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Summary

A high diversity of forest ecosystems is found around the globe providing various ecosystem
services to humans. Responses of forests to recent increases of drought events have given rise
to serious concerns about future forest development. Since anthropogenic climate change is
proceeding at an unprecedented rate, the forestry sector is challenged to swiftly develop and
plan adaptive management measures that guarantee the sustainable provision of forest
ecosystem services in the future. The planning of management strategies is strongly
dependent on reliable knowledge on future forest dynamics. To this end, the Swiss
government has launched an extensive research program to examine the impact of climate
change on Swiss forests. One aim among others is to assess the sensitivity of common forest
types of Switzerland to climate change.

Dynamic vegetation models (DVMs) are suitable to provide quantitative assessments of forest
sensitivity to climate change, as their flexibility allows considering dynamic vegetation
transitions under conditions that do not represent a steady state. Among DVMs, forest gap
models portray long-term forest dynamics at the stand scale taking biotic interactions such as
competition into account. Recent integration of sophisticated management techniques has
substantially extended their range of application from unmanaged to complex mixed-species
forests under management, thus making them interesting tools for the assessment of climate
change impacts on forest ecosystems. However, forest gap models integrate a large number of
ecological processes that still lack an empirical base. This is particularly true for tree
mortality — a key demographic process in forest dynamics — where increasing empirical
research has been followed by little action in DVMs. Thus, although it is widely
acknowledged that empirical functions should be integrated into DVMs to enhance ecological
realism, little is known about whether this approach leads to an increased robustness of model
projections.

Given this background, my thesis includes two major objectives: 1) to examine the potential

of empirical mortality functions in dynamic vegetation models and 2) to assess the sensitivity
of common Swiss forests to climate change.

iii



v Summary

In Chapter 1 of this thesis, I implemented an inventory- and a tree-ring based mortality
function in the forest gap model ForClim and combined them with a stochastic and a
deterministic approach for the determination of tree status (alive vs. dead). These four new
model versions were tested for two Norway spruces stands, one of which was managed
(inventory time series of 72 years) and the other was unmanaged (41 years). Furthermore, I
ran long-term simulations (~400 years) into the future to test model behavior under three
climate scenarios. I showed that three out of the four model versions showed good agreement
for stand basal area and stem numbers when compared against inventory data of both forest
sites. Due to very similar model behavior, an unambiguous choice of a “best” model version
was, however, not possible. In contrast, long-term simulations revealed very different
behavior of the mortality models, indicating that the choice of the mortality function is crucial
for simulated forest dynamics. Based on these results, I concluded that 1) empirical mortality
functions are valuable replacements for current theoretical mortality algorithms in dynamic
vegetation models 2) but further tests would be needed to rigorously assess their potential and
to better understand interactions of the mortality function with other model processes.

Enhanced use of empirical data in dynamic vegetation models is widely advocated. However,
it is largely unknown whether empirically derived functions are compatible with the wide
range of processes and interactions that are usually found in DVMs and thus, whether they
lead to an better model performance. In Chapter 2, I addressed this question with the focus on
the inventory-based mortality function that has already been used in Chapter I. 1 used
Bayesian methods to recalibrate its mortality parameters within ForClim. I compared its
performance with the ForClim version containing the original, empirically fitted mortality
parameters and with the current ForClim v3.3 that included a theoretical mortality function.
Calibration and subsequent validation was based on inventory data of 30 Swiss natural forest
reserves. Similarities between the calibrated and the empirically fitted mortality parameters
suggest that the general structure of ForClim is appropriate to integrate empirical mortality
functions. However, I found some discrepancies that indicate necessary improvements
regarding the role of species’ shade tolerance in growth-mortality relationships and an
optimal balance between growth and mortality. Bayesian calibration led to best performance
both at calibration and validation sites. Furthermore, it revealed that the sensitivity of ForClim
to parametric uncertainty is particularly high for trees in low dbh classes but surprisingly
small for standard model outputs such as basal area.

Assessing the sensitivity of common forest stands in Switzerland with a forest gap model
makes it necessary 1) to know which forest stands are common and 2) to have suitable data
for model initialization. In Chapter 3, 1 developed a stratification of the Swiss forest area to
identify those forest types of Switzerland that, in terms of their stand structure and tree
species composition, are most common in different eco-regions and elevation zones. I used
plot data form the third Swiss National Forest Inventory (NFI3) that contained both stand
attributes and single-tree data. NFI plots were grouped into eco-regions and elevation zones
according to the “Guide for sustainability in protection forests” (NaiS). I further segregated
NFI plots into more groups based on two forest stand attributes: vertical stand structure and
developmental stage. In a last step, I relied on recommendations of sylvicultural experts for
dividing some groups into more strata to strengthen a realistic tree species composition. The
stratification resulted in 71 strata that contained 25% of all NFI forest plots. Single-tree data
of all NFI plots associated to one stratum were aggregated. Although the final result is a
somewhat “artificial” forest stand, it has the tremendous advantage that NFI plot data can be
used directly for stand initialization in the forest gap model ForClim.
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In Switzerland, studies on forest sensitivity to climate change often focus on extreme sites
where shifts in tree species composition are already visible while less attention is paid to the
fate of common forest stands that are most important for Swiss forestry. In Chapter 4, I ran
simulations for 71 strata that had been identified in the previous chapter using two model
versions to examine their development until the end of the 21% century (year 2100).
Simulations were run with common Swiss forest management strategies and without
management. [ considered forest development under current climate (1980-2009) and under
11 different climate change scenarios assuming an A2 greenhouse gas emission scenario.
According to these simulation results, shifts in structure and composition of Swiss forests
have to be expected for the second half of this century. However, high variability among the
strata was found due to drivers of small-scaled forest dynamics such as regional climate,
elevation gradients and current species composition. I showed that current management
regimes can alleviate the negative impacts of climate change but adaptive measures are
necessary to be applied at a site-specific and objective-oriented base. In conclusion, model-
based assessments on forest sensitivity can only provide reliable decision-making support for
forest managers if small-scaled drivers of forest stand dynamics are taken into consideration.

In the Synthesis, 1 reflect the findings of the previous chapters by discussing the potential of
empirical mortality functions in DVMs and the use of forest gap models — as one type of
DVM - as tools for decision-support regarding forest management under climate change. I
come to the conclusion that empirical mortality functions are capable to further improve the
performance of DVMs and to increase our confidence in their projections. However,
empirical functions come with limitations, which might constrain a valid applicability. For
this reason, I advocate not to focus on one individual function but to aggregate knowledge on
mortality mechanism and data from various sources to enhance the validity of the tree
mortality mechanism in DVMs beyond individual empirical data sets. Climate change is
expected to have strong effects on future development of current Swiss forests at various
sites. High variability in forest response to a changing environment underlines the need to
plan future forest strategies at the local scale. Forest gap models have limitations that need to
be discussed and tackled. Still, I am convinced that they have the potential to play a key role
in decision-making processes as they can provide what decision makers need: a
comprehensive reflection of essential processes and an adequate spatial resolution.






Zusammenfassung

Rund um den Globus findet sich eine hohe Vielfalt an Waldokosystemen, die dem Menschen
zahlreiche ~ Okosystemleistungen ~ zur  Verfiigung  stellen. Zunahmen  von
Trockenheitsereignissen in der jlingsten Vergangenheit haben bereits zu Reaktionen in
verschiedensten Waildern gefithrt und damit ernste Besorgnis iiber die zukiinftige
Waldentwicklung ausgelost. Da der anthropogene Klimawandel mit beispielloser
Geschwindigkeit voranschreitet, ist die Forstwirtschaft gefordert, sich moglichst rasch um die
Entwicklung und Planung von adaptiven Massnahmen zu bemiihen, welche die nachhaltige
Sicherstellung von Waldokosystemleistungen auch in Zukunft gewéhrleisten sollen. Fiir die
waldbauliche Planung sind jedoch zuverldssige Kenntnisse iiber die zukiinftige Walddynamik
zwingend erforderlich. Aus diesem Grund hat die Bundesregierung der Schweiz ein
umfangreiches Forschungsprogramm lanciert um die Auswirkungen des Klimawandels auf
Schweizer Wilder zu untersuchen. Ein wesentliches Ziel dabei ist es, die Empfindlichkeit von
hiufigen Waldtypen der Schweiz auf den Klimawandel abschétzen zu konnen.

Dynamische Vegetationsmodelle (DVMs) sind gut fiir solche quantitativen Abschéitzungen
geeignet. Thre Flexibilitit erlaubt es dynamische Ubergiéinge von Vegetationssystemen auch
ausserhalb von konstanten Bedingungen zu beriicksichtigen. Innerhalb der DVM-Familie
zielen Waldsukzessionsmodelle auf die Abbildung der langfristigen Walddynamik auf
Bestandesebene ab. Dabei beriicksichtigen sie auch biotische Interaktionen wie die
Konkurrenz zwischen den Baumarten. Der jlingste FEinbau von komplexeren
Bewirtschaftungstechniken hat ihren Anwendungsbereich von unbewirtschafteten
Naturwildern zu Wirtschafts- und Mischwildern betrichtlich erweitert. Damit sind sie auch
zu einem interessanten Werkzeug fiir die Abschitzung von Auswirkungen des Klimawandels
auf heutige Wilder geworden. Viele dieser Sukzessionsmodelle beinhalten jedoch immer
noch eine hohe Anzahl an 6kologischen Prozessen, denen eine empirische Basis fehlt. Dies
trifft vor allem auf die Baummortalitdt zu, einem demographischen Schliisselprozess der
Walddynamik, welcher zwar zunehmend untersucht wird, empirische Erkenntnis bisher
jedoch kaum in Sukzessionsmodelle eingeflossen ist. Es ist zwar weitgehend anerkannt, dass
empirische Funktionen vermehrt in DVMs integriert werden sollen, um so deren 6kologische
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viii Zusammenfassung

Glaubwiirdigkeit zu erhdhen. Hingegen weiss man wenig dariiber, ob dies ein sinnvoller
Ansatz ist um die Robustheit von Modellprojektionen zu verbessern.

Basierend auf diesem Hintergrund hatte diese Dissertation zum Ziel 1) das Potenzial von
empirischen Mortalititsfunktionen in dynamischen Vegetationsmodellen zu untersuchen und
2) die Empfindlichkeit von hdufigen Schweizer Waldbestinden auf den Klimawandel
abzuschitzen.

Im Kapitel 1 dieser Arbeit wurden eine Inventur- und eine Jahrring-basierte
Mortalitdtsfunktion in das Waldsukzessionsmodell ForClim eingebaut. Weiter wurden diese
mit einem stochastischen bzw. deterministischen Ansatz zur Bestimmung des Baumzustands
(lebend vs. tot) kombiniert. Diese vier neuen Modellversionen wurden in zwei reinen
Fichtenbestdnden, einem bewirtschafteten (Inventurzeitreihe von 72 Jahren) und einem
unbewirtschafteten (42 Jahre) getestet. Ausserdem wurden Langzeitsimulationen (~400 Jahre)
in die Zukunft durchgefiihrt um das Modellverhalten unter drei verschiedenen Klimaszenarien
zu priifen. Es wurde gezeigt, dass drei von vier Modellversionen gute Ubereinstimmung
beziiglich totaler Basalfliche und Stammzahl mit den Inventurdaten der beiden Standorte
erzielten. Die eindeutige Identifikation einer ,besten® Modellversion war aufgrund sehr
dhnlichen Modellverhaltens jedoch nicht moglich. Im Gegensatz zeigten die
Langzeitsimulationen ein sehr unterschiedliches Verhalten der Mortalititsfunktionen auf.
Dies weist darauf hin, dass die Wahl der Mortalititsfunktion massgeblich die simulierte
Walddynamik beeinflusst. Anhand dieser Resultate wurden die Schlussfolgerungen gezogen,
dass 1) empirische Mortalitdtsfunktionen bestehende, theoretische Mortalititsalgorithmen in
DVMs angemessen ersetzen konnen, 2) es jedoch weiterer Tests gebraucht um ihr Potential
griindlich zu priifen und Interaktionen der Mortalititsfunktion mit anderen Modellprozessen
besser zu verstehen.

Auch wenn die vermehrte Verwendung von empirischen Daten in DVMs propagiert wird, ist
es jedoch weitgehend unbekannt, ob empirisch hergeleitete Funktionen mit der breiten Palette
an Modellprozessen in DVMs und deren Interaktionen kompatibel sind. Damit verbunden
stellt sich die Frage ob sie tatsdchlich zu optimalem Modellverhalten fiihren. Dieser Frage
wurde in Kapitel 2 dieser Arbeit nachgegangen, wobei das Augenmerk auf die Inventur-
basierte Mortalitatsfunktion gelegt wurde, die bereits in Kapitel 1 zum Einsatz kam. Mittels
Bayes’scher Statistik wurden deren Parameter in ForClim rekalibriert. Die Leistung dieser
Modellversion wurde mit derjenigen Version, welche die urspriinglichen, empirisch gefitteten
Parameter beinhaltete und der gegenwirtigen ForClim-Version (v3.3), welche eine
theoretische Mortalititsfunktion beinhaltet, verglichen. Die Kalibrierung und die
anschliessende  Validierung  beruhten auf Inventurdaten von 30  Schweizer
Naturwaldreservaten. Ahnliche Werte fiir die kalibrierten und die empirische gefitteten
Mortalititsparametern legen den Schluss nahe, dass die generelle Modellstruktur von ForClim
angemessen ist um empirische Mortalititsfunktionen zu integrieren. Es wurde aber auch
einige Abweichungen festgestellt, welche auf notwendige Verbesserungen beziiglich der
Rolle von Schattentoleranzklassen in Wachstums-Mortalitdts-Beziehungen und beziiglich
eines optimalen Gleichgewichts zwischen Baumwachstum und -mortalitit im Modell
hindeuten. Die Bayes’sche Kalibrierung fiihrte zur besten Modelleistung sowohl an
Kalibrierungs- als auch an Validierungstandorten. Weiter zeigte sich, dass die
Empfindlichkeit von ForClim gegeniiber Unsicherheiten in der Parametrisierung insbesondere
fiir Baume in den tieferen Durchmesserklassen deutlich ausgeprigt ist, fiir Standardergebnisse
wie die totale Basalfldche jedoch erstaunlich gering ist.
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Die  Empfindlichkeit ~von  hdufigen  Schweizer = Waldbestinden @ mit dem
Waldsukzessionsmodell ForClim abschétzen zu konnen, setzt voraus, einerseits zu wissen
welche Waldtypen hiufig sind und andererseits hierfiir iiber passende Einzelbaumdaten zu
verfligen um damit das Modell zu initialisieren. In Kapitel 3 wurde eine Stratifizierung der
Schweizer Waldflaiche durchgefiihrt um diejenigen Waldtypen zu identifizieren, welche
beziiglich ihrer Struktur und Zusammensetzung in verschiedenen Standortsregionen und
Hohenstufen der Schweiz am haufigsten vorkommen. Hierfiir wurden Untersuchungsfldchen
(Plots) des dritten Schweizerischen Landesforstinventars (LFI) verwendet, auf welchen nicht
nur gingige Bestandesattribute sondern auch Einzelbaumdaten erhoben wurden. Die LFI-
Plots wurden geméiss den Standortsregionen und Hohenstufen nach der Wegleitung
,Nachhaltigkeit im Schutzwald* (NaiS) in Gruppen eingeteilt. Diese Gruppen wurden unter
Verwendung der Bestandesattribute ,,vertikale Bestandesstruktur® und ,,Entwicklungsstufe*
weiter aufgeteilt. In einem letzten Schritt wurden einige Gruppen basierend auf
Empfehlungen von Waldbauexperten zusitzlich getrennt, um eine mdoglichst realistische
Baumartenzusammensetzung zu gewéhrleisten. Die Stratifizierung ergab 71 Straten, welche
insgesamt 25% aller als ,Normalwald“ klassifizierten LFI-Plots beinhalteten. Die
Einzelbaumdaten aller zu einem Stratum zugehorigen LFI-Plots wurden aggregiert. Obwohl
dies eine zu einem gewissen Grad kiinstliche Waldstruktur ergab, lag der Vorteil darin, dass
die Einzelbaumdaten des LFI direkt fiir die Bestandesinitialisierung in ForClim verwendet
werden konnten.

Die Klimaempfindlichkeit von Schweizer Wéldern wird oftmals nur an Extremstandorten
untersucht, wo sich Verdnderungen der Baumartenzusammensetzung bereits beobachten
lassen. Den hédufigen Waldstandorten wird weniger Aufmerksamkeit geschenkt, obwohl sie
fiir die Forstwirtschaft von hochster Bedeutung sind. Aus diesem Grund wurden in Kapitel 4
mittels zweier ForClim-Versionen Simulationen fir die 71 im vorherigen Kapitel
identifizierten Straten durchgefiihrt, um so deren Entwicklung bis Ende des 21. Jahrhunderts
abzuschédtzen. Dabei wurden Simulationen ohne sowie mit Waldbewirtschaftung durchgefiihrt
wobei gingige Schweizer Waldbewirtschaftungspraktiken zur Anwendung kamen. Die
zukiinftige Waldentwicklung wurde sowohl unter heutigem Klima (1980-2009) als auch unter
Anwendung von 11 verschieden Klimaszenarien basierend auf einem A2 Emissionsszenario
untersucht. Geméss den Resultaten zeigen Schweizer Wélder klimabedingte Veranderungen
insbesondere in der zweiten Halfte dieses Jahrhunderts. Dabei zeigte sich jedoch eine hohe
Variabilitit zwischen den verschiedenen Straten bedingt durch Faktoren wie regionales
Klima, Hohengradienten und Baumartenzusammensetzung, welche die Walddynamik auf
kleinrdumiger Ebene steuern. Gegenwiértige Bewirtschaftungspraktiken waren in der Lage
negative Einfliisse des Klimawandels auf die Bestandesdynamik abzumildern. Gleichzeitig
zeigte sich auch, dass es neuer, adaptiver Massnahmen bedarf, welche aber
standortsspezifisch und zielorientiert geplant und angewandt werden miissen. Diese Studie
zeigt klar, dass modell-basierte Abschétzungen iiber Auswirkungen des Klimawandels auf
Wailder nur dann einen zuverldssigen Beitrag fiir die Forstwirtschaft leisten kdnnen, wenn sie
diejenigen Faktoren in Betracht ziehen, welche die Walddynamik auf Bestandesebene
steuern.

In der Synthese werden die Ergebnisse aus den einzelnen Kapiteln reflektiert und
insbesondere beziiglich der Frage nach dem Potential von empirischen Mortalitdtsfunktionen
in DVMs und nach dem Nutzen von Waldsukzessionsmodellen als Entscheidungsgrundlage
fiir die zukiinftige Waldbewirtschaftung diskutiert. Empirische Mortalititsfunktionen zeigen
sich in der Lage die Leistung von DVMs zu verbessern und unser Vertrauen in
Modellprojektionen zu erhdhen. Sie sind jedoch auch mit Einschrdnkungen verbunden,
welche ihre Giiltigkeit und Zuverldssigkeit in Anwendungen begrenzen. Aus diesem Grund
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sollte der Fokus weniger auf eine einzige Funktion gelegt werden sondern vielmehr darauf,
das Wissen iiber Mortalitditsmechanismen und Daten aus verschiedene Quellen zu
kombinieren um damit die giiltige Abbildung der Baumortalitit in DVMs {iber einzelne
Datensdtze hinaus zu erweitern. Der Klimawandel wird voraussichtlich an verschiedenen
Standorten eine starke Wirkung auf die zukiinftige Waldentwicklung heutiger Schweizer
Wailder haben. Die hohe Variabilitit in der Reaktion auf den Klimawandel unterstreicht die
Notwendigkeit  zukiinftige = Waldbaustrategien auf lokaler FEbene zu planen.
Waldsukzessionsmodelle beinhalten Unsicherheiten, die diskutiert und angegangen werden
miissen, dennoch sind sie in der Lage eine Schliisselrolle bei der Entscheidungsfindung der
waldbaulichen Planung zu iibernehmen. Denn sie beinhalten die notwendigen Vorgaben, dies
es fiir die Entscheidungsfindung auf lokaler Ebene braucht: Eine weitgehende Abdeckung der
erforderlichen Prozesse und Faktoren sowie eine angemessene raumliche Auflosung.



General introduction

Forests under climate change

Forest ecosystems have been shaped by changing climates, natural disturbances, and human
land-use for thousands of years (Tinner and Theurillat, 2003; Colombaroli and Tinner, 2013;
Fyfe et al., 2015). In this process, forests have shown remarkable resilience to changes in
their abiotic and biotic environment (e.g., Feurdean et al., 2011; Lopez-Merino et al., 2012).
Land-use and climate change are expected to remain major natural drivers of ecosystems in
the future (Sala et al., 2000), but the present-day situation is unique as, for the first time,
climate change is and will be human-induced to a large degree (IPCC, 2014). Greenhouse gas
emissions are rising at an unprecedented rate (World Meteorological Organisation, 2014),
resulting in projected increases of global average temperature of 2 to 4 °C by the end of this
century (IPCC, 2014). Although forests are known to respond to altered climatic conditions
(e.g., Schworer et al., 2014), their rate of adaption is limited due to the longevity of trees
(Lindner et al., 2010; Milad et al., 2011). Given the high rate of recent and predicted future
climate change, many forest systems around the globe have already shown a response to
recent increases of drought (Allen et al., 2010) and will most likely face drastic shifts
regarding their structure, composition, and dynamics (e.g., Ciais et al., 2005). Hence, the
resistance and resilience of forests to climate change is of high concern (e.g., Bonan, 2008).

Forests provide a wide array of ecosystem services (ES) to humans including resources,
amenities, social, biospheric, and ecological aspects (MEA, 2005). Failing to provide these
services due to the impacts of climate change would mean, if nothing else, a high economical
loss (Hanewinkel et al., 2013). This alone places high pressure on the forestry sector (Lindner
et al., 2010). If forest management is to maintain adaptive and disturbance-resistant forests
under climate change (Brang et al., 2008), possible adjustments of sylvicultural interventions
and measures need to be developed and implemented quickly, as the management of long-
living organisms like trees requires long-term strategies (Seidl et al., 2011). However, the
development of efficient, adaptive forest management is only possible if sound, regional
knowledge on future forest dynamics is available (Rigling et al., 2008).

