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Abstract 

The disaggregate nature of transit smartcard data is congruent with the travel demand 

specification as used by agent-based approaches to transport modelling. Using a full day of 

public transport smart card transactions recorded in Singapore, we developed an approach to 

transform the smartcard data into both transport supply and demand, while simultaneously 

eliminating the need to simulate the interaction between cars and buses. In order to produce 

realistic travel times for buses, we estimated a regression model of bus speed between stops 

that is dependent both on the level of demand and network topology. We implemented a model 

of bus dwell time at stops that is dependent on the ridership of the bus and its configuration. As 

the need for simulating the dynamics of the bus between stops is eliminated by the speed model, 

it allows us to simplify the supply network dramatically with only one link between bus stop 

combinations, and another link at the stop for buses to queue in order to perform dwell 

operations. These modifications, along with a simplified mobility simulation dramatically 

improves simulation times ensuring useable results in under an hour. In addition, our modelling 

framework is highly adaptable and requires only limited efforts to be  applied to other public 

transport systems in cities where similar data streams are available.  
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1. Introduction 

It is widely agreed that the provision of attractive public transport services is of central 

importance for the sustainable development of cities as it outperforms individual motorized 

transport in terms of cost, environmental impact and social equity. To plan and design efficient 

urban public transport service provision, municipal planning organizations (MPOs) and service 

operators usually develop transport demand models. The models currently used in practice 

operate on the principle of modelling trip flows between geographical zones and hence are 

subject to aggregation over the horizons of time and space. However, current urban 

transportation problems such as congestion and service reliability are of an inherently dynamic 

nature. This is particularly the case for public transport as overcrowding, schedule reliability 

and bus bunching are inherently dynamic phenomena observed in many cities all over the 

world.  

To address the shortcomings of aggregate methods, large-scale, agent-based transport demand 

simulation (LSABTS) models have been developed that preserve full temporal dynamics as 

well as disaggregate information on individuals through the entire modelling and simulation 

process. Software packages such as MATSim (Balmer et al., 2009)or TRANSIMS (Smith et 

al., 1995) are designed to dynamically simulate transport demand and supply for millions of 

agents over an entire day at the temporal resolution of a second. These models take an activity-

based approach, acknowledging that travel demand is the result of the need to perform activities 

in different points in space and time. Entities in the simulation have a one-to-one 

correspondence with their real-world equivalents, therefore an agent in the simulation 

represents a single commuter in the physical system, and private and public transportation 

vehicles have equivalent entities in the simulation. Dynamic phenomena such as congestion 

and bus bunching emerge from the interaction of all participating agents in the simulation. 
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While many cities recognize the potential of agent-based and activity-based approaches, these 

methods have come under considerable criticism for being exceptionally data hungry, with 

finely-grained information needed at all stages of the travel demand modelling process, i.e. a 

detailed synthetic population describing travel demand as a function of various household and 

personal demographic attributes; as well as the modelling of the transport supply system, i.e. 

the transportation network, vehicle fleet, public transport schedule and activity facility 

capacities serving the demand. Dynamic assignment models are also notoriously difficult to 

calibrate, as observed traffic volumes and travel times are emergent phenomena resulting from 

the dynamics in the system. Because these systems work from the bottom up, they require that 

the range of individual behaviors have to be adequately represented in the travel demand 

description, and the interactions between entities have to be adequately described in order for 

the full range of dynamic phenomena to emerge as observed in reality. And because the full 

system of all participating transportation modes subject to the full range of commuter choice 

dimensions has to be simulated repeatedly in order for the system to reach a steady state, 

simulation times are notoriously long. 

In the light of these difficulties, some authors have argued for the use of so-called direct demand 

models that do not attempt to capture the full gamut of cause and effect as is being attempted 

in the activity-based methods, but instead rely on inferring the reaction of the transportation 

system to dynamically changing demand based on observation.  

The data produced by automatic fare collection systems (AFCS) represents a uniquely 

appropriate input to a direct demand model. The data records produced by such systems 

document public transport ridership patterns in great detail, at the level of individuals with 

precise spatio-temporal information. Since 2005 authors such as (Bagchi and White, 2004, 

2005) have been studying the potential of using this type of data. (Pelletier et al., 2011) present 
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a summary on how AFCS data has been used to analyze public transport systems worldwide. 

Different measures of quality indices have been proposed, and methods to find behavioral 

patterns. Such data can be directly translated into an agent-based travel demand description, 

because travel demand is recorded at the level of individual commuters that translate into 

individual agents in the simulation. 

The aim of this paper is to assess the potential of using AFCS data for agent-based simulation 

for the case of Singapore. To this end, we set up a MATSim scenario using smart card 

transaction data as travel demand input and detailed public transport schedule information and 

a global positioning system (GPS) navigation network to describe supply. In order to eliminate 

the need for simulating the full transport system of public and private vehicles for realistic travel 

times to emerge from repeated network loading, we derive a model of the speed of buses 

between public transport stops as a function of public transport demand from the smartcard data 

and topographical information contained in the network description. We extend the existing 

MATSim framework by introducing stochastic terms to describe bus dwell time behavior at 

stops and travel time between stops, which are the main determinants of service reliability in 

public transport operations. We validate the resulting model against information contained and 

derived from the smartcard data.  

The applicability of the approaches is presented using the splitting of a very long existing bus 

line as a study case. We conclude by evaluating the approach's applicability for practice and 

identifying future research directions. 

