the deviation of the interest-rate forecast from actual policy
choice in the central banker’s loss function.

19 We note that the extreme case b =∞ implies ζ ′′(0) = −∞.
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2.13 List of Variables and Notations

Table 2.1: List of Variables and Notations (1)

Variables Description

ξt a vector of shocks
ξCt , ξ

M
t , ξ

N
t , ξ

G
t , ξ

O
t shocks on consumption, money holding,

labor supply, government spending and other factors
σ, σ̃, ν relative risk-aversion coefficients of consumption and real money holdings
ρt demand shock
φ relative risk-aversion coefficient of labor supply
λ relative weight of output gap objective w.r.t. inflation objective
b intensity of incentives
ypt potential output in the absence of price rigidity
rt natural real interest rate
κ coefficient of Phillips Curve
γ1 coefficient of price adjustment cost
Qt,t+j stochastic discount factor used by financial market

Households

β households’ discount factor
Ct(i) consumption of variety i
M r

t real money holding
u( · ) households’ utility from consumption and money holding
v( · ) households’ disutility from labor supply
g( · ) households’ utility from government spending
Ut households’ total utility
Ct aggregate consumption
Ωt households’ expenditure level
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Table 2.2: List of Variables and Notations (2)

Variables Description

Firms
i firm and variety index
θ elasticity of substitution between differentiated goods
At technology level
Nt(i), Pt(i), Yt(i), Zt(i) labor employed, price of variety i, production, profit in firm i

γ( · ) cost of price adjustment
Wt prevailing wage in period t
Nt total labor employed
Pt aggregate price
MCt real marginal cost
χ subsidy on firms’ production

Government

Mt, Bt, Dt monetary base, stock of government bonds, government total debt
Gt, Ft government’s real consumption and total consumption
Tt, s( · ) taxes, tax-collecting costs
it, iMt nominal interest rates on government bonds and on monetary base

Central Bank

Πt gross inflation rate
πt inflation rate
xt output gap
lt social loss in period t
w̄ central banker’s fixed wage
wCBt central banker’s real wage
w̄CB central banker’s maximal wage
ζ( · ) central banker’s wage function
ĩt deviation of central banker’s interest-rate choice from its forecast
CCB
t central banker’s consumption in period t

α central banker’s weight of altruism
lCBt central banker’s loss in period t





3 Simple Forward Guidance
Contracts∗

We start with simple renewable FGCs (Forward Guidance Contracts). In this chapter,
we study the properties of such contracts and characterize the contracts that the govern-
ment would offer repeatedly. This chapter is organized as follows: In the next section we
present the model. To assess the potential of and challenges to FGCs, the standard discre-
tionary solution without FGCs is presented as a benchmark in Section 3.2. In Section 3.3
we establish the properties and the welfare implications of optimal FGCs. In Section 3.4,
we discuss which type of FGCs can be used in the presence of uncertainty about natural
real-interest rate shocks. A discussion and our conclusions are presented in Section 3.5.

3.1 A General Framework

Our model combines FGCs with the standard New Keynesian Framework to examine
the zero-bound problem. To model the zero-bound problem, we follow Eggertsson and
Woodford (2003) and Eggertsson (2003). Time is discrete and indexed by t = 0, 1, 2, ....
The IS curve, derived in Section 2.9, is described by

xt = Et[xt+1]− 1
σ

(it − Et[πt+1]− rt), (3.1)

where xt denotes the (log) output gap in period t and Et[πt+1] denotes the inflation rate in
t+ 1 expected in t. Parameter σ satisfies1 σ > 0, it is the nominal interest rate, and rt the
natural real interest rate.

Following Eggertsson (2003), we consider two possible realizations of rt, that correspond
to two different states s ∈ {L,H}. With a slight abuse of notation, we write rL and rH
for these realizations. We assume rH > 0 and rL < 0, which ensures that the zero lower
bound typically binds in state L but not in state H . In the following, we will say that
the economy is in a “downturn” if the state is L. Similarly, we will use the term “normal

∗ This chapter is based on joint research with Hans Gersbach and Volker Hahn and was published as a
CESifo working paper (see Gersbach et al. (2015)).

1 For simplicity, we use σ to replace σ̃ in equation (2.47).
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times” to describe an economy in state H .

Like Eggertsson (2003), we consider a situation where the economy is initially in a down-
turn, i.e. s = L. In each period t = 1, 2, ..., the state will change to s = H with constant
probability 1 − δ (0 < δ < 1) and then remain in this state forever. With probability δ,
the economy remains in the downturn. The Phillips curve, derived in Section 2.8, is

πt = κxt + βEt[πt+1], (3.2)

with κ > 0 and β (0 < β < 1) as the common discount factor.

The instantaneous social loss function, derived in Section 2.11, is

lt = 1
2
(
π2
t + λx2

t

)
, (3.3)

where λ > 0. Future losses are discounted by the factor β.

In Section 2.12 we provide a foundation of the central banker’s utility function when
the government offers him a wage contract composed of a fixed wage and a variable
component increasing with the accuracy of the interest-rate forecast and hence decreasing
with (it−ift )2. The parameter b—chosen by the government acting as contract designer—
measures the intensity of incentives provided by the FGC.2

As explained in more detail in Section 2.12, we assume that the central banker shares the
private agents’ objectives and thus faces the loss function (3.3) in each period. In addition,
he may face an FGC characterized by parameter b, which implies that the central banker
incurs utility losses b(it − ift )2 when the interest rate he has chosen, it, differs from the
level stipulated in the contract, ift . We assume in the following that the level of interest
rates stipulated in the contract3 is zero, i.e. ift = 0. First, this is broadly in line with
current forward guidance practices of central banks in different countries. Second, it
is straightforward to show that zero is the optimal non-negative level for interest-rate
forecasts when the economy is in the downturn.

For the moment we will focus on simple renewable FGCs that may be chosen by the gov-
ernment and affect the central banker’s incentives in the subsequent period. In particular,
we will consider two scenarios. In the first scenario, we will examine the implications of
FGCs under the assumption that the low realization of the natural real interest rate, rL, is
known when contract parameter b is determined. Later, we will also examine a second
scenario where rL is unknown when b is selected.

2 For the framework of Krippner and Thornton (2012), the parameter b could be related to the number of
overnight indexed swap (OIS) contracts purchased by central bank, as the capital losses the central bank
would incur if the interest rate is raised before OIS contracts expire are linear in the number of contracts.

3 In Chapter 4 we analyze FGCs in which the forecast is not part of the contract and is chosen by the central
banker himself.
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Shock occurs:
𝑟0 = 𝑟𝐿

0 1 2 t

Realization of 𝑟1 Realization of 𝑟2

Central bank sets 
interest rate

Government offers 
FGC(𝑏)

Public forms expectations

Central bank sets 
interest rate

Government offers 
FGC(𝑏) if 𝑟1=𝑟𝐿

Public forms expectations

Inflation and output gap
are realized

Inflation and output gap
are realized

Government offers 
FGC(𝑏) if 𝑟2=𝑟𝐿

Figure 3.1: The sequence of events.

More precisely, we assume in the first scenario that the government chooses b at an ex-
ante stage. In all periods, it can only offer contracts with this parameter. In a particular
period t = 0, 1, 2, ..., the sequence is as follows: First, the current state s ∈ {H,L} is
realized and becomes common knowledge. Second, the government decides whether to
sign a new FGC with given parameter b (henceforth FGC(b)), which will be effective in
period t + 1. Third, the private sector forms its expectations about inflation and output
in period t + 1. Also, the central banker selects the nominal interest rate it to minimize
his losses, subject to (3.1) and (3.2). The central banker’s loss function in period t is
influenced by a possible FGC signed in period t− 1. More precisely, it is

lCBt = 1
2
(
π2
t + λx2

t

)
+ 1

2bi
2
t

if an FGC was signed in period t− 1 and

lCBt = 1
2
(
π2
t + λx2

t

)
otherwise. We assume that in the initial period t = 0, an FGC is effective.4 Figure 3.1
shows the sequence of events.

4 This assumption is immaterial to our findings.
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In Section 3.4 we consider the second scenario. In particular, we study FGCs in a situation
with uncertainty about parameter rL when contracts are designed. The only difference
with the first scenario is that b is chosen before the exact value of rL becomes known.

3.2 Discretion without Forward Guidance Contracts

To have a benchmark for assessing the potential and the limitations of FGCs, we briefly
summarize in this section the standard discretionary solution in the absence of FGCs. In
the following we focus on Markov equilibria, i.e. all economic variables depend only on
the current state of the economy s ∈ {H,L}.
In each period, the central bank discretionarily chooses the nominal interest rate as its
policy instrument, taking both its own future behavior and the public’s expectations as
given. In a Markov equilibrium there are only two possible realizations for inflation, the
output gap, and the nominal interest rate. We use πDL , xDL , iDL for the corresponding values
in a downturn and πDH , xDH , and iDH for normal times, where the superscript D stands for
“discretionary”.

It is easy to compute the values of inflation and the output gap in normal times. When the
natural real interest rate has returned to the positive value rH , i.e. in period t when s = H ,
optimal policy involves iDH = rH . Therefore we obtain xDH = 0 and πDH = 0. Computing
the equilibrium in the downturn is somewhat more involved. During the downturn, the
zero lower bound is binding because of rL < 0. Hence, in periods when s = L, we obtain
iDL = 0. We note that Et[πt+1] = δπDL + (1− δ)πDH = δπDL in a downturn, where we have
used πDH = 0, and we also note that the probability of the state remaining at s = L is δ.
Analogously, we observe Et[xt+1] = δxDL .

Inserting these expressions into (3.1) and (3.2) and solving for πDL and xDL yields

πDL = κ

σ(1− δ)(1− βδ)− δκrL, (3.4)

xDL = 1− βδ
σ(1− δ)(1− βδ)− δκrL. (3.5)

Henceforth we assume that δ is sufficiently small for the denominator in the above equa-
tions to be strictly positive.

Assumption 3.1
Parameter δ satisfies

σ(1− δ)(1− βδ)− δκ > 0. (3.6)

Assumption 3.1 imposes an upper bound on δ, i.e. the probability of remaining in a down-
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turn cannot be too large. For the parameter values in Table 3.1 below, this assumption is
fulfilled for all δ < 0.68.5 Together with rL < 0, this assumption ensures that πDL and
xDL are negative in a downturn.6 Throughout the paper we illustrate the properties of the
economy using the following set of parameters:7

Table 3.1: Parameter values.

β = 0.99
λ = 0.03
κ = 0.3
σ = 2
rH = 0.02

3.3 Forward Guidance Contracts

In this section we analyze how the possibility of signing FGCs affects the equilibrium.
We assume that both the government and the central bank act under discretion. More
specifically, upon observing the current state s, the government decides whether to sign a
new contract, taking as given the central bank’s decisions both in the current period and in
all future periods, together with the possible existence of a contract for the current period.
Then the central bank chooses its instrument subject to a possible FGC, taking its own
future decisions and the government’s future behavior as given. We consider a Markov
equilibrium, i.e. an equilibrium where the decision-makers’ choices depend solely on
payoff-relevant state variables, i.e. on s ∈ {H,L} and the possibility that a contract was
signed in the previous period.

For the moment we assume that the government will always choose an FGC in a downturn
and no contract in normal times. Later we will see that this behavior is indeed optimal
for the government. We need to consider 2× 2 = 4 different constellations because there
are two different states s ∈ {H,L} and there may be either an active contract (C) or no
active contract (N ). The corresponding levels of inflation will be denoted as πCH , πCL , πNH ,
and πNL . Analogous notation will be used for the different possible values of the output
gap.

In normal times and in the absence of an FGC, it is obvious that πNH = xNH = 0 holds.
Next we turn to the constellation where s = H and a contract was signed in the previous

5 Henceforth, we adopt δ = 0.5 for the numerical examples.
6 For a discussion of sign reversals in the initial responses of inflation and output when the duration of an

interest-rate peg is extended, see Carlstrom et al. (2012).
7 The values β = 0.99, λ = 0.03, and κ = 0.3 are taken from Gersbach and Hahn (2014). The values
σ = 2 and rH = 0.02 are taken from Eggertsson (2006).
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period. Given the fact that in the next period, the output gap will be xNH and inflation will
amount to πNH , πCH and xCH can be determined with the help of (3.1) and (3.2) as follows:

πCH = βπNH + κxCH ,

xCH = − 1
σ

(iCH − πNH − rH) + xNH .

Using πNH = xNH = 0, these equations simplify to

πCH = κxCH , (3.7)

xCH = − 1
σ

(iCH − rH). (3.8)

Minimizing 1
2 (π2

t + λx2
t ) + 1

2bi
2
t subject to (3.7) and (3.8) yields

πCH = bσ

λ+ κ2 + bσ2κrH = κf(b), (3.9)

xCH = bσ

λ+ κ2 + bσ2 rH = f(b), (3.10)

iCH = λ+ κ2

λ+ κ2 + bσ2 rH , (3.11)

where we have introduced

f(b) := bσ

λ+ κ2 + bσ2 rH . (3.12)

We note that f(b) is a monotonically increasing function with f(0) = 0 and limb→∞ f(b) =
rH/σ.

Equations (3.9) and (3.11) are useful in understanding why FGCs are potentially welfare-
improving. With the help of (3.11), we observe that the nominal interest rate in the first
period after the downturn is a decreasing function of b and that it is lower than the level
that would prevail in the absence of an FGC, rH . Hence FGCs enable the central bank to
commit to expansionary monetary policy once the economy has left the downturn. Note
that inflation will be higher if an FGC is present in state H , which is shown by the fact
that πCH is an increasing function of b.8 Figure 3.2 shows how, under an FGC, the nominal
interest rate in state H decreases when the incentive intensity b increases. In turn, the
inflation and output gap increase with b in state H . This is plausible because increases
in b raise the relative importance of achieving small interest rates compared to the other
objectives in the central bank’s loss function, namely inflation and output stabilization.

Finally, we examine inflation and output in a downturn. Because there is a constant prob-

8 We observe that for b = 0, (3.9)-(3.11) entail the values of inflation, the output gap, and the nominal
interest rate from the standard discretionary solution examined in Section 4.1.
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Figure 3.2: Inflation, output gap, and interest rate as a function of the value of b in state H with
an active contract.

ability δ of remaining in state L, expectations of inflation and output are

Et[πt+1] = δπCL + (1− δ)πCH , (3.13)

Et[xt+1] = δxCL + (1− δ)xCH . (3.14)

We are now in a position to compute inflation and the output gap in the downturn. For
the moment we assume that the zero lower bound is binding in the downturn, i.e. iCL = 0.
Later we will identify the range of values of b for which this is actually the case. Further,
we will show that the government’s optimal choice of b always lies within this range.

Using (3.1), (3.2), (3.9), (3.10), (3.12)-(3.14), and iCL = 0 yields

πCL = Af(b) + πDL , (3.15)

xCL = Bf(b) + xDL , (3.16)

where

A := κ(1− δ) (σ(1 + β(1− δ)) + κ)
σ(1− δ)(1− βδ)− δκ , (3.17)

B := (1− δ) (σ(1− βδ) + κ)
σ(1− δ)(1− βδ)− δκ , (3.18)

and πDL and xDL are defined in (3.4) and (3.5). Recall that, in line with Assumption 3.1,
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Figure 3.3: Inflation (dashed curves) and output gap (solid curves) as a function of the value of b
for different shock sizes.

the values πDL and xDL , which would prevail without FGCs, are strictly negative. More-
over, Assumption 3.1 entails A > 0 and B > 0. Together with f ′(b) > 0 ∀b ≥ 0, this
implies that πCL and xCL strictly increase with b. Hence, for small b, FGCs can cushion
the harmful consequences of a downturn on the output gap and also mitigate the ensuing
deflation. These beneficial effects are possible because FGCs enable the central bank to
commit to loose monetary policy after the downturn (see (3.9)-(3.11)). This commitment
to expansionary policy after the downturn raises inflation expectations during the down-
turn (see (3.13)) and thereby enables the central bank to implement a lower real interest
rate it − Et[πt+1] = −Et[πt+1] when the nominal interest rate is constrained by the zero
lower bound. Figure 3.3 illustrates how, in state L, inflation and the output gap increase
with incentive intensity b under an FGC.

Finally, we need to examine the circumstances in which our assumption that the zero
lower bound is binding in a downturn is fulfilled under FGCs. The following lemma,
which is proved in Appendix A.1, establishes a sufficient condition for the zero lower
bound to be binding:

Lemma 3.1
If

f(b) ≤ κ2 + λ(1− βδ)
κ(κA+ λB) |π

D
L | =: f̂ , (3.19)

then the zero lower bound is binding in a downturn with FGCs.
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Figure 3.4: The function f(b) and three horizontal curves representing the right-hand side of
(3.19) for different shock sizes.

As (i) f(b) monotonically increases with b, (ii) f(0) = 0, and (iii) the right-hand side
of the condition in the lemma is positive and does not depend on b, the lemma defines a
critical value of b, henceforth denoted by b̂, such that the zero lower bound is binding in
state L for all values of b below this critical value. Note that this value will be infinite if
the right-hand side of (3.19) is at least as large as limb→∞ f(b) = rH/σ.

We thus obtain the following corollary:

Corollary 3.1
The zero lower bound is binding regardless of the value of b when rL ≤ r̂L, where

r̂L := −(κA+ λB)[σ(1− δ)(1− βδ)− δκ]
σ[κ2 + λ(1− βδ)] rH .

We note that when the shock is severe, i.e. rL ≤ r̂L, the inflationary expectation induced
by the FGC is not large enough to lift the optimal nominal interest rate above zero, even
if the value of b is set at an extremely high level.

Figure 3.4 depicts the left-hand side and the right-hand side of (3.19) from Lemma 3.1
for different values of rL. In the case rL = −0.01, a large value for b induces positive
inflation and output gap, as already shown in Figure 3.3. Hence, (3.19) is only satisfied
for low values of b. In the case rL = −0.02, inflation and output gap in downturns are
negative regardless of the value of b, as shown in Figure 3.3. Correspondingly, (3.19) is
always satisfied. Thus, in such a case, the zero lower bound is binding for all values of b.
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In the following we restrict our attention to values of b that satisfy the condition in the
lemma. The justification for this assumption is that the government would never find it
optimal to select a value of b that would violate (3.19), which will be demonstrated in the
next section.

3.3.1 Optimal Contracts with Commitment to Contracting

In this section we derive optimal FGCs and thus determine the socially optimal value
of b. In doing so, we continue to assume that the government always offers an FGC in
downturns and no contract in normal times. Later we will consider FGCs in the absence
of such commitments.

First we observe that in equilibrium per-period social losses can take only three different
values:

lCL = 1
2
(
πCL
)2

+ 1
2λ

(
xCL
)2

= 1
2
(
Af(b) + πDL

)2
+ 1

2λ
(
Bf(b) + xDL

)2
, (3.20)

lCH = 1
2
(
πCH
)2

+ 1
2λ

(
xCH
)2

= 1
2(κ2 + λ)

(
xCH
)2

= 1
2(κ2 + λ) (f(b))2 , (3.21)

lNH = 1
2
(
πNH
)2

+ 1
2λ

(
xNH
)2

= 0, (3.22)

where we have used that πNH = xNH = 0, (3.9), (3.10), (3.15), and (3.16). Social losses
expected in period 0 are given by

VL(C) =
∞∑
t=0

βtδtlCL +
∞∑
t=1

βtδt−1(1− δ)lCH , (3.23)

where the subscript L stands for the current state of the economy and C stands for the
fact that a (C)ontract was signed in the previous period. In (3.23) we have utilized lNH = 0
as well as the fact that (a) the probability of the economy being in a downturn is δt in all
periods t with t ≥ 0 and (b) the probability that the economy has just left the downturn
and hence an FGC is still effective is δt−1(1 − δ) in all periods t with t ≥ 1. It is
straightforward to rewrite (3.23) as

VL(C) = 1
1− βδ

[
lCL + β(1− δ)lCH

]
. (3.24)

Together with (3.20) and (3.21), (3.24) can be used to explain the tradeoff involved with
FGCs. First, lCH is an increasing function of b, which is a consequence of the facts that
πCH = κf(b) (see (3.9)), xCH = f(b) (see (3.10)), f(0) = 0, and f ′(b) > 0 ∀b ≥ 0.
The interpretation of this observation is that FGCs induce expansionary policy for one
period once the downturn has ended. This is socially costly ex post. Second, lCL is a
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monotonically decreasing function for small b. Hence FGCs induce welfare gains in
the downturn. This follows from the observation that the commitment to expansionary
policy after the downturn increases inflation expectations during the downturn and thereby
enables the central bank to implement lower real interest rates when the economy is stuck
at the zero lower bound.

