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Abstract We show that at generic points blow-ups/tangents of differentiability spaces are
still differentiability spaces; this implies that an analytic condition introduced by Keith as an
inequality (and later proved to actually be an equality) passes to tangents. As an application,
we characterize the p-weak gradient on iterated blow-ups of differentiability spaces.
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1 Introduction

1.1 Background

The study of the geometric and analytic properties of metric spaces is a topic which has
grown into many different trends, and is probably as old as the study of fractal subsets of Rn

and of Carnot groups. In the last 15 years, a trend which has attracted growing interest is the
study of metric measure spaces which admit an abstract Poincaré inequality in the sense of
[22], and which we will call PI-spaces.

Intuitively, PI-spaces allow to formulate notions of first-order calculus, an intuition that
was made more precise when [11] proved that PI-spaces satisfy a generalized version of the
classical Rademacher Theorem about the a.e. differentiability of real-valued Lipschitz func-
tions. In particular, Cheeger’s result allows to associate to a PI-space (X, μ)μ-measurable
tangent/cotangent bundles T X /T ∗X , the fibres of T ∗X being generated by “differentials” of
Lipschitz functions. It is worth to point out that Cheeger’s generalization of Rademacher’s
Theorem does not put T X and T ∗X on an equal footing, e.g. derivatives are not explic-
itly constructed and are not related to differentiation along Lipschitz curves. Essentially,
differentiability is formulated in terms of finite-dimensionality results for certain spaces of
(asymptotically) harmonic functions. Note that even though this approach might look at first
counterintuitive, it fits with the idea that coordinate functions generate the cotangent bundle of
a Riemannian manifold as other functions admit a first-order Taylor expansion with respect
to the coordinates, and moreover in Riemannian geometry there are important results on
finite-dimensionality of spaces of harmonic functions whose proofs share some similarities
with Cheeger’s argument (see for instance [19]).

Today metric measure spaces which satisfy the conclusion of Cheeger’s Differentiation
Theorem are either said to admit a (strong) measurable differentiable structure [25,27],
or to be (Lipschitz) differentiability spaces [7,8]; in the following we will use the latter
terminology.

In his Ph.D. thesis, Keith [25,27] introduced a new analytic condition, the Lip-lip inequal-
ity, and proved that doubling metric measure spaces (X, μ) satisfying it are differentiability
spaces. It seems that the idea of “generalizing” Cheeger’s Differentiation Theorem using a
Lip-lip inequality stems from the fact that in PI-spaces Cheeger had proven a Lip-lip equality.
We use “generalize” to refer to Keith’s work because as of today there seem to be no examples
of differentiability spaces which cannot be partitioned into countable unions of subsets, each
of which admits a measure-preserving biLipschitz embedding into some PI-space.

Besides providing a theoretical framework for first-order calculus, the idea of differenti-
ating Lipschitz functions has proven useful in the study of metric embeddings F : X → B
where B is a Banach space, in particular when either B has the Radon-Nikodym property
(i.e. an RNP Banach space) (see for instance[13]), or when B = L1 (see for instance [14–17]).
In connection with embeddings into RNP-Banach spaces, Cheeger and Kleiner [13] showed
that if (X, μ) is a PI-space the fibres of T X are spanned by “tangent vectors” to Lipschitz
curves. Putting T X and T ∗X on a complete equal footing has required substantial effort:
Bate’s beautiful work [7,8] on Alberti representations in differentiability spaces, which was
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partly motivated by a deep structure theory for measures and sets in R
n developed by Alberti,

Csörnyei and Preiss [2,3], and the formulation of metric differentiation for differentiability
spaces [18], which was partly motivated by unpublished results of Cheeger and Kleiner on
metric differentiation in PI-spaces, and unpublished results of mine on prescribing the norms
on T X and T ∗X .

Strikingly, Bate [7,8] was able to show that each differentiability space (X, μ) can be
partitioned into countably many pieces, each of which is a doubling metric measure space
admitting a Lip-lip inequality. Later we showed [32,34] that the Lip-lip inequality always
self-improves to an equality (see also [18] for another argument); this might be interpreted
as saying that the Lip-lip equality provides an asymptotically quantitative characterization
of differentiability spaces; however, there is a more precise result in terms of the quantitative
characterization of the local norm for Weaver forms (Theorem 2.15) which will be used in
this paper.

In connection with these results, a topic of major interest is trying to understand the
infinitesimal structure of differentiability, and even PI-spaces. It should be pointed out that, as
of today, the set of known models for the infinitesimal geometry of PI-spaces is rather limited,
and is thus hard to come up with “plausible” conjectures. For example, while the results in [18]
show structural similarities between PI-spaces and differentiability spaces (e.g. one might
conjecture that tangents/blow-ups of differentiability spaces are PI spaces), the examples
constructed in [36] suggest that there might be differentiability spaces (X, μ) whose blow-
ups are never PI-spaces; moreover, this phenomenon might even depend on the measure class
ofμ. While finishing this paper, we have learned from Bate and Li [9] that they have studied the
class of differentiability spaces for which differentiation of RNP-valued functions (in addition
to that of real-valued ones) holds, and have characterized them in terms of an “infinitesimal
accessibility” condition. One possibility is that differentiability implies RNP-differentiability,
and then extending the results of [13] to general differentiability spaces might give a route to
answer some questions raised in [18]. Another possibility is that differentiability spaces are
organized in a sort of “hierarchy” depending on which Banach-valued Lipschitz maps are
differentiable. For instance, the argument in [9] uses crucially differentiability in the l1-sum
of a sequence of finite-dimensional spaces {lnk∞}k where nk ↗ ∞, and it does not seem clear
how one would recover the result in [9] assuming, say, differentiability of l2-valued maps.

1.2 Results

The main result of this paper states that if (X, μ) is a differentiability space, then at μ-
a.e. x ∈ X any blow-up (Yx , νx ) of (X, μ) is still a differentiability space. The precise
statement is Theorem 5.1.

The question of whether blow-ups of differentiability spaces are still differentiability
spaces has been around since Keith introduced the Lip-lip inequality. This question should
be compared with the easier case where (X, μ) is a PI-space: then any blow-up is still a
PI-space. This follows from the stability of the Poincaré inequality (with uniform constants)
under measured Gromov-Hausdorff convergence, which can be seen using Keith’s elegant
characterization of PI-spaces in terms of moduli of families of curves [26]. Essentially,
the argument reduces to the upper-semicontinuity of modulus (which is dual to the lower-
semicontinuity of length). On the other hand, in the category of differentiability spaces one
cannot expect all blow-ups to be differentiability spaces. For example, any subset S ⊂ R

n of
positive Lebesgue measure is a differentiability space (restricting the Lebesgue measure), but
blow-ups are differentiability spaces (explicitly, copies of Rn with Lebesgue measure) only
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at generic points. Moreover, at the moment there is no “good geometric” characterization of
differentiability spaces that one might pass to the limit; one has to work directly with the
definition of a differentiability space by showing that if at μ-a.e. point x there is some tangent
(Yx , νx ) which is not a differentiability space, then (X, μ) is not a differentiability space.
This can be done from two equivalent points of view: [7, Sect. 4] choosing a candidate chart
and producing a non-differentiable function for that chart, [32, Sect. 5.3] showing that the
space of “germs” of Lipschitz functions is infinite-dimensional.

The methodology that we propose to tackle this problem has two components: “lifting”
and “gluing”. Lifting means to find a suitable “bad” function gx on a blow-up (Yx , νx ),
and then lift it to a bad function fx on (X, μ). Unfortunately, fx will be bad only at some
locations near x and at some scales (which can be small but are bounded away from 0); thus
it is then necessary to glue several fx ’s together. It is worth to point out that lifting depends
on the structure theory for Weaver derivations developed in [32,34]. In fact, (Yx , νx ) is not
a differentiability space, but there is still a decent theory (in particular finite-dimensionality)
for the L∞-modules of Weaver derivations and forms. Another key ingredient in lifting is
Preiss’ phenomenon (Theorem 3.7) that shifted rescalings of blow-ups are still blow-ups.

Gluing consists in combining several fx ’s together. The proposed approach is based on
the idea of “tile” (see Sect. 4): for each x one has to produce several fx ’s at several scales
converging to 0, and then one applies the Vitali Covering Lemma to join the pieces together.
Intuitively, we are using measure theory (e.g. the measure-theoretic statement that (X, μ)

is finite-dimensional) to select the pieces that can be glued together; in some sense, the
construction can’t be “deterministic” because Lipschitz functions are rather rigid and (X, μ)

is a generic doubling metric measure space.
We mention some further directions of research. We are able to show that for iterated blow-

ups of differentiability spaces the analytic dimension does not increase (see Lemma 5.7). It
seems plausible to conjecture that one does not need to take iterated blow-ups: at the moment
we are able to prove this only under additional assumptions on (X, μ) (e.g. when (X, μ)

biLipschitz embedds in Carnot groups or “nice” Banach spaces), and thus do not include these
partial results here. Essentially, there seems to be a technical obstacle in directly applying
the “lifting” method in the form proposed here. This question is also related to wheteher
the results in [13] extend to general differentiability spaces, and on Lusin-like properties for
Weaver derivations that will be discussed elsewhere.

As an application, we obtain a characterization of the p-weak gradient of a Lipschitz
function f on regular differentiability spaces (Definition 5.6) which arise as iterated blow-
ups of differentiability spaces.

This is related to another trend in analysis on metric spaces, where people have tried
to formulate generalizations of Sobolev/BV spaces and gradients. One possible approach
starts with the idea [22] of an upper gradient for a function f , which is essentially an upper
bound on the norm of “what the gradient of f should be”. Then there have been several
proposals for “what the norm of the gradient should be”: a variational one due to [11], one
motivated by quasiconformal geometry and moduli of curves due to Koskela, MacManus
and Shanmugalingam [28,37], and two motivated by optimal transport due to Ambrosio,
Gigli and Savaré [5]. Optimal transport allows to show [5] that all these approaches are equal
under mild assumptions on (X, μ), e.g. assuming X to be complete and separable, and μ to
be finite on bounded sets. In this paper we work with the p-weak gradient of [5] because it
is easier to relate to the existence of Alberti representations using the notion of test plan.