2. User equilibrium and public transport in MATSim 

MATSim is a platform to simulate transport demand and supply interactions allowing for large-

scale scenarios where millions of agents represent people interacting. For each agent, a daily 
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activity plan is assigned representing the sequence of activities it has to perform at different 

times and at different locations within a specific period of time (in general one day). MATSim 

utilizes an evolutionary algorithm to reach a steady state. That is, the same day is simulated 

many times, where a fraction of the agents modify their plans after each iteration. There are 

many ways to modify their plans; they can change the departure time, the travel mode of a sub-

tour, or the location of a given type of activity, among others. This work is focused on the 

modification of the route, more specifically for public transport users. The utility of the day is 

measured for each agent in each iteration using a scoring function that rewards agents for 

performing activities, while penalizing them for travelling, transferring between transport 

modes, waiting at transit stops and arriving late for activities, etc. (Charypar and Nagel, 2005). 

Agents save a small number of plans, remembering those that scored well and forgetting the 

others. Thus, the general score of the population tends to grow until, after hundreds of iterations, 

the system reaches user equilibrium and the generalized utility can not be improved any more 

(Balmer et al., 2009).  

MATSim includes a full implementation of public transport (Rieser, 2010). On the 

transportation supply side, the system is represented by stop facilities and transit lines. Several 

routes belong to each line. Each of these transit routes holds the information of the sequence of 

stop facilities with the expected arrival and departure offsets, the sequence of links in the road 

network a vehicle of this route has to follow, and the departure times of all the services of the 

route. As the links that public transport vehicles have to follow belong to the road network that 

private vehicles use in the simulation, public transport vehicle travel times are affected by 

congestion or modes that share the network with private transport, while modes with exclusive 

networks and precise signaling and control (i.e. rail, subway, monorail) tend to operate close to 

scheduled times.  
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Another source of deviation from schedule, especially for bus, is the time spent to take on 

boarding passengers and allowing passengers to alight. This dwelling process can be modelled 

in two ways in MATSim: the simple approach just calculates the time a vehicle has to be 

stopped according to the number of passengers, type of vehicles, number and configuration of 

vehicle entrances and exits, and vehicle occupancy, while a more fine-grained approach would 

simulate a queue agents use to enter the vehicle.  

For bus stop facilities, the availability of a bus bay can be specified to account whether a bus is 

obstructing a link for cars during the dwelling process. MATSim also allows the same vehicle 

to be scheduled to perform several services; if it is late, the next service won't be able to start. 

Thus, the level of detail of the public transport module can simulate phenomena such as early 

or late services, crowded vehicles, bus or train bunching and long waiting times resulting from 

service denial to fully loaded vehicles. 

3. CEPAS 

1. Suitability of using CEPAS data to describe public transport demand 

Contactless, stored value smart cards for fare collection have been introduced in Singapore in 

April 2002 under the name EZ-Link. In 2009, EZ-Link was superseded by a new standard for 

electronic payment smartcards called Contactless e-Purse Application, or CEPAS. CEPAS-

compliant smart cards can be used island-wide for payment of all modes of public transport, 

regardless of operator, as well as for minor retail transactions, parking and road toll payment. 

Though cash payment of single fares at higher rates is still possible, e-payments with CEPAS 

cards account for 96% of all trips, which makes the data records from CEPAS highly 

comprehensive and the missing cash paying travelers negligible (Prakasam, 2008). 
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In Singapore, the fare system is distance-based and customers have to tap their CEPAS card on 

the reading device every time they enter and leave a train station or a bus, or they will be charged 

the maximum amount for that particular service. GPS devices on buses ensure that each 

transaction is associated with a unique transit stop identifier, as well as the vehicle identification 

number. Each transaction therefore contains information on timing and location, and generally 

most trips contain information on both boarding and alighting transactions; a notable exception 

is the case of concession cards for schoolchildren, students and senior citizens where the 

maximum charge is capped at 7.2 km. These users therefore sometimes do not tap out, 

especially when the bus is very full and users want to alight faster. 

The completeness of the Singaporean smart card data, both in terms of market penetration and 

recording of both boarding and alighting locations, distinguishes it from those collected by the 

majority of other automatic fare collection systems and allow more detailed assessment of 

travel behavior and mobility patterns. In many other countries users do not have to tap out of 

the bus or tram and the alighting location is therefore not recorded, although researchers 

recently proposed techniques to impute its value in the absence of such information (Munizaga 

and Palma, 2012). Furthermore, as the CEPAS cards are durable and easily rechargeable, 

people tend to continuously use one single CEPAS card with a unique card ID for all their 

public transport journeys for substantial periods of time. As the technical setup of the system 

doesn't allow more than one person to travel on a single CEPAS card, it can be assumed that 

each unique card ID represents a single person. This enables highly disaggregated analysis of 

individual itineraries and opens new ways for understanding people’s travel behavior over the 

short as well as longer term scales. 

Given the temporal and spatial resolution of the CEPAS data, it is perfectly suited to represent 

travel demand in a simulation of Singapore's public transport system using MATSim. By 
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combining it with information on supply derived from published schedule information we can 

generate a simplified MATSim scenario. We then can use this scenario as a predictive system 

to evaluate changes in public transport service provision such as the type of buses being used, 

service frequency and service network.  