In Switzerland, forests cover around 30% of the land area, providing a variety of ES including
timber production, protection from natural hazards, conservation and recreation, to name just
the most important ones (Bréndli, 2010). The country is characterized by a complex

1



2 General introduction

topography, a high proportion of mountain areas, and steep bioclimatic gradients that are
driving a high habitat diversity along different elevation zones (OcCC, 2007). Due to this
wide spectrum of sites differing in climate and geology, around 120 types of natural forests
have been defined (Frehner et al., 2005).

Swiss forests have experienced a 1.5 °C increase of average annual temperatures since 1970
(OcCC, 2008), which reflects a rate of change that is 1.5x higher compared to the terrestrial
surface of the northern hemisphere (IPCC, 2007). Responses of Swiss forests to recent
climate extremes and changes have already become visible for example during the hot
summer of 2003 (e.g., Jolly et al., 2005) or at dry sites in the inner-Alpine valleys (e.g.,
Rigling et al., 2013). Current climate projections for Switzerland suggest a further increase of
temperature particularly in the summer season by about 2.7 °C to 4.8 °C, possibly coupled
with a decrease of summer precipitation by about 20% to 28% compared to the reference
period of 1980 to 2009 (CH2011, 2011). Such climatic changes will most likely lead to strong
reactions by the country’s forests (Bugmann et al., 2014), although high uncertainty about its
magnitude presents a substantial challenge regarding the development of novel sylvicultural
strategies (Brang et al., 2008).

Model-based studies have been conducted for a few decades to quantitatively assess the
impacts of climate change on Swiss forests (cf. Bolliger, 2002). However, earlier studies have
either worked with zonal forest communities (Brzeziecki et al., 1995), neglected population
dynamics such as competition (e.g., Bolliger et al., 2000), and/or not considered actual forest
stand data but simulated potential natural vegetation (e.g., Kienast, 1991; Krauchi and
Kienast, 1993; Kienast et al., 1996; Bugmann, 1997; Fischlin and Gyalistras, 1997; Lischke
and Zierl, 2002). In addition, climatic scenarios have been rather coarse and realistic
management regimes missing. Overall, none of these studies were very supportive in terms of
decision-making for Swiss forestry.

More recent studies, both empirical and model-based, are usually lacking a comprehensive
approach as they, on the one hand, often focus on a few objects only representing sites that
experience climatic extremes already today (e.g., Bigler ef al., 2006; Rigling et al., 2013), and
thus are not representative for the majority of Swiss forest sites; or they represent case studies
that only allow for limited conclusions regarding the entire country (e.g., Elkin ef al., 2013).
On the other hand, studies on the adaptability of tree species to increased drought (e.g.,
Levesque et al., 2014) or about their future potential distribution ranges (e.g., Zimmermann
and Bugmann, 2008) are often restricted to a few species only and/or do not consider
important aspects of forest dynamics such as competition. Thus, there is an urgent need for a
quantitative assessment on the national scale (1) to focus on forest stands that are typical for
the Swiss forest area regarding structure and composition and, hence, form the backbone of
today’s forestry, and (2) to include bioclimatic effects and interactions among tree species.

To provide decision makers in policy and forestry with a solid foundation regarding future
forest dynamics, the Swiss Government has launched an extensive research program “Forests
and Climate Change” (BAFU, 2009; Brang ef al., 2011) to (1) examine the impacts of climate
change on Swiss forests, (2) to assess consequences for the future provision of forest
ecosystem services and (3) to identify and derive suitable adaptive management solutions to
guarantee their provision in the future.

My PhD thesis, as part of the research program “Forests and Climate Change”, is a
contribution to fill this knowledge gap. The questions which forest types are typical for
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Switzerland and how sensitively they will react to climate change are addressed in Chapters 3
and 4 of my thesis, respectively.

Modeling forest dynamics

The quantitative assessment of forest ecosystem shifts under climate change requires the
extrapolation of current knowledge and strongly relies on the specific assumptions on forest
dynamics (Bugmann et al., 2014). To this end, mathematical and simulation models are
needed and useful (Busing and Mailly, 2004; Botkin et al, 2007). Dynamic vegetation
models (DVMs) are particularly suited for this purpose as they allow considering dynamic
transitions of plant populations (Prentice et al., 2007; Fontes et al., 2010) under non steady-
state conditions (Botkin et al., 2007).

A wide range of DVMs has been developed over the last decades (Bugmann, 2001; Cramer et
al., 2001; Sitch et al., 2008) that usually share many similarities regarding their architecture
(Cramer et al., 2001; Prentice et al., 2007). In principle, these models predict temporal
trajectories of plant response to biotic (e.g., competition, disturbances) and abiotic (e.g., soil,
climate) factors (Jeltsch et al., 2008; Hartig et al., 2012). They differ, however, regarding the
degree of complexity and their field of application (Sitch et al., 2003).

At large scales, dynamic global vegetation models (DGVMs) couple processes related to
vegetation dynamics (e.g., plant establishment, growth and mortality) with biogeochemical
fluxes (e.g., carbon cycle; Cramer et al., 2001). Large-scale applications with coarse
resolution and/or considerable computational and parameterization constraints are addressed
by using the presence/absence of so-called plant functional types, not individuals, as the
primary entity to be modeled (Cramer et al., 2001). Thus, these models do normally not
consider processes and interactions (e.g., competition) that are occurring at the individual
level (e.g., Sato et al., 2007).

At the other end of the spatial scale axis, individual-based models such as forest gap models
are usually applied at the level of a forest stand (Bugmann, 2001). Here, processes of
vegetation dynamics are calculated for individuals (but see cohort-approach in Bugmann,
1996) and tree responses to environmental conditions differ based on species-specific
physical and physiological requirements. While most forest gap models do not explicitly
reflect biogeochemical cycles (Reynolds et al., 2001), they are capable of accounting for more
detailed species-specific, individual-based responses to resource availability, competition and
other processes regarding succession, which are driving forest stand dynamics (Shugart, 1984;
Bugmann, 2001).

Below, I expand on the underlying concept, history and development of forest gap models
since their approach has recently also been embodied in DGVMs so as to increase their
ecological realism by more detailed formulations of physiological processes at the stand level
(i.e. individual-based hybrid models; e.g., Moorcroft et al., 2001; Smith ef al., 2001; Sato et
al., 2007; Hickler et al., 2012; Naudts et al., 2014).

The fundamental concept underlying forest gap models to explain vegetation dynamics is
attributed to Watt’s (1947) theory of “gap phases”. On a small-scaled forest patch, the death
of a large canopy tree creates a gap, resulting in enhanced resource availability and thus better
growth of suppressed trees as well as a wave of tree recruitment (see also Shugart, 1984;
Bugmann, 2001). From a landscape perspective, such events of canopy tree mortality occur
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with spatial and temporal heterogeneity, leading to a mosaic of forest patches that differ
regarding their successional state. With the words of Watt (1947, pp.1-2): “...these patches
form a mosaic and together constitute the community”. Accordingly, forest gap models
simulate vegetation dynamics on small patches that comprise an area that is potentially
dominated by one large canopy tree (often, 1/12 ha; Shugart, 1984). The successional pattern
at the forest stand or at larger scale is obtained by averaging simulation results across many
patches (Bugmann, 2001).

The JABOWA model by Botkin et al. (1972a,b) was the first to use this concept for
simulating tree establishment, growth and mortality, based on a few key simplifications
(Bugmann, 2001): (1) forests are considered to be abstractions of many small patches (with a
size of 100-1000 m?), (2) there is horizontal homogeneity across a patch, i.e. tree position is
not considered, (3) leaves are placed as an indefinitely thin disk at the top of the stem (i.e., no
2- or 3-dimensional crown structure), and (4) there is independence between patches (i.e., no
interactions). A wide variety of forest gap models has evolved from this JABOWA model,
addressing forest ecosystem dynamics from the boreal to the tropical zone (Shugart and
Smith, 1996). In a still ongoing process, more mechanistic functions have been formulated or
new assumptions introduced, such as the consideration of tree position (SORTIE; Pacala et
al., 1993, 1996), patch interactions (cf. Urban et al., 1991, ZELIG), crown length calculation
(Leemans and Prentice, 1989, FORSKA; Weishampel and Urban, 1996, ZELIG; Pacala et al.,
1993, 1996, SORTIE; Didion et al., 2009, ForClim), seed dispersal (Pacala et al., 1993, 1996,
SORTIE; Lexer and Honninger, 1998, PICUS), a cohort approach (Bugmann, 1996,
ForClim), different life forms (Keane et al., FIRE-BGC; Friend et al., 1997, HYBRID), stress
responses (i.e. new state variable; Solomon, 1986, FORENA) or belowground dynamics
(Aber et al., 1979, FORTNITE), to name just a few examples. In addition to changes
targeting the physical and physiological elements of gap models, recent integration of
management techniques (e.g., Rasche et al., 2011, ForClim) and a more sophisticated
consideration of natural disturbances (e.g., Seidl et al., 2008, Picus) have substantially
extended the range of model applications from originally unmanaged forests (Badeck et al.,
2001) to complex mixed-species stands that are under heavy management (cf. Pabst et al.,
2008; Larocque et al., 2011).

The call for more empirical accuracy

In combination with increasing availability of long-term measured forest stand data, testing of
forest gap models has experienced a remarkable shift from rather qualitative assessments
(e.g., potential natural vegetation (PNV) or pollen data; Bugmann, 2001) to quantitative
comparisons of model predictions against field data (e.g., Lindner et al., 1997; Didion ef al.,
2009a). The latter approach allows us to examine model behavior regarding, for example,
forest stand structure (i.e., species-specific distribution of diameter at breast height, DBH) in a
very rigorous manner (Wehrli et al, 2005), rather than based on the “plausibility” or
“realism” of the simulation results alone (e.g., Bugmann, 1994).

Since forest gap models were found to reproduce measured data of unmanaged (e.g.,
Larocque et al., 2006) and managed (e.g., Pabst ef al., 2008; Rasche et al., 2011) stands
reasonably well, they have evolved from pure scientific instruments that were geared towards
better understanding forest dynamics, into tools to investigate the sustainability of managed
forest ecosystems under changing environmental conditions (Larocque et al., 2006). In this
context, they have already been applied to assess the impacts of climate change (e.g., Seidl et
al., 2008; Seidl et al., 2011; Elkin et al., 2013).
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However, quantitative model tests have revealed considerable shortcomings in the
formulation of ecological processes in forest gap models (cf. Lindner et al., 1997; Monserud,
2003; Pabst et al., 2008), and criticism had been expressed particularly regarding the poor
empirical foundation of many processes (Loehle and LeBlanc, 1996; Keane et al., 2001).
Indeed, while some processes in forest gap models such as tree growth rely on a fairly sound
empirical basis already (e.g., growth and yield plots, tree-ring records; Bugmann, 2001), other
processes like tree recruitment and mortality reflect possibly realistic but not necessarily
accurate theoretical assumptions (Keane ef al., 2001; Larocque et al., 2011).

While the scarcity of suitable empirical data has often been used to explain the absence of
more sophisticated algorithms in the past, such an explanation is difficult to maintain
nowadays, as the availability of suitable forest data sets and statistical techniques for their
interpretation is increasing rapidly. For example, there has been an increasing number of
empirical studies on tree mortality (e.g., Monserud and Sterba, 1999; Bigler and Bugmann,
2003, 2004; Wunder et al., 2007, Wunder et al., 2008; Gillner et al., 2013; Holzwarth et al.,
2013) based on various data sources and different statistical methods. However, this empirical
progress has been followed by little action regarding the implementation of more
sophisticated mortality functions in forest gap models (but see Larocque et al., 2011), and
thus many models are still based on rather simplistic assumptions regarding tree mortality
(Monserud, 2003).

Slow advances in enhancing the empirical foundation of forest gap models are unfortunate for
two reasons in particular: First, although it is widely agreed that an increase of ecological
realism in DVMs is needed by relying more on empirical data and mechanistic formulations
(e.g., Prentice et al., 2007; Fontes et al., 2010; Galbraith et al., 2010; Adams et al., 2013), we
know little about whether this is a suitable approach to increase the robustness of model
projections. Second, current model versions are characterized by a high sensitivity to the
choice of the formulation on the simulation of key processes such as tree mortality (Manusch
et al., 2012; Friend et al., 2014), while forest dynamics remains a considerable source of
uncertainty in simulations under climate change (Purves and Pacala, 2008).

In this thesis, I will therefore examine the potential and behavior of recently developed
empirical mortality functions in DVMs (see chapters 1 and 2). In this work I will focus on a
forest gap model, as this class of models provides the level of spatial resolution that is
required to assess forest dynamics under climate change and different local conditions, i.e. to
provide information that is useful in a forest management context in addition to providing
fundamental ecological insights. I will rely on the forest gap model ForClim (Bugmann,
1996) that has been parameterized for all major tree species of Central Europe and was
successfully tested for different forest types under a wide climatic gradient without requiring
site-specific calibration (e.g., Bugmann and Solomon, 2000; Didion et al., 2009b; Rasche et
al., 2011). The choice is also motivated by the fact that the recent implementation of a broad
set of different sylvicultural techniques (Rasche et al., 2011) provides the flexibility required
to reflect Swiss forest management strategies in the simulations in an appropriate and realistic
way.
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Research aim and structure of the thesis

Two major objectives form the backbone of this thesis: In a first part (chapters 1 and 2), I aim
to test and discuss the applicability of empirically derived mortality functions in dynamic
vegetation models. Specifically, I want to

(1) implement empirical mortality functions of different origin into ForClim,
(2) compare their performance within this DVM framework, and
(3) evaluate their potential for applications that go beyond the empirical data sets.

In the second part (chapters 3 and 4), I will examine the sensitivity of typical Swiss forest
stands to climate change, taking local stand conditions and common management strategies
into account. To this end, I will

4) develop a stratification of the Swiss forest area into typical forest stands, and

(5) run simulations for these forest stands under current climate and climate change
scenarios using different versions of ForClim that were developed and evaluated in the
first part of this thesis.

To this end, this thesis is structured into the following parts:
Chapter 1

Many DVMs still incorporate functions that reflect theoretical assumptions on tree mortality
but have neither been derived from nor tested against empirical data. Thus, although
suggested by various authors (e.g., Keane et al, 2001), the applicability of empirically
derived mortality functions in DVMs remains poorly understood. Concomitantly, the
developers of empirical mortality functions rely on feedbacks from the DVM community to
further derive sound, robust and accurate mortality models. To provide such
recommendations, I replace the standard mortality function of ForClim by two empirically
derived mortality functions that are based on inventory and tree-ring data, respectively. I
compare the performance of these different model versions against long-term inventory data
of two Norway spruce dominated forest stands under both managed and unmanaged
conditions. Furthermore, I assess model behavior in long-term simulations to elucidate their
sensitivity to climate change.

Chapter 2

Although empirical inventory data should provide reliable estimates of mortality rates,
empirically estimated mortality parameters may not lead to optimal performance in a DVM
due to issues with the data, structural errors in the model, or interactions with other model
processes. Thus, a thorough understanding of the behavior of empirical mortality functions in
a DVM framework is necessary. In this chapter, I address this issue by using Bayesian
methods to inversely re-calibrate the parameters of an inventory-based mortality function (see
chapter 1) in ForClim. Calibration and subsequent validation are based on 30 plots of the
Swiss natural forest reserve network that include all major tree species of Central Europe. I
use potential mismatches between empirically estimated and inversely calibrated mortality
parameters to discuss the structural realism of ForClim. Furthermore, I assess parameter
uncertainty and its consequences for model projections.
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Chapter 3

The focus on a particular set of forest types for analyzing the impacts of climate change can
be based, for instance, on expert judgment, statistical methods or specific interests (e.g.,
species conservation etc.). In this chapter, I test a largely objective, quantitative approach
(i.e., stratification) that is based on the plot data of the Swiss National Forest Inventory (NFI).
I identify those forest types that, regarding their stand structure and tree species composition,
are most common and hence, typical for different eco-regions and elevation zones of
Switzerland. Additionally, these forest stands are expected to form distinguishable units
whose characteristics and future development can be reflected by ForClim.

Chapter 4

Switzerland is characterized by a high diversity of forest types, but the available studies on
forest sensitivity to climate change often focus on extreme sites (e.g., dry sites where tree
species already approach their physiological limits). Common (i.e., typical) forest stands are
hardly considered although they build the backbone of current Swiss forestry, and hence their
future development should be of high interest. I run simulations for 71 typical forest stands
(see also chapter 3) using two versions of ForClim by including the most common Swiss
forest management strategies and a variety of climate scenarios, assuming an A2 greenhouse
gas emission scenario. I assess the sensitivity of these forest stands to climate change and
discuss the effects of current management practices. Furthermore, I examine the impact of
climate change on the forest ecosystem services that are most important for Switzerland.
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Abstract

Dynamic models are pivotal for projecting forest dynamics in a changing climate, from the
local to the global scale. They encapsulate the processes of tree population dynamics with
varying resolution. Yet, almost invariably tree mortality is modeled based on simple,
theoretical assumptions that lack a physiological and/or empirical basis. Although this has
been widely criticized and a growing number of empirically derived alternatives are available,
they have not been tested systematically in models of forest dynamics.

We implemented an inventory-based and a tree-ring-based mortality routine in the forest gap
model ForClim v3.0. We combined these routines with a stochastic and a deterministic
approach for the determination of tree status (alive vs. dead). We tested the four new model
versions for two Norway spruce forests in the Swiss Alps, one of which was managed
(inventory time series spanning 72 years) and the other was unmanaged (41 years).
Furthermore, we ran long-term simulations (~400 years) into the future under three climate
scenarios to test model behavior under changing environmental conditions.

The tests against inventory data showed an excellent match of simulated basal area and stem
numbers at the managed site and a fair agreement at the unmanaged site for three of the four
empirical mortality models, thus rendering the choice of one particular model difficult.
However, long-term simulations under current climate revealed very different behavior of the
mortality models in terms of simulated changes of basal area and stem numbers, both in
timing and magnitude, thus indicating high sensitivity of simulated forest dynamics to
assumptions on tree mortality.

Our results underpin the potential of using empirical mortality routines in forest gap models.
However, further tests are needed that span other climatic conditions and mixed forests.
Short-term simulations to benchmark model behavior against empirical data are insufficient;
long-term tests are needed that include both non-equilibrium and equilibrium conditions.
Thus, there is the potential to greatly improve the robustness of future projections of forest
dynamics via more reliable tree mortality submodels.

Keywords

Forest gap model; Mortality; Tree ring; Inventory data; Climate change; Forest succession;
Modeling
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Introduction

Climate-induced shifts of forest ecosystems in terms of tree species composition, productivity
and dynamics have already been observed in recent decades and are expected to continue
(Fischlin et al., 2007). Since forests provide multiple services to humans such as wood
production, protection from natural hazards, or recreation (MEA, 2005), assessing their future
development is of high importance (Lindner et al., 2010). To this end, reliable tools are
needed (Lindner et al., 1997). Forest gap models have a long history in forest dynamics
research, including impact assessments of climate change. Gap models emphasize the longer-
term development (Pabst et al., 2008), including tree regeneration and natural mortality in
multi-species stands. Thus, they are also suitable for forests with a complex composition and
structure (Larocque ef al., 2011; Rasche ef al., 2011). Their parsimonious concept implies a
minimum of required input data, parameters and algorithms, which allows for applications
under a wide range of environmental conditions (Didion et al., 2009b; Rasche et al., 2012).
However, these models may meet their limits when it comes to accurately reflecting specific
processes of forest dynamics, such as tree mortality (cf. Bugmann, 2001).

Although it has long been recognized that the modeling of tree mortality is not based on
robust concepts and sound empirical data (Keane et al., 2001), dynamic vegetation models
from the local (Bugmann, 2001) to the global scale (Friend et al., 2014) are still lacking
trustworthy mortality submodels. Many Growth-And-Yield models include empirically
calibrated mortality equations based on logistic regression (e.g., SILVA, PrognAus;
Hasenauer, 2006). However, they focus on the harvest potential of a forest stand within the
time frame of one tree generation (i.e., one rotation). This focus does not permit the
application of these models for assessing the influence of natural mortality on long-term
forest dynamics in mixed forests and under changing environmental conditions, where
mortality plays a crucial role. As a matter of fact, in the most recent Model Intercomparison
Project (ISI-MIP), Friend et al. (2014) found that the discrepancy in simulated terrestrial
carbon storage across different impact models is mostly due to uncertainties in carbon
residence times (i.e., mortality rates) rather than differences in simulated net primary
productivity. Similarly, using a Physio-Demo-Genetics model, Oddou-Muratorio and Davi
(2014) have recently found that tree mortality was the main driver of evolutionary dynamics
at the local scale.

Here, we focus on the case of forest gap models (Bugmann, 2001) to advance the issue. In
these models, mortality is usually split into two parts: First, a stress-induced mortality
formulation related to tree growth and, hence, to environmental conditions (light, soil
properties, climate). If radial tree growth (i.e., basal area increment BAI, mm®/year) falls
below an absolute threshold or below a certain percentage of maximum growth at the
respective tree size/age, the probability of tree mortality increases sharply (Solomon, 1986).
The absolute threshold mainly kills small trees that experience high competition and those
trees that suffer from adverse environmental conditions (i.e., climatic and soil conditions).
The relative threshold mainly kills large trees whose productivity (BAI / total basal area) is
reduced due to hydraulic constraints and/or carbon starvation (e.g., Sevanto et al., 2014).
Second, most gap models include an ‘intrinsic’ mortality rate that is independent of a tree’s
vitality or of its environment, but is stochastic and mostly related to the particular species’
observed maximum age, assuming that small-scale disturbances can kill any tree at any
moment (Bugmann, 2001). By doing so, a wide range of causes of individual tree death (such
as pathogen attacks, lethal damage to small trees by falling boles, lightning strikes, etc.) is
taken into account implicitly. Overall, these two components result in a U-shaped curve of
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mortality over tree age (or size), which is consistent with numerous empirical studies
(Monserud and Sterba, 1999; Temesgen and Mitchell, 2005; Holzwarth et al, 2013).
Additionally, some models include an ‘exogenous’ mortality component that reflects large-
scale disturbances, either generically without differentiation of the disturbance agents
(Bugmann, 1996) or specifically such as wildfires (Miller and Urban, 1999), bark beetle
infestations (Lexer and Honninger, 1998) or windthrow (Pacala et al., 1993).