Asking for a characterization of the p-weak gradient on differentiability spaces is not a
good question because positive measure subsets of differentiability spaces are still differ-
entiability spaces, making the notion of p-weak gradient often vacuous (e.g. considering a
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Vitali-Cantor set). However, an interesting question is to ask for a characterization of the
p-weak gradient on blow-ups of differentiability spaces. We show (Theorem 5.8) that for
regular differentiability spaces the p-weak gradient of a Lipschitz function f coincides with
the asymptotic Lipschitz constant, and is hence independent of the exponent p: this gen-
eralizes a previous result [11] for PI-spaces. Note however, that for PI-spaces the p-weak
gradient coincides with the asymptotic Lipschitz constant only if p belongs to the range of
exponents for which the Poincaré inequality holds: this has been shown by recent examples
[20]. This is not the case for regular differentiability spaces: the p-weak gradient does not
depend on p. One can explain the examples [20] in terms of putting “bad weights” on the
lines corresponding to Alberti representations, but these bad weights become again “nice”
by passing to tangent measures. We point out that Theorem 5.8 has an analogue in the BV
category, see Remark 5.9 (see [4] for extensions of [5] to the BV category).

As a historical note, we point out that the notion of regular differentiability space refines
and generalizes the notion of generalized Minkowski space in [11, Sect. 11].

1.3 Organization

In Sect. 2 we discuss background material on Weaver derivations, Alberti representations,
my Ph.D. thesis, differentiability spaces and the p-weak gradient. The presentation is a bit
brisk, so we invite the interested reader to consult the references therein.

In Sect. 3 we first discuss (Sect. 3.1) variants of Gromov-Hausdorff convergence, the pur-
pose being mainly to establish some terminology. The substantial result from this subsection
that we will use is the aforementioned Preiss’ phenomenon, Theorem 3.7 [21,30,31]. We
then move on (Sect. 3.2) to explain how rescalings affect the modules of derivations and
forms. We conclude this section with a generalization of a result [18, Sect. 7] to the category
of Weaver derivations. We point out that this result to blow-up Weaver derivations has other
applications, e.g. to the infinitesimal structure of metric currents in R

n , that will be discussed
elsewhere.

Section 4 contains our proposal to implement the “gluing” part of the argument; this is
more general than what we really use here, because we end up working with “cubical” tiles
[12,23]. Using other geometries for tiles might lead to a better understanding of the geometry
of blow-ups; for example, Preiss and I discussed sometime ago what are essentially “long
cylindrical” tiles to exclude factorizations of the form Y ×R

n in blow-ups of differentiability
spaces.

In Sect. 5.1 it is shown that generic blow-ups of differentiability spaces are still differ-
entiability spaces by proving the contrapositive statement; the first 6 steps of Theorem 5.1
correspond to “lifting”. Section 5.2 discusses the characterization of the p-weak gradient
on regular differentiability spaces; the key step is Lemma 5.3 which associates test plans to
“nice” Alberti representations.

1.4 Notational conventions

We use the convention a ≈ b to say that a/b, b/a ∈ [C−1,C] whereC is a universal constant;
when we want to highlight C we write a ≈C b. We similarly use notations like a � b and
a �C b.
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2 Background material

2.1 Weaver derivations

For more information we refer the reader to [38]. An L∞(μ)-module M is a Banach space
M which is also an L∞(μ)-module and such that for all (m, λ) ∈ M × L∞(μ) one has:

‖λm‖M ≤ ‖λ‖L∞(μ) ‖m‖M . (2.1)

Among L∞(μ)-modules a special rôle is played by L∞(μ)-normed modules:

Definition 2.1 (Normed modules) An L∞(μ)-module M is said to be an L∞(μ)-normed
module if there is a map

| · |M,loc : M → L∞(μ) (2.2)

such that:

(1) For each m ∈ M one has |m|M,loc ≥ 0;
(2) For all c1, c2 ∈ R and m1,m2 ∈ M one has:

|c1m1 + c2m2|M,loc ≤ |c1||m1|M,loc + |c2||m2|M,loc; (2.3)

(3) For each λ ∈ L∞(μ) and each m ∈ M , one has:

|λm|M,loc = |λ| |m|M,loc; (2.4)

(4) The local seminorm | · |M,loc can be used to reconstruct the norm of any m ∈ M :

‖m‖M = ‖ |m|M,loc ‖L∞(μ). (2.5)

Definition 2.2 (Weaver derivation) A derivation D : Lipb(X) → L∞(μ) is a weak* con-
tinuous, bounded linear map satisfying the product rule:

D( f g) = f Dg + gD f. (2.6)

Note that the product rule implies that Df = 0 if f is constant. The collection of all
derivations X(μ) is an L∞(μ)-normed module [38, Theorem 2] and the corresponding local
norm will be denoted by | · |X(μ),loc. Note also that X(μ) depends only on the measure class
of μ.

Remark 2.3 Consider a Borel set U ⊂ X and a derivation D ∈ X(μ U ). The derivation D
can be also regarded as an element of X(μ) by extending Df to be 0 on X\U . In particular,
the module X(μ U ) can be naturally identified with the submodule χUX(μ) of X(μ).

Derivations are local in the following sense [38, Lemma 27]):

Lemma 2.4 (Locality of Derivations) If U is μ-measurable and if f, g ∈ Lipb(X) agree on
U, then for each D ∈ X(μ), χU D f = χU Dg.

Note that locality allows to extend the action of derivations on Lipschitz functions so that if
f ∈ Lip(X) and D ∈ X(μ), Df is well-defined (see Remark 2.115 in [32]). We now pass to
consider some algebraic properties of X(μ).

In general, even if the module X(μ) is finitely generated, it is not free. Nevertheless, it is
possible to obtain a decomposition into free modules over smaller rings [35,38]:
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Theorem 2.5 (Free Decomposition) Suppose that the moduleX(μ) is finitely generated with
N generators. Then there is a Borel partition X = ⋃N

i=0 Xi such that, if μ(Xi ) > 0, then
X(μ Xi ) is free of rank i as an L∞(μ Xi )-module. A basis of X(μ Xi ) will be called a
local basis of derivations.

Remark 2.6 In particular, Theorem 2.5 can be applied if one knows an upper bound on the
index of X(μ) which is defined as follow:

index of X(μ) = sup{n ∈ N : ∃UBorel : X(μ U )contains n-independent

elements(over L∞(μ U ))}. (2.7)

In many applications in analysis on metric spaces the assumption that X(μ) has finite
index (and is hence finitely generated) is not restrictive: for example it holds if either μ or X
are doubling (see Corollary 5.136 in [32]).

We now recall the notion of 1-forms which are dual to derivations.

Definition 2.7 The module of 1-forms E(μ) is the dual module of X(μ), i.e. it consists of the
bounded module homomorphisms X(μ) → L∞(μ). The module E(μ) is an L∞(μ)-normed
module and the local norm will be denoted by | · |E(μ),loc.

To each f ∈ Lipb(X) one can associate the 1-form d f ∈ E(μ) by letting:

〈d f, D〉 = Df (∀D ∈ X(μ)); (2.8)

the map d : Lipb(X) → E(μ) is a weak* continuous 1-Lipschitz linear map satisfying the
product rule d( f g) = gd f + f dg.

Note that because of Lemma 2.4 one can extend the domain of d to Lip(X) so that if f is
Lipschitz, d f is a well-defined element of E(μ) and ‖d f ‖E(μ) ≤ L ( f ), where L ( f ) denotes
the global Lipschitz constant of f .

2.2 Alberti representations

Alberti representations (without this name) were introduced in [6]; we invite the reader to
consult [8,18,32] for more information.

Definition 2.8 (Fragments and Curves) A fragment in X is a biLipschitz map γ : C → X ,
where C ⊂ R is closed. The set of fragments in X will be denoted by Frag(X). We now
discuss the topology on Frag(X); let F(R × X) denote the set of closed subsets of R × X
with the Fell topology [24, (12.7)]; we recall that a basis of the Fell topology consists those
sets of the form:

{F ∈ F(R × X) : F ∩ K = ∅, F ∩Ui �= ∅ for i = 1, . . . , n} , (2.9)

where K is a compact subset of R × X , and {Ui }ni=1 is a finite collection of open subsets of
R×X . Each fragment γ can be identified with an element of F(R×X) and thus Frag(X) will
be topologized as a subset of F(R × X). We will use fragments to parametrize 1-rectifiable
subsets of X .

An important subset of Frag(X) consists of the Lipschitz curves Curves(X), which is the
set of those γ ∈ Frag(X) whose domain is a (possibly unbounded) closed subinterval of
R. Given an interval I ⊂ [0, 1] we denote by Curves(X, I ) ⊂ Curves(X) the set of those
γ ∈ Curves(X) whose domain is contained in I .
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Definition 2.9 (Alberti representations) Let μ be a Radon measure on X . An Alberti repre-
sentation of μ is a pair A = [Q, w] where Q is a Radon measure on Frag(X) and w a Borel
function w : X → [0,∞) such that:

μ =
∫

Frag(X)

w · γ#(L1 dom γ ) dQ(γ ), (2.10)

where the integral is interpreted in the weak* sense. We say that A is C-Lipschitz
(resp. [C, D]-biLipschitz) if Q is concentrated on the set of C-Lipschitz (resp. [C, D]-
biLipschitz) fragments.

Definition 2.10 (Speed of fragments) Let γ ∈ Frag(X); then for L1-a.e. t ∈ dom γ the limit:

lim
dom γ�t ′→t

d(γ (t ′), γ (t))

|t ′ − t | (2.11)

exists, is denoted by md γ (t) and is called the metric differential of γ at t .

Definition 2.11 (Speed of Alberti representations) Let A = [Q, w] be an Alberti represen-
tation, and let σ : X → [0,∞) be a Borel function and f : X → R be a Lipschitz function.
We say thatA has f -speed ≥ σ (resp. ≤ σ ) if for Q-a.e. γ one has that forL1-a.e. t ∈ dom γ :

( f ◦ γ )′(t) ≥ σ(γ (t)) md γ (t) (resp. ≤ σ(γ (t)) md γ (t)). (2.12)

2.3 The correspondence between derivations and Alberti representations

We invite the reader to consult [32,34] for more information. The following definition follows
from Theorem 3.11 in [32].