2. Combining agent-based transport simulation and CEPAS data 

CEPAS data only describes demand for public transport services. Therefore, we restrict the 

scope of the MATSim model presented in this study to public transport only and simulate its 

operation in isolation of other transport modes.  

The scope of analysis is restricted to route choice effects as the simplified scenario covers the 

public transport system in isolation and no information is available concerning the trip purposes 

or socio-demographic background of travelers. Furthermore, the system cannot account for 

mode choice effects, i.e. passengers switching away from or switching to public transportation 

due to changes in system performance; neither can it account for so-called induced demand, 

where changes in the level of performance of the public transportation system result in people 

performing more or fewer activities because of more or less time opening up in their travel time 

budgets. 

Information on individual travelers is restricted to a unique card identifier and fare type 

category, namely child/student, adult and senior. Furthermore, we do not directly know about 

the trip purpose and actual trip origin and destination at the level of buildings but only the public 

transport stop where the transaction took place. As we neither infer actual trip origin and 

destination nor trip purpose, the scope of the analysis cannot include destination choice effects.  

To restrict the scope of the simulation to public transport we need to account for interaction 

effects with cars resulting in increased travel times. To this end, the observed travel times from 
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the smart card data are used to develop a regression model of bus movement between transit 

stops. We use the error term from this regression model in order to arrive at a stochastic model 

of travel times between transit stops that eliminates the need to model a fully detailed network 

during the simulation, and allows us to predict the distribution of travel times during the course 

of the day for network links that are not currently in existence, making system-wide network 

re-design evaluation possible. 

4. Methodology 

In MATSim, public transport vehicles share roads with other vehicles and dwell operations are 

modelled in detail. As the objective of this work is to set-up a simulation only using AFCS data 

we simplified the MATSim mobility simulation and the transport network, restricting it to 

public transport vehicles only. Figure 1 shows the processes we designed and implemented and 

how these affect a standard MATSim simulation. In the next section we describe the 

reconstruction of bus trajectories, the generation of a public transit schedule, then the generation 

of public transport trips as MATSim plans (the demand), followed by the simplification of the 

road network, and finally the new mobility simulation model and its constituent sub-models in 

MATSim. 
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Figure 1. Simplified public transport simulation overview 

1. Reconstruction of bus trajectories 

Given boarding and alighting transactions of bus users it is possible to estimate the position in 

space and time of the corresponding buses (their trajectories). For each vehicle ID in the system, 

by grouping its transactions at each stop into sets that represent bus dwell operations, we can 

impute the time that it takes for the bus to travel between bus stop locations. From our electronic 

transit route profile, we know the exact route between bus stop locations, and therefore we can 

reconstruct the vehicle’s trajectory once all dwell operations have been identified.  

There are a number of challenges in the trajectory reconstruction process: 

Bus stops without transactions: As boarding and alighting actions might not occur at every 

stop, the bus can remain "invisible" to the system. We used interpolation techniques to estimate 

the time when the bus reached these stops. For stops that precede or follow the first and last 

“visible” stops we didn't apply extrapolation to find the bus arrival times at those stops. 
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Early tap-outs and late tap-ins: As the bus approaches the public transport stop, the GPS 

system automatically activates the reading device, making it possible to tap out before the bus 

doors have opened. Furthermore, sometimes passengers have entered the bus but are still 

fumbling to get their cards out for the reader, and the tap-in registers late. As these transactions 

don't happen when the bus is already at the bus stop, they have to be recognized and filtered to 

obtain a better estimation of the arrival and departure times of the public transport vehicles. 

GPS errors: The way the system recognizes the stop where the transactions are occurring is to 

read the position of the buses from their GPS devices. If GPS readings are incorrect, especially 

when stops are very close to each other, during inclement weather or in high-rise urban 

environments, the stop identifier can be recorded incorrectly.  

For a complete description of the trajectory reconstruction process, the reader is referred to 

(Fourie, 2014). We coded these estimations of when dwell operations occur and the trajectories 

between stops into MATSim ‘events’; time-stamped, atomic units of information normally 

generated by the agent-based simulation that give a complete description of all vehicle and 

commuter agent actions during the course of the simulated day. The resulting XML file can 

therefore be visualized and analyzed using MATSim-compliant software, and direct 

comparisons against MATSim simulations are therefore greatly simplified. 

2. Generation of a public transit schedule 

We used the reconstructed bus trajectories to determine the number of services and the time 

when the services start for every bus line in Singapore. As the vehicle identifier of each bus is 

known in the CEPAS data, we assigned the corresponding type of bus in the simulation, 

accounting for carrying capacity, doors operation, single or double decker configuration (which 

affects bus dwell time).  Figure 2 summarizes this process. We compared these results with the 
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commonly used Google Transit Feed Specification (GTFS) of the public transport system in 

Singapore. We recognized a significantly smaller number of services in CEPAS data: 4 bus 

lines were not found, 33 bus routes (different sequences of stops within a bus line) were not 

found, and from the 91115 services specified in GTFS only 78515 services were recognized 

(86%). It is possible that a whole service is not visible due to lack of transactions or GPS errors 

as mentioned before. The difference in this comparison is still considerable, so the GTFS 

numbers can be overestimated. As the reconstruction of train trajectories presents even greater 

challenges than those for bus, because transactions are recorded at the station entrance and not 

when passengers enter and exit the vehicles, we have not implemented it at this point, but we 

are working on implementing the method developed by (Sun et al., 2012) in a future iteration. 