The assumptions behind these approaches are highly simplistic (Monserud, 2003). Low
growth rates per se do not necessarily result in high mortality (cf. Schulman, 1958; Loehle
and LeBlanc, 1996; Cailleret et al., 2013), whereas fast growing trees do not usually
experience high longevity (Bigler and Veblen, 2009). Furthermore, the constant ‘intrinsic’
mortality cannot capture periods of low mortality rate (Holzwarth et al., 2013), it should
depend on tree size rather than age (Manusch et al. 2012), and should not differ between tree
species as it is used to explain a wide set of mortality causes (Keane et al., 2001). Thus, there
is an urgent need to improve the mortality formulations in dynamic vegetation models by
moving from theoretical to empirically-based approaches (Adams et al., 2013).

Over the last 10+ years, a growing number of studies have derived tree mortality models
based on empirical data, partly due to the increase of tree mortality phenomena in various
regions of the world (Breshears er al., 2005; Allen et al., 2010; Peng et al., 2011).
Methodologically, the approaches differ significantly, using data sources such as tree rings
(e.g., Bigler and Bugmann, 2004b; Gillner et al., 2013) or forest inventories (e.g., Wunder et
al., 2008; Hurst ef al., 2011) and a variety of statistical modeling techniques, often logistic
regression models, to determine the species-specific, growth-related predictors of tree
mortality. While some studies focused on the impact of a single factor such as drought (Bigler
et al., 2006) or competition (Das et al., 2011), others reflected general mortality without a
differentiation of particular agents (Wyckoff and Clark, 2002), and yet others addressed
different mortality modes (Holzwarth et al., 2013). All these studies have greatly increased
the empirical foundations for implementing more sophisticated process-based mortality
formulations in models of long-term vegetation dynamics. However, even in those studies
that were geared to design empirical mortality formulations for dynamic vegetation models
(e.g., Bigler and Bugmann, 2004a) or that discussed their findings in this context (e.g.,
Senecal et al., 2004; Lutz and Halpern, 2006; Das et al., 2011), little progress has followed
regarding their actual implementation and testing (e.g., Larocque ef al., 2011). Moving ahead
in this field is urgent because (1) dynamic vegetation models are highly sensitive to the
formulation of mortality (Manusch et al, 2012); (2) tree mortality rates have already
increased (e.g., van Mantgem and Stephenson, 2007) and are expected to increase further in
the future due to climate change (e.g., Luo and Chen, 2013); and (3) empirical studies on tree
mortality vary in many aspects such as in the resolution and time scale of the growth data, the
tree species studied, and the input variables that were considered. For instance, some studies
were restricted to a certain forest stand (e.g., Fridman and Stahl, 2001) or they included site-
specific mortality factors (e.g., “site 17, “site 2”, in Bravo-Oviedo et al., 2006; Wunder ef al.,
2008), such that their generalization is impossible. Additionally, some explanatory variables
that were collected in the field, such as inter-tree distances (e.g., Schroder et al., 2007; Taylor
and MacLean, 2007) cannot be simulated in many dynamic vegetation models, as they are
spatially implicit. Lastly, empirical mortality formulations were not usually tested for
plausibility under environmental conditions differing from those of the original study.

Therefore, the main objective of the present study is to evaluate a range of empirically-based
tree mortality models in a dynamic vegetation model, with the aim of deriving
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recommendations for the development of sound, robust, and accurate mortality models.
Specifically, the mortality submodel of the ForClim model (Bugmann 1996) is replaced by
two empirically derived mortality equations that are based on tree-ring and inventory data,
respectively. We rigorously evaluate the performance of these equations against long-term
empirical data from monospecific Norway spruce (Picea abies) stand dynamics under both
managed and unmanaged conditions, and assess their behavior in the long-term, including
their sensitivity to climate change.

Materials and methods

The ForClim model

ForClim is a cohort-based dynamic vegetation model that was developed to analyze
successional pathways of various forest types in Central Europe (Bugmann, 1996) and other
parts of the temperate zone (Bugmann and Solomon, 1995; Bugmann and Solomon, 2000;
Shao et al., 2001). Based on the theory of patch dynamics (Watt, 1947) tree development
(growth), establishment and mortality are simulated with an annual time step on small areas
(“patches”) while the influence of climate and ecological processes is taken into consideration
using a minimum of ecological assumptions. No interaction is assumed between trees of
adjacent patches, i.e. the successional pattern at larger scales (forest stand to landscape) is
obtained by averaging the simulation results from many patches (Bugmann, 2001).

The structure of ForClim is schematically visualized in Rasche et al. (2011). Basically, there
are four submodels: The WEATHER and WATER submodels calculate bioclimatic inputs to
the PLANT submodel (see below), such as minimum winter temperature, the annual degree-
day sum, and soil moisture. A weather generator provides monthly temperature and
precipitation data, where monthly means are sampled stochastically from long-term data
assuming a normal distribution for temperature and a log-normal distribution for
precipitation, respectively. These data are used by the WATER submodel together with the
soil water holding capacity to calculate monthly drought indices based on a modified version
of the soil water balance model by Thornthwaite and Mather (1957; Bugmann and Cramer,
1998). Tree establishment, growth and mortality are simulated in the PLANT submodel.
Saplings are established with a predefined diameter at breast height (dbh) of 1.27 cm,
provided that a range of biotic and abiotic factors are within species-specific thresholds
(Bugmann 1996). Radial tree growth is modeled based on the carbon budget by Moore
(1989), with several modifications (Rasche et al., 2012). Species-specific optimal growth is
reduced by several environmental factors including light availability, warmth (degree-day
sum) and drought (soil moisture) during the growing season, and nutrient availability (plant-
available nitrogen). Note that ForClim does not include any carbon or nutrient storage pools
and thus is lacking temporal autocorrelation in simulated tree growth.
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As explained above, the mortality probability for trees of cohort ¢ and species s is modeled by
two functions: A ‘background’ component that provides a constant, species-specific mortality
rate that is derived from the putative maximum age of each species (gPAge,):

gPAge, = kDeathP (1)
¢ kAMax,

where kDeathP is a mortality coefficient (4.605 by default) and kAMax; is the species-
specific maximum age (e.g., 930 years for Norway spruce; Bugmann, 1994). This
corresponds to the assumption that 1% of a tree population will survive to kAMax;,.
Additionally, a stress-induced mortality (gPStr.) is included: if diameter increment falls
below 10% of its maximum or below 3 mm (i.e., slow growth) for more than two consecutive
years (kSGrT = 2), the annual mortality probability is augmented by 0.368 (kSlowGrP):

kSlowGrP SGr, > kSGrT (2)
0 else

gPStr, = {
where SG7,. denotes the number of consecutive years a cohort has experienced slow growth.
This corresponds to the assumption that slow growth leads to a 99% die-off within 10 years
for all affected cohorts. The overall mortality probability gPMort, is calculated for each
cohort using Monte Carlo techniques:

gPMort, = gPAge. + [1 — gPAge.] x gPStr, (3)

While establishment and growth are modeled at the cohort level, mortality is applied to each
single tree of a cohort. For all the trees within the cohort, a random number generator is used
to determine whether a tree dies (i.e., a tree dies if a uniform random number [0...1] is below
gPMort,).

Finally, the current model version (ForClim v3.0) also includes a sophisticated
MANAGEMENT submodel that embodies the most common sylvicultural practices of
Central Europe (Rasche et al., 2011).
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Empirical mortality models

Inventory-based mortality function

The inventory-based mortality function (/M) was derived using single-tree data from plots of
the Swiss National Forest Inventory (NFI) that had not experienced forest management for at
least 50 years (J. Wunder and M. Abegg, unpublished manuscript). The callipering threshold
was 12 cm (see Table 1), and the interval between inventories was 11 years.

Table 1: Summary characteristics of tree data used for the derivation of the tree-ring (TRM) and inventory-based
(IM) mortality functions. The table shows the total number of tree species included in the studies, the proportion
of the most frequent species, the total number of living and dead trees, and for diameter size, the minimum,
median and maximum for living and dead trees (minimum/median/maximum).

Tree data
Species Stem numbers Diameter size [cm]
Mortality Total Main species Living Dead Living Dead
functions number
TRM 1 Norway spruce 60 59 12/33/87 11/33/81
(100%) (165407  (59")
IM 21 Norway spruce (36%) 4055 226 12/27/116  12/19/77
Fagus sylvatica (18%)
Larix decidua (16%)

" Number of (tree-ring) measurements with tree status “alive” respectively “dead”

IM was formulated as a logistic regression model where the survival probability depends on
tree size, growth rate, shade tolerance and the degree-day sum:

Pr(Yi. = 1[X.) (4)
_ 1
"1+ explay + a; X dbh;; + a; X dbhft + relbaij;; + a3 X DD; + shadeTol;,]~*

where Pr(Yi’t = 1|X i,t) is the probability of tree i at year ¢ to be still alive in 11 years. DD is
the logarithm of the annual degree-day sum (calculated with a threshold of mean monthly
temperature of 5.5 °C). The estimate of the relbai variable
(relative basal area increment = BAI / BA) changes according to the class j of growth rates
(four classes: “very low”: relbai = 0%, “low”: 0% < relbai <1.5 %, “fast™: 1.5% < relbai <3%
and “very fast”: relbai >3%), whereas estimates of the shadetol variable change among the
three classes & of species-specific shade tolerance (“high”, “intermediate” and “low”; cf.
Bugmann, 1994). An overview of all model coefficients is shown in Table 2.
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Since ForClim has an annual time step, Pr(Yi_t = 1|X i,t) was scaled to an annual survival
probability:

gPSurvy, =1 — (1 —Pr(Y,, = 1|X;,))"/** (5)

Further details on the inventory-based mortality routine are in J. Wunder and M. Abegg
(unpublished manuscript).

Tree-ring-based mortality function

The tree-ring-based mortality function (7RM) was taken from Bigler and Bugmann (2004b),
who cored pairs of dead and living Norway spruce with a minimum dbh of 10 cm at three
sites in the Swiss Alps (see Table 1). They used variable combinations of three different
categories — absolute growth level, relative growth level, and growth trend — to fit logistic
regression models of the annual probability of tree survival. For the present study, we used
the model that showed the best goodness-of-fit in Bigler and Bugmann (2004b):

1 (6)
1+ exp[ﬁo + B; X locregs ;¢ + f; X log(BAI3,i_t) + B X log(relbai; )] !

gPSurv;, =

where locreg5 denotes the slope of a local linear regression over 5 years of annual basal area
increment, log(BAl3) is the natural logarithm of the average basal area increment of the last 3

years, and log(relbai) is the natural logarithm of relative basal area increment of the last year
(see also Table 2).
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Table 2: Parameter coefficient values for the inventory-based (IM) and tree-ring-based (TRM) mortality
function.

Parameters M TRM
lo 8.5900 -
aq 0.0672 -
a, -0.0005 -
s -1.0107 —

relbai; ¢ ; (“very low growth”) 0 (base level)
relbaij ¢, (“low growth”) 0.5810 -
relbai;, 5 (“fast growth”) 1.1968 -
relbai; 4 (“very fast growth”) 2.0417 -

shadeTol;; (“high”) 0 (base level)

shadeTol;, (“intermediate”) -0.8194 -

shadeTol;3 (“low”) -1.0075 -

Bo — 14.668
B — 0.577
B, — 0.319

B, - 1.769
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Classification of tree status

Two approaches are widely used for tree status classification; deterministic (i.e., threshold) or
stochastic (i.e., random number). In the present study, we compared the performance of both,
as described below.

In the stochastic approach, which is commonly employed in dynamic vegetation models
(Hawkes, 2000) such as in ForClim v3.0, a random number is drawn for each tree of a cohort
to determine whether this tree dies or survives based on its survival probability (see
explanations further above).

In the threshold approach, a tree is considered to be dead if its survival probability is lower
than a given threshold. That is, no random processes are invoked at all. This method was used
for tree status classification in the TRM model of Bigler and Bugmann (2004b). Due to the
strong prevalence of measurements where tree status was “alive” (Table 1), they adjusted the
threshold using classification accuracy criteria (true positive and true negative rate) and a
prediction error (difference between the year of the last ring and the predicted year of death),
reaching maximum model performance with a threshold of 0.975. We followed this procedure
to derive a threshold for the IM model. However, only classification accuracy criteria were
considered, as prediction error criteria would have required data with annual resolution,
which were not available. Highest model performance was reached with a threshold of 0.9945
(for details see Appendix A).

In this latter approach, all trees of a cohort were uniformly classified as either alive or dead,
since they all have the same mortality probability. To avoid the elimination of entire cohorts
(rather than only a fraction of their trees), we modified the procedure, as follows. The number
of trees of those cohorts with a survival probability below the threshold was reduced using a
linear relationship between the number of trees in the cohort and the difference between their
mortality probability and the threshold, i.e. the larger the difference between the threshold and
the cohort’s mortality probability, the more trees died.

Table 3: Overview of tested ForClim versions, which are combinations of two mortality functions based on two
different data sets (inventory / tree-ring) with two classification approaches (random number / threshold).
Additionally, ForClim v3.0 was included whose mortality function is without an empirical background.

Data set

Inventory Tree Ring None

Random number  IM randNr ~ TRM randNr  ForClim v3.0

Classification approach
Threshold IM threshold TRM threshold

Combining each mortality function (TRM; IM) with the two classification approaches
(random number; threshold) resulted in four new ForClim versions in addition to the standard
version, which is based on theoretical assumptions regarding mortality (ForClim v3.0; cf.
Table 3). These mortality functions were applied to all trees in ForClim regardless of their
size (i.e, down to newly established saplings with a dbh of 1.27 cm) even though the data for
model calibration did not include trees with a dbh <10 cm (TRM) or <12 cm (IM).
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Study sites

Two sites were used to conduct simulation studies, both located in the Central Alps of
Switzerland (Table 4). Due to the restriction of the TRM function to Norway spruce, only
mono-specific stands of that species were selected.

Table 4: The forest stands used in this study with information about their area, location, altitude, water holding
capacity (bucket size), available nitrogen, the slope/aspect parameter, patch size in the model, number of patches
in the initial patch set and simulation period with the number of inventories (n).

Site Location Altitude Climate Bucket Available Slope/  Patch  Patch Simulation
(area) (°N/°E) (m O/ size Nitrogen Aspect  size number  period (n)

a.s.l) (mm) (cm) (kg ha™! &) (m?)

yi)

Sigriswil 46.4/ 1370 4.54/ 10 80 0 500 30 1925-1997
(1.5ha) 75 1625 (10)
Scatle 46.5/ 1510 3.41/ 10 80 -1 500 70 1965-2006
(347ha) 9.3 1570 4)

Site characteristics

Sigriswil is a site of the Growth-And-Yield research network of the Swiss Federal Institute
for Forest, Snow and Landscape Research (WSL). It consists of an uneven-aged selection
forest where management was conducted on a regular basis (Wehrli ef al., 2005). Since 1925,
harvest data (i.a., year of intervention, tree removal, and targeted species) including a follow-
up inventory of the stand have been recorded ten times until 1997. The callipering threshold
for the inventories was 7.5 cm.

Scatle is a strictly protected forest reserve and one of the few relicts of primeval coniferous
forests in Central Europe. There are no records or on-site evidence of human disturbance (i.e.,
management) for the last several centuries (Brang et al, 2011). Data from four forest
inventories were available between 1965 and 2006. Living and standing dead trees had been
surveyed with a callipering threshold of 8 cm in the first inventory, and 4 cm thereafter.

Climate data and site parameters

Monthly mean temperature and precipitation sum for 1930-2010 were provided by the Land
Use Dynamics Research Group at WSL. These data had been derived by a spatial
interpolation of data from the MeteoSwiss network using DAYMET (Thornton et al., 1997)
to a grid with cell size of 1 hectare. For obtaining long-term temperature and precipitation
means, we followed the approach of Rasche et al. (2011), i.e. we used the data series of the
cell covering the center of the forest stand and its eight closest neighbors. Averages, standard
deviations and cross-correlations of monthly temperature and precipitation were derived by
aggregating the daily climate data from the different cells and averaging the resulting data
series. Further site parameters including nitrogen availability [kg-ha™-yr'], maximum soil
water holding capacity [cm] and slope/aspect were estimated from site descriptions. No other
site parameters were adjusted.
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Simulation set-up

Simulations were run for two time periods: “short-term simulations” under current climate for
a comparison against the historical time series (inventory data), and “long-term simulations”
into the future including climate change scenarios. Only Norway spruce was allowed to
establish, and no other tree species were initialized.

For the short-term simulations, the models were initialized with the single-tree data (species,
dbh) of the first inventory conducted at the study sites (years 1925 and 1965 in Sigriswil and
Scatle, respectively). Trees from the first inventory were randomly and evenly allocated to the
initial set of patches (cf. Wehrli et al., 2005). The initial set (i.e., number) of patches was
given by the rounded ratio of total stand area to patch size (500 m?). To reduce stochastic
noise in the results while keeping simulation time reasonably low, simulations were
performed for 200 patches. Hence, if the initial set of patches was below 200, they were
replicated (cf. Didion et al., 2009b), and the ‘surplus’ patches were randomly sampled
without replacement from all initial patches. In contrast to Scatl¢, where no management was
applied, we implemented an uneven-aged (‘plentering’) regime at Sigriswil. For this
harvesting technique, a residual basal area (i.e., basal area that remains after the intervention)
serves as initial value for a “plenter equilibrium function” to determine the optimal number of
stems in each dbh class. The trees in each dbh class that exceed this optimal number are
considered to be “surplus ingrowth”. Additionally, a target diameter (target dbh) is defined for
harvesting trees in the higher dbh classes. In user-defined intervals, the number of trees in
each diameter class is checked, and trees are removed if they are above the optimal number or
the target diameter (cf. Appendix S1 in Rasche ef al., 2011). To define intervention years and
derive suitable values for the residual basal area and the target dbh (see Appendix B), we
followed the “specific management” approach of Rasche et al. (2011).

Simulations into the future were run for the natural forest reserve of Scatlé only. The models
were initialized with the single-tree data of the last inventory (2006) and run until the year
2400. Climate change was assumed to take place between 2010 and 2085, employing a linear
trend between the current and future climate while the climate was assumed to be stable
afterwards. We applied the delta change method on the current climate using delta values
from the CH2011 report (Fischer et al., 2015, Appendix 3) for the Northeastern region of
Switzerland (CHNE) (Table 5). Simulations were run for an RCP3PD scenario, which is
based on the assumption of a global average temperature increase of about 2 °C (“2°-
scenario”), and for an A1B scenario. As a baseline, a simulation was also run for the period
2006-2400 using current climatic conditions.



Chapter 1 29

Table 5: Parameter settings for the climate change scenarios (RCP3PD and A1B) for North-Eastern region of
Switzerland according to CH2011 report. Upper estimates (i.e., the 97.5™ percentile) for temperature and lower
estimates (i.e., the 2.5 percentile) for precipitation were used. Compared to the reference climate, absolute
changes (differences) are given for temperatures while changes in precipitation are relative (factors). Standard
deviations and the cross-correlations between monthly temperature and precipitation values were assumed to
stay constant during climate change.

RCP3PD AlB
Season Temp (°C) Prec (%) Temp (°C) Prec (%)
Spring +1.67 *0.935 +3.69 *0.936
Summer +2.2 *0.853 +4.84 *0.713
Fall +1.89 *0.863 +4.29 *0.824

Winter +2.15 *0.896 +4.22 *0.891
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Results

Short-term simulations: Sigriswil

In Sigriswil, simulated basal area and stem numbers of all model versions matched measured
data very well (Figure la and 1b, respectively; Appendix H). One exception was
IM threshold, which considerably underestimated tree numbers although this had only a
slight impact on basal area (cf. Appendix H: relative bias for stem numbers was ~-40.6%
while only -4.2% for BA), indicating that the underestimation was mainly due to the lower
dbh classes. In fact, 73% of all trees with dbh <16 cm were killed after the first simulation
year when using /M threshold. Between the first four inventories (1925-1943), TRM randNr
and TRM threshold showed a slightly higher stand-level basal area increment (BAI) than the
other models because they did not simulate any natural tree death during this period (higher
stem number in Figure 1b). After 1950, the development of basal area was very similar for all
model versions, but BAI was underestimated compared to the empirical data. Stem numbers
were consistently underestimated as well after this point (1950), which is possibly related to
the initialization data. In the empirical data, trees with a dbh <7.5 cm were not included due to
the callipering threshold, and hence the trees that were initially present in the lower size
classes in reality were not simulated in the model.
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Figure 1: Observed and simulated mean basal area a) and stem numbers b) for Sigriswil. Years on the x-axis
indicate time points when management and inventories were conducted. For better visualization, standard
deviations of simulated basal area is not shown in the figure but listed separately in Appendix D.

Short-term simulations: Scatlé

For the period of 1965 to 1977, simulated basal area and stem numbers were in the same
range as the observed data (Figure 2). On average, basal area was underestimated by -9.6% (-
6.6% to -12.1% depending on the model) and stem numbers by -8.6% (-0.5% to -29.1%)
compared to observations. Particularly IM threshold was not able to cope with the
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initialization data, as it killed nearly 80% of all trees with a dbh <24 cm just after the
beginning of the simulation whereas stem number remained nearly constant afterwards.
Simulation results of TRM threshold (basal area: -6.6%, stem numbers: -0.5%) and
TRM randNr (basal area: -8.5%, stem numbers: -2.2%) matched the observed data closely.
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Figure 2: Observed and simulated mean basal area a) and stem numbers b) for Scatlé. Years on the x-axis
indicate time points when inventories were conducted. For better visualization, standard deviations of simulated
basal area is not shown in the figure but listed separately in Appendix E.