Definition 2.12 (Derivation associated to an Alberti representation) Let A = [Q, w] be a
C-Lipschitz Alberti representation of a measure ν � μ; then the formula:

∫

X
gDA f dν =

∫

Frag(X)

dQ(γ )

∫

dom γ

(wg) ◦ γ (t)( f ◦ γ )′(t) dt

(∀(g, f ) ∈ Cc(X) × Lipb(X)) (2.13)

defines a derivation DA ∈ X(ν) ⊂ X(μ) with ‖DA‖X(μ) ≤ C .

The following theorem summarizes some results in [32,34] that we will use.

Theorem 2.13 (Correspondence between derivations and representations) Letμ be a Radon
measure on a complete separable metric measure space (X, μ). Then:

(IndBound): If μ or X are doubling (with constant C), then the index of X(μ) is ≤
�log2 C�;
(Surj): If X(μ) is finitely generated with N generators, then for each ε > 0 and each
D ∈ X(μ) there is an (1+ε)N‖D‖X(μ)-Lipschitz Alberti representationA of a measure
ν � μ such that DA = D;
(WDens): In general the set of derivations of the form DA is weak* dense in X(μ) in the
sense that, given any D ∈ X(μ), for all ε > 0, for each λ ∈ L1(μ) and for each finite set
of Lipschitz functions {gi }ki=1 one can find an Alberti representation A of μ such that:

∫

X
|λ|

k∑

i=1

|Dgi − DAgi | dμ ≤ ε. (2.14)
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Recall that a sequence { fn} ⊂ Lipb(X) converges to f ∈ Lipb(X) in the weak* topology

( fn
w∗−→ f ) if fn → f pointwise and supn L ( fn) < ∞. This result is a functional-analytic

interpretation of constructions in [2,3,7], that was obtained in [32,34]; to obtain the optimal
constants we were greatly helped by Andrea Marchese’s Ph.D. thesis.

Theorem 2.14 (Approximation Scheme) Let K ⊂ X be compact and assume that μ K

does not admit anAlberti representationwith f -speed≥ δ. Then there is a sequence gk
w∗−→ f

such that each gk is max(L ( f ) , δ)-Lipschitz and, for each k, there is an open set Uk ⊃ K
such that for each ball B ⊂ Uk the restriction gk |B is δ-Lipschitz.

This result [32,34, Sect. 3.3] characterizes the local norm on the Weaver cotangent bundle.

Theorem 2.15 (Characterization of the local norm) Let K ⊂ X be compact, f : X → R

Lipschitz and ε > 0. Then μ K admits a (1, 1 + ε)-biLipschitz Alberti representation with
f -speed ≥ |d f |E(μ) − ε.

2.4 Differentiability spaces

We start with a brief review of differentiability spaces. For more details we refer to the original
papers [11,25,27] or to the expository paper [29]. This structure has several names in the
literature: (strong) measurable differentiabile structure, differentiable structure (in the sense
of Cheeger and Keith), Lipschitz differentiability space, differentiability space. We highlight
the features of differentiability spaces; contrary to some earlier papers, we do not assume a
uniform bound on the dimension of the charts.

(1) There is a countable collection of charts {(Uα, φα)}α , where Uα ⊂ X is Borel and φα

is Lipschitz, such that X\(∪αUα) is μ-null, and each real-valued Lipschitz function f
admits a first order Taylor expansion with respect to the components of φα : X → R

Nα

at generic points of Uα , i.e. there are (a.e. unique) measurable functions ∂ f
∂φi

α
on Uα such

that:

f (x) = f (x0) +
Nα∑

i=1

∂ f

∂φi
α

(x0)
(
φi

α(x) − φi
α(x0)

)
+ o (d(x, x0))

(for μ-a.e. x0 ∈ Uα). (2.15)

The integer Nα is the dimension of the chart {(Uα, φα)}α , and depends only on the set
Uα , not on the particular choice of the coordinate functions φα . If supα Nα < ∞, it is
called the differentiability or the analytic dimension. Since in this paper we are interested
in the blow-ups of differentiability spaces, we can assume that there is a unique chart
that covers all the space.

(2) There are measurable cotangent and tangent bundles T ∗X and T X ; however, we will
work with X(μ) and E(μ). By the result of [32,34] X(μ) can be identified with the set
of bounded measurable sections of T X and E(μ) with the set of bounded measurable
sections of T ∗X . Having locally trivialized T ∗X and T X , forms in T ∗X correspond to
differentials of Lipschitz functions, and vectors in T X give rise to examples of Weaver
derivations in X(μ).

123



22 Page 10 of 30 A. Schioppa

Definition 2.16 (Variation and pointwise Lipschitz constants) For f ∈ Lip(X) we define the
variation Var f (x, r) at x at scale r , the big-Lip constant Lip f at x and the small-lip constant
lip f at x as follows:

Var f (x, r) = 1

r
sup

y∈B(x,r)
| f (y) − f (x)| (2.16)

Lip f (x) = lim sup
r↘0

Var f (x, r) (2.17)

lip f (x) = lim inf
r↘0

Var f (x, r). (2.18)

A metric measure space (X, μ) satisfies Keith’s Lip-lip inequality with constant K ≥ 1 if
for each f Lipschitz one has:

Lip f ≤ K lip f μ-a.e. (2.19)

Theorem 2.17 (Summary of results on differentiability spaces) This list summarizes relevant
results on differentiability spaces:

(Cheeger): [11]; if (X, μ) is a doubling metric measure space which admits an abstract
Poincaré inequality in the sense of Heinonen-Koskela [22] then (X, μ) is a differentia-
bility space whose analytic dimension is bounded by an expression that depends only on
the doubling constant Cμ of μ and the constants that appear in the Poincaré inequality.
Moreover, (2.19) holds with K = 1;
(Keith): [25,27]; if (X, μ) is a doubling metric measure space which satisfies the Lip-lip
inequality (2.19), then (X, μ) is a differentiability space whose analytic dimension is
bounded by an expression that depends only on Cμ and K . Moreover [26], the Poincaré
inequality is stable under measured Gromov-Hausdorff convergence provided all the
relevant constants are uniformly bounded; for example, blow-ups of PI-spaces are PI-
spaces (with the same PI-exponent);
(Bate–Speight): [10]; if (X, μ) is a differentiability space then μ is asymptotically dou-
bling in the sense that for μ-a.e. x there are (Cx , rx ) ∈ (0,∞)2 such that:

μ (B(x, 2r)) ≤ Cxμ (B(x, r)) (r ≤ rx ); (2.20)

moreover, porous sets areμ-null. In the following, to simplify the exposition, we will thus
assume that differentiability spaces are doubling metric measure spaces.
(Bate): [7,8]; if (X, μ) is a differentiability space, μ admits many independent Alberti
representations generalizing some of the results in R

N of [2,3]. Moreover, (2.19) holds
where now K is a Borel function that depends only on X;
(Schioppa): [32,34]; in a differentiability space (2.19) always holds with K = 1. More-
over, (X, μ) is a differentiability space if and only if for each Lipschitz function f :

Lip f = |d f |E(μ) (μ-a.e.), (2.21)

and (2.21) already encodes the condition thatμ is asymptotically doubling. We will refer
to (2.21) as the quantitative characterization of differentiability spaces.

As a historical note, we point out that an earlier result (where one loses the optimal PI-
exponent) on the stability of the Poincaré inequality under measured Gromov-Hausdorff
convergence can be found in [11, Sect. 9].
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2.5 The p-weak gradient

We recommend as a reference [1] besides [5].

Definition 2.18 (Absolutely continuous curves) Let I be either a nondegenerate interval of
R of the form [a, b], (−∞, a] or [a,∞), or the whole R. A curve γ : I → X is absolutely
continuous if there is a g ∈ L1(L1 dom γ ) such that for each t, s ∈ dom γ with t ≥ s one
has:

d(γ (t), γ (s)) ≤
∫ t

s
g(τ ) dτ. (2.22)

Recall that if γ : dom γ → X is absolutely continuous there is a minimal g satisfying (2.22)
which coincides L1 dom γ -a.e. with the metric differential md γ as defined in (2.11). Let
p ∈ [1,∞) and γ be an absolutely continuous curve; then γ is of class ACp if:

∫

dom γ

(md γ (t))p dt < ∞. (2.23)

The limit case p = ∞ corresponds to γ being Lipschitz. The set of curves of class ACp and
with domain [0, 1] will be denoted by ACp(X; [0, 1]).
Definition 2.19 (Test plan) Let (X, μ) be a metric measure space and p ∈ [1,∞]; a proba-
bility measure on ACp(X; [0, 1]) is called a p-test plan provided that:

∫

ACp(X;[0,1])
dπ(γ )

∫ 1

0
(md γ (t))p dt < ∞ (2.24)

Evt#π ≤ C(π)μ (∀t ∈ [0, 1]) (2.25)

for some constant C(π), where Evt denotes the evaluation map:

Evt : ACp(X; [0, 1]) → X

γ �→ γ (t). (2.26)

Definition 2.20 (p-weak gradients) Let (X, μ) be a metric measure space, f : X → R and
g : X → [0,∞] Borel. Let p ∈ (1,∞) and q denote the dual exponent p

p−1 . The function
g is a p-weak upper gradient of f if for each q-test plan π

| f (γ (1)) − f (γ (0))| ≤
∫ 1

0
g ◦ γ md γ (t) dt (2.27)

holds π-a.s.
Assuming that f has a p-weak upper gradient g0 such that the measure μ {g0 > 0} is

σ -finite, then the set of p-weak upper gradients of f contains a minimal element, the p-weak
gradient of f , such that:

|∇ f |p,w ≤ g (μ-a.e.) (2.28)

for each p-weak upper gradient g of f .

3 Blow-up of Weaver derivations

3.1 Variants of Gromov-Hausdorff convergence

We discuss some variants of Gromov-Hausdorff convergence (GH for short). Throughout
this subsection metric spaces are assumed to be complete.
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22 Page 12 of 30 A. Schioppa

Definition 3.1 (GH-convergence) The GH-convergence of a sequence of pointed metric

spaces (Xn, pn)
GH−−→ (Y, q) is equivalent to the existence of a pointed metric space (Z , z),

which we will call a container, and isometric embeddings:

ιn : Xn → Z

ι∞ : Y → Z (3.1)

such that:

(GH1): ιn(pn) → ι∞(q); one can even arrange ιn(pn) = ι∞(q) = z;
(GH2): for each R > 0, one has:

lim
n→∞ sup

y∈B(z,R)∩ι(Y )

dist (ιn (Xn) , {y}) = 0,

lim
n→∞ sup

y∈B(z,R)∩ιn(Xn)

dist (ι (Y ) , {y}) = 0. (3.2)

In the following we will often suppress ιn and ι∞ from the notation, just implying Xn, Y ⊂ Z .
Note that each y ∈ Y can be “approximated” by a sequence xn ∈ Xn such that ιn(xn) →
ι∞(y) in Z . This notion is actually independent of the container (Z , z), and one can represent
each point y ∈ Y by some sequence xn ∈ Xn .