Consequently, the number of train services and their start times are directly obtained from the 

GTFS. 

 

Figure 2. Transit schedule generation using bus trajectory information from 

reconstruction process 
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3. Generation of public transport trips 

MATSim is an activity-based simulation framework, and its demand description is a timed 

sequence of activity locations and connecting trips for each agent in the study area. Generating 

an agent-based demand description from the smart card data is at first glance a straightforward 

task; each boarding and alighting location can be used as an activity location in an agent’s 

activity schedule. However, this would mean that we identify each transfer in a public transport 

trip as a significant activity, and we would then also over-specify the demand description by 

determining transfer location. It is important that realistic transfer locations, and their associated 

walking and waiting times, rather emerge from the simulation than be specified in the demand 

description. To this end we want to identify the initial boarding and final alighting location of 

each multistage trip in the smart card data, and use these transactions as approximate activity 

locations and activity start/end times of the agents. A number of challenges have been 

encountered in this process. 

Access waiting forms an important component in an individual’s transit experience, however, 

in the case of buses, recorded times don't correspond to user arrivals and departures to the public 

transport system. As transactions correspond to boarding and alighting only, the time when 

users arrive at the bus stop are unknown (except in transfers). More realistic bus stop arriving 

times for passengers are important for waiting time calculations. On the other hand, bus-bus, 

bus-train and train-bus transfer times are known, and even exact bus lines can be assigned. That 

means, bus routes are fully reproducible from reality.  

To assign bus users trip start times and identify individual multistage bus trips, we developed a 

two-step procedure. First, when a user alights from a bus and enters another vehicle, we 

established a threshold of 25 minutes to categorize those transactions as transfers or not 

transfers. If the time between alighting and boarding is more than 25 minutes, we assume that 
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the user has left the system, therefore they accumulate newly recorded access waiting time upon 

re-entry. The second step assigns bus users start times. For this we used the reconstructed bus 

trajectories to extract headway times between consecutive services of the specified line. We 

had to assume (i) users wait exclusively for services of the line that they boarded in the 

transaction, ignoring other lines that serve the same stops (ii) they don't have external 

information on bus arrivals. This is not always true as users can be waiting for more than one 

bus number. They also can have more information about reliable bus arrivals from experience, 

or digital apps which estimate bus arrivals. Given these assumptions we assigned a uniformly 

distributed user arrival time to the bus stop within the corresponding headway. 

Thus, we generated a MATSim activity plan for each CEPAS user, assigning dummy activities 

between given or estimated arrival and departure times to the public transport system. 

4. Simplification of the network and mobility simulation 
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Figure 3. Simplification of the MATSim network topology, showing stop to stop links 

and dwelling links before the stop. 

As only public transport vehicles are simulated, a detailed topology of the road network is not 

necessary. A reduction in the number of links and nodes of the road network represents a direct 

reduction in the MATSim mobility simulation computation time as its complexity is 

proportional to the network size and the number of agents. Thus, as Figure 3 shows, a single 

link was created for each public transport stop (dwelling link) and a single link connects each 

pair of consecutive stops. If two stops are consecutive in at least one line a link is created 

between them. 

As mentioned before, the original MATSim mobility simulation is based on queues of vehicles 

at every link of the road network, depending on its corresponding capacity. That's how it 

accounts for the effect of car congestion on buses or vice versa. Without information about cars, 

but many observations of buses travelling, we dropped the queue model and introduced a 

stochastic travel time model, where the speed of buses on each link are drawn from a normal 

distribution; the parameters of which vary by time of day and are the result of a multinomial 

regression model that was estimated from the speeds observed between stops from the 

trajectory reconstruction step (Fourie, 2014). The parameters and results of the regression 

estimation are discussed in the following section. 

With the modelled dynamic distributions, we modified the standard MATSim link dynamics 

(the queue model). Now, when a vehicle enters a link after a dwelling operation, a speed value 

of the link’s distribution for the corresponding time of day is sampled. During that time value 

the vehicle "goes to sleep", and after that, it appears at the next stop ready to start a new dwelling 

process. As we have not reconstructed train trajectories yet, the standard queue model for the 

rail mode is maintained (as trains in subway systems have less interaction with other vehicles 

this approach is not far from the real behavior). 



16          Public Transport Planning with Smart Card Data 

 

5. Speed regression model 

As shown by (Sarlas and Axhausen, 2015), the speed of vehicles in a network link are related 

not only to the level of demand on the link, but also to the network topology, the presence of 

signaling systems and surrounding urban density and activity level. While their study calculated 

average travel times for the entire Swiss road network of private and public transport, we focus 

our investigation on determining observed speeds at any given time of day as a function of 

network topology and indicators of the level of activity and demand that we can derive from 

the smart card data. The results of the estimation are shown in Table 1. 
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Table 1. Coefficient estimates of a multinomial regression model predicting the natural 

logarithm of bus speeds between stops (m/s). 