From 1977 to 1989, a sharp decline in basal area and stem numbers occurred in the empirical
data (Figure 2a and 2b, respectively), mainly due to avalanche-induced mortality in winter
1984 (Brang et al., 2011). The avalanches impacted mainly trees with a dbh between 18 and
38 cm (cf. lower left panel of Figure 3). In the empirical data, the number of snags increased
strongly in these classes compared to the previous inventory, whereas the number of living
trees dropped. As natural disturbances are not considered in ForClim, these effects could not
be reproduced in the simulation. Instead, a steady decrease in stem numbers was simulated in
all versions while basal area increased slightly or was constant (Figure 2a and 2b,
respectively). This resulted in an average overestimation by +13.1 £4.2% of basal area and
+13.5 £13.9% for stem numbers, respectively.

For the period 1989 to 2006, forest dynamics in Scatlé were characterized by an enhanced
phase of regeneration, visible from the strong increase in stem numbers of trees with a dbh
<16 cm in the empirical data (Figure 3), and a slight increase of basal area (Figure 2a), both of
which most likely are indirect consequences of the avalanches. TRM randNr and
TRM threshold showed a small decrease in BAI while it was nearly constant in /M randNr
and IM threshold. ForClim 3.0 did not show any increase of basal area at all (Figure 2a). The
decrease in stem numbers was stronger for TRM threshold, whose behavior was quite similar
to the one of IM threshold (Figure 3). Average differences between simulated and observed
basal area were somewhat less pronounced (+11.3 +5.7% depending on the model) due to the
recovery of basal area in the observed data. Again, stem numbers were underestimated (-19.6
+7.5%), especially in the lowest dbh classes (<16 cm; Figure 3, lower right panel).
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Figure 3: Observed and simulated dbh distribution for Scatle. The years 1965, 1977, 1989 and 2006, when
inventories were conducted, are displayed. The callipering threshold in Scatlé¢ was 8 cm in 1965, consequently,
the model initialization did not include any tree data below. It has to be noticed that this threshold was lowered
to 4 cm for the inventories in 1977, 1989 and 2006. Still, for comparison reasons, results for trees smaller than 8
cm are not displayed.

Throughout the simulations, the number of large trees was quite similar between all model
versions and in good agreement with observed data (Figure 3, cf. Appendix H for relative bias
in BA). However, in the low dbh classes (<30 cm), IM threshold failed to accurately
reproduce observed stem numbers (cf. Appendix H: relative bias for stem numbers < -24%).
Constant stem numbers after the heavy killing of trees at the beginning of the simulation
combined with a strong increase of basal area indicate that basal area increment was mainly
due to the growth of the largest trees, whose numbers remained almost constant. The other
four model versions produced very similar simulation results except in 2006 when
TRM threshold featured fewer small trees than ForClim v3.0, IM randNr, and TRM randNr.

Long-term simulations: Current climate

In contrast to the short-term simulations, simulations over 400 years under current climatic
conditions revealed distinct differences between the five model versions (see black lines in
Figure 4). ForClim v3.0 showed a weak increase of basal area up to a maximum of 44.6 m” in
2046, followed by a slow but steady decrease until the end of the simulation period. Similarly,
the other model versions also predicted an initial increase in basal area, but with different
maximum values (52.6. 69.0, 47.8, and 54.9 m?) at different points in time (years 2167, 2303,
2066, and 2118) for IM randNR, IM threshold, TRM randNr, and TRM threshold,
respectively.
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In terms of stem numbers, all model versions predicted a decline at the beginning of the
simulation, but it differed in duration and magnitude. ForClim v3.0 reached the lowest value
of stem numbers rather early, i.e. in the year 2051 (466 stems/ha), while it was reached in
2091 (381 stems/ha), 2118 (407 stems/ha), and 2151 (153 stems/ha) for the TRM randNr,
IM randNr and TRM threshold models, respectively. After an initial sharp decline,
IM threshold kept stem numbers at a very low level, reaching a minimum (164 stems/ha) in
the year 2346. Afterwards, the increase in stem numbers was very small for this model
version, whereas it was much larger for the other versions.

ForClim v3.0 IM_randNr IM_threshold TRM_randNr TRM_threshold

~
o
]

Basal area per hectare (m?ha)
w B (&)
S 2 9
eale |eseg

! 1 o vy —— ! ‘- = Current climate
RCP3PD
— A1B

Stem number per hectare (#/ha)
o ~
o [&)]
< <
Jaquinu wals

o o oo o o0 o o0 o oo o o

o o oo o [e]e) o oo o (=]} o o

o N <O N <O N <O N <O N <

N N AN N NN N NN N NN N N
Year

Figure 4: Simulated basal area (upper panels) and stem numbers (lower panels) for the period of 2006-2400 for
Scatlé under current climate (black lines) and two climate change scenarios (RCP3PD scenario (“moderate™):
orange lines; A1B scenario (“strong”): red lines). Only Norway spruce was considered in the simulations.
Horizontal lines indicate significant differences (paired ¢ test; P < 0.05) between yearly simulation results of the
current climate and the RCP3PD scenario (orange) respectively the A1B scenario (red).

Long-term simulations: climate Change

In ForClim, two growth-limiting factors are directly affected by climatic change: the degree-
day and the soil moisture growth factors; they were affected quite differently by climate
change, as explained below.

Under moderate climate change (scenario RCP3PD), the degree-day growth factor increased
by 40%, whereas the soil moisture growth factor was marginally reduced (<1%; Appendix G),
essentially leading to better growth of Norway spruce compared to the growth simulated
under current climate. However, changes in basal area were hardly significant for ForClim
v3.0 (paired ¢ test; p>0.05; cf. Figure 4). For the other model versions, the differences were
partly significant, but amounted to a few square meters per hectare only. In accordance with
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simulated higher basal area, stem numbers were generally below current levels up to 210
stems/ha in the TRM threshold model.

Under stronger climate change (A1B), simulated growing conditions for Norway spruce were
improved as well. Compared to current climate, the degree-day growth factor increased by
70% while the growth reduction due to drier conditions (i.e., reduced soil moisture) amounted
to 5% (Appendix Q). Still, compared to the RCP3PD scenario, ForClim v3.0, IM randNr, and
IM threshold did not show notable differences in basal area. Establishment of Norway spruce
was constrained because of increased minimum winter temperatures (Appendix G), which
explains the significantly lower stem numbers, but not the short-term reduction in basal area,
as the latter is determined mainly by the trees with a large diameter. Thus, the patterns of stem
numbers and in particular of basal area predicted by TRM randNr and TRM threshold were
in stark contrast to those of the other model versions. Basal area dropped from 49 m*-ha™ and
53 m*ha to around 26 m*-ha" and 25 m*ha (in 2220 and 2240) for TRM randNr and
TRM threshold, respectively.

Discussion

We tested the performance of the gap model ForClim when using empirical mortality models
as compared to the theoretical formulation incorporated in ForClim (v3.0). With the exception
of IM threshold, all mortality models produced accurate results as compared against short-
term forest inventory data under both unmanaged and managed conditions. Long-term
simulation results, however, differed distinctively between model versions, underlining the
strong influence of the mortality function on future forest development.

Test at a managed site: Sigriswil

Predicted basal area and stem numbers agreed well with observed data. This was expected, as
harvests regularly removed surplus ingrowth and thus eliminated the differences that
developed between observed and simulated data as well as between the different model
versions. We recognize the potential weakness of evaluating mortality models in intensively
managed forests (cf. Didion et al., 2009a) where natural mortality plays a subordinate role
(Harkonen et al., 2010) — most of the trees, especially slow-growing ones, are removed by
harvesting. Nevertheless, this setup still constitutes a major challenge for forest models that
deal with management (Pretzsch et al., 2008) as it requires an adequate representation of
several processes including tree growth, mortality, and harvesting. Other studies found highly
exaggerated simulated tree mortality (e.g., Pabst ef al., 2008) or were forced to switch off
natural mortality entirely to avoid awkward results (e.g., Lafond et al., 2014). In this sense,
the application of the model at Sigriswil demonstrated that the simultaneous use of natural
mortality and a management regime is possible in ForClim; this is in stark contrast with
earlier experiences (cf. Rasche et al., 2011). However, tests at Sigriswil also revealed that
measured BAI after harvesting was typically much higher than simulated by ForClim (Figure
1). Considering that basal area and the number of trees to be harvested using the plentering
technique was not fixed but depended on surplus ingrowth, this suggests that tree growth is
underestimated and/or mortality rates are overestimated (cf. Wunder et al., 2006; see
Appendix F).This is an area of ongoing research, to improve the relationships between light
availability and growth in the model, so as to solve this issue. Additionally, the feedbacks
between growth, mortality and management need further consideration, but the present
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application clearly underlines the value of managed stands for testing the balanced
representation of ecological processes in models of vegetation dynamics.

Test at an unmanaged site: Scatlé

An underestimation of BAI was also evident in the simulation between the inventories of
1965 and 1977 at Scatle (the avalanche event precludes such an analysis after 1984).
However, most of the predicted values of total stem numbers and dbh distribution agreed well
with observations. All ForClim versions accurately predicted tree numbers in the higher dbh
classes (Figure 3). Even though these trees are a small minority in terms of stem numbers,
their correct prediction is crucial as they strongly contribute to stand basal area.

In contrast, small trees show generally higher turnover rates, as they are more subject to
asymmetrical competition for light and water (e.g., Holzwarth et al., 2013). The relatively
high callipering limit of the empirical data hindered the evaluation of mortality rates of the
small size classes. Additional model tests for young Norway spruce stands would extend our
understanding regarding the effects of the mortality submodel for very small trees and tree
establishment. However, data on the population dynamics of these tree size classes are
exceedingly rare, and thus our analysis should still be meaningful. The very high simulated
mortality rates in the small dbh classes reported for some model versions confirm earlier
results (cf. Wehrli et al., 2005). This was especially distinct in IM_threshold, which showed a
clearly awkward behavior, and to a lesser extent in TRM threshold. The overall results from
the other model versions in the short-term simulations did not allow for a clear discrimination
of their performance (cf. performance values in Appendix H).

Long-term simulations

Long-term simulations (>200 years), even under current climate, can reveal significant
differences in terms of the plausibility of model behavior compared to shorter simulation
periods of 50 to 60 years (Bugmann et al., 2001; Didion et al., 2009b). Indeed, our simulation
results for a 400-year period highlighted that in the long run the mortality models behave very
differently even under constant climate conditions. This confirms earlier conjectures that were
based on a range of theoretical mortality models (Bugmann et al., 2001). In contrast to the
other ForClim versions, ForClim v3.0 showed only a small increase of basal area at the
beginning of the simulation due to its constant background mortality. After a substantial
increase in basal area in the other model versions, low light availability caused a reverse trend
that was faster for the TRM models than for the /M models. Indeed, the TRM function solely
includes variables related to growth (locregs, BAI3, relbai) and thus is highly sensitive to this
process, while only the relbai variable is included in the IM whose effect is further mitigated
by the variable’s factorial character (i.e., small changes in relbai do not cause a mortality
response unless relbai then falls into another class). Furthermore, the /M function led to rather
low mortality rates for trees that were beyond the juvenile phase, even if they showed very
low growth. Hence, no decline of basal area was visible in /M randNr.

Under a moderate climate change scenario (RCP3PD), all ForClim versions reacted in a
similar manner relative to their behavior under the current climate. They simulated slightly
higher basal area due to the higher degree-day sum that fostered growth while the slight
increase in drought conditions had a negligible effect. These patterns are consistent on the one
hand with historical growth changes of Norway spruce in Europe, resulting from nitrogen
deposition and an increase of temperature (e.g., Hasenauer et al., 1999; Charru et al., 2013),
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and on the other hand with projections of Norway spruce productivity under climate change
(Bricefio-Elizondo et al., 2006; Matala et al., 2006; Kapeller et al., 2012). Lower stem
numbers were also simulated due to enhanced competition for light, which reduced tree
regeneration rates.

Similar projections were obtained under the A1B scenario except for the TRM models, where
BA strongly decreased after the end of the 21% century in spite of better growing conditions.
This paradox is caused by the calculation of the overall growth reduction, where growth
equals zero when only one environmental requirement is not fulfilled (Bugmann, 1996).
Under the A1B scenario, drought indices were beyond the threshold for Norway spruce -
which implies zero growth - on 50% of the simulated forest patches each year, compared to
only 5% under current climate (Appendix G). In contrast to the mortality algorithm in
ForClim 3.0 and the IM function, the TRM function is highly sensitive to strong annual
changes in tree growth, due to the high importance of the relbai variable in the prediction of
tree mortality (which explained 66% of the mortality events in the empirical data; Appendix
C). This effect was enhanced when the TRM function was implemented in ForClim (93% to
94%; Appendix C). The effects of the mean growth rate of the last three years (BAI;) and of
the trend variable locregs were negligible as medium-frequency variation in radial growth
was not accurately simulated due to the lack of autocorrelation in successive ring-widths. This
highlights the need for a more realistic simulation of growth in ForClim under prolonged
periods of stress, and to evaluate the realism of single years for which growth is simulated to
be zero (i.e., missing tree rings; cf. Wunder et al., 2006). For future model development, such
unrealistic annual declines in tree growth could be mitigated e.g. by implementing (i)
thresholds for maximum changes in annual diameter increment derived from tree-ring data, or
(i1) pools of surplus carbohydrates that can be used in subsequent years (Misson ef al., 2004).

Tree-ring vs. inventory-based mortality functions

The TRM function was specifically calibrated for Norway spruce and has not shown marked
differences in performance when validated for two other Norway spruce stands (Bigler and
Bugmann, 2004b); thus a better performance of this function in mono-specific spruce forests
was expected relative to the more general /M function. This was not confirmed by the
simulation results, however. The fact that 36% of the trees used for the calibration of the /M
function were Norway spruce (J. Wunder and M. Abegg, unpublished manuscript) may have
contributed to the good performance of the /M function.

Still, the question arises whether the performance of these functions would be similar in
multi-specific forests; the prediction of species composition is a crucial feature of forest
succession models. Particularly if climate change pushes some tree species towards or beyond
their physiological limits, this may be reflected very differently in the two types of mortality
functions. For example, reduced growth due to drought may instantaneously lead to increased
mortality rates in the 7RM function, while it will be dampened in the /M function (one growth
variable with factorial character). Thus, model behavior is likely to differ by tree species and
its growth dynamics, which may lead to strongly different simulated tree species composition.
Hence, applying these mortality functions to more diverse forest ecosystems is a crucial next
step.

In this context, however, we face the problem that TRM functions are usually developed for
one to a few species at best, for a few sites and often using site-specific methodologies, which
strongly limits their use in succession models that feature dozens of species. One approach
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might be to develop species-specific mortality functions for plant functional types rather than
species. We feel, however, that a better way to address this problem would be to derive one
general mortality algorithm using meta-analysis approaches. In either case, data scarcity
linked with the high effort required to expand the database beyond individual sites constitute
the main constraints to such an endeavor.

In contrast, forest inventories usually cover a wide range of tree species and large areas (e.g.,
Holzwarth et al., 2013), thus making the development of /M models more straightforward
although not without problems, either. First, inventory data almost always lack an annual
resolution of tree-ring data (but cf. van Mantgem and Stephenson, 2007). For the application
in a dynamic vegetation model, growth and mortality need to be converted to an annual (or
even finer) resolution, thus smoothing out any inter-annual variation that is likely to contain
important ecological information (Biondi, 1999). Second, spatially extensive inventory data
usually cover a few decades at most, which is a short time window in view of most trees’ life
expectancy. Thus, reactions to extreme site conditions caused by events with rare occurrence
and short duration (e.g., drought) may remain unreflected in growth-mortality relationships.
In contrast, tree-ring data normally cover a much longer time span (i.e., a tree’s entire life),
such that they are more likely to capture the full processes and environmental conditions
experienced by the trees, and thus to reflect stand dynamics more accurately. Third, inventory
data usually neglect small tree size classes (typically, data are measured for dbh >10 cm
only); however, also many tree-ring data miss a part of early tree life. Yet, it has to be
recognized that using sophisticated recent methods (e.g., Lichstein et al., 2009; Lichstein et
al., 2010; Lichstein et al., 2014), it is possible to develop accurate tree mortality models,
particularly if large-scale inventory data such as the FIA in the US are available.

The ‘thinning’ stage: high mortality but low data availability

Excluding the smallest trees from model calibration can lead to considerable uncertainties in
the simulation of stand dynamics, because during this “thinning” phase mortality is high and
future stand dynamics are shaped strongly. First, empirical mortality functions may not
realistically reflect the relationship between growth and mortality of small trees that
experience particularly low light availability. Our simulations for Scatle indicate that
considerable differences in the smallest dbh classes can be observed within a few decades,
which may significantly affect tree species composition in the long term. Second, the
selection of the threshold value is typically based on the same data that had been used for
calibration (e.g., Bigler and Bugmann, 2004b, this study). This results in a strong dependence
on the sampled data set and in a potential bias due to the strong prevalence of “living” events
(Manel et al., 2001; Lawson et al., 2013). If data for the smallest dbh classes are not
considered, an overestimation of the threshold value and thus the mortality of small trees may
occur, as shown by the IM threshold and TRM threshold models. There, the random
approach allowed for a mitigation of these effects, which led to very different simulation
results even with the same mortality routine. These findings support the argument of Zhou
and Buongiorno (2004) that including stochasticity contributes to a more accurate and flexible
reflection of natural processes in forests (cf. also Fortin and Langevin, 2012). Third, even if
the mortality functions work perfectly well, problems may arise from other submodels (e.g.,
establishment, or growth), as these may be lacking a commensurate empirical foundation and
resolution (cf. Wyckoff and Clark, 2002; Wunder et al., 2006).
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Research needs

Loehle and LeBlanc (1996) suggested that running simulations at single sites under current
climate constitutes an insufficient test for model realism; our findings strongly support this
point. Instead, tests under conditions of climate change tend to be much more telling.
Furthermore, a comparison of different model versions is highly suitable for detecting
structural inconsistencies (cf. Bugmann et al., 2001). Bigler and Bugmann (2004a) found that
the predicted numbers of living and dead trees may diverge strongly between different
empirical mortality functions. However, they evaluated these functions outside of a dynamic
modeling framework, where the interactions with other model processes can be expected to
balance the different effects of the mortality functions.

Our results show that in long-term simulations, predictions of forest dynamics vary
considerably depending on the choice of the mortality function. This is consistent with
findings by Friend et al. (2014) where the choice of the (theoretical) mortality function had a
strong effect on future vegetation predictions and their uncertainty. However, not only stress-
induced but also disturbance-related tree mortality plays a crucial role in long-term forest
dynamics (Turner, 2010). While the death of single trees due to endemic pests or other small
disturbance agents is implicitly considered in the ‘age-related’ mortality (Rasche et al., 2013)
or in the intercept of the empirical mortality functions (this study), larger disturbances are
rarely represented in forest gap models. Model development in this field primarily requires a
better empirical understanding of disturbance events (i.e., predisposing factors, interaction
among disturbance agents) and practical solutions to integrate spatially explicit disturbance
processes into models that lack an explicit consideration of space (Seidl et al., 2011). For
stress-induced mortality, empirically based process formulations are expected to be a clear
improvement compared to theoretical designs (Keane et al., 2001). Theoretical concepts can
have high predictive power provided that the underlying theory regarding how the processes
are modelled is correct and the model is parameterized “well”. However, in reality these
processes are not usually measured or are not measurable, and thus parameter values remain
highly uncertain. In contrast, empirical formulations are directly derived from measured data
and hence, their structure and parameter values are not subject to speculation. Although
empirical formulations depend on the data source used for calibration and may have limited
predictive power beyond this data set, they have already proven to be superior to theoretical
approaches in the context of tree mortality (Bigler and Bugmann, 2004a; Wunder ef al.,
2006). Our results encourage empirical functions as a valid alternative to theoretical concepts.
However, uncertainty of model predictions obviously still prevails. Consequently, further
research is needed to assess the sensitivity of dynamic vegetation models to the structure and
parameterization of empirical mortality functions (cf. McDowell ef al., 2013). In addition, so
far little consideration has been given to the issue whether a direct implementation of an
empirical function into a forest dynamics model allows for a full exploitation of the function’s
potential, or whether a re-calibration within the framework of the forest model is required to
maximize its performance. Inverse modeling techniques (cf. Hartig ef al., 2012) are highly
promising to better consider interactions between sub-models and to assess the uncertainty in
model parameterization and predictions.
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Conclusions

We implemented several empirical mortality functions in a dynamic vegetation model and
applied it to both managed and unmanaged forest sites, which is, to the best of our
knowledge, a novel approach in forest dynamics modeling. We demonstrated that empirical
mortality formulations are valuable to replace the current simple mortality algorithms in
dynamic vegetation models. When applied to mono-specific stands, fairly accurate results are
achieved in both managed and unmanaged forests. However, simulation tests are not
conclusive if conducted against inventory data that span a few decades only. Instead, long-
term simulations and climate change scenarios have high power to identify differences
between the mortality functions, although they do not necessarily allow for the discrimination
of “good” vs. “inappropriate” functions.

Simulation results from models of long-term vegetation dynamics critically depend on the
mortality algorithm that is used. The implementation of empirically derived algorithms —
rather than mortality models that are based on theoretical considerations alone — contributes
strongly to the detection of structural model errors and, hence, to model improvement.

We highlighted the advantages and disadvantages of inventory- and tree-ring-based mortality
functions. Further research is required to determine which approach serves best for a given
modeling objective. Such tests should include the application in mixed-species forests and
changing climatic conditions that push tree species towards their physiological limits. In the
derivation of empirical mortality functions, more attention should be paid to the smallest dbh
classes, as small trees are subject to high mortality rates whose magnitude and cause should
be captured realistically if we are to accurately simulate forest dynamics.
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Supplemental Material

APPENDIX A: Derivation of IM classification threshold

Threshold classification approach
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Figure A1: True positive and negative rate of IM function (black lines) applied to its calibration data set (see also
Table 1), its averaged sum (red line) and the classification threshold (0.9945) that holds the highest mean
classification accuracy (black point).

APPENDIX B: Parameter settings for management regime in Sigriswil

Table Bl: Parameter settings for management regime in Sigriswil for each year where management was
conducted according to inventory data. kResBA [m’] denotes residual basal area, i.e. the basal area that should
remain after management event took place. kTargetDBH [cm] denotes the target diameter. Trees that exceed
target diameter are cut first to reach residual basal area.