Definition 3.2 (mGH-convergence) We say that a pointed metric measure space (X, μ, p)
is measure-normalized if

∫
B(p,1)

(1 − d(p, x)) dμ(x) = 1. The measured GH-convergence
(mGH for short) of a sequence of measure-normalized pointed metric measure spaces

(Xn, μn, pn)
mGH−−−→ (Y, ν, q) is equivalent to requiring (Xn, pn)

GH−−→ (Y, q), and that for
each container (Z , z):

μn
w∗−→ ν

(
i.e. ιn,#μn

w∗−→ ι∞,#ν
)

. (3.3)

Definition 3.3 (mfGH-convergence) A function space is a tuple (X, μ, p,�) where
(X, μ, p) is a normalized pointed metric measure space, and � is an at most countable
collection of real-valued 1-Lipschitz functions on X which vanish at p. We say that:

(Xn, μn, pn,�n)
mfGH−−−→ (Y, ν, q, �) (3.4)

in the mfGH-sense if:

(mfGH1): (Xn, μn, pn)
mGH−−−→ (Y, ν, q);

(mfGH2): �n and � have eventually the same cardinality;
(mfGH3): Let ϕn,k denote the kth element of �n and ψk the k-th element of �; then
whenever xn represents y, ϕn,k(xn) → ψk(y).

Remark 3.4 Let (Xn, μn, pn,�n)
mfGH−−−→ (Y, ν, q, �) in the container (Z , z). By replacing

Z with Z × R and slightly shifting basepoints we may assume:

Xn ∩ Xm = ∅ (n �= m)

Y ∩ Xn = ∅ (∀n).
(3.5)

Then we might try to define ϕZ ,k = ϕn,k on Xn and ϕZ ,k = ψk on Y . This yields a continuous
function on

⋃
n Xn ∪Y which one might extend to Z . However, fix R > 0; then ϕZ ,k |B(z, R)

is almost 1-Lipschitz up to additive errors that depend on the Hausdorff-distance between
Xn ∩ B(z, R) and Y ∩ B(z, R). By replacing Z with Z × R, passing to a subsequence and
shifting basepoints, one can verify the following lemma.
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Lemma 3.5 Let (Xn, μn, pn,�n)
mfGH−−−→ (Y, ν, q, �) in the container (Z , z). Up to passing

to a subsequence and taking a new container of the form (Z × R, (z, 0)), one can assume
that for each k ≤ #� there is a 1-Lipschitz function ϕZ ,k : Z → R such that:

(1) ϕZ ,k |Y = ψk;
(2) for each R > 0, k ≤ #�, there is an N (R, k) such that, if n ≥ N (R, k), one has:

ϕZ ,k |B(z, R) ∩ Xn = ϕn,k . (3.6)

For λ > 0 and a metric space X , we denote by λX the metric space where the metric on
X has been rescaled by λ, i.e. dλX = λdX . Let � be a countable collection of 1-Lipschitz
functions on X and p ∈ X . Then we denote by �λ,p the collection of 1-Lipschitz functions
on λX given by:

�λ,p = {λ (ϕ − ϕ(p)) : ϕ ∈ �}. (3.7)

Definition 3.6 (Blow-ups) A blow-up of X at a point p is a pointed metric space (Y, q) such
that for some sequence λn ↗ ∞:

(Xn, pn) = (λn X, p)
GH−−→ (Y, q); (3.8)

in this case we say that (Y, q) is realized by the sequence of rescalings {λn}. The set of
blow-ups of X at p will be denoted by Bw-up(X, p).
Let (X, μ) be a metric measure space, p ∈ X a basepoint and λ > 0 a dilating factor; we
define the normalization constant cμ(p, λ) for the unit ball of λX centred at p as follows:

cμ(p, λ) =
(∫

BX (p,λ−1)

(1 − λdX (p, x)) dμ(x)

)−1

. (3.9)

Note that in (3.9) we used the subscript X to highlight that balls are taken with respect to the
metric dX of X . A blow-up of (X, μ) at a point p is a measure-normalized pointed metric
space (Y, ν, q) such that for some sequence λn ↗ ∞:

(Xn, μn, pn) = (λn X, cμ(p, λn) μp)
mGH−−−→ (Y, ν, q); (3.10)

in this case we say that (Y, ν, q) is realized by the sequence of rescalings {λn}. The set of
blow-ups of X at p will be denoted by Bw-up(X, μ, p).
A blow-up of (X, μ,�) at a point p is a function space (Y, ν, q, �) such that for some
sequence λn ↗ ∞:

(Xn, μn, pn,�n) = (λn X, cμ(p, λn) μ, p,�λn ,p)
mfGH−−−→ (Y, ν, q, �); (3.11)

in this case we say that (Y, ν, q, �) is realized by the sequence of rescalings {λn}. The set of
blow-ups of X at p will be denoted by Bw-up(X, μ, p,�).

The following theorem summarizes variants in the metric setting of Preiss’ phenomenon
that tangents of tangents are tangents [31]; (1) is due to [30], (2) to [21]; the proof of (3) is
omitted as can be easily reconstructed from [21]. It is clear that (3) can be generalized in
further directions, e.g. in the context of blowing-up pseudodistances.

Theorem 3.7 (Shifted rescalings of blow-ups are blow-ups) Let (X, μ) be a doubling metric
measure space and � a countable collection of 1-Lipschitz functions on X. Then for μ-
a.e. p ∈ X the following holds:
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(1) For each (Y, q) ∈ Bw-up(X, p), for any (λ, q ′) ∈ (0,∞) × Y one has (λY, q ′) ∈
Bw-up(X, p); in particular, Bw-up(Y, q ′) ⊂ Bw-up(X, p);

(2) For each (Y, ν, q) ∈ Bw-up(X, μ, p), for any (λ, q ′) ∈ (0,∞) × Y one has
(λY, cν(q ′, λ) ν, q ′) ∈ Bw-up(X, μ, p); in particular, Bw-up(Y, ν, q ′) ⊂ Bw-up
(X, μ, p);

(3) For each (Y, ν, q, �) ∈ Bw-up(X, μ, p,�), for any (λ, q ′) ∈ (0,∞) × Y one has
(λY, cν(q ′, λ)ν, q ′, �λ,q ′) ∈ Bw-up(X, μ, p,�); in particular, Bw-up(Y, ν, q ′, �)

⊂ Bw-up(X, μ, p,�).

3.2 Blow-up of Weaver derivations and weak convergence for normal currents

In this subsection we analyze how rescalings affect the modules X(μ) and E(μ). When we
want to highlight an object that refers to the rescaled space λX (resp. the original space X ),
we add λX (resp. X ) to the notations. Recall that in this paper we use the notation L ( f ) for
the global Lipschitz constant of f . We then sketch the details of how to use a result in [18,
Sect. 7] to blow-up Weaver derivations. The following lemma is elementary and the proof is
omitted.

Lemma 3.8 Let X be a metric space, λ > 0 and f a real-valued Lipschitz function defined
on X. Then LX ( f ) = C if and only if LλX (λ f ) = C, and LX (λ−1 f ) = C if and only if
LλX ( f ) = C.

Definition 3.9 (Rescaling of an Alberti representation) Let A = [Q, w] be an Alberti rep-
resentation of the measure μ on X ; let λ > 0 and define Resλ : Frag(X) → Frag(λX) as
follows:

dom (Resλ(γ )) = λ dom γ

Resλ(γ )(t) = γ (t/λ). (3.12)

Let p ∈ X and define Resλ,p : Frag(X) → Frag(λX) as follows:

dom
(
Resλ,p(γ )

) = λ(dom γ − sγ,p)

Resλ,p(γ )(t) = γ (t/λ + sγ,p), (3.13)

where sγ,p is such that:

d
(
γ (sγ,p), p

) = min
t∈dom γ

d (γ (t), p) . (3.14)

Note that a measurable choice of Resλ,p can be obtained via a measurable selection principle.
The rescalings Aλ and Aλ,p are defined as follows:

Aλ = [Resλ #Q, w]
Aλ,p = [Resλ,p #Q, w]. (3.15)

Note that if A is [C0, D0]-biLipschitz on X , then Aλ and Aλ,p are [C0, D0]-biLipschitz on
λX .

Lemma 3.10 Let f ∈ Lipb(X); then

λ−1
∣
∣
∣d(X) f

∣
∣
∣
E(μ;X)

=
∣
∣
∣d(λX) f

∣
∣
∣
E(μ;λX)

. (3.16)
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Proof Assume that
∣
∣d(X) f

∣
∣
E(μ;X)

≥ α on a set S. Fix ε > 0; then by Theorem 2.15 one can
find a (1, 1 + ε)-biLipschitz Alberti representation AS of μ S with f -speed ≥ α − ε. This
means that for Q-a.e. γ and L1 dom γ -a.e. t one has:

( f ◦ γ )′(t) ≥ (α − ε). (3.17)

Now the rescaled representation AS,λ gives a (1, 1 + ε)-biLipschitz (wrt. the metric on λX )
Alberti-representation of μ S with a lower bound on the f -speed, that can be obtained
using:

( f ◦ Resλ(γ ))′(t) = d

dt
( f (γ (t/λ)))

= λ−1( f ◦ γ )′(t/λ) ≥ λ−1(α − ε)

≥ λ−1(1 + ε)−1(α − ε) md Resλ(γ )(t), (3.18)

where the metric differential Resλ(γ )(t) is computed with respect to the metric on λX . Thus:
∣
∣
∣d(λX) f

∣
∣
∣
E(μ;λX)

≥ λ−1α μ-a.e. on S. (3.19)