The socially optimal value of b balances these costs and benefits. In Appendix A.2 we
prove the following lemma:

Lemma 3.2
Suppose the government always offers an FGC in state L and never offers a contract in

state H . Then the optimal value of b, b∗, can be determined in the following way:

1. If rH/σ > f ∗, b∗ is given by f(b∗) = f ∗, where

f ∗ :=
A+ λB 1−βδ

κ

A2 + λB2 + β(1− δ)(λ+ κ2) |π
D
L |. (3.25)

At the optimal value of b, the zero lower bound is binding in equilibrium.

2. If rH/σ ≤ f ∗, social losses decrease strictly with b ∀b ≥ 0. In this case the zero

lower bound is binding ∀b ≥ 0.

It is instructive to conduct comparative statics with respect to |rL|. For this purpose,
observe that f ∗ is a monotonically increasing function of |rL| because |πDL | is a mono-
tonically increasing function of |rL| (see (3.4)). As a result, the optimal value of b, b∗,
which is given by f(b∗) = f ∗ for rH/σ > f ∗, increases with |rL|. This is plausible, as a
higher value of |rL| corresponds to a larger shock and thus calls for stronger incentives.
For |rL| → 0, the optimal value of b converges to zero. By comparing f ∗ (equation (3.25))
and f̂ (equation (3.19)) and rearranging terms, it turns out that f ∗ < f̂ , where f̂ is the
critical value, given in Lemma 3.1, below which the zero lower bound is binding. Thus,
the zero lower bound is binding with an optimal FGC(b∗).

Lemma 3.2 also defines a critical value of rcL below which it is optimal to apply extremely
harsh FGCs.

Corollary 3.2
The optimal value of b is infinite when rL ≤ rcL, where

rcL := − [A2 + λB2 + β(1− δ)(λ+ κ2)][σ(1− δ)(1− βδ)− δκ]
σ[κA+ λB(1− βδ)] rH .
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3.3.2 Optimal Contracts without Commitment to Contracting

Up to now we have simply assumed that the government will behave in a certain way.
It remains to show that this behavior is indeed optimal when the government decides
in each period whether to offer the FGC or not. The next lemma, which is proved in
Appendix A.3, identifies a respective condition.

Lemma 3.3
The assumed behavior of the government, i.e. always signing an FGC with b = b∗ in a

downturn and refraining from signing a contract in normal times, is optimal if f ∗ ≤ 2f̃ ,

where

f̃ :=
A− P + λ(B −Q)1−βδ

κ

A2 − P 2 + λB2 − λQ2 + β(1− δ)(κ2 + λ) |π
D
L |. (3.26)

P and Q are constants and given in Appendix A.3. Figure 3.5 shows that f ∗ ≤ 2f̃ is
fulfilled in the range of δ that satisfies Assumption 3.1 at parameter values specified in
Table 3.1.

The lemma reveals that it is conceivable that for the optimal value of b, b∗ identified in
Lemma 3.2, the government would not find it optimal to offer the contract. This may
occur because the government takes its own future behavior and the behavior of private
agents as given. This distinguishes the government’s decision problem in a particular
period from the problem in the ex-ante stage, where the government can choose b for all
future periods.

More specifically, when weighing up the costs and benefits of signing an FGC in a partic-
ular period, the government will fully take the costs into account that would materialize in
the next period, provided that the state were H . However, the government only considers
a fraction of the benefits. This can be seen when we look at the well-known representa-
tion of the New Keynesian Phillips curve, where current inflation is proportional to the
expected discounted sum of all future output gaps

πt = κEt
[ ∞∑
i=0

βixt+i

]
, (3.27)

which directly follows from iterating (3.2). When the government signs an FGC in pe-
riod t, it only takes into account the effect this contract has for Et[xt+1]. Because the
government takes its own future behavior as given, it does not consider those benefits of
FGCs that result from the contracts’ influence on output gaps farther away in the future,
i.e. Et[xt+i] ∀i ≥ 2.

Despite the difficulty that a contract with b∗ may not be offered in equilibrium by the
government, it is straightforward to determine the optimal value of b for the case where
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Figure 3.5: The values of f∗ and 2f̃ , scaled by |πDL |, for the range of δ satisfying Assumption 3.1.

the government optimally decides in each period whether to sign a contract for the next
period or not.

Proposition 3.1
Suppose the government only offers an FGC in each period if this is profitable. Then the

optimal level of b, b∗∗, can be determined in the following way:

1. For 2f̃ ≥ f ∗ and f ∗ < rH/σ, the optimal level of b is given by f(b∗∗) = f ∗.

2. For 2f̃ < f ∗ and 2f̃ < rH/σ, the optimal level of b is given by f(b∗∗) = 2f̃ .

3. For 2f̃ ≥ rH/σ and f ∗ ≥ rH/σ, we obtain b∗∗ =∞.

To close this section, we present in Figure 3.6 the discounted social losses with the use
of an FGC expected in period 0 (see (3.24)). The expected social loss with an optimal
FGC(b∗) stays below the one in the discretionary case for all values of rL. When we
compare the ratio of social losses under FGC with the social losses under discretion,
we observe that a considerable welfare gain can be achieved with such contracts, as this
ratio attains nearly 0.03 for rL ∈ (rcL, 0) and is still around 0.25 for a large negative
natural real interest-rate shock. Hence we obtain quite favorable tradeoffs between the
efficacy of FGCs at the zero lower bound and the reduced flexibility in reacting to future
events. Figure 3.6 also shows that the social loss with FGC(b∗ = ∞) starts to increase
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Figure 3.6: Discounted social losses with optimal FGC(b∗), in the discretionary case (right axis),
and the ratio of these two discounted social losses (left axis), as functions of rL
(dashed curve represents rL = rcL).

considerably when rL < rcL.9

3.4 Forward Guidance Contracts under Uncertainty

In this section we analyze the second scenario outlined in Section 3.1, asking whether
FGCs would also be desirable if rL were unknown at the point in time when the value of b
is chosen. For this purpose, we assume that rL is randomly distributed with commonly-
known prior distribution. A further assumption we make is that the value of rL becomes
known in the period when the downturn occurs.

First we observe that the possibility of FGCs can never lead to lower expected levels
of welfare—provided that b is chosen optimally ex ante—because it would always be
possible to select FGCs with b = 0, which would result in a scenario equivalent to the
benchmark case without FGCs.

Second, we show that FGCs actually lead to strict increases in welfare. In particular, we
show that b can be chosen in such a way that FGCs will improve welfare for all possible
realizations of rL.

9 In such circumstances, welfare could be further improved by longer-term FGCs, which we discuss in
Chapter 4.
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Figure 3.7: Discounted social losses under FGC, as a function of rL, for different values of b.

Proposition 3.2
Suppose that rL is randomly distributed with a maximum possible realization rL < 0.

Then it is possible to select a value of b such that (i) for each realization of rL, the gov-

ernment offers the contract, and (ii) welfare conditional on this value of rL is strictly

higher than in the benchmark case.

As the proposition implies that for all realizations of rL welfare is higher under FGCs, the
welfare level expected before the realization of rL becomes known is also higher under
FGCs than in the benchmark case without FGCs.

In Figure 3.7, the blue and red curves represent the discounted social losses in the bench-
mark case and with an optimal FGC for each realization of rL, respectively. The green
curve represents the discounted social loss with r̄L = −0.0042 and the corresponding op-
timal b = 0.01. The brown curve represents the discounted social loss with r̄L = −0.0129
and the corresponding optimal b = 0.1. Intuitively, all of these curves representing the
discounted social losses with a fixed value of b are tangent to the red curve representing
the discounted social loss with the optimal b. This figure also demonstrates that choosing
the value of b that is optimal for r̄L improves social welfare for all rL ≤ r̄L. However,
as the value of b chosen ex ante is not the optimal one for the realization of rL below the
upper bound r̄L, the social loss can be unnecessarily high when rL is significantly lower
than r̄L.

When the maximum possible realization of the negative natural real interest rate is rL = 0,
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one can still construct FGCs that will improve welfare for a wide range of natural real
interest-rate shocks.10 Let us choose a value b̃ which is the optimal value of b for some
value rL = r̃L. As is demonstrated in Proposition 3.2, it is socially desirable to sign
FGC(b̃) for all the realizations rL ≤ r̃L. Henceforth, we focus on the remaining range
rL ∈ (r̃L, 0).

In Appendix A.5 we prove the following lemma:

Lemma 3.4
Given some value b̃ selected in period −1, the zero lower bound is binding, and it is

socially desirable to offer the FGC(b̃) when rL ≤ ar̃L, where a ∈ (0, 1) is given in (A.34)

in the proof.

Given the value b̃ that is optimal for r̃L, the central bank would still set the nominal
interest rate at zero when rL ∈ (r̃L, ar̃L). Intuitively, it is still socially desirable to offer
the FGC(b̃), as the induced inflation expectation is not unnecessarily large. If the size of
the shock is small, i.e. rL > ar̃L, the induced inflation expectation in downturns that
stems from FGC(b̃) is unduly large. Then the central bank will set a positive interest rate
to suppress the inflation boom in downturns.

We obtain the following proposition, proved in Appendix A.6:

Proposition 3.3
Given some value b̃ selected in period −1, there exists an r̃cL such that FGC(b̃) improves

social welfare for all rL < r̃cL, where r̃cL > ar̃L and r̃cL is given in the proof.

Figure 3.8 shows how the threshold value r̃cL, below which the government offers the
FGC(b̃), decreases as b̃ increases. Hence, if the government wants to ensure welfare gains
for a very large range of realizations of negative natural real interest-rate shocks, b̃ has
to be set at moderate levels. As an example, consider b̃ = 0.1. In Figure 3.9, we show
social losses under such a contract (dark line), under discretion (blue line) and when the
parameter b can be tailored to the precise realization of shocks as in Proposition 3.1 (beige
line). The critical threshold is r̃cL ≈ −0.004, and FGCs lead to lower social losses for all
values below that. For natural real interest rates above r̃cL, FGCs involve higher losses than
under discretion. In these cases, the value of b̃ = 0.1 is too high, given the comparably
small size of the shock, and thereby induces a too expansionary monetary policy in the
future.

10 If we assumed a particular distribution of natural real interest-rate shocks, we could, of course, calculate
the optimal FGC that improves welfare in expectation. For example, suppose that rL is distributed
uniformly in [rL, 0]. Then there exists an optimal value of b > 0 that minimizes expected welfare.
Typically, the intensity of incentives for such exercises is moderate as long as rL is not extremely low.
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Figure 3.8: r̃cL as a function of b̃.
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Figure 3.9: Discounted social losses with an FGC with b = b̃ = 0.1, under discretion and when b
is tailored to the realization of the shock.
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3.5 Discussion and Conclusion

Forward guidance aims at influencing the public’s expectations, an objective that has a
long tradition in monetary policy. Today the reliance on forward guidance has become a
central aspect of monetary policy, often associated with the belief that forward guidance
can provide a stimulus when economies are mired in longer downturns. We have explored
a simple contractual tool that makes forward guidance more effective when the economy
is at the zero bound.
Such FGCs strike a balance between Odyssian policy commitments and the need to react
to new developments. We have confined ourselves to very simple contracts, written ei-
ther after a downturn or in normal times. Numerous extensions of our research could be
pursued. For example, one could take into account the fact that it takes time to learn the
magnitude of the shock, so the government necessarily has to sign such contracts under a
veil of ignorance, which, in turn, may call for moderate intensity of incentives.
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3.6 List of Variables and Notations

Table 3.2: List of Variables and Notations

Variables Description

πt, xt, it inflation, output gap, nominal interest rate in period t
β households’ discount factor
κ coefficient in Phillips curve
σ relative risk-aversion coefficient of consumption
δ the probability of the economy being trapped in the downturn in each period
λ relative weight of output-gap objective with respect to inflation objective
ift central banker’s forecast of interest rate in period t
b intensity of incentives provided by FGCs
s ∈ L,H low and high states
rt, rH , rL natural real interest rate in period t, in states H and L
C,N an active contract exists, no active contract exists
πDs , xDs , iDs inflation, output gap, and interest rate in state s in discretion
πCs , xCs , iCs inflation, output gap, and interest rate in state s with an active contract
πNs , xNs , iNs inflation, output gap, and interest rate in state s without active contract

πNs , xNs , iNs are equivalent to πDs , xDs , iDs
lt, l

CB
t social loss function and the central banker’s loss function

lCs , l
N
s social loss functions with and without an active contract in state s

Vs(C), Vs(N) expected discounted intertemporal social losses in state s with and without contract
f(b) a function of b
f̂ , b̂ threshold values below which the zero lower bound is binding
f ∗, b∗, b∗∗ optimal designs of the contract
r̂L threshold value below which the zero lower bound is binding regardless of the value of b
rcL threshold value below which the optimal value of b is infinitely large
f̃ threshold value regarding the government’s behavior
A,B, P,Q constants
r̄L the maximum possible realization of rL in uncertainty scenario
b̃, r̃L, r̃

c
L, a values in uncertainty scenario





4 Longer-term Forward Guidance
Contracts†

So far, we have focused on simple renewable FGCs signed in one period and taking effect
in the next. In this chapter, we explore a simple alternative: contracts that become effec-
tive immediately after signing (and remain effective for several further periods), i.e. we
study FGCs that are effective for k periods, denoted by FGC (b, k), (b > 0, k ≥ 1).

The setup studied in this chapter differs from the one in Chapter 3 in two important re-
spects. First, the interest-rate forecast is not part of the contract and is chosen by the
central banker after the contract has been signed. Second, the setup in this chapter allows
the construction of analytically tractable, longer-term contracts that might be needed when
the natural real interest-rate shock is extremely severe.

We assume that a representative central banker shares the objectives of private agents and
thus faces the same social loss function captured by the term −0.5(π2

t + λx2
t ) in each

period. However, in addition, he faces an FGC (b, k), which implies that he faces utility
losses b(it − if[0,k−1])2 when he deviates during the contract term from his forecast if[0,k−1]

made in period 0.

Thus, the loss function of the central banker in periods t ∈ [0, k − 1] is

L[0,k−1] = −1
2E0

k−1∑
t=0

βt[π2
t + λx2

t + b(it − if[0,k−1])
2], (4.1)

where if[0,k−1] is the interest rate forecast made by the central bank in period 0 for k periods.

We consider two scenarios. In the first scenario, we examine the implications of a for-
ward guidance contract (b, 2) (FGC (b, 2)) when the size of the shock is known when
the contract is signed. We will determine the optimal two-period FGC, i.e. the optimal
intensity of incentives b that minimizes social losses. In the second scenario, we study
ex-ante FGCs, i.e. cost-minimized FGCs that minimize expected losses when there is
uncertainty about the parameter rL when the contracts are signed. In this more realistic
scenario, FGCs should perform well for different types of negative shocks. When shocks
are particularly severe in terms of size and duration for instance, FGCs should make it

† Part of this chapter is summarized as part of CESifo working paper No.5375 ( Gersbach et al. (2015)).
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credible to keep nominal interest rates low, or at zero, for longer periods. The opposite
should occur when shocks are small and the economy recovers quickly.

We first consider the simplest contract, i.e. one that only applies to the period in which it
is written. Such a contract would never be signed in normal times. In the downturn, the
central banker would also set zero interest rate in the absence of an FGC. Hence, such a
contract would only replicate the discretionary solution, which we will study in the next
section.

4.1 Benchmark Solution

In order to assess the potential and limitations of FGCs, we now summarize the well-
known benchmark—discretionary policy. The formal details are given in Appendix B.1.1

We first summarize the behavior of a central banker that discretionarily chooses the nom-
inal interest rate as its policy instrument in each period. In the downturn, a discretionary
central banker will set interest rates to zero, as this is the maximal possible move to stabi-
lize the shock. When the natural real interest rate has returned to a positive value, setting
the nominal interest rate at the same value as the natural real interest rate minimizes social
losses in a particular period. Hence, in normal times, it = rH , xt = 0 and πt = 0. In
downturns, it = 0.

Using Equations (3.1) and (3.2), the dynamics of the inflation and output gap during the
downturn can be rewritten as2

EtQt+1 ≡ Et

 πt+1

xt+1

 = OQt −
1
σ
rt, (4.2)

whereO =
 1

β
−κ
β

− 1
σβ

1 + κ
σβ

 and rt =
 0
rt

.

The inflation and output gap are constant in the downturn and are given by

Qd
D = 1

h(δ)
(
κ 1− δβ

)T
rL, (4.3)

where h(δ) = σβδ2 − (σ + κ+ σβ)δ + σ > 0, as set in Assumption 3.1.

1 Another well-known benchmark—commitment policy—is also provided in Appendix B.1.
2 For notational simplicity, we henceforth use the matrix expression.
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4.2 Two-period Forward Guidance Contract

In this section, we will focus on two-period FGCs which can be renewed as long as the
central bank faces a zero bound problem.

We note that two-period contracts, written at the beginning of a period, are contracts of the
shortest length that can generate an impact through forward guidance.3 We will illustrate
in Section 4.4, that long-term contracts can generate high welfare when the natural real
interest rate shock is large.

We assume for the moment that the interest-rate forecast chosen by the central bank is
zero, i.e. ift = ift+1 = 0. We will later argue that this is indeed the optimal choice.

We will use the stochastic recovery mode (see Eggertsson (2003)).

Definition 4.1 (Stochastic recovery)
In the stochastic recovery mode, the natural real interest rate returns to rH with proba-

bility 1− δ ∈ (0, 1] in each period.

Throughout this chapter, we assume that δ is not too large and thus that the probability
that the economy recovers is not too low. As in Eggertsson (2003) and Carlstrom et al.
(2012), and as discussed in Appendix B.1, the approximation methods used to obtain the
IS Equation and the Phillips Curve do not work well when the economy is expected to
remain in a downturn for a very long time.

The variable s ∈ {d, n} denotes the state of the economy in a particular period, where
d stands for downturn and n represents normal time. If s = d, rt = rL and if s = n,
rt = rH .

4.2.1 The Sequence of Events

The detailed sequence of events is shown in Figure 4.1. In the beginning of each period,
the natural real interest rate is realized (either rL or rH) and is common knowledge. After
that, either an FGC exists or the government decides whether or not to (re-)sign the (same)
FGC. In the next step, the central banker chooses the nominal interest rate. In the end
of each period, expectations of inflations and output gaps are formed, and inflation and
output gap are realized.

In period 0, for instance, after the realization of rL, the government signs an FGC (b, 2)
that makes the central banker’s remuneration contingent on the precision of his forecast.

3 Renewable short-term contracts are attractive as they can reap most—if not all—possible welfare gains
from FGCs for small and moderate negative natural real interest-rate shocks. They constrain the central
bank as little as possible and thus involve the lowest risk in case of unforeseen events.
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Shock occurs:
𝑟𝑟0 = 𝑟𝑟𝐿𝐿

0 1 2 t

Realization of 𝑟𝑟1 Realization of 𝑟𝑟2

Central bank sets 
interest rate

Government offers 
FGC (𝑏𝑏, 2)

Public form expectations

Central bank sets 
interest rate

Public form expectations

Inflation and output gap
are realized

Inflation and output gap
are realized

Central bank 
forecasts 𝑖𝑖0

𝑓𝑓 and 𝑖𝑖1
𝑓𝑓

Government offers 
FGC (𝑏𝑏, 2) if 𝑟𝑟2=𝑟𝑟𝐿𝐿

Figure 4.1: The sequence of events.

Then the central banker forecasts interest rates in periods 0 and 1. After that, the interest
rate, id0, in period 0 is set, and the inflation πd0 and output gap xd0 are realized.

In period t = 1, the central banker sets in1 if the economy has recovered. The correspond-
ing inflation and output gap are πn1 and xn1 . If the economy is still in a downturn, the
central banker sets id1, and the corresponding inflation and output gap are πd1 and xd1.