Year 1930 1935 1943 1950 1958 1967 1977 1987 1997

kResBA [m’] 32 32 32 30 30 31 29 29 27

kTargetDBH [cm] 80 80 80 80 80 80 80 80 80
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APPENDIX C: Variance decomposition analysis for the variables of the TRM function

Table C1: Variance decomposition analysis for the TRM function. The proportions (%) of variance explained by
the variables of the TRM function are listed for the dataset used by Bigler and Bugmann (2004) at Davos
(observed) and for simulation results by the ForClim version TRM randNr (simulated) for the three climate
scenarios at Scatlé.

observed simulated simulated simulated
(current climate) (RCP3PD) (A1B)
relbai 66.3 (%) 93.0 (%) 93.4 (%) 94.5 (%)
BAI; 22.9 (%) 6.7 (%) 6.4 (%) 5.1 (%)
locregs 10.8 (%) 0.3 (%) 0.2 (%) 0.4 (%)
LITERATURE CITED

Bigler, C., Bugmann, H., 2004. Predicting the time of tree death using dendrochronological
data. Ecol. Appl. 14, 902-914.
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APPENDIX D: Simulated basal area and stem numbers at Sigriswil

Table D1: Means and [standard deviations] for simulated basal area and stem numbers at Sigriswil for each year of inventory after harvest was conducted.

ForClim M M TRM TRM ForClim M M TRM TRM

v3.0 randNr threshold randNr threshold v3.0 randNr threshold randNr threshold

Basal area Stem numbers

1925 33.1 33.1 33.1 33.1 33.1 477.7 477.7 477.7 477.7 477.7
[5.4] [5.4] [5.4] [5.4] [5.4] [14.3] [14.3] [14.3] [14.3] [14.3]
1930 32.0 32.0 29.1 32.0 32.0 452.8 451.6 279.9 458.3 458.2
[8.8] [8.8] [5.4] [9.6] [9.6] [60.5] [62.6] [63.2] [71.6] [73.9]
1935 32.0 32.0 30.3 32.0 32.0 433.9 431.8 273.1 4443 445.8
[9.7] [9.8] [5.6] [11.2] [11.1] [68.8] [71.3] [51.5] [82.8] [86.4]
1943 32.0 31.9 32.0 32.0 32.0 406.0 400.8 252.7 416.9 417.1
[10.8] [11.3] [6.3] [13.2] [13.4] [80.8] [81.0] [43.5] [94.6] [99.8]
1950 29.9 30.0 29.9 29.9 30.0 361.9 363.6 212.8 355.2 342.1
[12.9] [13.5] [11.8] [15.3] [15.4] [98.2] [99.6] [76.4] [100.3] [94.4]
1958 29.9 29.9 29.9 29.9 29.9 3359 340.2 195.0 313.5 301.5
[13.5] [14.6] [13.8] [15.8] [15.7] [94.9] [102.2] [84.8] [88.7] [82.2]
1967 30.8 30.8 30.8 30.8 30.8 324.9 332.0 192.1 302.9 286.6
[13.4] [14.8] [15.5] [15.7] [15.4] [96.7] [95.3] [86.1] [95.2] [86.3]
1977 28.8 28.8 28.8 28.7 28.7 303.6 3179 188.6 285.3 267.7
[14.7] [16.4] [18.6] [16.9] [17.0] [109.7] [108.2] [103.5] [136.3] [115.6]
1987 28.7 28.7 28.8 28.7 28.7 295.1 3184 200.3 300.6 287.8
[14.8] [17.0] [19.9] [17.0] [17.3] [118.3] [125.7] [118.9] [165.9] [163.1]
1997 26.7 26.7 26.8 26.7 26.6 283.4 309.4 208.1 300.1 281.1
[15.9] [17.7] [21.3] [17.7] [18.3] [133.0] [149.4] [149.7] [196.8] [205.5]
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APPENDIX E: Simulated basal area and stem numbers at Scatle

Table E1: Means and [standard deviations] for simulated basal area and stem numbers at Scatlé for each year of inventory.

ForClim M M TRM TRM ForClim M M TRM TRM

v3.0 randNr threshold randNr threshold v3.0 randNr threshold randNr threshold

Basal area Stem numbers

1965 433 433 433 433 433 420.3 420.3 420.3 420.3 420.3
[10.6] [10.6] [10.6] [10.6] [10.6] [7.9] [7.9] [7.9] [7.9] [7.9]
1977 43.9 44.9 43.6 454 46.4 392.7 400.1 297.5 410.4 417.6
[10.5] [10.3] [10.7] [9.3] [10.2] [23.3] [23.3] [38.1] [19.2] [16.2]
1989 44.1 46.2 45.8 46.6 48.9 363.6 377.9 283.8 390.3 387.9
[10.1] [10.1] [10.9] [8.2] [9.5] [32.3] [30.6] [40.7] [30.5] [37.6]
2006 44.0 47.9 49.5 47.6 50.5 322.9 351.7 277.2 338.5 301.1
[9.8] [9.9] [10.7] [7.4] [8.8] [38.2] [34.6] [42.7] [31.3] [27.3]
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APPENDIX F: Harvested basal area and dead trees in Sigriswil

Harvested basal area per hectare for Sigriswil
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Figure F1: Observed and simulated harvest of basal area (m*/ha) in Sigriswil for each year of inventory (upper
panel) and number of dead trees per hectare and inventory (lower panel).
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APPENDIX G: Climate factors in ForClim long-term simulations
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Figure G1: Climatic factors in ForClim long-term simulations for different climate scenarios (current climate,
RCP3PD, A1B). Included are the annual averages of degree day sum, drought index and winter temperatures
(left panels). For the degree day and soil moisture growth factors, changes in percent compared to the current
climate are shown. Additionally, the probability to reach an average winter temperature above -1°C
(establishment threshold for Norway spruce) for the three applied climate scenarios is shown (lower right panel).



Chapter 1 53

APPENDIX H: Performance values for the different model versions at Sigriswil and Scatlé

Table H1: Performance values for the sites Sigriswil and Scatlé for the different model versions. Log-likelihoods were calculated using a linear regression between
simulated and observed basal area and stem numbers respectively while (n) denotes the number of sampling points (i.e., number of inventories) available. For Sigriswil,
basal area and stem numbers before and after harvest was taken into account. For calculating corrected AIC values (AICc), delta AIC (AAIC), and Akaike weights (), the
number of parameters included in the different mortality functions (npar) was considered. AIC values were calculated only for Sigriswil as sampling size was too small at
Scatle. Relative bias and relative root mean squared error were calculate for both sites, but, again, note small sampling size at Scatlé. Highest performance for basal area
and stem numbers at both sites are highlighted in grey.

basal area stem numbers

Site (n) model version  npar log-likelihood AICc AAIC ®  bias% RMSE% log-likelihood AICc AAIC o©  bias% RMSE%
ForClim.3.0 2 -31.88 68.56 180 0.20 -2.81 12.25 -90.88 186.55 0.16 048 -5.72 24.96
IM_randNr 6 -28.48 76.59 9.84 0.00 -2.30 10.04 -83.38 186.39 0.00 0.51 -3.57 15.57

Sigriswil (18) IM_threshold 6 -37.78 9519 2844 0.00 -422 18.43 -116.51 252.66 6627 0.00 -40.63 177.35
TRM randNr 4 -28.36 67.79 1.04 030 -2.01 8.77 -91.54 194.16 7.77 0.01 -5.86 25.58
TRM_threshold 4 -27.84 66.75 0.00 0.50 -1.88 8.22 -95.83 202.74 1634 0.00 -8.13 35.50
ForClim.3.0 2 -8.27 - - - -1.19 2.52 -16.11 - - - -4.76 10.10
IM_randNr 6 -9.04 - - - 4.02 8.53 -15.64 - - - -0.30 0.64

Scatle (3) IM_threshold 6 -9.53 - - - 3.94 8.35 -18.08 - - - 2424 5142
TRM randNr 4 -9.00 - - - 4.48 9.51 -16.20 - - - 0.54 1.13
TRM threshold 4 -9.89 - - - 9.04 19.17 -16.91 - - - -2.34 4.97
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Abstract

Dynamic vegetation models (DVMs) are important tools to understand and predict the
functioning and dynamics of terrestrial ecosystems under changing environmental conditions.
A persisting problem for these models is uncertainty due to the choice of parameter values
and sensitivity to process formulations that are insufficiently constrained by empirical
evidence. Better inclusion of empirical data has been advocated, with the idea that key
processes should be estimated from empirical data independently of the DVM, and only then
be incorporated in a DVM. However, due to the wide range of processes and interactions
within a DVM, it is unclear whether such independently estimated formulations would lead to
enhanced overall model performance.

We compare the performance of the DVM ForClim that contains (1) a theoretical mortality
function (ForClim v3.3); (2) an empirical mortality function whose parameters were
estimated independently of the DVM, and (3) the same empirical mortality function with
parameters estimated using Bayesian calibration (BC) of the DVM. For the BC and the
subsequent validation, we used inventory data from 9 and 21 ecologically distinct Swiss
natural forest reserves, respectively, which include the main tree species of Central Europe.

The values of the calibrated mortality parameters were similar to most of those that had been
fitted empirically, suggesting that the general structure of ForClim is realistic. Some
discrepancies were found for the relationship between mortality and shade tolerance,
suggesting a possible need for partially refining the model structure. The BC led to the best
model fit compared to the other model versions, on both the calibration and the validation
data. Parametric uncertainty mostly influenced stem numbers in the low dbh classes,
suggesting that general stand structure can be predicted accurately, but recruitment and hence
the development of tree species composition is more challenging to predict.

We conclude that BC is a strong asset to discuss ecological functions in a DVM framework
even when direct estimates of a process are available — in our case, it (1) allowed determining
parameter values that resulted in lower predictive error, (2) identified potential structural
problems in the model, and (3) provided better estimates of predictive uncertainty. Thus, we
recommend BC not only as a tool for the improvement of short-term model predictions, but
even more so for assessing the structural realism of DVMs.

Key words

Forest gap model, Bayesian calibration, tree mortality, inventory data
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Introduction

The response of terrestrial ecosystems to environmental change is a key issue in ecology with
wide-ranging consequences for stakeholders and policy makers. Many scientific analyses on
this topic rely on process-based dynamic vegetation models (DVMs), which encapsulate the
demographic changes of plant communities over time based on abiotic and biotic conditions
(e.g., Foley et al., 1998; Bonan et al., 2003; Hartig et al., 2012). Even though most DVMs are
fairly consistent in the projection of qualitative ecosystem properties in response to altered
climatic conditions (e.g., Pereira ef al., 2010), they often disagree on the magnitude of change
(Moorcroft, 2006) and reveal high sensitivity to physiological and particularly demographic
processes (e.g., Galbraith et al., 2010; Friend et al., 2014; Rowland ef al., 2014). To improve
the robustness of model projections, many authors have suggested to reconsider DVMs
designs, with a specific focus on the mechanistic description of key processes such as tree
mortality that had so far been treated in a rather simplistic manner (e.g., Bugmann, 2001;
Prentice et al., 2007; Sitch et al., 2008; Galbraith et al., 2010; Adams et al., 2013).

Including more detailed process formulations in DVMs raises the question of a closer
connection to empirical data. Traditionally, model parameters in DVMs were determined
independently of the model, i.e. based on observations. The outcome of this direct
parameterization in terms of model behavior was then tested against reference data (cf.
Bossel, 1992; Pacala et al., 1996). However, such a direct parameterization of all parameters
in a DVM requires a large set of specialized observations (cf. Le Roux ef al., 2001) that are
typically hard to achieve or not available at all (Hartig ef al., 2012). Consequently, many
parameters in current DVMs are weakly constrained or originate from theoretical conjectures
that are not verified empirically (cf. Mékela et al., 2000).

A solution to this problem that has become increasingly popular in recent years is to generate
parameter estimates by an inverse modeling approach, also called inverse calibration, i.e. to
infer parameter values based on the match between empirical data and model outputs (van
Oijen et al., 2005). Inverse modeling approaches, such as Bayesian methods, allow for
harnessing data sources that would not be suited for direct parameter estimation, and therefore
open up novel opportunities to constrain parameter-rich process-based models (Hartig et al.,
2012). Moreover, in the framework of Bayesian statistics, it is possible to combine direct
parameter estimates (via the “prior distribution”) with estimates that are generated inversely
(via the “likelihood”). The result of a Bayesian calibration (BC) is a probability distribution
function (the “posterior”) that represents the combination of all direct and inverse information
on the respective parameter, and can be used for ecological interpretation and prediction.

To date, BC of statistical and process-based models has been applied mainly to calibrate
processes for which ecological knowledge was scarce and parameter uncertainty was large
(e.g., O'Hara et al., 2002; van Oijen et al., 2005; Larssen et al., 2006; Reinds et al., 2008;
Hartig et al., 2014), and/or for model intercomparison (e.g., van Oijen ef al., 2011; van Oijen
et al., 2013). However, as pointed out by Hartig et al. (2012), if reliable information on model
parameters is directly available, an interesting additional possibility of the approach is to
compare direct (prior) and inverse (posterior) parameter estimates. A mismatch between
direct and inverse parameter estimate would point at either (1) a structural problem in the
model, (2) a systematic bias in the data, or (3) a discrepancy between the nature of the
parameter in the model and the parameter that is measured in the field (e.g., Ramin and
Arhonditsis, 2013). Hence, in addition to better parameter estimates, a calibration with direct
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and inverse information can lead to an improved understanding of how ecological processes
are interacting and represented in the model.

An example of a DVM for which direct and inverse data are available is ForClim, a forest gap
model that projects the long-term dynamics of temperate forests by simulating establishment,
growth and mortality of individual trees based on site- and species-specific environmental
constraints (Bugmann, 2001). In a recent study, Bircher et al. (2015) used ForClim to
examine whether better empirical descriptions of tree mortality would reduce uncertainties in
model projections, a point that has been suggested by various authors (cf. Bugmann, 2001;
Keane et al., 2001; Hasenauer, 2006; Heiri, 2009; Friend et al., 2014). This effort highlighted
that the choice of mortality function strongly influences simulation results at decadal time
scales. A better understanding of each mortality function and its interactions with other
ecological processes in the model (e.g., tree growth) was identified as a key priority.

Here, we address this issue by using Bayesian statistics to inversely re-calibrate the
parameters of an inventory-based (i.e., directly estimated) mortality function that was
included in ForClim by Bircher et al. (2015). This effort was based on inventory data from 9
and 21 plots of the Swiss natural forest reserve network for calibration and validation,
respectively, which cover a wide variety of forest types and include all major tree species of
Central Europe. We aimed to (1) determine if the inversely calibrated mortality parameters
match with empirical estimates; (2) identify causes of potential mismatches, for example
errors in model structure, interactions between different model processes (e.g., growth —
mortality), or quality of the empirical data; (3) assess if the inverse calibration leads to an
improvement of model performance in terms of key forest characteristics (e.g., total basal
area, stem numbers); and (4) assess if the posterior uncertainty in inversely estimated
mortality parameters translates into significant uncertainties in model projections.
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Materials and methods

The ForClim model

ForClim is an individual-based forest gap model developed to simulate the dynamics of
temperate forests in Central Europe (Bugmann, 1996) and on other continents (Bugmann and
Solomon, 1995; Bugmann and Solomon, 2000; Shao et al, 2001). Tree growth,
establishment, and mortality are simulated on independent patches (=800 m?) in annual steps,
using a parsimonious number of ecological assumptions regarding the influence of climate
and ecological processes on tree demography. Averaging the results across all simulated
patches allows for obtaining mean successional dynamics at the forest stand scale (Bugmann,
2001).

The structure of ForClim v3.3 (Mina et al., submitted) consists of four sub-models: The
PLANT sub-model simulates tree establishment, growth and mortality. Annual growth is
calculated using the carbon budget model by Moore (1989), subject to several subsequent
modifications (Rasche et al., 2012). Tree growth is reduced if light availability, degree-day
sum, soil moisture during the growing season, nutrient availability and crown length are
below optimum (Bugmann, 1996; Didion et al., 2009b). Tree recruitment, modeled as the
species-specific rate of establishment of saplings with a diameter at breast height (dbh) of
1.27 cm, is also reduced when environmental conditions are unfavorable. Tree mortality is
modeled as a combination of a constant “background” mortality related to species-specific
maximum age, and a stress-induced mortality that is activated if the annual diameter
increment of a tree falls below an absolute or relative threshold for more than two consecutive
years. In contrast to establishment and growth, which are operating on the cohort level,
mortality is applied to each tree of a cohort individually, assuming a binomial model with the
prescribed mortality probability. A more detailed description of the mortality function is
provided in Bircher et al. (2015). Required bioclimatic inputs include minimum winter
temperature, the annual degree-day sum, and soil moisture; they are provided by the
WEATHER and WATER submodels based on long-term temperature and precipitation data,
and on site-specific soil water holding capacity. Finally, the MANAGEMENT submodel
allows for applying the most common planting and harvesting techniques of Central Europe
(Rasche et al., 2011).

Empirical mortality function

In a previous study, direct estimates of an inventory-based tree mortality model had been
derived using data from the Swiss National Forest Inventory (NFI; J. Wunder and M. Abegg,
unpublished manuscript). Only single-tree data from plots where no forest management had
taken place for at least 50 years were considered. The callipering threshold on these plots was
12 cm and the mean interval between two inventories was 11 years. Fitted with a logistic
regression, this “independent regression” (IR) expresses the probability of tree i to be still
alive at year ¢, i.e. Pr (Y;,=1), according to tree dbh, relative basal area increment (relbai =

BAI / BA)- shade tolerance (shadeTol), and to the local annual degree-day sum (DD;
calculated with a threshold of mean monthly temperature of 5.5 °C):
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Pr(Y;, = 1|dbh;, relbai;j, DD, shadeTol;,, ) (1)
1

1+ explay + a; X dbh; + a, X dbhﬁt + relbaii_tj + a3 X DD, + shadeTol;, ] ~*

The estimate of the relbai variable changes according to the class j of growth rates (four
classes: “very low”: relbai = 0%, “low”: 0% < relbai <1.5 %, “fast”: 1.5% < relbai <3% and
“very fast”: relbai >3%). The variable shadeTol expresses species-specific shade tolerance
(high, intermediate, and low; cf. Bugmann, 1994). Its estimates change among three classes &
with class 1 (“shadeHigh”’) being the reference class to estimates for class 2 (“shadelntm”)
and class 3 (“shadeLow”). For the implementation in ForClim, Pr(Yi't = 1|X i't) was rescaled
to an annual survival probability gPSurv;, = 1 — (1 — Pr(Y;, = 1|X;;))*/** (Bircher et al.,
2015). Below, we refer to the ForClim version containing this independent regression with its
original structure and coefficient values as “ForClim IR”.

Data for Bayesian calibration and validation

The aim of the BC was to recalibrate the empirical mortality submodel of ForClim IR by
comparing ForClim outputs to inventory data alone, thus pretending ignorance of the directly
fitted parameter estimates of the mortality submodel. The inventory data used for the BC and
the subsequent validation of the alternative mortality function were selected from the 306
permanent plots of the Swiss forest reserve network (Brang ef al., 2011). Forest management
had been excluded from these reserves at least since their foundation (cf. inventory period in
Table 1 and 2). All reserves contain one or more so-called permanent plots where each tree
with a dbh >4 cm is individually tagged and repeatedly measured in predefined intervals.
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Table 1: Site descriptions of the permanent plots used for calibration including some information on location, area size, elevation, climate (mean annual temperature and
precipitation sum), and dominating tree species. The number of species with a 10%-proportion on stand basal area is given by the stand diversity. Stand dynamic refers to the
inter-annual rate of change in stem numbers. The slope/aspect parameter is an input of ForClim, defined as (0 = flat terrain, 1 = steep slope (10-30°), 2 = very steep slope
(>30°); the sign denotes south-facing (+) respectively north-facing (-) slopes). The inventory period is the time between the first and the last inventory used for calibration,
with n indicating the number of inventories.

Site Location Area Elevation Climate Main species Stand Stand Slope / Inventory
(°N/°E) (ha) (m a.s.l) (°C)/(mm) diversity dynamic Aspect period (n)
Adenberg_03 47.6,8.6 045 ~505 9.0/1020 F. sylvatica, Q. robur 2 0.026 0 1970-2012 (5)
Bois de Chénes_02 464,62 049 ~570 9.5 /1094 0. robur, F. sylvatica 3 0.013 +1 1970-2007 (4)
Fuerstenhalde 01 47.6,8.5 0.53 ~460 9.2 /1065 F. sylvatica 2 0.019 0 1971-2012 (4)
Girstel 04 473,85 022 ~675 7.9/1297 P. sylvestris, F. sylvatica, P. abies 5 0.016 -1 1964-2006 (5)
Leihubelwald 02 46.9,8.1 0.25 ~1240 6.1/1770 A. alba, F. sylvatica, P. abies 3 0.007 -1 1973-2011 (4)
Nationalpark 07 46.7, 0.56 ~1860 2.3/915 P. abies, P. cembra 2 0.006 0 1977-2012 (3)
10.2
St.Jean 01 47.1,7.0  0.28 ~1375 4.7/1520 A. pseudoplatanus, P. abies 2 0.011 0 1961-2006 (5)
Vorm Stein_02 476,85 0.24 ~540 9.2 /1067 Q. robur, F. sylvatica, P. sylvestris, P. 4 0.011 +2 1972-2012 (4)
abies
Tariche Haute 473,72 0.56 ~740 7.9/1250 A. alba, F. sylvatica 3 0.016 +1 1974-2012 (4)

Cote_04
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Table 2: Site descriptions of the permanent plots used for validation including some information on location, area size, elevation, climate (mean annual temperature and
precipitation sum), and dominating tree species. The number of species with a 10%-proportion on stand basal area is given by the stand diversity. Stand dynamic refers to the
inter-annual rate of change in stem numbers. The slope/aspect parameter is an input of ForClim, defined as (0 = flat terrain, 1 = steep slope (10-30°), 2 = very steep slope
(>30°); the sign denotes south-facing (+) respectively north-facing (-) slopes). The inventory period is the time between the first and the last inventory used for calibration,
with n indicating the number of inventories. The names of validation sites that belong to a natural forest reserve where also a calibration site was located are marked in bold.