��
Theorem 3.11 (Blow-up of Weaver derivations) Let (X, μ) be a complete separable dou-
bling metric measure space where μ is an asymptotically doubling Radon measure. Let
� be a countable collection of real-valued 1-Lipschitz functions on X. Let D ∈ X(μ; X)

be of the form D = DA where A is a [C0, D0]-biLipschitz Alberti representation of μ.
Then there is a μ-full measure Borel set Xblow such that for each p ∈ Xblow and each
(Y, ν, q, �) ∈ Bw-up(X, μ, p,�) one can blow-up D as follows. Assume that (Y, ν, q, �)

is realized by some sequence of rescalings {λn}n and let An = Aλn ,p and D(n) = DAn

be the corresponding derivation in X(μn; Xn). Then there is an Alberti representation
A∞ = [Q∞, 1] of ν such that, defining D(∞) = DA∞ , the following holds:

(Bw-up1): spt Q∞ consists of lines in Y with constant speed in [C0, D0];
(Bw-up2): For each ϕ ∈ � and γ in spt Q∞ there is a cϕ,γ ∈ [−1, 1] such that, ifψ ∈ �

denotes the corresponding blow-up of ϕ:

(ψ ◦ γ )′(t) = cϕ,γ md γ (t) (∀t ∈ R); (3.20)

(Bw-up3): Suppose that (Xn, μn, xn,�λn ,x )
mfGH−−−→ (Y, ν, y, �) in the container (Z , z);

then up to passing to a subsequence (which might depend on the container) one can
assume that for each (g, f ) ∈ Cc(Z) × Lipb(Z) one has:

lim
n→∞

∫

g D(n) f dμn =
∫

g D(∞) f dν. (3.21)

Remark 3.12 The statement (3.21) has a cleaner interpretation in the language of metric
currents [33]: the metric currents:

Tn(g, f ) =
∫

g D(n) f dμn (3.22)

are converging to the normal current:

T (g, f ) =
∫

g D(∞) f dν (3.23)

in the weak topology.
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Remark 3.13 One can also remove from Theorem 3.11 the assumption that X is doubling.
In that case one has to replace X by an appropriate full-measure Borel X̃ ⊂ X and blow-up
X̃ . However, note that if porous sets are not μ-null, there will be a set of positive measure
where X̃ and X do not have the same blow-ups (e.g. it might happen that one cannot apply
Gromov’s compactness Theorem to X ). However, if one uses ultrafilters, one can show that
if (Y, y) is a blow-up of X at x ∈ X̃ , then there is a blow-up (Ỹ , ν, y) of (X̃ , μ X̃) at x such
that Ỹ ⊂ Y .

Proof The proof can be reconstructed from the argument in [18, Sect. 7] where the result
is stated in a less general context: (X, μ) is a differentiability space and � is a finite set
of Lipschitz functions. The only item that requires further justification is (Bw-up3). We
highlight the additional arguments; we will refer to the notation and setting in [18, Sect. 7];
in particular, rn = λ−1

n and for γ ∈ Frag(X) we define:

�(γ ) = γ�(L1 dom γ ). (3.24)

However note that we are using a convention to normalize the measures different from that
in [18], where measures are rescaled to give unit mass to the open unit ball. This essentially
amounts to replacing some terms in [18, Sect. 7] of the form μ′(B(x, r)) with 1/cμ′(x, r−1),
see the following discussion for more details. In [18, Sect. 7], we have performed some
preliminary steps:

(PS1): If A = [Q, w], instead of working with μ, we work with the measure μ′
corresponding to the Alberti representation A = [Q, 1]. This can be done as μ is asymp-
totically doubling and as DA is not affected on the set where w �= 0;
(PS2): For γ ∈ spt Q we have split �(γ ) in a regular part �PAR(εm ,Sm/rn)(γ ) and an
irregular part �c

PAR(εm ,Sm/rn)
(γ ) (compare Eq. (7.34) in [18, Sect. 7]). There are straight-

forward modifications for the regularity requirements to handle a countable collection
�; here ε and S play the rôle of parameters selecting (S) how long γ is, and (ε) how
close γ is to a constant speed segment on which the first �S� elements of � are close to
affine maps;
(PS3): We have chosen an l1-sequence {εm} ⊂ (0,∞) and used (Lemma 7.35 in [18,
Sect. 7]) measure-differentiation to find a Borel set U and scales sm ≤ Sm such that:

μ(X\U ) ≤
∞∑

m=1

εm

μ′c
PAR(εm ,Sm ) (B(x, r)) ≤ εm

cμ′(x, r−1)
(∀ x ∈ U, r ≤ sm), (3.25)

where

μ′
PAR(εm ,Sm ) =

∫

�PAR(εm ,Sm )(γ ) dQ(γ )

μ′c
PAR(εm ,Sm ) =

∫

�c
PAR(εm ,Sm )(γ ) dQ(γ ). (3.26)

Note that the second equation in (3.25) differs from the corresponding one in Lemma
7.35 of [18, Sect. 7], as we have replaced μ′ (B(x, r)) with 1/cμ′(x, r−1). This is possible
as μ′ is asymptotically doubling and the function 1 − r−1d(·, x) has value at least 1

2 on
B(x, r/2); this also implies that for each fixed R0 ≥ 1 one can find C(R0) such that
cμ′(x, r−1) �C(R0) cμ′(x, R−1

0 r−1): we will not insist on this point any further;
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(PS4): We take x ∈ U and, up to enlarging (Z , z), we assume that (Z , z) is a Banach
space.

We now fix R0 large enough so that, given (g, f ) ∈ Cc(Z) × Lipb(Z), spt g ⊂ B(z, R0).
As |DAn f | ≤ D0L ( f ), we conclude from Eq. (7.55) in [18, Sect. 7] that:

∣
∣
∣
∣
∣
cμ′(p, r−1

n )

∫

BXn (p,R0)

gDAn f dμ′c
PAR(εm ,Sm/rn)

∣
∣
∣
∣
∣
≤ ‖g‖∞D0L ( f ) cμ′(p, r−1

n )

×μ′c
PAR(εm ,Sm/rn) (BX (p, rn R0)) ;

(3.27)

note that we are regarding μ′c
PAR(εm ,Sm/rn)

as a measure on Xn and are suppressing from the
notation the isometric embeddings in Z .

As Z is a Banach space, one can introduce a “filling map” Fill which fills fragments to
curves (details are discussed in [18, Sect. 7]). Using the Hausdorff topology on fragments
one can introduce reparametrization maps {Repn}n which agree, up possibly to a translation,
with the map {Resλn ,x }n .

Let �Xn ⊂ Frag(X) denote the set of those [C0, D0]-biLipschitz fragments which intersect
B̄X (x, 2R0rn), and by �̃Xn ⊂ �Xn the Borel subset of those γ such that:

χBXn (x,R0)�PAR(εm ,Sm/rn)
(
Repn(γ )

) �= 0. (3.28)

Then combining Eqs. (7.60) and (7.66) in [18, Sect. 7] with the definition of D(n) one arrives
at the estimate:

∣
∣
∣
∣

∫

Xn

gD(n) f dμ′
n − cμ′(p, r−1

n )

∫

�̃Xn

dQ(γ )

∫

rng ◦ (Fill ◦ Repn)(γ )

× (
f ◦ (Fill ◦ Repn)(γ )

)′
χBXn (x,R0) d�

(
Fill ◦ Repn(γ )

)
∣
∣
∣
∣

≤ ‖g‖∞D0L ( f )

(

O(εm) + C(C0, D0)εm

× cμ′(p, r−1
n )μ′(BX (p, 2rn R0))

)

. (3.29)

Note that by using the property of μ′ being asymptotically doubling one can find a uniform
bound on cμ′(p, r−1

n )μ′(BX (p, 2rn R0)) which depends on R0 but not on n. Letting:

Qn = cμ′(p, r−1
n ) rnFill ◦ Repn(γ )�Q �̃Xn (3.30)

one can use the mass estimate (Eq. (7.71) in [18, Sect. 7]) to show that Qn
w∗−→ QR0 by

passing to a subsequence. By a diagonal argument (compare the proof of Lemma 7.78 in
[18, Sect. 7]) which involves R0 ↗ ∞ one can obtain a limit Q∞ of the QR0 and an Alberti
representation A∞ = [Q∞, 1]. To prove (3.21) it suffices to use the definition of the weak*
topology for Radon measures by showing that if � is a closed subset of Curves(Z) with all
elements of � having their domain contained in a given bounded interval of R, and with
sup��γ L (γ ) < ∞, then the map:

� � γ �→
∫

g ◦ γ ( f ◦ γ )′d�(γ ) (3.31)

is continuous. This reduces to the weak* continuity of the derivation ∂x ∈ X(L1) on the real
line [38]. ��
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Corollary 3.14 Let (X, μ) be a metric measure space with μ asymptotically doubling and
assume that E(μ) is free on {dϕi }Ni=1 where each ϕi is 1-Lipschitz, and let� = {ϕi }Ni=1. Then
for μ-a.e. x and for each (Y, ν, y, �) ∈ Bw-up(X, μ, x,�) the following holds:

(FormBlow1): The submodule of E(ν) generated by the {dψi }Ni=1 (where {ψi }Ni=1 = �)
is free;
(FormBlow2): For each a ∈ R

N there is an Alberti representation [Qa, 1] of ν, where
Qa is concentrated on the set of unit-speed lines of Y satisfying:

N∑

i=1

ai (ψi ◦ γ (t) − ψi ◦ γ (s)) =
∣
∣
∣
∣
∣

N∑

i=1

aidϕi (x)

∣
∣
∣
∣
∣
E(μ)

(t − s) (∀ t ≥ s); (3.32)

(FormBlow3): Moreover, if (X, μ) is a differentiability space, one also has:

∣
∣
∣
∣
∣

N∑

i=1

aidϕi (x)

∣
∣
∣
∣
∣
E(μ)

= Lip

(
N∑

i=1

aiϕi

)

(x) = L

(
N∑

i=1

aiψi

)

. (3.33)

Proof Step1: Blowing-up a single function f .
Assume that f is 1-Lipschitz with d f �= 0 μ-a.e.; by Theorem 2.15, for each n, μ admits

a (1, 1+ 1
n )-biLipschitz Alberti representation An with f speed ≥ |d f |E(μ) −1/n; note also

that |d f |E(μ) is necessarily an upper bound on the f -speed of any Alberti representation. We
use Theorem 3.11 to find a μ-full measure subset U where one can blow-up each An and on
which |d f |E(μ) is approximately continuous. For a Lebesgue point x ofU let (Y, ν, y, {g}) ∈
Bw-up(X, μ, x, { f }), and denote by An,∞ = [Qn, 1] the corresponding blow-up of An .
Then Qn is concentrated on the set of lines in Y with constant speed in [1, 1 + 1/n] and
which satisfy:

g(γ (t)) − g(γ (s)) ∈
[(

|d f (x)|E(μ) − 1

n

)

(t − s),

(

1 + 1

n

)

|d f (x)|E(μ) (t − s)

]

(∀ t ≥ s).