In period 2, the economy has either recovered and the central bank chooses the discre-
tionary solution leading to zero inflation and zero output gap, or the natural real interest
rate is still negative. In the latter case, the FGC (b, 2) is re-signed and thus the central
banker continues to select interest rates under FGCs.4

We observe that two-period contracts FGC (b, 2) are the shortest contract under which
forward guidance can have an impact. Indeed, a contract FGC (b, 1) that only applies to
the period in which it is written only replicates the discretionary solution. If the econ-
omy is in the downturn, the central banker would set zero interest rate even without such
an FGC, and thus FGC (b, 1) has no impact on economic variables. FGC (b, 1) has no
impact on the central banker’s action in normal times either, since the contract, written
in a downturn, ends in the same period. Thus, signing an FGC (b, 1) is equivalent to the
discretionary situation.

4 In this section, we only explore the FGC (b, 2) when the government commits to contracting. An exercise
similar to the one in Subsection 3.3.2 can also be performed for this type of contract.
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4.2.2 Evolution of the Economy

In this section, we derive the evolution of the economy for a given FGC (b, 2) and thus for
a given value of b.

Period 0

We start the analysis by expressing the IS Equation (3.1) and Phillips Curve (3.2) in matrix
form as follows

Qt = EtO−1Qt+1 + rt − it
σ

 κ

1

 , (4.4)

whereO−1 =
 β + κ

σ
κ

1
σ

1

 andQt =
 πt

xt

.

In period 0, a negative shock on the natural real interest rate occurs with r0 = rL and the
2-period FGC is operating. Equation (4.4) becomes

Qd
0 = E0O

−1Q1 + rL − id0
σ

 κ

1

 , (4.5)

where id0 is the chosen nominal interest rate.

Recovery in Period 1

In period 1, the natural real interest rate reverts back to rH with probability 1 − δ. In
this case, in period 2—one period later—the contract ends and the central bank becomes
discretionary. Thus, πt = xt = 0, ∀t ≥ 2. In period 1 with E1Q2 = 0, the central banker
maximizes

L1 = −1
2[π2

1 + λx2
1 + b(in1 )2] (4.6)

s.t.

π1 = κx1,

x1 = − 1
σ

(in1 − rH),

in1 ≥ 0.

The objective can be rewritten as

L1 = −1
2[λ+ κ2

σ2 (in1 − rH)2 + b(in1 )2]. (4.7)

We note that the restriction in1 ≥ 0 is not binding. Calculating the first-order condition
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and solving for in1 yields

Lemma 4.1

in1 = λ+ κ2

λ+ κ2 + bσ2 rH . (4.8)

We note how different values of b impact the chosen interest rate. If costs of deviation are
very small (i.e. if b is small), in1 is close to rH and thus to the discretionary solution. If b
is very large, the central banker sets a very low interest rate.

We combine Equations (4.4) and (4.8) and obtain the inflation and output gap

Qn
1 ≡

 πn1

xn1

 = bσ

λ+ κ2 + bσ2

 κ

1

 rH , (4.9)

where Qn
1 represents the inflation and output gap levels in period 1 when the economy

has recovered.

No Recovery in Period 1

In period 1, with probability δ, the natural real interest rate is still low, i.e. r1 = rL. In
this situation, Equation (4.4) becomes

Qd
1 = E1O

−1Q2 + rL − id1
σ

 κ

1

 , (4.10)

where Qd
1 represents the inflation and output gap levels and id1 is the interest rate the

central banker chooses in the downturn.

From the perspective of period 1, two situations can occur in period 2. First, in period 2,
the natural real interest rate is still rL with probability δ. Since the FGC (b, 2) signed in
period 0 expires in this period, and the economic situation in period 2 is the same as in
period 0, the FGC (b, 2) is introduced again. As in period 2, the central bank faces the
same economic situation and the same contract as in period 0, the inflation and output gap
in period 2 are the same as the ones in period 0.

Second, in period 2, the natural real interest rate bounces back to the high natural real
interest rate with probability 1 − δ. Then there is no need for the government to re-
sign the FGC (b, 2). Thus, the central banker discretionarily chooses his policy and sets
in2 = rH . Therefore, inflation and output gap are zero in period 2 and in all subsequent
periods.

From the perspective of period 1, when the economy is still in the downturn, the expected
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inflation and output gap for period 2 are thus

E1Q2 = (1− δ)Qn
2 + δQd

2 = (1− δ)0 + δQd
0 = δQd

0. (4.11)

Equations (4.5), (4.9), (4.10) and (4.11) express the economic outcomes in periods 0 and
1 explicitly as functions of the parameters. In Appendix B.2, we derive Qd

0 and Qd
1 as

follows:

Lemma 4.2

Qd
0 = 1

f(δ)

O0

 bσ2

λ+κ2+bσ2 (1− δ)rH
rL

− Õ0

 id0

id1

 , (4.12)

Qd
1 = 1

f(δ)

O1

 bσ
λ+κ2+bσ2 δ(1− δ)rH

rL

− Õ1

 id0

id1

 , (4.13)

where the function f(δ) and the 2 × 2 matrices O0, Õ0, O1 and Õ1 are defined in the

proof of the lemma, and solely depend on the parameters of the model.

We observe that changes of b—through its impact on the choice of the interest rate once
the economy recovers—affect the inflation and output gap during the entire downturn.
Hence, FGCs can affect expected losses.

4.2.3 Optimal Contracts

In this section, we derive optimal FGCs and thus determine the socially optimal value
of b. We proceed in three steps. We first calculate the expected intertemporal social
losses, evaluated in period 0. In the second step, we establish that zero interest rate during
downturns continues to be a binding constraint with FGCs. Finally, in the third step, we
establish the optimal value of b and thus the optimal FGC (b, 2).

In the first step, we combine the results in the previous subsections and obtain the expected
social losses

E0L
k=2
[0,∞] = −0.5(ΛQd

0)TΛQd
0 − 0.5β[(1− δ)(ΛQn

1)TΛQn
1 + δ(ΛQd

1)TΛQd
1]

− 0.5β2δ2{(ΛQd
0)TΛQd

0 + β[(1− δ)(ΛQn
1)TΛQn

1 + δ(ΛQd
1)TΛQd

1]}

− · · ·

= −0.5(ΛQd
0)TΛQd

0 + β[(1− δ)(ΛQn
1)TΛQn

1 + δ(ΛQd
1)TΛQd

1]
1− β2δ2 ,

(4.14)
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where Λ =
 1 0

0
√
λ

 and Qd
0, Qd

1 and Qn
1 are given in Equations (4.12), (4.13) and

(4.9).

We next establish that the zero interest rate is still a binding constraint when FGCs are
used.

Proposition 4.1
(i) There exists a threshold value r̂L < 0, such that the central bank sets id0 = id1 = 0

for any value of b in an FGC (b, 2) if rL ≤ r̂L.

(ii) The central bank sets id0 = id1 = 0 under an optimal FGC (b, 2) for any rL < 0.

The proof of Proposition 4.1 is given in Appendix B.3. In the proof of this Proposition, we
also provide an explicit formula for the threshold values r̂L. The intuition for Proposition
4.1 is straightforward. If the negative interest rate shock is sufficiently severe, the zero
bound is a constraint for the central bank for any FGC (b, 2). Any boom and inflation
that can be created by an FGC (b, 2) once the shock has died out is insufficient5 to lift
the economy in the downturn to the level at which the central bank optimally starts to
move away from the zero interest rate. In contrast, if the natural real interest rate shock is
moderate or small, optimal levels of b are set at a sufficiently low level such that after the
return to normal times, the induced boom and inflation do not cause the central bank to
already start moderating the economy in the downturn. Too high values of b would cause
inefficiently large booms and inflation.

The threshold value r̂L depends on the parameters. In Figure 4.2, we show how r̂L de-
pends on the recovery probability δ for the baseline calibration.

Finally, in the third step, we derive the optimal value of b in FGC (b, 2).

Proposition 4.2
There exists a unique optimal FGC (b, 2) characterized by

b =



0, if rL ≥ 0,
λ+κ2

σ2
1

rc
L
rL
−1
, if rL ∈ (rcL, 0),

∞, if rL ≤ rcL,

(4.15)

where rcL < 0 is a critical value of the natural real interest rate shock whose explicit

formula is given in the proof in Appendix B.4.

Proposition 4.2 shows that as soon as the natural real interest rate shock becomes negative,

5 In this case, an FGC (b, k > 2) might be optimal. The FGCs of longer term are studied in Section 4.4.
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0.2 0.4 0.6 0.8 1.0
δ

-0.03

-0.02

-0.01

rL

Figure 4.2: The threshold value r̂L with respect to δ.

it is optimal to use FGCs with small values of b if the shock is small and large values if
the shock is severe.

Figure 4.3 demonstrates the optimal b with respect to the size of the shock rL for the
baseline calibration. The critical level rcL depends on the parameters. In Figure 4.4, we
show how rcL depends on the recovery probability δ for the baseline calibration.

4.2.4 Examples

In this section, we illustrate the proceeding results by examples using our baseline cali-
bration. We first assume rL = −0.03. Thus, rL ≤ r̂L = −0.009 and rL ≤ rcL = −0.0092.
According to Proposition 4.1, the central banker sets id0 = id1 = 0. According to Proposi-
tion 4.2, the corresponding optimal b is infinity.

Figures 4.5–4.7 display the dynamics of inflation and the output gap in period 0 and 1 as a
function of b. The negative values of inflation and output gap in the downturn confirm that
setting id0 = 0 and id1 = 0 is optimal, and thus that the zero bound is binding, regardless of
the value of b.

Figures 4.5 and 4.6 show that a higher value of b induces less deflation and decline of
output in the downturn, caused by greater inflation and output in period 1 when the econ-
omy is out of the downturn, as shown in Figure 4.7. However, the impact on πn1 and xn1
is comparatively small. This rationalizes that the optimal value of b is extremely large
(infinity) which is illustrated by Figure 4.8.
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Figure 4.3: Optimal b with respect to the size of the shock rL.
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Figure 4.4: The critical value rcL with respect to δ.



Longer-term Forward Guidance Contracts 61

π0
d

π1
d

1 2 3 4
b

-0.0195

-0.0190

-0.0185

-0.0180

-0.0175

π

Figure 4.5: The inflation rates in period 0 and in period 1 w.r.t. b when the economy is in the
downturn.
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Figure 4.6: The output gaps in period 0 and in period 1 w.r.t. b when the economy is in the
downturn.
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Figure 4.7: The inflation and output gap in period 1 w.r.t. b when the economy recovers in period
1.
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Figure 4.8: The intertemporal social losses of two-period FGC w.r.t. b.
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We next investigate the scenario, when rL ∈ (rcL, 0). In our calibration, we assume
rL = −0.005. Equation (4.15) implies the optimal b is 0.036. Figures 4.9–4.11 show
the dynamics of inflation and output gap in period 0 and 1 as a function of b.
Figures 4.9 and 4.10 show that large values of b induce positive values of inflation and
output gap, while Figure 4.11 demonstrates how larger values of b cause greater infla-
tion and output gap in period 1, when the economy is out of the downturn. Figure 4.12
illustrates that the social loss is minimized at b = 0.036.
Finally, we examine how the outcomes depend on the size of the shock in more detail.
When rL ∈ (rcL, 0) and b is optimally chosen, Equations (4.12), (4.13) and (4.9) can be
written as

Qd
0 = 1

f(δ)O0

 (1− δ) rL
rcL
rH

rL

 , (4.16)

Qd
1 = 1

f(δ)O1

 δ(1−δ)
σ

rL
rcL
rH

rL

 , (4.17)

and

Qn
1 = 1

σ

 κ

1

 rL
rcL
rH . (4.18)

Figure 4.13 shows the inflation and output gap in the downturn when b is chosen optimally.
We note that the output gap is negative while inflation πd0 is almost zero6.
Figures 4.14 and 4.15 display the dynamics of inflation and output gap in function of rL
and δ, respectively, in period 1 when the economy recovers to the normal time. These two
figures demonstrate that the larger the probability of staying in the downturn or the larger
the size of the shock, the higher is the optimal inflation in the first period in normal time.

4.2.5 Interest Rate Forecasts in Downturns

So far, we have assumed that the central bank makes zero interest rate forecasts in down-
turns. However, given the choices of b described in Proposition 4.2, making positive
interest rate forecasts in downturns would only increase losses for central bankers, since
id0 = id1 = 0 is optimal. In turn, by the same logic as in Proposition 4.1, setting b at levels
that would induce positive interest rate forecast cannot be optimal.

4.3 Ex Ante Forward Guidance Contracts

In this section, we explore optimal FGCs that are written under a veil of uncertainty about
the precise nature of the natural real interest rate shock. This is a plausible scenario, as

6 A refined figure of πd0 reveals that it is always below 0.0004, but positive.
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Figure 4.9: The inflation rates in period 0 and in period 1 w.r.t. b when the economy is in a
downturn.
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Figure 4.10: The output gaps in period 0 and in period 1 w.r.t. b when the economy is in a down-
turn.
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Figure 4.11: The inflation and output gap in period 1 w.r.t. bwhen the economy recovers in period
1.
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Figure 4.12: The intertemporal social losses of a two-period FGC w.r.t. b.
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Figure 4.13: The evolution of the inflation and output gap with optimal value of b in the downturn.
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Figure 4.14: The evolution of the inflation rate and output gap with optimal value of b in the
normal time.
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Figure 4.15: The evolution of the inflation rate and output gap with optimal value of b in the
normal time with rL = −0.003.

FGCs cannot be adjusted at a high frequency and may have to be written in normal times.
Moreover, negative natural real interest rate shocks are difficult to identify instantaneously
when they occur. Hence, it is important that FGCs have positive effects in normal times
or in situations where negative natural real interest rate shocks with different sizes can
occur once the contract has been written.

The timing of events is as follows. At the end of period −1, the government designs an
FGCex (b, 2). In period 0, a shock to natural real interest rate occurs. More specifically, the
natural real interest rate drops to rL1 with probability ω1, to rL2 with probability ω2 and
to rL3 with probability ω3 = 1− ω1 − ω2, where rL1 ≤ rcL < rL2 < 0 ≤ rL3 ≤ rH . With
probability ω1+ω2, the natural real interest rate is negative. In this case, the economy risks
a deflation spiral even after reducing the nominal interest rate to the zero lower bound. To
avoid this bad outcome, the government signs an FGCex (b, 2) with the central bank at the
very end of period −1.

In period 2, with probability 1 − δ, the natural real interest rate recovers to rH . In this
case, no FGC is re-signed and the central banker sets in2 = rH . Therefore,Qn

2 = 0.

With probability δ, the natural real interest rate is still at a low level. We distinguish three
cases.

Case 1: With probability ω1, rL = rL1.
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Figure 4.16: The distribution of the natural real interest rate after the shock.

The optimal FGC (bd1 = ∞, 2) is signed in period 27. According to Proposition 4.1,
the central bank sets a zero nominal interest rate in the downturn. Thus, Equation (4.12)
implies

Qd1
2 = 1

f(δ)O0

 (1− δ)rH
rL1

 . (4.19)

The expectations formed in period 1 are

E1Q2 = (1− δ)Qn
2 + δQd1

2 = δQd1
2 . (4.20)

Equation (4.4) implies

Qd1
1 = E1O

−1Q2 + rL1

σ

 κ

1

 , (4.21)

where the formal proof8 of id1
1 = 0 is provided in Lemma 4.3.

7 We use the superscripts d1, d2 and d3 to indicate the variables in the downturn in Cases 1, 2 and 3,
respectively.

8 Note that Proposition 4.1 might not be appropriate here. In Proposition 4.1, FGC (b, 2) is effective
whenever the economy is in the downturn. However, in the present circumstances, different FGCs (b, 2)
are signed in periods −1 and 2.
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Figure 4.17: The values of πd1
0 and xd1

0 in function of rL1 ∈ [−0.1, rcL] for different values of b,
where rcL = −0.009 in our calibration.

Combining Equations (4.19), (4.21) and (4.20) yields

Qd1
1 = δO−1Qd1

2 + rL1

σ

 κ

1


= δ

f(δ)O
−1O0

 (1− δ)rH
rL1

+ rL1

σ

 κ

1

 .
(4.22)

If the economy recovers, the inflation and output gap are given in Equation (4.9).

Thus, the expectations in period 0 are

E0Q1 = (1− δ)Qn
1 + δQd1

1 . (4.23)

The inflation and output gap in period 0 are determined by

Qd1
0 = E0O

−1Q1 + rL1

σ

 κ

1

 , (4.24)

where id1
0 = 0 is proved in Lemma 4.4.

Figure 4.17 demonstrates that the zero lower bound on the nominal interest rate is bind-
ing, due to the negative inflation and output gap in period 0. It also demonstrates that
increasing the value of b has little impact on the inflation and output gap in period 0.

The value of b has no impact onQd1
1 , since the central banker would set id1

1 = 0 irrespec-
tive of the value of b. The value of b does not affect the central banker’s choice of setting
id1
0 = 0, but it does have an impact onQd1

0 via the expectations, as is shown in Equations
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(4.9) and (4.23). A higher value of b induces larger Qn
1 , which ultimately induces larger,

but still negative,Qd1
0 .

Case 2: With probability ω2, rL = rL2.

In period 2, if the economy is still in the downturn, the FGC (bd2, 2) is signed, where the
optimal b is given by Equation (4.15)

bd2 = − (λ+ κ2)∆1g(δ)
σ∆2rH + σ2∆1g(δ)rL2

rL2. (4.25)

Equation (4.16) implies

Qd2
2 = 1

f(δ)∆2
O0

 −(1− δ)σ∆1g(δ)
∆2

 rL2. (4.26)

Thus,
E1Q2 = (1− δ)Qn

2 + δQd2
2 = δQd2

2 . (4.27)

In period 1, if the economy is still in the downturn, Equation (4.4) implies

Qd2
1 = E1O

−1Q2 + rL2

σ

 κ

1

 , (4.28)

where id2
1 = 0 is proved in Lemma 4.3.

Combining Equations (4.26), (4.27) and (4.28) yields

Qd2
1 = δO−1Qd2

2 + rL2

σ

 κ

1


= δ

f(δ)∆2
O−1O0

 −(1− δ)σ∆1g(δ)
∆2

 rL2 + rL2

σ

 κ

1

 .
(4.29)

If the economy recovers, the inflation and output gap are given in Equation (4.9).

Thus,
E0Q1 = (1− δ)Qn

1 + δQd2
1 . (4.30)

The inflation and output gap in period 0 are determined by

Qd2
0 = E0O

−1Q1 + rL2 − id2
0

σ

 κ

1

 . (4.31)

In conclusion, the value of b has no impact on Qd2
1 , since the central banker would set

id2
1 = 0 irrespective of the value of b. However, the value of b does affect the central
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banker’s choice of id2
0 , as is proved in Lemma 4.4. In addition, it has impact on Qn

1 ,
which influences the expectations in period 0.

Lemma 4.3
With an FGCex (b, 2) signed in period −1 and anticipating that the optimal renewable

FGC (b, 2) would be signed, if necessary, the central banker would set id1
1 = id2

1 = 0 for

any value of b.

The formal proof of Lemma 4.3 is given in Appendix B.5.

Case 3: With probability 1− ω1 − ω2, rL = rL3

Since rL3 > 0, conventional monetary policy suffices to handle this situation. Thus, no
FGC is signed in period 2, and the central banker sets id3

2 = rL3 in the downturn and
in2 = rH if out of the downturn. Therefore,

Qd3
2 = 0. (4.32)

Thus, the expectations in period 1 are

E1Q2 = (1− δ)Qn
2 + δQd3

2 = 0. (4.33)

In period 1, if the economy is in the downturn, as in Equations (4.8) and (4.9), the optimal
interest rate set by the central banker is

id3
1 = λ+ κ2

λ+ κ2 + bσ2 rL3. (4.34)

The inflation and output gap are

Qd3
1 = bσ

λ+ κ2 + bσ2

 κ

1

 rL3. (4.35)

If the economy recovers, the inflation and output gap are given in Equation (4.9).

Thus,

E0Q1 = (1− δ)Qn
1 + δQd3

1

= bσ[(1− δ)rH + δrL3]
λ+ κ2 + bσ2

 κ

1

 . (4.36)
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The inflation and output gap in period 0 are determined by

Qd3
0 = E0O

−1Q1 + rL3 − id3
0

σ

 κ

1

 . (4.37)

Lemma 4.4
With an FGCex (b, 2) signed in period −1 and in anticipation that the optimal renewable

FGC (b, 2) would be signed, if necessary, the central banker would set id1
0 = 0 for any

value of b and rL1 ≤ rcL; while the values of id2
0 and id3

0 depend on the size of the shock

and the value of b. If the zero lower bound is not binding, the optimal nominal interest

rate in period 0 in Case 2 is

id2
0 =[(κ2 + λ)(κ+ σ) + κ2σβ] σ(1− δ)b

(λ+ κ2 + bσ2)2 rH + δ
[λ+ κ(κ+ σ̃β)]πd2

1 + σ(λ+ κ2)xd2
1

λ+ κ2 + bσ2

+ λ+ κ2

λ+ κ2 + bσ2 rL2,

(4.38)

otherwise, id2
0 = 0.