Site Location Area  Elevation Climate Main species Stand Stand Slope / Inventory
(°N / °E) (ha) (m a.s.l.) (°C) / (mm) diversity dynamic  Aspect (-) period (n)
Adenberg 01 47.6/8.6 0.45 ~520 9.0/1017 F. sylvatica, Q. robur 2 0.023 +1 1970-2012 (5)
Adenberg 02 47.6/8.6 0.45 ~500 9.0/1017 F. sylvatica, Q .robur 3 0.020 0 1970-2012 (5)
Adenberg 04 47.6/8.6 0.45 ~520 9.1/1006 F. sylvatica, Q.robur 2 0.025 +1 1970-2012 (5)
Bois de Chénes_01 46.4/6.2 0.49 ~550 9.6/1075 F. sylvatica 1 0.004 0 1970-2007 (4)
Bonfol 03 475/7.2 0.53 ~440 9.5/1003 Q. robur 2 0.009 0 1962-2001 (5)
Fuerstenhalde 02 47.6/8.5 0.53 ~470 9.2/1076 F. sylvatica 1 0.018 0 1971-2012 (4)
Girstel 11 473/8.5 0.14 ~720 8.1/1270 A. pseudoplatanus, F. 3 0.018 +1 1972-2007 (4)
sylvatica
Leihubelwald_03 46.9 /8.1 0.24 ~1140 6.6 /1690 A. alba, F. sylvatica 2 0.023 +1 1973-2011 (4)
Leihubelwald_04 46.9/8.1 0.25 ~1100 6.7/1668 P. abies, A. alba 2 0.008 0 1973-2011 (4)
Nationalpark_05 46.7/10.2 0.61 ~1985 1.2/981 L. decidua, P. cembra 3 0.006 0 1978-2013 (3)
Pfynwald 01 46.3/7.6 0.19 ~575 10/670 P. sylvestris 2 0.010 +1 1956-2003 (6)
Scatle 01 46.8/9.0 3.47 ~1650 3.7/1582 P. abies 1 0.014 +1 1965-2006 (4)
St.Jean_02 47.1/7.0 0.44 ~1370 4.8/1510 P. abies 1 0.007 0 1961-2006 (5)
Tariche Haute Céte_03 473/7.2 0.91 ~735 8.1/1228 F. sylvatica, A. alba 2 0.009 -1 1974-2012 (4)
Tariche Haute Cote_06 473/7.2 0.54 ~720 8.1/1228 F. sylvatica, A. alba 2 0.011 0 1976-2012 (4)
Tutschgenhalden_13 47.5/8.8 0.25 ~600 9.1/1151 F. sylvatica, A. alba 2 0.012 0 1971-2013 (4)
Tutschgenhalden 14 47.5/8.8 0.58 ~580 9.1/1151 F. sylvatica, P. abies 2 0.008 0 1971-2013 (4)
Vorm Stein_01 47.5/8.5 0.25 ~545 8.9/1144 F. sylvatica P. abies, 3 0.018 +2 1972-2012 (4)
Q. robur

Weidwald 02 47.4/8.0 0.76 ~635 8.7/1163 F. sylvatica 2 0.010 0 1976-2011 (4)
Weidwald 03 47.4/8.0 0.25 ~660 8.6/1180 F. sylvatica 1 0.013 0 1976-2011 (4)

Weidwald_04 47.4/8.0 0.53 ~640 8.6/1180 F. sylvatica, Q. robur 4 0.014 +1 1976-2011 (4)
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A subset of plots was selected for model calibration according to the following criteria: (1)
plots were excluded that showed evidence of recent natural disturbances (e.g., wind storms)
as these are not considered in the model; (2) plots had to have a minimum size of 0.2 ha to
guarantee that forest structure and composition is representative of the site; (3) plots had to
have a minimum record period of 35 years to allow for an adequate consideration of forest
dynamics; (4) only one plot was chosen per forest reserve to avoid pseudo-replication within
the calibration data; (5) an adequate representation of all main tree species of Central Europe
and a variety of forest types was sought in the calibration data set. The plot with the highest
number of species was selected first (Girstel 04; Table 1). In a next step, we included those
plots with the highest proportion of one main tree species in Switzerland such as European
beech Fagus sylvatica (Adenberg 03), silver fir Abies alba (Leihubelwald 02), Norway
spruce Picea abies (Nationalpark 07), Norway maple Acer pseudoplatanus (St.Jean 01),
Scots pine Pinus sylvestris (VormStein 02), Swiss stone pine Pinus cembra
(Nationalpark 07), European larch Larix decidua (Nationalpark 07), and oak species
Quercus robur / petraea (Bois de Chénes 02). This set of calibration plots was
complemented by two permanent plots with comparatively high stand dynamics, i.e., with a
high inter-decadal rate of change in stem numbers: Fiirstenhalde 01 and Tariche Haute
Cote 04. Thus, in total nine permanent plots were selected for calibration (Figure 1; Table 1).

A Calibration sites
@ Validation sites

40 80 Kilometers
1 ]

1
30 60 Miles

o T o

Figure 1: Location of the nine calibration and 21 validation sites in Switzerland.

For the validation, we selected data from the remaining permanent plots with a minimum
record period of 35 years and at least two inventories. The minimum area requirement was
reduced to 0.1 ha to allow for sites with ‘extreme’ climatic conditions (e.g., warm-dry in
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Pfynwald). Again, permanent plots with records or apparent effects of recent disturbances
were not considered. Twenty-one sites were selected for validation (Figure 1; Table 2).

Bayesian calibration

BC focused on all parameters of the empirical mortality function except for the annual
degree-day sum estimate, as this variable was not directly related to the growth-mortality
relationship of the model but rather to site conditions. In addition to the parameters of the
mortality function, we included the growth parameter kGRateD in the calibration to test for
possible trade-offs of the annual diameter increment of a cohort (GRateD in cm/yr) with the
mortality parameters. When using stand demography as calibration criterion, trade-offs
between growth and mortality are likely to occur because a joint increase of both processes
may lead to similar stand demography (cf. Hartig et al., 2014).

For the BC, we changed relbai from a factorial to a continuous variable to increase the
sensitivity of the mortality function to changes in relative growth rate. Furthermore, the
parameter of the low shade-tolerance class (shadeLow) was redefined as the difference to the
intermediate shade-tolerance class (shadelntm) rather than to the original reference class
(shadeHigh). All empirically derived parameters were updated accordingly. These
adjustments reduce correlations between the parameters of the shade tolerance classes and
therefore improve the convergence of the Markov Chain Monte Carlo (MCMC) algorithm in
the BC. For the same reason, the variables dbh, dbh?, and relbai were centered to reduce
correlations with the intercept of the mortality function.

BC requires expressing prior knowledge about the parameter values in the prior
distribution P (@), where 6 denotes the parameter vector of the model (Table 3). Although the
estimate and confidence interval of each parameter of the mortality function had been
determined by logistic regression, we deliberately set wide (i.e., non-informative) priors to
obtain a picture of the parameter estimates that would result from the inverse calibration only.
Truncated normal distributions were assigned for relbai and GrowthRateD (minimum=0), and
uniform prior distributions were assigned to the other parameters.

It has often been found useful to consider more than one data type for model calibration (cf.
Grimm and Railsback, 2012), and thus we constructed a likelihood function consisting of two
components: the first part specifies the likelihood for basal area increment, defined by the
probabilityP (Dg a1, |0) of obtaining the observed basal areal increment given the model with
parameters 6 and a normally-distributed error model with a relative standard deviation of 0.3
(cf. van Oijen et al., 2005). The second part specifies the likelihood for the stem number
distribution, defined as the probability (P(Dstem|6)) of obtaining the observed stem numbers
in 4 cm dbh classes for each year an inventory was conducted, given the model parameters
and a poisson error model per dbh class. The lowest dbh class (i.e., (0, 4] cm) was not
considered, as it was not available in the observed data. The partial likelihood for stem
numbers is strongly influenced by the very abundant trees in the low dbh classes, whereas
medium- and large-sized trees have a stronger influence on basal area increment. Mixing both
data types in one likelihood function should therefore create a balanced description of forest
dynamics (cf. Grimm and Railsback, 2012).
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Both likelihoods were expressed as logarithmic values (log-likelihood), which means that the
joint (total) likelihood P(D|6) can simply be written as their sum. We finally included a
weighting factor of 0.025 on the joint likelihood:

P(D|8) = 0.025 = (PBAInc(Dle) + PStem(Dle)) (2)

The weighting factor essentially decreases relative likelihood differences, making deviations
from the observed data more probable. If the likelihood consisted of the normal term based on
BAI only, we could have achieved the same effect by increasing the standard deviation of the
normal distribution. Hence, the weighting of 0.025 essentially expresses a likelihood with a
wider error model than in the two partial likelihood elements alone, accounting for the fact
that a lot of variation is likely to exist between sites as well as time steps that cannot be
explained by ForClim, and that was not yet included in the basic partial likelihood that were
constructed to account for the variability at one site and for one point in time.

Bayes’ theorem states that the support given to a certain parameter combination, i.e. the
posterior probability P(6|D), is proportional to the product of the prior and the joint
likelihood:

P(6|D) < P(6) x P(D|6) (3)

We used a MCMC algorithm to estimate the posterior parameter distributions (Metropolis ef
al., 1953). An adaptive MCMC element was included that calculated the covariance of all
parameters after a predefined number of iteration steps (set to 1000). Subsequently, the
proposal covariance matrix was adjusted following Gelman et al. (1996; see also Rosenthal,
2011):

(2.38)?
n

Zp = [ l Xn) (4)
where };,, is the proposal covariance matrix based on the number of tested parameters n and
the empirical covariance matrix };,, of the parameters X, ...X,,.

The convergence of the MCMC was examined by visual inspection of the trace plots and by
calculating the Gelman-Rubin scale-reduction factors. We considered parameters with scale-
reduction factors smaller than 1.05 as having converged (Gelman and Rubin, 1992).
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Simulation set-up

The model was initialized with single-tree data (species, dbh) from the first inventory
conducted on the permanent plots. Since there was no spatial information about tree position
on the plot, trees were allocated randomly and evenly to an initial set of patches, each with a
size of 800 m” (cf. Wehrli ef al., 2005). Depending on the ratio of the permanent plot area and
patch size (Table 1 and 2), this resulted in the direct initialization of 2 to 44 patches. This
initial set of patches was then replicated to allow for averaging out stochasticity across
simulation runs. The final patch number was set to 200 for the validation sites but was
reduced to 100 for the calibration sites, as simulation time on a dedicated cluster with 96
nodes still presented a major constraint to the BC. A few tree species that are not
parameterized in ForClim but are present in some forest reserves, albeit with very minor
abundance, were not considered in the simulations.

Model evaluation

The result of BC is generally the full posterior probability distribution for each parameter.
Still, we found it helpful to derive one best estimate from this distribution to allow for an
easier comparison with the simulations using the IR parameters. For this purpose, we used
maximum a posteriori value (i.e., the mode of the joint posterior estimated from the MCMC
samples), hereafter called “BC-MAP”.

We compared the outputs of ForClim using the BC-MAP parameters to the empirically
derived ForClim IR and ForClim v3.3. We first ran all three model versions for the
calibration and the validation sites, and calculated the likelihood values as described above.
Second, we also calculated the total and shade-tolerance class-specific (i.e., summing up the
values for all species of a certain shade tolerance class) basal area and stem numbers at the
end of the simulation (cf. Didion et al., 2009a; Rasche et al., 2012), which had not been
targeted in the calibration and therefore can be viewed as a second level of model validation.
Third, to assess the posterior predictive uncertainty of the BC, we ran 1000 simulations per
validation site with different parameter combinations drawn from the posterior distribution.
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Results

Calibration
Direct (empirical) fitting vs. indirect fitting

The maximum a posteriori estimates (BC-MAP) for the coefficients of the parameters
kintercept, kDBH, and kRelbai were very close to the empirical estimates (IR), while those for
kDBH’, kGRateD, and shade tolerance (kShadeLow ,kShadelntm, kShadeHigh) differed
(Table 3, Figure 2). These differences between IR and BC-MAP estimates are presented and
evaluated in more detail below.

Table 3: Prior and posterior probability distributions for the 7 re-calibrated parameters. For the prior distribution,
minimum and maximum values are listed. The distributions of the priors were truncated normal (minimum=0)
for the parameters of relbai and GrowhtRateD, but uniform for the other parameters. Posterior distributions are
characterized by the median and the 2.5 respectively 97.5% quantile. Additionally, the values of maximum
posterior estimates (MAP) are indicated. Correlations (Corr.) between parameters are listed if >0.3, negative
correlations are indicated by a minus sign (-).

Parameter vector ® Prior prob. Posterior prob. distribution
distribution
[B()... ©(7)]
Name ©(@) Unit Original Min Max 2.5%  Median 97.5%  MAP Corr.
value [0(1)]
kIntercept 1 8.59 -5.0 25.0 8.1664 8.7617 9.7707 82194  [-3,-7]
kDBH 2 cm  0.0672 -0.2 0.2 0.0206 0.0663 0.1199  0.0603 [-7]
kDBH? 3 ecm®  -0.0005 -0.02  0.001 - 0.0005  0.0010 0.0006 [-1]
0.0009
kRelbai 4 % 42.11 0.0003 144.8 9.1824 43.7314 82.7687 43.1083
kShadeLow 5 - -0.1881 -5.0 5.0 - -0.1212 44868 0.7078  [-6]
3.6617
kShadelntm 6 - -1.0075 -5.0 5.0 0.1360 1.8736  4.8001 0.8832 [-5,-7]
kGRateD 7 cm 1.0 0.09 2.0 0.6076 0.7351 0.8824 0.8583  [-1,-2,

_6]
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Figure 2: Prior and posterior distributions of the seven re-calibrated parameters. The original mean values of the
empirical function and the maximum a posterior estimates are plotted as well.

Estimates for kShadelntm moved from a negative (-1.01) to a positive value (median: 1.87;
MAP: 0.88), indicating that — everything else being equal — intermediately shade-tolerant
species do not have a lower survival probability than the high shade tolerance class species, in
contrast to the IR estimate. The BC median for kShadeLow (-0.12) was close to the empirical
value (-0.19), but as we redefined it relative to Shadelntm, the shift observed for kShadelntm
implies that also kShadeLow shifted relatively to the reference class kShadeHigh. In fact, the
MAP of kShadeLow (0.71) implies that the survival probability of shade-intolerant species is
higher compared to the reference shade tolerance class than for species with intermediate

shade tolerance.

The BC further resulted in a change in the dbh’ parameter from a negative to a positive value
(empirical fit: -0.0005; BC median: 0.0005; MAP: 0.0006). As the linear dbh term continues
to have a positive parameter estimate, this means that the BC fits a simple quadratic increase
of mortality with dbh. The left-skewed posterior distribution in the dbh’ estimate suggests that
values outside the prior distribution may yield even higher likelihood values.

The posterior distribution of the overall diameter increment parameter GRateD was rather
narrow (95% credibility interval: 0.61 - 0.88), revealing low uncertainty about this parameter,
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whereas the BC median and MAP (0.74 and 0.86, respectively) were slightly lower than the
original value (1.0). GRateD showed a strong correlation with kintercept (-0.76), whereas all
other parameter correlations were below 0.5.

Likelihood of model predictions

As one would expect, the BC-MAP model version showed the highest performance on the
calibration data (Table 4). BC-MAP vyielded the highest average total likelihood (-26.4),
followed by ForClim_ IR (-30.1) and ForClim v3.3 (-34.4), and the best performance of all
models at four out of nine sites. Compared to ForClim v3.3 or ForClim_IR separately, BC-
MAP was even superior at 6 out of 9 sites (see Supplemental Material Appendix A). The
independent analysis of the two likelihood components revealed a better average performance
of BC-MAP for basal area increment (BAI), while for stem numbers, its performance was
similar to that of ForClim_IR, and it performed better than ForClim v3.3 (-18.5 vs. -20.7).
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Table 4: Performance comparison at calibration and validation sites for three ForClim model versions — the current ForClim version 3.3, the model version hosting the
empirical mortality function with the original parameter values (ForClim_IR) and the calibrated model versions that yielded the maximum likelihood (BC-MAP). The table
shows the average values for the individual log likelihood components (stem numbers and basal area increment) and the total log likelihood, the average rank of the model for
each likelihood component and the number of sites where a model version performed best (# best performance).

Stem numbers Basal area increment Total likelihood

ForClimv3.3  ForClim IR BC-MAP  ForClimv3.3  ForClim IR BC-MAP  ForClimv3.3 ForClim_ IR BC-MAP

Calibration -20.7 -18.5 -18.5 -13.7 -11.7 -8.0 -34.4 -30.1 -26.4
Average LL o

Validation -33.7 -22.1 -21.5 -23.1 -41.9 -26.4 -56.7 -63.9 -47.8

Calibration 2.7 1.6 1.4 22 2.0 1.6 2.3 1.9 1.6
Average rank

Validation 2.4 1.5 2.0 1.7 2.3 1.9 2.2 2.1 1.6
# best Calibration 1 4 5% 32 3 4? 3 3 4
performance  vjylidation 5 10 6 12 4 5 7 6 8

For one site, two model versions showed best performance.
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Validation

Likelihood of model predictions

BC-MAP showed the best overall performance on the independent validation data, as
revealed by the likelihood values calculated based on both BAI and stem size distributions
(Table 4). BC-MAP had the highest average total likelihood (-47.8), while ForClim IR (-
63.9) performed notably worse than ForClim v3.3 (-56.7). This was mainly due to the
predictions of BAI, for which ForClim v3.3 performed distinctly better (mean likelihood: -
23.1; highest performance at 12 sites) than BC-MAP (-26.4; 5 sites) and ForClim_IR (-41.9; 4
sites). In contrast, ForClim v3.3 did not predict stem numbers well (-33.7; 5 sites) compared
to BC-MAP (-21.5; 6 sites) and ForClim IR (-22.1; 10 sites). Total likelihood of BC-MAP
was highest at 8 out of 21 sites (ForClim v3.3: 7, ForClim_IR: 6). In a direct comparison with
ForClim_IR only, it was higher at 14 sites (see Supplemental Material Appendix A).

Performance of the predictions in basal area and stem numbers at the end of the simulation

At the end of the simulation period, ForClim v3.3, which showed highest likelihood in terms
of BAIL underestimated total basal area somewhat at the validation sites (median: -1.8 m*/ha),
while BC-MAP and ForClim_ IR strongly overestimated basal area (median: 4.4 m*/ha 7.5
m*/ha, respectively; cf. Figure 3 and Figure 5a). Regarding the average absolute differences
between observed and simulated total basal area, ForClim v3.3 also performed best, but
differences between the models were smaller (4.7 m*/ha for ForClim v3.3 vs. 5.3 m*/ha and
7.5 m*/ha for BC-MAP and ForClim_IR, respectively). For basal area in the high shade
tolerance class, the median difference was zero for both ForClim v3.3 and BC-MAP, in
contrast to ForClim IR (4.8 m?/ha). For the intermediate shade tolerance class, results across
model versions were quite similar and generally in good agreement with observed data
(median absolute differences <0.8 m%/ha). Basal area in the low shade tolerance classes was
generally overestimated by all model versions, most pronounced in BC-MAP (median
difference: 2.7 m*/ha; mean absolute difference: 2.7 m*/ha).
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Figure 3: Violin plots of actual (upper panel) and absolute (lower panel) differences in observed and simulated
basal area for different shade tolerance classes (high, intermediate and low) and total basal for different model
versions. Differences were calculated regarding simulation and observation data for the last inventory
respectively last year of simulation at all validation sites (n=21). Note absolute reference values (2.5%-percentile
/median/ 97.5% percentile) for total basal area (27.5/45.3/68.4 m*/ha), high (0.0/30.7/53.4 m*/ha), intermediate
(0.7/3.3/43.9 m*/ha), and low shade tolerant species (0.0/2.8/30.4 m*/ha).

Simulation results differed more strongly in the prediction of stem numbers. In the high shade
tolerance class, BC-MAP and ForClim IR were generally overestimating stem numbers in the
dbh classes from 4 to 12 cm (mean difference: 20.1 stems/ha for BC-MAP and 27.1 stems/ha
for ForClim_IR, respectively), whereas ForClim v3.3 was underestimating (-30.9 stems/ha)
(Figure 4). On average, BC-MAP was closer to observations than ForClim v3.3 in these dbh
classes. All model versions generally overestimated tree numbers for diameters between 12



Chapter 2 73

and 28 cm, whereas predicted stem numbers with a dbh >28 cm were very close to
observations (see also Appendix F: average absolute difference was <9 stems/ha for trees >28
cm). The pattern was similar for the intermediate shade tolerance class, for which BC-MAP
predicted, on average, stem numbers most accurately in the dbh classes from 4 to 12 cm
(mean difference: -0.7 stems/ha). For trees >12 cm, average differences were small for all
model versions (see Appendix F). Lastly, for species in the low shade tolerance class, BC-
MAP slightly overestimated stem numbers for trees from 4 to 8 cm (mean difference: 2.3
stems/ha), but was substantially closer to observations than ForClim v3.3 (-41.9 stems/ha) and
ForClim IR (-25.4 stems). A similar trend was found for the 8-12 cm dbh class. For trees >12
cm, model behavior was extremely similar and in good agreement with observed data (mean
absolute differences <11.0 stems/ha, see Appendix F).
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Figure 4: Differences between observed and simulated stem numbers for different model versions (ForClim
v3.3, ForClim_IR, and BC-MAP): Means and standard deviations across all validation sites were calculated for
each dbh class and for the three shade tolerance classes (high, intermediate and low). Note log-scale of stem
numbers.

ForClim sensitivity to parameter estimates

As shown above and revealed by the posterior distributions (Figure 2), some parameters
showed considerable posterior uncertainty. When forwarding this uncertainty to the outputs of
ForClim, however, we found that parameter uncertainty led to moderate predictive
uncertainty only, with slight differences between the different model outputs.
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Figure 5: Posterior model output uncertainty and empirical observations for a) total basal area (upper left panel)
and b) stem numbers (lower left panel). The violin plots are drawn from outputs of 1000 ForClim simulations
per validation site with parameters drawn from the posterior distribution. Validation sites are ordered according
to their latitude (north to south). c) Relative posterior uncertainty for stem numbers per dbh classes. Uncertainty
is expressed by the relative difference between simulated and observed stem numbers in percent (%). Each
violinplot includes 1000 values per validation site (n=21’000). The dashed red line indicates the 95% confidence
interval.