 
Estimate t-value 

Relative 

importance  

Intercept 3.07E-01 6.48  

Intersections per km 5.07E-03 7.99 6.87% 

Fraction of path with bus lane 3.54E-02 9.17 0.49% 

Number of passengers tapped in -1.55E-06 -20.13 3.38% 

Avg. number of intersections per roving sq. km -7.32E-04 -24.98 13.60% 

Avg. degree of intersection nodes along path -5.07E-02 -14.77 4.67% 

Right turns made at intersections -7.46E-02 -12.06 2.47% 

Left turns made at intersections -1.29E-02 -2.06 0.28% 

Right turns passed at intersections -3.47E-02 -14.47 2.67% 

Left turns passed at intersections -2.45E-02 -10.56 1.59% 

Number of nodes within traffic control buffer -3.12E-02 -30.25 8.99% 

Path length (log) 4.81E-01 64.87 21.81% 

Number of arrivals at destination stop per day (log) -3.72E-02 -14.90 2.61% 

Number of nodes in path (log) -6.42E-02 -11.71 2.97% 

Path length over Euclidean distance (log) -3.83E-01 -24.19 4.33% 

RMS radians turned (log) -9.66E-03 -4.78 2.19% 

Activities in progress per roving sq. km (log) -2.28E-02 -11.26 6.19% 

Smart card transaction rate per roving sq. km (log) -7.28E-02 -29.90 14.90% 

Multiple R-squared:  0.2054,    Adjusted R-squared:  0.2053    

 

The model predicts the natural logarithm of speed (m/s) as a function of the 15 variables listed 

in the table. Variable names in bold denote dynamic quantities that change on a per second 
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basis. All the other variables are derived from the network topology. The table shows the 

estimated value of the parameter, followed by the t-value. The last column shows the relative 

importance of the variable in terms of its contribution to the multiple R squared value listed at 

the bottom, using the method of (Lindeman et al., 1980), implemented in the  R statistical 

analysis platform (R Core Team, 2014) by (Grömping, 2006).  

A Java class was created to calculate the topological variables, as well as to associate smart 

card transactions with network locations and use them to derive indicators of the level of 

activity and traffic that a bus might encounter between two stops at any given time of day.  The 

variable names as listed are relatively self-explanatory; in many cases the natural logarithm of 

variables were used instead of their original values, in order for these variables to appear more 

normally distributed. The values of the less self-explanatory variables were calculated as 

follows: 

Intersections per km: the number of nodes along the path of the bus between two stops that 

have more than one ingoing and one outgoing link or two pairs of parallel ingoing/outgoing 

links (nodes denoting changes in direction for one-way or bi-directional roads, respectively, 

therefore not intersections), divided by the length of the path in kilometers. 

Fraction of path with bus lane: a number of road segments in Singapore have bus-only lanes 

in the leftmost lane, that are either exclusively for bus during the entire day or during peak 

hours. This variable denotes the fraction of the path that has such a bus lane. We do not take 

account of exclusivity by time of day, so this is a static variable. 

Total number of passengers tapped in system wide: this variable denotes the general 

accumulation of passengers in the entire public transport system, and is therefore an indication 

of overall system load by time of day. 
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Avg. number of intersections per roving sq. km: for each node in the path between two stops 

we draw a circle with a 1 km² area and count the number of intersections within that area 

according to the definition stated previously, then divide the sum by the number of nodes in the 

path. 

Avg. degree of intersection nodes along path: for each intersection along the path we take 

number of links that meet in the node as an indication of its relative complexity, as the more 

links that meet at an intersection affects the signaling times. 

Right turns made at intersections, etc.: when a bus has to make a right turn at an intersection 

it generally takes longer than making left turns, as the estimates of these variables clearly reflect. 

In fact, making a left turn does not seem to have an appreciable effect on the model as is 

reflected by its low t-value, despite the large sample size of more than a hundred thousand stop-

stop combinations used in the estimation. 

Number of nodes within traffic control buffer: the locations of traffic control signals were 

supplied to us as a geographically encoded shape file. This variable records the number of nodes 

in the path of the bus that fall within a buffer of 30 meters from a traffic control signal. 

Number of bus arrivals at destination stop per day (log): this variable accounts for the traffic 

at the destination stop, with the expectation that the more services that are offered at the stop, 

the longer a bus is likely to wait in a queue before it can perform dwell operations. 

Number of nodes in path, path length over Euclidean distance, RMS radians turned: these 

variables attempt to capture the degree of ‘friction’ between two consecutive stops, that prevent 

the bus from reaching top speed. 
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Activities in progress per roving sq. km (log): for each node in the path between two stops, 

we draw a circle with a 1 km² area around the node and retrieve all smart card transactions that 

have been recorded at public transport stops within the circle. We assign each boarding 

transaction a value of -1, and each alighting transaction a value of +1, and find the running sum 

of the values by time of day. We subtract the minimum of the running sum from all its values, 

and use the resulting set of values as an indication of the number of activities that take place 

within the circle. For a given time of day the value of the running sum at each node is read from 

a table, and the average of these values across all nodes in the path is used in the regression. 

Smart card transaction rate per roving sq. km (log): for each node in the path between two 

stops at a given time of day, we calculate the 15 minute moving average of the total number of 

transactions taking place per second within a 1 km² circle around the node, and use the average 

of these values across all nodes in the path. This value is used as an indication of the general 

level of traffic that the bus encounters along its path between stops. 

A correlation analysis of the variables used in the estimation shows that some variables have 

high degrees of correlation for obvious reasons; for instance, the number of left and right turns 

passed or taken at intersections are obviously dependent on the number of intersections 

encountered. The variables describing the degree of ‘friction’ encountered along the path are 

also positively correlated, while path length and number of nodes within traffic control 

generally increase with the number of nodes in the path. Exclusive bus lanes also appear to be 

associated with stops with a large number of services arriving per day. 