The optimal nominal interest rate in period 0 in Case 3 is

id3
0 = [(κ2 +λ)(κ+σ)+κ2σβ]σb[(1− δ)rH + δrL3]

(λ+ κ2 + bσ2)2 rH + λ+ κ2

λ+ κ2 + bσ2 rL3 > 0. (4.39)

The formal proof of Lemma 4.4 is given in Appendix B.6.

Figure 4.18 displays the optimal nominal interest rate for different values of b when rL2 ∈
(rcL, 0). Figure 4.19 displays the optimal nominal interest rate for different values of b
when rL3 > 0.

Lemma 4.5
Signing an ex-ante FGC of one period impedes the economy.

With an FGC (b, 1), the central banker would set id1
0 = id2

0 = 0 in Cases 1 and 2. However,
the central banker would set id1

0 = id2
0 = 0 even without the FGC (b, 1), while in Case 3,

FGC (b, 1) would constrain the central banker in setting id3
0 = rL3 optimally. Thus, FGC

(b, 1) is inappropriate and impedes the economy.

In period −1, the government chooses the optimal value of b to minimize the expected
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Figure 4.18: The optimal nominal interest rate in function of rL2 for different values of b.
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Figure 4.19: The optimal nominal interest rate in function of rL3 for different values of b.
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Figure 4.20: The evolution of the expected intertemporal social losses in periods 0 and 1 in func-
tion of ω1, for different values of b.

social losses in periods 0 and 1

E0L
k=2
[0,1] = −0.5[ω1(ΛQd1

0 )TΛQd1
0 + ω2(ΛQd2

0 )TΛQd2
0 + (1− ω1 − ω2)(ΛQd3

0 )TΛQd3
0 ]

− 0.5β(1− δ)(ΛQn
1)TΛQn

1

− 0.5βδ[ω1(ΛQd1
1 )TΛQd1

1 + ω2(ΛQd2
1 )TΛQd2

1 + (1− ω1 − ω2)(ΛQd3
1 )TΛQd3

1 ].
(4.40)

In our calibration9, we assume that rL1 = −0.025, rL2 = −0.005, rL3 = 0.015 and
ω3 = 0.3. The corresponding optimal values of b are∞, 0.036 and 0 in Cases 1, 2 and 3,
respectively.

Figure 4.20 shows that the expected intertemporal social losses in periods 0 and 1 decrease
with ω1. Larger b is only optimal when ω1 is large.

Figure 4.21 displays the optimal value of b in function of ω1. Figure 4.22 demonstrates
that the expected intertemporal social losses with the optimal b in periods 0 and 1 are
reduced, compared to the ones with little credibility (b = 0.001) and the ones without
FGCs10. The larger the value of ω1, the more the economy benefits from FGCs.

The upshot of the considerations and calibrations of ex-ante FGCs is that optimal values

9 Note that id2
0 > 0 as long as b ≥ 0.04. So we distinguish two cases: b < 0.04 and b ≥ 0.04.

10 The great discrepancy between the ones with FGCex (b = 0.001, 2) and the ones without FGCs is stems
from the fact that from period 2 on, optimal FGCs are signed in the former case, if necessary, while in
the latter case, no FGCs are signed.
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Figure 4.21: The optimal values of b in function of ω1.
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Figure 4.22: The expected intertemporal social losses in periods 0 and 1 with the optimal b, with
b = 0.001 and without FGCs, in function of ω1.
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of b are positive, but only at moderate levels. The reason is that circumstances in which
extremely high values of b and circumstances in which a zero value of b are optimal have
to be balanced. Moreover, when such contracts are written in normal times, the likelihood
of a severe negative shock to the natural real interest rate appears to be moderate.

4.4 Longer-term Forward Guidance Contracts

In this section, we examine whether FGCs with longer term could further improve wel-
fare. We first consider the dynamics of inflation and output gap when the natural real
interest rate reverts to rH while the contract is still binding.

Assume that the economy recovers to the normal time l periods before the FGC ends,
where l is an integer and l ∈ [1, k − 1].

In period k, the contract ends and the central banker becomes discretionary. Thus, πk =
xk = 0.

Assume that m is an integer and m ∈ [1, l].

In period k −m, the central bank maximizes

Lk−m = −1
2[(πnk−m)2 + λ(xnk−m)2 + b(ink−m)2] (4.41)

s.t.

πnk−m = κxnk−m + βπnk−m+1, (4.42)

xnk−m = xnk−m+1 −
1
σ

(ink−m − πnk−m+1 − rH), (4.43)

ink−m ≥ 0. (4.44)

The first-order condition of Equation (4.41) with respect to ink−m yields the optimal inter-
est rate

ink−m = 1
λ+ κ2 + bσ2 [(λ+κ2)rH +(λ+κ2 +κβσ)πnk−m+1 +σ(λ+κ2)xnk−m+1]. (4.45)

The corresponding inflation and output gap are

πnk−m = 1
λ+ κ2 + bσ2 [bκσrH + (λβ + bκσ + bβσ2)πnk−m+1 + bκσ2xnk−m+1], (4.46)
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and

xnk−m = 1
λ+ κ2 + bσ2 [bσrH + (bσ − κβ)πnk−m+1 + bσ2xnk−m+1]. (4.47)

Note that the interest rates, inflations and output gaps in normal times are all non-negative.

The dynamics can be described by

Sk−m = T ·Rk−m+1, (4.48)

where St =


int

πnt

xnt

, T = 1
λ+κ2+bσ2


λ+ κ2 λ+ κ2 + κβσ σ(λ+ κ2)
bκσ λβ + bκσ + bβσ2 bκσ2

bσ bσ − κβ bσ2

 ,Rt =


rH

πnt

xnt

 andRk =


rH

0
0

.

Thus, the inflation and output gap in period k − l are determined by

Qn
k−l = T̃ ·Rk−l+1, (4.49)

where T̃ = 1
λ+κ2+bσ2

 bκσ λβ + bκσ + bβσ2 bκσ2

bσ bσ − κβ bσ2

.

If the economy is in the downturn in period k − l, the inflation and output gap are deter-
mined by11

Qd
k−l = Ek−lO−1Qk−l+1 + rL

σ

 κ

1

 . (4.50)

Thus, in the downturn, the expectations are

Ek−l−1Qk−l = (1− δ)Qn
k−l + δQd

k−l. (4.51)

In period k, if the economy is out of the downturn, no FGC is re-signed and Qn
k = 0; if

the economy is still in the downturn, the same FGC (b, k) is re-signed and Qd
k = Qd

0 due
to the fact that the situation in period k is the same as the one in period 0. Thus,

Ek−1Qk = δQd
0. (4.52)

11 We assume that the central banker sets zero nominal interest rate in downturns.
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Figure 4.23: The optimal value of b∗ for FGCs with different durations.

The expected intertemporal social loss in period 0 is

E0L
k
[0,∞] = −0.5(ΛQd

0)TΛQd
0 + β[(1− δ)(ΛQn

1)TΛQn
1 + δ(ΛQd

1)TΛQd
1]

1− βkδk

− 0.5β
2[(1− δ)(1 + δ)(ΛQn

2)TΛQn
2 + δ2(ΛQd

2)TΛQd
2]

1− βkδk

− · · ·

− 0.5
βk−1[(1− δ)(1 + δ + · · ·+ δk−2)(ΛQn

k−1)TΛQn
k−1 + δk−1(ΛQd

k−1)TΛQd
k−1]

1− βkδk

= −0.5
(ΛQd

0)TΛQd
0 +∑k−1

j=1 β
j[(1− δj)(ΛQn

j )TΛQn
j + δj(ΛQd

j )TΛQd
j ]

1− βkδk .

(4.53)

In Figure 4.23, we show the optimal value of b∗, depending on the size of shock, for FGCs
of different lengths. Dashed vertical curves represent the critical values below which
b∗ = ∞ for 2-, 3-, 4-period FGCs (from the right to the left, as well as in Figure 4.25).
The optimal value of b∗ increases with the size of shock, which indicates that the intensity
of incentives should go hand in hand with the severity of the recession. A large deflation
and output collapse, caused by a large natural real interest-rate shock, can be mitigated
by a large expected inflation and output boom created either by a contract of longer-term
or by a short-term contract with larger values of b. Thus, compared to long-term FGCs,
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Figure 4.24: The expected social losses for FGCs with different durations, as functions of rL
(rL ∈ [−0.01, 0]).

short-term FGCs require larger value of b∗.

Figure 4.24 shows that for small and moderate shock sizes, a 2-period FGC is more de-
sirable, as the inflationary expectation raised by a 2-period FGC with a finite value of
b∗ suffices to compensate the deflation and output collapse caused by the natural real
interest-rate shock rL, while 3- and 4-period FGCs constrain the central bank for a long
period—which is excessive. However, as displayed in Figure 4.25, when the shock is
severe, longer-term FGCs could lower social losses further compared to short-term con-
tracts. Severe natural real interest-rate shocks require great incentives and long terms to
mitigate the deflation and output collapse in downturns. While such contracts can yield
even lower social losses in such circumstances, they also constrain the central bank for a
long time and may thus be problematic, as unforeseen events requiring greater flexibility
may occur in the meantime.

4.5 Discussion and Conclusion

In this chapter we explore longer-term contracts in an alternative contractual environ-
ments. We show that when the size of shock is severe, longer-term contracts could lower
social losses further compared to short-term contracts. Severe natural real interest rate
shocks require large incentive intensities and long contract periods to mitigate the defla-
tion and output collapse in downturns. While such contracts can yield even lower social
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Figure 4.25: The expected social losses for FGCs with different durations, as functions of rL
(rL ∈ [−0.05, 0]).

losses than short-term contracts in such circumstances, they also constrain the central
bank for a long time and may thus be problematic, as unforeseen events requiring greater
flexibility may occur in the interim.



5 State-contingent Forward
Guidance Contracts

5.1 Introduction

Walsh (1995) examines incentive contracts for central bankers in a static model, and
shows that contracts that reward central bankers according to the realized inflation can
induce socially desirable outcomes. Lockwood (1997) generalizes Walsh’s argument to
the case where the unemployment rate follows a first-order autoregressive process. He
shows that in such circumstances, incentive contracts for central bankers are socially ben-
eficial if the contract is contingent on the lagged unemployment rate, i.e. the higher the
unemployment rate in previous period, the lower central banker’s wage. Both Walsh
(1995) and Lockwood (1997) propose incentive contracts in which the penalty to central
bankers is contingent on the macroeconomic variables that have been realized, while in
Chapters 3 and 4, we studied incentive contracts in which the penalty to central bankers
is contingent on the discrepancy between the interest rate forecast and the actual interest
rate choice.

In this chapter, we introduce State-contingent Forward Guidance Contracts (SFGC). We
consider FGCs under which the effective zero-interest-rate policy is contingent on eco-
nomic developments. In such contracts, the central bankers’ forecast would itself depend
on macroeconomic variables such as the natural real interest rate or inflation expectation.
In downturns, for instance, the central bank announces that it will keep the interest rate at
zero until one period after the natural real interest rate has reverted to 2%. In other words,
the central bank’s zero-interest-rate policy is not calendar-based as studied in Chapters 3
and 4, but state-contingent (until certain criteria are fulfilled).

We investigate the optimal design of SFGCs and the optimal forecast if under such a
contract. SFGCs have advantage compared to the calendar-based FGCs studied in the
previous chapters: The government does not have to re-sign the same contract repeatedly
in downturns, while the same effects can be achieved as shown in Section 5.4.
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5.2 Evolution of Economics

In the presence of a large negative shock on the natural real interest rate, deflation accom-
panied by output collapse occurs even after reducing the nominal interest rate to the zero
lower bound. In such circumstances, creating inflationary expectation is vital for central
banks to lower the real interest rate and thus to stimulate the economy. Since the central
bank has limited ability to commit inflation credibly, the government steps in and signs a
state-contingent FGC which states that the central banker shall keep the nominal interest
rate at zero for certain periods until certain criteria are fulfilled, and the central banker’s
wage scheme is made dependent on the execution of the zero-interest-rate policy.

To explore the SFGCs, we repeat the model briefly as follows.

The IS Equation and Phillips Curve can be written in matrix form as follows:

EtQt+1 = OQt −
1
σ
rt, (5.1)

whereQt =
 πt

xt

,O =
 1

β
−κ
β

− 1
σβ

1 + κ
σβ

 and rt =
 0
rt − it

.

The central banker’s intertemporal loss function in period 0 is

L = −1
2E0

∞∑
t=0

βt(π2
t + λx2

t ). (5.2)

As in Eggertsson (2006), we assume that a large negative shock on the natural real interest
rate occurs in period 0. Thus, in period 0, the natural real interest rate is

r0 = rL < 0. (5.3)

In each period, the economy recovers from the downturn rt = rL to the normal time
rt = rH > 0, with a fixed probability 1− δ. The period at which the economy recovers is
denoted by τ , where τ is an integer and τ > 0.

The central banker’s objective function (5.2) suggests that the optimal interest rate would
be the one that leads to zero inflation and output gap in each period. Hence, in normal
times, the central banker sets it = rH . This leads to πnt = xnt = 0, i.e. Qn = 0, where n
denotes normal times.

Thus, the expectation in downturns is

EtQt+1 = δQd + (1− δ)Qn = δQd, (5.4)



State-contingent Forward Guidance Contracts 81

where d represents downturn.

Combining Equations (5.1) and (5.4) yields inflation and output gap in downturns

Qd
D = 1

h(δ)
(
κ 1− δβ

)T
rL, (5.5)

where D denotes discretionary policy, h(δ) = σβδ2− (σ+κ+σβ)δ+σ and interest rate
idD is set at zero in downturns.

Due to the shock on the natural real interest rate and deflationary expectation, deflation
and output collapse are excessive in downturns.

Note that h(δc) = 0 where δc = σ+κ+σβ−
√

(σ+κ+σβ)2−4σ2β

2σβ . As in Eggertsson (2006), Carl-
strom et al. (2012) and FGC (2014), the IS Equation and Phillips Curve derived around
the steady state are valid when δ is not too large. Hence, throughout the paper, we assume
δ ∈ [0, δc).

As in previous chapters, after the natural real interest rate shock, the government signs
an SFGC with the central banker: The central banker announces the interest rate ifτ he
will set, where τ represents the period when the economy returns to the normal time. The
central banker’s wage decreases with the deviation of his actual interest rate choice from
his forecast in period τ . The more he deviates, the less he will be paid. Thus, the central
banker’s objective function in period τ can be written as follows:

L(b, k) = −1
2Eτ

τ+k−1∑
t=τ

βt−τ [π2
t + λx2

t + b(it − ift )2], (5.6)

where b measures the intensity of incentives and k denotes the number of periods the
central banker forecasts.

We first study SFGC (b, 1): The central banker forecasts interest rates in normal times for
one period.

In periods [0, τ − 1], the economy is in downturns. The central banker sets the nominal
interest rate id. In period τ , the natural real interest rate returns to rH and the central
banker sets the nominal interest rate inτ . In period τ + 1, the contract ends and the central
banker sets it = rH discretionarily since period τ + 1. Thus, πt = xt = 0,∀t ≥ τ + 1.

In period τ with EτQτ+1 = 0, the central banker chooses inτ to maximize

max
inτ
−1

2[π2
τ + λx2

τ + b(inτ − ifτ )2], (5.7)

s.t.

πτ = κxτ ,



82 State-contingent Forward Guidance Contracts

iτ
f =0.01

iτ
f =0

0.2 0.4 0.6 0.8 1.0
b

0.005

0.010

0.015

0.020

iτ
n

Figure 5.1: The nominal interest rate in period τ in function of the incentive intensity b for differ-
ent forecasts.

xτ = − 1
σ

(inτ − rH),

inτ ≥ 0.

The objective can be rewritten as

max
inτ
−1

2[λ+ κ2

σ2 (inτ − rH)2 + b(inτ − ifτ )2], (5.8)

s.t.

inτ ≥ 0.

Calculating the first-order condition and solving for inτ yields

inτ = (λ+ κ2)rH + bσ2ifτ
λ+ κ2 + bσ2

= rH + bσ2(ifτ − rH)
λ+ κ2 + bσ2 ∈ [0, rH ].

(5.9)

We note how different values of b impact the chosen interest rate. If costs of deviation are
very small (b is small), inτ is close to rH and thus to the discretionary solution. If b is very
large, the central banker sets the interest rate close to his forecast.

Figure (5.1) depicts that the nominal interest rate in period τ deviates from rH towards
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the forecast ifτ as b increases.

Note that ifτ can be negative1. A forecast of negative interest rate shows the central
banker’s determination to conduct low-interest-rate policy in period τ . For example, when
the central banker sets iτ = 1%, if his forecast was ifτ = 0%, the deviation cost is 0.0001b,
while if his forecast was ifτ = −1%, the deviation cost is 0.0004b, four times larger than
the first. Thus, in the latter case, the central banker has a stronger incentive to set lower
iτ . Ceteris paribus, a lower interest forecast leads to lower interest rate iτ . Equation (5.9)
shows that when ifτ = îfτ , where îfτ = −λ+κ2

bσ2 rH
2, the central banker sets inτ = 0. Thus,

the central banker would not forecast an interest rate below îfτ . Intuitively, forecasting îfτ
would already lead to the central banker’s zero-rate policy in period τ . A lower forecast
would result in the same zero interest rate but yield a further unnecessary wage reduction
for the central banker. We make the following assumption that there exists a zero lower
bound of interest rate forecast.

Assumption 5.1
The central bank makes the interest rate forecast ifτ ≥ 0.

Figure (5.2) depicts that the nominal interest rate in period τ converges to rH when ifτ
approaches the natural real interest rate in normal times. The interest rate is set lower
when the value of b is larger.

We combine Equations (5.1), (5.9) andQn
τ+1 = 0, and obtain inflation and output gap in

period τ

Qn
τ ≡

 πnτ

xnτ

 = bσ(rH − ifτ )
λ+ κ2 + bσ2

 κ

1

 , (5.10)

whereQn
τ represents the inflation and output gap levels once the economy recovers.

Figure (5.3) shows that the inflation and output gap in period τ increase with the value
of b. Figure (5.4) shows that as the forecast ifτ increases, the inflation and output gap
decline. When the forecast ifτ = rH = 2%, both inflation and output gap are zero, which
corresponds to the discretionary case.

In downturns, from the perspective of period t, two situations can occur in period t + 1.
First, in period t + 1, the natural real interest rate is still rL with probability δ. As the
central bank faces the same economic situation in period t + 1 as in period t, the central
banker sets the same interest rate, i.e. idt+1 = idt = id.

1 An alternative approach to avoiding negative forecasts would be adding an interest rate inclination term
i∗t in central banker’s objective function, i.e. b(it− ift − i∗t )2. When the government signs the SFGC with
the central banker, apart from the incentive intensity b, the inclination i∗t is specified as well. This term
represents the government’s complementary tool, an addition to the incentive intensity. This supplement
allows to achieve social optimal results even when the forecasts ift can only have non-negative values.

2 In our calibration, îfτ = −0.06% when b = 1.
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Figure 5.2: The nominal interest rate in period τ in function of the interest rate forecast ifτ for
different b.
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Figure 5.3: Inflation and output gap in period τ in function of the incentive intensity b for different
forecasts. Solid and dashed lines represent inflation and output gap, respectively.
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Figure 5.4: Inflation and output gap in period τ in function of the interest rate forecast ifτ for
different b. Solid and dashed lines represent inflation and output gap, respectively.

Thus, the inflation and output gap in period t+ 1 are the same as the ones in period t

Qd
t+1 = Qd

t = Qd. (5.11)

Second, in period t+ 1, the natural real interest rate returns to rH with probability 1− δ.
The inflation and output gap are then given by Equation (5.10).

In period t, the expectation for inflation and output gap in period t+ 1 is

EtQt+1 = δQd + (1− δ)Qn
τ . (5.12)

Lemma 5.1
With the optimal design of SFGC (b, 1), the central banker sets the nominal interest rate

at zero in downturns.