Specifically, the width of the site-specific posterior 95% credibility intervals for total basal
area ranged from 3.1 to 6.6 m’/ha, with a median of 4.3 m*/ha (upper left panel in Figure 5)
and from 46.7 to 1095 stems/ha with a median of 224 stems/ha for total stem numbers (lower
left panel in Figure 5). The distance of the upper border of the 95% credibility interval from
the median was on average 4.7 +1.9% and 5.1 + 3.3% for the lower border, respectively. For
total stem numbers, the distance of the upper and lower border of the 95% credibility interval
from the median was 12.4 +6.5% and 14.2 £6.9%, respectively. We additionally assessed the
average predictive error based on the entire distribution (as opposed to only using the MAP as
above) by calculating posterior 95% intervals of absolute difference between observed and
simulated data. The 95% confidence interval was between 0.2 and 21.0 m*/ha for total basal
area with a median of 5.0 m*/ha and between 11.1 and 1217.6 stems/ha for total stem number
with a median of 198.3 stems/ha, respectively.
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Figure 6: DBH distribution of two selected permanent plots (Tariche Haute Cote 03 and Weidwald 04). Violin
plots show posterior model uncertainty expressed by total stem numbers outputs of 1000 ForClim simulations
per validation site with different mortality parameter combinations drawn from the posterior distribution.
Empirical observations and simulation results with BC-MAP are shown as well.

Model sensitivity to the parametric uncertainty expressed by the Bayesian posterior
distribution was more pronounced for the lower dbh classes than for the higher ones (right
panel in Figure 5c; see also the large posterior uncertainty for absolute stem numbers in the
smallest dbh classes for the site Tariche Haute Cote 03: Figure 6, left panel). With increasing
tree size, the width of the relative posterior uncertainty generally decreased (right panel in
Figure 5c; Appendix B). This was particularly pronounced for permanent plots that showed a
rather natural (i.e., negative exponentially-shaped) dbh distribution (e.g., Tariche Haute Cote
03). When dbh classes other than the smallest ones were dominating the stand, such as in
Weidwald 04 (right panel in Figure 6), these dbh classes were subject to increased uncertainty
as well.
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Discussion

Model fit

Science and management require DVMSs that provide reliable projections of forest dynamics.
A necessary condition for having confidence in such projections is that the models accurately
predict past vegetation dynamics, but also that process representations with empirically-based
parameters are used (e.g., Adams et al., 2013). When including empirically-based submodels
in DVMs, one needs to carefully test the behavior and accuracy of the overall model,
especially when the parameters of the submodels are derived independently of the DVM. We
tested whether the parameter estimates of a rather detailed, environmentally driven mortality
function that were derived from independent fits to inventory data would be matched when
incorporating that function in a DVM and estimating its parameters using BC. Our results
generally show a good agreement for the parameters of the intercept, dbh, and relbai; the
latter two having a positive impact on tree survival. However, the inverse BC strongly
modified the parameter estimates for dbh’, shade tolerance (ShadeLow, Shadelntm), and
GRateD.

In the BC, the effect of dbh’ on tree survival was estimated to be positive, while it was weakly
negative in the independent regression. Combined with the positive linear effect of dbh, the
negative effect of dbh’ usually reflects the increased mortality rates of large trees (e.g.,
Lorimer and Frelich, 1984; Monserud and Sterba, 1999; Temesgen and Mitchell, 2005;
Holzwarth et al., 2013). This change in the estimate for dbh’ likely reflects our decision to
modify relbai from a factorial variable with only four classes in the IR version (i.e., the bin
width of a class was rather large in the empirical parameterization) to a continuous variable
for the BC. The relative basal area increment, relbai, is an important predictor of mortality
probability (Bigler and Bugmann, 2004; Macalady and Bugmann, 2014), as it reflects that
trees with low productivity are usually more prone to die than those that are highly productive
(e.g., Monserud, 1976; Wyckoff and Clark, 2002). Since simulated values of relbai quickly
drop to very low levels for trees with a large dbh (cf. Appendix E), this reduced the survival
probability of large trees in a similar way as dbh’ would have done.

Based on the parameterization with the NFI dataset (ForClim IR), species of low and
intermediate shade tolerance had a lower survival probability than shade-tolerant trees, in
accordance with the theory on life-history strategies of pioneer vs. late-successional species
(Grime, 1977). Yet, the opposite trend was found in the BC. This can be explained by the
decrease in stem numbers over dbh and time in the calibration data, which differed strongly
among the three shade-tolerance classes. In the calibration dataset, the decline was stronger
for shade-tolerant species than for shade-intolerant species (lower panel in Appendix E).
Therefore, it seems likely that parameter estimates were obtained that estimated higher
mortality rates for shade-tolerant than pioneer species. The independent regression would not
show the same result, as trees with a dbh <12 cm are not included in the NFI dataset.
Moreover, we observed a relatively high uncertainty as well as a divergence of the median
and MAP values of ShadeLow (cf. Figure 2). This may originate from interactions with other
parameters, but potentially also from the fact that a variety of species was included in each
shade tolerance class, each of which may feature very different strategies to face multiple
abiotic stress. Within a single shade tolerance class, for example, species may exhibit strongly
different growth-mortality relationships (Kane and Kolb, 2014). In addition, these
relationships may change with tree age (Bigler and Veblen, 2009) and especially with
increasing size, due to the parallel change of the abiotic environment and the species response
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(e.g., Valladares and Niinemets, 2008). It may therefore be difficult to obtain stable estimates
for these broad classes, and more detailed, possibly species-specific parameters would need to
be fitted.

Performance of the three model versions

For the calibration sites, the BC brought a clear improvement of model performance when
using our likelihood function as the criterion of fit, both for the joint likelihood and the two
individual likelihood components (basal area vs. tree numbers). This shows that the
calibration succeeded in improving the fit through varying model parameters.

The fact that the better performance of BC-MAP in terms of likelihood was also evident from
the validation sites suggests that the model was not overfitted by the BC procedure, at least
not at the decadal time scale. Best performance at most of the validation sites (cf. Appendix
A) is a strong indicator that the risk of a large model deficiency (i.e., prediction being far off
the observations) at a specific site was mitigated during BC. In contrast, ForClim v3.3
performed best for predicting basal area increment between the inventories and basal area at
the end of the simulation (Figure 3), but clearly underestimated stem numbers on average and
at the site scale especially for small (4-12 cm) trees in the low and high shade-tolerant classes.
For the larger dbh classes, agreement between observed and simulated stem numbers was
high. ForClim_IR was as performant as BC-MAP in terms of stem numbers; however this
was offset by the strong overestimation of BAI of shade-tolerant species.

Several factors may explain why the BC-MAP parameter estimates performed best. First, the
calibration data for BC-MAP included data on small trees (dbh >4 cm), while the ForClim IR
calibration had used an NFI dataset that included only data of trees with dbh > 12 cm. Second,
the overestimation of basal area for highly shade-tolerant species that was observed for
ForClim_IR was most likely due to the relatively low mortality rates of this shade tolerance
class in the NFI dataset (Wunder, pers. comm.). Such an overestimation was not observed for
BC-MAP owing to (1) the reduction in the parameter annual growth rate GRateD and (2) the
increase in the parameters kShadeLow and kShadelntm with the BC approach. Thus, we
conjecture that the observed parameter shifts are attempts of the BC to find an adequate
balance between predicted growth and mortality rates in the model to match the calibration
data in terms of basal area increment and stem numbers. The relatively high negative
correlation between gRateD and the intercept of the mortality function (i.e., increase of the
growth parameter leads to a reduced survival probability) supports this assumption as well.

Our results suggest that the balance between the representation of growth vs. mortality
processes in the model could be further improved: The performance of ForClim v3.3 and
ForClim IR, whose growth function remained unchanged, was very heterogeneous across
dbh and shade tolerance classes. Furthermore, the uncertainty in the posterior distributions of
the shade tolerance parameters was large. We interpret this as an indication that a species- and
size-differentiated growth-mortality relationship would be useful to improve model
performance (cf. Wunder et al., 2008; Bigler and Veblen, 2009; Ireland et al., 2014). For
instance, the parameter kGRateD could be calibrated separately for each shade tolerance
class, or even for each tree species using a hierarchical Bayesian approach (e.g., Riiger ef al.,
2009).
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Posterior uncertainty and model sensitivity

Running simulations of a DVM using one thousand parameter combinations that were
stochastically sampled based on their posterior distribution presents a considerable advantage
of Bayesian methods over standard simulation techniques, as it allows us to quantify the
predictive uncertainty (Hartig et al., 2012). This approach is often used to compare predictive
uncertainty before and after calibration (i.e., prior and posterior predictive uncertainty; van
Oijen et al., 2005). As we deliberately used wide priors, we only calculated posterior
predictive uncertainty for different model outputs as caused by the uncertainty in parameter
estimates.

Predictive uncertainty was high particularly for stem numbers (cf. Lagarrigues et al., 2015).
The smallest dbh classes were the main source of this uncertainty, as revealed by the high
predictive uncertainty at validation sites with particularly high numbers of small trees (e.g.,
Leihubelwald 03, Bois de Chénes 01, and Pfynwald 01). In contrast, relative differences
between simulated and observed stem numbers (cf. Figure 5¢) were comparatively low in
higher dbh classes, indicating a lower sensitivity to parameter changes. These findings are
also supported by the relatively low predictive uncertainty for total basal area, which is
influenced mostly by the large trees.

Unfortunately, one cannot infer model sensitivity to changes in mortality parameters directly
from the predictive uncertainty of model outputs. Mortality is a key process in DVMs
(Manusch et al., 2012), for which they normally show high sensitivity (e.g., Friend et al.,
2014; Bircher et al., 2015). However, large uncertainty in a particular output primarily
suggests that the data used for calibration in combination with the likelihood that we applied
had relatively low power to constrain this particular model output, but not necessarily that the
respective model output is particularly sensitive to parameter changes.

The calibration and validation process included inventory data with an average length of 40
years (maximum: 47 years), which limits the assessment of model robustness. Although we
think that the large variety of sites used for the calibration and validation support the model’s
capability of providing accurate predictions beyond this time horizon, caveats remain. We
identified comparatively high model uncertainty concerning the survival of small trees, which
would determine long-term tree species composition. This requires further tests to assess how
parametric uncertainty affects model outputs in long-term simulations, such as for simulating
potential natural vegetation (PNV).

Direct vs. inverse parameter estimates

Our study highlights that parameter estimates from BC may differ considerably from those
derived from an independent empirical fit. The parameters from BC resulted in better model
performance on independent validation data, but this does not necessarily mean that these
would be the most appropriate parameters to use. Rather, it needs to be addressed why these
differences occur.

One reason may arise from the differences between the data sets used for the calibration (NFI
vs. forest reserves). The sampling plots included in the two datasets cover a large array of
forest types from vastly different site conditions and climates, and they were affected only
marginally by external disturbances. However, the inventory series were longer in the reserve
data set (>35 yrs compared to only 20 years in the NFI), and the callipering threshold was
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lower in the permanent plots used for the BC (4 cm) than in the NFI (12 cm). However,
considerably more trees with a dbh >12 cm were included in the NFI dataset.

A second reason is obviously that the calibration may compensate for structural errors in the
processes formulations that are incorporated in the model (Hartig et al., 2012; Hartig and
Dormann, in review).

A third reason may be that the directly measured parameters are not those that lead to best
model performance. This may sound counterintuitive, as one would expect that estimates
derived from an independent regression must be most appropriate as they directly relate to the
actual mortality process, without being subject to the interactions of the (possibly flawed)
structure of the DVM. However, models are necessary abstractions of reality (e.g., Bugmann,
2001). In complicated ecological models, nonlinear processes give rise to higher-level
dynamics and patterns (idea of emergence, e.g., Levin, 1992), and often existing variability is
averaged over such nonlinear processes (e.g. intraspecific variability; Chesson, 1998). In such
a situation, it is possible that directly and inversely fitted parameters are not matching, and
one would prefer the inverse estimation, as it leads to more accurate higher-level dynamics
(Hartig and Dormann, in review).

The comparison of direct and inverse parameter estimates may serve as the basis for a debate
whether original or calibrated values should be used for model application. A single case
study like ours, however, cannot provide an unambiguous answer. We argue that, on short
temporal scales, calibrated parameters may lead to more accurate predictions, and may
therefore be preferable in the context of a specific project with a defined simulation period.
However, if one wants to predict on longer time scales, the use of calibrated parameters that
do not agree with directly measured parameters should be questioned, as uncertainties in the
model structure may heavily affect model extrapolations (cf. Refsgaard et al., 2006). This is
particularly true when only a handful of parameters are calibrated, as in the present study. In
such cases, the calibration procedure may lead to parameter values that compensate for
suboptimal parameter choices elsewehere, or for flaws in the model structure. Thus, when
context-independent parameter estimates are sought that are suitable for extrapolation,
discrepancies between direct and inverse parameter estimates need to be examined and
resolved. This will lead to an increase of structural realism in ecological models and, in the
long term, will improve the quality and transferability of model predictions (cf. benefits of
structural realism: understanding and prediction; Hartig & Dormann, in review).

The latter point highlights an important message of this study: the prevailing parameterization
paradigm in vegetation modeling is to statistically derive submodels or functions based on
independent, high-quality datasets and to implement them into DVMs in a “one-by-one”
fashion. Alternatively, recent studies have used Bayesian statistics to replace direct by inverse
parameter estimates, typically with wide priors, expressing no or vague information on the
parameters (e.g., van Oijen et al, 2005; Minunno ef al., 2013; Vrugt and Sadegh, 2013;
Bagnara et al., in press). In our study, we demonstrated how Bayesian statistics can be used
for exploring the agreement of direct and inverse parameter estimates and thus, analyzing the
structural functionality and interaction of a recently modified process representation in a
DVM (cf. Wang et al., 2009). Such an analysis of structural realism in DVMs is not implicitly
bound to the implementation of new functions (cf. van Oijen et al., 2011). Theoretically, it
could be pursued systematically to examine processes of various ecological models by an
established set of functions and data sets, analogously to the proposal of Prentice et al. (2007)
regarding the benchmarking of DVMs, thus providing an implicit and simultaneous estimate
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of parameter uncertainty and structural error (and its location via the parameters that
disagree).

Conclusions

We compared the performance of the ForClim forest gap model using (1) the original version
with a generic mortality function, and a new, inventory-based mortality function whose
parameters were (2) derived from field data or (3) calibrated using an inverse modeling
approach.

The values of most of the calibrated mortality parameters were similar to the parameters that
had been fitted independently of ForClim using forest inventory data. This suggests that the
general structure of ForClim is appropriate. Small but ecologically important differences
between the parameterizations, in particular regarding the relationship between species’ shade
tolerance and life history traits such as growth and mortality and their interaction require
further examination and may lead to refinements of specific process interactions in the model.

We found that model performance was improved after BC for the joint likelihood and better
balanced regarding standard model outputs across a wide range of validation sites compared
to the other model versions. Model sensitivity related to parameter uncertainty was very high
for dbh classes with high stem numbers (i.e., small trees) but rather low for larger trees and
for standard model outputs such as basal area. Thus, overall forest stand structure seems to be
less affected by parameter uncertainties. Still, high model sensitivity for small trees may
translate into significant predictive uncertainties regarding tree species composition in longer-
term simulations, which requires further testing.

Our results indicate that DVMs can be improved by calibration even when empirical
parameter estimates of very good quality are available. Since unsatisfactory performance
originates most likely from structural errors in the model, the use of (Bayesian) calibrated
parameter values should not end with an unquestioned application of those parameters in the
DVM. Rather, it should primarily support the identification of possible structural
uncertainties, thus leading to an increase of structural realism in the model and, eventually, to
improved and more reliable model applications.
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Supplemental Material

Appendix A: Model performance for calibration and validation sites

Table Al: Overview of individual likelihood components (stem numbers and basal area increment) and their sum (total likelihood) for calibration and validation sites.
Likelihood values were calculated for three ForClim model versions — the current ForClim version 3.3, the model version hosting the empirical mortality function with the
original parameter values (ForClim_IR) and the calibrated model versions that yielded the maximum likelihood (BC-MAP). Highest likelihoods per site and component are
highlighted in grey.

Stem numbers Basal area increment Total likelihood
ForClim v3.3 ForClim IR ~ BC-MAP ForClim v3.3 ForClim IR ~ BC-MAP ForClim v3.3 ForClim IR  BC-MAP
Calibration sites
Adenberg 03 -23.0 -22.7 -22.9 -7.3 -13.2 -7.3 -30.2 -35.9 -30.2
Bois de Chénes_02 -16.9 -16.3 -15.8 -1.9 -0.6 -1.5 -18.8 -16.8 -17.3
Fuerstenhalde 01 -13.8 -14.8 -14.8 34 -32.6 -5.6 -17.2 -47.4 -20.4
Girstel 04 -30.2 -27.9 -27.4 -17.4 -14.8 -17.3 -47.6 -42.6 -44.7
Leihubelwald 02 -17.0 -14.4 -14.2 -21.6 -4.3 -10.8 -38.6 -18.7 -25.1
Nationalpark 07 -10.5 -8.9 -8.9 23 -6.4 -5.7 -12.8 -15.2 -14.6
St. Jean_01 -23.2 -20.0 -19.2 -25.0 -4.0 -3.5 -48.1 -23.9 -22.7
Tariche Haute Céte 04 -30.5 -23.9 -25.2 -14.7 -17.5 -9.8 -45.1 -41.3 -35.0
Vorm Stein_02 -21.6 -17.6 -17.7 -29.9 -11.7 -10.2 -51.5 -29.3 -27.9
AVERAGE -20.7 -18.5 -18.5 -13.7 -11.7 -8.0 -34.4 -30.1 -26.4
Validation sites
Adenberg 01 -21.0 -22.9 -23.4 -9.7 -10.8 9.4 -30.6 -33.7 -32.7
Adenberg_02 -23.2 -21.2 -22.3 -7.1 9.0 -5.3 -30.2 -30.2 -27.6
Adenberg 04 -21.0 -22.3 -22.9 -4.0 -10.0 -5.5 -24.9 -32.4 -28.4
Bois de Chénes_01 -20.3 -18.1 -19.9 -32.2 -8.9 -27.1 -52.5 -27.0 -47.0
Bonfol 03 -24.8 -21.0 -21.7 -28.6 -14.6 -23.8 -53.4 -35.5 -45.5
Fuerstenhalde 02 -13.4 -15.0 -13.7 -27.7 -93.7 -42.8 -41.1 -108.7 -56.6
Girstel 11 -11.2 -11.5 -12.7 -8.6 -16.7 -11.1 -19.9 -28.2 -23.9
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Leihubelwald 03 -43.3 -16.5 -16.6 -21.9 -45.8 -28.8 -65.2 -62.4 -45.4
Leihubelwald 04 -18.8 -12.0 -12.4 -14.6 -14.7 -17.4 -334 -26.7 -29.8
Nationalpark 05 -15.5 -7.8 -8.7 -13.8 -4.1 -3.7 -29.3 -11.9 -12.5
Pfynwald 01 -110.1 -38.0 -29.1 -16.4 -7.1 -7.1 -126.5 -45.1 -36.2
Scatlé 01 -138.4 -98.8 -86.9 -717.9 -91.9 -94.9 -216.3 -190.7 -181.7
St. Jean_02 -29.3 -20.4 -17.7 -3.1 -5.0 -7.2 -324 -25.4 -24.9
Tariche Haute Cote 03 -34.4 -17.4 -16.7 -1.4 -31.5 -6.1 -35.8 -48.9 -22.8
Tariche Haute Cote 06 -29.0 -11.9 -11.9 -14.6 -107.3 -34.0 -43.7 -119.2 -46.0
Tutschgenhalden 13 -11.9 -11.7 -12.4 -334 -30.0 -26.7 -45.3 -41.6 -39.1
Tutschgenhalden 14 -28.3 -24.9 -28.5 -43.5 -40.8 -41.8 -71.8 -65.7 -70.3
Vorm Stein_01 -15.1 -15.5 -16.2 -18.1 -2.9 -5.0 -333 -18.5 -21.2
Weidwald_02 -54.2 -23.8 -24.5 -17.0 -81.4 -24.3 -71.3 -105.2 -48.8
Weidwald 03 -12.9 -12.1 -11.9 -65.8 -181.9 -95.7 -78.7 -193.9 -107.6
Weidwald_04 -30.5 -20.3 -20.5 -24.9 -71.6 -35.9 -55.4 -91.8 -56.3
AVERAGE -33.7 -22.1 -21.5 -23.1 -41.9 -26.4 -56.7 -63.9 -47.8
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Appendix B: Uncertainty in dbh distributions for all validation sites
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Figure B1: DBH distributions of all validation sites for last year of simulation. Black bars indicate 95%
credibility interval from total stem numbers outputs of 1000 ForClim simulations per validation site with
different mortality parameter combinations drawn from the posterior distribution. Empirical observations (red
points) and simulation results with BC-MAP (blue points) are shown as well.
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Appendix C: Posterior uncertainty for individual dbh classes

Table C1: Relative differences between simulated and observed stem numbers in percent (%). Mean, median and
the 2.5% respectively 97.5%-quantile are given for each dbh class (cm) based on 1000 simulations per validation
site (n=21000).

dbh class mean median 2.5%-quantile 97.5%-quantile

(4.8] 156.5  38.9 -96.5 1867.3
(8,12] 790 355 -66.8 434.7
(12,16] 3174 547 -68.2 2275.0
(1620] 3526 63.1 -44.6 3392.7
(20,24] 1283 377 -52.1 676.3
(24,28] 767 357 -82.1 423.2
(28,32] 1154 225 342 1612.5
(32,36] 796 323 -86.1 968.8
(36,40] 230 225 -79.5 156.7
(40,44] 594 266 -40.8 500.0
(44,48] 1645 18.8 -28.8 2968.9
(48,52] 199 239 -60.3 107.9
(52,56] 144 2.8 -100.0 385.3
(56,60] 264  -6.8 -100.0 4375
(60,64] 204 0.0 -100.0 331.8
(64,68] 106 0.0 -100.0 306.3
(68,72] 284 0.0 -100.0 587.5
(72,76] 1.6 00 -100.0 295.0
(76,80] 438 0.0 -100.0 625.0