The model might therefore suffer from a significant degree of multicollinearity; however, 

estimated variable coefficients are stable for different sample sizes, and the addition of variables 

to the model do not lead to erratic changes in estimated values. But correlated variables could, 
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arguably, be replaced by their first principal components to remove collinearity effects while 

retaining predictive power, as is done in principal component regression.  

The current estimation of the model does not take account of spatial autocorrelation. An initial 

investigation of the residual (using a k-nearest neighbor approach on the destination stop in 

order to define the neighborhood matrix used in spatial autocorrelation models) does reveal a 

significant degree of spatial autocorrelation that varies by time of day, with a maximum value 

of Moran’s I of 0.12. Effects of spatial autocorrelation will be further investigated in future 

studies, however as will be seen in the validation section to follow, the current ordinary least 

squares estimation already gives very reasonable predictions of speed and resulting passenger 

travel times.  

The MATSim link dynamics model uses the predicted logarithm value of speed from the 

regression model for the given time of day as the mean for the normal distribution to sample 

the final speed value from, and the standard deviation of the distribution used for sampling is 

that of the residual for predicted speeds within 0.5 km/h of the mean. 

6. Dwell time model 
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Figure 4. Dynamics of passengers boarding and alighting from a crowded  bus, revealing 

how boarding can only proceed once a critical occupancy has been reached. 

In (Sun et al., 2013) the authors show how different bus configurations translate into different 

rates of boarding and alighting. Furthermore, from a study of the Singaporean smartcard data 

and knowledge of the bus type associated with each vehicle identifier in the data, the authors 

have derived a model of dwell time variability as a result of boarding and alighting transactions 

and the number of passengers on board the bus. The most significant effects can be observed 

when the bus is very full and it is impossible for passengers to board until enough passengers 

have alighted, as can be seen in Figure 4.  

We have incorporated this variable dwell-time model in our MATSim simulation. As will be 

seen later in the validation section, simulated results from the model fits very well with 

observed values. 
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5. Validation and performance 

We ran our modified MATSim simulation model for 50 iterations, and compared various 

measures of system performance against the original smartcard data and the trajectory 

reconstruction-related data. 

1. Speed  

 

Figure 5. Distribution of bus speeds from the smart card trajectory reconstruction 

process and the simulation 

Figure 5 compares the distribution of bus speeds between stops in the simulation against the 

speeds that were derived from the trajectory reconstruction process. Both the shape of the 

distributions and absolute numbers correspond very well. 

2. Headways, dwell times and bus bunching 

Figure 6 shows the distribution of headways in the simulation versus those derived from the 

trajectory reconstruction process. In its current state the simulation appears produce too many 
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short headways; this is due to somewhat excessive bus bunching that occurs during the 

simulation, reducing the headway between consecutive buses to nearly zero.  

In terms of headway variability, we see that the simulation produces increasing headway 

variability with increasing number of stops along the route, however the effect is much more 

pronounced in the simulation.  

It can be seen from the joint distribution of headway versus number of stops along the route 

that the simulation produces many headways in the 0-1 minute bin, which indicates bus 

bunching. This behavior in the simulation is probably largely due to the fact that the first-in-

first out queue dynamics of the simulation prevent buses of the same service from passing each 

other. We will therefore investigate passing behavior in future iterations, as buses of the same 

service can pass each other in reality when the first bus is already engaged in a dwell operation 

at a stop.  

As our trajectory reconstruction process does not extrapolate the trajectories beyond the last 

recorded transaction for a circuit run, headways for the stops towards the end of a route might 

be inaccurate, which accounts for the lighter shading of the joint distribution of headway versus 

stop number in the smart card data. However, the distribution of the headways does appear 

considerably narrower for the smart card data than what the simulation produces. We are not 

aware of any bus bunching control measure in operation for the buses, whether it be centralized 

control from the operations center, or by intelligent actions of the bus drivers themselves. Such 

measures would naturally account for the increased reliability of services. However, it would 

also be worth investigating if allowing buses of the same service to pass each other when one 

bus is already occupied at a bus stop, serves as a bunching control measure in itself. 
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Figure 6. Comparison of bus headway distributions and headway variability with 

increasing stop number along the route 

In Figure 7 the dwell time of buses in the simulation is compared against those derived from 

the trajectory reconstruction process. In terms of absolute numbers, nearly 1 million dwell 

operations with zero length occur in the simulation; these are cases where no boarding or 

alighting transactions take place. In the trajectory reconstruction, dwell operations that have 

been interpolated are assigned a zero dwell time. Dwell operations where only a very small 
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number of transactions are recorded within a time span of less than six seconds, are assigned 

an arbitrary minimum dwell time of that value, which is responsible for the second spike in 

dwell times that we can see in the histogram. In terms of absolute numbers, the sum of these 

trivial cases for the smartcard data corresponds reasonably well with the number of dwell 

operations in the simulation where no passengers board or alight.  

 

 

Figure 7. Bus dwell time histogram and density comparison of non-trivial cases. 
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Because the absolute number of dwell operations for the nontrivial cases are different for the 

simulation and the smartcard data, we compared the distributions in terms of their density in 

the second part of the figure, which reveals reasonably good correspondence in terms of 

distribution between the simulation and the dwell times from the trajectory reconstruction 

process. 