Proof:
Assume that with the optimal design of SFGC (b, 1), the central banker sets nominal
interest rate at strictly positive levels in downturns. Setting positive interest rates implies
that, in downturns the inflation and output gap induced by SFGC (b, 1) are higher than
the optimal levels. Equations (5.1) and (5.12) suggest that the inflation and output gap
in normal time Qn

τ impact the ones in downturns Qd through the expectation channel.
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HigherQn
τ induces higherQd at the cost of higher inflation pressure in period τ . Thus, the

government can sign an SFGC (b, 1) with a lower value of b, which induces lower inflation
and output boom in period τ and optimal levels of inflation and output in downturns. This
contradicts the assumption of optimal design of SFGC (b, 1).

2

Thus, Equation (5.1) becomes

Qd
t = EtO−1Qt+1 + rL

σ

 κ

1

 . (5.13)

Equations (5.10), (5.11), (5.12) and (5.13) allow to express the economic outcomes in
downturns explicitly as a function of parameters.

Lemma 5.2
With the optimal design of SFGC (b, 1), the inflation and output gap in downturns are

Qd = 1
h(δ)Õ

 bσ(1−δ)
λ+κ2+bσ2 (rH − ifτ )

rL

 . (5.14)

The proof and the 2x2 matrix Õ are provided in Appendix C.1. Note that the discretionary
outcome in Equation (5.5) is recovered when b = 0.

Figures (5.5) and (5.6) show that inflation and output gap increase in downturns with the
value of b. Figure (5.5) depicts that inflation and output gap decline in downturns with the
size of the shock. Figure (5.6) depicts that inflation and output gap decline in downturns
with the forecast.

Figure (5.7) depicts the inflation and output gap in downturns in function of the size of
the shock, the value of b and the forecast. The values of inflation and output gap are
represented by colors. The smaller the values, the colder the color and vice-versa. The
upper row shows the inflation and output gap in function of the incentive intensity and
the size of the shock, with ifτ = 0. The middle row shows the inflation and output gap
in function of the incentive intensity and the forecast, with rL = −0.02. The bottom row
shows the inflation and output gap in function of the forecast and the size of the shock
with b = 0.5. All the plots imply that the inflation and output gap decrease in downturns
with the size of the shock and the forecast, and increase with the incentive intensity.
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Figure 5.5: Inflation and output gap in downturns in function of the incentive intensity b for dif-
ferent shock sizes, with ifτ = 0. Solid lines and dashed lines represent the inflation
and output gap, respectively.
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Figure 5.6: Inflation and output gap in downturns in function of the incentive intensity b for dif-
ferent forecast values, with rL = −0.01. Solid lines and dashed lines represent the
inflation and output gap, respectively.
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Figure 5.7: The left column and right column represent the inflation and output gap in downturns,
respectively. The dashed lines are the contour lines.



State-contingent Forward Guidance Contracts 89

rL=-0.02

rL=-0.01

0.2 0.4 0.6 0.8 1.0
b

-0.025

-0.020

-0.015

-0.010

-0.005

0.005

iτ
f

Figure 5.8: The interest rate forecast in function of b for different shock sizes.

5.3 Optimal Design

We derive that with the optimal design of SFGC (b, 1), the central banker forecasts

Proposition 5.1

ifτ = max{rH + (λ+ κ2 + bσ2)φ4

φ5 + φ6b
rL, 0}. (5.15)

φ4, φ5, φ6 and the proof are given in Appendix C.2.

Figure (5.8) shows that the optimal forecast rises with the value of b. Intuitively, for a
given shock size, the larger the value of b, the more credible the forecast and a less the
deviation of the forecast from rH is needed. When the shock size is small or moderate,
the central bank forecasts an interest rate that is higher than 0 to create the right amount
of inflationary expectation. Figure (5.8) depicts that when rL = −0.01 the interest rate
forecast ifτ > 0 when b > 0.04. However, when rL = −0.02, the central bank forecasts
ifτ = 0 irrespective of the value of b, as the size of the shock is so severe that a zero
forecast is always the optimal one.

Proposition 5.1 implies that ifτ > 0 if and only if the following inequality applies:

rL > rcL, (5.16)



90 State-contingent Forward Guidance Contracts

0.2 0.4 0.6 0.8 1.0
b

-0.015

-0.010

-0.005

rL
c

Figure 5.9: The critical value rcL.

where rcL = − φ5+φ6b
(λ+κ2+bσ2)φ4

rH .

Note that the critical value rcL decreases with b. Thus, we have the following corollary:

Corollary 5.1
ifτ = 0 for any b ≥ 0 if rL ≤ − φ6

σ2φ4
rH .

Figure (5.9) depicts that the critical value of the natural real interest rate shocks decreases
with the incentive intensity b. The dashed orange curve represents rcL when b =∞.

In the case rL ∈ [rcL, 0], inserting the optimal forecast into Equations (5.10) and (5.14)
yields

Qn
τ = − φ4bσ

φ5 + φ6b

 κ

1

 rL, (5.17)

and

Qd = 1
h(δ)Õ

 − (1−δ)φ4bσ
φ5+φ6b

1

 rL. (5.18)

In the case rL < rcL, the optimal forecast is 0. Equations (5.10) and (5.14) become

Qn
τ = − bσrH

λ+ κ+ bσ2

 κ

1

 , (5.19)
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Figure 5.10: Interest rate forecast ifτ in function of the shock size for different incentive intensities
b.

and

Qd = 1
h(δ)Õ

 bσ(1−δ)rH
λ+κ+bσ2

1

 rL. (5.20)

Figure (5.10) depicts that the interest rate forecast is zero when rL ≤ rcL and increases
with rL when rL > rcL.

Figure (5.11) depicts that the interest rate in period τ is kept at a constant level when
rL ≤ rcL. When the value of b is smaller, the central bank sets a higher interest rate due
to the smaller weight on the loss of deviation from the zero-interest-rate forecast. The
interest rate increases with rL when rL > rcL as the central bank can achieve enough
inflationary expectation in downturns with a large interest-rate forecast in the presence of
small size shocks.

Figures (5.12) and (5.13) show the inflation and output gap in period τ and in downturns,
respectively.

Since a higher value of b pushes up the inflation and output gap in downturns at the cost
of higher inflation and output gap in period τ , in period 0, the government chooses b to
maximize

max
b
− 1

2(1− βδ){[(π
d)2 + λ(xd)2] + β(1− δ)[(πnτ )2 + λ(xnτ )2]}, (5.21)
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Figure 5.11: Interest rate inτ in function of the shock size for different incentive intensities b.
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Figure 5.12: Inflation and output gap in period τ in function of the shock size for different incen-
tive intensities b. Solid lines and dashed lines represent the inflation and output gap,
respectively.
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Figure 5.13: Inflation and output gap in period τ in function of the incentive intensity b with the
optimal forecast. Solid lines and dashed lines represent inflation and output gap,
respectively.

subject to Equations (5.17) and (5.18).

Numerical results show that the expected intertemporal social loss with b = 1 attains 99%
of the one with infinite value of b. Therefore, in the presence of a shock with rL ≥ rcL, the
government signs an SFGC (1, 1) with the central banker.

Figure (5.15) shows that social loss increases with |rL|. A large value of b is desirable.

Here we achieve the main finding of this chapter: If we give central banker the freedom
to forecast an interest rate higher than zero, then the optimal value of b is infinity, i.e. a
highly scrupulous central banker is social beneficial. However, with b = 1 we already
achieve a very high welfare gain compared to the benchmark case.

5.4 Equivalence of SFGC (b, 1) and Simple

Renewable FGC

In period 0, right after the shock, two types of contracts can be signed due to the stochastic
character of the shock: State-contingent Forward Guidance Contracts (SFGC) and simple
renewable Forward Guidance Contracts (FGC) as studied in chapter 3. Since the recovery
is stochastic (with probability 1 − δ in each period), SFGC (b, 1) states that the contract
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Figure 5.14: The expected intertemporal social loss in function of the incentive intensity b with
the optimal forecast.
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Figure 5.15: The expected intertemporal social loss in function of the size of shock for different
values of b.
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ends one period after the shock has vanished. In other words, the expiry date of SFGC is
contingent on the recovery date. In contrast, the length of FGC is not contingent on the
state of the economy being in the downturn or in normal times. FGC signed in period t
expires in period t+1. Nevertheless, if the economy is still in the downturn in period t+1,
the same FGC can be re-signed, since the situation is the same as in period t. Otherwise,
if the economy is out of downturn in period t+ 1, no FGC is re-signed.
We find that signing the FGC in each period in downturns yields the same effect as signing
an SFGC (b, 1) in period 0: The central banker’s choice of interest rate once the economy
has recovered is constrained by his forecast in downturns, which ultimately creates infla-
tionary expectations in downturns.
However, two slight differences should be pointed out. On the one hand, signing an
SFGC (b, 1) in period 0 once and for all avoids the unnecessary administrative issues of
re-signing contracts in each period in downturns. On the other hand, signing an FGC
gives the government and the central bank flexibility in redesigning the contract in case
of a new development.

5.5 Discussion and Conclusion

In this chapter, we have studied a contract that is contingent on the natural real interest
rate. However, the natural real interest rate is not observable or measurable directly. One
might consider to use, the inflation expectation survey in financial market, for instance, to
replace the natural real interest rate as a macroeconomic indicator. Specifically, in down-
turns, the government signs an SFGC with the central bank. The central bank announces
to conduct the zero-interest-rate policy until the market’s inflation expectation is above a
certain level.
Unlike calendar-based FGCs studied in Chapters 3 and 4, SFGCs allow the central bank to
conduct state-contingent zero-interest-rate policy. With SFGCs the government does not
have to re-sign the FGCs repeatedly in downturns, while the same effects can be achieved.





6 Conclusions and Outlook

We have studied in Chapters 3 and 4 two variants of FGCs in the New Keynesian Frame-
work. We started with the simple, renewable contracts that are signed in one period
and become effective in the next period. With the optimally-designed contract, i.e. the
optimally-chosen incentive intensity, the deflation and output gap collapse in downturns
are alleviated due to the inflation expectation and output boom expectation. These ben-
eficial effects arise because the FGCs enable central banks to commit to loose monetary
policy after the vanishing of the downturn. When the size of the natural real interest rate
shock is severe, longer-term FGCs can further improve social welfare by fostering even
larger inflationary expectation. We addressed the longer-term FGCs in an alternative en-
vironment where the contract is signed and become effective in the same period and the
length of the contract can be adjusted as needed. We showed that while such contracts
could further lower the social loss compared to the short-term contracts, they also con-
strain the central bank for a longer period. This might hamper the central bank’s flexibility
in reacting to unforeseen economic developments in the interim.
Aside from these calendar-based FGCs, we have studied in Chapter 5 a contract that is
contingent on the natural real interest rate. The contract, signed in downturns, is in effect
as long as certain criteria are fulfilled. For example, the contract expires one period after
the natural real interest rate reaches 2%. State-contingent contracts exempt the govern-
ment from re-signing the simple, renewable FGCs repeatedly, while the same effect can
be achieved.
We also discussed which type of FGCs can be used when there is uncertainty about natural
real interest rate shocks, a situation which typically calls for moderate incentive intensity.
Future work could also consider other complications in the use of FGCs that were not ad-
dressed in this thesis, such as the uncertainty about the transmission channel of monetary
policy, for instance. In the following, we list several complications that we are currently
addressing in our on-going projects.

Complication 1: Mismeasurement of parameters
In the thesis, we have assumed that the discretionary central banker has the same objective
function as the households: lt = 0.5(π2

t + λx2
t ). One might argue that central bankers put

different weight on the output gap target relative to the inflation target, i.e. that central

97
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bankers have a λ that is different from the society’s. Consider, for instance, a conservative
central banker who puts more weight on the inflation mandate, i.e. the central banker has
a λ smaller than the society’s. As suggested in Equations (3.9)-(3.11), (3.15) and (3.16),
the central banker would set a lower nominal interest rate than the socially-optimal value
once the economy recovers to the normal times, leading to higher inflation and output
gap in both downturns and normal times. However, the value of λ is relatively small
compared to κ and σ in our calibration and in most other literature. Thus, a different
weight on output gap would not change our results significantly.

Complication 2: Mismeasurement of variables
The IS Curve (3.1) suggests that the current output gap (differential between the actual
output gap and its natural counterpart) depends on the expected output gap in the next
period and the differential between the real interest rate and the natural real interest rate.
Thus, the precise measurement of the natural output and the natural real interest rate is
vital for the assessment of the economy being contractionary or expansionary and of the
monetary policy stance being tight or loose.

The natural output—the desired level of output in the long-run—is the aggregate produc-
tion of the economy in the absence of nominal rigidities. If the actual output is above the
natural output, the economy is overusing its productive resources, leading to a boom and
vice versa. Thus, the output gap is an important indicator to assess whether the economy
is underperforming or overheating, and also an important guide for monetary policy. The
natural real interest rate is used to represent a reference level of the real interest rate: If the
real interest rate is above its natural counterpart, the monetary policy is assessed as tight
and economic activities contract, and vice versa. Thus, the natural real interest rate pro-
vides a metric to gauge the tightness of the monetary policy stance being contractionary
or stimulative.

If both the output gap and the natural real interest rate are measured correctly, the central
bank’s job is simple: setting the real interest rate higher than the natural counterpart in
the presence of positive output gap and vice versa. Thus, it is ultimately important to
measure the level of the natural output and the natural real interest rate. However, these
two variables are not directly observable or measurable. They can only be estimated using
theoretical derivations. For example, the natural output can be calculated using the esti-
mated potential labor force, capital and overall productivity. The natural real interest rate
can be computed using the consumers’ preference and the technology level, for instance.
However, preferences and technology level may vary with structural shifts, which are hard
to measure. Future research could consider the use of FGCs under a veil of uncertainty
about the natural output and natural real interest rate.
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Complication 3: Multiple and time-varying shocks
In this thesis, we have abstracted from the supply shock and assumed that there exists
only one type of shock: the shock on the natural real interest rate. In reality, however,
different types of shock coexist and occur simultaneously or successively. For example,
we could consider a circumstance where two types of shock occur consecutively: after the
vanishing of natural real interest rate shock, a supply shock with unknown size arises—
and unlike the stochastic natural real interest shock with two ad hoc realizations, the
supply shock follows the first-order autoregressive process. After the natural real interest
rate shock has vanished, the supply shock arises and dies out over time. In the presence of
an inflationary supply shock, sticking to the zero-interest-rate forecast made in downturns
would result in excessively high inflation in normal times. Thus, the uncertainty about
the size of the supply shock prevents the central bank from announcing an unconditional
zero-interest-rate forecast in downturns, leading to excessive deflation and output collapse
in downturns. In one of our on-going projects we introduce two types of FGCs to resolve
this problem:

• Forward Guidance Contracts with Escape Clause: Central bank is subject to the
contract if and only if certain criteria are fulfilled, for instance if the inflation is
below certain level. Otherwise, the central bank can act discretionarily. This kind of
contracts allows the central bank to abandon the contract in certain circumstances.
When the size of inflationary supply shock is too large, for instance, the central
bank can discard the promise of zero-interest-rate policy made in downturns and
fight the inflation with full force.

• Switching Forward Guidance Contracts: The central bank issues a zero-interest-rate
forecast in downturns. After the vanishing of the natural real interest rate shock, if
the size of the supply shock is too large, the central bank could switch to the inflation
forecast to lower the unduly-large inflation caused by the zero-interest-rate forecast
made in downturns. With such a contract, the central bank does not need to give up
the forecast made in downturns, and can switch to an alternative forecast regime to
suppress the overshooting inflation.

How FGCs should be designed and applied in various circumstances is left for future
research. Nevertheless, this thesis provides a benchmark for future research on the use
of forward guidance and Forward Guidance Contracts in the presence of the zero lower
bound. FGCs are a flexible tool that is worth exploring further.





A Proofs for Chapter 3

A.1 Proof of Lemma 3.1

In this appendix we examine the circumstances under which our previous assumption
holds that the central bank will select an interest rate of zero in a downturn. For this
purpose, we use (3.1) and (3.2) to replace πt and xt in the central bank’s instantaneous
loss function in period t in the presence of a contract. The derivative of the resulting
expression with respect to it has to be weakly positive at iCL = 0. Otherwise, it would be
profitable to raise interest rates. Formally, this condition can be stated as

κπCL + λxCL ≤ 0. (A.1)

As a next step, we evaluate (A.1) at πCL and xCL , where the latter two variables are specified
in (3.15) and (3.16):

κ
[
Af(b) + πDL

]
+ λ

[
Bf(b) + xDL

]
≤ 0.

Solving for f(b) yields

f(b) ≤ −κπ
D
L + λxDL

κA+ λB
= κ2 + λ(1− βδ)

κ(κA+ λB) |π
D
L |.

A.2 Proof of Lemma 3.2

To prove the lemma, we proceed in several steps. First, we determine the value of b that
minimizes the social losses represented by (3.24), assuming that the resulting value of b
satisfies (3.19), i.e. is small enough to ensure that the zero lower bound is binding in the
downturn. Second, we show that, for this value of b, (3.19) is actually satisfied. Third, we
examine optimal central bank policy if condition (3.19) fails to hold, i.e. in the case where
b is such that the zero lower bound is not binding. Fourth, we show that the government
would never find it optimal to select such a value for b.
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Step #1 Inserting (3.20) and (3.21) into (3.24) and computing the derivative with re-
spect to b reveals that this derivative is proportional to f(b) − f ∗, where f ∗ has been
defined in (3.25). We note that f ∗ is positive because πDL < 0, xDL < 0, A > 0, and
B > 0.

Recall that f(b) is a strictly monotonically increasing function with f(0) = 0. Hence for
limb→∞ f(b) = rH/σ > f ∗, there is a unique value of b, b∗, that satisfies f(b) = f ∗.
This value minimizes expected social losses. By contrast, for limb→∞ f(b) = rH/σ ≤
f ∗, social losses are a strictly monotonically decreasing function of b ∀b ≥ 0. Loosely
speaking, the optimal value of b is infinitely high in this case. For the remainder of the
proof we focus on the case where values of b exist for which the zero lower bound would
not bind in equilibrium under optimal central bank policy, i.e. we focus on limb→∞ f(b) =
rH/σ > f ∗.

Step #2 It is unclear as yet whether for the value of b, b∗, identified in the previous step,
the zero lower bound is actually binding in equilibrium. To show this, we prove that with
respect to it, the derivative of the central bank’s loss function, with the Phillips Curve and
the IS Curve used to substitute for inflation and output, is weakly positive at it = 0 in a
downturn. Formally, this condition can be stated as

∂lCBt
∂it

∣∣∣∣∣
iCL=0
≥ 0. (A.2)

Since

lCBt = lCBL = 1
2

[(
πCL
)2

+ λ
(
xCL
)2
]

+ 1
2bi

2
t

with it = iCL and

∂lCBt
∂it

= πt
∂πt
∂it

+ λxt
∂xt
∂it

+ bit = πCL

(
−κ
σ

)
+ λxCL

(
− 1
σ

)
+ biCL ,

(A.2) can be rewritten as
κπCL + λxCL ≤ 0. (A.3)

Using πCL = Af(b∗) + πDL and xCL = Bf(b∗) + xDL , replacing f(b∗) by f ∗, and using
the definition of f ∗ in (3.25), it is straightforward, though tedious, to show that (A.3) is
satisfied for b = b∗.

Step #3 So far, we have determined the optimal choice of b from all values for which
the zero lower bound binds in equilibrium. However, it is conceivable that the government
would select a value of b such that this would not be the case, i.e. a value for which (3.19)
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is violated. Hence, we consider the equilibrium for this range of b in this step. In the
fourth step, we demonstrate that the government would never select such a value for b∗.