(80,1e+04] -20.6 0.0 -100.0 65.2
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Appendix D: Relative posterior uncertainty for total basal area and stem numbers
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Figure D1: Relative posterior uncertainty for total basal area and stem numbers. Relative uncertainty is

expressed by the relative difference between simulations (n=1000) and their mean.
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Appendix E: Comparison relbai values and stem numbers for different data sources
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Figure El: The upper panel shows empirical and simulated values for relative basal area increment (relbai)
depending on tree diameter. Empirical relbai values were calculated from data of those plots of the Swiss
National Forest Inventory that were used to derive the empirical mortality function. Simulated relbai values were
derived based on BC-MAP simulations for each validation site. On the lower panel, dbh distributions per dbh
class and shade tolerance class are shown for the inventory data used for the derivation of the empirical morality

function and for the first inventory of the forest sites used for Bayesian calibration.
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Appendix F: Absolut differences in stem numbers across all validation sites

Table F1: Means of absolute differences between observed and simulated stem numbers for different model
versions (ForClim v3.3, ForClim_ IR, and BC-MAP): Means across all validation sites were calculated for each
dbh class and for the three shade tolerance classes (high, intermediate and low).

tsol;:r('i:nce high intermediate low
Dbh class FC BC- FC IR FC BC- FC IR FC BC- FC_ IR
v3.0 MAP v3.0 MAP v3.0 MAP

(4,8] 91.15 57.77 4936 56.72 4453 3638 4333 3698 33.13
(8,12] 32.66 2136 2933 10.14 11.83 10.88 16.76 13.61 10.95
(12,16] 21.98 2849 3159 8.07 8.07 5.97 823 10.89  7.17
(16,20] 33.04 2755 28.69 3.77 6.93 3.48 6.69 8.02 5.74
(20,24] 22.60 18.87 2250 6.98 8.49 5.81 7.30 7.21 6.43
(24,28] 12.97  9.99 12.85  5.02 5.55 4.98 4.65 8.10 6.04
(28,32] 8.79 7.72 8.06 3.43 4.66 3.59 6.75 8.23 6.80
(32,36] 8.34 7.63 6.52 2.75 3.78 3.32 4.19 6.00 3.76
(36,40] 5.31 6.06 8.20 3.69 3.55 3.54 4.14 3.96 3.39
(40,44] 7.64 7.74 8.46 1.87 2.96 2.56 2.73 3.42 2.96
(44,48] 6.05 5.89 7.96 1.82 1.87 1.90 1.46 1.63 1.71
(48,52] 6.40 6.78 8.82 1.96 1.80 1.93 2.55 3.19 2.75
(52,56] 4.89 3.92 6.92 1.42 1.39 1.30 1.59 1.16 1.27
(56,60] 3.78 4.43 5.21 247 2.08 2.53 0.72 1.21 0.70
(60,64] 4.67 4.94 5.40 1.32 1.06 1.16 0.98 0.65 0.90
(64,68] 2.23 2.14 2.58 0.62 1.07 0.81 0.49 0.31 0.49
(68,72] 2.01 2.57 2.29 0.77 1.30 0.76 0.51 0.41 0.49
(72,76] 1.73 2.14 1.79 0.54 0.82 0.51 0.00 0.00 0.00
(76,80] 1.26 1.24 1.40 1.15 0.73 1.21 0.00 0.00 0.00

(80,1e+04] 2.10 1.99 1.88 0.62 0.91 0.81 0.00 0.00 0.00
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Introduction

Due to the high site diversity of Swiss forests (OcCC, 2007), at least a part of the current
forest stands are expected to be substantially influenced by climate change over the coming
decades. In this project, the sensitivity of typical Swiss forest stand structures to climate
change is assessed using the forest gap model ForClim (Bugmann, 1996). Based on real stand
data, we examine whether and to what extent — in terms of biomass, tree species composition,
stem numbers and diameter at breast height (DBH) distribution — Swiss forest stands will
change in the next 50 to 60 years. There is a special focus on forest stands that — due to their
distribution, structure and tree species composition — are typical for the Swiss forest area.
Thus, the Swiss forest area needs to be stratified according to quantitative criteria. The
challenge of this stratification lies in the appropriate balance between accuracy and feasibility.
On the one hand, the essential structural characteristics of forest stands should be considered
to allow for a clear distinction. On the other hand, limits to accuracy are set due to data
availability as well as to the level of how accurately ForClim is able to portray forest
dynamics.

Objective of the stratification

The objective was to derive a set of distinct strata of forest types that, in terms of their stand
structure, are typical of current Swiss forests. The stratification must be based on a
quantitative and — as far as possible — objective approach. While on the one hand the
identified strata need to form distinguishable units, they on the other hand are not required to
reach the resolution of classical forest societies (Waldgesellschaften a la NaiS). Stratification
criteria should include stand features that are commonly used and accepted among forestry
practitioners and forest ecologists.

Material and Methods

The third National Forest Inventory (NFI3; WSL, 2011) served as the data basis for the
stratification. It contains a raster of plots systematically distributed over the entire area of
Switzerland. For each plot of the NFI3 that was classified as “normal forest”, a wide spectrum
of forest stand attributes was collected. Importantly, plot data were completed by a single tree
survey, conducted around the center of the plot (Keller, 2005).

The pivotal concept of our stratification was to identify a set of suitable classification criteria,
to use them for grouping the NFI plots and, finally, to select those groups of NFI plots with
the highest proportion (representativeness).

In a first step, the map of the eco-regions (Standortsregionen) was digitized from the “Guide
for sustainability in protection forests” (NaiS; Frehner et al., 2005) in ArcGIS (Figure 1).
These eco-regions are well accepted among practitioners and have a better ecological basis
than the “production regions” of the NFI.
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Elevation zones

|:| colline

I:] sub montane
|:| lower montane
I:I upper montane
[ | montane (only SPA)
I:] high montane
|:| subalpine
|:| upper subalpine

Figure 1: Forest eco-regions (J = Jura, P = Swiss Plateau, NPA = Northern Pre-Alps, NCA = Northern Central
Alps, HA = High Alps, SCA = Southern Central Alps, and SPA = Southern Pre-Alps) and elevation zones of
Switzerland modified from Frehner ef al. (2005). Boundaries for elevation zones represent average estimates
(see also Appendix A), white patches represent areas beyond the upper tree line.

For the second step, we decided to stratify the eco-region by elevation, again due to the
ecological but also management importance of altitudinal forest zones. Conveniently, the
altitudinal vegetation zones of NaiS are defined specifically for each eco-region (Figure 1).
Therefore, they were used as the second criterion for the stratification after conferring with
Monika Frehner, a sylvicultural expert for Swiss mountain forests and main author of NaiS,
based on the classification in NaiS. The boundaries of the elevation zones should be
understood as broad-scale averages. In reality, the altitude of a vegetation zone can be fairly
variable, depending on local site conditions and topography. However, for an analysis in
ArcGIS, the use of fixed thresholds was inevitable. Appendix A shows the classification of
the elevation zones and their boundaries.

At this point, the NFI plots were integrated into the stratification. Only plots classified as
“normal forest” were considered. The number of NFI plots per elevation zone and eco-region
was used to determine the proportion of forest area in each region and altitude. A first
threshold was set: Each elevation zone had to contain at least 10% of the NFI plots in the
corresponding eco-region, for it to be retained in the stratification. Two strata that would
thus have been dropped (upper montane Swiss Plateau and the subalpine northern Pre-Alps)
lay minimally below the threshold and were retained in the analysis. Appendix B shows the
proportion of forest area per eco-region and elevation zone.
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Azonal communities (Sonderwaldstandorte) were not considered here because their stand
structure does not reflect the prevalent climate und nutrient availability, but rather the
disturbance regime, which is not considered in ForClim. Azonal communities among the NFI
plots were identified as follows. Based on the vegetation model of Meinrad Kiichler (WSL), a
unit of the Potential Natural Vegetation was assigned to each NFI plot. If this vegetation unit
only contained Sonderwaldstandorte, the corresponding plot was considered to be unsuitable
and excluded from the data pool.

In the third step, we considered two forest stand features as being particularly suitable for the
further stratification:

Stand structure designates the vertical composition of the reference stand (“massgebender
Bestand”) (Keller, 2005). Four classes are distinguished: 1= single-layered, 2= multi-layered,
3= stratified, 4= clustered.

The developmental stage of the reference stand is determined based on the average DBH of
the 100 largest trees per hectare (Keller, 2005), with the following five classes: 1= young
growth/thicket (DBH <12 cm), 2= pole wood (12-30 cm DBH), 3= small timber (31-40 cm
DBH), 4= medium timber (41-50 cm DBH), 5=old timber (=50 cm DBH).

To identify the combinations of these two features that are quantitatively typical for a
particular eco-region and elevation zone, a cross table showing the proportion of all occurring
combinations was created for all plots of each particular elevation zone in every eco-region.

Based on a suggestion by Monika Frehner, NFI plots whose developmental stage was young
growth/thicket were excluded from this step. “Young growth” stands mostly show a
considerably lower top height (Oberhdhe) than more mature forest stands. Nevertheless, top
height is still used to define their stand structure. In this context, the application of this
concept for young growth forest stands would be misleading.

Typical forest stands (without young growth)

For each elevation zone of each eco-region, a list with the quantitatively most important
combinations of the properties described above was created. To do so, the following rules
were established:

e The most common combination was selected first.

e FEach selected combination had to have a proportion of at least 10% of the NFI pixels
of the respective stratum defined by eco-region and altitudinal belt.

e Altogether, the selected combinations had to reach a proportion of 40% of all

occurring combinations in any given elevation zone.

Thus, a forest stand (=stratum) at this point was characterized by the following four
attributes: a specific eco-region, elevation zone, specific developmental stage, and stand
structure. Note that up to this point, the stratification procedure was based on a purely
objective approach.
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Finally, the tree species composition of each and every one of these strata was examined.
Based on the single-tree data of each NFI plot, stem numbers and basal area per hectare were
calculated. These data were then used jointly with expert knowledge (our own and Monika
Frehner’s) to separate distinct units within each of these strata, if a further splitting was
deemed to be required. To this end, rules and thresholds were defined to increase the
uniformity of each stratum. The rules mainly referred to the relative basal area of the tree
species. Accordingly, plots were regrouped, excluded or transferred based on their species
composition (by basal area and tree numbers). Consequently, a fair number of the strata that
had been defined so far were split into two or even more strata, containing a lower number of
plots with a specific tree species composition. We defined ten NFI plots to be the minimal
number that a stratum was required to contain, due to initialization constraints of the
ForClim model.

Overall, a “typical” forest stand (stratum) in our project is thus characterized by its eco-
region, elevation zone, developmental stage and stand structure, and its tree species
composition.



100 Chapter 3

Results

Overview

In total, 71 typical forest stands were identified. By that, one fourth (1766 NFI plots) of the
total number of available NFI plots classified as “normal forest” (6838) is represented in our
final set of typical Swiss forest stands. Table 1 provides an overview of the distribution of
these forest stands across the different eco-regions and elevation zones. Typical “young
growth” stands will be shown separately.

Table 1: Overview of the number of forest stands per eco-region J = Jura, P = Swiss Plateau, NPA = Northern
Pre-Alps, NCA = Northern Central Alps, HA = High Alps, SCA = Southern Central Alps, and SPA = Southern
Pre-Alps) and elevation zone.

J P NPA NCA* HA SCA SPA Total
colline — — — — — — 6 6
sub montane 4 4 — — — — — 8
lower montane 5 4 3 - — - - 12
upper montane 6 4 6 - - - - 16
high montane — — 5 4 2 3 — 14
montane** — — — — — — 4 4
subalpine — — 2 2 3 1 — 8
upper subalpine — — — — 3 — — 3
Total 15 12 16 6 8 4 10 71

*The Northern Central Alps only includes eco-region b (without beech).

**In the Southern Pre-Alps, the lower, upper and high montane belts are summarized as one single “montane”
elevation zone.

Typical forest stands (without “young growth”)

The structure of each of the 71 forest strata is shown in detail in Appendix C. Each stratum
has a label (e.g. J] SM_1a), always consisting of three components: The first letter component
refers to the eco-region to which the stratum belongs, going from north to south (J = Jura, P =
Swiss Plateau, NPA = Northern Pre-Alps, NCA = Northern Central Alps, HA = High Alps,
SCA = Southern Central Alps, and SPA = Southern Pre-Alps); the second refers to the
elevation zone (CO = colline, SM = sub montane, LM = lower montane, UM = upper
montane, HM = high montane, SA = subalpine, US = upper subalpine). The digit
distinguishes between strata of the same ecoregion and elevation zone, the optional lowercase
letter indicates that a stratum was originally part of a larger stratum, which was split due to
the tree species composition of the underlying NFI plots. The description includes the number
of NFI plots representing the stratum, the volume in cubic meters respectively the basal area
in square meters per hectare extrapolated from the single tree survey on each plot,. Bar plots
are used to show the DBH distribution of the stratum. For each stratum, tree numbers were
calculated for a plot size of 500 m”. The values of the x-axis represent dbh classes of 4cm.
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“Young growth” stands

There were six altitudinal vegetation zone with a sufficient proportion (at least 10%) of NFI
plots in this developmental stage. However, only three of them consisted of enough plots (at
least 10) to form a stratum. Figure 2 shows these three strata with their NFI plots.
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Figure 2: Stem numbers per main tree species and hectare for the three “young growth” strata a) Jura - sub

montane, b) Northern Central Alps_b — high montane, and ¢) Northern Central Alps_b — subalpine.
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Discussion

Typical forest stands

We identified 71 strata that are typical in terms of stand structure and tree species
composition for the particular eco-region and elevation zone. While the number of strata is
rather high, the fraction of the total NFI plots still included is relatively low. However, our
aim was to identify typical stands, not a representative number of LFI plots in the
stratification. One has to be aware that an increase of representativeness (by area) would have
led to an either very high number of strata, or a far smaller set of criteria for the stratification,
thus often leading to artificial stands that one cannot assume to occur in nature. We
emphasized the inclusion of all eco-regions and all altitudes, at least as far as possible, and
within this set we identified the most common strata. After all, ca. 25% of all NFI plots are
represented by the 71 strata, which we view as a reasonable proportion. Our stratified data set
demonstrates and reflects the heterogeneity of Swiss forests. The approach we chose allows
for a fair distinction of the individual forest stands (strata) by criteria that are known,
understood and applied by both practitioners and scientists. With respect to the ensuing
problem of generating stand data for the initialization of the ForClim model, our approach is
very efficient since the NFI plot data can be used directly and, at least as matters stand right
now, a further search for stand data per stratum is not necessary, which is a tremendous
advantage for the next steps in the project.

During the stratification, we came across a range of challenges and problems of which we
would like to point out the most important ones below.

Single-layered forest stands

According to their stand structure, 29 of the strata are single-layered (stand structure =1), i.e.
the top height of the majority of the trees on a plot belongs to the same layer (Keller, 2005).
However, if strata are synthesized from different NFI plots, the single-layered character may
not be guaranteed as these NFI plots, although each of them is classified as single-layered,
may have different top heights. Thus, by consolidating these plots into one stratum, a multi-
layered structure may result instead of the intended single-layer structure. Even though it may
be assumed that trees with the same DBH should also be similar in their top height, and thus
the developmental stage as another criterion of the stratification should mitigate the risk of
creating multi-layered forest stands out of single-layered forest plots, nine of the single-
layered strata showed a DBH distribution that suggested a multi-layered structure. Although
there was the expected peak according to the developmental stage, smaller trees (e.g. the pole
wood stage) were also abundant, thus resulting in a second peak. Unfortunately (for our
purposes), top height of the individual trees is not recorded in the NFI. Nevertheless, we
screened the individual plots of the strata with a conspicuous DBH distribution, and excluded
those plots that showed a very high proportion of small trees. This step led to an “improved”
DBH distribution for five strata (J_ LM 2a, J LM 2b, NR UM 2b, NCA HM 2, and
HA SA 3). Four other strata (NPA LM 2a, NPA UM 2a, NPA HM 1b, and HA HM 2)
were kept without such a manual correction.
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The eco-region Northern Central Alps

At the beginning of the stratification we planned to use the seven main eco-regions (Jura,
Swiss Plateau, Northern Pre-Alps, Northern Central Alps, High Alps, Southern Central Alps
and Southern Pre-Alps) according to NaiS. We did not favor the more detailed classification
into subregions (e.g. Northern Central Alps a/b or Southern Pre-Alps a/b) that is used in NaiS
because these would have caused too many strata with possibly too few NFI plots. However,
when we analyzed the tree species composition of forest stands in the Northern Central Alps,
it became obvious that in this case, a separation into the sub regions “a” and “b” (according to
NaiS) was necessary. First, the classification of elevation zones for the two subregions is
different. Second, tree species like beech, which are only expected to occur in subregion “a”,
were mixed with plots located in subregion “b”, making an unequivocal identification of
strata nearly impossible. Therefore, the NFI plots of the eco-region Northern Central Alps
were allocated to the corresponding subregion. Unfortunately, no altitudinal vegetation belt in
subregion “a” had at least ten NFI plots to form an unequivocal stratum. Therefore, in the
final set of strata, only the Northern Central Alps “b” region is represented.

“Young growth” strata

As mentioned above, trees with a DBH <12 cm were recorded on one or two separate
subplots in the NFI. The three “young growth” strata that we identified (Figure 2) show an
extreme heterogeneity in terms of tree numbers. While some subplots contain several ten
thousands of young trees (per hectare), others do not have more than a few hundred. The
exact location of the subplots and their size (which is variable depending on the site, see
Keller (2005)) obviously is decisive for the number of young trees that are recorded. This
raises the question whether these data are reliable and do really represent the actual
abundance of “young growth” on the individual NFI plots (note that the sampling design has
not been intended to provide representative data at the plot level!). Since there were only
three “young growth” strata and the available data are questionable, we intend to abandon
these for the further work in the project.
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Conclusion

We conclude that the stratification of the Swiss Forest area into “typical” stand types has
successfully been accomplished, and we will use these data in the next step of the project to
initialize ForClim and do test simulations with the model into the future.
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Supplemental Material

Appendix A: Classification and boundaries of the altitudinal vegetation zones

Table Al: Forest eco-regions of Switzerland and their elevation zones modified from NaiS (Frehner et al.,
2005). Boundaries of elevation zones are given in meters above sea level (m a.s.l.)

Jura  Swiss Northern Northern High Southern Southern
Plateau Pre-Alps Central Alps Alps Central Pre-Alps
a b Alps
colline <300 <350 - - Zone of - 300-1000  300-1000
downy
oak
forests
(NaiS)*
sub 300- 350- 350-650 <500 - - -
montane 650 650
lower 650- 650- 650-900  500- - - -
montane 900 900 1000
upper 900- 900-  900-1350 1000- - - -
montane 1350 1350 1350
high 1350- >1350 1350- 1350- <1650  600- 1000- 1000-1600
montane 1550 1600 1650 1650 1650 « »
(“montane™)
subalpine >1550 - 1600- 1650- 1650- 1650- 1650- 1600-1900
1900 1850 1850 1900 1900
upper - - - > >1850 > > 1900 > 1900
subalpine 1850 1900

*Lowest elevation zone is defined by occurrence of downy oak (Q. pubescens) forests.
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Appendix B: Proportion of forest area per ecoregion and elevation zone

Table B1: Proportion of forest area per ecoregion and elevation zone. Colors indicate the decision whether a stratum was maintained (see code at the end of the table).

Jura

total

colline

sub montane
lower montane
upper montane
high montane

Swiss Plateau
total

colline

sub montane
lower montane

upper montane

Northern Pre-Alps
total

sub montane

lower montane
upper montane
high montane
subalpine

upper subalpine

number of plots
1048

1

300

279

417

51

number of plots
1609

18

950

489

152

number of plots
1739

109

240

840

384

162

4

proportion of area (%)

0.1
28.6
26.6
39.8
4.9

proportion of area (%)

1.1
59.04
30.4
9.4

proportion of area (%)

6.3
13.8
48.3
22.1
9.3
0.2

Northern Central Alps b
total

colline

high montane

subalpine

upper subalpine

High Alps
total

high montane
subalpine

upper subalpine

Southern Central Alps
total

colline

high montane

subalpine

upper subalpine

number of plots
678

38

444

123

73

number of plots
561
178
207
176

number of plots
302

24

167

73

38

proportion of area (%)

5.6

65.5
18.1
10.8

proportion of area (%)

31.7
36.9
31.4

proportion of area (%)

7.9

553
24.2
12.6
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Northern Central Alps a

total

sub montane
lower montane
upper montane
high montane
subalpine

upper subalpine

Color codes:

well below 10%
slightly below 10%
above 10%

number of plots
243

3

77

72

53

31

7

Decision:
Omitted
Retained
Retained

proportion of area (%)

1.2
31.7
29.6
21.8
12.7
2.9

Southern Pre-Alps
total

colline

montane

subalpine

upper subalpine

number of plots
640

293

267

64

16

proportion of area (%)

45.8
41.7
10.00
2.5
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Appendix C: Overview on typical Swiss forest stands (strata)
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200 Vol: 504 m3/ha 200+ Vol: 432 m3/ha
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Stratum J_LM_3a Stratum J_UM_1a
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Stratum P_SM_1b Stratum P_SM_2a
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Stratum NCA_SA 2
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Abstract

Climate-induced demographic shifts in forests and the sustainable provision of forest
ecosystem services have been the target of many modeling projects. However, large
uncertainty about local impacts over larger areas remains as most studies adopt a large-scale
(i.e. national to continental level) approach and lack sufficient fine-grained resolution, or
evaluated a few sites only. Thus, decision makers still lack essential knowledge to plan and
develop adaptive management strategies. We provide a comprehensive, high-resolution
assessment on forest sensitivity to climate change so as to detail variation in forest stand
response due to local conditions, and to evaluate the potential of current management
practices. Switzerland was chosen as a case study because it features a complex topography
with a wide variety of forest types typical for Central Europe. A stratification of National
Forest Inventory (NFI) plots identified 71 strata that reflect typical forest stand structures in
different regions and elevation zones. The development of these strata was simulated until
2100 with two versions of the forest succession model ForClim for different condition