(3.34)

By a compactness argument one obtains an Alberti representation A∞ = [Q∞, 1] of ν where
Q∞ is concentrated on the set of unit speed lines of Y satisfying:

g(γ (t)) − g(γ (s)) = |d f (x)|E(μ) (t − s) (∀ t ≥ s). (3.35)

Step 2: Approximation by rational combinations.

We apply Step 1 to each function �Q =
{∑N

i=1 aiϕi
}

a∈QN
, and one also assumes that

x is an approximate continuity point of each map:

x̃ �→
∣
∣
∣
∣
∣

N∑

i=1

aidϕi (x̃)

∣
∣
∣
∣
∣
E(μ)

(a ∈ Q
N ). (3.36)

To obtain (FBlow1), (FBlow2) one then uses the fact that QN is dense in R
N and the linearity

of blow-ups, i.e. that the blow-up of
∑N

i=1 aiϕi is
∑N

i=1 aiψi . (FBlow3) follows from the
quantitative characterization of differentiability spaces ((Schioppa) in Theorem 2.17) and
from the fact that given a Lipschtiz function f , at μ-a.e. x any blow-up of f at x has
Lipschitz constant at most Lip f (x). ��
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4 A local approach to fail differentiability

In this section we discuss a methodology for the gluing part of the argument. Even though we
end up using “cubical” tiles in Sect. 5, other geometries for tiles might be helpful in deducing
other properties of blow-ups. The following theorem summarizes sufficient conditions to
show that a metric measure space is not a differentiability space; we follow an approach
motivated by Weaver derivations; for the proof see [32, Sect. 5.3] (or [8] for an approach via
charts).

Theorem 4.1 Let (X, μ) be a metric measure space with μ(X) = 1. Assume that for some
(αvar, L) ∈ (0,∞)2 for each ε > 0 there is an L-Lipschitz function fε such that:

(SmDiff): μ
({
x ∈ X : |d fε(x)|E(μ) > ε

}) ≤ ε;
(PosVar): There is a Borel set Xvar ⊂ X with μ(X\Xvar) ≤ ε, and such that for each
x ∈ Xvar there is an xvar = xvar(x) satisfying:

d(x, xvar) ∈ (0, ε] (4.1)

| fε(x) − fε(xvar)| ≥ αvard(x, xvar). (4.2)

Then (X, μ) is not a differentiability space.

Definition 4.2 (Tiles) Let (L , αvar, εgrad, εloss, r) ∈ (0,∞)5; an [L , αvar, εgrad, εloss, r ]-tile
at x is a pair (Sx , fx ) such that:

(T1) Sx is closed, Sx ⊂ B(x, r) and diam Sx ≈L r ;
(T2) μ(Sx ) �L μ (B(x, r));
(T3) fx is L-Lipschitz and for each p ∈ Sx one has:

| fx (p)| ≤ Ld(p, Scx ); (4.3)

(T4) μ
({
p ∈ Sx : |d fx (p)|E(μ) > εgrad

}) ≤ εlossμ(Sx );
(T5) There is a Borel set Sx,var ⊂ Sx such that μ(Sx\Sx,var) ≤ εlossμ(Sx ) and for each

y ∈ Sx,var there is a yvar = yvar(y) such that:

d(y, yvar) ∈ (0, εloss] (4.4)

| fx (y) − fx (yvar)| ≥ αvard(y, yvar). (4.5)

Theorem 4.3 Let (X, μ) be a complete metric measure space with μ(X) = 1, and
such that the Vitali Covering Lemma holds for μ. Assume that there are constants
(L , αvar, εgrad, εloss) ∈ (0,∞)4 such that for μ-a.e. x ∈ X there is a sequence of scales
{rn = rn(x) ↘ 0}n such that for each n there is an [L , αvar, εgrad, εloss, rn]-tile at x. Then
the assumption of Theorem 4.1 holds with L replaced by 2L, with αvar replaced by αvar/2,
and with ε = max(εgrad, εloss).

Proof By (T1), (T2) tiles are closed and comparable to balls in measure and shape; thus by
the Vitali Covering Lemma we can find tiles {(Sxi , fxi )}i such that the sets {Sxi } are pairwise
disjoint and μ(X\ ⋃

i Sxi ) = 0. We let f = fxi on each Sxi and f = 0 on X\⋃
i Sxi .

Step 1: f is 2L-Lipschitz.
We will use (T3) to compare values of f at points belonging to different tiles. If x, y ∈ Sxi

we have:
| f (x) − f (y)| = ∣

∣ fxi (x) − fxi (y)
∣
∣ ≤ Ld(x, y) (4.6)
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because fxi is L-Lipschitz. If x ∈ Sxi and y ∈ Sx j for i �= j :

| f (x) − f (y)| ≤ ∣
∣ fxi (x)

∣
∣ + ∣

∣ fx j (y)
∣
∣ ≤ L

[
d(x, Scxi ) + d(y, Scx j )

]

≤ 2Ld(x, y). (4.7)

If x ∈ Sxi and y ∈ X\⋃
i Sxi we have:

| f (x) − f (y)| = ∣
∣ fxi (x)

∣
∣ ≤ Ld(x, Scxi ) ≤ Ld(x, y). (4.8)

If x, y ∈ X\⋃
i Sxi : | f (x) − f (y)| = 0. (4.9)

Step 2: (SmDiff) holds with ε = max{εgrad, εloss}.
We will use (T4) on each tile. The exterior differential d is a local operator [38], i.e.:

d f = d fxi μ Sxi -a.e. (4.10)

Thus:

μ
({
x ∈ X : |d f (x)|E(μ) > ε

}) ≤
∑

i

μ
({

x ∈ Sxi : ∣
∣d fxi (x)

∣
∣
E(μ)

> εgrad

})

≤
∑

i

εlossμ(Sxi ) ≤ ε. (4.11)

Step 3: (PosVar) holds with αvar/2 replacing αvar.
We will use (T5) and the fact that f and fxi vanish on the boundary of each tile. Let Xvar =⋃
i Sxi ,var so that μ(X\Xvar) ≤ ε. Let y ∈ Sxi ,var and assume that the yvar corresponding to

fxi and y is in Sxi . Then:

| f (y) − f (yvar)| ≥ ∣
∣ fxi (y) − fxi (yvar)

∣
∣ ≥ αvard(y, yvar). (4.12)

If yvar does not lie in Sxi we conclude that:

| f (y)| = ∣
∣ fxi (y) − fxi (yvar)

∣
∣ ≥ αvard(y, yvar) ≥ αvard(y, Scxi ). (4.13)

We then choose ỹ ∈ ∂Sxi such that:

d(y, ỹ) ≤ min
(
2d(y, Scxi ), d(y, yvar)

)
, (4.14)

so that we have:

| f (y) − f (ỹ)| = ∣
∣ fxi (y)

∣
∣ ≥ αvar

2
d(y, ỹ)

d(y, ỹ) ≤ εloss ≤ ε. (4.15)

��

5 Blow-ups of differentiability spaces

5.1 Blow-ups of differentiability spaces are differentiability spaces

Theorem 5.1 Let (X, μ) be a complete doubling metric measure space and assume that for
μ-a.e. p there is some (Y, ν, q) ∈ Bw-up(X, μ, p) which is not a differentiability space.
Then (X, μ) is not a differentiability space.
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Proof In the following we will assume that μ(X) = 1. By Theorems 4.1, 4.3 it suffices to
show that at μ-a.e. point p there is a sequence of “bad tiles” satisfying the assumption of
Theorem 4.3.
Step 1: Choice of Christ’s cubes.

In (X, μ) we choose a set of Christ’s dyadic cubes [12,23] Q using the scales {2−n}n . The
properties of Q that we will use are:

(Cube1): Cubes are open and there are constants Cann ≥ 1 and βann > 0 such that for
τ ∈ (0, 1) and Q ∈ Q the “annulus”

Q(τ ) = {
p ∈ Q : d(p, Qc) ≤ τ diam Q

}
(5.1)

satisfies:
μ (Q(τ )) ≤ Cannτ

βannμ(Q). (5.2)

(Cube2): There is a kann ≥ 1 such that each ball B(p, r/2), where r ∈ [2−n, 2−n+1],
contains a cube Q of generation kann + n and the measures μ(Q) and μ(B(p, r)) are
uniformly comparable.

In the following, we will only consider blow-ups at points p ∈ X where the conclusion of
Theorem 3.7 holds.
Step 2: Uniformizing a bad function.

We now consider some (Y, ν, q) ∈ Bw-up(X, μ, p) which is not a differentiability space.
Note that ν is doubling with doubling constant bounded by C4

μ,Cμ being the doubling
constant of μ. Thus, the index of the module X(ν) is bounded by !log2 C

4
μ". We fix the

parameter εtan,1 ∈ (0, 1) and use the argument of Lemma 4.17 in [32] to show that there are
a Borel subset Sndiff ⊂ Y with ν(Sndiff ) > 0 and a Lipschitz function f : Y → R such that:

Lip f (x) ∈ [1, 2] (∀x ∈ Sndiff ) (5.3)

|d f (x)|E(ν) ≤ εtan,1 (∀x ∈ Sndiff ). (5.4)

We choose a point q̃ that is a biLipschitz density point q̃ of Sndiff , and an approximate
continuity point of Lip f and |d f |E(ν). By shifting the basepoint q̃ and rescaling (Y, ν, q)

and f , we can assume that:

(BadF1): Sndiff ⊂ BY (q, 2) and ν (BY (q, 2)\Sndiff ) ≤ εtan,1;
(BadF2): The Lipschitz constant of the restriction of f to Sndiff is at most 3;
(BadF3): For ν-a.e. x ∈ Sndiff there is a sequence Seq(x) = {xn} ⊂ Sndiff \{x} converging
to x such that f witnesses at x a definite amount of variation at scale d(x, xn):

| f (x) − f (xn)| ≥ (1 − εtan,1)d(x, xn) > 0. (5.5)

We now use MacShane’s Lemma to extend f |Sndiff to a 3-Lipschitz function f̃ : Y → R.
Note that (BadF3) and (5.4) remain valid replacing f with f̃ . In the following we will write
f for f̃ .
Step 3: Truncating the function f .