The trajectory reconstruction process produces 1.58 million dwell operations compared with 

the 1.7 million dwell operations recorded in the simulation; the difference between these 

numbers is due to the fact that the trajectory reconstruction process does not extrapolate the 

trajectories of buses beyond the first and last recorded transactions. So, if the first recorded 

transaction for a bus occurs at a stop after the first in its route profile, or the last recorded 

transaction is before the end of the line, then no dwell operations are created for the stops before 

the first transaction, or after the last transaction.  

Figure 7 also shows that, of the 1.7 million dwell operations in the simulation, nearly one 

million have a zero duration, meaning that no passengers were picked up or dropped off. This 

means that buses in the simulation only pick up or drop off passengers approximately 40% of 

the time.  Consequently, the simulation also produces more dwell operations of longer duration, 

as fewer dwell operations have to serve the same number of passengers. This might be a 

contributing factor to the higher incidence of bus bunching observed in the simulation. 

If we assume that the actual total number of dwell operations also comes to 1.7 million, then 

the number of cases where buses don’t take on any passengers at stops for that particular day 

in the actual transport system comes to approximately 580,000, which accounts for 

approximately 34% of all dwell operations, meaning that buses in reality pick up or drop off 

passengers 66% of the time, in comparison to the 40% observed in the simulation. This 

difference might be due to the best response routing in the simulation resulting in increased 
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coordination between agents and buses, with agents selecting services that get them to their 

destination with less access waiting time on average than the service that they picked in reality. 

Agents might also not be as averse to crowding as people in reality, causing them to opt for the 

next empty vehicle less frequently; a hypothesis that will require further investigation into the 

ridership of vehicles in the simulation versus those in reality.  

The space-time diagram shown in Figure 8 compares the trajectory reconstruction results 

against the simulation for a bus line with 74 stops along its route. While the shapes of the 

trajectories compare reasonably well, we can see that the simulation produces more bus 

bunching than what this bus line experienced in reality, confirming what we saw in the 

histogram in Figure 6. 
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Figure 8 Comparison of space-time trajectories of CEPAS (top) versus simulation 

(bottom) 

3. Passenger travel time measures 

Figure 9 compares the trip travel time from the simulation with that of the smartcard data, where 

access and egress walking and waiting times have been extracted from the times recorded in 

the simulation. The histogram therefore compares only the sum of in-vehicle travel times, and 

transfer walking and waiting times. 

Figure 10 similarly shows very good agreement between the bus stage in-vehicle times for the 

simulated versus actual values, although smart card values appear slightly skewed to longer 

times. While the simulated speeds are stochastic, in order to display the same range of values 

as those observed in reality, it is possible that not all dynamic effects have been captured 

adequately for perfect agreement, or that agents are routed more optimally than passengers are 

in reality.  As we do not know when passengers board or alight from trains, we cannot construct 

a similar graph for rail modes. However, the good agreement that we see for trip travel time 

across all modes gives us confidence that the simulation of the rail mode is reasonably accurate, 
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as passengers would have switched away or switched to using the subway during the simulation 

if this transport mode performed markedly different from reality. 

 

Figure 9. Comparison of simulated versus actual trip travel times across all modes of 

public transport (excluding access and egress times). 

 

Figure 10. Comparison of simulated versus actual bus stage-in vehicle time. 
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Figure 11. Comparison of transfer time density in the simulation against that derived 

from the smartcard data 

Figure 11 compares the density of transfer times in the simulation against that which was 

derived from the smartcard data. In this case we do not display the histogram of transfer times, 

as the absolute numbers inferred from the smartcard data are inaccurate; especially for the train 

mode we do not know exactly which routes passengers have taken, nor exactly how long they 

have spent in transfer. The absolute numbers suggest that times in MATSim might be somewhat 

shorter than those experienced in reality, possibly due to the coordination that occurs due to 

best response re-routing during the simulation, as was alluded to earlier. We will need to revisit 

this part of the validation at a later stage, once we have reconstructed train trajectories from the 

smartcard data. 

4. Computation times of simplified simulation 

Using only best response re-routing, the simulation reaches a relaxed state in very few 

iterations. After only five iterations very little change in the average score of agent plans can 

be observed with increasing iterations. From experience we found that we only need to run a 
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25% sample of all agents in order to get realistic results; all counts recorded in the validation 

section have therefore been scaled up by multiplying them by four.  

We ran our experiments on a latest generation 24 core Intel Xeon computer, with 64 GB of 

RAM. The initial routing of all agent plans takes approximately seven minutes, while a single 

iteration takes approximately four minutes. It is therefore possible to have usable results in 

under an hour. In the case of a standard MATSim simulation where we simulated both public 

and private transport, many more iterations are required for the system to reach a relaxed state, 

and a full simulation take up to two days to complete. The simplified simulation therefore 

represents a big step forward in terms of computation time performance. 