If the zero lower bound does not bind, the following first-order condition holds in state L
under an FGC, as can easily be shown:

κπ̂CL + λx̂CL − bσiCL = 0. (A.4)

The Phillips Curve (3.2), π̂CL = β
(
δπ̂CL + (1− δ)πCH

)
+ κx̂CL , the IS Curve (3.1), x̂CL =

−σ−1
[
iCL −

(
δπ̂CL + (1− δ)πCH

)
− rL

]
+
(
δx̂CL + (1− δ)xCH

)
, (3.9), (3.10), and (A.4) can

be used to compute

π̂CL = z(b)κ(1− δ) (βλ+ bσ (κ+ σ (1 + β(1− δ))))
κ2 + λ+ bσ2 rH + z(b)κrL, (A.5)

x̂CL = z(b)(1− δ) (−βκ2 + bσ (κ+ σ (1− βδ)))
κ2 + λ+ bσ2 rH + z(b)(1− βδ)rL, (A.6)

where
z(b) := bσ

κ2 + λ(1− βδ) + bσ (σ(1− δ)(1− βδ))− δκ) . (A.7)

We observe that z(b) is a monotonically increasing function of b (recall our previous
assumption σ(1− δ)(1− βδ)− δκ > 0).

Step #4 Suppose that b is sufficiently high for the zero lower bound not to be binding
(b ≥ b̂). Then (A.5) and (A.6) can be used to write per-period losses in a downturn as

l̂CL =
(
π̂CL
)2

+ λ
(
x̂CL
)2

= z(b)2

(κ(1− δ) (βλ+ bσ (κ+ σ (1 + β(1− δ))))
κ2 + λ+ bσ2 rH + κrL

)2

+ λ

(
(1− δ) (−βκ2 + bσ (κ+ σ (1− βδ)))

κ2 + λ+ bσ2 rH + (1− βδ)rL
)2
 .

(A.8)

Using f(b) = bσ
λ+κ2+bσ2 rH and 1

λ+κ2+bσ2 rH = rH−σf(b)
κ2+λ (see (3.12)), we can restate (A.8)

as follows:

l̂CL = z(b)2

(κ(1− δ)
(
rH − σf(b)
κ2 + λ

βλ+ f(b) (κ+ σ (1 + β(1− δ)))
)

+ κrL

)2

+ λ

(
(1− δ)

(
−rH − σf(b)

κ2 + λ
βκ2 + f(b) (κ+ σ (1− βδ))

)
+ (1− βδ)rL

)2
 .

(A.9)
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We will now explain that (A.9) is a monotonically increasing function of b for b ≥ b̂,
where b̂ is implicitly defined by (3.19). This follows from two observations. First, we
have already noted that z(b) monotonically increases with b ∀b ≥ 0. Second, the term in
brackets in (A.9) is a quadratic function of f(b). It is straightforward, though tedious, to
show that the minimum of this term, interpreted as a function of f(b), is at f(b) = f(b̂),
where f(b̂) is given by the right-hand side of (3.19). Hence (A.9) monotonically increases
with b for b ≥ b̂.

Because at b = b̂, lCL = l̂CL holds1 and lCL , evaluated at b̂, has to be larger than at b = b∗ as
b∗ is the value of bminimizing lCL , we can conclude that the government would not choose
a value of b with b ≥ b̂.

A.3 Proof of Lemma 3.3

A.3.1 Preliminary steps

We need to define the strategy of the government in the candidate equilibrium precisely.
We assume that the government will always sign a new contract for the next period in
state L, independently of whether a contract has been signed for the current period. More-
over, we consider the case where the government never signs a contract for the next period
if the economy is in state H , irrespective of whether a contract exists for the current pe-
riod.

Next we examine whether, for the government, profitable deviations exist in a particular
period, when the government takes its own future behavior, the behaviors of the central
bank and of the private sector as given. There are four potential deviations. First, in a
situation where a contract is present in the current period and where the current economic
state is L, the government chooses not to sign a contract for the next period. Second, the
government refuses to offer a contract in state L, given that no contract is present in the
current period. Third, in state H the government offers a contract for the next period if a
contract is active in the current period. Fourth, in state H without a contract in the current
period, the government introduces a contract for the next period.

It is comparably straightforward to show that the third and fourth deviation cannot be
profitable. Showing that the other deviations are undesirable for the government is more
cumbersome and requires a few preliminary steps and some additional notation.

Let Vs(C) be the discounted future social losses for optimal central-bank and private-

1 It is not difficult to verify that, for b = b̂, πCL = π̂CL = − λβκrL
κ3+σ(1+β(1−δ))κ2+λκ+σλ(1−βδ) and xCL =

x̂CL = βκ2rL
κ3+σ(1+β(1−δ))κ2+λκ+σλ(1−βδ) , which implies the continuity of social losses, interpreted as a

function of b, at b = b̂.
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sector behaviors, given the current state s ∈ {L,H}, the fact that the government pursues
the strategy described above, and that a contract has been signed for the current period.
Vs(N) is the analogous expression for the case where no contract is present in the current
period. Moreover, let lXYs with s ∈ {H,L} and X, Y ∈ {C,N} be the per-period losses
in state s if currently there is a contract (X = C) or no contract (X = N ) and if in the
current period a contract is signed for the next period (Y = C) or not (Y = N ).

We obtain the following equations:

VL(C) = lCCL + β (δVL(C) + (1− δ)VH(C)) , (A.10)

VH(C) = lCNH + βVH(N), (A.11)

VL(N) = lNCL + β (δVL(C) + (1− δ)VH(C)) , (A.12)

VH(N) = lNNH + βVH(N). (A.13)

We note that lNNH = 0, lCNL = lNNL , and lCCL = lNCL , where the latter two conditions follow
from the observation that the zero lower bound always binds in state s = L, irrespective
of whether a contract was signed in the previous period. This observation will be shown
formally later.

As a result, we obtain

VL(C) = 1
1− βδ l

CC
L + β(1− δ)

1− βδ l
CN
H , (A.14)

VH(C) = lCNH , (A.15)

VL(N) = 1
1− βδ l

CC
L + β(1− δ)

1− βδ l
CN
H , (A.16)

VH(N) = 0. (A.17)

A.3.2 Deviation in state L when a contract was signed in the
previous period

We are now in a position to specify the condition that ensures that the government does
not find it optimal to refuse to offer a contract for the next period, given that the current
state is L and that a contract was signed in the previous period:

lCNL + β (δVL(N) + (1− δ)VH(N)) ≥ VL(C). (A.18)

The right-hand side of the inequality states the losses incurred if the government does not
deviate. The expression on the left-hand side represents social losses if the government
does not offer a contract in the period under consideration but pursues its equilibrium
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strategy in all future periods. With the help of (A.14)-(A.17), (A.18) can be simplified to

lCNL ≥ lCCL + β(1− δ)lCNH . (A.19)

This condition will be analyzed in more detail later.

A.3.3 Deviation in state L when a contract was not signed in
the previous period

In state L, the government will find it optimal to offer a contract for the next period,
provided that no contract was signed in the previous period, if

lNNL + β (δVL(N) + (1− δ)VH(N)) ≥ VL(N). (A.20)

Because lNNL = lCNL and VL(N) = VL(C), this condition is equivalent to (A.18) and thus
to (A.19).

A.3.4 Evaluating condition (A.19)

To evaluate condition (A.19), we have to determine lCNL , lCCL , and lCNH . For this pur-
pose, we observe that lCCL and lCNH are per-period losses that also occur in the candidate
equilibrium. Hence, we obtain

lCCL = 0.5[(πCL )2 + λ(xCL)2], (A.21)

lCNH = 0.5[(πCH)2 + λ(xCH)2]. (A.22)

To determine lCNL , we have to compute inflation and the output gap, πCNL and xCNL , for
the case where the government does not offer a contract in state L for the next period but
reverts to its putative equilibrium strategy in all future periods, i.e. it will offer a contract
in state L and no contract in state H . In such a situation, expectations of inflation and the
output gap are

Et[πt+1] = δπNCL + (1− δ)πNNH = δπCL , (A.23)

Et[xt+1] = δxNCL + (1− δ)xNNH = δxCL . (A.24)
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It is tedious but straightforward to show that inserting these two expressions into (3.1) and
(3.2), evaluated at it = 0, yields

πCNL = Pf(b) + πDL , (A.25)

xCNL = Qf(b) + xDL , (A.26)

where πDL , xDL , and f(b) have been introduced in (3.5), (3.12), and (3.4) respectively, and
P and Q are given by

P := δ
[(
κ

σ
+ β

)
A+ κB

]
, (A.27)

Q := δ
(
A

σ
+B

)
. (A.28)

Recall that A and B have been defined in (3.17) and (3.18).

A.3.5 Verifying that the zero lower bound binds for the
deviations

It remains to be verified that the zero lower bound is also binding for the deviations ana-
lyzed above if (3.19) is satisfied, which ensures that it is binding in state L in equilibrium
when a contract is present in the current period. We note that this is the case for

κπCNL + λxCNL ≤ 0. (A.29)

Using (3.19), (A.25), (A.26), and xDL = 1−βδ
κ
πDL , which follows from (3.4) and (3.5), and

re-arranging results in the condition yields

κP + λQ

κA+ λB
≤ 1. (A.30)

It is straightforward to show A− P = κ(1−δ)(κ+σ(1+β))
σ

> 0 and B −Q = (1−δ)(κ+σ)
σ

> 0,
which, together with P > 0 and Q > 0, implies (A.30).
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A.3.6 Simplifying condition (A.19)

Finally, we simplify condition (A.19) to identify the set of parameter values for which no
profitable deviation for the government exists. The condition can be written as

0 ≤
(
πNNL

)2
+ λ

(
xNNL

)2
−
(
πCL
)2
− λ

(
xCL
)2
− β(1− δ)

(
πCH
)2
− β(1− δ)λ

(
xCH
)2

= −
(
A2 − P 2 + λB2 − λQ2 + β(1− δ)(κ2 + λ)

)
(f(b))2

− 2
(
A− P + λ(B −Q)1− βδ

κ

)
f(b)πDL .

As πDL < 0,A2−P 2+λB2−λQ2+β(1−δ)(κ2+λ) > 0, and
(
A− P + λ(B −Q)1−βδ

κ

)
>

0 (due to A > P and B > Q), we can conclude that this expression is weakly positive for
all values of f(b) with f(b) ≥ 0 that are smaller than or equal to 2f̃ , where

f̃ :=
A− P + λ(B −Q)1−βδ

κ

A2 − P 2 + λB2 − λQ2 + β(1− δ)(κ2 + λ) |π
D
L |. (A.31)

Hence no profitable deviation exists for the government if f ∗ ≤ 2f̃ , where

f ∗ =
A+ λB 1−βδ

κ

A2 + λB2 + β(1− δ)(λ+ κ2) |π
D
L |. (A.32)

A.4 Proof of Proposition 3.2

Suppose that the value of b corresponded to the optimal value b∗∗ for the realization rL =
rL. Clearly, for this particular realization of rL, social welfare would be higher than in
the benchmark case. In the following we show that this value of b also leads to welfare
improvements for all other realizations of rL. For this purpose, we note that b∗∗ is a
monotonically increasing function of |rL|, as both f̃ and f ∗ are increasing linear functions
of |πDL |, which, in turn, monotonically increases with |rL|. As social losses interpreted as
a function of f(b) are monotonically decreasing for all f(b) ≤ f ∗, we can conclude that
the value of b optimal for rL would also increase welfare for all other realizations of rL.

A.5 Proof of Lemma 3.4

With a given b̃, inserting (A.5) and (A.6) into (A.4) yields

iCL(b̃) = (κA+ λB)[σ(1− δ)(1− βδ)− δκ]f(b̃) + [κ2 + λ(1− βδ)]rL
bσ[σ(1− δ)(1− βδ)− δκ] + κ2 + λ(1− βδ) , (A.33)
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where f(b̃) is given2 in (3.25) in Lemma 3.2.

Equation (A.33) implies that iCL > 0 if and only if rL > ar̃L, where

a := (κA+ λB)[κA+ λB(1− βδ)]
[κ2 + λ(1− βδ)][A2 + λB2 + β(1− δ)(λ+ κ2)] . (A.34)

Therefore, the zero lower bound is binding when rL ≤ ar̃L.

We next prove that it is socially desirable to offer the FGC(b̃) when rL ≤ ar̃L.

We can write the discounted social loss under discretion as in (3.24):

VL(D) = 1
1− βδ l

D
L , (A.35)

where lDL = 0.5[(πDL )2 + λ(xDL )2].
The government would offer the contract when rL ≤ ar̃L if and only if the discounted
social loss with FGC(b̃) were lower than the one in the benchmark case:

VL(C) < VL(D). (A.36)

Solving (A.36) yields
rL < 0.5r̃L.

In our calibration3, a = 0.95 > 0.5. Therefore, for all rL ≤ ar̃L, (A.36) is satisfied and it
is socially desirable to offer the FGC in these circumstances.

A.6 Proof of Proposition 3.3

We have derived (3.15) and (3.16), assuming the zero lower bound is binding. In a similar
vein, we now derive the inflation and output gap in downturn with a given FGC(b̃), without
assuming that the zero lower bound is binding. We obtain

πCL = Af(b̃) + κ

σ(1− δ)(1− βδ)− δκ(rL − iCL) (A.37)

and
xCL = Bf(b̃) + 1− βδ

σ(1− δ)(1− βδ)− δκ(rL − iCL). (A.38)

The government would offer the FGC if and only if (A.36) applied.

2 Recall that b̃ is the optimal value of b when rL = r̃L.
3 Numerical result shows that for all δ that satisfy Assumption 3.1, a > 0.5 is fulfilled.
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Inserting (A.33), (A.37), and (A.38) into (A.36) yields

rL < r̃cL,

where

r̃cL =
a1a2 + λa3a4 −

√
(a1a2 + λa3a4)2 + (a5 − a2

1 − λa2
3)[a2

2 + λa2
4 + β(1− δ)(λ+ κ2)]

a5 − a2
1 − λa2

3
f(b̃),

a1 := κσb̃

σ[σ(1− δ)(1− βδ)− δκ]b̃+ κ2 + λ(1− βδ)
,

a2 := σA[σ(1− δ)(1− βδ)− δκ]b̃+ λ(1− βδ)A− λκB
σ[σ(1− δ)(1− βδ)− δκ]b̃+ κ2 + λ(1− βδ)

,

a3 := (1− βδ)σb̃
σ[σ(1− δ)(1− βδ)− δκ]b̃+ κ2 + λ(1− βδ)

,

a4 := σB[σ(1− δ)(1− βδ)− δκ]b̃+ κ2B − κ(1− βδ)A
σ[σ(1− δ)(1− βδ)− δκ]b̃+ κ2 + λ(1− βδ)

,

a5 := κ2 + λ(1− βδ)2

[σ(1− δ)(1− βδ)− δκ]2 .



B Proofs for Chapter 4

B.1 Benchmarks

In this section, we provide the formal detail of the two benchmark solutions–discretion
and commitment. In the last subsection, we consider the commitment scenario for the
special case when the natural real interest rate bounces back to the steady-state value rH
one period after the shock.

B.1.1 Discretionary Policy

In this subsection, we consider a discretionary central bank and assume that it is common
knowledge that discretionary policy is conducted in every period.

The expected intertemporal social loss in period 0 is

E0l[0,∞] = −1
2E0

∞∑
t=0

βt(π2
t + λx2

t ). (B.1)

When the central bank chooses its policy in a particular period t, the Lagrangian is

L =E0

∞∑
t=0

βt[12(π2
t + λx2

t )

+ ψ1,t(xt − Etxt+1 + 1
σ

(it − Etπt+1 − rt))

+ ψ2,t(πt − κxt − βEtπt+1)].

(B.2)

In a discretionary solution, the expectations Etxt+1 and Etπt+1 are taken as given when
the government selects its policy. Therefore, the first-order conditions amount to

∂L
∂πt

= πt + ψ2,t = 0, (B.3)

and
∂L
∂xt

= λxt + ψ1,t − κψ2,t = 0, (B.4)
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with the constraints
it ≥ 0, ψ1,t ≥ 0, itψ1,t = 0. (B.5)

The initial conditions are
ψ1,−1 = 0, ψ2,−1 = 0. (B.6)

The steady-state solution when the shock has subsided is characterized by1

πss = 0, xss = 0, iss = rH , ψ1,ss = 0, ψ2,ss = 0. (B.9)

We denote the period when the natural real interest rate reverts rH by τ , where τ ≥ 1. In
the periods t ≥ τ , ψ1,t = 0.

Combining Equations (B.3) and (B.4) yields

λxt + κπt = 0. (B.10)

Inserting the Phillips Curve (3.2) in Equation (B.10) leads to

πt+1 = 1
β

(1 + κ2

λ
)πt. (B.11)

By taking the limit on both sides of Equation (B.11), we obtain

lim
t→∞

πt = lim
t→∞

[ 1
β

(1 + κ2

λ
)]t−τπτ = 0. (B.12)

Since 1
β
(1 + κ2

λ
) > 1, the unique solution is πt = 0. With Equation (B.10), xt = 0. With

the IS Equation (3.1), we conclude that it = rH .

In periods t ∈ [0, τ − 1], it = 0 and ψ1,t > 0, as this minimizes the per-period social loss.

The IS Equation for t ∈ [0, τ − 1] becomes

Etxt+1 = xt −
1
σ

(Etπt+1 + rt), (B.13)

Rearranging the IS Equation (B.13) and the Phillips Curve (3.2) for the downturn t ∈

1 Deflationary spirals characterized by

π = −rH < 0, x = −1− β
κ

rH < 0, i = 0, (B.7)

with Lagrange Multipliers

ψ1 = κ2 + λ(1− β)
κ

rH , ψ2 = rH , (B.8)

can be excluded by setting the interest rate above zero once the economy has returned to rH > 0.
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[0, τ − 1] yields

EtQt+1 ≡ Et

 πt+1

xt+1

 = OQt −
1
σ
rt, (B.14)

whereO :=
 1

β
−κ
β

− 1
σβ

1 + κ
σβ

 and rt :=
 0
rt

.

O is invertible due to |O| = 1
β
6= 0.

As a preliminary step, we address the solution when rt = rL for a specific number of
periods τ 2. In period τ , rt returns to rH and stays there forever.

Step 1: Inserting the IS Equation (3.1) in the Phillips Curve (3.2) yields

πt = βπt+1 + κ(xt+1 −
1
σ

(it − πt+1 − rt))

= βπt+1 −
κ

σ
(it − πt+1 − rt) + πt+1 − βπt+2

= −κ
σ

(it − rt) + (1 + β + κ

σ
)πt+1 − βπt+2.

(B.15)

In the periods t ∈ [0, τ − 1], it = 0 and rt = rL.

The evolution of inflation in the downturn is

πt = κ

σ
rL + (1 + β + κ

σ
)πt+1 − βπt+2. (B.16)

The terminal conditions are
πτ = 0, (B.17)

πτ−1 = κ

σ
rL, (B.18)

and
πτ−2 = (2 + β + κ

σ
)κ
σ
rL. (B.19)

In order to solve Equation (B.16), we first solve the particular equation

χ = κ

σ
rL + (1 + β + κ

σ
)χ− βχ, (B.20)

with the auxiliary variable χ.

We obtain
χ = −rL. (B.21)

2 See Carlstrom et al. (2012).
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Solving the characteristic equation of Equation (B.16)

ι2 − (1 + β + κ

σ
)ι+ β = 0, (B.22)

yields

ι1/2 =
1 + β + κ

σ
±
√

(1 + β + κ
σ
)2 − 4β

2 , (B.23)

where ι is the auxiliary variable.

The two solutions satisfy ι1 < β < 1 < ι2.

Using Equations (B.21) and (B.23), the inflation dynamics in the downturn can be written
as

πt = −rL + υ1ι
τ−t
1 + υ2ι

τ−t
2 , (B.24)

where υ1 and υ2 are two real valued coefficients. υ1 and υ2 are determined by the terminal
conditions

πτ−1 = −rL + υ1ι1 + υ2ι2 = κ

σ
rL, (B.25)

and
πτ−2 = −rL + υ1ι

2
1 + υ2ι

2
2 = (2 + β + κ

σ
)κ
σ
rL. (B.26)

If υ2 is non-zero, a larger value of τ implies a larger value of |π0|. This is shown in Figures
B.1 and B.2.
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Figure B.1: The evolution of inflation after a negative natural real interest rate shock rL = −0.03
when the economy returns to the steady state at τ = 10.

Step 2: We next consider the case when the recovery date is unknown. We look for so-
lutions when the inflation level and output gap are constant before the natural real interest
rate bounces back. The justification is that households and central banks face the same
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Figure B.2: The evolution of inflation after a negative natural real interest rate shock of rL =
−0.03 when the economy returns to the steady state at τ = 15.

infinite-horizon problem and thus the same IS Equation and Phillips Curve in each period
in which the natural real interest rate is at rL and has not returned to rH .