Fix parameters τann ∈ (0, 1) and τcut ∈ (0, τann). We fix N ∈ N and let

α ∈ [0, 1) ∩ 1

N 2 Z (5.6)

we let:

ψα(·) = d

(

·, 1

N
Z + α

)

, (5.7)
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which is a 1-Lipschitz function. Using the pigeonhole principle (see [7, Lemma 4.1] for
details) we can find a value of α and a Borel set Svar ⊂ Sndiff such that:

ν (Sndiff\Svar) ≤ 4

N
ν(Sndiff ) ≤ 4

N
ν(BY (q, 2)), (5.8)

such that for each x ∈ Sndiff there is a sequence Seq(x) ⊂ BY (q, 2)\{x} converging to x
such that, similarly as in (BadF3), one has:

|ψα ◦ f (x) − ψα ◦ f (xn)| ≥ (1 − εtan,1)d(x, xn) > 0. (5.9)

Now note that the normalization
∫

BY (q,1)

(1 − d(p, x)) dν(x) = 1 (5.10)

implies

ν

(

BY

(

q,
1

2

))

≤ 2, (5.11)

and thus (5.8) leads to:

ν (Sndiff\Svar) ≤ 8C8
μ

N
. (5.12)

Finally, note that:

‖ψα ◦ f ‖∞ ≤ 1

N
|d(ψα ◦ f )|E(ν) ≤ |d f |E(ν) .

(5.13)

We now fix a parameter εtan,2 > εtan,1 and choose N so that:

(BadC1): ν(B(q, 2)\Svar) ≤ εtan,2 and ‖ψα ◦ f ‖∞ ≤ τcut;
(BadC2): For each x ∈ Svar there is a sequence Seq(x) = {xn} converging to x such that

|ψα ◦ f (x) − ψα ◦ f (xn)| ≥ (1 − εtan,2)d(x, xn) > 0; (5.14)

(BadC3): For each x ∈ Svar we have |d(ψα ◦ f )(x)|E(ν) ≤ εtan,2.

In the following we will write f for ψα ◦ f .
Step 4: Arranging convergence in �∞.

We now choose a sequence of rescalings λn ↗ ∞ realizing (Y, ν, q), i.e.:

(λn X = Xn, μn, p)
mGH−−−→ (Y, ν, q); (5.15)

we can choose the convergence to take place in the container (�∞, 0), and we will require
that all basepoints map to 0, but we will still distinguish them in the notation, i.e. we will
denote the basepoint of Xn by pn . We now fix the parameter εtan,3 > εtan,2. Then we can
find Rvar ∈ (0, τcut) and a compact set KHau ⊂ BY (q, 2) such that:

(Hau1): ν(BY (q, 2)\KHau) ≤ εtan,3 and for each x ∈ KHau one has

|d f (x)|E(ν) ≤ εtan,3; (5.16)

(Hau2): For each x ∈ KHau there is an xvar = xvar(x) satisfying:

| f (x) − f (xvar)| ≥ (1 − εtan,3)d(x, xvar)

d(x, xvar) ∈ (Rvar, τcut). (5.17)
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Note that by MacShane’s Lemma we can assume f to be extended to a 3-Lipschitz map
f : l∞ → R.
Step 5: Using the approximation scheme.

We fix the parameter εcut ∈ (0, εtan,3Rvar/2). Because of (Hau1) we can apply the Approx-
imation Scheme Theorem 2.14 and find a function f̃ : �∞ → R which is 3-Lipschitz, a
compact set Kapp ⊂ KHau, and an open set U ⊃ Kapp such that the following holds:

(App1): ‖ f̃ − f ‖∞ ≤ εcut and ν(KHau\Kapp) ≤ εcut;
(App2):U is an open set of�∞ contained in the closed εcut-neighbourhood B̄l∞(Kapp, εcut)

of Kapp;
(App3): For each ball B ⊂ U the restriction f̃ |B has Lipschitz constant ≤ εcut + εtan,3.

As U is open and μn
w*−→ ν we have by the properties of the weak* topology and the choice

of basepoints that for n sufficiently large:
∫

U∩B�∞ (0,1)

(
1 − dXn (pn, x)

)
dμn(x) ≥

∫

U∩B�∞ (0,1)

(1 − dY (q, x)) dν(x) − εcut.

(5.18)
We thus obtain:

∫

U∩B�∞ (0,1)

(
1 − dXn (pn, x)

)
dμn(x) ≥

∫

B�∞ (0,1)

(1 − dY (q, x)) dν(x)

−ν(BY (q, 1)\Kapp) − εcut

≥ 1 − (εtan,3 + 2εcut); (5.19)

moreover, as on B�∞(0, 1/2) ∩ Xn = BXn (pn, 1/2) we have that 1 − dXn (pn, ·) is at least
1/2, we conclude that:

μn

(

BXn

(

pn,
1

2

) ∖
U

)

≤ 2(εtan,3 + 2εcut). (5.20)

Now for x ∈ U ∩ BXn (pn, 1) we have:
∣
∣
∣d f̃ (x)

∣
∣
∣
E(μn)

≤ εcut + εtan,3. (5.21)

Moreover, we have:
‖ f̃ ‖∞ ≤ εcut + τcut, (5.22)

and for x ∈ Kapp we can find xvar satisfying (5.17).
Step 6: Lifting the variation.

We now choose a parameter εdens > 0 and a finite εdens-net N in Kapp ∩ B̄Y (q, 1). For
each x ∈ N we can find xvar(x) ∈ BY (q, 2) satisfying (5.17). We can thus construct the finite
set:

Nvar = {xvar(x)}x∈N (5.23)

and find a map V : N → Nvar which associates xvar(x) to x . Using (3.2), for n sufficiently
large, we can find a finite set

Nn ⊂ U ∩ BXn (pn, 1 + εdens) (5.24)

of the same cardinality as N and a bijection Jn : N → Nn such that:

d(Jn(x), x) < εdens. (5.25)
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Similarly, for n sufficiently large, we can also find a finite set

Nn,var ⊂ U ∩ BXn (pn, 2 + εdens) (5.26)

of the same cardinality as Nvar and a bijection Jn,var : Nvar → Nn,var such that:

d(Jn,var(x), x) < εdens. (5.27)

We finally let Vn = Jn,var ◦ V ◦ J−1
n . For y ∈ U ∩ BXn (pn, 1) we can find x ∈ N such that:

d(y, x) = O(εcut, εdens); (5.28)

using that f̃ is 3-Lipschitz we obtain:
∣
∣
∣ f̃ (y) − f̃ (Vn(x))

∣
∣
∣ =

∣
∣
∣ f̃ (J−1

n (x)) − f̃ (V ◦ J−1
n (x))

∣
∣
∣ + O(εcut, εdens); (5.29)

using the properties of V we also conclude that:

d(y, Vn(x)) = d(J−1
n (x), V ◦ J−1

n (x)) + O(εcut, εdens). (5.30)

Note that the constants hidden in the O(·) notation in (5.28)–(5.30) do not depend on n. As
the parameters εcut and εdens are chosen after Rvar and εtan,3, one can choose them sufficiently
small so that:

∣
∣
∣ f̃ (y) − f̃ (Vn(x))

∣
∣
∣ ≥ (1 − εtan,3)d(y, Vn(x))

d(y, Vn(x)) ∈ (Rvar/2, 2τcut). (5.31)

Step 7: Constructing the tiles.
Let Q ∈ Q be a dyadic cube of generation gn = �log2 λn� + kann contained in
BXn (pn, 1/2). For the moment we will compute distances using the rescaled metric. The

cube Q will be used to construct the tile. Specifically, recall that Q is open and consider a
parameter τann ∈ (0, 1/8) to be chosen later. The set Q̃ that we will use for the tile will be
the closure in Xn of Q\Q(τann). Now (Cube1) and (Cube2) imply that there is a uniform
constant C such that:

diam Q̃ ≈C diam Q ≈C 2−kann

μn(Q̃) ≈Cμn(Q) �C μn(BXn (pn, 1)); (5.32)

this will give (T1) and (T2). Consider Q(τann) and a C2kann

τann
-Lipschitz function ψQ which

takes values in [0, 1] and such that:

ψQ =
{

1 on Q\Q(2τann)

0 on Q̃c

∣
∣ψQ(x)

∣
∣ ≤ C2kann

τann
d(x, Q̃c).

(5.33)

Let h = ψQ f̃ ; using Eq. (5.22) we conclude that h has Lipschitz constant at most

3 + C2kann

τann
(τcut + εcut). (5.34)

As the parameters τcut and εcut are chosen after kann and τann have been determined, we can
choose them small enough to ensure that h is 4-Lipschitz. We then also have:

|h(x)| ≤ C2kann

τann
(τcut + εcut)d(x, Q̃c)
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≤ 4d(x, Q̃c). (5.35)

The function h will be the function that we use to construct the tile. Now (T3) follows
from (5.34), (5.35). We now let:

Qndiff = Q\Q(2τann + 2τcut) ∩U ⊂ Q̃ ⊂ BXn (pn, 1/2); (5.36)

we then have, using (Cube1) and minding (5.20):

μn(Q̃\Qndiff ) ≤ μn(Q(2τann + 2τcut)) + μn(BXn (pn, 1/2)\U )

≤ Cann(2τann + 2τcut)
βannμn(Q) + μn(BXn (pn, 1/2)\U )

≤ Cann C(2τann + 2τcut)
βannμn(Q̃) + 2(εtan,3 + 2εcut). (5.37)

As the parameters on the right hand side of (5.37) are chosen after Step 1, given a fixed
εloss > 0 we chan choose those parameters so that:

μn(Q̃\Qndiff ) ≤ εlossμn(Q̃). (5.38)

Now, if x ∈ Qndiff , the function h is (εcut + εtan,3)-Lipschitz in a neighbourhood of x and
hence:

|dh(x)|E(μn) ≤ (εcut + εtan,3). (5.39)