6. Application 

To show the potential of the simplified public transport simulation we designed a fictitious 

study case. In the proposed scenario we split one of the longest bus line in Singapore, which 

has more than 90 stops. The line was split according to the method used in (Lee et al., 2012) in 

order to minimize the number of transfers resulting from the split; in this case the optimal split 

point happens to be close to the center of the route. Agents are prepared to re-route their public 

transport routes within the MATSim co-evolutionary algorithm until they reach equilibrium 

(100 iterations). That means the agents who were taking the long line or any other line in 

Singapore can decide to take the new split line or switch to another transit line. As in the case 

of the validation study, we simulated a 25% sample of the population, with vehicle carrying 

capacities reduced to a quarter of their real-world values. In the following section we compare 

the performance of the line split against the baseline case. 
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1. Impact on bus bunching 

 

Figure 12 Space-time diagram of a bus line before and after the line has been split in 

two. 

Figure 12 shows the space-time diagram of the bus service before and after the split, with cases 

of bus-bunching highlighted in red, and line thickness increasing with bus ridership. The plot 

confirms that incidences of bus bunching is significantly reduced during the morning peak hour, 

and that headway reliability is improved considerably, especially towards the end of the bus 

route. Note that we replicated departure times from the start of the service for buses departing 

on the second part of the line split, which means that but these services start with an inherent 

lack of reliability. Furthermore, even though we have reduced the number of stops in the two 

resulting routes, it is clear in the base case that bus bunching can result relatively early and that 

45+ stops might still be too many bus stops for a reliable bus service. 

2. Excess waiting times 
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Excess waiting time (EWT) is one of the most common reliability indicators for high frequency 

public transport services (e.g. a service frequency of five or more buses per hour). Using the 

definitions used by the London transport authorities, EWT assessment includes calculation of 

the following two elements: 

 

Figure 13. Comparison of the excess waiting time before and after a long bus line has 

been split into two separate routes. 

Average scheduled waiting time (SWT): the time passengers would wait, on average, if the 

service ran exactly as schedule, assuming that waiting time is, on average, half of headway 

time: 

𝑆𝑊𝑇 =  
∑ 𝐻𝑠

2
𝑠∈𝑆

2 ∑ 𝐻𝑠𝑠∈𝑆
 

Average actual waiting time (AWT): the average time that passengers actually waited, 
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𝐴𝑊𝑇 =  
∑ 𝐻𝑎

2
𝑠∈𝑆

2 ∑ 𝐻𝑎𝑠∈𝑆
 

Where 𝑠 represents each service of a bus line (excluding the first one), 𝐻𝑠  is the scheduled 

headway of the service 𝑠 and the previous service, and 𝐻𝑎  is the actual headway of the service 

𝑠  and the previous service. EWT is simply the difference between AWT and SWT and 

represents the additional waiting time experienced by passengers. 

 The formulas have this form because AWT and SWT are weighted averages of all the service 

headways of a line, and the weight is the actual headway. So, if the line is designed to have a 

constant headway, the calculation of SWT can be simplified to 𝑆𝑊𝑇 =  0.5𝐻𝑠. 

Figure 13 compares the calculation of the EWT of the base case against the split line scenario, 

in one direction of travel. The plot looks very similar in the opposite direction; EWT reverts to 

zero at the point with the line split, and consequently passengers experience much better 

reliability towards the end of the route. 

7. Conclusion and future work 

From the section on validation, our results so far appear to agree well for most part with actual 

observation. Most importantly, the simplified simulation manages to capture dynamic bus 

bunching effects; in fact, the effect might be slightly exaggerated in the simulation, and the 

possibility of mitigating this effect through the implementation of passing behavior in the queue 

simulation will be investigated. The simple fictitious case study also illustrates that the 

simplified simulation can be used to evaluate proposed changes to the public transport system.  

The reconstruction of train trajectories is a very interesting problem as train-to-train transfers 

are not explicit in the CEPAS data. Furthermore, we need to locate public transport passengers 



36          Public Transport Planning with Smart Card Data 

 

to buildings that are close to public transport stops, in order to better simulate access walking 

and waiting times.  

Our subway stops are also easily accessible in the simulation, and do not take account of the 

time that it takes for passengers travel all the way down to station entrances. Consequently, 

there is a slightly increased preference for the rail modes in the simulation compared to reality. 

We will attempt to address the shortcomings in upcoming versions of the simulation. 

Furthermore, we intend to perform case studies to predict the influence of newly introduced 

bus and train services and compare our results with smartcard data where these newly 

introduced services have been in operation for a number of months.  

It has been our experience that the first-order analyses and operations on the smart card data, 

such as the conversion to trajectories, the speed regression and the models of boarding and 

alighting, are relatively straightforward to implement. The task of integrating results into a 

simulation model capable of providing insight into future transport system performance was a 

radically more involved task. The bugbears of systems engineering, namely unanticipated 

interactions and emergent phenomena, come into play even in this highly simplified integrated 

model, because of the dynamic and disaggregate interacting nature of the agent-based 

simulation. In design iterations leading to the current state of the system, we have spent many 

hours tinkering with its components in order to isolate cause and effect, and a number of 

challenges still remain, as we have highlighted throughout the section on validation of results.  

Whether the integrated modelling approach ultimately proves to be worthwhile in predicting 

future transport system performance or not, the value of smart card data during all stages of the 

design and evaluation is undeniable. Whenever confronted with unexpected behavior in the 

simulation, we find ourselves constantly turning to the data for answers, trying to infer what 

actually happens in reality. We expect that this will become even more the case as data can be 
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potentially enriched with bus GPS traces, and the mystery of where passengers are in the train 

system during the time between transactions at station entrances is revealed through rigorous 

statistical analyses, and the promise of coordinated data from underground cell phone 

transceivers.  
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