EtQt+1 = δQd
D + (1− δ)0 = δQd

D, (B.27)

where D denotes discretion and d represents the downturn.

Inserting Equation (B.27) into Equation (B.14) yields

Qd
D = 1

h(δ)
(
κ 1− δβ

)T
rL, (B.28)

where h(δ) := σ(1− δ)(1− δβ)− κδ.
The signs of the inflation and output gap are determined by the denominator h(δ).

Figure B.3 implies that πt and xt decrease when the probability δ approaches the critical
point δc from the left. The opposite occurs when δ approaches the threshold δc from the
right.

We note that for δ = 0, i.e. the natural real interest rate reverts to rH one period after the
shock, πdD = κ

σ
rL < 0.

For δ > δc, the solution displays positive inflation levels during the downturn, which is
implausible3, as the approximation method to obtain the IS Equation and Phillips Curve
does not work well in such circumstances. Hence, we will assume that δ < δc throughout

3 In Carlstrom et al. (2012), when the interest rate is lowered unconditionally for extended periods, some
peculiar behavior of inflation and output gap (e.g. reversals) occurs. The reason is that the IS Equation
and Phillips Curve are derived around the steady state and the inflation rate and output gap deviate too far
from their steady-state values if the interest rate is unconditionally pegged at a lower value for extended
periods.
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Figure B.3: The blue line represents the denominator h(δ). It crosses the x-axis at δc = 0.69. The
red and yellow lines represent the inflation and output gap levels in the downturn,
respectively.

the paper4.

A final remark on the discretionary case is in order. One can also construct equilibria with
varying inflation during the downturn5.

B.1.2 Commitment Policy

In the commitment case, the central bank commits to an entire path of policy choices,
depending on whether the economy is still in the downturn or has returned to normal
time.

The first-order conditions of Equation (B.2) become

πt + ψ2,t − ψ2,t−1 −
1
σβ

ψ1,t−1 = 0, (B.29)

λxt + ψ1,t −
1
β
ψ1,t−1 − κψ2,t = 0, (B.30)

and
it ≥ 0, ψ1,t ≥ 0, itψ1,t = 0. (B.31)

To derive the solution, we assume that the central bank’s policy choice is characterized by
two different points in time, i.e. τ and τ̂ (τ ≤ τ̂ ), where τ is the date at which the natural

4 See Footnote 27 in Eggertsson (2006).
5 Refer to Appendix C in Carlstrom et al. (2012).
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real interest rate returns to rH and τ̂ is the date6 at which interest rate is set at positive
level. Then, the central bank is assumed to set interest rates as follows:

In the periods t ∈ [0, τ − 1], rt = rL < 0, it = 0 and ψ1,t > 0.

In the periods t ∈ [τ, τ̂ − 1], rt = rH > 0, it = 0 and ψ1,t > 0.

In the periods t ∈ [τ̂ ,∞), rt = rH > 0, it > 0 and ψ1,t = 0.

Hence, the central bank chooses zero nominal interest rates during the downturn and for
an additional time τ̂ − τ , and finally moves to positive nominal interest rates since period
τ̂ .

The idea of committing to zero interest rate in the periods [τ, τ̂−1] is to create inflationary
expectations during the downturn [0, τ − 1].
In the periods t ∈ [0, τ − 1], it = 0, rt = rL. In the downturn, we have

EtQt+1 = δQd
C + (1− δ)Qτ , (B.32)

where Qτ =
 πτ

xτ

 6= 0 is the value of inflation and output gap once the natural real

interest rate has returned to rH and Qd
C =

 πdC

xdC

 is the value of inflation and output

gap during the downturn.

Inserting Equation (B.32) in Equation (B.14), we calculate

Qd
C = OCQτ +Qd

D, (B.33)

whereOC := 1−δ
h(δ)

 κ+ βσ(1− δ) κσ

1 σ(1− βδ)

.

In the periods t ∈ [τ, τ̂ − 1], it = 0, rt = rH and ψ1,t > 0. Equation (B.15) becomes

πt = κ

σ
rH + (1 + β + κ

σ
)πt+1 − βπt+2. (B.34)

In the periods [τ̂ ,∞), it > 0, rt = rH and ψ1,t = 0.

In period τ̂ , the first-order conditions are

πτ̂ + ψ2,τ̂ − ψ2,τ̂−1 −
1
σβ

ψ1,τ̂−1 = 0, (B.35)

and
λxτ̂ −

1
β
ψ1,τ̂−1 − κψ2,τ̂ = 0. (B.36)

In the periods t ∈ [τ̂ + 1,∞), ψ1,t = 0 and ψ1,t−1 = 0.

6 Note that τ̂ is dependent on τ .
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Equations (B.29) and (B.30) become

πt + ψ2,t − ψ2,t−1 = 0, (B.37)

and
λxt − κψ2,t = 0. (B.38)

Combining Equations (B.37) and (B.38) yields

πt+1 = λ

κ
(xt − xt+1). (B.39)

Inserting the Phillips Curve (3.2) in Equation (B.39), yields the dynamics of inflation and
output gap

Qt+2 = (1 + λ+ κ2

βλ
)Qt+1 −

1
β
Qt. (B.40)

Its characteristic equation is

q2 − βλ+ λ+ κ2

βλ
q + 1

β
= 0, (B.41)

with the auxiliary variable q ∈ R.

The solutions are

q1 =
βλ+ λ+ κ2 −

√
(βλ+ λ+ κ2)2 − 4βλ2

2βλ , (B.42)

and

q2 =
βλ+ λ+ κ2 +

√
(βλ+ λ+ κ2)2 − 4βλ2

2βλ . (B.43)

We note that q1 < 1 < q2.

Therefore, we can write the dynamics for all t ≥ τ̂ + 1 as

Qt = O′

 qt−τ̂1

qt−τ̂2

 , (B.44)

whereO′ :=
 oπ1 oπ2

ox1 ox2

.

Since q2 > 1, the terminal conditions πss = limt→∞ πt = 0 and xss = limt→∞ xt = 0
imply that the coefficients oπ2 and ox2 have to be zero. Otherwise, the dynamics would
display explosive behavior.
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Hence, the dynamics for all t ≥ τ̂ + 1 are

πt = oπ1q
t−τ̂
1 , (B.45)

and
xt = ox1q

t−τ̂
1 . (B.46)

We provide a simple example in Subsection B.1.3.

B.1.3 One-period Shock

In this subsection, we consider the commitment scenario for the special case when the
natural real interest rate bounces back to the steady-state value rH one period after the
shock, i.e. τ = 1, and the recovery date is publicly known. This corresponds to the
stochastic recovery mode with δ = 0. This case can be fully solved analytically. As it is
particularly instructive, we explore in full detail.

We start with the assumption that the optimal interest rate is non-zero as soon as the
natural real interest rate is non-negative, i.e. τ = τ̂ = 1.

In period 0, r0 = rL, id0 = 0 and ψ1,0 > 0.

Equation (B.33) implies

x1 = σβ + κ

σβ
x0 −

1
σβ

π0 −
1
σ
rL, (B.47)

and
π1 = 1

β
π0 −

κ

β
x0. (B.48)

Equations (B.29) and (B.30) imply

π0 = −ψ2,0, (B.49)

and
x0 = κ

λ
ψ2,0 −

1
λ
ψ1,0. (B.50)

In period 1, r1 = rH , i1 > 0 and ψ1,1 = 0.

The Phillips Curve (3.2) and IS Equation (3.1) are

π2 = 1
β
π1 −

κ

β
x1

= κ+ σ

σβ2 π0 −
κσ + κ2 + κβσ

σβ2 x0 + κ

σβ
rL,

(B.51)



120 Proofs for Chapter 4

and

x2 = x1 + 1
σ

(i1 − π2 − rH)

= σ2β2 + κσ + κ2 + 2κσβ
σ2β2 x0 −

σβ + κ+ σ

σ2β2 π0 −
1
σ
rH −

σβ + κ

σ2β
rL + 1

σ
i1.

(B.52)

The First-order Conditions (B.35) and (B.36) deliver

π1 = 1
βσ

ψ1,0 + ψ2,0 − ψ2,1, (B.53)

and
x1 = 1

λβ
ψ1,0 + κ

λ
ψ2,1. (B.54)

Eliminating ψ1,0 and ψ2,0 by Equations (B.49) and (B.50), we obtain

π1 = −βσ + κ

βσ
π0 −

λ

βσ
x0 − ψ2,1, (B.55)

and
x1 = − 1

β
x0 −

κ

λβ
π0 + κ

λ
ψ2,1. (B.56)

Combining Equations (B.48) and (B.55) yields

ψ2,1 = −βσ + κ+ σ

βσ
π0 −

λ− κσ
βσ

x0. (B.57)

With Equations (B.56) and (B.57), we obtain

x1 = −κλ+ σλ− σκ2

βσλ
x0 −

2κσ + σβκ+ κ2

βσλ
π0. (B.58)

Combining Equations (B.47) and (B.58) yields a constraint on x0 and π0,

σβ + κ

σβ
x0 −

1
σβ

π0 −
1
σ
rL = −κλ+ σλ− σκ2

βσλ
x0 −

2κσ + σβκ+ κ2

βσλ
π0. (B.59)

In period 2, r2 = rH , i2 > 0 and ψ1,2 = 0.

The First-order Conditions (B.37) and (B.38) imply

π2 = ψ2,1 − ψ2,2, (B.60)

and
x2 = κ

λ
ψ2,2. (B.61)
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According to Equations (B.51) and (B.57), we rearrange Equation (B.60)

ψ2,2 = ψ2,1 − π2

= κσ + κ2 + 2κσβ − λβ
σβ2 x0 −

β(σβ + κ+ σ) + κ+ σ

σβ2 π0 −
κ

σβ
rL.

(B.62)

Therefore, Equation (B.61) becomes

x2 = κ

λ
[κσ + κ2 + 2κσβ − λβ

σβ2 x0 −
β(σβ + κ+ σ) + κ+ σ

σβ2 π0 −
κ

σβ
rL]. (B.63)

Equations (B.52) and (B.63) determine the value of i1. If i1 turns out to be negative,
the zero lower bound is still binding, i.e. ψ1,1 = 0. In such circumstances, our initial
assumption that τ̂ = τ is incorrect and need to be adjusted. Hence, we next assume
τ̂ = τ + 1, which means that the interest rate is kept at zero for one more period. We
then repeat the procedure above until we reach the case when the zero lower bound is not
violated7. In our calibration, i1 > 0. Therefore, the assumption τ̂ = τ applies here.

The Phillips Curve (3.2) in period 2 delivers π3

π3 = 1
β
π2 −

κ

β
x2. (B.64)

In period 3, r3 = rH , i3 > 0 and ψ1,3 = 0.

The First-order Conditions (B.37) and (B.38) imply

π3 = ψ2,2 − ψ2,3, (B.65)

and
x3 = κ

λ
ψ2,3. (B.66)

The IS Equation (3.1) in period 2 is

x3 = x2 + 1
σ

(i2 − π3 − rH). (B.67)

Equations (B.65), (B.66) and (B.67) determine the values of x3 and i2.

In the same manner, we obtain the values of x4 and i3. We can write the initial conditions
of Equation (B.44) as

xτ̂+2 = x3 = ox1q1 + ox2q2, (B.68)

and
xτ̂+3 = x4 = ox1q

2
1 + ox2q

2
2. (B.69)

7 This is the same procedure as the one in the Technical Appendix of Eggertsson (2006).
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The terminal conditions limt→∞ πt = 0 and limt→∞ xt = 0 require ox2 = 0 to rule out the
explosive root. Then, we have

q1 = xτ̂+3

xτ̂+2
= x4

x3
. (B.70)

This is the second constraint on the initial inflation and output gap.

Together with the first Constraint (B.59), Equation (B.70) delivers the values of x0 and π0

and hence the path of the inflation and output gap.

The coefficient ox1 is obtained by
ox1 = x3

q1
. (B.71)

The evolution of the output gap (t ≥ 3) is

xt = ox1q
t−2
1 . (B.72)

The evolution of inflation (t ≥ 3) is given by

πt = λ

κ
(xt−1 − xt) = λox1

κ
(1− q1)qt−3

1 . (B.73)

The evolution of inflation (t ≥ 3) can also be written as

πt = oπ1q
t−2
1 , (B.74)

where oπ1 = λox1
κq1

(1− q1).

The evolution of interest rate stemming from the IS Equation (3.1) is

it = σ(xt+1 − xt) + πt+1 + rt

= σ(xt+1 − xt) + πt+1 + rH

= −κσ
λ
πt+1 + πt+1 + rH

= rH + ox1(σ − λ

κ
)(q1 − 1)qt−2

1 .

(B.75)

Figures B.4, B.5 and B.6 display the evolution of the inflation rate, output gap and interest
rate, respectively. Figures B.7 and B.8 display the evolution of the inflation rate, output
gap and interest rate at a refined scale.

The intertemporal social losses for the commitment denoted by lC[0,∞] are

lC[0,∞] = −
∞∑
t=0

βt
1
2(π2

t + λx2
t ) = −3.1× 10−6. (B.76)



Proofs for Chapter 4 123

2 4 6 8 10

t

-0.002

-0.001

0.001

0.002

Π

Figure B.4: The evolution of the inflation from period 0 to period 10.
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Figure B.5: The evolution of the output gap from period 0 to period 10.
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Figure B.6: The evolution of the interest rate from period 0 to period 10.
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Figure B.7: The evolution of inflation and of output gap from period 3 to period 10.
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Figure B.8: The evolution of the interest rate from period 3 to period 10.

We compare it to the discretionary case:

x0 = 1
σ
rL.

π0 = κ

σ
rL.

xt = πt = 0,∀t ≥ 1.

The intertemporal social losses for the discretionary denoted by lD[0,∞] are

lD[0,∞] = −
∞∑
t=0

βt
1
2(π2

t + λx2
t ) = −1

2(π2
0 + λx2

0) = −(κ2 + λ)(rL)2

2σ2 = −1.35× 10−5.

Thus, the intetemporal social loss with commitment policy is more than four times smaller
than the one with discretionary policy.
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B.2 Proof of Lemma 4.2

Inserting Equation (4.11) into Equation (5.11) yields

Qd
1 = δO−1Qd

0 + rL − id1
σ

 κ

1

 . (B.77)

In period 0, the expected inflation and output gap in period 1 are

E0Q1 = (1− δ)Qn
1 + δQd

1. (B.78)

Combining Equations (4.5) and (B.78) yields

Qd
0 = (1− δ)O−1Qn

1 + δO−1Qd
1 + rL − id0

σ

 κ

1

 . (B.79)

Inserting Equation (B.77) in Equation (B.79) delivers

Qd
0 = (1− δ)O−1Qn

1 + δ2O−2Qd
0 + δ

rL − id1
σ

O−1

 κ

1

+ rL − id0
σ

 κ

1

 . (B.80)

Rearranging Equation (B.80) yields

Qd
0 =(1− δ)(I − δ2O−2)−1O−1Qn

1

+ δ
rL − id1
σ

(I − δ2O−2)−1O−1

 κ

1

+ rL − id0
σ

(I − δ2O−2)−1

 κ

1

 ,
(B.81)

where I =
 1 0

0 1

.

Inserting Equation (4.9) in Equation (B.81) yields, after some algebraic manipulations

Qd
0 = 1

f(δ)

O0

 bσ2

λ+κ2+bσ2 (1− δ)rH
rL

− Õ0

 id0

id1

 , (B.82)
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where

O0 :=
 κo1 κg(δ)

o2 (1− βδ)g(δ)

 , (B.83)

Õ0 :=
 κo3 δκo1

o4 δo2

 , (B.84)

where the functions f(δ) and g(δ), as well as the elements o1, o2, o3 and o4, are given by

f(δ) := g(δ)h(δ), (B.85)

g(δ) := σβδ2 + o1δ + σ, (B.86)

h(δ) := σβδ2 − o1δ + σ, (B.87)

o1 := σβ + κ+ σ, (B.88)

o2 := κ+ σ − σβ2δ2, (B.89)

o3 := σ(1 + βδ2), (B.90)

o4 := σ − β(βσ + κ)δ2. (B.91)

Note that

o3 + o1δ = g(δ), (B.92)

o3 − o1δ = h(δ), (B.93)

o4 + o2δ = (1− βδ)g(δ), (B.94)

o4 − o2δ = (1 + βδ)h(δ). (B.95)

Inserting Equation (B.82) in Equation (B.77), we obtain

Qd
1 = 1

f(δ)

O1

 bσ
λ+κ2+bσ2 δ(1− δ)rH

rL

− Õ1

 id0

id1

 , (B.96)

where

O1 :=
 κ(o2

1 − βσo3) κg(δ)
κo1 + σo2 (1− βδ)g(δ)

 , (B.97)

Õ1 :=
 δκo1 κo3

δo2 o4

 . (B.98)

Formally, each element in Õ0 and Õ1 is positive, irrespective of the parameter values.
The only exception is o4. However, for reasonable parameter constraints (β ≤ 1, κ ≤ 1
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and σ ≥ 1), o4 is also positive. This suggests that positive levels of id0 and id1 lower the
values ofQd

0 andQd
1.

B.3 Proof of Proposition 4.1

We establish Proposition 4.1 through several steps.

Step 1: We consider the central banker’s problem in periods 0 and 1 and assume mo-
mentarily that the zero bound is not binding. If the derived solutions produce non-positive
interest rates, we can conclude that the zero bound is indeed binding. In period 0, the cen-
tral banker chooses id0 to maximize

max
id0

{−0.5[(πd0)2 + λ(xd0)2 + b(id0)2], } (B.99)

subject to Equation (4.12), a given value of b and in anticipation of interest rates id1, in1 that
will be chosen in future periods, depending on the realization of the natural real interest
rate.

If we neglect the zero bound, the first-order condition with respect to id0 yields

πd0
∂πd0
∂id0

+ λxd0
∂xd0
∂id0

+ bid0 = 0. (B.100)

In period 1, when the economy is still in the downturn, the central banker chooses id1 to
maximize its objective function

max
id1

{−0.5[(πd1)2 + λ(xd1)2 + b(id1)2], } (B.101)

subject to Equation (4.13), a given value of b and in anticipation of interest rates id2, in2 that
will be chosen in future periods, depending on the realization of the natural real interest
rate.

The first-order condition with respect to id1 yields

πd1
∂πd1
∂id1

+ λxd1
∂xd1
∂id1

+ bid1 = 0. (B.102)

Equations (4.5) and (5.11) imply

∂Qd
0

∂id0
= ∂Qd

1
∂id1

= − 1
σ

 κ

1

 . (B.103)
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Combining Equations (B.100) and (B.103) yields

κπd0 + λxd0 = bσid0. (B.104)

Combining Equations (B.102) and (B.103) yields

κπd1 + λxd1 = bσid1. (B.105)

Inserting Equations (4.12) and (4.13) into Equations (B.104) and (B.105) yields

(o7 + σf(δ)b)id0 + δo5i
d
1 = σo5

bσ

λ+ κ2 + bσ2 (1− δ)rH + o6g(δ)rL (B.106)

and

(o7 + σf(δ)b)id1 + δo5i
d
0 = δo8

bσ

λ+ κ2 + bσ2 (1− δ)rH + o6g(δ)rL, (B.107)

where

o5 := κ2o1 + λo2, (B.108)

o6 := κ2 + λ(1− βδ), (B.109)

o7 := κ2o3 + λo4, (B.110)

o8 := κ2(o2
1 − βσo3) + λ(κo1 + σo2). (B.111)

We note that all terms o5, o6, o7 and o8 are positive.

Equation (B.106) is the first-order condition of Equation (B.99). If

σo5
bσ

λ+ κ2 + bσ2 (1− δ)rH + o6g(δ)rL ≤ 0, (B.112)

in period 0 the central banker sets id0 = 0.

Equation (B.107) is the first-order condition of Equation (B.101). If

δo8
bσ

λ+ κ2 + bσ2 (1− δ)rH + o6g(δ)rL ≤ 0, (B.113)

in period 1, the central banker sets id1 = 0.

All terms in Equations (B.106) and (B.107)—except rL—are positive. Moreover, bσ
λ+κ2+bσ2

increases monotonically with b and limb→∞
bσ

λ+κ2+bσ2 = 1
σ

. Hence, both Equations (B.106)
and (B.107) define critical threshold values for rL, such that Conditions (B.112) and
(B.113) are satisfied for values of rL smaller than these thresholds.
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Figure B.9: The evolution of δo8 and σo5 with respect to δ. The vertical black line represents the
critical value δc.