Given εgrad we can choose εcut and εtan,3 so that their sum is ≤ εgrad; this gives (T4). Also,
given x ∈ Qndiff we can find by (5.31) a point y ∈ Q\Q(τann) ⊂ Q̃ such that:

|h(x) − h(y)| ≥ (1 − 2εtan,3)d(x, y) > 0

d(x, y) ≤ 2τcut. (5.40)

Choosing τcut sufficiently small we can ensure that

d(x, y) ≤ εloss. (5.41)

Finally, choosing εtan,3 sufficiently small we can also ensure that:

1 − 2εtan,3 ≥ 2

3
; (5.42)

thus (5.40)–(5.42) give (T5). Rescaling h back to X (i.e. h �→ λ−1
n h), we conclude that (Q̃, h)

is an: [

max(C, 5),
2

3
, εgrad, εloss, λ

−1
n

]

-tile (5.43)

at p. ��
5.2 Independence of the p-weak gradient on p

Definition 5.2 Let I ⊂ R be a nondegenerate closed interval and AI : R → R the unique
orientation-preserving affine map which maps [0, 1] onto I . For ε > 0 let:

Slide(I, ε) = {γ ∈ Curves(X) : ∀t ∈ [0, ε] t + I ⊂ dom γ }; (5.44)

let:
SlideI,ε : Slide(I, ε) × [0, ε] → Curves(X, [0, 1]) (5.45)

be the map such that:
SlideI,ε(γ, t)(s) = γ (AI (s) + t). (5.46)
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Lemma 5.3 (Test plan associated with an Alberti representation) Let A = [Q, 1] be an
Alberti representation of a measure ν such that for some Cν > 0 one has ν ≤ Cνμ. Assume
that for some closed interval I, ε > 0 and C0 > 0 the measure Q is concentrated on the
set of C0-Lipschitz curves in Slide(I, ε). Assuming that Q is a probability measure, we can
associate to A a probability π on Curves(X; [0, 1]) by:

π = SlideI,ε,#

(

Q × 1

ε
L1 [0, ε]

)

. (5.47)

Then for any q ∈ [1,∞), π defines a q-test plan.

Proof Note that for Q-a.e. γ one has that md γ ≤ C0 holds L1 dom γ -a.e. Now the
derivative of AI isL1(I ) and so for π -a.e. γ one has that md γ ≤ C0L1(I ) holdsL1 dom γ -
a.e.; one thus gets:

∫

dπ(γ )

∫ 1

0
(md γ (t))q dt ≤ (

C0L1(I )
)q

, (5.48)

which gives (2.24). Let ϕ be a nonnegative continuous function of X ; then:
∫

ϕ dEvt#π =
∫

ϕ(γ (t)) dπ(γ ) =
∫

dQ(γ )
1

ε

∫ ε

0
ϕ (γ (AI (t) + s)) ds

≤ 1

ε

∫

ϕ dν ≤ Cν

ε

∫

ϕ dμ, (5.49)

which establishes (2.25). ��

Definition 5.4 (Regular Alberti representation) An Alberti representation [Q, 1] is regular
if Q is concentrated on the set of unit-speed geodesic lines of X . Here we think of unit-speed
geodesic lines as maps γ : R → X , and so they have infinite length.

Lemma 5.5 Let [Q, 1] be a regular Alberti-representation of μ and (x, r) ∈ X × (0,∞);
then:

Q
({

γ : γ −1 (B(x, r)) �= ∅}) ≤ μ (B(x, 2r))

r
. (5.50)

Proof It suffices to observe that if γ is a unit-speed geodesic line in X then γ −1 (B(x, r)) �= ∅
implies:

L1 (
γ −1 (B(x, 2r))

) ≥ r. (5.51)

��

Definition 5.6 A differentiability space (X, μ) is regular if:

(Reg1): The measure μ is doubling and there is a unique differentiability chart (X,� =
{ϕi }ni=1) such that � : X → R

n is 1-Lipschitz;
(Reg2): The local norm | · |E(μ) is constant;
(Reg3): For each vector v ∈ X(μ) (note that we can canonically identify a vector in the
measurable tangent bundle with a derivation, as the chart is global) with |v|X(μ) = 1
there is an Alberti representation [Qv, 1] of μ where Qv is concentrated on the set of
unit-speed lines γ in X satisfying:

(� ◦ γ )′ = v. (5.52)
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Lemma 5.7 (Iterated blow-ups are regular) Let (X, μ) be a differentiability space. Then
for μ-a.e. x there is an integer N (x) such that, whenever (Y, ν, y) ∈ Bw-up(X, μ, x), up
to passing to at most N (x) iterated blow-ups, i.e. up to replacing (Y, ν, y) with (Yl , νl , yl)
where:

(Yi , νi , yi ) ∈ Bw-up(Yi−1, νi−1, yi−1) 1 ≤ i ≤ l ≤ N (x)

(Y0, ν0, y0) = (Y, ν, y), (5.53)

one can assume that (Y, ν, y) is a regular differentiability space. The integer N (x) satisfies:

N (x) ≤ �log2 Cμ(x)�, (5.54)

where Cμ(x) is the asymptotically doubling constant of μ at X. In particular ,if X has finite
Assoaud dimension N, then

N (x) ≤ N . (5.55)

Proof At μ-a.e. x the conclusion of Theorem 3.7 holds, and each (Y, ν, y) ∈ Bw-up(X, μ, x)
is a differentiability space. Now by (IndBound) in Theorem 2.13 the index of X(ν) is uni-
formly bounded by some N (x) which satisfies (5.54), (5.55). Thus in passing to iterated
blow-ups as in (5.53), the differentiability dimension can increase at most N (x) times. If l is
the smallest integer such that in passing from (Yl−1, νl−1, yl−1) to (Yl , νl , yl) the differen-
tiability dimension does not increase, then (Yl , νl , yl) is regular by Theorem 3.11 (compare
also [18]). ��
Theorem 5.8 (The p-weak gradient does not depend on p) Let (X, μ) be a regular differ-
entiability space and f a Lipschitz function on X; then for any p ∈ (1,∞):

|∇ f |p.w = Lip f μ-a.e. (5.56)

Proof Step 1: Uniformization.
Let g be a p-weak upper gradient of f and let Acont denote the set of differentiability

points of f and of approximate continuity points of d f, g and Lip f . We fix x ∈ Acont and
choose the parameter εcont > 0. Up to rescaling f and g we can assume that:

|d f (x)|E(μ) = Lip f (x) = 1. (5.57)

We let v ∈ X(μ) be a unit vector where d f (x) attains the norm and let:

Ax =
{

y ∈ Acont : |d f (y) − d f (x)| ≤ εcont and |g(y) − g(x)| ≤ εcont

}

. (5.58)

Note that for r sufficiently small we can assume:

μ (B(x, r)\Ax ) ≤ εcontμ (B(x, r)) . (5.59)

Step 2: Construction of a q-test plan.
Let q be the dual exponent of p. Let [Q, 1] be an Alberti representation of μ as in the

definition of a regular differentiability space where we use the unit vector v. Let

�x,r =
{

γ is a unit speed line with γ −1(B(x, r)) �= ∅
}

; (5.60)

letting Qx,r = Q �x,r we have by Lemma 5.5:

‖Qx,r‖ ≤ μ (B(x, 2r))

r
. (5.61)
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Let μx,r be the measure corresponding to the Alberti representation [Qx,r , 1] and note that:

μx,r ≤ μ

dμx,r

dμ
= 1 on B(x, r). (5.62)

We now let:

�short =
{

γ is a unit speed line with γ −1(Ax ∩ B(x, r)) ≤ εshortr

}

; (5.63)

we then obtain the estimates:

μx,r (Ax ∩ B(x, r)) ≥ (1 − εcont)μ (B(x, r)) (5.64)

μx,r (Ax ∩ B(x, r)) ≤
∫

�short

L1 (
γ −1(Ax ∩ B(x, r))

)
dQx,r (γ )

+
∫

�c
short

L1 (
γ −1(Ax ∩ B(x, r))

)
dQx,r (γ )

≤ εshortr‖Qx,r‖
+

∫

�c
short

L1 (
γ −1(Ax ∩ B(x, r))

)
dQx,r (γ )

≤ εshortμ(B(x, 2r))

+
∫

�c
short

L1 (
γ −1(Ax ∩ B(x, r))

)
dQx,r (γ ); (5.65)

combining (5.64), (5.65) we conclude that for εshort sufficiently small:
∫

�c
short

L1 (
γ −1(Ax ∩ B(x, r))

)
dQx,r (γ ) > 0. (5.66)

Using a measurable selection principle (see [24, Chapter 18]) we can find an Alberti repre-
sentation [QAx , 1] of a measure ν � μ such that:

(Test1): QAx is a finite Radon measure, dν
dμ

≤ 1;
(Test2): For QAx -a.e. γ , letting I = [0, 3r ] we have for each t ∈ [0, r ]:

I + t ⊂ dom γ

L1 (
γ −1 (Ax ∩ B(x, r)) ∩ (I + t)

)
> 0; (5.67)

(Test3): QAx -a.e. γ is a unit-speed geodesic segment of length at most 6r .

Using Lemma 5.3 (and setting ε = r ) we can associate to [QAx /‖QAx ‖, 1] a q-test plan π .
Step 3: Applying Lebesgue’s differentiation along curves.

As g ∈ L p(μ), conditions (Test1)–(Test3) imply that for π-a.e. γ there is a nondegenerate
interval Jγ ⊂ dom γ such that g ◦ γ ∈ L1(L1 Jγ ) and Jγ meets γ −1(Ax ) in positive
Lebesgue measure. Moreover, for π -a.e. γ for each (a, b) ⊂ Jγ we also have that:

| f ◦ γ (b) − f ◦ γ (b)| ≤
∫ b

a
g ◦ γ dL1; (5.68)
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if t0 ∈ Jγ is an interior point of Jγ , a differentiability point of f ◦ γ , and a Lebesgue point
of γ −1(Ax ), applying Lebesgue’s differentiation at t0 we obtain:

g(γ (t0)) ≥ 〈d f (γ (t0)), v〉, (5.69)

which implies
g(x) ≥ 1 − 2εcont. (5.70)

��

Remark 5.9 Theorem 5.8 has a counterpart in the category of functions of bounded variations;
i.e. one can show that in a regular differentiability space the total variation measure of a
Lipschitz function f coincides with Lip f · μ; we omit the details because they are mainly
technical and do not add much mathematical substance to the paper.
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