Note that σo5 − δo8 = [κ2(σβδ + o1) + λ(κ + σ + σβδ)]h(δ) > 0, ∀δ ∈ (0, δc)8. Thus,
Condition (B.112) is tighter than Condition (B.113), since δo8 < σo5, as is shown in
Figure B.9.

Thus, we explore Condition (B.112). It implies that the lower bound is indeed binding
irrespective of the value of b if

rL ≤ r̂L, (B.114)

where r̂L = − (1−δ)o5
o6g(δ) rH .

This establishes point i in the proposition.

Step 2: In this step we provide two explicit formulae for the interest rate, again ne-
glecting momentarily the zero lower bound on interest rates.

Solving Equations (B.106) and (B.107) yields

id0 =
[σ2o5f(δ)b+ σo5o7 − δ2o5o8] bσ(1−δ)

λ+κ2+bσ2 rH + [σf(δ)b+ o7 − δo5]o6g(δ)rL
(σf(δ)b+ o7)2 − δ2o2

5
(B.115)

and

id1 =
[σδo8f(δ)b+ δo8o7 − σδo2

5] bσ(1−δ)
λ+κ2+bσ2 rH + [σf(δ)b+ o7 − δo5]o6g(δ)rL

(σf(δ)b+ o7)2 − δ2o2
5

. (B.116)

The denominator is positive for any δ ∈ (0, δc), due to the fact that σf(δ)b ≥ 0, o7 > 0,
and o2

7 − δ2o2
5 = [λ2(1− β2δ2) + κ4 + 2λκ2]f(δ) > 0.

Note that [σ2o5f(δ)b+ σo5o7 − δ2o5o8]− [σδo8f(δ)b+ δo8o7 − σδo2
5] = [σf(δ)b+ o7 +

8 See Appendix B.1.
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δo5](σo5 − δo8) > 0 ∀δ ∈ (0, δc).

Hence, σ2o5f(δ)b+ σo5o7 − δ2o5o8 > σδo8f(δ)b+ δo8o7 − σδo2
5 and thus id1 ≤ id0.

Step 3: In this step, we argue that with the optimal value of b, the central banker sets
id1 = 0.

Assume that with the optimal b, the central banker sets id0 > 0 and id1 > 0.

From Equation (4.12), we observe that a lower value of id0 increases πd0 and xd0. As id0 > 0
was the assumed optimal choice, πd0 and xd0 can not both be negative. The same applies to
πd1 and xd1.

In the downturn, the optimal value of id is the one that maximizes −0.5[(πd)2 + λ(xd)2 +
b(id)2]. Namely, the central banker chooses id optimally to balance the social loss−0.5[(πd)2+
λ(xd)2] and his wage loss −0.5b(id)2. Due to the incentive term −0.5b(id)2, the central
banker chooses id that is lower than the one that minimizes the social loss −0.5[(πd)2 +
λ(xd)2]. This results in relatively higher πd and xd.

From Equation (4.9), we observe that inflation and output in period 1 are positive if the
economy returns to normal times in this period. Moreover, lowering b by ∆b reduces
those values, say by ∆πn1 and ∆xn1 , and thus social losses in period 1. The same argument
applies to cases when the economy recovers in any other period with an odd number, as
the FGC (b, 2) is still in effect in those periods.

From Equations (4.12) and (4.13), we observe that a decline of b causes all economic
outcomes during the downturn, πd0 , πd1 , xd0 and xd1 to be lower through two channels. On the
one hand, the inflationary expectations are lowered as the boom that is created in normal
times is smaller when the FGC (b, 2) is still in effect. On the other hand, the constraint on
the central banker’s setting high id is eased due to the reduced weight the central banker
puts on deviation loss −0.5b(id)2. The same applies to all economic outcomes in any
period if the economy is in the downturn.

Therefore, lowering the value of b reduces the social losses in normal times and down-
turns. Hence, the original value of b cannot be optimal.

Thus, with an optimal value of b chosen by the government, the nominal interest rates id0
and id1 cannot both be set at non-zero values. Intuitively, setting id0 > 0 and id1 > 0 implies
that the value of b is too high. Since id1 ≤ id0 as is proved in Step 2, it can only be id1 = 0
or id0 = id1 = 0.

Step 4: We finally show9 that id0 = 0 when the contract parameter b is chosen optimally
and rL < 0.

9 Note that the proof by contradiction of Step 3 does not apply to proving id0 = 0. If we assume with the
optimal value of b, id0 > 0 and id1 = 0. Then, lowering the value of b reduces the social losses in period 0
and in normal time in period 1. But it dampens the economy in the downturn in period 1.
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Figure B.10: The evolution of the optimal b and b̂ in function of rL.

Due to id1 = 0, we rewrite Equation (B.106) as

id0 = bσ2o5(1− δ)rH + (λ+ κ2 + bσ2)o6g(δ)rL
(o7 + σf(δ)b)(λ+ κ2 + bσ2)

= [σ2o5(1− δ)rH + σ2o6g(δ)rL]b+ (λ+ κ2)o6g(δ)rL
(o7 + σf(δ)b)(λ+ κ2 + bσ2) .

(B.117)

As the denominator of Equation (B.117) is positive and (λ + κ2)o6g(δ)rL < 0, id0 = 0
irrespective of the value of b if

o5σ
2(1− δ)rH + σ2g(δ)o6rL ≤ 0, (B.118)

which is exactly the same as Condition (B.114).

Since id0 = id1 = 0 for any value of b if rL ≤ r̂L, we can concentrate on the case r̂L <

rL < 0. Equation (B.117) implies id0 = 0 if and only if the value of b satisfies

b ≤ b̂, (B.119)

where b̂ = −λ+κ2

σ2
o6g(δ)

o5(1−δ)rH+o6g(δ)rL rL.

We next prove that the optimal b satisfies this condition.

In Proposition 4.2, we assume b ≤ b̂, i.e. id0 = id1 = 0 and then derive the optimal value of
b.

Figure B.10 displays the evolution of the optimal b and b̂ with δ = 0.5. It shows that the
optimal b satisfies the assumption. The formal proof is provided at the end of the proof of
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Proposition 4.2.

B.4 Proof of Proposition 4.2

We calculate the first-order condition of Equation (4.14) with respect to b,

πd0
∂πd0
∂b

+λxd0
∂xd0
∂b

+β(1−δ)(πn1
∂πn1
∂b

+λxn1
∂xn1
∂b

)+βδ(πd1
∂πd1
∂b

+λxd1
∂xd1
∂b

) = 0. (B.120)

As is shown in Proposition 4.1, the central banker sets zero interest rate in downturns for
optimal b. Equations (4.12) and (4.13) become

Qd
0 = 1

f(δ)O0

 bσ2

λ+κ2+bσ2 (1− δ)rH
rL

 , (B.121)

and

Qd
1 = 1

f(δ)O1

 bσ
λ+κ2+bσ2 δ(1− δ)rH

rL

 . (B.122)

The first-order conditions of Equations (B.121) and (B.122) with respect to b are

∂Qd
0

∂b
= 1
f(δ)

 κo1

o2

 σ2(λ+ κ2)
(λ+ κ2 + bσ2)2 (1− δ)rH , (B.123)

and
∂Qd

1
∂b

= 1
f(δ)

 κ(o2
1 − σβo3)

κo1 + σo2

 σ(λ+ κ2)
(λ+ κ2 + bσ2)2 δ(1− δ)rH . (B.124)

The first-order condition of Equation (4.9) with respect to b yields

∂Qn
1

∂b
=
 κ

1

 σ(λ+ κ2)
(λ+ κ2 + bσ2)2 rH . (B.125)

Inserting Equations (B.121), (B.122), (4.9), (B.123), (B.124) and (B.125) into Equation
(B.120), we achieve

b = − (λ+ κ2)∆1g(δ)rL
σ(∆2rH + σ∆1g(δ)rL) ,

where ∆1 = σκ2o1 + σλo2(1− βδ) + βδ2κ2(o2
1− βσo3) + βλδ2(1− βδ)(κo1 + σo2) and

∆2 = σ2(1− δ)κ2o2
1 + σ2λ(1− δ)o2

2 + βδ3(1− δ)κ2(o2
1 − βσo3)2 + βλδ3(1− δ)(κo1 +

σo2)2 + β(κ2 + λ)f(δ)2.

Further simplification yields

b = λ+ κ2

σ2
1

rcL
rL
− 1

.



134 Proofs for Chapter 4

r
L
c

r
`L

0.1 0.2 0.3 0.4 0.5 0.6 0.7

∆

-0.04

-0.03

-0.02

-0.01

r
`L
, r

L

c

Figure B.11: The values of rcL and r̂L in function of δ. rcL and r̂L cross at r̂L = 0.55 and rcL =
0.69.

rcL = − ∆2
σ∆1g(δ)rH .

Thus, we can write Condition (B.119) as

− (λ+ κ2)∆1g(δ)rL
σ(∆2rH + σ∆1g(δ)rL) ≤ −

λ+ κ2

σ2
o6g(δ)

o5(1− δ)rH + o6g(δ)rL
rL, (B.126)

which stands if and only if
1

rcL − rL
≥ 1
r̂L − rL

. (B.127)

In Step 4 of the proof of Proposition 4.1, we concentrate on the case r̂L < rL < 0. As is
displayed in Figure B.11, rcL ≤ r̂L when δ ≤ δ̂ and rcL > r̂L when δ > δ̂, where δ̂ = 0.55
defines the threshold value. Thus, Condition (B.127) is fulfilled when δ ≤ δ̂ or when
δ > δ̂, r̂L < rL ≤ rcL. When δ > δ̂ and r̂L < rcL < rL, Condition (B.127) is violated.
Throughout the paper, we assume that δ ≤ δ̂ < δc.
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B.5 Proof of Lemma 4.3

Case 1: We consider the central banker’s problem in period 1 and assume momentarily
that the zero bound is not binding. Thus, we rewrite Equation (4.22),

Qd1
1 = δ

f(δ)O
−1O0

 (1− δ)rH
rL1

+ rL1 − id1
1

σ

 κ

1

 . (B.128)

The central banker chooses id1
1 to maximize

max
id1
1

{−0.5[(πd1
1 )2 + λ(xd1

1 )2 + b(id1
1 )2]}, (B.129)

subject to Equation (B.128), a given value of b and anticipating that FGC (b =∞, 2) will
be signed in the next period provided that the economy is still in the downturn.

If we neglect the zero bound, the first-order condition with respect to id1
1 yields

πd1
1
∂πd1

1
∂id1

1
+ λxd1

1
∂xd1

1
∂id1

1
+ bid1

1 = 0. (B.130)

Equation (B.128) implies
∂Qd1

1
∂id1

1
= − 1

σ

 κ

1

 . (B.131)

Combining Equations (B.130) and (B.131) yields

κπd1
1 + λxd1

1 = bσid1
1 . (B.132)

Inserting Equation (B.128) into Equation (B.132) yields

id1
1 =[κ2(o2

1 − σβo3) + λ(κo1 + σo2)]δ(1− δ)rH + [κ2(o1 − σβδ) + λ(κ+ σ − σβδ)]g(δ)δrL1

(λ+ κ2 + bσ2)f(δ)

+ λ+ κ2

λ+ κ2 + bσ2 r
L1.

(B.133)

We note that if δ = 0, Equation (B.133) becomes

id1
1 = λ+ κ2

λ+ κ2 + bσ2 r
L1. (B.134)

Since λ+κ2 > 0, λ+κ2+bσ2 > 0, f(δ) > 0 and [κ2(o1−σβδ)+λ(κ+σ−σβδ)]g(δ)δ > 0,
Equation (B.133) implies that id1

1 increases with rL1. Thus, id1
1 achieves the maximum
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Figure B.12: The numerator of Equation (B.135) in function of δ.

when rL1 = rcL. Inserting rL1 = rcL into Equation (B.133) yields

id1
1 (rcL) =σ∆1[κ2(o2

1 − σβo3) + λ(κo1 + σo2)]δ(1− δ)
σ∆1(λ+ κ2 + bσ2)f(δ) rH

− [κ2(o1 − σβδ) + λ(κ+ σ − σβδ)]δ∆2 + (λ+ κ2)h(δ)∆2

σ∆1(λ+ κ2 + bσ2)f(δ) rH .

(B.135)

Since σ∆1[κ2(o2
1−σβo3)+λ(κo1+σo2)]δ(1−δ)−[κ2(o1−σβδ)+λ(κ+σ−σβδ)]δ∆2+

(λ+κ2)h(δ)∆2 < 0 for any δ ∈ (0, δc) as is displayed in Figure B.12, the optimal nominal
interest rate is negative. Since the derived solution produces negative interest rates, we
can conclude that the central bank would set zero nominal interest rate irrespective of the
value of b.

Case 2: In a similar way, we obtain

id2
1 =[κ2(o1 − σβδ) + λ(κ+ σ − σβδ)]∆2 − [κ2(o2

1 − σβo3) + λ(κo1 + σo2)](1− δ)σ∆1

(λ+ κ2 + bσ2)f(δ)∆2
δg(δ)rL2

+ λ+ κ2

λ+ κ2 + bσ2 r
L2.

(B.136)

Since [κ2(o1− σβδ) + λ(κ+ σ− σβδ)]δg(δ)∆2− [κ2(o2
1− σβo3) + λ(κo1 + σo2)]δ(1−

δ)σ∆1g(δ) + (λ + κ2)f(δ)∆2 > 0 for any δ ∈ (0, δc) as is displayed in Figure B.13, the
optimal nominal interest rate is negative for any rL2 < 0, i.e. the zero lower bound is
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Figure B.13: The numerator of Equation (B.136) in function of δ.

binding.

B.6 Proof of Lemma 4.4

In period 0, if the natural real interest rate is rL1, the dynamics of inflation and output gap
is

Qd1
0 = E0O

−1Q1 + rL1 − id1
0

σ

 κ

1

 . (B.137)

Combining Equations (4.9) and (4.23) yields

E0Q1 = (1− δ) σbrH
λ+ κ2 + bσ2

 κ

1

+ δ

 πd1
1

xd1
1

 . (B.138)

where πd1
1 and xd1

1 are determined by Equation (4.22).

Inserting Equation (B.138) into Equation (B.137), we obtain

Qd1
0 = (1−δ) brH

λ+ κ2 + bσ2

 κo1

κ+ σ

+ δ

σ

 (σβ + κ)πd1
1 + κσxd1

1

πd1
1 + σxd1

1

+r
L1 − id1

0
σ

 κ

1

 .
(B.139)

We consider the central banker’s social loss minimization problem in period 0 and assume
momentarily that the zero bound is not binding. Hence, the central banker chooses id1

0 to
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maximize
max
id1
0

{−0.5[(πd1
0 )2 + λ(xd1

0 )2 + b(id1
0 )2]}, (B.140)

subject to Equation (B.139) and a given value of b.
If we neglect the zero bound, the first-order condition with respect to id1

0 yields

πd1
0
∂πd1

0
∂id1

0
+ λxd1

0
∂xd1

0
∂id1

0
+ bid1

0 = 0. (B.141)

Equation (B.139) implies
∂Qd1

0
∂id1

0
= − 1

σ

 κ

1

 . (B.142)

Combining Equations (B.141) and (B.142) yields

κπd1
0 + λxd1

0 = bσid1
0 . (B.143)

Inserting Equation (B.139) into Equation (B.143) yields

id1
0 =[κ2o1 + λ(κ+ σ)] σ(1− δ)b

(λ+ κ2 + bσ2)2 rH + δ
[λ+ κ(κ+ σβ)]πd1

1 + σ(λ+ κ2)xd1
1

λ+ κ2 + bσ2

+ λ+ κ2

λ+ κ2 + bσ2 r
L1.

(B.144)

Figure B.14 demonstrates that the optimal nominal interest rate for different values of b
is negative and the larger the value of b is, the closer id1

0 is to zero. Since the derived
solution produces negative interest rates, we can conclude that the central bank would set
zero nominal interest rate regardless of the value of b for any rL1 ≤ rcL. In a similar way,
we obtain

id2
0 =[κ2o1 + λ(κ+ σ)] σ(1− δ)b

(λ+ κ2 + bσ2)2 rH + δ
[λ+ κ(κ+ σ̃β)]πd2

1 + σ(λ+ κ2)xd2
1

λ+ κ2 + bσ2

+ λ+ κ2

λ+ κ2 + bσ2 r
L2,

(B.145)

and

id3
0 = [κ2o1 + λ(κ+ σ)]σb[(1− δ)rH + δrL3]

(λ+ κ2 + bσ2)2 rH + λ+ κ2

λ+ κ2 + bσ2 r
L3. (B.146)
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Figure B.14: The optimal nominal interest rate in function of rL1 for different values of b.
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C.1 Proof of Lemma 5.2

Combining Equations (5.11), (5.12) and (5.13) yields

Qd = (1− δ)O−1Qn
τ + δO−1Qd + rL

σ

 κ

1

 . (C.1)

Rearranging Equation (C.1) yields

Qd = (1− δ)(I − δO−1)−1O−1Qn
τ + rL

σ
(I − δO−1)−1

 κ

1

 , (C.2)

where I =
 1 0

0 1

.

Inserting Equation (5.10) in Equation (C.2) yields, after some algebraic manipulations:

Qd = 1
h(δ)Õ

 bσ(1−δ)
λ+κ2+bσ2 (rH − ifτ )

rL

 , (C.3)

where

Õ =
 φ2 κ

φ3 1− βδ

 (C.4)

h(δ) :=σβδ2 − φ1δ + σ (C.5)

φ1 :=σ + κ+ σβ (C.6)

φ2 :=κ(σβ + φ3) (C.7)

φ3 :=κ+ σ − σβδ. (C.8)

141
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C.2 Proof of Proposition 5.1

In downturns, for given b, the central banker chooses ifτ to minimize the expected in-
tertemporal losses

min
ifτ

{ 0.5
1− βδ [(πd)2 + λ(xd)2] + 0.5β(1− δ)

1− βδ [(πnτ )2 + λ(xnτ )2 + b(inτ − ifτ )2]} (C.9)

subject to Equations (5.9), (5.10) and (5.14).

Since the central banker would not forecast ifτ < −λ+κ2

bσ2 rH , we only consider ifτ ≥
−λ+κ2

bσ2 rH .

Combining Equations (5.9) and (C.9) yields

min
ifτ

{(πdt )2 + λ(xdt )2 + β(1− δ)[(πnτ )2 + λ(xnτ )2 + b
(λ+ κ2)2(rH − ifτ )2

(λ+ κ2 + bσ2)2 ]}. (C.10)

The first-order condition is

πdt
∂πdt
∂ifτ

+ λxdt
∂xdt
∂ifτ

+ β(1− δ)[πnτ
∂πnτ
∂ifτ

+ λxnτ
∂xnτ
∂ifτ
− b(λ+ κ2)2(rH − ifτ )

(λ+ κ2 + bσ2)2 ] = 0. (C.11)

Equation (5.10) implies

∂Qn
τ

∂ifτ
= − bσ

λ+ κ2 + bσ2

 κ

1

 . (C.12)

Combining Equations (5.10), (5.12) and (5.13) yields

Qd
t = (1− δ) bσ(rH − ifτ )

λ+ κ2 + bσ2O
−1

 κ

1

+ δO−1Qd
t+1 + rL

σ

 κ

1

 . (C.13)

Due to the fact that all periods in downturns are identical, we have Qd
t+1 = Qd

t = Qd.
Thus,

∂Qd

∂ifτ
= − 1

h(δ)
bσ(1− δ)

λ+ κ2 + bσ2

 φ2

φ3

 . (C.14)

Combining Equations (C.11), (C.12) and (C.14) delivers

φ2π
d + λφ3x

d + βh(δ)κπnτ + βh(δ)λxnτ + βh(δ)(λ+ κ2)2(rH − ifτ )
σ(λ+ κ2 + bσ2) = 0. (C.15)
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Inserting Equations (4.9), (4.12) into Equation (C.15) yields

ifτ = rH + (λ+ κ2 + bσ2)φ4

φ5 + φ6b
rL, (C.16)

where φ4 = σ[κφ2 + λφ3(1− βδ)], φ5 = h(δ)2β(λ+ κ2)2 and φ6 = σ2h(δ)2β(λ+ κ2) +
σ2(1− δ)(φ2

2 + λφ2
3).
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